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Preface

Structural properties play an important role in our understanding of linear systems
in the state space representation. The structural canonical form representation of
linear systems not only reveals the structural properties but also facilitates the
design of feedback laws that meet various control objectives. In particular, it
decomposes the system into various subsystems. These subsystems, along with
the interconnections that exist among them, clearly show the structural properties
of the system. The simplicity of the subsystems and their explicit interconnections
with each other lead us to a deeper insight into how feedback control would take
effect on the system, and thus to the explicit construction of feedback laws that
meet our design specifications. The discovery of structural canonical forms and
their applications in feedback design for various performance specifications has
been an active area of research for a long time. The effectiveness of the structural
decomposition approach has also been extensively explored in nonlinear systems
and control theory in the recent past.

The aim of this book is to systematically present various canonical represen-
tations of the linear system, that explicitly reveal different structural properties of
the system, and to report on some recent developments on its utilization in sys-
tem analysis and design. The systems we will consider include the autonomous
system, whose inherent properties are solely determined by a matrix that repre-
sents its dynamics; the unforced or unsensed system, whose inherent properties
are dependent on a pair of matrices, the matrix that represents its internal dynam-
ics and the measurement or control matrix; and the proper system whose inher-
ent properties are determined by a matrix triple or a matrix quadruple. We will
also consider linear descriptor systems whose structural properties are determined
by a matrix quintuple. All the results will be presented in both continuous-time
and discrete-time settings. The relationship between the structural properties of a
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continuous-time system and those of its discrete-time counterpart under a bilinear
transformation will also be established.

The intended audience for this book includes graduate students, practicing
control engineers and researchers in areas related to systems and control engineer-
ing. In writing this book, we have striven to make the presentation self-contained.
A comprehensive review of various topics from matrix theory and linear systems
theory is included in the beginning of the book. However, it is assumed that the
reader has previous knowledge in both linear algebra and linear systems and con-
trol theory.

The first two authors would like to express their hearty thanks to late Professor
Chin S. Hsu of Washington State University, for his kind help during their stay at
Washington State University, and for his vivid and entertaining lectures on linear
systems theory. A number of exercise problems in Chapter 3 are adopted from
the homework assignments and examination questions of his course. They would
also like to thank Professor Ali Saberi of Washington State University and Pro-
fessor Pedda Sannuti of Rutgers University for their rigorous supervision during
the PhD programs of the first two authors at Washington State University, and in
particular, for their guidance to the theory of the special coordinate basis of linear
systems, one of the key components presented in this manuscript. The third au-
thor would like to express his thanks to Professor Ali Saberi for introducing him
to this research topic and his initial collaboration. The first author is particularly
thankful to Professor Pedda Sannuti for his invaluable guidance on the preparation
of scientific manuscripts. The second author would like to thank Professor Gong-
tian Yan of Beijing Institute of Control Engineering for his rigorous instruction on
matrix theory and linear systems theory.

We are indebted to Mr. Xinmin Liu of the National University of Singapore
for his assistance in developing a MATLAB software toolkit for this book, and to
Professor Dazhong Zheng of Tsinghua University for his help in proofreading the
manuscript. We are thankful to Dr. Delin Chu, Dr. Kemao Peng, Mr. Guoyang
Cheng, Mr. Yingjie He and Dr. Minghua He, all of the National University of Sin-
gapore, for their many comments on the manuscript. We would also like to thank
Professor Tong H. Lee of the National University of Singapore, Professor Frank
L. Lewis of the University of Texas at Arlington, Professor Iven Mareels of the
University of Melbourne, and Professor Mehrdad Saif of Simon Fraser Univer-
sity, for many beneficial discussions on the subject. The authors are grateful to
their respective institutions, the National University of Singapore, the University
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of Virginia, and the State University of New York at Stony Brook, for excellent
environments for fundamental research.

We are indebted to Professor William S. Levine, the series editor, for his en-
thusiasm and encouragement of our effort in completing this book. We are also
thankful to the editorial staff at Birkhduser, in particular, Mr. Thomas Grasso and
Mr. Seth Barnes, for their excellent editorial assistance.

Finally, we note that each of the computational algorithms included in the
book has been implemented in the Linear Systems Toolkit, in the MATLAB envi-
ronment. Access to the toolkit, a beta-version of which is available at the web site,
http://linearsystemskit.net, will greatly facilitate understanding and
application of the various analysis and design algorithms presented in the book.
Interested readers who have our earlier versions of the software realization of the
special coordinate basis, i.¢., those reported in Chen (1988) [17], Lin (1989) [84]
and Lin et al. (1991) [90], are strongly encouraged to update to the new toolKkit.
The special coordinate basis, one of the structural decomposition techniques cov-
ered in this book, implemented in the new toolkit, is based on a numerically stable
algorithm recently reported in Chu et al. (2002) [36] together with an enhanced
procedure reported in this book.

This monograph was typeset by the authors using I£TgX. All simulations and
numerical computations were carried out in MATLAB. Diagrams were generated
using XFIG in LINUX and MATLAB with SIMULINK.

Ben M. Chen, Kent Ridge, Singapore
Zongli Lin, Charlottesville, Virginia
Yacov Shamash, Stony Brook, New York

June 2004
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Chapter 1

Introduction and Preview

1.1 Motivation

The state space representation of linear systems is fundamental to the analysis and
design of dynamical systems. Modern control theory relies heavily on the state
space representation of dynamical systems, which facilitates characterization of
the inherent properties of dynamical systems. Since the introduction of the con-
cept of a state, the study of linear systems in the state space representation itself
has emerged as an ever active research area, covering a wide range of topics from
the basic notions of stability, controllability, observability, redundancy and mini-
mality to more intricate properties of finite and infinite zero structures, invertibil-
ity, and geometric subspaces. A deeper understanding of linear systems facilitates
the development of modern control theory. The demanding expectations from
modern control theory impose an ever increasing demand for the understanding
and utilization of subtler properties of linear systems.

The importance of linear systems theory and the active research activities as-
sociated with it are also reflected in the continual publication of text books and
monographs in linear systems theory, especially since publication of the classic
works on state space approach and other associated topics such as controllabil-
ity, observability and stability by Kalman and his co-workers [66,71~73], Gilbert
[58], and Zadeh and Desoer [157]. A recent featured review of books on linear
systems by Naidu [103] contains an extensive survey of books published in differ-
ent periods of time. A few examples of earlier books published around the 1960s
and 1970s are DeRusso et al. (1965) [47], Ogata (1967) [104], Brockett (1970)
[14], Chen (1970) [32], Rosenbrock (1970) [112], and Blackman (1977) [13]. Ex-

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004



2 Chapter 1. Introduction and Preview

amples of relatively recent books on linear systems that appeared in the 1980s and
later are Kailath (1980) [70], McClamroch (1980) [98], Chen (1984) [33], De-
Carlo (1989) [46], Sontag (1990) [132], Antoulas (1991) [3], Callier and Desoer
(1991) [16], Rugh (1996) [114], Antsaklis and Michel (1997) [4], DeRusso (1998)
[48], Sontag (1998) [133], Bay (1999) [10], Chen (1999) [34], Aplevich (2000)
[5], and Trentelman et al. (2001) [141].

These books take different pedagogical approaches to presenting fundamental
aspects of linear systems theory and to reporting on new advances in the field.
This book takes a structural decomposition approach to the study of linear time-
invariant systems. Structural decomposition is not a new concept, and several
structural decompositions can be found in many existing text books on linear sys-
tems theory. Basic properties such as stability, controllability and observability
of a linear time-invariant system in the state space representation can all be char-
acterized in terms of coefficient matrices. For a controllable system, the inner
working of how each control signal reaches different parts of the system can be
characterized by the controllability index, a structural property that is invariant
under state transformation. Appropriate state variables can be chosen such that
the system is represented in a so-called controllable canonical form, from which
the controllability indices can be readily identified and a stabilizing feedback law
can be constructed in a straightforward way. The representation of controllable
canonical form is a structural decomposition, which reveals the controllability in-
dices of the system. Other examples of structural decomposition that can be found
in linear systems theory text books include the observable canonical form (which
reveals the observability indices), and the Kalman Decomposition (which charac-
terizes the controllability and observability of the system modes).

The above structural decompositions demonstrate their power in our study of
the problems of stabilization and state observation. However, the study of control
problems beyond stabilization and state observation entails the understanding of
structural properties more intricate than controllability and observability. For ex-
ample, control problems such as Hy and H, optimal control are closely related
to subtler structural properties such as finite and infinite zero structures and sys-
tem invertibility properties. Naturally, there have always been efforts devoted to
the study of various structural properties of linear systems and their utilization in
the analysis and design of control systems. As such, it is appropriate to trace a
short history of the development of structural decomposition techniques for linear
systems. To the best of our knowledge, the concept of utilizing structural decom-
position of a dynamical system in solving control problems beyond stabilization
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first arose while dealing with high gain and cheap control problems (see €.g., San-
nuti [121]). By separating the finite and infinite zero structures of what are now
known as uniform rank systems, Sannuti [121] showed the usefulness of utilizing
the special coordinate basis, a structural decomposition, to discuss the important
features of high gain and cheap control problems. Sannuti and Wason [123] later
extended the concept of the special coordinate basis to general invertible systems
and showed its significance in connection with multivariable root locus theory. By
utilizing a modified structural algorithm of Silverman [131], Sannuti and Saberi
[122] and Saberi and Sannuti [119] solidified the concept of the special coordinate
basis of general linear multivariable systems, which is structure-wise fairly sim-
ilar to the nine-fold canonical decomposition of Aling and Schumacher [2], and
identified most of its important properties including those that are related to cer-
tain subspaces encountered in geometric control theory and the invariant indices
of Morse [100]. However, all the properties of the special coordinate basis in
the original work of [122,119] were reported without detailed proofs. The theory
was recently completed by Chen [21], which includes rigorous proofs to all the
aforementioned properties within the framework of the special coordinate basis
for general strictly and nonstrictly proper systems. More recently, He and Chen
[64] and He, Chen and Lin [65] further extended the technique to general linear
singular or descriptor systems. Also, in the past several years, we, together with
our co-workers, have been studying the structural properties and demonstrating
the applications of structural decompositions in the solution of numerous control
problems, in a systematic manner. A coherent approach to linear systems theory
and control has emerged from our results, which are dispersed in the literature,
many in relatively abstract forms. It is our intention to bring these results together
with more detailed illustrations and interpretations, and put them under a single
cover.

1.2 Preview of Each Chapter

Briefly, the book contains 12 chapters, which can be naturally divided into three
parts. The first part, Chapters 1 to 3, deals with the needed background material
and can serve as a comprehensive review of linear systems theory. In particular,
Chapter 1 is the introduction to the book. It also introduces the notation to be used
throughout the book, while Chapter 2 collects some basic facts from matrix theory.
Chapter 3 summarizes essential elements of linear systems theory. Both Chapter 2
and Chapter 3 serve as a review of the background materials needed for the book.
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The second part of the book, Chapters 4 to 7, presents various structural de-
compositions for linear systems, both in continuous-time and in discrete-time.
Various intricate system properties are identified in the context of these structural
decompositions. In particular, Chapter 4 presents structural decompositions for
systems that are unforced and/or unsensed. For systems that are both unforced
and unsensed, i.e., autonomous systems, the structural properties center on sys-
tem stability and include the stability structural decomposition (SSD), in which
the system is decomposed into stable and unstable dynamics as well as dynamics
that are associated with the imaginary axis poles, and the real Jordan decompo-
sition (RID). As in all other decompositions presented in this book, strong em-
phasis is placed on the numerical stability of the algorithms we develop for these
decompositions. For unforced systems, we will present two structural decompo-
sitions, the observability structural decomposition (OSD) and the block diagonal
observable structural decomposition (BDOSD). Dually, for unsensed systems, we
will also present two structural decompositions, the controllability structural de-
composition (CSD) and the block diagonal controllable structural decomposition
(BDCSD). These structural decompositions for unforced and/or unsensed systems
find many applications in control systems, including the sensor/actuator selection
problem to be discussed in Chapter 9.

Chapters 5 and 6 present structural decompositions for proper linear systems
and linear descriptor systems, respectively. Core to the structural decomposi-
tions for proper linear systems is the special coordinate basis (SCB) developed
by Sannuti and Saberi [122] and the nine-fold canonical decomposition of Aling
and Schumacher [2] for strictly proper systems. These structural decompositions
display various structural properties of linear systems, including finite and infi-
nite zero structures, system invertibility properties and geometric subspaces. The
structural decomposition for regular systems have been instrumental in the solu-
tion of many control problems including the few control problems to be presented
in Chapters 8 to 11 of this book. We expect the structural decomposition for de-
scriptor systems will play similar roles in the solution of control problems for
descriptor systems. .

Chapter 7 studies the structural properties of a system under bilinear transfor-
mation. The bilinear and inverse bilinear transformations have widespread use in
digital control and signal processing. It has also played a crucial role in solving the
H, control problem. In fact, the need to perform continuous-time to discrete-time
model conversions arises in a range of engineering contexts, including sampled-
data control system design and digital signal processing. As a consequence, nu-
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merous discretization procedures exist, including zero- and first-order hold input
approximations, impulse invariant transformation, and bilinear transformation. In
this chapter, we present a clear and comprehensive understanding of how the
structures, i.e., the finite and infinite zero structures, invertibility structures, as
well as geometric subspaces of a general continuous-time (discrete-time) linear
time-invariant system are mapped to those of its discrete-time (continuous-time)
counterpart under the well-known bilinear (inverse bilinear) transformations.

The remaining chapters of this book contain several applications of the system
structural decompositions presented in Chapters 4 to 7 in the analysis and design
of linear control systems.

Chapter 8 presents algorithms for two system factorizations of general linear
systems, the minimum phase and all-pass cascade factorization, which covers the
well-known inner-outer factorization as a special case, and the generalized cas-
cade factorization. These factorizations have been important algebraic problems
in a variety of areas in electrical engineering, including systems and control anal-
ysis design. In particular, the minimum phase and all-pass cascade factorization
factors a general nonminimum phase and non-left invertible system into a mini-
mum phase and left invertible system cascaded with a stable all-pass system with
unity gain. Our algorithm demonstrates how straightforward it is to obtain such
a factorization, and consequently the inner-outer factorization, of a given system
once it is displayed under the structural decomposition of Chapter 5.

Chapter 9 studies the flexibility in assigning structural properties to a given lin-
ear system, and introduces techniques for identifying sets of sensors which would
yield desirable structural properties. It is well recognized that a major difficulty
encountered in applying multivariable control synthesis techniques, such as the
Hj and H, control techniques, to actual design is the inadequate study of the
linkage between control performance and design implementation involving hard-
ware selection, e.g., appropriate sensors suitable for robustness and performance.
This linkage provides a foundation upon which trade-offs can be considered at the
preliminary design stage. Thus, one can introduce careful control design consid-
erations into the overall engineering design process at an early stage.

Chapter 10 deals with the problem of asymptotic time-scale assignment. Based
on the structural decomposition of a given system, a systematic procedure is de-
veloped for designing feedback laws that result in pre-specified eigenstructures
of the closed-loop system. The essence of this time-scale assignment procedure
is the utilization of subsystems which represent the finite and infinite as well as
invertibility structures of the system, as revealed by the structural decomposition.
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This time-scale assignment procedure has proven to be instrumental in the solu-
tion of many modern control problems including H , control, H> control, loop
transfer recovery and disturbance decoupling problems.

Chapter 11 addresses the problem of disturbance decoupling with or without
internal stability by either state feedback or measurement feedback. The problem
of disturbance decoupling has been extensively studied for the past three decades.
It motivated the development of the geometric approach to linear systems and
control theory, and has played a key role in a number of problems, including de-
centralized control, noninteracting control, model reference tracking control, and
H,,, optimal control. For the problem of disturbance decoupling with constant or
static measurement feedback, there have been only a few results in the literature.
With the aid of the structural decomposition, this chapter derives a set of structural
conditions for the solvability of the disturbance decoupling problem with static
measurement feedback and characterizes all the possible solutions for a class of
systems which have a left invertible transfer function from the control input to the
controlled output. For general systems, solutions can be derived by applying a
similar procedure to an irreducible reduced-order system obtained from the given
system using the structural decomposition technique of Chapter 5.

Chapter 12 includes the description of a MATLAB toolkit that implements all
the analysis and design algorithms presented in the book. The toolkit -itself is
publicly available. The beta-version of the toolkit can be downloaded for free
from the URL at http://linearsystemskit.net.

1.3 Notation
Throughout this book we shall adopt the following notation:

R := the set of real numbers,
R, := the set of nonnegative real numbers,
N := the set of all natural numbers, i.e.,0,1,2,...,
C := the entire complex plane,
K := ascalar field associated with a vector space,
C° := the unit circle in the complex plane,
C® := the set of complex numbers inside the unit circle,
C® := the set of complex numbers outside the unit circle,

C° := the imaginary axis in the complex plane,
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Cc:
Cct:
Rea :=

Ima:

I:

I :
diag{---} :=
blkdiag{- - -} :
X = [zy] :
X'

the open left-half complex plane,

the open right-half complex plane,

the real part of a scalar a € C,

the imaginary part of a scalar o € C,

the complex conjugate of a scalar a € C,

a scalar zero or a zero vector or a zero matrix,
an empty set,

an identity matrix of appropriate dimensions,
k x k identity matrix,

a diagonal matrix,

a block diagonal matrix,

a matrix X with its entries being z;;,

the transpose of a matrix X,

the conjugate transpose of a matrix X,

the determinant of a matrix X,

the rank of a matrix X,

the normal rank of a rational matrix X,

= the trace of a matrix X,

= the condition number of a matrix X,

= the Moore-Penrose (pseudo) inverse of a matrix X,

= the i-th eigenvalue of a matrix X,

= the minimum eigenvalues of a matrix X whose A(X) C R,

= the maximum eigenvalues of a matrix X whose A(X) C R,

the set of eigenvalues of a matrix X,
the spectral radius of a matrix X,
the i-th singular value of a matrix X,

the minimum singular value of a matrix X,

= the maximum singular value of a matrix X,

the image or range space of a matrix X,

= the kernel or null space of a matrix X,

a vector space or subspace,
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dim (X) :

Xt =

CHX}:
X[V
D

(z,y) =

IR
llzllp :
|z :
1X1lp :
1 X1l -
llgll :
Ly:
G2 :
I1Glloo :

Y=

Px(s) :

L(%):
S5(%) :
Sk(®):
SF(X):
SH(E) :
VX(E) :
S*(X):
R* (%) :
N*(D):

the dimension of a subspace X,

the orthogonal complement of a subspace &',

the inverse image of subspace X associated with C,
the factor space of X modulo its subspace V,

direct sum of vector subspaces,

the inner product of two vectors z and y,

a norm,

p-norm of a vector z, p € [1, c0],

Euclidean norm of a vector z,

p-norm of a matrix X, p € [1, 00],

Frobenius norm of a matrix X,

the I,-norm of a signal, g(t) or g(k),

the set of all functions whose [ ,-norms are finite,
the Hs-norm of a stable system G(s) or G(z),

the H..-norm of a stable system G(s) or G(z),

a continuous- or discrete-time linear system,

the system matrix of X,

the invariant lists of Morse, : = 1,2, 3, 4,

the finite zero structure of ¥ associated with a finite zero 3,
the infinite zero structure of ¥,

the right invertibility structure of X,

the left invertibility structure of X,

the weakly unobservable subspace of X,

the strongly controllable subspace of X,

the controllable weakly unobservable subspace of T,

the distributionally weakly unobservable subspace of ¥,

and finally the symbol m is used to indicate the end of a proof.



Chapter 2

Mathematical Background

2.1 Introduction

In this chapter we recall some needed mathematical background materials. These
include the fundamental facts and properties of vector spaces and matrix theory
and the definitions and properties of various norms of vectors, matrices, signals
and rational transfer functions. These materials are particularly useful for devel-
oping and understanding results in the following chapters. More detailed infor-
mation on the subjects can be found in more specific mathematics textbooks, or
other texts in linear systems and control theory (see, e.g., Barnett [8], Chen [22],
Chen [33], Desoer and Vidyasagar [49], Golub and Van Loan [59], Huang [68],
Kailath [70], Kreyszig [78], Saberi et al. [120], Suda et al. [138], Trentelman et
al. [141], Wielandt [150] and Wonham [154]).

2.2 Vector Spaces and Subspaces

We assume that the reader is familiar with the basic definitions of scalar fields and
vector spaces.

Let X be a vector space over a certain scalar field K. A subset of X, say S,
is said to be a subspace of X if &§ itself is a vector space over K. The dimension
of a subspace S, denoted by dim S, is defined as the maximal possible number of
linearly independent vectors in S.

We say that vectors s1,582,...,5k € S, £ = dimS, form a basis for S if
they are linearly independent, i.e., ELI o;8; = 0 holds only if a; = 0. Two
subspaces V and W are said to be independent if VN W = {0}.

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004
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Throughout the book, we will focus our attention on two common vector
spaces, i.e., R (with a scalar field K=R) and C" (with a scalar field K=C), and
their subspaces. Thus, the inner product of two vectors, say = and y, in either R™
or C", is given by

(z,y) = 2"y = z{y1 + Toy2 + - + ThYn, (2.2.1)

where 21,23, ..., Z, and y1, Y2, . . . , Yn are respectively the entries of z and y, z*
is the conjugate transpose of z, and z is the complex conjugate of z;. Vectors
and y are said to be orthogonal if (z,y) = 0.

In what follows, we recall some frequently used concepts and properties of
vector spaces and subspaces.

Definition 2.2.1 (Sums of subspaces). Let) and W be the subspaces of a vector
space X. Then, the sum of subspaces V and W is defined as

S=V+W:={v+w|veV, we W}. (222)

IfV and W are independent, then S is also called the direct sum of V and W and
is denoted by S = V @ W. Obviously, in both cases, S is a subspace of X.

Definition 2.2.2 (Orthogonal complement subspace). Let V be a subspace of a
vector space X. Then, the orthogonal complement of V is defined as

Vi ={zeX|(z,v) =0, Vv eV} (2.2.3)
Again, V* is a subspace of X.

Definition 2.2.3 (Quotient space and codimension). Let V be a subspace of a
vector space X. The coset of an element x € X with respect to V, denoted by
z + V, is defined as

z+V:i={w|lw=z+v,veEV} (2.2.4)
Under the algebraic operations defined by
(w+V)+(z+V)=(w+z)+V (2.2.5)

and
a(w+V) =aw+V, (2.2.6)

it is straightforward to verify that all the cosets constitute the elements of a vector
space. The resulting space is called the quotient space or factor space of X by V
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(or modulo V) and is denoted by X [ V. Its dimension is called the codimension of
V and is denoted by codim V,

codimy = dim X'/V = dim X — dim V. 227
Note that X |V is not a subspace of X unless V = {0}.

Definition 2.2.4 (Kernel and image of a matrix). Given A € C™*" (orR™*"),
a linear map from X =C" (orR") to Y =C™ (or R™), the kernel or null space of
A is defined as

ker (A) := {z € X | Az = 0}, (2.2.8)
and the image or range space of A is defined as
im(A) = AX = {Az|z € X}. (229
Obviously, ker (A) is a subspace of X, and im (A) is a subspace of .

Definition 2.2.5 (Inverse image of a subspace). Given A € C™*" (or R™*"),
a linear map from X = C™ (orR") to Y = C™ (or R™), and V, a subspace of )/,
the inverse image of ) associated with the linear map is defined as

A"V} :={z € X|Az € V}, (2.2.10)
which clearly is a subspace of X

Definition 2.2.6 (Invariant subspace). Given A€ C™*" (or R"*"), a linear map
from X = C" (orR™) to X, a subspace V of X is said to be A-invariant if

AV CV. (2.2.11)
Such a 'V is also called an invariant subspace of A.

The following are some useful properties of subspace manipulations: Let S,
V and W be subspaces of a vector space, we have

(SH* =S, 2.2.12)
V+W)t =vtnwt, (2.2.13)
vnw)t=vti+wt (22.14)

S+VnW)cCc(S+V)N(S+W), (2.2.15)
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SNV+W)D(SENY)+(SnW). (2.2.16)
If Y C S, then we have

SNV+W) =V +(SNW). 2.2.17)

Given a linear map A and subspaces V and W of appropriate dimensions, we have

AVNW) C AVN AW, (2.2.18)

AV +W) = AV + AW, (2.2.19)
ATHYnWl = A1 (VInA YW}, (2.2.20)
ATHY+ W} D A7V + A7y, (2.2.21)
(A"H{vpt = a4, 2.2.22)

ker (4") = {im (4)}*, (2.2.23)

where A" is the conjugate transpose of A. Lastly, the following relations are
equivalent:
ASCV <= Awtcsh (2.2.24)

2.3 Matrix Algebra and Properties

This section gives a brief review of basic matrix algebra and some useful matrix
properties. For easy reference, we write an m x n matrix, say A € C™*", as
follows:

aip; a2 Q1n
a1 Q22 -+ Q2p

A= : . . : = [aij], (231)
Oml Gm2 - Gma

i.e., when a capital letter is used to denote a matrix, the corresponding lowercase

letter with subscript i 5 refers to its (7, j) component. The transpose of A is defined
as

A = C= [c,'j = aji], (2.3.2)

and its conjugate transpose is defined as

AV :=C= [cij =a ], (2.3.3)

§i

with a; being the complex conjugate of a j;.
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2.3.1 Determinant, Inverse and Differentiation

For a square matrix A € C"*", its determinant, det (A4), is given by

n
det(4) = Y (-1 aydet(4;;), Vi=1,2,...,n, (2.3.9)
i=1
where A;; is an (n — 1) x (n — 1) matrix obtained by deleting the i-th row and
j-th column of A. For A(t) : R — C™*", its differentiation is defined as

%A(t) = [%a,-,-(t)] = (a5 (8], 235)

provided that all its entries are differentiable with respect to ¢.

If two square matrices A € C"*™ and B € C"*" satisfy AB = BA = I,
then B is said to be the inverse of A and is denoted by A~!. If the inverse of A
exists, then A is said to be nonsingular; otherwise it is singular. We note that A is
nonsingular if and only if det (A) # 0.

The following are some useful properties and identities of the determinant,
inverse and differentiation: Given 4, B € C™*™ and . € C, we have

det (AB) = det(BA) = det (A) - det(B), (2.3.6)
det(A') = det (4), (23.7)
det(aA) = a"det (A). (23.8)
Suppose A and B are square matrices of appropriate dimensions. Then,
det [é IB)] = det(A) -det(B - CA™'D) (2.3.9)
if A is nonsingular, or
det [g g ] = det(B) - det(A — DB!() (2.3.10)

if B is nonsingular. Given A € C™*" and B € C™*™, it follows from (2.3.9)
and (2.3.10) that

det (I, + AB) = det(I,, + BA). (2.3.11)

Given a nonsingular A € C™*", and u,v € C" satisfying v*A~1u # —1, then

B A lyptAL

Hy—1 _ A—l
(4+uf) 1+ vHA-1y’

(23.12)
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which is known as the Sherman-Morrison formula (see Golub and Van Loan [59])
and its generalized versions are very handy in deriving many interesting results
in systems and control theory. The Sherman-Morrison-Woodbury formula or
simply the Woodbury formula below is one of its generalizations,

(A+ BCD) ' =A"' - A"'B(DA™'B+C"!)"'DA™?, (2.3.13)

where A € C™*™ and C € C™*™ are nonsingular, B and D are of appropriate
dimensions, and (DA~ B + C~!) is nonsingular. The following identities are

particularly useful:
(I+AB)™'A= A(I + BA)™}, (2.3.14)
[[+C(sI-A)'B|™=I-C(sI- A+ BC)™'B, (2.3.15)
and
(I-BD)™'=I+B(I-DB)™'D. (2.3.16)

Identities below for the inverse of a block matrix (see, e.g., [70]) are also handy:
If A and B are nonsingular, then

5 5]

A D1t
0 B
If A is nonsingular, then

A D -1 A=l 4+ A-1DA-1CA-! —A-1DA-L
[C B] =[ —A-lcA? A-1 ] (2.3.19)

where A := B — CA~! D. Furthermore, if B is also nonsingular, then it follows
from (2.3.13) that

Al 0
[ _piga B-l] (2.3.17)

and
(2.3.18)

A™' —-A-1pB™!
0 B! )

A'+ AT'D(B-CA™'D)"'1CA™' = (A- DB7!(0) 7Y,

and thus (2.3.19) can be rewritten as

A D]! [(A-DB-'C)"! —A-DA"!
¢c B| T| -—a-lca? A-1 : (2.3.20)
Similarly, if B is nonsingular, then
A D™ v —V-1DB1
C B = — B¢yl B! +B—-1Cv_1DB_1 , (2.3.21)
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where V = A — DB~!C. In addition, if A is also nonsingular,

[A D]‘lz[ v ~V-1pB-! ]

c B _B-ICV-! (B-CA-'D)!|" (2322)

Next, given A(t) : R = C™*" and B(t) : R — C™*” whose entries are
differentiable with respect to t, we have

%[A(t)B(t)] = [%A(t)] B(t) + A(t) [%B(t)] : (2.323)

Given A(t) : R — C™ ", if A(t) is nonsingular for all ¢ and its entries are
differentiable with respect to ¢, then

d d
— [A®) 7] = -A@) T | =A@ AR 2.3.
7 (407 = =40 [ £400] 40 @324
2.3.2 Rank, Eigenvalues and Jordan Form
Let us rewrite a matrix A € C™*" as
T1
T2
A= [Cl Cy - Cn] = , (2.3.25)
Tm
where ¢;, i = 1,2,...,n,and r;, i = 1,2,...,m, are respectively the columns
and rows of A. The rank of A is defined as the maximum number of linearly
independent vectors in {c1,¢z,...,¢}, or equivalently, the maximum number
of linearly independent vectors in {r1,73,...,mm}, and is denoted by rank (A).
Clearly,
rank (A) = dim {im (4)} = n — dim {ker (4)}. (2.3.26)

The following are some useful properties of matrix ranks. Let A € C™*™ and
B € C™**, Then,

rank (A) + rank (B) — n < rank (AB) < min{rank (A), rank (B)}, (2.3.27)
which is known as Sylvester’s inequality. If A is square and nonsingular, then
rank (AB) = rank (B). (2.3.28)
In general, if A and B have the same dimensions, then

rank (A + B) < rank (A) + rank (B). (2.3.29)
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The computation of matrix ranks plays a crucial role in obtaining the various struc-
tural decompositions of linear systems to be developed in this book. The compu-
tation of a matrix rank can be carried out efficiently by using the singular value
decomposition to be reviewed in Section 2.3.4.

Next, given a square matrix A € C™*", a scalar A € C is said to be an
eigenvalue of A if

Az =Xz (<= (A\[-A)z=0), (2.3.30)

for some nonzero vector z € C™. Such an z is called a (right) eigenvector associ-
ated with the eigenvalue A.
It then follows from (2.3.30) that, for an eigenvalue ),

rank (A — A) < n (<= det(A] - 4) =0). (2.3.31)
Thus, the eigenvalues of A are the roots of its characteristic polynomial,
x(A) :=det(A — A) = A"+ a1 A" L+ an1 ) + ag, (23.32)

which has a total of n roots. The set of these roots or eigenvalues of A is denoted
by M(A) = {A1,X2,...,An}. The following property is the Cayley—Hamilton
theorem,

x(A) = A"+ a1 A"+ +an—1A +an I = 0. (2.3.33)
The spectral radius of A is defined as
p(A) :=max{|A| | A€ A(4)}, (23.34)

and the trace of A, defined as

n
trace (4) := Y _ ay, (2.3.35)
i=1
is related to the eigenvalues of A as
n
trace (4) = Y \i. (2.3.36)
i=1

Suppose a square matrix A € C™*™ has n linearly independent eigenvectors,
T1,Za,...,Tn, respectively associated with eigenvalues, Ap, g, ..., A, (Which
need not be distinct). Let

T:=[z1 z2 -+ zp]€C™", (2:3.37)
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which is called the eigenvector matrix of A. Then, we have

)\1 0 Ve 0
0 )\2 . 0

T AT =1| . . . ) (2.3.38)
0 0 >\n

In general, for a square matrix A € C™*™, there exists a nonsingular transforma-
tion '€ C™*"™ and an integer k such that

J
Jo
T AT =J:= N : (2:3.39)
Jk
where J;, i =1,2,...,k, are some n; x n; Jordan blocks of the form:

A1

Ji = . (2.3.40)
' A1

Ai

Obviously, A\; € A(4),i =1,2,...,k,and Zle n; = n. The special structure of
J in (2.3.39) is known as the Jordan canonical form of A. We have implemented
an m-function, jcf . m, based on an algorithm modified from the result reported
in Bingulac and Luse [12], for computing this Jordan canonical form. It is known
that there are substantial numerical difficulties in computing the Jordan form (see,
e.g., Kailath [70]). However, when it can be computed accurately, it will be very
useful in displaying the finite zero structure and other properties of linear systems
in the coming chapters. We would like to further note that although the Jordan
canonical form is a powerful tool for analyzing system properties, it is seldom
used in actual applications. The application of the Jordan canonical form in this
book is mainly for theoretical development and technical analysis.

The following are some very handy inequalities on eigenvalues of general
square matrices. More results for special matrices will be given in the next sub-
section. For an arbitrary matrix A € C™*", we have

H H
Amin (A ;A ) <ReAi(4) < Amax (A *;A ) , (2341)
and A At
Aﬂ'lil'l ( _. ) S IInA1,(14-) g Amax ( _, ) Pl (2.3.42)
25 2j

where j = v/-1.
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For A, B € C™*", we have the following inequalities on the eigenvalues of
A+ B,

max [\;(4 + B)| < VAmax(A*A) + v/ Amax(B*B), (2.3.43)

and

/\min (A ) mm (
<

For square matrices A and B with the same dimension, we have the following
properties on the eigenvalues of AB,

)<mxm+m

H A BH
Amax (A ; ) + Amax (—ZLB-) . (2344

MAB) = A(BA4), (2.3.45)
max [Ai(AB)| < max |[Ai(4)] - max|i(B)], (2.3.46)

and
miaxl)\i(AB)l < vV Amax(A%A) - \/Amax (B*B). (2.3.47)

For A € C**™ and B € C™*"™ with n > m, we have

MAB) = \(BA) U {o, 0,.. .,o} = trace (AB) = trace (BA). (2.3.48)

n—-m
In particular, for z, 2 € C",
Az2") = {z“m, 0,0,.. .,0} = 2%z = trace (z2"). (2.3.49)
N
n—1

2.3.3 Special Matrices

In this section we discuss some commonly used special matrices. Special attention
will be paid to positive and positive semi-definite matrices as they play a key
role in solving many systems and control problems, especially in those problems
related to system stability. Given an A = [a;;] € C™*", we say that A is a
diagonal matrix if a;; = 0 whenever ¢ # j. For a square diagonal matrix A €
C™*™, we occasionally write

A =diag {a1,02,...,a5}, (2.3.50)
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ie.,a; = a;1=1,2,...,n. Similarly, we write a block diagonal matrix

A
A
A= . — blkdiag{A,, As, .. ., Ak} 2.351)

Ay

The following are several important types of square matrices. We say that a
matrix A € R™*" is

[

. symmetric if A' = A (such a matrix has all eigenvalues on the real axis);

skew-symmetric if A’ = — A (such a matrix has all eigenvalues on the imag-
inary axis);
orthogonal if A'A = AA' = I (such a matrix has all eigenvalues on the
unit circle);

. nilpotent if A¥ = 0 for integer k (such a matrix has all eigenvalues at the

origin);

idempotent if A? = A (such a matrix has eigenvalues at either 1 or 0);

. a permutation matrix if A is nonsingular and each one of its columns (or

rows) has only one nonzero element, which is equal to 1.

We say that a matrix A € C™*™ is

. Hermitian if A" = A (such a matrix has all eigenvalues on the real axis);

unitary if A"A = AA" = I (such a matrix has all eigenvalues on the unit
circle);

. positive definite if % Az > 0 for every nonzero vector x € C";
. positive semi-definite if z" Az > 0 for every vector z € C";

. negative definite if " Az < 0 for every nonzero vector z € C™;

negative semi-definite if z" Az < 0 for every vector z € C";

. indefinite if A is neither positive not negative semi-definite.

If A is positive definite (positive semi-definite), we write A > 0 (A > 0), andif A
is negative definite (negative semi-definite), we write A < 0 (A < 0). Given two
Hermitian matrices A, B € C**", we writte A > Bif A— B > 0,and A > B if
A-B>0.

In systems and control applications, we are particularly interested in results
related to the positive definiteness and positive semi-definiteness of symmetric
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or Hermitian matrices. We present below some useful results on symmetric or
Hermitian matrices and definite matrices.

Given a Hermitian matrix A € C™", which has all real eigenvalues, i.c.,
A(4) = {)1, Ae,...,An} C R, and letting

Amin(4) = min{A(4)}, Amax(4) := max{\(4)}, (2.3.52)
we have
i Az Az
i = mi )\max = oD
i) =3 s Aren(4) = mz T @359
and

— max|X(4)] < Amin(4) < Ni(4) < Amax(4) < max|Ni(4)].  (23.54)

Suppose A, B € C™*" are Hermitian. Then, we have the following inequalities
concerning the eigenvalues of A + B,

max |A; (A + B)| < max|X;(A)| + max|A;(B)], (2.3.55)

Amin(4) + Amin(B) € Xi(A + B) < Amax(A4) + Amax(B), (2.3.56)
Amin(4 + B) < min{)\max(A) + Amin (B)1 Amin (A4) + Amax (B)}, (2.3.57)
)\max(A + B) D max{/\max(A) + Amin (B), Amin (A) + /\max(B)}- (2.3.58)

We also have the following inequalities on the eigenvalues of AB,
Amin(B)Ai(A2) < Mi(ABA) < Amax(B)Ai(42), i=1,2,...,n, (2.3.59)

where A;(+) is assumed to be arranged such that Ay (1) > Aa(-) > -+ - > Ap ().

It is known that a Hermitian matrix is positive definite (positive semi-definite)
if and only if all its eigenvalues are positive (nonnegative), and it is negative def-
inite (negative semi-definite) if and only if all its eigenvalues are negative (non-
positive). Let a Hermitian matrix A € C™*™ be partitioned as

_[An Ai
A= [A}fz A22] , (2.3.60)

with A;; and As, being square. Then, A is positive definite if and only if either
one of the following conditions holds:

A1 >0, Ay — AL AT AL > 0 (2.3.61)
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or
Az >0, A — A A5} A, > 0. (2.3.62)

Using this result repeatedly, one can show that A is positive definite if and only if
all its leading principal minors are positive, and that A is positive semi-definite if
and only if all its principal minors are nonnegative. We note that similar results
can be obtained on negative definite and negative semi-definite matrices.

Given two Hermitian matrices A, B € C™*", we have

A>B>0 < B'>4'>0. (2.3.63)
If A and B commute, i.e., AB = BA, then
A>B>0 = A*>Bf>o. (2.3.64)
Given Hermitian matrices A, B,S € C"*" with 4 > 0, B > 0and S > 0, then
ASA>BSB = A>B. (2.3.65)
Unfortunately, the converse of (2.3.65) is generally not true. But, we have
A>B = thereexistsanS = S* > O suchthat ASA > BSB. (2.3.66)

The following properties of A + B and AB are also very useful in the deriva-
tion of many results in linear systems and control theory. Given two Hermitian
matrices A, B € C™*", and assuming that the eigenvalues of A and A + B are
respectively arranged as:

A1(4) > A2(4) > --- > An(4) (2.3.67)
and
M(A+B)>XMA+B)>--->M(A+ B), (2.3.68)
we have
Mi(A+B) > \(4), i=1,2,...,n, (2.3.69)
if B > 0, and
Ai(A+B) > \i(4), i=1,2,...,n, (2.3.70)

if B > 0. Given two Hermitian matrices A, B € C™*" with B > 0, we have

MAB)CR and MAB7Y)CR, (2.3.71)
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i.e., the eigenvalues of both AB and AB ! are real, in particular,

. 1y _ . T'Az
Amin(AB™") = gn;g)l ~Ba’ (2.3.72)

and

H
Amax(AB™1) = max A%

max - (2.3.73)

Obviously, if, in addition, A is also positive definite (positive semi-definite), then
all the eigenvalues AB and AB ™! are positive (nonnegative).
Given two Hermitian matrices A, B € C™*" with A > 0 and B > 0, we have

Amin (B))\max (A) < Amin (B) trace (A) < trace (AB) < /\max(B) trace (A)

(2.3.74)
2.3.4 Singular Value Decomposition
Given a matrix A € C™*", its singular values are defined as
0i(4) :== VXi(454) = VNi(AAR), i=1,2,... kK, (2.3.75)

where k£ := min{m, n}, assuming that the eigenvalues of A*A and AA" are ar-
ranged in a descending order. Clearly, we have g1 (A) >02(A4) > -->04(A) >0.
The condition number of A is defined as

cond (A) = 01(A4)/or(4). (2.3.76)

A, = diag {01(A4),02(4),...,06(4)}. (2.3.77)

It can be shown that there exist two unitary matrices such that A can be decom-
posed as:

A=UAVY, (2.3.78)
where
Ay .
A= L ifm>n, 2.3.79)
or
A=[A; 0], ifm<n. (2.3.80)

Decomposition (2.3.78) is called the singular value decomposition of A. We now
recall some useful properties of singular values.



2.3. Matrix Algebra and Properties 23

Proposition 2.3.1. Given A € C™*" and B € C"*?, we have

Omax(AB) < 0max(A)0max(B). (2.3.81)
Ifboth A and B are square matrices, we have
Omin (A) Omin (B) < Omin (AB)
< min {amaX(A)Umin (B) y Omin (A)Umax (B)}

< max{amax (A) Omin (B) y Omin (A) Omax (B)}
< Omax(AB)

< Omax(A)Tmax(B)- (23.82)
Proof. Observing that
Amax(BB*)AA® = AAmax(BB")I — BB|A® + ABB* A", (2.3.83)
and noting that A .5 (BB")I — BB* > 0, it follows from (2.3.70) that
Amax(BB™)Ai(AAY) > \i(ABB" AY), (2.3.84)

and thus
Amax(BB")Amax(44") > Amax(ABB"AY),

or equivalently, 2, (B)o2..(4) > 02,.(AB). Hence, the result of (2.3.81)
follows.

For square matrices A, B € C™*", (2.3.84) also implies that

Omax(B)oi(A) > 0:;(AB), i =1,2,...,n. (2.3.85)

Similarly, using
Amax(A"A)B*B = B¥[Amax(4"A)I — A"A)B + B A" AB, (2.3.86)

and its properties, we can show that

Omax(A)oi(B) > 0i(AB), i=1,2,...,n. (2.3.87)
Next, noting that

—Amin(BB*)AA" = A[BB" — Apin(BB")I]A* — ABB" A"

and
—Amin(A"A)B"B = B¥[A"A — Amin(A"A)I|B — B* A" AB,
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we can show that
Umin(B)O'i(A) S U,’(AB), (2388)

and
omin(A)0i(B) < 0i(AB), (2.3.89)

i1=1,2,...,n. Theresult of (2.3.82) follows from (2.3.85), (2.3.87), and (2.3.88)
or (2.3.89), by letting ¢ = 1 and ¢ = n, which by definition corresponds to the
largest and the smallest singular value, respectively. n

Using similar arguments as in the proof of Proposition 2.3.1, we can derive
more interesting results for AB with arbitrary A € C™*™ and B € C"*? by
carefully considering the values of m, n and p. In particular, we have the following
results:

1. If n < p, then
Omax(AB) > 0max(A)omin(B). (2.3.90)

2. If n < m, then
Omax(AB) > Omin(A)omax(B). (2.3.91)

3. If min{m,n} < min{m, p}, then

Omin(AB) < Omin(A)Tmax(B). (2.3.92)

4. If min{n, p} < min{m, p}, then

Omin(AB) < 0max(A)omin(B). (2.3.93)

5. ffp<n<morm<n<p,then

O'min(AB) 2 Omin (A)O'min (B) (2.3.94)

It is also straightforward to verify the following inequality concerning the maxi-
mal singular value of A + B,

Omax(A + B) < 0max(4) + Omax(B). (2.3.95)

It is clear from the decomposition of (2.3.78) that the rank of A is given by
the number of nonzero singular values of A. As the singular value decomposition
only involves unitary transformations, which are numerically stable with a perfect



2.3. Matrix Algebra and Properties 25

condition number, i.e., 1, it can be used to determine matrix ranks more accurately.
The singular value decomposition can also be used to compute the inverse of non-
singular matrices. For example, if A is square and nonsingular, then its inverse is
given by
A" =VATIUA, (2.3.96)

Note that only the inverses of scalars are required in obtaining A ~!. Another
application of the singular value decomposition is the computation of pseudo-
inverses of a matrix. Given a matrix A € C™*", its pseudo-inverse or Moore—
Penrose inverse is defined to be the unique matrix At € C"*™ such that

1. AATA = A,

2. ATAAT = A,

3. AAt = (AANY, and

4. ATA = (At A)R,
Let g be the number of nonzero singular values of A. Then, the singular value
decomposition of A in (2.3.78) can be rewritten as

A=UAV' =U [AO 8] v (2.3.97)

where A, = diag {01(A),02(4),...,04(A4)}. It is straightforward to verify that
the pseudo-inverse of A is given by

-1
At=v [A6 g] UH, (2.3.98)

with its associated properties:

Ofixn = Onxm, (AN =4, (AN = (4D, (2.3.99)

A" = AP AA = ATAAR, (ARA) = A4, (2.3.100)
Al = (A" 4) A% = AR (AAM) (2.3.101)

im (A) = im (AA") = im (44"), (2.3.102)

im (A") = im (4") = im (4T 4) = im (4" 4), (2.3.103)
im (I — ATA) = ker (AT A) = ker (4) = im (A%)*, (2.3.104)

im (I — AAT) = ker (AA'") = ker (4%) = ker (A1) = im (4)*.  (2.3.105)
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2.4 Norms

Norms measure the length or size of a vector or a matrix. Norms are also defined
for signals and rational transfer functions.

Given a linear space X’ over a scalar field K, any real-valued scalar function
of z € X (usually denoted by ||z||) is said to be a norm on X’ if it satisfies the
following properties:

L llzf] > 0if z # O and ||z]| = 0if z = O;
2. ||az|| = |af - l|z|, Yo € K, Vz € X; and

3 )z + 2l < llall + llzll, Ve, 2 € X

2.4.1 Norms of Vectors

The following p-norms are the most commonly used norms on the vector space

Cc™
n 1/p
llzllp := (Z lwil") , 1<p<oo, (2.4.1)
i=1

and
llelloo = max |z, (24.2)

where z1, T2, . . ., T, are the elements of x € C". In particular, [|z||, is also called
the Euclidean norm of z and is denoted by |z| for simplicity.

2.4.2 Norms of Matrices

Given a matrix A = [a;;]€ C™*", its Frobenius norm is defined as

1/2 . 1/2
m n min{m,n}
Ille:={ Y D lal* ] =1 Y a@)] . (2.4.3)
i=1 j=1 i=1

The p-norm of A is a norm induced from the vector p-norm, i.e.,

A
1Al := sup”—x“i’= sup ||Az]|,. (2.4.4)

a0 [1zllp  yep,=1

In particular, for p = 1, 2, 0o, we have

1Al = max } [y, (2.4.5)
i=1
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lAllz = 4/ Amax(A"A) = omax(4), (2.4.6)

which is also called the spectral norm of A, and

14]|cc = max ) _ |a;]. 2.4.7)
i=1
It can be shown that
1A]| > p(A), (2.4.8)

where || A|| is any norm of A and p(A) is the spectral radius of A. Also note that
all these matrix norms are invariant under unitary transformations.

2.4.3 Norms of Continuous-time Signals

For any p € [1,00), let L7} denote the linear space formed by all measurable
signals g : R, — R™ such that

o0
/ lg(®)|Pdt < co.
0

Forany g € L7", p € [1,00), its Lp-norm is defined as

) 1/p
o= ([ tooPar) . 1<p < 249)
Let LT denote the linear space formed by all signals g : Ry — R™ such that
lg(t)| < 00, Vi€ Ry.
The L-normofa g € LT is defined as

llglloo = sup |g(t)|. (2.4.10)
t>0

The following Holder inequality of signal norms is useful,

gl < fll - llgllq, 24.11)

where1 < p < coand1/p+1/q = 1. Itcanalso be shownthatif g(t) € L;NL,
then g(t) € L,.
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2.4.4 Norms of Discrete-time Signals

For any p € [1,00), let [ denote the linear space formed by all discrete-time
signals g : N = R™ such that

) lg(k)I? < 0.

k=0
For any g € 17", p € [1,00), its |,-norm is defined as
p

llgllp := (Z |g(k)|”> , 1<p<oo. (24.12)
k=0

Let I™ denote the linear space formed by all signals g : N = R™ such that
lg(k)] < 00, VEk2>0.
The lo-norm of any g € I7 is defined as

liglloo := sup |g(k)|. (2.4.13)
k>0

It can be shown that, if g(k) € IT*, then ||g|[, < [|9]l1 < o0, p € (1, 00], which
implies that [y C I, p € (1, 00]. In general, we have I* C I} C I, p € (1,00).
2.4.5 Norms of Continuous-time Systems

Given a stable and proper continuous-time system with a transfer matrix G(s), its
H,-norm is defined as

1 [=) 1/2
IGll2 == <-2;trace [ / G(jw)G(jw)"de , (2.4.14)
and its H,-norm is defined as
|Glloo := suUp Omax[G(jw)] = sup ”hnz’ (2.4.15)
w€([0,00) fwllz=1 llwll2

where w(t) and h(t) are respectively the input and output of G(s).

Let (A, B,C, D) be a state space realization of the stable transfer matrix,
G(s), ie, G(s) = C(sI — A)"'B + D. 1t is straightforward to verify that
lIGll2 < oo if and only if D = 0. In the case of D = 0, ||G||2 can be exactly
computed by solving either one of the following Lyapunov equations:

A'P+PA=-C'C, AQ+ QA =-BB, (2.4.16)
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for unique solution P > 0 or Q > 0. More specifically,
Gll2 = v/trace (B'PB) = +/trace (CQC"). (2.4.17)

The computation of ||G|| o is tedious and can be done by searching for a scalar

Y > Omax(D) such that
A+ BR'D'C ¥y ?BR™'B’
M, = , (2.4.18)
- C'(I+DR'D"'C —(A+BR'D'C)

where R := 421 — D'D, has at least one eigenvalue on the imaginary axis. If
such a « exists, say 7 = v*, then ||G||cc = 7*; otherwise, ||G|lcoc = Tmax(D)-

2.4.6 Norms of Discrete-time Systems

Given a stable and proper discrete-time system with a transfer matrix G(z), its
H,-norm is defined as

™ ) ] 1/2
IGll|2 := (El;trace [ G(e]“’)G(eJ“’)"de , (2.4.19)
and its H,-norm is defined as
IGlloo == sup Omax[G(e’)] = sup 1Al , (2.4.20)
we(0,2x] [lwll2=1 “’UJ”z

where w(k) and h(k) are respectively the input and output of G(z).
Assume that (A, B,C, D) is a state space realization of G(z). For the case
when D = 0, ||G||2 can be computed by solving either one of the following

Lyapunov equations:

A'PA-P=-C'C, AQA'-Q=-BB, (2.4.21)
for P > 0 or @ > 0. More specifically,

IGll2 = v/trace (B’ PB) = +/trace (CQC"). (2.4.22)

The computation of ||G|| is again tedious and can be done by transforming G (z)
into a continuous-time equivalence using a bilinear transformation. It can be
shown that the Ho,-norm of G(z) is equal to the H,-norm of its continuous-
time counterpart under the bilinear transformation. We further note that, for both
continuous- and discrete-time systems,

”GIGZHOO < ”Glnoo ' ”G2”oo- (2-4-23)

This property is a simple consequence of the inequality of (2.3.81).



Chapter 3

Review of Linear Systems
Theory

3.1 Introduction

We review in this chapter some fundamental concepts of multivariable linear time-
invariant systems. Many concepts, such as system responses and stability as well
as controllability and observability, are widely discussed in the literature and can
be found in most of the introductory text books on linear systems theory (see,
e.g., Antsaklis and Michel [4], Callier and Desoer [16], Chen [33], DeCarlo [46],
Kailath [70], Rugh [114], and Zheng [158]). In particular, we will adopt some nice
mathematical derivations of these results from Chen [33] and Zheng [158]. On the
other hand, some issues, such as the invariant zero structure (also called finite zero
structure) and infinite zero structure, invertibility structures as well as geometric
subspaces of linear systems, might be somewhat abstract to general readers and
new graduate students. These topics, which will be illustrated in detail in the
coming sections, can be found in some advanced monographs and research theses
in linear systems, such as Rosenbrock [112], Trentelman et al. [141], Verghese
(146}, Wonham [154], and some research articles (see, e.g., Commault and Dion
[41], Kouvaritakis and MacFarlane [77], MacFarlane and Karcanias [96], Moy-
lan [102], Owens [105], Pugh and Ratcliffe [110], and Saberi, Chen and Sannuti
[115]). In particular, the concepts of finite and infinite zero structures as well as
that of invertibility structures will be introduced using the well-known Kronecker
canonical form, and the materials on geometric subspaces will be adopted mostly
from Trentelman et al. [141]. These basic concepts and results will be essential to

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004
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the development of this book and helpful in understanding the results presented in
the coming chapters.

We will focus primarily on continuous-time linear time-invariant systems char-
acterized by the following state and output equations:

. {a’c(t) = A z(t) + B u(t),
" Ly(®) = C =(t) + D u(t),

where z(t) € R™ is the system state, u(t) € R™ is the system input, y(t) € R?
is the system output, and A, B, C' and D are constant matrices of appropriate
dimensions. When it is clear in the context, we will drop the variable ¢ in z, u
and y in (3.1.1). Although (3.1.1) is the primary focus of our work in the book,
we do consider, however, another type of linear systems in Chapter 6, i.e., the so-

(3.1.1)

called singular systems or descriptor systems, in which the state equation is given
as Ez(t) = Az(t) + Bu(t) with E being a singular matrix. We will leave the
detailed treatment of this type of systems to Chapter 6. Note that ¥ has a transfer
function (representation in the frequency domain):

H(s) =C(sI - A)™'B+ D. (3.12)

Similarly, results for discrete-time systems characterized by
5 . {z(k+1) = A z(k) + B u(k),

"L yk) =C (k) + D u(k),

where as usual z(k) € R" is the system state, u(k) € R™ is the system input and
y(k) € RP? is the system output, will be presented simultaneously along with the

development of continuous-time systems. The transfer function of the discrete-
time system (3.1.3) is given by

(3.1.3)

H(z) =C(2I - A)™'B+D. (3.1.4)

The following topics on the basic concepts of linear systems are revisited in
this chapter:
. Dynamical responses of linear time-invariant systems;
. System stability;
. Controllability and observability;

. Finite and infinite zero structures;

1
2
3
4. System invertibilities and invertibility structures;
5
6. Geometric subspaces; and

7

. Properties of state feedback and output injection.
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3.2 Dynamical Responses

In this section, we derive the solutions to the state and output responses of linear
time-invariant systems. We first consider the continuous-time system X of (3.1.1).
The solution of the state variable or the state response, z(t), of £ with an initial
condition 2o = z(0) can be uniquely expressed as

t
z(t) = etz +/ eAt=7) By(r)dr, t>0, (3.2.1)
0

where the first term is the response due to the initial state, zo, and the second
term is the response excited by the external control force, u(t). To introduce the
definition of a matrix exponential function, we derive this result by separating it
into the following two cases: i) the system is free of external input, i.e., u(t) = 0;
and ii) the system has a zero initial state, i.e., zo = 0.

