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Preface 

Structural properties play an important role in our understanding of linear systems 
in the state space representation. The structural canonical form representation of 
linear systems not only reveals the structural properties but also facilitates the 
design of feedback laws that meet various control objectives. In particular, it 
decomposes the system into various subsystems. These subsystems, along with 
the interconnections that exist among them, clearly show the structural properties 
of the system. The simplicity of the subsystems and their explicit interconnections 
with each other lead us to a deeper insight into how feedback control would take 
effect on the system, and thus to the explicit construction of feedback laws that 
meet our design specifications. The discovery of structural canonical forms and 
their applications in feedback design for various performance specifications has 
been an active area of research for a long time. The effectiveness of the structural 
decomposition approach has also been extensively explored in nonlinear systems 
and control theory in the recent past. 

The aim of this book is to systematically present various canonical represen
tations of the linear system, that explicitly reveal different structural properties of 
the system, and to report on some recent developments on its utilization in sys
tem analysis and design. The systems we will consider include the autonomous 
system, whose inherent properties are solely determined by a matrix that repre
sents its dynamics; the unforced or unsensed system, whose inherent properties 
are dependent on a pair of matrices, the matrix that represents its internal dynam
ics and the measurement or control matrix; and the proper system whose inher
ent properties are determined by a matrix triple or a matrix quadruple. We will 
also consider linear descriptor systems whose structural properties are determined 
by a matrix quintuple. All the results will be presented in both continuous-time 
and discrete-time settings. The relationship between the structural properties of a 
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continuous-time system and those of its discrete-time counterpart under a bilinear 
transformation will also be established. 

The intended audience for this book includes graduate students, practicing 
control engineers and researchers in areas related to systems and control engineer

ing. In writing this book, we have striven to make the presentation self-contained. 
A comprehensive review of various topics from matrix theory and linear systems 

theory is included in the beginning of the book. However, it is assumed that the 

reader has previous knowledge in both linear algebra and linear systems and con

trol theory. 
The first two authors would like to express their hearty thanks to late Professor 

Chin S. Hsu of Washington State University, for his kind help during their stay at 
Washington State University, and for his vivid and entertaining lectures on linear 
systems theory. A number of exercise problems in Chapter 3 are adopted from 

the homework assignments and examination questions of his course. They would 
also like to thank Professor Ali Saberi of Washington State University and Pro

fessor Pedda Sannuti of Rutgers University for their rigorous supervision during 

the PhD programs of the first two authors at Washington State University, and in 

particular, for their guidance to the theory of the special coordinate basis of linear 
systems, one of the key components presented in this manuscript. The third au

thor would like to express his thanks to Professor Ali Saberi for introducing him 
to this research topic and his initial collaboration. The first author is particularly 
thankful to Professor Pedda Sannuti for his invaluable guidance on the preparation 
of scientific manuscripts. The second author would like to thank Professor Gong
tian Yan of Beijing Institute of Control Engineering for his rigorous instruction on 
matrix theory and linear systems theory. 

We are indebted to Mr. Xinrnin Liu of the National University of Singapore 
for his assistance in developing a MATLAB software toolkit for this book, and to 

Professor Dazhong Zheng of Tsinghua University for his help in proofreading the 
manuscript. We are thankful to Dr. Delin Chu, Dr. Kemao Peng, Mr. Guoyang 
Cheng, Mr. Yingjie He and Dr. Minghua He, all of the National University of Sin
gapore, for their many comments on the manuscript. We would also like to thank 
Professor Tong H. Lee of the National University of Singapore, Professor Frank 
L. Lewis of the University of Texas at Arlington, Professor Iven Mareels of the 
University of Melbourne, and Professor Mehrdad Saif of Simon Fraser Univer
sity, for many beneficial discussions on the subject. The authors are grateful to 
their respective institutions, the National University of Singapore, the University 
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of Virginia, and the State University of New York at Stony Brook, for excellent 

environments for fundamental research. 

We are indebted to Professor William S. Levine, the series editor, for his en

thusiasm and encouragement of our effort in completing this book. We are also 

thankful to the editorial staff at Birkhauser, in particular, Mr. Thomas Grasso and 

Mr. Seth Barnes, for their excellent editorial assistance. 

Finally, we note that each of the computational algorithms included in the 

book has been implemented in the Linear Systems Toolkit, in the MATLAB envi

ronment. Access to the toolkit, a beta-version of which is available at the web site, 

http://linearsystemskit . net, will greatly facilitate understanding and 

application of the various analysis and design algorithms presented in the book. 

Interested readers who have our earlier versions of the software realization of the 

special coordinate basis, i.e., those reported in Chen (1988) [17], Lin (1989) [~4] 

and Lin et a1. (1991) [90], are strongly encouraged to update to the new toolkit. 

The special coordinate basis, one of the structural decomposition techniques cov

ered in this book, implemented in the new toolkit, is based on a numerically stable 

algorithm recently reported in Chu et a1. (2002) [36] together with an enhanced 

procedure reported in this book. 

This monograph was typeset by the authors using LATEX. All simulations and 

numerical computations were carried out in MATLAB. Diagrams were generated 

using XFIG in LINUX and MATLAB with SIMULINK. 

Ben M. Chen, Kent Ridge, Singapore 

Zongli Lin, Charlottesville, Virginia 

Yacov Shamash, Stony Brook, New York 

June 2004 
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Chapter 1 

Introduction and Preview 

1.1 Motivation 

The state space representation of linear systems is fundamental to the analysis and 
design of dynamical systems. Modern control theory relies heavily on the state 
space representation of dynamical systems, which facilitates characterization of 
the inherent properties of dynamical systems. Since the introduction of the con

cept of a state, the study of linear systems in the state space representation itself 
has emerged as an ever active research area, covering a wide range of topics from 
the basic notions of stability, controllability, observability, redundancy and mini

mality to more intricate properties of finite and infinite zero structures, invertibil
ity, and geometric subspaces. A deeper understanding of linear systems facilitates 
the development of modern control theory. The demanding expectations from 
modem control theory impose an ever increasing demand for the understanding 
and utilization of subtler properties of linear systems. 

The importance of linear systems theory and the active research activities as
sociated with it are also reflected in the continual publication of text books and 
monographs in linear systems theory, especially since publication of the classic 
works on state space approach and other associated topics such as controllabil
ity, observability and stability by Kalman and his co-workers [66,71-73], Gilbert 

[58], and Zadeh and Desoer [157]. A recent featured review of books on linear 
systems by Naidu [103] contains an extensive survey of books published in differ
ent periods of time. A few examples of earlier books published around the 1960s 
and 1970s are DeRus so et al. (1965) [47], Ogata (1967) [104], Brockett (1970) 
[14], Chen (1970) [32], Rosenbrock (1970) [112], and Blackman (1977) [13]. Ex-

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004



2 Chapter 1. Introduction and Preview 

amples of relatively recent books on linear systems that appeared in the 1980s and 
later are Kailath (1980) [70], McClamroch (1980) [98], Chen (1984) [33], De
Carlo (1989) [46], Sontag (1990) [132], Antoulas (1991) [3], Callier and Desoer 
(1991) [16], Rugh (1996) [114], Antsaklis and Michel (1997) [4], DeRusso (1998) 
[48], Sontag (1998) [133], Bay (1999) [10], Chen (1999) [34], Aplevich (2000) 
[5], and Trentelman et aI. (2001) [141]. 

These books take different pedagogical approaches to presenting fundamental 
aspects of linear systems theory and to reporting on new advances in the field. 
This book takes a structural decomposition approach to the study of linear time
invariant systems. Structural decomposition is not a new concept, and several 
structural decompositions can be found in many existing text books on linear sys
tems theory. Basic properties such as stability, controllability and observability 
of a linear time-invariant system in the state space representation can all be char
acterized in terms of coefficient matrices. For a controllable system, the inner 
working of how each control signal reaches different parts of the system can be 
characterized by the controllability index, a structural property that is invariant 
under state transformation. Appropriate state variables can be chosen such that 
the system is represented in a so-called controllable canonical form, from which 
the controllability indices can be readily identified and a stabilizing feedback law 
can be constructed in a straightforward way. The representation of controllable 
canonical form is a structural decomposition, which reveals the controllability in
dices of the system. Other examples of structural decomposition that can be found 
in linear systems theory text books include the observable canonical form (which 
reveals the observability indices), and the Kalman Decomposition (which charac
terizes the controllability and observability of the system modes). 

The above structural decompositions demonstrate their power in our study of 
the problems of stabilization and state observation. However, the study of control 
problems beyond stabilization and state observation entails the understanding of 
structural properties more intricate than controllability and observability. For ex
ample, control problems such as H 2 and H 00 optimal control are closely related 
to subtler structural properties such as finite and infinite zero structures and sys
tem invertibility properties. Naturally, there have always been efforts devoted to 
the study of various structural properties of linear systems and their utilization in 
the analysis and design of control systems. As such, it is appropriate to trace a 
short history of the development of structural decomposition techniques for linear 
systems. To the best of our knowledge, the concept of utilizing structural decom
position of a dynamical system in solving control problems beyond stabilization 
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first arose while dealing with high gain and cheap control problems (see e.g., San
nuti [121]). By separating the finite and infinite zero structures of what are now 
known as uniform rank systems, Sannuti [121] showed the usefulness of utilizing 

the special coordinate basis, a structural decomposition, to discuss the important 

features of high gain and cheap control problems. Sannuti and Wason [123] later 
extended the concept of the special coordinate basis to general invertible systems 
and showed its significance in connection with multivariable root locus theory. By 
utilizing a modified structural algorithm of Silverman [l31], Sannuti and Saberi 
[122] and Saberi and Sannuti [119] solidified the concept of the special coordinate 
basis of general linear multivariable systems, which is structure-wise fairly sim
ilar to the nine-fold canonical decomposition of Aling and Schumacher [2], and 
identified most of its important properties including those that are related to cer
tain subspaces encountered in geometric control theory and the invariant indices 

of Morse [100]. However, all the properties of the special coordinate basis in 
the original work of [122,119] were reported without detailed proofs. The theory 
was recently completed by Chen [21], which includes rigorous proofs to all the 
aforementioned properties within the framework of the special coordinate basis 

for general strictly and nonstrictly proper systems. More recently, He and Chen 
[64] and He, Chen and Lin [65] further extended the technique to general linear 
singular or descriptor systems. Also, in the past several years, we, together with 
our co-workers, have been studying the structural properties and demonstrating 
the applications of structural decompositions in the solution of numerous control 

problems, in a systematic manner. A coherent approach to linear systems theory 
and control has emerged from our results, which are dispersed in the literature, 
many in relatively abstract forms. It is our intention to bring these results together 
with more detailed illustrations and interpretations, and put them under a single 
cover. 

1.2 Preview of Each Chapter 

Briefly, the book contains 12 chapters, which can be naturally divided into three 
parts. The first part, Chapters 1 to 3, deals with the needed background material 

and can serve as a comprehensive review of linear systems theory. In particular, 
Chapter 1 is the introduction to the book. It also introduces the notation to be used 
throughout the book, while Chapter 2 collects some basic facts from matrix theory. 
Chapter 3 summarizes essential elements of linear systems theory. Both Chapter 2 
and Chapter 3 serve as a review of the background materials needed for the book. 
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The second part of the book, Chapters 4 to 7, presents various structural de

compositions for linear systems, both in continuous-time and in discrete-time. 
Various intricate system properties are identified in the context of these structural 

decompositions. In particular, Chapter 4 presents structural decompositions for 

systems that are unforced and/or unsensed. For systems that are both unforced 
and unsensed, i.e., autonomous systems, the structural properties center on sys
tem stability and include the stability structural decomposition (SSD), in which 
the system is decomposed into stable and unstable dynamics as well as dynamics 
that are associated with the imaginary axis poles, and the real Jordan decompo

sition (RID). As in all other decompositions presented in this book, strong em
phasis is placed on the numerical stability of the algorithms we develop for these 
decompositions. For unforced systems, we will present two structural decompo
sitions, the observability structural decompositiQn (OSD) and the block diagonal 

observable structural decomposition (BDOSD). Dually, for unsensed systems, we 

will also present two structural decompositions, the controllability structural de
composition (CSD) and the block diagonal controllable structural decomposition 
(BDCSD). These structural decompositions for unforced and/or unsensed systems 
find many applications in control systems, including the sensor/actuator selection 
problem to be discussed in Chapter 9. 

Chapters 5 and 6 present structural decompositions for proper linear systems 
and linear descriptor systems, respectively. Core to the structural decomposi
tions for proper linear systems is the special coordinate basis (SCB) developed 
by Sannuti and Saberi [122] and the nine-fold canonical decomposition of Aling 
and Schumacher [2] for strictly proper systems. These structural decompositions 
display various structural properties of linear systems, including finite and infi
nite zero structures, system invertibi~ity properties and geometric subspaces. The 
structural decomposition for regular systems have been instrumental in the solu
tion of many control problems including the few control problems to be presented 
in Chapters 8 to 11 of this book. We expect the structural decomposition for de
scriptor systems will play similar roles in the solution of control problems for 
descriptor systems. 

Chapter 7 studies the structural properties of a system under bilinear transfor

mation. The bilinear and inverse bilinear transformations have widespread use in 
digital control and signal processing. It has also played a crucial role in solving the 
Hoo control problem. In fact, the need to perform continuous-time to discrete-time 
model conversions arises in a range of engineering contexts, including sampled
data control system design and digital signal processing. As a consequence, nu-
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merous discretization procedures exist, including zero- and first-order hold input 

approximations, impulse invariant transformation, and bilinear transformation. In 

this chapter, we present a clear and comprehensive understanding of how the 

structures, i.e., the finite and infinite zero structures, invertibility structures, as 

well as geometric subspaces of a general continuous-time (discrete-time) linear 

time-invariant system are mapped to those of its discrete-time (continuous-time) 

counterpart under the well-known bilinear (inverse bilinear) transformations. 

The remaining chapters of this book contain several applications of the system 

structural decompositions presented in Chapters 4 to 7 in the analysis and design 

of linear control systems. 

Chapter 8 presents algorithms for two system factorizations of general linear 

systems, the minimum phase and all-pass cascade factorization, which covers the 

well-known inner-outer factorization as a special case, and the generalized cas

cade factorization. These factorizations have been important algebraic problems 

in a variety of areas in electrical engineering, including systems and control anal

ysis design. In particular, the minimum phase and all-pass cascade factorization 

factors a general nonminimum phase and non-left invertible system into a mini

mum phase and left invertible system cascaded with a stable all-pass system with 

unity gain. Our algorithm demonstrates how straightforward it is to obtain such 

a factorization, and consequently the inner-outer factorization, of a given system 

once it is displayed under the structural decomposition of Chapter 5. 

Chapter 9 studies the flexibility in assigning structural properties to a given lin

ear system, and introduces techniques for identifying sets of sensors which would 

yield desirable structural properties. It is well recognized that a major difficulty 

encountered in applying multivariable control synthesis techniques, such as the 

H2 and Hoo control techniques, to actual design is the inadequate study of the 

linkage between control performance and design implementation involving hard

ware selection, e.g., appropriate sensors suitable for robustness and performance. 

This linkage provides a foundation upon which trade-offs can be considered at the 

preliminary design stage. Thus, one can introduce careful control design consid

erations into the overall engineering design process at an early stage. 

Chapter 10 deals with the problem of asymptotic time-scale assignment. Based 

on the structural decomposition of a given system, a systematic procedure is de

veloped for designing feedback laws that result in pre-specified eigenstructures 

of the closed-loop system. The essence of this time-scale assignment procedure 

is the utilization of subsystems which represent the finite and infinite as well as 

invertibility structures of the system, as revealed by the structural decomposition. 
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This time-scale assignment procedure has proven to be instrumental in the solu
tion of many modern control problems including H 00 control, H2 control, loop 
transfer recovery and disturbance decoupling problems. 

Chapter 11 addresses the problem of disturbance decoupling with or without 
internal stability by either state feedback or measurement feedback. The problem 
of disturbance decoupling has been extensively studied for the past three decades. 
It motivated the development of the geometric approach to linear systems and 
control theory, and has played a key role in a number of problems, including de
centralized control, noninteracting control, model reference tracking control, and 
Hoo optimal control. For the problem of disturbance decoupling with constant or 
static measurement feedback, there have been only a few results in the literature. 
With the aid of the structural decomposition, this chapter derives a set of structural 
conditions for the solvability of the disturbance decoupling problem with static 
measurement feedback and characterizes all the possible solutions for a class of 
systems which have a left invertible transfer function from the control input to the 
controlled output. For general systems, solutions can be derived by applying a 
similar procedure to an irreducible reduced-order system obtained from the given 
system using the structural decomposition technique of Chapter 5. 

Chapter 12 includes the description of a MATLAB toolkit that implements all 
the analysis and design algorithms presented in the book. The toolkit itself is 
publicly available. The beta-version of the toolkit can be downloaded for free 
from the URL at http://linearsystemskit ,net. 

1.3 Notation 

Throughout this book we shall adopt the following notation: 

IR.:= the set of real numbers, 

IR.+ := the set of nonnegative real numbers, 

N:= the set of all natural numbers, i.e., 0,1,2, .. " 

C : = the entire complex plane, 

OC:= a scalar field associated with a vector space, 

CO := the unit circle in the complex plane, 

C0 := the set of complex numbers inside the unit circle, 

C® := the set of complex numbers outside the unit circle, 

CO := the imaginary axis in the complex plane, 
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c- := the open left-half complex plane, 

C+ := the open right-half complex plane, 

Re a:= the real part of a scalar a E C, 

1m a:= the imaginary part of a scalar a E C, 

a* := the complex conjugate of a scalar a E C, 

0:= a scalar zero or a zero vector or a zero matrix, 

0:= an empty set, 

I:= an identity matrix of appropriate dimensions, 

h := k x k identity matrix, 

diag{· .. } := a diagonal matrix, 

blkdiag{· .. } := a block diagonal matrix, 

X = [Xij] := a matrix X with its entries being Xij, 

X' := the transpose of a matrix X, 

X H := the conjugate transpose of a matrix X, 

det( X) : = the determinant of a matrix X, 

rank(X) := the rank of a matrix X, 

normrank( X) : = the normal rank of a rational matrix X, 

trace ( X) := the trace of a matrix X, 

cond(X) := the condition number of a matrix X, 

xt := the Moore-Penrose (pseudo) inverse of a matrix X, 

Ai (X) := the i-th eigenvalue of a matrix X, 

Amin (X) := the minimum eigenvalues of a matrix X whose A(X) c JR, 

Amax(X) := the maximum eigenvalues of a matrix X whose A(X) c JR, 

.\(X) := the set of eigenvalues of a matrix X, 

p(X) := the spectral radius of a matrix X, 

O'i(X) := the i-th singular value of a matrix X, 

O'min (X) := the minimum singular value of a matrix X, 

0' max (X) : = the maximum singular value of a matrix X, 

im (X) : = the image or range space of a matrix X, 

ker (X) : = the kernel or null space of a matrix X, 

X := a vector space or subspace, 

7 



8 Chapter 1. Introduction and Preview 

dim (X) : = the dimension of a subspace X, 

X.L := the orthogonal complement of a subspace X, 

C-1 {X} : = the inverse image of subspace X associated with C, 

X IV := the factor space of X modulo its subspace V, 

61 := direct sum of vector subspaces, 

(x, y) : = the inner product of two vectors x and y, 

II . II := a norm, 

Ilxllp := p-norm of a vector x, p E [1,00], 

Ixl := Euclidean norm of a vector x, 

IIXllp := p-norm of a matrix X, p E [1,00], 

IIXIIF:= Frobenius norm of a matrix X, 

IIgllp:= the lp-norm of a signal, g(t) or g(k), 

Lp := the set of all functions whose lp-norms are finite, 

IIGII2:= theH2-normofa stable system G(s) orG(z), 

IIGlloo := the Hoo-norm of a stable system G(s) or G(z), 

E := a continuous- or discrete-time linear system, 

P:ds) := the system matrix of~, 

Ii (E) : = the invariant lists of Morse, i = 1, 2, 3, 4, 

S~(E) := the finite zero structure of E associated with a finite zero /3, 
S:x, (E) : = the infinite zero structure of E, 

S; (E) := the right invertibility structure of E, 

st (E) := the left invertibility structure of E, 

VX(E) := the weakly unobservable subspace of E, 

SX(E) := the strongly controllable subspace of E, 

R* (E) := the controllable weakly unobservable subspace of E, 

N* (E) := the distributionally weakly unobservable subspace of E, 

and finally the symbol. is used to indicate the end of a proof. 



Chapter 2 

Mathematical Background 

2.1 Introduction 

In this chapter we recall some needed mathematical background materials. These 
include the fundamental facts and properties of vector spaces and matrix theory 
and the definitions and properties of various norms of vectors, matrices, signals 
and rational transfer functions. These materials are particularly useful for devel
oping and understanding results in the following chapters. More detailed infor
mation on the subjects can be found in more specific mathematics textbooks, or 
other texts in linear systems and control theory (see, e.g., Barnett [8], Chen [22], 
Chen [33], Desoer and Vidyasagar [49], Golub and Van Loan [59], Huang [68], 
Kailath [70], Kreyszig [78], Saberi et aI. [120], Suda et aI. [138], Trentelman et 
aI. [141], Wielandt [150] and Wonham [154]). 

2.2 Vector Spaces and Subspaces 

We assume that the reader is familiar with the basic definitions of scalar fields and 
vector spaces. 

Let X be a vector space over a certain scalar field 1K. A subset of X, say S, 

is said to be a subspace of X if S itself is a vector space over lK. The dimension 
of a subspace S, denoted by dim S, is defined as the maximal possible number of 
linearly independent vectors in S. 

We say that vectors 51,52,"" 5k E S, k = dimS, form a basis for S if 
they are linearly independent, i.e., E~=1 (}:i5i = 0 holds only if (}:i = O. Two 
subspaces V and W are said to be independent if V n W = {O}. 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004



10 Chapter 2. Mathematical Background 

Throughout the book, we will focus our attention on two common vector 
spaces, i.e., lRn (with a scalar field lK= lR) 140d en (with a scalar field lK=C), and 
their subspaces. Thus, the inner product of two vectors, say x and y, in either lR n 

or en, is given by 

(2.2.1) 

where Xl, X2, ••• , Xn and YI, Y2, ••• , Yn are respectively the entries of X and y, XH 

is the conjugate transpose of x, and xi is the complex conjugate of Xi. Vectors X 

and Y are said to be orthogonal if (x, y) = O. 
In what follows, we recall some frequently used concepts and properties of 

vector spaces and subspaces. 

Definition 2.2.1 (Sums of subspaces). Let V and W be the subs paces of a vector 
space X. Then, the sum of subspaces V and W is defined as 

s = V + W:= {v + w I v E V, wE W}. (2.2.2) 

If V and W are independent, then S is also called the direct sum of V and W and 

is denoted by S = V EB W. Obviously, in both cases, S is a subspace of X. 

Definition 2.2.2 (Orthogonal complement subspace). Let V be a subspace of a 
vector space X. Then, the orthogonal complement of V is defined as 

Vi := {X E X I (X, v) = 0, 'Vv E V}. (2.2.3) 

Again, Vi is a subspace of X. 

Definition 2.2.3 (Quotient space and codimension). Let V be a subspace of a 
vector space X. The coset of an element X E X with respect to V, denoted by 
X + V, is defined as 

X + V := {w I w = X + v, v E V}. (2.2.4) 

Under the algebraic operations defined by 

(w + V) + (x + V) = (w + x) + V (2.2.5) 

and 
a(w + V) = aw + V, (2.2.6) 

it is straightforward to verify that all the cosets constitute the elements of a vector 
space. The resulting space is called the quotient space or factor space of X by V 
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(or modulo V) and is denoted by X IV. Its dimension is called the codimension of 

V and is denoted by codim V, 

codim V = dim XIV = dim X - dim V. (2.2.7) 

Note that X IV is not a subspace of X unless V = {O}. 

Definition 2.2.4 (Kernel and image of a matrix). Given A E C m x n (or IR m x n), 

a linear map from X =Cn (orlRn) to Y=Cm (orlRm), the kernel ornull space of 

A is defined as 
ker(A) := {x E X I Ax = O}, (2.2.8) 

and the image arrange space of A is defined as 

im(A) = AX:= {Axlx EX}. (2.2.9) 

Obviously, ker (A) is a subspace of X, and im (A) is a subspace ofY. 

Definition 2.2.5 (Inverse image ora subspace). Given A E emxn (or IRmxn), 
a linear map from X = en (orlRn) to Y = em (orlRm), and V, a subspace ofY, 
the inverse image of V associated with the linear map is defined as 

A-1{V} := {x E X I Ax E V}, (2.2.10) 

which clearly is a subspace of X. 

Definition 2.2.6 (Invariant subspace). Given A E en X n (or]R n X n), a linear map 
from X = en (or ]Rn) to X, a subspace V of X is said to be A-invariant if 

AVe V. (2.2.11) 

Such a V is also called an invariant subspace of A. 

