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Foreword

Robotics is undergoing a major transformation in scope and dimension. From
a largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will in-
creasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics
has produced is revealing a much wider range of applications reaching across
diverse research areas and scientific disciplines, such as: biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks
among others. In return, the challenges of the new emerging areas are proving
an abundant source of stimulation and insights for the field of robotics. It
is indeed at the intersection of disciplines that the most striking advances
happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing
to the research community the latest advances in the robotics field on the ba-
sis of their significance and quality. Through a wide and timely dissemination
of critical research developments in robotics, our objective with this series is
to promote more exchanges and collaborations among the researchers in the
community and contribute to further advancements in this rapidly growing
field.

The monograph by Jens Kober and Jan Peters contributes to the state of
the art in reinforcement learning applied to robotics both in terms of novel al-
gorithms and applications. A method that learns to generalize parametrized
motor plans is proposed which is obtained by imitation or reinforcement
learning, by adapting a small set of global parameters, and appropriate kernel-
based reinforcement learning algorithms are introduced. The applications ex-
plore highly dynamic tasks and exhibit a very efficient learning process. All
proposed approaches have been extensively validated with benchmarks tasks,
in simulation, and on real robots. These tasks correspond to sports and games
but the presented techniques are also applicable to more mundane household
tasks.
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Remarkably, the monograph is based on the first author’s doctoral thesis,
which won the 2013 EURON Georges Giralt PhD Award. A very fine addition
to STAR!

Naples, Italy Bruno Siciliano
September 2013 STAR Editor



Preface

Ever since the word “robot” was introduced to the English language by Karel
Čapek’s play “Rossum’s Universal Robots” in 1921, robots have been ex-
pected to become part of our daily lives. In recent years, robots such as
autonomous vacuum cleaners, lawn mowers, and window cleaners, as well as
a huge number of toys have been made commercially available. However, a
lot of additional research is required to turn robots into versatile household
helpers and companions. One of the many challenges is that robots are still
very specialized and cannot easily adapt to changing environments and re-
quirements. Since the 1960s, scientists attempt to provide robots with more
autonomy, adaptability, and intelligence. Research in this field is still very
active but has shifted focus from reasoning based methods towards statisti-
cal machine learning. Both navigation (i.e., moving in unknown or changing
environments) and motor control (i.e., coordinating movements to perform
skilled actions) are important sub-tasks.

In this book, we will discuss approaches that allow robots to learn motor
skills. We mainly consider tasks that need to take into account the dynamic
behavior of the robot and its environment, where a kinematic movement plan
is not sufficient. The presented tasks correspond to sports and games but the
presented techniques will also be applicable to more mundane household tasks.
Motor skills can often be represented by motor primitives. Such motor primi-
tives encode elemental motions which can be generalized, sequenced, and com-
bined to achieve more complex tasks. For example, a forehand and a backhand
could be seen as two differentmotor primitives of playing table tennis.We show
how motor primitives can be employed to learn motor skills on three differ-
ent levels. First, we discuss how a single motor skill, represented by a motor
primitive, can be learned using reinforcement learning. Second, we show how
such learned motor primitives can be generalized to new situations. Finally, we
present first steps towards using motor primitives in a hierarchical setting and
how several motor primitives can be combined to achieve more complex tasks.

To date, there have been a number of successful applications of learning
motor primitives employing imitation learning. However, many interesting
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motor learning problems are high-dimensional reinforcement learning prob-
lems which are often beyond the reach of current reinforcement learning meth-
ods. We review research on reinforcement learning applied to robotics and
point out key challenges and important strategies to render reinforcement
learning tractable. Based on these insights, we introduce novel learning ap-
proaches both for single and generalized motor skills.

For learning single motor skills, we study parametrized policy search meth-
ods and introduce a framework of reward-weighted imitation that allows us
to derive both policy gradient methods and expectation-maximization (EM)
inspired algorithms. We introduce a novel EM-inspired algorithm for policy
learning that is particularly well-suited for motor primitives. We show that
the proposed method out-performs several well-known parametrized policy
search methods on an empirical benchmark both in simulation and on a real
robot. We apply it in the context of motor learning and show that it can
learn a complex ball-in-a-cup task on a real Barrett WAM.

In order to avoid re-learning the complete movement, such single motor
skills need to be generalized to new situations. In this book, we propose
a method that learns to generalize parametrized motor plans, obtained by
imitation or reinforcement learning, by adapting a small set of global param-
eters. We employ reinforcement learning to learn the required parameters
to deal with the current situation. Therefore, we introduce an appropriate
kernel-based reinforcement learning algorithm. To show its feasibility, we
evaluate this algorithm on a toy example and compare it to several previ-
ous approaches. Subsequently, we apply the approach to two robot tasks,
i.e., the generalization of throwing movements in darts and of hitting move-
ments in table tennis on several different real robots, i.e., a Barrett WAM,
the JST-ICORP/SARCOS CBi and a Kuka KR 6.

We present first steps towards learning motor skills jointly with a higher
level strategy and evaluate the approach with a target throwing task on a
BioRob. Finally, we explore how several motor primitives, representing sub-
tasks, can be combined and prioritized to achieve a more complex task. This
learning framework is validated with a ball-bouncing task on a Barrett WAM.

This book contributes to the state of the art in reinforcement learning ap-
plied to robotics both in terms of novel algorithms and applications. We have
introduced the Policy learning by Weighting Exploration with the Returns
algorithm for learning single motor skills and the Cost-regularized Kernel Re-
gression to generalize motor skills to new situations. The applications explore
highly dynamic tasks and exhibit a very efficient learning process. All pro-
posed approaches have been extensively validated with benchmarks tasks, in
simulation, and on real robots.

Offenbach & Darmstadt Jens Kober
September 2013 Jan Peters
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Abbreviations

In this book we use the following mathematical notation throughout:

Notation Description

{x1, x2, . . . , xn} set with elements x1, x2, . . . , xn

R real numbers

x = [x1, x2, . . . , xn] a vector

xi the ith component of the vector x

xT transpose of vector

A = [a1, a2, . . . , an] a matrix

ai the ith vector of the matrix A

aij the i, jth component of the matrix A

AT transpose of matrix

A−1 matrix inverse

A+ matrix pseudo-inverse

A
1
2 matrix root

∇θif derivative with respect to parameter θi

∇θf derivative with respect to parameters θi
∂f
∂q partial derivative

p (x) probability density of x

E {x} expectation of x

x̄ = 〈x〉 sample average of x



XVI Abbreviations

The following symbols are used in several sections:

Symbol Description

t time

x, ẋ, ẍ task space position, velocity, acceleration

q, q̇, q̈ joint space position, velocity, acceleration

st state (at time t)

at action (at time t)

s1:T+1 series of states st with t ∈ {1, 2, . . . , T + 1}
a1:T series of actions at with t ∈ {1, 2, . . . , T }
τ = [s1:T+1, a1:T ] rollout, episode, trial

T rollout length

π (at|st, t) policy

T set of all possible paths

rt reward (at time t)

r1:T series of rewards rt with t ∈ {1, 2, . . . , T }
R (τ) return

J (θ) expected return

D (p‖q) Kullback-Leibler divergence

Qπ (s, a, t) value function of policy π

F (θ) Fisher information matrix

ε exploration

H number of rollouts

n index of parameter

k index of iteration

g = ∇θf (θ) gradient

α update rate

ψ (·) weights

c centers

h widths

Δt time step

λ ridge factor

k (s, s) ,K kernel, Gram matrix

u motor command



1

Introduction

Summary. Since Issac Asimov started to write short stories about robots
in the 1940s, the idea of robots as household helpers, companions and sol-
diers has shaped the popular view of robotics. Science fiction movies depict
robots both as friends and enemies of the human race, but in both cases
their capabilities far exceed the capabilities of current real robots. Simon
(1965), one of the artificial intelligence (AI) research pioneers, claimed that
“machines will be capable, within twenty years, of doing any work a man
can do.” This over-optimistic promise led to more conservative predictions.
Nowadays robots slowly start to penetrate our daily lives in the form of toys
and household helpers, like autonomous vacuum cleaners, lawn mowers, and
window cleaners. Most other robotic helpers are still confined to research labs
and industrial settings. Many tasks of our daily lives can only be performed
very slowly by a robot which often has very limited generalization capabilities.
Hence, all these systems are still disconnected from the expectation raised by
literature and movies as well as from the dreams of AI researchers.

Especially in Japan, the need of robotic household companions has been
recognized due to the aging population. One of the main challenges remains
the need to adapt to changing environments in a co-inhabited household (e.g.,
furniture being moved, changing lighting conditions) and the need to adapt
to individual requirements and expectations of the human owner. Most cur-
rent products either feature a “one size fits all” approach that often is not
optimal (e.g., vacuum robots that are not aware of their surrounding but use
an approach for obstacle treatment, that guarantees coverage of the whole
floor (BotJunkie, 2012)) or an approach that requires a setup step either in
software (e.g. providing a floor map) or in hardware (e.g., by placing beacons).
As an alternative one could imagine a self-learning system. In this book, we
will not treat navigation problems but rather focus on learning motor skills
(Wulf, 2007). We are mainly interested in motor skills that need to take into
account the dynamics of the robot and its environment. For these motor skills,
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a kinematic plan of the movement will not be sufficient to perform the task
successfully. A motor skill can often be represented by a motor primitive, i.e.,
a representation of a single movement that is adapted to varying situations
(e.g., a forehand or a backhand in table tennis that is adapted to the ball
position and velocity). We focus on learning how to perform a motor primitive
optimally and how to generalize it to new situations. The presented tasks
correspond to games and sports, which are activities that a user might enjoy
with a robot companion, but the presented techniques could also be applied
to more mundane household tasks.

1.1 Motivation

Machine-learning research has resulted in a huge number of algorithms. Un-
fortunately most standard approaches are not directly applicable to robotics,
mainly due to the inherent high dimensionality. Hence there is a need to de-
velop approaches specifically tailored for the needs of robot learning. In this
book we focus on reinforcement learning of motor primitives.

Research in reinforcement learning started in the 1950s (e.g., (Minsky,
1954; Farley and Clark, 1954; Bellman, 1957)) but has been mainly focused on
theoretical problems. The algorithms are often evaluated on synthetic bench-
mark problems involving discrete states and actions. Probably the best known
real-world applications of reinforcement learning are games, like backgammon
(Tesauro, 1994) or Go (Chan et al, 1996), but also robotic applications can
be found from the 1990s on (e.g., (Mahadevan and Connell, 1992; Gullapalli
et al, 1994)). In contrast to many problems studied in the reinforcement learn-
ing literature, robotic problems have inherently continuous states and actions.
Furthermore, experiments in robotics often deal with expensive and poten-
tially fragile hardware and often require human supervision and intervention.
These differences result in the need of adapting existing reinforcement learn-
ing approaches or developing tailored ones.

Policy search, also known as policy learning, has become an accepted
alternative of value function-based reinforcement learning (Strens and Moore,
2001; Kwee et al, 2001; Peshkin, 2001; Bagnell et al, 2003; El-Fakdi et al, 2006;
Taylor et al, 2007). Especially for learning motor skills in robotics, searching
directly for the policy instead of solving the dual problem (i.e., finding the
value function) has been shown to be promising, see Section 2.2 for a more
detailed discussion. Additionally, incorporating prior knowledge in the form of
the policy structure, an initial policy, or a model of the system can drastically
reduce the learning time. In this book we will focus on policy search methods
that employ a pre-structured policy and an initial policy.
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1.2 Contributions

This book contributes to the state of the art in reinforcement learning applied
to robotics both in terms of novel algorithms (Section 1.2.1) and applications
(Section 1.2.2).

1.2.1 Algorithms

Reinforcement learning applied to robotics faces a number of challenges as
discussed in Section 2.3. The dimensionality is inherently high and continu-
ous. Acquiring real world samples is expensive as they require time, human
supervision and potentially expensive and fragile hardware. Using models can
alleviate these problems but poses different challenges. Every learning algo-
rithm is limited by its goal specifications. Unfortunately specifying a cost or a
reward function is not straightforward. Even the cost function of a simple hu-
man reaching movement is not completely understood yet (Bays and Wolpert,
2007). Inverse reinforcement learning is a promising alternative to specifying
the reward function manually and has been explored for the Ball-in-a-Cup
task (Section 4.3.7) in (Boularias et al, 2011).

Ideally an algorithm applied to robotics should be safe, i.e., avoid dam-
aging the robot, and it should be fast, both in terms of convergence and
computation time. Having a sample-efficient algorithm, with very few open
parameters, and the ability to incorporate prior knowledge all contribute
significantly to fast convergence. In this book we propose a framework of
reward-weighted imitation that fits these requirements. In Section 7.1.1, we
will review how the proposed algorithms meet these requirements.

Policy Learning by Weighting Exploration with the Returns
(PoWER)

In Chapter 4, we introduce the Policy learning by Weighting Exploration with
the Returns (PoWER) algorithm. PoWER is an expectation-maximization
inspired policy search algorithm that is based on structured exploration
in the parameter space. In Chapter 4, we derive a framework of reward-
weighted imitation. Based on (Dayan and Hinton, 1997), we consider the
return of an episode as an improper probability distribution. We maximize
a lower bound of the logarithm of the expected return. Depending on the
strategy of optimizing this lower bound and the exploration strategy, the
framework yields several well known policy search algorithms: episodic RE-
INFORCE (Williams, 1992), the policy gradient theorem (Sutton et al, 1999),
episodic natural actor critic (Peters and Schaal, 2008b), as well as a gener-
alization of the reward-weighted regression (Peters and Schaal, 2008a). Our
novel algorithm, PoWER, is based on an expectation-maximization inspired
optimization and a structured, state-dependent exploration. Our approach
has already given rise to follow-up work in other contexts, for example,
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(Vlassis et al, 2009; Kormushev et al, 2010). Theodorou et al (2010) have
shown that an algorithm very similar to PoWER can also be derived from a
completely different perspective, that is, the path integral approach.

Cost-regularized Kernel Regression (CrKR)

In Chapter 5, we introduce the algorithm Cost-regularized Kernel Regression
(CrKR). CrKR is a non-parametric policy search approach that is particularly
suited for learning meta-parameters, i.e., a limited set of parameters that in-
fluence the movement globally. In this setting, designing good parametrized
policies can be challenging, a non-parametric policy offers more flexibility.
We derive CrKR based on the reward-weighted regression [Peters and Schaal,
2008a, Chapter 4]. The resulting algorithm is related to Gaussian process re-
gression and similarly yields a predictive variance, which is employed to guide
the exploration in on-policy reinforcement learning. This approach is used to
learn a mapping from situation to meta-parameters while the parameters of
the motor primitive can still be acquired through traditional approaches.

1.2.2 Applications

In this book we show a large number of benchmark task and evaluate the
approaches on robotic tasks both with simulated and real robots. The em-
ployed robots include a Barrett WAM, a BioRob, the JST-ICORP/SARCOS
CBi and a Kuka KR 6. This book studies single motor skills and how these
can be generalized to new situations. The presented work has contributed to
the state-of-the-art of reinforcement learning applied to robotics by exploring
highly dynamic tasks and exhibiting a very efficient learning process.

Single Motor Skills

Because of the curse of dimensionality, we cannot start with an arbitrary
solution to learn a motor skill. Instead, we mimic the way children learn and
first present an example movement for imitation learning, which is recorded
using, e.g., kinesthetic teach-in. Subsequently, our reinforcement algorithm
learns how to perform the skill reliably. After only realistically few episodes,
the task can be regularly fulfilled and the robot shows very good average
performance. We demonstrate this approach with a number of different policy
representations including dynamical systems motor primitives (Ijspeert et al,
2002a) and other parametric representations. We benchmark PoWER against
a variety of policy search approaches on both synthetic and robotic tasks.
Finally, we demonstrate that single movement skills like the Underactuated
Swing-Up and Ball-in-a-Cup can be learned on a Barrett WAM efficiently.
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Generalized Motor Skills

In order to increase the efficiency of a learning process it is often advanta-
geous to generalize a motor skill to new situations instead of re-learning it
from scratch. This kind of learning often requires a non-intuitive mapping
from situation to actions. To demonstrate the proposed system in a complex
scenario, we have chosen the Around the Clock dart throwing game, table
tennis, and ball throwing implemented both on simulated and real robots.
In these scenarios we show that our approach performs well in a wide va-
riety of settings, i.e. on four different real robots (namely a Barrett WAM,
a BioRob, the JST-ICORP/SARCOS CBi and a Kuka KR 6), with differ-
ent cost functions (both with and without secondary objectives), and with
different policies in conjunction with their associated meta-parameters. The
ball throwing task presents first steps towards a hierarchical reinforcement
learning system.

Many robotic tasks can be decomposed into sub-tasks. However, often
these sub-tasks cannot be achieved simultaneously and a dominance structure
needs to be established. We evaluate initial steps towards a control law based
on a set of prioritized motor primitives with a ball-bouncing task on a Barrett
WAM.

1.3 Outline

The chapters in this book can largely be read independently but partially
build upon results of the preceding chapters. Figure 1.1 illustrates the outline
of this book. Chapter 3 describes the employed motor primitive representa-
tion that is used as policy parametrization for the evaluations throughout
the book. The theoretical contributions are applicable to a wider variety of
policies. Chapter 4 describes how single movement skills can be learned using
policy search and employing a parametrized policy that is linear in param-
eters. Chapter 5 explains how single movements can be generalized to new
situations using a nonparametric policy representation. The initial movement
is obtained using results from Chapters 3 and 4.

Chapter 2 provides a survey on reinforcement learning applied to robotics.
The survey provides an overview of techniques and applications. The particu-
lar focus lies on challenges specific to reinforcement learning in robotics and
approaches to render the learning problem tractable nevertheless. This chap-
ter is based on (Kober et al, 2013) and a preliminary version was published
in (Kober and Peters, 2012).

Chapter 3 describes how the (Ijspeert et al, 2002a) representation for motor
skills can be generalized for hitting and batting movements. This chapter is
based on (Kober et al, 2010a).
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Fig. 1.1 This figure illustrates the structure of this book. Chapter 2 reviews the
field of reinforcement learning applied to robotics, Chapter 3 describes the em-
ployed motor skill representation. Chapter 4 provides a framework for policy search
approaches. Chapter 5 describes how movements can be generalized to new situa-
tions. Chapter 6 outlines how several motor skills can be performed simultaneously
to achieve a more complex task. Chapter 1 gives an introduction and Chapter 7
provides a summary and an outlook on future work.

Chapter 4 discusses a framework of reward-weighted imitation that allows us
to re-derive several well-know policy gradient approaches and to derive novel
EM-inspired policy search approaches. The resulting algorithm, PoWER is
evaluated in a number of benchmark and robotic tasks. This chapter is based
on (Kober and Peters, 2011b) and a preliminary version of some of the work
in this chapter was shown in (Kober et al, 2008; Kober and Peters, 2008,
2009, 2010).

Chapter 5 discusses how behaviors acquired by imitation and reinforcement
learning as described in Chapters 3 and 4 can be generalized to novel sit-
uations using the Cost-regularized Kernel Regression. We also discuss first
steps towards a hierarchical framework. The approach is evaluated on several
robotic platforms. This chapter is based on (Kober et al, 2012) and a prelim-
inary version of some of the work in this chapter was shown in (Kober et al,
2010b, 2011; Kober and Peters, 2011a).
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Chapter 6 discusses first steps towards performing sub-tasks simultaneously
to achieve a task. We discuss a novel learning approach that allows to learn
a prioritized control law built on a set of sub-tasks represented by motor
primitives. The approach is evaluated with a ball bouncing task on a Barrett
WAM. This chapter is based on (Kober and Peters, submitted).

Chapter 7 concludes the book with a summary and gives an overview of open
problems and an outlook on future work.
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Reinforcement Learning in Robotics: A Survey

with J. Andrew Bagnell∗

Summary. Reinforcement learning offers to robotics a framework and set
of tools for the design of sophisticated and hard-to-engineer behaviors. Con-
versely, the challenges of robotic problems provide both inspiration, impact,
and validation for developments in reinforcement learning. The relationship
between disciplines has sufficient promise to be likened to that between
physics and mathematics. In this article, we attempt to strengthen the links
between the two research communities by providing a survey of work in rein-
forcement learning for behavior generation in robots. We highlight both key
challenges in robot reinforcement learning as well as notable successes. We
discuss how contributions tamed the complexity of the domain and study the
role of algorithms, representations, and prior knowledge in achieving these
successes. As a result, a particular focus of our chapter lies on the choice
between model-based and model-free as well as between value function-based
and policy search methods. By analyzing a simple problem in some detail we
demonstrate how reinforcement learning approaches may be profitably ap-
plied, and we note throughout open questions and the tremendous potential
for future research.

2.1 Introduction

A remarkable variety of problems in robotics may be naturally phrased as
ones of reinforcement learning. Reinforcement learning (RL) enables a robot
to autonomously discover an optimal behavior through trial-and-error inter-
actions with its environment. Instead of explicitly detailing the solution to
a problem, in reinforcement learning the designer of a control task provides
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feedback in terms of a scalar objective function that measures the one-step
performance of the robot. Figure 2.1 illustrates the diverse set of robots that
have learned tasks using reinforcement learning.

Consider, for example, attempting to train a robot to return a table tennis
ball over the net (Muelling et al, 2012). In this case, the robot might make an
observations of dynamic variables specifying ball position and velocity and the
internal dynamics of the joint position and velocity. This might in fact capture
well the state s of the system – providing a complete statistic for predicting
future observations. The actions a available to the robot might be the torque
sent to motors or the desired accelerations sent to an inverse dynamics control
system. A function π that generates the motor commands (i.e., the actions)
based on the incoming ball and current internal arm observations (i.e., the
state) would be called the policy. A reinforcement learning problem is to find
a policy that optimizes the long term sum of rewards R(s, a); a reinforcement
learning algorithm is one designed to find such a (near)-optimal policy. The
reward function in this example could be based on the success of the hits as
well as secondary criteria like energy consumption.

2.1.1 Reinforcement Learning in the Context of
Machine Learning

In the problem of reinforcement learning, an agent explores the space of
possible strategies and receives feedback on the outcome of the choices made.
From this information, a “good” – or ideally optimal – policy (i.e., strategy
or controller) must be deduced.

Reinforcement learning may be understood by contrasting the problem
with other areas of study in machine learning. In supervised learning (Lang-
ford and Zadrozny, 2005), an agent is directly presented a sequence of inde-
pendent examples of correct predictions to make in different circumstances.
In imitation learning, an agent is provided demonstrations of actions of a
good strategy to follow in given situations (Argall et al, 2009; Schaal, 1999).

To aid in understanding the RL problem and its relation with techniques
widely used within robotics, Figure 2.2 provides a schematic illustration of
two axes of problem variability: the complexity of sequential interaction and
the complexity of reward structure. This hierarchy of problems, and the re-
lations between them, is a complex one, varying in manifold attributes and
difficult to condense to something like a simple linear ordering on problems.
Much recent work in the machine learning community has focused on under-
standing the diversity and the inter-relations between problem classes. The
figure should be understood in this light as providing a crude picture of
the relationship between areas of machine learning research important for
robotics.

Each problem subsumes those that are both below and to the left in the
sense that one may always frame the simpler problem in terms of the more
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(a) OBELIX robot (b) Zebra Zero robot

(c) Autonomous helicopter (d) Sarcos humanoid DB

Fig. 2.1 This figure illustrates a small sample of robots with behaviors that were
reinforcement learned. These cover the whole range of aerial vehicles, robotic arms,
autonomous vehicles, and humanoid robots. (a) The OBELIX robot is a wheeled
mobile robot that learned to push boxes (Mahadevan and Connell, 1992) with a
value function-based approach (Picture reprint with permission of Sridhar Mahade-
van). (b) A Zebra Zero robot arm learned a peg-in-hole insertion task (Gullapalli
et al, 1994) with a model-free policy gradient approach (Picture reprint with per-
mission of Rod Grupen). (c) Carnegie Mellon’s autonomous helicopter leveraged
a model-based policy search approach to learn a robust flight controller (Bagnell
and Schneider, 2001). (d) The Sarcos humanoid DB learned a pole-balancing task
(Schaal, 1996) using forward models (Picture reprint with permission of Stefan
Schaal).

complex one; note that some problems are not linearly ordered. In this sense,
reinforcement learning subsumes much of the scope of classical machine learn-
ing as well as contextual bandit and imitation learning problems. Reduction
algorithms (Langford and Zadrozny, 2005) are used to convert effective so-
lutions for one class of problems into effective solutions for others, and have
proven to be a key technique in machine learning.

At lower left, we find the paradigmatic problem of supervised learning,
which plays a crucial role in applications as diverse as face detection and
spam filtering. In these problems (including binary classification and regres-
sion), a learner’s goal is to map observations (typically known as features or
covariates) to actions which are usually a discrete set of classes or a real value.
These problems possess no interactive component: the design and analysis of
algorithms to address these problems rely on training and testing instances
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Fig. 2.2 An illustration of the inter-relations between well-studied learning prob-
lems in the literature along axes that attempt to capture both the information and
complexity available in reward signals and the complexity of sequential interaction
between learner and environment. Each problem subsumes those to the left and
below; reduction techniques provide methods whereby harder problems (above and
right) may be addressed using repeated application of algorithms built for simpler
problems. (Langford and Zadrozny, 2005)

as independent and identical distributed random variables. This rules out any
notion that a decision made by the learner will impact future observations:
supervised learning algorithms are built to operate in a world in which ev-
ery decision has no effect on the future examples considered. Further, within
supervised learning scenarios, during a training phase the “correct” or pre-
ferred answer is provided to the learner, so there is no ambiguity about action
choices.

More complex reward structures are also often studied: one such is known
as cost-sensitive learning, where each training example and each action or
prediction is annotated with a cost for making such a prediction. Learning
techniques exist that reduce such problems to the simpler classification prob-
lem, and active research directly addresses such problems as they are crucial
in practical learning applications.

Contextual bandit or associative reinforcement learning problems begin
to address the fundamental problem of exploration-vs-exploitation, as infor-
mation is provided only about a chosen action and not what-might-have-been.
These find wide-spread application in problems as diverse as pharmaceutical
drug discovery to ad placement on the web, and are one of the most active
research areas in the field.

Problems of imitation learning and structured prediction may be seen
to vary from supervised learning on the alternate dimension of sequential
interaction. Structured prediction, a key technique used within computer vi-
sion and robotics, where many predictions are made in concert by leveraging
inter-relations between them, may be seen as a simplified variant of imitation
learning (Daumé III et al, 2009; Ross et al, 2011a). In imitation learning, we
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assume that an expert (for example, a human pilot) that we wish to mimic
provides demonstrations of a task. While “correct answers” are provided to
the learner, complexity arises because any mistake by the learner modifies
the future observations from what would have been seen had the expert cho-
sen the controls. Such problems provably lead to compounding errors and
violate the basic assumption of independent examples required for successful
supervised learning. In fact, in sharp contrast with supervised learning prob-
lems where only a single data-set needs to be collected, repeated interaction
between learner and teacher appears to both necessary and sufficient (Ross
et al, 2011b) to provide performance guarantees in both theory and practice
in imitation learning problems.

Reinforcement learning embraces the full complexity of these problems by
requiring both interactive, sequential prediction as in imitation learning as
well as complex reward structures with only “bandit” style feedback on the ac-
tions actually chosen. It is this combination that enables so many problems of
relevance to robotics to be framed in these terms; it is this same combination
that makes the problem both information-theoretically and computationally
hard.

We note here briefly the problem termed “Baseline Distribution RL”: this
is the standard RL problem with the additional benefit for the learner that
it may draw initial states from a distribution provided by an expert instead
of simply an initial state chosen by the problem. As we describe further in
Section 2.5.1, this additional information of which states matter dramatically
affects the complexity of learning.

2.1.2 Reinforcement Learning in the Context of
Optimal Control

Reinforcement Learning (RL) is very closely related to the theory of clas-
sical optimal control, as well as dynamic programming, stochastic program-
ming, simulation-optimization, stochastic search, and optimal stopping (Pow-
ell, 2012). Both RL and optimal control address the problem of finding an
optimal policy (often also called the controller or control policy) that opti-
mizes an objective function (i.e., the accumulated cost or reward), and both
rely on the notion of a system being described by an underlying set of states,
controls and a plant or model that describes transitions between states. How-
ever, optimal control assumes perfect knowledge of the system’s description
in the form of a model (i.e., a function T that describes what the next state
of the robot will be given the current state and action). For such models, opti-
mal control ensures strong guarantees which, nevertheless, often break down
due to model and computational approximations. In contrast, reinforcement
learning operates directly on measured data and rewards from interaction
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with the environment. Reinforcement learning research has placed great focus
on addressing cases which are analytically intractable using approximations
and data-driven techniques. One of the most important approaches to rein-
forcement learning within robotics centers on the use of classical optimal con-
trol techniques (e.g. Linear-Quadratic Regulation and Differential Dynamic
Programming) to system models learned via repeated interaction with the en-
vironment (Atkeson, 1998; Bagnell and Schneider, 2001; Coates et al, 2009).
A concise discussion of viewing reinforcement learning as “adaptive optimal
control” is presented in (Sutton et al, 1991).

2.1.3 Reinforcement Learning in the Context of
Robotics

Robotics as a reinforcement learning domain differs considerably from most
well-studied reinforcement learning benchmark problems. In this article, we
highlight the challenges faced in tackling these problems. Problems in robotics
are often best represented with high-dimensional, continuous states and ac-
tions (note that the 10-30 dimensional continuous actions common in robot
reinforcement learning are considered large (Powell, 2012)). In robotics, it is
often unrealistic to assume that the true state is completely observable and
noise-free. The learning system will not be able to know precisely in which
state it is and even vastly different states might look very similar. Thus,
robotics reinforcement learning are often modeled as partially observed, a
point we take up in detail in our formal model description below. The learn-
ing system must hence use filters to estimate the true state. It is often essential
to maintain the information state of the environment that not only contains
the raw observations but also a notion of uncertainty on its estimates (e.g.,
both the mean and the variance of a Kalman filter tracking the ball in the
robot table tennis example).

Experience on a real physical system is tedious to obtain, expensive and
often hard to reproduce. Even getting to the same initial state is impossible
for the robot table tennis system. Every single trial run, also called a roll-out,
is costly and, as a result, such applications force us to focus on difficulties
that do not arise as frequently in classical reinforcement learning benchmark
examples. In order to learn within a reasonable time frame, suitable approxi-
mations of state, policy, value function, and/or system dynamics need to be
introduced. However, while real-world experience is costly, it usually cannot
be replaced by learning in simulations alone. In analytical or learned models
of the system even small modeling errors can accumulate to a substantially
different behavior, at least for highly dynamic tasks. Hence, algorithms need
to be robust with respect to models that do not capture all the details of the
real system, also referred to as under-modeling, and to model uncertainty.
Another challenge commonly faced in robot reinforcement learning is the
generation of appropriate reward functions. Rewards that guide the learn-
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ing system quickly to success are needed to cope with the cost of real-world
experience. This problem is called reward shaping (Laud, 2004) and repre-
sents a substantial manual contribution. Specifying good reward functions in
robotics requires a fair amount of domain knowledge and may often be hard
in practice.

Not every reinforcement learning method is equally suitable for the
robotics domain. In fact, many of the methods thus far demonstrated on diffi-
cult problems have been model-based (Atkeson et al, 1997; Abbeel et al, 2007;
Deisenroth and Rasmussen, 2011) and robot learning systems often employ
policy search methods rather than value function-based approaches (Gulla-
palli et al, 1994; Miyamoto et al, 1996; Bagnell and Schneider, 2001; Kohl
and Stone, 2004; Tedrake et al, 2005; Peters and Schaal, 2008a,b; Kober and
Peters, 2008; Deisenroth et al, 2011). Such design choices stand in contrast
to possibly the bulk of the early research in the machine learning community
(Kaelbling et al, 1996; Sutton and Barto, 1998). We attempt to give a fairly
complete overview on real robot reinforcement learning citing most original
papers while grouping them based on the key insights employed to make the
Robot Reinforcement Learning problem tractable. We isolate key insights
such as choosing an appropriate representation for a value function or policy,
incorporating prior knowledge, and transfer knowledge from simulations.

This chapter surveys a wide variety of tasks where reinforcement learning
has been successfully applied to robotics. If a task can be phrased as an
optimization problem and exhibits temporal structure, reinforcement learning
can often be profitably applied to both phrase and solve that problem. The
goal of this chapter is twofold. On the one hand, we hope that this chapter can
provide indications for the robotics community which type of problems can be
tackled by reinforcement learning and provide pointers to approaches that are
promising. On the other hand, for the reinforcement learning community, this
chapter can point out novel real-world test beds and remarkable opportunities
for research on open questions. We focus mainly on results that were obtained
on physical robots with tasks going beyond typical reinforcement learning
benchmarks.

We concisely present reinforcement learning techniques in the context of
robotics in Section 2.2. The challenges in applying reinforcement learning in
robotics are discussed in Section 2.3. Different approaches to making rein-
forcement learning tractable are treated in Sections 2.4 to 2.6. In Section 2.7,
the example of ball-in-a-cup is employed to highlight which of the various
approaches discussed in the chapter have been particularly helpful to make
such a complex task tractable. Finally, in Section 2.8, we summarize the spe-
cific problems and benefits of reinforcement learning in robotics and provide
concluding thoughts on the problems and promise of reinforcement learning
in robotics.



16 2 Reinforcement Learning in Robotics: A Survey

2.2 A Concise Introduction to Reinforcement Learning

In reinforcement learning, an agent tries to maximize the accumulated reward
over its life-time. In an episodic setting, where the task is restarted after
each end of an episode, the objective is to maximize the total reward per
episode. If the task is on-going without a clear beginning and end, either
the average reward over the whole life-time or a discounted return (i.e., a
weighted average where distant rewards have less influence) can be optimized.
In such reinforcement learning problems, the agent and its environment may
be modeled being in a state s ∈ S and can perform actions a ∈ A, each of
which may be members of either discrete or continuous sets and can be multi-
dimensional. A state s contains all relevant information about the current
situation to predict future states (or observables); an example would be the
current position of a robot in a navigation task1. An action a is used to
control (or change) the state of the system. For example, in the navigation
task we could have the actions corresponding to torques applied to the wheels.
For every step, the agent also gets a reward R, which is a scalar value and
assumed to be a function of the state and observation. (It may equally be
modeled as a random variable that depends on only these variables.) In the
navigation task, a possible reward could be designed based on the energy costs
for taken actions and rewards for reaching targets. The goal of reinforcement
learning is to find a mapping from states to actions, called policy π, that
picks actions a in given states s maximizing the cumulative expected reward.
The policy π is either deterministic or probabilistic. The former always uses
the exact same action for a given state in the form a = π(s), the later draws
a sample from a distribution over actions when it encounters a state, i.e.,
a ∼ π(s, a) = P (a|s). The reinforcement learning agent needs to discover the
relations between states, actions, and rewards. Hence exploration is required
which can either be directly embedded in the policy or performed separately
and only as part of the learning process.

Classical reinforcement learning approaches are based on the assumption
that we have a Markov Decision Process (MDP) consisting of the set of
states S, set of actions A, the rewards R and transition probabilities T that
capture the dynamics of a system. Transition probabilities (or densities in
the continuous state case) T (s′, a, s) = P (s′|s, a) describe the effects of the
actions on the state. Transition probabilities generalize the notion of deter-
ministic dynamics to allow for modeling outcomes are uncertain even given
full state. The Markov property requires that the next state s′ and the re-
ward only depend on the previous state s and action a (Sutton and Barto,
1998), and not on additional information about the past states or actions. In
a sense, the Markov property recapitulates the idea of state – a state is a
sufficient statistic for predicting the future, rendering previous observations

1 When only observations but not the complete state is available, the sufficient
statistics of the filter can alternatively serve as state s. Such a state is often
called information or belief state.
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irrelevant. In general in robotics, we may only be able to find some approxi-
mate notion of state.

Different types of reward functions are commonly used, including rewards
depending only on the current state R = R(s), rewards depending on the
current state and action R = R(s, a), and rewards including the transitions
R = R(s′, a, s). Most of the theoretical guarantees only hold if the problem
adheres to a Markov structure, however in practice, many approaches work
very well for many problems that do not fulfill this requirement.

2.2.1 Goals of Reinforcement Learning

The goal of reinforcement learning is to discover an optimal policy π∗ that
maps states (or observations) to actions so as to maximize the expected return
J , which corresponds to the cumulative expected reward. There are different
models of optimal behavior (Kaelbling et al, 1996) which result in different
definitions of the expected return. A finite-horizon model only attempts to
maximize the expected reward for the horizon H , i.e., the next H (time-)
steps h

J = E

{
H∑

h=0

Rh

}
.

This setting can also be applied to model problems where it is known how
many steps are remaining.

Alternatively, future rewards can be discounted by a discount factor γ
(with 0 ≤ γ < 1)

J = E

{ ∞∑
h=0

γhRh

}
.

This is the setting most frequently discussed in classical reinforcement learn-
ing texts. The parameter γ affects how much the future is taken into account
and needs to be tuned manually. As illustrated in (Kaelbling et al, 1996),
this parameter often qualitatively changes the form of the optimal solution.
Policies designed by optimizing with small γ are myopic and greedy, and may
lead to poor performance if we actually care about longer term rewards. It is
straightforward to show that the optimal control law can be unstable if the
discount factor is too low (e.g., it is not difficult to show this destabilization
even for discounted linear quadratic regulation problems). Hence, discounted
formulations are frequently inadmissible in robot control.

In the limit when γ approaches 1, the metric approaches what is known
as the average-reward criterion (Bertsekas, 1995),

J = lim
H→∞

E

{
1

H

H∑
h=0

Rh

}
.

This setting has the problem that it cannot distinguish between policies that
initially gain a transient of large rewards and those that do not. This transient
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phase, also called prefix, is dominated by the rewards obtained in the long
run. If a policy accomplishes both an optimal prefix as well as an optimal
long-term behavior, it is called bias optimal Lewis and Puterman (2001).
An example in robotics would be the transient phase during the start of a
rhythmic movement, where many policies will accomplish the same long-term
reward but differ substantially in the transient (e.g., there are many ways of
starting the same gait in dynamic legged locomotion) allowing for room for
improvement in practical application.

In real-world domains, the shortcomings of the discounted formulation
are often more critical than those of the average reward setting as stable
behavior is often more important than a good transient (Peters et al, 2004).
We also often encounter an episodic control task, where the task runs only for
H time-steps and then reset (potentially by human intervention) and started
over. This horizon,H , may be arbitrarily large, as long as the expected reward
over the episode can be guaranteed to converge. As such episodic tasks are
probably the most frequent ones, finite-horizon models are often the most
relevant.

Two natural goals arise for the learner. In the first, we attempt to find
an optimal strategy at the end of a phase of training or interaction. In the
second, the goal is to maximize the reward over the whole time the robot is
interacting with the world.

In contrast to supervised learning, the learner must first discover its en-
vironment and is not told the optimal action it needs to take. To gain infor-
mation about the rewards and the behavior of the system, the agent needs
to explore by considering previously unused actions or actions it is uncertain
about. It needs to decide whether to play it safe and stick to well known
actions with (moderately) high rewards or to dare trying new things in or-
der to discover new strategies with an even higher reward. This problem is
commonly known as the exploration-exploitation trade-off.

In principle, reinforcement learning algorithms for Markov Decision Pro-
cesses with performance guarantees are known (Kakade, 2003; Kearns and
Singh, 2002; Brafman and Tennenholtz, 2002) with polynomial scaling in
the size of the state and action spaces, an additive error term, as well as in
the horizon length (or a suitable substitute including the discount factor or
“mixing time” (Kearns and Singh, 2002)). However, state spaces in robotics
problems are often tremendously large as they scale exponentially in the num-
ber of state variables and often are continuous. This challenge of exponential
growth is often referred to as the curse of dimensionality (Bellman, 1957)
(also discussed in Section 2.3.1).

Off-policy methods learn independent of the employed policy, i.e., an
explorative strategy that is different from the desired final policy can be
employed during the learning process. On-policy methods collect sample in-
formation about the environment using the current policy. As a result, ex-
ploration must be built into the policy and determines the speed of the pol-
icy improvements. Such exploration and the performance of the policy can
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result in an exploration-exploitation trade-off between long- and short-term
improvement of the policy. Modeling exploration models with probability
distributions has surprising implications, e.g., stochastic policies have been
shown to be the optimal stationary policies for selected problems (Sutton
et al, 1999; Jaakkola et al, 1993) and can even break the curse of dimension-
ality (Rust, 1997). Furthermore, stochastic policies often allow the derivation
of new policy update steps with surprising ease.

The agent needs to determine a correlation between actions and reward
signals. An action taken does not have to have an immediate effect on the
reward but can also influence a reward in the distant future. The difficulty in
assigning credit for rewards is directly related to the horizon or mixing time
of the problem. It also increases with the dimensionality of the actions as not
all parts of the action may contribute equally.

The classical reinforcement learning setup is a MDP where additionally to
the states S, actions A, and rewards R we also have transition probabilities
T (s′, a, s). Here, the reward is modeled as a reward function R(s, a). If both
the transition probabilities and reward function are known, this can be seen
as an optimal control problem (Powell, 2012).

2.2.2 Reinforcement Learning in the Average Reward
Setting

We focus on the average-reward model in this section. Similar derivations
exist for the finite horizon and discounted reward cases. In many instances,
the average-reward case is often more suitable in a robotic setting as we do
not have to choose a discount factor and we do not have to explicitly consider
time in the derivation.

To make a policy able to be optimized by continuous optimization tech-
niques, we write a policy as a conditional probability distribution π(s, a) =
P (a|s). Below, we consider restricted policies that are paramertized by a
vector θ. In reinforcement learning, the policy is usually considered to be sta-
tionary and memory-less. Reinforcement learning and optimal control aim at
finding the optimal policy π∗ or equivalent policy parameters θ∗ which max-
imize the average return J (π) =

∑
s,a μ

π(s)π(s, a)R(s, a) where μπ is the
stationary state distribution generated by policy π acting in the environment,
i.e., the MDP. It can be shown (Puterman, 1994) that such policies that map
states (even deterministically) to actions are sufficient to ensure optimality
in this setting – a policy needs neither to remember previous states visited,
actions taken, or the particular time step. For simplicity and to ease exposi-
tion, we assume that this distribution is unique. Markov Decision Processes
where this fails (i.e., non-ergodic processes) require more care in analysis,
but similar results exist (Puterman, 1994). The transitions between states
s caused by actions a are modeled as T (s, a, s′) = P (s′|s, a). We can then
frame the control problem as an optimization of
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max
π
J (π) =

∑
s,aμ

π(s)π(s, a)R(s, a), (2.1)

s.t. μπ(s′) =
∑

s,aμ
π(s)π(s, a)T (s, a, s′), ∀s′ ∈ S, (2.2)

1 =
∑

s,aμ
π(s)π(s, a) (2.3)

π(s, a) ≥ 0, ∀s ∈ S, a ∈ A.