1. For the case when the external force u(t) = 0, the state equation of (3.1.1)
reduces to

= Az, z(0)= zo. (3.2.2)

Let the solution to the above autonomous system be expressed as

[o,e]
o(t) = Go + aut + aot® + - = Y _axtk, t>0, (3.2.3)
k=0
where & € R™, k = 0,1, ..., are parameters to be determined. Substitut-

ing (3.2.3) into (3.2.2), we obtain
#(t) = @y +2aat +3ast> +--- = Adp+ Adyt+ Adst’ +---.  (324)

Since the equality in (3.2.4) has to be true for all ¢ > 0, we have

1 _ 1

- - - - 1 .5 1, _
] = Aao, G99 = §Aa1 = 5—!A2a0, g = §Aa2 = 3!A3a0,
and in general,
1
ay = 7c—,Akao, k=0,1,2,..., (3.2.5)

which together with the given initial condition imply

=1
z(t) = (Z k—!A"tk ag = ez, >0, (3.2.6)

k=0
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where

At =1 ok
e .—kZOHAt. (32.7)

It is straightforward to verify that

d - 1 kgk—1 — 1 k
- — A —_ — Ak+LE At — At . 9.
dte k; =1 t kéo k!A t* = Ae e™A. 3.2.8)

2. For the case when the system (3.1.1) has a zero initial condition, i.e., z¢ =0,
but with a nonzero external input, u(t), we consider the following equality:

d o _apy _ de —Atgy _ o= At(p _ Ay) — o=At
E(e :c)——at—:c+e & =e (i~ Az) = e Bu(t). (3.2.9)

Integrating both sides of (3.2.9), we obtain
t
e~ Alz(t) — zp = e Ax(t) = / e~ 47 Bu(r)dr, (3.2.10)
0
which implies that

t t
z(t) = e / e~ 4" Bu(r)dr = / eAtt=7) Bu(7)dr. (3.2.11)
0 0

It is straightforward to verify that the state response of (3.1.1) with an initial con-
dition z(0) = zp is given by the sum of (3.2.6) and (3.2.11), i.e., the solution
given in (3.2.1). The uniqueness of the solution to (3.1.1) with an initial condition
z(0) = zo can be shown as follows: Suppose z, and z are the solutions to (3.1.1)
with 21 (0) = z2(0) = zo. Let (t) = z1(t) — z2(t), and thus &, = £(0) = 0.
We have

= — 3 = Az; + Bu — Azs — Bu = AZ. (3.2.12)

81

It follows from (3.2.6) that #(t) = e4t%y = 0, i.e, z,(t) = z2(t) forall t > 0.
Lastly, it is simple to see that the corresponding output response of the system
(3.1.1) is given as:

t
y(t) = Cettzy + / CeAt=7) Bu(r)dr + Du(t), t> 0. (3.2.13)
0

The term zero-input response refers to output response due to the initial state and
in the absence of an input signal. The terms unit step response and the impulse
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response, for the continuous-time system (3.1.1) respectively refer to the output
responses of (3.2.13) with zero initial conditions to the input signals,

1 1
u)=| : and u(t)=| : }4(?), (32.14)
1 1

where §(t) is a unit impulse function.

The dynamical responses of the discrete-time system (3.1.3) can be computed
by some simple manipulations. It is straightforward to show that the state response
of (3.1.3) with an initial condition (0) = z¢ can be expressed as

k-1
o(k) = A*zo + Y A*1Bu(i), k>0, (3.2.15)
=0

and thus its corresponding output response is given as

k-1
y(k) = CA*mo + ) CA*~'Bu(i) + Du(k), k>0. (3.2.16)
i=0
Similarly, the term zero-input response refers to output response due to the initial
state and in the absence of input signal. The terms unit step response and the
unit pulse response respectively refer to the output responses of (3.2.16) with zero
initial conditions to the input signals,

1 1
u(k) = ( : ) and wu(k) = ( : )6(k), (3.2.17)
1 1

L

5(k):{0

where

?

(3.2.18)

ol
(==

bl

3.3 System Stability

Stability, more specifically internal stability, is always a primary issue in design-
ing a meaningful control system. For linear systems, either the continuous-time
system (3.1.1) or the discrete-time system (3.1.3), the notion of internal stability
of the system is related to the behavior of its state trajectory in the absence of the
external input, u. Thus, the internal stability is related to the trajectory of

z = Az, z(0) = zq, (3.3.1)
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for the corresponding continuous-time system (3.1.1), or
z(k+1) = Az(k), z(0) = zo, (3.3.2)

for the corresponding discrete-time system (3.1.3). Specifically, the continuous-
time system (3.1.1) is said to be marginally stable or stable in the sense of Lya-
punov or simply stable if the state trajectory corresponding to every bounded ini-
tial condition zo is bounded. It is said to be asymptotically stable if it is stable
and, in addition, for any initial condition, the corresponding state trajectory z(t)
of (3.3.1) satisfies,

Aty = 0. (3.3.3)

Arg, =) = e
It is straightforward to verify that the continuous-time linear system (3.1.1) or
(3.3.1) is stable if and only if all the eigenvalues of A are in the closed left-half
complex plane with those on the jw axis having Jordan blocks of size 1. It is
asymptotically stable if and only if all the eigenvalues of A are in the open left-
half complex plane, i.e., A\(A) C C~. This can be shown by first transforming A

into a Jordan canonical form, say

J1
1 2
J=P AP = , , (3.3.4)
Jq
where P € C™*™ is a nonsingular matrix, and
A1
Ji = ECrXm =19 ... 4. (33.5)
A1
Ag
Then, we have
eJ1t
ert
et = peltp~l = P . P, (3.3.6)
eJat
where
ehit gehit ... gnimledit /(1)
0 Ait . tn,'—2 Ait N1
oJit — € /=Dt (3.3.7)

0 0 . erit
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i=1,2,...,q. Itis now clear that e/i* — 0 ast — oc if and only if A; € C™,
and thus

lim e/t
t—o0

lim e’
ﬁmemmozP t=oo P lzo=0, (3.3.8)
—00 .

lim /et
t—00

for any zo € R", ifandonly if \; € C,i =1,2,...,q,0r A(4) C C™. On the
other hand, the solutions remain bounded for all initial conditions if and only if
A(A) € C~UC® and n; = 1 for A;(4) € C°.

The following result is fundamental to the Lyapunov approach to stability
analysis.

Theorem 3.3.1. The continuous-time system of (3.3.1) is asymptotically stable if
and only if for any given positive definite matrix Q = Q' € R™*", the Lyapunov
equation

A'P+PA=-Q (3.3.9)

has a unique and positive definite solution P = P' € R™*",

Proof. The asymptotic stability of the system implies that all eigenvalues of A
have negative real parts. Thus, the following matrix is well defined,

o0
P:/eﬁwww. (3.3.10)
1]

In what follows, we will show that such a P is the unique solution to the Lyapunov
equation (3.3.9) and is positive definite.
First, substitution of (3.3.10) in (3.3.9) yields

o0 o e]
AT+PA=/I%Mm“ﬁ+/‘ﬂ@&Mm
0

0
_ ooi A't ), At
—/0 p (e Qe )dt
_ eA’thAtloo
t=0
=—Q, (3.3.11)

where we have used the fact that e — 0 as ¢t — oo. This shows that P as
defined in (3.3.10) is indeed a solution to (3.3.9). To show that the solution (3.3.9)
is unique, let P; and P, both be a solution, i.c.,

A'P + P A=-Q, (3.3.12)
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and
AP+ PA= -Q. (3.3.13)

Subtracting (3.3.13) from (3.3.12) yields
A (P - P) + (P, — P)A =0, (3.3.14)

which implies that
et A (P — Py)et + et (P, — Py) Ae?t = %W(P1 - Pyett = 0. (33.15)
Integration of (3.3.15) from ¢ = 0 to oo yields
At (P — Py)ett :O =P - P, =0. (3.3.16)

This shows that P as defined in (3.3.10) is the unique solution to the Lyapunov
equation (3.3.9).

It is clear that this P is symmetric since ) is. The positive definiteness of P
follows from the fact that, for any nonzero z € R",

.9}
z' Pz = / z'edtQeMtzdt > 0, (3.3.17)
0

which in turn follows from the facts that Q is positive definite and that e4? is
nonsingular for any ¢.

Conversely, if there are positive definite P and @ that satisfy the Lyapunov
equation (3.3.9), then all eigenvalues of A have negative real parts. To show this,
let A be an eigenvalue of A with an associated eigenvector v # 0, i.e.,

Av = dw,

which also implies that
v* A" = A",

Pre-multiplying and post-multiplying (3.3.9) by v * and v respectively yields
—v*Qu = v*A'Pv 4+ v*PAv = (\* + A\)v* Pv = 2Re(\)v* P,
which implies that Re()\) < 0, as both P and @ are positive definite. n

Now let us get back to the system X of (3.1.1). The following characterization
of the system inputs and outputs is due to Desoer and Vidyasagar ([49], p.59). It
is valid for asymptotically stable systems.
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Theorem 3.3.2. Consider the continuous-time system ¥. of (3.1.1) with A being
asymptotically stable. For the case when D = 0, i.e., X is strictly proper, we have

1. ifu € LT, theny € LY N L,y € L2, and y is absolutely continuous and
y(t) > 0ast — oo;

2. ifu € LY, theny € LN L2,y € L, and y is continuous and y(t) — 0
ast — 00;

3. ifue LY, theny € L,y € L, and y is uniformly continuous;

4. ifu € LT with u(t) = ue € R™ ast — oo, then y(t) = Yoo € R as
t — 00 and the convergence is exponential;

5. ifue Ly, 1<g<oo,theny € LY andy € LY.

For the case when D # 0, i.e., ¥ is nonstrictly proper, we only have the following
result: Ifu € L', 1 < g < oo, theny € LY.

Noting (3.3.6) and (3.3.7), it is straightforward to show that, for a stable sys-
tem, there exists positive scalars hy, > 0 and @ > 0 such that

lle*!l € hme™, VE>0. (3.3.18)

The result of Theorem 3.3.2 can be verified through some direct manipulations.

Next, we proceed to address the stability issues for discrete-time systems. The
discrete-time system of (3.3.2) is said to be marginally stable or stable in the sense
of Lyapunov or simply stable if the state trajectory corresponding to every bounded
initial condition ¢ is bounded. It is said to be asymptotically stable if it is stable
and, in addition, for any initial condition z, the corresponding state trajectory
z(k) satisfies

lim z(k) = lim Afzy =0. (3.3.19)
k—o0 k—o00

Similarly, we can show that the discrete-time system of (3.3.2) is stable if all the
eigenvalues of A are inside or on the unit circle with those on the unit circle having
Jordan blocks of size 1. It is asymptotically stable if and only if either one of the
following conditions hold:

1. The eigenvalues of A are all inside the unit circle, i.e., \(4) C C°.

2. Given any positive definite matrix Q@ = Q' € R™ ", the discrete-time
Lyapunov equation
APA-P=-Q (3.3.20)

has a unique and positive definite solution P = P’ € R™*",
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3.4 Controllability and Observability

Let us first focus on the issue of controllability. The concept of controllability is
about controlling the state trajectory of a given system through its input. Sim-
ply stated, a system is said to be controllable if its state can be controlled in the
state space from any point to any other point through an appropriate control input
within a finite time interval. For a linear time-invariant system, it is equivalent
to controlling the state trajectory from an arbitrary point to the origin of the state
space. To be more precise, we consider the following continuous-time system:

L : &= Az + Bu, z(0) = o, 341
wherez € R™®, u € R™, A € R®*" and B € R™*™.

Definition 3.4.1. The given system X of (3.4.1) is said to be controllable if for
any initial condition zy and any 1 € R", there exist a time t; > 0 and a control
signal u(t), t € [0,t1], such that the resulting state trajectory satisfies z(t1) = ;.
Otherwise, ¥ is said to be uncontrollable.

We have the following results.

Theorem 3.4.1. The given system X of (3.4.1) is controllable if and only if the
matrix .
We(t) := / e A"BB'e™4'"dr (3.4.2)
0

is nonsingular for all t > 0. W(t) is called the controllability grammian of X.
Proof. If W,(t,) is nonsingular for some ¢; > 0, we let

u(t) = —B'e™ W (t1)(zo — e my), te[0,t). (3.4.3)
Then, by (3.2.1), we have

t1
z(ty) = etz +/ eAt1=t) Bu(t)dt
0

t1
=edtig, — (/ eAlti-t) pple=A tdt) W (t)(zo — e~ 4% 2)
0

t1 ,
= eftig; — At (/ e 4'BB'e™4 tdt) W (t)(zo — e” 4 zy)
0
=eftigy —eftizy + o
= 1. (3.4.4)

By definition, X is controllable.



3.4. Controllability and Observability 41

We prove the converse by contradiction. Suppose X is controllable, but W (t)
is singular for some ¢ > 0, which in fact can be shown implying that W¢(t1) is
singular for all £; > 0. Then, there exists a nonzero zo € R" such that

T We(t1)zo = 0. (3.4.5)

Thus, we have

0

31
/ a:oe"AtBB e A trodt
0

/t1 (B'e_A to (B'e_A'txg) dt
0

t1
/ ’B’e dt, (3.4.6)

0

which implies
Ble 4%z, =0, Vtel0,t] (3.4.7)

Since ¥ is controllable, by definition, for any z, there exists a control u(t) such
that

t1

o =eftpy + / edtie=4t By(t)dt. (3.4.8)

0

In particular, for z; = 0, we have
t1
0 = eftigy 4+ et / e~ 4t Bu(t)dt, (3.4.9)
0

or :

zo = — / e~ 4t Bu(t)dt, (3.4.10)
0

which together with (3.4.7) imply that

1

i1 11 ,
lzo|*> = zfm0 = [—/ e“““Bu(t)dt] Tp = —/ u'(t)B'e A tzodt =0
0 0
This is a contradiction as zo # 0. Hence, W,(t) is nonsingular forallt > 0. =
Theorem 3.4.2. The given system ¥ of (3.4.1) is controllable if and only if

rank (Q.) = n, (3.4.11)

where
=[B AB - A“‘IB] (3.4.12)

is called the controllability matrix of X..
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Proof. We again prove this theorem by contradiction. Suppose rank (Q ) = n,
but ¥ is uncontrollable. Then, it follows from Theorem 3.4.1 that

t1 :
We(t) = / e ABB'e~ A4t Vi, >0 (34.13)
0

is singular for some ¢; > 0. Also, it follows from the proof of Theorem 3.4.1, i.e.,
equation (3.4.7), that there exists a nonzero o € R™ such that

zhe M¥B =0, Vte(0,t]. (3.4.14)
Differentiating (3.4.14) with respect to ¢ and letting ¢ = 0, we obtain
1B =0, 70AB=0, ..., z0A" !B =0, (3.4.15)

or
zh[B AB --- A™1B]=zQ. =0, (3.4.16)

which together with the fact that 2o # 0 imply rank (Q.) < n. Obviously, this is
a contradiction, and hence, X is controllable.

Conversely, we will show that if X is controllable, thenrank (Q ) = n. If £ is
controllable, but rank (Q ) # n, i.e., rank (Q.) < n, then, there exists a nonzero
To € R™ such that z5Q. = 0, i.e.,

ZhyB=0, 2hAB =0, ..., 20A" B =0. (3.4.17)

It follows from the Cayley—Hamilton Theorem, i.e., (2.3.33), that

hA¥B=0, k=n,n+1,... (3.4.18)
Thus, we have
zhe B =0 (34.19)
and ;
T (/ e_AtBB’e"A'tdt> zo = zuWe(t)zo = 0, (3.4.20)
0

which implies that W(¢) is singular for all ¢ > 0, and hence, by Theorem 3.4.1,
the given system X is uncontrollable. This is a contradiction. Thus, Q . has to be
of full rank. |

Theorem 3.4.3. The given system ¥ of (3.4.1) is controllable if and only if, for
every eigenvalue of A, \;,i = 1,2,...,n,

rank [\ — A B]=n. (3.4.21)
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This theorem is known as the PBH (Popov-Belevitch-Hautus) test, developed by
Popov [109], Belevitch [11] and Hautus [63].

Proof. If X is controllable, we will show that (3.4.21) holds. Again, we prove this
by contradiction. Suppose that (3.4.21) is not true for a controllable %, i.e.,

rank [\ — A B]<n, (3.4.22)
for some \;. Then, there exists a nonzero v € C™ such that
v'[MI-=A B]l=0 = A=)\, v'B=0,
which implies
vAB=X\v'B=0, vA’B=Av'AB=0, ..., vA" !B =0.

Thus,
v'[B AB --- A™1B]=v'Q.=0,

orrank (Q.) < n, i.e., ¥ is uncontrollable. The contradiction implies that (3.4.21)
is indeed true.

The proof of the converse part requires some state transformations that trans-
form the given system into a certain special form. For example, the result is trivial
once the given system is transformed into the so-called controllability structural
decomposition (CSD) form given in Theorem 4.4.1 of Chapter 4. We leave the
details to the interested readers. ]

We note that Theorem 3.4.3 builds an interconnection between the system
controllability and the eigenstructure of the system matrix, i.e., A. The system
is controllable if all the eigenvalues of A satisfy the condition given in (3.4.21).
On the other hand, the system is not controllable if one or more eigenvalues of
A do not satisfy the condition given in (3.4.21). As such, we call an eigenvalue
of A a controllable mode if it satisfies (3.4.21). Otherwise, it is said to be an un-
controllable mode. In many control system design methods, it is not necessary to
require the given system to be controllable. The system can be properly controlled
if all its uncontrollable modes are stable. Such a system is said to be stabilizable
as it can still be made stable through a proper state feedback control. For easy
reference, in what follows, we highlight the concept of stabilizability.

Definition 3.4.2. The given system ¥ of (3.4.1) is said to be stabilizable if all
its uncontrollable modes are asymptotically stable. Otherwise, ¥ is said to be
unstabilizable.



44 Chapter 3. Review of Linear Systems Theory

We have the following theorem.

Theorem 3.4.4. For the given system ¥ of (3.1.1), the following two statements
are equivalent:

1. The pair (A, B) is stabilizable.
2. There exists an F € R™>™ such that, under the state feedback law
u = Fz, (3.4.23)

the resulting closed-loop system is asymptotically stable, i.e., A + BF has
all its eigenvaluesinC™.

Proof. The result will be obvious once we have established Theorem 4.4.1 of
Chapter 4. We thus omit the details here. =

Similarly, we can introduce the concept of observability and detectability for
the following unforced system Z:

= Az, y=Cz, (3.4.249)

where z € R", y € RP and A and C are constant matrices of appropriate dimen-
sions. Basically, the system of (3.4.24) is said to be observable if we are able to
reconstruct (or observe) the state variable, z, using only the measurement output
y. More precisely, we have the following definition.

Definition 3.4.3. The given system X of (3.4.24) is said to be observable if there
exists a time, t; > 0, such that any initial state (0) = zo can be uniquely
determined from the measurement output y(t), t € [0,¢1]. Otherwise, X is said to
be unobservable.

We have the following results.

Theorem 3.4.5. The given system X of (3.4.24) is observable if and only if the
matrix .
Wo(t) := / e7C'Cerdr (3.4.25)
0
is nonsingular for all t > 0. W, (t) is called the observability grammian of ¥.

Proof. If W,(t,) is nonsingular for some ¢, > 0, then the initial state ¢ can be
computed using the measurement output y(¢) as follows,

t1 t1 ,
Wo-l(tl)/ etC'y(t)dt = W (1) (/ e tC’CeAtdt) To = To.
0 0

Hence, X is observable.
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Conversely, if ¥ is observable, we need to prove that W, (t) is nonsingular for
all t > 0. We will show this by contradiction. Suppose X is observable, but W(t)
is singular for some ¢ > 0, which in fact implies that W, (¢1) is singular for all
t1 > 0. Then, there exists a nonzero initial state z¢o € R"™ such that

t1 , t1 t1
0 = 2y W, (t1)zo =/ zhed'tC'Cettzodt =/0 y'()y(t)dt = i ly(t)|dt,
0

which implies that y(t) = 0, ¢ € [0, ;). It is impossible to determine the nonzero
initial state o, and hence by definition, X is not observable. This contradiction
shows that W (t) is nonsingular for all ¢ > 0. ]

Remark 3.4.1. In examining observability, we have assumed that u = 0 and
considered the unforced system (3.4.24). This is without loss of generality. In
the situation when u % 0, the proof of the theorem remains valid with y(t) being
replaced by

g(t) ==y(t) - C /0 t eAt=7) Bu(r)dr — Du(t) = Cetz(0).

Next, examining the duality between W(t) of (3.4.2) and W, (t) of (3.4.25)
and the results of Theorems 3.4.1 and 3.4.5, it is clear that the given system X of
(3.4.24) is observable if and only if the auxiliary (dual) system

i=Ai+Bi:=-A'+C'qd (3.4.26)
is controllable. Utilizing the results of Theorems 3.4.2 and 3.4.3, we can derive

the following results.

Theorem 3.4.6. The given system ¥ of (3.4.24) is observable if and only if either
one of the following statements is true:

1. The observability matrix of &,

C

CA
Qo = : (3.4.27)

car1
is of full rank, i.e., rank (Q,) = n.
2. For every eigenvalue of A, A;,1=1,2,...,n,

/\J-—A]

rank[ c

=n. (3.4.28)
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Similarly, the eigenvalues of A that satisfy (3.4.28) and those that do not sat-
isfy (3.4.28) are called the observable modes and unobservable modes of ¥, re-
spectively. The following is the definition of the system detectability.

Definition 3.4.4. The given system X of (3.4.24) is said to be detectable if all its
unobservable modes are asymptotically stable. Otherwise, ¥ is said to be unde-
tectable.

Note that the concepts of stabilizability and detectability are important as they
are necessary and sufficient for the existence of a measurement feedback control
law that stabilizes the given system. We have the following results.

Theorem 3.4.7. For the given system ¥ of (3.1.1), the following two statements
are equivalent:

1. The pair (A, C) is detectable.
2. There exists a K € R™*? such that A + KC has all its eigenvalues in C ™.

Furthermore, the following dynamical equation utilizing only the system output
and control input is capable of asymptotically estimating the system state trajec-
tory, z(t), without knowing its initial value z:

i=A%+Bu-K(y—Ci— Du), & €R", (3.4.29)

ie,e(t) := z(t) — Z(t) - 0 ast — oo. The dynamical equation of (3.4.29) is
commonly called the state observer or estimator of 3.

Proof. Again, we will leave out details on the equivalence of the two statements.
It can be easily verified using the observability structural decomposition of the
pair (A, C) given in Theorem 4.3.1 of Chapter 4. The rest of the theorem can be
shown in a straightforward way.

It follows from (3.1.1) and (3.4.29) that

é=i—-%=(A+KCe. (3.4.30)

Clearly, e(t) — 0 as t — oo provided that A + K C is asymptotically stable. =

By replacing z in the state feedback law (3.4.23) with Z of (3.4.29), we obtain
the so-called full order observer based output feedback control law:

{é:(A+BF+KC+KDF)§:—Ky,

u = Fz,

(3.4.31)
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which has a dynamical order equal to n, the order of . The closed-loop system
comprising the given system ¥ of (3.1.1) and the control law of (3.4.31) can be

written as
T
( j) . (3.4.32)
Note that

[A BF ]z[z OHA+BF —BFHI 0]‘1

T\ _ A BF
) |-KC A+BF+KC

-KC A+BF+KC I -1 0 A+KC||I -I

It is then clear that the closed-loop system in (3.4.32) is asymptotically stable
provided that both A+ BF and A+ K C have all their eigenvalues in C ~. We note
that the structure of the observer or state estimator is nonunique. The following is
a more general state observer proposed by Luenberger [94]:

v=Pv+ My+ Nu, veR", (3.4.33)

which is an estimate of T'z(t) for some constant matrix T € R™*" provided that
P is a stable matrix and

TA-PT=MC, N+MD=TB. (3.4.34)
Letting e := v — T'z, we have

é=1v-Ti=(MC—-TAz+Pv+(N+MD-TB)u
= Pe+ (MC + PT - TA)z + (N + MD — TB)u = Pe.

Thus, e(t) — 0 as t — oo.

Lastly, we conclude this section by noting that the concepts of controllabil-
ity (stabilizability) and observability (detectability) for discrete-time systems, i.e.,
(3.1.3), parallel those for continuous-time systems. In particular, the results of
Theorems 3.4.2, 3.4.3 and 3.4.6 are directly applicable to discrete-time systems.

3.5 System Invertibilities

The topic of system invertibilities has been left out in many popular texts in linear
systems, although it is important and crucial in almost every control problem. In
fact, the concept of system invertibilities for a linear time-invariant system can
be introduced naturally. Recall the general nonstrictly proper continuous-time
system %, of (3.1.1), which has a transfer function given by (3.1.2), i.e.,

H(s)=C(sI - A)"'B+D. (3.5.1)
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Without loss of generality, we assume that both [B' D'] and [C D] are of full
rank. We define the invertibility of ¥ as follows.

Definition 3.5.1. Consider the linear time-invariant system ¥ of (3.1.1). Then,

1. X is said to be left invertible if there exists a rational matrix function of s,
say L(s), such that

L(s)H(s) = Ip,. (3.5.2)

2. ¥ is said to be right invertible if there exists a rational matrix function of s,
say R(s), such that
H(s)R(s) = Ip. (35.3)

3. X is said to be invertible if it is both left and right invertible.

4. X is said to be degenerate if it is neither left nor right invertible.

By definition, it is clear that an invertible system has to be a square system, i.e.,
the number of the system inputs, m, and the number of the system outputs, p, are
identical. A square system is, however, not necessarily invertible. Unfortunately,
confusion between invertibility and square systems is common in the literature.
Many people take it for granted that a square system is invertible. We illustrate
this in the following example.

Example 3.5.1. Consider a system ¥ of (3.1.1) characterized by

1 0 1] [0 0
A=|11 1|, B=]|0 1], (3.5.4)
1 1 1] (1 0
and i )
[0 01 _[o o
C_[l 0 o) D__0 0]. (3.5.5)

Note that both matrices B and C are of full rank. It is controllable and observable,
and has a transfer function:

_ 1 (s=1)?% s-1
H(S)—m[ s—1 1 ] (356)

Clearly, although square, it is a degenerate system as the determinant of H (s) is
identical to zero.
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The system left and right invertibilities can be interpreted in the time domain
as follows (see, e.g., [102] and [122]). For a left invertible system X, given
any output y produced by ¥ with an initial condition z ¢, one is able to identify
uniquely a control signal u that generates the given output y. For a right invertible
system X, given any signal yres € RP, one is able to determine a control input u
and an initial condition z¢ for ¥, which would produce an output y = y ¢f.

We further note that there are structures, i.e., certain indices of integers, as-
sociated with the left and right invertibilities of linear systems. Unfortunately,
these concepts cannot be easily introduced without the help of special structural
forms of the system. We will leave these to the next section when we introduce
the Kronecker canonical form of the system matrix of .

Lastly, the concept of invertibilities of discrete-time systems follows identi-
cally from that of continuous-time systems.

3.6 Normal Rank, Finite Zeros and Infinite Zeros

The structures of finite zeros (also known as invariant zeros or transmission ze-
ros) and infinite zeros (also known as the relative degrees) of linear systems play
a dominant role in modern control theory. It is known that the locations of the
closed-loop system poles primarily determine the performance, such as the tran-
sient response and settling time, of a control system. It is fortunate that these
closed-loop poles can be freely assigned everywhere on the complex plane pro-
vided that the given open-loop system is controllable and observable. On the other
hand, it is well understood now that the locations of the finite zeros have a signif-
icant influence on the overall performance of the closed-loop system as well. For
example, a nonminimum phase zero (or unstable invariant zero) would impose a
great limitation for many control performances. It is unfortunate that the finite
zeros Or invariant zeros are invariant under any feedback control, and thus any
bad zeros would remain there in the closed-loop system. It is our belief that an
unambiguous understanding of system zero structures is essential for the design
of a control system.

The concepts of invariant zeros and infinite zeros (relative degrees) for single-
input and single-output (SISO) systems are simple. For example, for a SISO sys-
tem with a transfer function, say

s(s+1)

H(s) =
(s) s34+282+3s+4’

3.6.1)
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it is simple to observe that the system possesses two finite zeros at s = 0 and
s = -1, respectively, and a relative degree of 1. For general multi-input and
multi-output (MIMO) systems, the concepts of finite and infinite zeros could be
quite sophisticated. There have been mistakes in the definitions of these zeros
in the literature. We need to introduce the notion of system normal rank before
formally defining invariant zeros for MIMO systems.

Definition 3.6.1. Consider the given system X of (3.1.1). The normal rank of its

transfer function H(s) = C(sI — A)~'B + D, or in short, normrank{ H(s)}, is

defined as ‘
normrank { H(s)} = max {rank [H(A)] | A € C}. (3.6.2)

For example, the system in Example 3.5.1 has a 2 x 2 transfer matrix. But,
it only has a normal rank of 1. It will be seen shortly that the computation of the
system normal rank is trivial once we have developed the structural decomposition
technique in the forthcoming chapters.

Next, we are ready to introduce the invariant zeros of the general system X of
(3.1.1) characterized by a matrix quadruple (A4, B, C, D), which can be defined
via the Kronecker canonical form of the (Rosenbrock) system matrix [112] of X,

sI-A —B]

Ps(s) == [ C D (3.6.3)

We first have the following definition for the invariant zeros, without asso-
ciated multiplicity structure (see also [96]), and blocking zeros (see also [156]).
The latter plays an important role in the strong stabilization of multivariable linear
systems.

Definition 3.6.2. Consider the given system X of (3.1.1). A scalar 8 € C is said
to be an invariant zero of ¥ if

rank {Pg(8)} < n + normrank { H(s)}. (3.6.4)
A scalar B € C is said to be a blocking zero of £ if H(3) = 0.

We note that the invariant zeros are equivalent to the so-called transmission
zeros defined in the literature (see, e.g., [44,45]) when the given system is both
controllable and observable.

Obviously, a blocking zero is an invariant zero, but an invariant zero is not
necessarily a blocking zero for MIMO systems. For SISO systems, however, they
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are identical. It is interesting to note that there are other types of zeros defined
in the literature, such as input decoupling zeros, i.e., the uncontrollable modes
of the pair (A4, B), output decoupling zeros, i.e., the unobservable modes of the
pair (A, C), and input-output decoupling zeros, i.e., the eigenvalues of A that are
both uncontrollable and unobservable. The collection of all these zeros, including
invariant zeros and blocking zeros, are called the system zeros of X.

Clearly, by definition, if 3 is an invariant zero of ¥, then there exist a nonzero
vector zz € C™ and a vector wy € C™ such that

Ps(B) <1‘f}‘;) = [ﬂIC",A _Iﬂ (Z’;) =0. (3.6.5)

Here, x; and wy, are respectively called the right state zero direction and right input
zero direction associated with the invariant zero 3 of ¥. The following proposition
gives a physical meaning to the invariant zero and its zero directions.

Proposition 3.6.1. Let 3 be an invariant zero of ¥ with a corresponding right
state zero direction xx and a right input zero direction wy. Let the initial state of
3. be zp = xx and the system input be

u(t) = weePt, t>0. (3.6.6)
Then, the output of ¥ is identically zero, i.e., y(t) = 0, > 0, and
z(t) = 7ePt, t>0. (3.6.7)

This implies that with an appropriate initial state, the system input signal at an
appropriate direction and frequency is totally blocked from the system output.

Proof. First, it is simple to verify that (3.6.5) implies that
Ay + Buwy = Bz, Czx+ Dwg = 0. (3.6.8)

We next verify directly that (3.6.7) is a solution to the system ¥ of (3.1.1) with the
initial condition zo = x5 and the input u(t) given in (3.6.6). Indeed, with u(t) of
(3.6.6) and z(t) of (3.6.7), we have

Az + Bu = AzzePt + Bupe®t = (Azy + BwR)eﬁt =Bzt =1  (3.69)

Thus, z(t) is indeed a solution to the state equation of ¥ and it satisfies the initial
condition £(0) = z. In fact, z(t) as given in (3.6.7) is the unique solution (see,
e.g., Section 3.2). Next, we have

y(t) = Cz(t) + Du(t) = (Czx + Dur)e® =0, t>0. (3.6.10)

This concludes the proof of Proposition 3.6.1. |
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The infinite zero structure of ¥ can be either defined in association with the
root locus theory (see, e.g., [105]) or as the Smith-McMillan zeros of the transfer
function at infinity (see [41], [110], [112] and [146]). To define the zero structure
of H (s) at infinity, one can use the Smith-McMillan description of the zero struc-
ture at finite frequencies of the transfer function matrix H(s). Namely, a rational
matrix H (s) possesses an infinite zero of order £ when H(1/z) has a finite zero
of precisely that order at z = 0. The number of zeros at infinity together with their
orders define an infinite zero structure.

In what follows, however, we will introduce the well-known Kronecker canon-
ical form for the system matrix Pg(s), which is able to display the invariant zero
structure, invertibility structures and infinite zero structure of ¥ altogether. Al-
though it is not a simple task (it is actually a pretty difficult task for systems with
a high dynamical order), it can be shown (see Gantmacher [56]) that there exist
nonsingular transformations U and V' such that Px(s) can be transformed into the
following form:

blkdiag{sI—J, Ly,... Ly, Ryy,..., Rr, ,I—-sH, Imo} 0

0 0

(3.6.11)

where 0 is a zero matrix corresponding to the redundant system inputs and outputs,

if any; J is in Jordan canonical form, and sI — J has the following Zle 7; pencils
as its diagonal blocks,

UPs(s)V =

?

S—ﬂi -1

sl

np;; — Ing, s (Bi) = , (3.6.12)

3—,3,' -1

s— B
j=12,...,mandi=1,2,...,8;and L;,,i = 1,2,...,pp,isan ([; + 1) x I;
bidiagonal pencil given by

-1
L = , (3.6.13)

-1
s

R.,i=1,2,...,mcisanr; x (r; + 1) bidiagonal pencil given by

s -1
R, = , (3.6.14)
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H is nilpotent and in Jordan form, and I — s H has the following m 4 pencils as its
diagonal blocks,

1 -s
Ii41 — 8Jgi41(0):= h ; L @>0i=12. . me, (615)
1

and finally myg in Ip,, is the rank of D, i.e., mg = rank (D).
We have the following definitions.

Definition 3.6.3. Consider the given system ¥. of (3.1.1) whose system matrix
Ps(s) has a Kronecker form as in (3.6.11) to (3.6.15). Then,

1. f; is said to be an invariant zero of ¥ with a geometric multiplicity of 1;
i

and an algebraic multiplicity of 5 j=1 TB:,j- It has a zero structure
55,(%) := {np;,1,n8:,2,. ., 0p;,r; }- (3.6.16)
fi is said to be a simple invariant zero ifng, ; = --- = ng, ,, = L.
2. The left invertibility structure of ¥ is defined as
SHE) = {l,lo,...,1p} (3.6.17)
3. Theright invertibility structure of . is defined as
Sy(Z) :=={r1,r2,..sTm.}- (3.6.18)

4. Finally, mg is the number of the infinite zeros of ¥ of order 0. The infinite
zero structure of X of order higher than 0 is defined as:

S5 (X)) :={a,9, ..., m.}- (3.6.19)

We say that & has mgy infinite zeros of order q;, ¢z, - . - , §m,» T€Spectively.
Ifgy =+ = gm, andmgy = 0, then I is said to be of uniform rank g;. On
the other hand, if mg > 0 and S%_(X) = 0, then X is said to be of uniform
rank 0.

We note that all the invariant zeros, 3;,1 = 1,2, ..., , and their corresponding
zero structures constitute the I; list of Morse [100]. Furthermore, S¥, S’ and S,
are corresponding to lists Iy, I3 and I of Morse, respectively. Also note that ¥ is
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left invertible if S* = 0, it is right invertible if S* = {, and invertible if both S
and S are empty. The computation of these indices turns out to be quite simple
using the techniques presented in the later chapters. We illustrate these structures
in the following example.

Example 3.6.1. Consider a system ¥ of (3.1.1) characterized by

C =

ml
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= O - OO -
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o

0
0

o

0 0

— D b bk b e

0
0
1

—_ O MO R OC
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- O =~ 000000

0
0
0

— O b = e e

—

0
0

= O o e

0
1
0

-0 O OO
1

1
SO OO O OO

OO0 OO

o o

oo rRrR OO OO
I}

b

(3.6.20)

(3.6.21)

It can be shown (using the technique to be given later in Section 5.6 of Chapter 5)

that with the following transformations

and

[== R = T e B e B e T = i e Y = T e T e Y

[l e B oo i an J e B e B
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-1
L —1
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oo OO O~ O
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-1
-1
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oo oo~ OOC

-1
-1
-1

OO0 oo oo OOO O

OO oOC0COHOOO OO

oo o= OOO
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OO R OO OO
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-1
-1
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oo o oo oo

(=R R e I e I e e I o I o = N o }

OO O R OO KM OFF

[ == R e B o Y e JiY e B . B e B e}
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[==T =R == I <= o B B -}
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the Kronecker canonical form of ¥ is given as follows:

T
—
|
—
(=}

S

¥
—

co oo ojloec o oll

1
o ol

OO OO0 oI m OO o

UPs(s)V =

[ R B =B 7 N [ ==] K e i ) e i wn ]

O~ OO0 O OO

coc oo rRooooloo
|
- o o0 ololo

co oo ololo o ojo |

OO0 O OOoOIC]o v RO O

oo oo oln|ooc oo C
|

OO OO OO O Oolo o

OO+ O oo o oo o

L

Thus, we have S3(Z) = {2}, S2(8) = {2}, (%) = {1}, SL(Z) = {1,2},
i.e., ¥ has a nonsimple invariant zero at s = 1, and two infinite zeros of order 1
and 2, respectively. T is degenerate as both S*(X) and S(X) are nonempty.

Again, we note that the aforementioned structural properties, such as the finite
zero and infinite zero structures as well as invertibility structures, of continuous-
time systems carry over to discrete-time systems without much effort.

3.7 Geometric Subspaces

The geometric approach to linear systems and control theory has attracted much
attention over the past few decades. It was started in the 1970s and quickly ma-
tured in the 1980s when researchers attempted to solve disturbance decoupling
and almost disturbance decoupling problems, which require the design of appro-
priate control laws to make the influence of the exogenous disturbances to the
controlled outputs equal to zero or almost zero (see, e.g., Basile and Marro [9],
Schumacher [126], Willems [151,152], Wonham [154], and Wonham and Morse
[155]). In fact, most of the concepts in linear systems can be tackled and studied
nicely within the geometric framework (see, €.g., the classical text by Wonham
[154] and a recent text by Trentelman et al. [141]). The geometric approach is
mathematically elegant in expressing abstract concepts in linear systems. It is,
however, hard to compute explicitly various subspaces defined in the framework.

The purpose of this section is to introduce the basic concepts of some popu-
lar and useful geometric subspaces defined in the literature, such as the weakly
unobservable subspaces and strongly controllable subspaces. These geometric
subspaces play remarkable roles in solving many control problems, such as dis-
turbance decoupling, Hs and H,, control. We will show later that these sub-
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spaces can be easily obtained using the structural decomposition technique given
in Chapter 5.

Let us consider the continuous-time system ¥ of (3.1.1) and let us first focus
on the weakly unobservable subspaces. Noting from Proposition 3.6.1, there are
certain initial states of X, i.e., the right state zero directions, for which there exist
control signals that will make the system output identically zero. The set of all
right state zero directions of the invariant zeros of ¥ does not cover all such initial
states. The weakly unobservable subspace of ¥ does.

The following are the definition and properties of the weakly unobservable
subspace adopted from Trentelman et al. [141].

Definition 3.7.1. Consider the continuous-time system ¥ of (3.1.1). An initial
state of X, £o € R", is called weakly unobservable if there exists an input signal
u(t) such that the corresponding system output y(t) = 0 for allt > 0. The
subspace formed by the set of all weakly unobservable points of ¥, is called the
weakly unobservable subspace of ¥ and is denoted by V *(X).

The following lemma shows that any state trajectory of X starting from an
initial condition in V*(X) with a control input that produces an output y(t) = 0,
t > 0, will always stay inside the weakly unobservable subspace, V*(X).

Lemma 3.7.1. Let zo be an initial state of ¥ with zo € V*(X) and u be an input
such that the corresponding system output y(t) = 0 for allt > 0. Then the
resulting state trajectory z(t) € V*(X) forallt > 0.

Proof. For an arbitrary ¢; > 0, we let Zg = z(¢1) be a new initial condition for
% and define a new control input @(¢) = u(t + 1), ¢t > 0. It follows from (3.2.1)
that

i
B(t) = eAtFy + / et Bi(r)dr
0

t1 t
= At (e““l To +/ eA(t“T)Bu(T)d'r) +/ eAt=") Bu(r + t1)dr
0 0

t t+t
= eA(t‘*'t‘)xo + / l eA(t"'tl‘T)Bu(T)d'r + / ' eA(t"'t‘_’-')Bu('F)di
0 t1

i+t
= eAlt+t) gy 4 / eAt+t—7) By(r)dr
0
=z(t+t), t>0, 3.1.1)
and the corresponding system output

§(t) = C&(t) + Di(t) = Ca(t + t1) + Dult +t1) = y(t +t1) =0, (3.72)
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for all t > 0. By Definition 3.7.1, o = z(t1) € V*(X). The arbitrariness of ¢,
implies that z(t) € V*(X) forallt > 0. ]

The following theorem of [141] shows that the weakly unobservable subspace
can be defined in an alternative way.

Theorem 3.7.1. The weakly unobservable subspace of £, V*(X), is equivalent to
the largest subspace V that satisfies either one of the following conditions:

LAy sm (2]}

2. Thereexistsan F € R™*" such that (A+BF)V C V and (C+DF)V = 0.

Proof. First, let us prove that if zo € V*(X), then 2o is in the largest subspace
V that satisfies the condition in Item 1. It follows from Lemma 3.7.1 that for the
given system X with an initial state o, there exists a u such that the resulting state
z(t) € V*(X) and y(t) = 0 for all £ > 0. Observing that

4(0%) = Jim, % [2(t) - z0] € V* (D), (373)

we have #(0%) = Azo + Buo € V*(X) and Czo + Dug = 0, where ug = u(0),
or equivalently

[g] ¥ [g} uo € (V1(Z) x 0). (3.7.4)

Thus, z¢ is in a subspace V that satisfies the condition in Item 1.
Next, we show that the condition in Item 1 implies the condition in Item 2. Let
VY C R" be any subspace that satisfies the condition in Item 1. Let us choose a

basis z1,Z2, ..., T, ..., T, for R” such that z,,z,,..., z, is a basis for V. The
condition in Item 1 implies that there exist u; € R™,7=1,2,...,, such that
Az; + Bu; €V, Cx;+ Du; =0. (3.7.5)

Let F € R™*" be such that Fz; = u;,i = 1,2,...,r. We have

(A+BF)z;€V, (C+ DF)z;=0. (3.7.6)
Because z1, z3, . .., T, is a basis of V, we have
(A+BF)Y eV, (C+DF)V=0, 3.7.7)

or equivalently, the condition in Item 1 implies that in Item 2.
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Lastly, we show that any subspace V that satisfies the condition in Item 2,
is a subspace of V*(X). Let zo € V and let us choose u(t) = Fz(t). Then,
the condition in Item 2 implies that the resulting state trajectory z(t) € V and
y(t) = Cz(t) + Du(t) = (C + DF)z(t) = 0 for all ¢ > 0. Thus, by definition,
Zo € V*(X). Hence, ¥V C V*(X). This concludes the proof of Theorem 3.7.1. m

Using the result of Theorem 3.7.1, we can further define the stable and the
unstable weakly unobservable subspaces of X.

Definition 3.7.2. Consider a system Y. characterized by a quadruple (A, B, C, D).
Then we define V*(X) to be the largest subspace V that satisfies

(A+BF)VCV, (C+DF)V=0, (3.7.8)

and the eigenvalues of (A+ BF)|V are contained inC* C C for some F € R™*™.
Obviously, V¥ = V* if C* = C. We further define V= := V* if C* = C~ U C°,
and V't := V¥ ifC* = C*.

The following definition characterizes a subspace for which any state trajec-
tory starting from within it vanishes in finite time and its corresponding system
output can be made identically zero. Such a subspace is called the controllable
weakly unobservable subspace of X, and is denoted by R *(Z).

Definition 3.7.3. Consider the continuous-time system ¥ of (3.1.1). An initial
state of , zg € R", is called controllable weakly unobservable if there exists an
input signal u(t) and t; > 0 such that the resulting system output y(t) = 0 for
allt € [0,t] and the resulting state trajectory vanishes att = t1, i.e., z(t;) = 0.
The subspace formed by the set of all controllable weakly unobservable points of
X is called the controllable weakly unobservable subspace of & and is denoted by
R*(%).

Clearly, it follows from Definitions 3.7.1 and 3.7.3 that R*(Z) C V*(Z). We
next introduce the strongly controllable subspace of ¥, S(X). S and V are dual
in the sense that V*(£*) = S§*(X)*, where $* is characterized by the quadruple
(4',C',B',D'). The physical interpretation of S is rather abstract and can be
found in Trentelman et al. [141].

Definition 3.7.4. Consider a system X characterized by a quadruple (A, B, C, D).
Then we define the strongly controllable subspace of ¥, S*(X), to be the smallest
subspace S that satisfies

(A+KC)SCS, im(B+KD)CS, 3.7.9)
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and the eigenvalues of the map that is induced by A + KC on the factor space
R/S are contained in C* C C for some K € RP*". We let S* := S¥if C* = C,
ST :=8%ifC*=C UC? and St := ¥ ifC* = C™.

Intuitively, it is pretty clear from the definitions that the controllable weakly
unobservable subspace is a subspace of the weakly unobservable subspace that is
inside the strongly controllable subspace, i.e.,

R*(Z) = V*(Z) N S* (D). (3.7.10)

This indeed turns out to be the case (see, e.g., Trentelman et al. [141] for the
detailed proof). Another popular subspace (paired with R *) is called the distribu-
tionally weakly unobservable subspace (denoted by A/ *) and is equivalent to the
sum of the weakly unobservable subspace and the strongly controllable subspace,
ie.,

N* () = V*(2) + S*(). (3.7.11)

Finally, we define two more geometric subspaces of ¥, which were originally
introduced by Scherer [124,125] for tackling H ., almost disturbance decoupling
problems.

Definition 3.7.5. For the given system X of (3.1.1) and for any A € C, we define

m o _[A=X B[
JweC .0_[ c D](w)}, (3.7.12)

awecwmlz(g)=[AEfI g]w}.(&TB)

V() = {c cC

S\(5) = {c ccr

VA(X) and S)(X) are associated with the state zero directions of ¥ if ) is an
invariant zero of X. Clearly, Sy (X) = V5(Z*)*.

Once again, we note that all the aforementioned geometric subspaces can be
explicitly computed using the structural decomposition technique to be developed
in Chapter 5. In fact, the system given in Example 3.6.1 is already in the required
form, and its geometric subspaces can thus be easily obtained. We now proceed
to give all its geometric subspaces in the following example.
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Example 3.7.1. Let us re-consider the system ¥ with (A, B, C, D) being given
in Example 3.6.1. It can be verified that the various geometric subspaces of X are

given as:
(11 0 07) (107)
010 0
0 0O 0
V*(E) = V*(Z) = im 4 0o v®=m{ |2},
0 00 0
0 00 0
L L0 0 04) \ L0 )
('0000"
0 00O
0 00O
. 00 0O
N
S*(X)=87(X) =im { 1000 -
0100
0 010
\_000 1_)
('1 0 0 0 0 07
01 00O00O
0 00OOTDO
IR 000000
ST(E)=imqig 01900 of
000100
000010
(LO 0 0 0 0 11)
(107) (100 0 0 07)
0 0100 00O
0 000 O0O0TO
sren )10 .y 000000
R(E)—lm< 1 >,N(E)—1m{ 00100 0 ;,
0 000 1O0TO0
0 000 010
(Lol ) (Lo oooo 1])
and for A = 1, which is the invariant zero of X,
(1 07 ) (1 0 0 0 0 07)
0 0 0 00 0 00O
00 0 -1 00 00O
. 00 . 0 10000
W =im{ [0 V1, Sy(D) =im o 0100 0l(
00 0 001 00
00 0 0 0 010
LLo o], (Lo 000 0 1))
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Note that in the computation of } and S, we select F' and K as follows:

[1 1 1

111W

11111 % % * ii:
F=—-]11111 % % x|, K=~ ,
1111111 111

* x 1

* x 0

* % 1

r
L

where “x” are appropriate scalars subject to the constraints on eigenvalues as in
Definitions 3.7.2 and 3.7.4.

We conclude this section by noting that all the geometric subspaces defined
for continuous-time systems can be used for discrete-time systems as well, except
for V=, §—, YVt and ST, for which we need to modify their associated C* as
C® U C° (for the first two subspaces) and C® (for the last two subspaces).

3.8 Properties of State Feedback and Qutput Injection

It is straightforward to show that for a linear time-invariant system, its stability,
controllability, observability, invertibility, and finite and infinite zero structures
are all invariant under nonsingular state, input and output transformations. In
fact, this property will enable us to develop the structural decomposition tech-
nique in the forthcoming chapters, which is to construct certain nonsingular state,
input and output transformations for a given system such that all its structural
properties can be explicitly displayed. In particular, the system transfer function
remains unchanged under any nonsingular state transformation, which results in
nonuniqueness for the realization of a system from the frequency domain (transfer
function) to the time domain (state space representation).

In this section, we will study the behavior of the aforementioned system struc-
tural properties under two operations, the state feedback and the output injection,
which are commonly used in systems and control theory. Given a continuous-time
system ¥ as characterized by (3.1.1), the state feedback operation is to introduce
a control law

u=Fz+wv, 3.8.1)
and apply it to 3. The resulting closed-loop system can then be written as

{:&=(A+BF)z+Bv,
Y

8.2
y=(C+DF)z+ D, (38.2)
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i.e., it is characterized by a new quadruple (A + BF, B,C + DF, D). The ideas
of the output injection and state feedback are dual. But, it is hard to express the
output injection in terms of an explicit expression as in (3.8.1). Instead, given a
K e R™*P, we directly treat the output injection as an operation that generates a
new system X, characterized by a quadruple (A + KC, B + KD, C, D).

The following two theorems show that the structural properties of ¥, including
geometric subspaces, are invariant under state feedback and output injection.

Theorem 3.8.1. Consider a given system ¥ characterized by a matrix quadruple
(4, B,C, D). Also, consider a state feedback gain matrix F € R™*™. Then, X;
as characterized by the quadruple (A + BF, B,C + DF, D) has the following
properties:

1. ¥; is a controllable (stabilizable) system if and only if ¥ is a controllable
(stabilizable) system;

2. The normal rank of ¥, is equal to that of ¥;
3. The invariant zero structure of Y. is the same as that of ¥;
4. The infinite zero structure of X is the same as that of ¥;

5. 3. is (left or right) invertible or degenerate if and only if ¥ is (left or right)
invertible or degenerate;

6. V¥(Zp) = V*(X) and $*(Z;) = S*(2);
7. R*(Zs) = R*(Z) and N* (Z¢) = N*(X); and
8. VA(Zs) = VA(Z) and 5x(Zr) = Sx (%)
Proof. Item 1 is obvious. Items 3 and 4 follow directly from the following fact:

A+BF sl B]z[A—sI BHI o]_

C+DF D ¢ DI||F I (3.8.3)

Items 2 and 5 can be seen from the following simple manipulations:

H.(s):=(C+DF)(sI-A-BF)"'B+D
= (C+ DF)(sI - A7 I - BF(sI- A" Y"'B+D
= (C+DF)(sI-A)™'B[I-F(sI-A)™'B]"* + D
= [C(sI - A)™'B+ D][I - F(sI — A)~'B]!
= H(s)[I - F(sI — A)~'B]™L. (3.8.4)
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Since [I — F(sI — A)~1B]~! is well defined almost everywhere on the complex
plane, the results of Items 2 and 5 follow.

For Item 6, it is obvious from the definition that VX is invariant under any state
feedback law. Next, for any subspace S that satisfies (3.7.9), we have

(A+KC+BF+KDF)S = (A+KC)S+(B+KD)FSCS.  (385)

Thus, S* is invariant under any state feedback laws as well.

Next, it follows from (3.7.10) and (3.7.11) that both R * and N'* are invariant
under state feedback. This proves Item 7.

Let us now prove Item 8. Recalling the definition of V5, we have

V,\(EF)z{CeC" JweC™ : 0= [“BF“” B} <C>}

C+ DF Dl \w

Then, for any { € Vx(Zs), there exists an w € C™ such that
o_ [A4+BF-I BY(¢\_[4-M B)[I 0](¢
- C+ DF Di\w) C D||F I|\w)’

[ 3](9).

where @ = F({ + w. Thus, { € Vx(X) and hence Vj(E;) C ViA(X). Similarly,
one can show that V) (X) C V) (%), and hence V5(X) = Vi (Z;). The result that
Sx(Zr) = Sx(X) can be shown using similar arguments. ]

or

Theorem 3.8.2. Consider a given system Y. characterized by a matrix quadruple
(A, B,C, D). Also, consider an output injection gain matrix K € R™*P. Then,
Y as characterized by the quadruple (A+ KC, B+ K D, C, D) has the following
properties:

1. ¥ is an observable (detectable) system if and only if ¥ is an observable
(detectable) system;

2. The normal rank of Y¢ is equal to that of ;
3. The invariant zero structure of Xy is the same as that of ¥;
4. The infinite zero structure of X is the same as that of ¥;

5. Xy is (left or right) invertible or degenerate if and only if ¥ is (left or right)
invertible or degenerate;
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6. VX(Zx) = VX(Z) and SX(Zy) = S¥(%);
7. R*(Zx) = R*(Z) and N'* (5x) = N'*(E); and
8. Vx(Zx) = VA(E) and Sx(Sx) = Sx(Z).

Proof. It is the dual version of Theorem 3.8.1. n

Note that Theorems 3.8.1 and 3.8.2 hold for discrete-time systems as well.

3.9 Exercises

3.1. Consider an electric network shown in the circuit below with its input,
u, being a voltage source, and output, y, being the voltage across the 2 F
capacitor. Assume that the initial voltages across the 1 F and 2 F capacitors
are 1 V and 2 V, respectively, and that the inductor is initially uncharged.