The following are some useful properties of subspace manipulations: Let S, 

V and W be subspaces of a vector space, we have 

(S~)~ = S, 

(V + W)~ = V~ n W~, 

(V n W)~ = V~ + W~, 

S + (V n W) c (S + V) n (S + W), 

(2.2.12) 

(2.2.13) 

(2.2.14) 

(2.2.15) 
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Sn(v+W):::> (snV)+(SnW). (2.2.16) 

If V C S, then we have 

S n (V + W) = V + (S n W). (2.2.17) 

Given a linear map A and subspaces V and W of appropriate dimensions, we have 

A(VnW) c AVnAW, (2.2.18) 

A(V + W) = AV+AW, (2.2.19) 

A-I {V n W} = A-I {V} n A-I {W}, (2.2.20) 

A-I {V + W} :::> A-I {V} + A-I {W}, (2.2.21) 

(A-I{V}).L = AHV.L, (2.2.22) 

ker (AH) = {im (A)}.L, (2.2.23) 

where AH is the conjugate transpose of A. Lastly, the following relations are 

equivalent: 

(2.2.24) 

2.3 Matrix Algebra and Properties 

This section gives a brief review of basic matrix algebra and some useful matrix 
properties. For easy reference, we write an m x n matrix, say A E cmxn, as 
follows: 

[

au aI2 

a2I a22 
A= . . 

amI a m 2 

(2.3.1) 

i.e., when a capital letter is used to denote a matrix, the corresponding lowercase 
letter with subscript ij refers to its (i, j) component. The transpose of A is defined 

as 

(2.3.2) 

and its conjugate transpose is defined as 

(2.3.3) 

with· ali being the complex conjugate of a ji. 
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2.3.1 Determinant, Inverse and Differentiation 

For a square matrix A E en X n. its determinant. det (A). is given by 

n 

det (A) = 2) -1)i+1aijdet (Aij), Vi = 1,2, ... , n, (2.3.4) 
j=1 

where Aij is an (n - 1) x (n - 1) matrix obtained by deleting the i-th row and 

j-th column of A. For A(t) : JR ~ e mxn• its differentiation is defined as 

(2.3.5) 

provided that all its entries are differentiable with respect to t. 
If two square matrices A E e nxn and B E e nxn satisfy AB = BA = I. 

then B is said to be the inverse of A and is denoted by A -1. If the inverse of A 
exists. then A is said to be nonsingular; otherwise it is singular. We note that A is 

nonsingular if and only if det (A) f:. O. 
The following are some useful properties and identities of the determinant. 

inverse and differentiation: Given A, B E e nxn and a E C. we have 

det(AB) = det(BA) = det(A)· det(B), 

det (A') = det (A), 

det (aA) = andet (A). 

Suppose A and B are square matrices of appropriate dimensions. Then. 

det [~ ~] =det(A)·det(B-CA-1D) 

if A is nonsingular. or 

det [~ ~] =det(B)·det(A-DB-1C) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 

(2.3.10) 

if B is nonsingular. Given A E e mxn and B E e nxm• it follows from (2.3.9) 

and (2.3.10) that 

det(Im + AB) = det(In + BA). (2.3.11) 

Given a nonsingular A E e nxn• and u, v E en satisfying vH A -1U f:. -1. then 

(2.3.12) 
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which is known as the Sherman-Morrison formula (see Golub and Van Loan [59]) 
and its generalized versions are very handy in deriving many interesting results 
in systems and control theory. The Sherman-Morrison-Woodbwy formula or 
simply the Woodbwy formula below is one of its generalizations, 

(2.3.13) 

where A E cmxm and C E Cnxn are nonsingular, Band D are of appropriate 
dimensions, and (DA -1 B + C-1) is nonsingular. The following identities are 

particularly useful: 

(1 + AB)-l A = A(1 + BA)-l, 

[1 + C(81 - A)-l Btl = 1 - C(81 - A + BC)-l B, 

and 
(1 - BD)-l = 1 + B(1 - DB)-l D. 

(2.3.14) 

(2.3.15) 

(2.3.16) 

Identities below for the inverse of a block matrix (see, e.g., [70]) are also handy: 
If A and B are nonsingular, then 

(2.3.17) 

and 

(2.3.18) 

If A is nonsingular, then 

[ A D]-l = [A-1 +A-1D~-lCA-1 _A-1D~-1] 
C B - ~-lCA-1 ~-1' 

(2.3.19) 

where ~ := B - C A -1 D. Furthermore, if B is also nonsingular, then it follows 

from (2.3.13) that 

and thus (2.3.19) can be rewritten as 

(2.3.20) 

Similarly, if B is nonsingular, then 

(2.3.21) 
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where V' = A - DB-Ie. In addition, if A is also nonsingular, 

(2.3.22) 

Next, given A(t) : lR -+ c mxn and B(t) : lR -+ Cnxp whose entries are 

differentiable with respect to t, we have 

! [A(t)B(t)] = [!A(t)] B(t) + A(t) [!B(t)] . (2.3.23) 

Given A(t) : lR -+ Cnxn , if A(t) is nonsingular for all t and its entries are 

differentiable with respect to t, then 

!!:.. [A(t)-I] = _A(t)-I [!!:..A(t)] A(t)-I. 
dt dt 

(2.3.24) 

2.3.2 Rank, Eigenvalues and Jordan Form 

Let us rewrite a matrix A E Cmxn as 

(2.3.25) 

where Ci, i = 1,2, ... , n, and ri, i = 1,2, ... , m, are respectively the columns 

and rows of A. The rank of A is defined as the maximum number of linearly 

independent vectors in {C I , C2, ••• , cn }, or equivalently, the maximum number 

of linearly independent vectors in {r I , r2, ... , r m}, and is denoted by rank ( A) . 
Clearly, 

rank (A) = dim {im(An = n - dim {ker (An. (2.3.26) 

The following are some useful properties of matrix ranks. Let A E C mxn and 

BE Cnxk . Then, 

rank (A) + rank (B) - n ::; rank (AB) ::; min{rank (A), rank (B)}, (2.3.27) 

which is known as Sylvester's inequality. If A is square and nonsingular, then 

rank(AB) = rank (B). (2.3.28) 

In general, if A and B have the same dimensions, then 

rank (A + B) ::; rank (A) + rank (B). (2.3.29) 
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The computation of matrix ranks plays a crucial role in obtaining the various struc

tural decompositions of linear systems to be developed in this book. The compu

tation of a matrix rank can be carried out efficiently by using the singular value 

decomposition to be reviewed in Section 2.3.4. 

Next, given a square matrix A E Cnxn, a scalar A E C is said to be an 

eigenvalue of A if 

Ax = AX ({::::} (AI - A)x = 0), (2.3.30) 

for some nonzero vector x E en. Such an x is called a (right) eigenvector associ

ated with the eigenvalue A. 
It then follows from (2.3.30) that, for an eigenvalue A, 

rank (AI - A) < n ({::::} det (AI - A) = 0). (2.3.31) 

Thus, the eigenvalues of A are the roots of its characteristic polynomial, 

(2.3.32) 

which has a total of n roots. The set of these roots or eigenvalues of A is denoted 

by A(A) = {Al' A2, ... ,An}. The following property is the Cayley-Hamilton 
theorem, 

The spectral radius of A is defined as 

p(A) := max { IAI I A E A(A)}, 

and the trace of A, defined as 

n 

trace (A) := Laii' 
i=l 

is related to the eigenvalues of A as 

n 

trace (A) = L Ai. 
i=l 

(2.3.33) 

(2.3.34) 

(2.3.35) 

(2.3.36) 

Suppose a square matrix A E cnxn has n linearly independent eigenvectors, 

Xl, X2, •• ·, Xn> respectively associated with eigenvalues, Al, A2, ... , An (which 

need not be distinct). Let 

(2.3.37) 
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which is called the eigenvector matrix of A. Then, we have 

(2.3.38) 

o 
In general, for a square matrix A E en X n, there exists a nonsingular transforma

tion TEen x n and an integer k such that 

T-1AT = J:= [

Jl 

J (2.3.39) 

where Ji , i = 1,2, ... , k, are some ni x ni Jordan blocks ofthe form: 

[

A. 

J .. - ~ 
~ .-

1 

(2.3.40) 

Obviously, Ai E A(A),i = 1,2, ... ,k,andl:~=1 ni = n. The special structure of 

J in (2.3.39) is known as the Jordan canonical form of A. We have implemented 

an m-function, j cf . m, based on an algorithm modified from the result reported 

in Bingulac and Luse [12], for computing this Jordan canonical form. It is known 

that there are substantial numerical difficulties in computing the Jordan form (see, 

e.g., Kailath [70]). However, when it can be computed accurately, it will be very 

useful in displaying the finite zero structure and other properties of linear systems 

in the coming chapters. We would like to further note that although the Jordan 

canonical form is a powerful tool for analyzing system properties, it is seldom 

used in actual applications. The application of the Jordan canonical form in this 

book is mainly for theoretical development and technical analysis. 

The following are some very handy inequalities on eigenvalues of general 

square matrices. More results for special matrices will be given in the next sub

section. For an arbitrary matrix A E en X n, we have 

and 

Amin ( A ;jAH) ~ 1m Ai(A) ~ Amax ( A ;jAH) , 

wherej = A. 

(2.3.41) 

(2.3.42) 
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For A,B E enxn, we have the following inequalities on the eigenvalues of 
A+B, 

(2.3.43) 

and 

( AH+A) (BH+B) Amin 2 + Amin 2 ~ ReAi(A + B) 

( AH+A) (BH+B) ~ Amax 2 + Amax 2 . (2.3.44) 

For square matrices A and B with the same dimension, we have the following 
properties on the eigenvalues of AB, 

A(AB) = A(BA), (2.3.45) 

m~IAi(AB)1 ~ m~IAi(A)I· m~IAi(B)I, 
I , I 

(2.3.46) 

and 

(2.3.47) 

For A E Cnxm and B E Cmxn with n > m, we have 

A(AB) = A(BA) U {~} => trace (AB) = trace (BA). (2.3.48) 
n-m 

In particular, for x, z E en. 
A(XZH) = { ZHX, p, 0, ... ,~} => ZHX = trace (xzH). 

... 
(2.3.49) 

n-l 

2.3.3 Special Matrices 

In this section we discuss some commonly used special matrices. Special attention 
will be paid to positive and positive semi-definite matrices as they play a key 
role in solving many systems and control problems, especially in those problems 
related to system stability. Given an A = [aij] E cmxn, we say that A is a 
diagonal matrix if aij = 0 whenever i "# j. For a square diagonal matrix A E 
cnxn, we occasionally write 

(2.3.50) 
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i.e., aii = Qi, i = 1,2, ... , n. Similarly, we write a block diagonal matrix 

1 = blkdiag{A1 , A2, ... , Ad· 

Ak 

(2.3.51) 

The following are several important types of square matrices. We say that a 

matrix A E IRnxn is 

1. symmetric if A' = A (such a matrix has all eigenvalues on the real axis); 

2. skew-symmetric if A' = - A (such a matrix has all eigenvalues on the imag

inary axis); 

3. orthogonal if A' A = AA' = I (such a matrix has all eigenvalues on the 

unit circle); 

4. nilpotent if A k = 0 for integer k (such a matrix has all eigenvalues at the 

origin); 

5. idempotent if A2 = A (such a matrix has eigenvalues at either 1 or 0); 

6. a permutation matrix if A is nonsingular and each one of its columns (or 

rows) has only one nonzero element, which is equal to 1. 

We say that a matrix A E enxn is 

1. Hermitian if AH = A (such a matrix has all eigenvalues on the real axis); 

2. unitary if AHA = AAH = I (such a matrix has all eigenvalues on the unit 

circle); 

3. positive definite if xH Ax > 0 for every nonzero vector x E en; 

4. positive semi-definite if x H Ax ~ 0 for every vector x E en; 

5. negative definite if x H Ax < 0 for every nonzero vector x E en; 

6. negative semi-definite if x H Ax :S 0 for every vector x E en; 

7. indefinite if A is neither positive not negative semi-definite. 

If A is positive definite (positive semi-definite), we write A > 0 (A ~ 0), and if A 
is negative definite (negative semi-definite), we write A < 0 (A :S 0). Given two 

Hermitian matrices A, B E enxn , we write A ~ B if A - B ~ 0, and A > B if 

A- B > O. 
In systems and control applications, we are particularly interested in results 

related to the positive definiteness and positive semi-definiteness of symmetric 
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or Hermitian matrices. We present below some useful results on symmetric or 

Hermitian matrices and definite matrices. 

Given a Hermitian matrix A E cnxn, which has all real eigenvalues, i.e., 

A(A) = {AI, A2, ... ' An} c JR, and letting 

we have 

and 

Amin(A) := min{.X(A)}, Amax(A):= max{.X(A)}, 

xHAx 
Amin (A) = min -H-' x,eo X X 

(2.3.52) 

(2.3.53) 

Suppose A, B E cnxn are Hermitian. Then, we have the following inequalities 

concerning the eigenvalues of A + B, 

m~x IAi(A + B)I ~ m~ IAi(A)1 + m~x IAi(B)I, (2.3.55) 
t t t 

Amin(A) + Amin(B) ~ Ai(A + B) ~ Amax(A) + Amax(B), (2.3.56) 

AminCA + B) ~ min{AmaxCA) + AminCB), AminCA) + AmaxCB)}, (2.3.57) 

Amax(A + B) 2: max{AmaxCA) + Amin(B), Amin(A) + Amax(B)}. (2.3.58) 

We also have the following inequalities on the eigenvalues of AB, 

where Ai (.) is assumed to be arranged such thatA I (-) 2: A2 (.) 2: ... 2: An (-). 
It is known that a Hermitian matrix is positive definite (positive semi-definite) 

if and only if all its eigenvalues are positive (nonnegative), and it is negative def

inite (negative semi-definite) if and only if all its eigenvalues are negative (non

positive). Let a Hermitian matrix A E cnxn be partitioned as 

A = [A!l A12], 
A12 A22 

(2.3.60) 

with Au and A22 being square. Then, A is positive definite if and only if either 

one of the following conditions holds: 

(2.3.61) 
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or 

(2.3.62) 

Using this result repeatedly, one can show that A is positive definite if and only if 

all its leading principal minors are positive, and that A is positive semi-definite if 

and only if all its principal minors are nonnegative. We note that similar results 

can be obtained on negative definite and negative semi-definite matrices. 

Given two Hermitian matrices A, BEen x n, we have 

(2.3.63) 

If A and B commute, i.e., AB = BA, then 

A > B > ° => Ak > Bk > 0. (2.3.64) 

Given Hermitian matrices A, B, S E enxn with A > 0, B > ° and S > 0, then 

ASA > BSB => A > B. (2.3.65) 

Unfortunately, the converse of (2.3.65) is generally not true. But, we have 

A> B ::} there exists an S = SH > ° such that ASA > BSB. (2.3.66) 

The following properties of A + Band AB are also very useful in the deriva

tion of many results in linear systems and control theory. Given two Hermitian 

matrices A, B E enxn , and assuming that the eigenvalues of A and A + B are 

respectively arranged as: 

(2.3.67) 

and 

(2.3.68) 

we have 

(2.3.69) 

if B > 0, and 

(2.3.70) 

if B ~ 0. Given two Hermitian matrices A, BE enxn with B > 0, we have 

.A(AB) c JR and .A(AB-1 ) c JR, (2.3.71) 
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i.e., the eigenvalues of both AB and AB -1 are real, in particular, 

and 

\ (AB- 1 ) . xH Ax 
Amin = mIn -B ' 

x#O xH x 

( -1 xHAx 
Amax AB ) = max -B . 

x#O xH x 

(2.3.72) 

(2.3.73) 

Obviously, if, in addition, A is also positive definite (positive semi-definite), then 

all the eigenvalues AB and AB-1 are positive (nonnegative). 

Given two Hermitian matrices A, B E Cnxn with A ~ 0 and B ~ 0, we have 

Amin(B)Amax(A) ~ Amin(B) trace (A) ~ trace (AB) ~ Amax(B) trace (A). 
(2.3.74) 

2.3.4 Singular Value Decomposition 

Given a matrix A E em x n, its singular values are defined as 

(2.3.75) 

where k : = min {m, n}, assuming that the eigenvalues of AHA and AA H are ar

ranged in a descending order. Clearly, we have 0"1 (A) ~ 0"2 (A) ~ ... ~ O"k(A) ~ O. 
The condition number of A is defined as 

(2.3.76) 

Let 

(2.3.77) 

It can be shown that there exist two unitary matrices such that A can be decom

posed as: 

(2.3.78) 

where 

A __ [dOl], L.l. ifm ~ n, (2.3.79) 

or 

d = [d1 0], ifm ~ n. (2.3.80) 

Decomposition (2.3.78) is called the singular value decomposition of A. We now 

recall some useful properties of singular values. 
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Proposition 2.3.1. Given A E C mxn and BE Cnxp , we have 

Ifboth A and B are square matrices, we have 

amin(A)amin(B) ~ amin(AB) 

~ min {amax(A)amin(B), amin(A)amax(B)} 

~ max{amax (A)amin (B), amin(A)amax(B)} 

~ amax(AB) 

~ amax(A)amax(B). 

Proof. Observing that 

and noting that Amax(BBH)I - BBH ?: 0, it follows from (2.3.70) that 

and thus 

Amax(BBH)Amax(AAH) ?: Amax(ABBH AH), 

23 

(2.3.81) 

(2.3.82) 

(2.3.83) 

(2.3.84) 

or equivalently, a~ax(B)a~ax(A) ?: a~ax(AB). Hence, the result of (2.3.81) 

follows. 

For square matrices A, BE cnxn , (2.3.84) also implies that 

amax(B)ai(A) ?: ai(AB), i = 1,2, ... , n. (2.3.85) 

Similarly, using 

(2.3.86) 

and its properties, we can show that 

amax(A)ai(B) ?: ai(AB), i = 1,2, ... , n. (2.3.87) 

Next, noting that 

and 
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we can show that 
(2.3.88) 

and 
(2.3.89) 

i = 1,2, ... ,n. The result of (2.3.82) follows from (2.3.85), (2.3.87), and (2.3.88) 

or (2.3.89), by letting i = 1 and i = n, which by definition corresponds to the 

largest and the smallest singular value, respectively. • 
Using similar arguments as in the proof of Proposition 2.3.1, we can derive 

more interesting results for AB with arbitrary A E cmxn and B E Cnxp by 

carefully considering the values of m, nand p. In particular, we have the following 
results: 

1. If n ::; p, then 
(2.3.90) 

2. If n ::; m, then 

(2.3.91) 

3. Ifmin{m, n} ::; min{m,p}, then 

(2.3.92) 

4. Ifmin{n,p} ::; min{m,p}, then 

(2.3.93) 

5. If p ::; n ::; m or m ::; n ::; p, then 

(2.3.94) 

It is also straightforward to verify the following inequality concerning the maxi

mal singular value of A + B, 

O'max(A + B) ::; O'max(A) + O'maxCB). (2.3.95) 

It is clear from the decomposition of (2.3.78) that the rank of A is given by 
the number of nonzero singular values of A. As the singular value decomposition 

only involves unitary transformations, which are numerically stable with a perfect 
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condition number, i.e., 1, it can be used to determine matrix ranks more accurately. 
The singular value decomposition can also be used to compute the inverse of non
singular matrices. For example, if A is square and nonsingular, then its inverse is 
given by 

(2.3.96) 

Note that only the inverses of scalars are required in obtaining a -1. Another 
application of the singular value decomposition is the computation of pseudo
inverses of a matrix. Given a matrix A E cmxn, its pseudo-inverse or Moore

Penrose inverse is defined to be the unique matrix AtE Cnxm such that 

1. AAtA = A, 

2. AtAAt = At, 

3. AAt = (AAt)H, and 

4. AtA=(AtA)H. 

Let q be the number of nonzero singular values of A. Then, the singular value 
decomposition of A in (2.3.78) can be rewritten as 

A = u a VH = U [a. 0] VH 

o 0 ' 
(2.3.97) 

where a. = diag {Ul (A), u2(A), . .. ,uq(A)}. It is straightforward to verify that 
the pseudo-inverse of A is given by 

(2.3.98) 

with its associated properties: 

(2.3.99) 

AH = AHAAt = AtAAH, (AHA)t = At (AH)t , (2.3.100) 

At = (AH A)t AH = AH(AAH)t, (2.3.101) 

im(A) = im(AAt) = im(AAH), (2.3.102) 

im (At) = im (AH) = im (At A) = im (AHA), (2.3.103) 

im(I - AtA) = ker(AtA) = ker(A) = im(AH).l, (2.3.104) 

im(I - AAt) = ker(AAt) = ker(AH) = ker(At) = im(A).l. (2.3.105) 
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2.4 Norms 

Norms measure the length or size of a vector or a matrix. Norms are also defined 

for signals and rational transfer functions. 

Given a linear space X over a scalar field JK, any real-valued scalar function 

of x E X (usually denoted by Ilxil) is said to be a norm on X if it satisfies the 

following properties; 

1. IIxll > 0 if x i 0 and Ilxll = 0 if x = 0; 

2. lIaxll = lal'llxll, Va E OC, Vx E X; and 

3. IIx + zll ~ IIxll + IIzil, Vx, z E X. 

2.4.1 Norms of Vectors 

The following p-norms are the most commonly used norms on the vector space 
en: 

IIxli. ,~ (t, Ix,l' ) 1/
., 1 <; p < 00, (2.4.1) 

and 
ilxll oo ;= max lXii, (2.4.2) 

• 
where Xl, X2, ••• , Xn are the elements of X E en. In particular, IIxl/2 is also called 

the Euclidean norm of X and is denoted by Ixl for simplicity. 

2.4.2 Norms of Matrices 

Given a matrix A = [aij] E em x n, its Frobenius norm is defined as 

( )

1/2 (. 1/2 m n mm{m,n} 

IIAII, ,= t;~la'jI2 = t; U'(A)) (2.4.3) 

The p-norm of A is a norm induced from the vector p-norm, i.e., 

IIAxli p IIAI/p := sup -11-11- = sup IIAxl/p • 
x#O x p /lx/lp=l 

(2.4.4) 

In particular, for p = 1,2,00, we have 

m 

IIAlil = m~x L laijl, 
J i=l 

(2.4.5) 
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IIAllz = J Amax(AH A) = O"max(A), (2.4.6) 

which is also called the spectral norm of A, and 

n 

IIAlloo = m?-x L laijl· 
l 

(2.4.7) 
j=l 

It can be shown that 

IIAII ~ p(A), (2.4.8) 

where IIAII is any norm of A and p(A) is the spectral radius of A. Also note that 
all these matrix norms are invariant under unitary transformations. 

2.4.3 Norms of Continuous-time Signals 

For any p E [1, 00), let L";' denote the linear space formed by all measurable 

signals 9 : lR+ -t lRm such that 

For any gEL";', p E [1,00), its Lp-norm is defined as 

( [00 ) lip 
Ilgllp:= 10 Ig(t)IPdt ,1 ~ p < 00. (2.4.9) 

Let L~ denote the linear space formed by all signals 9 : lR+ -t lRm such that 

Ig(t)1 < 00, 'Vt E lR+. 

The Loo-norm of agE L~ is defined as 

Ilglloo := sup Ig(t)l· 
t~O 

The following Holder inequality of signal norms is useful, 

(2.4.10) 

(2.4.11) 

where 1 < p < 00 and l/p+ 1/ q = 1. It can also be shown that if g(t) E L1 nLoo , 
then g(t) E L 2 • 
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2.4.4 Norms of Discrete-time Signals 

For any p E [1,00), let l; denote the linear space formed by all discrete-time 

signals 9 : N -T lR m such that 

00 

L Ig(k)JP < 00. 
k=O 

For any gEL;, P E [1,00), its lp-norm is defined as 

(

00 ) lip 

Ilgllp:= t; Ig(k)JP ,1 ~ P < 00. (2.4.12) 

Let l~ denote< the linear space formed by all signals 9 : N -T lR m such that 

Ig(k)1 < 00, Vk ~ O. 

The loo-norm of any 9 E l~ is defined as 

Ilglloo := sup Ig(k)l· 
k~O 

(2.4.13) 

Itcanbeshownthat,ifg(k) E If,thenllgllp ~ IIgll1 < oo,p E (1,00], which 

implies that II C lp, P E (1,00]. In general, we have If C l; c l~, p E (1,00). 

2.4.5 Norms of Continuous-time Systems 

Given a stable and proper continuous-time system with a transfer matrix G (8), its 

H2 -norm is defined as 

IIGII2 := (2~ trace [I: G(jW)G(jwtdW]) 1/2 , (2.4.14) 

and its Hoo-norm is defined as 

( . IIhll2 
IIGlloo:= sup amax[G )w)] = sup -II -II ' 

wE[O,oo) IIw1l2=1 w 2 

(2.4.15) 

where w( t) and h( t) are respectively the input and output of G (8). 
Let (A, B, C, D) be a state space realization of the stable transfer matrix, 

G(8), i.e., G(8) = C(81 - A)-l B + D. It is straightforward to verify that 

IIGII2 < 00 if and only if D = O. In the case of D = 0, IIGII2 can be exactly 

computed by solving either one of the following Lyapunov equations: 

(2.4.16) 
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for unique solution P > 0 or Q > O. More specifically, 

IIGII2 = .jtrace(B'PB) = .jtrace(GQG'). (2.4.17) 

The computation of IIGII 00 is tedious and can be done by searching for a scalar 

I > O"max(D) such that 

[
A + BR-1 D'G 1-2 BR-1 B' 1 

M"( = _ G'(l + DR-1 D')G -(A + BR-1 D'G)" (2.4.18) 

where R := 121 - D'D, has at least one eigenvalue on the imaginary axis. If 

such a I exists, say I = I·' then IIGlioo = 1*; otherwise, IIGlloo = O"max(D). 

2.4.6 Norms of Discrete-time Systems 

Given a stable and proper discrete-time system with a transfer matrix G(z), its 

H2-norm is defined as 

IIGII2 := (2~ trace [i: G(eiW)G(eiW)HdW]) 1/2, (2.4.19) 

and its Hoo-norm is defined as 

IIGII .- [G( jW)] _ Ilhlb 
00'- sup O"max e - sup -11-1-1 ' 

we[o,21r] IIw1l2=1 W 2 
(2.4.20) 

where w(k) and h(k) are respectively the input and output of G(z). 
Assume that (A, B, G, D) is a state space realization of G(z). For the case 

when D = 0, IIGII2 can be computed by solving either one of the following 
Lyapunov equations: 

A'PA-P=-G'G, AQA'-Q=-BB', 

for P > 0 or Q > O. More specifically, 

IIGII2 = .jtrace(B'PB) = .jtrace(GQG'). 

(2.4.21) 

(2.4.22) 

The computation of II Gil 00 is again tedious and can be done by transforming G(z) 
into a continuous-time equivalence using a bilinear transformation. It can be 

shown that the Hoo-norm of G(z) is equal to the Hoo-norm of its continuous

time counterpart under the bilinear transformation. We further note that, for both 

continuous- and discrete-time systems, 

(2.4.23) 

This property is a simple consequence of the inequality of (2.3.81). 