Here, Equation (2.2) defines stationarity of the state distributions μπ (i.e., it
ensures that it is well defined) and Equation (2.3) ensures a proper state-
action probability distribution. This optimization problem can be tackled in
two substantially different ways (Bellman, 1967, 1971). We can search the
optimal solution directly in this original, primal problem or we can optimize
in the Lagrange dual formulation. Optimizing in the primal formulation is
known as policy search in reinforcement learning while searching in the dual
formulation is known as a value function-based approach.

Value Function Approaches

Much of the reinforcement learning literature has focused on solving the
optimization problem in Equations (2.1-2.3) in its dual form (Gordon, 1999;
Puterman, 1994)2. Using Lagrange multipliers V π(s′) and R̄, we can express
the Lagrangian of the problem by

L =
∑
s,a

μπ(s)π(s, a)R(s, a)

+
∑
s′
V π(s′)

[∑
s,a

μπ(s)π(s, a)T (s, a, s′)− μπ(s′)

]

+ R̄

[
1−
∑
s,a

μπ(s)π(s, a)

]

=
∑
s,a

μπ(s)π(s, a)

[
R(s, a) +

∑
s′
V π(s′)T (s, a, s′)− R̄

]

−
∑
s′
V π(s′)μπ(s′)

∑
a′
π(s′, a′)

︸ ︷︷ ︸
=1

+ R̄.

Using the property
∑

s′,a′ V (s′)μπ(s′)π(s′, a′) =
∑

s,a V (s)μπ(s)π(s, a), we
can obtain the Karush-Kuhn-Tucker conditions (Kuhn and Tucker, 1950) by
differentiating with respect to μπ(s)π(s, a) which yields extrema at

∂μππL = R(s, a) +
∑
s′
V π(s′)T (s, a, s′)− R̄− V π(s) = 0.

2 For historical reasons, what we call the dual is often referred to in the literature
as the primal. We argue that problem of optimizing expected reward is the
fundamental problem, and values are an auxiliary concept.
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This statement implies that there are as many equations as the number of
states multiplied by the number of actions. For each state there can be one or
several optimal actions a∗ that result in the same maximal value, and, hence,
can be written in terms of the optimal action a∗ as V π∗

(s) = R(s, a∗)− R̄+∑
s′ V

π∗
(s′)T (s, a∗, s′). As a∗ is generated by the same optimal policy π∗, we

know the condition for the multipliers at optimality is

V ∗(s) = max
a∗

[
R(s, a∗)− R̄+

∑
s′
V ∗(s′)T (s, a∗, s′)

]
, (2.4)

where V ∗(s) is a shorthand notation for V π∗
(s). This statement is equivalent

to the Bellman Principle of Optimality (Bellman, 1957)3 that states “An
optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.” Thus, we have to perform
an optimal action a∗, and, subsequently, follow the optimal policy π∗ in order
to achieve a global optimum. When evaluating Equation (2.4), we realize
that optimal value function V ∗(s) corresponds to the long term additional
reward, beyond the average reward R̄, gained by starting in state s while
taking optimal actions a∗ (according to the optimal policy π∗). This principle
of optimality has also been crucial in enabling the field of optimal control
(Kirk, 1970).

Hence, we have a dual formulation of the original problem that serves as
condition for optimality. Many traditional reinforcement learning approaches
are based on identifying (possibly approximate) solutions to this equation,
and are known as value function methods. Instead of directly learning a policy,
they first approximate the Lagrangian multipliers V ∗(s), also called the value
function, and use it to reconstruct the optimal policy. The value function
V π(s) is defined equivalently, however instead of always taking the optimal
action a∗, the action a is picked according to a policy π

V π(s) =
∑
a

π(s, a)

(
R(s, a)− R̄+

∑
s′
V π(s′)T (s, a, s′)

)
.

Instead of the value function V π(s) many algorithms rely on the state-action
value function Qπ(s, a) instead, which has advantages for determining the
optimal policy as shown below. This function is defined as

Qπ(s, a) = R(s, a)− R̄+
∑
s′
V π(s′)T (s, a, s′).

In contrast to the value function V π(s), the state-action value function
Qπ(s, a) explicitly contains the information about the effects of a particu-
lar action. The optimal state-action value function is

3 This optimality principle was originally formulated for a setting with discrete
time steps and continuous states and actions but is also applicable for discrete
states and actions.
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Q∗(s, a) = R(s, a)− R̄+
∑
s′
V ∗(s′)T (s, a, s′).

= R(s, a)− R̄+
∑
s′

(
max
a′

Q∗(s′, a′)
)
T (s, a, s′).

It can be shown that an optimal, deterministic policy π∗(s) can be recon-
structed by always picking the action a∗ in the current state that leads to
the state s with the highest value V ∗(s)

π∗(s) = argmax
a

(
R(s, a)− R̄+

∑
s′
V ∗(s′)T (s, a, s′)

)

If the optimal value function V ∗(s′) and the transition probabilities T (s, a, s′)
for the following states are known, determining the optimal policy is straight-
forward in a setting with discrete actions as an exhaustive search is possible.
For continuous spaces, determining the optimal action a∗ is an optimization
problem in itself. If both states and actions are discrete, the value function
and the policy may, in principle, be represented by tables and picking the
appropriate action is reduced to a look-up. For large or continuous spaces rep-
resenting the value function as a table becomes intractable. Function approx-
imation is employed to find a lower dimensional representation that matches
the real value function as closely as possible, as discussed in Section 2.2.4.
Using the state-action value function Q∗(s, a) instead of the value function
V ∗(s)

π∗(s) = argmax
a

(Q∗(s, a)) ,

avoids having to calculate the weighted sum over the successor states, and
hence no knowledge of the transition function is required.

A wide variety of methods of value function based reinforcement learn-
ing algorithms that attempt to estimate V ∗(s) or Q∗(s, a) have been devel-
oped and can be split mainly into three classes: (i) dynamic programming-
based optimal control approaches such as policy iteration or value iteration,
(ii) rollout-based Monte Carlo methods and (iii) temporal difference meth-
ods such as TD(λ) (Temporal Difference learning), Q-learning, and SARSA
(State-Action-Reward-State-Action).

Dynamic Programming-Based Methods

Require a model of the transition probabilities T (s′, a, s) and the reward func-
tion R(s, a) to calculate the value function. The model does not necessarily
need to be predetermined but can also be learned from data, potentially in-
crementally. Such methods are called model-based. Typical methods include
policy iteration and value iteration.

Policy iteration alternates between the two phases of policy evaluation
and policy improvement. The approach is initialized with an arbitrary policy.
Policy evaluation determines the value function for the current policy. Each
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state is visited and its value is updated based on the current value estimates
of its successor states, the associated transition probabilities, as well as the
policy. This procedure is repeated until the value function converges to a
fixed point, which corresponds to the true value function. Policy improvement
greedily selects the best action in every state according to the value function
as shown above. The two steps of policy evaluation and policy improvement
are iterated until the policy does not change any longer.

Policy iteration only updates the policy once the policy evaluation step has
converged. In contrast, value iteration combines the steps of policy evaluation
and policy improvement by directly updating the value function based on
Eq. (2.4) every time a state is updated.

Monte Carlo Methods

Use sampling in order to estimate the value function. This procedure can
be used to replace the policy evaluation step of the dynamic programming-
based methods above. Monte Carlo methods are model-free, i.e., they do not
need an explicit transition function. They perform roll-outs by executing the
current policy on the system, hence operating on-policy. The frequencies of
transitions and rewards are kept track of and are used to form estimates of
the value function. For example, in an episodic setting the state-action value
of a given state action pair can be estimated by averaging all the returns that
were received when starting from them.

Temporal Difference Methods

Unlike Monte Carlo methods, do not have to wait until an estimate of the
return is available (i.e., at the end of an episode) to update the value function.
Rather, they use temporal errors and only have to wait until the next time
step. The temporal error is the difference between the old estimate and a
new estimate of the value function, taking into account the reward received
in the current sample. These updates are done iterativley and, in contrast to
dynamic programming methods, only take into account the sampled succes-
sor states rather than the complete distributions over successor states. Like
the Monte Carlo methods, these methods are model-free, as they do not use
a model of the transition function to determine the value function. In this
setting, the value function cannot be calculated analytically but has to be esti-
mated from sampled transitions in the MDP. For example, the value function
could be updated iteratively by

V ′(s) = V (s) + α
(
R(s, a)− R̄+ V (s′)− V (s)

)
,

where V (s) is the old estimate of the value function, V ′(s) the updated one,
and α is a learning rate. This update step is called the TD(0)-algorithm in
the discounted reward case. In order to perform action selection a model of
the transition function is still required.
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The equivalent temporal difference learning algorithm for state-action
value functions is the average reward case version of SARSA with

Q′(s, a) = Q(s, a) + α
(
R(s, a)− R̄+Q(s′, a′)−Q(s, a)

)
,

whereQ(s, a) is the old estimate of the state-action value function andQ′(s, a)
the updated one. This algorithm is on-policy as both the current action a as
well as the subsequent action a′ are chosen according to the current policy π.
The off-policy variant is called R-learning (Schwartz, 1993), which is closely
related to Q-learning, with the updates

Q′(s, a) = Q(s, a) + α
(
R(s, a)− R̄+max

a′
Q(s′, a′)−Q(s, a)

)
.

These methods do not require a model of the transition function for deter-
mining the deterministic optimal policy π∗(s). H-learning (Tadepalli and Ok,
1994) is a related method that estimates a model of the transition probabili-
ties and the reward function in order to perform updates that are reminiscent
of value iteration.

An overview of publications using value function based methods is pre-
sented in Table 2.1. Here, model-based methods refers to all methods that
employ a predetermined or a learned model of system dynamics.

Policy Search

The primal formulation of the problem in terms of policy rather then value
offers many features relevant to robotics. It allows for a natural integration
of expert knowledge, e.g., through both structure and initializations of the
policy. It allows domain-appropriate pre-structuring of the policy in an ap-
proximate form without changing the original problem. Optimal policies often
have many fewer parameters than optimal value functions. For example, in
linear quadratic control, the value function has quadratically many parame-
ters in the dimensionality of the state-variables while the policy requires only
linearly many parameters. Local search in policy space can directly lead to
good results as exhibited by early hill-climbing approaches (Kirk, 1970), as
well as more recent successes (see Table 2.2). Additional constraints can be
incorporated naturally, e.g., regularizing the change in the path distribution.
As a result, policy search often appears more natural to robotics.

Nevertheless, policy search has been considered the harder problem for a
long time as the optimal solution cannot directly be determined from Equa-
tions (2.1-2.3) while the solution of the dual problem leveraging Bellman
Principle of Optimality (Bellman, 1957) enables dynamic programming based
solutions.

Notwithstanding this, in robotics, policy search has recently become an
important alternative to value function based methods due to better scal-
ability as well as the convergence problems of approximate value function
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Table 2.1 This table illustrates different value function based reinforcement learn-
ing methods employed for robotic tasks (both average and discounted reward cases)
and associated publications.

Value Function Approaches

Approach Employed by. . .

Model-Based Bakker et al (2006); Hester et al (2010, 2012); Kalmár et al
(1998); Mart́ınez-Maŕın and Duckett (2005); Schaal (1996);
Touzet (1997)

Model-Free Asada et al (1996); Bakker et al (2003); Benbrahim et al
(1992); Benbrahim and Franklin (1997); Birdwell and Liv-
ingston (2007); Bitzer et al (2010); Conn and Peters II (2007);
Duan et al (2007, 2008); Fagg et al (1998); Gaskett et al (2000);
Gräve et al (2010); Hafner and Riedmiller (2007); Huang and
Weng (2002); Huber and Grupen (1997); Ilg et al (1999); Katz
et al (2008); Kimura et al (2001); Kirchner (1997); Konidaris
et al (2011a, 2012); Kroemer et al (2009, 2010); Kwok and Fox
(2004); Latzke et al (2007); Mahadevan and Connell (1992);
Matarić (1997); Morimoto and Doya (2001); Nemec et al (2009,
2010); Oßwald et al (2010); Paletta et al (2007); Pendrith
(1999); Platt et al (2006); Riedmiller et al (2009); Rottmann
et al (2007); Smart and Kaelbling (1998, 2002); Soni and Singh
(2006); Tamošiūnaitė et al (2011); Thrun (1995); Tokic et al
(2009); Touzet (1997); Uchibe et al (1998); Wang et al (2006);
Willgoss and Iqbal (1999)

methods (see Sections 2.2.3 and 2.4.2). Most policy search methods optimize
locally around existing policies π, parametrized by a set of policy parameters
θi, by computing changes in the policy parameters Δθi that will increase the
expected return and results in iterative updates of the form

θi+1 = θi +Δθi.

The computation of the policy update is the key step here and a variety
of updates have been proposed ranging from pairwise comparisons (Strens
and Moore, 2001; Ng et al, 2004a) over gradient estimation using finite pol-
icy differences (Geng et al, 2006; Kohl and Stone, 2004; Mitsunaga et al,
2005; Roberts et al, 2010; Sato et al, 2002; Tedrake et al, 2005), and general
stochastic optimization methods (such as Nelder-Mead (Bagnell and Schnei-
der, 2001), cross entropy (Rubinstein and Kroese, 2004) and population-
based methods (Goldberg, 1989)) to approaches coming from optimal control
such as differential dynamic programming (DDP) (Atkeson, 1998) and mul-
tiple shooting approaches (Betts, 2001). We may broadly break down policy-
search methods into “black box” and “white box” methods. Black box meth-
ods are general stochastic optimization algorithms (Spall, 2003) using only
the expected return of policies, estimated by sampling, and do not leverage
any of the internal structure of the RL problem. These may be very
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sophisticated techniques (Tesch et al, 2011) that use response surface esti-
mates and bandit-like strategies to achieve good performance. White box
methods take advantage of some of additional structure within the reinforce-
ment learning domain, including, for instance, the (approximate) Markov
structure of problems, developing approximate models, value-function esti-
mates when available (Peters and Schaal, 2008c), or even simply the causal
ordering of actions and rewards. A major open issue within the field is the
relative merits of the these two approaches: in principle, white box meth-
ods leverage more information, but with the exception of models (which
have been demonstrated repeatedly to often make tremendous performance
improvements, see Section 2.6), the performance gains are traded-off with
additional assumptions that may be violated and less mature optimization
algorithms. Some recent work including (Stulp and Sigaud, 2012; Tesch et al,
2011) suggest that much of the benefit of policy search is achieved by black-
box methods.

Some of the most popular white-box general reinforcement learning tech-
niques that have translated particularly well into the domain of robotics
include: (i) policy gradient approaches based on likelihood-ratio estimation
(Sutton et al, 1999), (ii) policy updates inspired by expectation-maximization
(Toussaint et al, 2010), and (iii) the path integral methods (Kappen, 2005).

Let us briefly take a closer look at gradient-based approaches first. The
updates of the policy parameters are based on a hill-climbing approach, that
is following the gradient of the expected return J for a defined step-size α

θi+1 = θi + α∇θJ.

Different methods exist for estimating the gradient∇θJ and many algorithms
require tuning of the step-size α.

In finite difference gradients P perturbed policy parameters are evaluated
to obtain an estimate of the gradient. Here we have ΔĴp ≈ J(θi+Δθp)−Jref ,
where p = [1..P ] are the individual perturbations, ΔĴp the estimate of their
influence on the return, and Jref is a reference return, e.g., the return of
the unperturbed parameters. The gradient can now be estimated by linear
regression

∇θJ ≈ (ΔΘTΔΘ
)−1

ΔΘTΔĴ,

where the matrix ΔΘ contains all the stacked samples of the perturbations
Δθp and ΔĴ contains the corresponding ΔĴp. In order to estimate the gradi-
ent the number of perturbations needs to be at least as large as the number of
parameters. The approach is very straightforward and even applicable to poli-
cies that are not differentiable. However, it is usually considered to be very
noisy and inefficient. For the finite difference approach tuning the step-size α
for the update, the number of perturbations P , and the type and magnitude
of perturbations are all critical tuning factors.

Likelihood ratio methods rely on the insight that in an episodic setting
where the episodes τ are generated according to the distribution
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P θ(τ) = P (τ |θ) with the return of an episode Jτ =
∑H

h=1Rh and number of
steps H the expected return for a set of policy parameter θ can be expressed
as

Jθ =
∑
τ

P θ(τ)Jτ . (2.5)

The gradient of the episode distribution can be written as4

∇θP
θ(τ) = P θ(τ)∇θ logP

θ(τ), (2.6)

which is commonly known as the likelihood ratio or REINFORCE (Williams,
1992) trick. Combining Equations (2.5) and (2.6) we get the gradient of the
expected return in the form

∇θJ
θ =

∑
τ

∇θP
θ(τ)Jτ =

∑
τ

P θ(τ)∇θ logP
θ(τ)Jτ

= E
{∇θ logP

θ(τ)Jτ
}
.

If we have a stochastic policy πθ(s, a) that generates the episodes τ ,
we do not need to keep track of the probabilities of the episodes but can
directly express the gradient in terms of the policy as ∇θ logP

θ(τ) =∑H
h=1 ∇θ log π

θ(s, a). Finally the gradient of the expected return with respect
to the policy parameters can be estimated as

∇θJ
θ = E

{(
H∑

h=1

∇θ log π
θ(sh, ah)

)
Jτ

}
.

If we now take into account that rewards at the beginning of an episode
cannot be caused by actions taken at the end of an episode, we can replace
the return of the episode Jτ by the state-action value function Qπ(s, a) and
get (Peters and Schaal, 2008c)

∇θJ
θ = E

{
H∑

h=1

∇θ log π
θ(sh, ah)Q

π(sh, ah)

}
,

which is equivalent to the policy gradient theorem (Sutton et al, 1999). In
practice, it is often advisable to subtract a reference Jref , also called base-
line, from the return of the episode Jτ or the state-action value function
Qπ(s, a) respectively to get better estimates, similar to the finite difference
approach. In these settings, the exploration is automatically taken care of by
the stochastic policy.

Initial gradient-based approaches such as finite differences gradients or
REINFORCE (REward Increment = Nonnegative Factor times Offset Rein-
forcement times Characteristic Eligibility) (Williams, 1992) have been rather

4 From multi-variate calculus we have ∇θ logP
θ(τ ) = ∇θP

θ(τ )/P θ(τ ).
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slow. The weight perturbation algorithm is related to REINFORCE but can
deal with non-Gaussian distributions which significantly improves the signal
to noise ratio of the gradient (Roberts et al, 2010). Recent natural policy
gradient approaches (Peters and Schaal, 2008c,b) have allowed for faster con-
vergence which may be advantageous for robotics as it reduces the learning
time and required real-world interactions.

A different class of safe and fast policy search methods, that are inspired
by expectation-maximization, can be derived when the reward is treated as
an improper probability distribution (Dayan and Hinton, 1997). Some of
these approaches have proven successful in robotics, e.g., reward-weighted
regression (Peters and Schaal, 2008a), Policy Learning by Weighting Explo-
ration with the Returns (Kober and Peters, 2008), Monte Carlo Expectation-
Maximization(Vlassis et al, 2009), and Cost-regularized Kernel Regression
(Kober et al, 2010b). Algorithms with closely related update rules can also
be derived from different perspectives including Policy Improvements with
Path Integrals (Theodorou et al, 2010) and Relative Entropy Policy Search
(Peters et al, 2010a).

Finally, the Policy Search by Dynamic Programming (Bagnell et al, 2003)
method is a general strategy that combines policy search with the princi-
ple of optimality. The approach learns a non-stationary policy backward in
time like dynamic programming methods, but does not attempt to enforce
the Bellman equation and the resulting approximation instabilities (See Sec-
tion 2.2.4). The resulting approach provides some of the strongest guarantees
that are currently known under function approximation and limited observ-
ability It has been demonstrated in learning walking controllers and in finding
near-optimal trajectories for map exploration (Kollar and Roy, 2008). The
resulting method is more expensive than the value function methods because
it scales quadratically in the effective time horizon of the problem. Like DDP
methods (Atkeson, 1998), it is tied to a non-stationary (time-varying) policy.

An overview of publications using policy search methods is presented in
Table 2.2.

One of the key open issues in the field is determining when it is appro-
priate to use each of these methods. Some approaches leverage significant
structure specific to the RL problem (e.g. (Theodorou et al, 2010)), including
reward structure, Markovanity, causality of reward signals (Williams, 1992),
and value-function estimates when available (Peters and Schaal, 2008c). Oth-
ers embed policy search as a generic, black-box, problem of stochastic opti-
mization (Bagnell and Schneider, 2001; Lizotte et al, 2007; Kuindersma et al,
2011; Tesch et al, 2011). Significant open questions remain regarding which
methods are best in which circumstances and further, at an even more ba-
sic level, how effective leveraging the kinds of problem structures mentioned
above are in practice.
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Table 2.2 This table illustrates different policy search reinforcement learning meth-
ods employed for robotic tasks and associated publications

Policy Search

Approach Employed by. . .

Gradient Deisenroth and Rasmussen (2011); Deisenroth et al (2011);
Endo et al (2008); Fidelman and Stone (2004); Geng et al
(2006); Guenter et al (2007); Gullapalli et al (1994); Hailu
and Sommer (1998); Ko et al (2007); Kohl and Stone (2004);
Kolter and Ng (2009a); Michels et al (2005); Mitsunaga et al
(2005); Miyamoto et al (1996); Ng et al (2004a,b); Peters and
Schaal (2008c,b); Roberts et al (2010); Rosenstein and Barto
(2004); Tamei and Shibata (2009); Tedrake (2004); Tedrake
et al (2005)

Other Abbeel et al (2006, 2007); Atkeson and Schaal (1997); Atkeson
(1998); Bagnell and Schneider (2001); Bagnell (2004); Buchli
et al (2011); Coates et al (2009); Daniel et al (2012); Donnart
and Meyer (1996); Dorigo and Colombetti (1993); Erden and
Leblebicioğlu (2008); Kalakrishnan et al (2011); Kober and Pe-
ters (2008); Kober et al (2010b); Kolter et al (2008); Kuinder-
sma et al (2011); Lizotte et al (2007); Matarić (1994); Pastor
et al (2011); Peters and Schaal (2008a); Peters et al (2010a);
Schaal and Atkeson (1994); Stulp et al (2011); Svinin et al
(2001); Tamošiūnaitė et al (2011); Yasuda and Ohkura (2008);
Youssef (2005)

2.2.3 Value Function Approaches versus Policy
Search

Some methods attempt to find a value function or policy which eventually
can be employed without significant further computation, whereas others
(e.g., the roll-out methods) perform the same amount of computation each
time.

If a complete optimal value function is known, a globally optimal solution
follows simply by greedily choosing actions to optimize it. However, value-
function based approaches have thus far been difficult to translate into high
dimensional robotics as they require function approximation for the value
function. Most theoretical guarantees no longer hold for this approximation
and even finding the optimal action can be a hard problem due to the brittle-
ness of the approximation and the cost of optimization. For high dimensional
actions, it can be as hard computing an improved policy for all states in
policy search as finding a single optimal action on-policy for one state by
searching the state-action value function.

In principle, a value function requires total coverage of the state space
and the largest local error determines the quality of the resulting policy. A
particularly significant problem is the error propagation in value functions.
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A small change in the policy may cause a large change in the value function,
which again causes a large change in the policy. While this may lead more
quickly to good, possibly globally optimal solutions, such learning processes
often prove unstable under function approximation (Boyan and Moore, 1994;
Kakade and Langford, 2002; Bagnell et al, 2003) and are considerably more
dangerous when applied to real systems where overly large policy deviations
may lead to dangerous decisions.

In contrast, policy search methods usually only consider the current pol-
icy and its neighborhood in order to gradually improve performance. The
result is that usually only local optima, and not the global one, can be found.
However, these methods work well in conjunction with continuous features.
Local coverage and local errors results into improved scaleability in robotics.

Policy search methods are sometimes called actor -only methods; value
functionmethods are sometimes called critic-only methods. The idea of a critic
is to first observe and estimate the performance of choosing controls on the sys-
tem (i.e., the value function), then derive a policy based on the gained knowl-
edge. In contrast, the actor directly tries to deduce the optimal policy. A set
of algorithms called actor-critic methods attempt to incorporate the advan-
tages of each: a policy is explicitly maintained, as is a value-function for the
current policy. The value function (i.e., the critic) is not employed for action
selection. Instead, it observes the performance of the actor and decides when
the policy needs to be updated and which action should be preferred. The re-
sulting update step features the local convergence properties of policy gradient
algorithms while reducing update variance (Greensmith et al, 2004). There is
a trade-off between the benefit of reducing the variance of the updates and
having to learn a value function as the samples required to estimate the value
function could also be employed to obtain better gradient estimates for the up-
date step. Rosenstein and Barto (2004) propose an actor-critic method that
additionally features a supervisor in the form of a stable policy.

2.2.4 Function Approximation

Function approximation (Rivlin, 1969) is a family of mathematical and sta-
tistical techniques used to represent a function of interest when it is compu-
tationally or information-theoretically intractable to represent the function
exactly or explicitly (e.g. in tabular form). Typically, in reinforcement learn-
ing te function approximation is based on sample data collected during in-
teraction with the environment. Function approximation is critical in nearly
every RL problem, and becomes inevitable in continuous state ones. In large
discrete spaces it is also often impractical to visit or even represent all states
and actions, and function approximation in this setting can be used as a
means to generalize to neighboring states and actions.

Function approximation can be employed to represent policies, value func-
tions, and forward models. Broadly speaking, there are two kinds of function
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approximation methods: parametric and non-parametric. A parametric func-
tion approximator uses a finite set of parameters or arguments with the goal
is to find parameters that make this approximation fit the observed data as
closely as possible. Examples include linear basis functions and neural net-
works. In contrast, non-parametric methods expand representational power
in relation to collected data and hence are not limited by the representation
power of a chosen parametrization (Bishop, 2006). A prominent example
that has found much use within reinforcement learning is Gaussian process
regression (Rasmussen and Williams, 2006). A fundamental problem with
using supervised learning methods developed in the literature for function
approximation is that most such methods are designed for independently
and identically distributed sample data. However, the data generated by the
reinforcement learning process is usually neither independent nor identically
distributed. Usually, the function approximator itself plays some role in the
data collection process (for instance, by serving to define a policy that we
execute on a robot.)

Linear basis function approximators form one of the most widely used ap-
proximate value function techniques in continuous (and discrete) state spaces.
This is largely due to the simplicity of their representation as well as a conver-
gence theory, albeit limited, for the approximation of value functions based
on samples (Tsitsiklis and Van Roy, 1997). Let us briefly take a closer look
at a radial basis function network to illustrate this approach. The value func-
tion maps states to a scalar value. The state space can be covered by a grid
of points, each of which correspond to the center of a Gaussian-shaped ba-
sis function. The value of the approximated function is the weighted sum of
the values of all basis functions at the query point. As the influence of the
Gaussian basis functions drops rapidly, the value of the query points will be
predominantly influenced by the neighboring basis functions. The weights are
set in a way to minimize the error between the observed samples and the re-
construction. For the mean squared error, these weights can be determined by
linear regression. Kolter and Ng (2009b) discuss the benefits of regularization
of such linear function approximators to avoid over-fitting.

Other possible function approximators for value functions include wire
fitting, whichBaird and Klopf (1993) suggested as an approach that makes
continuous action selection feasible. The Fourier basis had been suggested by
Konidaris et al (2011b). Even discretizing the state-space can be seen as a
form of function approximation where coarse values serve as estimates for a
smooth continuous function. One example is tile coding (Sutton and Barto,
1998), where the space is subdivided into (potentially irregularly shaped)
regions, called tiling. The number of different tilings determines the resolution
of the final approximation. For more examples, please refer to Sections 2.4.1
and 2.4.2.

Policy search also benefits from a compact representation of the policy as
discussed in Section 2.4.3.
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Models of the system dynamics can be represented using a wide variety
of techniques. In this case, it is often important to model the uncertainty
in the model (e.g., by a stochastic model or Bayesian estimates of model
parameters) to ensure that the learning algorithm does not exploit model
inaccuracies. See Section 2.6 for a more detailed discussion.

2.3 Challenges in Robot Reinforcement Learning

Reinforcement learning is generally a hard problem and many of its challenges
are particularly apparent in the robotics setting. As the states and actions
of most robots are inherently continuous, we are forced to consider the res-
olution at which they are represented. We must decide how fine grained the
control is that we require over the robot, whether we employ discretization
or function approximation, and what time step we establish. Additionally,
as the dimensionality of both states and actions can be high, we face the
“Curse of Dimensionality” (Bellman, 1957) as discussed in Section 2.3.1. As
robotics deals with complex physical systems, samples can be expensive due
to the long execution time of complete tasks, required manual interventions,
and the need maintenance and repair. In these real-world measurements, we
must cope with the uncertainty inherent in complex physical systems. A
robot requires that the algorithm runs in real-time. The algorithm must be
capable of dealing with delays in sensing and execution that are inherent in
physical systems (see Section 2.3.2). A simulation might alleviate many prob-
lems but these approaches need to be robust with respect to model errors as
discussed in Section 2.3.3. An often underestimated problem is the goal spec-
ification, which is achieved by designing a good reward function. As noted in
Section 2.3.4, this choice can make the difference between feasibility and an
unreasonable amount of exploration.

2.3.1 Curse of Dimensionality

When Bellman (1957) explored optimal control in discrete high-dimensional
spaces, he faced an exponential explosion of states and actions for which he
coined the term “Curse of Dimensionality”. As the number of dimensions
grows, exponentially more data and computation are needed to cover the
complete state-action space. For example, if we assume that each dimension
of a state-space is discretized into ten levels, we have 10 states for a one-
dimensional state-space, 103 = 1000 unique states for a three-dimensional
state-space, and 10n possible states for a n-dimensional state space. Eval-
uating every state quickly becomes infeasible with growing dimensionality,
even for discrete states. Bellman originally coined the term in the context
of optimization, but it also applies to function approximation and numerical
integration (Donoho, 2000). While supervised learning methods have tamed
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Fig. 2.3 This Figure illustrates the
state space used in the modeling of a
robot reinforcement learning task of
paddling a ball

this exponential growth by considering only competitive optimality with re-
spect to a limited class of function approximators, such results are much
more difficult in reinforcement learning where data must collected through-
out state-space to ensure global optimality.

Robotic systems often have to deal with these high dimensional states
and actions due to the many degrees of freedom of modern anthropomor-
phic robots. For example, in the ball-paddling task shown in Figure 2.3, a
proper representation of a robot’s state would consist of its joint angles and
velocities for each of its seven degrees of freedom as well as the Cartesian
position and velocity of the ball. The robot’s actions would be the generated
motor commands, which often are torques or accelerations. In this example,
we have 2 × (7 + 3) = 20 state dimensions and 7-dimensional continuous
actions. Obviously, other tasks may require even more dimensions. For exam-
ple, human-like actuation often follows the antagonistic principle (Yamaguchi
and Takanishi, 1997) which additionally enables control of stiffness. Such di-
mensionality is a major challenge for both the robotics and the reinforcement
learning communities.

In robotics, such tasks are often rendered tractable to the robot engi-
neer by a hierarchical task decomposition that shifts some complexity to a
lower layer of functionality. Classical reinforcement learning approaches often
consider a grid-based representation with discrete states and actions, often
referred to as a grid-world. A navigational task for mobile robots could be pro-
jected into this representation by employing a number of actions like “move
to the cell to the left” that use a lower level controller that takes care of accel-
erating, moving, and stopping while ensuring precision. In the ball-paddling
example, we may simplify by controlling the robot in racket space (which is
lower-dimensional as the racket is orientation-invariant around the string’s
mounting point) with an operational space control law (Nakanishi et al, 2008).
Many commercial robot systems also encapsulate some of the state and
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action components in an embedded control system (e.g., trajectory fragments
are frequently used as actions for industrial robots). However, this form of a
state dimensionality reduction severely limits the dynamic capabilities of the
robot according to our experience (Schaal et al, 2002; Peters et al, 2010b).

The reinforcement learning community has a long history of dealing with
dimensionality using computational abstractions. It offers a larger set of ap-
plicable tools ranging from adaptive discretizations (Buşoniu et al, 2010)
and function approximation approaches (Sutton and Barto, 1998) to macro-
actions or options (Barto and Mahadevan, 2003; Hart and Grupen, 2011).
Options allow a task to be decomposed into elementary components and
quite naturally translate to robotics. Such options can autonomously achieve
a sub-task, such as opening a door, which reduces the planning horizon (Barto
and Mahadevan, 2003). The automatic generation of such sets of options is
a key issue in order to enable such approaches. We will discuss approaches
that have been successful in robot reinforcement learning in Section 2.4.

2.3.2 Curse of Real-World Samples

Robots inherently interact with the physical world. Hence, robot reinforce-
ment learning suffers from most of the resulting real-world problems. For ex-
ample, robot hardware is usually expensive, suffers from wear and tear, and
requires careful maintenance. Repairing a robot system is a non-negligible
effort associated with cost, physical labor and long waiting periods. To apply
reinforcement learning in robotics, safe exploration becomes a key issue of the
learning process (Schneider, 1996; Bagnell, 2004; Deisenroth and Rasmussen,
2011; Moldovan and Abbeel, 2012), a problem often neglected in the general
reinforcement learning community. Perkins and Barto (2002) have come up
with a method for constructing reinforcement learning agents based on Lya-
punov functions. Switching between the underlying controllers is always safe
and offers basic performance guarantees.

However, several more aspects of the real-world make robotics a challeng-
ing domain. As the dynamics of a robot can change due to many external
factors ranging from temperature to wear, the learning process may never
fully converge, i.e., it needs a “tracking solution” (Sutton et al, 2007). Fre-
quently, the environment settings during an earlier learning period cannot be
reproduced. External factors are not always clear – for example, how light
conditions affect the performance of the vision system and, as a result, the
task’s performance. This problem makes comparing algorithms particularly
hard. Furthermore, the approaches often have to deal with uncertainty due
to inherent measurement noise and the inability to observe all states directly
with sensors.

Most real robot learning tasks require some form of human supervision,
e.g., putting the pole back on the robot’s end-effector during pole balancing
(see Figure 2.1d) after a failure. Even when an automatic reset exists (e.g.,
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by having a smart mechanism that resets the pole), learning speed becomes
essential as a task on a real robot cannot be sped up. In some tasks like a
slowly rolling robot, the dynamics can be ignored; in others like a flying robot,
they cannot. Especially in the latter case, often the whole episode needs to
be completed as it is not possible to start from arbitrary states.

For such reasons, real-world samples are expensive in terms of time, labor
and, potentially, finances. In robotic reinforcement learning, it is often con-
sidered to be more important to limit the real-world interaction time instead
of limiting memory consumption or computational complexity. Thus, sample
efficient algorithms that are able to learn from a small number of trials are
essential. In Section 2.6 we will point out several approaches that allow the
amount of required real-world interactions to be reduced.

Since the robot is a physical system, there are strict constraints on the
interaction between the learning algorithm and the robot setup. For dynamic
tasks, the movement cannot be paused and actions must be selected within
a time-budget without the opportunity to pause to think, learn or plan be-
tween actions. These constraints are less severe in an episodic setting where
the time intensive part of the learning can be postponed to the period be-
tween episodes. Hester et al (2012) has proposed a real-time architecture
for model-based value function reinforcement learning methods taking into
account these challenges.

As reinforcement learning algorithms are inherently implemented on a dig-
ital computer, the discretization of time is unavoidable despite that physical
systems are inherently continuous time systems. Time-discretization of the
actuation can generate undesirable artifacts (e.g., the distortion of distance
between states) even for idealized physical systems, which cannot be avoided.
As most robots are controlled at fixed sampling frequencies (in the range
between 500Hz and 3kHz) determined by the manufacturer of the robot, the
upper bound on the rate of temporal discretization is usually pre-determined.
The lower bound depends on the horizon of the problem, the achievable speed
of changes in the state, as well as delays in sensing and actuation.

All physical systems exhibit such delays in sensing and actuation. The
state of the setup (represented by the filtered sensor signals) may frequently
lag behind the real state due to processing and communication delays. More
critically, there are also communication delays in actuation as well as delays
due to the fact that neither motors, gear boxes nor the body’s movement can
change instantly. Due to these delays, actions may not have instantaneous
effects but are observable only several time steps later. In contrast, in most
general reinforcement learning algorithms, the actions are assumed to take
effect instantaneously as such delays would violate the usual Markov assump-
tion. This effect can be addressed by putting some number of recent actions
into the state. However, this significantly increases the dimensionality of the
problem.

The problems related to time-budgets and delays can also be avoided by
increasing the duration of the time steps. One downside of this approach
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is that the robot cannot be controlled as precisely; another is that it may
complicate a description of system dynamics.

2.3.3 Curse of Under-Modeling and Model
Uncertainty

One way to offset the cost of real-world interaction is to use accurate models
as simulators. In an ideal setting, this approach would render it possible to
learn the behavior in simulation and subsequently transfer it to the real robot.
Unfortunately, creating a sufficiently accurate model of the robot and its envi-
ronment is challenging and often requires very many data samples. As small
model errors due to this under-modeling accumulate, the simulated robot
can quickly diverge from the real-world system. When a policy is trained
using an imprecise forward model as simulator, the behavior will not trans-
fer without significant modifications as experienced by Atkeson (1994) when
learning the underactuated pendulum swing-up. The authors have achieved
a direct transfer in only a limited number of experiments; see Section 2.6.1
for examples.

For tasks where the system is self-stabilizing (that is, where the robot does
not require active control to remain in a safe state or return to it), transferring
policies often works well. Such tasks often feature some type of dampening
that absorbs the energy introduced by perturbations or control inaccuracies.
If the task is inherently stable, it is safer to assume that approaches that were
applied in simulation work similarly in the real world (Kober and Peters,
2011b). Nevertheless, tasks can often be learned better in the real world
than in simulation due to complex mechanical interactions (including contacts
and friction) that have proven difficult to model accurately. For example, in
the ball-paddling task (Figure 2.3) the elastic string that attaches the ball
to the racket always pulls back the ball towards the racket even when hit
very hard. Initial simulations (including friction models, restitution models,
dampening models, models for the elastic string, and air drag) of the ball-
racket contacts indicated that these factors would be very hard to control. In
a real experiment, however, the reflections of the ball on the racket proved to
be less critical than in simulation and the stabilizing forces due to the elastic
string were sufficient to render the whole system self-stabilizing.

In contrast, in unstable tasks small variations have drastic consequences.
For example, in a pole balancing task, the equilibrium of the upright pole is
very brittle and constant control is required to stabilize the system. Trans-
ferred policies often perform poorly in this setting. Nevertheless, approximate
models serve a number of key roles which we discuss in Section 2.6, includ-
ing verifying and testing the algorithms in simulation, establishing proximity
to theoretically optimal solutions, calculating approximate gradients for lo-
cal policy improvement, identifing strategies for collecting more data, and
performing “mental rehearsal”.
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2.3.4 Curse of Goal Specification

In reinforcement learning, the desired behavior is implicitly specified by the
reward function. The goal of reinforcement learning algorithms then is to
maximize the accumulated long-term reward. While often dramatically sim-
pler than specifying the behavior itself, in practice, it can be surprisingly
difficult to define a good reward function in robot reinforcement learning.
The learner must observe variance in the reward signal in order to be able
to improve a policy: if the same return is always received, there is no way to
determine which policy is better or closer to the optimum.

In many domains, it seems natural to provide rewards only upon task
achievement – for example, when a table tennis robot wins a match. This
view results in an apparently simple, binary reward specification. However, a
robot may receive such a reward so rarely that it is unlikely to ever succeed
in the lifetime of a real-world system. Instead of relying on simpler binary
rewards, we frequently need to include intermediate rewards in the scalar
reward function to guide the learning process to a reasonable solution, a
process known as reward shaping (Laud, 2004).

Beyond the need to shorten the effective problem horizon by providing
intermediate rewards, the trade-off between different factors may be essential.
For instance, hitting a table tennis ball very hard may result in a high score
but is likely to damage a robot or shorten its life span. Similarly, changes in
actions may be penalized to avoid high frequency controls that are likely to be
very poorly captured with tractable low dimensional state-space or rigid-body
models. Reinforcement learning algorithms are also notorious for exploiting
the reward function in ways that are not anticipated by the designer. For
example, if the distance between the ball and the desired highest point is
part of the reward in ball paddling (see Figure 2.3), many locally optimal
solutions would attempt to simply move the racket upwards and keep the
ball on it. Reward shaping gives the system a notion of closeness to the
desired behavior instead of relying on a reward that only encodes success or
failure (Ng et al, 1999).

Often the desired behavior can be most naturally represented with a re-
ward function in a particular state and action space. However, this represen-
tation does not necessarily correspond to the space where the actual learning
needs to be performed due to both computational and statistical limitations.
Employing methods to render the learning problem tractable often result in
different, more abstract state and action spaces which might not allow accu-
rate representation of the original reward function. In such cases, a reward
artfully specified in terms of the features of the space in which the learning
algorithm operates can prove remarkably effective. There is also a trade-off
between the complexity of the reward function and the complexity of the
learning problem. For example, in the ball-in-a-cup task (Section 2.7) the
most natural reward would be a binary value depending on whether the ball
is in the cup or not. To render the learning problem tractable, a less intuitive



38 2 Reinforcement Learning in Robotics: A Survey

reward needed to be devised in terms of a Cartesian distance with additional
directional information (see Section 2.7.1 for details). Another example is
Crusher (Ratliff et al, 2006a), an outdoor robot, where the human designer
was interested in a combination of minimizing time and risk to the robot.
However, the robot reasons about the world on the long time horizon scale
as if it was a very simple, deterministic, holonomic robot operating on a fine
grid of continuous costs. Hence, the desired behavior cannot be represented
straightforwardly in this state-space. Nevertheless, a remarkably human-like
behavior that seems to respect time and risk priorities can be achieved by
carefully mapping features describing each state (discrete grid location with
features computed by an on-board perception system) to cost.

Inverse optimal control, also known as inverse reinforcement learning (Rus-
sell, 1998), is a promising alternative to specifying the reward function man-
ually. It assumes that a reward function can be reconstructed from a set
of expert demonstrations. This reward function does not necessarily corre-
spond to the true reward function, but provides guarantees on the result-
ing performance of learned behaviors (Abbeel and Ng, 2004; Ratliff et al,
2006b). Inverse optimal control was initially studied in the control commu-
nity (Kalman, 1964) and in the field of economics (Keeney and Raiffa, 1976).
The initial results were only applicable to limited domains (linear quadratic
regulator problems) and required closed form access to plant and controller,
hence samples from human demonstrations could not be used. Russell (1998)
brought the field to the attention of the machine learning community. Abbeel
and Ng (2004) defined an important constraint on the solution to the inverse
RL problem when reward functions are linear in a set of features: a policy
that is extracted by observing demonstrations has to earn the same reward as
the policy that is being demonstrated. Ratliff et al (2006b) demonstrated that
inverse optimal control can be understood as a generalization of ideas in ma-
chine learning of structured prediction and introduced efficient sub-gradient
based algorithms with regret bounds that enabled large scale application of
the technique within robotics. Ziebart et al (2008) extended the technique
developed by Abbeel and Ng (2004) by rendering the idea robust and prob-
abilistic, enabling its effective use for both learning policies and predicting
the behavior of sub-optimal agents. These techniques, and many variants,
have been recently successfully applied to outdoor robot navigation (Ratliff
et al, 2006a; Silver et al, 2008, 2010), manipulation (Ratliff et al, 2007), and
quadruped locomotion (Ratliff et al, 2006a, 2007; Kolter et al, 2007).