109 10Q 0.1H
+oe—T— — Y +
u 1F = 100 109[] 2F = y

Circuit for Exercise 3.1.

(a) Derive the state and output equations of the network.

(b) Find the unit step response of the network.

(c) Find the unit impulse response of the network.

(d) Determine the stability of the network.

(e) Determine the controllability and observability of the network.
(f) Determine the invertibility of the network.

(g) Determine the finite and infinite zero structures of the network.

3.2. Given
A | et tae® —et 4+ Be

T 2t -2 2t |

determine the values of the scalars o and 3, and the matrices A and A 190,
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3.3. Given a linear system, & = Az + Bu, with z(t;) = z; and z(t2) = 2 for
some t; > 0and ¢ > 0, show that

t2
/ e AT Bu(r)dr = e~ At2gy — e~ Ay,
t

3.4. Given a linear time-invariant system, £ = Az + Bu, let
~ A BB
1[4 58],
(2) Verify that et has the form

we [0 28]

(b) Show that the controllability grammian of the system is given by
t
Wa(t) = / e 4" BB'e A" dr = By(t)Es (1)
0

(c) Compute W (t) for the system obtained in Exercise 3.1 with t = 0.1,
0.5 and 2 seconds.

3.5. Consider an uncontrollable system, £ = Az + Bu, with z € R™ and
u € R™. Assume that

rank (Q.) =rank (B AB --- A™'B])=r<n.

Let {q1,¢2,...,9-} be a basis for the range space of the controllability
matrix, Q., and let {gr+1, ..., gn} be any vectors such that
T=[la &« " & ¢+1 - a]

is nonsingular. Show that the state transformation

t=Ti=T (i) , F €ER, F. € R,
c
transforms the given system into the form
-’?c —- Acc Acé jc Bc
(2)=1% &)= (5]

where (Acc, Bc) is controllable. Show that the uncontrollable modes of the
system are given by A(Age).
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3.6. Given an unobservable system characterized by

3.7.

3.8.

3.9.

T =Az+ Bu, y=Cz,

derive a state transformation matrix, 7", and a new state variable, Z, with

m:Ti-—-T(a.:°>,
Zs

such that the given system can be transformed into the form

(E) =T[4 21(2)+[R]w v=ta (),

where (Ao, C,) is observable. Moreover, the unobservable modes of the
system are given by A(As5).

Verify the result of Exercise 3.5 for the following systems:

5 1 1 1 0
12 11 1
T=1_2 o 2 —2|%t|1|%
1 -1 -1 3 1
and
-3 -3 1 0 3 3
o |2 36 -3 -5 -2 -1
30 39 -2 —27 0o 3|%
30 43 -3 —32 0 1

Verify the result of Exercise 3.6 for the following systems:

-1 -1 -1 3
t=| 0 0 -l|lz+ (2w, y=[1 1 1]z,

1 2 3 1
and
0 1 0 O 1
. -1 -2 -2 -2 9 ~
E=1 5 o0 o0 -1|%T|3]|® y=[1 11 1]z
1 2 3 4 4

Show that if (A, B) is uncontrollable, then (A + al, B) is also uncontrol-
lable for any a € R.
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3.10.

3.11.

3.12.

3.13.

3.14.

It was shown in Theorem 3.8.1 that constant state feedback does not change
the controllability of a linear system. Show by an example that a state
feedback law may change the observability of the resulting system.

Similarly, it was shown in Theorem 3.8.2 that constant output injection
does not change the observability of a linear system. Show by an exam-
ple that a constant output injection may change the controllability of the
resulting system.

Verify that the system
110 0
=10 0 1|lz+ |0]w, y:[(l) é 8]2:,
111 1

is left invertible. Given an output

coswt + wsinwi
= >
y(®) ( et — coswt ) » 820,

which is produced by the given system with an initial condition,

determine the corresponding control input, u(t), which generates the above
output, y(t). Also, show that such a control input is unique.

Verify that the system
110 01
£={0 0 1jz+]0 Oju, y=[0 1 0]z,
111 10

is right invertible. Find an initial condition, z(0), and a control input, u(t),
which together produce an output

y(t) = acoswt, t>0.
Show that the solutions are nonunique.

Using the results of Theorems 3.8.1 and 3.8.2 with an appropriate state
feedback gain matrix, F', and an appropriate output injection gain, K, show
that both systems given in Exercise 3.12 and Exercise 3.13 have an infinite
zero of order 2, and have no invariant zeros.
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3.15. Show that for the system given in Exercise 3.12,

00
V'=R*={0} and S*=N"=im 10
01
3.16. Show that for the system given in Exercise 3.13,
1
V*=R*=im{ |0 and S*=N*=R%
0
3.17. Given a linear system
1010 00
i_Olllz_‘_OOu {0010
“lt111 1ol ¥ looo 1]®
0111 01

show that it is invertible, controllable and observable. Also, show that it
has two infinite zeros of order 1 (and thus has a normal rank equal to 2),
and has one invariant zero at s = 1 with a geometric multiplicity of 2 and
an algebraic multiplicity of 2. Verify that such an invariant zero is also a
blocking zero of the system.

3.18. Determine the geometric subspaces, V*, R*, S$* and N'*, for the system
given in Exercise 3.17.

3.19. Show that the geometric subspace, S, is invariant under any constant state
feedback.

3.20. Show that the geometric subspaces, V*, V) and S, are invariant under any
constant output injection.



Chapter 4

Decompositions of Unforced
and/or Unsensed Systems

4.1 Introduction

In this chapter, we introduce the structural decomposition techniques for the fol-
lowing three types of linear time-invariant systems, which are relatively simple
compared to general multivariable systems. The techniques presented in this chap-
ter are very useful themselves and serve as an introduction to the more complete
theory of structural decompositions of general systems discussed in the later chap-
ters. The types of systems considered in this chapter are:

1. An autonomous system characterized by a constant matrix A, i.e.,

i = Az. (4.1.1)

2. An unforced system characterized by a matrix pair (C, A), i.e.,

= Az, y=0Cz. 4.1.2)

3. An unsensed system characterized by a matrix pair (4, B), i.e.,

& = Az + Bu. (4.1.3)

Note that the systems in (4.1.2) and (4.1.3) are dual to each other.
Specifically, we will introduce a stability structural decomposition (SSD) and
the real Jordan decomposition (RJD) for the autonomous system of (4.1.1). We

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004
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will then present two decompositions for the unforced system of (4.1.2), namely
the observability structural decomposition (OSD) and the block diagonal observ-
able structural decomposition (BDOSD). Dually, two structural decompositions,
namely, the controllability structural decomposition (CSD) and the block diago-
nal controllable structural decomposition (BDCSD), are given for the unsensed
system of (4.1.3). These decompositions are useful in deriving results for more
complicated systems discussed in the later chapters. In fact, they are instrumental
in solving many system and control problems such as sensor and actuator se-
lection (see, e.g., [31,92]) and almost disturbance decoupling (see, for example,
[22,23,86]).

4.2 Autonomous Systems
Consider the linear time-invariant autonomous system ¥ characterized by
&= Az, z€R". 4.2.1)

In this section, we present two structural decompositions for such an autonomous
system, i.e., the stability structural decomposition (SSD) and the real Jordan de-
composition (RID).

Theorem 4.2.1 (SSD). Consider the autonomous system X¥. of (4.2.1) character-
ized by a constant matrix A. There exists a nonsingular transformationT € R™*"
and nonnegative integers n.., ng and n such that

A2 0 o0
TAT=A=|0 A4 0|, 4.2.2)
0 0 Ay

where A_ € R™*™~ with \(A_) C C~, Ag € R™*™ with A(4;) C C°, and
Ay € R™*™ with \(A4) C C*. The SSD totally decouples the stable and
unstable dynamics as well as those dynamics associated with the imaginary axis
eigenvalues.

Note that the existence of the transformation T follows immediately from the
real Jordan canonical decomposition given later in this section. In what follows,
we proceed to present a constructive algorithm that realizes the above SSD. In
fact, this SSD will be used later to improve numerical conditions in finding the
Jordan and real Jordan canonical decompositions. )
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The key idea in the constructive procedure given below is motivated by the
fact that, for a square constant matrix with distinct eigenvalues, there is a nonsin-
gular transformation, the corresponding eigenvector matrix, which diagonalizes
the given matrix. By treating all the stable eigenvalues, all the unstable eigenval-
ues and all those eigenvalues on the imaginary axis as single objects, which are
obviously distinct, we can compute their corresponding eigenspaces and form a
necessary transformation to block-diagonalize the given matrix into the structure
of (4.2.2). The following constructive algorithm is adopted from Chen [19]:

STEP SSD. 1.

Utilize the numerically stable real Schur decomposition (see, e.g., Golub
and Van Loan [59]) to find an orthogonal matrix P; € R™*™ such that

M1 * *
L 0 M2 *
PlAP =M= . . . |, (4.2.3)

for some integer k, where the symbol * represents a matrix of less interest.
Moreover, for each i = 1,2,..., k, M; is either a real scalar, say M; = u;,
or a 2 X 2 matrix having a pair of complex eigenvalues at, say p; + jw;.
Moreover, i, = 1,2,...,k, are arranged such that g < po < -+ < .

STEP SSD.2.

Letn._, ng and ny be the numbers of the eigenvalues of A which belong to
C~, C% and C, respectively. Also, let

In n,
To=P [ '0+ "] . (4.2.4)

The columns of T span the entire eigenvector space associated with the
nonpositive eigenvalues of A.

STEP SSD.3.

Use the real Schur decomposition once again to find another orthogonal
matrix P, € R™*™ such that

Q- * %
Py (-APR=Q=|0 Q ~* |, (4.2.5)
0 0 @+



72 Chapter 4. Decompositions of Unforced and/or Unsensed Systems

where A\(Q_) C C™, A\(Qo) € C° and A(Q4) C C*. Let

In, ] . (4.2.6)

T, =P
=n|"

The columns of Ty span the entire eigenvector space associated with the
positive eigenvalues of A.

STEP SSD.4.
Let
Th=[T-0o Ty]. 4.2.7
We have
Ay O
T AT, = 2.
1 1 [ 0 A+] ; (4.2.8)

where A(A_o) ¢ C” UC® and A(44) C C*.

STEP SSD.5.
Again, apply the real Schur decomposition to matrix A _q to find an orthog-

onal matrix N; € R(?-+70)X(n-+70) qch that

R_
N{YA_oN, = [ . 1; ] (42.9)
0

where A(R_) C C~ and A(Rp) C C°. Then, define

In_
Z_=MN [ 0 ] . (4.2.10)

STEP SSD.6.

Apply the real Schur decomposition one more time but to the matrix — A _
to find an orthogonal matrix N, € R(P-+n0)*(n-+n0) g that

So *]

0 S, 4.2.11)

Ny '(~A—o)Np = [
where A(Sp) C C° and A\(S4) € C¥, and define

L,
Zo = N, [ 0"] . (4.2.12)
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STEP SSD.7.

Finally, let

Z
Zy=[2- Zo) and T:Tl[ 0 ] (4.2.13)
0 In,
1t is straightforward to verify that
_[A- 0 0
T'AT=A=|0 A 0|, (4.2.14)
0 0 Ay

where A(A_) € C~, A(4p) C C°® and A\(A4) C C™. This concludes the
algorithm for the stability structural decomposition.

The above algorithm has been implemented in an m-function ssd . m, in [87].
In principle, one can modify the above procedure to deal with discrete-time sys-
tems by re-arranging the order of eigenvalues to obtain a required transformation
that separates the given matrix A into three parts with their eigenvalues being re-
spectively in C® (the set of complex scalars inside the unit circle), C° (the set
of complex scalars on the unit circle) and C® (the set of complex scalars outside
the unit circle). This will, however, require a re-programming of the real Schur
decomposition. Following the result of Chen [19], we can utilize the above algo-
rithm to develop a simple procedure that constructs the required transformation T'

for such a decomposition: Let a be a scalar on the unit circle of the complex plane
but not an eigenvalue of A. We define a new matrix,

A= —;— [(A +al) Y A-al)+(A+a’ ) (A- a"I)], (4.2.15)

where a* is the complex conjugate of a. It is easy to show that A is a real-valued

matrix. Next, apply Steps $SD.1-sSD.7 to A to obtain a transformation T' such
that

A0 0
T'AT=|0 A 0 |, (4.2.16)
0 0 Ay

where A(A_)CC~, A(Ao) cC° and A(A; ) CC*. Then, it can be readily shown
(see e.g., Chen [19]) that this same T yields

A_ 0 0
TIAT=| 0 A4 0 |, 4.2.17)
0 0 Ay



74 Chapter 4. Decompositions of Unforced and/or Unsensed Systems

where A(A-) C C°, A\(4g) C C° and A\(4,) C C®. The discrete-time version
of stability structural decomposition has also been implemented in an m-function,
dssd.m,in [87].

We illustrate these techniques in the following example.

Example 4.2.1. Consider an autonomous system ¥ of (4.2.1) characterized by

-1 -1 -3 -1 -1
0 2 4 4 4
A= 0 -2 -2 -3 -3}, (4.2.18)
1 1 1 0 0
-1 -1 -1 1 1

which has eigenvalues at 0, —1, 1, —2j and 2. Following the SSD algorithm of
Theorem 4.2.1, which has been implemented with an m-function, sed . m, in [87],
we obtain

0.57735  0.47385  0.66493 0 0.57735
0 -0.81277  0.07790 0 0
Iy = 0 0.33892 —0.74283 0 -0.57735 | ,
—0.57735 0 0 0.70711 0
0.57735 0 0 -0.70711  0.57735

which gives the following stability structural decomposition of A,

-1 0 0 0(0
0| 0.21932 3.44308 0|0
T ATy = | 0| -1.17572 —0.21932 0|0
0 0 0 0{0
0 0 0 01
Using the m-function dssd . m of [87], we obtain
0 -0.57735 0.57735 0.78072 —0.23906
0 0 0 —0.59739 —0.55659
T, = 0 0 —-0.597735 -0.18332  0.79565 | ,
0.70711  0.57735 0 0 0
-0.70711 -0.57735 0.57735 0 0

which gives the following stability structural decomposition of A4,

0l oo o 0

0[-1 0] O 0

T, 'AT, = 0] 0 1 0 0
0 0 0115182 —2.39096
0| 0 0222785 -1.15182
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Next, we introduce another decomposition for autonomous systems, i.e., the
real Jordan decomposition (RJD). The numerical difficulty associated with the
transformations to the Jordan canonical forms is well understood in the literature.
Yet, the Jordan forms have been proven to be convenient tools in dealing with
linear systems.

Theorem 4.2.2 (RJD). Consider the autonomous system X of (4.2.1), character-
ized by A € R™™". There exists a nonsingular transformationT € R™*" and an
integer k such that

N
1 J2
T AT =J = , (4.2.19)
Jr
where each block J;, i = 1,2,...,k, has the following form:
A1
Ji = , (4.2.20)
A1
Ai
if A\; € A(A) is real, or
Ai I2
Ji = A= [ pi “’i], 4.221)
A L —wi  pi
A;

if\; = pi + jw;, Xi = Wi — jwi € A(A) withw; > 0.

The derivation of the above real Jordan canonical form can be found in many
text books (see, e.g., Wonham [154]). In what follows, we present a constructive
algorithm for obtaining the transformation T'. As pointed out earlier in Chapter 2,
the numerical difficulties associated with the Jordan decomposition is well under-
stood in the literature. However, when it can be computed accurately, it is very
useful. The application of the real Jordan canonical form in this book is mainly
for theoretical analysis.

We first repeatedly utilize the results of Theorem 4.2.1 to find a nonsingular
and well-conditioned transformation P € R™*"™ such that

A
Az
PlAP = N , (4.2.22)

Ag
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where sub-matrices A; € R™*™, i = 1,2,...,/, have either a single or one
repeated (if n; > 1) real eigenvalue \;, or a single or a repeated (if n; > 2) pair
of complex eigenvalues A; and A}. Also, we have \; # A;, if ¢ # j. This can be
done using the following procedure:

1. Compute the eigenvalues of A. Let \; = p; + jwi, w; 20, =1,2,...,¢,
be all the distinct eigenvalues of A, ie., A; # A, ¢ # k, with nonnegative
imaginary parts. We also arrange A; such that g3 < po < -+ < pyp.

Furthermore, if py, = pg+1, we arrange A, and Mgy such that wy < wiys.

2. Let k be an integer such that uy = po = -+« = pr < pr41. We define a
constant matrix

A=A-— l"k+ﬂk+lI

— b

which has k distinct eigenvalues in C~ with all their real parts equal to

(s — pk+1) /2 and no eigenvalue on the imaginary axis. Utilizing the al-

gorithm of the stability structural decomposition of Theorem 4.2.1, one can

find a transformation T such that

(4.2.23)

4.2.24)

T'ATy = [%— ;?_J )

where A\(A_) € C™ and M\(A;) C C*. Such a transformation T yields

— A1 k 0
TAT = |70 , 4225
Lo [ 0 Ak+1,e] ( )
where A, j contains eigenvalues A;, ¢ = 1,2,...,k, and Ag41 ¢ contains

eigenvalues \;, 1 = k+ 1,k + 2,. .., £. Repeating the above procedure for
Ap41,¢, we can block diagonalize A with each block containing eigenvalues
with the same real part.

3. Next, for A; j, which contains the distinct eigenvalues A\; = p; + juw,
i =1,2,..., k. These eigenvalues were arranged in Step 1 in such an order
that w; < wy < -++ < wg. We define a constant matrix,

A=(A+pBD)7" (A-pD), (4.2.26)

where

g VHiFuit Vil +u
2

4.2.27)
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It can be verified that A has only one distinct eigenvalue in C~ and all
the other eigenvalues are in C*. Utilizing the algorithm of the SSD of
Theorem 4.2.1, one can find a transformation T's such that

1 _[A- 0
T, AT, = [ 0 A, | (4.2.28)
where A(A_) ¢ C™ and A(A;) C C*. Such a transformation T, yields
_ A 0
Ty ATy = [ o AI,k] : (4.2.29)
where A; contains only one distinct eigenvalue A1, and A7 ; contains eigen-
values A;, i = 2,3, ..., k. Repeating the above procedure for A7 ;, we can
obtain a nonsingular transformation T j, such that
A
1 Ay
I AveTie = N : (4.2.30)
Ag

Repeat the above procedure for all the blocks obtained in Step 2, which
contain eigenvalues with the same real parts, to yield the desired block di-
agonalization as in (4.2.22).

Now, for each A; with its corresponding A; being a real number, we use the
result of (2.3.39) to obtain a nonsingular transformation S; = S; € R™*™ such
that A; is transformed into the Jordan canonical form. For each A; which has
eigenvalues \; = p; + jw; and A} = p; — jw;, with w; > 0, we follow Fama and
Matthews [52] to define a new (2n;) x (2n;) matrix,

Z; = A — pily, wilp,

4231
—wily; A; — il ( )

It is simple to show that Z; has n; real eigenvalues at 0 and n; purely imaginary
eigenvalues at +32w;. Define a constant matrix

Zi=(A+w) YA - wl), (4.2.32)

which has n; eigenvalues at —1 and n; unstable eigenvalues. Then, following the
stability structural decomposition of Theorem 4.2.1, one can obtain a nonsingular
transformation §9 € R(27)*(2m) gych that

Zi O ]

0y-17. 0 = ~
(83)7"Z:S; [ 0 . (4.2.33)
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where Z;o has all its eigenvalues at —1 and Z;, has only unstable eigenvalues. It
can be readily verified that

(4.2.34)

Z
(812,80 = [ 0 0 ] ,

0 Z
where Z;o has all its eigenvalues at 0 and Z;, has no eigenvalue at 0. Next, we

utilize the result of (2.3.39) to obtain a nonsingular transformation S} € R™*™
such that

(87208} = bikciag{ 3, I8, J2, T3, ..., c) @23)
where J&, m = 1,2, ..., 0;, have the form,
o= [8 I""’(j'l]- (42.36)
Let us partition
s :=59[53 o]z{&{’f o Shp XM xEpe
0 In 83 ... & x¥ .. XEo
ShL .. Spmes xDloxpmee
SEL .. ghme xDLo. xhme } (4.2.37)
whereSil,f,,Sf,’,’;,X},’,ﬁande”,ﬁ,m:1,2,...,a,~andk=1,2,...,n,~m,are

n; X 1 real-valued vectors. Next, define an n; x n; real-valued matrix,

& —|qll @21 Lnia @2ma . qlil @21 Linie; q2:Mie;
S'—[Sm Si,l P4 Si,l © Sig: S 5 S )

1,04 1,0 1,05 1,0;

Finally, let

S = ) , (4.2.38)

S
and T = PS € R™™". Itis now straightforward to show that T "1 AT is in the
real Jordan canonical form as described in Theorem 4.2.2. The algorithm has been

implemented in [87] with an m-function called rjd.m. We illustrate the above
result in the following example.
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Example 4.2.2. Consider an autonomous system ¥ of (4.2.1) characterized by

3 2 2 2 2 2
3 1 2 3 2

(4.2.39)

4 0 3 0 4

2
2
4 0 2 1 4 2
2
-20 -4 -12 -9 -16 -11

Using the m-function rjd.m of [87], we obtain a real Jordan canonical decom-
position of A with

[0 1| 1 0| 0 0]
-1 0] 0 1 0O
0 0f 01 00O
J= 0 0l<1 0! 0ol (4.2.40)
0 0| 00 01
A L 00| 0 0|-1 0|
and the required state transformation,
0 0 —0.12251 0.04504 -0.07311 -0.53231
—0.63824 -0.50617  0.26812 0.09233  0.24639 —0.13302
T = —0.13207 -1.14440 0.22084  0.48295 —0.15290 0.18649

—0.13207 —1.14440 -0.41740 -0.02322 —-0.15290  0.18649 |
—0.13207 -1.14440  0.08877 -0.66145 —0.15290  0.18649
1.03444  3.93938  0.00090 —0.01943 0.58813  0.33547

4.3 Unforced Systems

‘We consider an unforced system X characterized by
= Az, y=Cuz, 4.3.1)

where z € R™ is the state, y € R? is the output, and A and C are constant matri-
ces of appropriate dimensions. We note that there are quite a number of canoni-
cal forms associated with such a system, e.g., the observable canonical form and
the observability canonical form (see, e.g., Chen [33] and Kailath [70]). These
canonical forms are effective in studying the observability of the given system.
However, they are not adequate to show the more intrinsic system structural prop-
erties. Two canonical forms are presented in this section for the unforced system
(4.3.1), namely the observability structural decomposition (OSD) and the block
diagonal observable structural decomposition (BDOSD). These canonical forms
require both state and output transformations. The following theorem character-
izes the properties of the OSD.
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Theorem 4.3.1 (OSD). Consider the unforced system of (4.3.1) with C' being of
full rank. Then, there exist nonsingular state transformation Ts € R™*"™ and
nonsingular output transformation Ty € RP*? such that, in the transformed state
and output,

z=T%, y="T9, 4.3.2)
where
Zo Zi1 91
~ I fii,Z . . (]
r= , Ei= y 1=L2,..,p, =1 . |, (433)
jp "z'i,ki :[Jp
we have
o = AoZo + Lo7, “4.3.4)
andfori =1,2,...,p,

i = A%+ L, §;=[1 0], (4.3.5)
where L;, 1 = 1,2,...,p, are some constant matrices of appropriate dimensions
and

— 0 Ik.'—l
A; = [O 0 } . 4.3.6)
The matrix Ao is of dimensions no X mo, where ng := n — Y_>_, k;, and A(Ao)

contains all the unobservable modes of the matrix pair, (C, A). Moreover, the set
O :={ki, ke, ..., kp } is the observability index of (C, A).

The result of Theorem 4.3.1 can be summarized in a more compact form as
follows:

-Ao * 0 R 4 0 7
0 x Liy—1 -+ * 0
0 0 R 0
T, AT, = T : oo : J 4.3.7)
0 = 0 S
L 0 0 * ]
and
0 1 0 -~ 0 0 T
T,'CT=|: + &+ -~ i, (4.3.8)
| 0 0 o --- 1 0 |

where x represents a matrix of less interest.
The graphical form interpretation of the OSD is shown in Figure 4.3.1.
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T2 J\U ‘ Ti1 =Y,
U

Note: the signals indicated by double-edged arrows are some linear combinations of ;.

Figure 4.3.1: Interpretation of the observability structural decomposition.

Proof. We prove Theorem 4.3.1 by giving a step-by-step constructive algorithm
that realizes the OSD. The key idea in the following proof is to identify the inher-
ent chains of integrators. Noting the unforced system (4.3.1), we have

y=Ci=CAz, j=CA*x, ..., y® =(CA4*s. (4.3.9)

By repeatedly differentiating the system output y, we are able to identify the in-
herent system structure in terms of chains of integrators.
STEP 0SD.1. Initialization.

Noting that matrix C is of full rank, we partition it as

Ch
C
C = s (4.3.10)
Cp
where C;, i = 1,2,...,p, are independent row vectors. For each C;, 1 =

1,2,...,p, we assign a corresponding transformation matrix Z; to it, which
is initially set as:

Z; = C,. (43.11)
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We also define a flag vector f as

h 1
1

fi= ]:2 =|:1, (4.3.12)
fo 1

which will be used as a flag in the iterative procedure in STEP 0SD.2. Note
that the elements of f will be replaced by zero and it will eventually become
a zero vector. On the other hand, Z; will be amended with additional rows
and form parts of the required state transformation. We also initiate

Z:=C, (4.3.13)

and an empty matrix Z, which will be used to form a state transformation.
These matrices are variables, i.e., they might be amended with new compo-
nents as we progress. Finally, we let w := 0.

STEP 0SD.2. Repetitive differentiation of the system output.

This step will be repeated until f becomes a zero vector. We let

fi
f
f= : (4.3.14)
fo
For each nonzero element f;,7 = 1,2, ..., p, we rewrite its corresponding
transformation matrix,
Cia
Ciz
Zi = . ) (4.3.15)
Ci’,ai
where a; = rank (Z;). Let z; o, := Cj o, T, then we have
Zio; = Cia & = Ci0; Az (4.3.16)

The following tests are to be carried out for all Z;, with nonzero flag f;:

Casel. If
VA
rank <[Ci,a,-AD > rank(Z), 4.3.17)
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it implies that there are more integrators in the chain associated with the i-th
output, which must be further identified. We then replace Z and Z ; with

YA 3 Z;
7 = [Ci,aiA] 3 Zi = [Ci,aiA] 3 (4318)

and test the next Z; whose corresponding flag f; # 0.

Case 2. If

rank ([Cii;A]) = rank(Z), 4.3.19)

there is no more inherent integration in the chain associated with this i-th
output. For this case, we replace the corresponding flag f; in the flag vector
f with a scalar 0, which stops this output variable from further differentia-
tion, and amend Z as follows:

. Z
Z = [Zi} , (4.3.20)
which will be used to define new state variables. We also let

w:=w+1 and ky :=q. (4.3.21)

For future reference, we rewrite

Zy
.| 2,
7= (4.322)
Z,
withj =1,2,...,w,
Cia Cia
| ¢ G.1A
Zi=| "= 7" (4.3.23)
Ciks CjaAki~

The above tests have to be carried out for all Z; with flag f; # 0. Note that
in Case 2, there is an element in the flag vector f being replaced by a scalar
0. As such, f will eventually become a zero vector.

If f = 0, we move on to STEP 0SD.3. Otherwise, we go back to repeat
STEP OSD.2.
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STEP 0SD.3. Preliminary transformation.

Obviously, in STEP 0SD.2 we have obtained a set of integers, k1, k2, . . ., kp,
with ky < ko < -+ < kp. Letng =n—) 7  k;and Sobeanng x n

constant matrix such that
S
§:= [ > ] (4.3.24)
Z

is nonsingular. Generally, we can choose an Sy whose rows constitute a
basis of the null space of Z. Next, we define a new state variable

Zo
z;
I = : = Sz, (4.3.25)
T,
where
Tia
T2
I; = . , 1=1,2,...,p. (4.3.26)
Tik;
Noting that, for7 = 1,2,...,p,
Ti1 = é’i,l.’l) = gi, (4.3.27)
Ti2 = C’i,lA.’l:, (4328)
zip; = Ci 1AM g, (4.3.29)
we have
i1 = Cing = Ci 1Az = 7, (4.3.30)
."21;’2 = éi,lAii' = éi,lAzl‘ =T;3, (4331)

p min{ki+1,ks}
g =Cind" e =CindRz =" 3 ayem., (43.32)
s=1 7=1
for some appropriate constants a;; s ;. This last equation follows from the
construction of Z in the previous step. Also, we have

P ks
o= AoZo+ »_ Y A0siTs i, (4.3.33)
s=1 j=1

for some appropriate constant vectors Ag s ;.
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STEP 0SD.4. Further simplification in (4.3.32).
Let us define a new state variable
Zo
~ jl
=1 . | =Wz, (4.3.34)
Tp
where o = Tg,and fori = 1,2,...,p,
p min{ki+1,k.}
Zil — E Z Qis,jTs,j—k;
s=1  j=ki+1
-’i'i,l p min{ki+1,k,}
_ Ti2 Tig — iy, Ts,j—ki+1
= . = ; ]Zk:i , (4.3.35)
T :
p min{ki+1,ks}
\ A D
s=1 j=2

and a new output variable,

P min{k;+1,k,}

Ui =Ting =Tin— E _S_ Q5T j—k;

s=1 j=ki+l
4 p
= Ti1— Y Ciskit1Te1 = Pim ) Gigkifs,  (4336)
s=1 s=1

which shows that §;, = Z; is a linear combination of §;, ¢ = 1,2,...,p.
Here we note that the coefficient, a; s x, when k > kg, is set to 0 in the
definitions of (4.3.35) and (4.3.36). Then, we have

p min{k;+1 ks}

Tik, = Tijky — E E Q5 iTs,j—1
s=1

j=2
p min{ki+1,ks} p min{ki+1,ks}

=: : z : airsvjxsvj_: : z : ai,s,jxs,j
s=1 s=1 j=2

j=1

14 14
= _S_ Qi 51Ts,1 = 2 di,s,l-’is,l, 4.3.37)
s=1 s=1

P min{ki+1,k,}

Tik;~1 = Tik;—1 — E E Qis,js,5—2
s=1 =3
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p min{ki+1,ks}

= DTik; — Z Z Qi,s,jTs,j—1

s=1 j=3
p min{ki+1,k.} p min{ki+1,ks}
=Zik + Z Z Qis,iTs,j—1 — Z Z Q5,5 Ts,j—1
s=1 j=2 s=1 j=3
P P
=Figs + 3 Qie2Te1 = Fik + Y Gis e, (4.3.38)
s=1 s=1

p min{ki+1,k,}
Zi =T — Z Z Qi s, Ts,j—k;
s=1 j=ki+1
p min{ki+1,k,}

=ZTq2 Z Z Q5,5 Ts,j—ki+1

s=1  j=ki+1
p min{k;+1,k,} p min{k;+1,k,}
= iiﬁ'z Z Q5,5 Ts,j—ki+1 “Z E @i,5,5Ts,5—ki+1
s=1 j=ki s=1 j=ki+1
P P
=Fia+ ) CiokiBe1,=Fiz+ Y Gis kil (4.3.39)
s=1 s=1
We also have
. p k" -~
o= Aoko+ Y Y Aos s, (4.3.40)

s=1 j=1

for some constant vectors Ag . ;.

STEP OSD.5. Further simplification in (4.3.40).

‘We now proceed to find a transformation such that the dynamics associated
with Zg is expressed only interms of £5;, s = 1,2,...,p.

If max{ki, ke,...,kp} = 1, we will skip the following sub-steps and di-
rectly go to STEP 0SD.6. Otherwise, we let ¢ := 0, Zg ¢ := Zo, /10’8’1-’0 =
Ag,s,;» and carry out the following sub-steps:

Sub-step 5.1. First, we note that

p ks—i
&oi = Aooi+ Y Y Aosjifs;. (4.3.41)

s=1 j=1
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We will eliminate Z; x,-i, s = 1,2, ..., p, in the above expression. Let us
define

»
Fo,i+1 = B0 — 9 Avsks—iifs ks—in1, (43.42)

s=1

where we take Ag,s,k,_i,i =0ifky —i—1<0. We have

p
Lo,i+1 = Zo,i — ZAo,s,k,—i,iis,k,—i—1

s=1
P k=i
= AoZoi+ Y, Y Aosjifa
s=1 j=1
P P
=Y Aoek,—ii (-’Z's,k,—-i +y as,k,i+253k,1>
s=1 k=1
P P ks—i-1
= AoZo,is1 + 9 AoAosks—iifis ks —ic1 + P > Aosjifs
s=1 s=1 j=1
P ~
- Z Z Ao,s by —i,i00 k,i+2Tk,1- (4.3.43)
s=1 k=1

Clearly, we have eliminated T, x,—;, s = 1,2,...,p, in (4.3.43). Thus, we
can rewrite (4.3.43) as

P ks—i—1

Zois1 = AoFois1 + Z Ao s jiv1Es 5, (4.3.44)

s=1 j=1
for some appropriate constant vectors fio,s, JYINE
Sub-step 5.2. If ¢ = max{ky,ks,...,kp} — 2, then we will go to STEP
0SD.6. Otherwise, let i := i + 1 and repeat Sub-step 5.1.

STEP 0SD.6. Finishing touch.

Let zg := 1.,'0,,'4.1 and AO,s = A0,1'+1,3,1. ‘We have

P
Zo = Aodo + Y Ao,ef1. (4.3.45)

s=1
In view of (4.3.45) and (4.3.37) to (4.3.39), the transformed system is indeed
in the OSD form. This completes the proof of Theorem 4.3.1. The software
realization of the above algorithm has been implemented in [87] with a
MATLAB function osd . m. (]
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We illustrate the OSD in the following example.

Example 4.3.1. Consider an unforced system (4.3.1) characterized by

1 0 0 0 -1 0

-2 -1 4 -2 3 O

-2 -1 3 -1 3 O

A= 1 1 -2 3 =2 0|’
2 1 -2 2 -3 0
1 1 -1 1 1 -1

and
110 010

C=|_101 -11 ol

(4.3.46)

(4.3.47)

We follow closely the step-by-step procedures of the OSD algorithm to construct

necessary state and output transformations.

STEP 0SD.1. Initialization.

We first partition
and set

w := 0, the flag

Z=C= [_
and Z := [], an empty matrix.

STEP 0SD.2. Repetitive differentiation of the system output.

=(4)=(1)

with f; = 1 # 0, we partition

Noting that

Zy=[Cia]=[1 1 0 0 1 0],
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and compute
CiasA=[1 0 2 0 -1 0].

It is easy to verify that

rank ([01,21AD =3 > rank(Z) =2,

which satisfies the condition of Case 1, i.e., (4.3.17). Thus, we set

e 110 0 10
Z:=[C A]: -1 01 -1 10},
11 102 0 -10

00 10
2 0 -1 0f°

Similarly, because f, = 1 # 0, we partition

and

Zy=[Ca1]=[-1 0 1 -1 1 0]

and compute
CoiA=[-2 -1 3 -2 3 0].

It can be readily verified that

rank ([Cz,zu‘l]) =4>rank(Z) =3,

which again satisfies the condition of Case 1, (4.3.17). Thus, we set

1 10 O 1 0
7 = A 1 -1 01 -1 10
TG Al T 1 0 2 0 -1 0}
-2 -1 3 -2 3 0
and
7, = Zy | _ -1 01 -1 10
271 CoaAl T -2 -1 3 =2 3 ol
Next, since

_( N > _(1
f <f 2/ \1
remains unchanged and f; = 1, we partition

Z_C’1,1__110010
Y"1ci2| 7|10 2 0 -1 0f°
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and compute
CipA=[-5 -3 8 -4 8 0],
and verify that

rank <[01,Z2AD = 5> rank(Z) = 4,

which corresponds to Case 1. Thus, we set

1 10 0 10

p -1 01 -1 10
Z::[C A]: 1 02 0 -10},

1,2 -2 -1 3 -2 30

-5 -3 8 -4 8 0

»o
o

7 1 10 0 1
 — 1 — —
Zy = [01,2A] = _513 _g 0 -1 0].

o
|
1=
oo
o

Similarly, since fo = 1, we partition
7. — 02,1 _ -1 0 -1 1 0
2= Coo| -2 -1 -2 3 0|’

CopA=[-2 -1 3 -1 3 0],

W =

and compute

and check that

rank ([CziA]) =5 =rank(Z),

which satisfies the condition of Case 2, i.e., (4.3.19). Hence, we set
_ fl)._ 1>
f— (f2 - 0 3
- [Z71 _[-1 01 -1 10]_ .5, [Ci
Z'—[zz]“[—z -1 3 -2 3 0] “'[le'[éu]’

wi=w+1=1, ky:=rank(Z;)=2.

- (5)-0)

and

Again, noting that
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with f; = 1, we proceed to partition

Cia 1 10 0 10
Zy=|Ca| = 1 02 0 -1 0},
Ci3 -5 -3 8 -4 8 0
and compute

Ci3A=[-3 -1 4 2 4 0],
and check that 7
rank ([C’l,sA}) =5 =rank(Z),

which satisfies the condition in Case 2. Thus, we set

£=(3).

1 01 -1 10
. 2 -1 3 -2 30 .
. 7z
z:{zz]z 1 10 0 10 ::[-1}_
1 1 02 0 -10 22
5 -3 8 -4 8 0

wi=w+1=2, ky=rank(Z;)=3.
Since the flag, f, is identically zero, we move on to STEP 0SD.3.

STEP 0SD.3. Preliminary transformation.

Obviously, ng = 6 — 5 = 1. We select
So:=[0 0 0 0 0 1]

to obtain a preliminary transformation,

0 00 0 01
-1 01 -1 10
S,_[So}_ -2 -1 3 -2 30
“1zj"|l 1 10 0 10
1 02 0 -10
| -5 -3 8 -4 8 0]
The resulting transformed system is given by
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[ 103333 -2|1 -0.3333 0.6667 ]
0 0 1]0 0 0
. enei. | 0 1 -2]|0 0 1]
T=8A5"z=|—5 0 0|0 1 0o|®
0 0 0(0 0 1
|0 6 —140 0 5 |
and | |
32\ _ o1 _[0]0 0]1 0 07
(yl)_cs”” [0]10|000 z.

STEP 0SD.4.

Following the procedure of STEP 0SD.4 given in the proof, we obtain an-
other state transformation matrix W,

1 00 0 00
0 10 -1 00
o 21 0 -10
=10 00 1 o0 o
0 00 -5 10
0140 0 -5 1

such that under the following transformation,

.’Eo f:l 1 532,1
Wz=z2=1| 4 |, :il:(f:’ ), Toa=| Z22 |,

- 1,2 .

I3 I23

we have
[ -1] -5 =2 1 1 0.6667 ]
0] -2 1] -2 0 0
L “ly—ls 0 1 0 10 0.
I=WSAS™ " Wi = 0 00 ) 0 z,
0|-14 0(-14 0 1
| 0 6 0 6 0 0 ]
and
. (a5 _ “1g—1~_ ] 0|1 0]0 0 0].
y‘(ﬂz)'w“ls v ”"[0|0 0[T 0 0"
with
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STEP 0SD.5.

It will take two sub-steps to remove the unwanted terms associated with
Zo. Following the iterative procedures given in the proof, we first obtain a

transformation,
1 2 0 0 -0.6667 0
01 0O 00
0 010 00
Mi=1g 9 0 1 0 0}’
0000 1 0
0 00O 01
which gives
[ —1{2.3333 0/(6.3333 0.3333 0 ]
0 -2 1 -2 0 0
T 0 10 1 00
M\WSAS™T W™ M;" = 0 o 3 o |
0 -14 0 ~14 01
| 0 6 0 6 0 0 |
and the second transformation matrix,
1 0 0 -03333 0 0
010 0 0O
10 01 0 0O
Ma=10 0 0 100
0 00O 010
0 00O 0 01

STEP 0SD.6. Finishing touch.

The complete required state and output transformations are then given by
the following matrices:

0 2 2 -1 —06667 —0.5556

0 0 -2 2 03333 04444

~ o -2 -1 3 1 03333
L=(MMWS)™ =, _; _3 3 2 1]

0 -2 0 0 03383 01111

1 -2 0 03333  0.6667 0

and
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and the resulting transformed system is characterized by

—-1123333 043333 0 0O

0 -2 1 -2 00

-1 _ 0 10 1 00

AL = 0 -0 0 5 1 0]’
0 -14 0 -14 0 1
| 0 6 0 6 0 0 ]
and
TO_ICTS _ 0 | 10 | 000

0(0 0]1T 0 0"

Clearly, the transformed system is indeed in the form of the observability
structural decomposition as given in (4.3.7) and (4.3.8).

We now present another decomposition of the unforced system or the matrix
pair (C, A), i.e., the so-called block diagonal observable structural decomposition
(BDOSD).

Theorem 4.3.2 (BDOSD). Consider the unforced system of (4.3.1) with (C, A)
being observable. Then, there exist an integer k < p, a set of k integers k1, K2,
..., ki, and nonsingular transformations T and T, such that

_Al 0 e 01
0 A4, -+ 0
AL =| . . . .|, (4.3.48)
L 0 0 Ag |
and
rci: 0 0 7
* 02 0
T,'CTi=| : .. ], (4.3.49)
* % Ck
L % * * |

where the symbols * represent some matrices of less interest, and A; and Cj,
1=1,2,...,k, are in the OSD form

* IK.,’—I

A,-=[* ; ] Ci=[1 0 --- 0]. (4.3.50)

Obviously, 22;1 Ki = .
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Proof. This theorem is the dual version of Theorem 4.4.2 of the next section.
The detailed proof of the BDOSD follows from that given in Theorem 4.4.2. The
software realization of this canonical form in MATLAB, bdosd . m, can be found
in [87]. n

Example 4.3.2. Consider an unforced system (4.3.1) characterized by

1 0 0 0 -1

-2 -1 4 -2 3
A=1|-2 -1 3 -1 3|, C=

1 1 -2 3 -2

2 1 -2 2 -3

g 01 (4.3.51)

Using bdosd . m of [87], we obtain
9.202258 9.202258  9.202258  11.985440  20.334987

—18.404516 0 0 -15.621333 —44.080817
Ts = | —27.606773 —9.202258 0 0 —6.419075 | ,
—27.606773 —18.404516 —9.202258 0 9.202258
0 0 0 2783182 8.349547
—2.783182 —-0.302446
To= 3
0 1
31000
-3 01 00
T7'AT,=| 1 0 0 1 0f,
00001
0 000D
and
1 00 0 0

T, 'CT, =

-9.202258 0 0 -9.202258 -27.606773 |’

which is indeed in the BDOSD form of Theorem 4.3.2. Clearly, we have k = 1
and k; = 5.

4.4 Unsensed Systems

We now proceed to introduce the controllability structural decomposition (CSD)
and the block diagonal controllable structural decomposition (BDCSD) for the
unsensed system X characterized by

& = Ax + Bu, (4.4.1)
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where as usual z € R" is the state and u € R™ is the input. As mentioned ear-
lier, the CSD and BDCSD are actually the dual versions of the OSD and BDOSD,
respectively. We note that the CSD is also commonly known as the Brunovsky
canonical form (see Brunovsky [15]). But, the same result was reported by Luen-
berger [95] earlier in 1967. This CSD turns out to be a key tool in solving the prob-
lems related to sensor/actuator selection (see, e.g., [31,92]), while the BDCSD is
instrumental in solving the problem of H, almost disturbance decoupling (see,
e.g.,[22,23,86)]) and in deriving the structural decomposition for singular systems
given later in Chapter 6.

Theorem 4.4.1 (CSD). Consider the unsensed system of (4.4.1) with B being of
full rank. Then, there exist nonsingular state and input transformations T's € R™*"
and T; € R™*™ such that, in the transformed input and state,

z=T%, u=17Ti, 4.4.2)
where
io .'ii,l ui
~ I " -'ii,Z . ’17,2
I= , I;= ) , 1=1,2,...,m, 4= . , (4.4.3)
im 5’i,k.‘ am
we have
o = Ao, (4.4.4)
andfori=1,2,...,m,

%= Agi+ B (a,: + Ez) (4.4.5)
where E;,i = 1,2,...,m, are some row vectors of appropriate dimensions, and
|0 Ik _ |0

A’_[O 0 ], B,—[l}. (4.4.6)

The matrix Ao is of dimensions ng X ng, where ng = n—3 i~ k;, and A\(Ao)

contains all the uncontrollable modes of the matrix pair, (A, B). Moreover, the
integer set, C:={ki, ka2, ..., km}, is called the controllability index of (A, B).
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Ao

Zio T

Note: signals indicated by double-edged arrows are linear combinations of the states.

Figure 4.4.1: Interpretation of the controllability structural decomposition.

Theorem 4.4.1 follows dually from the result of Theorem 4.3.1. The CSD, i.e.,
the controllability structural decomposition, can be summarized in a matrix form,
(4, B) := (T, Y AT,, T; 1 BT,), with

(A4, O 0 -+ 0 0 7 [0 --- 07
0 0 Ly, -+ O 0 0 --- 0
- *  * * ek * - 1 .-+ 0
A= . : T : » B=1. . .|, @47
0 0 0 e 0 Iy, 0 0
L * % * ee % *x L0 -+ 1]

where * represents a matrix of less interest, or in a graphical form as in Figure
4.4.1. The software realization of such a decomposition in MATLAB can be found
in [87] under an m-function csd.m. Readers are referred to Chapter 12 for a
detailed help file on the usage of this m-function.

Example 4.4.1. Consider the unsensed system (4.4.1) characterized by a matrix
pair, (A, B), with

-2 00 00 0 0

6 3 2 -1 0 10

A=] 54 2 -1 0|, B=]1 1
10 8 5 -2 0 3 1

11 7 4 -2 0 20
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The m-function csd . m of [87] generates the following results:

1 0000
0 -1 001 01
:rs=0—2111,1}=[1 0], (4.4.8)
2 -5 113
0 -3 01 2
and
-2 0fojo o 0}o
1 1/0{0 0 0{0
T7'AT,=| 0 0f0j0 0, T;'BR=| 1|0
0 o0f0[0 1 0[0
5 -1[1|1 2 01

The corresponding controllability index of (A, B) is given by C = {1, 2}. The pair
has two uncontrollable modes at —2 and 1, respectively.

The next theorem deals with the block diagonal controllable structural decom-
position (BDCSD).

Theorem 4.4.2 (BDCSD). Consider the unsensed system of (4.4.1) with (A, B)
being controllable. Then, there exist an integer k < m, a set of k integers K1,
K2, . .., Kk, and nonsingular transformations T and T; such that the transformed
system, (A, B) := (T, ' AT;, T; ' BT}), has the following form:

A 0 - 0 By, x -+ x %
. 0 4 --- 0 - 0 By -+ % %
A=|. 0 |, B=|. T . . , (449
0 0 --- Ag 0 0 - Bp x
where A; and B;, i =1,2,...,k, are in the CSD form
01 --- 0 0
VP T - 44.10
i 00 - 1 i 0 ( )
* Kk e 1

and  represents a matrix of less interest. Obviously, Ef=1 Ki = n.

Proof. The existence of such a canonical form was shown in Wonham [154]. In
what follows, we recall an explicit algorithm for the construction of the transfor-
mation matrices T and T; derived earlier in Chen [22].
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First, we follow the result of Theorem 4.2.2 to find a nonsingular transforma-

tion Q € R™*™ such that the matrix A is transformed into a real Jordan canonical

form, i.e.,
X

. pe
A=Ql4Q = t , 4.4.11)

with

X = , L i=1,2,...,4, (4.4.12)
53!
where A\; = p; + jw; € A(A) with w; > 0,and A;; # A,,, if 41 # 1. Moreover,

foreach i € {1,2,...,€} and s = 1,2,...,03, J§ € R™**™ has the real
Jordan form

w1
s = , (4.4.13)
pi 1
Hi
ifw,-:O,or
A I
J5 = , A= | H “’i], 4.4.14
: ooals o (4414
A;

if w; > 0. For convenience in later presentation, we arrange the Jordan blocks in
the way that n;; > ng > -+ > nj,,. Next, compute

(Bl Bh - BRG]
By, B} - B}

B=Q'B= B%:n Béaz B{i’f,z (4.4.15)
B:tll 3:31 B?f



100 Chapter 4. Decompositions of Unforced and/or Unsensed Systems

It is straightforward to verify that the controllability of (A, B) implies: for each
i =1,2,...,4, there exists a B, with v € {1,2,...,m} such that (J} , BY) is
controllable, which is equivalent to the last row of B}, being nonzero if A; is real,
or at least one of the last two rows of B}; being nonzero if A; is not real. Thus, it

is simple to find a vector

11
[2)
= |, tu#0, (4.4.16)
tml
and partition
ro~1 1
11
.1
Bl(f},
~1
B21
By=Bri=| _ |, 4.4.17)
B20’2
...1
Bll
-1
L Blaz J

~1 . . .
such that (J3,, B;;) is controllable. Because of the special structure of the real
Jordan form and the fact that n;; > nis > - - > ny,,, the eigenstructures associ-
ated with J§ , with s > 1, are uncontrollable by B;. Thus, it is straightforward to

show that there exist nonsingular transformations T'%;, i = 1,2, ..., £, such that
J li g3,
| 3, | i
(i)™t ) TH = ) , (44.18)
b4 I3
and ) .
Ba B
~1
@y | P =10, (4.4.19)



4.4. Unsensed Systems 101

with (J} B ;1 ) being controllable. This can be done by utilizing the special struc-
ture of the CSD form (see Theorem 4.4.1). Next, perform a permutation transfor-
mation Py, such that

-1
T} , T; )
T N T
(Pa)™ . i . P
ThH T}
- blkdiag{J)lq,...,J,{l,Jfl,...,Jj\’I‘, ...... ,th,...,Jff},
and
T - tn 0 - 0
2
1 - t21 1 . 0
(Pa)™t ’ .
’ o 0
- ~1 2 vm
Bll Bll o Bll
.1 v'2 -
By By By
.9 “m
O B12 B12
= 2 <
0 B, By
B }
0 B, By,
.9 m
Lo B, B,

) ) (44.20)
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is controllable. Hence, there exists a nonsingular transformation X ; € RFr k1

where k; = Ele n;1, such that

010 - 0
001 ---0
XP X =M= 0 ], (4.4.21)
0 00 1
* * * *
and
0
0
X;'Bi=B1=|]. (4.4.22)
0
1
Next, repeating the above procedure for the pair
r ~2 “m
( By, -+ By \
<2 m
Blal Bl(n
blkdiag{Jfl,...,Jfll, ...... ,Jfl,...,Jgf}, B |
-2 v.m
By By,
.2 C m
\ .Bta'[ e Bla‘z_}
one is able to separate (A2, B2). Repeating the same procedure for k£ — 2 more
times, where k = max{og1,02,..., o1}, one is able to obtain the required canoni-
cal form as in Theorem 4.4.2. This completes the proof of the theorem. The result
has been implemented in [87] as an m-function bdcsd . m. ]

We conclude this chapter with the following example.

Example 4.4.2. Consider the unsensed system (4.4.1) characterized by matrices
A and B with

CO OO~
OO OCOoO MmO
1
OO OOO
OO OO
-0 OO0
O - OO
YO A W N
— N WO
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Using the MATLAB functionbdcsd . mof [87], we obtain the following necessary
transformations and transformed system:

—2.10371 0 -4.20741 0 -2.10371  0.78529
—2.31866 0 —4.63731 0 —2.31866 —0.71249
T - | 021495 910545 —3.17845 —3.17845 -2.53360 0
s~ | -5.71205  2.53360 3.82330  2.10371 -—2.74855 0]’
3.17845 —0.21495  0.21495 —0.21495 —2.96350 0
—-2.96350  6.14195 —6.14195  6.14195 —3.17845 0
7 o [ 048477 0
17 1-0.26982 0.97828 |’
and
0 10 0 0]0 0| —0.56147
0 01 0 0]0 0 | —0.29865
14 |0 00 1 0f0 —igpm _ | 0| —0.32323
T7AL =14 o0 o 1]o|" T BL=| | _o76184
1 -1 2 =2 1(0 1| —1.20895
0 00 0 0]1 0

This verifies the results of Theorem 4.4.2.

Note that although the results of this chapter are stated for continuous-time
systems, they are valid for discrete-time systems as well.

4.5 Exercises

4.1. Show that if X and v are respectively the eigenvalue and eigenvector of a
matrix 4, then — ) and v are the eigenvalue and eigenvector of —A. Show
that the result holds even if v is a generalized eigenvector.

4.2. Consider an upper triangular block-diagonal constant matrix,

_ Al A* nxn
a=h Alew

where A; € R™*™ and A, € R™*™ have no common eigenvalues. Let
T, € R™*™ be a matrix whose columns span the eigenspace of A asso-
ciated with A(As), i.e., a vector space spanned by the eigenvectors and
generalized eigenvectors, if any, of A associated with A(A5), and let

In
T:[Tl Tg], T1= [ 01]
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4.3.

44.

4.5.

Show that T' is nonsingular, and

e [A 0
rr-[4 4]

where A(4s) = A\(Az).
Given a real-valued constant matrix, A, and a complex scalar, a ¢ A(A) with
|| = 1, show that

A= %[(A tal) (A-al) +(A+a' ) A -a'T)],

is a real-valued matrix. Note that a* is the complex conjugate of a.. Show
that if a nonsingular transformation, T', is such that

A 0 o0
T'AT=|0 A 0 |,
0 0 A
where A(A_) CC~, M(4p) cC, and A(4A;) CC™, then
A_ 0 O
T'AT=|0 4 0 |,
0 0 As
where A(A_) CC®, A(4) CC°, and A\(44)CC®.
Verify the results of Exercise 4.1 to Exercise 4.3 with the matrix
0] 1 2
1 -1

-1 1
0 -1

A=

0

O Ol N
o

Given a matrix A € R™*" whose eigenvalues are given by A = p+ jw and
its complex conjugate \* = p — jw with w # 0, define a new (2n) x (2n)
matrix,
7= [A —pul Wl ]
—wl A-yul|’

Show that matrix Z has n eigenvalues at 0, n/2 eigenvalues at j2w, and
n/2 eigenvalues at —j2w. Verify the above result with the matrix A given
in Example 4.2.2.
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4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

Compute an observability structural decomposition (OSD) for the unforced

system

1 2 3

t=1({4 5 6=z, y:[; g ﬂz
789

Construct an unforced system, (A, C), which has the properties: (i) (A4, C)
is observable; (ii) the observability index of (4, C) is givenby O = {2,2};
and (iii) A has eigenvalues at 0, 1, 2, and 3.

Construct an unsensed system, (A, B), which has the properties: (i) (4, B)
is controllable; (ii) it has a controllability index of C = {1, 1, 2}; and (iii)
A has eigenvalues at 1, 2, 3, and 4.

Compute a block diagonal controllable structural decomposition (BDCSD)
for the unsensed system obtained in Exercise 4.8.