Chapter 3 

Review of Linear Systems 
Theory 

3.1 Introduction 

We review in this chapter some fundamental concepts of multivariable linear time

invariant systems. Many concepts, such as system responses and stability as well 

as controllability and observability, are widely discussed in the literature and can 

be found in most of the introductory text books on linear systems theory (see, 

e.g., Antsaklis and Michel [4], Callier and Desoer [16], Chen [33], DeCarlo [46], 

Kailath [70], Rugh [114], and Zheng [158]). In particular, we will adopt some nice 

mathematical derivations ofthese results from Chen [33] and Zheng [158]. On the 

other hand, some issues, such as the invariant zero structure (also called finite zero 

structure) and infinite zero structure, invertibility structures as well as geometric 

subspaces of linear systems, might be somewhat abstract to general readers and 

new graduate students. These topics, which will be illustrated in detail in the 

coming sections, can be found in some advanced monographs and research theses 

in linear systems, such as Rosenbrock [112], Trentelman et aI. [141], Verghese 

[146], Wonham [154], and some research articles (see, e.g., Commault and Dion 

[41], Kouvaritakis and MacFarlane [77], MacFarlane and Karcanias [96], Moy

lan [102], Owens [105], Pugh and Ratcliffe [110], and Saberi, Chen and Sannuti 

[115]). In particular, the concepts of finite and infinite zero structures as well as 

that of invertibility structures will be introduced using the well-known Kronecker 

canonical form, and the materials on geometric subs paces will be adopted mostly 

from Trentelman et a1. [141]. These basic concepts and results will be essential to 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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the development of this book and helpful in understanding the results presented in 

the corning chapters. 
We will focus primarily on continuous-time linear time-invariant systems char

acterized by the following state and output equations: 

E . {X(t) = A x(t) + B u(t), 
. y(t) = C x(t) + D u(t), 

(3.1.1) 

where x(t) E IRn is the system state, u(t) E IRm is the system input, y(t) E IRP 

is the system output, and A, B, C and D are constant matrices of appropriate 
dimensions. When it is clear in the context, we will drop the variable t in x, u 
and yin (3.1.1). Although (3.1.1) is the primary focus of our work in the book, 
we do consider, however, another type of linear systems in Chapter 6, i.e., the so
called singular systems or descriptor systems, in which the state equation is given 

as Ex(t) = Ax(t) + Bu(t) with E being a singular matrix. We will leave the 
detailed treatment of this type of systems to Chapter 6. Note that E has a transfer 
function (representation in the frequency domain): 

H(s) = C(sI - A)-l B + D. 

Similarly, results for discrete-time systems characterized by 

E : {X(k+l) = A x(k) + B u(k), 
y(k) = C x(k) + D u(k), 

(3.1.2) 

(3.1.3) 

where as usual x(k) E IRn is the system state, u(k) E IRm is the system input and 
y(k) E IRP is the system output, will be presented simultaneously along with the 
development of continuous-time systems. The transfer function of the discrete
time system (3.1.3) is given by 

H(z) = C(zI - A)-l B + D. (3.1.4) 

The following topics on the basic concepts of linear systems are revisited in 
this chapter: 

1. Dynamical responses of linear time-invariant systems; 

2. System stability; 

3. Controllability and observability; 

4. System invertibilities and invertibility structures; 

5. Finite and infinite zero structures; 

6. Geometric subspaces; and 

7. Properties of state feedback and output injection. 
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3.2 Dynamical Responses 

In this section, we derive the solutions to the state and output responses of linear 
time-invariant systems. We first consider the continuous-time system E of (3.1.1). 

The solution of the state variable or the state response, x(t), of E with an initial 
condition xo = x(O) can be uniquely expressed as 

(3.2.1) 

where the first term is the response due to the initial state, Xo, and the second 
term is the response excited by the external control force, u(t). To introduce the 
definition of a matrix exponential function, we derive this result by separating it 
into the following two cases: i) the system is free of external input, i.e., u(t) = 0; 
and ii) the system has a zero initial state, i.e., Xo = O. 

1. For the case when the external force u(t) = 0, the state equation of (3.1.1) 
reduces to 

j; = Ax, xeD) = Xo. 

Let the solution to the above autonomous system be expressed as 

00 

x(t) =00 + l'ht + 0I2t2 + ... = L oktk, t ~ 0, 
k=O 

(3.2.2) 

(3.2.3) 

where Ok E IRn , k = 0,1, ... , are parameters to be determined. Substitut
ing (3.2.3) into (3.2.2), we obtain 

Since the equality in (3.2.4) has to be true for all t ~ 0, we have 

and in general, 
_ 1 k-
ak= k!A ao, k=O,1,2, ... , (3.2.5) 

which together with the given initial condition imply 

(3.2.6) 
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where 
00 1 

eAt .= ""' _Aktk 
. LJ k! . 

k=O 

(3.2.7) 

It is straightforward to verify that 

2. For the case when the system (3.1.1) has a zero initial condition, i.e., Xo =0, 
but with a nonzero external input, u(t), we consider the following equality: 

d de-At 
dt (e-Atx) = ~x+e-At± = e-At(±-Ax) = e-AtBu(t). (3.2.9) 

Integrating both sides of (3.2.9), we obtain 

e-Atx(t) - Xo = e-Atx(t) = lot e-AT Bu(r)dr, (3.2.10) 

which implies that 

x(t) = eAt lot e-ATBu(r)dr = lot eA(t-r)Bu(r)dr. (3.2.11) 

It is straightforward to verify that the state response of (3.1.1) with an initial con
dition x(O) = Xo is given by the sum of (3.2.6) and (3.2.11), i.e., the solution 
given in (3.2.1). The uniqueness of the solution to (3.1.1) with an initial condition 
x(O) = Xo can be shown as follows: Suppose Xl and X2 are the solutions to (3.1.1) 

with XI(O) = X2(0) = Xo. Let x(t) = XI(t) - X2(t), and thus xo = x(O) = O. 
We have 

(3.2.12) 

It follows from (3.2.6) that x(t) = eAtxo == 0, i.e., Xl (t) == X2(t) for all t ~ o. 
Lastly, it is simple to see that the corresponding output response of the system 
(3.1.1) is given as: 

y(t) = CeAtxo + lot CeA(t-r) Bu(r)dr + Du(t), t ~ o. (3.2.13) 

The term zero-input response refers to output response due to the initial state and 
in the absence of an input signal. The terms unit step response and the impulse 
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response, for the continuous-time system (3.1.1) respectively refer to the output 

responses of (3.2.13) with zero initial conditions to the input signals, 

(3.2.14) 

where 6(t) is a unit impulse function. 
The dynamical responses of the discrete-time system (3.1.3) can be computed 

by some simple manipulations. It is straightforward to show that the state response 
of (3.1.3) with an initial condition x(O) = xo can be expressed as 

k-l 

x(k) = Akxo + L Ak- i - 1 Bu(i), k ~ 0, (3.2.15) 
i=O 

and thus its corresponding output response is given as 

k-l 

y(k) = CAkxo + L CAk- i - 1 Bu(i) + Du(k), k ~ O. (3.2.16) 
i=O 

Similarly, the term zero-input response refers to output response due to the initial 

state and in the absence of input signal. The terms unit step response and the 
unit pulse response respectively refer to the output responses of (3.2.16) with zero 
initial conditions to the input signals, 

u(k) = 

where 

3.3 System Stability 

(
11': ) and u(k) = (D 5(k), 

6(k) = { ~: k = 0, 

k > O. 

(3.2.17) 

(3.2.18) 

Stability, more specifically internal stability, is always a primary issue in design
ing a meaningful control system. For linear systems, either the continuous-time 
system (3.1.1) or the discrete-time system (3.1.3), the notion of internal stability 
of the system is related to the behavior of its state trajectory in the absence of the 
external input, u. Thus, the internal stability is related to the trajectory of 

:i; = Ax, x(O) = Xo, (3.3.1) 
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for the corresponding continuous-time system (3.1.1), or 

x(k+1) = Ax(k), x(O) = Xo, (3.3.2) 

for the corresponding discrete-time system (3.1.3). Specifically, the continuous

time system (3.1.1) is said to be marginally stable or stable in the sense of Lya
punovor simply stable if the state trajectory corresponding to every bounded ini

tial condition Xo is bounded. It is said to be asymptotically stable if it is stable 
and, in addition, for any initial condition, the corresponding state trajectory x(t) 
of (3.3.1) satisfies, 

lim x(t) = lim eAtxo = o. (3.3.3) 
t-too t-too 

It is straightforward to verify that the continuous-time linear system (3.1.1) or 

(3.3.1) is stable if and only if all the eigenvalues of A are in the closed left-half 

complex plane with those on the jw axis having Jordan blocks of size 1. It is 

asymptotically stable if and only if all the eigenvalues of A are in the open left
half complex plane, i.e., A(A) C C -. This can be shown by first transforming A 
into a Jordan canonical form, say 

h 
J= P-1AP= [

Jl 

J 
where P E cnxn is a nonsingular matrix, and 

.~. ... 1 E cn• xn., i = 1,2, ... ,q. 
Ai 1 

Ai 

Then, we have 

where 

[I 
teA•t t";-1.-';' 1(", -1)'] 

eJit = 
eA•t tn. -2eA.t / (ni - 2)! 

. , 

0 eAit 

(3.3.4) 

(3.3.5) 

(3.3.6) 

(3.3.7) 
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i = 1,2, ... , q. It is now clear that eJit -+ ° as t -+ 00 if and only if Ai E C-, 

and thus 

lim eht 
t-HX) 

p-lxo = 0, (3.3.8) 

for any Xo E !R.n, if and only if Ai E C-, i = 1,2, ... , q, or A(A) c C-. On the 

other hand, the solutions remain bounded for all initial conditions if and only if 

A(A) c C- U CO and ni = 1 for Ai(A) E Co. 
The following result is fundamental to the Lyapunov approach to stability 

analysis. 

Theorem 3.3.1. The continuous-time system of (3.3.1) is asymptotically stable if 
and only if for any given positive definite matrix Q = Q I E !R.n x n, the Lyapunov 

equation 
A'p+PA= -Q (3.3.9) 

has a unique and positive dennite solution P = pi E !R.nxn. 

Proof. The asymptotic stability of the system implies that all eigenvalues of A 
have negative real parts. Thus, the following matrix is well defined, 

P = 100 eA'tQeAtdt. (3.3.10) 

In what follows, we will show that such a P is the unique solution to the Lyapunov 

equation (3.3.9) and is positive definite. 

First, substitution of (3.3.10) in (3.3.9) yields 

A' P + PA = 100 A'eAtQeAtdt + 100 eA'tQeAt Adt 

roo d 
= Jo dt (eA'tQeAt) dt 

(3.3.11) 

where we have used the fact that eAt -+ ° as t -+ 00. This shows that P as 

defined in (3.3.10) is indeed a solution to (3.3.9). To show that the solution (3.3.9) 

is unique, let Pl and P2 both be a solution, i.e., 

A'pi + PIA = -Q, (3.3.12) 
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and 

A I P2 + P2 A = -Q. (3.3.13) 

Subtracting (3.3.13) from (3.3.12) yields 

(3.3.14) 

which implies that 

eA't AI (PI - P2)eAt +eA't(PI -P2)AeAt = ! eA't(PI - P2)eAt = O. (3.3.15) 

Integration of (3.3.15) from t = 0 to 00 yields 

eA't(PI - P2)eAt 1
00 = PI - P2 = O. 
t=o 

(3.3.16) 

This shows that P as defined in (3.3.10) is the unique solution to the Lyapunov 

equation (3.3.9). 

It is clear that this P is symmetric since Q is. The positive definiteness of P 
follows from the fact that, for any nonzero x E lR. n , 

xlpx = 100 xleA'tQeAtxdt > 0, (3.3.17) 

which in turn follows from the facts that Q is positive definite and that e At is 
nonsingular for any t. 

Conversely, if there are positive definite P and Q that satisfy the Lyapunov 
equation (3.3.9), then all eigenvalues of A have negative real parts. To show this, 
let A be an eigenvalue of A with an associated eigenvector v i- 0, i.e., 

Av = AV, 

which also implies that 
V*A' = A*V*. 

Pre-multiplying and post-multiplying (3.3.9) by v * and v respectively yields 

-v*Qv = v* AI Pv + v* P Av = (A * + A)V* Pv = 2Re(A)v* Pv, 

which implies that Re(A) < 0, as both P and Q are positive definite. _ 

Now let us get back to the system ~ of (3.1.1). The following characterization 
of the system inputs and outputs is due to Desoer and Vidyasagar ([49], p.59). It 
is valid for asymptotically stable systems. 
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Theorem 3.3.2. Consider the continuous-time system ~ of (3.1.1) with A being 

asymptotically stable. For the case when D = 0, i.e., ~ is strictly proper, we have 

1. if u E LT.{", then y E L1 n L~, Y E L1, and y is absolutely continuous and 

y(t) --* ° as t --* 00; 

2. ifu E Vr, then y E L~ n L~, y E L~, and y is continuous and y(t) --* ° 
as t --* 00; 

3. ifu E L~, theny E L~, Y E L~, andy is uniformly continuous; 

4. ifu E L~ with u(t) --* Uoo E jRm as t --* 00, then y(t) --* Yoo E jRP as 

t --* 00 and the convergence is exponential; 

5. ifu E V;', 1 < q < 00, theny E L~ andy E L~. 

For the case when D i- 0, i.e., ~ is nonstrictly proper, we only have the following 
result: If u E Lr;, 1 :s; q :s; 00, then y E Lg. 

Noting (3.3.6) and (3.3.7), it is straightforward to show that, for a stable sys

tem, there exists positive scalars hm > ° and a > 0 such that 

(3.3.18) 

The result of Theorem 3.3.2 can be verified through some direct manipulations. 

Next, we proceed to address the stability issues for discrete-time systems. The 

discrete-time system of (3.3.2) is said to be marginally stable or stable in the sense 

of Lyapunov or simpl y stable if the state trajectory corresponding to every bounded 

initial condition Xo is bounded. It is said to be asymptotically stable if it is stable 

and, in addition, for any initial condition Xo, the corresponding state trajectory 

x (k) satisfies 

lim x(k) = lim Akxo = 0. 
k-too k-too 

(3.3.19) 

Similarly, we can show that the discrete-time system of (3.3.2) is stable if all the 

eigenvalues of A are inside or on the unit circle with those on the unit circle having 

Jordan blocks of size 1. It is asymptotically stable if and only if either one of the 

following conditions hold: 

1. The eigenvalues of A are all inside the unit circle, i.e., >'(A) c C 0. 

2. Given any positive definite matrix Q = Q I E jRnx n, the discrete-time 

Lyapunov equation 

(3.3.20) 

has a unique and positive definite solution P = pI E jRnxn. 
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3.4 Controllability and Observability 

Let us first focus on the issue of controllability. The concept of controllability is 
about controlling the state trajectory of a given system through its input. Sim
ply stated, a system is said to be controllable if its state can be controlled in the 
state space from any point to any other point through an appropriate control input 

within a finite time interval. For a linear time-invariant system, it is equivalent 

to controlling the state trajectory from an arbitrary point to the origin of the state 

space. To be more precise, we consider the following continuous-time system: 

~ : :i; = Ax + Bu, x(O) = Xo, (3.4.1) 

Definition 3.4.1. The given system ~ of (3.4.1) is said to be controllable if for 
any initial condition Xo and any Xl E lR.n , there exist a time tl > 0 and a control 
signal u(t), t E [0, tll, such that the resulting state trajectory satisfies x(h) = Xl. 

Otherwise, ~ is said to be uncontrollable. 

We have the following results. 

Theorem 3.4.1. The given system ~ of (3.4.1) is controllable if and only if the 

matrix 

We(t) := lot e-Ar BB'e-A'r dr (3.4.2) 

is nonsingular for all t > O. We(t) is called the controllability grammian of~. 

Proof. If We (tl) is nonsingular for some t 1 > 0, we let 

u(t) = -B'e-A'tWe-l(td(xo - e-AtIxl), t E [0, tll. (3.4.3) 

Then, by (3.2.1), we have 

X(tl) = eAtlxo + 1tI eA(h-t)Bu(t)dt 

= eAhxo - (1h eA(h-t) BB'e-A'tdt) We-l(tl)(XO - e-Ahxd 

=eAhxo _eAh (1h e-AtBBle-Altdt) We-l(tl)(XO -e-Ahxd 

= eAtlxo - eAhxo + Xl 

(3.4.4) 

By definition, ~ is controllable. 
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We prove the converse by contradiction. Suppose ~ is controllable, but We (t) 
is singular for some t > 0, which in fact can be shown implying that Wc(h} is 
singular for all tl > O. Then, there exists a nonzero Xo E lin such that 

(3.4.5) 

Thus, we have 

(3.4.6) 

which implies 
, A't B e- Xo = 0, 'lit E [0, tIl. (3.4.7) 

Since ~ is controllable, by definition, for any Xl, there exists a control u(t} such 
that 

[ft 
Xl = eAhxo + 10 eAhe-AtBu(t}dt. (3.4.8) 

In particular, for Xl = 0, we have 

(3.4.9) 

or 
[ft 

Xo = - 10 e-At Bu(t)dt, (3.4.10) 

which together with (3.4.7) imply that 

IXol2 = x~xo = [_ltl e-At BU(t)dt), Xo = -lh u'(t}B'e-A'txodt = O. 

This is a contradiction as Xo :I O. Hence, Wc(t} is nonsingular for all t > O. • 

Theorem 3.4.2. The given system ~ of (3.4.1) is controllable if and only if 

rank (Qc) = n, (3.4.11) 

where 
(3.4.12) 

is called the controllability matrix ofE. 
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Proof. We again prove this theorem by contradiction. Suppose rank (Q c) = n, 
but ~ is uncontrollable. Then, it follows from Theorem 3.4.1 that 

Wc(t) = lh e-AtBB'e-A'tdt, 'Vtl > ° (3.4.13) 

is singular for some tl > 0. Also, it follows from the proof of Theorem 3.4.1, i.e., 

equation (3.4.7), that there exists a nonzero Xo E IRn such that 

(3.4.14) 

Differentiating (3.4.14) with respect to t and letting t = 0, we obtain 

x~B = 0, x~AB = 0, ... , x~An-l B = 0, (3.4.15) 

or 

(3.4.16) 

which together with the fact that Xo f. ° imply rank (Q c) < n. Obviously, this is 

a contradiction, and hence, ~ is controllable. 

Conversely, we will show that if ~ is controllable, then rank (Q c) = n. If ~ is 
controllable, but rank (Q c) f. n, i.e., rank (Q c) < n, then, there exists a nonzero 

Xo E IRn such that xoQc = 0, i.e., 

xoB = 0, xoAB = 0, ... , xoAn- 1 B = 0. (3.4.17) 

It follows from the Cayley-Hamilton Theorem, i.e., (2.3.33), that 

XOAkB = 0, k = n,n+ 1, ... (3.4.18) 

Thus, we have 

(3.4.19) 

and 

(3.4.20) 

which implies that Wc(t) is singular for all t > 0, and hence, by Theorem 3.4.1, 

the given system ~ is uncontrollable. This is a contradiction. Thus, Q c has to be 
of full rank. _ 

Theorem 3.4.3. The given system ~ of (3.4.1) is controllable if and only if, for 

every eigenvalue of A, Ai, i = 1,2, ... ,n, 

rank [Ail - A BJ = n. (3.4.21) 
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This theorem is known as the PBH (popov-Belevitch-Hautus) test, developed by 
Popov [109], Belevitch [11] and Hautus [63]. 

Proof. If :E is controllable, we will show that (3.4.21) holds. Again, we prove this 
by contradiction. Suppose that (3.4.21) is not true for a controllable:E, i.e., 

rank [Ail - A B] < n, (3.4.22) 

for some Ai. Then, there exists a nonzero vEe n such that 

which implies 

v' AB = AiV' B = 0, v' A2 B = AiV' AB = 0, ... , v' An- 1 B = 0. 

Thus, 
v'[B AB ... An-1B]=v'Qc=0, 

or rank (Q c) < n, i.e., :E is uncontrollable. The contradiction implies that (3.4.21) 

is indeed true. 

The proof of the converse part requires some state transformations that trans
form the given system into a certain special form. For example, the result is trivial 
once the given system is transformed into the so-called controllability structural 
decomposition (CSD) form given in Theorem 4.4.1 of Chapter 4. We leave the 
details to the interested readers. • 

We note that Theorem 3.4.3 builds an interconnection between the system 
controllability and the eigenstructure of the system matrix, i.e., A. The system 
is controllable if all the eigenvalues of A satisfy the condition given in (3.4.21). 

On the other hand, the system is not controllable if one or more eigenvalues of 
A do not satisfy the condition given in (3.4.21). As such, we call an eigenvalue 
of A a controllable mode if it satisfies (3.4.21). Otherwise, it is said to be an un
controllable mode. In many control system design methods, it is not necessary to 
require the given system to be controllable. The system can be properly controlled 
if all its uncontrollable modes are stable. Such a system is said to be stabilizable 
as it can still be made stable through a proper state feedback control. For easy 
reference, in what follows, we highlight the concept of stabilizability. 

Definition 3.4.2. The given system :E of (3.4.1) is said to be stabilizable if all 
its uncontrollable modes are asymptotically stable. Otherwise,:E is said to be 
unstabilizable. 
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We have the following theorem. 

Theorem 3.4.4. For the given system ~ of (3.1.1), the following two statements 

are equivalent: 

1. The pair (A, B) is stabilizable. 

2. There exists an F E R,mxn such that, under the state feedback law 

u=Fx, (3.4.23) 

the resulting closed-loop system is asymptotically stable, i.e., A + B F has 
all its eigenvalues in C-. 

Proof. The result will be obvious once we have established Theorem 4.4.1 of 
Chapter 4. We thus omit the details here. • 

Similarly, we can introduce the concept of observability and detectability for 
the following unforced system ~: 

x= Ax, y = Cx, (3.4.24) 

where x E R,n, y E R,P and A and C are constant matrices of appropriate dimen
sions. Basically, the system of (3.4.24) is said to be observable if we are able to 
reconstruct (or observe) the state variable, x, using only the measurement output 
y. More precisely. we have the following definition. 

Definition 3.4.3. The given system E of (3.4.24) is said to be observable if there 
exists a time, tl > 0, such that any initial state x(o) = Xo can be uniquely 
determined from the measurementoutputy(t), t E [0, tl]' Otherwise, ~ is said to 

be unobservable. 

We have the following results. 

Theorem 3.4.5. The given system E of (3.4.24) is observable if and only if the 
matrix 

Wo(t):= lot eA'TC'CeATdr (3.4.25) 

is nonsingularforallt > 0. Wo(t) is called theobservability grammian ofE. 

Proof. If Wo(td is nonsingular for some tl > 0, then the initial state Xo can be 
computed using the measurement output y( t) as follows, 

Wo-I(td lotI eA'tC'y(t)dt = Wo-I(tl) (lotI eA'tc'ceAtdt) Xo = Xo. 

Hence, E is observable. 
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Conversely, if E is observable, we need to prove that W 0 (t) is nonsingular for 
all t > o. We will show this by contradiction. Suppose E is observable, but W 0 ( t) 
is singular for some t > 0, which in fact implies that Wo(tl) is singular for all 

tl > O. Then, there exists a nonzero initial state Xo E 1R" such that 

o = X~Wo(tl)XO = Iotlx~eAltclceAtxodt = 10\1 (t)y(t)dt = Iot1 Iy(t) 12dt, 

which implies that y(t) == 0, t E [0, tl]. It is impossible to determine the nonzero 
initial state Xo, and hence by definition, E is not observable. This contradiction 

shows that Wo (t) is nonsingular for all t > O. • 

Remark 3.4.1. In examining observability, we have assumed that u == 0 and 
considered the unforced system (3.4.24). This is without loss of generality. In 

the situation when u ~ 0, the proof of the theorem remains valid with y(t) being 
replaced by 

y(t) := y(t) - C lot eA(t-T) Bu(r)dr - Du(t) = CeAtx(O). 

Next, examining the duality between Wc(t) of (3.4.2) and Wo(t) of (3.4.25) 
and the results of Theorems 3.4.1 and 3.4.5, it is clear that the given system E of 
(3.4.24) is observable if and only if the auxiliary (dual) system 

i = Ax + Bit:= -A'x + C'it (3.4.26) 

is controllable. Utilizing the results of Theorems 3.4.2 and 3.4.3, we can derive 
the following results. 

Theorem 3.4.6. The given system E of (3.4.24) is observable if and only if either 
one of the following statements is true: 

1. Theobservability matrix ofE, 

(3.4.27) 

is of full rank, i.e., rank (Q 0) = n. 

2. For every eigenvalue of A, Ai, i = 1, 2, ... , n, 

[ Ail - A] rank C = n. (3.4.28) 
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Similarly, the eigenvalues of A that satisfy (3.4.28) and those that do not sat
isfy (3.4.28) are called the observable modes and unobservable modes of E, re

spectively. The following is the definition of the system detectability. 

Definition 3.4.4. The given system E of (3.4.24) is said to be detectable if all its 
unobservable modes are asymptotically stable. Otherwise, E is said to be unde

tectable. 

Note that the concepts of stabilizability and detectability are important as they 
are necessary and sufficient for the existence of a measurement feedback control 
law that stabilizes the given system. We have the following results. 

Theorem 3.4.7. For the given system E of (3.1.1), the following two statements 
are equivalent: 

1. The pair (A, G) is detectable. 

2. There exists aK E Rnxp such that A + KG has all its eigenvalues in C-. 

Furthermore, the following dynamical equation utilizing only the system output 
and control input is capable of asymptotically estimating the system state trajec
tory, x(t), without knowing its initial value Xo: 

5: = Ax + Bu - K(y - Gx - Du), Xo E Rn , (3.4.29) 

i.e., e(t) := x(t) - x(t) -t 0 as t -t 00. The dynamical equation of (3.4.29) is 
commonly called the state observer or estimator ofE. 

Proof. Again, we will leave out details on the equivalence of the two statements. 
It can be easily verified using the observability structural decomposition of the 
pair (A, G) given in Theorem 4.3.1 of Chapter 4. The rest of the theorem can be 
shown in a straightforward way. 