More recently, the notion that complex policies can be built on top of sim-
ple, easily solved optimal control problems by exploiting rich, parametrized
reward functions has been exploited within reinforcement learning more di-
rectly. In (Sorg et al, 2010; Zucker and Bagnell, 2012), complex policies are
derived by adapting a reward function for simple optimal control problems
using policy search techniques. Zucker and Bagnell (2012) demonstrate that
this technique can enable efficient solutions to robotic marble-maze problems
that effectively transfer between mazes of varying design and complexity.
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These works highlight the natural trade-off between the complexity of the
reward function and the complexity of the underlying reinforcement learning
problem for achieving a desired behavior.

2.4 Tractability through Representation

As discussed above, reinforcement learning provides a framework for a remark-
able variety of problems of significance to both robotics and machine learning.
However, the computational and information-theoretic consequences that we
outlined above accompany this power and generality. As a result, naive appli-
cation of reinforcement learning techniques in robotics is likely to be doomed
to failure. The remarkable successes that we reference in this article have been
achieved by leveraging a few key principles – effective representations, approx-
imate models, and prior knowledge or information. In the following three
sections, we review these principles and summarize how each has been made
effective in practice. We hope that understanding these broad approaches will
lead to new successes in robotic reinforcement learning by combining success-
ful methods and encourage research on novel techniques that embody each
of these principles.

Much of the success of reinforcement learning methods has been due to the
clever use of approximate representations. The need of such approximations
is particularly pronounced in robotics, where table-based representations (as
discussed in Section 2.2.2) are rarely scalable. The different ways of making re-
inforcement learning methods tractable in robotics are tightly coupled to the
underlying optimization framework. Reducing the dimensionality of states or
actions by smart state-action discretization is a representational simplifica-
tion that may enhance both policy search and value function-based methods
(see Section 2.4.1). A value function-based approach requires an accurate and
robust but general function approximator that can capture the value function
with sufficient precision (see Section 2.4.2) while maintaining stability during
learning. Policy search methods require a choice of policy representation that
controls the complexity of representable policies to enhance learning speed
(see Section 2.4.3). An overview of publications that make particular use of
efficient representations to render the learning problem tractable is presented
in Tables 2.3.

2.4.1 Smart State-Action Discretization

Decreasing the dimensionality of state or action spaces eases most reinforce-
ment learning problems significantly, particularly in the context of robotics.
Here, we give a short overview of different attempts to achieve this goal with
smart discretization.

Hand Crafted Discretization. A variety of authors have manually devel-
oped discretizations so that basic tasks can be learned on real robots. For
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Table 2.3 This table illustrates different methods of making robot reinforcement
learning tractable by employing a suitable representation

Smart State-Action Discretization

Approach Employed by. . .

Hand crafted Benbrahim et al (1992); Kimura et al (2001); Kwok and Fox
(2004); Nemec et al (2010); Paletta et al (2007); Tokic et al
(2009); Willgoss and Iqbal (1999)

Learned Piater et al (2011); Yasuda and Ohkura (2008)

Meta-actions Asada et al (1996); Dorigo and Colombetti (1993); Fidelman
and Stone (2004); Huber and Grupen (1997); Kalmár et al
(1998); Konidaris et al (2011a, 2012); Matarić (1994, 1997);
Platt et al (2006); Soni and Singh (2006); Nemec et al (2009)

Relational
Representation

Cocora et al (2006); Katz et al (2008)

Value Function Approximation

Approach Employed by. . .

Physics-inspired
Features

An et al (1988); Schaal (1996)

Neural Networks Benbrahim and Franklin (1997); Duan et al (2008); Gaskett
et al (2000); Hafner and Riedmiller (2003); Riedmiller et al
(2009); Thrun (1995)

Neighbors Hester et al (2010); Mahadevan and Connell (1992); Touzet
(1997)

Local Models Bentivegna (2004); Schaal (1996); Smart and Kaelbling (1998)

GPR Gräve et al (2010); Kroemer et al (2009, 2010); Rottmann et al
(2007)

Pre-structured Policies

Approach Employed by. . .
Via Points &
Splines

Kuindersma et al (2011); Miyamoto et al (1996); Roberts et al
(2010)

Linear Models Tamei and Shibata (2009)

Motor
Primitives

Kohl and Stone (2004); Kober and Peters (2008); Peters and
Schaal (2008c,b); Stulp et al (2011); Tamošiūnaitė et al (2011);
Theodorou et al (2010)

GMM & RBF Deisenroth and Rasmussen (2011); Deisenroth et al (2011);
Guenter et al (2007); Lin and Lai (2012); Peters and Schaal
(2008a)

Neural Networks Endo et al (2008); Geng et al (2006); Gullapalli et al (1994);
Hailu and Sommer (1998); Bagnell and Schneider (2001)

Controllers Bagnell and Schneider (2001); Kolter and Ng (2009a); Tedrake
(2004); Tedrake et al (2005); Vlassis et al (2009); Zucker and
Bagnell (2012)

Non-parametric Kober et al (2010b); Mitsunaga et al (2005); Peters et al
(2010a)

low-dimensional tasks, we can generate discretizations straightforwardly by
splitting each dimension into a number of regions. The main challenge is to
find the right number of regions for each dimension that allows the system
to achieve a good final performance while still learning quickly. Example ap-
plications include balancing a ball on a beam (Benbrahim et al, 1992), one
degree of freedom ball-in-a-cup (Nemec et al, 2010), two degree of freedom
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crawling motions (Tokic et al, 2009), and gait patterns for four legged walk-
ing (Kimura et al, 2001). Much more human experience is needed for more
complex tasks. For example, in a basic navigation task with noisy sensors
(Willgoss and Iqbal, 1999), only some combinations of binary state or action
indicators are useful (e.g., you can drive left and forward at the same time,
but not backward and forward). The state space can also be based on vastly
different features, such as positions, shapes, and colors, when learning ob-
ject affordances (Paletta et al, 2007) where both the discrete sets and the
mapping from sensor values to the discrete values need to be crafted. Kwok
and Fox (2004) use a mixed discrete and continuous representation of the
state space to learn active sensing strategies in a RoboCup scenario. They
first discretize the state space along the dimension with the strongest non-
linear influence on the value function and subsequently employ a linear value
function approximation (Section 2.4.2) for each of the regions.

Learned from Data. Instead of specifying the discretizations by hand, they
can also be built adaptively during the learning process. For example, a rule
based reinforcement learning approach automatically segmented the state
space to learn a cooperative task with mobile robots (Yasuda and Ohkura,
2008). Each rule is responsible for a local region of the state-space. The
importance of the rules are updated based on the rewards and irrelevant
rules are discarded. If the state is not covered by a rule yet, a new one is
added. In the related field of computer vision, Piater et al (2011) propose
an approach that adaptively and incrementally discretizes a perceptual space
into discrete states, training an image classifier based on the experience of
the RL agent to distinguish visual classes, which correspond to the states.

Meta-Actions. Automatic construction of meta-actions (and the closely re-
lated concept of options) has fascinated reinforcement learning researchers
and there are various examples in the literature. The idea is to have more
intelligent actions that are composed of a sequence of movements and that
in themselves achieve a simple task. A simple example would be to have a
meta-action “move forward 5m.” A lower level system takes care of acceler-
ating, stopping, and correcting errors. For example, in (Asada et al, 1996),
the state and action sets are constructed in a way that repeated action prim-
itives lead to a change in the state to overcome problems associated with the
discretization. Q-learning and dynamic programming based approaches have
been compared in a pick-n-place task (Kalmár et al, 1998) using modules.
Huber and Grupen (1997) use a set of controllers with associated predicate
states as a basis for learning turning gates with a quadruped. Fidelman and
Stone (2004) use a policy search approach to learn a small set of parameters
that controls the transition between a walking and a capturing meta-action
in a RoboCup scenario. A task of transporting a ball with a dog robot (Soni
and Singh, 2006) can be learned with semi-automatically discovered options.
Using only the sub-goals of primitive motions, a humanoid robot can learn a
pouring task (Nemec et al, 2009). Other examples include foraging (Matarić,
1997) and cooperative tasks (Matarić, 1994) with multiple robots, grasping
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with restricted search spaces (Platt et al, 2006), and mobile robot navigation
(Dorigo and Colombetti, 1993). If the meta-actions are not fixed in advance,
but rather learned at the same time, these approaches are hierarchical rein-
forcement learning approaches as discussed in Section 2.5.2. Konidaris et al
(2011a, 2012) propose an approach that constructs a skill tree from human
demonstrations. Here, the skills correspond to options and are chained to
learn a mobile manipulation skill.

Relational Representations. In a relational representation, the states, actions,
and transitions are not represented individually. Entities of the same prede-
fined type are grouped and their relationships are considered. This represen-
tation may be preferable for highly geometric tasks (which frequently appear
in robotics) and has been employed to learn to navigate buildings with a
real robot in a supervised setting (Cocora et al, 2006) and to manipulate
articulated objects in simulation (Katz et al, 2008).

2.4.2 Value Function Approximation

Function approximation has always been the key component that allowed
value function methods to scale into interesting domains. In robot reinforce-
ment learning, the following function approximation schemes have been pop-
ular and successful. Using function approximation for the value function can
be combined with using function approximation for learning a model of the
system (as discussed in Section 2.6) in the case of model-based reinforcement
learning approaches.

Unfortunately the max-operator used within the Bellman equation and
temporal-difference updates can theoretically make most linear or non-linear
approximation schemes unstable for either value iteration or policy iteration.
Quite frequently such an unstable behavior is also exhibited in practice. Lin-
ear function approximators are stable for policy evaluation, while non-linear
function approximation (e.g., neural networks) can even diverge if just used
for policy evaluation (Tsitsiklis and Van Roy, 1997).

Physics-inspired Features. If good hand-crafted features are known, value
function approximation can be accomplished using a linear combination of
features. However, good features are well known in robotics only for a few
problems, such as features for local stabilization (Schaal, 1996) and features
describing rigid body dynamics (An et al, 1988). Stabilizing a system at an
unstable equilibrium point is the most well-known example, where a second
order Taylor expansion of the state together with a linear value function ap-
proximator often suffice as features in the proximity of the equilibrium point.
For example, Schaal (1996) showed that such features suffice for learning how
to stabilize a pole on the end-effector of a robot when within ±15−30 degrees
of the equilibrium angle. For sufficient features, linear function approxima-
tion is likely to yield good results in an on-policy setting. Nevertheless, it
is straightforward to show that impoverished value function representations
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Fig. 2.4 The Brainstormer Tribots
won the RoboCup 2006 MidSize
League (Riedmiller et al, 2009)(Pic-
ture reprint with permission of Martin
Riedmiller)

(e.g., omitting the cross-terms in quadratic expansion in Schaal’s set-up) will
make it impossible for the robot to learn this behavior. Similarly, it is well
known that linear value function approximation is unstable in the off-policy
case (Tsitsiklis and Van Roy, 1997; Gordon, 1999; Sutton and Barto, 1998).

Neural Networks. As good hand-crafted features are rarely available, vari-
ous groups have employed neural networks as global, non-linear value func-
tion approximation. Many different flavors of neural networks have been ap-
plied in robotic reinforcement learning. For example, multi-layer perceptrons
were used to learn a wandering behavior and visual servoing (Gaskett et al,
2000). Fuzzy neural networks (Duan et al, 2008) and explanation-based neu-
ral networks (Thrun, 1995) have allowed robots to learn basic navigation.
CMAC neural networks have been used for biped locomotion (Benbrahim
and Franklin, 1997).

The Brainstormers RoboCup soccer team is a particularly impressive ap-
plication of value function approximation.(see Figure 2.4). It used multi-layer
perceptrons to learn various sub-tasks such as learning defenses, interception,
position control, kicking, motor speed control, dribbling and penalty shots
(Hafner and Riedmiller, 2003; Riedmiller et al, 2009). The resulting compo-
nents contributed substantially to winning the world cup several times in the
simulation and the mid-size real robot leagues. As neural networks are global
function approximators, overestimating the value function at a frequently oc-
curring state will increase the values predicted by the neural network for all
other states, causing fast divergence (Boyan and Moore, 1994; Gordon, 1999).
Riedmiller et al (2009) solved this problem by always defining an absorbing
state where they set the value predicted by their neural network to zero,
which “clamps the neural network down” and thereby prevents divergence.
It also allows re-iterating on the data, which results in an improved value
function quality. The combination of iteration on data with the clamping
technique appears to be the key to achieving good performance with value
function approximation in practice.
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Generalize to Neighboring Cells. As neural networks are globally affected
from local errors, much work has focused on simply generalizing from neigh-
boring cells. One of the earliest papers in robot reinforcement learning (Ma-
hadevan and Connell, 1992) introduced this idea by statistically clustering
states to speed up a box-pushing task with a mobile robot, see Figure 2.1a.
This approach was also used for a navigation and obstacle avoidance task
with a mobile robot (Touzet, 1997). Similarly, decision trees have been used
to generalize states and actions to unseen ones, e.g., to learn a penalty kick
on a humanoid robot (Hester et al, 2010). The core problem of these methods
is the lack of scalability to high-dimensional state and action spaces.

Local Models. Local models can be seen as an extension of generalization
among neighboring cells to generalizing among neighboring data points. Lo-
cally weighted regression creates particularly efficient function approximation
in the context of robotics both in supervised and reinforcement learning. Here,
regression errors are weighted down by proximity to query point to train lo-
cal modelsThe predictions of these local models are combined using the same
weighting functions. Using local models for value function approximation has
allowed learning a navigation task with obstacle avoidance (Smart and Kael-
bling, 1998), a pole swing-up task (Schaal, 1996), and an air hockey task
(Bentivegna, 2004).

Gaussian Process Regression. Parametrized global or local models need to
pre-specify, which requires a trade-off between representational accuracy and
the number of parameters. A non-parametric function approximator like
Gaussian Process Regression (GPR) could be employed instead, but poten-
tially at the cost of a higher computational complexity. GPR has the added
advantage of providing a notion of uncertainty about the approximation qual-
ity for a query point. Hovering with an autonomous blimp (Rottmann et al,
2007) has been achieved by approximation the state-action value function
with a GPR. Similarly, another paper shows that grasping can be learned
using Gaussian process regression (Gräve et al, 2010) by additionally taking
into account the uncertainty to guide the exploration. Grasping locations can
be learned by approximating the rewards with a GPR, and trying candidates
with predicted high rewards (Kroemer et al, 2009), resulting in an active
learning approach. High reward uncertainty allows intelligent exploration in
reward-based grasping (Kroemer et al, 2010) in a bandit setting.

2.4.3 Pre-structured Policies

Policy search methods greatly benefit from employing an appropriate function
approximation of the policy. For example, when employing gradient-based ap-
proaches, the trade-off between the representational power of the policy (in
the form of many policy parameters) and the learning speed (related to the
number of samples required to estimate the gradient) needs to be considered.
To make policy search approaches tractable, the policy needs to be represented
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Fig. 2.5 Boston Dynamics LittleDog jumping (Kolter and Ng, 2009a) (Picture
reprint with permission of Zico Kolter)

with a function approximation that takes into account domain knowledge, such
as task-relevant parameters or generalization properties. As the next action
picked by a policy depends on the current state and action, a policy can be seen
as a closed-loop controller. Roberts et al (2011) demonstrate that care needs
to be taken when selecting closed-loop parameterizations for weakly-stable sys-
tems, and suggest forms that are particularly robust during learning. However,
especially for episodic RL tasks, sometimes open-loop policies (i.e., policies
where the actions depend only on the time) can also be employed.

Via Points and Splines. An open-loop policy may often be naturally repre-
sented as a trajectory, either in the space of states or targets or directly as
a set of controls. Here, the actions are only a function of time, which can be
considered as a component of the state. Such spline-based policies are very
suitable for compressing complex trajectories into few parameters. Typically
the desired joint or Cartesian position, velocities, and/or accelerations are
used as actions. To minimize the required number of parameters, not every
point is stored. Instead, only important via-points are considered and other
points are interpolated. Miyamoto et al (1996) optimized the position and
timing of such via-points in order to learn a kendama task (a traditional
Japanese toy similar to ball-in-a-cup). A well known type of a via point rep-
resentations are splines, which rely on piecewise-defined smooth polynomial
functions for interpolation. For example, Roberts et al (2010) used a periodic
cubic spline as a policy parametrization for a flapping system and Kuinder-
sma et al (2011) used a cubic spline to represent arm movements in an impact
recovery task.

Linear Models. If model knowledge of the system is available, it can be used
to create features for linear closed-loop policy representations. For example,
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Tamei and Shibata (2009) used policy-gradient reinforcement learning to ad-
just a model that maps from human EMG signals to forces that in turn is
used in a cooperative holding task.

Motor Primitives. Motor primitives combine linear models describing dynam-
ics with parsimonious movement parametrizations. While originally
biologically-inspired, they have a lot of success for representing basic move-
ments in robotics such as a reaching movement or basic locomotion. These
basic movements can subsequently be sequenced and/or combined to achieve
more complex movements. For both goal oriented and rhythmic movement,
different technical representations have been proposed in the robotics com-
munity. Dynamical systems motor primitives (Ijspeert et al, 2002a; Schaal
et al, 2007) have become a popular representation for reinforcement learn-
ing of discrete movements. The dynamical systems motor primitives always
have a strong dependence on the phase of the movement, which corresponds
to time. They can be employed as an open-loop trajectory representation.
Nevertheless, they can also be employed as a closed-loop policy to a limited
extent. In our experience, they offer a number of advantages over via-point
or spline based policy representation (see Section 2.7.2). The dynamical sys-
tems motor primitives have been trained with reinforcement learning for a
T-ball batting task (Peters and Schaal, 2008c,b), an underactuated pendu-
lum swing-up and a ball-in-a-cup task (Kober and Peters, 2008), flipping a
light switch (Buchli et al, 2011), pouring water (Tamošiūnaitė et al, 2011),
and playing pool and manipulating a box (Pastor et al, 2011). For rhythmic
behaviors, a representation based on the same biological motivation but with
a fairly different technical implementation (based on half-elliptical locuses)
have been used to acquire the gait patterns for an Aibo robot dog locomotion
(Kohl and Stone, 2004).

Gaussian Mixture Models and Radial Basis Function Models. When more
general policies with a strong state-dependence are needed, general function
approximators based on radial basis functions, also called Gaussian kernels,
become reasonable choices. While learning with fixed basis function centers
and widths often works well in practice, estimating them is challenging. These
centers and widths can also be estimated from data prior to the reinforcement
learning process. This approach has been used to generalize a open-loop
reaching movement (Guenter et al, 2007; Lin and Lai, 2012) and to learn
the closed-loop cart-pole swingup task (Deisenroth and Rasmussen, 2011).
Globally linear models were employed in a closed-loop block stacking task
(Deisenroth et al, 2011).

Neural Networks are another general function approximation used to repre-
sent policies. Neural oscillators with sensor feedback have been used to learn
rhythmic movements where open and closed-loop information were combined,
such as gaits for a two legged robot (Geng et al, 2006; Endo et al, 2008). Sim-
ilarly, a peg-in-hole (see Figure 2.1b), a ball-balancing task (Gullapalli et al,
1994), and a navigation task (Hailu and Sommer, 1998) have been learned
with closed-loop neural networks as policy function approximators.
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Locally Linear Controllers. As local linearity is highly desirable in robot
movement generation to avoid actuation difficulties, learning the parame-
ters of a locally linear controller can be a better choice than using a neural
network or radial basis function representation. Several of these controllers
can be combined to form a global, inherently closed-loop policy. This type of
policy has allowed for many applications, including learning helicopter flight
(Bagnell and Schneider, 2001), learning biped walk patterns (Tedrake, 2004;
Tedrake et al, 2005), driving a radio-controlled (RC) car, learning a jumping
behavior for a robot dog (Kolter and Ng, 2009a) (illustrated in Figure 2.5),
and balancing a two wheeled robot (Vlassis et al, 2009). Operational space
control was also learned by Peters and Schaal (2008a) using locally linear
controller models. In a marble maze task, Zucker and Bagnell (2012) used
such a controller as a policy that expressed the desired velocity of the ball in
terms of the directional gradient of a value function.

Non-parametric Policies. Polices based on non-parametric regression ap-
proaches often allow a more data-driven learning process. This approach is
often preferable over the purely parametric policies listed above because the
policy structure can evolve during the learning process. Such approaches are
especially useful when a policy learned to adjust the existing behaviors of an
lower-level controller, such as when choosing among different robot human
interaction possibilities (Mitsunaga et al, 2005), selecting among different
striking movements in a table tennis task (Peters et al, 2010a), and setting
the meta-actions for dart throwing and table tennis hitting tasks (Kober et al,
2010b).

2.5 Tractability through Prior Knowledge

Prior knowledge can dramatically help guide the learning process. It can
be included in the form of initial policies, demonstrations, initial models, a
predefined task structure, or constraints on the policy such as torque limits or
ordering constraints of the policy parameters. These approaches significantly
reduce the search space and, thus, speed up the learning process. Providing
a (partially) successful initial policy allows a reinforcement learning method
to focus on promising regions in the value function or in policy space, see
Section 2.5.1. Pre-structuring a complex task such that it can be broken
down into several more tractable ones can significantly reduce the complexity
of the learning task, see Section 2.5.2. An overview of publications using prior
knowledge to render the learning problem tractable is presented in Table 2.4.
Constraints may also limit the search space, but often pose new, additional
problems for the learning methods. For example, policy search limits often do
not handle hard limits on the policy well. Relaxing such constraints (a trick
often applied in machine learning) is not feasible if they were introduced to
protect the robot in the first place.
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2.5.1 Prior Knowledge through Demonstration

People and other animals frequently learn using a combination of imitation
and trial and error. When learning to play tennis, for instance, an instructor
will repeatedly demonstrate the sequence of motions that form an orthodox
forehand stroke. Students subsequently imitate this behavior, but still need
hours of practice to successfully return balls to a precise location on the
opponent’s court. Input from a teacher need not be limited to initial instruc-
tion. The instructor may provide additional demonstrations in later learning
stages (Latzke et al, 2007; Ross et al, 2011a) and which can also be used as
differential feedback (Argall et al, 2008).

This combination of imitation learning with reinforcement learning is
sometimes termed apprenticeship learning (Abbeel and Ng, 2004) to empha-
size the need for learning both from a teacher and by practice. The term
“apprenticeship learning” is often employed to refer to “inverse reinforcement
learning” or “inverse optimal control” but is intended here to be employed
in this original, broader meaning. For a recent survey detailing the state of
the art in imitation learning for robotics, see (Argall et al, 2009).

Using demonstrations to initialize reinforcement learning provides multi-
ple benefits. Perhaps the most obvious benefit is that it provides supervised
training data of what actions to perform in states that are encountered. Such
data may be helpful when used to bias policy action selection.

The most dramatic benefit, however, is that demonstration – or a hand-
crafted initial policy – removes the need for global exploration of the policy or
state-space of the RL problem. The student can improve by locally optimiz-
ing a policy knowing what states are important, making local optimization
methods feasible. Intuitively, we expect that removing the demands of global
exploration makes learning easier. However, we can only find local optima
close to the demonstration, that is, we rely on the demonstration to provide
a good starting point. Perhaps the textbook example of such in human learn-
ing is the rise of the “Fosbury Flop” (Wikipedia, 2013) method of high-jump
(see Figure 2.6). This motion is very different from a classical high-jump
and took generations of Olympians to discover. But after it was first demon-
strated, it was soon mastered by virtually all athletes participating in the
sport. On the other hand, this example also illustrates nicely that such local
optimization around an initial demonstration can only find local optima.

In practice, both approximate value function based approaches and pol-
icy search methods work best for real system applications when they are con-
strained to make modest changes to the distribution over states while learning.
Policy search approaches implicitly maintain the state distribution by limit-
ing the changes to the policy. On the other hand, for value function methods,
an unstable estimate of the value function can lead to drastic changes in the
policy. Multiple policy search methods used in robotics are based on this in-
tuition (Bagnell and Schneider, 2003; Peters and Schaal, 2008b; Peters et al,
2010a; Kober and Peters, 2011b).
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Fig. 2.6 This figure illustrates the
“Fosbury Flop” (public domain picture
from Wikimedia Commons)

The intuitive idea and empirical evidence that demonstration makes the
reinforcement learning problem simpler can be understood rigorously. In fact,
Kakade and Langford (2002); Bagnell et al (2003) demonstrate that know-
ing approximately the state-distribution of a good policy5 transforms the
problem of reinforcement learning from one that is provably intractable in
both information and computational complexity to a tractable one with only
polynomial sample and computational complexity, even under function ap-
proximation and partial observability. This type of approach can be under-
stood as a reduction from reinforcement learning to supervised learning. Both
algorithms are policy search variants of approximate policy iteration that
constrain policy updates. Kollar and Roy (2008) demonstrate the benefit
of this RL approach for developing state-of-the-art map exploration policies
and Kolter et al, 2008 employed a space-indexed variant to learn trajectory
following tasks with an autonomous vehicle and a RC car.

Demonstrations by a Teacher. Demonstrations by a teacher can be obtained
in two different scenarios. In the first, the teacher demonstrates the task using
his or her own body; in the second, the teacher controls the robot to do the
task. The first scenario is limited by the embodiment issue, as the movement
of a human teacher usually cannot be mapped directly to the robot due
to different physical constraints and capabilities. For example, joint angles
of a human demonstrator need to be adapted to account for the kinematic
differences between the teacher and the robot. Often it is more advisable to
only consider task-relevant information, such asthe Cartesian positions and
velocities of the end-effector and the object. Demonstrations obtained by
motion-capture have been used to learn a pendulum swingup (Atkeson and
Schaal, 1997), ball-in-a-cup (Kober et al, 2008) and grasping (Gräve et al,
2010).

The second scenario obtains demonstrations by a human teacher directly
controlling the robot. Here the human teacher first has to learn how to achieve
a task with the particular robot’s hardware, adding valuable prior knowledge.
For example, remotely controlling the robot initialized a Q-table for a naviga-
tion task (Conn and Peters II, 2007). If the robot is back-drivable, kinesthetic

5 That is, a probability distribution over states that will be encountered when
following a good policy.
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teach-in (i.e., by taking it by the hand and moving it) can be employed, which
enables the teacher to interact more closely with the robot. This method has
resulted in applications including T-ball batting (Peters and Schaal, 2008c,b),
reaching tasks (Guenter et al, 2007; Bitzer et al, 2010), ball-in-a-cup (Kober
and Peters, 2008), flipping a light switch (Buchli et al, 2011), playing pool
and manipulating a box (Pastor et al, 2011), and opening a door and picking
up objects (Kalakrishnan et al, 2011). A marble maze task can be learned
using demonstrations by a human player (Bentivegna et al, 2004a).

One of the more stunning demonstrations of the benefit of learning from
a teacher is the helicopter airshows of (Coates et al, 2009). This approach
combines initial human demonstration of trajectories, machine learning to
extract approximate models from multiple trajectories, and classical locally-
optimal control methods (Jacobson and Mayne, 1970) to achieve state-of-the-
art acrobatic flight.

Hand-Crafted Policies. When human interaction with the system is not
straightforward due to technical reasons or human limitations, a pre-
programmed policy can provide alternative demonstrations. For example, a
vision-based mobile robot docking task can be learned faster with such a
basic behavior than using Q-learning alone, as demonstrated in (Mart́ınez-
Maŕın and Duckett, 2005) Providing hand-coded, stable initial gaits can sig-
nificantly help in learning robot locomotion, as shown on a six-legged robot
(Erden and Leblebicioğlu, 2008) as well as on a biped (Tedrake, 2004; Tedrake
et al, 2005). Alternatively, hand-crafted policies can yield important correc-
tive actions as prior knowledge that prevent the robot to deviates signif-
icantly from the desired behavior and endanger itself. This approach has
been applied to adapt the walking patterns of a robot dog to new surfaces
(Birdwell and Livingston, 2007) by Q-learning. Rosenstein and Barto (2004)
employed a stable controller to teach the robot about favorable actions and
avoid risky behavior while learning to move from a start to a goal position.

2.5.2 Prior Knowledge through Task Structuring

Often a task can be decomposed hierarchically into basic components or into
a sequence of increasingly difficult tasks. In both cases the complexity of the
learning task is significantly reduced.

Hierarchical Reinforcement Learning. A task can often be decomposed into
different levels. For example when using meta-actions (Section 2.4.1), these
meta-actions correspond to a lower level dealing with the execution of sub-
tasks which are coordinated by a strategy level. Hierarchical reinforcement
learning does not assume that all but one levels are fixed but rather learns all
of them simultaneously. For example, hierarchical Q-learning has been used
to learn different behavioral levels for a six legged robot: moving single legs,
locally moving the complete body, and globally moving the robot towards a
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Table 2.4 This table illustrates different methods of making robot reinforcement
learning tractable by incorporating prior knowledge

Prior Knowledge Through Demonstration

Approach Employed by. . .

Teacher Atkeson and Schaal (1997); Bentivegna et al (2004a); Bitzer
et al (2010); Conn and Peters II (2007); Gräve et al (2010);
Kober et al (2008); Kober and Peters (2008); Latzke et al
(2007); Peters and Schaal (2008c,b)

Policy Birdwell and Livingston (2007); Erden and Leblebicioğlu
(2008); Mart́ınez-Maŕın and Duckett (2005); Rosenstein and
Barto (2004); Smart and Kaelbling (1998); Tedrake (2004);
Tedrake et al (2005); Wang et al (2006)

Prior Knowledge Through Task Structuring

Approach Employed by. . .
Hierarchical Daniel et al (2012); Donnart and Meyer (1996); Hart and Gru-

pen (2011); Huber and Grupen (1997); Kirchner (1997); Mo-
rimoto and Doya (2001); Muelling et al (2012); Whitman and
Atkeson (2010)

Progressive
Tasks

Asada et al (1996); Randløv and Alstrøm (1998)

Directed Exploration with Prior Knowledge

Approach Employed by. . .

Directed
Exploration

Huang and Weng (2002); Kroemer et al (2010); Pendrith
(1999)

goal (Kirchner, 1997). A stand-up behavior considered as a hierarchical rein-
forcement learning task has been learned using Q-learning in the upper-level
and a continuous actor-critic method in the lower level (Morimoto and Doya,
2001). Navigation in a maze can be learned using an actor-critic architecture
by tuning the influence of different control modules and learning these mod-
ules (Donnart and Meyer, 1996). Huber and Grupen (1997) combine discrete
event system and reinforcement learning techniques to learn turning gates
for a quadruped. Hart and Grupen (2011) learn to bi-manual manipulation
tasks by assembling policies hierarchically. Daniel et al (2012) learn options
in a tetherball scenario and Muelling et al (2012) learn different strokes in a
table tennis scenario. Whitman and Atkeson (2010) show that the optimal
policy for some global systems (like a walking controller) can be constructed
by finding the optimal controllers for simpler subsystems and coordinating
these.

Progressive Tasks. Often complicated tasks are easier to learn if simpler tasks
can already be performed. This progressive task development is inspired by
how biological systems learn. For example, a baby first learns how to roll, then
how to crawl, then how to walk. A sequence of increasingly difficult missions
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has been employed to learn a goal shooting task in (Asada et al, 1996) using
Q-learning. Randløv and Alstrøm (1998) discuss shaping the reward function
to include both a balancing and a goal oriented term for a simulated bicycle
riding task. The reward is constructed in such a way that the balancing term
dominates the other term and, hence, this more fundamental behavior is
learned first.

2.5.3 Directing Exploration with Prior Knowledge

As discussed in Section 2.2.1, balancing exploration and exploitation is an
important consideration. Task knowledge can be employed to guide to robots
curiosity to focus on regions that are novel and promising at the same time.
For example, a mobile robot learns to direct attention by employing a modi-
fied Q-learning approach using novelty (Huang and Weng, 2002). Using “cor-
rected truncated returns” and taking into account the estimator variance, a
six legged robot employed with stepping reflexes can learn to walk (Pendrith,
1999). Offline search can be used to guide Q-learning during a grasping task
(Wang et al, 2006). Using upper confidence bounds (Kaelbling, 1990) to di-
rect exploration into regions with potentially high rewards, grasping can be
learned efficiently (Kroemer et al, 2010).

2.6 Tractability through Models

In Section 2.2, we discussed robot reinforcement learning from a model-free
perspective where the system simply served as a data generating process. Such
model-free reinforcement algorithms try to directly learn the value function
or the policy without any explicit modeling of the transition dynamics. In
contrast, many robot reinforcement learning problems can be made tractable
by learning forward models, i.e., approximations of the transition dynamics
based on data. Such model-based reinforcement learning approaches jointly
learn a model of the system with the value function or the policy and often
allow for training with less interaction with the the real environment. Reduced
learning on the real robot is highly desirable as simulations are frequently
faster than real-time while safer for both the robot and its environment. The
idea of combining learning in simulation and in the real environment was
popularized by the Dyna-architecture (Sutton, 1990), prioritized sweeping
(Moore and Atkeson, 1993), and incremental multi-step Q-learning (Peng and
Williams, 1996) in reinforcement learning. In robot reinforcement learning,
the learning step on the simulated system is often called “mental rehearsal”.
We first discuss the core issues and techniques in mental rehearsal for robotics
(Section 2.6.1), and, subsequently, we discuss learning methods that have be
used in conjunction with learning with forward models (Section 2.6.2). An
overview of publications using simulations to render the learning problem
tractable is presented in Table 2.5.
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2.6.1 Core Issues and General Techniques in Mental
Rehearsal

Experience collected in the real world can be used to learn a forward model
(Åström and Wittenmark, 1989) from data. Such forward models allow train-
ing by interacting with a simulated environment. Only the resulting policy
is subsequently transferred to the real environment. Model-based methods
can make the learning process substantially more sample efficient. However,
depending on the type of model, these methods may require a great deal of
memory. In the following paragraphs, we deal with the core issues of men-
tal rehearsal: simulation biases, stochasticity of the real world, and efficient
optimization when sampling from a simulator.

Dealing with Simulation Biases. It is impossible to obtain a forward model
that is accurate enough to simulate a complex real-world robot system with-
out error. If the learning methods require predicting the future or using deriva-
tives, even small inaccuracies can quickly accumulate, significantly amplifying
noise and errors (An et al, 1988). Reinforcement learning approaches exploit
such model inaccuracies if they are beneficial for the reward received in sim-
ulation (Atkeson and Schaal, 1997). The resulting policies may work well
with the forward model (i.e., the simulator) but poorly on the real system.
This is known as simulation bias. It is analogous to over-fitting in supervised
learning – that is, the algorithm is doing its job well on the model and the
training data, respectively, but does not generalize well to the real system
or novel data. Simulation bias often leads to biased, potentially physically
non-feasible solutions while even iterating between model learning and policy
will have slow convergence. Averaging over the model uncertainty in prob-
abilistic models can be used to reduce the bias; see the next paragraph for
examples. Another result from these simulation biases is that relatively few
researchers have successfully demonstrated that a policy learned in simula-
tion can directly be transferred to a real robot while maintaining a high level
of performance. The few examples include maze navigation tasks (Bakker
et al, 2003; Oßwald et al, 2010; Youssef, 2005), obstacle avoidance (Fagg
et al, 1998) for a mobile robot, very basic robot soccer (Duan et al, 2007)
and multi-legged robot locomotion (Ilg et al, 1999; Svinin et al, 2001). Never-
theless, simulation biases can be addressed by introducing stochastic models
or distributions over models even if the system is very close to deterministic.
Artificially adding a little noise will smooth model errors and avoid policy
over-fitting (Jakobi et al, 1995; Atkeson, 1998). On the downside, potentially
very precise policies may be eliminated due to their fragility in the presence
of noise. This technique can be beneficial in all of the approaches described in
this section. Nevertheless, in recent work, Ross and Bagnell (2012) presented
an approach with strong guarantees for learning the model and policy in an
iterative fashion even if the true system is not in the model class, indicating
that it may be possible to deal with simulation bias.
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Fig. 2.7 Autonomous inverted heli-
copter flight (Ng et al, 2004b)(Picture
reprint with permission of Andrew
Ng)

Distributions over Models for Simulation. Model learning methods that main-
tain probabilistic uncertainty about true system dynamics allow the RL al-
gorithm to generate distributions over the performance of a policy. Such
methods explicitly model the uncertainty associated with the dynamics at
each state and action. For example, when using a Gaussian process model
of the transition dynamics, a policy can be evaluated by propagating the
state and associated uncertainty forward in time. Such evaluations in the
model can be used by a policy search approach to identify where to collect
more data to improve a policy, and may be exploited to ensure that con-
trol is safe and robust to model uncertainty (Schneider, 1996; Bagnell and
Schneider, 2001). When the new policy is evaluated on the real system, the
novel observations can subsequently be incorporated into the forward model.
Bagnell and Schneider (2001) showed that maintaining model uncertainty
and using it in the inner-loop of a policy search method enabled effective
flight control using only minutes of collected data, while performance was
compromised by considering a best-fit model. This approach uses explicit
Monte-Carlo simulation in the sample estimates.

By treating model uncertainty as if it were noise (Schneider, 1996) as well
as employing analytic approximations of forward simulation, a cart-pole task
can be solved with less than 20 seconds of interaction with the physical system
(Deisenroth and Rasmussen, 2011); a visually driven block-stacking task has
also been learned data-efficiently (Deisenroth et al, 2011). Similarly, solving a
linearized control problem with multiple probabilistic models and combining
the resulting closed-loop control with open-loop control has resulted in au-
tonomous sideways sliding into a parking spot (Kolter et al, 2010). Instead of
learning a model of the system dynamics, Lizotte et al (2007) directly learned
the expected return as a function of the policy parameters using Gaussian
process regression in a black-box fashion, and, subsequently, searched for
promising parameters in this model. The method has been applied to opti-
mize the gait of an Aibo robot.

Sampling by Re-using Random Numbers. A forward model can be used as a
simulator to create roll-outs for training by sampling. When comparing re-
sults of different simulation runs, it is often hard to tell from a small number
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Table 2.5 This table illustrates different methods of making robot reinforcement
learning tractable using models

Core Issues and General Techniques in Mental Rehearsal

Approach Employed by. . .

Dealing with
Simulation
Biases

An et al (1988); Atkeson and Schaal (1997); Atkeson (1998);
Bakker et al (2003); Duan et al (2007); Fagg et al (1998); Ilg
et al (1999); Jakobi et al (1995); Oßwald et al (2010); Ross and
Bagnell (2012); Svinin et al (2001); Youssef (2005)

Distributions
over Models for
Simulation

Bagnell and Schneider (2001); Deisenroth and Rasmussen
(2011); Deisenroth et al (2011); Kolter et al (2010); Lizotte
et al (2007)

Sampling by
Re-Using
Random
Numbers

Bagnell and Schneider (2001); Bagnell (2004); Ko et al (2007);
Michels et al (2005); Ng et al (2004a,b)

Successful Learning Approaches with Forward Models

Approach Employed by. . .

Iterative
Learning Control

Abbeel et al (2006); An et al (1988); Berg et al (2010);
Bukkems et al (2005); Freeman et al (2010); Norrlöf (2002)

Locally Linear
Quadratic
Regulators

Atkeson and Schaal (1997); Atkeson (1998); Coates et al
(2009); Kolter et al (2008); Schaal and Atkeson (1994); Tedrake
et al (2010)

Value Function
Methods with
Learned Models

Bakker et al (2006); Nemec et al (2010); Uchibe et al (1998)

Policy Search
with Learned
Models

Bagnell and Schneider (2001); Bagnell (2004); Deisenroth et al
(2011); Deisenroth and Rasmussen (2011); Kober and Peters
(2011b); Ng et al (2004a,b); Peters et al (2010a)

of samples whether a policy really worked better or whether the results are
an effect of the simulated stochasticity. Using a large number of samples to
obtain proper estimates of the expectations become prohibitively expensive if
a large number of such comparisons need to be performed (e.g., for gradient
estimation within an algorithm). A common technique in the statistics and
simulation community (Glynn, 1987) to address this problem is to re-use the
series of random numbers in fixed models, hence mitigating the noise con-
tribution. Ng et al (2004a,b) extended this approach for learned simulators.
The resulting approach, PEGASUS, found various applications in the learn-
ing of maneuvers for autonomous helicopters (Bagnell and Schneider, 2001;
Bagnell, 2004; Ng et al, 2004a,b), as illustrated in Figure 2.7. It has been
used to learn control parameters for a RC car (Michels et al, 2005) and an
autonomous blimp (Ko et al, 2007).

While mental rehearsal has a long history in robotics, it is currently be-
coming again a hot topic, especially due to the work on probabilistic virtual
simulation.
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2.6.2 Successful Learning Approaches with Forward
Models

Model-based approaches rely on an approach that finds good policies using
the learned model. In this section, we discuss methods that directly obtain a
new policy candidate directly from a forward model. Some of these methods
have a long history in optimal control and only work in conjunction with a
forward model.

Iterative Learning Control. A powerful idea that has been developed in mul-
tiple forms in both the reinforcement learning and control communities is
the use of crude, approximate models to determine gradients, e.g., for an up-
date step. The resulting new policy is then evaluated in the real world and
the model is updated. This approach is known as iterative learning control
(Arimoto et al, 1984). A similar preceding idea was employed to minimize tra-
jectory tracking errors (An et al, 1988) and is loosely related to feedback error
learning (Kawato, 1990). More recently, variations on the iterative learning
control has been employed to learn robot control (Norrlöf, 2002; Bukkems
et al, 2005), steering a RC car with a general analysis of approximate models
for policy search in (Abbeel et al, 2006), a pick and place task (Freeman et al,
2010), and an impressive application of tying knots with a surgical robot at
superhuman speeds (Berg et al, 2010).

Locally Linear Quadratic Regulators. Instead of sampling from a forward
model-based simulator, such learned models can be directly used to compute
optimal control policies. This approach has resulted in a variety of robot
reinforcement learning applications that include pendulum swing-up tasks
learned with DDP (Atkeson and Schaal, 1997; Atkeson, 1998), devil-sticking
(a form of gyroscopic juggling) obtained with local LQR solutions (Schaal and
Atkeson, 1994), trajectory following with space-indexed controllers trained
with DDP for an autonomous RC car (Kolter et al, 2008), and the aerobatic
helicopter flight trained with DDP discussed above (Coates et al, 2009).

Value Function Methods with Learned Models. Obviously, mental rehearsal
can be used straightforwardly with value function methods by simply pre-
tending that the simulated roll-outs were generated from the real system.
Learning in simulation while the computer is idle and employing directed
exploration allows Q-learning to learn a navigation task from scratch in 20
minutes (Bakker et al, 2006). Two robots taking turns in learning a simplified
soccer task were also able to profit from mental rehearsal (Uchibe et al, 1998).
Nemec et al (2010) used a value function learned in simulation to initialize
the real robot learning. However, it is clear that model-based methods that
use the model for creating more direct experience should potentially perform
better.