Given an unforced system

Al

where A € R and a € R, show that the system is observable if and only if
a # 0.

Given an unsensed system

AT *

>
o 4 -

where

_ M w X _ ﬂ
A_[_w ”]emﬁ 2 w#0, ﬂ_<ﬂ;>eu«2,

show that the system is controllable if and only if 3 # 0.
Given a controllable pair (4, B) with A € R"*™ and B € R™™™, show

that if A has an eigenvalue with a geometric multiplicity of 7, i.e., ithas a
total number of 7 Jordan blocks associated with it, then m > 7.



Chapter 5

Decompositions of Proper
Systems

5.1 Introduction

We present in this chapter the structural decomposition of linear time-invariant
systems as represented by a matrix triple or a matrix quadruple. In order to make
the presentation easier to follow, we will start with the structural decomposition
of single-input and single-output (SISO) systems. It will be followed by a de-
tailed construction of the structural decomposition for a general strictly proper
multi-input and multi-output (MIMO) system. The decomposition of a general
nonstrictly proper MIMO system will then be given together with detailed proofs
of system properties revealed under the decomposition. We will conclude the
chapter with the structural decomposition of general discrete-time systems.

The development of the structural decomposition, or the special coordinate
basis (SCB), for strictly proper systems given later in Section 5.3, follows from
its development in Sannuti and Saberi [122]. However, the presentation of the
proof and construction algorithm is very different, and is enhanced with many
innovative results. In particular, we will replace quite a number of iterative steps
in [122] with some single-step transformations. The algorithm is presented in a
way that can be easily followed and implemented using software packages such
as MATLAB. We will also completely resolve some issues left open in [122] by
separating all transformed subsystems with proper structures, and by following
the results of Chen [21] to give rigorous proofs to all the structural properties of
general systems. The results of Chen et al. [24] on the interconnection of the

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004
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Kronecker canonical and Smith forms with the special coordinate basis of general
multivariable systems are also presented.

5.2 SISO Systems

We consider a SISO system characterized by
Y:&2=Az+Bu, y=Cur, (5.2.1)

where 2 € R",u € Rand y € R are the state, the input and the output. We assume
that the transfer function of ¥ is not identically zero. We have the following
special coordinate basis (SCB) decomposition for X.

Theorem 5.2.1. Consider the SISO system of (5.2.1). There exist nonsingular
state, input and output transformations T's € R™*™, T; € R and T, € R, which
decompose the state space of ¥, into two subspaces, z, and x4. These two sub-
spaces correspond to the finite zero and infinite zero structures of T, respectively.
The new state space, input and output space of the decomposed system are de-
scribed by the following set of equations:

z=0sZ, y=T.9g, u=Iia, 5.2.2)

I

A e na | %2
= zq )’ T, €ER™, 24 € R™, 24 = . , (5.2.3)

Tn,

and

j’a = Aa,a,za, + Ladg) (524)
T =2, Y=a1, (5.2.9)
Iy = x3, (5.2.6)
Tng—1 = Tny, 52.7)
Eng = EqaZa + B121 + E322 + -+« + Ep, T, + . (5.2.8)

Furthermore, A(A,,) contains all the system invariant zeros and nq is the relative
degree of ¥.
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. Y

Note: the signal given by the double-edged arrow is a linear combination of the states.

8
P~}
a
:
:L‘*
w
8
E)
a
j._.
Il
A A

Figure 5.2.1: Interpretation of structural decomposition of a SISO system.

Proof. The interpretation of Theorem 5.2.1 is given in Figure 5.2.1. In what
follows, we present a step-by-step algorithm to construct the required I'g, I'; and
T', that realize the structural decomposition or the special coordinate basis of .
The proof of this theorem is considerably simpler than that for the general system
given in Theorem 5.3.1. The idea behind is, however, quite similar.

STEP SISO-SCB. 1. Determination of the relative degree.

The relative degree of ¥ can be obtained by differentiating the output y. We
let nq be such that

CB=CAB=---=CA™?B =0, (5.2.9)

and
B:=CA™™1B £0. (5.2.10)

Note that (5.2.9) and (5.2.10) imply that there are n 4 inherent integrators
between the input and the output of X. This can clearly be seen later in
(5.2.13) to (5.2.16). Next, we let n, := n — ngq.

STEP S1SO-SCB.2. Construction of a preliminary state transformation.
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Let Zy be an n, X n constant matrix such that
2o
C
7= [—?0—] = CcA || (5:2.11)
Za )
cAne-t

is nonsingular. Note that we can choose a Z¢ whose rows form a basis of
the null space of Z4. Next, let

To Zo
I C

gi=| 22 |:=Zz=| CA |z (5.2.12)
z;ld CAnd—l

We have

2, =Ct=CAr+CBu=CAz =1z, y=1x1, (52.13)

i = CAi = CA%2z + CABu = CA%’x = 13, (5.2.14)
Tpg—1 = Tny, (5.2.15)
ng
&ny = BaaTo + »_ %zi + Bu, (5.2.16)
i=1
for some appropriate F4,, and v;,¢ = 1,2,...,n4, and
N4
To = AgoZo + Zao,imi + Bou, (5.2.17)
i=1
for some appropriate vectors Agg, g i, % = 1,2,...,nq, and So.

STEP SISO-SCB.3. The elimination of u in the state equation of z.

It follows from (5.2.16) that

1], <
u=g [znd — EgaZo — Z'Yizi] ) (5:2.18)
i=1

which together with (5.2.17) imply that

ng Na
. Bo|.
fo = AooTo + ) 00iTi + G |&na — Baato - > vz

i=1 i=1
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nd
= AsaTo + ) G0,i%i + Bing, (5.2.19)
=1
for some appropriate Aa,, G0, 4 = 1,2,...,n4, and B.

STEP SISO-SCB.4. The elimination of &, in the state equation of z.

We define a new state variable,

Fo := T — BTn,. (5.2.20)

Then, we have

nd
Zo = &0 — fEny = AsaZo + Zdo,ﬂi + Bing — Bin,

i=1
nd
= Aa(Z0 + BTns) + Y _ G0,i%i
i=1
Td
= AsaZo + Z Q0,iTi, (5.2.21)
=1
for some appropriate constant vectors &g i, ¢ = 1,2,...,nq4. Also, (5.2.16)

can be re-written as

nd
&ng = Eaa®o + Y 7i%i + Bu

=1

nd
= Eaa®o + Eaaftn, + Y _ %idi + Bu
i=1
nd

= Eaafo + Y %i%i + Pu, (5.2.22)

i=1

for some appropriate 7,7 = 1,2,...,n4.

STEP SISO-SCB.S. The elimination of x5, .. ., ,, from the state equation of Z.
If ng = 1, no further transformation is required and we go to STEP SISO-
SCB.6. Otherwise, we let s := 0, Zo o := Zo, Go,0,i := Go,; and Yo,i := Yis
i=1,2,...,nq. Then, we carry on the following iterative sub-steps.

Sub-step 5.1. First, note that we have

Nng—s

51.:'0,3 = Aaa-'io,s + Z 8is.0,iTi) (5.2.23)

=1
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and
nd

Gny = Baafos + ) ¥y i + . (5.2.24)
i=1

We are now eliminating z,,, - s from the above expression by defining
To,s+1 = To,s — (&s,O,nd—s)-Tnd—s—la (5.2.25)
which together with &,,_s—1 = Tp,—s imply that

-’Z'O,s+1 = -’Z'O,s - CA'H;,O,nd—s-'if'nd—s—l

= Aaa (-’Z'O,s+1 + ds,O,nd—.s-’lf'n‘-l—s—l)
ng—s—1

+ Z ds,O,izi + &s,O,nd—-swnd—s - ds,O,nd—s-'End—s
=1
ng—s—1
= AaaZo,041+ (Aaalis0nams)Tng—sc1+ P @5 0,Ti. (5.2.26)

i=1

Clearly, we have eliminated z,,, —,; in the above expression. Also, we have

nd
-'i'nd = Eda-io,s + Z’?s’izi + BU

i=1

ng
= Eqa (50.8+1 + C~Ys,O,nd—si'fnd—s—l) + Z ’~Ys,i1"i + Bu
i=1

na
= Eda%o,s+1 + Edals,0,na—sTna—s—1 + Z ¥s,ii + Pu. (5.2.27)
i=1
For the next iteration, we re-write (5.2.26) as
ng—s-—-1
Tos41 = AsaBost1 + Y Bop10,Ti, (5.2.28)
i=1
for some appropriate constant vectors &s4+1,04, % = 1,2,...,mq9 =5 — 1,
and re-write (5.2.27) as
ng
Tny = EdaZo,s4+1 + Z ’73.}.1,,'-77:' + Bu, (5.2.29)
i=1
for some appropriate constant vectors ¥, ;,% = 1,2,...,ng —s— L.

Sub-step 5.2. If s = ngq — 2, we have obtained what we need and we go to
STEP SISO-SCB.6. Otherwise, we let s := s + 1 and go back to Sub-step
5.1.
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STEP SISO-SCB.6. Finishing touch.
Finally, we let
Ty =Iosy1, Y=lo =9, u=Nia=u (5.2.30)
and
Lag = 054101, Ei = =F5414 1=1,2,...,n4. (5.2.31)

Then, (5.2.13) to (5.2.15) and (5.2.28) to (5.2.31) imply that

Ta = AaaTa + Lag¥, (5.2.32)
Ty =123, §=1, (5.2.33)
o = T3, (5.2.34)
Eng = EqaTa + E121 + - + En 2, + . (5.2.35)

It is trivial to see that nq is the relative degree of . In Section 5.4, we will
show that A(A,,) are the invariant zeros of . for general systems. =

We note that the output transformation in Theorem 5.2.1 can be chosen to

be equal to 1, i.e., ', = 1. We illustrate the above procedure in the following
example, which was given in Chen [22].

Example 5.2.1. Consider a SISO system ¥ characterized by (5.2.1) with

1 2 3 1 1
2 3 4 5 2
A= 456 7| B = NE (5.2.36)
5 6 7 8 4
and
c=[0 3 -2 0]. (5.2.37)

The structural decomposition of 3 proceeds as follows:

1. Differentiating the system output.

It involves the following sub-steps.

(a) First, we have

y=Ct=CAz+CBu=[-2 -1 0 1l]z+0-u.



114

Chapter 5. Decompositions of Proper Systems

(b) Since CB = 0, we compute
j=CA’z+CABu=[1 -1 -3 1]z+0-u.
(c) Since CAB = 0, we continue on computing
y® =CA%z + CA’Bu=—[8 10 12 17]z—6-u.

We move to the next step as CA2B # 0.

. Constructing a preliminary state transformation.

Let Zy be a vector such that

Zo
C
Z = 5.2
ca |’ (5.2.38)
CA?
is nonsingular. Then, define a new set of state variables Z,
Zo Z0 Zo.’D
= | |=20=| & |z=] Y |. (5.2.39)
T3 ca? (]

It is simple to verify that Z with Zo = [1 0 0 0] is a nonsingular
matrix. Furthermore,

To = 8xp + x1 + gzz - §x3 + u, (5.2.40)
i = Ta, (5.2.41)
9 = 3, (5.2.42)
&3 = —72zx9 — 921 — 2722 + 1023 — 6u. (5.2.43)
. Eliminating u in (5.2.40).
Equation (5.2.43) implies that
3
u=-122p — -1 — =29 + -23 — 1:’vg. (5.2.44)

2 2 3 6
Substituting this into (5.2.40), we obtain

1 11 1
tg = —4xg — =T1 — — T3 — =I3. 5.2.45
Zo T~ 5T~ g2~ gds ( )
We have eliminated « in ©¢. Unfortunately, we have also introduced an

additional £3 in (5.2.45).



5.2. SISO Systems 115

4. Eliminating 3 in (5.2.45).

Define a new variable Z as

Tg:=Tg + %.'1}3. (5.2.46)
We have
3 - 1 11 2
To = —4%g — -2-.’1:1 - E.’Ez + 5.1:3, (5.2.47)
and
T3 = —72%Tg — 9z1 — 27z + 2223 — 6u. (5.2.48)

5. Eliminating z» and 3 in (5.2.47).

This step involves two sub-steps.

(a) Letting

2
Zo,1 = To — gl‘z, (5.2.49)
we have 1 9
%o, = —4f01 ~ =71 — = T2, (5.2.50)
’ 2 2
and
T3 = =72%9,1 — 91 — 75z2 + 2223 — 6u. (5.2.51)
(b) Letting
- - 9
To,2 = Zo,1 + 5:1:1, (5.2.52)
we have
L . 35
Zo,2 = ~4%o2 + 5 % (5.2.53)
and
3 = —72%g2 + 31521 — 75z5 + 2223 — 6u. (5.2.54)

6. Composing the nonsingular state, output and input transformations.

Let
Iy = (i‘o’z (5255)
or equivalently let
Ta
- I
=T =T% , (5.2.56)
T2

I3
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oS8
L~

Ta

().
g

-4

—T72x2+31521 — 752242223

U '\ T3 ) I = g
|

@

Figure 5.2.2: Interpretation of structural decomposition of Example 5.2.1.

with
1 9/2 -2/3 1/6 1 0 0 07"
Jlo 1 0o o 0 3 -2 0
Ts=310 0 1 of|l-2 -1 o1 (5.2.57)
00 0 1 1 -1 -3 1
Also, let
u=r1a=—%a, y=Toj=1-7§. (5.2.58)

Finally, we obtain the dynamic equations of the transformed system,

35

iy = —dz, + S, (5.2.59)
i =20, §=m, (5.2.60)
B9 = T3,  (5.2.61)
&3 = =72z, + 3153, — T5as + 2273 + 4, (5.2.62)

which is now in the form given in Theorem 5.2.1. The graphical interpreta-
tion of the above decomposition is given in Figure 5.2.2. The given system
has an invariant zero at —4 and a relative degree of 3 (equivalently an infi-
nite zero of order 3).
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5.3 Strictly Proper Systems

Next, we consider a general strictly proper linear system X characterized by

{93=A:L'+Bu,

y=Cz (5.3.1)

where z€ R", u € R™ and y € R? are the state, input and output. Without loss of
generality, we assume that both B and C are of full rank. We have the following
structural or special coordinate basis decomposition of .

Theorem 5.3.1. Consider the strictly proper system ¥ characterized by (5.3.1).
There exist a nonsingular state transformation, I's € R™*", a nonsingular output
transformation, T', € RP*P, and a nonsingular input transformation, I'; € R™*™,
that will reveal all the structural properties of £.. More specifically, we have

z=Ts% y=Tof, u=Ii, (5.3.2)

with the new state variables

Ta
Tp
T
Td

8
I

, Ta ER™, z, € R™, z, € R™, 24 € R™, (5.3.3)

the new output variables

g= (z:), ya € R™, U € RP?, (5.3.4)
and the new input variables
&= (zd) , ug € R™, y, € R™, (5.3.5)

C

Further, the state variable x4 can be decomposed as:

Zd,1 Yd,1 Ud,1
Td,2 Y4,2 Ud,2
Iq = . y Yd = . , Ud = ) (5.3.6)
Td,mg Yd,mq Ud,mq
Zd i1
g Td,i,1 .
Tq; € RY, zq; = . , 1=1,2,...,mq, (5.3.7)

xdyivqi
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withq; < ga < +++ < gm,. The state variable zy, can be decomposed as

Tb,1 Yb,1
Tb,2 Yb,2
Tp = : y Yo = : ) (538)
Tb,py Yb,ps
Tb,i,1
l; zby"yz .
Th; ERY, zp; = : , 1=1,2,...,pp, (5.3.9)
Tb,i,l;

withl; <l < ... <lp,,. And finally, the state variable z. can be decomposed as

Tc,1 Uc,1
Tc,2 Ue,2
Ic = . y Uc = . ) (5.3.10)
Te,me Ue,m.
Te,i,1
T, Tc,i,2 .
Zei €ERT, zei = } , 1=1,2,...,mc, (5.3.11)
Te,i,r;
withr; < 13 < --- < rp,.. The decomposed system can be expressed in the

following dynamical equations:

Za = AaaTa + Labyb + Laqyd, (5.3.12)

for each subsystem zyp, ;, i = 1,2,.. ., po,
Tb,i1 = Tb,i,2 + Lbd,i 1% + Lb,i1¥ds  Ub,i = Th,i,l, (5.3.13)
Eb,i,2 = Tb,i,3 + Lbd,i,2¥b t Lb,i,294, (5.3.14)
T8 = Lbd,i,1:¥b + Lbd,il:¥d, (5.3.15)

for each subsystem z ;,1 = 1,2,...,mc,
Ee,il = Teyi,2 + Leb,i,1¥b + Led,i 194, (5:3.16)
Teiri—1 = Teyir; T Lepiri—19p + Lcd,i,r;—lyd, (5.3.17)

-'tc,i,r,- = Ac,i,aza + Ac,i,cxc'*"ch,i,r.-yb +Lcd,i,r;yd + Ui, (5-3-18)
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and finally, for each subsystem x4 ;,1 = 1,2,...,mq,
£d,i1 = Tdi2 + Ld,i1¥d, Ydi = Zd,i1, (5.3.19)
Td,i2 = Zd,i,3 + Ld,i2¥d, (5.3.20)

Td,iq = Adia%a + Ad,icTc + AdipTb + Ad,idTa + Ud,i, (5.32D
where Aaa, Lab, - . -, Ad,i,a are constant matrices of appropriate dimensions.

Proof. The basic idea in constructing the special coordinate basis decomposition
of general strictly proper multivariable systems is pretty much the same as that
in the proof of Theorem 5.2.1. Although the procedure for the decomposition of
MIMO systems is more complicated, it still revolves around the identification of
chains of integrators between the system input and output variables, which again
will be done by repeatedly differentiating the system output variables. Nonethe-
less, we would like to note that for general MIMO systems, there might exist three
different types of chains of integrators:

1. Chains that start from an input channel and end with an output. This type
of chain gives the infinite zero structures of the given system and covers the
subspace corresponding to z4;

2. Chains that start from an input channel but do not end with an output. This
type of chain covers the subspace corresponding to z ; and

3. Chains that do not start from an input but end with an output variable. This
type of chain covers the subspace corresponding to z1,.

In general, these subspaces do not cover the whole state space of the given system.
The remaining part forms a subspace corresponding to z ,, which is related to the
invariant zeros of the system. These subsystems of z ,, 1, z. and z4 are illustrated
in graphical form as given in Figure 5.3.1.

We proceed in the following with a step-by-step algorithm that decomposes
the given system into the various subsystems.

STEP SCB. 1. Initialization.

Noting that matrix C is of full rank, we partition it as

c=1.1, (5.3.22)
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T, — the subsystem without direct input and output:

Ty ; — the chain of integrators without a direct input:

zb,i,li l wb,i,2 l I "Eb i,1 yb i
~ 114} ’
-——— |

Z.,; — the chain of integrators without a direct output:

Ue 4 g Te,iyr; fl\ | Te,i,2 l | Te,i,1
9

—0

Tq,; — the chain of integrators with direct input and output:

Ud,i Taie Cl) I Td,i2 {l) ’ :-Td,i,l =Yai

Note: the signal indicated by the double-edged arrow in xg; is a linear combination of
all the state variables; the signal indicated by the double-edged arrow marked witha + c in
Z¢,; is a linear combination of the state variables x, and z.; the signals indicated by the
thick vertical arrows are some linear combinations of the output variables yq and yy; and
the signals indicated by the thin vertical arrows are some linear combinations of the output

variable ya.

Figure 5.3.1: Interpretation of structural decomposition of a MIMO system.
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where C;, i = 1,2,..., p, are independent row vectors. For each C}, i =
1,2,...,p, we assign a corresponding transformation matrix Z; to it, which
is initially set as

Z; :=C;. (5.3.23)

We also define a flag vector f as

h 1
fi= ff = 1 , (5.3.24)
fr 1

which will be used as a flag in the iterative procedure in STEP SCB.2. Note
that, as the algorithm is implemented, the elements of f will be replaced
by zeros and it will eventually become a zero vector. On the other hand, Z ;
will be amended with additional rows and form parts of the required state
transformation. We also initialize

Z:=C, (5.3.25)

and three empty matrices Zq, Wy and Zp,. Note that Z4, Wy and Zy, will
be respectively used to form transformations associated with z 4, uq and .
Again, these matrices are variable, i.e., they might be amended with new
components as we progress. Such a style of presentation is much easier

to be implemented in software packages such as MATLAB. Finally, we let
v:=0and w:= 0.

STEP SCB.2. Repetitive differentiation of the system output.

This step will be repeated until f becomes a zero vector. We let

f
fo
f=1". (5.3.26)
fo
For each nonzero element f;,7 = 1,2, ..., p, we rewrite its corresponding
transformation matrix,
Cix
Ciz2
Zi= i , (5.3.27)

Ci,ai
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where a; = rank (Z;). Let z; o, := C; o, z, then we have
i‘i,a; = Ci,a'-i‘ = C,',a'- Az + C,"a,- Bu. (5.3.28)

The following tests are to be carried out for all Z;, whose corresponding
flag f; is nonzero:

Case 1. If

rank ([ CW:dBD > rank (Wy), (5.3.29)

the chain of integrators associated with this i-th output reaches a system
input. It is the end of this chain of integrators and it belongs to the subspace
associated with z4. This simply means that the given system has an infinite
zero of order a;. For this case, we replace the corresponding flag f; in the
flag vector f with a scalar 0, i.e., to stop this output variable from further
differentiation. Furthermore, we amend the matrices Z 4 and Wj as follows:

| %a — | W4
Z4 = [Zi] , Wq:= [Ci,a,-B] . (5.3.30)

These matrices will be used to define new state and input variables related
to z4 and uq respectively. We also let

v:=v+1 and gq,:=a;, (5.3.31)
and test the next Z; with a corresponding flag f; # 0.
Case 2. If
rank Wa = rank (W,) (5.3.32)
CioiB , 3.

which implies that C; o, B is either a zero vector or a linear combination of
the rows of Wy. Note that we have so far identified a total of v infinite zeros
and thus Z4 can be arranged as follows:

Zga
Z4,2

Zg=1| . |, (5.3.33)
Zd,v

withj =1,2,...,v,

Cq,j1
Cq,j,2

Za; = :] . (5.3.34)

Cd,jg;
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Similarly, we can rewrite

Cd,l,qlB

Ca,2,0.B
Wa = . . (5.3.35)

Cd,v,q.,B

Thus, the property of (5.3.32) implies that there exist a set of scalars, say
Bi,s Biz2s-- -, Biy such that

CiasB=_ B:;Cajq;B. (5.3.36)

i=1

We then define

v
Cip=Ci1 - Z,Bi,jcd,j,qj—ai+1
i=1

v
Ciz=Ciz— Y BiiCajgi-ait2

= > (5.337)

: v
Ci,a,' = Ci,a.' - Z Bi,jcd,]',qj‘

j=1 J

Here, we set Cy ;5 to be a zero vector if s < 0. It is simple to verify that

g —o+1<1, j=1,2,...,0, (5.3.38)

which implies that C; ; is a linear combination of the rows of the original
output matrix C'. Next, in view of (5.3.36) and (5.3.37), it is straightforward
to verify that for s = 1,2,...,a;,

CisB =0, (5.3.39)
andfors=1,2,...,a; - 1,
. . v
Cijtr = Cis A= D %i5.iCusin, (5.3.40)
Jj=1

for some scalars +y; , ;. We next let

Ciai+1 =Cin A, (5.3.41)

and test the following sub-cases:
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Sub-case 2.1. If

rank <[C’ Z D > rank(Z), (5.3.42)
1,ai+1

it implies that there are more integrators in the chain associated with the
i-th output, which must be further identified. We then update Z and Z; as
follows:

Ci
Cia
z:[afﬂ},zﬂ= EE (5.3.43)
o Ci,ai
C'i,a¢+1

and test the next Z; with a corresponding flag f; # 0.
Sub-case 2.2. If

rank ([C’ 2 D = rank(Z), (5.3.44)
t,0i+1

there is no more inherent integrator in the chain associated with this i-th
output. The chain of integrators ends up without an input and it belongs to
the subspace associated with zp,. For this case, we also replace the corre-
sponding flag f; in the flag vector f with a scalar 0, i.e., to stop this output
variable from further differentiation, and amend Z; and Zy,, respectively, as
follows:

Zi=| 7, mﬁ=[%], (5.3.45)

Z;
Ci,a,-
which will be used to define new state variables related to z,. We also let

w:=w-+1 and [, :=q;. (5.3.46)

For future reference, we rewrite

[ Zb,1
Zpz
- Zb,w
where
Ch,ja
b,7,2 )
Zyj=| . |, i=12...,w (5.3.48)
Co,j; 4
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The above tests have to be carried out for all Z; with its corresponding flag
fi # 0. Note that in either Case 1 or Sub-case 2.2, there is an element in
the flag vector f being replaced by a scalar 0. As such, f will eventually
become a zero vector.

Next, if f = 0, we move on to STEP SCB.3. Otherwise, we go back to
repeat STEP SCB.2.

STEP SCB.3. Interim transformations.

We let mq = v and rewrite

Z4,1

Zg
Z4 = . , (5.3.49)
Zd,md

where rank (Z4 ;) = ¢;,1 = 1,2,...,mq. Obviously, g1 <g2 <+ < gmy-
Also, rewrite

Wa 1
Wa, 2

Wa= (5.3.50)

Wd,md
Next, let pp, = w and rewrite

Zp,1
Zb2
Zy = . ) (5.3.51)
vapb
where rank (Zy, ;) = l;,4 = 1,2,...,pp. Obviously, l; <lp < -+ < lp,.
Also, let

md Pb
N4 = Z% Np = Zli; Ng =N — Ng — N, (5.3.52)
i=1 i=1

and let Zy be an ng x n constant matrix such that

Zo
S:=12 | := [ZZ"] (5.3.53)
z bd
d
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is nonsingular. Generally, as in the previous decompositions, we can choose
a Zg whose rows constitute a basis for the null space of Z,q. We then define
a new state variable

Zg Zy
T=|3p | =8z=]2y |z, (5.3.54)
T4 Zg
where
Tp Tp,i,1
_ Tp,2 _ Tb,i,2 )
Ib = . y Thi= . , 1=12,...,p, (5.3.55)
Tv,p, Tp,il;
and
T4,1 Td,i1
Td,2 Td,i,2 .
Tq = o zaa= L i=1,2,...,me. (53.56)
Td,mq Td,i,q

Let m, = m — mgq and let W, be an m. X m constant matrix such that

_ | Wa
W= [Wc] (5.3.57)

is nonsingular. Again, W, can be chosen such that its rows form a basis of
the null space of Wy. We then define a new input variable

- [ ud _ Wd
U= (ﬂc> = [Wc]u (5.3.58)
with
Ud,1
Ud,2
Ugq = . , (5.3.59)
Ud,mgq

and define a new output variable

j= (%’") = My (5.3.60)
Yo
with
Ydaa Td,1,1
Yd,2 Td,2,1
Yd = . = . (5.3.61)

Yd,ma Td,mgq,1
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and ~ _
Yb,1 Tb,1,1
b2 Tb2,1
U = ) = ) - (5.3.62)
gb,Pb i‘ber 11

STEP SCB.4. Determination of z 4.

With the properly defined state and input transformations as given in (5.3.54)
and (5.3.58), respectively, we have

$o = AgoZo + AobTb + Agaza + Boqtq + Boclic, (5.3.63)

where Ago, Agb, Aod, Boc and Bog are some appropriate constant matrices.

For each subsystem 74, ¢ = 1,2,...,mq, in view of (5.3.30), (5.3.33)-
(5.3.35) and (5.3.40), we have

Tdi1 = Tdi2 + Ld,in¥d, Ydi = Tdi1, (5.3.64)

Td,,2 = Td,i,3 + Ld,i 294, (5.3.65)

Ed,i,q; = Ad,i,0%0 + AgipTp + Ad,idZd + uq g, (5.3.66)

for some appropriate constant vectors Aq,;0, Ad,i b» Ad,i,4 and Lyijj=
1,2,...,¢; — L. In fact, it is simple to verify from the procedure in STEP
SCB.2 that L; ; has the form,

Laij=[faij1 -+ faiji-1 0 -+ 0]. (5.3.67)

For the subsystem Zy, ;, ¢ = 1,2, ..., pyp, in view of (5.3.39), (5.3.40) and
(5.3.44), we have

Zbi1 = Zoi2 + Lbit¥ds b = Fyi1, (5.3.68)

Tp2 = Tb,i,3 + Lbi2¥d, (5.3.69)
pp min{l;+1,l,} mgq min{l;+1,9,}

Boile =) ) Obbiei@heity, D ObdisiCdsi, (5:3.70)
s=1 j=1 s=1 j=1

for some constant row Vectors pb, i,s, j» Cbd, s, j»and Eb,i, j- Unfortunately,
the dynamical equation in (5.3.70) is not in the desired form as specified in
Theorem 5.3.1. We need to introduce further transformations that bring this
part of the dynamics to depend on only the output variables y1, and yq.
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STEP SCB.5. Determination of zy,.

Define
Zb,1 Tb,i,1 Yb,1
Zb,2 Zb,i,2 Yb,2
Ip 1= . y Tbyi = . y Y= . , (5.3.71)
Tb,pp Tb,il; Yb,py
with

pp min{l;+1,1,}
Tpi1 1= Tpi1 — Z z Qbb,i,s,jTb,s,j—1;
s=1 j=lLi+1
maq min{l.-+1,q_,}
—Z Z Qbd,i,s,jTd,s,j—L: > (5.3.72)
s=1  j=li+1
pp min{l;+1,1,}
Tb,i,2 = Tb,i2 — Z Z Qbb,i,s,jTb,s,j—1i+1
s=1 ]‘—‘l'
mq min{l;+1,q,}

- Z Z Qbd,i,s,jTd,s,j—li+1) (5.3.73)
s=1 j:li

p, min{l;+1,1,}
xb)":)li"—l = jb)i’li—l - z Z abb,i,s,j-'ib,s,j—2

s=1 j=3
ma min{li+1,¢,}

—Z Z Qbd,i,s,jTd,s,j—29 (5.3.74)
s=1 Jj=3

pp min{l;+1,l,}

zb,i,li = Eb,l‘,li - Z Z abb,i,s,jfb,s,j-—l
s=1 =2
mgq min{l;+1,¢,}

=3 Y abdisiTdsi-ts (5.3.75)
s=1 ]:2

Yb,i = Tb,i,1
po min{l;i+1,1,}

”—”bml‘z Z Qbb,i,s,jTb,s,j—1;
s=1  j=li+1

mq min{li+1,9:}

- Z Z abd,i,s,jzd,s,j—l.-

s=1 j=li+1
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Pv mq
= Tpi1— Z Qbb,i,s,1;+1Tb,s,1 Z Qbd,i,s,l;+1Td,s,1
s=1 s=1
Pb md
= Toi1— D Obbis 41005~ Y avdisttibas  (5376)
s=1 s=1

which shows that yy, ; is a linear combination of y4 and §,. Here we note
that we set app ;5. = 0 when £ > [, and apq i 5 ¢ = 0 when £ > g, in the
definitions of (5.3.72)—(5.3.76). We then obtain

pr min{li+1,l,}

To,il; = Th,il — Z Z Obb,i,s,jTh,s,j—1
s=1 =2

mq min{li+1,¢5}

- Z Z abdviysyjﬁdysﬂ._l
s=1 j=2

po min{l;+1,1,} ma min{l;+1,¢,}

=Z Z abb,i,s,,-a‘:b,s,j+z E Qbd,i,s,jTd,s,j
s=1 j=1 s=1 j=1

Db min{l.'-l-l,l,}
- Y Obbiag (i‘b,s,,- + Lb,s,j—lyd)
=

s=1

mg min{l;+1,¢,}

- Z Z Qbd,i,s,j (-’”d,s,j + Ld,s,j—lyd)
§=1 j=2

Pb mq
= E Qbb,i,s,1Tb,s,1 + E Qbd,i,5,1%d,s,1
s=1 s=1

pp min{l;+1,l,}

—Z Z Qbb,i,s,jLb,s,j-1Yd
s=1 j=2

mq min{l;+1,q,}

- Z Z Qbd,i,s,jLd,s,j—1Yd
s=1 j=2

= Lub,i,1;Yb + Lbd,i,1,¥4, (5.3.77)

where Ly 5,4, and Lpg,s,1; are defined in a straightforward manner. We also
have

Db min{l.' +1 ,l,}

Tb,il;~1 = ib,i,li—l - Z E abb,i,s,jfb,s,j—2
s=1 Jj=3
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mg min{li+1,q,}

=Y. Y ondisifdes-2
s=1 j=3

=Zv,it: + Lb,iti-1Yd
pp min{li+1,0,}

=Y D abis (ib,s,j—l + Lb,s,j—2yd)
s=1 j=3

md min{li +1 vqﬂ}

- Z Z abdvivq!j (Idss:j—'l + Ld,s,j—?yd)
s=1 §=3

pp min{l:41,1,} mamin{li+l,q.}

=fb,i,zi—z zabb,i,s,jffb,s,j_1—z Zabd,i,s,jxd,s,j—l
s=1 j=2 s=1 j=2

mq

Pb
+ Z Olbb,i,s,2Tb,s,1 + Z Obd,i,5,2%d,s,0 + L,i 1, —19a
s=1 s=1
po min{li+1,0,} mamin{li+l g, }

—Z Zabb,i,s,ji/b,s,j_zyd "Z Zabd,i,S,de,S,j-2yd
s=1 ;=3 s=1 j=3
= Tbil; + Lbb,ili~1Yb + Lbd,i,l;-1Yd; (5.3.78)

for some constant row vectors Ly, ;1,1 and Lpq j4;—1. Similarly, for k =
;i —-2,1; —3,...,1, we have

Tb,ik = Tb,ik+1 + Lbb,i,k¥b + Lbd,ik¥d, (5.3.79)

for some appropriately defined Ly s and Lpqix. The subsystem zy, is
finally identified and is in the desired form.

Next, obviously, we can rewrite (5.3.63) as
&g = AooTo + AobTv + AoaZa + Boqua + Boclc, (5.3.80)
and rewrite each subsystem z4 ; in (5.3.64)-(5.3.66) as

Tdi1 = Tdi,2 + Lai1¥d, Y, = Ta,i1 (5.3.81)
£442 = Td,i,3 + Ld,i,29d, (5.3.82)

Ta,i,; = Ad,i0%0 + Ad,ibTb + Ag,i,aTa + ug,i,  (5.3.83)

for some properly defined constant matrices Agq ; 0, A4,i,b and Aq,;q-.
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We still need to do some additional work in (5.3.80) in order to decompose
T into subspaces related to z, and z. In particular, we will have to make

this part of the dynamics dependent only on the outputs y4, ¥, and the
control #..

STEP SCB.6. Elimination of ug from (5.3.80).

In view of (5.3.83), we have

%4,1,01 A4 Ad1b Ad14d
£d,2,0: Ad 2,0 Ad2b Ad2d
Uq = . - . To— . Th— . Zq-
£d,ma,qmy Ad,ma,0 Amd,q,b Ad;ma,d
(5.3.84)
Substituting (5.3.84) into (5.3.80), we obtain
:tdvlvql
. - - - idl21q2
Eo = AgoZo + AovZb + AoaTa + Bod ) + By, (5.3.85)
"tdymdy‘hnd

for some appropriate matrices Ago, Agp, and Agq.

STEP SCB.7. Elimination of £4 i ,q;,% = 1,2,...,mg, from (5.3.85).

We define a new state variable,

zd,l,‘h
~ $d121q2
To ‘=Ig — B()d . . (5386)
‘Td:mdyq"ld
Then, we have
Ty = Agoxo + AobZp + AoaTa + Boclic
Td,1,q Td,1,q1
- Td,2,q2 - - Zd,2,q2
= Ago {To—Bod ) +| AogZa+ Ao Bod
xd,mdqud xdvmdqud
+A0b$b + BOCﬂC

= AgoFo + Aopxp + Aoaza + Bociic, (5.3.87)



132

Chapter 5. Decompositions of Proper Systems

where /iOd is defined in an obvious manner. Similarly, z¢ in (5.3.70) and
(5.3.83) should be replaced by Z, and its coefficients together with coef-
ficients associated with z4 in (5.3.70) and (5.3.83) can be redefined in a
straightforward manner. These coefficients are, however, irrelevant to the
further decomposition. For use in the next step, we rewrite (5.3.87) as

po L mq gi
Zo = Aoofo+ »_ 3 AoviiThij+ D O AodiiTa,ij + Boclie,
=1 j=1 i=1 j=1

(5.3.88)
for some constant vectors Agp, ; j and Agq; ;.

STEP SCB.8. Elimination of Ty ; j, ) = 2,3,...,1;,1 = 1,2,...,pp, and z4; ;,

i=2,3,...,q,5=1,2,...,mq, from (53.88).

We now proceed to find a transformation such that the dynamics associated
with Z¢ is expressed in terms of only y4, s = 1,2,...,mq, and yp 4,
s=1,2,...,ppb.

If max{q1,92,--,qma>l1,02,---,1p,} = 1, we will skip the following
sub-steps and directly move on to STEP SCB.9. Otherwise, we initial-
ize i := 0 and set Zop := To; Aob,s,j,0 = Aob,s,j» S = 1,2,...,Dp,
J=1,2,...,l;, Aod,s,5,0 := Aod,s,j» 8 = 1,2,...,mqg, 5 = 1,2,...,¢s,
and then carry out the following sub-steps:

Sub-step 8.1. First, we note that

pb ls—i mg gs—i
Zoi = Aooio,i+z Z AOb,s,j,izb,s,j+Z Z Aod,s,5,iTd,s,j + Boclc-
s=1 j=1 s=1 j=1
We now proceed to eliminate z4.5,4,—i, § = 1,2,...,mq, and Tp ¢4, —i»
s=1,2,...,pp, in the above expression. Let us define
Pb md
Lo,iv1 = To,i— Z Aob,s,l,—i,iTb,s,1,—i—1 —Z Aod, 5,9, —i,iTd,8,g, i1,
s=1 s=1

where we take Agp 54, —i; = 0if ls —1~1 < 0, and Aoq,s,4,—i,i = 0 if
gs — i — 1 < 0. In view of (5.3.68)—(5.3.83), we have

Pb md

Zo,i4+1 = To,i— E Aob,s,1,—i,iTb,s,l,—i—1— E Aod,s,q,—i,iTd,s,q,—i—1
s=1 s=1
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P ls—1 mq gs—1
= Aooflo,i-*-z Z A0b,s,j,i$b,s,j+z Z Aod,s,5,i%d,s,j
s=1 j=1 s=1 j=1
Pb
= Aobs i (wb,s,l,—i + Lb,s,l,—i—lyd)
s=1
md
= Aod,s.qu—isi (zd,s,q,—-i + Ld,s,q,-i—lyd) + Boctc
s=1
P ls—i~1 my gs—i—1
= AOO‘TO 1+Z Z Aop ,8,5,iTb, S'J+Z Z Aod ,8,7,4Fd,s,j
s=1 j=1 s=1 j=1
- Z Aob,s,1,—i,iLb,s,1,~i-1Yd
s=1
d
= Aod,s.q,—iiLd,s,0,~i-19a + Boclc. (5.3.89)
s=1
Clearly, we have eliminated in (5.3.89) all x4 5 ¢,—;, s = 1,2,...,mq, and

allzp 51,5, =1,2,...,pp. Thus, we can re-write (5.3.89) as

o ls—i—1

Zo,i+1 = AooZo,iv1 + E Z Aob,s,j,i+1Tb,s,j

s=1 j=1
myg gs—i—1

+3° " Acdsjit12a,; + Bocle, (5.3.90)

s=1 j=1
for some appropriate constant vectors Agp, s j,i+1 and Agd s, i+l
Sub-step 8.2. If i = max{q1,42,...,qmq,l1,02,...,lp, } — 2, then we will
g0 to STEP SCB.9. Otherwise, we let ¢ := ¢ + 1 and go back to Sub-step

8.1 to repeat the process until there are only y4 and yy, left in the expression
associated with Zg ;41 dynamics.

STEP SCB.9. Separation of z, and z..

Let £o := Ty,;+1. We then have
&0 = Agoto + Lobyb + Loaya + Bocilc. (5.3.91)

Next, we apply the result of Theorem 4.4.1 of Chapter 4 to ( Ago, Byc). It
follows from Theorem 4.4.1 that there exist an ny x ng nonsingular trans-
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formation Ts and an m. x m, nonsingular transformation Tp;, which yield
the following decomposition:

N T, -
£o = Tos ( ) ,  lic = Toue, (5.3.92)
I
Tc,1 Tec,i,1 Uc,l
Ze,2 Ze,i,2 Uc,2
T = . y Tei = . , U = . ,  (5.3.93)
Tc,me Te,i,r; Uc,me

where {r1,72,...,7m.} is the controllability index of the pair ( Ago, Boc)-
Furthermore, we can write the dynamical equations of z , and z as follows:

Ta = AaaZs + Lavyo + Laqyd, (5.3.94)

and foreach zc;,1 = 1,2,...,mc,
Teil = Tei,2 + Leb,i,1¥b + Led i, 19d, (5.3.95)
T iri—1 = Teyir T Lebiri—1Yb + Led,iri—19d, (5.3.96)

Teir = AcyiaZa + AcyicTet+ Leb,i,r Yo+ Led,iyrYd + Ueyi,  (5.3.97)

for some constant matrices. Obviously, ¢ in the dynamical equations asso-
ciated with z4, i.e., (5.3.81) to (5.3.83), can be replaced by z, and z. in a

simple manner. In particular, for each subsystem z4;,7 = 1,2,...,mq,
%431 = Tdi2 + Ld,i1Yds  Yd,i = Td,i1, (5.3.98)
%442 = Td,i,3 + La,i2¥d, (5.3.99)

Zd,i,q; = Adji,a%a + Ad,ibTo + Ad,icTe + Ad,i,dTd + Ud,i, (5.3.100)

for some appropriate constant vectors Aq ; a, Aq,ib Ad,i,c and Aq,iq. To
complete the whole process, we recall the dynamical equations associated
with z}, as derived in STEP SCB.5, i.e., foreach zp ;,% = 1,2,...,pp,

Tb,i1 = Tbi2 + Lbb,i,1¥b + Lbd,i1¥d, Ub,i = Tvi1, (5.3.101)
Tb,i,2 = Tb,i,3 T Lb,i,2¥b + Lbd,i,2d, (5.3.102)

Zb,i; = Lob,i,t:¥o + Lbd,i,.¥a- (5.3.103)
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Finally, we note that the invariant index lists I'1, I, I and I4 of Morse [100},
or equivalently the invariant zero structure, the right invertibility structure
Sy, the left invertibility structure S;* and the infinite zero structure S (see
Definition 3.6.3), of the given system ¥ can be easily obtained from the
above structural decomposition. In particular, we have

SE(E) =1 ={ri,re,-.,Tm.}, SH(E) =1z ={l1,l,...,l},
(5.3.104)
S50 =L ={a,q0, ., qm}, (5.3.105)
and I is related to the eigenstructure of A,,, i.e., the eigenvalues and the

sizes of their associated Jordan blocks. We note that these properties will
be further justified in detail in Section 5.6.

This completes the algorithm that realizes the structural decomposition or the
special coordinate basis of general strictly proper multivariable systems. ]

We illustrate the above algorithm in the following example.

Example 5.3.1. Consider a strictly proper system X characterized by (5.3.1) with

0 0 2 -1 2 0 -1 2 0 -1 0 2 27
0 2 4 -5 3 2 -4 3 2 -4 0 5 0
0 -1 -1 1 0-1 1 0-1 1 -1 -1 1
0 0 0 3 -2 0 3 -3 0 3 1 -1 0
0 2 2 0 -2 2 1 -3 2 1 1 1 -2
0 3 3 -1 -2 3 0 -2 3 0 2 2 -3

A= 0 3 3 -1 -2 3 -1 -1 3 0 1 3 -3/,
0 3 3 -1 -2 3 -1 0 3 0 1 4 -3
0 2 2 1 -1 2 0 0 2 1 1 3 -1
1 1 1 1 0 1 0 1 1 0 2 2 0
0 0 -2 4 -2 0 2 -2 0 2 1 -2 0
0 -1 -3 7 -3 -1 4 -3 -1 4 2 -4 1

-1 0 0 1 1 0 -1 2 0 -1 0 0 2l
1 1 0 07
1110
0000
0000
0000
0111

B=1|011 1/,
0122
1111
1111
0000
0000
[1 1 1 0]
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and
011-1 01 -1 01 -1 -1 2 -1
0_000 1 -11 0-11 0 0 0 0
“/011 0-11 0 -11 0 1 0 -1
000 1 -10 1-10 1 1-1 0

We proceed to construct the structural decomposition or the special coordinate
basis of X by following the detailed procedures given in the constructive proof of
Theorem 5.4.1.

STEP SCB. 1. Initialization.

We first partition
Ci 011 -1 01 -1 01 -1 -1 2 -1
c-|Cl_[0o00 111 0-11 0 0 0 o0
~“J]C]~ (011 0 ~-11 0 -11 0 1 0 -1}
Cs 0 00 1 -1 0 1 -1 0 1 1 -1 0
and set

Z1 = Cl, Z2 = 02, Z3 = 03, Z4 = 04,
1

1
f= e Z :=C.
1

Also set Zg := [1, Wy := [], and Zy := [], where [] stands for an empty
matrix. Lastly, we set v := 0 and w := 0.

STEP SCB.2. Repetitive differentiation of the system output.

Noting that
f 1
_lrt_11
f A f3 - 1 »
Ja 1

with fi = 1, we partition

Zy=[Cia]=[0 11 -1 01 -1 01 -1 -1 2 -1],

and compute
C1,B=[0 0 0 0].

Thus, we have

rank ([CE?B]) = 0 = rank (Wy),

which satisfies the condition of Case 2, i.e., (5.3.32). Next, we let C"l,l =Ci1
and calculate

Ciz=CiiA=[0 002 -1 02 -2021 -1 0].
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It is easy to check that

rank ([sz]) =5 >rank(Z) =4,

which corresponds to Sub-case 2.1, i.e., (5.3.42). We then update Z and Z; as
follows:

011-1 01-1 01+-1 -1 2 -1
7 000 1 -11 0-11 0 0 0 0
Z:=[é}:o110—110-11010—1,
1.2 000 1 -10 1-10 1 1-1 0

0 00 2 -10 2 —20 2 1 -1 0

and

Z__c:‘l,l_011—1 01 -1 01-1-1 2 -1
1= 1¢i2| (000 2 -10 2 -2

(=}
(3
—
|
—
(=)

Similarly, because f, = 1, we partition
Zy=[Caa]=[0001 -110-1100 0 0],

and compute
C31B=[11 0 0].

It is simple to see that

W.
rank ({Cz,ldB]) =1> rank(Wyq) =0,

which satisfies the condition of Case 1, i.e., (5.3.29), and thus implies that the
chain of integrators associated with the 2nd output variable reaches a system input.
We then stop this output from further differentiation by setting f2 := 0 and thus

f 1
fo1 _ {0
F= Bl T
fa 1

Also, set

zd;:[§:]=[o 001 -110-11000 0],

_ | Wa | _
Wd—[Cz,lB]—[l 10 0],

and
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We now move on to the next output variable. Again, noting that f3 = 1, we
partition
Z3=[Cs1]=[0 110 -110-11010 —1],

and compute
CsyB=[1 1 0 0].

Then, check
W,
rank ([02;B]> = 1 = rank (Wy),
which corresponds to Case 2,

Zq=[Za1]=[Care]=[0 001 -1 1 0 =1 100 0 0]

and
Wa=[1 1 0 0].

Clearly, we have C31B = Wy. Thus, we calculate
Cs1=C31-Ca1qp=[011-1000000T10 —1]
and
Csz=C31A=[1 11 -421-321-3 -13 —1],

Next, check
Z _ _
rank ({C’s,z]) =6 > rank (Z) = 5,

which satisfies the condition of Sub-case 2.1. We set

011-1 01 -1 01-1 -1 2 -1
000 1 -11 0-11 0 0 0 0

zlZz]_f0o11 0-11 0-11 0 1 0 -1

=|Cs2|Tl000 1 -10 1 -10 1 1 -1 0Ff
000 2 -10 2 -20 2 1 -1 0
111 4 21 -3 21 -3 -1 3 -1

and

7. [Cua]_[0o11-100 000 0 10 -1

37 (G2 (111 421 -3 21 -3 -1 3 -1{"

As the last flag fy = 1, we proceed to partition
Zy=[Cs]=[0 001 -1 01 -1011 -10],

and compute
Ciy1B=[1 1 0 0].
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Obviously,
rank Wa = 1 = rank (Wy).

CsB
It belongs to Case 2. Note that we have so far obtained
Zq=[Zag]=[Cap]=[0 001 -1 10 -1 10 0 0 0],
and

Wa=[1 1 0 0].
Clearly, C4,1 B = Wy. We then calculate
Ci1=C11=Capg, =[0 00 0 0 -1 1 0 -1 11 -1 0],
and

Ci2=CsnA=[1 00 -3 2 0 -3 3 0 -3 -1 2 0].

Next, check

rank ([szb =7 >rank(Z) =6,

’

which belongs to Sub-case 2.1. We then replace Z and Z 4 with

011 -1 01-1 01 -1 -1 2 -1
000 1 -11 0-11 0 0 0 0
7 011 0 -11 0-11 0 1 0 -1
Z:[C]—ooo 1 -10 1-10 1 1 -1 0]
42 000 2 -10 2 -20 2 1 -1 0
111 -4 21 -3 21 -3 -1 3 -1
(100 -3 20 -3 30 -3 -1 2 0]
and
Z_Q‘4,1 000 00 -1 10-1 1 1 -10
7 {Cu2| (100 -32 0-33 0 -3 -1 20
As the flag
f 1
_|f]_10
f—f3_1
fa 1

is not identically 0, we will have to repeat STEP SCB.2. Since f; = 1, we partition

zo—|Cual_[011 -1 01 -1 01 -1 -1 2 -
1=lCi2|T|000 2 -10 2 -20 2 1 -1 ol

and compute
0172.B=[2 2 0 0].
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Observe that

C12B
which belongs to Case 2. Again, so far, we have obtained

Z4=[241]=[Caru]=[00 01 -1 10 -1 10 0 0 0],

rank ([ Ws D =1 = rank (Wy),

and
Wa=[1 1 0 0].

Clearly, C1,2B = 2W4. We then calculate
Ci1=Ciy=[011-101-101 -1 ~1 2 -1],
C2=C12-2C41,=[00001 -220 -2 21 -1 0],

and

Ci3=CipA=[211 -311-321-303 -1].

It is simple to verify that

rank ([Ci]) =7 = rank (2),

which corresponds to Sub-case 2.2. There are no more inherent integrators in the
chain associated with this output variable. We then set f1 := 0 and thus the flag,

fi 0
o] _]0
f= 1=

fa 1

Moreover, we replace Z; and Z, with

zo[Cu]_for1-10 1-10 1-1-1 2 -1
1=fé¢.l"l000 01 -2 20 -2 2 1 -1 0
and

zo= 2] 011 -10 1 -10 1 -1 -1 2 -1
b=1z7looo0o 01 -2 20 -2 2 1 -1 o0}

and set
wi=w+1=1, I =rank(Z;)=2.

Noting that f3 = 1, we partition

go_[Ca]l_fo11-100 000 0 10 -1
3= 1Ca| " 111 -4 21 -321-3-13 -1}|’
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and compute

W,
C32B=[-1 -1 0 0], rank ([03’2‘13]) =1 = rank (Wy),
which satisfies the condition of Case 2. Again, for easy reference, we recall that
Za=[Za1]=[Ca1,]=[0 001 -1 1 0 -1 10 0 0 0],

and
Wa=[1 1 0 0].

Clearly, C'y 2B = —Wj. We then calculate

C510=C3.=[011-1000000 10 ~1]

bl

(}3’2=03,2+cd,1’ql=[1 11 -312-312 -3 -13 -1]

bl

and
Caz=CspA=[-2 111 -111-2110 -1 0].

Next, we verify that

rank ([Cfa]) =8> rank(Z) = 7,

which belongs to Sub-case 2.1. Thus, we replace Z and Z 5 with

011 -1 01 -1 01 -1 -1 2 —11
000 1 -11 ,-11 0 0 0 0
011 0-11 0 -11 0 1 0 -1
Z__['z]_ 000 1 -10 1 -10 1 1 -1 0
|G| 000 2 -1 0 2 -20 2 1 -1 o0
111 -4 21 -3 21 -3 -1 3 -1
1 00 -3 20 -3 30 -3 -1 2 0
=21 1 1 -1 1 1 =21 1 0<=1 0]

and
Cs,1 011-1 00 0 00 0 1 0 -1
Zs=[és,z]= 111 -3 12 -3 12 -3 -1 3—1]
Cs,s -211 1 -11 1-21 1 0 -1 0

Next, noting that f, = 1, we have

7 = |G| _[000 00 -1 10-1 1 1 -10
T )Ci2| T 100 32 0 -33 0 -3 -1 2 0l
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and

W,
Ci2B=[-2 -2 0 0], rank([cll,:B]):l:rank(Wd),

which belongs to Case 2. Recall once again that

Zg=[Z41]=[Carq]=[0 0 0 1 -1 10 -1 100 0 0],

and
Wag=[1 1 0 0].

Clearly, Cy 2 B = —2W4. We then calculate

C41=Cyy=[0 0000 -110-111 -1 0],
Ci2=Cs2+2C41,4=[1 00 -1 02 -312 -3 -1 2 0],
and

Cas=Ci2A=[-3 -1 -1 5 -2 -1 4 =3 -1 4 0 -4 2],

rank ([CfaD — 8 = rank (Z),

)

and verify that

which corresponds to Sub-case 2.2. There are no more inherent integrators in the
chain associated with this output variable. Therefore, we set f4 := 0 and thus the
flag,

f 0
_1f]_10
f_ f3 - 1 ]
fa 0
Furthermore, we replace Z4 and Z, with
Z__C'4,1_000 00 -1 10-1 1 1-10
4= (¢ 100 -10 2 -31 2 -3 -1 20}
[ 2y, Zv,1
Zy = = 2
° LZ4] [Z]
0 1 1 -1 0 1 -1 0 1 -1 -1 2 -1
_ 10 00 01 -2 2 0 -2 2 1 -1 0
- 0 0 0 00 -1 1 0 -1 1 1 -1 0|’
| 1 0 0 -1 O 2 =31 2 -3 -1 2 0
and set
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We further note that f3 = 1 and thus have to partition
Cs,1 611-1 00 0 00 O0 1 0 -1
23 = =

w

Ci,2 111 -3 12 -3 12 -3 -1 -1
Cs,3 -2 11 1 -1 1 1 -2 1 1 0 -1 O

and compute

Cs3B

which belongs to Case 1. The chain of integrators associated with this output
variable has thus reached a system input. Thus, we set the flag f3 = 0 (the flag
vector, f, is now identically 0), and replace

o [Za] _ [ Zaa
Za = _Zs] - [ Z4,2 }

C33B=[1 1 1 0], rank ([ Wa ])=2>rank(Wd)=1,

[ 0 0 O 1 -1 1 0 -1 1 0 0 0 0

_ 01 1 1 00 0 00 o0 1 0 -1
- 111 -3 1 2 -3 1 2 -3 -1 3 -1 })°

-2 11 1 -1 1 1 -2 1 1 0 -1 0

W= | Wa | _[War| _{1 100
d-= CasB|  |Wa2| " |1 1 1 0f
andv:=v+1=2,¢ =rank(Z3) = 3.
STEP SCB.3. Interim Transformations.