It follows from (3.1.1) and (3.4.29) that 

e = x - 5: = (A + KG)e. (3.4.30) 

Clearly, e(t) -t 0 as t -t 00 provided that A + KG is asymptotically stable. _ 

By replacing x in the state feedback law (3.4.23) with x of (3.4.29), we obtain 
the so-called full order observer based output feedback control law: 

{ 5: = (~+BF+KG+KDF)x -Ky, 
u=Fx, 

(3.4.31) 
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which has a dynamical order equal to n, the order of E. The closed-loop system 
comprising the given system E of (3.1.1) and the control law of (3.4.31) can be 

written as 

(3.4.32) 

Note that 

[ A BF] [1 0 ][A+BF -BF ][1 0 ]-1 
-KC A+BF+KC 1 -1 0 A+KC 1 -1 . 

It is then clear that the closed-loop system in (3.4.32) is asymptotically stable 
provided that both A + B F and A + K C have all their eigenvalues in C -. We note 
that the structure of the observer or state estimator is nonunique. The following is 
a more general state observer proposed by Luenberger [94]: 

v = Pv + My + Nu, v E jRT, (3.4.33) 

which is an estimate of Tx(t) for some constant matrix T E jRTxn provided that 

P is a stable matrix and 

TA-PT=MC, N+MD=TB. (3.4.34) 

Letting e := v - Tx, we have 

e = v - T± = (MC - T A)x + Pv + (N + M D - T B)u 

= Pe+ (MC +PT - TA)x+ (N +MD -TB)u = Pe. 

Thus, e(t) -+ 0 as t -+ 00. 

Lastly, we conclude this section by noting that the concepts of controllabil
ity (stabilizability) and observability (detectability) for discrete-time systems, i.e., 
(3.1.3), parallel those for continuous-time systems. In particular, the results of 
Theorems 3.4.2, 3.4.3 and 3.4.6 are directly applicable to discrete-time systems. 

3.5 System Invertibilities 

The topic of system invertibilities has been left out in many popular texts in linear 
systems, although it is important and crucial in almost every control problem. In 

fact, the concept of system invertibilities for a linear time-invariant system can 
be introduced naturally. Recall the general nonstrictly proper continuous-time 

system E of (3.1.1), which has a transfer function given by (3.1.2), i.e., 

H(8) = C(81 - A)-l B + D. (3.5.1) 
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Without loss of generality, we assume that both [B' D'] and [C D] are of full 
rank. We define the invertibility of E as follows. 

Definition 3.5.1. Consider the linear time-invariant system E of (3.1.1). Then, 

1. E is said to be left invertible if there exists a rational matrix function of s, 
say L(s), such that 

L(s)H(s) = 1m. (3.5.2) 

2. E is said to be right invertible if there exists a rational matrix function of s, 
say R(s), such that 

H(s)R(s) = Ip. (3.5.3) 

3. E is said to be invertible if it is both left and right invertible. 

4. E is said to be degenerate if it is neither left nor right invertible. 

By definition, it is clear that an invertible system has to be a square system, i.e., 
the number of the system inputs, m, and the number of the system outputs, p, are 
identical. A square system is, however, not necessarily invertible. Unfortunately, 
confusion between invertibility and square systems is common in the literature. 
Many people take it for granted that a square system is invertible. We illustrate 
this in the following example. 

Example 3.5.1. Consider a system I: of (3.1.1) characterized by 

(3.5.4) 

and 

[0 0 1] [0 0] C= 1 0 0 ' D= 0 0 . (3.5.5) 

Note that both matrices Band C are of full rank. It is controllable and observable, 
and has a transfer function: 

H(s)- 1 [(S-I)2 S-I] 
- S3 - 3s2 + s s - 1 1 . 

(3.5.6) 

Clearly, although square, it is a degenerate system as the determinant of H(s) is 
identical to zero. 
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The system left and right invertibilities can be interpreted in the time domain 

as follows (see, e.g., [102] and [122]). For a left invertible system E, given 

any output Y produced by E with an initial condition x 0, one is able to identify 

uniquely a control signal u that generates the given output y. For a right invertible 

system E, given any signal Yref E ]RP, one is able to determine a control input u 
and an initial condition Xo for E, which would produce an output Y = Yref. 

We further note that there are structures, i.e., certain indices of integers, as

sociated with the left and right invertibilities of linear systems. Unfortunately, 

these concepts cannot be easily introduced without the help of special structural 

forms of the system. We will leave these to the next section when we introduce 

the Kronecker canonical form of the system matrix of E. 

Lastly, the concept of invertibilities of discrete-time systems follows identi

cally from that of continuous-time systems. 

3.6 Normal Rank, Finite Zeros and Infinite Zeros 

The structures of finite zeros (also known as invariant zeros or transmission ze

ros) and infinite zeros (also known as the relative degrees) of linear systems play 

a dominant role in modem control theory. It is known that the locations of the 

closed-loop system poles primarily determine the performance, such as the tran

sient response and settling time, of a control system. It is fortunate that these 

closed-loop poles can be freely assigned everywhere on the complex plane pro
vided that the given open-loop system is controllable and observable. On the other 
hand, it is well understood now that the locations of the finite zeros have a signif
icant influence on the overall performance of the closed-loop system as well. For 
example, a nonminimum phase zero (or unstable invariant zero) would impose a 
great limitation for many control performances. It is unfortunate that the finite 
zeros or invariant zeros are invariant under any feedback control, and thus any 

bad zeros would remain there in the closed-loop system. It is our belief that an 

unambiguous understanding of system zero structures is essential for the design 

of a control system. 

The concepts of invariant zeros and infinite zeros (relative degrees) for single
input and single-output (SISO) systems are simple. For example, for a SISO sys
tem with a transfer function, say 

H 8 _ 8(8 + 1) 
( ) - 83 + 282 + 38 + 4 ' 

(3.6.1) 
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it is simple to observe that the system possesses two finite zeros at s = 0 and 
s = -1, respectively, and a relative degree of 1. For general multi-input and 
multi-output (MIMO) systems, the concepts of finite and infinite zeros could be 
quite sophisticated. There have been mistakes in the definitions of these zeros 

in the literature. We need to introduce the notion of system normal rank: before 
formally defining invariant zeros for MIMO systems. 

Definition 3.6.1. Consider the given system I: of (3.1.1). The normal rank: of its 
transfer function H(s) = C(sf - A)-l B + D, or in short, normrank:{H(sH, is 
dennedas 

normrank:{H(s)} = max {rank: [H('\)] 1.\ E C}. (3.6.2) 

For example, the system in Example 3.5.1 has a 2 x 2 transfer matrix. But, 

it only has a normal rank: of 1. It will be seen shortly that the computation of the 
system normal rank is trivial once we have developed the structural decomposition 
technique in the forthcoming chapters. 

Next, we are ready to introduce the invariant zeros of the general system I: of 

(3.1.1) characterized by a matrix quadruple (A, B, C, D), which can be defined 
via the Kronecker canonical form of the (Rosenbrock) system matrix [112] of I:, 

. [Sf - A -B] 
PI:(s) := CD' (3.6.3) 

We first have the following definition for the invariant zeros, without asso
ciated multiplicity structure (see also [96]), and blocking zeros (see also [156]). 

The latter plays an important role in the strong stabilization of multivariable linear 
systems. 

Definition 3.6.2. Consider the given system I: of (3.1.1). A scalar f3 E C is said 
to be an invariant zero of I: if 

rank {PI: (f3H < n + normrank: {H (s)}. (3.6.4) 

A scalar f3 E C is said to be a blocking zero of I: if H(f3) == O. 

We note that the invariant zeros are equivalent to the so-called transmission 
zeros defined in the literature (see, e.g., [44,45]) when the given system is both 
controllable and observable. 

Obviously, a blocking zero is an invariant zero, but an invariant zero is not 
necessarily a blocking zero for MIMO systems. For SISO systems, however, they 
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are identical. It is interesting to note that there are other types of zeros defined 

in the literature, such as input decoupling zeros, i.e., the uncontrollable modes 

of the pair (A, B), output decoupling zeros, i.e., the unobservable modes of the 

pair (A, C), and input-output decoupling zeros, i.e., the eigenvalues of A that are 

both uncontrollable and unobservable. The collection of all these zeros, including 

invariant zeros and blocking zeros, are called the system zeros of 1:. 

Clearly, by definition, if {3 is an invariant zero of 1:, then there exist a nonzero 

vector XR E en and a vector WR E em such that 

(3.6.5) 

Here, XR and W R are respectively called the right state zero direction and right input 
zero direction associated with the invariant zero {3 of 1:. The following proposition 

gives a physical meaning to the invariant zero and its zero directions. 

Proposition 3.6.1. Let {3 be an invariant zero of 1: with a corresponding right 

state zero direction XR and a right input zero direction W R• Let the initial state of 

1: be Xo = XR and the system input be 

u(t) = wRe,Bt, t ~ 0. 

Then, the output of1: is identically zero, i.e., y(t) = 0, t ~ 0, and 

x(t) = xRe,Bt, t ~ 0. 

(3.6.6) 

(3.6.7) 

This implies that with an appropriate initial state, the system input signal at an 
appropriate direction and frequency is totally blocked from the system output. 

Proof. First, it is simple to verify that (3.6.5) implies that 

(3.6.8) 

We next verify directly that (3.6.7) is a solution to the system 1: of (3.1.1) with the 

initial condition Xo = XR and the input u(t) given in (3.6.6). Indeed, with u(t) of 

(3.6.6) and x(t) of (3.6.7), we have 

Ax + Bu = AxRe,Bt + BwRe,Bt = (AXR + BwR)e,Bt = {3xRe,Bt = X. (3.6.9) 

Thus, x(t) is indeed a solution to the state equation of 1: and it satisfies the initial 

condition x(O) = XR' In fact, x(t) as given in (3.6.7) is the unique solution (see, 

e.g., Section 3.2). Next, we have 

y(t) = Cx(t) + Du(t) = (CxR + DWR)e,Bt == 0, t ~ 0. (3.6.10) 

This concludes the proof of Proposition 3.6.1. • 
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The infinite zero structure of ~ can be either defined in association with the 
root locus theory (see, e.g., [105]) or as the Smith-McMillan zeros of the transfer 
function at infinity (see [41], [110], [112] and [146]). To define the zero structure 
of H ( s) at infinity, one can use the Smith-McMillan description of the zero struc

ture at finite frequencies of the transfer function matrix H(s). Namely, a rational 
matrix H (s) possesses an infinite zero of order k when H (1/ z) has a finite zero 
of precisely that order at z = O. The number of zeros at infinity together with their 
orders define an infinite zero structure. 

In what follows, however, we will introduce the well-known Kronecker canon
ical form for the system matrix PI:. (s ), which is able to display the invariant zero 
structure, invertibility structures and infinite zero structure of E altogether. Al
though it is not a simple task (it is actually a pretty difficult task for systems with 
a high dynamical order), it can be shown (see Gantmacher [56]) that there exist 
nonsingular transformations U and V such that PE (s) can be transformed into the 
following form: 

[
blkdiag{ sl - J, Lh, . .. , L,pb, Rr1 , ••• ,Rrmc' 1 -sH, Imo} 0] 

UPr:,(s)V = , o 0 
(3.6.11) 

where 0 is a zero matrix corresponding to the redundant system inputs and outputs, 
if any; J is in Jordan canonical form, and s1 - J has the following r:t=l Ti pencils 
as its diagonal blocks, 

(3.6.12) 

j = 1,2, ... , Ti and i = 1,2, ... ,6; and L'i' i = 1,2, ... ,Ph, is an (Ii + 1) X Ii 
bidiagonal pencil given by 

L,; := [ ~1 .. ~ll' (3.6.13) 

Rri' i = 1,2, ... , me, is an Ti X (Ti + 1) bidiagonal pencil given by 

(3.6.14) 

s 
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H is nilpotent and in Jordan form. and I - sH has the following m d pencils as its 

diagonal blocks. 

1 ]
, qi > 0, i = 1,2, ... , md, (3.6.15) 

-s 
1 

and finally mo in Irna is the rank of D, i.e., mo = rank (D). 
We have the following definitions. 

Definition 3.6.3. Consider the given system E of (3.1.1) whose system matrix 
~(s) has a Kronecker form as in (3.6.11) to (3.6.15). Then, 

1. (3i is said to be an invariant zero of E with a geometric multiplicity of r i 
and an algebraic multiplicity Ofl:j:"l n{3i,j. It has a zero structure 

(3.6.16) 

(3i is said to be a simple invariant zero ifn{3i,l = ... = n{3i,Ti = 1. 

2. The left invertibility structure ofE is defined as 

(3.6.17) 

3. The right invertibility structure ofE is defined as 

(3.6.18) 

4. Finally, mo is the number of the infinite zeros of E of order O. The infinite 
zero structure ofE of order higher than 0 is defined as: 

(3.6.19) 

We say that E has md infinite zeros of order ql, q2, ... , qrnd' respectively. 
If ql = ... = qrnd and mo = 0, then E is said to be of uniform rank ql. On 
the other hand, if mo > 0 and S~ (E) = 0, then E is said to be of uniform 
rankO. 

We note that all the invariant zeros, (3i. i = 1,2, ... ,6, and their corresponding 
zero structures constitute the 11 list of Morse [100]. Furthermore, S:. St and S~ 
are corresponding to lists 12, 13 and I( of Morse, respectively. Also note that E is 
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left invertible if S: = 0, it is right invertible if St = 0, and invertible if both S: 
and St are empty. The computation of these indices turns out to be quite simple 
using the techniques presented in the later chapters. We illustrate these structures 

in the following example. 

Example 3.6.1. Consider a system ~ of (3.1.1) characterized by 

1 1 1 0 0 1 1 0 0 0 0 
0 1 1 0 0 1 1 0 0 0 0 
0 0 1 1 0 1 1 0 0 0 0 

A= 0 0 1 0 0 1 1 0 
B= 

0 0 0 
(3.6.20) 

1 1 1 1 1 1 1 1 
, 

0 0 1 
, 

1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 0 1 0 

C~ [~ 
0 0 0 0 1 0 

~l ' D~ [~ 0 

~l 0 0 0 0 0 1 0 (3.6.21) 
0 1 0 0 0 0 0 

It can be shown (using the technique to be given later in Section 5.6 of Chapter 5) 

that with the following transformations 

1 0 0 0 0 0 0 0 1 1 1 
0 1 0 0 0 0 0 0 1 1 1 
0 0 0 0 0 0 0 0 0 0 -1 
0 0 1 0 0 0 0 0 1 1 1 
0 0 0 1 0 0 0 0 1 1 1 

u= 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 -1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 -1 0 0 0 
0 0 0 0 0 0 -1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 

and 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 

V= 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 

-1 -1 -1 -1 -1 0 1 -1 0 -1 -1 
-1 -1 -1 -1 -1 0 0 -1 1 -1 -1 
-1 -1 -1 -1 -1 1 0 -1 0 -1 -1 
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the Kronecker canonical form of ~ is given as follows: 

s -1 -1 0 0 0 0 0 0 0 0 0 

0 s-1 0 0 0 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 0 0 0 
0 0 s -1 0 0 0 0 0 0 0 
0 0 0 s 0 0 0 0 0 0 0 

UPI:(s)V = 0 0 0 0 s -1 0 0 0 0 0 
0 0 0 0 0 0 1 -s 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 -s 0 
0 0 0 0 0 0 0 0 0 1 -s 
0 0 0 0 0 0 0 0 0 0 1 

Thus, we have St(~) = {2}, st(~) = {2}, S:(~) = {I}, S~(~) = {I,2}, 

i.e., ~ has a nonsimple invariant zero at s = 1, and two infinite zeros of order I 

and 2, respectively. ~ is degenerate as both St(~) and S:(~) are nonempty. 

Again, we note that the aforementioned structural properties, such as the finite 

zero and infinite zero structures as well as invertibility structures, of continuous

time systems carryover to discrete-time systems without much effort. 

3.7 Geometric Subspaces 

The geometric approach to linear systems and control theory has attracted much 

attention over the past few decades. It was started in the 1970s and quickly ma

tured in the 1980s when researchers attempted to solve disturbance decoupling 

and almost disturbance decoupling problems, which require the design of appro

priate control laws to make the influence of the exogenous disturbances to the 

controlled outputs equal to zero or almost zero (see, e.g., Basile and Marro [9], 

Schumacher [126], Willems [151,152], Wonham [154], and Wonham and Morse 

[155]). In fact, most of the concepts in linear systems can be tackled and studied 

nicely within the geometric framework (see, e.g., the classical text by Wonham 

[154] and a recent text by Trentelman et a1. [141]). The geometric approach is 

mathematically elegant in expressing abstract concepts in linear systems. It is, 

however, hard to compute explicitly various subspaces defined in the framework. 

The purpose of this section is to introduce the basic concepts of some popu

lar and useful geometric subspaces defined in the literature, such as the weakly 

unobservable subspaces and strongly controllable subspaces. These geometric 

subspaces play remarkable roles in solving many control problems, such as dis

turbance decoupling, H2 and Hoo control. We will show later that these sub-
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spaces can be easily obtained using the structural decomposition technique given 
in Chapter 5. 

Let us consider the continuous-time system ~ of (3.1.1) and let us first focus 
on the weakly unobservable subspaces. Noting from Proposition 3.6.1, there are 
certain initial states of ~, i.e., the right state zero directions, for which there exist 

\ 

control signals that will make the system output identically zero. The set of all 
right state zero directions of the invariant zeros of ~ does not cover all such initial 
states. The weakly unobservable subspace of ~ does. 

The following are the definition and properties of the weakly unobservable 
subspace adopted from Trentelman et al. [141]. 

Definition 3.7.1. Consider the continuous-time system ~ of (3.1.1). An initial 
state of~, Xo E IRn , is called weakly unobservable if there exists an input signal 
u(t) such that the corresponding system output yet) = 0 for all t ~ O. The 
subspace formed by the set of all weakly unobservable points of ~ is called the 

weakly unobservable subspace of~ and is denoted by V * (~). 

The following lemma shows that any state trajectory of ~ starting from an 
initial condition in V*(~) with a control input that produces an output yet) = 0, 

t ~ 0, will always stay inside the weakly unobservable subspace, V * (~). 

Lemma 3.7.1. Let Xo be an initial state of~ with Xo E V*(~) and u be an input 
such that the corresponding system output yet) = 0 for all t ~ O. Then the 
resulting state trajectory x(t) E V*(~) forall t ~ O. 

Proot For an arbitrary tl ~ 0, we let Xo = X(tl) be a new initial condition for 
~ and define a new control input u(t) = u(t + tl), t ~ O. It follows from (3.2.1) 
that 

x(t) = eAtxo + lot eA(t-T) Bu(r)dr 

= eAt (eAhxo+ Ioh eA(t1-T)BU(r)dr) + lot eA(t-T)Bu(r+tl)dr 

l h It+h = eA(t+h)xo + eA(t+h-T)Bu(r)dr + eA(t+h-f)Bu(f)df 
o tl 

(t+h 
= eA(t+h)xo + Jo eA(t+h-T)Bu(r)dr 

= x(t + tt), t ~ 0, (3.7.1) 

and the corresponding system output 

yet) = Cx(t) + Du(t) = Cx(t + tt) + Du(t + tt} = yet + tt} = 0, (3.7.2) 
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for all t ~ O. By Definition 3.7.1, xo = x(td E V*(E). The arbitrariness oftl 
implies that x( t) E V* (E) for all t ~ O. • 

The following theorem of [141] shows that the weakly unobservable subspace 

can be defined in an alternative way. 

Theorem 3.7.1. The weakly unobservable subspace ofE, V * (E), is equivalent to 
the largest subspace V that satisfies either one of the following conditions: 

1. [~]VC(VXO)+im{[~]}. 
2. There exists an F E IRmxn such that (A+BF)V C V and (C+DF)V = O. 

Proof. First, let us prove that if Xo E V*(E), then Xo is in the largest subspace 

V that satisfies the condition in Item 1. It follows from Lemma 3.7.1 that for the 

given system E with an initial state Xo, there exists a u such that the resulting state 

x(t) E V* (E) and y(t) = 0 for all t ~ O. Observing that 

X(O+) := lim ! [x(t) - xo] E V*(E), 
t--+O+ t 

(3.7.3) 

we have X(O+) = Axo + Buo E V*(E) and Cxo + Duo = 0, where Uo = u(O), 
or equivalently 

[ ~ ] Xo + [~] Uo E (V* (E) x 0). (3.7.4) 

Thus, Xo is in a subspace V that satisfies the condition in Item 1. 
Next, we show that the condition in Item 1 implies the condition in Item 2. Let 

V C IRn be any subspace that satisfies the condition in Item 1. Let us choose a 

basis Xl, X2, ... , Xr , ... , Xn for IRn such that Xl, X2,' .. ,Xr is a basis for V. The 
condition in Item 1 implies that there exist Ui E IRm , i = 1,2, ... ,r, such that 

(3.7.5) 

Let FE IRmxn be such that FXi = Ui, i = 1,2, ... , r. We have 

(A + BF)Xi E V, (C + DF)xi = O. (3.7.6) 

Because Xl, X2, ... ,Xr is a basis of V, we have 

(A + BF)V E V, (C + DF)V = 0, (3.7.7) 

or equivalently, the condition in Item 1 implies that in Item 2. 
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Lastly, we show that any subspace V that satisfies the condition in Item 2, 

is a subspace of V*(I:). Let Xo E V and let us choose u(t) = Fx(t). Then, 

the condition in Item 2 implies that the resulting state trajectory x(t) E V and 

y(t) = Cx(t) + Du(t) = (C + DF)x(t) = 0 for all t ~ O. Thus, by definition, 

Xo E V*(I:). Hence, V c V*(I:). This concludes the proof of Theorem 3.7.1. -

Using the result of Theorem 3.7.1, we can further define the stable and the 

unstable weakly unobservable subspaces of I:. 

Definition 3.7.2. Consider a system I: characterized by a quadruple (A, B, C, D). 

Then we define VX(I:) to be the largest subspace V that satisfies 

(A + BF)V c V, (C + DF)V = 0, (3.7.8) 

and the eigenvalues of (A + B F) I V are contained in C x C C for some F E IR n x m . 

Obviously, VX = V* ifCX = C. We further define V- := VX ifCX = C- U Co, 

and V+ := VX ifCx = C+. 

The following definition characterizes a subspace for which any state trajec

tory starting from within it vanishes in finite time and its corresponding system 

output can be made identically zero. Such a subspace is called the controllable 

weakly unobservable subspace of I:, and is denoted by R * (I:). 

Definition 3.7.3. Consider the continuous-time system I: of (3.1.1). An initial 
state ofI:, Xo E IRn , is called controllable weakly unobservable if there exists an 

input signal u(t) and tl > 0 such that the resulting system output y(t) = 0 for 

all t E [0, tl] and the resulting state trajectory vanishes at t = t 1, i.e., x( tl) = O. 
The subspace formed by the set of all controllable weakly unobservable points of 

I: is called the controllable weakly unobservable subspace of I: and is denoted by 

R*(I:). 

Clearly, it follows from Definitions 3.7.1 and 3.7.3 that R *(E) c V*(I:). We 

next introduce the strongly controllable subspace of I:, S(I:). S and V are dual 

in the sense that VX(I:*) = SX(I:)..L, where I:* is characterized by the quadruple 

(A', C', B' , D'). The physical interpretation of S is rather abstract and can be 

found in Trentelman et al. [141]. 

Definition 3.7.4. Consider a system I: characterized by a quadruple (A, B, C, D). 
Then we define the strongly controllable subspace ofI:, SX(I:), to be the smallest 
subspace S that satisfies 

(A + KC)S C S, im(B + KD) C S, (3.7.9) 
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and the eigenvalues of the map that is induced by A + K C on the factor space 
R/ S are contained in CX C C for some K E RP x n. We let S* : = SX if CX = C, 
S- := SX ifCx = C- U Co, andS+ := SX ifCX = C+. 

Intuitively, it is pretty clear from the definitions that the controllable weakly 

unobservable subspace is a subspace of the weakly unobservable subspace that is 

inside the strongly controllable subspace, i.e., 

n*(~) = V*(~) n S*(~). (3.7.10) 

This indeed turns out to be the case (see, e.g., Trentelman et a1. [141] for the 

detailed proof). Another popular subspace (paired with n *) is called the distribu
tionally weakly unobservable subspace (denoted by N*) and is equivalent to the 

sum of the weakly unobservable subspace and the strongly controllable subspace, 

i.e., 

N*(~) = V*(~) + S*(~). (3.7.11) 

Finally, we define two more geometric subspaces of ~, which were originally 

introduced by Scherer [124,125] for tackling Hex:> almost disturbance decoupling 

problems. 

Definition 3.7.5. For the given system ~ of (3.1.1) and for any>. E C, we define 

V>. (E) and S>. (E) are associated with the state zero directions of ~ if >. is an 
invariant zero of~. Clearly, S>.(~) = v:).(~*)l.. 

Once again, we note that all the aforementioned geometric subspaces can be 

explicitly computed using the structural decomposition technique to be developed 

in Chapter 5. In fact, the system given in Example 3.6.1 is already in the required 

form, and its geometric subspaces can thus be easily obtained. We now proceed 

to give all its geometric subspaces in the following example. 
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Example 3.7.1. Let us re-consider the system E with (A, E, C, D) being given 
in Example 3.6.1. It can be verified that the various geometric subspaces of E are 
given as: 

V*(E) = V+(E) = im 

100 
010 
000 
000 
o 0 1 
000 
000 
000 

o 
o 
o 
o 
1 
o 
o 
o 

S*(E) = S+(E) = im 

000 0 
000 0 
o 0 0 0 
000 0 
1 0 0 0 

n.*(E) = im 

S-(~) = im 

o 
o 
o 

o 1 0 0 
o 0 1 0 
o 0 0 1 

10000 0 
o 1 0 0 0 0 
o 000 0 0 
o 0 0 0 0 0 
o 0 1 000 
000 1 0 0 
o 000 1 0 
o 000 0 1 

1 0 0 0 
o 1 0 0 
o 0 0 0 

, 0 
1 
o 

I N*(~) = im 000 0 
o 0 1 0 
000 1 

o 
o 

o 0 0 0 
000 0 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
1 0 
o 1 

and for A = 1, which is the invariant zero of~, 

1 0 
o 0 
o 0 

V>.(~) = im 
o 0 
o 1 
o 0 
o 0 
o 0 

I S>.(~) = im 

100000 
o 0 0 000 
o -1 0 0 0 0 
010000 
001000 
000100 
000010 
000001 
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Note that in the computation of V and S, we select F and K as follows: 

1 1 1 
1 1 1 
1 1 * F=-[l 1 1 1 1 * * *] 1 1 * , K=- * 1 1 1 1 * * 1 1 1 

1 1 1 * 1 1 1 
1 * * 

* * 0 

* * 1 

where "*" are appropriate scalars subject to the constraints on eigenvalues as in 

Definitions 3.7.2 and 3.7.4. 