Policy Search with Learned Models. Similarly as for value function methods,
all model-free policy search methods can be used in conjunction with learned
simulators. For example, both pairwise comparisons of policies and policy
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gradient approaches have been used with learned simulators (Bagnell and
Schneider, 2001; Bagnell, 2004; Ng et al, 2004a,b). Transferring EM-like policy
search Kober and Peters (2011b) and Relative Entropy Policy Search Peters
et al (2010a) appears to be a natural next step. Nevertheless, as mentioned
in Section 2.6.1, a series of policy update methods has been suggested that
were tailored for probabilistic simulation Deisenroth et al (2011); Deisenroth
and Rasmussen (2011); Lizotte et al (2007).

There still appears to be the need for new methods that make better use of
the model knowledge, both in policy search and for value function methods.

2.7 A Case Study: Ball-in-a-Cup

Up to this point in this chapter, we have reviewed a large variety of problems
and associated solutions within robot reinforcement learning. In this section,
we will take a complementary approach and discuss one task in detail that
has previously been studied.

This ball-in-a-cup task due to its relative simplicity can serve as an ex-
ample to highlight some of the challenges and methods that were discussed
earlier. We do not claim that the method presented is the best or only way
to address the presented problem; instead, our goal is to provide a case study
that shows design decisions which can lead to successful robotic reinforcement
learning.

In Section 2.7.1, the experimental setting is described with a focus on the
task and the reward. Section 2.7.2 discusses a type of pre-structured policies
that has been particularly useful in robotics. Inclusion of prior knowledge
is presented in Section 2.7.3. The advantages of the employed policy search
algorithm are explained in Section 2.7.4. The use of simulations in this task
is discussed in Section 2.7.5 and results on the real robot are described in Sec-
tion 2.7.6. Finally, an alternative reinforcement learning approach is briefly
explored in Section 2.7.7.

2.7.1 Experimental Setting: Task and Reward

The children’s game ball-in-a-cup, also known as balero and bilboquet, is chal-
lenging even for adults. The toy consists of a small cup held in one hand
(in this case, it is attached to the end-effector of the robot) and a small ball
hanging on a string attached to the cup’s bottom (for the employed toy, the
string is 40cm long). Initially, the ball is at rest, hanging down vertically. The
player needs to move quickly to induce motion in the ball through the string,
toss the ball in the air, and catch it with the cup. A possible movement is
illustrated in Figure 2.8a.

The state of the system can be described by joint angles and joint veloci-
ties of the robot as well as the Cartesian coordinates and velocities of the ball
(neglecting states that cannot be observed straightforwardly like the state of
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(a) Schematic drawings of the ball-in-a-cup motion

(b) Kinesthetic teach-in

(c) Final learned robot motion

Fig. 2.8 This figure shows schematic drawings of the ball-in-a-cup motion (a), the
final learned robot motion (c), as well as a kinesthetic teach-in (b). The green arrows
show the directions of the current movements in that frame. The human cup motion
was taught to the robot by imitation learning. The robot manages to reproduce the
imitated motion quite accurately, but the ball misses the cup by several centimeters.
After approximately 75 iterations of the Policy learning by Weighting Exploration
with the Returns (PoWER) algorithm the robot has improved its motion so that
the ball regularly goes into the cup.

the string or global room air movement). The actions are the joint space
accelerations, which are translated into torques by a fixed inverse dynamics
controller. Thus, the reinforcement learning approach has to deal with twenty
state and seven action dimensions, making discretization infeasible.

An obvious reward function would be a binary return for the whole
episode, depending on whether the ball was caught in the cup or not. In or-
der to give the reinforcement learning algorithm a notion of closeness, Kober
and Peters (2011b) initially used a reward function based solely on the min-
imal distance between the ball and the cup. However, the algorithm has
exploited rewards resulting from hitting the cup with the ball from below
or from the side, as such behaviors are easier to achieve and yield compar-
atively high rewards. To avoid such local optima, it was essential to find
a good reward function that contains the additional prior knowledge that
getting the ball into the cup is only possible from one direction. Kober
and Peters (2011b) expressed this constraint by computing the reward as
r(tc) = exp

(−α(xc − xb)
2 − α(yc − yb)

2
)
while r (t) = 0 for all t �= tc. Here,
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tc corresponds to the time step when the ball passes the rim of the cup with a
downward direction, the cup position is denoted by [xc, yc, zc] ∈ R

3, the ball
position is [xb, yb, zb] ∈ R

3 and the scaling parameter α = 100. This reward
function does not capture the case where the ball does not pass above the
rim of the cup, as the reward will always be zero. The employed approach
performs a local policy search, and hence, an initial policy that brings the
ball above the rim of the cup was required.

The task exhibits some surprising complexity as the reward is not only
affected by the cup’s movements but foremost by the ball’s movements. As
the ball’s movements are very sensitive to small perturbations, the initial
conditions, or small armmovement changes will drastically affect the outcome.
Creating an accurate simulation is hard due to the nonlinear, unobservable
dynamics of the string and its non-negligible weight.

2.7.2 Appropriate Policy Representation

The policy is represented by dynamical systems motor primitives (Ijspeert
et al, 2002a; Schaal et al, 2007). The global movement is encoded as a point
attractor linear dynamical system with an additional local transformation
that allows a very parsimonious representation of the policy. This framework
ensures the stability of the movement and allows the representation of arbi-
trarily shaped movements through the primitive’s policy parameters. These
parameters can be estimated straightforwardly by locally weighted regression.
Note that the dynamical systems motor primitives ensure the stability of the
movement generation but cannot guarantee the stability of the movement
execution. These primitives can be modified through their meta-parameters
in order to adapt to the final goal position, the movement amplitude, or the
duration of the movement. The resulting movement can start from arbitrary
positions and velocities and go to arbitrary final positions while maintain-
ing the overall shape of the trajectory. See Chapter 3 for a more detailed
discussion.

This policy can be seen as a parameterization of a mean policy in the
form ā = θTμ(s, t), which is linear in parameters. Thus, it is straightforward
to include prior knowledge from a demonstration using supervised learning
by locally weighted regression.

This policy is augmented by an additive exploration ε(s, t) noise term
to make policy search methods possible. As a result, the explorative policy
can be given in the form a = θTμ(s, t) + ε(μ(s, t)). Some policy search ap-
proaches have previously used state-independent, white Gaussian exploration,
i.e., ε(μ(s, t)) ∼ N (0,Σ). However, such unstructured exploration at every
step has several disadvantages, notably: (i) it causes a large variance which
grows with the number of time-steps, (ii) it perturbs actions too frequently,
thus, “washing out” their effects and (iii) it can damage the system that is
executing the trajectory.
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Alternatively, one could generate a form of structured, state-dependent ex-
ploration (Rückstieß et al, 2008) ε(μ(s, t)) = εTt μ(s, t) with [εt]ij ∼ N (0, σ2

ij),

where σ2
ij are meta-parameters of the exploration that can also be optimized.

This argument results in the policy a = (θ + εt)
T
μ(s, t) corresponding to

the distribution a ∼ π(at|st, t) = N (a|θTμ(s, t),μ(s, t)TΣ̂(s, t)). Instead of
directly exploring in action space, this type of policy explores in parameter
space.

2.7.3 Generating a Teacher Demonstration

Children usually learn this task by first observing another person presenting
a demonstration. They then try to duplicate the task through trial-and-error-
based learning. To mimic this process, the motor primitives were first initial-
ized by imitation. Subsequently, they were improved them by reinforcement
learning.

A demonstration for imitation was obtained by recording the motions of a
human player performing kinesthetic teach-in as shown in Figure 2.8b. Kines-
thetic teach-in means “taking the robot by the hand”, performing the task
by moving the robot while it is in gravity-compensation mode, and recording
the joint angles, velocities and accelerations. It requires a back-drivable robot
system that is similar enough to a human arm to not cause embodiment is-
sues. Even with demonstration, the resulting robot policy fails to catch the
ball with the cup, leading to the need for self-improvement by reinforcement
learning. As discussed in Section 2.7.1, the initial demonstration was needed
to ensure that the ball goes above the rim of the cup.

2.7.4 Reinforcement Learning by Policy Search

Policy search methods are better suited for a scenario like this, where the
task is episodic, local optimization is sufficient (thanks to the initial demon-
stration), and high dimensional, continuous states and actions need to be
taken into account. A single update step in a gradient based method usually
requires as many episodes as parameters to be optimized. Since the expected
number of parameters was in the hundreds, a different approach had to be
taken because gradient based methods are impractical in this scenario. Fur-
thermore, the step-size parameter for gradient based methods often is a cru-
cial parameter that needs to be tuned to achieve good performance. Instead,
an expectation-maximization inspired algorithm was employed that requires
significantly less samples and has no learning rate.

Kober and Peters (2008) have derived a framework of reward weighted
imitation. See Chapter 4 for a more detailed discussion. Based on (Dayan and
Hinton, 1997) they consider the return of an episode as an improper proba-
bility distribution. A lower bound of the logarithm of the expected return is
maximized. Depending on the strategy of optimizing this lower bound and the
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exploration strategy, the framework yields several well known policy search al-
gorithms as well as the novel Policy learning by Weighting Exploration with
the Returns (PoWER) algorithm. PoWER is an expectation-maximization
inspired algorithm that employs state-dependent exploration (as discussed in
Section 2.7.2). The update rule is given by

θ′ = θ + E

{
T∑

t=1

W (st, t)Q
π (st, at, t)

}−1

E

{
T∑

t=1

W (st, t) εtQ
π(st, at, t)

}
,

where W (st, t) = μ(s, t)μ(s, t)
T(μ(s, t)TΣ̂μ(s, t))−1. Intuitively, this update

can be seen as a reward-weighted imitation, (or recombination) of previously
seen episodes. Depending on its effect on the state-action value function, the
exploration of each episode is incorporated more or less strongly into the
updated policy. To reduce the number of trials in this on-policy scenario,
the trials are reused through importance sampling (Sutton and Barto, 1998).
To avoid the fragility that sometimes results from importance sampling in
reinforcement learning, samples with very small importance weights were
discarded. In essence, this algorithm performs a local search around the policy
learned from demonstration and prior knowledge.

2.7.5 Use of Simulations in Robot Reinforcement
Learning

The robot is simulated by rigid body dynamics with parameters estimated
from data. The toy is simulated as a pendulum with an elastic string that
switches to a ballistic point mass when the ball is closer to the cup than the
string is long. The spring, damper and restitution constants were tuned to
match data recorded on a VICON system. The SL framework (Schaal, 2009)
allowed us to switch between the simulated robot and the real one with a
simple recompile. Even though the simulation matches recorded data very
well, policies that get the ball in the cup in simulation usually missed the cup
by several centimeters on the real system and vice-versa. One conceivable
approach could be to first improve a demonstrated policy in simulation and
only perform the fine-tuning on the real robot.

However, this simulation was very helpful to develop and tune the al-
gorithm as it runs faster in simulation than real-time and does not require
human supervision or intervention. The algorithm was initially confirmed and
tweaked with unrelated, simulated benchmark tasks (shown in (Kober and
Peters, 2011b)). The use of an importance sampler was essential to achieve
good performance and required many tests over the course of two weeks.
A very crude importance sampler that considers only the n best previous
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episodes worked sufficiently well in practice. Depending on the number n the
algorithm exhibits are more or less pronounced greedy behavior. Addition-
ally there are a number of possible simplifications for the learning algorithm,
some of which work very well in practice even if the underlying assumption
do not strictly hold in reality. The finally employed variant

θ′ = θ +

〈∑T
t=1 εtQ

π(st, at, t)
〉
ω(τ)〈∑T

t=1Q
π(st, at, t)

〉
ω(τ)

assumes that only a single basis function is active at a given time, while there
is actually some overlap for the motor primitive basis functions. The impor-
tance sampler is denoted by 〈�〉ω(τ). The implementation is further simplified
as the reward is zero for all but one time-step per episode.

To adapt the algorithm to this particular task, the most important param-
eters to tune were the “greediness” of the importance sampling, the initial
magnitude of the exploration, and the number of parameters for the policy.
These parameters were identified by a coarse grid search in simulation with
various initial demonstrations and seeds for the random number generator.
Once the simulation and the grid search were coded, this process only took
a few minutes. The exploration parameter is fairly robust if it is in the same
order of magnitude as the policy parameters. For the importance sampler,
using the 10 best previous episodes was a good compromise. The number of
policy parameters needs to be high enough to capture enough details to get
the ball above the rim of the cup for the initial demonstration. On the other
hand, having more policy parameters will potentially slow down the learning
process. The number of needed policy parameters for various demonstrations
were in the order of 30 parameters per DoF. The demonstration employed
for the results shown in more detail in this chapter employed 31 parameters
per DoF for an approximately 3 second long movement, hence 217 policy pa-
rameters total. Having three times as many policy parameters slowed down
the convergence only slightly.

2.7.6 Results on the Real Robot

The first run on the real robot used the demonstration shown in Figure 2.8
and directly worked without any further parameter tuning. For the five runs
with this demonstration, which took approximately one hour each, the robot
got the ball into the cup for the first time after 42-45 episodes and regularly
succeeded at bringing the ball into the cup after 70-80 episodes. The policy
always converged to the maximum after 100 episodes. Running the real robot
experiment was tedious as the ball was tracked by a stereo vision system,
which sometimes failed and required a manual correction of the reward. As
the string frequently entangles during failures and the robot cannot unravel
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it, human intervention is required. Hence, the ball had to be manually reset
after each episode.

If the constraint of getting the ball above the rim of the cup for the initial
policy is fulfilled, the presented approach works well for a wide variety of
initial demonstrations including various teachers and two different movement
strategies (swinging the ball or pulling the ball straight up). Convergence took
between 60 and 130 episodes, which largely depends on the initial distance
to the cup but also on the robustness of the demonstrated policy.

2.7.7 Alternative Approach with Value Function
Methods

Nemec et al (2010) employ an alternate reinforcement learning approach
to achieve the ball-in-a-cup task with a Mitsubishi PA10 robot. They de-
composed the task into two sub-tasks, the swing-up phase and the catching
phase. In the swing-up phase, the ball is moved above the cup. In the catch-
ing phase, the ball is caught with the cup using an analytic prediction of the
ball trajectory based on the movement of a flying point mass. The catching
behavior is fixed; only the swing-up behavior is learned. The paper proposes
to use SARSA to learn the swing-up movement. The states consist of the
cup positions and velocities as well as the angular positions and velocities of
the ball. The actions are the accelerations of the cup in a single Cartesian
direction. Tractability is achieved by discretizing both the states (324 values)
and the actions (5 values) and initialization by simulation. The behavior was
first learned in simulation requiring 220 to 300 episodes. The state-action
value function learned in simulation was used to initialize the learning on the
real robot. The robot required an additional 40 to 90 episodes to adapt the
behavior learned in simulation to the real environment.

2.8 Discussion

We have surveyed the state of the art in robot reinforcement learning for both
general reinforcement learning audiences and robotics researchers to provide
possibly valuable insight into successful techniques and approaches.

From this overview, it is clear that using reinforcement learning in the
domain of robotics is not yet a straightforward undertaking but rather re-
quires a certain amount of skill. Hence, in this section, we highlight several
open questions faced by the robotic reinforcement learning community in
order to make progress towards “off-the-shelf” approaches as well as a few
current practical challenges. Finally, we try to summarize several key lessons
from robotic reinforcement learning for the general reinforcement learning
community.
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2.8.1 Open Questions in Robotic Reinforcement
Learning

Reinforcement learning is clearly not applicable to robotics “out of the box”
yet, in contrast to supervised learning where considerable progress has been
made in large-scale, easy deployment over the last decade. As this chapter
illustrates, reinforcement learning can be employed for a wide variety of phys-
ical systems and control tasks in robotics. It is unlikely that single answers
do exist for such a heterogeneous field, but even for very closely related tasks,
appropriate methods currently need to be carefully selected. The user has to
decide when sufficient prior knowledge is given and learning can take over.
All methods require hand-tuning for choosing appropriate representations,
reward functions, and the required prior knowledge. Even the correct use of
models in robot reinforcement learning requires substantial future research.
Clearly, a key step in robotic reinforcement learning is the automated choice
of these elements and having robust algorithms that limit the required tuning
to the point where even a naive user would be capable of using robotic RL.

How to choose representations automatically? The automated selection of
appropriate representations remains a difficult problem as the action space in
robotics often is inherently continuous and multi-dimensional. While there are
good reasons for using the methods presented in Section 2.4 in their respective
domains, the question whether to approximate states, value functions, policies
– or a mix of the three – remains open. The correct methods to handle the
inevitability of function approximation remain under intense study, as does
the theory to back it up.

How to generate reward functions from data? Good reward functions are
always essential to the success of a robot reinforcement learning approach
(see Section 2.3.4). While inverse reinforcement learning can be used as an
alternative to manually designing the reward function, it relies on the design
of features that capture the important aspects of the problem space instead.
Finding feature candidates may require insights not altogether different from
the ones needed to design the actual reward function.

How much can prior knowledge help? How much is needed? Incorporating
prior knowledge is one of the main tools to make robotic reinforcement learn-
ing tractable (see Section 2.5). However, it is often hard to tell in advance
how much prior knowledge is required to enable a reinforcement learning
algorithm to succeed in a reasonable number of episodes. For such cases, a
loop of imitation and reinforcement learning may be a desirable alternative.
Nevertheless, sometimes, prior knowledge may not help at all. For example,
obtaining initial policies from human demonstrations can be virtually impos-
sible if the morphology of the robot is too different from a human’s (which
is known as the correspondence problem (Argall et al, 2009)). Whether al-
ternative forms of prior knowledge can help here may be a key question to
answer.
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How to integrate more tightly with perception? Much current work on robotic
reinforcement learning relies on subsystems that abstract away perceptual
information, limiting the techniques to simple perception systems and heav-
ily pre-processed data. This abstraction is in part due to limitations of ex-
isting reinforcement learning approaches at handling inevitably incomplete,
ambiguous and noisy sensor data. Learning active perception jointly with the
robot’s movement and semantic perception are open problems that present
tremendous opportunities for simplifying as well as improving robot behavior
programming.

How to reduce parameter sensitivity? Many algorithms work fantastically
well for a very narrow range of conditions or even tuning parameters. A
simple example would be the step size in a gradient based method. However,
searching anew for the best parameters for each situation is often prohibitive
with physical systems. Instead algorithms that work fairly well for a large
range of situations and parameters are potentially much more interesting for
practical robotic applications.

How to deal with model errors and under-modeling? Model based approaches
can significantly reduce the need for real-world interactions. Methods that are
based on approximate models and use local optimization often work well (see
Section 2.6). As real-world samples are usually more expensive than com-
paratively cheap calculations, this may be a significant advantage. However,
for most robot systems, there will always be under-modeling and resulting
model errors. Hence, the policies learned only in simulation frequently cannot
be transferred directly to the robot.

This problem may be inevitable due to both uncertainty about true sys-
tem dynamics, the non-stationarity of system dynamics6 and the inability of
any model in our class to be perfectly accurate in its description of those
dynamics, which have led to robust control theory (Zhou and Doyle, 1997).
Reinforcement learning approaches mostly require the behavior designer to
deal with this problem by incorporating model uncertainty with artificial
noise or carefully choosing reward functions to discourage controllers that
generate frequencies that might excite unmodeled dynamics.

Tremendous theoretical and algorithmic challenges arise from developing
algorithms that are robust to both model uncertainty and under-modeling
while ensuring fast learning and performance. A possible approach may be
the full Bayesian treatment of the impact of possible model errors onto the
policy but has the risk of generating overly conservative policies, as also
happened in robust optimal control.

This list of questions is by no means exhaustive, however, it provides a
fair impression of the critical issues for basic research in this area.

6 Both the environment and the robot itself change dynamically; for example,
vision systems depend on the lighting condition and robot dynamics change
with wear and the temperature of the grease.
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2.8.2 Practical Challenges for Robotic Reinforcement
Learning

More applied problems for future research result from practical challenges in
robot reinforcement learning:

Exploit Data Sets Better. Humans who learn a new task build upon previ-
ously learned skills. For example, after a human learns how to throw balls,
learning how to throw darts becomes significantly easier. Being able to trans-
fer previously-learned skills to other tasks and potentially to robots of a
different type is crucial. For complex tasks, learning cannot be achieved glob-
ally. It is essential to reuse other locally learned information from past data
sets. While such transfer learning has been studied more extensively in other
parts of machine learning, tremendous opportunities for leveraging such data
exist within robot reinforcement learning. Making such data sets with many
skills publicly available would be a great service for robotic reinforcement
learning research.

Comparable Experiments and Consistent Evaluation. The difficulty of per-
forming, and reproducing, large scale experiments due to the expense, fragility,
and differences between hardware remains a key limitation in robotic rein-
forcement learning. The current movement towards more standardization
within robotics may aid these efforts significantly, e.g., by possibly provid-
ing a standard robotic reinforcement learning setup to a larger community –
both real and simulated. These questions need to be addressed in order for
research in self-improving robots to progress.

2.8.3 Robotics Lessons for Reinforcement Learning

Most of the article has aimed equally at both reinforcement learning and
robotics researchers as well as practitioners. However, this section attempts
to convey a few important, possibly provocative, take-home messages for the
classical reinforcement learning community.

Focus on High-Dimensional Continuous Actions and Constant Adaptation.
Robotic problems clearly have driven theoretical reinforcement learning re-
search, particularly in policy search, inverse optimal control approaches,
and model robustness. The practical impact of robotic reinforcement learn-
ing problems (e.g., multi-dimensional continuous action spaces, continuously
drifting noise, frequent changes in the hardware and the environment, and
the inevitability of undermodeling), may not yet have been sufficiently appre-
ciated by the theoretical reinforcement learning community. These problems
have often caused robotic reinforcement learning to take significantly differ-
ent approaches than would be dictated by theory. Perhaps as a result, robotic
reinforcement learning approaches are often closer to classical optimal con-
trol solutions than the methods typically studied in the machine learning
literature.
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Exploit Domain Structure for Scalability. The grounding of RL in robotics
alleviates the general problem of scaling reinforcement learning into high di-
mensional domains by exploiting the structure of the physical world. Prior
knowledge of the behavior of the system and the task is often available. Incor-
porating even crude models and domain structure into the learning approach
(e.g., to approximate gradients) has yielded impressive results(Kolter and Ng,
2009a).

Local Optimality and Controlled State Distributions. Much research in clas-
sical reinforcement learning aims at finding value functions that are optimal
over the entire state space, which is most likely intractable. In contrast, the
success of policy search approaches in robotics relies on their implicit main-
tenance and controlled change of a state distribution under which the policy
can be optimized. Focusing on slowly changing state distributions may also
benefit value function methods.

Reward Design. It has been repeatedly demonstrated that reinforcement
learning approaches benefit significantly from reward shaping (Ng et al, 1999),
and particularly from using rewards that convey a notion of closeness and are
not only based on simple binary success or failure. A learning problem is po-
tentially difficult if the reward is sparse, there are significant delays between
an action and the associated significant reward, or if the reward is not smooth
(i.e., very small changes to the policy lead to a drastically different outcome).
In classical reinforcement learning, discrete rewards are often considered, e.g.,
a small negative reward per time-step and a large positive reward for reaching
the goal. In contrast, robotic reinforcement learning approaches often need
more physically motivated reward-shaping based on continuous values and
consider multi-objective reward functions like minimizing the motor torques
while achieving a task.

We hope that these points will help soliciting more new targeted solutions
from the reinforcement learning community for robotics.
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shape need to be adapted during the execution so that the racket reaches a
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of the net or court. It requires altering learned movements to hit a varying
target with the necessary velocity at a specific instant in time. Such a task
cannot be incorporated straightforwardly in most movement representations
suitable for learning. For example, the standard formulation of the dynamical
system based motor primitives (introduced by Ijspeert et al (2002b)) does not
satisfy this property despite their flexibility which has allowed learning tasks
ranging from locomotion to kendama. In order to fulfill this requirement, we
reformulate the Ijspeert framework to incorporate the possibility of specifying
a desired hitting point and a desired hitting velocity while maintaining all
advantages of the original formulation. We show that the proposed movement
template formulation works well in two scenarios, i.e., for hitting a ball on a
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Fig. 3.1 This figure illustrates the different phases of a table tennis stroke. The
blue box on the left represents a ping-pong ball launcher, the table is shown in green
and the different states of the robot are superposed. A typical racket trajectory is
indicated by the dark gray solid line while the orange dashed line represents the
ball’s trajectory. The robot goes through four stages: it swings back (➀→➁), it
strikes the ball at a virtual hitting point with a goal-oriented velocity at posture
➂, it follows the strike through (➂→➃) and finally returns to the rest posture ➀.
While the complete arm movement can be modeled with the Ijspeert approach, the
reformulation in this paper is required to be able to properly strike the ball.

All experiments were carried out on a Barrett WAM using a four camera
vision system.

3.1 Introduction

Learning new skills can frequently be helped significantly by choosing a move-
ment template representation that facilitates the process of acquiring and
refining the desired behavior. For example, the work on dynamical systems-
based motor primitives (Ijspeert et al, 2002b; Schaal et al, 2003, 2007) has
allowed speeding up both imitation and reinforcement learning while, at the
same time, making them more reliable. Resulting successes have shown that
it is possible to rapidly learn motor primitives for complex behaviors such
as tennis swings (Ijspeert et al, 2002b) with only a final target, constrained
reaching (Gams and Ude, 2009), drumming (Pongas et al, 2005), biped lo-
comotion (Schaal et al, 2003; Nakanishi et al, 2004) and even in tasks with
potential industrial application (Urbanek et al, 2004). Although some of the
presented examples, e.g., the tennis swing (Ijspeert et al, 2002b) or the T-ball
batting (Peters and Schaal, 2006), are striking movements, these standard
motor primitives cannot properly encode a hitting movement. Previous work
needed to make simplistic assumptions such as having a static goal (Peters
and Schaal, 2006), a learned complex goal function (Peters et al, 2010b) or
a stationary goal that could only be lightly touched at the movement’s end
(Ijspeert et al, 2002b).

Most racket sports require that we hit a non-stationary target at vari-
ous positions and with various velocities during the execution of a complete
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striking movement. For example, in table tennis, a typical movement consists
of swinging back from a rest postures, hitting the ball at a desired position
with a desired orientation and velocity, continuing the swing a bit further
and finally returning to the rest posture. See Figure 3.1 for an illustration.
Sports sciences literature (Ramanantsoa and Durey, 1994; Muelling and Pe-
ters, 2009) indicates that most striking movements are composed of similar
phases that only appear to be modified by location and velocity at the in-
terception point for the ball (Schmidt and Wrisberg, 2000; Bootsma and van
Wieringen, 1990; Hubbard and Seng, 1954; Tyldesley and Whiting, 1975).
These findings indicate that similar motor primitives are being used that
are invariant under these external influences similar to the Ijspeert motor
primitives (Ijspeert et al, 2002b; Schaal et al, 2003, 2007) being invariant un-
der the modification of the final position, movement amplitude and duration.
However, the standard formulation by Ijspeert et al cannot be used properly
in this context as there is no possibility to directly incorporate either a via-
point or a target velocity (if the duration cannot be adapted as, e.g., for an
approaching ball). Hence, a reformulation is needed that can deal with these
requirements.

In this paper, we augment the Ijspeert approach (Ijspeert et al, 2002b;
Schaal et al, 2003, 2007) of using dynamical systems as motor primitives in
such a way that it includes the possibility to set arbitrary velocities at the
hitting point without changing the overall shape of the motion or introducing
delays that will prevent a proper strike. This modification allows the gener-
alization of learned striking movements, such as hitting and batting, from
demonstrated examples. In Section 3.2, we present the reformulation of the
motor primitives as well as the intuition behind the adapted approach. We
apply the presented method in Section 3.3 where we show two successful ex-
amples. First, we test the striking movements primitive in a static scenario of
hitting a hanging ball with a table tennis racket and show that the movement
generalizes well to new ball locations. After this proof of concept, we take
the same movement template representation in order to learn an adaptable
forehand for table tennis. The later is tested in the setup indicated by Figure
3.1 where we use a seven degrees of freedom Barrett WAM in order to return
balls launched by a ball cannon.

3.2 Movement Templates for Learning to Strike

Ijspeert et al (2002b) suggested to use a dynamical system approach in order
to represent both discrete point-to-point movements as well as rhythmic mo-
tion with motor primitives. This framework ensures the stability of the move-
ment1, allows the representation of arbitrarily shaped movements through

1 Note that the dynamical systems motor primitives ensure the stability of the
movement generation but cannot guarantee the stability of the movement execu-
tion (Ijspeert et al, 2002b; Schaal et al, 2007).
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(a) Ijspeert Motor Primitive

(b) Hitting Motor Primitive

Fig. 3.2 In this figure, we convey the intuition of the presented reactive templates
for learning striking movements. The Ijspeert formulation can be seen as a nonlinear
spring damper system that pulls a degree of freedom to a stationary goal while
exhibiting a learned movement shape. The presented approach allows hitting a
target with a specified velocity without replanning if the target is adapted and,
in contrast to the Ijspeert formulation, can be seen as a degree of freedom pulled
towards a moving goal.

the primitive’s policy parameters, and these parameters can be estimated
straightforwardly by locally weighted regression. In the discrete case, these
primitives can be modified through their meta-parameters in order to adapt
to the final goal position, the movement amplitude or the duration of the
movement. The resulting movement can start from arbitrary positions and
velocities and go to arbitrary final positions while maintaining the overall
shape of the trajectory. In Section 3.2.1, we review the most current version
of this approach based on (Schaal et al, 2007).

However, as outlined in Section 3.1, this formulation of the motor prim-
itives cannot be used straightforwardly in racket sports as incorporating a
desired virtual hitting point (Ramanantsoa and Durey, 1994; Muelling and
Peters, 2009) (consisting of a desired target position and velocity) cannot
be achieved straightforwardly. For example, in table tennis, fast forehand
movements need to hit a ball at a pre-specified speed, hitting time and a
continuously adapted location. In the original Ijspeert formulation, the goal
needs to be determined at the start of the movement and at approximately
zero velocity as in the experiments in (Ijspeert et al, 2002b); a via-point
target can only be hit properly by modifying either the policy parameters
(Peters and Schaal, 2006) or, indirectly, by modifying the goal parameters
(Peters et al, 2010b). Hence, such changes of the target can only be achieved
by drastically changing the shape of the trajectory and duration.

As an alternative, we propose a modified version of Ijspeert’s original
framework that overcomes this limitation and is particularly well-suited for
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(c) Acceleration

Demonstration Ijspeert’s original Reformulation for Hitting Acceleration-Safe Reformulation for Hitting

Fig. 3.3 Target velocity adaptation is essential for striking movements. This figure
illustrates how different versions of the dynamical system based motor primitives
are affected by a change of the target velocity. Here, an artificial training example
(i.e., q = 2t2 +cos(4tπ)− 1) is generated. After learning, all motor primitive formu-
lations manage to reproduce the movements accurately from the training example
for the same target velocity and cannot be distinguished. When the target velocity
is tripled, this picture changes drastically. For Ijspeert’s original model the ampli-
tude modifier a had to be increased to yield the desired velocity. The increased
amplitude of the trajectory is clearly visible for the positions and even more dras-
tic for the velocities and accelerations. The reformulations presented in this paper,
stay closer to the movement shape and amplitude. Particularly the velocities and
accelerations exhibit that the new approach allows much better generalizing of the
learned behavior. This figure furthermore demonstrates how a large initial step in
acceleration appears for Ijspeert’s original model (and the reformulation for hitting)
even if a transformation function is used to partially suppress it for the training
example.

striking movements. This modification allows setting both a hitting point and
a striking velocity while maintaining the desired duration and the learned
shape of the movement. Online adaptation of these meta-parameters is possi-
ble and, hence, it is well-suited for learning racket sports such as table tennis
as discussed in Chapter 5. The basic intuition behind the modified version is
similar to the one of Ijspeert’s primitives, i.e., both assume that the controlled
degree of freedom is connected to a specific spring damper system; however,
the approach presented here allows overcoming previous limitations by as-
suming a connected moving target, see Figure 3.2. The resulting approach is
explained in Section 3.2.2.

A further drawback of the Ijspeert motor primitives (Ijspeert et al, 2002b;
Schaal et al, 2003, 2007) is that, when generalizing to new targets, they tend
to produce large accelerations early in the movement. Such an acceleration
peak may not be well-suited for fast movements and can lead to execution
problems due to physical limitations; Figure 3.4 illustrates this drawback. In
Section 3.2.3, we propose a modification that alleviates this shortcoming.
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3.2.1 Discrete Movement Primitives

While the original formulation in (Ijspeert et al, 2002b; Schaal et al, 2003)
for discrete dynamical systems motor primitives used a second-order system
to represent the phase z of the movement, this formulation has proven to be
unnecessarily complicated in practice. Since then, it has been simplified and,
in (Schaal et al, 2007), it was shown that a single first order system suffices

ż = −ταzz.

This canonical system has the time constant τ = 1/T where T is the duration
of the motor primitive, a parameter αz which is chosen such that z ≈ 0 at T to
ensure that the influence of the transformation function, shown in Equation
(3.2.1), vanishes. Subsequently, the internal state x of a second system is
chosen such that positions q of all degrees of freedom are given by q = x1,
the velocities q̇ by q̇ = τx2 = ẋ1 and the accelerations q̈ by q̈ = τ ẋ2. Under
these assumptions, the learned dynamics of Ijspeert motor primitives can be
expressed in the following form

ẋ2 = ταx (βx (g − x1)− x2) + τAf (z) , (3.1)

ẋ1 = τx2.

This set of differential equations has the same time constant τ as the canonical
system, parameters αx, βx set such that the system is critically damped,
a goal parameter g, a transformation function f and an amplitude matrix
A = diag(a1, a2, . . . , an), with the amplitude modifier a = [a1, a2, . . . , an].
In (Schaal et al, 2007), they use a = g − x0

1 with the initial position x0
1,

which ensures linear scaling. Alternative choices are possibly better suited
for specific tasks, see e.g., (Park et al, 2008). The transformation function
f (z) alters the output of the first system, in Equation (3.2.1), so that the
second system, in Equation (3.1), can represent complex nonlinear patterns
and it is given by

f (z) =
∑N

i=1ψi (z)wiz.

Here, wi contains the ith adjustable parameter of all degrees of freedom,
N is the number of parameters per degree of freedom, and ψi(z) are the
corresponding weighting functions (Schaal et al, 2007). Normalized Gaussian
kernels are used as weighting functions given by

ψi (z) =
exp
(
−hi (z − ci)

2
)

∑N
j=1 exp

(
−hj (z − cj)

2
) .

These weighting functions localize the interaction in phase space using the
centers ci and widths hi. Note that the degrees of freedom (DoF) are usually
all modeled as independent in Equation (3.1). All DoFs are synchronous as
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the dynamical systems for all DoFs start at the same time, have the same
duration, and the shape of the movement is generated using the transforma-
tion f (z) in Equation (3.2.1). This transformation function is learned as a
function of the shared canonical system in Equation (3.2.1).
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Ijspeert’s original Reformulation for Hitting Acceleration-Safe Reformulation for Hitting Park Reformulation

Fig. 3.4 An important aspect of the Ijspeert framework is that such primitives
are guaranteed to be stable and, hence, safe for learning. A problem of the regular
formulation highly unevenly distributed acceleration with a jump at the beginning
of the movement of its unaltered dynamics. These high accelerations affect the
movement when the behavior is either generalized to new goals or when during trial-
and-error learning where the initial parameters are small. Some of these problem
have previously been noted by Park et al (2008), and are particularly bad in the
context of fast striking movements. Here, we compare the different formulations
with respect to their acceleration in the unaltered dynamics case (i.e., w = 0).
For a better comparison, we set the goal velocity to zero (ġ = 0). The Ijspeert
formulation clearly shows the problem with the large acceleration, as does the
reformulation for hitting (with a hitting speed of ġ = 0 both are identical). While
the Park modification starts without the jump in acceleration, it requires almost
as high accelerations shortly afterwards. The acceleration-safe reformulation for
hitting also starts out without a step in acceleration and does not require huge
accelerations.

One of the biggest advantages of this motor primitive framework (Ijspeert
et al, 2002a; Schaal et al, 2007) is that the second system in Equation (3.1),
is linear in the shape parameters θ. Therefore, these parameters can be ob-
tained efficiently, and the resulting framework is well-suited for imitation
(Section 3.2.4) and reinforcement learning (Chapter 4). Additional feedback
terms can be added as shown in (Schaal et al, 2007; Kober et al, 2008; Park
et al, 2008).

3.2.2 Adapting the Motor Primitives for Striking
Movements

The regular formulation (Ijspeert et al, 2002b; Schaal et al, 2003, 2007) which
was reviewed in Section 3.2.1, allows to change the initial position x0

1 and goal
position g (which corresponds to the target, i.e., the position at the end of the
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Fig. 3.5 This figure demonstrates the generalization of an imitated behavior to a
different target that is 15cm away from the original target. Note that this trajectory
is for a static target, hence the slow motion. The depicted degree of freedom (DoF)
is shoulder adduction-abduction (i.e., the second DoF). The solid gray bars indicate
the time before and after the main movement, the gray dashed lines indicate the
phase borders also depicted in Figure 3.1 and the target is hit at the second border.

movement at time T ) of the motor primitive while maintaining the overall
shape of the movement determined by the parameters wi. For disturbed
initial conditions, the attractor dynamics that pull the motor primitive to the
trained behavior and it is guaranteed to finally reach to the goal position g,
see (Ijspeert et al, 2002b). However, the formulation above only considers the
case of a final goal with a favored velocity of ẋ1(T ) = 0 at the goal g and final
time T . However, using the transformation function f (z) in Equation (3.2.1),
it can be forced to arbitrary final velocities by changing the shape parameters
of the movement. As the last basis function in the transformation function
f (z) decays almost to zero at time T the active parameters, the last parameter
wN needs to be over-proportionally large. If the motor primitive is trained
with ẋ1(T ) = 0 it simply rests at x1 = g if it runs for longer than T . However,
large wN often cause overshooting in x1 and the trajectory is subsequently
pulled back to the final position g only using the linear attractor dynamics in
Equation (3.1) which may not be suitable for a given task. The goal velocity
ẋ1(T ) can only be changed either by scaling the duration of the movement T
or with the amplitude modifier a; however a mapping of g and ẋ1(T ) to a has
to be established first. The main downsides of these approaches, respectively,
are that either the total duration is changed (which makes the interception
of a table tennis ball hard) or that a modifies the whole motion including
shape and amplitude (which causes undesired movements and often requires
overly strenuous movements in table tennis). These effects are illustrated in
Figure 3.3. Note, if the goal is constantly adapted as in table tennis (where
the ball trajectory is not certain until the ball has bounced on the table the
last time), these effects will produce significantly stronger undesired effects
and, possibly, unstable behavior.

As an alternative for striking movements, we propose a modification of the
dynamical system based motor primitives that allows us to directly specify
the desired ẋ1(T ) while maintaining the duration of the movement and having
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the possibility to change the amplitude of the motion independently. For
doing so, we introduce a moving goal and include the desired final velocity
in Equation (3.1). We use a linearly moving goal but other choices may be
better suited for different tasks. This reformulation results in the following
equations for the learned dynamics

ẋ2 = ταg

(
βg (gm − x1) +

(ġ− ẋ1)

τ

)
+ τAf , (3.2)

ẋ1 = τx2,

gm = g0
m − ġ

ln (z)

ταh
, (3.3)

where ġ is the desired final velocity, gm is the moving goal and the initial
position of the moving goal g0

m = g − τ ġ ensures that gm (T ) = g. The
term − ln (z) / (ταh) is proportional to the time if the canonical system in
Equation (3.2.1) runs unaltered; however, adaptation of z allows the straight-
forward adaptation of the hitting time. If ġ = 0, this formulation is exactly
the same as the original formulation. The imitation learning approach men-
tioned in Section 3.2.1 can be adapted straightforwardly to this formulation.
Figure 3.3 illustrates how the different approaches behave when forced to
achieve a specified desired final velocity.

3.2.3 Safer Dynamics for Generalization

Generalizing fast movements such as a forehand in table tennis can become
highly dangerous if the primitive requires exceedingly high accelerations or
has large jumps in the acceleration (e.g., the fastest table tennis moves that
we have executed on our WAM had a peak velocity of 7m/s and 10g max-
imum acceleration). Hence, the initial jump in acceleration often observed
during the execution of the Ijspeert primitives may lead to desired acceler-
ations that a physical robot cannot properly execute, and may even cause
damage to the robot system. In the following, we will discuss several sources
of these acceleration jumps and how to overcome them. If the dynamics are
not altered by the transformation function, i.e., w = 0, the highest accel-
eration during the original Ijspeert motor primitive occurs at the very first
time-step and then decays rapidly. If the motor primitives are properly initial-
ized by imitation learning, the transformation function will cancel this initial
acceleration, and, thus, this usually does not pose a problem in the absence of
generalization. However, when changing the amplitude a of the motion (e.g.,
in order to achieve a specific goal velocity) the transformation function will
over- or undercompensate for this initial acceleration jump. The adaptation
proposed in Section 3.2.2 does not require a change in amplitude, but suffers
from a related shortcoming, i.e., changing the goal velocity also changes the
initial position of the goal, thus results in a similar jump in acceleration that
needs to be compensated. Using the motor primitives with an initial velocity
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that differs from the one used during imitation learning has the same effect.
Figures 3.3 and 3.4 illustrate these initial steps in acceleration for various
motor primitive formulations. As an alternative, we propose to gradually ac-
tivate the attractor dynamics of the motor primitive (e.g., by reweighting
them using the output of the canonical system). When combined, these two
adaptations result in

ẋ2 = (1− z) ταg

(
βg (gm − x1) +

(ġ − ẋ1)

τ

)
+ τAf .

Surprisingly, after this modification the unaltered dynamics (i.e., where w =
0 and, hence, τAf (z) = 0) result in trajectories that roughly resemble a
minimum jerk movements and, hence, look very similar to human movements.
Exactly as for the Ijspeert formulation, we can arbitrarily shape the behavior
by learning the weights of the transformation function. Note that (Park et al,
2008) also introduced a similar modification canceling the initial acceleration
caused by the offset between initial and goal position; however, their approach
cannot deal with a deviating initial velocity.

The proposed acceleration jump compensation also yields smoother move-
ments during the adaptation of the hitting point as well as smoother transi-
tions if motor primitives are sequenced. The later becomes particularly impor-
tant when the preceding motor primitive has a significantly different velocity
than during training (by imitation learning) or if it is terminated early due
to external events. All presented modifications are compatible with the im-
itation learning approach discussed in Section 3.2.1 and the adaptation is
straightforward. Figures 3.3 and 3.4 show how the presented modifications
overcome the problems with the initial jumps in acceleration.