Itis simple to calculate that mg = v = 2, pp = w = 2, ng = Q +q =4,
nb =1 +1l2 =4and ng = 13 — ng — np, = 5. We then select an ny X n matrix,

0 -1 00 0O0O0O0ODOOUO OTGOUO
0 1 00O0O0O0OOOTI1IUO0TUO0TO
Zo=|0 0 0O0O0O0T1U0UO0UO0TUO0OTG OO0 ,
0 0100O0O0OCT11IO0OTL1O0TGO0OO
0 1 000O0O0OO0OCT1IT1O0TU0T0O
such that
0 -1 0 0 0 0 0 0 0 0 0 0 01
0 106 0 0 O O O O 1 0 o0 O
06 00 0 0 O 1 0 O O 0 O0 o
0 01 0 O O O 1 0 1 0 o0 0
0 1.0 0 O O O O 1 1 0 0 O
Zo 0 1 1 -1 0 1 -1 0 1 -1 -1 2 -1
S= [Zb] = 0 0 0 0 1 -2 2 0 -2 2 1 -1 0
Zq 6 00 0 O0-1 1 0-1 1 1-1 0
1 00 -1 0 2 -3 1 2 -3 -1 2 0
6 00 1 -1 1 0-1 1 0 0 0 0
06 11-1 0 0 0 0 0 0 1 0 -1
1 1 1 -3 1 2 -3 1 2 -3 -1 3 -1
] -2 11 1 -1 1 1 -2 1 1 0 -1 0 i
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is nonsingular. Let W, be chosen as

1100
fooo1 CIwsl_ {1110
WC‘[0110] =>W‘[Wc]_ 0 0 0 1

0110

is nonsingular. The transformation, M, associated with the output variable can be
traced back from (5.3.37), which is given as

0 100
0 -1 10
M= 1 000
0 -1 01

We obtain a transformed system ( A;,B1,C1):=(SAS~LSBW~! MCS~') with

6 -3 -2 1 0|-5 -8 -8 14| 4 1 4 =5
4 9 6 -3 0| 9 16 10 28|-6 2 -11 8
5 4 2 -10/ 3 2 1 5/ 0 3 -3 1
14 11 7 -3 0| 8 10 4 2|-3 5 -11 4
23 16 10 -5 0|14 23 12 41|-8 5 -—-18 11
0 0 0 00| 0 1 0 0] 2 0 o0 o0
A=l 0 o o oo/ 1 1 2 2[00 0 o0 o0]f,
0 0 0 00| 0 O O 1|/-2 0 0 O
0 0 0 00| 0 O O 0|0 -1 -1 1
4 3 2 -10] 2 6 1 8] 1 1 -4 2
0 0o o0 o0o0|l o0 0 0 o0|-1 0 1 o0
0 0 o0 o0/ 0 0 O o0/ 0 O o0 1
| 4 3 2 -10[ 1 3 -1 4|0 3 -1 1]

[ 0 —=1|0 0]

0 2|1 0

0 0|1 1

-1 2|31

0 3|2 0

0 00 O

Bi=| 0 00 0],

0 0|0 O

0 0|0 O

1 0]0 0

0 0|0 0

0 0|0 0

| 0 1}0 o]

and ‘

0000 O|/0OUOTU O|1O0OOOWO
c~,_00000‘0000'0100
11700 0001 00O0[0 OGO O

00000'0010‘0000



5.3. Strictly Proper Systems

145

STEP SCB.4. Determination of z4.

In fact, the subsystem associated with z4 has already been properly identified
in the transformed system in STEP SCB.3. Following the definitions of the trans-
formed state, input and output variables as given in the algorithm, we can rewrite
the transformed system as the following:

#o = AgoZo + AobZb + Agazd + Boata + Boclic,

with
-6 -3 -2
14 9 6
Aoo = 5 4 2
14 11 7
23 16 10
-5 -8
B 9 16
Agp = 3 2
8 10
14 23

1
-3
-1
-3
-5

-8
10
1

4
12

[ T = I o i e}

41

the dynamics associated with Ty, 1,

b1 = Tb,1,2 +2Yd,1, Tb,1 = Tb,1,1,

1 00
2 10
0 aBOC— 11},
2 3 1
3 20

1 4 -5

2 -11 8

3 -3 1],

5 ~-11 4

5 —-18 11

Tp1,2 = Tp,1,1 + Tb,1,2 + 2Tb,2,1 + 2Fp,2,2,

the dynamics associated with Zy, o,

Tb2,1 = Tb,2,2 = 2¥d,1, b2 = Tb,2,1,

Ib,2,2 = —Td,2,1 — Zd,2,2 + Zd,2,3,

the dynamics associated with z4 1,

ta11=[4 3 2 -1 0]zo+[2 6 1 8]Z,+[1 1 —4

Yd,1 = Td,1,1, and finally the dynamics associated with z4 o,

Z4,2,1 = Td,2,2 — Yd,1,

Td,2,2 = Td,2,3,

Yd,2 = Td,2,1,

(5.3.106)
(5.3.107)

(5.3.108)
(5.3.109)

2] Td+ug,1,

dag3=[4 3 2 =1 0]zo+[1 3 ~1 4]Zp+[0 3 -1 1]zq+uds.

The subsystems associated with x4 are in the desired form, whereas those associ-
ated with Zy, are not and the z¢ part needs to be further decomposed.
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STEP SCB.5. Determination of xy,.
Following (5.3.72)—~(5.3.76) and (5.3.106)—(5.3.109), we obtain the required
transformations for x, and y;, as follows:

ZTb,1,1 = Tb,1,15, Yb1 = Tb,1,1 = Yb,1, (5.3.110)
Tp,1,2 = Tb,1,2 = Tb,1,1 — 2Tb 2,1, (5.3.111)
Tb21 = Tb2,1 —Td2,1, Yb,2 = Tb2,1 = Pb,2 — Yd,2, (53.112)
Tb2,2 = Tb2,2 + Td2,1 — Zd,2,2, (5.3.113)

which translate into the following state and output transformations,

100 00 00 00O 0 0 01
01000 0O 0O0OO0 O 00
00100 00O 0O0OO0O O 0O
00010 0O O0OO O 0O
00001 00 O0O0OO O 00O
00000 10 00O O 0O
Ss={00000-11-200 0 00],
00000 0O 100O0-1 00
00000 OO 010 1 -10
00000 0O O0O1 0 0O
00000 OO O0OO 1 000
00000 0O O0O0OO O 10
.00 0OOO 0O 0O0OO0O O 0 1.
and

1 000

0 100

Me=1y 910

0 -1 0 1

The resulting transformed system is (4z,B2,C5) := (Sp 43 Sy 16, By, MyC4 )
with

[-6 -3 -2 1 0]-13 -8 —-24 -14| 4 -9 -10 -5
14 9 6 -3 0| 25 16 42 28|-6 16 17 8
5 4 2 -1 0 5 2 5 5] 0 3 2 1
14 11 7 -3 0| 18 10 24 20(-3 9 9 4
23 16 10 -5 0| 37 23 58 41|-8 22 23 11
0 0 0 00 1 1 2 0| 2 2 0 0

A= 0 0 0 0 0 1 0 2 0| 2 2 0 0
0 0 0 00 0 0 0 1{-1 -1 0 0

0 0 0 00 0 0 0 0{-1 -1 0 0

4 3 2 -1 0 8 6 13 8] 1 6 4 2

0 0 0 00 0 0 0 0|-1 0 1 0

0 0 0 00 0 0 0 0|l 0 o 0 1

| 4 3 2 -10 4 3 5 41 0 4 3 1]
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B, = By and Cy = Cy,orinthe state-space equations:
Tg = AgoTo + AobTh + AodZa + Boqug + Bocle, (5.3.114)

with Agg, Bog, By being the same as those in the previous step, and

-13 -8 -24 -14 4 -9 -10 -5
25 16 42 28 -6 16 17 8
AOb = 5 2 5 5 3 AOd = 0 3 2 1 y
18 10 24 20 -3 9 9 4
37 23 58 41 -8 22 23 1

the dynamics associated with zp, 1,

Tb,1,1 = Tb,1,2 +Ub1 +2Ub2 +2¥d1 + 2¥4,2) Yb1 = Tb,1,1,

Tp,1,2 = Yb,1 + 2Yb,2 + 2941 + 294,2,

the dynamics associated with zy, 5,

Tp21 = Tb2,2 — Yd,1 ~¥Yd,2y Ub2 = Tb2,1,
Tp22 = ~Yd1~ Yd 2
the dynamics associated with z4 1,
fa11=[4 3 2 -1 0]zo+[8 6 13 8]Zp+[1 6 4 2]zq+uay,

Yd,1 = Zd,1,1, and the dynamics associated with z4 2,

£d,21 = Td22 ~Yd,1, Yd,2 = Td,2,1,

Zd,2,2 = Td,2,3,

Zg,2,3 = [4 3 2 —1 0]230 + [4 3 5 4]:21, +[0 4 3 1]1‘d + ug,2.
The subsystems associated with z, are now indeed in the desired form.

STEP SCB.6. Elimination of ug from (5.3.114).
From the dynamical equations of 4, we obtain

u_¢d,1,1_432—10£_86138 —1642m
4= \dana /{4 3 2 =1 0[" 7|4 3 5 4|P7|g 4 3 1]|%
Substituting this into (5.3.114), we obtain

&0 = AooTo + AgbZb + AoaTd + Boa (;d’m) + Boclc, (5.3.115)

1<y

where the coefficient matrices Agg, Ao, and Agg can be calculated in a straight-
forward manner.
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STEP SCB.7. Elimination of £4,1,1 and &4 2,3 from (5.3.115).
Defining a new state variable,

~ Td,1,1
Zo := o — Boa S
T4,2,3

which can be translated into a new state transformation,

0000O0CDO0TO0 1

I T 0000O0UO0GO0 -2
501=[OI],T01=0000000 0],
8 0000100 -2
0000O0GO0TO0 -3

we get a new transformed system (A3, B3, Cs) := (So; 141250_11, So1Bo, C'QSO‘II)
with C3 = C; and

[ -2 0 0 0 0|-9 -5 -19 -10| 4 -5 -7 =2
6 3 2 -1 017 10 32 2|-5 8 11 4
5 4 2 -1 0| 5 2 5 511 3 2 2
10 8 5 -2 018 10 27 200 0 7 7 6
11 7 4 -2 025 14 43 29/-6 10 14 7
000 0O 1 1 2 0] 2 2 0 0
As=| 0 0 0 o0 O 1 0 2 0| 2 2 o0 o0},
000 0O 0 o0 0 1|-1 -1 0 o0
000 O0O0f 0 0 0 0|-1 -1 0 0
4 3 2 -1 0| 8 6 13 8] 2 6 4 2
000 00O 0 o0 0 o0f|-1 o0 1 0
000 0O 0 o0 0 0| 0 0 0 1
| 432 -10] 4 3 5 4|1 4 3 1]
[0 0|0 0]
0 0{1 0
0 0|1 1
0 0|3 1
0 0{2 0
0 0{0 O
B3=|0 0f0 0
0 0{0 0
0 0{0 0O
1 0[0 0
0 0/0 O
0 0/0 0
[0 1]0 o |

STEP SCB.8. Elimination of Tv,1,2, Tb,2,2, Td,2,2 and 42,3 from the dynamics
associated with x.



149
o)

7

’

2 0
—4 Oj|
1) with
0
0:|
SosBa,C4S,

-2 0
-6 0
-7 0
C3S5;
-5 =3
17
11 16
-1
3 0
-9 00
-6 0 0
-17 0 O
-16 0 0
A -1
03

-5
2
0
-5
-1
2
-1
0
0
1
8
17
11

o

45

oo So2B3,
0

0

0

-5 00 0
20

0 10 00 0
-20 0 0 O
-20 0 0 O
-29 0 0 O
11
0 0
00
15 4
0
0

0
0
0

0 00O0TO

0 00O0TO
0 00 0O

5
-10 0
-2

0

0

0

0

0
6 0 11 O

1

[—10 0
-14 0
:=(S0243S5
6 0

1

0

0

8 3

0

0
-1 0(12 0 21 O

-2 028 0 52 0

0
-1 0|12 6 23 8

0
0

0
0

To2
0

0
-1

-1
-1 012 0 21 O

-2 028 0 52 0
-2 0|14 0 25 O
] ) Tos = [

-1

)

Cl and

Toa

I

-2 0 0
6 3 2
5 4 2
10 8 5

Is To
0 I
-2 0 0

6 3 2
5 4 2
10 8 5
11 7 4
4 3 2
4 3 2
— | I
10
B3, é5 =

SO3

502=[

First, noting the coefficients associated with zp 1,2, Tb,2,2, and Zg,2 3 in As,
with B5

in A4, we obtain another state transformation,

B, = B3 and C; = C,. Next, observing the coefficients associated with Td4,2,2

and the resulting transformed system ( As,B5,C's) := (Sp3 A4S,

we obtain a state transformation,
and the resulting system (A4,B4,C4)

5.3. Strictly Proper Systems

31 0 0
-1 0 0
-1 0 0
16 6 2
0
14 5

-1
-1
2
-1
1

0 0
00
15 4

0
0

0

12 6 23 8
0

8 3

0
-1 0
0
0

7 4 -2 0(14 0 25 0
4 3 2
4 3 2 -1

11

L
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STEP SCB.9. Separation of z, and ...
Observing from the resulting transformed system ( A5, Bs, C's), we have

o= Ago%o + Lovyb + Loaya + Boclc

-2 00 00 6 11 1 1 00
6 3 2 -1 0 1 2 4 12 10
=| 5 4 2 -1 0|Z+[12 21|yp+| 8 20| ga+|1 1]
10 85 -2 0 28 52 17 45 31
11 7 4 =20 14 25 1 31 2 0

Next, we apply the result of Theorem 4.4.1 of Chapter 4 to decompose the pair
(Ao, Boc) into the CSD form. Noting that (Agg, Byc) is exactly the same as the
pair given in Example 4.4.1, it follows from (4.4.8) that the sub-state and input
transformations are given as

Zo = Tos (ii) y  Ue = Tojue, (5.3.116)
where
1 0 0 0O
0 -1 0 0 1 01
TOS= 0 -2 111 s TOi: [1 0:|,
2 -5 1 1 3
0 -3 0 1 2

and the resulting transformed subsystem:

Ee

[l = =] N )
- O ol o
-0 ol o
N = Ol o

00
2\ - ) 00
(za) +Lobyb+Lodyda+| 1 0 |uc.
€ 00
01

N
8.
»
~—
It
S =1 F R )

The controllability index of (Ao, Boc) is given by {r1, 72} = {1, 2}, which shows
that there are two subsystems associated with z.. The details of these subsystems
will be given in the last step.

STEP SCB.10. Finishing touch.
Putting everything together, we obtain the following nonsingular input, output
transformation and state matrices:

Ii=

O O
]
O
OO =
= O
==
OO O -
-_o 0o
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1
0

-3 0 00

3
10
-4

-1

3
0
0
0
4

0 0 0O

0
0
0
0

-2 0 -1 0 0 0
0 0 0

0 0 0O

0101

-1

1

0
-1

4

(=2 ]

<

11

6
0
0

0
0
0

00 01

10

0

4 0 0 O

0

4 0 00

1
6

2

0
LAT,,T 1B, T

2. 000

LCT,) in the

[¢]

s

and the final transformed system (4, B, C) = (T’
structure of the special coordinate basis with

cojlococoocooclooc oo ~—~
cojlcoocooco|looofjv o1
1122.|_.1_._18910w00M
0000000122002. -
colccococ|loco Hlmoo~ ocolocoocojco oo o
colccocloco oo~ ocoloocooco|lwoolooc o
cojlcormolocoolwocow colocoocolcooc|loo o
Hz_u2200nﬂ.n|0.9w%005 .000000000100
colmroocoloocolvoom Il
O N+ O OO - o ‘a
| | — [~
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To be complete, we can express the transformed system state, input and output
variables as follows:

z Ib,1,1 Td,1,1

I: -'L'b’l’2 Te,1,1 -'L'd’2,1

=T, Tp = " Te= | Te21 |, Ta= "
T ) 9 Cc )&y 9 )

c Tb,2,1 Tos2 Zd,2,2

Td Tb,2,2 - I4,2,3

1. [ Ud — [ Ud,1 — [ Ye
U—Fl(uc)’ Ud <ud,2)7 Ue <UC,2>’
Yd Yda Yb,1
= F = ’ , = ’ ,
=t (yb)’ v (yd,z) ¥ (yb,z>

together with the dynamical equation associated with z,, given by

and

. -2 0 6 11 11
e = [ 1 1] ot [_2 ~5] v+ [1 1] Y, (53.117)
the dynamical equations associated with z1,, given by

Tp11=Tb1,2 +[1 2]ye +[2 2]wa, Yb1=Tb11,
Zhi2=[1 2]y +[2 2]ya,

and

Tb21 =Tb2,2—[1 1]yd, ¥Yb2 = Tb2,1,

Tpe2=—[1 1]yq,
the dynamical equations associated with z, given by
-7'7c,1,1=_'[1 2]yb+[1 1]yd+uc,11

and

Te21 = Tea,2+[10 16]yp +[4 8]yq,
j:c,z,2=[5 —l]fl:a'l'[]. 1 2].’[,'(;_[1 3]yb+[5 13]yd+uc,21

and the dynamical equations associated with z 4, given by

Ta11=[2 —2]za+[12 6 23 8]zp+[1 1 2]z+([2 16 6 2]zq+ua,,

Yd,1 = Zd,1,1,
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and

E421=2%d22—[1 0]yd, Ya2=2a21,
T4,2,2=24,2,3,

Ta23=[2 —2]z,+[8 3 15 14]zp+[1 1 2]zc+[1 14 5 1]za+uqg,e.

It is clear from the above structural decomposition that the invariant indices of
Morse and the invertibility structures as well as infinite zero structure of the given
system are as follows:

Si () =Ty ={r,,r} ={1,2}, S/(Z) =13 ={,}={2,2},

S;o(z) =l = {qlan} = {173}:
and I is related to A(A,a) = {—2,1}, the eigenvalues of A,,.

5.4 Nonstrictly Proper Systems

We now present in this section the structural decomposition or the special co-
ordinate basis of general nonstrictly proper multivariable systems. We will also
present all the structural properties of such a decomposition with rigorous proofs.
To be specific, we consider the following nonstrictly proper system ¥, character-
ized by
{:c:Aa:+Bu, (5.4.1)
y=Cz+ D u,
where z € R", u € R™ and y € RP are the state, input and output of £. Without
loss of generality, we assume that both [ B’ D']and [C D] are of full rank.
The structural decomposition or the special coordinate basis of nonstrictly
proper systems follows fairly closely from that of strictly proper systems given
in Section 5.3. However, in many applications, it is not necessary to decompose
the subsystems zy, and z. into chains of integrators. On the other hand, in many
situations, it is necessary to further separate z,, the subsystem related to the in-
variant zero dynamics of the given system, into subspaces corresponding to the
stable, marginally stable (or marginally unstable) and unstable zero dynamics.
We summarize these changes in the following theorem.

Theorem 5.4.1 (SCB). Given the system ¥ of (5.4.1), there exist nonsingular
state, output and input transformationsI's, 'y and I';, which decompose the given
X into six state subspaces. These state subspaces fully characterize the finite and
infinite zero structures as well as the invertibility structures of the system.
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The new state, input and output spaces are described by the following set of
equations:

=T, y=Dof, u=Tii, (5.42)
T2
= ‘;" , za= |22 |, za=]| |, (5.4.3)
C x+
Tq a Tm,
hn U1
5 Yo Y2 5 to (2
y=1v [ va=| . | @=|ua|,ua=]| . |, (544)
) ' Ue
Ymq Umg
and
T, = A;a.’l:; + Bo_ayo + L;dyd + L;byb, (54.5)
&g = A%z2 + BY,yo + L4ya + Loy, (5.4.6)
:c;" = A:‘axj + B{,';yo + L:dyd + L:byb, 54.7)
&r = AbbZb + Bobyo + Lbayd, yb = Cpp, (5.4.8)

Te = Acce + Bocyo + Levyy + Leqya
+ B, (E,;z; +E% 20 + E;'z;z:) + Beuc, (5.4.9)

Yo = Couzy + CQzs + Cozd + Covh + Coce + Coazq +ug, (5.4.10)

and foreachi = 1,2,...,mq,

.’ti = qu (uz + E;I; + E?azg + E:a_l': + Eibzb + Ez'cl'c + Eidﬂ?d)
+ Ag; i + Lioyo + Ligya, (5.4.11)

¥i = Cqzi, ya = Cyzq. (5.4.12)

Here the states z, asg, z}, zv, T and x4 are respectively of dimensions n;,
nd, nf, np, nc and ng = > i gi, while the state z; is of dimension q; for
eachi = 1,2,...,mq. The control vectors ug, uq and u, are respectively of
dimensions mg, mg and m¢ = m — mgy — mq, while the output vectors yg, yq and
Yo are respectively of dimensions pg = mqg, pa = mgq and p, = p — po — pa. The
matrices Ay, , By, and C,; have the form

Ag = [ 8 Iq.-0_1 ] By, = [ (1) ] Cu=[1,0,...,0. (54.13)
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Assuming that z;,1 = 1,2,...,ma, are arranged such that ¢; < gi+1, the matrix
Liq has the particular form

Lia=[ly b2 -+ fii1 0 --- 0], (5.4.14)

with the last row being identically zero. Moreover, A(A,) € C~, M(A%,) c C°
and \(A},) C C*. Also, (Acc, Be) is controllable and (Awy, Ch,) is observable.

Proof. It is simple to verify that there exist nonsingular transformations U and V/
such that

UDV = [I'go 8] , (5.4.15)

where myq is the rank of matrix D. In fact, U can be chosen as an orthogonal
matrix. Hence hereafter, without loss of generality, it is assumed that the matrix
D has the form given on the right-hand side of (5.4.15). One can now rewrite
system X of (5.4.1) as,

z A z+ [By B (Z(:),

()= 18] =+ % o] (2):

where the matrices By, By, Co and C; have appropriate dimensions. Thus, we
have

(5.4.16)

Z = Az + Byugy + Byus, 5.4.17)
and
Yo = Coz +uo, y1 =Ciz. (5.4.18)

Hence, we have
T =Ax+ BO(:UO - Co.’l:) + Biu; = (A - BoCo)(L' + Byu; + Bgyo. (5.4.19)

Following the results of Theorem 5.3.1, one can obtain nonsingular state, input
and output transformations I, I'; and I, which give a structural decomposition
for the strictly proper system

{@':Al.’t +Blul,

=0z (5.4.20)

where A; := A — ByCy. The additional decomposition of z, into z;, z0 and
z7 follows from the result of Theorem 4.2.1 in Chapter 4. Thus, the result of
Theorem 5.4.1 follows. n
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For future use, we rewrite the structural decomposition of ¥ in a more compact
form:

A= FS_IAI‘S = A + BoCy

A, 0 0 LyC, 0 LC4]

0 Al 0 L)C, 0 L%Cy

_| o 0 Af, LEC, 0 LECy
0 0 0 Apb 0  LpqCy
B.E; BcE}, B.EL LaCo Ac  LeaCa
LB4E;, B4E3, B4Ef, B4Esq, ByEs Aaa |

o]
Bg,
o [P
+ [COa. COa Con. Cob Coc Cod], (5.4.21)
Boy
BOc
L Bog 4
By, 0 01
BY, 0 0
. B
B=FS‘1BI‘i=[Bo Bs] = w 0 0 , (54.22)
Bop, 0 O
BOc 0 Bc
L Bog By 0
) C Cea CO Cf, Cob Coc Cod
c—rglcrs—[cf]— 0 0 0 0 0 Caqlf, (5423
: 0 0 0 C 0 0
I, 0 0
D=T;'DIs=D,=| 0 o0 0}, (5.4.24)
0 00
where
Aqq = A;d + B4Eqq + LqaCy, (5.4.25)
for some constant matrices Lyq and Eg4q of appropriate dimensions, and
Al = blkdiag{Aql Agay oy Agm, } (5.4.26)

By = blkdiag{Bql,qu, e ey Bonm, } Cy= blkdiag{qu,qu, s Conm, }
(5.427)
with (A, , By;, Cq; ) being defined earlier in (5.4.13).
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We are now ready to present the important properties of the above structural
decomposition. For clarity in the presentation, the detailed proofs of these prop-
erties will be given in the next section.

Property 5.4.1. The given system X is observable (detectable) if and only if the
pair (Aops, Cobs) is observable (detectable), where

— Aaa 0 — COa COc
Aobs .= [ BcEca Acc ] ’ CObS = [ Eda Edc ) (5428)
and where
AL, 0 0
A= 0 Ay 0|, Coa:=[Cs C§, Cfl, (5.4.29)
0 0 Af
Ego:=|E;, ES, E}), E.:=[E;, E% E%]. (5.4.30)
Also, define
- Aaa Labe — BOa Lad
Acon = [ 0 Aus ] , Beon = [ Boo Lig |’ (5.4.31)
By, Loy Lq
Boa:= | BY, |, Lab:= Lgb , Laa:= Lgd . (5.4.32)
B, Ly, L

Similarly, ¥ is controllable (stabilizable) if and only if the pair (A con, Bcon) iS
controllable (stabilizable).

Property 5.4.2. The structural decomposition also shows explicitly the invariant
zeros and the normal rank of ¥. To be more specific, we have the following
properties:

1. The normal rank of H (s) is equal to mg + mgq.

2. Invariant zeros of ¥ are the eigenvalues of A ,,, which are the unions of the
eigenvalues of A, AS, and A},.

aa’

Obviously, ¥ is of minimum phase if and only if n2 + n} = 0. Otherwise, it is of
nonminimum phase.

In order to display various multiplicities of invariant zeros, let X, be a non-
singular transformation matrix such that A ,, can be transformed into the Jordan
canonical form of (2.3.39), i.e.,

X1 Aa X, = J = blkdiag {JI, Jo,. oo Jk}, (5.4.33)
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where J;,i = 1,2,...,k, are some n; X n; Jordan blocks:
. 0 I,—
J; = dlag{a,-,ai, . ..,ai}+ [0 "b 1] . (5.4.34)

For any given o € A(Aaa), let there be 74 Jordan blocks of A,, associated with a.
Let 74,1, N 25 - - -» Na,r, b€ the dimensions of the corresponding Jordan blocks.
Then we say a is an invariant zero of X, with multiplicity structure S*(Z,) (see
also [115]),

§4(%0) = { a1, Mags- - Mre 3 (5.4.35)

The geometric multiplicity of « is then simply given by 7, and the algebraic
multiplicity of a is givenby Y% 1 ;.

The following then characterizes the property of the blocking zeros of X (see
also Chen et al. [28]).

Property 5.4.3. Assume that the given system ¥ of (5.4.1) is controllable and
observable. Then, a complex scalar a is a blocking zero of ¥, i.e., H(a) = 0, if
and only if o is an invariant zero of ¥ with a geometric multiplicity T, = mg+maq,
the normal rank of H(s).

The structural decomposition can also reveal the infinite zero structure of X as
defined in Chapter 3. The following property pinpoints this.

Property 5.4.4. X has mq = rank(D) infinite zeros of order 0. The infinite zero
structure (of order greater than 0) of ¥ is given by

S5 () = {QI;‘D;'--,de}— (5.4.36)

That is, each q; corresponds to an infinite zero of order q;. In particular, for a
strictly proper SISO system X, we have S* (X) = {q:}, where ¢, is the relative
degree of ¥. The given system X is said to be of uniform rank if either mo = 0
andg, =qo =+ = gmy,0rmo # 0and S% (%) = 0.

The special coordinate basis exhibits the invertibility structure of a given sys-
tem ¥ in a simple fashion.

Property 5.4.5. The givensystem ¥. is right invertible if and only if x, (and hence
Yb,) are nonexistent, left invertible if and only if z. (and hence u.) are nonexis-
tent, and invertible if and only if both 1, and . are nonexistent. Moreover, X is
degenerate if and only if both zv, and x are present.
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The structural decomposition decomposes the state space of ¥ into several
distinct parts. In fact, the state space X' is decomposed as

X=X 0X 00X 0 X 0 X 0 Xy (5.4.37)

Here X is related to the stable invariant zeros, i.e., the eigenvalues of AZ, are the
stable invariant zeros of X. Similarly, X2 and X} are respectively related to the
invariant zeros of ¥ located in the marginally stable and unstable regions. On the
other hand, X}, is related to the right invertibility, i.e., the system is right invertible
if and only if Ay, = {0}, while X is related to left invertibility, i.e., the system
is left invertible if and only if X, = {0}. Finally, X is related to zeros of ¥ at
infinity.

There are interconnections between the subsystems generated by the structural
decomposition and various invariant geometric subspaces. The following proper-
ties show these interconnections.

Property 5.4.6. The geometric subspaces defined in Definitions 3.7.2 and 3.7.4
are given by:

1. X7 & X2 & X; spans V™ ().

2. X} @ X, spans V*(X).

3 X o X2 X @ X, spans V*(X).
4. X} & X, ® X4 spans S~ (X).

5. X7 0X) X ® Xy spans ST(X).
6. X, ® Xy spans S*(X).

7. X, spans R*(Z).

8. X7 ®X) DX ® X @ Xy spans N*(X).

Property 5.4.7. The geometric subspaces defined in Definition 3.7.5, i.e., S x(X)
and V(X), can be computed as follows:

M -4, 0 0 0
0 Yoo 0 0
0 0 I, 0
0 0 0 In,

Sx(Z) =im { T, , (5.4.38)
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where
im {Ybr} = ker [Ch(Avb + KoCh — AI)7Y], (5.4.39)

and where Ky, is any matrix of appropriate dimensions and subject to the con-
straint that Ay, + KpCh has no eigenvalue at \. We note that such a Ky, always
exists as (Apb, Cp) is observable.

XaA 0
W) =im T 0 0 (5.4.40)
1 0 X ’ o
0 0
where X, is a matrix whose columns form a basis for the subspace,
{g eC™ | (A = 42)G = 0}, (5.4.41)
and
-1
Xep = (Acc + B.F, — ,\I) B., (5.4.42)

with F, being any matrix of appropriate dimensions and subject to the constraint
that A, + B F; has no eigenvalue at A. Again, we note that the existence of such
an F, is guaranteed by the controllability of (A, B.). Clearly, if A ¢ A(Aaa),
we have V) (Z) C V¥*(X) and S5 (L) 2 S*(X).

We illustrate the above structural properties in the following example.

Example 5.4.1. Let us reconsider the system ¥ of Example 5.3.1, i.e., consider
a matrix quadruple (A, B, C, D) with (A, B, C) being the same as those given in
Example 5.3.1 and D = 0. All the necessary transformations required to trans-
form the given system into the special coordinate basis have already been obtained
in Example 5.3.1. For the computation of various geometric subspaces, we need
to further decompose the subsystem associated with z,, i.e., (5.3.117), using the
result of Theorem 4.2.1. In particular, the following sub-transformationon z ,,

[ 09487 0] (=3
Ta=|_03162 1|\t )"
will transform the dynamics of z, into the diagonal form, i.e.,
T, \ _1-2 0 To n 6.3246 11.5950 + 1.0541 1.0541
it )= o 1|\ 0 -1.3333|Y" 7 |1.3333 1.3333 | Y-

It is straightforward to verify that X is neither controllable nor observable. It
has two uncontrollable modes at —0.618 and 1.618, respectively, and has one
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unobservable mode at 0. The given system, X, has a normal rank equal to 2, and
has one stable invariant zero at —2 and one unstable invariant zero at 1. It has an
infinite zero structure,

55(8) ={1,3}.

The system is neither right nor left invertible as both z, and z. are present in its
structural decomposition, i.e., it is a degenerate system. The various geometric
subspaces of X can be trivially obtained through our structural decomposition and
they are given as:

r--zoooH r-1ooow
-3 0 0 0 00 0 0
1 000 1 000
0000 00 0 0
0000 00 0 0
41 0 1 1101L
V‘(Z‘,):imﬁ 2 11 1%, V() =im { 2 1 1 1 ,
6 1 1 2 3 1 1 2
2 01 1 2 0 1 1
4 00 1 1001
2 0 00 -1 0 0 0
2 0 00 -1 0 0 0
LL o0 o0 o0lJ) (L 0 00 0])
(-2 1.0 0 07)
-3 0 0 0 0
1 100 0
0 00 0 0
0 00 00
4 1 1 0 1
V(XEX)=im< | 2 2 1 1 1]},
6 3 1 1 2
2 20 1 1
4 1.0 0 1
2 -1 .0 0 0
2 -1 0 0 0
(L o o0 0 0 o)
(T-10 00 1 2 1 07)
0000 0 3 21
-1 000 0 00 0
0000 0 00O
0000 0O 00O
-1 1.0 1 0 4 1 0
ST(¥)=im¢| -2 111 0 6 2 0],
-3 1 1 2 -1 11 4 1
-2 011 0 7 3 1
-1 601 0 6 2 1
1000 0 00 0
1000 0 00 0
(L 0000 o 2 2 1])
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(-2 0 017
-3 0 0
1 0 0
0 0 0
0 0 0
4 -4 =3
VA(X) = im ¢ 2 =2 1 (3, A=-2
6 -2 -4
2 2 -1
4 0 -5
2 0 0
2 0 0
.\ L O 0 0 1)
([ —2 0 2 0 0 0 1 2 1 07)
-3 10 10 0 0 O 0 3 2 1
1 -5 -4 0 0 0 0 0 0 O
0 1 1 000 0 00O
0 -1 0 0 0 O 0 0 0 o
4 4 4 1 0 1 0 4 1 0 L
SA(X) = im | 2 5 5 111 0 6 2 0 , A=1
6 15 14 1 1 2 -1 11 4 1
2 9 9 0 1 1 0 7 3 1
4 10 10 0 0 1 0 6 2 1
2 4 2 0 0 0 0 0 0 O
2 5 3 0 0 0 0 0 0 o0
\L O 8 7 0 0 O 0 2 2 11])
We note that A = —2 and A = 1 correspond respectively to the stable and the

unstable invariant zeros of X.

5.5 Proofs of Properties of Structural Decomposition

In what follows, we provide rigorous proofs for all the properties of the special
coordinate basis of general nonstrictly proper systems given in Section 5.4. With-
out loss of generality, but for simplicity of presentation, we assume throughout
the rest of this section that the given system X has already been transformed into
the form of Theorem 5.4.1 or into the compact form of (5.4.21) to (5.4.24), i.e.,

Aaa Labe 0 Ladcd

0 Abb 0 Lded
A= + By Co,
BeEea LaCo  Ac LeaCa o0

B4Eqa ByEs, BgEac Ajyq+ BaEdd + LaaCa

Bw 0 0
Bp 0 0

B=[Bo Bi]= sz 0 B’
C C
Boa By 0
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and

c Coa Cob Coc Cod
C= [ C"] =10 0 0 Ci|, D=
! 0 C 0 0

We further note that A}, By and C4 have the forms

A;d:blkdiag{Aql,qu,... A }

14 my

and
Bqy = blkdiag {Bq,,qu, ey By, } C4 = blkdiag {qu,cqz,.. .,C }

) M Qmy

where Ay, By, and Cy;, 4 = 1,2,...,mq, are defined as in (5.4.13).

Proof of Property 5.4.1. Let us define a state feedback gain matrix F as

Coa Cob Coc Cod
F=- Eda Edb Edc Edd . (5.5.1)
E. O 0 0
Then, we have ,
‘ Aaa Labe 0 Ladcd
0 Abb 0 Lded
A+ BF =
0 LebCh Acc LcaCq
0 0 0 A%y+ LdaCa
Noting that (A, Bc) is controllable, we have for any A € C,
rank [A+BF— Al B]
[Aaa—Al LapCh 0 LagCa Boa 0 07
— rank 0 App—=AI 0 LyaCyq By 0 O
h 0 chcb Acc =l Lchd BOc 0 Bc
L 0 0 0 A(’;d +L3gaCq—Al Bog By 0
'Aaa—)\I Labe 0 L.qC4 Boa O 0 1
— rank 0 A=A 0 LyaCy Bow 0 0
- 0 0 Acc— M 0 0 0 B
0 0 0 A;d +L4qCa—A Bog By 0
i Acon =l 0 Bconl C’d BconO 0 0
—rank 0 Acc— M 0 0 0 B.|,
| 0 0 Aj4+LgaCa—AI Bog Ba 0
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where
Acon — [Aaa Labe

0 Abb

Also, noting the special structure of (434, Bq, Ca), it is straightforward to verify
that[A+BF—AI B]isof maximal rankif and only if [ Acon —AI  Beon ] is of
maximal rank. By Lemma 3.8.1, we have that (A, B) is controllable (stabilizable)
if and only if (Acon, Beon) is controllable (stabilizable).

Similarly, one can show that (4, C') is observable (detectable) if and only if
(Aobs, Cobs) is observable (detectable). (]

a La
] , Bcon = [Bcono Bconl] = I:ggb Lbj} .

Proof of Property 5.4.2. Let us define a state feedback gain matrix F" as in (5.5.1)
and an output injection gain matrix K as

BOa Lad Lab
Bo, Ing O
K=- 552
BOc Lcd ch ( )
Bog Lgg O
‘We have
Asa O 0 0
0 A O 0
A=A+BF+ KC+ KDF =
+ + + 0 0 A.. 0 |’
0 0 0 Al
0 0 O
-~ 0 0 0
B=B+KD= 0 0 B
0 B4 O
. 0 0 0 O
C=C+DF={0 0 0 Cyq]|,
0 C, 0 O

and

~

Let ¥ be characterized by the quadruple (A, B, C C, D). 1t is simple to verify that

the transfer function of ¥ is given by

H(s)=C(sI-A)'B+D=
0 0 0

Img 0 0
0 Ca(sI-A%)*Bs 0. (553)
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Furthermore, we can show that

Ca(sI — A%y) !By = 592 ) (5.5.4)

L Sq-md E

By Lemmas 3.8.1 and 3.8.2, we have
normrank { H(s)} = normrank { H(s)} = mg + ma.

Next, it follows from Lemmas 3.8.1 and 3.8.2 that the invariant zeros of ¥ and
¥ are equivalent. By the definition of the invariant zeros of a linear system, i.e., a
complex scalar « is an invariant zero of ¥ if
rank [A BaI g] < 1+ normrank { H(s)} = n + mq + ma,
and also noting the special structure of (A4, B4, C4) and the facts that (4pp, Ch)
is observable, and (A, B.) is controllable, we have

rank { P(a)} = rank [AE"I g}

FAsa—al 0 0 0 0 0 01

0  Ap-al 0 o 0 0 o

0 0 Ag-al 0 0 0 B

= rank 0 0 0 Aj4—al 0 By O

0 0 0 0 Im 0 0

0 0 0 G 0 0 0
L 0 G 0 o 0 o0 o0l

= np + Nc + ng + Mo + mq + rank {A,, —al}.

Clearly, the rank of Py, () drops below n + mg + myg if and only if & € A(Aaa).
Hence, the invariant zeros of 3, or equivalently the invariant zeros of T, are given
by the eigenvalues of A,,, which are the union of A\(A_,), A(A2,), and A(4F},).
This completes the proof of Property 5.4.2. |

Proof of Property 5.4.3. By definition, o being a blocking zero of T implies that
P(a) = C(al, — A)"1B + D = 0. Let us define

(w1 wy - wm]=In
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and

zi=(al, —A)7'Bw;, i=1,2,...,m.
Now it is trivial to see that (2}, w})’,7 = 1,2,...,m, are linearly independent and
satisfy

al,—-A -B| |z -0
C D W -

Thus, « is an invariant zero of ¥ with its geometric multiplicity 7 satisfying the
condition, 7o, > mg + mq. But if 74 > mg + my, it can easily be shown that ¥
is neither controllable nor observable, which is a contradiction to the assumption
that ¥ is controllable and observable. Hence, 7, = mg + mg.

To prove the sufficiency, we consider the following. If 7o = mg + mq, then
it is straightforward to verify that there must exist z; and w;, ¢ = 1,2,...,m —
Mo — M4 + To = m, such that

al,-4 ~B|[x] _,
C D ||lw]| 7

where 2;, 1 = 1,2,...,m, are linearly independent. In what follows, we will
show that w;, 7 = 1,2,...,m, are also linearly independent. First assume that
wi, © = 1,2,...,m, are linearly dependent. Then there exist constants c;, i =

1,2,...,m,such that
m m
20 = Zcizi #0 and w, = Zciwi =0.
i=1 i=1
This implies that

(alp, — A)zo = Bw, =0 and Cz, + Dw, = Cz, = 0.

Hence, a being an output decoupling zero of X contradicts the assumption that X
is controllable and observable. This shows that w;, i = 1,2,...,m, are linearly
independent. We next consider,

Pl@)[wy wy -+ wm]=[Claly—A)"'B+D][wy ws -+ wm]=0,
which implies that P(a) = 0. Thus, ¢ is a blocking zero of X. ]

Proof of Property 5.4.4. It follows from Lemmas 3.8.1 and 3.8.2 that the infinite
zeros of T and ¥, are equivalent. It is clearly seen from (5.5.3) and (5.5.4) that the
infinite zeros of ¥, or equivalently the infinite zeros of X, of order highcr' than 0,
are given by

SE(D)=85(2) = {ql,qg, ... ,qmd}.

Furthermore, ¥ or ¥ has o infinite zeros of order 0. n
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Proof of Property 5.4.5. Again, it follows from Lemmas 3.8.1 and 3.8.2 that &
or H(s) is (left or right or non) invertible if and only if & or H (s) is (left or right
or non) invertible. The results of Property 5.4.5 can be seen from the transfer
function H (s) in (5.5.3). n

Proof of Property 5.4.6. We will only prove the property of the geometric sub-
space V*(X), i.e.,

I, 0
V() =tex=m{l| ) P
0 0

Here I's = I,, as the given system X is assumed to be already in the form of
structural decomposition. It follows from Lemma 3.8.2 that V* is invariant under
any output injection laws. Let us choose an output injection gain matrix K as in
(5.5.2). Then, we have

Aaa 0 0 0
~ 0 App 0 0
A=A+ KC =
+ B.E.. 0 Ace 0 ’
B4Eqa BgEgw, BaEye A3y + BaEaq
and

0 O 0
. < lo o o
B=B+KD=B-= 0 0 B,
0 B4 O

Let ¥ bea system characterized by (/i, B ,C, D). Then, it is sufficient to show
the property of V*(X) by showing that

L. ©

oo 0 0
V*(X) =im 0 I
0 0

First, let us choose a matrix F as given in (5.5.1). Then, we have

Aa O 0 O
0 Aw 0 0
0 0 A 0|
0 0 0 Al

A+BF=
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0
0
Cv

C+DF =

oo o

OO O

oo
| I——— |

It is now simple to see that for any

In‘ 0
. 0
(€EXa® X =im {0 I?zc ’
0 0
we have
Ca
0
C - CC b)
0
and
Azala I, O
P _ 0 . 0 0 _
@A+Brc=| 0. |em{| g [ |i=tex
0 0 0
and
(C+DF)=0.

Clearly, X, ® X, is an (A + BF)-invariant subspace of R™ and is contained in
ker (C' + DF'). By the definition of V*, we have

X, ® X, C V(2. (5.5.5)

Conversely, for any ( € V*(f)), by Definition 3.7.2, there exists a gain matrix
F € R™*™ such that

(A+BF)¢ € V*(2), (5.5.6)
and A
(C+ DF)¢ =0. (5.5.7)
(5.5.6) and (5.5.7) imply that for any ¢ € V*(2),
(C+DF)A+BF)¥¢ =0, k=0,1,...,n—1. (5.5.8)
Thus, (5.5.5) and (5.5.8) imply that
I,, 0
(C + DF)(A + BF)* Igc =0, k=0,1,...,n~1. (559
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Next, let us partition this F as follows:
i [Fao ~Coa Foo—Cob Feo—Coc Fao— Cod}
F=

Foi —Eda Foa—Eaw Fed — Eac Faa — Eaa
Fac - Eca Fbc Fcc ch

We have
A Fyo Fyo Foo Fao
C+DF=]0 0 0 Csl,
0 C, 0 0
and
Aaa 0 0 0
0 App 0 0

A+BF =
+ BcFac Bchc Acc +Bchc Bchc ’
By4Faa BaFva  BaFuq A%

where A% = Ajq + BgFy4. Then, using (5.5.9) with k = 0, we have

L., 0
A 0 0] _
(C + DF) 0 .|~ 0,
0 0
which implies
Fpo =0, Fe =0,
and
. 0 « 0 =
C+DF=|0 0 0 C4qf, (5.5.10)
0 Cb 0 O

where symbols x represent some matrices of less interest. Using (5.5.9) with
k = 1 together with (5.5.10), we have

C4B4Faq =0, CyqBgFeqa =0,
and

0 * 0 *
(C + DF)(A+ BF) = [0 CaBsFoa 0 CdAag] . (5.5.11)
0 Cpodpp 0 O

In general, one can show that for any positive integer k,

Ca(A55) ' BaFaq =0, Ca(A3)*'BaFea =0, (5.5.12)
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and

0 * 0 *
(C+DF)(A+BE)* = |0 * 0 Ca(Ap)*|. (5513)
0 Cu(Aw)* 0 0
As a by-product, we can easily show that F,g = 0 and Fq = 0, because of
the fact that (A%}, By, Cq) is controllable, observable, invertible and is free of
invariant zeros. Now, for any

Ca

¢= ?’ eV (%),

Ca
it follows from (5.5.8) and (5.5.13) that

Cb(Abb)ka =0, k=0,1,...,n—-1,
which implies ¢, = 0 because (App, Cp) is observable, and
Ca(AZ) ¢+ %G = Ca(A35)* ¢ =0, k=0,1,...,n—1,

which implies (4 = 0 because (A}, Ca) is also observable. Hence,

Ca I, 0
o] . 0 0 |\{_
C - cc € 1m O I’nc - Xa, © Xc:
0 0 0
and
VH(E) C X D X (5.5.14)

Obviously, (5.5.5) and (5.5.14) imply the result.

Similarly, one can follow the same procedure as in the above to show the
properties of other subspaces in Property 5.4.6. u

Proof of Property 5.4.7. Let us prove the property of V»(X). It follows from
Lemmas 3.8.1 and 3.8.2 that V), is invariant under any state feedback and output
injection. Thus, it is sufficient to prove the property of V(X)) by showing that

X O
o 0 0
v/\(z) =1m 0 XcA )

0 0
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where ¥ is as defined in the proof of Property 5.4.2, X,y is a matrix whose
columns form a basis for the subspace,

{t eC™|O0 - 4w)ta =0},

and
Xc)\ = (Acc + B F; — )\I)—le

with F. being a matrix of appropriate dimensions such that A ¢c + BcFe — Al is
invertible.
For any { € VA(Z), by Definition 3.7.5, there exists a vector w € C™ such

that 3 5
A - A l? ¢\ _ 0
C Di\w/) 7
or equivalently,
[Aga—A O 0 0 0 0 0] (Ca\
0 App—AI 0 0 0 0 O G
O 0 ACC—AI 0 0 0 BC CC
0 0 0 Ajy—AM 0 By 0 G | =0.
0 0 0 0 I, 0 O Wo
0 0 0 Cd 0 0 0 wd
L 0 Cb 0 0 0 0 0 i wc)
(5.5.15)
Hence, we have
(Aaa — AI)Ca =0, (5.5.16)
which implies that (, € im {Xaz},
App — AT
[ o ] ¢ =0, (5.5.17)
Cb

which implies that ¢, = 0 as (App, Cb) is observable, and

[ 3] (G g
Cq 0 wd ’

which implies that (g = 0 and wq = 0 as (A%4, By, Cq) is square invertible and
free of invariant zeros. We also have

(Acc - AI)CC + Bewe =0,
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which implies that
(Acc + BeFe — M) + Be(w, — F¢) =0,

or
Ce = (ACC + BcF — ’\I)—IBC(FCCC - wc) = XcA(FcCc - wc)-
Hence (. € im {X,}. Clearly,

XaA 0 Xaz\ 0
. 0 0 N 0 0
¢ €im 0 Xo = W(¥)Cim 0 X,
0 0 0 0
(5.5.18)
Conversely, for any
G Xaa 0
S 0 0
(= . €im 0 X, ,
G 0 0

we have Gy = 0, (g = 0, ¢ € im {X,»}, which implies that (AI — A,,)¢ = 0,
and (¢ € im { X}, which implies that there exists a vector @, such that

CC = XCAC)C = (Acc + BCFC - AI)_IBC(:J(:.
Thus, we have

(Acc + Bch - /\I)Cc = Bc(:fc = (Acc - /\I)Cc + Bc(FcCc - a’c) =0.

Let
Wo 0
w=\|wq | = 0 .
We F cCc - a’c

It is now straightforward to verify, by using (5.5.15), that

[ 3] (5) =

By Definition 3.7.5, we have

Xa 0
< . 0 0 <
(eWn(E) = im 0 x| (SWE). (5.5.19)
0 0

Finally, (5.5.18) and (5.5.19) imply the result.

The proof of Sy () follows from the same lines of reasoning. =
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5.6 Kronecker and Smith Forms of the System Matrix

In this section, we will demonstrate how the structural decomposition or the spe-
cial coordinate basis can be easily employed to compute the Kronecker canonical
form (see Section 3.6 of Chapter 3) and Smith form of the (Rosenbrock) system
matrix of a given system ¥ characterized by (5.4.1). We first recall that the Kro-
necker canonical form of the system matrix of X, i.e., Px(s), is invariant under
nonsingular state, input and output transformations, I's, T'; and I',, and is invariant
under any state feedback and output injection. Such a fact follows directly from
the following manipulation:

[T —KT;' 1 [sI-A -B][Ts 0
Pl = U e H ¢ D ] [Ff Fi]
_[sI-(A+BF+KC+KDF) —(B+KD)
B C + DF D
-SI'—AKF —'BK
=" b ] (5.6.1)

where (A, B, C, D) is the transformed system and is given by
A=T;'Ar,, B=T;!BI;, C=TI;'CT,, D=T;'DI;, (5.62)

F and K are respectively the state feedback and output injection gain matrices
under the coordinate of the transformed system, and finally, X - characterized by
the quadruple (A, B, C, D) is the resulting transformed system under the state
feedback and output injection laws.

We are now ready to show that the Kronecker canonical form of Px(s) can
be obtained neatly through the special coordinate basis of . The following is a
step-by-step algorithm that generates the required nonsingular transformations U

and V for the canonical form:

STEP KCF.1. Computation of the special coordinate basis of X.

Apply the results of Sections 5.3 and 5.4 to find nonsingular state, input and
output transformations, I's € C"*", T'; € R™*™ and ', € RP*?, such that
the given system X is transformed into the special coordinate basis as given
in Theorem 5.4.1 or in the following compact form:

Aaa Labe 0 Ladcd

~ 0 Abb 0 Lded
A= + ByCo,
BcEca chCb Acc Lcdcd -0

ByE4s ByEgq, ByEye Ajyq+ ByEgq + LaaCa
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B=[By Bi]=

and

c Coa Cow Coc Coq . [fme 00
C= [C"} =10 0 0 Cal|, D=|0 0 0
! 0 C 0 0 0 0 0

We further note that A3, By and Cy have the following forms,

A% = bikdiag {4, .., 4q,,, }, (563)

and

By = blkdiag {Bql, . } Cy = blkdiag {cql, e, Com, }
5.6.4)
where Ay, By, and Cy,, i = 1,2,...,my, are defined as in (5.4.13). Also,
we assume that A,, is in the Jordan canonical form, ie.,

Aqa = blkdiag {Ja,l, Jar- s ak ), (5.6.5)
where J, 5,4 = 1,2,.. ., k, are some n; X n; Jordan blocks:
. — di . s ) 0 Ini
Jai= dlag{al,a,,...,a,}+ [O 0 ] , (5.6.6)

and (App, Cb) is in the form of the observability structural decomposition
of Theorem 4.3.1, i.c.,

Apb = Ay, + LunCh = blkdiag{ Apo1, ..., Abb,pb} + LppCh, (5.6.7)

and
Cp = blkdiag{cb,l, o sCoop } (5.6.8)

Abb,iz[o 5 } Coi=[1 0], i=1,2,...,pp. (569)

Finally, (Ac., B.) is assumed to be in the form of the controllability struc-
tural decomposition of Theorem 4.4.1, i.e.,

Age = A%, + B Eoe = blkdiag{Acc,l, . .,Acc,mc} + B.Ee., (5.6.10)
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and
B = blkdiag{Bc,l, . .,Bc,mc}, (5.6.11)

with

Acc,i=[g I’-'O-l], Bc,,-=[(1’], i=1,2,.. . me  (56.12)

STEP KCF.2. Determination of state feedback and output injection laws.

Let
) Coa Cob Coc Cod
F=-|E4a Es Es Eaa|, (5.6.13)
Ea 0 Ec 0
and
BOa Lad Lab
~ Bob Lba Ly
K=- 5.6.14
BOC Lcd ch ( )
Bog Laa O
It is straightforward to verify that the resulting X« is characterized by
Aa O 0 0 0 0 O
0 A O 0 0 0 O
Agr = , Bx= , (5.6.15
«=|o o AL 0 =y o g | 6619
0 0 0 Ay 0 Bg O
and
0 0 0 O I,, 0 O
Cp=[0 0 0 Cd}, D=0 00 (5.6.16)
0 C,b 0 O 00

STEP KCF.3. Finishing touches.
It is now simple to verify that the (Rosenbrock) system matrix associated

with I has the following form:

1. The corresponding term associated with J, ; is given by
s—a; —1

sI—Jp; = , (5.6.17)

s — -1
8§ — Qy

which is already in the format of (3.6.12).
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2. The corresponding term associated with (Apb i, Cb,;) is given by

-1
[‘1 0 ] [ Co,i } | = . (5.6.18)
0 I sI - Abb,z‘ -1

which is in the format of (3.6.13).
3. The corresponding term associated with (Acc,i, Be,) is given by
s -1
[sI - Acci —Bci)l= , (5.6.19)
s -1
which is again already in the format of (3.6.14).

4. Lastly, the corresponding term associated with (A, , By, , C,, ) is given
by

s -1 0
sI— A, -B, RO 5
o 0 |= s -1 0| 620
qi s —1
1 0 0 o0
Let
0 1 0 00 1
U, = |5 b CV=— | T ] 56l
kL 1 --- 0 0 % 01 --- 0 ( )
o --- 0 ~1 1 0 - 0
Then, we have
1 -s
[SI_A‘” _B‘“]V = (5.6.22)
qi qu 0 q: — 1 _s ) .
1

which is now in the format of (3.6.15).