We conclude this section by noting that all the geometric subspaces defined 

for continuous-time systems can be used for discrete-time systems as well, except 

for V-, S-, V+ and S+, for which we need to modify their associated ex as 

Co U CO (for the first two subspaces) and C~ (for the last two subspaces). 

3.8 Properties of State Feedback and Output Injection 

It is straightforward to show that for a linear time-invariant system, its stability, 

controllability, observability, invertibility, and finite and infinite zero structures 

are all invariant under nonsingular state, input and output transformations. In 

fact, this property will enable us to develop the structural decomposition tech

nique in the forthcoming chapters, which is to construct certain nonsingular state, 

input and output transformations for a given system such that all its structural 

properties can be explicitly displayed. In particular, the system transfer function 

remains unchanged under any nonsingular state transformation, which results in 

nonuniqueness for the realization of a system from the frequency domain (transfer 

function) to the time domain (state space representation). 

In this section, we will study the behavior of the aforementioned system struc

tural properties under two operations, the state feedback and the output injection, 

which are commonly used in systems and control theory. Given a continuous-time 

system ~ as characterized by (3.1.1), the state feedback operation is to introduce 

a control law 

u = Fx+v, 

and apply it to ~. The resulting closed-loop system can then be written as 

{ X = (A + BF) x + B V, 
~F : 

y = (C + DF) x + D v, 

(3.8.1) 

(3.8.2) 
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i.e., it is characterized by a new quadruple (A + BF, B, G + DF, D). The ideas 
of the output injection and state feedback are dual. But, it is hard to express the 
output injection in terms of an explicit expression as in (3.8.1). Instead, given a 
K E Rnxp, we directly treat the output injection as an operation that generates a 

new system EK characterized by a quadruple (A + KG, B + K D, G, D). 
The following two theorems show that the structural properties of E, including 

geometric subspaces, are invariant under state feedback and output injection. 

Theorem 3.8.1. Consider a given system E characterized by a matrix quadruple 
(A, B, G, D). Also, consider a state feedback gain matrix FER mxn. Then, EF 
as characterized by the quadruple (A + B F, B, G + D F, D) has the following 
properties: 

1. EF is a controllable (stabilizable) system if and only ifE is a controllable 
(stabilizable) system; 

2. The normal rank ofEF is equal to tha~ ofE; 

3. The invariant zero structure ofEF is the same as that ofE; 

4. The innnite zero structure ofEF is the same as that ofE; 

5. EF is (left or right) invertible or degenerate if and only ifE is (left or right) 
invertible or degenerate; 

6. VX(EF) = VX(E) and SX(EF) = SX(E); 

7. R*(EF) = R*(E) andN*(EF) = N*(E); and 

8. V~(EF) = V~(E) andS~(EF) = S~(E). 

Proof. Item 1 is obvious. Items 3 and 4 follow directly from the following fact: 

[A+BF-SI B] = [A-SI B] [I 0] 
G+DF D G D Fl' 

Items 2 and 5 can be seen from the following simple manipulations: 

HF(S) := (G + DF)(sI - A - BF)-l B + D 

= (G + DF)(sI - A)-l [I - BF(sI - A)-lrl B + D 

= (G + DF)(sI - A)-l B[I - F(sI - A)-l Brl + D 

= [G(sI - A)-IB + D][I - F(sI - A)-l B]-l 

(3.8.3) 

= H(s)[I - F(sI - A)-l Brl. (3.8.4) 
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Since [I - F(sl - A)-l B]-l is well defined almost everywhere on the complex 

plane, the results of Items 2 and 5 follow. 
For Item 6, it is obvious from the definition that VX is invariant under any state 

feedback law. Next, for any subspace S that satisfies (3.7.9), we have 

(A+KC+BF+KDF)S = (A+KC)S+(B+KD)FS ~ S. (3.8.5) 

Thus, SX is invariant under any state feedback laws as well. 

Next, it follows from (3.7.10) and (3.7.11) that both R * and N* are invariant 
under state feedback. This proves Item 7. 

Let us now prove Item 8. Recalling the definition of V>., we have 

Then, for any ( E V>'(~F)' there exists an wE em such that 

or 

where w = F( + w. Thus, ( E V>.(~) and hence V>'(~F) ~ V>.(~). Similarly, 
one can show that V>.(~) ~ V>'(~F)' and hence V>.(~) = V>'(~F). The result that 
S>'(~F) = S>.(~) can be shown using similar arguments. _ 

Theorem 3.8.2. Consider a given system ~ characterized by a matrix quadruple 
(A, B, C, D). Also, consider an outputinjection gain matrix K E IR nxp . Then, 
~K as characterized by the quadruple (A+KC,B+KD, C, D) has the following 
properties: 

1. ~K is an observable (detectable) system if and only if ~ is an observable 
(detectable) system; 

2. The normal rank Of~K is equal to that of~; 

3. The invariant zero structure Of~K is the same as that of~; 

4. The infinite zero structure Of~K is the same as that of~; 

5. ~K is (left or right) invertible or degenerate if and only if~ is (left or right) 
invertible or degenerate; 



64 Chapter 3. Review of Linear Systems Theory 

6. VX(EK) = VX(E) andSX(EK) = SX(E); 

7. n,*(EK) = n,*(E) andN*(EK) = N*(E); and 

8. V,\(EK) = V,\(E) andS,\(EK) = S,\(E). 

Proof. It is the dual version of Theorem 3.8.1. • 
Note that Theorems 3.8.1 and 3.8.2 hold for discrete-time systems as well. 

3.9 Exercises 

3.1. Consider an electric network shown in the circuit below with its input, 
u, being a voltage source, and output, y, being the voltage across the 2 F 
capacitor. Assume that the initial voltages across the 1 F and 2 F capacitors 
are 1 V and 2 V, respectively, and that the inductor is initially uncharged. 

Ion Ion 0.1 H 
+---C~r-'--------'~==J--r-J '--....---+ 

u IF Ion IOn 

Circuit for Exercise 3. L 

(a) Derive the state and output equations of the network. 

(b) Find the unit step response of the network. 

( c) Find the unit impulse response of the network. 

(d) Determine the stability of the network. 

y 

( e) Determine the controllability and observability of the network. 

(f) Determine the invertibility of the network. 

(g) Determine the finite and infinite zero structures of the network. 

3.2. Given 
At [-e-t + ae-2t -e- t + (3e-2t ] 

e = 2 -t 2 -2t 2 -t -2t , e - e e-e 

determine the values of the scalars a and (3, and the matrices A and A 100. 
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3.3. Given a linear system, x = Ax + Bu, with x(td = Xl and X(t2) = X2 for 
some tl > 0 and t2 > 0, show that 

3.4. Given a linear time-invariant system, x = Ax + Bu, let 

A:= [~ ~~;]. 
(a) Verify that eAt has the form 

eAt _ [E1(t) E2(t)] 
- 0 E3(t)' 

(b) Show that the controllability grammian of the system is given by 

We(t) = lot e-Ar BB'e-A'r dr = E~(t)E2(t). 

(c) Compute We(t) for the system obtained in Exercise 3.1 with t = 0.1, 
0.5 and 2 seconds. 

3.5. Consider an uncontrollable system, ± = Ax + Bu, with x E IR nand 
u E IRm. Assume that 

rank (Qe) = rank([B AB ... An-IBD = r < n. 

Let {ql, q2, ... , qr} be a basis for the range space of the controllability 
matrix, Qe, and let {qr+b ... ,qn} be any vectors such that 

is nonsingular. Show that the state transformation 

x = Tx = T ( !:), Xc E IRr , Xc E IRn - r , 

transforms the given system into the form 

( ~e) = [Ace Ace] (~e) + [Be] u, 
Xc 0 Ace Xc 0 

where (Ace, Be) is controllable. Show that the uncontrollable modes of the 
system are given by A(Aec). 
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3.6. Given an unobservable system characterized by 

x = Ax + Bu, y = Cx, 

derive a state transformation matrix, T, and a new state variable, X, with 

such that the given system can be transformed into the form 

( ~o) = [Ao~ ~_] (~~)\ + [B~] u, y = [Co 0] (~o), 
Xo Aoo Aoo Xo Bo Xo 

where (Aoo, Co) is observable. Moreover, the unobservable modes of the 

system are given by '\(Aoo). 

3.7. Verify the result of Exercise 3.5 for the following systems: 

x= [_~ ~ ~ -l] X+ [_:] u, 

-1 -1 -1 3 1 

and 

[
-3 -3 1 0] [3 3] . 26 36 -3 -25 -2-1 

x = 30 39 -2 -27 x + 0 3 u. 
30 43 -3 -32 0 1 

3.8. Verify the result of Exercise 3.6 for the following systems: 

[
-1 

x = ~ 
-1 -1] [3] ~ - ~ x + ~ u, y = [1 1 l]x, 

and 

x= [ 0 1 0 0] [1] -1 -2 -2 -2 2 
o 0 0 -1 x + 3 u, Y = [1 1 1 1] x. 

1 2 344 

3.9. Show that if (A, B) is uncontrollable, then (A + aI, B) is also uncontrol
lable for any a E R 
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3.10. It was shown in Theorem 3.8.1 that constant state feedback does not change 
the controllability of a linear system. Show by an example that a state 
feedback law may change the observability of the resulting system. 

3.11. Similarly, it was shown in Theorem 3.8.2 that constant output injection 
does not change the observability of a linear system. Show by an exam

ple that a constant output injection may change the controllability of the 
resulting system. 

3.12. Verify that the system 

[
1 1 

x = 0 0 
1 1 

is left invertible. Given an output 

(t) = (coswt + wSinwt) t> 0 
Y et - coswt ,-, 

which is produced by the given system with an initial condition, 

x(O) = (l,), 
determine the corresponding control input, u( t), which generates the above 
output, y(t). Also. show that such a control input is unique. 

3.13. Verify that the system 

[
1 1 

x = 0 0 
1 1 

is right invertible. Find an initial condition, x(O), and a control input, u(t), 
which together produce an output 

y(t) = acoswt, t ~ O. 

Show that the solutions are nonunique. 

3.14. Using the results of Theorems 3.8.1 and 3.8.2 with an appropriate state 

feedback gain matrix. F, and an appropriate output injection gain. K, show 
that both systems given in Exercise 3.12 and Exercise 3.13 have an infinite 
zero of order 2, and have no invariant zeros. 
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3.1S. Show that for the system given in Exercise 3.12, 

3.16. Show that for the system given in Exercise 3.13, 

3.17. Given a linear system 

[
1 0 1 0] [0 0] .0111 00 0010 

x = 1 1 1 1 x + IOu, Y = [0 0 0 1] x, 

o 1 1 1 0 1 

show that it is invertible, controllable and observable. Also, show that it 
has two infinite zeros of order 1 (and thus has a normal rank: equal to 2), 
and has one invariant zero at s = 1 with a geometric multiplicity of 2 and 
an algebraic multiplicity of 2. Verify that such an invariant zero is also a 
blocking zero of the system. 

3.18. Determine the geometric subspaces, V *, 'R,", S· and N*, for the system 
given in Exercise 3.17. 

3.19. Show that the geometric subspace, S>., is invariant under any constant state 
feedback. 

3.20. Show that the geometric subspaces, V", V" and S", are invariant under any 
constant output injection. 



Chapter 4 

Decompositions of Unforced 
and/or Unsensed Systems 

4.1 Introduction 

In this chapter, we introduce the structural decomposition techniques for the fol

lowing three types of linear time-invariant systems, which are relatively simple 
compared to general multivariable systems. The techniques presented in this chap
ter are very useful themselves and serve as an introduction to the more complete 
theory of structural decompositions of general systems discussed in the later chap

ters. The types of systems considered in this chapter are: 

1. An autonomous system characterized by a constant matrix A, i.e., 

X = Ax. (4.1.1) 

2. An unforced system characterized by a matrix pair (C, A), i.e., 

x= Ax, y = Cx. (4.1.2) 

3. An unsenSed system characterized by a matrix pair (A, B), i.e., 

X =Ax+Bu. (4.1.3) 

Note that the systems in (4.1.2) and (4.1.3) are dual to each other. 
Specifically, we will introduce a stability structural decomposition (SSD) and 

the real Jordan decomposition (RJD) for the autonomous system of (4.1.1). We 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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will then present two decompositions for the unforced system of (4.1.2), namely 
the observability structural decomposition (OSD) and the block diagonal observ
able structural decomposition (BDOSD). Dually, two structural decompositions, 

namely, the controllability structural decomposition (CSD) and the block diago
nal controllable structural decomposition (BDCSD), are given for the unsensed 

system of (4.1.3). These decompositions are useful in deriving results for more 

complicated systems discussed in the later chapters. In fact, they are instrumental 

in solving many system and control problems such as sensor and actuator se
lection (see, e.g., [31,92]) and almost disturbance decoupling (see, for example, 

[22,23,86]). 

4.2 Autonomous Systems 

Consider the linear time-invariant autonomous system ~ characterized by 

(4.2.1) 

In this section, we present two structural decompositions for such an autonomous 
system, i.e., the stability structural decomposition (SSD) and the real Jordan de
composition (RID). 

Theorem 4.2.1 (SSD). Consider the autonomous system ~ of (4.2.1) character
ized by a constant matrix A. There exists a nonsingular transformation T E ]R n X n 

and nonnegative integers n _, no and n+ such that 

(4.2.2) 

whereA_ E ]Rn_xn- with A(A_) C C-, Ao E ]Rnoxno with A(Ao) C Co, and 

A+ E ]Rn+ x n+ with A( A+) C C+. The SSD totally decouples the stable and 

unstable dynamics as well as those dynamics associated with the imaginary axis 
eigenvalUes. 

Note that the existence of the transformation T follows immediately from the 
real Jordan canonical decomposition given later in this section. In what follows, 
we proceed to present a constructive algorithm that realizes the above SSD. In 
fact, this SSD will be used later to improve numerical conditions in finding the 
Jordan and real Jordan canonical decompositions. 
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The key idea in the constructive procedure given below is motivated by the 

fact that, for a square constant matrix with distinct eigenvalues, there is a nonsin

gular transformation, the corresponding eigenvector matrix, which diagonalizes 

the given matrix. By treating all the stable eigenvalues, all the unstable eigenval

ues and all those eigenvalues on the imaginary axis as single objects, which are 

obviously distinct, we can compute their corresponding eigenspaces and form a 

necessary transformation to block-diagonalize the given matrix into the structure 

of (4.2.2). The following constructive algorithm is adopted from Chen [19]: 

STEP SSD.l. 

Utilize the numerically stable real Schur decomposition (see, e.g., Golub 

and Van Loan [59]) to find an orthogonal matrix Pl E ~nxn such that 

* 
M2 

o 1J (4.2.3) 

for some integer k, where the symbol * represents a matrix of less interest. 

Moreover, for each i = 1,2, ... ,k, Mi is either a real scalar, say Mi = Jli' 

or a 2 x 2 matrix having a pair of complex eigenvalues at, say Jli ± jWi. 

Moreover, Jli, i = 1,2, ... ,k, are arranged such that Jll ~ Jl2 ~ ... ~ Jlk. 

STEP SSD.2. 

Let n_, no and n+ be the numbers of the eigenvalues of A which belong to 
C-, CO and C+, respectively. Also, let 

(4.2.4) 

The columns of T -0 span the entire eigenvector space associated with the 

nonpositive eigenvalues of A. 

STEP SSD.3. 

Use the real Schur decomposition once again to find another orthogonal 
matrix P2 E ~nxn such that 

(4.2.5) 
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(4.2.6) 

The columns of T + span the entire eigenvector space associated with the 
positive eigenvalues of A. 

STEP SSD.4. 

Let 

(4.2.7) 

We have 

(4.2.8) 

STEP SSD.5. 

Again, apply the real Schur decomposition to matrix A -0 to find an orthog
onal matrix Nl E ]R(n_+no)x(n_+no) such that 

(4.2.9) 

where A(R_) C C- and A(Ro) C Co. Then, define 

(4.2.10) 

STEP SSD.6. 

Apply the real Schur decomposition one more time but to the matrix -A -0 

to find an orthogonal matrix N2 E ]R(n_+no)x(n_+no) such that 

(4.2.11) 

whereA(So) C CO andA(S+) C C+,anddefine 

[ I no ] Zo = N2 0 . (4.2.12) 
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STEP SSD.7. 

Finally, let 

and (4.2.13) 

It is straightforward to verify that 

T-1AT=A = [ A~_ AOoo (4.2.14) 

where>.(A_) C C-,>'(Ao) C CO and>'(A+) C C+. This concludes the 

algorithm for the stability structural decomposition. 

The above algorithm has been implemented in an m-function ssd. ro, in [87]. 

In principle, one can modify the above procedure to deal with discrete-time sys

tems by re-arranging the order of eigenvalues to obtain a required transformation 

that separates the given matrix A into three parts with their eigenvalues being re
spectively in Co (the set of complex scalars inside the unit circle), CO (the set 

of complex scalars on the unit circle) and C® (the set of complex scalars outside 

the unit circle). This will, however, require a re-programming of the real Schur 

decomposition. Following the result of Chen [19], we can utilize the above algo
rithm to develop a simple procedure that constructs the required transformation T 

for such a decomposition: Let 0: be a scalar on the unit circle of the complex plane 
but not an eigenvalue of A. We define a new matrix, 

(4.2.15) 

where a* is the complex conjugate of a. It is easy to show that A is a real-valued 

matrix. Next, apply Steps SSD.l-sSD.7 to A to obtain a transformation T such 
that 

[
A_ 0 0 1 

T-1 AT = 0 Ao ~ , 
o 0 A+ 

(4.2.16) 

where >.(A_) cC-, >.(Ao) CCo and >.(A+) cC+. Then, it can be readily shown 
(see e.g., Chen [19]) that this same T yields 

(4.2.17) 
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where A(A_) c Co, A(Ao) C CO and A(A+) C C®. The discrete-time version 
of stability structural decomposition has also been implemented in an m-function, 
dssd. m, in [87]. 

We illustrate these techniques in the following example. 

Example 4.2.1. Consider an autonomous system E of (4.2.1) characterized by 

[

-1 -1 -3 -1 -1] o 2 444 
A = 0 -2 -2 -3 -3 , 

1 1 1 0 0 
-1 -1 -1 1 1 

(4.2.18) 

which has eigenvalues at 0, -1, 1, -2j and 2j. Following the SSD algorithm of 
Theorem 4.2.1, which has been implemented with an m-function, s sd . m, in [87], 
we obtain 

[ 

0.57735 0.47385 0.66493 
o -0.81277 0.07790 

Tl = 0 0.33892 -0.74283 
-0.57735 0 0 

0.57735 0 0 

o 0.57735] o 0 
o -0.57735, 

0.70711 0 
-0.70711 0.57735 

which gives the following stability structural decomposition of A, 

-1 0 0 0 0 
0 0.21932 3.44308 0 0 
0 -1.17572 -0.21932 0 0 
0 0 0 0 0 
0 0 0 0 1 

] 
Using the m-function dssd. m of [87], we obtain 

[ 

0 
o 

T2 = 0 
0.70711 

-0.70711 

-0.57735 
o 
o 

0.57735 
-0.57735 

0.57735 0.78072 -0.23906] 
o -0.59739 -0.55659 

-0.57735 -0.18332 0.79565, 
000 

0.57735 0 0 

which gives the following stability structural decomposition of A, 

0 0 0 0 0 
0 -1 0 0 0 
0 0 1 0 0 
0 0 0 1.15182 -2.39096 
0 0 0 2.22785 -1.15182 
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Next, we introduce another decomposition for autonomous systems, i.e., the 

real Jordan decomposition (RID). The numerical difficulty associated with the 

transformations to the Jordan canonical forms is well understood in the literature. 

Yet, the Jordan forms have been proven to be convenient tools in dealing with 

linear systems. 

Theorem 4.2.2 (RJD). Consider the autonomous system ~ of (4.2.1), character

ized by A E IR n x n. There exists a nonsingular transformation T E IR n x n and an 

integer k such that 

T-1AT = J = [
h .J (4.2.19) 

where each block Ji, i = 1,2, ... , k, has the following form: 

1 

(4.2.20) 

if>..i E >'(A) is real, or 

Ji = [
Ai 

Wi] 
J.Li ' 

(4.2.21) 

if >'i = J.Li + jWi, Xi = J.Li - jWi E >'CA) with Wi > O. 

The derivation of the above real Jordan canonical form can be found in many 

text books (see, e.g., Wonham [154]). In what follows, we present a constructive 

algorithm for obtaining the transformation T. As pointed out earlier in Chapter 2, 

the numerical difficulties associated with the Jordan decomposition is well under

stood in the literature. However, when it can be computed accurately, it is very 

useful. The application of the real Jordan canonical form in this book is mainly 

for theoretical analysis. 

We first repeatedly utilize the results of Theorem 4.2.1 to find a nonsingular 

and well-conditioned transformation P E IR nxn such that 

P-IAP = [

AI 

(4.2.22) 
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where sub-matrices Ai E IRni xni , i = 1,2, ... , t, have either a single or one 
repeated (if ni > 1) real eigenvalue Ai, or a single or a repeated (if ni > 2) pair 
of complex eigenvalues Ai and Ai. Also, we have Ai ¥- Aj, if i ¥- j. This can be 
done using the following procedure: 

1. Compute the eigenvalues of A. Let Ai = l1i + jWi, Wi ~ 0, i = 1, 2, ... ,t, 
be all the distinct eigenvalues of A, i.e., Ai ¥- Ak, i ¥- k, with nonnegative 

imaginary parts. We also arrange Ai such that 111 ~ 112 ~ ... ~ I1l. 

Furthermore, if 11k = 11k+1o we arrange Ak and Ak+l such thatwk < Wk+!. 

2. Let k be an integer such that 111 = 112 = ... = 11k < 11k+!. We define a 
constant matrix 

A = A _ 11k + 11k+! I, 
2 

(4.2.23) 

which has k distinct eigenvalues in C - with all their real parts equal to 

(11k - l1k+l) /2 and no eigenvalue on the imaginary axis. Utilizing the al
gorithm of the stability structural decomposition of Theorem 4.2.1, one can 

find a transformation T1 such that 

T1- 1AT1 = [~- lJ, (4.2.24) 

where A(iL) c C- and A(A+) C C+. Such a transformationTI yields 

T-1 ATl = [AI,/; 0] , 
1 0 A/;H,l 

(4.2.25) 

where A l ,/; contains eigenvalues Ai, i = 1,2, ... , k, and Ak+l,l contains 
eigenvalues Ai, i = k + 1, k + 2, ... ,t. Repeating the above procedure for 
Ak+l,l, we can block diagonalize A with each block containing eigenvalues 

with the same real part. 

3. Next, for Al,k, which contains the distinct eigenvalues Ai = 111 + jWi, 
i = 1, 2, ... ,k. These eigenvalues were arranged in Step 1 in such an order 
that WI < W2 < ... < Wk. We define a constant matrix, 

where 

A = (A + (31)-1 (A - (31), 

(3 = vi 11~ + w~ + vi 11~ + w~ . 
2 

(4.2.26) 

(4.2.27) 
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It can be verified that A has only one distinct eigenvalue in C - and all 
the other eigenvalues are in C+. Utilizing the algorithm of the SSD of 
Theorem 4.2.1, one can find a transformation T 2 such that 

T,-1 AT- = [A_ P] 
2 2 0 A+ ' 

(4.2.28) 

where A(A_) C C- and A(A+) C C+. Such a transformation T2 yields 

-1 'TI [A1 0] 
T2 A1 ,k.L2 = 0 A* , 

1,k 
(4.2.29) 

where A 1 contains only one distinct eigenvalue A 1 , and Ai:,k contains eigen
values Ai, i = 2,3, ... , k. Repeating the above procedure for Ai,k' we can 
obtain a nonsingular transformation T1,k such that 

(4.2.30) 

Repeat the above procedure for all the blocks obtained in Step 2, which 
contain eigenvalues with the same real parts, to yield the desired block di
agonalization as in (4.2.22). 

Now, for each Ai with its corresponding Ai being a real number, we use the 
result of (2.3.39) to obtain a nonsingular transformation Si = Si E lR.ni xni such 
that Ai is transformed into the Jordan canonical form. For each A i which has 

eigenvalues Ai = Jli + jWi and Ai = Jli - jWi' with Wi > 0, we follow Fama and 
Matthews [52] to define a new (2ni) x (2ni) matrix, 

z .. - [Ai - Jliln; Wi In; ] 
, .- -Wiln; Ai - Jliln; . 