3.2.4 Imitation Learning

In the following chapters we use imitation learning from a single example to
generate a sensible initial policy. This step can be performed efficiently in
the context of dynamical systems motor primitives in both the original and
adapted forms, as the transformation function Equation (3.2.1) is linear in
its parameters. As a result, we can choose the weighted squared error (WSE)

WSEn =
∑T

t=1ψ
n
t

(
f ref
t − ztθ

n
)2

as cost function and minimize it for all parameter vectors θn with n ∈
{1, 2, . . . , N}. Here, the corresponding weighting functions are denoted by
ψn
t and the basis function by zt. The reference or target signal f ref

t is the
desired transformation function and t indicates the time-step of the sample.
The error in Equation (3.2.4) can be rewritten in matrix form as

WSEn =
(
f ref − Zθn

)T
Ψ
(
f ref − Zθn

)



3.3 Robot Evaluation 79

(a) Demonstration by a Human Instructor

(b) Example: Reproduction for Hitting a Stationary Ball

(c) Application: Returning Balls launched by a Ball Gun

Fig. 3.6 This figure presents a hitting sequence from the demonstration, a gener-
alization on the robot with a ball attached by a string as well as a generalization
hitting a ball shot by a ping-pong ball launcher. The demonstration and the fly-
ing ball generalization are captured by a 25Hz video camera, the generalization
with the attached ball is captured with 200Hz through our vision system. From
left to right the stills represent: rest posture, swing-back posture, hitting point,
swing-through and rest posture. The postures (➀-➃) are the same as in Figure 3.2.

with f ref containing the values of f ref
t for all time-steps t, Ψ =

diag (ψn
1 , . . . , ψ

n
t , . . . , ψ

n
T ), and [Z]t = zt. As a result, we have a standard

locally-weighted linear regression problem that is straightforward to solve
and yields the unbiased parameter estimator

θn =
(
ZTΨZ

)−1
ZTΨf ref.

This approach was originally suggested for imitation learning by Ijspeert et al
(2002b). Estimating the parameters of the dynamical system is slightly more
difficult; the duration of the movement is extracted using motion detection
and the time-constant is set accordingly.

3.3 Robot Evaluation

In this section, we evaluate the presented reactive templates for representing,
learning and executing forehands in the setting of table tennis. For doing
so, we evaluate our representation for striking movements first on hitting a
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hanging ball in Section 3.3.1 and, subsequently, in the task of returning a
ball served by a ball launcher presented in Section 3.3.2.

When hitting a ping-pong ball that is hanging from the ceiling, the task
consists of hitting the ball with an appropriate desired Cartesian velocity and
orientation of the paddle. Hitting a ping-pong ball shot by a ball launcher
requires predicting the ball’s future positions and velocities in order to choose
an interception point. The latter is only sufficiently accurate after the ball
has hit the table for the last time. This short reaction time underlines that
the movement templates can be adapted during the trajectory under strict
time limitations when there is no recovery from a bad generalization, long
replanning or inaccurate movements.

3.3.1 Generalizing Forehands on Static Targets

As a first experiment, we evaluated how well this new formulation of hitting
primitives generalizes forehand movements learned from imitation as shown
in Figure 3.6 (a). First, we collected arm, racket and ball trajectories for
imitation learning using the 7 DoF Barrett WAM robot as an haptic input
device for kinesthetic teach-in where all inertial forces and gravity were com-
pensated. In the second step, we employ this data to automatically extract
the duration of the striking movement, the duration of the individual phases
as well as the Cartesian target velocity and orientation of the racket when hit-
ting the ball. We employ a model (as shown in Section 3.2) that has phases
for swinging back, hitting and going to a rest posture. Both the phase for
swing-back and return-to-home phases will go into intermediary still phases
while the hitting phase goes through a target point with a pre-specified target
velocity. All phases can only be safely executed due to the “safer dynamics”
which we introduced in Section 3.2.3.

In this experiment, the ball is a stationary target and detected by a stereo
camera setup. Subsequently, the supervisory level proposed in (Muelling and
Peters, 2009) determines the hitting point and the striking velocity in con-
figuration space. The motor primitives are adjusted accordingly and exe-
cuted on the robot in joint-space using an inverse dynamics control law.
The robot successfully hits the ball at different positions within a diam-
eter of approximately 1.2m if kinematically feasible. The adaptation for
striking movements achieves the desired velocities and the safer dynam-
ics allow generalization to a much larger area while successfully removing
the possibly large accelerations at the transitions between motor primitives.
See Figure 3.5 for a comparison of the training example and the generalized
motion for one degree of freedom and Figure 3.6 (b) for a few frames from a
hit of a static ball.
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Fig. 3.7 Generalization to various targets (five different forehands at posture ➂)
are shown approximately when hitting the ball

3.3.2 Playing against a Ball Launcher

This evaluation adds an additional layer of complexity as the hitting point and
the hitting time has to be estimated from the trajectory of the ball and continu-
ously adapted as the hitting point cannot be reliably determined until the ball
has bounced off the table for the last time. In this setting, the ball is tracked by
two overlapping high speed stereo vision setups with 200Hz cameras. In order
to obtain better estimates of the current position and to calculate the veloci-
ties, the raw 3D positions are filtered by a specialized Kalman filter (Kalman,
1960) that takes contacts of the ball with the table and the racket into account
(Muelling and Peters, 2009). When used as a Kalman predictor, we can again
determine the target point for the primitive with a pre-specified target veloc-
ity with the method described in (Muelling and Peters, 2009). The results ob-
tained for the still ball generalize well from the static ball to the one launched
by a ball launcher at 3m/swhich are returned at speeds up to 8m/s. A sequence
of frames from the attached video is shown in Figure 3.6. The plane of possible
virtual hitting points again has a diameter of roughly 1m as shown in Figure 3.7.
The modified motor primitives generated movements with the desired hitting
position and velocity. The robot hit the ball in the air in approx. 95% of the tri-
als. However, due to a simplistic ball model and execution inaccuracies the ball
was often not properly returned on the table. Please see the videos accompany-
ing this chapter http://www.robot-learning.de/Research/HittingMPs.

Note that our results differ significantly from previous approaches as we
use a framework that allows us to learn striking movements from human
demonstrations unlike previous work in batting (Senoo et al, 2006) and table
tennis (Andersson, 1988). Unlike baseball which only requires four degrees
of freedom (as, e.g., in (Senoo et al, 2006) who used a 4 DoF WAM arm
in a manually coded high speed setting), and previous work in table tennis
(which had only low-inertia, was overpowered and had mostly prismatic joints
(Andersson, 1988; Fässler et al, 1990; Matsushima et al, 2005)), we use a full
seven degrees of freedom revolutionary joint robot and, thus, have to deal with
larger inertia as the wrist adds roughly 2.5kg weight at the elbow. Hence, it
was essential to train trajectories by imitation learning that distribute the
torques well over the redundant joints as the human teacher was suffering
from the same constraints.
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3.4 Conclusion

In this paper, we rethink previous work on dynamic systems motor primitive
(Ijspeert et al, 2002b; Schaal et al, 2003, 2007) in order to obtain movement
templates that can be used reactively in batting and hitting sports. This
reformulation allows to change the target velocity of the movement while
maintaining the overall duration and shape. Furthermore, we present a mod-
ification that overcomes the problem of an initial acceleration step which
is particularly important for safe generalization of learned movements. Our
adaptations retain the advantages of the original formulation and perform
well in practice. We evaluate this novel motor primitive formulation first
in hitting a stationary table tennis ball and, subsequently, in returning ball
served by a ping pong ball launcher. In both cases, the novel motor primitives
manage to generalize well while maintaining the features of the demonstra-
tion. This new formulation of the motor primitives can hopefully be used
together with meta-parameter learning (Chapter 5) in a mixture of motor
primitives (Muelling et al, 2010) in order to create a complete framework for
learning tasks like table tennis autonomously.
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Policy Search for Motor Primitives in Robotics

Summary. Many motor skills in humanoid robotics can be learned using
parametrized motor primitives. While successful applications to date have
been achieved with imitation learning, most of the interesting motor learning
problems are high-dimensional reinforcement learning problems. These prob-
lems are often beyond the reach of current reinforcement learning methods. In
this chapter, we study parametrized policy search methods and apply these
to benchmark problems of motor primitive learning in robotics. We show
that many well-known parametrized policy search methods can be derived
from a general, common framework. This framework yields both policy gra-
dient methods and expectation-maximization (EM) inspired algorithms. We
introduce a novel EM-inspired algorithm for policy learning that is partic-
ularly well-suited for dynamical system motor primitives. We compare this
algorithm, both in simulation and on a real robot, to several well-known
parametrized policy search methods such as episodic REINFORCE, ‘Vanilla’
Policy Gradients with optimal baselines, episodic Natural Actor Critic, and
episodic Reward-Weighted Regression. We show that the proposed method
out-performs them on an empirical benchmark of learning dynamical system
motor primitives both in simulation and on a real robot. We apply it in the
context of motor learning and show that it can learn a complex Ball-in-a-Cup
task on a real Barrett WAM robot arm.

4.1 Introduction

To date, most robots are still taught by a skilled human operator either via
direct programming or a teach-in. Learning approaches for automatic task
acquisition and refinement would be a key step for making robots progress
towards autonomous behavior. Although imitation learning can make this
task more straightforward, it will always be limited by the observed demon-
strations. For many motor learning tasks, skill transfer by imitation learning
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is prohibitively hard given that the human teacher is not capable of con-
veying sufficient task knowledge in the demonstration. In such cases, rein-
forcement learning is often an alternative to a teacher’s presentation, or a
means of improving upon it. In the high-dimensional domain of anthropo-
morphic robotics with its continuous states and actions, reinforcement learn-
ing suffers particularly from the curse of dimensionality. However, by using a
task-appropriate policy representation and encoding prior knowledge into the
system by imitation learning, local reinforcement learning approaches are ca-
pable of dealing with the problems of this domain. Policy search (also known
as policy learning) is particularly well-suited in this context, as it allows the
usage of domain-appropriate pre-structured policies (Toussaint and Goerick,
2007), the straightforward integration of a teacher’s presentation (Guenter
et al, 2007; Peters and Schaal, 2006) as well as fast online learning (Bag-
nell et al, 2003; Ng and Jordan, 2000; Hoffman et al, 2007). Recently, policy
search has become an accepted alternative of value-function-based reinforce-
ment learning (Bagnell et al, 2003; Strens and Moore, 2001; Kwee et al, 2001;
Peshkin, 2001; El-Fakdi et al, 2006; Taylor et al, 2007) due to many of these
advantages.

In this chapter, we will introduce a policy search framework for episodic
reinforcement learning and show how it relates to policy gradient methods
(Williams, 1992; Sutton et al, 1999; Lawrence et al, 2003; Tedrake et al, 2004;
Peters and Schaal, 2006) as well as expectation-maximization (EM) inspired
algorithms (Dayan and Hinton, 1997; Peters and Schaal, 2007). This frame-
work allows us to re-derive or to generalize well-known approaches such as
episodic REINFORCE (Williams, 1992), the policy gradient theorem (Sutton
et al, 1999; Peters and Schaal, 2006), the episodic Natural Actor Critic (Pe-
ters et al, 2003, 2005), and an episodic generalization of the Reward-Weighted
Regression (Peters and Schaal, 2007). We derive a new algorithm called Pol-
icy Learning by Weighting Exploration with the Returns (PoWER), which is
particularly well-suited for the learning of trial-based tasks in motor control.

We evaluate the algorithms derived from this framework to determine how
they can be used for refining parametrized policies in robot skill learning. To
address this problem, we follow a methodology suitable for robotics where the
policy is first initialized by imitation learning and, subsequently, the policy
search algorithm is used for self-improvement. As a result, we need a suitable
representation in order to apply this approach in anthropomorphic robot sys-
tems. In imitation learning, a particular kind of motor control policy has been
very successful, which is known as dynamical systemmotor primitives (Ijspeert
et al, 2002b,a; Schaal et al, 2003, 2007). In this approach, dynamical systems
are used to encode a control policy suitable for motor tasks. The representa-
tion is linear in the parameters; hence, it can be learned straightforwardly from
demonstrations. Such dynamical system motor primitives can represent both
point-to-point and rhythmic behaviors.We focus on the point-to-point variant
which is suitable for representing single-stroke, episodic behaviors. As a result,
they are particularly well-suited for episodic policy search.
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We show that all presented algorithms work sufficiently well when em-
ployed in the context of learning dynamical system motor primitives in differ-
ent benchmark and application settings. We compare these methods on the
two benchmark problems from (Peters and Schaal, 2006) for dynamical sys-
tem motor primitives learning, the Underactuated Swing-Up (Atkeson, 1994)
robotic benchmark problem, and the Casting task. Using entirely different
parametrizations, we evaluate policy search methods on the mountain-car
benchmark (Sutton and Barto, 1998) and the Tetherball Target Hitting task.
On the mountain-car benchmark, we additionally compare to a value func-
tion based approach. The method with the best performance, PoWER, is
evaluated on the complex task of Ball-in-a-Cup (Sumners, 1997). Both the
Underactuated Swing-Up as well as Ball-in-a-Cup are achieved on a real Bar-
rett WAM robot arm. Please also refer to the videos at http://www.robot-
learning.de/Research/ReinforcementLearning. For all real robot exper-
iments, the presented movement is learned by imitation from a kinesthetic
demonstration, and the Barrett WAM robot arm subsequently improves its
behavior by reinforcement learning.

4.2 Policy Search for Parametrized Motor Primitives

Our goal is to find reinforcement learning techniques that can be applied in
robotics in the context of learning high-dimensional motor control tasks. We
first introduce the required notation for the derivation of the reinforcement
learning framework in Section 4.2.1. We discuss the problem in the general
setting of reinforcement learning using a generalization of the approach in
(Dayan and Hinton, 1997; Attias, 2003; Peters and Schaal, 2007). We extend
the existing approach to episodic reinforcement learning for continuous states,
in a manner suitable for robotics.

We derive a new expectation-maximization (EM) inspired algorithm
(Dempster et al, 1977) called Policy Learning by Weighting Exploration with
the Returns (PoWER) in Section 4.2.3 and show how the general framework
is related to policy gradient methods and the Reward-Weighted Regression
method in Section 4.2.2.

4.2.1 Problem Statement and Notation

In this chapter, we treat motor primitive learning problems in the frame-
work of reinforcement learning (Sutton and Barto, 1998) with a strong focus
on the episodic case. At time t, there is an actor in a state st that chooses
an action at according to a stochastic policy π(at|st, t). Such a policy is a
probability distribution over actions given the current state and time. The
stochastic formulation allows a natural incorporation of exploration, and the
optimal time-invariant policy has been shown to be stochastic in the case of

http://www.robot-learning.de/Research/ReinforcementLearning
http://www.robot-learning.de/Research/ReinforcementLearning
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hidden state variables (Sutton et al, 1999; Jaakkola et al, 1993). Upon the
completion of the action, the actor transfers to a state st+1 and receives a
reward rt. As we are interested in learning complex motor tasks consisting
of a single stroke (Schaal et al, 2007), we focus on finite horizons of length T
with episodic restarts and learn the optimal parametrized, stochastic policy
for such episodic reinforcement learning problems (Sutton and Barto, 1998).
We assume an explorative parametrized policy π with parameters θ ∈ R

n. In
Section 4.3.1, we discuss how the dynamical system motor primitives (Ijspeert
et al, 2002b,a; Schaal et al, 2003, 2007) can be employed in this setting. In
this section, we will keep most derivations sufficiently general such that they
are transferable to various other parametrized policies that are linear in the
parameters.

The general goal in reinforcement learning is to optimize the expected
return of the policy π with parameters θ defined by

J(θ) =
´
T
pθ(τ )R(τ )dτ ,

where T is the set of all possible paths. A rollout τ = [s1:T+1, a1:T ], also called
path, episode or trial, denotes a series of states s1:T+1 = [s1, s2, . . . , sT+1]
and actions a1:T = [a1, a2, . . . , aT ]. The probability of rollout τ is denoted
by pθ(τ ), while R(τ ) refers to its aggregated return. Using the standard
Markov assumption and additive accumulated rewards, we can write

pθ(τ ) = p(s1)
∏T

t=1p(st+1|st, at)π(at|st, t), (4.1)

R(τ ) = T−1∑T
t=1r(st, at, st+1, t),

where p(s1) denotes the initial state distribution, p(st+1|st, at) the next state
distribution conditioned on the last state and action, and r(st, at, st+1, t)
denotes the immediate reward.

While episodic Reinforcement Learning (RL) problems with finite hori-
zons are common in both human Wulf (2007) and robot motor control prob-
lems, few methods exist in the RL literature. Examples are episodic REIN-
FORCE (Williams, 1992), the episodic Natural Actor Critic eNAC (Peters
et al, 2003, 2005) and model-based methods using differential dynamic pro-
gramming (Atkeson, 1994).

4.2.2 Episodic Policy Learning

In this section, we discuss episodic reinforcement learning in policy space,
which we will refer to as Episodic Policy Learning. We first discuss the lower
bound on the expected return as suggested in (Dayan and Hinton, 1997)
for guaranteeing that policy update steps are improvements. In (Dayan and
Hinton, 1997; Peters and Schaal, 2007) only the immediate reward case is
discussed; we extend this framework to episodic reinforcement learning. Sub-
sequently, we derive a general update rule, which yields the policy gradient
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theorem (Sutton et al, 1999), a generalization of the reward-weighted re-
gression (Peters and Schaal, 2007), as well as the novel Policy learning by
Weighting Exploration with the Returns (PoWER) algorithm.

Bounds on Policy Improvements

Unlike in reinforcement learning, other branches of machine learning have
focused on maximizing lower bounds on the cost functions, which often re-
sults in expectation-maximization (EM) algorithms (McLachan and Krish-
nan, 1997). The reasons for this preference also apply in policy learning: if
the lower bound also becomes an equality for the sampling policy, we can
guarantee that the policy will be improved by maximizing the lower bound.
Results from supervised learning can be transferred with ease. First, we gen-
eralize the scenario suggested by Dayan and Hinton (1997) to the episodic
case. Here, we generate rollouts τ using the current policy with parameters
θ, which we then weight with the returns R (τ ), and subsequently match it
with a new policy parametrized by θ′. This matching of the success-weighted
path distribution is equivalent to minimizing the Kullback-Leibler divergence
D(pθ(τ )R(τ )‖pθ′(τ )) between the new path distribution pθ′ (τ ) and the
reward-weighted previous one pθ (τ )R (τ ). The Kullback-Leibler divergence
is considered a natural distance measure between probability distributions
(Bagnell and Schneider, 2003; van der Maaten et al, 2009). As shown in
(Dayan and Hinton, 1997; Peters and Schaal, 2007), such a derivation results
in a lower bound on the expected return using Jensen’s inequality and the
concavity of the logarithm. Thus, we obtain

log J(θ′) = log

ˆ

T

pθ′ (τ )R (τ ) dτ = log

ˆ

T

pθ (τ )

pθ (τ )
pθ′ (τ )R (τ ) dτ ,

≥
ˆ

T

pθ (τ )R (τ ) log
pθ′ (τ )

pθ (τ )
dτ + const,

which is proportional to

−D (pθ (τ )R (τ ) ‖pθ′ (τ )) = Lθ(θ
′),

where

D (p (τ ) ‖q (τ )) =
ˆ
p (τ ) log

p (τ )

q (τ )
dτ

denotes the Kullback-Leibler divergence, and the constant is needed for tight-
ness of the bound. Note that pθ (τ )R (τ ) is an improper probability distri-
bution as pointed out by Dayan and Hinton (1997). The policy improvement
step is equivalent to maximizing the lower bound on the expected return
Lθ(θ

′), and we will now show how it relates to previous policy learning
methods.
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Algorithm 4.1 ‘Vanilla’ Policy Gradients (VPG)

Input: initial policy parameters θ0
repeat

Sample: Perform h = {1, . . . ,H} rollouts using a = θTφ(s, t) + εt with [εnt ] ∼
N (0, (σh,n)2) as stochastic policy and collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for

t = {1, 2, . . . , T + 1}.
Compute: Return Rh =

∑T+1
t=1 r

h
t , eligibility

ψh,n =
∂ log p

(
τh

)

∂θn
=

T∑

t=1

∂ log π
(
aht |sht , t

)

∂θn
=

T∑

t=1

εh,nt

(σn
h)

2 φ
n
(
sh,nt , t

)

and baseline

bn =

∑H
h=1

(
ψh,n

)2
Rh

∑H
h=1 (ψ

h,n)2

for each parameter n = {1, . . . , N} from rollouts.

Compute Gradient :

gnVP = E

{
∂ log p(τh)

∂θn

(
R(τh)− bn

)}

= 1
H

H∑

h=1

ψh,n(Rh − bn).

Update policy using

θk+1 = θk + αgVP.

until Convergence θk+1 ≈ θk.

Resulting Policy Updates

In this section, we will discuss three different policy updates, which are di-
rectly derived from the results of Section 4.2.2. First, we show that policy gra-
dients (Williams, 1992; Sutton et al, 1999; Lawrence et al, 2003; Tedrake et al,
2004; Peters and Schaal, 2006) can be derived from the lower bound Lθ(θ

′),
which is straightforward from a supervised learning perspective (Binder et al,
1997). Subsequently, we show that natural policy gradients (Bagnell and
Schneider, 2003; Peters and Schaal, 2006) can be seen as an additional con-
straint regularizing the change in the path distribution resulting from a pol-
icy update when improving the policy incrementally. Finally, we will show
how expectation-maximization (EM) algorithms for policy learning can be
generated.

Policy Gradients

When differentiating the function Lθ(θ
′) that defines the lower bound on the

expected return, we directly obtain

∂θ′Lθ(θ
′) =

´
T
pθ(τ )R(τ)∂θ′ log pθ′(τ )dτ = E

{(∑T
t=1∂θ′ log π(at|st, t)

)
R(τ )

}
,
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where
∂θ′ log pθ′ (τ ) =

∑T
t=1∂θ′ log π (at|st, t)

denotes the log-derivative of the path distribution. As this log-derivative de-
pends only on the policy we can estimate a gradient from rollouts, without
having a model, by simply replacing the expectation by a sum. When θ′ is
close to θ, we have the policy gradient estimator, which is widely known as
episodic REINFORCE (Williams, 1992)

limθ′→θ ∂θ′Lθ(θ
′) = ∂θJ(θ).

See Algorithm 4.1 for an example implementation of this algorithm and Ap-
pendix 4.A.1 for the detailed steps of the derivation. A MATLAB imple-
mentation of this algorithm is available at http://www.robot-learning.de/
Member/JensKober.

A reward, which precedes an action in a rollout, can neither be caused
by the action nor cause an action in the same rollout. Thus, when insert-
ing Equation (4.1) into Equation (4.2.2), all cross-products between rt and
∂θ′ log π(at+δt|st+δt, t+δt) for δt > 0 become zero in expectation (Peters and
Schaal, 2006). Therefore, we can omit these terms and rewrite the estimator
as

∂θ′Lθ (θ
′) = E

{∑T
t=1∂θ′ log π (at|st, t)Qπ(s, a, t)

}
,

where
Qπ (s, a, t) = E

{∑T
t̃=tr

(
st̃, at̃, st̃+1, t̃

) |st = s, at = a
}

is called the state-action value function (Sutton and Barto, 1998). Equa-
tion (4.2.2) is equivalent to the policy gradient theorem (Sutton et al, 1999)
for θ′ → θ in the infinite horizon case, where the dependence on time t can
be dropped.

The derivation results in the episodic Natural Actor Critic as discussed in
(Peters et al, 2003, 2005) when adding an additional cost in Equation (4.2.2)
to penalize large steps away from the observed path distribution. Such a
regularization can be achieved by restricting the amount of change in the
path distribution and subsequently, determining the steepest descent for a
fixed step away from the observed trajectories. Change in probability dis-
tributions is naturally measured using the Kullback-Leibler divergence, thus
after adding the additional constraint of

D (pθ (τ ) ‖pθ′ (τ )) ≈ 0.5 (θ′ − θ)T F (θ) (θ′ − θ) = δ

using a second-order expansion as an approximation where F(θ) denotes the
Fisher information matrix (Bagnell and Schneider, 2003; Peters et al, 2003,
2005). See Algorithm 4.2 for an example implementation of the episodic Nat-
ural Actor Critic. A MATLAB implementation of this algorithm is available
at http://www.robot- learning.de/Member/JensKober.

http://www.robot-learning.de/Member/JensKober
http://www.robot-learning.de/Member/JensKober
http://www.robot-learning.de/Member/JensKober
http://www.robot-learning.de/Member/JensKober
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Algorithm 4.2 episodic Natural Actor Critic (eNAC)

Input: initial policy parameters θ0
repeat

Sample: Perform h = {1, . . . ,H} rollouts using a = θTφ(s, t) + εt with [εnt ] ∼
N (0, (σh,n)2) as stochastic policy and collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for

t = {1, 2, . . . , T + 1}.
Compute: Return Rh =

∑T+1
t=1 r

h
t and eligibility ψh,n =

∑T
t=1(σ

n
h)

−2εh,nt φn(sh,nt , t) for each parameter n = {1, . . . , N} from roll-
outs.

Compute Gradient :

[
gT
eNAC, Rref

]T
=

(
ΨTΨ

)−1

ΨTR

with R =
[
R1, . . . , RH

]T
and Ψ =

[
ψ1, . . . ,ψH

1, . . . , 1

]T

where ψh =

[
ψh,1, . . . , ψh,N

]T
.

Update policy using
θk+1 = θk + αgeNAC.

until Convergence θk+1 ≈ θk.

Policy Search via Expectation Maximization

One major drawback of gradient-based approaches is the learning rate, which
is an open parameter that can be hard to tune in control problems but is es-
sential for good performance. Expectation-Maximization algorithms are well-
known to avoid this problem in supervised learning while even yielding faster
convergence (McLachan and Krishnan, 1997). Previously, similar ideas have
been explored in immediate reinforcement learning (Dayan and Hinton, 1997;
Peters and Schaal, 2007). In general, an EM-algorithm chooses the next policy
parameters θn+1 such that

θn+1 = argmaxθ′ Lθ (θ
′) .

In the case where π(at|st, t) belongs to the exponential family, the next policy
can be determined analytically by setting Equation (4.2.2) or Equation (4.2.2)
to zero

E
{∑T

t=1∂θ′ log π (at|st, t)Q (s, a, t)
}
= 0,

and solving for θ′. Depending on the choice of stochastic policy, we will obtain
different solutions and different learning algorithms. It allows the extension of
the reward-weighted regression to longer horizons as well as the introduction
of the Policy learning by Weighting Exploration with the Returns (PoWER)
algorithm.
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Algorithm 4.3 episodic Reward Weighted Regression (eRWR)

Input: initial policy parameters θ0
repeat

Sample: Perform h = {1, . . . ,H} rollouts using a = θTφ(s, t) + εt with [εnt ] ∼
N (0, (σh,n)2) as stochastic policy and collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for

t = {1, 2, . . . , T + 1}.
Compute: State-action value function Qπ,h

t =
∑T

t̃=t r
h
t̃ from rollouts.

Update policy using

θn
k+1 =

(
(Φn)T QπΦn

)−1

(Φn)T QπAn

with basis functions

Φn =
[
φ1,n

1 , . . . ,φ1,n
T ,φ2,n

1 , . . . ,φH,n
1 , . . . ,φH,n

T

]T
,

where φh,n
t is the value of the basis function of rollout h and parameter n at

time t,
actions

An =
[
a1,n1 , . . . , a1,nT , a2,n1 , . . . , aH,n

1 , . . . , aH,n
T

]T
,

and returns

Qπ = diag
(
Qπ,1

1 , . . . , Qπ,1
T , Qπ,2

1 , . . . , Qπ,H
1 , . . . , Qπ,H

T

)

until Convergence θk+1 ≈ θk.

4.2.3 Policy learning by Weighting Exploration with
the Returns (PoWER)

In most learning control problems, we attempt to have a deterministic mean
policy ā = θTφ(s, t) with parameters θ and basis functions φ. In Section 4.3.1,
we will introduce a particular type of basis function well-suited for robotics.
These basis functions derive from the motor primitive formulation. Given such
a deterministic mean policy ā = θTφ(s, t), we generate a stochastic policy
using additive exploration ε(s, t) in order to make model-free reinforcement
learning possible. We have a policy π(at|st, t) that can be brought into the
form

a = θTφ (s, t) + ε (φ (s, t)) .

Previous work in this setting (Williams, 1992; Guenter et al, 2007; Pe-
ters and Schaal, 2006, 2007), with the notable exception of (Rückstieß et al,
2008), has focused on state-independent, white Gaussian exploration, namely
ε(φ(s, t)) ∼ N (ε|0,Σ). It is straightforward to obtain the Reward-Weighted
Regression for episodic RL by solving Equation (4.2.2) for θ′, which naturally
yields a weighted regression method with the state-action values Qπ(s, a, t) as
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weights. See Algorithm 4.3 for an exemplary implementation and Appendix
4.A.2 for the derivation. An optimized MATLAB implementation of this algo-
rithm is available at http://www.robot-learning.de/Member/JensKober.
This form of exploration has resulted in various applications in robotics such
as T-Ball batting (Peters and Schaal, 2006), Peg-In-Hole (Gullapalli et al,
1994), constrained reaching movements (Guenter et al, 2007) and operational
space control (Peters and Schaal, 2007).

However, such unstructured exploration at every step has several disad-
vantages: (i) it causes a large variance in parameter updates that grows with
the number of time-steps (Rückstieß et al, 2008; Peters and Schaal, 2006),
(ii) it perturbs actions too frequently as the system acts as a low pass filter,
and the perturbations average out, thus their effect is washed out, and (iii) it
can damage the system executing the trajectory. As the action is perturbed
in every time-step the outcome of a trial can change drastically. This effect
accumulates with the number of trials and the exploration is not equal over
the progress of the trial. This behavior leads to a large variance in param-
eter updates. Random exploration in every time-step leads to jumps in the
actions. A physical robot can not execute instantaneous changes in actions
as either the controller needs time to react or the motor and the links of the
robot have inertia that forces the robot to continue the motion induced by
the previous actions. Globally speaking, the system acts as a low pass filter.
If the robot tries to follow the desired high frequency action changes, a lot
of strain is placed on the mechanics of the robot and can lead to oscillations.
Furthermore, the accumulating effect of the exploration can lead the robot
far from previously seen states, which is potentially dangerous.

As a result, all methods relying on this state-independent exploration
have proven too fragile for learning tasks such as the Ball-in-a-Cup (see Sec-
tion 4.3.7) on a real robot system. Alternatively, as introduced in (Rückstieß
et al, 2008), one could generate a form of structured, state-dependent explo-
ration. We use

ε (φ (s, t)) = εTt φ (s, t)

with εt ∼ N (0, Σ̂), where Σ̂ is a hyper-parameter of the exploration that
can be optimized in a similar manner (see Appendix 4.A.3). This argument
results in the policy

a ∼ π (at|st, t) = N
(
a|θTφ (s, t) ,φ(s, t)TΣ̂φ(s, t)

)
.

Inserting the resulting policy into Equation (4.2.2), we obtain the optimality
condition update and can derive the update rule

θ′ = θ + E
{∑T

t=1W (s, t)Qπ (s, a, t)
}−1

E
{∑T

t=1W (s, t) εtQ
π (s, a, t)

}
with W(s, t) = φ(s, t)φ(s, t)T(φ(s, t)TΣ̂φ(s, t))−1.

In order to reduce the number of rollouts in this on-policy scenario, we
reuse the rollouts through importance sampling as described, in the con-
text of reinforcement learning, in (Andrieu et al, 2003; Sutton and Barto,

http://www.robot-learning.de/Member/JensKober
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Algorithm 4.4 EM Policy learning by Weighting Exploration with the Re-
turns (PoWER)

Input: initial policy parameters θ0
repeat

Sample: Perform rollout(s) using a = (θ + εt)
Tφ(s, t) with

εTt φ (s, t) ∼ N (0,φ(s, t)TΣ̂φ(s, t)) as stochastic policy and collect all
(t, st,at, st+1, εt, rt+1) for t = {1, 2, . . . , T + 1}.
Estimate: Use unbiased estimate

Q̂π (s,a, t) =
∑T

t̃=tr
(
st̃,at̃, st̃+1, t̃

)
.

Reweight : Compute importance weights and reweight rollouts, discard low-
importance rollouts.

Update policy using

θk+1 = θk +
〈∑T

t=1W (s, t)Qπ (s,a, t)
〉−1

w(τ)

〈∑T
t=1W (s, t) εtQ

π (s,a, t)
〉

w(τ )

with W(s, t) = φ(s, t)φ(s, t)T(φ(s, t)TΣ̂φ(s, t))−1.

until Convergence θk+1 ≈ θk.

1998). The expectationsE{·} are replaced by the importance sampler denoted
by 〈·〉w(τ ). To avoid the fragility sometimes resulting from importance sam-
pling in reinforcement learning, samples with very small importance weights
are discarded. This step is necessary as a lot of rollouts with a low return
accumulate mass and can bias the update. A simple heuristic that works
well in practice is to discard all but the j best rollouts, where j is cho-
sen in the same order of magnitude as the number of parameters N . The
derivation is shown in Appendix 4.A.3 and the resulting algorithm in Algo-
rithm 4.4. Note that for our motor primitives, some simplifications of W are
possible. These and other simplifications are shown in Appendix 4.A.3. A
MATLAB implementation of this algorithm in several variants is available at
http://www.robot-learning.de/Member/JensKober. As we will see in Sec-
tion 4.3, this PoWER method significantly outperforms all other described
methods.

PoWER is very robust with respect to reward functions. The key con-
straint is that it has to be an improper probability distribution which means
that the rewards have to be positive. It can be beneficial for learning speed
if the reward function sums up to one as a proper probability distribution.

Like most learning algorithms, PoWER achieves convergence faster for
lower numbers of parameters. However, as it is an EM-inspired approach, it
suffers significantly less from this problem than gradient based approaches.
Including more prior knowledge, either in the parametrization or the initial

http://www.robot-learning.de/Member/JensKober
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policy, leads to faster convergence. As discussed above, changing exploration
at every time-step has a number of disadvantages. Fixing the exploration for
the whole episode (if each basis function is only active for a short time) or
using a slowly varying exploration (for example based on random walks) can
increase the performance. All algorithms introduced in this chapter optimize
locally and can get stuck in local optima. An initial policy should be chosen
to avoid local optima on the progress towards the desired final solution.

4.3 Benchmark Evaluation and Application in Robotics

In this section, we demonstrate the effectiveness of the algorithms presented
in Section 4.2.3 in the context of motor primitive learning for robotics. We
will first give a quick overview of how the motor primitives (Ijspeert et al,
2002b,a; Schaal et al, 2003, 2007) work and how learning algorithms can
be used to adapt them. Subsequently, we will discuss how we can turn the
parametrized motor primitives (Ijspeert et al, 2002b,a; Schaal et al, 2003,
2007) into explorative, stochastic policies (Rückstieß et al, 2008). We show
that the novel PoWER algorithm outperforms many previous well-known
methods, particularly ‘Vanilla’ Policy Gradients (Williams, 1992; Sutton et al,
1999; Lawrence et al, 2003; Peters and Schaal, 2006), Finite Difference Gra-
dients (Sehnke et al, 2010; Peters and Schaal, 2006), the episodic Natural
Actor Critic (Peters et al, 2003, 2005), and the generalized Reward-Weighted
Regression (Peters and Schaal, 2007) on the two simulated benchmark prob-
lems suggested by Peters and Schaal (2006) and the Underactuated Swing-Up
(Atkeson, 1994). We compare policy search based algorithms to a value func-
tion based one on the mountain-car benchmark. Additionally, we evaluate
policy search methods on the multidimensional robotic tasks Tetherball Tar-
get Hitting and Casting. As a significantly more complex motor learning task,
we will show how the robot can learn a high-speed Ball-in-a-Cup movement
(Sumners, 1997) with motor primitives for all seven degrees of freedom of
our Barrett WAM robot arm. An overview of the experiments is presented
in Table 4.1.

4.3.1 Dynamical Systems Motor Primitives as
Stochastic Policies

In the analytically tractable cases, episodic Reinforcement Learning (RL)
problems have been studied deeply in the optimal control community. In
this field it is well-known that for a finite horizon problem, the optimal
solution is non-stationary (Kirk, 1970) and, in general, cannot be repre-
sented by a time-independent policy. The motor primitives based on dy-
namical systems (Ijspeert et al, 2002b,a; Schaal et al, 2003, 2007) repre-
sent a particular type of time-variant policy that has an internal phase,
which corresponds to a clock with additional flexibility (for example, for



4.3 Benchmark Evaluation and Application in Robotics 95

Table 4.1 Overview of the Experiments: 4.3.2 Basic Motor Learning, 4.3.3
Mountain-Car, 4.3.4 Tetherball Target Hitting, 4.3.5 Underactuated Swing-Up,
4.3.6 Casting, and 4.3.7 Ball-in-a-Cup

Open
Parameters

DoF Rollouts Policy Platform Algorithms

4.3.2 10 (shape) 1 4400 MP simulation FDG, VPG, eNAC,
eRWR, PoWER

4.3.3 2
(switching)

1 80 bang-
bang

simulation FDG, PoWER,
kNN-TD(λ)

4.3.4 6
(positions)

1 200 rhythmic simulation FDG, PoWER

4.3.5 10 (goal &
shape)

1 200/100 MP simu/robotFDG, VPG, eNAC,
eRWR, PoWER

4.3.6 10 (shape) 2 200 MP simulation eNAC, PoWER

4.3.7 217 (shape) 7 100 MP robot PoWER

incorporating coupling effects, perceptual influences, etc.). Thus, they can
represent optimal solutions for finite horizons. We embed this internal clock
or movement phase into our state and from an optimal control perspective
have ensured that the optimal solution can be represented. See Chapter 3 for
a more detailed discussion.

One of the biggest advantages of this motor primitive framework (Ijspeert
et al, 2002b,a; Schaal et al, 2003, 2007) is that the second system, in Equa-
tion (3.1), is linear in the policy parameters θ and is therefore well-suited for
both imitation learning as well as for the presented reinforcement learning
algorithms. For example, if we would have to learn only a motor primitive
for a single degree of freedom qi, then we could use a motor primitive in the
form ¨̄qi = φ(s)

Tθ where s = [qi, q̇i, z] is the state and where time is implicitly
embedded in z. We use the output of ¨̄qi = φ(s)Tθ = ā as the policy mean.
The perturbed accelerations q̈i = a = ā+ ε are given to the system.

In Sections 4.3.5 and 4.3.7, we use imitation learning from a single example
to generate a sensible initial policy. This step can be performed efficiently in
the context of dynamical systems motor primitives as the policy is linear in
its parameters, see Section 3.2.4.

4.3.2 Benchmark Comparison I: Basic Motor
Learning Examples

As a benchmark comparison, we follow a previously studied scenario in order
to evaluate, which method is best-suited for our problem class. We perform
our evaluations on exactly the same benchmark problems as in (Peters and
Schaal, 2006) and use two tasks commonly studied in motor control litera-
ture for which the analytic solutions are known. The first task is a reaching
task, wherein a goal has to be reached at a certain time, while the used
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Fig. 4.1 This figure shows the initial and the final trajectories for the two motor
control tasks. Both start at 0 and have to go to 1 with minimal accelerations. From
T/2 = 0.75 on the trajectory has to be as close to 1 as possible. For the passing
through task the trajectory additionally has to pass through pM = 0.5 at time
M = 7/40T indicated by the circle.

motor commands have to be minimized. The second task is a reaching task
of the same style with an additional via-point. The task is illustrated in Fig-
ure 4.1. This comparison mainly shows the suitability of our algorithm (Al-
gorithm 4.4) and that it outperforms previous methods such as Finite Differ-
ence Gradient (FDG) methods (Sehnke et al, 2010; Peters and Schaal, 2006),
see Algorithm 4.5, ‘Vanilla’ Policy Gradients (VPG) with optimal baselines
(Williams, 1992; Sutton et al, 1999; Lawrence et al, 2003; Peters and Schaal,
2006), see Algorithm 4.1, the episodic Natural Actor Critic (eNAC) (Peters
et al, 2003, 2005), see Algorithm 4.2, and the new episodic version of the
Reward-Weighted Regression (eRWR) algorithm (Peters and Schaal, 2007),
see Algorithm 4.3. MATLAB implementations of all algorithms are available
at http://www.robot-learning.de/Member/JensKober. For all algorithms
except PoWER, we used batches to update the policy. A sliding-window
based approach is also possible. For VPG, eNAC, and eRWR a batch size of
H = 2N and for FDG a batch size of H = N+1 are typical. For PoWER, we
employed an importance sampling based approach, although a batch based
update is also possible.

We consider two standard tasks taken from (Peters and Schaal, 2006), but
we use the newer form of the motor primitives from (Schaal et al, 2007). The
first task is to achieve a goal with a minimum-squared movement acceleration
and a given movement duration, that gives a return of

R (τ ) = −
T/2∑
t=0

c1q̈
2
t −

T∑
t=T/2+1

c2

(
(qt − g)

2
+ q̇2t

)

for optimization, where T = 1.5, c1 = 1/100 is the weight of the transient
rewards for the movement duration T/2, while c2 = 1000 is the importance
of the final reward, extended over the time interval [T/2 + 1, T ] which insures
that the goal state g = 1.0 is reached and maintained properly. The initial
state of the motor primitive is always zero in this evaluation.

http://www.robot-learning.de/Member/JensKober
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Fig. 4.2 This figure shows the mean performance of all compared methods in two
benchmark tasks averaged over twenty learning runs with the error bars indicating
the standard deviation. Policy learning by Weighting Exploration with the Returns
(PoWER) clearly outperforms Finite Difference Gradients (FDG), ‘Vanilla’ Pol-
icy Gradients (VPG), the episodic Natural Actor Critic (eNAC), and the adapted
Reward-Weighted Regression (eRWR) for both tasks. Note that this plot has log-
arithmic scales on both axes, thus a unit difference corresponds to an order of
magnitude. The omission of the first twenty rollouts was necessary to cope with the
log-log presentation.

The second task involves passing through an intermediate point during
the trajectory, while minimizing the squared accelerations, that is, we have
a similar return with an additional punishment term for missing the interme-
diate point pM at time M given by

R (τ ) = −
T/2∑
t=0

c̃1q̈
2
t −

T∑
t=T/2+1

c̃2

(
(qt − g)

2
+ q̇2t

)
− c̃3 (qM − pM )

2

where c̃1 = 1/10000, c̃2 = 200, c̃3 = 20000. The goal is given by g = 1.0, the
intermediate point a value of pM = 0.5 at time M = 7/40T , and the initial
state was zero. This return yields a smooth movement, which passes through
the intermediate point before reaching the goal, even though the optimal
solution is not identical to the analytic solution with hard constraints.

All open parameters were manually optimized for each algorithm in or-
der to maximize the performance while not destabilizing the convergence of
the learning process. When applied in the episodic scenario, Policy learning
by Weighting Exploration with the Returns (PoWER) clearly outperformed
the episodic Natural Actor Critic (eNAC), ‘Vanilla’ Policy Gradient (VPG),
Finite Difference Gradient (FDG), and the episodic Reward-Weighted Re-
gression (eRWR) for both tasks. The episodic Reward-Weighted Regression
(eRWR) is outperformed by all other algorithms suggesting that this algo-
rithm does not generalize well from the immediate reward case. While FDG
gets stuck on a plateau, both eNAC and VPG converge to the same good
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Algorithm 4.5 Finite Difference Gradients (FDG)

Input: initial policy parameters θ0
repeat

Generate policy variations: Δθh ∼ U[−Δθmin,Δθmax] for h = {1, . . . ,H} roll-
outs.