The Kronecker canonical form of the system matrix of X ¢, or equivalently
the system matrix of X, i.e., (3.6.11), can then be obtained by taking into ac-
count the additional transformations given in (5.6.18) and (5.6.21) together

with some appropriate permutation transformations. This completes the al-
gorithm.
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The above algorithm for constructing the Kronecker canonical form of Px(s)
has been implemented in an m-function, kc£ .m, in [87]. Next, we proceed to
compute the Smith form of the system matrix, Py (s). We recall the definition of
the Smith form from the classical text of Rosenbrock and Storey [113]. Given a
polynomial matrix A(s), it was shown in [113] that there exist unimodular trans-
formations M (s) and N(s) such that

D 0
S(s) = M(s)A(s)N(s) = [ (()s) 0] , (5.6.23)
where
D(s) = diag{p1 (5), P2(s), .-, r(5) } (5.6.24)
and where each p;(s), i = 1,2,...,r, is a monic polynomial and p;(s) is a factor
of pi11(s), i = 1,2,...,r — 1. Note that a unimodular matrix is a square poly-

nomial matrix whose determinant is a nonzero constant. S(s) of (5.6.23) is called
the Smith canonical form or Smith form of A(s). In what follows, we will show
that it is also straightforward to obtain the Smith form of Py (s), the system matrix
of X, by using the structural decomposition technique.

STEP SMITH. 1. Determination of the Kronecker form of Psx(s).

Utilize the special coordinate basis of X to determine the Kronecker canoni-
cal form of Ps(s) as given in the previous algorithm. However, for the com-
putation of the Smith form of Px(s), we need not to decompose Aa, into
the Jordan canonical form, which might involve complex transformations.
Instead, we leave A,, as areal-valued matrix. Note that the transformations
involved in the Kronecker canonical form are constant and nonsingular, and
thus unimodular.

STEP SMITH.2. Determination of unimodular transformations.

1. Using the procedure given in the proof of Theorem 7.4 in Chapter 3
of Rosenbrock and Storey [113], it is straightforward to show that the
term sI — J, ; in (5.6.17) can be reduced to the Smith form

ni—1

——
(sI=Jo;) = diag{l, 1 (s — i)™ } (5.6.25)

In general, following the procedure given in [113], we can compute
two unimodular transformations M, (s) and N,(s) such that s — A,
is transformed into the Smith form, i.e.,

Ma(s) (sI—Aaa)Na(s)= {Pa,l (8),2a,2(5)s -+« 1 Payna (s)} . (5.6.26)
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Clearly, these polynomials are related to the invariant zero structures
of the given system X.

2. The term corresponding to (Apy, ;, Ch ;) given in (5.6.18) has a con-
stant Smith form:

1 -1
I, .
[ li] - s ° . Ili'
0 oo 1
sh s 1 s

(5.6.27)
Note that the first term on the right-hand side of the above equation is
a unimodular matrix.

3. Similarly, the Smith form for the term corresponding to (A c,i, Bc,:)
given in (5.6.19) is also a constant matrix:

s —1
[IT‘-; 0] = Ir.' ([ jl) Nr;(s); (5628)
s -1

where
1
No(sy=-|% | [IO (1)] (5.6.29)
S s 1

is a unimodular matrix.

4. Lastly, the Smith form for the term corresponding to (A4, By, Cy.)
given in (5.6.21) is an identity matrix:

1 -s 1 F) e g%

Ioir1 = I :
-8 . S
1 1
(5.6.30)

Once again, the last term of the equation above is a unimodular matrix.

Finally, in view of (5.6.26) to (5.6.30) together with some appropriate per-
mutation transformations, it is now straightforward to obtain unimodular
transformations M (s) and N (s) such that

(5.6.31)

M(s)Po(s)N(s) = [D =(s) 0] ,

0 0
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where

Nhed

DE (S) = dlag{l’ ceny I,Pa,l(s),Pa,z(S), «veyPDan, (S)}, (5632)
and where npcqg = np + Ne + Ng + My + mgq.
We illustrate the results of this section in the following example.

Example 5.6.1. Consider the system characterized by (5.4.1) with

1 -100 0 0
a=| 3 200, =13 1. (5.633)
10311 1 0
and .
C=[8 Y (1)] p=2 ol (5.6.34)

which is already in the form of the special coordinate basis with an invariant zero
at1, and n, = ny, = ne = ng = 1. Following the algorithm given in Steps KCF.1
to KCF.3, we obtain

0 1 1000

4 1 -3 -1 -1] - _|-1 -1 _loooo
F"[l 0 -1 0]’K'—1—2’A""‘0000’

0 0 0000

and By = B, C; = C, D = D, and the required two nonsingular transformations,

100 00-1 1 0 000 O
000 00O0-1 0 1 000 O
U= 010 01 1 V= 0 0 100 O
1001 01 2|7 j0 0 0O0O0 1’

0 00-10 0 1-3-101-1
000 01 O 1 0-110 0

which transform Py (s) into the Kronecker canonical form, i.e.,

[s—1| 0|0 0|0 O]

0 |-1{0 0|0 O

0 s|0 0(0 O

UPs()V=|—5 T 0[5 1[0 0

0 0/0 0|1 -s

| 0 00 0|0 1]
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Next, following the algorithm given in Steps SMITH.1 and SMITH.2, we obtain
two unimodular matrices,

0 0 0 0 0 1
0 0 1 o0 1 2
0 0 0 -1 0 0
MO=19 0 0 0o 1 o |’
1 0 0 0 0 -1
(0-1 0 0 -1 s—1|
and _ -
0 0 0 0 1 0
1 00 0 0 0
0 0 0 0 0 -1
No=1 6 9 0 1 0 o
3 0 1 s-11 1
0 -1 0 0 1s-1

with det[M (s)] = —1 and det{N(s)] = 1, which convert Px(s) into the Smith
form, i.e.,

1000 0 0
0100 0 0
0010 0 0

MEPENE =19 0 01 0 o
0000 s-10

0000 0 o0

Clearly, the polynomial in the entry (4,4) of the Smith form of Py (s) above, i.c.,
8 — 1, results from the invariant zero of X.

5.7 Discrete-time Systems

The special coordinate basis or the structural decomposition for general discrete-
time systems is almost identical to that given in Section 5.4 for continuous-time
systems. For easy reference, we summarize in this section the results for discrete-
time systems. We consider a discrete-time system characterized by

{z(k+1) = A z(k) + B u(k),
y(k) =C z(k) + D u(k),

where z € R, u € R™ and y € RP are the state, input and output of £. As usual,
we assume that both [B’ D']and [C D] are of full rank.

(5.7.1)

Theorem 5.7.1 (DSCB). Given the system ¥ of (5.7.1), there exist nonsingular
state, output and input transformations ', T, and T';, which decompose the given
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X into six state subspaces. These state subspaces fully characterize the finite and
infinite zero structures as well as invertibility structures of the system.

The new state, input and output spaces are described by the following set of
equations:

z=Isz, y=Ioj, u=TIii, (5.7.2)
T, zg I
I2
g= |, ma=|a |, sa=| . [, (5.73)
(4 $+ :
Id a Ty
hn U
. Yo Y2 3 Uo Us
Yy=1vd |,¥W= . y U= ud |, u4 = : , (5.74)
Yo ’ Ue .
Ymg Umg

and
z; (k+1) = A,z (k) + Booyo(k) + Lozya(k) + Lopyw(k),  (5.7.5)
zo(k+1) = A% 73 (k) + Boayo(k) + Ligya(k) + Ly (k),  (5.7.6)
z3 (k+1) = AL zf (k) + Bgyyo(k) + Liwa(k) + Liwe(k),  (577)
oy (k+1) = Appzu(k) + Bobyo(k) + Luaya(k), yv(k) = Cozn(k), (5.7.8)

zc(k‘l’l) = Acc-":c(k) + BOcyO(k) + chyb(k) + Lcdyd(k)
+B, [Egz, (k) + Ex2(k) + ELz} (k)] + Beuc(k), (5.7.9)

yo(k) = Cgz; (k) + Coaza (k) + Chz (k) + Copan (k)
+ Cocxc(k) + Coqza(k) + uo(k), (5.7.10)

and foreachi = 1,2,...,mq,
zilk+1) = Agi(k) + Lioo(k) + Liaya(k) + By, [us + Bz (k)
+ EQa(k) + Efoy (k) + Enoo(k) + Bicao(k) + Eiaza(k)], (57.11)

yi(k) = Cq,zi(k), ya(k) = Caza(k). (5.7.12)

Here the states z_, xg, zj, Zb, Tc and x4 are respectively of dimensions n,
nd, nt, ny, nc and ng = Y14 qi, while the state z; is of dimension q; for
eachi = 1,2,...,mq. The control vectors ug, uq and u. are respectively of
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dimensions mg, mq and m¢ = m —mgo —mq, while the output vectors yo, ya and
yp are respectively of dimensions po = mg, pg = mq and p, = p — po — pa- The
matrices Ay, By, and Cy, have the form

Aqiz[g Ib—l], Bq,.z[‘;], Cp=[1,0,...,0. (57.13)

Assuming that z;, 1 = 1,2, ..., mq, are arranged such that ¢; < g; 1, the matrix
L;q has the particular form

Lia=[ty iz - fLig—1 0 -+ 0], (5.7.14)

with the last row being identically zero. Moreover, A(A;,) C C°, A\(4%,) c C°
and \(A},) C C®. Also, (Acc, Bc) is controllable and (Apy, Cy) is observable.

We note that the properties of the structural decomposition for discrete-time
systems are identical to those of the continuous-time counterpart, i.e., Properties
54.1-5.4.7.

Finally, we would also like to point out that many of the system structural
properties, such as the geometric subspaces, for example, do not require the de-
composition of the subspaces &4, A¢ and &y into chains of integrators, for which
numerical problems might arise when the given system data are ill-conditioned.
We refer interested readers to a recent result by Chu et al. [36], which shows that
the separation of X, A}, A and Xgq without detailed structures of chains of inte-
grators can be carried out by using some almost orthogonal transformations. We
have implemented their algorithm in an m-function, called scbraw.m. In our
toolkit of [87], we have made use of this numerically stable m-function whenever
it is possible. When it is necessary to decompose the subsystems into the form of
chains of integrators, the algorithm given in Section 5.3 is used, which requires
fewer iteration steps compared to that given in Sannuti and Saberi [122].

5.8 Exercises

5.1. Compute a special coordinate basis for the SISO system

Identify the invariant zeros and the relative degree of the given system.
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5.2. Utilize the properties of the special coordinate basis to construct a fourth
order controllable and observable SISO system, X, for each of the follow-
ing five cases:

(a) L has no invariant zeros and has a relative degree of 4.

(b) T has one invariant zero at {1} and has a relative degree of 3.

() X has two invariant zeros at {1,2}, and has a relative degree of 2.

(d) X has three invariant zeros at {1, 2, 3}, and has a relative degree of 1.

(e) L has four invariant zeros at {£3, £1}, and has a relative degree of 0.

5.3. Compute a special coordinate basis for the MIMO system

1 1 1 1 0 0

i -1 -1 -2 -2 o+ 0 -1 u
0 0 0 o0 -1 1|7
1 2 3 4 1 0

and
10 0 01
¥=lo 1 1 1|*
Verify that the system is neither left nor right invertible, and has one unsta-
ble invariant zero and one infinite zero of order 1.

5.4. Compute a special coordinate basis for the MIMO system

1 1 1 1 0 0

5= -1 -1 -2 -2 o4 0 -1 u
0 0 0 O -1 11"
1 2 3 4 1 0

and
_foo o1y, fo o]
Y=lo 11 1 0 1%

Verify that the system is invertible. Also, obtain the invariant zeros and the
infinite zero structure of the system.

5.5. Utilize the properties of the special coordinate basis to construct a fourth
order invertible, controllable and observable MIMO system, 3, for each of
the following cases:

(a) X is strictly proper, and has an infinite zero structure S* = {1,3},
which implies that ¥ is free of invariant zeros.
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(b) X is strictly proper, and has an infinite zero structure S¥, = {2, 2},
which implies that ¥ is free of invariant zeros.

(c) X is strictly proper, and has one invariant zero at {1} and an infinite
zero structure S%, = {1,2}.

(d) X is strictly proper, and has two invariant zeros at {+; } and an infinite
zero structure S5, = {1,1}.

(e) X is nonstrictly proper, and has three invariant zeros at {1,+j} and
an infinite zero structure S3, = {1}.

(f) X is nonstrictly proper, and has four invariant zeros at {+1, +;} and

no infinite zero of order higher than 0.

5.6. Construct a third order strictly proper and right invertible system, ¥, with
two inputs and one output, for each of the following cases:
(a) X has an infinite zero of order 2, and has no invariant zeros.

(b) X has an infinite zero of order 1, and has one invariant zero at {—1}.
Moreover, the obtained systems must be controllable and unobservable.

5.7. Construct a third order strictly proper and left invertible system, X, with
one input and two outputs, for each of the following cases:

(a) X has an infinite zero of order 2, and has no invariant zeros.

(b) X has an infinite zero of order 1, and has one invariant zero at {—1}.
Furthermore, the obtained systems must be uncontrollable and observable.

5.8. Construct a second order system, X, which has the following properties: (i)
3 is neither left nor right invertible; (ii) 3 is uncontrollable and unobserv-
able; (ii) T is free of finite zeros and is free of infinite zeros of order higher
than 0; and (iv) X is nonstrictly proper with both [C' D] and [B' D']
being of full rank.

5.9. Compute geometric subspaces, V*, §*, R* and N'*, for the systems given
in Exercise 5.1, Exercise 5.3 and Exercise 5.4.

5.10. Compute geometric subspaces, V) and Sy, with X = 1, for the systems
given in Exercise 5.3 and Exercise 5.4.
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5.11. Consider a SISO system, X, which is already in the SCB form as given in
Theorem 5.2.1, i.e.,
T = AaaTa t Lagy,
T =T2, Y=21,
2."2=;l;37 ey j’.nd—-l'_‘zndy
j:nd = Edawa + Elzl + E2-T2 +---+ End-z'nd + u,
or in the matrix form:
Asa Lag 0 -+ O T, 0
0 o 1 -+ O T 0
t=Az+Bu=| : S RN I I S
0 o o0 - 1 : 0
Esw E, E, -+ En, T, 1
and
y:C’z:[O 1 0 --- 0].1:.
Let
K, K,
0 0
B:=B+|:|=
0 0
0 1
Construct the special coordinate basis for the new system, %, characterized
by = Az + Bu, and y = Cz. Show that ¥ and ¥ have the same
relative degree. Also, show that the invariant zeros of ¥ are given by the
eigenvalues of Ao = Asa — KaEg,.
5.12. It follows from Theorem 5.3.1 that each subsystem associated with 4 of

% can be expressed as

. *x I,._ 0
4,5 = [* q’* 1] T4, + [1] (ug,i + %),

and

Yai=[1 0]zq;.
Show that the subsystem from ug4 ; to ygq ; is invertible, controllable and
observable, and is free of invariant zeros. This implies that the subsystem
associated with the whole z4 from its input uq to output yq is invertible,
controllable and observable, and is free of invariant zeros.
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5.13.

5.14.

5.15.

Determine the Kronecker canonical form and Smith form for the systems
given in Exercise 5.3 and Exercise 5 .4.

Given a linear system, X, with its special coordinate basis being given as
in Theorem 5.4.1, prove Property 5.4.6 for ™, i.e.,

0 0
s@=m{T | ¢
0 In,

Given a linear system, X, with its special coordinate basis being given as
in Theorem 5.4.1, prove Property 5.4.7 for S}, i.e.,

AMl-4, 0 0 O

. 0 )¢ 0 0

c

0 0 0 I,
where

im {YbA} = ker [Cb(Abb + KpCyp — /\I)—l] ,

and where K, is any matrix of appropriate dimensions and subject to the
constraint that Ay, + K, Cp has no eigenvalue at .



Chapter 6

Decompositions of Descriptor
Systems

6.1 Introduction

In this chapter, we focus on the structural decomposition of a more general type
of linear time-invariant systems, namely, linear descriptor systems. Descriptor
systems, also commonly called singular or generalized systems in the literature,
appear in many practical applications including engineering systems, economic
systems, network analysis, and biological systems (see e.g., Dai [43], Kuijper [79]
and Lewis [80]). In fact, many systems in real life are singular in nature. They are
usually simplified as or approximated by proper systems because of the lack of
efficient tools for dealing with descriptor systems. The structural analysis of lin-
ear descriptor systems, using either an algebraic or a geometric approach, has at-
tracted considerable attention from many researchers during the past three decades
(see e.g., Chu and Mehrmann [37], Chu and Ho [38], Fliess [53], Geerts [57],
Lewis [80—-82], Lewis and Ozcaldiran [83], Loiseau [93], Malabre [97], Misra et
al. [99], Van Dooren [143,144], Verghese [146], Zhou et al. [161], and the ref-
erences cited therein). Generally speaking, almost all the research works dealing
with descriptor systems are the natural extensions of their proper counterparts,
although these extensions are usually nontrivial.

It has been extensively demonstrated and proven for proper systems that sys-
tem structural properties, such as finite and infinite zero structures and invertibility
structures, play a very important role in solving various control problems includ-
ing H, Ho control and disturbance decoupling (see e.g., [22] and [120]). The

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004
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structural properties of descriptor systems and their applications to the control
problems of descriptor systems are however less emphasized in the literature. In
this chapter, we present a structural decomposition technique for general multi-
variable linear descriptor systems. Similar to its counterpart in Chapter 5, such a
technique can be used to capture and display the structural properties of general
descriptor systems. It can also be regarded as a natural extension and counterpart
of the results in Chapter 5 for proper systems. However, it will be seen shortly
that the structural decomposition of a general multivariable descriptor system is
much more involved. Such a decomposition technique is expected to be a power-
ful tool for solving a large variety of control problems for descriptor systems, H o
and H, control, model reduction and disturbance decoupling, to name just a few.
The results of this chapter, especially those for continuous-time systems, follow
closely from the works reported earlier in [64,65].
We consider a continuous-time system ¥ characterized by

E:{E.'4i:=A:1,'+Bu,

y=Cz+ Du, ©.1.1)

where z € R™, u € R™ and y € RP are respectively the state, input and output
of the system, and E, A, B, C and D are constant matrices of appropriate dimen-
sions. The system X is said to be singular if rank(E) < n. As usual, in order
to avoid any ambiguity in the solutions to the system, we assume throughout this
chapter that the given descriptor system X is regular, i.e., det(sE — A) # 0, for
all s € C. Traditionally, the Kronecker canonical form, a classical form of ma-
trix pencils under strictly equivalent transformation, has been used extensively in
the structural analysis of descriptor systems. Malabre [97] presents a geometric
approach and introduces structural invariants of descriptor systems. In that paper,
some definitions are shown to be consistent with others directly deduced from ma-
trix pencil tools. It extends many geometric and structural results from the proper
systems to the descriptor systems.

As seen in Chapter 3 for proper systems, the Kronecker canonical form ex-
hibits the finite- and infinite-zero structures (i.e., invariant indices) of the system,
and shows the left and right null-space structures. The same technique has also
been adopted to define invariant indices of descriptor systems (see, e.g., Malabre
[97]). We recall that two pencils sM7 — N; and s M2 — N; of dimensions m x n
are strictly equivalent if there exist constant nonsingular matrices P and Q of
appropriate dimensions such that

Q(sMy — N1)P = sMy — N, (6.1.2)
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It was shown in Gantmacher [56] that any pencil sM — N can be reduced, under
strict equivalence, to a canonical quasi-diagonal form, which is given by

blkdiag{sI—J, Li,, ..., Li,, Ry,,..., R, , I—sH} 0]

0 0]
(6.1.3)

Q(sM—N)B= [

In the context of this chapter, we will focus on
E 0 A B|_|sE-A -B
0 0}‘[—0 —D] ‘[ c D}’ ©.14)

i.e., the (Rosenbrock) system matrix pencil associated with . In (6.1.3), Ry and
Ly arethe k x (k + 1) and (k + 1) x k bidiagonal pencils, respectively,

P):(s)=sM—N=s[

-1

Re=| - - , L= , (615)

L)

J is in Jordan canonical form, and sI — J has the following £ ¢_d; pencils as its
diagonal blocks,

8§ — ,3,' -1
SImi,j - Jmi,j (ﬂz) = s —-.,Bi -1 ) (616)
s — P

j=12,...,d;,i=1,2,...,4, and H is nilpotent and in Jordan canonical form,

and I — sH has the following d pencils as its diagonal blocks,

1 —s
Inj+1 = 8Jn;41(0) := - 1 , (6.1.7)
—-$
1

J=12,...,d Then {(s — f;)™,j = 1,2,...,d;} are finite elementary
divisors at 8;, i = 1,2,...,4. The index sets {r;,7s,... yrpyand {l, ..., 1}
are right and left minimal indices, respectively. {(1/s)™,j = 1,2,... ,d} are
the infinite elementary divisors. The definition of structural invariants of ¥ is
based on invariant indices of its system pencil. For descriptor systems, the right
and left invertibility indices are right and left minimal indices of the system pencil
respectively, the finite and infinite zero structures of a descriptor system are related
to finite and infinite elementary divisors of the system pencil.
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Note that the computation of the invariant indices of the system pencil of the
descriptor system ¥ is actually quite simple. Without loss of any generality, we
assume that E is in the form of

I o
E= [0 0], (6.1.8)
and thus A, B and C can be partitioned accordingly as
Ann AﬂS . Bn _
A—[Asn Ass], B_[Bs]’ =[G Gl (6.1.9)

Rewriting the system pencil of (6.1.4) as

sI - A, —By

SI— Ann I —AIIS —Bl'l
= [ e b ] (6.1.10)

PE(S) = ~Agn —Ass —B;
Ca Cs D

it is simple to see that the invariant indices of ¥ are equivalent to those of a proper
system characterized by (A, Bx, Cx, Dx). All the invariant indices can thus be
computed accordingly (see, e.g., [91]). It is also clear from (6.1.10) that the Kro-
necker canonical form of a descriptor system cannot capture all the system struc-
tural properties as it is identical to those of a proper system! In this chapter, our
focus is not on the computation of the invariant indices, but the derivation of a
constructive algorithm that decomposes the state space of the given system into
several distinct parts, which are directly associated with the finite and infinite zero
dynamics, as well as the invertibility structures of the given system.

It is interesting to note that there are fundamental differences between the
structure of a descriptor system and that of a proper system. For descriptor sys-
tems, as we will see shortly, some of the state variables are totally zero, which
implies that the state trajectories of descriptor systems generally do not span the
whole R™ space, and some are linear combinations of input variables and their
derivatives. Qur decomposition technique given in this chapter will automatically
and explicitly separate these redundant dynamics of descriptor systems, which
cannot be captured through the Kronecker canonical form. We further note that
besides these unique properties, the remaining state variables have similar struc-
tures to those of proper systems given in Chapter 5.

As mentioned earlier, it is expected that the technique presented in this chapter
will play a similar role in solving a variety of control problems for descriptor
systems as its counterpart has played in the context of proper systems. We would
like to point out that research related to descriptor systems and control is far from
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complete. It is our belief that the results of this chapter will emerge as an important
tool for tackling many descriptor systems and control problems.

This chapter is organized as follows. Section 6.2 gives the structural decom-
position algorithm for SISO systems. Section 6.3 presents the structural decompo-
sition algorithm for general MIMO systems and the structural properties of such
systems. The proofs of the results in Section 6.3 are given in Section 6.4. Sec-
tion 6.5 deals with discrete-time systems.

Throughout this chapter, u(®) denotes the v-th derivative of u, where v is a
nonnegative integer. With a slight abuse of notation, we occasionally write u (*) as
sy when it does not cause ambiguity. Here, s can be regarded as a differentiation
operator or the variable in the Laplace transform.

6.2 SISO Descriptor Systems

We consider in this section the descriptor system of (6.1.1) withm =p=1. As
expected, the computation involved in the structural decomposition of SISO sys-
tems is much simpler than in the structural decomposition of general multivariable
systems. Also, for simplicity, we assume in this section that the state variable of
¥, z(t), is a continuous function of ¢ at t = 0. We have the following theorem.

Theorem 6.2.1. Consider the descriptor system ¥ of (6.1.1) withp =m =1
satisfying the usual regularity assumption, i.e., det(sE — A) # 0 for s € C. There
exist nonsingular state, input and output transformations 'y € R™*™, T; € R and
[, €R, and an n x n nonsingular matrix I'¢(s), whose elements are polynomials
of s, which together give a structural decomposition of ¥ described by the set of
equations

z, Td1
z=TeF, &= ;”:  zq€R™, 4= m‘fz , 6.2.1)
Td md.nd
z, € R™, ze € R™, 1, e R™, y=T,j, u=TIiq, 6.2.2)
and
Case 1: If nq = 0, i.e., x4 is nonexistent, then we have
z, =0,
ze = @V, (6.2.3)

Ty = ApaZa + Boall, § = C'-Ta + D’&(U);
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Case 2: If ng > 0, we have
z, =0,
ze = aei,
fa = AaaTa + Laaya,
T41 = Zda, > (6.2.4)

:i:dZ = Xd3,

Gdny = MaaZa + Laaya + 4, §=ya = za1. J

Here, v is a nonnegative integer, Aa, Boa, C, D, Laq, My, and Lqg, if existent,
are constant matrices of appropriate dimensions, and a . is a nonzero scalar.

Proof. The following is a step-by-step constructive proof for the structural de-
composition of X.

STEP SISO-SDDS. 1. Preliminary Decomposition.

This step, adopted from Dai [43], is to separate the given descriptor system
into a proper subsystem and a special descriptor subsystem (hereafter we
call it EA Decomposition). First, we note that the regularity assumption on

the given system (6.1.1) implies the existence of a real scalar 8 such that
det (BE + A) # 0. Next, we define

E = (BE + A)"'E. (6.2.5)

It follows from the real Jordan canonical decomposition, i.e., Theorem 4.2.2,
that there exists a nonsingular transformation T' € R™*™ such that
- E. 0
-1_ |81
TET™ = [ 0 B } , (6.2.6)
where E; € R™*™ is a nonsingular matrix and E, € R™2*™ is a nilpo-
tent matrix. Lastly, we let

B! 0

P=|"1 . _]T E+A)7Y Q=T"1. (627
[ 0 (Inz"‘,BEZ) 1 (ﬂ ) Q ( )

It is then straightforward to verify that

E? 0

PEQ = [ 0 (In, - ﬂE2)—1

] T(BE + A)"'ET !
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_[E 0 N
=% _ﬂEZ)_l]TET
_ [E! 0 B 0 }
| 0 (In,—BE)"'| | 0 E»
_[Ia O
=% N], (6.2.8)

where N = (I, — ﬂE’z)‘lEz. It is simple to show that for any positive
integer h,

N* = NP=2(1,,, — BEy) " Ey(In, ~ BEs) ' By
Nh 2( na —IBE2) ( na ”‘BE2) IEZEZ

= (In, — BE2) " (En)™. (6.2.9)

Clearly, N is a nilpotent matrix because B, is nilpotent. Next, noting that
(BE + A)"1A = I, — BE, we have

(B! 0
PAQ=|"} - T(BE+ A)~tAT™!
@={"V (1, | B
(B! 0 ] -
= T E)T!
0 (P (In = BE)
_[ET ] [I ~ BE, 0
L 0 ( ng — ﬂEZ)_ Inz - 5E2
_[4 0
=10 Im] . (6.2.10)
We also partition accordingly
PB = [gﬂ and CQ=[C, C:]. (6.2.11)
Then, the given descriptor X can be decomposed into the following two
subsystems:
= A 21 + By u,
w0 T (62.12)
n = C 3,
and
Niy= x3 +Byu,
%, : 2 e (6.2.13)
y2 = C2 22,

where z; € R™ and z, € R™ withny + ny = n,andy = y; + ya.
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STEP S1S0-SDDS.2. Decomposition of ¥25.

If B, = 0, we have z, = T2, 1, = N2, T = 0, n, = 0 and v = 0. For this
case, the following procedure does not apply. We jump directly to STEP
SISO-SDDS.3.

For the case when By # 0, it follows from Theorem 4.4.1 that there exist a
nonsingular transformation T’ and an a # 0 such that

Tvi

T n Tv2
:1:2=T2< "), z, €R™, z,eR™, z,= : , (6.2.14)

Tvug

- Jeo Nee _ B i
an:“°ij,an[§y (6.2.15)
and

CoTy = [Coc Ca], (6.2.16)

where (Jo, Bac) is a controllable pair. Since N is a nilpotent matrix and
thus has all its eigenvalues at 0 and By is a column vector, (J¢o, B2) can
actually be written as,

0 Ivd—l

Joo = [0 0 ] and By = l:_]?/a] . 6.2.17)

Also note that J,, has all its eigenvalues at 0. As such, it is simple to verify
that 3, is decomposed into the following two subsystems:

Jn &y = Ty, (6.2.18)

which implies that z, = 0 for all ¢, under the assumption that z(t) is a
continuous functionof ¢ at £ = 0, and

JeoZv + Negi, = 2y + Bacu, 6.2.19)
which is equivalent to
Jeody = Ty + Bscu, (6.2.20)
or
U= QTyyys Lywg = Tyvg—1s «--5 Eva = Ty1. (6.2.21)
Clearly, (6.2.21) implies

] .
Te =Ty = au(v) and Ne = 1, (6222)



6.2. SISO Descriptor Systems 197

where v = max(0,vq — 1). The output y, can then be expressed as

Y2 = CaocZy + Cocy = Cocy. (6.2.23)

STEP SISO-SDDS.3. Decomposition of Finite and Infinite Zero Structures of 3.

Observing the results in (6.2.12), (6.2.13), (6.2.18), (6.2.21), (6.2.22) and
(6.2.23), it is clear that the given system X has been transformed into the
following format:

2, =0, z,= é“(”)’ (6.2.24)
and a proper system,
Iy = 4171 + aBi1Tyy,, )
1
Tyy = ___u(v),
o
(6.2.25)
Tyvvg = Tyvg—1,
y = Ciz1 + Cacy. J
Next, let us partition
02(; = [Cvl Cv2 ' Cyyy ] . (6.2.26)
Thus, the proper system (6.2.25) can be rewritten as,
t=Az+ Ba,
_ _ 6.2.27)
y=CZ+ Da,
where
T A, 0 0 0 aB; 0
Ty2 0 0 00 O 1
z= ’ A = : s B = 3
Tyyg—1 0 0 - 1 0 0 0
Tyuy 0 0 - 01 0 0
and
ﬂ—lu(”) Cc=|[C D=
= P y = 1 Cv2 " Cyyg—1 Cyyy ]: = Cvi,
ifvg > 1,0r
1 - _ _ _
=1, 0= au’ A=4,, B=aB;, C=C;, D=C0Cy,

if’l}d = 1.
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We have the following two distinct cases.
Casel. D # 0, which corresponds to Case 1 of Theorem 6.2.1. In this
case, it is simple to obtain 4 = 0, ng =0, 2, = F,n, =ny + v and
iy =(A—BD71C)x,+ BD 'y = Aoz, + Boay (6.2.28)
and
y = Cz, + Do~ *u) = Oz, + Da), (6.2.29)
if we let u = '@t = «ii.

Case 2. D = 0, which corresponds to Case 2 of Theorem 6.2.1. It follows
from Theorem 5.2.1 that there exist nonsingular transformations I's, T', and
T'; such that when we apply the changes of coordinates

E:Ki:ﬁ(ﬁ),yzrﬁ,ﬁ:ldﬂzﬂﬂw, (6.2.30)

to the system in (6.2.27), and in view of (6.2.22), we have

. Aaa LaaCq | 0 ~(v)
I= [Bdea Agg I+ By (TAM (6.2.31)
and
§=[0 Cals, (6.2.32)
where A4, Bg and Cy4 have the form
0 In,- 0
Add= [* dO 1], Bd.: [1], Cd:[]. 0 M O]. (6-233)
Let ]
u=Ta=aolii = aww=rmw. (6.2.34)

This completes the algorithm for the structural decomposition of the given
SISO descriptor system. [

We illustrate the above decomposition technique in the following example.

Example 6.2.1. We consider a descriptor system of (6.1.1) with

1 00 00 10101 1
00110 1010 0

E=|0 0 0 1 0f, A=]1 01 0 1|, B=|0|, (6235
0 0O0©O0TO 01010 0
00110 10101 1
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and
C=[0 10 0 0], D=0. (6.2.36)

We first choose a scalar 3 = —1 and obtain

1.4142  1.4142 -0.7071 -1.4142 -0.7071

0 0 1.2248 0 -1.2248
P= 0 —-1.4142 -1.4142 1.4142 1.4142 |,
0 -1 0 1 1
0 0 0 1 0
0.7071 0.4083 0 0O
0 0 07071 0 1
Q= 0 -0.8165 00 0},
0 0 -0.7071 0 O
-0.7071 0.4083 010
10000 000O0O0
01000 0 00O0O
PEQ=]100100j|, PAQ=|0 0 0 0 O |,
0 00 0O 00010
0 0000 0 00 01
and
0.7071
—1.2247
PB = 14142 |, CQ = [ 0 0 07071 0 1],
1
0

with ny = 3 and nz = 2. The given descriptor system can then be decomposed
into the following subsystems:

21:{1‘1 =A; =, + B; u,

1 = C1 xy,

and
N 19 = T2 + B u,
¥
Y2 = C2 T2,

with

0 00O 0.7071

Ai=10 0 0|, By=|-12248 |, C, = [0 0 0.7071],
0 00 1.4142
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and

Nz[g 8] BFH], Co=[0 1].

Noting that By is nonzero and Y5 is already in the required form of (6.2.15),
we have

a=-1, z,=0, u=-y, Te=2y=—-u, vq =1,

and the auxiliary proper system

t=AzZ+ Bua,
y=Cz+Da,
with
_ o1
T=x, U=-—u=—Uu,
[0
i 000] ~0.7071
A=A,=40 0 0}, B=aB, = 1.2248 |,
0 0O —1.4142
and

C=C=[0 0 0771], D=0,

which corresponds to Case 2 of STEP SI1S0O-SDDS.3. Following the result of Theo-
rem 5.2.1, we obtain the required state, output and input transformation matrices,

_ 0 -1 0.7071
Fs=|1 0 —-12248 |, To=1, Tj=-1,
0 0 14142
which transform the auxiliary proper system into the required structural form:
. 0 0]0 o 0 .
[['AL,=|0 0|0 |, I7'BIy=| 0|, I;'C,=[0 0|1].
0 0]0

1

Finally, we obtain all the necessary transformations as

0 0 0 1 0
0 -1 0 1 1
e = 0 -1.2248 0 1.2248 01,
—-1.4142 -21213 0 2.1213 1.4142
0 -1 -1 1 1
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0 0 04083 —-0.7071 0

10 0 0 1
T,=|0 0 —0.8165 0 1],

00 0 0 -1

0 1 04083 07071 -1

and

with which the given descriptor system is transformed into the special form

0 0/0 0 O 1 0/0 00 0
00'000 0 1{0 0]0 1
0 0|1 00|Z=|0 0|0 0|0 |Z+| 0 |4,
0 0/]0 10 0 0{0 0]0 0
0 0[O0 01 0 0[O0 O[O 1

and
g=[1 0|0 0|1]z
The decomposed system can be rewritten as

z, =0, T.=—1,
. 00 0

Td=U, J=ZTp+Yd=7Yd = Z4-

and

6.3 MIMO Descriptor Systems

We first summarize the structural decomposition of multivariable descriptor sys-
tems in the following main theorem. All its properties will also be given. For
clarity of presentation, the constructive algorithm for the structural decomposi-
tion and proofs of all its properties will be given separately in Section 6.4.

Theorem 6.3.1 (SDDS). Consider the multivariable linear descriptor system I of
(6.1.1) satisfying det (sE — A) # 0 for s € C. Then,

1. there exist coordinate-free nonnegative integers n ,, ne, N, M, Ne» Td, Md,
Mo, Mc, Py, and positive integers q;, i = 1,2,...,mgq, if mgq > 0; and
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2. there exist nonsingular state and output constant transformationsI' s e R™*"
andT, € RP*?, as well as an mxm nonsingular input transformation T'; (s),
whose inverse’s elements are some polynomials of s (i.e., its inverse con-
tains various differentiation operators), and an n X n nonsingular transfor-
mation I'c(s), whose elements are polynomials of s, which together give a
structural decomposition of ¥ and display explicitly its structural proper-
ties.

The structural decomposition of ¥ can be described by the following set of equa-
tions:

=T, y=Toy, u=Ti(s)i, (6.3.1)
and
Ty
:: ; Yo Uo
I= o | y={vyal), o=1{ug], 6.3.2)
e Y Uc
Zd
Tdi Yd1 Ud1
Td2 Yaz Ud2
T4 = . , Yd = : , Ug = . , (6.3.3)
Tdmg Ydmqy Udmgy
and
Jn, &z = Ty, (6.3.4)
where J,,, € R™*™ has all its eigenvalues at 0,
Te = BeoUg + Beclc + Bequg + SNez(s)zza (6.3.5)
Ty = Aaaza + BanO + Ladyd + Labyb + SLaz(S)IL'z, (6.3.6)
Ty, = AbbZb + Bobyo + Lvaya + sLz(8)Zs, (6.3.7)
Yp = Cb.’L'b + Cbz.’L'z + SC’bzs(s)IL"z, (6.3.8)

Te = AceTe + BOcyO + Leayd + Lebyn + BcMeaza + Bouc+ Sch(s)wzy (6.3.9)
Yo = CoaZa + CopTp + Cocc + Coazq + ug + Coz T, + $Coss (s)zz, (6.3.10)
and foreachi =1,2,...,mq,

Zqi = Ag; Tdi + Lioyo + Liaya + sLiz(s)z,

md
+ By, | udi+ MiaZa+ Minzo+ Micze+ Y Mijzg; |, (6.3.11)
=1
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Yai =Cq,Ti+Cin%s +5C25(8) T2y Yd=CaTa+CoayTy+5Cqy(5)T,, (6.3.12)
for some constant submatrices of appropriate dimensions, and for some matrices
whose elements are polynomials of s. Here the states z,, x¢, Ta, Tn, Tc and Z4
are of dimensions n,, Ne, Ta, Mibs Nc and ng = Y1 g;, respectively, while Ta;
is of dimension q; for eachi =1, 2,...,mq4. The control vectors ug, g and u.
are of dimensions mg, mq and m¢ =m—mg—my, respectively, while the output
vectors Yo, yq and yy, are respectively of dimensions mg, mq and py, = p—mo—myq.
The pair Ay, Cp) is observable, the pair (A, B.) is controllable, and the triple
(Ag;, Bg;, Cy;) has the form

0 I,- 0
Aq,.=[0 qbl], B,,,:[l], Cu=[1 0 -+~ 0]. (63.13)
Assuming that z;,1 = 1,2, ..., mgq, are arranged such that q; < g;11, the matrix
L;q will be in the particular form
Lig=[La L -+ Ly 0 --- 0], (6.3.14)

with its last row being all zeros.

A constructive proof of the structural decomposition in Theorem 6.3.1 will
be given in the next section. The following corollaries of Theorem 6.3.1 give a
compact matrix form for the structural decomposition and establish its equivalence

to the original system. The proofs of these corollaries follow from the constructive
proof of Theorem 6.3.1.

Corollary 6.3.1. The structural decomposition of £ of Theorem 6.3.1 can be rep-
resented as follows:

E =T.(s)ETls = E; — E,(s) + ¥(s) (6.3.15)
Joy 000 0 0 O 0 000O0TO
0 00 0 0 O Nez(s) 0 0 0 0 O
0 0I,, 0 0 O La(s) 00 0 0 0
:OOOInhOO_LEZES;OOOOO+\I’(S)’
0 00 0 I, O L(s) 000 00
0 00 0 0 I Las(s) 0 0 0 0 0
A =T(s)ATs = A + sU(s) (6.3.16)
I, 0 0 0 0 0
L., 0 0 0 0
0 Aaa L.p,Cy 0 L,4Cy4

0 BcMca chCb Acc Lchd

0
0 +s¥(s)
0 0 0 App 0 LpaCy ’
0
0 0 ByMgy BaMg, BgMg. Agq
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0 0 0
BOe Bde Bce
> 3 . _ _ BOa 0 0
B =T¢(s)BIi(s) = Bs = By 0 0] (6.3.17)
Bee 0 B
Byg Bg O

3 Coz 0 Coa Cob Coc Cod
C=T;"CTs=Cs+¥:=|C4q 0 0 0 0 Cql|+7¥, (6318
Co 0 0 C, 0 O

: Img 0 0
D=T;'DIi(s) =Ds +¥q(s)=| 0 0 0|+ Ty(s), (6.3.19)
0 00
where ¥(s) is ann x n matrix with entries being some polynomials of s,
0
0
B
By = Bg: , Co=[0 0 Coa Cop Coc Coal, (6.3.20)
BOc
Bag
and
U % + Uy(s)l = Ug(s)z,, (6.3.21)

and where Wg(s) is a matrix with its elements being some polynomials of s.

Corollary 6.3.2. Let X be a descriptor system characterized by a constant matrix
quintuple, (Es, As, Bs, Cs, Ds), which has a transfer function

Hs(s) = CS(SES - As)—lBs + Dg. (6.3.22)
Let H(s) be the transfer function of the original descriptor system (6.1.1). Then,
H(s) = C(sE — A)™'B + D = Lo Hy(s)T ! (s), (6.3.23)

which shows that the transfer functions of the original system ¥ and the system
characterized by X5 are related by some nonsingular transformations.

Next, we would like to note that it does not lose too much generality to assume
that the state variable of X, z(t), to be a continuous function of t at t = 0, which
simply means that there is no sudden jump from z(0~) to z(0*). Then, it is
straightforward to show that (6.3.4) implies that z, = 0, for all £. We summarize
below the physical features of the state variables in our structural decomposition
under such a minor assumption:
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1. The state z, is purely static and identically zero for all time ¢. It can neither
be controlled by the system input nor be affected by other states.

2. The state z. is again static and contains a linear combination of the input
variables of the system and their derivatives of appropriate orders.

3. The state z, is neither directly controlled by the system input nor does it
directly affect the system output.

4. The output yp, and the state zy, are not directly influenced by any input,
although they could be indirectly controlled through the output y 4. More-
over, (App, Cp) forms an observable pair. This implies that the state z, is
observable.

5. The state z. is directly controlled by the input u, but it does not directly
affect any output. (A, B.) forms a controllable pair. This implies that the
state x is controllable.

6. The variables uq; control the output y4; through a stack of ¢; integrators.
Furthermore, all the states z4; are both controllable and observable.

As will be seen shortly, all the invariant properties of the given system can be
easily obtained from our structural decomposition. Furthermore, it is simple and
interesting to observe from the structural decomposition of ¥ of Theorem 6.3.1
that there are redundant state variables associated with the given system. An im-
mediate application of such a technique is to reduce the descriptor system to an
equivalent proper system as the state variable z, is identically zero, and the state
variable z. is simply a linear combination of the system input variables and their
derivatives. As such, from the input-output behavior point of view, the given de-
scriptor system can be equivalently reduced to the following proper system:

Ta = AaaZa + BoaYo + Laa¥d + Labyb, (6.3.24)
Zp = AvbTb + BobYo + Lbayd, Yo = CbTb, (6.3.25)
T = AccTc + Bocyo + Leayd + Levyb + BcMcaTa + Beu, (6.3.26)
Yo = CoaZa + CobZb + Coczc + CoaZq + Uo, (6.3.27)
and foreach: =1, 2,...,mq,

Tai = Ag;Tdi + Lioyo + Liayd

mq
+ By, Udi+Miaxa+Mibmb+Mic$c+ZMij(b‘dj , (6.3.28)
Jj=1
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Ydi = C,Ti,  ya = Cyzq. (6.3.29)

As such, we can expect that many results related to systems and control theory of
proper systems can be extended to descriptor systems without too much difficulty.
This is the most significant property of the structural decomposition technique
developed in this chapter.

We mentioned earlier that the structural decomposition of Theorem 6.3.1 has
the distinct feature of revealing the structural properties of the given descriptor
system Y. We are now ready to study how the system properties of X, such as
the stabilizability, detectability, finite and infinite zero structures, can be obtained
from the decomposition of the system.

We first recall the definitions of stability, stabilizability and detectability of
linear descriptor systems from the literature (see, e.g., Dai [43]).

Definition 6.3.1 (Stability, Stabilizability and Detectability). The system ¥ of
(6.1.1) is said to be stable if its characteristic polynomial det(sE — A) has all roots
inC™. Itis said to be stabilizable if there exists a constant matrix F' of appropriate
dimensions such that the roots of det(sE— A— BF') are stable. Similarly, it is said
to be detectable if there exists a constant matrix K of appropriate dimensions such
that the roots of det(sE— A— K C) are stable.

We have the following property.

Property 6.3.1 (Stabilizability and Detectability). The given system X of (6.1.1)
is stabilizable if and only if (Acon, Beon) is stabilizable, and is detectable if and
only if (Aobs, Cobs) is detectable, where

. Aaa Labe . BOa Lad
Acon A [ 0 Abb ) Bcon - BOb Lbd ) (6330)
and A c
.— aa 0 —— Oa COc
Aobs = [BcMca Acc] , Cobs = [Mda Mdc] . (6.3.31)

The definition of invariant zeros of descriptor systems can be made in a similar
way as that for proper systems (see Chapter 3) or in the Kronecker canonical form
associated with 3 (see, e.g., Malabre [97]).

Definition 6.3.2 (Invariant Zeros). A complex scalar o € C is said to be an
invariant zero of the descriptor system ¥ of (6.1.1) if

rank{P5;(a)} < n + normrank{ H(s)}, (6.3.32)
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where
H(s)=C(sE-A)™'B+D, (6.3.33)

and normrank{(H (s)} denotes the normal rank of H(s), which is defined as its
rank over the field of rational functions of s with real coefficients, and Py (s)
is the system pencil associated with . as given in (6.1.4). Invariant zeros of ¥
correspond to 3; in (6.1.6).

The following property shows that the invariant zeros of £ can be obtained
through the structural decomposition in a trivial manner.

Property 6.3.2 (Invariant Zeros, Normal Rank). The invariant zeros of ¥ are
the eigenvalues of A,,. The normal rank of ¥ is equal to mg + myq.

We note that the Jordan canonical structure of A,, corresponds to list Iy of
Morse [100] of the system. In fact, in many applications, it is useful and necessary
to further separate the state variable associated with the invariant zero dynamics,
ie., T, into a stable part, an unstable part and the part associated with invariant
zeros on the imaginary axis. It follows from Theorem 4.2.1 that there exists a
nonsingular transformation, say T, such that

z; A, 0 0
za=Ty| 20 |, T7'40Tu=| 0 A%, 0 |, (6.3.34)
zf 0 0 4}

where A(AL,) C C~ are the stable invariant zeros, A(A2,) C C° are the invariant
zeros on the imaginary axis, and A(A},) C C are the unstable invariant zeros.

The infinite zero structure of the given system X can be defined as the structure
associated with the corresponding block of (6.1.7) in the Kronecker canonical
form of Pg(s). It can also be defined using the well-known Smith-McMillan
form or list Iy of Morse [100].

Property 6.3.3 (Infinite Zero Structure). ¥ has mg infinite zeros of order 0.
The infinite zero structure (of order greater than 0) of ¥ is given by

55 (%) = {a1,92,- -, qma} (6.3.35)
ie., foreachi = 1,2,...,mq, X has an infinite zero of order q;, respectively.

Our structural decomposition can also exhibit the invertibility structure of a
given descriptor system . Basically, for the usual case when matrices (B’ D’]
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and [C D) are of maximal rank, the system ¥ or equivalently H(s) is said to be
left invertible if there exists a rational matrix function L(s) such that

L(s)H(s) = I,. (6.3.36)

The system X is right invertible if there exists a rational matrix function R(s) such
that
H(s)R(s) = I,. (6.3.37)

Moreover, ¥. is said to be invertible if it is both left and right invertible, and X
is noninvertible, or degenerate, if it is neither left nor right invertible. Again, the
detailed invertibility structures of ¥ are related to the corresponding left and right
minimal indices associated with the blocks of (6.1.5) in the Kronecker canonical
form of Ps(s). In fact, the right and left minimal indices are respectively equiv-
alent to the observability indices of (Apyb, Cp) and the controllability indices of
(Ace, Be), which are respectively related to lists I3 and Iz of Morse [100].

Property 6.3.4 (Invertibility Structure). X is right invertible if and only if z
and hence yy, are nonexistent, left invertible if and only if x. and hence u, is
nonexistent, and invertible if and only if both xv, and . are nonexistent.

6.4 Proofs of Theorem 6.3.1 and Its Properties

We now present complete proofs for the main results of the previous section, i.e.,
Theorem 6.3.1 and all its structural properties.

Proof of Theorem 6.3.1. The following is a step-by-step algorithm for the struc-
tural decomposition of general multivariable descriptor systems.

STEP MIMO-SDDS. 1. Preliminary Decomposition.

This step is to separate the given descriptor system into a proper subsystem
and a descriptor subsystem with a special structure. This step is identical
to STEP SISO-SDDS.1 in Section 6.2. It is to find two nonsingular matrices
P € R™™ and Q € R™™" such that

L, 0 4 0] (6.4.1)

PEQz[O N], PAQ:[O L,

and
PB = [g;] , CQ=[C1 C], (6.4.2)
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where A;, By, B;, Cy and C, are matrices of appropriate dimensions, and
N is a nilpotent matrix with an appropriate nilpotent index, say h, i.e.,
NP1 £ 0 and N* = 0. Equivalently, & can be decomposed into the
following two subsystems:

T = A1 21 + B1 u,
IR (6.43)
n = Ciz1+ D u,
and
N zo = T2 + By u,
Yo : 6.4.4)
y2 = Co 2,

where £, € R™ and 2 € R™ withn; + n2 = n,andy = y; + y2.

STEP MIMO-SDDS.2. Decomposition of z, and ..

The key idea is to separate the controllable and uncontrollable parts of the
pair (N, By) in X5. It follows from Theorems 4.4.1 and 4.4.2 of Chapter 4
that there exist nonsingular coordinate transformations

Ty = Tsis, u="Tia, (6.4.5)
such that
Tvi 1,{‘1
Tyv2 U2
Ty = <ﬁv> )y Tv = : , T, €ER™, 4= ,  (64.6)
Tyn. u]“
Ux
where
Tvi,l
) Tvi,2
Tyi € Rp., Tyi = . y 1=1,2, y Ne,y
zVivpi
Ja 0 0 DNy
0 J 0 N
F=1NT, = | & Nov| = N : -
— Is s = 0 an - . : ‘. . : ’
0 0 - Jyn. N
0 0 --- 0 JIn,
By, By -+ Bin, B
B 0 By -+ By, B
B2:1’;1321‘1=[0" =1 Cb
0 0 -+ Bpon. B

0 o - 0 0
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and where (Jy, By) is controllable. Moreover, the fact that N is nilpotent
implies that Jy; and J,,, have all their eigenvalues at 0, and Jy;, N;z, Biz
and B;; have the following forms,

o1 ---0 Niz,1 0
Ju= |1 , Na=| 1 |, Ba=|], 647
00 - 1 Dinopet 0
00 0 0 e 1
biz,l biJ',l
Bu=| ° |, By=| * |. (6.4.8)
biz,pi—l bij,p.'—l
0 0

As such, by the transformation of (6.4.5), ¥ 2 is decomposed into the sub-
systems

Jn,da = Ty, (6.4.9)
andfori=1,2,...,n,,
Ne
Jidvi + Nighy = 2vi + Bl + Y Bijij + By,  (64.10)
j=i+l
which is equivalent to
. o
Juidvi = @ui+ Buti + Y Bijily + Bigthe — (Nig).  (64.11)
j=i+1
Because of the special structure of Jy;, we have, fori =1, 2,...,n,,
Ne N\
Bviz = Tyvin + D bijally + big1lle — Nz s,
j=i+l
Tle
Tyi3 = Tvig + Z bij2tl; + biz 2Us — iz, 284,

j=it+1 > (6.4.12)

Te
Bvi,pi = Tvi,pi—1+ § ' bijpi—10h5+ Dig pi 1 T —Thiz p;—1 52,
j=it+1 J

’ai = "zvi,p.‘ + niz,Pi iz. (6.4.13)
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Repeatedly differentiating % ; of (6.4.13), we obtain

Pi—2 ne i
a7 - Z nz bu,k+1u Z biz, k410 ® +Z7h kz(k)

Tyvil =—U;
k=0 j=i+1
(6.4.149)

Let us define a new input variable

pi
—Zyi) + Z mz,kzﬁ") = ¥;(s)a, (6.4.15)
k=1

il,':

for an appropriate vector v;(s) whose elements are polynomials of s. Then

we can rewrite (6.4.12) as follows:

Ne Me
Gviz == ), bijalvip ¥ D il + b
j=itl & p;>1 j=itl & pj=1
(k) ;
- uz + 7hz kT, + z] 17Mjz,p; Lz,
j=i+1 & p; >1
Ne
Gvizg =Tz = D, bija%uip + Z bij2;
j=i+1 & p;>1 j=it+1 & pj=1
e
+ biz, 2T — Miz, 2%, + Z bij 2Nj2,p; T2, (
j=i+1l & p; >1
’ Ne Ne
Tvi,p; = Tvipi—1 — Z bij,pa—IEVj,pj + z bij,pi—11;
j=i+1 & p; >1 j=i+1 & pj=1
+ biz,pi—1Gx — Nig,p; 1% + Z bij.pi~17jz,p; -
j=i+l & pi>1 J
(6.4.16)
Next, define
n
k
—Zyv1,1 + Enlz,kwg ) \
; k=1
U1 P2
. k)
Uz —Tyo,1 + Zn%,kwg
Ue = . = =1 , 6.4.17)
Up, Pi»e
k
~Zvn.,1 + Znnez,kwg )

k=1
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and
P
k
{ Z’hz,k‘é )
k=1
Ty1,1 P2
Tv2,1 . anz,kzgk) .
Te = . =—Uet | 1o = —te + 8Nea(s) 25,
Tyne,1 Pn :

\ Z nnez,kzgk)
= (6.4.18)

where Ne,(s) is a matrix whose elements are polynomials of s. It is now
straightforward to verify that the transformed system of X, as given in
(6.4.4) can be rearranged into the form

{ M
I, &y = T,
Te = —Ue + SNes(8)x5,

< . . . . . (6.4.19)
Ty = Agio + Bseile + By il + SBzz(S)Zz,

yo = CoZo + Doellie + [sDzZ(s) + C’z]zz,

\
where %, consists of all the state variables of z., that are not contained in z.,
and A,, Bse, Bax, Ca, D, and C, are constant matrices of appropriate di-
mensions, and By, (s) and D, (s) are matrices with their entries being some
polynomials of s. Furthermore, 3 of (6.4.3) can be rewritten as follows:

T = A121 + 1‘112(52 + Ble'ae + Bl*ﬂ* + SBlz(S)Zz,
(6.4.20)

y1 = C1x1 + Cra%2 + Dyetie + Dyvite + sD1,(8)z,,

for some constant matrices A5, Bie, Bi., Ci2, D1e and Dy, of appropri-
ate dimensions, and for some matrices Bi,(s) Dy, (s), whose elements are
some polynomials of s.