(4.2.31) 

It is simple to show that Zi has ni real eigenvalues at 0 and ni purely imaginary 
eigenvalues at ±j2Wi' Define a constant matrix 

(4.2.32) 

which has ni eigenvalues at -1 and ni unstable eigenvalues. Then, following the 
stability structural decomposition of Theorem 4.2.1, one can obtain a nonsingular 
transformation S~ E lR.(2ni ) x(2n;) such that , 

(4.2.33) 
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where ZiO has all its eigenvalues at -1 and Zix has only unstable eigenvalues. It 
can be readily verified that 

(4.2.34) 

where ZiO has all its eigenvalues at ° and Zix has no eigenvalue at 0. Next, we 
utilize the result of (2.3.39) to obtain a nonsingular transformation S I E ani Xni 

such that 

(4.2.35) 

where J:, m = 1,2, ... , ai, have the form, 

J.m = [0 Inim-l] 
o ° ° . (4.2.36) 

Let us partition 

[ S~ I~J = 
[S'" 

SI,nil X 1,1 X 1,nil 
s- ._sf} t 

.,1 i,1 i,1 i,1 

•• - i ° s2,1 S2,nil X 2,1 X 2,nil 
i,1 i,1 i,1 i,1 

S~,l S~,ni(J"i X~,1 X~,nicri :] , t,O', t,O'i 1,0';: I,O'i 

S~,l S~,ni(J"i X~,1 X~,ni"i 
t,O', ',O'i 1,0', I,O'i 

(4.2.37) 

where si:!, S~,!, xi,'! and X;,'!, m = 1,2, ... , ai and k = 1,2, ... , nim, are 
ni x 1 real-valued vectors. Next, define an ni x ni real-valued matrix, 

Finally, let 

(4.2.38) 

and T = PS E anxn. It is now straightforward to show that T- 1 AT is inthe 
real Jordan canonical form as described in Theorem 4.2.2. The algorithm has been 
implemented in [87] with an m-function called rj d. m. We illustrate the above 
result in the following example. 
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Example 4.2.2. Consider an autonomous system ~ of (4.2.1) characterized by 

3 2 2 2 2 2 
3 1 2 3 2 2 

A= 
4 0 2 2 3 2 (4.2.39) 
4 0 2 1 4 2 
4 0 3 0 4 2 

-20 -4 -12 -9 -16 -11 

Using the m-function rj d. m of [87], we obtain a real Jordan canonical decom-

position of A with 

0 1 1 0 0 0 
-1 0 0 1 0 0 

J= 
0 0 0 1 0 0 
0 0 -1 0 0 0 

(4.2.40) 

0 0 0 0 0 1 
0 0 0 0 -1 0 

and the required state transformation, 

0 0 -0.12251 0.04504 -0.07311 -0.53231 
-0.63824 -0.50617 0.26812 0.09233 0.24639 -0.13302 

T= -0.13207 -1.14440 0.22084 0.48295 -0.15290 0.18649 
-0.13207 -1.14440 -0.41740 -0.02322 -0.15290 0.18649 
-0.13207 -1.14440 0.08877 -0.66145 -0.15290 0.18649 

1.03444 3.93938 0.00090 -0.01943 0.58813 0.33547 

4.3 Unforced Systems 

We consider an unforced system ~ characterized by 

± == Ax, y == Cx, (4.3.1) 

where x E Rn is the state, y E RP is the output, and A and C are constant matri

ces of appropriate dimensions. We note that there are quite a number of canoni

cal forms associated with such a system, e.g., the observable canonical form and 

the observability canonical form (see, e.g., Chen [33] and Kailath [70]). These 

canonical forms are effective in studying the observability of the given system. 

However, they are not adequate to show the more intrinsic system structural prop

erties. Two canonical forms are presented in this section for the unforced system 

(4.3.1), namely the observability structural decomposition (OSD) and the block 

diagonal observable structural decomposition (BDOSD). These canonical forms 

require both state and output transformations. The following theorem character

izes the properties of the OSD. 
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Theorem 4.3.1 (OSD). Consider the unforced system of (4.3.1) with C being of 
full rank. Then, there exist nonsingular state transformation Ts E IRnxn and 
nonsingular output transformation To E IRPxp such that, in the transformed state 
and output, 

(4.3.2) 

where 

(4.3.3) 

we have 
~o = Aoxo + Loy, (4.3.4) 

and fori = 1,2, ... ,p, 

(4.3.5) 

where L i , i = 1,2, ... , p, are some constant matrices of appropriate dimensions 
and 

(4.3.6) 

The matrix Ao is of dimensions no x no, where no := n - Ef=l ki' and >'(Ao) 
contains all the unobservable modes of the matrix pair, (C,A). Moreover, the set 
0:= {kl' k2' ... , kp } is the observability index o[(C, A). 

The result of Theorem 4.3.1 can be summarized in a more compact form as 

follows: 
Ao * 0 ... * 0 
0 * Ikl-l ... * 0 
0 * 0 ... * 0 

Ts-lATs = (4.3.7) 

0 * 0 * Ikp-l 
0 * 0 ... * 0 

and 

[ ! 1 0 0 0 

1 ' To-lCTs = (4.3.8) 

0 0 1 0 

where * represents a matrix of less interest. 

The graphical form interpretation of the OSD is shown in Figure 4.3.1. 
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Xo 

Note: the signals indicated by double-edged arrows are some linear combinations of ii;. 

Figure 4.3.1: Interpretation of the observability structural decomposition. 

Proof. We prove Theorem 4.3.1 by giving a step-by-step constructive algorithm 
that realizes the OSD. The key idea in the following proof is to identify the inher
ent chains of integrators. Noting the unforced system (4.3.1), we have 

. C· CA .. CA2 (k) CAk y = X = x, y = x, . .. , y = x. (4.3.9) 

By repeatedly differentiating the system output y, we are able to identify the in
herent system structure in terms of chains of integrators. 

STEP OSD.1. Initialization. 

Noting that matrix C is of full rank, we partition it as 

(4.3.10) 

where Ci, i = 1,2, ... ,p, are independent row vectors. For each Ci, i = 
1, 2, ... ,p, we assign a corresponding transformation matrix Z i to it, which 
is initially set as: 

(4.3.11) 
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We also define a flag vector f as 

(4.3.12) 

which will be used as a flag in the iterative procedure in STEP OSD.2. Note 
that the elements of f will be replaced by zero and it will eventually become 
a zero vector. On the other hand, Zi will be amended with additional rows 
and form parts of the required state transformation. We also initiate 

Z:=c, (4.3.13) 

and an empty matrix Z, which will be used to form a state transformation. 
These matrices are variables, i.e., they might be amended with new compo
nents as we progress. Finally, we let w := O. 

STEP OSD.2. Repetitive differentiation of the system output. 

This step will be repeated until f becomes a zero vector. We let 

f~(~J (4.3.14) 

For each nonzero element h, i = 1,2, ... ,p, we rewrite its corresponding 
transformation matrix, 

(4.3.15) 

where O!j, = rank (Zi). Let Xi,a; := Ci,a; X, then we have 

(4.3.16) 

The following tests are to be carried out for all Z i, with nonzero flag h: 

Case 1. If 

rank ([ Ci,~;A]) > rank(Z), (4.3.17) 
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it implies that there are more integrators in the chain associated with the i-th 

output, which must be further identified. We then replace Z and Z i with 

(4.3.18) 

and test the next Zi whose corresponding flag Ii i= O. 

Case 2. If 

rank ([ Ci'~i A ]) = rank( Z), (4.3.19) 

there is no more inherent integration in the chain associated with this i-th 

output. For this case, we replace the corresponding flag f i in the flag vector 

f with a scalar 0, which stops this output variable from further differentia

tion, and amend Z as follows: 

Z:= [i], (4.3.20) 

which will be used to define new state variables. We also let 

w := w + 1 and kw:= (l:i. (4.3.21) 

For future reference, we rewrite 

(4.3.22) 

withj = 1,2, ... ,w, 

(4.3.23) 

The above tests have to be carried out for all Z i with flag Ii i- O. Note that 

in Case 2, there is an element in the flag vector f being replaced by a scalar 

O. As such, f will eventually become a zero vector. 

If f = 0, we move on to STEP OSD.3. Otherwise, we go back to repeat 

STEP OSD.2. 
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STEP oso.3. Preliminary transfonnation. 

Obviously, in STEPoso.2 wehaveobtainedasetofintegers,k1 , k2 , ••• , kp , 

with k1 :5 k2 :5 ... :5 kp • Let no = n - I:f=l ki and So be an no x n 
constant matrix such that 

S:= [~l (4.3.24) 

is nonsinguiar. Generally, we can choose an So whose rows constitute a 
basis of the null space of Z. Next, we define a new state variable 

f= (D =Sx, 

where 

Xi = (:~:: ), i = 1,2, ... , p. 

Xi,k, 

Noting that, for i = 1,2, ... ,p, 

we have 

Xi,l = Ci ,l X = 'Oi, 
Xi,2 = Ci ,l Ax, 

C- Ak·-1 
Xi,k; = i,l • X, 

p min{k;+l,k.} 

(4.3.25) 

(4.3.26) 

(4.3.27) 

(4.3.28) 

(4.3.29) 

(4.3.30) 

(4.3.31) 

Xi,k; = Ci ,lAk;-lX = Ci ,lAk;x = L L ai,s,jXs,j, (4.3.32) 
8=1 j=l 

for some appropriate constants ai,B,j. This last equation follows from the 
construction of Z in the previous step. Also, we have 

p k. 

:fo = Aoxo + L L AO,s,jxs,j, 

8=lj=1 

for some appropriate constant vectors Ao,s,j. 

(4.3.33) 
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STEP OSD.4. Further simplification in (4.3.32). 

Let us define a new state variable 

(4.3.34) 

where Xo = xo, and for i = 1,2, ... ,p, 

p min{k.+1,k.} 

Xi,1 - L L O:i,s,jXs,j-k. 
s=1 j=k.+1 

( 

Xi,1 ) 
X'2 _,__ 'I, e_ 

X,.- _: .-

Xi,k. 

p min{k.+1,k.} 

Xi,2 - L L O:i,s,jXs,j-k.+1 
s=1 j=k. , (4.3.35) 

p min{k.+1,k.} 

Xi,k. - L L O:i,s,jXs ,j-1 
s=1 j=2 

and a new output variable, 

p min{k.+1,k.} 

iii := Xi,1 = Xi,1 - L L O:i,s,jXs,j-k. 

8=1 j=k.+1 

P P 

= Xi,1- LO:i,s,k;+1 XS,1 = Yi- LO:i,s,k.+1Ys, (4.3.36) 
s=1 s=1 

which shows that Yi = Xi,1 is a linear combination of 'Oi, i = 1,2, ... ,po 
Here we note that the coefficient, O:i,8,k, when k > ks, is set to 0 in the 
definitions of (4.3.35) and (4.3.36). Then, we have 

P min{k.+1,k.} 

ii,k. = Xi,k; - L L O:i,8,jXS ,j-1 
s=1 j=2 

P min{k.+1,k.} p min{k;+1,k.} 

= L L O:i,s,jX8,j - L L O:i,s,jXs,j 
8=1 j=1 s=1 j=2 

P P 

= L O:i,s,1 X8,1 = L O:i,s,1 Xs,1, (4.3.37) 
s=1 s=1 

p min{k.+1,k.} 

ii,ki-1 = Xi,k.-1 - L L O:i,s,jXs,j-2 
s=1 j=3 
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p min{ki+l,k.} 

= Xi,ki - L L Oi,s,jX8,j-l 

8=1 j=3 

p min{ki+l,k.} p min{ki+1,k.} 

= fi\ki + L L Oi,8,jX8,j-l - L L Oi,s,jXs,j-l 

s=1 j=2 s=1 j=3 

p p 

= fi\ki + L Oi,s,2 X s,1 = Xi,ki + L O:i,s,2 Xs,l, (4.3.38) 
8=1 s=1 

p min{ki+l,k.} 

£i,1 = Xi,1 - L L Oi,8,jXS ,j-ki 

s=1 j=ki+1 

p min{ki+l,k.} 

= Xi,2 - L L Oi,s,jXs,j-ki+l 

8=1 j=ki+l 

p min{ki+l,k.} p min{ki+l,k.} 

= Xi,2+ L L Oi,s,jXs,j-ki+l - L L Oi,s,jXs,j-ki+l 

8=1 j=k. 8=1 j=k.+l 
p p 

= Xi,2 + L Oi,s,k. X8,1, = Xi,2 + L O:i,8,k. Xs,l' (4.3.39) 
s=l s=1 

We also have 
p k. 

£0 = Aoxo + L :~::>io,s,jXS,j, (4.3.40) 
s=lj=1 

for some constant vectors ..4o,$,j' 

STEP OSD.5. Further simplification in (4.3.40). 

We now proceed to find a transformation such that the dynamics associated 

with Xo is expressed only in terms of Xsl, S = 1,2, ... ,po 

If max{kl' k2 , .•• , kp } = 1, we will skip the following sub-steps and di

rectly go to STEP OSD.6. Otherwise, we let i := 0, xo,o := xo, ..4o,$,j,O := 

..4o,s,j' and carry out the following sub-steps: 

Sub-step 5.1. First, we note that 

p k.-i 

£O,i = Aoxo,i + L L Ao,s,j,iXs,j' (4.3.41) 
s=1 j=1 
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We will eliminate Xs,k.-i, S = 1,2, ... ,po in the above expression. Let us 
define 

P 

xO,H1 := XO,i - L AO,s,k.-i,iXs,k.-i-l, 
8=1 

where we take AO,s,k.-i,i = 0 if ks - i-I ~ O. We have 

p 

iO,i+l = iO,i - L AO,s,k.-i,iis,k.-i-1 
8=1 

p k.-i 

= AoXO,i + L L AO,s,j,iXs,j 
8=1 j=1 

-t A O,8,k.-i,i (XS,k.-i + t O:8,k,H2 Xk,l) 
8=1 k=l 

P P k.-i-1 

(4.3.42) 

= AOXO,i+l + L A oA o,s,k.-i,iXs,k.-i-1 + L L AO,s.i,iXs,j 
8=1 8=1 j=l 

p p 

- L L A O,8,k.-i,iO:s,k,i+2Xk,l' 
s=l k=l 

(4.3.43) 

Clearly. we have eliminated Xs,k.-i. S = 1,2, ... ,p, in (4.3.43). Thus, we 
can rewrite (4.3.43) as 

P k.-i-1 

iO,i+l = AoXO,H1 + L L Ao,S,j,H1 XS,j, (4.3.44) 
s=1 j=1 

for some appropriate constant vectors AO,s,j,i+l' 

Sub-step 5.2. If i = max{k1' k2 , ••• , kp } - 2. then we will go to STEP 
OSD.6. Otherwise, let i := i + 1 and repeat Sub-step 5.1. 

STEP OSD.6. Finishing touch. 

Let Xo := XO,i+l and A o,8 := Ao,H1,s,l' We have 

p 

5:0 = Aoxo + " Ao sXs 1· ~ , , (4.3.45) 
s=l 

In view of (4.3.45) and (4.3.37) to (4.3.39). the transformed system is indeed 
in the OSD form. This completes the proof of Theorem 4.3.1. The software 
realization of the above algorithm has been implemented in [87] with a 
MATLAB function osd. m. • 
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We illustrate the OSD in the following example. 

Example 4.3.1. Consider an unforced system (4.3.1) characterized by 

1 0 0 0 -1 0 
-2 -1 4 -2 3 0 

A= -2 -1 3 -1 3 0 
1 1 -2 3 -2 0 

, (4.3.46) 

2 1 -2 2 -3 0 
1 1 -1 1 1 -1 

and 

C = [_~ 1 0 0 1 ~] . 0 1 -1 1 
(4.3.47) 

We follow closely the step-by-step procedures of the OSD algorithm to construct 

necessary state and output transformations. 

STEP OSD.l. Initialization. 

We first partition 

and set 

w := 0, the flag 

Z1 := C1 = [1 1 0 0 1 0], 

Z2 := C2 = [-1 0 1 -1 1 0], 

f:= (~), 

Z := C = [ _ ~ ~ ~ _ ~ ~ ~], 
and Z:= [], an empty matrix. 

STEP OSD.2. Repetitive differentiation of the system output. 

Noting that 

with h = 1 i- 0, we partition 

Zl = [Cl,l] = [1 1 0 0 1 0], 
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and compute 

CI,IA = [1 0 2 0 -1 OJ. 

It is easy to verify that 

which satisfies the condition of Case 1. i.e .• (4.3.17). Thus. we set 

z ,= [c Z A 1 = [ -: 
1 0 0 1 n 0 1 -1 1 

1,1 1 0 2 0 -1 

and 

ZI := [C~~A] = [~ 1 0 0 1 ~] . 0 2 0 -1 

Similarly. because h = 1 -:/= O. we partition 

Z2 = [C2,I J = [ -1 0 1 -1 1 OJ 

and compute 

C2,IA=[-2 -1 3 -2 3 OJ. 

It can be readily verified that 

which again satisfies the condition of Case 1, (4.3.17). Thus. we set 

Z ,= [C2~A 1 = [ -: 
1 0 0 1 n 0 1 -1 1 
0 2 0 -1 

-2 -1 3 -2 3 

and 

[ Z2] [ -1 0 1 -1 1 ~]. Z2:= C2,IA = -2 -1 3 -2 3 

Next. since 

f = (~~) = (~) 
remains unchanged and It = 1. we partition 

Zl = [CI,1 ] = [1 1 o 0 1 ~] , C1,2 1 020 -1 
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and compute 

C1,2A = [-5 -3 8 -4 8 0], 

and verify that 

rank ([ Cl~A]) = 5> rank(Z) = 4, 

which corresponds to Case 1. Thus, we set 

1 1 0 0 1 0 

Z:= [c Z A] = 

-1 0 1 -1 1 0 
1 0 2 0 -1 0 1,2 -2 -1 3 -2 3 0 

-5 -3 8 -4 8 0 

Z, := [ /' A 1 = [ : 

1 0 0 1 n 0 2 0 -1 1,2 -5 -3 8 -4 8 

Similarly, since h = 1, we partition 

Z2 = [C2,l ] = [ -1 0 1 -1 1 ~] , C2,2 -2 -1 3 -2 3 

and compute 

C2,2A = [-2 -1 3 -1 3 0], 

and check that 

rank ([ C2~A]) = 5 = rank (Z), 

which satisfies the condition of Case 2, i.e., (4.3.19). Hence, we set 

f - (It) ._ (1) - h .- 0 ' 

- [Z] [-1 0 1 -1 1 0] =.[Z]= [~1'1] 
Z:= Z2 = -2 -1 3 -2 3 0 . 1 C1,2' 

and 

W := W + 1 = 1, k1 := rank(Zr) = 2. 

Again, noting that 
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with It = 1, we proceed to partition 

[Cl'l] [1 1 0 0 1 

~] , ZI = C1,2 = 1 0 2 0 -1 
C1,3 -5 -3 8 -4 8 

and compute 

C1,3A = [-3 -1 4 2 4 0], 

and check that 

rank ([ Cl~A]) = 5 = rank (Z), 

which satisfies the condition in Case 2. Thus, we set 

-1 0 1 -1 1 0 G't,1 

Z:= [i] = 

-2 -1 3 -2 3 0 

~,[ ;: ] ~ G't,2 
1 1 0 0 1 0 62,1 
1 0 2 0 -1 0 62,2 

-5 -3 8 -4 8 0 62,3 

w:= w+1 = 2, k2 = rank (Z2) = 3. 

Since the flag, j, is identically zero, we move on to STEP OSD.3. 

STEP OSD.3. Preliminary transformation. 

Obviously, no = 6 - 5 = 1. We select 

80:= [0 0 0 0 0 1] 

to obtain a preliminary transformation, 

0 0 0 0 0 1 
-1 0 1 -1 1 0 

8:= [1] = 
-2 -1 3 -2 3 0 

1 1 0 0 1 0 
1 0 2 0 -1 0 

-5 -3 8 -4 8 0 

The resulting transformed system is given by 
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-1 0.3333 -2 1 -0.3333 0.6667 
0 0 1 0 0 0 
0 1 -2 0 0 1 
0 0 0 0 1 0 

x, 
0 0 0 0 0 1 
0 6 -14 0 0 5 

and 

STEP osn.4. 

Following the procedure of STEP osn.4 given in the proof, we obtain an-

other state transformation matrix W, 

1 0 0 0 0 0 
0 1 0 -1 0 0 

W= 
0 2 1 0 -1 0 
0 0 0 1 0 0 

, 
0 0 0 -5 1 0 
0 14 0 0 -5 1 

such that under the following transformation, 

we have 

-1 -5 -2 1 1 0.6667 
0 -2 1 -2 0 0 
0 1 0 1 0 0 
0 0 0 5 1 0 

x, 
0 -14 0 -14 0 1 
0 6 0 6 0 0 

and 

o ] _ o x, 

with 

[-1 1] Wo= 10. 
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STEP OSD.5. 

It will take two sub-steps to remove the unwanted terms associated with 

xo. Following the iterative procedures given in the proof, we first obtain a 

transformation, 

1 2 0 0 -0.6667 0 
0 1 0 0 0 0 

Ml = 
0 0 1 0 0 0 
0 0 0 1 0 0 

, 
0 0 0 0 1 0 
0 0 0 0 0 1 

which gives 

-1 2.3333 0 6.3333 0.3333 0 
0 -2 1 -2 0 0 
0 1 0 1 0 0 
0 0 0 5 1 0 
0 -14 0 -14 0 1 
0 6 0 6 0 0 

and the second transformation matrix, 

1 0 0 -0.3333 0 0 
0 1 0 0 0 0 

M2 = 0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

STEP OSD.6. Finishing touch. 

The complete required state and output transformations are then given by 

the following matrices: 

0 2 2 -1 -0.6667 -0.5556 
0 0 -2 2 0.3333 0.4444 

Ts = (M2Ml WS)-l = 0 -2 -1 3 1 0.3333 
0 -7 -3 3 2 1 

, 
0 -2 0 0 0.3333 0.1111 
1 -2 0 0.3333 0.6667 0 

and 

T. -W-1 - [0 0- 0 - 1 n, 
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and the resulting transformed system is characterized by 

-1 2.3333 0 4.3333 0 0 
0 -2 1 -2 0 0 
0 1 0 1 0 0 
0 -0 0 5 1 0 
0 -14 0 -14 0 1 
0 6 0 6 0 0 

and 

Clearly, the transformed system is indeed in the form of the observability 
structural decomposition as given in (4.3.7) and (4.3.8). 

We now present another decomposition of the unforced system or the matrix 
pair (C, A), i.e., the so-called block diagonal observable structural decomposition 
(BDOSD). 

Theorem 4.3.2 (BDOSD). Consider the unforced system of (4.3.1) with (C, A) 
being observable. Then, there exist an integer k $ p, a set of k integers K.1, K.2, 
... , K.k, and nonsingular transformations Ts and To such that 

[At 0 

n· -1 0 A2 
Ts ATs= b 

0 Ak 

(4.3.48) 

and 
C1 0 0 

* C2 0 

To- 1CTs = (4.3.49) 

* * Ck 

* * * 
where the symbols * represent some matrices of less interest, and Ai and Ci, 
i = 1,2, ... , k, are in the OSD form 

(4.3.50) 

Obviously, L~=l K.i = n. 
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Proof. This theorem is the dual version of Theorem 4.4.2 of the next section. 
The detailed proof of the BOOSD follows from that given in Theorem 4.4.2. The 
software realization of this canonical form in MATLAB, bdosd. m, can be found 
in [87]. • 

Example 4.3.2. Consider an unforced system (4.3.1) characterized by 

[ 

1 0 
-2 -1 

A = -2 -1 
1 1 
2 1 

o 0 -1] 4 -2 3 
3 -1 3 

-2 3 -2 ' 
e = [_~ ~ ~ _~ i]. (4.3.51) 

-2 2-3 

Using bdosd . m of [87], we obtain 

-18.404516 0 
[ 

9.202258 9.202258 

Ts = -27.606773 -9.202258 

9.202258 
o 
o 

-9.202258 
o 

11.985440 
-15.621333 

o 
o 

2.783182 

and 

-27.606773 -18.404516 
o 0 

To = [-2.783182 -0.302446] 
o 0 1 ' 

[ 

3 1 
-3 0 

~-1AT8 = 1 0 
o 0 
o 0 

! H], 
001 000 

20.334987] 
-44.080817 
-6.419075 , 

9.202258 
8.349547 

-1 [ 1 0 0 0 0 ] 
To eTs = -9.202258 0 0 -9.202258 -27.606773 ' 

which is indeed in the BDOSD form of Theorem 4.3.2. Clearly. we have k = 1 
and K1 = 5. 

4.4 Unsensed Systems 

We now proceed to introduce the controllability structural decomposition (CSD) 
and the block diagonal controllable structural decomposition (BDCSD) for the 
unsensed system E characterized by 

x = Ax+Bu, (4.4.1) 
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where as usual x E lRn is the state and u E lRm is the input. As mentioned ear
lier, the CSD and BDCSD are actually the dual versions of the OSD and BDOSD, 
respectively. We note that the CSD is also commonly known as the Brunovsky 
canonical form (see Brunovsky [15]). But, the same result was reported by Luen
berger [95] earlier in 1967. This CSD turns out to be a key tool in solving the prob
lems related to sensor/actuator selection (see, e.g., [31,92]), while the BDCSD is 
instrumental in solving the problem of H 00 almost disturbance decoupling (see, 
e.g., [22,23,86]) and in deriving the structural decomposition for singular systems 
given later in Chapter 6. 

Theorem 4.4.1 (CSD). Consider the unsensed system of (4.4. 1) with B being of 
full ranle Then, there exist nonsingular state and input transformations T s E lR n x n 

and Ti E lR m x m such that, in the transformed input and state, 

x = Tsx, u = l1u, (4.4.2) 

where 

x= i = 1,2, ... ,m, u= (4.4.3) 

we have 

5:0 = Aoxo, (4.4.4) 

and fori = 1,2, ... ,m, 

(4.4.5) 

where Ei , i = 1,2, ... , m, are some row vectors of appropriate dimensions, and 

A- = [0 Iki - 1 ] B. _ [0] too ' t- 1 . (4.4.6) 

The matrix Ao is of dimensions no x no, where no = n- 2::~1 ki' and A(Ao) 
contains all the uncontrollable modes of the matrix pair, (A, B). Moreover, the 
integer set, C:= {k1 , k2 , ••• , km }, is called the controllability index of (A, B). 
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Xo 

Ao 

Note: signals indicated by double-edged arrows are linear combinations of the states. 

Figure 4.4.1: Interpretation of the controllability structural decomposition. 