Sample: Perform h = {1, . . . ,H} rollouts using a = (θ+Δθh)Tφ(s, t) as policy
and collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for t = {1, 2, . . . , T + 1}.

Compute: Return Rh(θ +Δθh) =
∑T+1

t=1 r
h
t from rollouts.

Compute Gradient :

[
gT
FD, Rref

]T
=

(
ΔΘTΔΘ

)−1

ΔΘTR

with ΔΘ =

[
Δθ1, . . . ,ΔθH

1, . . . , 1

]T
and R =

[
R1, . . . , RH

]T
.

Update policy using
θk+1 = θk + αgFD.

until Convergence θk+1 ≈ θk.

final solution. PoWER finds the a slightly better solution while converging
noticeably faster. The results are presented in Figure 4.2.

4.3.3 Benchmark Comparison II: Mountain-Car

As a typical reinforcement learning benchmark we chose the mountain-car
task (Sutton and Barto, 1998) as it can be treated with episodic reinforcement
learning. In this problem we have a car placed in a valley, and it is supposed
to go on the top of the mountain in front of it, but does not have the necessary
capabilities of acceleration to do so directly. Thus, the car has to first drive
up the mountain on the opposite side of the valley to gain sufficient energy.
The dynamics are given in (Sutton and Barto, 1998) as

ẋt+1 = ẋt + 0.001at − 0.0025 cos(3xt) ,

xt+1 = xt + ẋt+1,

with position −1.2 ≤ xt+1 ≤ 0.5 and velocity −0.07 ≤ ẋt+1 ≤ 0.07. If
the goal xt+1 ≥ 0.5 is reached the episode is terminated. If the left bound
is reached the velocity is reset to zero. The initial condition of the car is
x0 = −0.5 and ẋ0 = 0. The reward is rt = −1 for all time-steps until the car
reaches the goal. We employed an undiscounted return. The set of actions
at is slightly different to the setup proposed by Sutton and Barto (1998).
We only have two actions, the full throttle forward (at = +1) and the full
throttle reverse (at = −1). From a classical optimal control point of view, it
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(a) The tasks consists of driv-
ing the underpowered car to
the target on the mountain
indicated by the yellow star.
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(b) This figure shows the mean accumulated re-
turns of the methods compared on the mountain
car benchmark. The results are averaged over fifty
learning runs with error bars inidicating the stan-
dard deviation. Policy learning by Weighting Ex-
ploration with the Returns (PoWER) and Finite
Difference Gradients (FDG) clearly outperform
kNN-TD(λ). All methods converge to the optimal
solution.

Fig. 4.3 This figure shows an illustration of the mountain-car task and the mean
accumulated returns of the compared methods

is straightforward to see that a bang-bang controller can solve this problem.
As an initial policy we chose a policy that accelerates forward until the car
cannot climb the mountain further, accelerates reverse until the car cannot
climb the opposite slope further, and finally accelerates forward until the car
reaches the goal. This policy reaches the goal but is not optimal as the car
can still accumulate enough energy if it reverses the direction slightly earlier.
As a parametrization for the policy search approaches we chose to encode the
switching points of the acceleration. The two parameters of the policy indi-
cate at which timestep t the acceleration is reversed. For this kind of policy
only algorithms that perturb the parameters are applicable and we compare a
Finite Difference Gradient approach to PoWER. This parametrized policy is
entirely different to motor primitives. Additionally we included a comparison
to a value function based method. The Q-function was initialized with our
initial policy. As the kNN-TD(λ) algorithm (Mart́ın H. et al, 2009) won the
Reinforcement Learning Competitions in 2008 and 2009, we selected it for
this comparison. This comparison is contrived as our switching policy always
starts in a similar initial state while the value function based policy can start
in a wider range of states. Furthermore, the policy search approaches may be
sped up by the initialization, while kNN-TD(λ) will learn the optimal policy
without prior knowledge and does not benefit much from the initialization.
However, the use of a global approach, such as kNN-TD(λ) requires a global
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(a) The tasks consists of
striking the yellow ball hang-
ing on an elastic string such
that it hits the green target.
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(b) The returns are averaged over 20 learning runs
with error bars indicating the standard deviation.
Policy learning by Weighting Exploration with the
Returns (PoWER) clearly outperforms Finite Dif-
ference Gradients (FDG).

Fig. 4.4 This figure shows an illustration of the Tetherball Target Hitting task and
the mean returns of the compared methods

search of the state space. Such a global search limits the scalability of these
approaches. The more local approaches of policy search are less affected by
these scalability problems. Figure 4.3b shows the performance of these algo-
rithms. As kNN-TD(λ) initially explores the unseen parts of the Q-function,
the policy search approaches converge faster. All methods find the optimal
solution.

4.3.4 Benchmark Comparison III: Tetherball Target
Hitting

In this task, a table tennis ball is hanging on an elastic string from the ceiling.
The task consists of hitting the ball with a table tennis racket so that it hits
a fixed target. The task is illustrated in Figure 4.4a. The return is based on
the minimum distance between the ball and the target during one episode
transformed by an exponential. The policy is parametrized as the position of
the six lower degrees of freedom of the Barrett WAM. Only the first degree
of freedom (shoulder rotation) is moved during an episode. The movement is
represented by a rhythmic policy with a fixed amplitude and period. Due to
the parametrization of the task only PoWER and Finite Difference Gradients
are applicable. We observed reliable performance if the initial policy did not
miss the target by more than approximately 50cm. In this experiment it
took significantly less iterations to find a good initial policy than to tune the
learning rate of Finite Difference Gradients, a problem from which PoWER
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Fig. 4.5 This figure shows the time series of the Underactuated Swing-Up where
only a single joint of the robot is moved with a torque limit ensured by limiting
the maximal motor current of that joint. The resulting motion requires the robot
to (ii) first move away from the target to limit the maximal required torque during
the swing-up in (iii-v) and subsequent stabilization (vi).
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Fig. 4.6 This figure shows
the performance of all com-
pared methods for the swing-
up in simulation and the
mean performance averaged
over 20 learning runs with
the error bars indicating the
standard deviation. PoWER
outperforms the other al-
gorithms from 50 rollouts
on and finds a significantly
better policy.

did not suffer as it is an EM-like algorithm. Figure 4.4b illustrates the results.
PoWER converges significantly faster.

4.3.5 Benchmark Comparison IV: Underactuated
Swing-Up

As an additional simulated benchmark and for the real-robot evaluations,
we employed the Underactuated Swing-Up (Atkeson, 1994). Here, only a
single degree of freedom is represented by the motor primitive as described
in Section 4.3.1. The goal is to move a hanging heavy pendulum to an upright
position and to stabilize it there. The objective is threefold: the pendulum
has to be swung up in a minimal amount of time, has to be stabilized in the
upright position, and achieve these goals with minimal motor torques. By
limiting the motor current for this degree of freedom, we can ensure that the
torque limits described in (Atkeson, 1994) are maintained and directly moving
the joint to the right position is not possible. Under these torque limits, the
robot needs to first move away from the target to reduce the maximal required
torque during the swing-up, see Figure 4.5. This problem is similar to the
mountain-car problem (Section 4.3.3). The standard mountain-car problem
is designed to get the car to the top of the mountain in minimum time. It does
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Fig. 4.7 This figure shows the improvement of the policy over rollouts. The snap-
shots from the video show the final positions. (0) Initial policy after imitation
learning (without torque limit). (1) Initial policy after imitation learning (with ac-
tive torque limit). (20) Policy after 20 rollouts, going further up. (30) Policy after
30 rollouts, going too far. (40) Policy after 40 rollouts, going only a bit too far. (65)
Final policy after 65 rollouts.
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Fig. 4.8 This figure shows
the performance of all com-
pared methods for the swing-
up on the real robot and
the mean performance av-
eraged over 3 learning runs
with the error bars indicat-
ing the standard deviation.
PoWER outperforms the
other algorithms and finds a
significantly better policy.

not matter if it stops at this point or drives at a high speed as usage of the
accelerator and brake is not punished. Adding the requirement of stabilizing
the car at the top of the mountain makes the problem significantly harder.
These additional constraints exist in the Underactuated Swing-Up task where
it is required that the pendulum (the equivalent of the car) stops at the top
to fulfill the task. The applied torque limits were the same as in (Atkeson,
1994) and so was the reward function, except that the complete return of
the trajectory was transformed by an exp(·) to ensure positivity. The reward
function is given by

r (t) = −c1q (t)2 + c2 log cos

(
c3
u (t)

umax

)
,

where the constants are c1 = 5/π2 ≈ 0.507, c2 = (2/π)2 ≈ 0.405, and
c3 = π/2 ≈ 1.571. Please note that π refers to the mathematics constant here,
and not to the policy. The first term of the sum is punishing the distance
to the desired upright position q = 0, and the second term is punishing the
usage of motor torques u. A different trade-off can be achieved by changing
the parameters or the structure of the reward function, as long as it remains
an improper probability function. Again all open parameters of all algorithms
were manually optimized. The motor primitive with nine shape parameters
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and one goal parameter was initialized by imitation learning from a kines-
thetic teach-in. Kinesthetic teach-in means “taking the robot by the hand”,
performing the task by moving the robot while it is in gravity-compensation
mode, and recording the joint angles, velocities, and accelerations. This ini-
tial demonstration needs to include all the relevant features of the movement,
e.g., it should first move away from the target and then towards the upright
position. The performance of the algorithms is very robust, as long as the
initial policy with active torque limits moves the pendulum approximately
above the horizontal orientation.

As the batch size, and, thus the learning speed, of the gradient based
approaches depend on the number of parameters (see Section 4.3.2), we tried
to minimize the number of parameters. Using more parameters would allow
us to control more details of the policy which could result in a better fi-
nal policy, but would have significantly slowed down convergence. At least
nine shape parameters were needed to ensure that the imitation can cap-
ture the movement away from the target, which is essential to accomplish
the task. We compared all algorithms considered in Section 4.3.2 and could
show that PoWER would again outperform the others. The convergence is a
lot faster than in the basic motor learning examples (see Section 4.3.2), as
we do not start from scratch but rather from an initial solution that allows
significant improvements in each step for each algorithm. The results are pre-
sented in Figure 4.6. See Figure 4.7 and Figure 4.8 for the resulting real-robot
performance.

4.3.6 Benchmark Comparison V: Casting

In this task a ball is attached to the endeffector of the Barrett WAM by a
string. The task is to place the ball into a small cup in front of the robot. The
task is illustrated in Figure 4.9a. The return is based on the sum of the mini-
mum distance between the ball and the top, the center, and the bottom of the
cup respectively during one episode. Using only a single distance, the return
could be successfully optimized, but the final behavior often corresponded to
a local maximum (for example hitting the cup from the side). The movement
is in a plane and only one shoulder DoF and the elbow are moved. The policy
is parametrized using motor primitives with five shape parameters per active
degree of freedom. The policy is initialized with a movement that results in
hitting the cup from the side in the upper quarter of the cup. If the ball
hits the cup below the middle, approximately 300 rollouts were required for
PoWER and we did not achieve reliable performance for the episodic Natural
Actor Critic. We compare the two best performing algorithms from the basic
motor learning examples (see Section 4.3.2) and the Underactuated Swing-
Up (see Section 4.3.5), namely eNAC and PoWER. Figure 4.9b illustrates
the results. PoWER again converges significantly faster.
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(a) The tasks consists of plac-
ing the blue ball in the brown
cup.
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(b) The returns are averaged over 20 learning runs
with error bars indicating the standard deviation.
Policy learning by Weighting Exploration with the
Returns (PoWER) clearly outperforms episodic
Natural Actor Critic (eNAC).

Fig. 4.9 This figure illustrates the Casting task and shows the mean returns of the
compared methods

4.3.7 Ball-in-a-Cup on a Barrett WAM

The children’s motor skill game Ball-in-a-Cup (Sumners, 1997), also known
as Balero, Bilboquet, and Kendama, is challenging even for adults. The toy
has a small cup which is held in one hand (or, in our case, is attached to
the end-effector of the robot) and the cup has a small ball hanging down on
a string (the string has a length of 40cm in our setup). Initially, the ball is
hanging down vertically in a rest position. The player needs to move fast in
order to induce a motion in the ball through the string, toss it up, and catch
it with the cup. A possible movement is illustrated in Figure 4.11 in the top
row.

Note that learning of Ball-in-a-Cup and Kendama has previously been
studied in robotics. We are going to contrast a few of the approaches here.
While we learn directly in the joint space of the robot, Takenaka (1984)
recorded planar human cup movements and determined the required joint
movements for a planar, three degree of freedom (DoF) robot, so that it
could follow the trajectories while visual feedback was used for error compen-
sation. Both Sato et al (1993) and Shone et al (2000) used motion planning
approaches which relied on very accurate models of the ball and the string
while employing only one DoF in (Shone et al, 2000) or two DoF in (Sato
et al, 1993) so that the complete state-space could be searched exhaustively.
Interestingly, exploratory robot moves were used in (Sato et al, 1993) to es-
timate the parameters of the employed model. Probably the most advanced
preceding work on learning Kendama was carried out by Miyamoto et al



4.3 Benchmark Evaluation and Application in Robotics 105

Fig. 4.10 This figure illustrates how the reward is calculated. The plane represents
the level of the upper rim of the cup. For a successful rollout the ball has to be moved
above the cup first and is then flying in a downward direction into the opening of the
cup. The reward is calculated as the distance d of the center of the cup and the center
of the ball on the plane at the moment the ball is passing the plane in a downward
direction. If the ball is flying directly into the center of the cup, the distance is 0 and
through the transformation exp(−d2) yields the highest possible reward of 1. The
further the ball passes the plane from the cup, the larger the distance and thus the
smaller the resulting reward.

(1996) who used a seven DoF anthropomorphic arm and recorded human
motions to train a neural network to reconstruct via-points. Employing full
kinematic knowledge, the authors optimize a desired trajectory.

The state of the system can be described by joint angles and joint ve-
locities of the robot as well as the the Cartesian coordinates and velocities
of the ball. The actions are the joint space accelerations where each of the
seven joints is driven by a separate motor primitive, but with one common
canonical system. The movement uses all seven degrees of freedom and is
not in a plane. All motor primitives are perturbed separately but employ the
same joint final reward given by

r (t) =

{
exp
(
−α (xc − xb)

2 − α (yc − yb)
2
)

if t = tc,

0 otherwise,

where we denote the moment when the ball passes the rim of the cup with
a downward direction by tc, the cup position by [xc, yc, zc] ∈ R

3, the ball
position by [xb, yb, zb] ∈ R

3, and a scaling parameter by α = 100 (see also
Figure 4.10). The algorithm is robust to changes of this parameter as long as
the reward clearly discriminates good and suboptimal trials. The directional
information is necessary as the algorithm could otherwise learn to hit the
bottom of the cup with the ball. This solution would correspond to a local
maximum whose reward is very close to the optimal one, but the policy
very far from the optimal one. The reward needs to include a term avoiding
this local maximum. PoWER is based on the idea of considering the reward
as an improper probability distribution. Transforming the reward using the
exponential enforces this constraint. The reward is not only affected by the
movements of the cup but foremost by the movements of the ball, which are
sensitive to small changes in the cup’s movement. A small perturbation of
the initial condition or during the trajectory can change the movement of the
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(a) Schematic Drawings of the Ball-in-a-Cup Motion

(b) Kinesthetic Teach-In

(c) Final learned Robot Motion

Fig. 4.11 This figure shows schematic drawings of the Ball-in-a-Cup motion (a),
the final learned robot motion (c), as well as a kinesthetic teach-in (b). The arrows
show the directions of the current movements in that frame. The human cup motion
was taught to the robot by imitation learning with 31 parameters per joint for
an approximately 3 seconds long trajectory. The robot manages to reproduce the
imitated motion quite accurately, but the ball misses the cup by several centimeters.
After approximately 75 iterations of our Policy learning by Weighting Exploration
with the Returns (PoWER) algorithm the robot has improved its motion so that
the ball goes in the cup. Also see Figure 4.12.

ball and hence the outcome of the complete movement. The position of the
ball is estimated using a stereo vision system and is needed to determine the
reward.

Due to the complexity of the task, Ball-in-a-Cup is a hard motor learning
task for children, who usually only succeed at it by observing another person
playing combined with a lot of improvement by trial-and-error. Mimicking
how children learn to play Ball-in-a-Cup, we first initialize the motor prim-
itives by imitation learning and, subsequently, improve them by reinforce-
ment learning. We recorded the motions of a human player by kinesthetic
teach-in to obtain an example for imitation as shown in Figure 4.11b. A sin-
gle demonstration was used for imitation learning. Learning from multiple
demonstrations did not improve the performance as the task is sensitive to
small differences. As expected, the robot fails to reproduce the presented
behavior even if we use all the recorded details for the imitation. Thus, rein-
forcement learning is needed for self-improvement. The more parameters used
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Fig. 4.12 This figure shows
the expected return of the
learned policy in the Ball-in-
a-Cup evaluation averaged
over 20 runs

for the learning, the slower the convergence is. Due to the imitation, the ball
must go above the rim of the cup such that the algorithm gets at least a small
positive reward for all rollouts. This way exhaustive exploration is avoided
as the algorithm can compare the performance of the different rollouts. We
determined that 31 shape-parameters per motor primitive are needed. With
less parameters the ball does not go above the rim of the cup in the initial
trial and the algorithm does not receive any meaningful information about
the trial using the aforementioned reward function. More shape-parameters
will lead to a more accurate reproduction of the demonstrated movement
and, thus, to a better initial policy. However, there is a trade-off between
this better initial policy and a potentially lower learning speed. Using three
times as many parameters the algorithm converged at roughly the same time.
The hyper-parameters σij are initially set in the same order of magnitude
as the median of the parameters for each motor primitive and are then opti-
mized alongside the shape-parameters by PoWER. The performance of the
algorithm is fairly robust for values chosen in this range. Figure 4.12 shows
the expected return over the number of rollouts where convergence to a max-
imum is clearly recognizable. The robot regularly succeeds at bringing the
ball into the cup after approximately 75 iterations. Figure 4.13 shows the im-
provement of the policy over the rollouts. From our experience, nine year old
children get the ball in the cup for the first time after about 35 trials while
the robot gets the ball in for the first time after 42-45 rollouts. However, after
100 trials, the robot exhibits perfect runs in every single trial while children
do not have a comparable success rate. Of course, such a comparison with
children is contrived as a robot can precisely reproduce movements unlike
any human being, and children can most likely adapt faster to changes in the
setup.
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Fig. 4.13 This figure shows the improvement of the policy over rollouts. The
snapshots from the video show the position of the ball closest to the cup during
a rollout. (1) Initial policy after imitation learning. (15) Policy after 15 rollouts,
already closer. (25) Policy after 25 rollouts, going too far. (45) Policy after 45
rollouts, hitting the near rim. (60) Policy after 60 rollouts, hitting the far rim. (100)
Final policy after 100 rollouts.

4.4 Discussion and Conclusion

In Section 4.4.1, we will discuss robotics as a benchmark for reinforcement
learning, in Section 4.4.2 we discuss different simulation to robot transfer
scenarios, and we will draw our conclusions in Section 4.4.3.

4.4.1 Discussion: Robotics as Benchmark for
Reinforcement Learning?

Most reinforcement learning algorithms are evaluated on synthetic bench-
marks, often involving discrete states and actions. Agents in many simple
grid worlds take millions of actions and episodes before convergence. As a
result, many methods have focused too strongly on such problem domains.
In contrast, many real world problems such as robotics are best represented
with high-dimensional, continuous states and actions. Every single trial run
is costly and as a result such applications force us to focus on problems that
will often be overlooked accidentally in synthetic examples. Simulations are
a helpful testbed for debugging algorithms. Continuous states and actions as
well as noise can be simulated, however simulations pose the temptation of
using unrealistically many iterations and also allow us to exploit the perfect
models.

Our typical approach consists of testing the algorithm in a simulation
of the robot and the environment. Once the performance is satisfactory we
replace either the robot or the environment with its real counterpart depend-
ing on the potential hazards. Replacing the robot is always possible as we
can still simulate the environment taking into account the state of the real
robot. Learning with a simulated robot in the real environment is not always
a possibility especially if the robot influences the observed environment, such
as in the Ball-in-a-Cup task. The final evaluations are done on the real robot
in the real environment.

Our experience in robotics show that the plant and the environment can
often not be represented accurately enough by a physical model and that



4.4 Discussion and Conclusion 109

the learned policies are thus not entirely transferable. If sufficiently accurate
models were available, we could resort to the large body of work on optimal
control (Kirk, 1970), which offers alternatives to data driven reinforcement
learning. However, when a model with large errors is used, the solution suffers
severely from an optimization bias as already experienced by Atkeson (1994).
Here, the reinforcement learning algorithm exploits the imperfections of the
simulator rather than yielding an optimal policy.

None of our learned policies could be transferred from a simulator to the
real system without changes despite that the immediate errors of the simu-
lator have been smaller than the measurement noise. Methods which jointly
learn the models and the policy as well as perform some of the evaluations and
updates in simulation (such as Dyna-like architectures as in (Sutton, 1990))
may alleviate this problem. In theory, a simulation could also be used to
eliminate obviously bad solutions quickly. However, the differences between
the simulation and the real robot do accumulate over time and this approach
is only feasible if the horizon is short or the simulation very accurate. Prim-
ing the learning process by imitation learning and optimizing in its vicinity
achieves the desired effect better and has thus been employed in this chapter.

Parametrized policies greatly reduce the need of samples and evaluations.
Choosing an appropriate representation like motor primitives renders the
learning process even more efficient.

One major problem with robotics benchmarks is the repeatability of the
experiments. The results are tied to the specific hardware and setup used.
Even a comparison with simulated robots is often not possible as many groups
rely on proprietary simulators that are not freely available. Most of the bench-
marks presented in this chapter rely on initial demonstrations to speed up
the learning process. These demonstrations play an important part in the
learning process. However, these initial demonstrations are also tied to the
hardware or the simulator and are, thus, not straightforward to share. Com-
paring new algorithms to results from different authors usually requires the
reimplementation of their algorithms to have a fair comparison.

Reproducibility is a key requirement for benchmarking but also a major
challenge for robot reinforcement learning. To overcome this problem there
are two orthogonal approaches: (i) a central organizer provides an identical
setup for all participants and (ii) all participants share the same setup in a
benchmarking lab. The first approach has been majorly pushed by funding
agencies in the USA and Europe. In the USA, there have been special pro-
grams on robot learning such as DARPA Learning Locomotion (L2), Learning
Applied to Ground Robotics (LAGR) and the DARPA Autonomous Robot
Manipulation (ARM) (DARPA, 2010c,b,a). However, the hurdles involved in
getting these robots to work have limited the participation to strong robotics
groups instead of opening the robot reinforcement learning domain to more
machine learning researchers. Alternative ways of providing identical setups
are low cost standardized hardware or a system composed purely of com-
mercially available components. The first suffers from reproducibility and
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reliability issues while the latter results in significant system integration prob-
lems. Hence, it may be more suitable for a robot reinforcement learning chal-
lenge to be hosted by a robot learning group with significant experience in
both domains. The host lab specifies tasks that they have been able to ac-
complish on a real robot system. The hosts also need to devise a virtual robot
laboratory for allowing the challenge participants to program, test and debug
their algorithms. To limit the workload and the risk of the organizers, a first
benchmarking round would be conducted using this simulated setup to de-
termine the promising approaches. Successful participants will be invited by
the host lab in order to test these algorithms in learning on the real system
where the host lab needs to provide significant guidance. To our knowledge,
no benchmark based on this approach has been proposed yet. We are cur-
rently evaluating possibilities to organize a challenge using such a shared
setup in the context of the PASCAL2 Challenge Program (PASCAL2, 2010).

To successfully apply reinforcement learning to robotics, a fair level of
knowledge on the limitations and maintenance of the robot hardware is nec-
essary. These limitations include feasible actions, feasible run-time, as well
as measurement delay and noise. Cooperation with a strong robotics group
is still extremely important in order to apply novel reinforcement learning
methods in robotics.

4.4.2 Discussion on Simulation to Robot Transfer
Scenarios

In this chapter, we have discussed reinforcement learning for real robots with
highly dynamic tasks. The opposite extreme in robotics would be, for example,
a maze navigation problem where a mobile robot that has macro-actions
such as “go left” and the lower level control moves the robot exactly by
a well-defined distance to the left. In this scenario, it would probably be
easier to transfer simulation results to real systems. For highly dynamic tasks
or environments, accurate simulations are generically difficult. Besides fast
moving objects and many interacting objects as well as deformable objects
(often called soft bodies), like cloth, string, fluids, hydraulic tubes and other
elastic materials are hard to simulate reliably and, thus, have an enormous
impact on transferability. Additionally, the level and quality of measurement
noise has a direct implication on the difficulty and the transferability of the
learning task.

Better simulations often alleviate some of these problems. However, there
is always a trade-off as more detailed simulations also require more pre-
cise model identification, higher temporal resolution, and, frequently even
finite elements based simulations. Such detailed simulations may even be
much slower than real-time, thus defeating one of the major advantages of
simulations.
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Aside from these clear difficulties in creating simulations that allow the
transfer to real systems, we have observed three critically different scenarios
for reinforcement learning in robotics. These scenarios are characterized by
the energy flow between the policy and the system. In the energy-absorbing
scenario, the task has passive dynamics and, hence, it is safer and easier to
learn on a real robot. We are going to discuss the examples of Ball-Paddling,
foothold selection in legged locomotion, and grasping (see Section 4.4.2). The
second scenario has a border-line behavior: the system conserves most of
the energy but the policy also only needs to inject energy into the system
for a limited time. We will discuss Ball-in-a-Cup, Tetherball Target Hitting,
and Mountain-Car as examples for this scenario (see Section 4.4.2). In the
energy-emitting scenario energy is inserted due to the system dynamics even
if the policy does not transfer energy into the system. The classical examples
are Cart-Pole and inverted helicopters, and we also have the Underactuated
Swing-Up which has to stabilize at the top (see Section 4.4.2). These different
scenarios have implications on the relative utility of simulations and real
robots.

As we are discussing our experience in performing such experiments, it
may at times appear anecdotal. We hope the reader benefits from our insights
nevertheless. However, the resulting classification bears similarities with in-
sights on control law derivation (Fantoni and Lozano, 2001).

Energy-Absorbing Scenario

In this scenario, the system absorbs energy from the actions. As shown in
Figure 4.14, we learned a Ball-Paddling task where a ping-pong ball is at-
tached to a paddle by an elastic string and the ball has to be kept in the air
by repeatedly hitting it from below. In this setup, the elastic string pulls the
ball back towards the center of the paddle and the contact forces between the
ball and the paddle are very complex. We modeled the system in as much
detail as possible, including friction models, restitution models, dampening
models, models for the elastic string, and air drag. However, in simulation
the paddling behavior was still highly unpredictable and we needed a few
thousand iterations to learn an optimal frequency, amplitude, and movement
shape. The number of simulated trials exceeded the feasible amount on a real
system. In contrast, when learning on the real system, we obtained a stable
paddling behavior by imitation learning using the initial demonstration only
and no further reinforcement learning was needed.

In general, scenarios with complex contact forces often work better in a
real-world experiment. This problem was particularly drastic in locomotion
experiments on rough terrain where the real world was an easier learning
environment due to favorable friction properties during foot contact (Peters,
2007). In this experiment, learning was significantly harder in simulation
and the learned policy could not be transferred. The same effect occurs in
grasping when objects often cannot be grasped in simulation due to slip
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(a) Reinforcement learning required
unrealistically many trials in simula-
tion.

(b) Imitation learning only was suf-
ficient on the real robot.

Fig. 4.14 This figure illustrates the Ball-Paddling task in simulation and on the
real robot. The difference between simulation and robotics can be particularly em-
phasized in this problem where unrealistically many trials were needed on the simu-
lation for reinforcement learning while the real world behavior could be learned by
imitation learning. It illustrates the energy-consuming scenario and the difficulties
of realistic learning in the presence of contact forces.

but the real world friction still allows them to be picked up. Hence, in this
scenario, policies from simulations are frequently not helpful and learning
in simulation is harder than on the real system. The results only transfer
in a few cases. A simulation is therefore only recommended as a feasibility
study and for software debugging. As most contacts differ significantly due
to the current properties (which vary with time and temperature) of the two
interacting objects, only a learned simulator is likely to grasp all relevant
details.

Border-Line Scenario

In this scenario, adding too much energy to a system does not necessarily
lead to a negative outcome. For example, in the Mountain-Car problem (see
Section 4.3.3), inserting more energy and driving through the goal at a higher
velocity does not affect task achievement. In contrast not inserting enough
energy will result in a failure as the car cannot reach the top of the mountain.
The Tetherball Target Hitting application presented in Section 4.3.4 exhibits
a very similar behavior. The Ball-in-a-Cup experiment (see Section 4.3.7)
highlights the resulting similarities between learning in good simulations and
the real world for this scenario. Success is possible if more energy is inserted
and the ball flies higher. However, when using too little energy the ball will
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stay below the opening of the cup. In this favorable scenario the “classical”
strategy can be applied: learn how to learn in simulation. The policy learned
in simulation does not necessarily transfer to the real world and the real-
world scenario can be highly different but the learning speed and behavior
are similar. Hence, hyper-parameters such as learning and exploration rates
can be tuned in simulation. The learning algorithm may take longer due to
increased errors, modeling problems and uncertainty. Still, good practice is
to create a sufficiently accurate simulator and to adapt the learning strategy
subsequently to the real system.

Energy-Emitting Scenario

Energy emission causes very different problems. Uncertainty in states will
cause overreactions, hence, drastic failures are likely to occur when the system
becomes unstable in a control theory sense. This system excitability often
makes the task significantly harder to learn on a real robot in comparison
to a simulated setup. Here, pre-studies in simulations are a necessary but
not sufficient condition. Due to unmodeled nonlinearities, the exploration
will affect various algorithms differently. Classical examples are helicopters
in inverted flight (Ng et al, 2004b) and the pendulum in a Cart-Pole task in
an upright position (Sutton and Barto, 1998) as these have to be constantly
stabilized. Additionally the pendulum in the Swing-Up has to be stabilized in
the final position or it will fall over and cause a failure. In this chapter, we take
the example of the Swing-Up to illustrate how some methods unexpectedly
do better in the real world as exhibited by Figures 4.6 and 4.8. The learning
progress of all algorithms is noisier and the eRWR performs better on the
real robot. The form of exploration employed by PoWER seems to give it
an additional advantage in the first 20 rollouts as direct exploration on the
actions is partially obscured by measurement noise. In order to cope with
differences to the real-world, simulations need to be more stochastic than the
real system (as suggested by Ng et al (2004b)) and should be learned to make
transferring the results easier (as for example in (Schaal et al, 2002)).

4.4.3 Conclusion

In this chapter, we have presented a framework for deriving several policy
learning methods that are applicable in robotics and an application to a
highly complex motor learning task on a real Barrett WAM robot arm. We
have shown that policy gradient methods are a special case of this framework.
During initial experiments, we realized that the form of exploration highly
influences the speed of the policy learning method. This empirical insight
resulted in a novel policy learning algorithm, Policy learning by Weighting
Exploration with the Returns (PoWER), an EM-inspired algorithm that out-
performs several other policy search methods both on standard benchmarks
as well as on a simulated Underactuated Swing-Up.
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We have successfully applied this novel PoWER algorithm in the context
of learning two tasks on a physical robot, namely the Underacted Swing-Up
and Ball-in-a-Cup. Due to the curse of dimensionality, we cannot start with
an arbitrary solution. Instead, we mimic the way children learn Ball-in-a-
Cup and first present an example movement for imitation learning, which is
recorded using kinesthetic teach-in. Subsequently, our reinforcement learning
algorithm learns how to move the ball into the cup reliably. After only realisti-
cally few episodes, the task can be regularly fulfilled and the robot shows very
good average performance. After 100 rollouts, the hyper-parameters, such as
the exploration rate, have converged to negligible size and do not influence
the outcome of the behavior any further. The experiments in this chapter
use the original variant of the motor primitives which cannot deal with large
perturbations. However, the extended variable-feedback variant presented in
(Kober et al, 2008) can deal with a variety of changes directly (for example,
in the length of the string or the size or weight of the ball) while the ap-
proach presented in this chapter will recover quickly by learning an adjusted
policy in a few roll-outs. In (Kober et al, 2008), we have also shown that
learning a strategy of pulling the ball up and moving the cup under the ball
(as in Kendama) is possible in approximately the same number of trials. We
have discovered a variety of different human strategies for Ball-in-a-Cup in
movement recordings, see (Chiappa et al, 2009).

Our approach has already given rise to follow-up work in other contexts,
for example, (Vlassis et al, 2009; Kormushev et al, 2010). Theodorou et al
(2010) have shown that an algorithm very similar to PoWER can also be
derived from a completely different perspective, that is, the path integral
approach.

4.A Derivations

In this appendix, we provide the derivations of various algorithms in more
details than in the main text. We first present, how the episodic REINFORCE
(Williams, 1992) can be obtained (Section 4.A.1). Subsequently, we show how
the episodic Reward Weighted Regression (eRWR) (Peters and Schaal, 2007)
can be generalized for the episodic case (Section 4.A.2), and finally we derive
EM Policy learning by Weighting Exploration with the Returns (PoWER)
and show a number of simplifications (Section 4.A.3).

4.A.1 Reinforce

If we choose a stochastic policy in the form a = θTφ (s, t) + εt with εt ∼
N (0, σ2

)
, we have

π (at|st, t) = 1

σ
√
2π

exp

(
− 1

2σ2

(
a− θTφ)2) ,
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and, thus,
∂θ log π = σ−2

(
a− θTφ)φT.

Therefore, the gradient, in Equation (4.2.2), becomes

∂θ′Lθ(θ
′) = E

{∑T
t=1σ

−2
(
a− θ′Tφ)φTR

}
= E

{∑T
t=1σ

−2εtφ
TR
}
,

which corresponds to the episodic REINFORCE algorithm (Williams, 1992).

4.A.2 Episodic Reward Weighted Regression (eRWR)

Setting Equation (4.A.1) to zero

∂θ′Lθ(θ
′) = E

{∑T
t=1σ

−2
(
a− θ′Tφ)φTR

}
= 0,

we obtain

E
{∑T

t=1σ
−2aRφT

}
= E

{∑T
t=1σ

−2
(
θ′Tφ

)
RφT

}
.

Since σ is constant, we have E{∑T
t=1 aRφ

T} = θ′TE{∑T
t=1 φRφ

T}. The θ′
minimizing the least squares error can be found by locally weighted linear
regression (R as weights and φ as basis functions) considering each time-step
and rollout separately

θ′ =
(
ΦTRΦ

)−1
ΦTRA,

with Φ = [φ1
1, . . . , φ

1
T , φ

2
1, . . . , φ

H
1 , . . . , φ

H
T ]T , R = diag(R1, . . . , R1, R2,

. . . , RH , . . . , RH), and A = [a11, . . . , a
1
T , a

2
1, . . . , a

H
1 , . . . , a

H
T ]T for H rollouts.

The same derivation holds if we use Equation (4.2.2) instead of Equa-
tion (4.2.2). Then R in the regression is replaced by Qπ = diag(Qπ,1

1 , . . . ,

Qπ,1
T , Qπ,2

1 , . . . , Qπ,H
1 , . . . , Qπ,H

T ). Using the state-action value function Qπ

yields slightly faster convergence than using the return R.

4.A.3 EM Policy Learning by Weighting Exploration
with the Returns (PoWER)

If we choose a stochastic policy in the form a = (θ + εt)
T
φ (s, t) with εt ∼

N (0, Σ̂), we have

π (at|st, t) = N
(
a|θTφ (s, t) ,φ(s, t)TΣ̂φ(s, t)

)

=
(
2πφTΣ̂φ

)−1/2

exp

(
− (a− θTφ)2

2φTΣ̂φ

)
,



116 4 Policy Search for Motor Primitives in Robotics

and, thus, ∂θ log π =
(
a− θTφ)φT/

(
φTΣ̂φ

)
. Therefore Equation (4.2.2)

becomes

∂θ′Lθ(θ
′) = E

{
T∑

t=1

(
a− θ′Tφ)φT

φTΣ̂φ
Qπ

}
.

Setting this equation to zero is equivalent to

E

{
T∑

t=1

aφT

φTΣ̂φ
Qπ

}

≡ E

⎧
⎨

⎩

T∑

t=1

(
(θ + εt)

T φ
)
φT

φTΣ̂φ
Qπ

⎫
⎬

⎭
= E

{
T∑

t=1

(
θ′Tφ

)
φT

φTΣ̂φ
Qπ

}

.

This equation yields

θ′T = E

⎧⎨
⎩

T∑
t=1

(
(θ + εt)

T
φ
)
φT

φTΣ̂φ
Qπ

⎫⎬
⎭E

{
T∑

t=1

φφT

φTΣ̂φ
Qπ

}−1

= θT + E

{
T∑

t=1

εTt φφ
T

φTΣ̂φ
Qπ

}
E

{
T∑

t=1

φφT

φTΣ̂φ
Qπ

}−1

and finally with W = φφT(φTΣ̂φ)−1 we get

θ′ = θ + E
{∑T

t=1WQπ
}−1

E
{∑T

t=1WεtQ
π
}
.

If Σ̂ is diagonal, that is, the exploration of the parameters is pairwise inde-
pendent, all parameters employ the same exploration, and the exploration is
constant over rollouts, W simplifies to W = φφT(φTφ)−1. Normalized basis
functions φ further simplify W to W (s, t) = φφT.

If only one parameter is active at each time step, W (s, t) is diagonal and
Equation (4.A.3) simplifies to

θ′i = θi +
E
{∑T

t=1 φ
2
i /
(
φTΣ̂φ

)
εi,tQ

π
}

E
{∑T

t=1 φ
2
i /
(
φTΣ̂φ

)
Qπ
} (4.2)

= θi +
E
{∑T

t=1 σ
−1
i εi,tQ

π
}

E
{∑T

t=1 σ
−1
i Qπ

} , (4.3)

where θ′i is one individual parameter, φi and εi,t are the corresponding ele-

ments of φ and εt, and σi is the respective entry of the diagonal of Σ̂. If the σi
are constant over the rollouts we get θ′i = θi+E{∑T

t=1 εi,tQ
π}/E{∑T

t=1Q
π}.

The independence simplification in Equations (4.2, 4.3) works well in prac-
tice, even if there is some overlap between the activations, such as in the
case of dynamical system motor primitives (Ijspeert et al, 2002b,a; Schaal
et al, 2003, 2007). Weighting the exploration with the basis functions, as
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in Equation (4.2), yields slightly better results than completely ignoring the
interactions, as in Equation (4.3).

The policy can be equivalently expressed as

π (at|st, t) = p (at|st, t, εt) p (εt|st, t) = p (at|st, t, εt)N
(
εt|0, Σ̂

)
.

Applying Equation (4.2.2) to the variance Σ̂ we get

∂Σ̂′LΣ̂

(
Σ̂

′)
= E

{∑T
t=1∂Σ̂′ logN

(
εt|0, Σ̂′)

Qπ
}
,

as p (at|st, t, εt) is independent from the variance. Setting this equation to

zero and solving for Σ̂
′
yields

Σ̂
′
=
E
{∑T

t=1 εtε
T
t Q

π
}

E
{∑T

t=1Q
π
} ,

which is the same solution as we get in standard maximum likelihood
problems.

The same derivation holds if we use Equation (4.2.2) instead of Equa-
tion (4.2.2). Then, the state-action value function Qπ is replaced everywhere
by the return R.
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Parametrized Motor Primitives to New
Situations

with Andreas Wilhelm∗ and Erhan Oztop†

Summary. Humans manage to adapt learned movements very quickly to
new situations by generalizing learned behaviors from similar situations. In
contrast, robots currently often need to re-learn the complete movement. In
this chapter, we propose a method that learns to generalize parametrized
motor plans by adapting a small set of global parameters, called meta-param-
eters. We employ reinforcement learning to learn the required meta-parame-
ters to deal with the current situation, described by states. We introduce an
appropriate reinforcement learning algorithm based on a kernelized version
of the reward-weighted regression. To show its feasibility, we evaluate this
algorithm on a toy example and compare it to several previous approaches.
Subsequently, we apply the approach to three robot tasks, i.e., the general-
ization of throwing movements in darts, of hitting movements in table tennis,
and of throwing balls where the tasks are learned on several different real
physical robots, i.e., a Barrett WAM, a BioRob, the JST-ICORP/SARCOS
CBi and a Kuka KR 6.

5.1 Introduction

Human movements appear to be represented using movement templates, also
called motor primitives (Schmidt and Wrisberg, 2000). Once learned, these
templates allow humans to quickly adapt their movements to variations of
the situation without the need of re-learning the complete movement. For
example, the overall shape of table tennis forehands are very similar when
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the swing is adapted to varied trajectories of the incoming ball and a different
targets on the opponent’s court. To accomplish such behavior, the human
player has learned by trial and error how the global parameters of a generic
forehand need to be adapted due to changes in the situation (Muelling et al,
2010, 2011).

In robot learning, motor primitives based on dynamical systems (Ijspeert
et al, 2002a; Schaal et al, 2007) can be considered a technical counterpart
to these templates. They allow acquiring new behaviors quickly and reliably
both by imitation and reinforcement learning. Resulting successes have shown
that it is possible to rapidly learn motor primitives for complex behaviors such
as tennis-like swings (Ijspeert et al, 2002a), T-ball batting (Peters and Schaal,
2008c), drumming (Pongas et al, 2005), biped locomotion (Nakanishi et al,
2004), ball-in-a-cup (Kober and Peters, 2011b), and even in tasks with po-
tential industrial applications (Urbanek et al, 2004). While the examples are
impressive, they do not yet address how a motor primitive can be generalized
to a different behavior by trial and error without re-learning the task. Such
generalization of behaviors can be achieved by adapting the meta-parame-
ters of the movement representation. Meta-parameters are defined as a small
set of parameters that adapt the global movement behavior. The dynamical
system motor primitives can be adapted both spatially and temporally with-
out changing the overall shape of the motion (Ijspeert et al, 2002a). In this
chapter, we learn a mapping from a range of changed situations, described by
states, to the meta-parameters to adapt the template’s behavior. We consider
movements where it is sufficient to reshape (e.g., rescale the motion spatially
and/or temporally) the global movement by optimizing meta-parameters to
adapt to a new situation instead of tuning the movement primitive’s shape
parameters that describe the fine details of the movement.