STEP MIMO-SDDS.3. Formation of a Proper System and Final Decomposition.

The key idea is to form a proper system from the subsystems (6.4.19) and
(6.4.20), and then apply the result of proper systems to obtain a structural
decomposition for the original system given in (6.1.1). Following (6.4.19)
and (6.4.20), we obtain a proper system

(6.4.21)
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where )
= (""1) , a= (’fe), (6.4.22)
T2 Uk
i Al A:_12 D _ Ble le ', _ 3?1z(3)
A= [ 0 A2 ], B= [B2e 32* y BZ(S)— SBQZ(S) ) (6423)
Dy(s) = C, + sD15(s) + sDau(s), (6.4.24)
and
C=[C Cy+Ci], D=[Die+D2 Di]. (6.4.25)

It then follows from the result of Theorem 5.4.1 that there exist nonsingular
transformations T's € R*™™, where i = n — ne — n,, L'y € RP*? and
T; € R™*™ such that when they are applied to %, i.e.,

_ :a _ [ Y _ [ W
g=Ts| "® |, y=Toj=To| ya |, a=Tsa=Ti | ua |, (6.4.26)

I u
T4 Yo c

where z, € R™, z, € R™, 2, € R™, z4 € R™, yy € R™, u. € R™,
ug ER™, yo €R™, yp, ERPY, yqg €R™4,

Tdi1 Yd1 Ud1
Td2 Yd2 Ud2

Tg = . y Ya = . , Ud = ‘ , (6.4.27)
Tdmg Ydmg Udmg

we have

Za = AaaTs + BoaYo + Laaya + Labyp + SLaz(S)-Tz, (6.4.28)

Ty = AbbTb + Bobyo+Lvayd + 5Lba(5) T, (6.4.29)

Yo = CoTb + CbaTs + $Chas(5) T, (6.4.30)

Ze = AceTctBocyotLeayatLevyo+Be [uc+ Meaza|+5Les(s) 2, (6.4.31)
Yo = Coaa+CobZb+CocTc+Coaza+uo+Co,Z,+5C0(s) 5, (6.4.32)

and

Tai = Aq;Zdi + Lioyo + Liayq + sLi,(s)z,

i=1

mq
+Bqy (Udi +MiaTa+ MipTy+ Miczc + Z M;; .’L‘dj>, (6.4.33)
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Ydi = Cq,' Td4i +C, izlz + SCq;zs (S)fl'z, Yd = Cazq + Cy,, + scdzs(s)l'za
(6.4.34)
with (Aq,, By, Cy:) having the special form as given in (6.3.13).

This completes the proof of Theorem 6.3.1. n

Finally, we note that the results of Corollaries 6.3.1 and 6.3.2 follow from the
above construction procedures and some tedious manipulations.

Proofs of Structural Decomposition Properties. Once the results in the fol-
lowing two lemmas are established, the proofs of the properties of the structural
decomposition of descriptor systems can be carried out in a similar way as those
for proper systems given in Section 5.5 of Chapter 5.

Lemma 6.4.1. Consider a system % characterized by (E, A, B,C, D) or in the
state space form of (6.1.1). Then, for any state feedback gain F € R™*" satisfy-
ing det(sE— A— BF) # 0, the system with the state feedback ¥, characterized
by (E, A+BF, B,C+ DF, D) has the following properties:

1. X is stabilizable if and only if T is stabilizable;

2. the normal rank of ¥ is equal to that of ¥;

3. the invariant zero structure of ¥ is the same as that of X3;

4. the infinite zero structure of X is the same as that of ¥; and

5. X is (left or right or non) invertible if and only if ¥ is (left or right or non)
invertible.

Proof. Item 1 is obvious. Item 2 follows from the reductions

Hy(s):=(C+ DF)(sE—~A—-BF)"'B+D
= (C+ DF)(sE — A)™*[I - BF(sE — A)~']"'B+D
= (C + DF)(sE - A)"'B[I - F(sE - A)'B]™' + D
=[C(sE - A)"'B+ D][I - F(sE - A)"'B]™!
=H(s)[I - F(sE—-A)™'B]™". (6.4.35)

Next, noting that

A+BF —sE B]z[A’—sE BHI 0},

C+DF D ¢ DllF I (6.4.36)
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and the fact that the invariances of Pyx(s) are strictly equivalent under nonsingular
constant transformations of the form in (6.1.2), Items 3, 4 and 5 follow. n

Lemma 6.4.2. Consider a system X characterized by (E, A, B,C, D) or in the
state space form of (6.1.1). Then, for a constant output injection gain K € R™*?
satisfying det(sE— A— K C) % 0, the system with the output injection ¥« charac-
terized by (E, A+ KC,B+ KD, C, D) has the following properties:

1. Xy is stabilizable if and only if ¥ is stabilizable;

2. the normal rank of ¥y is equal to that of &;

3. the invariant zero structure of Xk is the same as that of ¥;

4. the infinite zero structure of ¥y is the same as that of ¥; and

5. X is (left or right or non) invertible if and only if ¥ is (left or right or non)
invertible.

Proof: It is a dual version of Lemma 6.4.1. []

It follows from Corollary 6.3.2 that the properties of the transformed system
Y are equivalent to those of the original system. The proofs of the structural
properties of descriptor systems can be carried out as those for proper systems.
We leave the details for the interested readers.

We illustrate the structural decomposition of general descriptor systems and
its properties in the following example.

Example 6.4.1. We consider a descriptor system of (6.1.1) characterized by

1 0 0 0 0 0 07 1 1 07

0 0 1 0 0 0 O -1 0 1

0 0 -1 1 -2 0 2 -2 1 1
E={0| 0 -1 1 -3 0 3|, A=L, B=|-11 1|,

0] -1 0 0 0 1 0 -1 0 1

0 0 1 0 -1 0 1 -2 1 1

Lo]-1 00 o0 1 0] | -1 0 1]

6.4.37)
and

-2 001 2 -1 -110
’~1 -1 10 1 0]’D'[000]' (64.38)
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STEP MIMO-SDDS. 1. Preliminary Decomposition.

It is simple to note that the given system is already in the forms of (6.4.2)

withny =1,n, =6,

T = i+ [1 1 0] wu,

21: 1 -
R R

and X, being characterized by

0 1 0 0 0 0 -1 0
0 -1 1 -2 0 2 -2 1
. 0 -1 1 -3 0 3/, 3 -1 1
Nizg= 1 00 010 To = To+Bou = 19+ 10
0 1 0 -1 01 -2 1
-1 0 0 010 -1 0
and
-2 0 01 2 -1
p=0Cz:=|_1 ;191 o2

STEP MIMO-SDDS.2. Decomposition of z, and z.

Using the toolkit of [87], we obtain two nonsingular transformations

100000
010001
10 0
011000
Ts_000100’T*‘[i(1)‘1’]’
100011
000101

which transform X5 into the canonical form

T I th
Iy = Ts v Iy = vi u=7T ﬁz
b b 1 b
Iy Tv2 i

= e e e

01 0]/0 0]1 0]o]1
0 0 1|0 01 011
0 0 0/0 01 1/0]0
—1 At -1 " __
TSNTS”000011’TSB2T"001
0 0 0/0 01 ol1(0
0 00 00O 0 00
and

Cszz[O

= N
O e
| S—

o

[ ]
=
o o

u,
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The transformed system of ¥ 5 can then be written as

Ty1,2 = Ty1,1 + Gie — L,

£v1,3 = Ty1,2 + G2 + G — L, (6.4.39)
U = —Zv1,3 + Iy,
-’i:v2,2 =Tv2,1 + i — -'i:m
(6.4.40)
fls = —Zya2 + Tz,
and
0- :i:z =TIy = Iz = 0, (6441)
as well as
Y2 = 0 Ty1,3 + 2 ZTy2,2 + L ;. (6.4.42)
18 1 : 0
Hence,wehaven, =1,n. =2,p1 =3,p2 =2,
Tvig = —’;j'l - ﬁZ - (’12* +'a*) + (IL'Z + i’z + 1:53)) y
and )
Tygy = —Ug — Uy + (T, + &;).
Next, define
Lo _ Uy _ 1.';1+l:7,2+ﬁ*+ﬁ* s s s+1 Zl
e =\ g, | = fip + Tlo s 1 “2 )
Un
and
po= [T — _g + :i:z+5i'z+a:£3) = g + 8Nug ()
€7 \ zv2 € &y + iy e ez\®)%z
where

s+1
Then, (6.4.39) and (6.4.40) can be rewritten as

Nea(s) = [32”“] .

Ty, = —Uy + Us + (féz + zgs)) ,
jf'vl,3 =Tvi,2 — Tv2,2 + ﬁ*,
Tya,o = =l + Ux + &,

or in the matrix form

_ Ey1,2 00 0 10 1 s*+s
o= &v13 |=]1 0 =1|&2—]0 O] tGe+ |1]|duts 0 Tz.
Ty2,2 00 O 01 1 s

(6.4.43)
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Also, (6.4.42) can be rewritten as

-~ Joo 2]. 1
Y2 = {0 1 1]x2+ [0} Tz (6.4.44)
Further, we have
3 [0 10
BiT;=[2 1 0], DT= [0 0 0]. (6.4.45)
In view of (6.4.39), (6.4.40) and (6.4.45), we can rewrite X ; as
Ti=z1+[0 -2 -1]#2 + 3sz,, (6.4.46)
Y= E]m1+ [g 8 (1)] iz+s[(1)] Tz. (6.4.47)

STEP MIMO-SDDS.3. Formation of a Proper System and Final Decomposition.
Combining (6.4.43), (6.4.44), (6.4.46) and (6.4.47), We obtain an auxiliary

proper system B ~ _
{é‘:=A5:+Bﬁ+Bz(s)zz,
y=C %+ D+ Dy(s) x,
with
g= (2 g= U
T \E ) T\ )

10 -2 -1 0 00 3
z_|00 o0 o =_|-1 01 5oy | sP+s
A=1g1 o 1| B=| o o 1| B=s| 7|,

00 0 0 0 -1 1 s
and

~_[1 001 ~ o0 o0 Ao [s+1
C"[1 0 1 1}’ D—[o 0 0}’ Dz(s)‘[ 0 ]
Again, using the toolkit of [87], we obtain
i "(1) R 0o 017
s = 0 1] I; = 2 -1 0, Io=1I,
1 -1 10
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2 0 -1 2 0 00
- 4 = 1 -1 2 -1 =_1 57 0 01
TJMAL=| 5, o 1 o> L'BLi=|] ¢ o>
3 1 -1 -1 010
-3
2
. s2+s
I,"B,(s)=s 543 |
s+3

and

Finally, the structural decomposition of the given descriptor system is given
by

0-z, =z,

S B O R L R 1 D st+st+1| o (v
Te="lo|% T |2 ~1|™ s+l | T2 UT gy, )
Ty = 2%y +[—1 2]yq — 3525,

fe=—Tc+Ta+[2 —1]yg + uc + s(s?+8)z;,
da) _ [ -2 0 1 -2 s+3
(22) =[] [2]oer [0 BJmarsars] 2]
and
_Jya ) _ [ za1 s+1
= (i) = (2) +[75] =

It is simple to see now from the above decomposition that the given system
is right invertible with one invariant zero at s = 2 and two infinite zeros
of order 1. The given system has one state variable, which is identically
zero, and two state variables, which are nothing but the linear combination
of the system inputs and their derivatives. These state variables are actually
redundant in the system dynamics. For completeness, we give below all the
necessary transformation matrices:

r 0 0 0 0 -1 0 1 7
0 -1 -3 -s?2 -5 0 s— 82
0 s 0 0 -s-—1 -8 s
Fe(s)=| -1 -1 -2 2 -1 1 1 ,
0 -1 s2—s-1 - -5 1 s —s?
1 1+s 2 -2 l-5 ~-1—-s s-1
. 1 2+s 3 -2 l1-8 =-2-s s-1 |
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=3

w

I
——~ o O+~ OO

o OO0 OO~
OO O M- OO
OHQ[‘Q!—‘OO
oo oOoNKHFH OO

and
s -3 0
I‘i'l(s)z{ s—1 -5 1 :{, I‘o:[(l) (1)]
-s*+2s+1 -5 —s-1

We note that the s-dependent input transformation I'; (s) simply implies that

Ue 00O 1 -1 0 00 o0
uq1 | = 0 0 O+ |1 -1 Oja+]|-1 0 1|u
Ud2 -1 0 0 2 -1 -1 1 0 -1

The compact form of the structural decomposition of ¥ (see Corollary 6.3.1)

is given by
0|0 0]0 0 0 0]
00 0|0 0 0 O
0/0 0[O0 0 0 0O
E;=|0[0 0|1 00 0|,
0/lo olo 1 0 o
00 0[O0 0 1 0
[ 00 00 0 0 1 |
[1]0 0] 0 0 o0 0]
0|1 0[] 0 0 0 o
0/0 1] 0 0o 0 0
As=]10]0 0ol 2 0 -1 2|,
0j{o0 0] 1 -1 2 -1
0lo 0|-2 0 1 -2
[ 0]0 0]-3 1 -1 -1 |
[0 0 0]
0 0 1
2 -1 0
Bi=|0 0 o0/,
0 0 1
1 00
[0 1 0]
10 0l0o 0 1 0 0 0 0
Csz[oio 0‘0001]’135‘[000]’
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and
[0 0 0/0 00 0]
s+s+1|0 0{0 0 0 O
s+1 |0 0{0 0 0 O
E,(s) = =3 0 0]0 0 0 0|
s2+s |0 0[O0 0 O O
s+3 [0 0{0 0 0 0
Ll s+3 |0 0/0 0 0 0
ro 00 0 0 O 0 1
000 0 -1 s+1 -s—1
000 -1 0 -1 0
¥s)=[0 00 0 0 0O 0 ,
000 0 -1 s+1 -s—1
000 -1 0 -1 0
L0 0 0 -1 0 -1 0
foo0oo01010

| -1/s 0 0
¥e=10 0000 0 0}"1"’(8)”[ 0 0 0]'

It is straightforward to verify that
U E + Uy(s)d = [8} z,
and

H(s)=CGE-A)'B+D=T, [Cs(sEs —A)7'Bs + Ds] Il(s).

6.5 Discrete-time Descriptor Systems

In this section, we present the structural decomposition of general discrete-time
descriptor systems and their structural properties, which is analogous to that for
continuous-time systems. We consider a discrete-time descriptor system ¥ char-
acterized by

_ {E z(k+1) = A z(k) + B u(k), ©65.1)

y(k) =C z(k) + D u(k),
where € R", u € R™ and y € R? are respectively the state, input and output of the
system, and E, A, B, C and D are constant matrices of appropriate dimensions.
Also, we assume that ¥ is regular, i.e., det(zE — A) # 0, for z € C. We have the
following theorem.

Theorem 6.5.1. Consider the discrete-time descriptor system ¥ of (6.5.1) satis-
fyingdet (zE — A) # 0 for z € C. Then, there exist nonsingular state and output
transformationsT's € R™™"™ and T, € RP*P, as well as an m xm nonsingular input
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transformation T';(z), whose inverse has all its elements being some polynomials
of z (i.e., its inverse contains various forward shifting operators), and ann X n
nonsingular transformation T'e(z) € R™™", whose elements are polynomials of
z, which together give a structural decomposition of ¥ and display explicitly its
structural properties.

The structural decomposition of & can be described by the set of equations

z=Ts% y=0Lg, u=TIi(2)4, 6.5.2)
and
Tz
;:e Yo Uo
= w: , 5=l w |, =] u |, (6.5.3)
e Y4 Uud
Zd
Tdi Yd1 Ud1
Zd2 Yd2 Ud2
md = ; ) yd = : ) u’d - : ) (6'5'4)
Tdmg Ydmy Udmg
and
z,(k) =0, (6.5.5)
ze(k) = BeOUO(k) + Becuc(k) + Bedud(k), (6.5.6)
Ta(k+1) = Aaaza(k) + Boayo(k) + Laaya(k) + Labyn(k), 6.5.7)

zp(k+1) = Apbzb (k) + Bovyo(k) + Luaya(k), yu(k) = Cozu(k), (6.5.8)
Te(k+1) = Accze(k) + Bocyo(k) + Leaya(k) + Lenyn (k)
+ BcMcaza(k) + Beuc(k), (6.5.9)

yo(k) = Coaib‘a(k) + CobZh (k) + Coc.’l:c(k) + Codivd(k) + UQ(k), (6.5.10)

and foreachi =1,2,...,mq,

mq
Zai(k+1) = By, | uai(k) + Miaga (K) + Minzy (k) + Miczc (k) + Y Mijza; (k)

=1

+ Agzai(k) + Lioyo(k) + Liaya(k), (6.5.11)

vai(k) = Cyzi(k), ya = Caza(k), (6.5.12)
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for some constant submatrices of appropriate dimensions. Here the states T ,, Te,
Ty, Tv, Tc and T4 are of dimensions n,, Ne, Na, Mb, Ne and ng = Y i G,
respectively, while z4; is of dimension q; for eachi = 1, 2, ..., mq4. The control
vectors ug, uq and u. are of dimensions mg, mq and m¢ = m — mg — Mg,
respectively, while the output vectors yo, yq4 and yy, are respectively of dimensions
mg, mq and pp, = p—mo—mq. (Aypy, Cy) is observable, (Acc, Be) is controllable,
and (Ag;, By, , Cy,) has the form

0 I, - 0
Aq,.=[0 401], Bq,,=[1], Cp=[1 0 --- 0]. (6513
Assuming that z;,1 = 1,2, ... ,my, are arranged such that q; < ¢;y1, the matrix
L;q will be in the particular form
Lig=[Lia Li -+ Ly 0 -+ 0], (6.5.14)

with its last row of L;q being all zeros.

Lastly, we note that the properties of the structural decomposition of discrete-
time descriptor systems are analogous to those of continuous-time systems in Sec-
tion 6.3. We conclude this chapter by noting that research in the system theory and
control of descriptor systems is far from being completed. More studies are nec-
essary before we can fully understand the complete picture of descriptor systems
and control. Again, it is our belief that the results presented in this chapter can
serve as an important tool for future research in the area.

6.6 Exercises
6.1. It is well known that the commonly used PID control law,
t
u(t) = Kpe(t) + Ki/ e(r)dr + Kqé(t),
0

cannot be expressed in a strictly proper or proper state-space form. But, it
can be represented by a descriptor system. Show that the following de-
scriptor system is a realization of the above PID control law:

100 010 0
00 0[l&={0 1 0|lz+|-1]e),
010 001 0

and
u(t) =[Ki Kp Kalz,
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6.2.

6.3.

6.4.

6.5.

6.6.

where the state variable is given by

T1 t
z=|z2 |, m =/ e(t)dr, =2 = e(t), z3s = &(t).
T3 0

Verify that the following descriptor system is another realization of the PID
control law given in Exercise 6.1:

100 0 00 1
0 0 0jlz=1]0 1 0]z+|-1]e(t),
010 0 01 0

and
u(t)=[Ki Kp, Kgqlz.

Show that the descriptor systems given in Exercise 6.1 and Exercise 6.2
have the same structural invariant indices as a proper system characterized
by

. 01 0 0
Taux = 0 0 Taux + 10 Uaux,
and

_fo -], o 1
Yaux = K; Kp aux Ky 0 Uaux-

Verify that the descriptor systems given in Exercise 6.1 is regular. Find the
required nonsingular transformations P and () for the systems such that
the matrix pair,

100] 010
(B, A={l0o0 of,|0o 1 0[],
010| |00 1

can be transformed into the EA decomposition form.

Construct a structural decomposition for the descriptor system given in
Exercise 6.1. Verify the result of Corollaries 6.3.1 and 6.3.2. Does the
result of Corollary 6.3.2 agree with the transfer function of the PID control
law given in Exercise 6.1?

Derive an alternative procedure that realizes the EA decomposition of a
pair of square matrices, (E, A), using the Kronecker canonical form of the
matrix pencil, sE — A.
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6.7.

6.8.

Compute a structural decomposition for the descriptor system
Et = Az + Bu, y=Cz+ Du,

where

O = O -
O - O O
O OO -
O = O -
-0 O O
—_ O = O
—_O = O
Pt
— O =

and
111 1 00
C_[l 01 —1]’ D_[O 0]'
Verify Properties 6.3.1 to 6.3.4 using the structural decomposition obtained
above.

Construct a sixth order descriptor system with two inputs and two outputs,
which has n, = ne = ny = np, = n¢ = ng = 1 with an invariant zero at
—1. Obviously, the obtained system is neither left nor right invertible, and
has an infinite zero of order 1. Moreover, it has one state variable being
identically zero and another state variable being directly associated with an
input variable.



Chapter 7

Structural Mappings of
Bilinear Transformations

7.1 Introduction

In this chapter, we present a comprehensive picture of the mapping of struc-
tural properties associated with general linear multivariable systems under bilin-
ear and inverse bilinear transformations. We will investigate in depth how the
finite and infinite zero structures, as well as the invertibility structures of a gen-
eral continuous-time (discrete-time) linear time-invariant multivariable system are
mapped to those of its discrete-time (continuous-time) counterpart under the bi-
linear (inverse bilinear) transformation. We note that a similar version of this
chapter was included earlier in a monograph by the first author i.e., [22], in which
he had utilized the results of the bilinear transformations and their structural map-
ping properties to solve general Riccati equations and discrete-time H o, control
problems. Nonetheless, this chapter actually builds a bridge for linear system the-
ory between the continuous-time domain and the discrete-time domain. As will
be seen shortly in Chapter 8, the results of this chapter will be useful in solv-
ing another problem in linear systems, i.e., system factorizations for discrete-time
systems.

The bilinear and inverse bilinear transformations have widespread use in dig-
ital control and signal processing. It has been shown in [22] that the bilinear
transformation plays a crucial role in the computation of infima for discrete-time
H, control, as well as in finding the solutions to discrete-time Riccati equations.
The results presented in this chapter were first reported in Chen and Weller [30].

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004
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In fact, the need to perform continuous-time to discrete-time model conversions
arises in a range of engineering contexts, including sampled-data control system
design, and digital signal processing. Consequently, numerous discretization pro-
cedures exist, including the zero- and first-order hold input approximations, the
impulse invariant transformation, and the bilinear transformation (see, e.g., [7]
and [55]). Despite the widespread use of the bilinear transform, a comprehen-
sive treatment detailing how key structural properties of continuous-time systems,
such as the finite and infinite zero structures, and invertibility properties, are in-
herited by their discrete-time counterparts is lacking in the literature. Given the
important role played by the infinite and finite zero structures in control system
design, a clear understanding of the zero structures under bilinear transformation
would be useful in the design of sampled-data control systems, and would com-
plement existing results on the mapping of finite and infinite zero structures under
zero-order hold sampling (see, e.g., [6] and [60]).

In this chapter, we present a comprehensive study of how the structures, i.e.,
the finite and infinite zero structures, invertibility structures, as well as the geomet-
ric subspaces of a general continuous-time (discrete-time) linear time-invariant
system are mapped to those of its discrete-time (continuous-time) counterpart un-
der the well-known bilinear (inverse bilinear) transformation

z—1 a+s
= = ) 7.1.1
s a(z+1> &z a—s ( )

7.2 Mapping of Continuous- to Discrete-time Systems

In this section, we consider a continuous-time linear time-invariant system X
characterized by

Zc:{””:AI’LBu’ (7.2.1)

y=Cz+ Du,
where z € R", y € R, u € R™ and A, B, C and D are matrices of appropriate
dimensions. Without loss of generality, we assume that both matrices [C' D] and
[B' D']are of full rank. X has a transfer function

Ge(s)=C(sI - A)~'B+D. (7.2.2)

Let us apply a bilinear transformation to the above continuous-time system, by
replacing s in (7.2.2) with

2 (z-1 z—1
S—T<z+1)_a(z+1)’ (723)
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where T = 2/a is the sampling period. As presented in (7.2.3), the bilinear
transformation is often called Tustin’s approximation [7], while the choice

w1

= —_— 24
¢ tan(w1T'/2) (724

yields the pre-warped Tustin approximation, in which the frequency responses
of the continuous-time system and its discrete-time counterpart are matched at
frequency w; . In this way, we obtain a discrete-time system

z-1
Ga(2) —C(az+1

-1
I- A) B+D. (7.2.5)

The following lemma provides a direct state-space realization of G 4(2). A
similar result can also be found in [55].

Lemma 7.2.1. A state-space realization of G4(z), the discrete-time counterpart
of the continuous-time system Y. of (7.2.1) under the bilinear transformation
(7.2.3), is given by

z(k+1) = A z(k) + B u(k),
Fa { y(k) = C (k) + D uk), (7:26)
where _
A = (al + A)(al — A)71, )
B = V2a (aI - A)7'B,
& = \/2_a,E}'(a,I-)fl)‘1, b (7.2.7)
D = D+C(al ~ A)™'B, )
or -
A = (al + A)(al — A)7Y, )
B = 2a (al - A)7?B,
G-c ’ (7.2.8)
D = D+C(al - A)'B, )
or N
A = (aIl + A)(al - A)71, )
B = B,
C = 2aC(al — A)7?, ( (7.29)
D = D+C(al — A)'B. )

Here we clearly assume that matrix A has no eigenvalue at a.
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Proof. First, it is straightforward to verify that

-1
Gdz):C’(aiIiI——A) B+D
=(+1)Cla(z-1)I - (z+1)A] 'B+D
=(z+1)C(al — A) ™ [2I - (aI + A)(aI - A)']'B+D

-1 -1
——-zC(aI—A)'l(zI—A) B+[C(aI—A)‘1(zI-—A) B+D]. (7.2.10)
- -1
If we introduce G4(z) = 2C(al — A)™1 (zI - A) B, it follows that

{ B(k+1) = A&(k) + (al - A)1C"a(k), (72.11)

g(k) = B'é(k+1) = B’Alrz':(k) + B'(al — A')"1C"i(k),
is a state-space realization of C:’:,(z), from which
- PRt
Ga(z) = C(al — A)™! (zI - A) AB+Clal- A'B. (7212
Substituting (7.2.12) into (7.2.10), we obtain
N
Ga(2) = C(al = A)™* (sI = &) (A+1)B+[Clal - 4)"' B+ D]
- N R
= C (ZI - A) B + Da
and the rest of Lemma 7.2.1 follows. [

The following theorem establishes the interconnection of the structural proper-
ties of ¥ and Y4, and forms the core of this chapter. The proof of this theorem is
very tedious, and hence will be given in Section 7.4 for clarity in the presentation.

Theorem 7.2.1. Consider the continuous-time system X. . of (7.2.1) characterized
by the quadruple (A, B,C, D) with matrix A having no eigenvalue at a, and
its discrete-time counterpart under the bilinear transformation (7.2.3), i.e., ¥ 4
of (7.2.6) characterized by the quadruple (A, B,C, D) of (7.2.7). We have the
following properties:

1. Controllability (stabilizability) and observability (detectability) of . 4:

(a) The pair (A, B) is controllable (stabilizable) if and only if the pair
(A, B) is controllable (stabilizable).
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(b) The pair (A, C) is observable (detectable) if and only if the pair (A, C)
is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together with
state feedback and output injection laws:

(a) For any given nonsingular state, output and input transformations T's,
T, and T;, the quadruple

(T'AT,, T7'BT, T ACTy, T, 1 DT), (7.2.13)

is the discrete-time counterpart under the bilinear transformation of
the continuous-time system

(T, ATy, T, BT, T, CTL, T, DTL). (7.2.14)

(b) Forany F € R™*" with A + BF having no eigenvalue at a, define a
nonsingular matrix

Ty:=1+F(al—A-BF)™'B
= [[ - F(al - A)7'B]™' € R™*™, (7:2.15)
and a constant matrix
F:=V2a F(al - A— BF)™' ¢ R™", (7.2.16)
Then a continuous-time system ¥ .. characterized by
(A+ BF,B,C + DF, D), (7.2.17)
is mapped to a discrete-time system X 4z, characterized by
(A+ BF,BT;,C + DF, DTy), (7.2.18)
under the bilinear transformation (7.2.3). Here we note that ¥ . is
the closed-loop system comprising Y. and a state feedback law with
gain matrix F, and X 4r is the closed-loop system comprising ¥4 and

a state feedback law with gain matrix F', together with a nonsingular
input transformation T;.

(c) Forany K € R™*? with A + KC having no eigenvalue at a, define a
nonsingular matrix

To:=[[+C(al — A— KC)'K]™! € RP*P, (7.2.19)
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and a constant matrix
K :=V2a(al - A— KC)"'K. (7.2.20)
Then a continuous-time system ¥ ., characterized by
(A+KC,B+ KD,C,D), (7.2.21)
is mapped to a discrete-time system X 4, characterized by
(A+KC,B+KD,T.'¢,T,' D), (1.2.22)
under the bilinear transformation (7.2.3). We note that X . is the
closed-loop system comprising ¥ and an output injection law with
gain matrix K, and I 4 is the closed-loop system comprising ¥4 and

an output injection law with gain matrix K, together with a nonsingu-
lar output transformation T.

3. Invertibility and structural invariant indices lists I, and I3 of X4:

(a) Iz(Ed) = IQ(EC), and I3(2d) = I3(Ec).
(b) X4 is left (right) invertible if and only if L. is left (right) invertible.
(c) ¥4 is (non) invertible if and only if ¥ is (non) invertible.

4. The invariant zeros of ¥4 and their associated structures consist of the fol-

lowing two parts:

(a) Let the infinite zero structure (of order greater than 0) of ¥ . be given

by
55(Zc) = {a1,92,- .- ,gma}- (7.2.23)
Then z = —1 is an invariant zero of ¥4 with the multiplicity structure
S*1(Za) = {1,892, qma}- (7.2.24)

(b) Lets = a # a be an invariant zero of X, with the multiplicity struc-
ture
Sx(Ze) = {na,1,Ma,2s - - Bayra - (7.2.25)

Then z = = (a+a)/(a—a) is an invariant zero of its discrete-time
counterpart .4 with the multiplicity structure

SE(Ed) = {Tla,l, Na,2y -« - ,na,-ra}. (7226)
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5. The infinite zero structure of ¥4 consists of the following two parts:

(a) Letmo = rank (D), and let mq be the total number of infinite zeros
of X of order greater than 0. Also, let T, be the geometric multiplicity
of the invariant zero of £ at s = a. Then, we have rank (D) =
mo + Myq — T,.

(b) Lets = a be an invariant zero of the given continuous-time system X .
with a multiplicity structure

SX(Ee) = {na,1,Ma,2s- -y Mayr }- (7.2.27)
Then the discrete-time counterpart %4 has an infinite zero (of order
greater than 0) structure

S;O(Ed) = {na,l, Ng,2y- .- ,na,ru}. (7.2.28)

6. The mappings of geometric subspaces:

(a) V"'(Zc) =857(Zq).
(b) S+(zc) = V_(Ed)-

Proof. See Section 7.4. ]

We have the following two interesting corollaries. The first is with regard to
the minimum phase and nonminimum phase properties of £ 4, while the second
concerns the asymptotic behavior of X 4 as the sampling period T tends to zero
(or, equivalently, as a — 0).

Corollary 7.2.1. Consider a continuous-time system ¥ . and its discrete-time coun-
terpart ¥4 under the bilinear transformation (7.2.3). Then it follows from 4(a) and
4(b) of Theorem 7.2.1 that

1. Xq has all its invariant zeros inside the unit circle if and only if X has all its
invariant zeros in the open left-half plane and has no infinite zero of order
greater than 0;

2. ¥4 has invariant zeros on the unit circle if and only if X, has invariant

zeros on the imaginary axis, and/or X ¢ has at least one infinite zero of order
greater than 0; and
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3. $4 has invariant zeros outside the unit circle if and only if ¥ . has invariant
zeros in the open right-half plane.

Corollary 7.2.2. Consider a continuous-time system X. . and its discrete-time coun-
terpart ¥4 under the bilinear transformation (7.2.3). Then, as a consequence of
Theorem 7.2.1, £4 has the following asymptotic properties as the sampling pe-
riod T tends to zero (but not equal to zero):

1. X4 has no infinite zero of order greater than 0, i.e., no delays from the input
to the output;

2. X4 has one invariant zero at z = —1 with an appropriate multiplicity struc-
ture if ¥ has any infinite zero of order greater than 0; and

3. The remaining invariant zeros of X g, if any, tend to the point z = 1. More
interestingly, the invariant zeros of ¥.4 corresponding to the stable invariant
zeros of X are always stable, and approach the point z = 1 from inside
the unit circle. Conversely, the invariant zeros of ¥.4 corresponding to the
unstable invariant zeros of ¥.. are always unstable, and approach the point
z = 1 from outside the unit circle. Finally, those associated with the imag-
inary axis invariant zeros of ¥ are always mapped onto the unit circle and
move toward the point z = 1.

The following example illustrates the results in Theorem 7.2.1.

Example 7.2.1. Consider a continuous-time system X characterized by a quadru-
ple (4,B,C,D) with

110010 0|0
0110[10 0/0
0010[10 0|0

A=|0 00 3l1 0| B= 1o (7.2.29)
000O0[0T1 0]0
|1 11 1|1 1| [ 0]1

o 0 1|0 0] [ 1

00 0
C= 00 0 0[1 0] D__—{r 0]. (7.2.30)

We note that the above system £, is already in the form of the special coordi-
nate basis as in Theorem 5.4.1. Furthermore, X is controllable, observable and
invertible with one infinite zero of order 0, and one infinite zero of order 2, i.e.,
S* (Xc) = {2}. The system X also has two invariant zeros at s = 2 and s = 1,
respectively, with structures S3(X.) = {1} and S} (%) = {3}.
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1. If a = 1, we obtain a discrete-time system ¥4 characterized by the quadru-

ple (4,B,C,D), with

1 2 -3 1 0 =21 1 -2
-2 -1 2 0 0 0 \/_oo
. 0 -2 1 0 0 0 . 21 0 o
A‘001—200’B‘T—10’
0 0 -2 0 -1 0 0 0
0 0 -2 0 -2 -1l 0 0
= V2[00 1 -1 0 0] . 11 0
“=Zloo -2 00 0] D‘i[o 0}'

Utilizing the toolkit of [87], we find that X4 is indeed controllable, observ-
able and invertible, with one infinite zero of order 0 and one infinite zero of
order 3, i.e., % (£4) = {3}. X4 also has two invariant zeros at z = —3 and
z = —1 respectively, with structures S*5(24q) = {1} and 5*(Zq4) = {2}.

. If a = 2, we obtain another discrete-time system Y.4, characterized by

0 -2 -5 3 -3 -3 3 -3
-2 -1 =2 2 -2 -2 2 -2
;-1 -2 0 1 -1 -1| s_11 1 -1
A=11 2 3 -6 1 1| BF3]-s a1
-1 -2 -3 1 -2 -1 1 -1
-2 -4 -6 2 -6 -3 2 -2
and
~_ 11 2 3 -5 1 1] _1[-1 1
0‘5[—1 -2 -3 1 -1 —1]’ D‘Z[ 1 —1]’

which is controllable, observable and invertible with one infinite zero of
order 0 and one infinite zero of order 1, i.e.,, S* (£4) = {1}. It also has
two invariant zeros at z = 3 and z = -1 respectively, with structures
S¥(Xq) = {3} and S*,(Z4) = {2}, in accordance with Theorem 7.2.1.

7.3 Mapping of Discrete- to Continuous-time Systems

We present in this section a similar result as in the previous section, but for the in-
verse bilinear transformation mapping a discrete-time system to a continuous-time
system. We begin with a discrete-time linear time-invariant system 4 character-

ized by

|

z(k+1) = A z(k) + B u(k),
y(k) =C z(k) + D u(k),

(73.1)
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where z € R”, y € RP,u € R™ and 4, B, € and D are matrices of appropriate
dimensions. Without loss of generality, we assume that both matrices [ ¢ D] and
[B' D'] are of full rank. £ has a transfer function

Hy(2) =C(zI - A™'B + D. (7.3.2)

The inverse bilinear transformation of (7.3.2) can be obtained by replacing 2z with

,=2ts (1.33)
a—s
ie.,
~fa+s. <\ . -
Hc(s)=0<a_sI—A) B+D. (13.9)

The following lemma is analogous to Lemma 7.2.1, and provides a state-space
realization of H(s).

Lemma 7.3.1. A state-space realization of H(s), the continuous-time counter-
part of the discrete-time system %4 of (7.3.1) under the inverse bilinear transfor-
mation (7.3.3), is given by

S t=Az+ Bu
Ze ’ 7.3.5
) {y =Cz+ Du, ( )
where 3 )
A=aA+ D)"Y A-T), \
B = V2 (A+I)'B,
C = V2aCA+1)7, ( (7:3.6)
D:_D—C'(A+I)—IB’ )
or . _
A=aA+D)YA-1T), 3
— A -2
i U8, ’ (7.3.7)
C =20,
D = D_C'(A"'I)_IB’ J
or . 3
A =aA+D)7HA-T), w
B =8
G 3.8
C =2CA+D)2, ( (7.3.8)
D=D-CA+DB. )

Here we clearly assume that the matrix A has no eigenvalues at —1.

The following theorem is analogous to Theorem 7.2.1.
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Theorem 7.3.1. Consider the discrete-time system Y4 of (7.3.1) characterized by
the quadruple (A, B, C, D) with matrix A having no eigenvalues at —1, and its
continuous-time counterpart under the inverse bilinear transformation (7.3.3), i.e.,
¥ of (7.3.5) characterized by the quadruple (A4, B,C, D) of (7.3.6). We have the
following properties:

1. Controllability (stabilizability) and observability (detectability) of .:

(a) The pair (A, B) is controllable (stabilizable) if and only if the pair
(A, B) is controllable (stabilizable).

(b) The pair (A, C) is observable (detectable) if and only if the pair ( A, C)
is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together with
state feedback and output injection laws:

(a) For any given nonsingular state, output and input transformations T,
T, and Ti, the quadruple

(T, ' ATy, T, BT, T, ' CT,, T L DTG, (7.3.9)

is the continuous-time counterpart of the inverse bilinear transforma-
tion, i.e., (7.3.3), of the discrete-time system

(T AT, T, BT, T, CT,, T L DTY). (7.3.10)

(b) For any F' € R™*™ with A + BF having no eigenvalue at —1, define
a nonsingular matrix

T.:=I-F(I+A+BF)™1BeR™™, (7.3.11)
and a constant matrix
F:=V2aFI + A+ BF)™' e R™", (1.3.12)
Then a discrete-time system idF, characterized by
(A+ BF B,C + DF, D), (7.3.13)
is mapped to a continuous-time counterpart S, characterized by ‘

(A+ BF,BT;,C + DF, DT}), (1.3.14)
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under the inverse bilinear transformation (7.3.3). Note that Y4r is the
closed-loop system comprising £4 and a state feedback law with gain
matrix F, and Z4z is the closed-loop system comprising ¥4 and a
state feedback law with gain matrix F, together with a nonsingular
input transformation T;.

(c) Forany K € R™*? with A+ KC having no eigenvalues at —1, define
a nonsingular matrix

To:=[I-C(I+A+KC) K| e RP*?, (7.3.15)
and a constant matrix
K: =V (I+A+KC)'K. (7.3.16)
Then a discrete-time system f)dx, characterized by
(A+KC,B+ KD,C,D), (7.3.17)
is mapped to a continuous-time S, characterized by
(A+ KC,B+ KD,T;*C,T; ' D), (7.3.18)

under the inverse bilinear transformation (7.3.3). We note that f]dx
is the closed-loop system comprising 334 and an output injection law
with gain matrix K, and . is the closed-loop system comprising
. and an output injection law with gain matrix K, together with a
nonsingular output transformation T .

3. Invertibility and structural invariant indices lists I, and I3 of 3 :
@) L) = L(Zq), and I3(E.) = I3(5y).
(b) S, is left (right) invertible if and only if £ is left (right) invertible.
©) f]c is (non) invertible if and only if ¥4 is (non) invertible.

4. The invariant zeros of ¥ and their structures consist of the following two
parts:

(a) Let the infinite zero structure (of order greater than 0) of fid be given
by
S5o(Za) = {41,825, gma }- (7.3.19)

Then s = a is an invariant zero of £, with the multiplicity structure

SX(Zc) = {q1, 2, - 1 Gma }- (1.3.20)
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(b) Let z = a # —1 be an invariant zero of Y4 with the multiplicity

structure
S;(Zd) = {na,l; Nea,2y- -+ ,’na,.,-&}. (7.3.21)
Thens = f = ag—;i is an invariant zero of its continuous-time coun-

terpart . with the multiplicity structure
5(Ee) ={na,1, Na2: > Nayra b (7.3.22)

5. The infinite zero structure of ¥ consists of the following two parts:

(a) Let mg = rank (D), and let mq be the total number of infinite ze-
ros of 4 of order greater than 0. Also, let T_; be the geometric
multiplicity of the invariant zero of $4 at z = —1. Then we have
rank (D) = mg + mq — 7-1.

(b) Let z = —1 be an invariant zero of the given discrete-time system $d
with the multiplicity structure

S* 1 (Ea)={n-11,n-12,--,7-17_, }. (7.3.23)
Then . has an infinite zero (of order greater than 0) structure
S*(Ee) ={n-11,m-12,-,n-17_, }- (7.3.24)
6. The mappings of geometric subspaces:

@ V™ (£q) = SH(Z0).
(b) S (Eq) = V+(Zo).

Proof. The proof of this theorem is similar to that of Theorem 7.2.1. [
We illustrate the result above with the following example.

Example 7.3.1. Consider a discrete-time linear time-invariant system ¥4 charac-
terized by a matrix quadruple (A4, B,C, D) with

r-1 0 010 1 07 [0 0 07

0 -1 11011 000

) 0 0 -11011 000
A= 0 0 0101 1|, B=|00 0|, (7325

1 1 11111 001

1 1 11111 100

L o0 1 1111 1. L0 1 Ol
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and
: 0001000 ) 0 00
C=(0 000 O010], D=|0 0 0f. (7.3.26)
0 00O0OO1 0 00

Again the above system is already in the form of the structural decomposition. It
is simple to verify that 34 is controllable, observable and degenerate, i.e., neither
left nor right invertible, with two infinite zeros of order 1, i.e., S% (£q4) = {1,1},
I(£4) = {1} and I3(£4) = {1}. It also has one invariant zero at z = —1 with a
structure of S* , (£4) = {1,2}. Applying the result in Lemma 7.3.1 (with a = 1),
we obtain £ which is characterized by (4, B, C, D) with

-5 0 0 -2 0 -2 27 r 1 -1 07
0 3 4 -2 2 -2 -2 1 1 -1

0 -2 3 0 0 0 O 0 0 O
A=l 0 0 2 -1 0 o0 0|, B=v2| 0 0 o0},
-2 0 -2 2 -1 2 0 -1 0 1
-2 0 -2 2 0 1 0 0 0 0
[ 2 0 -2 0 0 0 1l L 0 0 0.
00 -1 1000 000
c=v2| 10 1 -100 0], D=0 0 0].
—1010000} [000]

Then, it is straightforward to verify, using the software toolkit of [87], for example,
that f]c is controllable, observable and degenerate with an infinite zero structure
of 5% (£e) = {1,2}, Iy (5c) = {1} and I3(Z,) = {1}. Furthermore, £ has one
invariant zero at s = 1 with associated structure S}(5.) = {1, 1}, in accordance
with Theorem 7.3.1.

Finally, we conclude this section by summarizing in a graphical form in Fig-
ures 7.3.1 the structural mappings associated with the bilinear and inverse bilinear
transformations.

7.4 Proof of Theorem 7.2.1

We present in this section the detailed proof of Theorem 7.2.1. For the sake of
simplicity in presentation, and without loss of generality, we assume, throughout
the proof, that the constant a in (7.2.3) is equal to unity, i.e,a = 2/T = 1. We
will prove this theorem item by item.



7.4. Proof of Theorem 7.2.1

241

ﬂ —_— T
(A1)
——
Sa
invariant P ~ invariant
zero i zero
-
structure @ structure
infinite zero infinite zero
structure structure
. . ITh -4 s v . g
invertibility . ~, invertibility
structures . structures
A 5
@ @
@‘ v@
. 04 “ v
geometric », geometric
subspaces . subspaces

CONTINUOQUS-TIME SYSTEM DISCRETE-TIME SYSTEM

Figure 7.3.1: Structural mappings of bilinear transformations.



242 Chapter 7. Structural Mappings of Bilinear Transformations

1(a). Let 3 be an eigenvalue of 4, i, 8 € A(A). 1t is straightforward to verify
that 8 # —1, provided A has no eigenvalueata = landa = (8 —1)/(B + 1) is
an eigenvalue of A, i.e., & € A(A). Next, we consider the matrix pencil

[BI-A B]=[BI-(I-A)YI+4) v2(I-A4)"'B]
=(I-A)7[B(I-A)-(I+A) V2B]
=(I-A7B-DI-(B+1)A V2B]
0
=(I-

)—l[aI_A B] (ﬂ‘l'ol)In \/§Im

Clearly, rank [BI— A B] =rank [aI—A B], and the result 1(a) follows.
1(b). Dual of 1(a).
2(a). The proof of this item is trivial.

2(b). It follows from Lemma 7.2.1 that the discrete-time counterpart X 4; of the
bilinear transformation of X, characterized by (A+BF, B, C+ DF, D), is given
by (AF, B, C., Dy) with

Ar = I+ A+BF)I-A-BF)™,
B: = V2(I-A-BF)'B,

Cr = V2(C + DF)(I- A- BF)™,
D: = D+(C +DF)(I- A-BF)"1B.

(7.4.1)

We first recall from Chapter 2 the following matrix identities, i.e., (2.3.14) and
(2.3.15), which are frequently used in the derivation of our result:

I+XY) ' X=X(I+YX)™} (7.42)
and
[I+X(sI-2)7'Y] " =1-X(sI - Z+YX)'Y. (7.4.3)

Next, we note that

=({I+A+BF)I-A-BF)™!

=+ A+BF)I-A)"[I-BFI-A)!

=[A+ BF(I - A)™Y|[I - BF(I - A)7Y]!

=[A+ BF(I - A !YJ[I+BF(I - A~-BF)™]

= A+ ABF(I-A-BF) '+BF(I-A) ![I+BF(I-A-BF)™]
= A4+ ABF(I-A-BF) ' 4+BF(I-A)"'(I-A)(I-A-BF)™!
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A+ABF(I-A-BF)™'4+BF(I-A-BF)™
A+(A+D)BF(I~A-BF)™!

=A+2(I-A)"'BF(I-A-BF)™!

= A+ BF

and

B:=v2(I-A-BF)"'B
=V2[I - (I -A)™'BF]"'(I- A)™'B

1 -

=v2(I-A)'B[I-F(I-A)™B] =BT,
Also, we have
C:=v2(C + DF)(I- A- BF)™!
=Vv2(C+ DF)I - Al -BFI-A)"!
=2 (C+ DF)I—-A)™[I + BF(I- A—- BF)™!]
=v2C(I - A +V2DFI - A)™
+v2(C +DF)I-A)"'BF(I—-A-BF)™!
=C+V2 [DF(I - A)~'(I - A- BF)
+(C+DF)(I-A)'BF](I-A-BF)™!
= C+V2[DF-DF(I-A)"'BF+C(I-A)'BF+DF(I—A) ' BF]
x(I-A-BF)!
+[D+C(I-A)"'BIV2F(I-A-BF)™!
=C+ DF,
and
Dy=D+(C+DF)I-A-BF)'B
=D+ (C+DF)[I-(I-A)"'BF]™ (I-A)"'B
=D+ (C+DF)I-A)'B[I-F(I-A)"'B]™"
={D[I-F(I-A)™"B]+(C+DF)I-A)"'B}T;
={D-DF(I-A)"'B+C(I-A)"'B+DF(I-A)™'B}T;
= DT,

which completes the proof of 2(b).
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2(c). This item is the dual of 2(b).

With the benefit of properties of 2(a)-2(c), the remainder of the proof is con-
siderably simplified. It is well-known that the structural invariant indices lists of
Morse, which correspond precisely to the structures of finite and infinite zeros as
well as invertibility, are invariant under nonsingular state, output and input trans-
formations, state feedback and output injection. We can thus apply appropriate
nonsingular state, output and input transformations, as well as state feedback and
output injection, to ¥ and obtain a new system, say X7. If this new system has X3
as its discrete-time counterpart under bilinear transformation, then from Properties
2(a)-2(c) it follows that £} and X4 have the same structural invariant properties.
1t is therefore sufficient for the remainder of the proof that we show that 3(a)-6(b)
are indeed properties of ¥.

Let us first apply nonsingular state, output and input transformations I'g, I,
and I'; to X; such that the resulting system is in the form of the special coordinate
basis as in Theorem 5.4.1, or, equivalently, the compact form in (5.4.21)-(5.4.24)
with A,, and Cy, being given by (5.4.29), E4, and E., being given by (5.4.30),
and Bya, Loy, and L4 being given by (5.4.32). We will further assume that A ,,
is already in the Jordan form of (2.3.39) and (5.4.34), and that matrices A aa, Lag,
B.o, Ega, Coa, Eca and Ly, are partitioned as follows:

|4 0 1Ly
A“‘[o A;a]’ Lad‘[LZd]’
_ [ B L8
Ba""[B;o]’ Lab‘[LZb]’

Eqa = [Ega Ev;a]> Coa = [Cga C(;a']’ Eca = [Ega E:a]a

where matrix AZ, has all its eigenvalues ata = 1, i.e,,

0 Ingy-1 -~ 0 0
0o 0 -0 0
A =T+ |: : K : : (1.4.4)
0 0 - 0 Ina,,-a—l
O 0 -0 0

and A}, contains the remaining invariant zeros of ¥... Furthermore, we assume
that the pair (A, Be) is in the controllability structural decomposition form of
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Theorem 4.4.1, and the pair (4, Cy,) is in the observability structural decompo-
sition form of Theorem 4.3.1. Next, define a state feedback gain matrix

Cs.—C3 C§ Cob Coc Cod
F=-I;|E,~C¢ Ei Eas Ea Eaa|T7%,
Ega E:a 0 Eec 0

and an output injection gain matrix

By - By Ly —Bi Lg,

;0 ;,d ab
K =-T Byo Lpq L, | T3t
BcO Lcd ch
Bgo Lgq 0

Here, E,. is chosen such that all xs in the controllability structural decomposition
of (Acc, Be) are canceled out, i.e.,

Azc = Acc - BcEcm

is in Jordan form with all diagonal elements equal to 0. Similarly, Ly, is chosen
such that

Afy, == Apb — LinCy,,

is in Jordan form with all diagonal elements equal to 0. Likewise, E4q and Lgq
are chosen such that

Ajq = Add — LaaC4 — BaEuq,
is in Jordan form with all diagonal elements equal to 0, which in turn implies
Ca(I — A%q) 1By = Iy, (7.4.5)

The matrices B{, B, C{ and C§ are chosen in conformity with A5, of (7.4.4) as
follows:

o 0 --- 0
6 1 --- 0
B = [Bg Bil] = ’ (746)
0 0 0
0 0 1
and
00 --- 00
Cg] 1 0 -««- 00
C® = = | ) o 7.4.7
[C{L . (7.4.7)
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This can always be done, as a consequence of the assumption that the matrix A
has no eigenvalue at a = 1, which implies that the invariant zeroata = 1 of X is
controllable and observable.

Finally, we obtain a continuous-time system X} characterized by the quadru-
ple (A*,B*,C*D*), where

A*=P'I7Y(A+ BF + KC + KDF)I,P
A 0 0 0 0
0 A, 0 0 0
0 0 A, 0 0 , (14.8)
0 0 0 Ay B4C?
0 0 0 BfCs A%+B3CS

0
B.|, (7.4.9)

0 0 0
0 0
0 0
0 By 0

B 0 0

B* =P 'I7Y(B+KD)I; =

0 0 0 0 C§
C*=T;(C+DF)I,P=|0 0 0 Cq4 O |, (7.4.10)
0C, 0 0 0
and
Im, 0 0
D*=r;'Dly=| 0 0 0}, (7.4.11)
0 00

where P is a permutation matrix that transforms A2, from its original position,
i.e., Block (1, 1), to Block (5, 5) in (7.4.8).
Next, define a subsystem (As, Bs, Cs, D;) with

* a
A, = [ Aig  BaCi ] B, := [ 0 Bd], (7.4.12)

B{Cyq AL, +B3C3 B 0
and
o c3 | Img O
T R R ) R

It is straightforward to verify that with the choice of B% and C¢ as in (7.4.6) and
(7.4.7), A; has no eigenvalue at a = 1. Hence A* has no eigenvalue at a = 1 ei-
ther, since both A}, and A7, have all eigenvalues at 0, and A}, contains only the
invariant zeros of X, which are not equal to a = 1. Applying the bilinear transfor-
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mation (7.2.3) to X2, it follows from the result of Lemma 7.2.1 that we obtain a
discrete-time system X}, characterized by the quadruple ( i ,B e *, D*), with

J+AL)I-4A3)" 0 0 0
i 0 (T+A5)I-A5)™" 0 0
0 0 (T+AR)(I-4Az) 0 ,
0 0 0 (T+A4)(I-A4)™!
(1.4.14)
0 0
. 0 0
B =3 0 (I-4:)1B, | (1.4.15)
(I-As)~1B, 0
2 0 0 0 Ci(I-A4)1
and ' "
D= [Ds+cs(IO”As) B, 8] (7.4.17)

Our next task is to find appropriate transformations, state feedback, and output
injection laws, so as to transform the above system into the form of the special
coordinate basis displaying Properties 3(a)-6(b) of the theorem.