Theorem 4.4.1 follows dually from the result of Theorem 4.3.1. The CSD, i.e., 
the controllability structural decomposition, can be summarized in a matrix form, 

- - 1 1 (A, B) := (Ts- ATs, Ts- Bll), with 

o 0 

* * 
o 
* 

o 
o 

... * 

o 
o 
* 

o 
o 

B = 1 

o 
o 

o 
o 
o 

o 
1 

(4.4.7) 

where * represents a matrix of less interest, or in a graphical form as in Figure 
4.4.1. The software realization of such a decomposition in MATLAB can be found 
in [87] under an m-function csd. m. Readers are referred to Chapter 12 for a 
detailed help file on the usage of this m-function. 

Example 4.4.1. Consider the unsensed system (4.4.1) characterized by a matrix 
pair, (A, B), with 

[

-2 

A= ~ 
10 
11 

000 
3 2 -1 
4 2 -1 
8 5 -2 
7 4 -2 
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The m-function csd. m of [87] generates the following results: 

and 

[

1 0 0 
o -1 0 

Ts = 0 -2 1 
2 -5 1 
o -3 0 

-2 0 0 
1 1 0 
0 0 0 
0 0 0 
5 -1 1 

n] I 11 = [~ ~] I 

1 2 

0 0 
0 0 
0 0 
0 1 
1 2 

o 0 
o 0 

, Ts- 1 B11 = 1 0 
o 0 
o 1 

(4.4.8) 

The corresponding controllability index of (A, B) is given bye = {I, 2}. The pair 
has two uncontrollable modes at -2 and 1, respectively. 

The next theorem deals with the block diagonal controllable structural decom
position (BDCSD). 

Theorem 4.4.2 (BDCSD). Consider the unsensed system of (4.4.1) with (A, B) 

being controllable. Then, there exist an integer k ::; m, a set of k integers 1>.1. 

1>.2 • ••• , I>.k, and nonsingular transformations Ts and 11 such that the transformed 
system. (A,.8) := Cl~-l ATs, Ts- 1 B11), has the following form: 

[

Al 0 ... 
_ 0 A2 ... 
A= 0 0 • 

o 0 

(4.4.9) 

where Ai and Bi, i = 1,2, .. 0, k, are in the CSD form 

[0 1 ... 0] [0] . ... . . . .. . - .. .. _. Ai- ,Bi-, o 0 ... 1 0 
* * ,.0 * 1 

(4.4.10) 

and * represents a matrix of less interest. Obviously, L~=l I>.i = n. 

Proof. The existence of such a canonical form was shown in Wonham [154J. In 
what follows, we recall an explicit algorithm for the construction of the transfor
mation matrices Ts and 11 derived earlier in Chen [22]. 
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First, we follow the result of Theorem 4.2.2 to find a nonsingular transforma
tion Q E a nxn such that the matrix A is transformed into a real Jordan canonical 
form, i.e., 

with 

JUi 
>.; 

". J' 
l' i = 1,2, ... ,£, 

(4.4.11) 

(4.4.12) 

where Ai = Pi + jWi E A(A) with Wi ~ 0, and Ah :f. Ai2' if i l :f. i2' Moreover, 
for each i E {I, 2, ... , £} and s = 1,2, ... , O'i, Jt E ani. xn;. has the real 

Jordan form 
1 

~ 1]' 
J.ti 

(4.4.13) 

if Wi = 0, or 

[.
Ai ~2 

Js - . 
>.; - (4.4.14) 

if Wi > O. For convenience in later presentation, we arrange the Jordan blocks in 
the way that nil ~ ni2 ~ ... ~ n Wi ' Next, compute 

Btl B~l Brf 

BtUl B~Ul B~l 

B~l B~l B~ 

13 = Q-IB = 
B~U2 B~U2 B2!2 

(4.4.15) 

Bh Bil B;t 

B}ut Biul Bt:l 
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It is straightforward to verify that the controllability of (A, B) implies: for each 

i = 1,2, ... ,t, there exists a BiJ. with v E {I, 2, ... ,m} such that (Jli , BY1) is 

controllable, which is equivalent to the last row of B [1 being nonzero if.Ai is real, 

or at least one of the last two rows of BY1 being nonzero if Ai is not real. Thus, it 

is simple to find a vector 

(4.4.16) 

and partition 

(4.4.17) 

-1 
such that (Jl i , B i1) is controllable. Because of the special structure of the real 
Jordan form and the fact that nil ~ ni2 ~ ... ~ niO'i' the eigenstructures associ
ated with Jt, with s > 1, are uncontrollable by ih. Thus, it is straightforward to 
show that there exist nonsingular transformations T;l' i = 1,2, ... ,t, such that 

and 

JO'i 
Ai 

(T;l)-l 

l. [Jl i 

T~ -
81 -

-1 v1 
Bi1 Bil 
-1 

Bi2 0 
= 

-1 
BiO'i 0 

(4.4.18) 

(4.4.19) 
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with (J1; , iJ ~l) being controllable. This can be done by utilizing the special struc
ture of the CSD form (see Theorem 4.4.1). Next, perform a permutation transfor
mation PsI such that 

l ]_1 A [Til T:A 1 PsI 

Tsl TIl 

= blkdiag{ J11 ,···, J1l , J~I"'" Jr:,······, J~l"'" Jr:}, 

and 

[Til r [tll 0 

~l (Pst}-l 
T;l - t2l 1 

Tit B t~l 0 
0 

vI 
Bn 

v2 
Bn 

vm 
Bn 

vI 
Bll 

v2 
Bll 

vm 
Bli 

0 
v2 

B12 
vm 

B12 

= v2 
0 

vm 
B lu1 Blu1 

0 
v2 

Bl2 
vm 

Bl2 

0 
v2 

Blut 
vm 

BlUt 

Because Ai, i = 1,2, ... , t, are distinct, the controllability of (J1;, iJ~l) implies 
that 

vI [ Jf, 
JJ 

Bn 
J12 

vI 

(AI, iJt} := B2l (4.4.20) 

vI 
Bil 
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is controllable. Hence, there exists a nonsingular transformation Xl E IRk! Xk!, 

where kl = l:f:=l nil. such that 

010 0 
o 0 1 0 

X11AIX1 = Al = (4.4.21) 

and 

000 1 

* * * ... * 

o 
o 

o 
1 

Next, repeating the above procedure for the pair 

blkdiag{ J~l"'" Jr:,······, J~t"'" Jr:}, 
-2 -m 

Bl2 Bl2 

-2 -m 
l1tut l1lUt 

(4.4.22) 

one is able to separate (A2' 112). Repeating the same procedure for k - 2 more 
times, where k = max{O'l' 0'2, • .. , O'l}, one is able to obtain the required canoni
cal form as in Theorem 4.4.2. This completes the proof of the theorem. The result 

has been implemented in [87} as an m-function bdcsd. m. _ 

We conclude this chapter with the following example. 

Example 4.4.2. Consider the unsensed system (4.4.1) characterized by matrices 

A and 11 with 

1 0 0 0 0 0 1 6 
0 1 0 0 0 0 2 5 

A= 0 0 0 1 1 0 
11= 

3 4 
0 0 -1 0 0 1 

, 
4 3 

0 0 0 0 0 1 5 2 
0 0 0 0 -1 0 6 1 
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Using the MATLAB function bdcsd. m of [87], we obtain the following necessary 

transformations and transformed system: 

-2.10371 0 -4.20741 0 -2.10371 0.78529 
-2.31866 0 -4.63731 0 -2.31866 -0.71249 

Ts= 
-0.21495 9.10545 -3.17845 -3.17845 -2.53360 0 
-5.71205 2.53360 3.82330 2.10371 -2.74855 0 

, 
3.17845 -0.21495 0.21495 -0.21495 -2.96350 0 

-2.96350 6.14195 -6.14195 6.14195 -3.17845 0 

'n = [ -0.48477 
1 -0.26982 0.9782~] , 

and 

0 1 0 0 0 0 0 -0.56147 
0 0 1 0 0 0 0 -0.29865 

Ts-IATs = 0 0 0 1 0 0 Ts- IB71 = 0 -0.32323 
0 0 0 0 1 0 

, 
0 -0.76184 

1 -1 2 -2 1 0 1 -1.20895 
0 0 0 0 0 1 0 1 

This verifies the results of Theorem 4.4.2. 

Note that although the results of this chapter are stated for continuous-time 

systems, they are valid for discrete-time systems as well. 

4.5 Exercises 

4.1. Show that if ,\ and v are respectively the eigenvalue and eigenvector of a 

matrix A, then - >. and v are the eigenvalue and eigenvector of - A. Show 

that the result holds even if v is a generalized eigenvector. 

4.2. Consider an upper triangular block-diagonal constant matrix, 

where Al E jRnl xnl and A2 E jRn2 xn2 have no common eigenvalues. Let 

T2 E jRnxn2 be a matrix whose columns span the eigenspace of A asso

ciated with >'(A2 ), i.e., a ve~tor space spanned by the eigenvectors and 

generalized eigenvectors, if any, of A associated with >'(A 2 ), and let 
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Show that T is nonsingular, and 

T-! AT = [AO! 0] 
.4.2 ' 

4.3. Given a real-valued constant matrix, A, and a complex scalar, a f/. A( A) with 

lal = 1, show that 

A = ~ [(A + aI)-l(A - aI) + (A + a* I)-l(A - a* 1)], 
is a real-valued matrix. Note that a* is the complex conjugate of a. Show 

that if a nonsingular transformation, T, is such that 

[
A_ 0 0 1 

T-1AT= 0 Ao 0 , 
o 0 A+ 

where A(A_) c Co, A(Ao) c Co, and A(A+) C C®. 

4.4. Verify the results of Exercise 4.1 to Exercise 4.3 with the matrix 

[ 20 1 2] 
1 2 1-1 

A = 0 0 -1 1 . 

o ° 0-1 

4.5. Given a matrix A E ~nxn whose eigenvalues are given by A = J.t+ jw and 

its complex conjugate A * = J.t - jw with w f:. 0, define a new (2n) x (2n) 
matrix, 

z _ [A - J.tI WI] 
- -wI A-J.tI· 

Show that matrix Z has n eigenvalues at 0, n/2 eigenvalues at j2w, and 
n/2 eigenvalues at - j2w. Verify the above result with the matrix A given 
in Example 4.2.2. 
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4.6. Compute an observability structural decomposition (OSD) for the unforced 

system 

. [1 2 3] [1 2 3] 
x = i ~ ~ x, y = 3 2 1 x. 

4.7. Construct an unforced system, (A, C), which has the properties: (i) (A, C) 

is observable; (ii) the observability index of (A, C) is given by 0 = {2, 2}; 

and (iii) A has eigenvalues at 0, 1, 2, and 3. 

4.8. Construct an unsensed system, (A, B), which has the properties: (i) (A, B) 
is controllable; (ii) it has a controllability index of C = {I, 1, 2}; and (iii) 

A has eigenvalues at 1, 2, 3, and 4. 

4.9. Compute a block diagonal controllable structural decomposition (BDCSD) 

for the unsensed system obtained in Exercise 4.8. 

4.10. Given an unforced system 

where A E JR and a: E JR, show that the system is observable if and only if 

a: ¥= O. 

4.11. Given an unsensed system 

I 

A 

where 

A = [!w ~] E R2X2 , W ¥= 0, {j = (~~) E R2, 

show that the system is controllable if and only if {j ¥= O. 

4.12. Given a controllable pair (A, B) with A E JRnxn and B E Rnxm, show 

that if A has an eigenvalue with a geometric multiplicity of T, i.e., it has a 

total number of T Jordan blocks associated with it, then m ~ T. 



Chapter 5 

Decompositions of Proper 
Systems 

5.1 Introduction 

We present in this chapter the structural decomposition of linear time-invariant 

systems as represented by a matrix triple or a matrix quadruple. In order to make 

the presentation easier to follow, we will start with the structural decomposition 

of single-input and single-output (SISO) systems. It will be followed by a de

tailed construction of the structural decomposition for a general strictly proper 

multi-input and multi-output (MIMO) system. The decomposition of a general 

nonstrictly proper MIMO system will then be given together with detailed proofs 

of system properties revealed under the decomposition. We will conclude the 

chapter with the structural decomposition of general discrete-time systems. 

The development of the structural decomposition, or the special coordinate 

basis (SCB), for strictly proper systems given later in Section 5.3, follows from 

its development in Sannuti and Saberi [122]. However, the presentation of the 

proof and construction algorithm is very different, and is enhanced with many 

innovative results. In particular, we will replace quite a number of iterative steps 

in [122] with some single-step transformations. The algorithm is presented in a 

way that can be easily followed and implemented using software packages such 

as MATLAB. We will also completely resolve some issues left open in [122] by 

separating all transformed subsystems with proper structures, and by following 

the results of Chen [21] to give rigorous proofs to all the structural properties of 

general systems. The results of Chen et al. [24] on the interconnection of the 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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Kronecker canonical and Smith forms with the special coordinate basis of general 
multivanable systems are also presented. 

5.2 SISO Systems 

We consider a SISO system characterized by 

E : x = A x + B u, y = ex, (5.2.1) 

where x E JRn , u E JR and y E JR are the state, the input and the output. We assume 
that the transfer function of E is not identically zero. We have the following 
special coordinate basis (SCB) decomposition for E. 

Theorem 5.2.1. Consider the S1S0 system of (5.2.1). There exist nonsingular 
state, input and output transformations r s E JRnxn , rj E JR and roE JR, which 
decompose the state space of E into two subspaces, x a and Xd. These two sub
spaces correspond to the finite zero and infinite zero structures ofE, respectively. 
The new state space, input and output space of the decomposed system are de
scribed by the following set of equations: 

and 

__ (xa) x- , 
Xd 

Xa = Aaaxa + LadY, 

Xl = X2, Y = Xl, 

X2 = X3, 

(5.2.2) 

(5.2.3) 

(5.2.4) 

(5.2.5) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

Furthermore, A(Aaa) contains all the system invariant zeros and nd is the relative 
degreeofE. 



5.2. SISO Systems 109 

Xa 

~ __ X3 

Note: the signal given by the double-edged arrow is a linear combination of the states. 

Figure 5.2.1: Interpretation of structural decomposition of a SISO system. 

Proof. The interpretation of Theorem 5.2.1 is given in Figure 5.2.1. In what 
follows, we present a step-by-step algorithm to construct the required r s, n and 
r 0 that realize the structural decomposition or the special coordinate basis of ~. 
The proof of this theorem is considerably simpler than that for the general system 
given in Theorem 5.3.1. The idea behind is, however, quite similar. 

STEP SISO-SCB.l. Determination of the relative degree. 

The relative degree of ~ can be obtained by differentiating the output y. We 
let nd be such that 

CB = CAB = .,. = CAnd-2B = 0, (5.2.9) 

and 

(5.2.10) 

Note that (5.2.9) and (5.2.10) imply that there are nd inherent integrators 
between the input and the output of~. This can clearly be seen later in 
(5.2.13) to (5.2.16). Next, we let na := n - nd. 

STEP SISO-SCB.2. Construction of a preliminary state transformation. 
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Let Zo be an na x n constant matrix such that 

Z:= [ ;~ ] := 

Zo 
C 

CA (5.2.11) 

is nonsingular. Note that we can choose a Zo whose rows form a basis of 

the null space of Zd. Next. let 

Xo Zo 
Xl C 

x·-. - X2 :=Zx= CA x . (5.2.12) 

xnd CAnr 1 

We have 

:h = Cx = CAx + CBu = CAx = X2, Y = Xl, (5.2.13) 

nd 
xnd = EdaXO + 2: 'YiXi + /3u, 

i=l 

for some appropriate Eda • and 'Yi. i = 1,2, ... , nd. and 

nd 
Xo = Aooxo + 2: O:O,iXi + /3ou, 

i=l 

for some appropriate vectors Aoo. O:O,i. i = 1,2, ... , nd. and /30. 

(5.2.14) 

(5.2.15) 

(5.2.16) 

(5.2.17) 

STEP SISO-SCB.3. The elimination ofu in the state equation ofxo. 

It follows from (5.2.16) that 

1 [ nd 1 u = -g Xnd - EdaXO - ?= 'YiXi , 
t=l 

(5.2.18) 

which together with (5.2.17) imply that 
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nd 
= Aaaxo + I: aO,ixi + ilXnd , 

i=l 

for some appropriate Aaa , aO,i, i = 1,2, ... , nd, and il. 

STEP SISO-SCB.4. The elimination of xnd in the state equation ofxo. 

We define a new state variable, 

Then, we have 

nd 

5;0 = Xo - ilXnd = Aaaxo + I: aO,ixi + ilXnd - ilXnd 
i=l 

nd 

= Aaa(xo + ilxnJ + L:aO,iXi 
i=l 

nd 
= Aaaxo + L:aO,ixi, 

i=l 
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(5.2.19) 

(5.2.20) 

(5.2.21) 

for some appropriate constant vectors aO,io i = 1,2, ... , nd. Also, (5.2.16) 

can be re-written as 

nd 
xnd = EdaXO + I: 'YiXi + {3u 

i=l 

nd 

= EdaXO + Edailxnd + L 'YiXi + {3u 
i=l 

nd 

= EdaXO + L 1'iXi + {3u, 
i=l 

for some appropriate l' i' i = 1, 2, ... , nd. 

(5.2.22) 

STEP SISO-SCB.5. The elimination OfX2, ... , xnd from the state equation ofxo. 

If nd = 1, no further transformation is required and we go to STEP SISO

sCB.6. Otherwise, we let s := 0, xo,o := xo, ao,o,i := aO,i and 1'O,i := 1'i' 

i = 1,2, ... , nd. Then, we carryon the following iterative sub-steps. 

Sub-step 5.1. First, note that we have 

nd-S 

5;o,s = Aaaxo,s + I: as,O,ixi, 
i=l 

(5.2.23) 
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and 
nd 

Xnd = EdaXo,s + L i's,iXi + f3U. (5.2.24) 
i=1 

We are now eliminating Xnd -s from the above expression by defining 

which together with xnd -s-1 = xnd -s imply that 
. . 
XO,s+1 = xo,s - Cts,o,nd-sXnd-s-l 

= Aaa (XO,S+1 + Cts,o,nd-sXnd-s-l) 

nd-s-1 

+ L Cts,O,iXi + Cts,O,nd-sXnd-s - Cts,O,nd-sxnd-s 
i=1 

nd-s-l 

(5.2.25) 

= A aax o,s+1 + (AaaCts,O,nd-s)Xnd-s-l + L Cts,O,iXi. (5.2.26) 
i=1 

Clearly, we have eliminated Xnd -s in the above expression. Also, we have 

nd 

Xnd = EdaXO,s + L i's,ixi + f3u 
i=l 

nd 

= Eda (XO,S+l + O:s,o,nd-sXnd-s-l) + L i's,ixi + f3u 
i=1 

nd 

= EdaXO,s+1 + EdaCts,O,nd-s Xnd-s-l + L i's,iXi + f3u. (5.2.27) 
i=1 

For the next iteration, we re-write (5.2.26) as 

nd-s-l 

i o,s+1 = A aax o,s+1 + L Cts+1,O,iXi, 
i=1 

(5.2.28) 

for some appropriate constant vectors Cts+l,O,i, i = 1,2, ... , nd - S - 1, 
and re-write (5.2.27) as 

nd 

Xnd = EdaXO,S+1 + L i's+1,iXi + f3u, 
i=1 

(5.2.29) 

for some appropriate constant vectors i'S+1,i' i = 1,2, ... , nd - S - 1. 

Sub-step 5.2. If s = nd - 2, we have obtained what we need and we go to 
STEP SISO-SCB.6. Otherwise, we let s := s + 1 and go back to Sub-step 
5.1. 
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STEP SISO-SCB.6. Finishing touch. 

Finally, we let 

Xa := :1:0,8+1, y = roY = y, r - 1_ 
u= jU=-U 

{3 

and 

Then, (5.2.13) to (5.2.15) and (5.2.28) to (5.2.31) imply that 

Xa = Aaaxa + LadY, 

Xl = X2, Y = Xl, 

X2 = X3, 
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(5.2.30) 

(5.2.31) 

(5.2.32) 

(5.2.33) 

(5.2.34) 

(5.2.35) 

It is trivial to see that nd is the relative degree of E. In Section 5.4, we will 
show that A(Aaa) are the invariant zeros of E for general systems. _ 

We note that the output transformation in Theorem 5.2.1 can be chosen to 

be equal to 1, i.e., r 0 = 1. We illustrate the above procedure in the following 
example, which was given in Chen [22]. 

Example 5.2.1. Consider a SISO system E characterized by (5.2.1) with 

and 

[
1 2 3 

A= 2 3 4 
456 
567 

C=[O 3 -2 0]. 

The structural decomposition of E proceeds as follows: 

1. Differentiating the system output. 

It involves the following sub-steps. 

(a) First, we have 

(5.2.36) 

(5.2.37) 

y=Cx=CAx+CBu=[-2 -1 0 1]x+0·u. 
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(b) Since C B = 0, we compute 

ii=CA2x+CABu=[1 -1 -3 l]x+O·u. 

(c) Since CAB = 0, we continue on computing 

We move to the next step as C A 2 B f:. O. 

2. Constructing a preliminary state transformation. 

Let Zo be a vector such that 

Z=[~l' 
CA2 

(5.2.38) 

is nonsingular. Then, define a new set of state variables x, 

x= (~;) :=Zx= [L 1 x= cn· (5.2.39) 

It is simple to verify that Z with Zo = [1 0 0 01 is a nonsingular 

matrix. Furthermore, 

Xl = X2, 

X2 = X3, 

3. Eliminating u in (5.2.40). 

Equation (5.2.43) implies that 

3 9 5 1. 
u = - 12xo - '2X1 - '2X2 + 3X3 - 6X3. 

Substituting this into (5.2.40), we obtain 

. 4 1 11 1. 
Xo = - Xo - '2XI - "6X2 - 6X3' 

(5.2.40) 

(5.2.41) 

(5.2.42) 

(5.2.43) 

(5.2.44) 

(5.2.45) 

We have eliminated u in xo. Unfortunately, we have also introduced an 

additional X3 in (5.2.45). 
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4. Eliminating 3;3 in (5.2.45). 

Define a new variable Xo as 

_ 1 
Xo := Xo + -X3· 

6 
(5.2.46) 

We have 
(5.2.47) 

and 

3;3 = -72xo - 9Xl - 27x2 + 22x3 - 6u. (5.2.48) 

5. Eliminating X2 and X3 in (5.2.47). 

This step involves two sub-steps. 

(a) Letting 

(5.2.49) 

we have 

(5.2.50) 

and 

3;3 = -72xo,1 - 9Xl - 75x2 + 22x3 - 6u. (5.2.51) 

(b) Letting 
_ _ 9 
XO,2 := XO,l + 2X1, (5.2.52) 

we have 
:. 4- 35 
XO,2 = - XO,2 + 2"Xl, (5.2.53) 

and 

3;3 = -72xo,2 + 315xl - 75x2 + 22x3 - 6u. (5.2.54) 

6. Composing the nonsingular state, output and input transformations. 

Let 

Xa:= XO,2 (5.2.55) 

or equivalently let 

(5.2.56) 
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Xa 

Xl = y 

Figure 5.2.2: Interpretation of structural decomposition of Example 5.2.1. 

with 

r"~m 
9/2 -2/3 

Tl [ ~~ 
0 0 o]r 1 0 3 -2 

: . (5.2.57) 0 1 -1 0 
0 0 -1 -3 

Also, let 

f - 1_ u= iU=-6u, y=foY=l·Y. (5.2.58) 

Finally, we obtain the dynamic equations of the transformed system, 

. 4 35 
Xa = - Xa + "2XI, 

Xl = X2, Y = Xl, 

X2 = X3, 

(5.2.59) 

(5.2.60) 

(5.2.61) 

(5.2.62) 

which is now in the form given in Theorem 5.2.1. The graphical interpreta

tion of the above decomposition is given in Figure 5.2.2. The given system 

has an invariant zero at -4 and a relative degree of 3 (equivalently an infi

nite zero of order 3). 
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5.3 Strictly Proper Systems 

Next, we consider a general strictly proper linear system E characterized by 

{ X = A x + B u, 

Y = ex, 
(5.3.1) 

where x E IRn, u E IRm and Y E IRP are the state, input and output. Without loss of 

generality, we assume that both Band C are of full rank. We have the following 

structural or special coordinate basis decomposition of E. 

Theorem 5.3.1. Consider the strictly proper system E characterized by (5.3.1). 
There exist a nonsingular state transformation, r s E IRnxn , a nonsingular output 
transformation, roE IRP x P, and a nonsingular input transformation, r i E IR m x m , 

that will reveal all the structural properties ofE. More specifically, we have 

(5.3.2) 

with the new state variables 

- - (~:) E !!Dna X - ,Xa Jl\\ , 
Xc 

Xd 

(5.3.3) 

the new output variables 

ii = (t:), Yd E IRmd, Yb E IRP\ (5.3.4) 

and the new input variables 

- _ (Ud) u- , 
Uc 

(5.3.5) 

Further, the state variable Xd can be decomposed as: 

( ~::~ ) ( ~::~ ) ( ~::~ ) Xd = . ,Yd = . ,Ud = . , 

Xd:md Yd:md Ud:md 

(5.3.6) 

( 

Xd,i,l ) 
Xd,i,l 

Xd,i E IRq" Xd,i = x:, ,i = 1,2, ... , md, 

d,t,qi 

(5.3.7) 
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with ql ::; q2 ::; ... ::; qmd' The state variable Xb can be decomposed as 

( 

Xb,l ) ( Yb,l ) Xb,2 Yb,2 
Xb= . ,Yb= . , 

Xb:Pb Yb:Pb 

(5.3.8) 

( 

Xb'i'l) 
I, Xb,i,2. 

Xb,i E IR', Xb,i = x:, ,Z = 1,2, ... ,Ph, (5.3.9) 

b,~,I; 

with h ::; 12 ::; ... ::; 1pb' And finally. the state variable Xc can be decomposed as 

Xc = ( :::: ), Uc = ( ~:: ) , 
xc,mc uc,mc 

(5.3.10) 

X,,; E R", x"; ~ (~::::: ), i ~ 1,2, ... ,"k, (5.3.11) 

C,t,Ti 

with rl ::; r2 ::; ... ::; rmc' The decomposed system can be expressed in the 

following dynamical equations: 

for each subsystem Xb,i. i = 1,2, ... ,Ph. 