Dynamical systems motor primitives have the capability to adapt the
movement to a changed end positions. Here, the end position is a meta-pa-
rameter. This was exploited in (Ijspeert et al, 2002a) for tennis-like swings
with static ball targets and in (Pastor et al, 2009) for object manipulation. In
these papers, the desired end position is given in Cartesian coordinates and
the movement primitives operate in Cartesian coordinates as well. Thus, the
meta-parameters of the motor primitives are straightforward to set. In this
chapter, we are interested in non-intuitive connections, where the relation be-
tween the desired outcome and the meta-parameters is not straightforward.
There is related prior work in the context of programming by demonstra-
tion by Ude et al (2010) and Kronander et al (2011) who employ supervised
learning to learn a mapping from desired outcomes to meta-parameters for
tasks such as reaching, throwing, drumming, and mini-golf. They assume
that a teacher has presented a number of demonstrations that cannot be
contradictory and the task is to imitate and generalize these demonstrations.
Lampariello et al (2011) employ a global planner to provide demonstrations
of optimal catching meta-parameters and use supervised learning approaches
to generalize these in real-time. In contrast, in our setting the robot actively
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explores different movements and improves the behavior according to a cost
function. It can deal with contradictory demonstrations and actively generate
its own scenarios by exploration combined with self-improvement. As men-
tioned in (Ude et al, 2010), the two approaches may even be complimentary:
reinforcement learning can provide demonstrations for supervised learning,
and supervised learning can be used as a starting point for reinforcement
learning.

Adapting movements to situations is also discussed in (Jetchev and Tou-
ssaint, 2009) in a supervised learning setting. Their approach is based on
predicting a trajectory from a previously demonstrated set and refining it by
motion planning. The authors note that kernel ridge regression performed
poorly for the prediction if the new situation is far from previously seen
ones as the algorithm yields the global mean. In our approach, we employ a
cost weighted mean that overcomes this problem. If the situation is far from
previously seen ones, large exploration will help to find a solution.

In machine learning, there have been many attempts to use meta-param-
eters in order to generalize between tasks (Caruana, 1997). Particularly, in
grid-world domains, significant speed-up could be achieved by adjusting poli-
cies by modifying their meta-parameters, e.g., re-using options with different
subgoals (McGovern and Barto, 2001). The learning of meta-parameters of
the learning algorithm has been proposed as a model for neuromodulation in
the brain (Doya, 2002). In contrast, we learn the meta-parameters of a motor
skill in this chapter. In robotics, such meta-parameter learning could be par-
ticularly helpful due to the complexity of reinforcement learning for complex
motor skills with high dimensional states and actions. The cost of experience
is high as sample generation is time consuming and often requires human in-
teraction (e.g., in cart-pole, for placing the pole back on the robot’s hand) or
supervision (e.g., for safety during the execution of the trial). Generalizing a
teacher’s demonstration or a previously learned policy to new situations may
reduce both the complexity of the task and the number of required samples.
Hence, a reinforcement learning method for acquiring and refining meta-pa-
rameters of pre-structured primitive movements becomes an essential next
step, which we will address in this chapter.

This chapter does not address the problem of deciding whether it is more
advantageous to generalize existing generic movements or to learn a novel one.
Similar to most reinforcement learning approaches, the states and meta-pa-
rameters (which correspond to actions in the standard reinforcement learning
settings) as well as the cost or reward function need to be designed by the
user prior to the learning process. Here, we can only provide a few general
indications with regard to the choice of these setting. Cost functions need
to capture the desired outcome of the reinforcement learning process. Often
the global target can be described verbally - but it is not obvious how the
cost needs to be scaled and how to take secondary optimization criteria into
account. For example, when throwing at a target, the global goal is hitting
it. However, it is not always obvious which distance metric should be used
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to score misses, which secondary criteria (e.g. required torques) should be
included, and which weight each criterion should be assigned. These choices
influence both the learning performance and the final policy. Even for human
reaching movements, the underlying cost function is not completely under-
stood (Bays and Wolpert, 2007). In practice, informative cost functions (i.e.,
cost functions that contain a notion of closeness) often perform better than
binary reward functions in robotic tasks. In this chapter, we used a number
of cost functions both with and without secondary objectives. In the future,
inverse reinforcement learning (Russell, 1998) may be a useful alternative to
automatically recover underlying cost functions from data as done already in
other settings.

The state of the environment needs to enable the robot to obtain sufficient
information to react appropriately. The proposed algorithm can cope with
superfluous states at a cost of slower learning. Similarly, the meta-parameters
are defined by the underlying representation of the movement. For example,
the dynamical systems motor primitives (Ijspeert et al, 2002a; Schaal et al,
2007) have meta-parameters for scaling the duration and amplitude of the
movement as well as the possibility to change the final position. Restricting
the meta-parameters to task relevant ones, may often speed up the learning
process.

We present current work on automatic meta-parameter acquisition for mo-
tor primitives by reinforcement learning. We focus on learning the mapping
from situations to meta-parameters and how to employ these in dynamical
systems motor primitives. We extend the motor primitives of Ijspeert et al
(2002a) with a learned meta-parameter function and re-frame the problem as
an episodic reinforcement learning scenario. In order to obtain an algorithm
for fast reinforcement learning of meta-parameters, we view reinforcement
learning as a reward-weighted self-imitation (Peters and Schaal, 2008a; Kober
and Peters, 2011b).

To have a general meta-parameter learning, we adopted a parametric
method, the reward-weighed regression (Peters and Schaal, 2008a), and
turned it into a non-parametric one. We call this method Cost-regularized
Kernel Regression (CrKR), which is related to Gaussian process regression
(Rasmussen and Williams, 2006) but differs in the key aspects of incorporat-
ing costs and exploration naturally. We compare the CrKR with a traditional
policy gradient algorithm (Peters and Schaal, 2008c), the reward-weighted re-
gression (Peters and Schaal, 2008a), and supervised learning (Ude et al, 2010;
Kronander et al, 2011) on a toy problem in order to show that it outperforms
available previously developed approaches. As complex motor control scenar-
ios, we evaluate the algorithm in the acquisition of flexible motor primitives
for dart games such as Around the Clock (Masters Games Ltd., 2010), for
table tennis, and for ball target throwing.
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5.2 Meta-Parameter Learning for Motor Primitives

The goal of this chapter is to show that elementary movements can be gener-
alized by modifying only the meta-parameters of the primitives using learned
mappings based on self-improvement. In Section 5.2.1, we first review how a
single primitive movement can be represented and learned. We discuss how
meta-parameters may be able to adapt the motor primitive spatially and
temporally to the new situation. In order to develop algorithms that learn to
automatically adjust such motor primitives, we model meta-parameter self-
improvement as an episodic reinforcement learning problem in Section 5.2.2.
While this problem could in theory be treated with arbitrary reinforcement
learning methods, the availability of few samples suggests that more efficient,
task appropriate reinforcement learning approaches are needed. To avoid the
limitations of parametric function approximation, we aim for a kernel-based
approach. When a movement is generalized, new parameter settings need
to be explored. Hence, a predictive distribution over the meta-parameters is
required to serve as an exploratory policy. These requirements lead to the
method which we derive in Section 5.2.3 and employ for meta-parameter
learning in Section 5.2.4.

5.2.1 Motor Primitives with Meta-Parameters

In this section, we review how the dynamical systems motor primitives
(Ijspeert et al, 2002a; Schaal et al, 2007) discussed in Chapter 3 can be
used for meta-parameter learning. The dynamical system motor primitives
are a powerful movement representation that allows ensuring the stability
of the movement1, choosing between a rhythmic and a discrete movement
and is invariant under rescaling of both duration and movement amplitude.
These modification parameters can become part of the meta-parameters of
the movement.

In this chapter, we focus on single stroke movements which appear fre-
quently in human motor control (Wulf, 2007; Schaal et al, 2007). Therefore,
we will always focus on the discrete version of the dynamical system motor
primitives in this chapter.

The motor primitive policy is invariant under transformations of the ini-
tial position x0

1, the initial velocity x0
2, the goal g, the goal velocity ġ, the

amplitude A, and the duration T as discussed in Chapter 3. These six modi-
fication parameters can be used as the meta-parameters γ of the movement.
Obviously, we can make more use of the motor primitive framework by ad-
justing the meta-parameters γ depending on the current situation or state
s according to a meta-parameter function γ̄(s). The meta-parameter γ is

1 Note that the dynamical systems motor primitives ensure the stability of the
movement generation but cannot guarantee the stability of the movement execu-
tion (Ijspeert et al, 2002a; Schaal et al, 2007).
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Fig. 5.1 This figure illustrates a table tennis task. The situation, described by the
state s, corresponds to the positions and velocities of the ball and the robot at
the time the ball is above the net. The meta-parameters γ are the joint positions
and velocity at which the ball is hit. The policy parameters represent the backward
motion and the movement on the arc. The meta-parameter function γ̄(s), which
maps the state to the meta-parameters, is learned.

treated as a random variable where the variance correspond to the uncer-
tainty. The state s can for example contain the current position, velocity and
acceleration of the robot and external objects, as well as the target to be
achieved. This paper focuses on learning the meta-parameter function γ̄(s)
by episodic reinforcement learning.

Illustrations of the Learning Problem

We discuss the resulting learning problem based on the two examples shown
in Figures 5.1 and 5.2.

As a first illustration of the meta-parameter learning problem, we take a
table tennis task which is illustrated in Figure 5.1 (in Section 5.3.3, we will
expand this example to a robot application). Here, the desired skill is to return
a table tennis ball. The motor primitive corresponds to the hitting movement.
When modeling a single hitting movement with dynamical-systems motor
primitives (Ijspeert et al, 2002a), the combination of retracting and hitting
motions would be represented by one movement primitive and can be learned
by determining the movement parameters θ. These parameters can either
be estimated by imitation learning or acquired by reinforcement learning.
The return can be adapted by changing the paddle position and velocity
at the hitting point. These variables can be influenced by modifying the
meta-parameters of the motor primitive such as the final joint positions and
velocities. The state consists of the current positions and velocities of the
ball and the robot at the time the ball is directly above the net. The meta-
parameter function γ̄(s) maps the state (the state of the ball and the robot
before the return) to the meta-parameters γ (the final positions and velocities
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Fig. 5.2 This figure illustrates a 2D dart throwing task. The situation, described
by the state s corresponds to the relative height. The meta-parameters γ are the
velocity and the angle at which the dart leaves the launcher. The policy parameters
represent the backward motion and the movement on the arc. The meta-parameter
function γ̄(s), which maps the state to the meta-parameters, is learned.

of the motor primitive). Its variance corresponds to the uncertainty of the
mapping.

In a 2D dart throwing task with a dart on a launcher which is illustrated
in Figure 5.2 (in Section 5.3.2, we will expand this example to a robot appli-
cation) the desired skill is to hit a specified point on a wall with a dart. The
dart is placed on the launcher and held there by friction. The motor primi-
tive corresponds to the throwing of the dart. When modeling a single dart’s
movement with dynamical-systems motor primitives (Ijspeert et al, 2002a),
the combination of retracting and throwing motions would be represented by
the movement parameters θ of one movement primitive. The dart’s impact
position can be adapted to a desired target by changing the velocity and the
angle at which the dart leaves the launcher. These variables can be influenced
by changing the meta-parameters of the motor primitive such as the final po-
sition of the launcher and the duration of the throw. The state consists of
the current position of the hand and the desired position on the target. If
the thrower is always at the same distance from the wall the two positions
can be equivalently expressed as the vertical distance. The meta-parameter
function γ̄(s) maps the state (the relative height) to the meta-parameters γ
(the final position g and the duration of the motor primitive T ).

The approach presented in this chapter is applicable to any movement rep-
resentation that has meta-parameters, i.e., a small set of parameters that al-
lows to modify the movement. In contrast to (Lampariello et al, 2011; Jetchev
and Toussaint, 2009; Grimes and Rao, 2008; Bentivegna et al, 2004b) our ap-
proach does not require explicit (re-)planning of the motion.

In the next sections, we derive and apply an appropriate reinforcement
learning algorithm.
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5.2.2 Problem Statement: Meta-Parameter
Self-improvement

The problem of meta-parameter learning is to find a stochastic policy π(γ|x) =
p(γ|s) that maximizes the expected return

J(π) =

ˆ

S

p(s)

ˆ

G

π(γ|s)R(s,γ)dγ ds,

where S denotes the the space of states s, G denotes the the space of meta-
parameters γ, and R(s,γ) denotes all the rewards following the selection of
the meta-parameter γ according to a situation described by state s. Such a
policy π(γ|x) is a probability distribution over meta-parameters given the
current state. The stochastic formulation allows a natural incorporation of
exploration, and the optimal time-invariant policy has been shown to be
stochastic in the case of hidden state variables (Sutton et al, 1999; Jaakkola

et al, 1993). The return of an episode is R(s,γ) = T−1
∑T

t=0 r
t with number

of steps T and rewards rt. For a parametrized policy π with parameters w it
is natural to first try a policy gradient approach such as finite-difference meth-
ods, vanilla policy gradient approaches and natural gradients. While we will
denote the shape parameters by θ, we denote the parameters of the meta-pa-
rameter function by w. Reinforcement learning of the meta-parameter func-
tion γ̄(s) is not straightforward as only few examples can be generated on the
real system and trials are often quite expensive. The credit assignment prob-
lem is non-trivial as the whole movement is affected by every change in the
meta-parameter function. Early attempts using policy gradient approaches
resulted in tens of thousands of trials even for simple toy problems, which is
not feasible on a real system.

Dayan and Hinton (1997) showed that an immediate reward can be maxi-
mized by instead minimizing the Kullback-Leibler divergence
D(π(γ|s)R(s,γ)||π′(γ|s)) between the reward-weighted policy π(γ|s) and the
new policy π′(γ|s). As we are in an episodic setting, this form of optimization
solves the considered problem. Williams (1992) suggested to use Gaussian
noise in this context; hence, we employ a policy of the form

π(γ|s) = N (γ|γ̄(s), σ2(s)I),

where we have the deterministic mean policy γ̄(s) = φ(s)Tw with basis func-
tions φ(s) and parameters w as well as the variance σ2(s) that determines
the exploration ε ∼ N (0, σ2(s)I) as e.g., in (Peters and Schaal, 2008c). The
parameters w can then be adapted by reward-weighted regression in an im-
mediate reward (Peters and Schaal, 2008a) or episodic reinforcement learning
scenario (see Chapter 4). The reasoning behind this reward-weighted regres-
sion is that the reward can be treated as an improper probability distribution
over indicator variables determining whether the action is optimal or not.
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Algorithm 5.1 Meta-Parameter Learning

Preparation steps:

Learn one or more motor primitives by imitation and/or reinforcement learning
(yields shape parameters θ).

Determine initial state s0, meta-parameters γ0, and cost C0 corresponding to
the initial motor primitive.

Initialize the corresponding matrices S,Γ,C.

Choose a kernel k,K.

Set a scaling parameter λ.

for all iterations j do

Determine the state sj specifying the situation.

Calculate the meta-parameters γj by:

Determine the mean of each meta-parameter i γ̄i(s
j) = k(sj)T (K+ λC)−1 Γi,

Determine the variance σ2(sj) = k(sj , sj)− k(sj)T (K+ λC)−1 k(sj),

Draw the meta-parameters from a Gaussian distribution γj ∼
N (γ|γ̄(sj), σ2(sj)I)

Execute the motor primitive using the new meta-parameters.

Calculate the cost cj at the end of the episode.

Update S,Γ,C according to the achieved result.

end for

5.2.3 A Task-Appropriate Reinforcement Learning
Algorithm

Designing good basis functions is challenging, a nonparametric representation
is better suited in this context. There is an intuitive way of turning the reward-
weighted regression into a Cost-regularized Kernel Regression. The kerneliza-
tion of the reward-weighted regression can be done straightforwardly (similar
to Section 6.1 of (Bishop, 2006) for regular supervised learning). Inserting
the reward-weighted regression solution w = (ΦTRΦ+λI)−1ΦTRΓi and us-
ing the Woodbury formula2 (Welling, 2010), we transform reward-weighted
regression into a Cost-regularized Kernel Regression

2 The equality (ΦTRΦ + λI)−1ΦTR = ΦT(ΦΦT + λR−1)−1 is straightforward
to verify by left and right multiplying the non-inverted terms: ΦTR(ΦΦT +
λR−1) = (ΦTRΦ+ λI)ΦT.
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γ̄i = φ(s)
Tw = φ(s)T

(
ΦTRΦ+ λI

)−1
ΦTRΓi

= φ(s)TΦT
(
ΦΦT + λR−1

)−1
Γi, (5.1)

where the rows of Φ correspond to the basis functions φ(si) = Φi of
the training examples, Γi is a vector containing the training examples for
meta-parameter component γi, and λ is a ridge factor. Next, we assume
that the accumulated rewards Rk are strictly positive Rk > 0 and can
be transformed into costs by ck = 1/Rk. Hence, we have a cost matrix
C = R−1 = diag(R−1

1 , . . . , R−1
n ) with the cost of all n data points. After

replacing k(s) = φ(s)TΦT and K = ΦΦT, we obtain the Cost-regularized
Kernel Regression

γ̄i = γ̄i(s) = k(s)T (K+ λC)−1 Γi,

which gives us a deterministic policy. Here, costs correspond to the uncer-
tainty about the training examples. Thus, a high cost is incurred for being
further away from the desired optimal solution at a point. In our formulation,
a high cost therefore corresponds to a high uncertainty of the prediction at
this point.

In order to incorporate exploration, we need to have a stochastic policy
and, hence, we need a predictive distribution. This distribution can be ob-
tained by performing the policy update with a Gaussian process regression
and we directly see from the kernel ridge regression that

σ2(s) = k(s, s) + λ− k(s)T (K+ λC)
−1

k(s),

where k(s, s) = φ(s)Tφ(s) is the norm of the point in the kernel space. We call
this algorithm Cost-regularized Kernel Regression. Algorithm 5.1 describes
the complete learning procedure, where the rows of S correspond to the states
of the training examples si = Si.

The algorithm corresponds to a Gaussian process regression where the
costs on the diagonal are input-dependent noise priors. The parameter λ acts
as a exploration-exploitation trade-off parameter as illustrated in Figure 5.5.
Gaussian processes have been used previously for reinforcement learning (En-
gel et al, 2005) in value function based approaches while here we use them
to learn the policy.

5.2.4 Meta-Parameter Learning by Reinforcement
Learning

As a result of Section 5.2.3, we have a framework of motor primitives as
introduced in Section 5.2.1 that we can use for reinforcement learning of
meta-parameters as outlined in Section 5.2.2. We have generalized the reward-
weighted regression policy update to instead become a Cost-regularized Ker-
nel Regression (CrKR) update where the predictive variance is used for ex-
ploration. In Algorithm 1, we show the complete algorithm resulting from
these steps.
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Fig. 5.3 This figure illustrates the meaning of policy improvements with Cost-
regularized Kernel Regression. Each sample consists of a state, a meta-parameter
and a cost where the cost is indicated the blue error bars. The red line represents
the improved mean policy, the dashed green lines indicate the exploration/variance
of the new policy. For comparison, the gray lines show standard Gaussian process
regression. As the cost of a data point is equivalent to having more noise, pairs
of states and meta-parameter with low cost are more likely to be reproduced than
others with high costs.

The algorithm receives three inputs, i.e., (i) a motor primitive that has
associated meta-parameters γ, (ii) an initial example containing state s0,
meta-parameter γ0 and cost C0, as well as (iii) a scaling parameter λ. The
initial motor primitive can be obtained by imitation learning (Ijspeert et al,
2002a) and, subsequently, improved by parametrized reinforcement learning
algorithms such as policy gradients (Peters and Schaal, 2008c) or Policy learn-
ing by Weighting Exploration with the Returns (PoWER) [Kober and Peters,
2011b, Chapter 4]. The demonstration also yields the initial example needed
for meta-parameter learning. While the scaling parameter is an open parame-
ter, it is reasonable to choose it as a fraction of the average cost and the output
noise parameter (note that output noise and other possible hyper-parameters
of the kernel can also be obtained by approximating the unweighted meta-
parameter function).

Illustration of the Algorithm

In order to illustrate this algorithm, we will use the example of the table
tennis task introduced in Section 5.2.1. Here, the robot should hit the ball
accurately while not destroying its mechanics. Hence, the cost could corre-
spond to the distance between the ball and the paddle, as well as the squared
torques. The initial policy is based on a prior, illustrated in Figure 5.3(a),
that has a variance for initial exploration (it often makes sense to start with
a uniform prior). This variance is used to enforce exploration. To return a
ball, we sample the meta-parameters from the policy based on the current
state. After the trial the cost is determined and, in conjunction with the
employed meta-parameters, used to update the policy. If the cost is large
(e.g., the ball was far from the racket), the variance of the policy is large as
it may still be improved and therefore needs exploration. Furthermore, the
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mean of the policy is shifted only slightly towards the observed example as
we are uncertain about the optimality of this action. If the cost is small, we
know that we are close to an optimal policy (e.g., the racket hit the ball
off-center) and only have to search in a small region around the observed
trial. The effects of the cost on the mean and the variance are illustrated
in Figure 5.3(b). Each additional sample refines the policy and the overall
performance improves (see Figure 5.3(c)). If a state is visited several times
and different meta-parameters are sampled, the policy update must favor the
meta-parameters with lower costs. If several sets of meta-parameters have
similarly low costs, where it converges depends on the order of samples. The
cost function should be designed to avoid this behavior and to favor a sin-
gle set. The exploration has to be restricted to safe meta-parameter ranges.
Algorithm 1 exhibits this behavior as the exploration is only local and re-
stricted by the prior (see Figure 5.3). If the initial policy is safe, exploring
the neighboring regions is likely to be safe as well. Additionally, lower level
controllers as well as the mechanics of the robot ensure that kinematic and
dynamic constrains are satisfied and a term in the cost function can be used
to discourage potentially harmful movements.

In the example of the 2D dart throwing task, the cost is similar. Here,
the robot should throw darts accurately while not destroying its mechanics.
Hence, the cost could correspond to the error between desired goal and the
impact point, as well as the absolute velocity of the end-effector. Often the
state is determined by the environment, e.g., the ball trajectory in table ten-
nis depends on the opponent. However, for the dart setting, we could choose
the next target and thus employ CrKR as an active learning approach by
picking states with large variances. In the dart throwing example we have
a correspondence between the state and the outcome similar to a regression
problem. However, the mapping between the state and the meta-parameter
is not unique. The same height can be achieved by different combinations of
velocities and angles. Averaging these combinations is likely to generate incon-
sistent solutions. The regression must hence favor the meta-parameters with
the lower costs. CrKR can be employed as a regularized regression method
in this setting.

5.3 Evaluations and Experiments

In Section 5.2, we have introduced both a framework for meta-parameter
self-improvement as well as an appropriate reinforcement learning algorithm
used in this framework. In this section, we will first show that the presented
reinforcement learning algorithm yields higher performance than off-the shelf
approaches. Hence, we compare it on a simple planar cannon shooting prob-
lem (Lawrence et al, 2003) with the preceding reward-weighted regression, an
off-the-shelf finite difference policy gradient approach, and show the advan-
tages over supervised learning approaches.
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Fig. 5.4 This figure shows the performance of the compared algorithms averaged
over 10 complete learning runs. Cost-regularized Kernel Regression finds solutions
with the same final performance two orders of magnitude faster than the finite
difference gradient (FD) approach and twice as fast as the reward-weighted regres-
sion. At the beginning FD often is highly unstable due to our attempts of keeping
the overall learning speed as high as possible to make it a stronger competitor. The
lines show the median and error bars indicate standard deviation. The initialization
and the initial costs are identical for all approaches. However, the omission of the
first twenty rollouts was necessary to cope with the logarithmic rollout axis. The
number of rollouts includes the rollouts not used to update the policy.

The resulting meta-parameter learning framework can be used in a va-
riety of settings in robotics. We consider three scenarios here, i.e., (i) dart
throwing with a simulated Barrett WAM, a real Kuka KR 6, and the JST-
ICORP/SARCOS humanoid robot CBi (Cheng et al, 2007), (ii) table tennis
with a simulated robot arm and a real Barrett WAM, and (iii) throwing a
ball at targets with a MATLAB simulation and a real BioRob (Lens et al,
2010).

5.3.1 Benchmark Comparison: Toy Cannon Shots

In the first task, we only consider a simple simulated planar cannon shooting
where we benchmark our Reinforcement Learning by Cost-regularized Ker-
nel Regression approach against a finite difference gradient estimator and
the reward-weighted regression. Additionally we contrast our reinforcement
learning approach to a supervised one. Here, we want to learn an optimal
policy for a 2D toy cannon environment similar to (Lawrence et al, 2003).
This benchmark example serves to illustrate out approach and to compare it
to various previous approaches.

The setup is given as follows: A toy cannon is at a fixed location
[0.0, 0.1]m. The trajectory of the cannon ball depends on the angle with
respect to the ground and the speed at which it leaves the cannon. The flight
of the canon ball is simulated as ballistic flight of a point mass with Stokes’s
drag as wind model. The cannon ball is supposed to hit the ground at a
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Fig. 5.5 This figure illustrates the
influence of the parameter λ for the
Cost-regularized Kernel Regression.
The red curve (λ = 0.5) corresponds
to the red curve (Cost-regularized
Kernel Regression) in Figure 5.4(c).
The parameter λ trades off the ex-
ploration versus the exploitation. A
higher λ leads to larger exploration
and, thus, faster convergence to a sub-
optimal solution. The results are aver-
aged over 10 complete learning runs.
The lines show the median and error
bars indicate standard deviation. The
number of rollouts includes the roll-
outs not used to update the policy.

desired distance. The desired distance [1..3]m and the wind speed [0..1]m/s,
which is always horizontal, are used as input states, the velocities in hori-
zontal and vertical directions are the meta-parameters (which influences the
angle and the speed of the ball leaving the cannon). In this benchmark we do
not employ the motor primitives but set the meta-parameters directly. Lower
speed can be compensated by a larger angle. Thus, there are different possi-
ble policies for hitting a target; we intend to learn the one which is optimal
for a given cost function. This cost function is defined as

c = (bx − sx)
2 + 0.01

(
ḃ2x + ḃ2z

)
,

where bx is the impact position on the ground, sx the desired impact position
as indicated by the state, and ḃ{x,z} are the horizontal and vertical veloci-
ties of the cannon ball at the impact point respectively. It corresponds to
maximizing the precision while minimizing the employed energy according to
the chosen weighting. The input states (desired distance and wind speed) are
drawn from a uniform distribution and directly passed to the algorithms. All
approaches performed well in this setting, first driving the position error to
zero and, subsequently, optimizing the impact velocity. The experiment was
initialized with [1, 10]m/s as initial ball velocities and 1m/s as wind velocity.
This setting corresponds to a very high parabola, which is far from optimal.
For plots, we evaluate the policy on a test set of 25 uniformly randomly cho-
sen points that remain the same throughout of the experiment and are never
used in the learning process but only to generate Figure 5.4.

We compare our novel algorithm to a finite difference policy gradient
(FD) method (Peters and Schaal, 2008c) and to the reward-weighted regres-
sion (RWR) (Peters and Schaal, 2008a). The FD method uses a parametric
policy that employs radial basis functions in order to represent the policy
and perturbs the parameters. We used 25 Gaussian basis functions on a reg-
ular grid for each meta-parameter, thus a total of 50 basis functions. The
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GPR random policy GPR structured policy CrKR final CrKR

Fig. 5.6 In this figure, we compare Gaussian process regression (GPR) in a su-
pervised learning setting as proposed by (Ude et al, 2010; Kronander et al, 2011)
to Cost-regularized Kernel Regression (CrKR) in a reinforcement learning setting.
The red curve corresponds to the red curve (Cost-regularized Kernel Regression)
in Figure 5.4. The GPR is trained with samples from the prior used for the CrKR
(blue line) and with samples of the final CrKR policy (cyan line) respectively. The
black line indicates the cost after CrKR has converged. GPR with samples drawn
from the final policy performs best. Please note that this comparison is contrived as
the role of CrKR is to discover the policy that is provided to “GPR structured pol-
icy”. GPR can only reproduce the demonstrated policy, which is achieved perfectly
with 1000 samples. GPR can reproduce the demonstrated policy more accurately if
more samples are available. However, it cannot improve the policy according to a
cost function and it is impacted by contradictory demonstrations. The results are
averaged over 10 complete learning runs. The lines show the median and error bars
indicate standard deviation. The number of rollouts includes the rollouts not used
to update the policy.

number of basis functions, the learning rate, as well as the magnitude of the
perturbations were tuned for best performance. We used 51 sets of uniformly
perturbed parameters for each update step. The perturbed policies were eval-
uated on a batch of 25 input parameters to avoid over-fitting on specific input
states.The FD algorithm converges after approximately 2000 batch gradient
evaluations, which corresponds to 2,550,000 shots with the toy cannon.

The RWR method uses the same parametric policy as the finite differ-
ence gradient method. Exploration is achieved by adding Gaussian noise to
the mean policy. All open parameters were tuned for best performance. The
reward transformation introduced by Peters and Schaal (2008a) did not im-
prove performance in this episodic setting. The RWR algorithm converges af-
ter approximately 40,000 shots with the toy cannon. For the Cost-regularized
Kernel Regression (CrKR) the inputs are chosen randomly from a uniform
distribution. We use Gaussian kernels and the open parameters were opti-
mized by cross-validation on a small test set prior to the experiment. Each
trial is added as a new training point if it landed in the desired distance
range. The CrKR algorithm converges after approximately 20,000 shots with
the toy cannon. The bandwidth of the kernels used for CrKR is in the same
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hits the
board.

Fig. 5.7 This figure shows a dart throw in a physically realistic simulation

order of magnitude as the bandwidth of the basis functions. However, due
to the non-parametric nature of CrKR, narrower kernels can be used to cap-
ture more details in order to improve performance. Figure 5.5 illustrates the
influence of the parameter λ for the CrKR.

After convergence, the costs of CrKR are the same as for RWR and slightly
lower than those of the FD method. The CrKR method needs two orders of
magnitude fewer shots than the FD method. The RWR approach requires
twice the shots of CrKR demonstrating that a non-parametric policy, as
employed by CrKR, is better adapted to this class of problems than a para-
metric policy. The squared error between the actual and desired impact is
approximately 5 times higher for the finite difference gradient method, see
Figure 5.4.

Compared to standard Gaussian process regression (GPR) in a super-
vised setting, CrKR can improve the policy over time according to a cost
function and outperforms GPR in settings where different combinations of
meta-parameters yield the same result. For details, see Figure 5.6.

5.3.2 Robot Dart-Throwing Games

Now, we turn towards the complete framework, i.e., we intend to learn the
meta-parameters for motor primitives in discrete movements. We compare the
Cost-regularized Kernel Regression (CrKR) algorithm to the reward-weighted
regression (RWR). As a sufficiently complex scenario, we chose a robot dart
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Fig. 5.8 This figure shows a dart throw on the real JST-ICORP/SARCOS hu-
manoid robot CBi
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Fig. 5.9 This figure shows the cost
function of the dart-throwing task for
a whole game Around the Clock in
each rollout. The costs are averaged
over 10 runs with the error-bars indi-
cating standard deviation. The num-
ber of rollouts includes the rollouts not
used to update the policy.

throwing task inspired by (Lawrence et al, 2003). However, we take a more
complicated scenario and choose dart games such as Around the Clock (Mas-
ters Games Ltd., 2010) instead of simple throwing at a fixed location. Hence,
it will have an additional parameter in the state depending on the location
on the dartboard that should come next in the sequence. The acquisition of
a basic motor primitive is achieved using previous work on imitation learn-
ing (Ijspeert et al, 2002a). Only the meta-parameter function is learned using
CrKR or RWR. For the learning process, the targets (which are part of the
state) are uniformly distributed on the dartboard. For the evaluation the tar-
gets are placed in the center of the fields. The reward is calculated based on
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(a) The dart is
picked up.
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Fig. 5.10 This figure shows a dart throw on the real Kuka KR 6 robot

the impact position observed by a vision system in the real robot experiments
or the simulated impact position.

The dart is placed on a launcher attached to the end-effector and held
there by stiction. We use the Barrett WAM robot arm in order to achieve
the high accelerations needed to overcome the stiction. See Figure 5.7, for a
complete throwing movement. The motor primitive is trained by imitation
learning with kinesthetic teach-in. We use the Cartesian coordinates with
respect to the center of the dart board as input states. In comparison with
the benchmark example, we cannot directly influence the release velocity in
this setup. Hence, we employ the parameter for the final position g, the
time scale of the motor primitive τ and the angle around the vertical axis
(i.e., the orientation towards the dart board to which the robot moves before
throwing) as meta-parameters instead. The popular dart game Around the
Clock requires the player to hit the numbers in ascending order, then the
bulls-eye. As energy is lost overcoming the stiction of the launching sled, the
darts fly lower and we placed the dartboard lower than official rules require.
The cost function is defined as

c = 10

√ ∑
i∈{x,z}

(di − si)
2 + τ,

where di are the horizontal and vertical positions of the dart on the dartboard
after the throw, si are the horizontal and vertical positions of the target
corresponding to the state, and τ corresponds to the velocity of the motion.
After approximately 1000 throws the algorithms have converged but CrKR
yields a high performance already much earlier (see Figure 5.9). We again used
a parametric policy with radial basis functions for RWR. Here, we employed
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225 Gaussian basis function on a regular grid per meta-parameter. Designing
a good parametric policy proved very difficult in this setting as is reflected
by the poor performance of RWR.

This experiment has also being carried out on three real, physical robots,
i.e., a Barrett WAM, the humanoid robot CBi (JST-ICORP/SARCOS), and
a Kuka KR 6. CBi was developed within the framework of the JST-ICORP
Computational Brain Project at ATR Computational Neuroscience Labs. The
hardware of the robot was developed by the American robotic development
company SARCOS. CBi can open and close the fingers which helps for more
human-like throwing instead of the launcher employed by the Barrett WAM.
See Figure 5.8 for a throwing movement.

We evaluated the approach on a setup using the Kuka KR 6 robot and a
pneumatic gripper. The robot automatically picks up the darts from a stand.
The position of the first degree of freedom (horizontal position) as well as
the position of the fifth degree of freedom and the release timing (vertical
position) were controlled by the algorithm. Due to inaccurate release timing
the vertical position varied in a range of 10cm. Additionally the learning
approach had to cope with non-stationary behavior as the outcome of the
same set of parameters changed by one third of the dart board diameter
upward. Despite these additional complications the robot learned to reliably
(within the reproduction accuracy of 10cm as noted above) hit all positions
on the dart board using only a total of 260 rollouts. See Figure 5.10 for a
throwing movement.

5.3.3 Robot Table Tennis

In the second evaluation of the complete framework, we use the proposed
method for hitting a table tennis ball in the air. The setup consists of a ball
gun that serves to the forehand of the robot, a Barrett WAM and a standard
sized table. The movement of the robot has three phases. The robot is in a
rest posture and starts to swing back when the ball is launched. During this
swing-back phase, the open parameters for the stroke are to be learned. The
second phase is the hitting phase which ends with the contact of the ball and
racket. In the final phase, the robot gradually ends the stroking motion and
returns to the rest posture. See Figure 5.11 for an illustration of a complete
episode and Chapter 3 for a more detailed description. The movements in the
three phases are represented by three motor primitives obtained by imitation
learning. We only learn the meta-parameters for the hitting phase.

The meta-parameters are the joint positions g and velocities ġ for all seven
degrees of freedom at the end of the second phase (the instant of hitting the
ball) and a timing parameter thit that controls when the swing back phase
is transitioning to the hitting phase. For this task we employ a variant of
the motor primitives that allows to set non-zero end velocities (Kober et al,
2010a). We learn these 15 meta-parameters as a function of the state, which
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(a) The robot
is in the rest
posture.

(b) The arm
swings back.

(c) The arm
strikes the ball.

(d) The
arm follows
through and
decelerates.

(e) The arm
returns to the
rest posture.

Fig. 5.11 This figure shows the phases of a table tennis stroke on the real Barrett
WAM

(a) Left. (b) Half left. (c) Center
high.

(d) Center
low.

(e) Right.

Fig. 5.12 This figure shows samples of the learned forehands. Note that this figure
only illustrates the learned meta-parameter function in this context but cannot
show timing (see Figure 5.13) and velocity and it requires a careful observer to
note the important configuration differences resulting from the meta-parameters.

corresponds to the ball positions and velocities when it is directly over the net.
We employed a Gaussian kernel and optimized the open kernel parameters
according to typical values for the input and output beforehand. As cost
function we employ

c =

√ ∑
i∈{x,y,z}

(bi (thit)− pi (thit))
2
,
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Fig. 5.13 This figure illustrates the ef-
fect of the velocity of the ball towards
the robot on the time it has until the
ball needs to be hit. The plot was gen-
erated by sweeping through the ve-
locity component towards the robot,
keeping the other position and veloc-
ity values fixed. The line is the mean of
100 sweeps drawn from the same ball
distribution as used during the learn-
ing.

(a) Left high. (b) Left low. (c) Center
high.

(d) Center
low.

(e) Right.

Fig. 5.14 This figure shows samples of the learned forehands on the real robot

where bi (thit) are the Cartesian positions of the ball and pi (thit) are the
Cartesian positions of the center of the paddle, both at the predicted hitting
time thit. The policy is evaluated every 50 episodes with 25 ball launches
picked randomly at the beginning of the learning. We initialize the behavior
with five successful strokes observed from another player. After initializing
the meta-parameter function with only these five initial examples, the robot
misses approximately 95% of the balls as shown in Figure 5.15. Trials are only
used to update the policy if the robot has successfully hit the ball as they did
not significantly improve the learning performance and in order to keep the
calculation sufficiently fast. Figures 5.12 and 5.14 illustrate different positions
of the ball the policy is capable of dealing with after the learning. Figure 5.13
illustrates the dependence of the timing parameter on the ball velocity to-
wards the robot and Figure 5.15 illustrates the costs over all episodes. For
the results in Figure 5.15, we have simulated the flight of the ball as a simple
ballistic point mass and the bouncing behavior using a restitution constant
for the velocities. The state is directly taken from the simulated ball data
with some added Gaussian noise. In the real robot experiment (Figure 5.16),
the ball is shot with a ball cannon. The position of the ball is determined by
two pairs of stereo cameras and the velocity is obtained by numerical differ-
entiation. In this second setting, the state information is a lot less reliable
due to noise in the vision system and even the same observed state can lead
to different outcomes due to unobserved spin.



140 5 Reinforcement Learning to Adjust Parametrized Motor Primitives

0 200 400 600 800 1000

0.1

0.3

0.5

0.7

0.9

number of rollouts

av
er

ag
e 

co
st

/s
uc

ce
ss

 

 

Success
Cost

Fig. 5.15 This figure shows the cost
function of the simulated table tennis
task averaged over 10 runs with the
error-bars indicating standard devia-
tion. The red line represents the per-
centage of successful hits and the blue
line the average cost. The number of
rollouts includes the rollouts not used
to update the policy. At the beginning
the robot misses the ball 95% of the
episodes and on average by 50 cm. At
the end of the learning the robot hits
almost all balls.
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Fig. 5.16 This figure shows the cost
function of the table tennis task on the
real robot. The policy was learned en-
tirely on the real robot. The red line
represents the percentage of successful
hits and the blue line the average cost.
The number of rollouts includes the
rollouts not used to update the policy.
At the beginning the robot misses the
ball 70% of the episodes and on aver-
age by 15 cm. At the end of the learn-
ing the robot hits 80% of the balls.

5.3.4 Active Learning of Ball Throwing

As an active learning setting, we chose a ball throwing task where the goal is
to improve the throws while trying to perform well in a higher level game. For
this scenario, it is important to balance learning of the individual actions by
practicing them while at the same time, focusing on the overall performance
in order to achieve the complete skill. Prominent examples are leisure time
activities such as sports or motor skill games. For example, when playing
darts with friends, you will neither always attempt the lowest risk action,
nor always try to practice one particular throw, which will be valuable when
mastered. Instead, you are likely to try plays with a reasonable level of risk
and rely on safe throws in critical situations. This exploration is tightly woven
into higher order dart games.

The higher level is modeled as a standard reinforcement learning prob-
lem with discrete states and actions. The lower level learning is done using
CrKR. The higher level determines the target the robot is supposed to hit.
The lower level has to learn how to hit this target. The transition probabil-
ities of the higher level can be estimated from the learned meta-parameter
function as explained in Section 5.3.4. We will discuss the rules of the game
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Fig. 5.17 This figure illustrates the
side-stall game. The player throws the
ball and if it lands in the target (illus-
trated by a wall with target holes) gets
the number of points written next to
it. Missing the targets is not punished,
however, going over ten points leads to
a loss of ten points.

in Section 5.3.4, a simulated experiment in Section 5.3.4, and the results of
an evaluation with a real BioRob in Section 5.3.4.

Game Used for the Evaluations

The game is reminiscent of blackjack as the goal is to collect as many points
as possible without going over a threshold. The player throws a ball at three
targets. The three rewards of one, two, and three are assigned to one target
each. The setup of the game is illustrated in Figure 5.17. If the ball lands in
the target, the player receives the corresponding number of points. The player
starts with zero points if he gets more than 10 points he “busts” and incurs
a loss of -10. The player has the option to “stand” (i.e., stop throwing and
collect the accumulated number of points) at all times. Missing all targets
does not entail a cost.

Two-Level Learning Approach

Our framework considers a hierarchy of two levels: a strategy level and a
behavior level. The strategy level determines the strategy for the high-level
moves, here termed “behaviors”, of the game. The behavior level deals with
executing these behaviors in an optimal fashion. The strategy level chooses
the next behavior, which is then executed by the behavior level. Upon com-
pletion of the behavior, the strategy level chooses the next behavior. The
setup is illustrated in Figure 5.18.

We assume that the game has discrete states s ∈ S and discrete behaviors
b ∈ B. In the dart setting a behavior could be attempting to hit a specific field
and the state could correspond to the current score. Given the current state,
each behavior has an associated expected outcome o ∈ O. For example, the
behavior “throw at target X” has the outcome “change score by X” as a result
of hitting target X. The transition probabilities Pb

so of the strategy level would
express how likely it is to hit a different field. The game can be modeled as an
Markov decision process or MDP (Sutton and Barto, 1998), where the states
consist of the number of accumulated points (zero to ten) and two additional
game states (“bust” and “stand”). The behaviors correspond to attempting
to throw at a specific target or to “stand” and are fixed beforehand. We
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Fig. 5.18 This figure illustrates the
setup of the roles of the different lev-
els

assume to have an episodic game with a finite horizon, which can be expressed
equivalently as an infinite horizon problem where we define an absorbing
terminal state in which all actions receive an immediate reward of 0.

On the behavior level, we augment the state space with continuous states
that describe the robot and the environment to form the combined state space
s. This state space could, for example, include the position and velocity of
the arm, the position of the targets as well as the current score. The actions
are considered to be continuous and could, for example, be the accelerations
of the arm. As the strategy level has to wait until the behavior is completed,
the behaviors need to be of episodic nature as well. We have a single motor
primitive representing the three behaviors of aiming at the three targets.
Hitting the desired target is learned using CrKR. We employ Policy Iteration
(Sutton and Barto, 1998) to learn on the strategy level.