To simplify the presentation, we first focus on the subsystem characterized by
(Ah Bs’ és, bs) Wlth

Ag:i= T+ A)I - 4)7Y, By:=v2(I-A)7 !B, (7.4.18)

Cs:=V2C,(I - A)™Y, Dy := Ds+ Cs(I - A5)™'B,. (74.19)
Using (7.4.5) in conjunction with (2.3.19), it is easy to compute (I — A5)~! =
[ X, (I-A%,) ' BaCg(I—Aaa—BoC) !
(I—Aaa—B2C%) 1 BEC4(I-Aj4) (I-Az—BeCe)™? ’

where

X1 =(I-A3) ™ + (I - A3q) 7' BaCP (I - Apa — B*C*) ' BfCa(I - A3y) ™,
and hence

A = Xo

[2(I—Aga—B"C"‘)'lBi‘Cd(I—A;;d)‘1

2(I— A%y) "' BaC¢(I- A2, — B*C%)~1

(I+Aga+BaCa)(I_Aga_BaCa)_1 ], (7-4.20)
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where
Xo=(IH+A30) (-A%e) " H2(I=A3y) " BaCf (I-A2,~B*C®*) ' Bi Ca(I-A34) ™)

(I-A3q)7' BaC(I- A2, - B*C*) ' B}

B, =V2
° \/—[ (I-Ag,—B*C*)"'Bs

(I—Azd>-le[I+0f<I—A:a—Baca)-lBﬂ]
(I-A2,—B*C*)~'B¢ ’

C3(I-Ag,—B*C*) ' B{Ca(I- A3y ™

6. =3 [
[[+C3(I- 42, BoC®) 1 B]Ca(I - A3,) "

Cs(I-A2, — BeC*)~!
Ct(I-Az,—-B°Ce)™ ] ’
and
B — [I+C§(I—A§a—B“C“)‘IB§ C3(I-A%,—BC*)~'B¢ ]
* | cp(I-A2,-B*CY)"'B} I+C¢(I-A%,—-BeC%)'Be |’
Noting the structure of A2, in (7.4.4), and the structures of B* and C? in (7.4.6)
and (7.4.7), we have

0 -1 - 0 0
~Ip,.1 0 - 0 0
(I - Aua — B*C*)7! = : SN ; |, (74.21)
0 0 - 0 -1
0 0 o+ <In,,-1 O

C{l(l — A, — Bacra)—lBg =0, Cg’(I — Ay ~ Bacm)—lBil =0,
and
a _ _ Rpaey—-lnpa _ 0 0
C*(I — Asa — B°C*)™'B _[O A
Thus, Bs, Cs and Dy reduce to the following forms:
B _\/5[ 0 (I—A;d>-le[I+Of(I—A:a—Bacarle]}
*T Tl (I- A2, -B°C*)"1Bg (I-A%, —B°C®)"'B? ’
0
G, = /3 | T+C8(I- A2~ B*C®) " BfCa(I - Ajy) ™!

Ca(I- 43, - B“cm)-l}
Co(I-A%,-B°C)™ |’
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and
b = I+Cs(I-Ag,—B*C*)~1Bg 0 ]
* 0 I1+Ce(I- A%, -B°C*)"'B}
Next, define
= 0 0
and

R, =3 [g ~(I- Agd)‘le] ,

from which it follows that

A
- [4 0
0 (I+Aga-+—B"C")(I—Aga—B"C’“)‘1 ’
where
A= (I+A5)(T-A%) ™ — 2(T - A%y) 'BaCa(I-A%)™Y,  (1.422)
~ ~ = 0 0
Bsc - Bs + Kst - \/§ [(I—Aga—B"C“)‘lBg (I—Aga—BaCa)_lBi‘]’
and C3(I-A BeCo)~!
. . T O g —_ a __ a a\—
=(; Fy=+2 aa .
Gu=Cot P = V2 Co(I- 42, - BoC%) ]
Next, re-partition B® and C* of (7.4.6) and (7.4.7) as follows:
0

B*=[0 B,] and Cﬂ:[éa],

where both B, and C, are of maximal rank. We thus obtain

kE

A = Aaa R 0 - o~ ]
s¢ 0 (I+A%+B,C,)I-A%-B,C,) ]|’

. o
By =2 [0 (I~ Asa — BaGo)1Ba |’

5 0 (. = _ & _ [Imotma=ra O
CSC _‘\/5[0 Ca(I_Aaa"BaCa)_l] 1) Dsc —Ds bl | 0 O .
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Using (7.4.4) and (7.4.21), straightforward manipulations yield

(I+ A%, +B,Co)(I~ A% —B,C,)™?

0 -2
[_21-"“‘1_1 O ] Ina,l e 0
0o -2
0 [—2171‘,'.,-“—1 0 }"Ina,‘ra
1 0
0 -0
(I-A% -B,Co) 'Bo=—|: . ],
0 - 1
0 -0

and
01 0 0
CoI-A%~B,Co) 1 = - [ PR ] :
00 - 01
Moreover, it can be readily verified that each subsystem characterized by the ma-
trix triple (Agi, Bai, Cai), i = 1,2,...,7,, with

- 0 -2 ~ -1 =
Aa.i = _Ina'.' + [_2‘[’"‘“,"—1 0 :I ’ Bai = [ 0} ’ Cai = [0 '—1]1
has the following properties:
C‘:'a'i-l;"tri = éaiAaiBai == C""a.i(A'ai)na"‘_2B'¢z'i = O,

and
éai (/iai)na'i -t Bai # 0.

It follows from Theorem 5.4.1 that there exist nonsingular transformations I' 4,
I'oe and T, such that

fid = Fs_al [(I + A5, + Baéa)(I - Aj — Baéa)_l]rsa

% Iny o 0 0
* * 0 0

=1: : : , (7.4.23)
0 0 * Ina,,u—l
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0 0
i .- 0
By =T (I-A2,~B.Ca) 'Ba|Tia = | 1 "~ 1], (7.4.24)
0 0
0 1
and
1000
@=KMMP£fmaﬁmf{ssm Ei-ﬂ“ﬁ
00 - 10

Now, let us return to X} characterized by (fi*, fi’*, C'*, D*) asin (74.14) to
(7.4.17). Using the properties of the subsystem (As, Bs, Cs, Ds) just derived, we
are in a position to define appropriate state feedback and output injection gain
matrices, say Frand K~ , together with nonsingular state, output and input trans-
formations f‘: , f‘; and f‘; , such that

-k

A= () (I +BF + K C +K'D'F) I,
(I+Az)(I-A%)" 0 0 0 0
0 (I+A7)(I-Af,)™ 0 0 0
= 0 0 (I+Ar)I-A:)™* 0 0 |,(7.4.26)
0 0 0 A 0
0 0 0 0 Ag
with A, given by (7.4.22), and
0 0 0
0 0 0
B, = (F5)1 (B"+I‘{*D*)f§= 0 0 (I-A2)™'B.|, (7.427)
00 0
0 Ba 0
0 0 00 0
Cop = ()} (C**+D*F*)f;‘=[o CoI-Ap)™ 0 0 0],
0 0 0 0 Cq4
(7.4.28)
and
~ % ~ % ~ ko Im°+md_T“ 00
D :=C,)'DT; = 0 0 0]. (7.4.29)
[ 0 0 0]

Clearly, £}, characterized by (A:CB, B:CB, C’:ca, D:CB) has the same lists of struc-
tural invariant indices as X3 does, which in turn has the same lists of structural
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invariant indices as 4. Most importantly, ¥%_, is in the form of the special coor-
dinate basis, and we are now ready to prove Properties 3(a)-6(b) of the theorem.

3(a). First, we note that I5(Zq) = I(X%,). From (7.4.26) to (7.4.29) and the
properties of the special coordinate basis, we know that I2(35;) is given by the
controllability index of the pair

(T + 40 - A7 (- A7 B) or (I + AU - 43)7, Be).

Recalling the definitions of A7, and B.:

C

0 Iy - 0 0 0 --- 0
o o0 -0 0 1 --- 0
A= 1 T Cols Be= o
0 0 - 0 I, 1 0 --- 0
0 0 - 0 0 0 --- 1

we readily verify that the controllability index of
(a+aa- 407, B)
is also given by {¢1, ,...,4m }, and thus Ir(54) = I>(Z¢).
Likewise, the proof that I3(Xq) = I3(X.) follows along similar lines.

3(b)f3(c). These follow directly from 3(a).

4(a). It follows from the properties of the special coordinate basis that the invariant
zero structure of 2:@, or equivalently X4, is given by the eigenvalues of A:; and
(I+Az,) (I~ Az,) ™1, together with their associated Jordan blocks. Property 4(a)
corresponds with the eigenvalues of /1:; of (7.4.22), together with their associated
Jordan blocks. First, we note that, for any z € C,

-4, = [(z = DI = (z+1)A5q +2(I - A3q)1BaCy) (I - Ajq) ™

(7.4.30)
Recall the definitions of A}, Bq and Cq:
0 Iny,-1 - 0 0 0 --- 0
0 0 e 0 0 1 --- 0
Ay = |: : o : , Ba= |1 . I,
0 0 0 I, 1 0 0
0 0 -0 0 0 1

and
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It can be shown that
(z = 1)I — (2 + 1) Alq + 2(I — A34) "' ByCy = blkdiag {Q1(2), ..., Qi(2)},

where @;(z) € C" X" is given by

241 —(z41) 0 - 0 0
2 z-1 —(z41) -~ 0 0
2 0 -1 0 0
Qi(z)= . . Z_ . . . )
2 0 0 o oz=1 —(z+1)
L 2 0 0 e 0 z—1 -

(7.4.31)
fori = 1,2,...,mgq. It follows from (7.4.30) that the eigenvalue of /1:; is the
scalar z that causes the rank of

blkdiag {Ql(z): QZ (Z)a R de (z)} ’

to drop below ng = Y ;-] ¢;. Using the particular form of Q;(2), it is clear that
the only such scalar z € C which causes Q;(z) to drop rank is z = —1. More-
over, rank {Q;(—1)} = ng, — 1, i.e., @i(—1) has only one linearly independent
eigenvector. Hence, z = —1 is the eigenvalue of fi;; or equivalently the invariant
zero of X4, with the multiplicity structure

S*1(Za) = {q1, 02, - > ma } = S5 (Ee),
thereby proving 4(a).

4(b). This part of the infinite zero structure corresponds to the invariant zeros of
the matrix (7 + A%,)(I — A%,)~. With A%, in Jordan form, Property 4(b) follows
by straightforward manipulations.

5(a). The proof of this item follows directly from (7.4.29).

5(b). This follows from the structure of (Aq4, By, C4) in (7.4.23) to (7.4.25), in
conjunction with Property 5.4.4 of the special coordinate basis.

6(a)-6(b). We let the state space of the system (7.2.1) be X" and be partitioned in
the subsystems of its special coordinate basis as

X=X 0X0X] 00X 0 X, (7.4.32)
We further partition X as

X =xhoxt, (7.4.33)
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where X:; is associated with the zero dynamics of the unstable zero of (7.2.1) at
s = a = 1 and X, is associated with the rest of the unstable zero dynamics of
(7.2.1). Similarly, we let the state space of the transformed system (7.2.6) be X
and be partitioned in its special coordinate basis subsystems as

X=X oXoX ool o, (7.4.34)
with X g being further partitioned as
=2 0x, (1.4.35)

where X 21 is associated with the zero dynamics of the invariant zero of (7.2.6) at
z=-land ¥ 2,, is associated the rest of the zero dynamics of the zeros of (7.2.6)
on the unit circle. Then, from the above derivations of 1(a) to 5(b), we have the
following mappings between the subsystems of X of (7.2.1) and those of ¥4 of
(7.2.6):

X =X, )

X, e Xy,

R e A

Xt = b (7.4.36)
X = Ay,

X, & @ X,

X;i = X R J

Noting that both geometric subspaces Vx and Sx are invariant under any nonsin-
gular output and input transformations, as well as any state feedback and output
injection, we have

VHE) = XAt 0 X0 X =X @ Xgd Xe =S (Ta), (7.4.37)
and
S*H(E) = X DX 0 X, 0 X = X, o Xe, 0 X0 X0 =V (54). (1.438)

Unfortunately, other geometric subspaces do not have such clear relationships as
above.

This concludes the proof of Theorem 7.2.1 and this chapter. n
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7.5 Exercises

7.1. Consider a continuous-time system, ¥, characterized by

-1 0101
0

z=Az+ Bu= T+

- O

- O
-

- O

—

-0 0o 00

O - OO0
£

and

00100 00
y—C:v+Du—[0 00 0 1}:c+[0 O]U.

(a) Compute its discrete-time counterpart, X4, under the bilinear trans-

formation
z—1

ST Il
(b) Use the Linear Systems Toolkit to compute the geometric subspaces,
Vv, v-, v+, 8*, S, 8T, R*, and N'*, for the continuous-time
system, ¢, and the subspaces, V*, V=, V*, §*, §~, §*, R*, and
N*, for the discrete-time counterpart, X 4.
(c) Verify that V() = §~(Z4) and ST(E.) = V™ (Z4). Comment
on the relationship of other subspaces.

7.2. Prove Corollary 7.2.1 and Corollary 7.2.2.

7.3. Consider a continuous-time system, ¥, characterized by

-1 0 0 01 0
01 001 0
T=Arz+ Bu= 00 01 1lz+1|0]|w,
00 -1 01 0
11 111 1

and

y=Cz=[0 0 0 0 1]z
Compute the invariant zeros of its discrete-time counterpart, 4, under the
bilinear transformation

s=a z—1\ 2_ z-1
T \z+1) T \z+1)’
with the sampling period, T = 0.5,0.4,0.3,0.2,0.1,0.05,and 0.01. Verify

the result of Corollary 7.2.2 by plotting the invariant zeros of the resulting
discrete-time systems on a complex plane.
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7.4. Given a stable continuous-time system, Y., with a transfer function

7.5.

7.6.

Ge(s)=C(sI - A)"'B+D,

and its discrete-time counterpart under the usual bilinear transformation,
Y4, with a transfer function

-1
Z iI—A) B+D=C(zI-A)"'B+D,

Ga(z) =C (az -

where A, B, € and D are as given in Lemma 7.2.1, show that 4 is stable,
and

IGalleo = [|Gellco-
Also, show by an example that, in general,

Gallz # (IGell2-

Hint: Refer to Section 2.4 of Chapter 2 for the definition and computation
of the Hy-norm and H ,-norm of continuous- and discrete-time systems.

Consider a continuous-time system characterized by
= Az + Bu, y=Cz+ Du.

Another popular method that can be employed to discretize the system
is the zero-order-hold (ZOH) transformation. It can be shown that the
discrete-time equivalence of the continuous-time system under the ZOH
transformation with a sampling period, T, is given by

z(k +1) = A,z(k) + Byu(k), y(k) = Cxz(k) + Du(k),

T
A, = eAT7 B, = (/ eATdT) B,
0

LetG.(s)=C(sI—A)"'B+D and G,(z) =C(2I — A,) "' B, + D. Show
by an example that, in general,

IGell2 # IGall2 and  [|Gclloo # [1Galloo-

where

Suppose that the continuous-time system of Exercise 7.3 is discretized us-
ing the ZOH transformation. Compute the invariant zeros of the resulting
discrete-time equivalence with T' = 0.5,0.4,0.3,0.2,0.1,0.05, and 0.01.
Plot these invariant zeros on a complex plane, and comment on the result.



Chapter 8

System Factorizations

8.1 Introduction

System factorizations such as the well-known inner-outer factorization and its
dual version, the cascade factorization of nonminimum-phase systems have been
extensively studied and used in the literature. The so-called minimum-phase/all-
pass factorization plays a significant role in several applications, prominent among
them being singular filtering (see e.g., Halevi and Palmor [61], and Shaked [128]),
cheap and singular optimal LQ control (see, e.g., Shaked {129]), and loop transfer
recovery (see, e.g. Chen [18], Saberi et al. [116], and Zhang and Freudenberg
[159]), while its dual version, the inner-outer factorization, has played an impor-
tant role in solving problems related to robust and H o, control (see, e.g., [54] and
references cited therein). Traditionally the minimum-phase/all-pass factorization
has been carried out by spectral factorization techniques (see, e.g., Shaked and
Soroka [130], Soroka and Shaked [134], Strintzis [137], and Tuel [142]). The
role that the minimum-phase/all-pass factorization plays in the control literature
as well as various methods available for such a factorization are well documented
by Shaked [127]. The inner-outer factorization is also very well studied in the
literature, and there are several papers that provide state space based algorithms
for such a factorization. For example, Chen and Francis [35] and Weiss [148]
have derived algorithms that are applicable for certain classes of systems. In ad-
dition, we will also introduce a generalized factorization technique, which has
several promising applications. In particular, it can be easily modified to solve
the well-known system zero placement problem, which will be studied in detail in
Chapter 9. The contents of this chapter are based on our early works (i.e., Chen et

B. M. Chen et al., Linear Systems Theory
© Birkhiuser Boston 2004
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al. [26], Lin et al. [88] and [89]), in which we successfully constructed the above
mentioned factorizations for general systems using the structural decomposition
techniques presented in the previous chapters of this book.

To be more specific, let us consider a left invertible nonminimum-phase sys-
tem X characterized by the matrix quadruple (A, B, C, D),

{:i'=A:L'+Bu,

1.1
y=Cz+ Du, @LD

where the state vector z € R", output vector y € R” and input vector u € R™.
Without loss of generality, we assume that [ B’ D']and [C D] are of maximal
rank. Let the transfer function of X be

G(s) =C(sI — A)"'B+D. 8.1.2)

For the minimum-phase/all-pass factorization, it is required that the given system
¥ be detectable. The minimum-phase/all-pass factorization of G(s) is expressed

as
G(s) = Gum(s)V (s), (8.1.3)

where G (s) is left invertible and of minimum-phase, and satisfies
G(s)G'(—5) = Gm(8)Ga(—3), (8.1.4)
whereas V' (s) is a stable and right invertible all-pass factor satisfying
V(s)V'(-s) = L. (8.1.5)

The problem is then to construct matrices By, and Dy, such that a system X,
characterized by the matrix quadruple (A, Bm, C, Dy,) has the intended transfer
function G (s). Also, the invariant zeros of X, are those minimum-phase invari-
ant zeros of X and the mirror images of nonminimum-phase invariant zeros of X.
On the other hand, in loop transfer recovery and in other applications such as finite
zero placement problems, one does not necessarily require a true minimum-phase
image of ¥. What is required is a model which retains the infinite zero structure
of ¥ and whose invariant zeros can be appropriately assigned to some desired lo-
cations in the open left-half complex plane. With this point in mind, we introduce
a generalized cascade factorization of the form

G(s) = Gu(s)U(s). - (8.1.6)

Here Gy(s) is the transfer function matrix of a system X, which has the same
infinite zero structure as that of X, is of minimum-phase with all its invariant
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zeros located at desired locations and is left invertible. On the other hand, U (s) is
square, stable, invertible and asymptotically all-pass in the sense that

Us)U'(-s) = I as |s| — oo (8.1.7)

As mentioned earlier, the inner-outer factorization is actually a dual version
and a special case of the minimum-phase/all-pass factorization. It only deals with
stable and proper systems. Thus, it requires that the eigenvalues of A in the given
system T of (8.1.1) are all in C™. Dually, it requires ¥ to be stabilizable (instead
of being detectable as in the case of minimum-phase/all-pass factorization). The
inner-outer factorization can be expressed as

G(s) = Gi(s)Go(s), (8.1.8)

where G;(s) is an inner factor of G(s), i.e., Gi(s) is a stable and proper transfer
function satisfying
Gi(-s)Gi(s) =1, (8.1.9)

and G,(s) is an outer factor of G(s), i.e., Go(s) is stable and proper and has a
right inverse being analytic in C*, which is equivalent to the fact that Go(s) is
right invertible and has no invariant zeros in c*.

For clarity and for ease of reference, we first consider the case when the given
system is strictly proper in Section 8.2, whereas the results for general nonstrictly
proper systems are given in Section 8.3. Finally, we note that all these factoriza-
tions can be done similarly for discrete-time systems, which will be addressed in
Section 8.4.

8.2 Strictly Proper Systems

We consider in this section the situation when the given system X of (8.1.1) is
strictly proper, i.e., D = 0. For the minimum-phase/all-pass factorization and
generalized cascade factorization, we assume that ¥ is left invertible, while for the
inner-outer factorization, we assume that ¥ is right invertible. For the minimum-
phase/all-pass factorization and inner-outer factorization, we further assume that
Y has no invariant zeros on the imaginary axis. The result for such a case is fairly
straightforward and is very useful in numerous applications and in fact, most of
the references cited in the introductory section of this chapter dealt with only this

special class of systems. These restrictions will, however, be removed in the next
section.
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We first present a step-by-step algorithm for the construction of the minimum-
phase/all-pass factorization.

STEP FACT-SP.1.

Utilize the result of Theorem 5.3.1 (see also the compact form of the special
coordinate basis in Section 5.4 of Chapter 5) to find nonsingular transforma-
tions I's € R**™, T, € RP*? and T; € R™*™ such that the given system
%, i.e., the matrix triple (A, B, C), can be transformed into the form of the
special coordinate basis. More specifically, we have

At 0 LL,Cy LI Cq
0 A, L, Cv L Cy

A=T71AT, = . (821)
0 0 Ay LpaCa
ByEf B4E; ByEp, Aad
0
B=T71Bl; = g , (8.2.2)
By
~ _ -1 _ 0 0 0 Cd '3 —_
C=T;1Cls = [0 0 C 0 and BiBg=1I  (823)

Here A(A},) ¢ CT and A(A,,) C C™ are respectively the nonminimum-
phase and minimum-phase invariant zeros of ¥.. Also, we note that the pair
(A%, EF) is observable whenever ¥ is detectable.

STEP FACT-SP.2.
Solve the Lyapunov equation
(4%)' P+ PAL, = (B})'TIDE}, (8.2.4)

for P > 0. Note that such a solution always exists since A7, is unstable
and (A7, Ef) is observable. Next, compute '

Kf =Pl (EH) 'L, (8.2.5)
and N
Ka

Bn=TeBali =T, | 0 |70 (82.6)
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STEP FACT-SP.3.
Define ¥, to be a system characterized by a matrix triple (4, Bm, C) and
V() =T [I — B} (sI - AL, + KFE})™ K;] i 827

This completes the procedure for constructing the minimum-phase/all-pass
factorization of X.

We have the following theorem.

Theorem 8.2.1. Consider a detectable, left invertible and nonminimum-phase sys-
tem Y of (8.1.1) with D = 0 and with all its nonminimum-phase invariant zeros
in C*. Then, its minimum-phase/all-pass factorization is given by

G(s) = Gm(s)V (5), (8.2.8)

where V (s), the stable all-pass factor, is given as in (8.2.7), and G (), the mini-
mum phase image of ¥, is the transfer function of ¥ i, characterized by the matrix
triple (A, By, C) with By, given as in (8.2.6), i.e.,

Gm(s) = C(sI — A)"'Bp. (8.2.9)

Furthermore, T, is left invertible and has the same infinite zero structure as that
of ¥ with its transfer function G () satisfying

Gu(s)Gl(—5) = G(5)G'(-s). (8.2.10)
The all-pass factor V (s) satisfies V(s)V'(—s) = I and has all its poles at the

mirror images of the nonminimum-phase zeros of X.

Proof. We first show that A}, — K} EF is a stable matrix. By examining (8.2.4)
and (8.2.5), we have

AY —KFEF = Af, - P (Ef)' TINEf = P71 (-4%)'P,  (82.11)

which implies that A}, — K} E} is indeed a stable matrix.

Next, we proceed to prove that ¥, is of minimum-phase, left invertible and
has the same infinite zero structure as that of X. Without loss of generality, we as-
sume that ¥ is in the form of the special coordinate basis as that in Theorem 5.3.1
of Chapter 5. Thus, ¥, can be rewritten as

it = Afal + Lhya + Ly + K u,
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d"; = Aa_a:v; + L;dyd + La_byb7
&b = ApbZb + Lbaya, Yo = Cbb,
i‘d—"—‘A;d.’Ed-i-Ldyd‘l'Bd [U+E:$:+E;.’I); +Eb:vb+Ed:cd] , Ya = Cyzgq,

for some submatrices of appropriate dimensions. Let us now define a new state

variable
= .1:;*' - K;"Bézd. 8.2.12)

Since BBy = I, it is then straightforward to verify that
87 = (AL, - KSEf)ed — K EZ a7 + Ly
~ K} By, + (LY, — K} ByLa)ya
+(ALK}B, - K Ey - KFEFK}B] — KF B! Aga)za,
and
T4 =A;d:vd+Ldyd+Bd [u + E:IE;“-*—E;:L‘; +Eb$b+(Ed+K:'Bd).’Ed] .

It then follows from STEP SCB.8 in the proof of Theorem 5.3.1 in Chapter 5 that
there exists a nonsingular transformation T such that

m ~n
xa za
T, z,
a — T a ,
Tp Th
4 T4

and
& = (A%, - KED)ZD - KT E o] + Liyya + L,
iy = AT, + Lo ya + Ly,
&b = ApbZb + Lvd¥d, ¥b = CpTb,
£a=A3q%a+Laya+Ba [u+Ef 0+ E; o] +EPop+ETzg],  (82.13)
ya = Cqzq,

for some matrices LTy, L7}, ET* and ET of appropriate dimensions. The state
equations in (8.2.13) is now in the form of the special coordinate basis of Theorem
5.3.1. Hence, it follows from the properties given in Section 5.4 of Chapter 5 that
Ym and ¥ have the same infinite zero structure and that ¥, is left invertible.
Furthermore, the invariant zeros of X, are given by

[He e KiE

0 AL ccC . (8.2.14)
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Hence, ¥, is of minimum-phase.

We now proceed to show that V(s)V'(—s) = I. From the Woodbury or
Sherman-Morrison-Woodbury formula, i.e., (2.3.13), and (8.2.4) and (8.2.5), we
have

Vi) = {0 [1 - B (of - Al + KEED) T K| rrl}_l
=T [I + EX(sI - AL, “1Kj] I
=T+ B} (sI - AL) ' PYED)'T]
= I+ TEf (sP - PAL) Y (EF)'T;
= [+T.E [sP + (44)'P — (E}YTITEF | (BHYT,
— [~ DB P sl - (4R + (B (k)] (@
= [— () (K (- - A%+ KFED ] (BFYT
= 0y {1 - Y oot - 4+ KB (B |
=V'(-s).

Here, we note that the poles of V' (s) are the eigenvalues of the stable matrix —A 7,
and the poles of V ~1(s) are the nonminimum-phase invariant zeros of ¥, namely
AAL).

Finally, we are ready to show that G(s) = G (s)V (s). Let us define

S-aL 0 -IGG -IhCa1”
s o |0 sI-An -LiCh —LyCa
d=(sI-A)y " = 0 0 sI — Apy —LpaCq4 |’

~BsE} —B4aE; —BuBE, sI—Aa
Kf
K= g , E=[Ef 0 0 0],
0
and
sI-A 0 ~L;Cs  ~LCa™
. 0 sI—A;, -L,C, -L,Ca
= 0 0 s8I — Ayp,  —LpaCy
0 —B4E; —ByE, sI-—Agq

In view of (8.2.2), (8.2.3) and (8.2.6), it is straightforward to verify that

Bn=B+K, &=('-BE),



264 Chapter 8. System Factorizations

and
C3K =0, E®K = E}(sI - AL) 'K},

Hence,
G(s)V ™ (s) = ToCRBI, T [1 + B (s1 - AL, -IK;] It
=T, [G@B +OB! - BE)'IBE(iK] I
= FO{C@B +O[($! - BE)™1871 - 1]@1{}1‘;1
=T,(CéB + CéK - CK)I}”
=T,C®(B + K)I*
= Gr(5). (8.2.15)
This completes the proof of Theorem 8.2.1. [

We demonstrate the above results by the following example.

Example 8.2.1. Consider a square and invertible system X characterized by a
matrix quadruple (4, B, C, D) with

1 0 0(1 O 00
01 1{0 O 00
A=|(0 0 1|0 1}, B={0 0], (8.2.16)
1 0 0f1 1 10
01 0|11 01
and
{00010 {00
C= [0 0 0lo 1 }, D= [0 0]. (8.2.17)

It is simple to verify that ¥ has a transfer function

_ s—1 (s—2)(s®-s+1) (s—1)2
Gls) = §5—5s4+8s3—5s2+s+1 [ (s~1)? s(s—l)(s—2)] )

Also, X is controllable and observable and has an invariant zero at s = 1. Fur-
thermore, it is easy to verify that ¥ is already in the special coordinate basis form
with

100
A;"a=011,E;"=[100].
00 1
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We thus obtain,

2 0
2 0 0 4
sz 0 4|, Bn=|0 4{,
0 4 10
01
o
V(S): 0 (8—1)2 )
(s +1)2
and
Co(s) = s+1 (5—2)(s%=s+1) (s—1)(s+1)

miS) = 5 55t 853552 +s+1 (s—1)2 s(s+1)(s=2)|"

Whenever the given system X has invariant zeros on the imaginary axis, no
minimum-phase image of ¥ can be obtained by any means. In what follows,
we introduce a generalized cascade factorization, which is a natural extension of
the minimum-phase/all-pass factorization. The given nonminimum-phase and left
invertible system is decomposed as

G(s) = Gu(s)U(s). (8.2.18)

Here Gy(s) is of minimum-phase, left invertible and has the same infinite zero
structure as that of X, while U (s) is a square, invertible and stable transfer function
which is asymptotically all-pass. All the invariant zeros of G y(s) are in a desired
set Cg C C™. If the given system ¥ is only detectable but not observable, the set
C4 includes all the unobservable but stable eigenvalues of X. In this way, all the
awkward or unwanted invariant zeros of X (say, those in the right half s-plane or
close to the imaginary axis) need not be included in G y(s). Such a generalized
cascade factorization has a major application in loop transfer recovery design. For
instance, by applying the loop transfer recovery procedure to G y(s), one has the
capability to shape the overall loop transfer recovery error over some frequency
band or in some subspace of interest while placing the eigenvalues of the observer
corresponding to some awkward invariant zeros of X at any desired locations (see,
e.g., [116]). We further note that this generalized cascade factorization can be
immediately adopted to solve the well-known zero placement problem, which is
to be studied in detail in the next chapter.

Let us assume that the given system ¥ has been transformed into the form
of the special coordinate basis as in (8.2.1) to (8.2.3). Let us also assume that
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in the special coordinate basis formulation, z, is decomposed into z; and z}
such that the eigenvalues of A}, contain all the awkward invariant zeros of ¥,
including all the unstable invariant zeros, invariant zeros on the imaginary axis
and some unwanted stable invariant zeros, provided that these awkward zeros can
be controlled.

As expected, procedures for constructing this generalized cascade factoriza-
tion are quite similar to those of the minimum-phase/all-pass factorization. Thus,
we directly summarize such a factorization in the following theorem.

Theorem 8.2.2. Consider a left invertible and nonminimum-phase system X. As-
sume that it has been transformed into the special coordinate basis as given in
(8.2.1) to (8.2.3) and assume that its awkward invariant zeros are observable and
are dumped in \(A}},). One can then construct a generalized cascade factorization
(8.2.18) such that

1. The minimum-phase counterpart of ¥ is given by X, characterized by the
matrix triple (A, By, C) with a transfer function Gy(s) = C(sI— A) ™1 B,,
where

Kt

O | p-1, (8:2.19)
0 1

By

Here K} is specified such that \(A}, — K} E}) are in the desired locations

in C™. Moreover, X, is also left invertible and has the same infinite zero

structure as X.

B, =TB,I;! =T

2. The stable factor U(s) is given as
U(s) =T; [I - Ef (sI - AL, + KJEN) 'K} T (8.2.20)
Moreover,
U='(s) =T [T+ Ef (sI - AL) 'K I, (8.2.21)
and U (s) is asymptotically all-pass, i.e.,

UGS)U'(-s) = I as |s| = oo. (8.2.22)

The above result can be regarded as a dual version of the problem of zero
placement studied in the literature (see e.g., [139]).
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Proof. Without loss of generality, we assume that ¥ is in the form of the special
coordinate basis. Following the proof of Theorem 8.2.1, we can show that there
exists a nonsingular state transformation such that X, is transformed into the form
of the special coordinate basis as

%, = (A%, - KT ENZ} - K Efal + Liya + Ly,
T, = Anry + Ljya + Ly,
Ib = AbbTb + Loayd, Yo = CoTb,
iq=Ajqza+Laya+ Balu+Ef ¥+ E] 2, + Efzy+ EYz4), ya = Caza,

for some matrices L};, LY, Ey and EY of appropriate dimensions. Hence, it
follows from the properties of the special coordinate basis that ¥,, and ¥ have
the same infinite zero structure and that X, is left invertible. Furthermore, the
invariant zeros of L, are given by

A —KYEX -KIE7

A 0 AL

cC . (8.2.23)
Hence, T, is of minimum-phase. Moreover, the left state and input zero directions
associated with the minimum-phase invariant zeros of ¥ remain unchanged in
Y. The equality of G(s) = Gu(s)U(s) follows directly from (8.2.15). Since
U(s) = I as |s| — oo, hence U(s)U’'(—s) — I as |s| = oo. This completes the
proof of Theorem 8.2.2. u

We illustrate this generalized factorization with an example.

Example 8.2.2. Consider a system X as given in [159] and characterized by

-1 0 0 0 -0.5 -1.25
_ 0 -1 0 0 _|-25 =25
A= 0 0 -0.2 ol’ B = 0.3 125§’ (8.2.24)
0 0 0 -0.2 1.5 3.5
and
/1010 _
C= [0 1 0 1} , D=0, (8.2.25)
with

~ 1 -02(s—-1) 1
Gls) = (s+1)(s+0.2) [ —(s-1) s+3]'
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This system is square and invertible with two invariant zeros at s = 1 and s = 2.
The minimum-phase image and the all-pass factor of X are obtained as

0.7353 —0.8088
1.4706 -1.6176

Bm=1_009353 0088 )"
—-2.4706 2.6176
Gl 1 ~0.2(s +3.9412)  0.6470
m(s) = ————c :
(s+1)(s+0.2) | —(s+2.1765) s+ 2.2941
and
(s~ 1)(s — 0.9414)  —1.7646
Vis) (s+1)(s+2) s+2

8) =

~1.7646(s —1)  s+0.9414

(s+1)(s+2) s+2

The following is a cascade factorization of X,

0.5 0
_ | 375 -=3.75
B = -0.7 0]’
-4.75  4.75
1 -02(s+3) 0
G = — ,
u(s) GG+1)(5+02) | —(s+4) s+4}
and
s—1 -5
s+3 s+3
Uls) = s—1 s2+s-11
(s+3)(s+4) (s+3)(s+4)
It is simple to see that Gy(s) has two invariant zeros at s = —3 and s = —4.

We conclude this section by constructing the inner-outer factorization of a
stable, strictly proper and right invertible transfer function G(s) with no invari-
ant zeros on the imaginary axis. Let the matrix triple (4, B, C)) be a realization
of the transposed system of G(s), i.e., G'(s), which is obviously left invertible.
Then, the constructive algorithm given in STEPS FACT-SP.1 to FACT-SP.3 for the
minimum-phase/all-pass factorization would automatically yield an inner-outer
factorization for G(s). We summarize this result in the following theorem. The
proof of this theorem is obvious in view of that of Theorem 8.2.1.
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Theorem 8.2.3. Consider a stable, strictly proper and right invertible transfer
function G(s) with no invariant zeros on the imaginary axis. Let (A,B,C) be
a realization of its transposed system, G'(s), with (A, C) being detectable. Let

G'(s) = Gm(s)V (s) (8.2.26)
be a minimum-phase/all-pass factorization of G'(s) as in Theorem 8.2.1. Then,
G(s) = Gi(5)Go(s) = V'(5)Giy(s) (8.2.27)

is an inner-outer factorization of G(s), where Gi(s) = V'(s) is an inner factor of
G(s), i.e.,
Gi(—=s)Gi(s) = V(=s)V'(s) = I, (8.2.28)

and G,(s) = Gi, () is an outer factor, whose right-inverse is analytic in C™

8.3 Nonstrictly Proper Systems

We now present factorizations for a general system X, characterized by a ma-
trix quadruple (A, B, C, D), which is not necessarily left or right invertible and
whose direct feedthrough matrix D might be nonzero. For the generalized cas-
cade factorization and inner-outer factorization, ¥ might have invariant zeros on
the imaginary axis. For the minimum-phase/all-pass factorization, we still need
to assume that ¥ has no invariant zeros on the imaginary axis. As in the pre-
vious section, we will first present a step-by-step constructive algorithm for the
minimum-phase/all-pass factorization.

STEP FACT-NSP.1.

Utilize the result of Theorem 5.4.1 of Chapter 5 to find nonsingular trans-
formations ['s € R™*", T, € RP*? and I'; € R™>™ such that the given
system X, i.e., the matrix quadruple (A, B, C, D), can be transformed into a
form similar to the compact form of the special coordinate basis in (5.4.21)
to (5.4.24). More specifically, we would like to arrange the transformed
system as follows:

[ A B.EL B.E;, LCp LcaCy
0 Af 0 LiCy LHC4
0 0 AL L;be L;dCd
0 0 0 Ay LpaCy

L B4Ey. ByEl, B4E;, B4Es, Aaa

RN

=T71AT,
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BOc
By,
+ | By | [Coc Cf, Cqn Cob Coal, (83.1)
Bop
Bog
Bee 0 B
B, 0 0 Imy 0 0
B=Tr'Bli=|B;, 0 0 ,D=I‘O‘IDI‘-,=[0 0 0},
Bp 0 0O 0 00
Boa By O
(83.2)
and
Coe Cfi Coa Cop Coa
C =T;!CrT, = [ 0 0 0 0 Cd]. (83.3)
0 0 0 C ©

Here M\(A%,) C Ct and A(AZ) C C™ are respectively the unstable and the

stable invariant zeros of X.
STEP FACT-NSP.2.
Let
ACC BC'E;';] 0 0 Bc -1
Ax = , Bx= i 8.34
[ 0 At {0 0 0 }F’ 8.34)
Coc CZ I 0
Cy = [ Oc ‘_’:], Dy = { ™o 0} Y, (8.3.5)
Edc Eda 0 Im.d 0

and
'y Fi2 Tis R
]
(') =Tz To2 Tas|, Tm= [I,,u Fm] . (83.6)
] F' T 12 22
13 Loz T3

It follows from Property 5.4.1 of the special coordinate basis that the pair
(Ax, Cy) is detectable whenever the pair (A4, C) is detectable. We then
solve the Riccati equation

AxPy+ Py AL+ By B, — (CxPx+ Dy B.)Y (D D}) Y (Cy Px+DyB.) = 0
(8.3.7)
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for P, > 0. It will be shown later that such a solution alway exists. Next,

compute
K= | K0 Eal|_ (0, + DB (DD, (838

.KaO Kad

and
[ Beo + Ko Ked
B +Kj K Im, 0

Bn,=Is| By 0 |TY, Dn=T,| 0 o|r;.
Bio 0 0 O

| Bao By

(8.3.9)

STEP FACT-NSP.3.
Define ¥, to be a system characterized by a quadruple (A, By, C, D)
and

V(s) = I'm [Cx(sI — A + KxCx) ™Y (By — K Dy) + Dx]. (83.10)

This completes the procedure for constructing the minimum-phase/all-pass
factorization for a general system 3.

We have the following theorem.

Theorem 8.3.1. Consider a general detectable system X of (8.1.1) with all its
unstable invariant zeros in C*. Then, its minimum-phase/all-pass factorization is
given by

G(s) = Gu(s)V(s), (8.3.11)
where V (s), the stable all-pass factor, is given as in (8.3.10), and G ,(s), the
minimum-phase image of ¥, is the transfer function of ¥, characterized by the
matrix quadruple (A, By, C, Dr,) with By, and Dy, being given as in (8.3.9), i.e.,

Gm(s) =C(sI — A)"'By + Dn. (8.3.12)

Furthermore, X, is left invertible and has the same infinite zero structure as that
of X with its transfer function G () satisfying

Gm(s)Gr(-3) = G(s)G'(-s). (8.3.13)

The all-pass factor V (s) satisfies V(s)V'(—s) = I.
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Proof. We first note that since (A, Cy) is detectable and (—Ax, By) is stabi-
lizable, it follows from Richardson and Kwong [111] that (8.3.7) has a unique,
symmetric and positive definite solution, i.e., Px = Py > 0. Let us now show that
A, — K,Cy is a stable matrix. Let

-1_ |Pu P2
ri=|p el

Then pre-multiplying equation (8.3.7) by P!, we obtain

—(4%, + B.TB.P;)' 0 ]

_le"'KxxPx=

where c
Age = Acc — BC[T1’3 To3] (Pm)2 [Egz]

- r
£ = i - [0} Tl 0 [ 1.

It is worth noting that I is a positive definite matrix and P is the unique positive
definite solution of the algebraic Riccati equation

PllA;c + (A:c)’Pu + P11Bcf‘BéP11 - [C(IJC Eéc](f‘m)z [ZZZ] =0.
Hence, A(Ax — KxCy) = A(—A7,) UN(— A%, — B.['B.P;;) are all in C™, and
thus A, — K,Cy is indeed a stable matrix. We are now ready to prove that ¥,
characterized by the matrix quadruple (A, By, C, Dp,) is of minimum phase, left
invertible and has the same infinite zero structure as ¥.. Without loss of generality,
we assume that ¥ is in the form of the special coordinate basis as in (8.3.1) to
(8.3.3). Let us define

BcO KcO
. Bh| | K
A=A-|[By|+]| 0 | |[Co Cf Cr Cob Coal,
Bho 0
Bao 0
and
s
sl g0 00 0 C
S R O U
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Then, by the construction and the properties of the special coordinate basis (see
Section 5.4), the system X, characterized by (A, By, C, D) and the system )
characterized by the matrix triple (A, B, ¢ ) have the same finite and infinite zero
structures and the same invertibility properties. Then following the same proce-
dure as in the proof of Theorem 8.2.1, it is easy to show that ¥ is left invertible

and has the same infinite zero structure as that of ¥. Furthermore, ¥ has invariant
zeros at
) Ay — K.Cy
0 Az
where *’s denote matrices of not much interest.
Next, we proceed to show that V' (s)V'(—s) = I. It follows from (8.3.7) and
(8.3.8) that

ccC,

Ay Py + P Al + ByB. — K, (CxPx + DyB,)

0,
DX(B;: - D;:K),c) = —CxPx,
and
K,CyPy + KxDyB, — B,D,K, — P,C,K, =0.
We then have
V(s)V"(=s) = T Cx(sT = Ax + KCy) ™ (B — KxDx) + D]
x [(By = DLKL)(sI - A, + CLK)Cl + D]y
= I + TmCr(s] = Ax + KxCy) ™ (Bx — KxDx)
x (B, — DLK.)(—sI — A\ + CLK.)"1C.T'
— TG (I — Ay + KxCy) ' PeC T
— TCxPx(=sI — A\ + C.K')™1C' Ty
= I 4+ TCx(sI = Ay + KxCy)™ [(Bx — KyDy)
x (BY — D.K.) — Py(—sI — Al + CLK})
—(sI — Ax + KxCx)Px] (s = AL+ C.K)™C! T
= [+ TmCr(s] — Ax + KxCy) ™! [KxCxPx + KxD<B.
- B.D'K! - ch;K;] (—sI — A" + C.K)™2C Ty
=1
We now proceed to show that G(s) = G (s)V (s). Let us define

®,(s) = (s — Ax + K Cy) 72,
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274

KcO ch
®, (s
xo( ) ] K: K
Qx(s) = ) BK = 0 0 3
0
0 0 0
0 By
and
BCO 0 Bc
) B, . 0 ) 0
Bo=|By|, Ba=| 0|, B.={ 0
By 0 0
Byo By 0
It then follows that
B=Ts[By By B.Iy!,
BmI‘m = FS[B{] 0]+FSBK7
Bul'mDy =Ts[By 0 O]IT'+Ts[Bx 0]I;,
DLy Ci®4(s) = CT @y (s),
and

O O O M

(IBo 0]+ Bx) Cx®x(s) + T (sI — ATy, (s) =

‘We now have
Gu(s)V(s) = [C(sI — A B + Dm] T'm
x [Cx(s] = Ax + KxC) ™ (Be - KuDy) + Dy
=C(sI - A7 !Byl
X [Culs = Ax + KxC)™ (Be — D) + Dy
+ D' Cx(sI — Ax + KCy) ™Y (Bx — KxDy) + D
= C(sI - A)™ [ermcx<1>x(s)(3x - KxCy) + BulmDyx

+ (sI — A)Ts®(s)(Bx — KxDx)] +D
= C(sI - A)“‘I‘s{ ([Bo 0] + BK) Ce®x(5)(Bx — K Dy)

+[By 0 O]T;'+[Bc 0Tt
+T7Y(sT = ATy (s)(Bx ~ KxDx)} +D

=C(sI - A)-lrs{[I 0 0 0] (Bx— KDy
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+1By 0 0T +[Be O} +D
= C(sI-A)""T{[Bo 0 0]+[0 Ba 0]+[0 0 B]}ry+D
=C(sI-A)'B+D
= G(s).

Finally, the fact that G(s)G'(—s) = Gm(8)Gp,(—3) follows immediately from
the fact that V(s)V'(-s) = I. =

We illustrate the above results by the following example.

Example 8.3.1. Consider a system ¥ characterized by (4, B, C, D) with

(11 111 [0]0 1]
01 011 010 0O

A=]100 -1 11}, B=(0|0 0]}, (8.3.14)
00 011 0|0 0
11 111 | 0|1 0
10101 1]0 0

C=100060T1}, D=]10|0 0]. (8.3.15)
(00010 L 0j0 0]

The given ¥ has a transfer function G(s),
G(s) = !

85 — 33 — 283 + 332 — 8
[35—334—-233+3s2—s 44+2-1  st—-58-3s2+1
x 0 s-283+25-1 $B-s?—s+1 |.
0 3—s2—s5+1 s2-1 }
This system is neither left nor right invertible and has two invariant zeros at
{~1, 1}. Hence, it is of nonminimum phase. Moreover, it is easy to verify that &
is in the form of the special coordinate basis with

11 _fo o1 (10
A"“[o 1]’ B"‘[o 0 o]’ C"_[l 1]’

[t oo [t o
Dx_[o 1 0]’ F"“[o 1}'

Thus, following the procedure given in STEPS FACT-NSP.2 to FACT-NSP.3, which
involves solving a Riccati equation, we obtain,

1.412771 1.063856}

K= [—0.348915 2.255424
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1.412771 1.063856

—0.348915 2.255424 10
Bm: 0 0 , Dy = 0 0 3
0 0 00
0 1
Gm(s) = < (Gri(s) Guma(s)]
Mm% T 65 351 — 253 + 352 — gt ML m2 ’
and
V(s) = -
%) = 2 ¥ 2.73205s + 1.73205
s2+1.319285—-0.06386 —1.06386s—1.19157  s-+1.25542
—1.063865+1.41277 s2—0.587235—0.76169 s—0.65100 |’
where

§°—1.58723s%—4.1106s3 —1.587235%—0.30217s+1.41277
Gmi(s) = 1.063865% —1.41277s2—1.063865+1.41277 )
1.063865%—0.34892s—1.41277

and

2.063865% +3.446995% — 09361452~ 2.510855 +0.06386
Gma(s) = |  s*+1.3192853—1.063865%—1.319285+0.06386
§%42.319285% +1.255425~0.06386

A similar generalized cascade factorization can also be obtained for general
nonstrictly proper and non-left invertible systems. We have the following result.

Theorem 8.3.2. Consider a general system X, which has been transformed into
the special coordinate basis as given in (8.3.1) to (8.3.3). Assume that its awkward
invariant zeros are observable and are dumped in A\(A,). One can then construct
a generalized cascade factorization G(s) = G u(s)U(s) such that

1. The minimum-phase counterpart of ¥ is given by ., characterized by the
matrix quadruple (A, By, C, Dy) with a transfer function matrix G y(s) =
C(sI~A)~!By+ Dy, where

BcO + KcO ch

BhL+ K} KX Imy O
By =T, B, 0 |Iz', Du=T,| 0 oI,
Buo 0
By By
(8.3.16)
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and where

&qu (8.3.17)

Ky =
K5 K2

is specified such that \( A — KxCy) are in the desired locations in C ™. Here
we note that A, Cx and Ty, are as defined in (8.3.4) to (8.3.6). Furthermore,
Y., is also left invertible and has the same infinite zero structure as X.

2. The factor U(s) is given as
U(s) = I'nm [Cx(sI — Ay + KxC)"Y(By — K Dy) + Dy|, (83.18)
where U (s) is stable, right invertible and asymptotically all-pass, i.e.,
U@)U'(-s) =1 as |s| = oo (8.3.19)
Proof. It follows the same line of reasoning as in the proof of Theorem 8.2.2. =
We illustrate this generalized factorization by the following example.

Example 8.3.2. Consider the same system ¥ given in Example 8.3.1. Let us
choose K, such that A(Ax — KxCx) = {—2, —3}. We then obtain

2 1
2 1 -4 4 10
m:L4A,m= 0 0|, Du=|0 0],
00 0 0
01
1
GM(S)_35—334—253+332—3
5 —st—128%3 -T2+ Ts+2 2s* +7s% + 152 —6s
X —25% — 252 + 25+ 2 st 4353 -52-3s |,
—2s%2 — 45 -2 s3 + 452+ 3s
and

U(s) =

1 s2+3s —-s-3
s24+55+6|2s+2 s2-5

Finally, we conclude this section with the following theorem dealing with the
inner-outer factorization for general systems.
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Theorem 8.3.3. Consider a general nonstrictly proper and stable transfer func-
tion G(s), which might have invariant zeros on the imaginary axis. Let the ma-
trix quadruple (A, B, C, D) be a realization of its transposed system, G'(s), with
(A, C) being detectable. Let us treat all the invariant zeros of G(s) or (A, B, C, D)
on the imaginary axis as ‘good ones’ and dump them in A\(A7, ), and then follow
the result of Theorem 8.3.1 to construct a ‘minimum-phase/all-pass factorization’
of G'(s), i.e.,

G'(s) = Gm(s)V(s), (8.3.20)

where G, (s) is left invertible and has no invariant zeros in C*, and V (s) is an
all-pass factor. Then,
G(8) = Gi(8)Go(s) = V'(s)G,(s) (8.3.21)

is an inner-outer factorization of G(s), where G;(s) = V'(s) is an inner factor of
G(s), ie,
Gi(-3)Gi(s) = V(=9)V'(s) = I, (83.22)

and G,(s) = G' (s) is an outer factor, whose right-inverse is analytic in C*.

8.4 Discrete-time Systems

In this section, we consider system factorizations for a general discrete-time sys-
tem characterized by

{z(k+1) = A z(k) + B u(k), 8.4.1)

y(k) =C z(k) + D u(k),
where the state vector z € R™, output vector y € R? and input vector u € R™.

Without loss of generality, we assume that [ B’ D']and [C D] are of maximal
rank. Let the transfer function of ¥ be

G(z) =C(2I - A)"'B + D. (8.4.2)

Since the generalized cascade factorization, which results in an asymptotic all-
pass factor, does not make too much sense in the discrete-time setting, we will
investigate only the inner-outer factorization and the minimum-phase/all-pass fac-
torization for the system of (8.4.1). For a proper and stable transfer function G(z),
its inner-outer factorization is defined as

G(2) = Gi(2)Go(2), (8.4.3)
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where Gi(z) is an inner matrix satisfying G'(z~')G(2) = I, and G,(z) is an
outer matrix, which is right invertible and has no infinite zeros and no invariant
zeros outside the unit disc (i.e., C®). Similarly, the minimum-phase/all-pass fac-
torization of G(z), which does not possess any invariant zeros on the unit circle,
is defined as

G(z) = Gm(2)V (2), (8.4.4)

where G (2) is left invertible and of minimum-phase with no infinite zeros, and
V (z) is an all-pass factor satisfying V (2)V'(z7!) = I.

In principle, we can follow similar arguments as in the continuous-time case
of the previous sections to obtain explicit expressions for these factorizations. Ac-
tually, this was what Lin et al. [89] had done in deriving the expressions for the
discrete-time inner-outer factorization. In this section, however, we will show that
with the help of the bilinear transformation and inverse bilinear transformation of
Chapter 7, the discrete-time system factorization problem can be converted into
an equivalent problem in the continuous-time setting, which can be solved using
the results of Sections 8.2 and 8.3. The procedure is straightforward:

1. STEP D-FACT.1.

Apply the inverse bilinear transformation of (7.3.3) with ¢ = 1 to the
discrete-time system (8.4.1) or its transfer function in (8.4.2) to obtain a
continuous-time mapping:

1+s

Gls) = G(2) z=(1+s)/(1—s)= (1 -8

-1
I- A) B+D. (84.5)

A state-space realization of G(s) can be found in Lemma 7.3.1.

2. STEP D-FACT.2.

Utilize the result of Theorem 8.3.1 to find a minimum-phase/all-pass fac-

torization of G(s),

G(s) = Gm(s)V(s), (8.4.6)
or utilize the result of Theorem 8.3.3 to obtain an inner-outer factorization
of G(s),

G(s) = Gi(8)Go(9). 8.4.7)

3. STEP D-FACT.3.

Apply the bilinear transformation (7.2.3) with @ = 1 to compute

, V()= 8.4.8
s=(z—1)/(2+1) (z) (S) s=(z—1)/(z+1) ( )

<

G (2) = Gu(s)
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for the minimum-phase/all-pass factorization, or to calculate

Gi(z) = Gi(s) Go(z) = Go(s) (8.4.9)

s=(z=1)/(z+1)’ s=(z-1)/(z+1)

for the inner-outer factorization. The state-space realizations of the corre-
sponding discrete-time transfer functions can be found using Lemma 7.2.1.

4. STEP D-FACT.4.

Then the inner-outer factorization of G(2) is given by
G(2) = Gi(2)Go(2), (8.4.10)
and the minimum-phase/all-pass factorization is given by

G(z) = Gm(2)V (2). (8.4.11)

The claim of the above algorithm follows from the results of the following
lemmas.

Lemma 8.4.1. Consider a continuous-time transfer function V (s) and its discrete-
time counterpart V (z) under the bilinear transformation. Then, V (s) is an all-pass
(inner) factor if and only if V (z) is all-pass (inner) factor.

Proof. If V() is an all-pass in the continuous-time domain, i.e.,

then

V() =T (i . 1) 7' (-i-}i-%)
=V (j:) v (—Zi) =V (s)V (-s) = 1.

Thus, V() is an all-pass factor in the discrete-time domain. Similarly, we can
show the converse part and the result for the inner factors. [

Lemma 8.4.2. Consider a continuous-time transfer function G (s) and its dis-
crete-time counterpart G o(z) under the bilinear transformations. Then, G(s) is
an outer matrix if and only if G, (z) is an outer matrix.

Proof. It follows directly from Theorems 7.2.1 and 7.3.1. =

We illustrate the results of this section in the following example.
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Example 8.4.1. Consider a discrete-time system ¥ characterized by (A, B, C, D)
with

0.5 0 0 02 02 0 01
0 0 0 1 1 0 00
A= 0 0 1.1 0 1|, B={1 0 0}, (8.4.12)
0 0 0 1 1 0 0O
-0.2 0.2 -02 -01 0.1 010
and
0 00 O00O 1 00
C=(0 00 0 1], D=|0 0 0}. (8.4.13)
00010 0 0O

Itis simple to verify that (A4, B) is stabilizable and that the above system is neither
left nor right invertible with two invariant zeros at z = 0 and 2 = 1.1 and one
infinite zero.

Following the formulae given in Lemma 7.3.1, we obtain a continuous-time
counterpart of ¥, which is characterized by (fi, B,C, D) with

-0.31799 -0.02302 0.01096  0.14906  0.11508
0.11508 -1.17263 0.08220 1.11796  0.86313

A= 010960 -0.16441 0.12591 0.11234  0.82203
0.11508 -—0.17263  0.08220 0.11796  0.86313
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