The rewards for the strategy learning are fixed by the rules of the game.
The possible states and behaviors also result from the way the game is played.
The missing piece for the strategy learning is the transition probabilities Pb

so.
The behavior learning by CrKR associates each behavior with a variance.
Each of these behaviors correspond to an expected change in state, the out-
come o. For example “aim at 2” corresponds to “increase score by 2”. However,
the meta-parameter function does not explicitly include information regard-
ing what happens if the expected change in state is not achieved. We assume
that there is a discrete set of outcomes o ∈ O (i.e., change in state) for all
behaviors b for a certain state s. For example in this game hitting each target,
and missing, is associated with either increasing the player’s score, winning
or to bust (i.e., going over ten). With the meta-parameter function, we can
calculate the overlaps of the ranges of possible meta-parameters for the dif-
ferent behaviors. These overlaps can then be used to determine how likely it
is to end up with a change of state associated with a behavior different from
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Fig. 5.19 This figure illustrates the
transition probabilities of the three be-
haviors to their associated outcome
in simulation. For example, the red
line indicates the probability of gain-
ing one point when throwing at tar-
get 1. After approximately 50 throws
the player has improved his accuracy
level such that he always hits the de-
sired target. The plots are averaged
over 10 runs with the error-bars indi-
cating standard deviations.

2 4 6 8 10
0

5

10

15

game number

po
in

ts
/th

ro
w

s

 

 

points achieved throws needed

Fig. 5.20 This figure illustrates the
improvement of the player over the
number of games in simulation. Due
to the large penalty for busting the
framework always uses a safe strategy.
Already after five completed games
the player reaches almost always the
maximum possible score of 10. As
the number of throws is not punished
there are initially many throws that
miss the target. After 7 games the
number of throws has converged to 4,
which is the minimum required num-
ber. The plots are averaged over 10
runs with the error-bars indicating
standard deviations.

the desired one. This approach relies on the assumption that we know for
each behavior the associated range of meta-parameters and their likelihood.

The meta-parameters are drawn according to a normal distribution, thus
the overlap has to be weighted accordingly. The probability of the outcome
o when performing behavior b can be calculated as follows:

Pb
so =

ˆ
pb(γ)

po(γ)∑
k∈O

pk(γ)
dγ,

where γ is the meta-parameters, pb(γ) is the probability of picking the meta-
parameter γ when performing behavior b, po(γ) is the probability of picking
the meta-parameter γ when performing the action associated to the consid-
ered outcome o, and

∑
k∈O

pk(γ) is the normalizing factor. This scenario has
first been treated in (Kober and Peters, 2011a).



144 5 Reinforcement Learning to Adjust Parametrized Motor Primitives

Fig. 5.21 This figure illustrates the setup of the
robot evaluation

Evaluation in Simulation

We first evaluated our approach using a MATLAB based simulation. The
throw is modeled as a two dimensional ballistic flight of a point mass. The
targets correspond to segments of the ground line. The meta-parameters are
the initial horizontal and vertical velocities of the ball. The meta-parameters
used to initialize the learning make the ball drop in front of the first target.
The cost function for the behavior level is

c =
∑

i∈{x,z}
ḃ2i + (bx − sx)

2
,

where ḃi are the initial velocities, bx is the impact position and sx the desired
impact position. The state corresponds to the three targets and is determined
by the higher level. Figure 5.19 illustrates how the player learns to throw more
accurately while playing. Figure 5.20 illustrates how learning to perform the
lower level actions more reliably enables the player to perform better in the
game.

Evaluation on a Real BioRob

We employ a BioRob to throw balls in a catapult like fashion. The arm is
approximately 0.75m long, and it can reach 1.55m above the ground. The
targets are located at a distance of 2.5m from the robot at a height of 0.9m,
1.2m, and 1.5m respectively. The ball is placed in a funnel-shaped receptacle.
In this setup, the initial horizontal and vertical velocities of the ball cannot
directly be set. Instead, the meta-parameters are defined as the duration and
amount of acceleration for two joints that are in the throwing plane. The
robot starts in a fixed initial position, accelerates the two joints according to
the meta-parameter indicating the magnitude, and accelerates in the opposite



5.3 Evaluations and Experiments 145

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

number of throws

pr
ob

ab
ili

ty
 o

f 
de

si
re

d 
ou

tc
om

e

 

 

behavior 1
behavior 2
behavior 3

Fig. 5.22 This figure illustrates the
transition probabilities of the three be-
haviors to their associated outcome
like in Figure 5.19. The skill improves
a lot in the first 15 throws after
that the improvement levels of. Ini-
tially behavior 2, associated with tar-
get 2 (which lies in the center) is most
likely to succeed. The success rate of
60% corresponds to the level of repro-
ducibility of our setup. The framework
manages to handle this large uncer-
tainty by choosing to “stand” early
on. The plots are averaged over 4 runs
with the error-bars indicating stan-
dard deviations.

direction after the time determined by the other meta-parameter in order to
break. Finally the robot returns to the initial position. See Figure 5.23 for
an illustration of one throwing motion. The state corresponds to the three
targets and is determined by the higher level. The outcome of the throw is
observed by a vision system.

Executing the throw with identical parameters will only land at the same
target in approximately 60% of the throws, due to the high velocities involved
and small differences in putting the ball in the holder. Thus, the algorithm
has to deal with large uncertainties. The cost function for the behavior level
is

c =
∑

i∈{1,2}
θ̈2i + t2acc + (bx − sx)

2
,

where θ̈i is the acceleration magnitude, tacc the acceleration duration, bx is
the impact position and sx the desired impact position. The setup makes it
intentionally hard to hit target 3. The target can only be hit with a very
restricted set of parameters. For targets 1 and 2 increasing the amount of
acceleration or the duration will result in a higher hit. Target 3 is at the
limit where higher accelerations or longer durations will lead to a throw in a
downward direction with a high velocity.

The typical behavior of one complete experiment is as follows: At the
beginning the robot explores in a very large area and stands as soon as it
reaches a score of 8, 9, or 10. Due to the large punishment it is not willing to
attempt to throw at 1 or 2 while having a large uncertainty, and, thus, a high
chance of busting. Later on, it has learned that attempting to throw at 2 has
a very low chance of ending up in 3 and hence will attempt to throw 2 points
if the current score is 8. We setup the policy iteration to favor behaviors with
a higher number, if the values of the behaviors are identical. The first throws
of a round will often be aimed at 3, even if the probability of hitting target 2
using this action is actually higher than hitting the associated target 3. Until
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(a) The initial
position.

(b) The robot
accelerates in
the shoulder and
elbow joints.

(c) End of ac-
celeration. The
breaking starts.

(d) The robot
slows down
while the ball
flies towards the
target.

(e) The robot
has stopped and
returns to the
initial position.

(f) The robot
is again in the
initial position,
ready for the
next throw.

Fig. 5.23 These frames illustrate one throwing motion with the BioRob

8 or more points have been accumulated, action 3 is safe (i.e., cannot lead to
busting), does not entrain a punishment if missing or hitting a lower target,
and has a large learning potential. Figure 5.22 illustrates how the robot learns
to throw more accurately within the physical limits of the system.

5.4 Conclusion and Future Work

In this chapter, we have studied the problem of meta-parameter learning for
motor primitives. It is an essential step towards applying motor primitives for
learning complex motor skills in robotics more flexibly. We have discussed an
appropriate reinforcement learning algorithm for mapping situations to meta-
parameters.

We show that the necessary mapping from situation to meta-parameter
can be learned using a Cost-regularized Kernel Regression (CrKR) while
the parameters of the motor primitive can still be acquired through tradi-
tional approaches. The predictive variance of CrKR is used for exploration in
on-policy meta-parameter reinforcement learning. We compare the resulting
algorithm in a toy scenario to a policy gradient algorithm with a well-tuned
policy representation and the reward-weighted regression. We show that our
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CrKR algorithm can significantly outperform these preceding methods. We
also illustrate the advantages of our reinforcement learning approach over
supervised learning approaches in this setting. To demonstrate the system
in a complex scenario, we have chosen the Around the Clock dart throwing
game, table tennis, and ball throwing implemented both on simulated and
real robots. In these scenarios we show that our approach performs well in a
wide variety of settings, i.e. on four different real robots (namely a Barrett
WAM, a BioRob, the JST-ICORP/SARCOS CBi and a Kuka KR 6), with
different cost functions (both with and without secondary objectives), and
with different policies in conjunction with their associated meta-parameters.

In the ball throwing task, we have discussed first steps towards a su-
pervisory layer that deals with sequencing different motor primitives. This
supervisory layer is learned by an hierarchical reinforcement learning ap-
proach (Huber and Grupen, 1998; Barto and Mahadevan, 2003). In this
framework, the motor primitives with meta-parameter functions could also
be seen as robotics counterpart of options (McGovern and Barto, 2001) or
macro-actions (McGovern et al, 1997). The presented approach needs to be
extended to deal with different actions that do not share the same underly-
ing parametrization. For example in a table tennis task the supervisory layer
would decide between a forehand motor primitive and a backhand motor
primitive, the spatial meta-parameter and the timing of the motor primitive
would be adapted according to the incoming ball, and the motor primitive
would generate the trajectory. Future work will require to automatically de-
tect which parameters can serve as meta-parameters as well as to discovering
new motor primitives.



6

Learning Prioritized Control of Motor

Primitives

Summary. Many tasks in robotics can be decomposed into sub-tasks that
are performed simultaneously. In many cases, these sub-tasks cannot all be
achieved jointly and a prioritization of such sub-tasks is required to resolve
this issue. In this chapter, we discuss a novel learning approach that allows to
learn a prioritized control law built on a set of sub-tasks represented by motor
primitives. The primitives are executed simultaneously but have different
priorities. Primitives of higher priority can override the commands of the
conflicting lower priority ones. The dominance structure of these primitives
has a significant impact on the performance of the prioritized control law.
We evaluate the proposed approach with a ball bouncing task on a Barrett
WAM.

6.1 Introduction

When learning a new skill, it is often easier to practice the required sub-
tasks separately and later on combine them to perform the task – instead of
attempting to learn the complete skill as a whole. For example, in sports sub-
tasks can often be trained separately. Individual skills required in the sport
are trained in isolation to improve the overall performance, e.g., in volleyball
a serve can be trained without playing the whole game.

Sub-tasks often have to be performed simultaneously and it is not always
possible to completely fulfill all at once. Hence, the sub-tasks need to be pri-
oritized. An intuitive example for this kind of prioritizing sub-tasks happens
during a volleyball game: a player considers hitting the ball (and hence avoid-
ing it touching the ground and his team loosing a point) more important than
locating a team mate and playing the ball precisely to him. The player will
attempt to fulfill both sub-tasks. If this is not possible it is often better to
“safe” the ball with a high hit and hope that another player recovers it rather
than immediately loosing a point.

J. Kober and J. Peters, Learning Motor Skills, 149
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Fig. 6.1 This figure illustrates the ball-
bouncing task on a Barrett WAM. The goal
is to keep the ball bouncing on the racket.

In this chapter, we learn different sub-tasks that are represented by mo-
tor primitives that combined can perform a more complicated task. For doing
so, we will stack controls corresponding to different primitives that represent
movements in task space. These primitives are assigned different priorities
and the motor commands corresponding to primitives with higher priori-
ties can override the motor commands of lower priority ones. The proposed
approach is outlined in Section 6.1.1 and further developed in Section 6.2.
We evaluate our approach with a ball-bouncing task (see Figure 6.1 and
Section 6.3).

As the sub-tasks describe the movements in task space, we have to learn a
control that is mapping to the robot joint space. Unfortunately, this mapping
is not a well-defined function for many robots. For example, if the considered
task space has less degrees of freedom than the robot, multiple solutions are
possible. This redundancy can be resolved by introducing a null-space control,
i.e., a behavior that operates on the redundant degrees of freedom. Such a null-
space control can for example pull the robot towards a rest posture (Peters
and Schaal, 2008c), prevent getting close to joint limits (Chaumette and
Marchand, 2001), avoid obstacles (Khatib, 1986) or singularities (Yoshikawa,
1985). Computing the task space control often corresponds to an optimization
problem, that can for example be solved by a gradient based approach. A well
known approach is the pseudo-inverse solution (Khatib, 1986; Peters and
Schaal, 2008c). An alternative is to learn an operational space control law
that implicitly includes the null-space behavior (Peters and Schaal, 2008a).
Once learned, it corresponds to a unique mapping from desired actions in
operational space to required actions in joint space.

The problem studied in this chapter is related to hierarchical control prob-
lems as discussed in (Findeisen et al, 1980). Using prioritized primitives in
classical control has been explored in (Sentis and Khatib, 2005) by using ana-
lytical projections into the null-space. In this chapter, we propose a learning
approach that does not require complete knowledge of the system, the con-
straints, and the task. In the reinforcement learning community, the composi-
tions of options (i.e., concurrent options), which is related to the concurrent
execution of primitives, has been studied by Precup et al (1998). Learning
null-space control has been explored in (Towell et al, 2010). In contrast, we do
not attempt to recover the implicit null-space policy but build a hierarchical
operational space control law from user demonstrated primitives.
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6.1.1 Proposed Approach

Based on the observation that many tasks can be described as a superpo-
sition of sub-tasks, we want to have a set of controls that can be executed
simultaneously. As a representation for the sub-tasks, we chose the dynamical
systems motor primitives, which are discussed in more detail in Chapter 3.
Such primitives are well suited as representation for the sub-tasks as they
ensure the stability of the movement generation. They are invariant under
transformations of initial position and velocity, the final position and velocity,
the duration as well as the movement amplitude.

In this chapter, these primitives are described in different task spaces, e.g.,
in the form

ẍi = πi(xi, ẋi, z)

where z denotes a share canonical system while xi are positions in task-space
i. For example, if we have a primitive “move end-effector up and down” its
task space would correspond to the Cartesian position indicating the height
(as well as the corresponding velocities and accelerations) but not include
the sideways movement or the orientation of the end-effector. The dynamical
systems motor primitives are well suited to represent different kinds of vertical
movements starting and ending at various states and of different duration.

These primitives are prioritized such that

i � i− 1,

which reads a “task i dominates task i− 1”. If both sub-tasks can be fulfilled
at the same time, our system will do so – but if this should not be possible,
sub-task i will be fulfilled at the expense of sub-task i − 1. We attempt to
reproduce a complex task that consists of several sub-tasks, represented by
motor primitives,

{π1, π2,, . . . , πN}
that are concurrently executed at the same time following the prioritization
scheme

N � N − 1 � · · · � 2 � 1.

This approach requires a prioritized control law that composes the motor
command out of the primitives πi, i.e.,

u = f(π1, π2,, . . . , πN ,q, q̇)

where q, q̇ are the joint position and joint velocity, u are the generated motor
commands (torques or accelerations).

We try to acquire the prioritized control law in three steps, which we will
illustrate with the ball-bouncing task:

1. We observe ẍi(t), ẋi(t),xi(t) individually for each of the primitives that
will be used for the task. For the ball-bouncing example, we may have the
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following sub-tasks: “move under the ball”, “hit the ball”, and “change
racket orientation”. The training data is collected by executing only one
primitive at a time without considering the global strategy, e.g., for the
“change racket orientation” primitive by keeping the position of the racket
fixed and only changing its orientation without a ball being present. This
training data is used to acquire the task by imitation learning under the
assumption that these tasks did not need to overrule each other in the
demonstration (Sect. 6.2).

2. We enumerate all possible dominance structures and learn a prioritized
control law for each dominance list that fusions the motor primitives. For
the three ball-bouncing primitives there are six possible orders, as listed
in Table 6.1.

3. We choose the most successful of these approaches. The activation and
adaptation of the different primitives is handled by a strategy layer (Sec-
tion 6.3.2). In the ball-bouncing task, we evaluate how long each of the
prioritized control laws keeps the ball in the air and pick the best per-
forming one (Section 6.3.3).

Clearly, enumerating all possible dominance structures only works for small
systems (as the number of possibilities grows with n!, i.e., exponentially fast).

6.2 Learning the Prioritized Control Law

By learning the prioritized control, we want to obtain a control law

u = q̈ = f(π1, π2,, . . . , πN ,q, q̇),

i.e., we want to obtain the required control u that executes the primitives
π1, π2,, . . . , πN . Here, the controls correspond to the joint accelerations q̈.
The required joint accelerations not only depend on the primitives but also
on the current state of the robot, i.e., the joint positions q and joint velocities
q̇. Any control law can be represented locally as a linear control law. In our
setting, these linear control laws can be represented as

u =

⎡
⎣ ẍi

q̇
q

⎤
⎦
T

θ = φTθ,

where θ are the parameters we want to learn and φ =
[
ẍi q̇ q

]
acts as

features. Often the actions of the primitive ẍi can be achieved in multiple
different ways due to the redundancies in the robot degrees of freedom. To
ensure consistency, a null-space control is introduced. The null-space control
can, for example, be defined to pull the robot towards a rest posture q0,
resulting in the null-space control

u0 = −KDq̇−KP (q− q0) ,
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where KD and KP are gains for the velocities and positions respectively.
To learn the prioritized control law, we try to generalize the learning

operational space control approach from (Peters and Schaal, 2008a) to a
hierarchical control approach (Sentis and Khatib, 2005; Peters and Schaal,
2008c).

6.2.1 Single Primitive Control Law

A straightforward approach to learn the motor commands u, represented by
the linear model u = φTθ, is using linear regression. This approach minimizes
the squared error

E2 =

T∑
t=1

(
uref
t − φT

t θ
)2

between the demonstrated control of the primitive ureft and the recovered
linear policy ut = φT

t θ, where T is the number of samples. The parameters
minimizing this error are

θ =
(
ΦTΦ+ λI

)−1
ΦTU, (6.1)

with Φ and U containing the values of the demonstrated φ and u for all time-
steps t respectively, and a ridge factor λ. If the task space and the joint-space
coincide, the controls u = q̈ are identical to the action of the primitive ẍi.
We also know that locally any control law that can be learned from data is a
viable control law (Peters and Schaal, 2008a). The error with respect to the
training data is minimized, however, if the training data is not consistent, the
plain linear regression will average the motor commands, which is unlikely to
fulfill the actions of the primitive.

In order to enforce consistency, the learning approach has to resolve the
redundancy and incorporate the null-space control. We can achieve this by
using the program

min
u
J = (u− u0)

T N (u− u0) (6.2)

s.t. ẍ = π (x, ẋ, z)

as discussed in (Peters and Schaal, 2008c). Here the cost J is defined as the
weighted squared difference of the control u and the null-space control u0,
where the metric N is a positive semi-definite matrix. The idea is to find
controls u that are as close as possible to the null-space control u0 while still
fulfilling the constraints of the primitive π. This program can also be solved
as discussed in (Peters and Schaal, 2008a). Briefly speaking, the regression
in Equation (6.1) can be made consistent by weighting down the error by
weights wt and hence obtaining

θ =
(
ΦTWΦ+ λI

)−1
ΦTWU
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Algorithm 6.1 Learning the Prioritized Control Law

define null-space control u0, metric N, scaling factor α

collect controls ui,t and features φi,t for all primitives i ∈ {1, . . . , N} and all
time-steps t ∈ {1, . . . , T} separately

for primitives i = 1 . . . N (N: highest priority) do

for time-steps t = 1 . . . T do

calculate offset controls
ûi,t = ui,t −∑i−1

j=1 φ
T
i,tθj − u0,t

calculate weights ŵi,t = exp
(−αûT

i,tNûi,t

)

end for

build control matrix Ûi containing ûi,1 . . . ûi,T

build feature matrix Φi containing φi,1 . . .φi,T

build weight matrix Ŵi = diag(ŵi,1, . . . , ŵi,T )

calculate parameters

θi =
(
ΦT

i ŴiΦi + λI
)−1

ΦT
i ŴiÛi

end for

end for

with W = diag(w1, . . . , wTn) for T samples. This approach works well for lin-
ear models and can be gotten to work with multiple locally linear control laws.
Nevertheless, it maximizes a reward instead of minimizing a cost. The cost
J can be transformed into weights wt by passing it through an exponential
function

wt = exp
(−αũT

t Nũt

)
,

where ũt = (ut − u0). The scaling factor α acts as a monotonic transforma-
tion that does not affect the optimal solution but can increase the efficiency
of the learning algorithm.

Using the Woodbury formula (Welling, 2010) Equation (6.2.1) can be
transformed into

u = φ(x)TΦT
(
ΦΦT +WU

)−1
U (6.3)

with WU = diag
(
ũT
1 Nũ1, . . . , ũ

T
nNũn

)
. By introducing the kernels k(s) =

φ(s)TΦT and K = ΦΦT we obtain

u = k(s)T (K+WU )
−1

U,

which is related to the kernel regression (Bishop, 2006) and corresponds to the
Cost-regularized Kernel Regression introduced in Chapter 5. This kernelized
form of Equation (6.3) overcomes the limitations of the linear model at a cost
of higher computational complexity.
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6.2.2 Prioritized Primitives Control Law

In the previous section, we have described how the control law for a single
primitive can be learned. To generalize this approach to multiple primitives
with different priorities, we want a control law that always fulfills the primi-
tive with the highest priority and follows the remaining primitives as much
as possible according to their place in the hierarchy. Our idea is to represent
the higher priority control laws as correction term with respect to the lower
priority primitives. The control of the primitive with the lowest priority is
learned first. This control is subsequently considered to be a baseline and
the primitives of higher priority only learn the difference to this baseline con-
trol. The change between the motor commands resulting from primitives of
lower priority is minimized. The approach is reminiscent of online passive-
aggressive algorithms (Crammer et al, 2006). Hence, control laws of higher
priority primitives only learn the offset between their desired behavior and
the behavior of the lower priority primitives. This structure allows them to
override the actions of the primitives of lesser priority and, therefore, add
more detailed control in the regions of the state space they are concerned
with. The combined control of all primitives is

u = u0 +

N∑
n=1

Δun,

where u0 is the null-space control and Δun are the offset controls of the N
primitives.

Such control laws can be expressed by changing the program in Equa-
tion (6.2) to

min
ui

J =

⎛
⎝ui −

i−1∑
j=1

Δuj − u0

⎞
⎠

T

N

⎛
⎝ui −

i−1∑
j=1

Δuj − u0

⎞
⎠

s.t. ẍi = πi(xi, ẋi, z),

where the primitives need to be learned in the increasing order of their priority,
the primitive with the lowest priority is learned first, the primitive with the
highest priority is learned last. The regression in Equation (6.2.1) changes to

θi =
(
ΦT

i ŴiΦi + λI
)−1

ΦT
i ŴiÛi,

where Ûi contains the offset controls ûi,t = ui,t −
∑i−1

j=1Δuj,t − u0,t for all

time-steps t, where Δuj,t = φT
i,tθj . The weighting matrix Ŵi now has the

weights ŵt = exp
(
−αûT

i,tNûi,t

)
on its diagonal and matrix Ûi contains off-

set controls ûi,t. The kernelized form of the prioritized control law can be ob-
tained analogously. The complete approach is summarized in Algorithm 6.1.
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(a) Exaggerated schematic drawing. The green arrows indicate velocities.

(b) Paddling movement for the simulated robot. The black ball represents the
virtual target (see Section 6.3.2)

(c) Paddling movement for the real Barrett WAM.

Fig. 6.2 This figure illustrates a possible sequence of bouncing the ball on the
racket in a schematic drawing, in simulation, and on the real robot

6.3 Evaluation: Ball-Bouncing

In order to evaluate the proposed prioritized control approach, we chose a ball
bouncing task. We describe the task in Section 6.3.1, explain a possible higher
level strategy in Section 6.3.2, and discuss how the proposed framework can
be applied in Section 6.3.3.

6.3.1 Task Description

The goal of the task is to bounce a table tennis ball above a racket. The racket
is held in the player’s hand, or in our case attached to the end-effector of the
robot. The ball is supposed to be kept bouncing on the racket. A possible
movement is illustrated in Figure 6.2.

It is desirable to stabilize the bouncing movement to a strictly vertical
bounce, hence, avoiding the need of the player to move a lot in space and,
thus, leaving the work space of the robot. The hitting height is a trade-off
between having more time until the next hit at the expense of the next hitting
position possibly being further away. The task can be sub-dived into three
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Fig. 6.3 This figure illustrates the em-
ployed strategy for bouncing the ball
on the racket. The highest point of the
ball trajectory is supposed to coincide
with the red target. The racket is al-
ways hitting the ball in a fixed height,
i.e., the hitting plane. The strategy is
to play the ball in a way that the next
intersection with the hitting plane is
directly below the target and the max-
imum height of the ball trajectory cor-
responds to the height of the target. If
the bounce works exactly as planned,
the ball needs to be hit only once to
return to a strictly vertical bouncing
behavior.

intuitive primitives: hitting the ball upward, moving the racket under the ball
before hitting, and changing the orientation of the racket to move the ball to
a desired location. A possible strategy is outlined in the next section.

The ball is tracked using a stereo vision setup and its positions and ve-
locities are estimated by a Kalman filter. To initialize the ball-bouncing task,
the ball is thrown towards the racket.

6.3.2 Bouncing Strategy

The strategy employed to achieve the desired bouncing behavior is based on
an imagined target that indicates the desired bouncing height. This target is
above the default posture of the racket. The top point of the ball trajectory
is supposed to hit this target, and the stable behavior should be a strictly
vertical bounce. This behavior can be achieved by defining a hitting plane,
i.e., a height at which the ball is always hit (which corresponds to the default
posture of the racket). On this hitting plane, the ball is always hit the in a
manner that the top point of its trajectory corresponds to the height of the
target and the next intersection of the ball trajectory with the hitting plane
is directly under the target. See Figure 6.3 for an illustration.

To achieve this desired ball behavior, the racket is always moved to the
intersection point of the ball trajectory and the hitting plane. By choosing the
hitting velocity and the orientation of the racket, the velocity and direction
of the ball after being hit can be changed. The required hitting velocity and
orientation are calculated using a model of the ball and the racket. The ball is
modeled as a point mass that moves according to the ballistic flight equations.
For the relatively low speeds and small distances air resistance is negligible.
The contact with the racket is modeled as a reflection with a restitution
factor.
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Table 6.1 This table shows the suitability of the possible dominance structures
(mean±std). The “hit the ball” primitive clearly is the dominant one, followed by
the “move under the ball” primitive. The prioritized control laws work significantly
better than a single model learned using the combined training data of the three
primitives. Preliminary results on the real robot confirm this ordering.

Dominance Structure
Number of Hits

in Simulation on Real Robot

single model 5.70 ± 0.73 1.10± 0.99

hit�move�orient 11.35 ± 2.16 2.30± 0.67

hit�orient�move 10.85 ± 1.46 1.70± 0.95

move�hit�orient 9.05 ± 0.76 1.40± 0.70

move�orient�hit 7.75 ± 1.48 1.40± 0.84

orient�hit�move 5.90 ± 0.85 1.30± 0.67

orient�move�hit 5.35 ± 0.49 1.30± 0.48

Using this strategy the ball can be brought back to a strictly vertical
bouncing behavior with a single hit. However, this method requires the knowl-
edge of the ball position and velocity, as well as a model of the ball behavior.
An alternative strategy that stabilizes the behavior in a completely open loop
behavior by employing a slightly concave paddle shape has been suggested in
(Reist and D’Andrea, 2009). A method similar to the proposed strategy has
been employed by Kulchenko (2011) and Müller et al (2011). Buehler et al
(1994) proposed the mirror law for this task. The ball bouncing task has also
be employed to study how humans stabilize a rhythmic task (Schaal et al,
1996).

6.3.3 Learning Results

As discussed in Section 6.3.1, the task can be described by three primitives:
“move under the ball”, “hit the ball”, and “change racket orientation”. Train-
ing data is collected in the relevant state space independently for each prim-
itive. For doing so, the parameters corresponding to the other primitives are
kept fixed and variants of the primitive are hence executed from various dif-
ferent starting positions. The primitive “move under the ball” corresponds
to movements in the horizontal plane, the primitive “hit the ball” to up and
down movements, and the primitive “change racket orientation” only changes
the orientation of the end-effector. We collected 30 seconds of training data
for each primitive, corresponding to approximately 60 bounces.

Having only three primitives allows it to enumerate all six possible dom-
inance structures, to learn the corresponding prioritized control law, and to
evaluate the controller. As intuitive quality measure we counted the number
of bounces until the robot missed, either due to imprecise control or due to the
ball being outside of the safely reachable work-space.
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Table 6.1 illustrates the resulting dominance structures. The most relevant
primitive is the “hit the ball” primitive, followed by the “move under the
ball” primitive. In the table it is clearly visible that inverting the order of
two neighboring primitives that are in the preferred dominance order always
results in a lower number of hits. Compared to a single model, that was
trained using the combined training data of the three primitives, all but two
prioritized control laws work significantly better. The ordering may appear
slightly counter-intuitive as moving under the ball seems to be the most
important primitive in order to keep the ball in the air, allowing for later
corrections. However, the robot has a fixed base position and the ball moves
quickly out of the safely reachable work-space, resulting in a low number of
hits. Additionally, the default position of the racket is almost vertical, hence
covering a fairly large are of the horizontal plane resulting in robustness with
respect to errors in this primitive.

6.4 Conclusion

In this chapter, we have presented a prioritized control learning approach that
is based on the superposition of movement primitives. We have introduced
a novel framework for learning prioritized control. The controls of the lower
priority primitives are fulfilled as long as they lay in the null-space of the
higher priority ones and get overridden otherwise. As representation for the
primitives, we employ the dynamical systems motor primitives (Ijspeert et al,
2002b; Schaal et al, 2007), which yield controls in the form of desired accelera-
tions. These primitives are executed separately to collect training data. Local
linear models are trained using a weighted regression technique incorporat-
ing the various possible dominance structures. In the presented ball bouncing
task, the movement is restricted to a space where the controls are approxi-
mately linear. Hence, a single linear model per primitive was sufficient. This
limitation can be overcome by either considering multiple local linear mod-
els (Peters and Schaal, 2008a) or by kernelizing the weighted regression, as
described in Section 6.2.1 and 6.2.2.

The dominance structure of the task was determined by testing all possi-
ble structures exhaustively. Intuitively, the lower priority primitives represent
a global behavior and the high priority primitives represent specialized correc-
tions, hence overriding the lower priority controls. In most cases, the resulting
prioritized control works significantly better than a single layer one that was
trained with the combined training data of all primitives. As illustrated by the
evaluations, the dominance structure can have a significant influence on the
global success of the prioritized control. Enumerating all possible dominance
structures is factorial in the number of primitives and hence unfeasible in
practice for more than four primitives. In this case, smarter search strategies
are needed.
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The success of the different dominance structures not only depends on
the task but also on the employed strategy of activating and adapting the
different primitives. An interesting area for future research could be to jointly
learn the prioritized control and the strategy.

The presented approach has been evaluated both in simulation and on a
real Barrett WAM and we have demonstrated that our novel approach can
successfully learn a ball-bouncing task.
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Conclusion

Summary. In this book, we have discussed reinforcement learning
approaches for motor skills represented by motor primitives. In the next sec-
tion, we provide an overview of the key contributions in this book and then
we discuss possible directions for extending the presented research.

7.1 Contributions

The contributions of this book are for the state-of the-art in both machine
learning and in robotics.

7.1.1 Algorithms

In this book, we have proposed a framework of policy search based on reward-
weighted imitation. The resulting EM-inspired algorithms are applicable both
to parametrized and non-parametric policies. The policy search algorithms
presented in this book perform local optimization which results in fast con-
vergence but also poses the risk of converging to bad local optima. For all the
presented application scenarios, good initial policies are available, which mit-
igates the problem of bad local optima and renders the approaches applicable
in practice.

In Section 1.2.1, we have discussed requirements for robotic reinforcement
learning approaches, i.e., they should avoid damage to the robot, and should
be fast, both in terms of convergence and computation time. Having a sample-
efficient algorithm, only very few open parameters, and the ability to incor-
porate prior knowledge all are essential for fast convergence. In the following
we will discuss how the proposed algorithms meet these requirements.
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Policy learning by Weighting Exploration with the Returns
(PoWER)

PoWER (Chapter 4) is an EM-inspired policy search algorithm relying on a
parametrized policy and structured exploration in the parameter space. The
algorithm is particularly suitable for motor primitives (Chapter 3). We intro-
duce a framework of reward weighted imitation that yields several well known
policy search algorithms: episodic REINFORCE (Williams, 1992), the policy
gradient theorem (Sutton et al, 1999), episodic natural actor critic (Peters
and Schaal, 2008b), a generalization of the reward-weighted regression (Pe-
ters and Schaal, 2008a).

PoWER is unlikely to damage the robot as it only explores locally and
usually is initialized by an initial policy. Using importance sampling, the
policy can be updated after each rollout, hence it is sample efficient. Prior
knowledge can be incorporated both in the form of the initial policy and
by defining the policy structure via the parametrization. The main open pa-
rameter is the exploration magnitude. This parameter only needs to be set
once initially and can then be automatically adjusted during the learning
process as discussed in Section 4.A.3. The policy structure is also an open
parameter. The dynamical systems motor primitives essentially only have a
single open parameter, i.e., the number of basis functions as an open param-
eter which corresponds to the amount of detail that the policy can capture.
The bottleneck of the update calculation is a matrix inversion that can be
avoided by making some additional independence assumptions that work well
in conjunction with the dynamical systems motor primitives.

PoWER outperformed various other policy search approaches (i.e., finite
difference gradients, episodic REINFORCE, ‘vanilla’ policy gradients with
optimal baselines, episodic natural actor critic, and episodic reward-weighted
regression) on benchmarks and robotic tasks. Our approach has inspired
follow-up work in other contexts, for example (Vlassis et al, 2009; Kormu-
shev et al, 2010). Theodorou et al (2010) have derived algorithms based on
the path integral approach that are very similar to PoWER and have also
been successfully employed for robotic tasks (Buchli et al, 2011; Kalakrishnan
et al, 2011; Pastor et al, 2011; Stulp et al, 2011; Tamošiūnaitė et al, 2011).

Cost-regularized Kernel Regression (CrKR)

CrKR (Chapter 5) is an EM-inspired policy search algorithm employing a
non-parametric policy representation. CrKR is based on a kernelized ver-
sion of the episodic reward-weighted regression [Peters and Schaal, 2008a,
Chapter 4]. Similar to Gaussian process regression, CrKR yields a predictive
variance that can be employed to guide the exploration. In this book it is
employed to generalize movements to new situations. This type of learning
relies on a policy representation that has a number of meta-parameters that
allow to generalize the movement globally while retaining the details of the
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motion. The motor primitives (Chapter 3) inherently have six modification
parameters (the initial position x0

1, the initial velocity x0
2, the goal g, the

goal velocity ġ, the amplitude A, and the duration T ) which serve as meta-
parameters.

CrKR explores locally similar to PoWER. It can include an initial policy
in the form of a prior or initial samples. The policy is updated after each
rollout. Instead of fixing a parametrized policy, the kernel hyper-parameters
need to be determined, which results in a more flexible policy representation
as demonstrated in comparisons with finite difference gradients and episodic
reward-weighted regression. The hyper-parameters can be estimated from
initial demonstrations. The update equation also includes a matrix inversion,
which theoretically could be replaced by a sparse approximation. However,
in the proposed setting the sample size was sufficiently small to allow full
matrix inversion.

7.1.2 Applications

The applications focus mainly on dynamical systems motor primitives as
policy representations but we also demonstrated the approaches using various
different parametrization. All approaches have been extensively evaluated on
benchmark tasks as well as with simulated and real robots, namely a Barrett
WAM, a BioRob, the JST-ICORP/SARCOS CBi and a Kuka KR 6.

We successfully learned the single movements of Tetherball Target Hit-
ting, Casting, Underactuated Swing-Up, and Ball-in-a-Cup using imitation
learning and subsequent reinforcement learning. Compared to alternative ap-
proaches the proposed algorithm consistently converged to a better solution
in less rollouts. In the Ball-in-a-Cup task the number of optimized parame-
ters would result in an unrealistic amount of rollouts for gradient based policy
search approaches.

We learned to generalize the motor skills of dart throwing and table
tennis strikes. In contrast to previous work on generalizing dynamical sys-
tems motor primitives, we employ reinforcement learning to discover a non-
intuitive mapping between states and actions. We compared the proposed
non-parametric approach to parametric ones and showed that it is hard to
find a good parametrization in this setting.

We have demonstrated initial steps towards hierarchical learning with
a ball target throwing task. In this task we learn how to hit targets while
keeping in mind a higher level strategy. Finally, we employed a ball-bouncing
task to explore first ideas towards learning to perform a task based on the
concurrent execution of several motor primitives.
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7.2 Open Problems

In this book, we have contributed to the state of art of autonomous acqui-
sition of motor skill by robots by developing approaches for learning motor
primitives via reinforcement learning in robotics. In the following we briefly
discuss possible extensions of the presented work and future lines of research.

Learning Motor Skills

The presented learning approaches have been applied to episodic tasks that
correspond to sports and games. In the following we present several ideas to
render them applicable to a wider variety of tasks and how to overcome some
of the current limitations.

Rhythmic Motor Tasks. This book focused on discrete motor tasks in an
episodic setting. However, there are also many interesting rhythmic motor
task that could be learned, e.g., the ball paddling movement, briefly discussed
in Section 4.4.2, could be optimized to consume less energy. Several periods
of such rhythmic tasks could be grouped into rollouts and the presented al-
gorithms would be directly applicable. However, it is not obvious how such
tasks could be learned online without frequent restarts. Deciding when com-
plete restarts are required is an interesting challenge. Rhythmic tasks often
require a start-up phase until transitioning into a stable rhythmic behavior.
Similarly, even if a stable behavior with a high reward is achieved after online
learning and exploration, it is not obvious to ensure that this state is directly
reachable.

Compliance. The presented policy parametrizations are all based on posi-
tions, velocities and accelerations in joint or task space. Force controlled
robots additionally allow to adapt their compliance and stiffness during the
movement. When humans learn a new motor skill, they are often fairly tense
initially but soon start to figure out during which parts of the movement
they can relax their muscles. Decreasing the stiffness of the robot renders
direct interactions with humans and its environment safer and has the addi-
tional benefit of being more energy efficient. Hence, the robot needs to remain
compliant unless the specific part of the movement requires higher forces or
precise positioning. Extending the dynamical systems motor primitives to
include global or directional stiffness would render the presented algorithms
applicable in this setting. A related approach has already been discussed by
Kalakrishnan et al (2011) for this problem.

Sparse Approximations. We employed CrKR (Chapter 5) to generalize motor
skills to new situations. In the current implementation we rely on the fact that
the sample size is typically small enough to compute the updates in real-time.
In Chapter 6 we employed a related approach to learn prioritized control,
which is straightforward to kernelize. However, only a few seconds of training
data could be used for real-time computations due to the high sampling
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rate. The matrix inversion is the main bottleneck, but also calculating the
kernel between the current state and all stored samples can pose problems.
As an alternative a local approximation or a sparse approximation could
be considered (Nguyen-Tuong and Peters, 2011). For the local models the
state-space is divided into smaller local ones, hence reducing the number of
training points. In a sparse approximation only the most informative points
are considered. The most challenging question for these approaches remains
how to construct the local models or to decide which points to discard, include,
or merge.

Continuous Adaptation. In Chapter 5, we evaluated tasks that only required
a one-time adaptation to the situation. Especially for the table tennis task,
continuously adapting the hitting movement to the ball’s movement would
render the task more reliable. Ball spin is hard to determine from the vi-
sion data before the ball bounces. However, due to acceleration limits of the
robot, the hitting movement needs to be initiated before the bounce. Concep-
tually CrKR can handle this setting as well, however considering the whole
state-space will result in significantly more samples, rendering real-time com-
putations more challenging (see above), and also make generalizations more
difficult due to the curse of dimensionality. Experiments need to be done in
order to evaluate the feasibility and to determine whether additional compo-
nents such as dimensionality reduction or models would be beneficial.

Manipulation. Compared to the presented applications (related to games and
sports), grasping and manipulation often require less dynamic movements but
in contrast have a higher dimensional state space due to the more complicated
interactions between the robot and the objects. Grasping and manipulation
are essential building blocks for many household tasks and have to be able to
generalize to novel objects and tools. For example, opening a door needs to
take into account a wide variety of handles and would benefit from adaptive
compliance levels (as discussed above) for approaching the handle, pushing
the handle, and opening the door.

Using Models. In Chapter 2, we identified the use of models as one of the
promising approaches to make reinforcement learning for robotics tractable.
We mainly employed a model of the robot and environment for debugging
purposes, before testing the algorithms on the real robot. The approaches
indirectly employ a model of the robot by using, e.g., the inverse dynamics
controller of the robot. Pre-training in simulation can be helpful if the models
are sufficiently accurate. An interesting extension of the proposed approaches
would be to employ mental rehearsal with learned models in between real
robot rollouts.

Hierarchical Reinforcement Learning

The hierarchical reinforcement learning approach presented in Chapter 5 is
very specific to the problem setting. A more general hierarchical reinforcement
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learning approach would need the ability to choose between different motor
primitives, the ability to discover new options, i.e., decide when it is better to
generate a new one than to generalize an old one, and the ability to learn the
shape parameters jointly with the meta-parameters. In a table tennis scenario
we could have a library of already learned motor primitives. The hierarchical
reinforcement learning approach would need to pick the most appropriate
primitive (a forehand, a backhand, a smash, etc.) from this library according
to the incoming ball, the current state of the robot, as well as strategic
considerations. The template primitives will have to be generalized according
to the current situation, either based on a single primitive or by combining
several primitives. An approach based on the mixture of motor primitives has
been recently proposed by Muelling et al (2010). Especially at the beginning
of the learning process it will often be advantageous to learn and add a new
primitive to the library instead of generalizing an old one.

Sequencing Motor Primitives. Another interesting direction for research is
learning to optimally transition between motor primitives, e.g., to change
from a forehand to a backhand. The transition needs to take into account ex-
ternal constraints such as self-collision and decide whether there is sufficient
time for a successful transition. This problem is highly related to motion
blending (Kovar, 2004). It would be very interesting to see how well the ap-
proaches developed by the computer graphics community transfer to robotics.

Superposition of Motor Primitives. In our daily lives we often perform several
motor skills simultaneously like balancing a tray while walking or sidestepping
and keeping balance while hitting a table tennis ball. In order to perform mul-
tiple motor skills simultaneously a system could for example overly, combine
and prioritize motor primitives. First ideas have been explored in Chapter 6.
Similar to inverse reinforcement learning it would be interesting to try to
recover a dominance structure of primitives from human demonstrations. Al-
ternatively, reinforcement learning could be employed to determine the best
ordering for a given reward.

Learning Layers Jointly. For the ball-bouncing task (Chapter 6), we assumed
that both the motor primitives and the strategy layer are fixed. In this task,
better performance could be achieved if not only the prioritized control would
be adapted but the primitives and the strategy as well. For example, the prim-
itives could be adapted to compensate for shortcomings of the learned or the
strategy could be adapted. A straightforward idea would be to run a rein-
forcement learning algorithm after the prioritized control has been learned.
PoWER could be employed to learn the parameters of the underlying prim-
itives. The approach presented in Chapter 5 is a first attempt to tackle this
kind of hierarchical problem.

Multiple Strategies. Learning single motor skills with PoWER (Chapter 4)
relied on a single initial demonstration. Combining several demonstrations
can potentially provide a better understanding of the important features of
the movement. However, using a weighted average of multiple demonstrations
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of different strategies is unlikely to succeed. Keeping multiple strategies in
mind and figuring out which parts of the movement can be learned jointly and
which parts have to be learned separately might lead to faster and more robust
learning. Daniel et al (2012) employ a hierarchical reinforcement learning
framework to learn different strategies for a thetherball task jointly.
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