Xb,i,l = Xb,i,2 + Lbd,i,lYb + Lb,i,lYd, Yb,i = Xb,i,l, 

Xb,i,2 = Xb,i,3 + L bd ,i,2Yb + Lb,i,2Yd, 

for each subsystem Xc,i. i = 1,2, ... ,me. 

Xc,i,l = Xc,i,2 + Lcb,i,lYb + Lcd,i,lYd, 

Xc,i,T;-l = XC,i,T; + Lcb,i,T;-lYb + Lcd,i,T;-lYd, 

XC,i,T; = Ac,i,aXa + Ac,i,cxc+Lcb,i,T.Yb+Lcd,i,T.Yd + Uc,i, 

(5.3.12) 

(5.3.13) 

(5.3.14) 

(5.3.15) 

(5.3.16) 

(5.3.17) 

(5.3.18) 
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and finally, for each subsystem Xd,i, i = 1,2, ... , md, 

Xd,i,l = Xd,i,2 + Ld,i,lYd, Yd,i = Xd,i,l, 

Xd,i,2 = Xd,i,3 + Ld,i,2Yd, 
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(5.3.19) 

(5.3.20) 

(5.3.21) 

where A aa , Lab, ... ,Ad,i,d are constant matrices of appropriate dimensions. 

Proof. The basic idea in constructing the special coordinate basis decomposition 
of general strictly proper multivariable systems is pretty much the same as that 
in the proof of Theorem 5.2.1. Although the procedure for the decomposition of 
MIMO systems is more complicated, it still revolves around the identification of 
chains of integrators between the system input and output variables, which again 
will be done by repeatedly differentiating the system output variables. Nonethe
less, we would like to note that for general MIMO systems, there might exist three 
different types of chains of integrators: 

1. Chains that start from an input channel and end with an output. This type 
of chain gives the infinite zero structures of the given system and covers the 

subspace corresponding to Xd; 

2. Chains that start from an input channel but do not end with an output. This 
type of chain covers the subspace corresponding to Xc; and 

3. Chains that do not start from an input but end with an output variable. This 
type of chain covers the subspace corresponding to x b . 

In general, these subspaces do not cover the whole state space of the given system. 
The remaining part forms a subspace corresponding to x a, which is related to the 
invariant zeros of the system. These subsystems of x a, Xb, Xc and Xd are illustrated 
in graphical form as given in Figure 5.3.1. 

We proceed in the following with a step-by-step algorithm that decomposes 
the given system into the various subsystems. 

STEP SCB .1. Initialization. 

Noting that matrix C is of full rank, we partition it as 

(5.3.22) 
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Xa - the subsystem without direct input and output: 

Xa 

'-------I Aaa 

Xb,i - the chain of integrators without a direct input: 

1 ~ Xb,i,li u--y-----

Xc,i - the chain of integrators without a direct output: 

Uc,i Xc,i,1 

Xd,i - the chain of integrators with direct input and output: 

Note: the signal indicated by the double-edged arrow in Xd,; is a linear combination of 
all the state variables; the signal indicated by the double-edged arrow marked with a + c in 
xc,; is a linear combination of the state variables Xa and xc; the signals indicated by the 
thick vertical arrows are some linear combinations of the output variables Yd and Yb; and 
the signals indicated by the thin vertical arrows are some linear combinations of the output 
variable Yd. 

Figure 5.3.1: Interpretation of structural decomposition of a MIMO system. 
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where Gi , i = 1,2, ... ,p, are independent row vectors. For each Gi , i = 
1, 2, ... , p, we assign a corresponding transformation matrix Z i to it, which 

is ini tiall y set as 

(5.3.23) 

We also define a flag vector f as 

(5.3.24) 

which will be used as a flag in the iterative procedure in STEP SCB.2. Note 

that, as the algorithm is implemented, the elements of f will be replaced 

by zeros and it will eventually become a zero vector. On the other hand, Z i 

will be amended with additional rows and form parts of the required state 

transformation. We also initialize 

Z:=G, (5.3.25) 

and three empty matrices Zd, Wd and Zb. Note that Zd, Wd and Zb will 

be respectively used to form transformations associated with x d, Ud and Xb. 

Again, these matrices are variable, i.e., they might be amended with new 

components as we progress. Such a style of presentation is much easier 

to be implemented in software packages such as MATLAB. Finally, we let 

v := 0 and w := O. 

STEP SCB.2. Repetitive differentiation of the system output. 

This step will be repeated until f becomes a zero vector. We let 

f~ (~} (5.3.26) 

For each nonzero element Ii, i = 1,2, ... , p, we rewrite its corresponding 

transformation matrix, 

(5.3.27) 
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whereai = rank (Zi). LetXi,o<. := Gi,o<'x, then we have 

(5.3.28) 

The following tests are to be carried out for all Zi, whose corresponding 
flag Ii is nonzero: 

Case 1. If 

(5.3.29) 

the chain of integrators associated with this i-th output reaches a system 
input. It is the end of this chain of integrators and it belongs to the subspace 
associated with Xd. This simply means that the given system has an infinite 
zero of order ai. For this case, we replace the corresponding flag li in the 
flag vector f with a scalar 0, i.e., to stop this output variable from further 
differentiation. Furthermore, we amend the matrices Z d and Wd as follows: 

(5.3.30) 

These matrices will be used to define new state and input variables related 
to Xd and Ud respectively. We also let 

v := v + 1 and qv:= ai, (5.3.31) 

and test the next Zi with a corresponding flag Ii =f. O. 

Case 2. If 

(5.3.32) 

which implies that Gi,a. B is either a zero vector or a linear combination of 
the rows of Wd. Note that we have so far identified a total ofv infinite zeros 
and thus Zd can be arranged as follows: 

(5.3.33) 

with j = 1,2, ... , v, 

(5.3.34) 
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Similarly, we can rewrite 

[

Gd'l,ql B ] 
Gd,2,q2 B 

Wd= . . 

Gd,v,qv B 

(5.3.35) 

Thus, the property of (5.3.32) implies that there exist a set of scalars, say 

fJi,l, fJi,2, ... , fJi,v such that 

We then define 

v 

Gi,ai B = L fJi,jCd,j,q;B. 

j=l 

v 

('i,1 = G i ,l - L fJi,jCd,j,q; -ai+l 

j=l 

v 

C i ,2 = C i ,2 - L fJi,jCd,j,q; -ai+2 
j=l 

V 

Ci,ai = Gi,a; - L fJi,jCd,j,q;' 
j=l 

(5.3.36) 

(5.3.37) 

Here, we set Cd,j,s to be a zero vector if s :S O. It is simple to verify that 

qj - Qi + 1 :::; 1, j = 1,2, ... , v, (5.3.38) 

which implies that Ci ,l is a linear combination of the rows of the original 

output matrix C. Next, in view of (5.3.36) and (5.3.37), it is straightforward 

to verify that for s = 1,2, ... , Qi, 

(5.3.39) 

and for s = 1,2, ... , Qi - 1, 

v 

C· +1 - C· A - "''Y' ,Cd'l t,S - 1,S ~ 1.,S,3 ,3,' (5.3.40) 
j=l 

for some scalars 'Yi,s,j' We next let 

(5.3.41) 

and test the following sub-cases: 
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Sub-case 2.1. If 

rank ([c, ~ ]) > rank(Z), 
l,a.+1 

(5.3.42) 

it implies that there are more integrators in the chain associated with the 
i-th output, which must be further identified. We then update Z and Z i as 
follows: 

C'l I, 

C'2 I, 

Ci,a;+! 

and test the next Zi with a corresponding flag Ii ::fi O. 

Sub-case 2.2. If 

rank([C'~ ]) = rank(Z) , 
l,a.+1 

(5.3.43) 

(5.3.44) 

there is no more inherent integrator in the chain associated with this i-th 
output. The chain of integrators ends up without an input and it belongs to 
the subspace associated with Xb. For this case, we also replace the corre
sponding flag Ii in the flag vector f with a scalar 0, i.e., to stop this output 

variable from further differentiation, and amend Z i and Zb, respectively, as 
follows: 

(5.3.45) 

which will be used to define new state variables related to Xb. We also let 

W := W + 1 and lw:= ai. (5.3.46) 

For future reference, we rewrite 

[ 
Zb'l] Zb 2 

Zb= ' . , 

Zb,w 

(5.3.47) 

where 

(5.3.48) 
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The above tests have to be carried out for all Z i with its corresponding flag 

h 1= O. Note that in either Case 1 or Sub-case 2.2, there is an element in 

the flag vector f being replaced by a scalar O. As such, f will eventually 

become a zero vector. 

Next, if f = 0, we move on to STEP SCB.3. Otherwise, we go back to 

repeat STEP SCB.2. 

STEP SCB.3. Interim transformations. 

We let md = v and rewrite 

[ 
Zd,l 1 Zd,2 

Zd = : ' 

Zd,md 

(5.3.49) 

where rank (Zd,i) = qi, i = 1,2, ... , md· Obviously, ql ::; q2 ::; ... ::; qmd' 
Also, rewrite 

(5.3.50) 

Next, let Pb = wand rewrite 

(5.3.51) 

where rank (Zb,i) = li,i = 1,2, ... ,Pb. Obviously,h::; 12 ::;",::; lPb' 
Also, let 

md Pb 

nd = Lqi, nb = Lli, no = n - nd - nb, (5.3.52) 
i=l i=l 

and let Zo be an no x n constant matrix such that 

(5.3.53) 
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is nonsingular. Generally, as in the previous decompositions, we can choose 
a Zo whose rows constitute a basis for the null space of Z bd. We then define 
a new state variable 

(5.3.54) 

where 

( 

Xb,l ) 
Xb,2 

Xb:Pb ' 

( 

~b,i,l ) 
Xb,i,2 . , 

Xb,i,li 

i = I,2, ... ,Pb, (5.3.55) 

and 

( 
Xd,l ) ( Xd,i,l ) 
Xd,2 Xd,i,2 

Xd = : ' Xd,i = : ' i = 1,2, ... , md. 

xd,md Xd,i,qi 

(5.3.56) 

Let me = m - md and let We be an me X m constant matrix such that 

(5.3.57) 

is nonsingular. Again, We can be chosen such that its rows form a basis of 
the null space of Wd. We then define a new input variable 

_ _ (Ud) _ [Wd] u- - - w. U 
Uc c 

(5.3.58) 

with 

( 

Ud,l ) 
Ud,2 

Ud = : ' 

ud,md 

(5.3.59) 

and define a new output variable 

y= (;:) =My (5.3.60) 

with 

( 
Yd,l) (Xd,l,l) Yd,2 Xd,2,1 

Yd = . = . . . . . 
Yd,md Xd,md,l 

(5.3.61) 
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and 

( 
~b,1,1 ) 
Xb,2,1 

Xb,Pb,1 

(5.3.62) 

STEP SCB.4. Determination OfXd. 

With the properly defined state and input transformations as given in (5.3.54) 

and (5.3.58), respectively, we have 

(5.3.63) 

where Aoo, Aob , Aod , B Oe and BOd are some appropriate constant matrices. 

For each subsystem Xd,i, i = 1,2, ... , md, in view of (5.3.30), (5.3.33)

(5.3.35) and (5.3.40), we have 

(5.3.64) 

(5.3.65) 

(5.3.66) 

for some appropriate constant vectors Ad,i,O, Ad,i,b, Ad,i,d and Ld,i,j' j = 
1,2, ... , qi - 1. In fact, it is simple to verify from the procedure in STEP 

SCB.2 that Li,j has the form, 

Ld··-[Rd··1 ,l,J - ,~,J, Rd' "-1 0 ... 0]. ,'t,},t (5.3.67) 

For the subsystem Xb,i, i = 1,2, ... ,Ph, in view of (5.3.39), (5.3.40) and 
(5.3.44), we have 

Xb,i,1 = Xb,i,2 + Lb,i,1Yd, Yb,i = Xb,i,1, 

Xb,i,2 = Xb,i,3 + Lb,i,2Yd, 

Pb min{li+1,1.} md min{li+1,q.} 

(5.3.68) 

(5.3.69) 

Xb,i,li = L L O!bb,i,s,jXb,s,j+ L L O!bd,i,s,jXd,s,j, (5.3.70) 
s=1 j=1 s=1 j=1 

for some constant row vectors O!bb,i,s,j, O!bd,i,s,j' and Lb,i,j' Unfortunately, 
the dynamical equation in (5.3.70) is not in the desired form as specified in 

Theorem 5.3.1. We need to introduce further transformations that bring this 
part of the dynamics to depend on only the output variables Y band Yd. 
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STEP SCB.5. Determination ofxb. 

Define 

( 

Xb,i,l ) ( Yb,l ) 
Xb,i,2 Yb,2 

Xb,i := x:. ,Yb := : ' 

b",l. Yb,Pb 

(5.3.71) 

with 

Pb min{I.+1,1.} 

Xb,i,l := Xb,i,l - L L O:bb,i,s,jXb,s,j-l. 

s=l j=I.+1 

md min{I.+l,q.} 

-L L O:bd,i,s,jXd,s,j-l., (5.3.72) 
8=1 j=I.+l 

Pb min{I.+l,I.} 

Xb,i,2 := Xb,i,2 - L L O:bb,i,s,j Xb,s,j-I.+1 

s=l j=l. 

md min{I.+l,q.} 

-L L O:bd,i,8,jXd,s,j-I.+1, (5.3.73) 
8=1 j=l. 

Pb min{/i+1,1.} 

Xb,i,I;-l := Xb,i,I.-1 - L L O:bb,i,s,j Xb,s,j-2 

s=1 j=3 

md min{I;+l,q.} 

-L L O:bd,i,s,j Xd,s,j-2, (5.3.74) 
s=l j=3 

Pb min{li+1,1.} 

Xb,i,l. := Xb,i,l. - L L O:bb,i,s,j Xb,s,j-1 

8=1 j=2 

md min{li+1,q.} 

-L L abd,i,s,j Xd,s,j-1, (5.3.75) 
8=1 j=2 

Yb,i := Xb,i,1 

Pb min{I.+1,1.} 

= Xb,i,1 - L L abb,i,s,jXb,s,j-l; 

8=1 j=I;+l 

md min{I;+1,q.} 

-L L O:bd,i,8,j Xd,s,j-l; 
8=1 j=I;+1 
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Pb md 

= Xb,i,1 - L Qbb,i,s,li+1 Xb,s,1 - L Qbd,i,s,li+1Xd,s,1 

8=1 8=1 
Pb md 

= Xb,i,1 - L Qbb,i,s,li+li/b,s - L Qbd,i,s,li+1Yd,s (5.3.76) 
s=1 8=1 

which shows that Yb,i is a linear combination of Yd and fib. Here we note 

that we set abb,i,s,e = 0 when f > ls and Qbd,i,s,e = 0 when f > qs, in the 
definitions of (5.3.72)-(5.3.76). We then obtain 

Pb min{li+1,ls} 

Xb,i,li = :h,i,li - L L abb,i,s,j Xb,s,j-1 

s=1 j=2 

md min{li+1,q.} 

-L L Qbd,i,8,jXd,s,j-1 

8=1 j=2 

Pb min{li+1,1.} md min{li+1,qs} 

= L L Qbb,i,s,j Xb,8,j + L L Qbd,i,8,j Xd,s,j 

s=1 j=1 s=1 j=1 

Pb min{I.+1,1.} 

-L L Qbb,i,s,j (Xb,S,j + Lb ,8,j-1Yd) 
s=1 j=2 

md min{I.+1,qs} 

-L L Qbd,i,8,j (Xd,8,j + Ld,8,j-1Yd) 
8=1 j=2 

Pb md 

= L Qbb,i,8,1 Xb,8,1 + L Qbd,i,s,1 Xd,s,1 

s=1 s=1 

Pb min{I.+1,1.} 

-L L Qbb,i,8,jLb ,8,j-1Yd 

8=1 j=2 

md min{li+1,q.} 

-L L Qbd,i,8,jLd ,s,j-1Yd 
8=1 j=2 

= Lbb,i,liYb + Lbd,i,liYd, (5.3.77) 

where Lbb,i,li and Lbd,i,li are defined in a straightforward manner. We also 
have 

Pb min{li+1,I.} 

Xb,i,li-1 = Xb,i,li-1 - L L Qbb,i,s,j Xb,8,j-2 

8=1 j=3 
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md min{li+1,q.} 

-L L £lbd,i,s,j Xd,s,j-2 

8=1 j=3 

== Xb,i,li + Lb,i,li-1Yd 

Pb min{li+1,1.} 

-L L £lbb,i,8,j (Xb,8,j-1 + Lb ,8,j-2Yd) 

8=1 j=3 

md min{li+1,q.} 

-L L £lbd,i,s,j (Xd,8,j-1 + L d,S,j-2Yd) 
8=1 j=3 

Ph min{li+1,1.} mdmin{li+1,q.} 

= Xb,i,li - L L£lbb,i,S,jXb,s,j-1 - L L£lbd,i,S,jXd,S,j-1 

s=l j=2 s=l j=2 

Pb md 

+ L £lbb,i,s,ZXb,s,l + L £lbd,i,8,2 Xd,s,1 + Lb ,i,li-1Yd 

8=1 s=l 

Pb min{I,+l,I.} md min{li+1,q.} 

- L L£lbb,i,8,jLb,s,j-2Yd - L L£lbd,i,S,j L d,S,j-2Yd 
8=1 j=3 8=1 j=3 

= Xb,i,li + L bb,i,li-1Yb + Lbd,i,li-1Yd, (5.3.78) 

for some constant row vectors Lbb,i,li-1 and Lbd,i,li-1 . Similarly, for k == 
Ii - 2, Ii - 3, ... , 1, we have 

(5.3.79) 

for some appropriately defined Lbb,i,k and Lbd,i,k. The subsystem Xb is 
finally identified and is in the desired form. 

Next, obviously, we can rewrite (5.3.63) as 

and rewrite each subsystem Xd,i in (5.3.64)-(5.3.66) as 

Xd,i,l = Xd,i,2 + Ld,i,1Yd, Yd,i == Xd,i,1 

Xd,i,2 = Xd,i,3 + L d,i,2Yd, 

(5.3.80) 

(5.3.81) 

(5.3.82) 

(5.3.83) 

for some properly defined constant matrices Ad,i,O, Ad,i,b and Ad,i,d. 
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We still need to do some additional work in (5.3.80) in order to decompose 

Xo into subspaces related to Xa and XC. In particular, we will have to make 

this part of the dynamics dependent only on the outputs Yd, Yb and the 

control uc. 

STEP sCB.6. Elimination ofud from (5.3.80). 

In view of (5.3.83), we have 

( 

Xd,l,ql ) [Ad'l'O 1 [ Ad,l,b ] [ Ad,l,d 1 
Xd,2,Ql Ad,2,0 Ad,2,b Ad ,2,d 

Ud = . - . Xo - • Xb - . Xd· 

Xd,m~'Qmd Ad'~d'O Am~'d,b Ad,md,d 
(5.3.84) 

Substituting (5.3.84) into (5.3.80), we obtain 

( 

Xd,l,Ql ) 
_ _ _ Xd,2,Q2 

;'0 = .4ooxo + .4obXi, + .4odXd + BOd i:: + B",o." (5.3.85) 

d,md,qmd 

for some appropriate matrices ADo, AOb and ADd. 

STEP SCB.7. Elimination ofXd,i,Qi' i = 1,2, ... , md, from (5.3.85). 

We define a new state variable, 

(5.3.86) 

Then, we have 

io = Aooxo + AObxb + AOdxd + Bocuc 

= Aoo [XO-B~ (X~:(~~') ]+[kdXd+AooBOd (x~:(~~,) 1 
+.AobXb + Bocuc 

(5.3.87) 
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where AOd is defined in an obvious manner. Similarly. Xo in (5.3.70) and 

(5.3.83) should be replaced by Xo and its coefficients together with coef
ficients associated with Xd in (5.3.70) and (5.3.83) can be redefined in a 

straightforward manner. These coefficients are. however. irrelevant to the 

further decomposition. For use in the next step. we rewrite (5.3.87) as 

Pb Ii md qi 

&:0 = Aooxo + L L AOb,i,jXb,i,j + L L AOd,i,jXd,i,j + Bocuc, 
i=1 j=1 i=1 j=1 

(5.3.88) 

for some constant vectors AOb,i,i and AOd,i.i' 

STEP SCB.8. Elimination ofxb,i,i, j = 2,3, ... ,li' i = 1,2, ... ,Ph, and Xd,i,i' 
j = 2,3, ... , qi, i = 1,2, ... , md. from (5.3.88). 

We now proceed to find a transformation such that the dynamics associated 

with Xo is expressed in terms of only Yd,s. S = 1,2, ... , md. and Yb,s. 

S = 1,2, ... ,Ph. 

If maxi ql, q2, ... , qmd' h, 12, ... , Ipb} = I. we will skip the following 
sub-steps and directly move on to STEP SCB.9. Otherwise. we initial-

ize i := 0 and set xo,o := xo; AOb,s,i,o := AOb,s,i. S = 1,2, ... ,Ph. 
j = 1,2, ... , Is. AOd,s,j,o := AOd,s,i' S = 1,2, ... , md. j = 1,2, ... , Q8' 
and then carry out the following sub-steps: 

Sub-step 8.1. First. we note that 

Pb I.-i md q.-i 
&:O,i = AOOXO,i+ L L AOb,s,i,iXb,8,i+ L L AOd,8,i,iXd,s,i+Bocuc. 

s=1 i=1 8=1 i=1 

We now proceed to eliminate Xd,8,q.-i. S = 1,2, ... , md. and Xb,8,1.-i. 
S = 1,2, ... ,Ph. in the above expression. Let us define 

Pb md 

XO,i+l := XO,i- L Aob,8,1.-i,iXb,s,I.-i-l- L AOd,s,q.-i,iXd,s,q.-i-l, 
8=1 8=1 

where we take AOb,8,1.-i,i = 0 if Is - i-I ~ O. and AOd,8,q.-i,i = 0 if 
Qs - i-I::; O. In view of (5.3.68)-(5.3.83). we have 

Pb md 

&:O,i+1 = iO,i- LAob,8,1.-i,iXb,8,1.-i-1-LAod,8,q.-i,iXd,s,q.-i-1 
s=1 s=1 
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Pb I,-i md q.-i 

= AOOXO,i+ L L AOb ,8,j,i Xb,8,j+ L L AOd ,8,j,i Xd,8,j 
8=1 j=1 8=1 j=1 

Pb 

-L AOb ,8,1.-i,i (Xb,8,1'-i + L b ,8,1.-i-lYd) 
8=1 
md 

-L AOd ,8,q.-i,i (Xd,8,q.-i + Ld,S,q.-i-lYd) + BOcuc 

8=1 

Pb I.-i-l md q.-i-l 

= Aooxo,i+ L L AOb ,8,j,i Xb,8,j+ L L AOd ,8,j,iXd,8,j 
8=1 j=l 8=1 j=1 

Pb 

-L AOb ,8,1.-i,iL b,8,1.-i-lYd 
8=1 
md 

-L AOd,s,q.-i,iL d,8,q.-i-lYd + BOcuc· 
8=1 

(5.3.89) 

Clearly, we have eliminated in (5.3.89) all Xd,s,q.-i, S = 1,2, ... , md, and 

all Xb,8,1.-i, S = 1,2, ... ,Ph. Thus, we can re-write (5.3.89) as 

Pb I.-i-l 

5:o,i+1 = Aooio,Hl + L L AOb,8,j,i+1 Xb,s,j 

8=1 j=1 

md q.-i-l 

+ L L AOd ,8,j,i+l Xd,8,j + Bocuc, (5.3.90) 
8=1 j=l 

for some appropriate constant vectors AOb,8,j,i+l and AOd,s,j,Hl' 

Sub-step 8.2. If i = max{ Ql, Q2, ... , Qmd , h, l2, •.. , lpb} - 2, then we will 
go to STEP sCB.9. Otherwise, we let i := i + 1 and go back to Sub-step 

8.1 to repeat the process until there are only Yd and Yb left in the expression 
associated with XO,Hl dynamics. 

STEP SCB.9. Separation ofxa and XC' 

Let Xo := XO,Hl' We then have 

(5.3.91) 

Next, we apply the result of Theorem 4.4.1 of Chapter 4 to (Aoo, Boc). It 
follows from Theorem 4.4.1 that there exist an no x no nonsingular trans-
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formation Tos and an me x me nonsingulartransformation TOi , which yield 

the following decomposition: 

Xo = Tos (~:), Uc = TOiuc, (5.3.92) 

( 

~C,l ) ( ~C,~,l ) ( ~C,l ) c,2 c,t,2 c,2 
Xc = . ,Xc,i = . ,Uc = . , . . . . . . 

xc,mc xc,i,ri uc,me 

(5.3.93) 

where {Tl' T2,"" TmJ is the controllability index ofthe pair (Aoo, Roc). 
Furthermore, we can write the dynamical equations of x a and Xc as follows: 

Xa = Aaaxa + LabYb + LadYd, (5.3.94) 

and for each Xc,i, i = 1,2, ... , me, 

Xc,i,l = Xc,i,2 + Lcb,i,lYb + Lcd,i,lYd, (5.3.95) 

Xc,i,Ti-l = XC,i,Ti + Lcb,i,Ti-1Yb + Lcd,i,Ti-1Yd, (5.3.96) 

XC,i,Ti = Ac,i,aXa + Ac,i,cXc+Lcb,i,TiYb+Lcd,i,TiYd + Uc,i, (5.3.97) 

for some constant matrices. Obviously, x 0 in the dynamical equations asso

ciated with Xd, i.e., (5.3.81) to (5.3.83), can be replaced by X a and Xc in a 

simple manner. In particular, for each subsystem X d,i, i = 1,2, ... ,md, 

Xd,i,l = Xd,i,2 + Ld,i,lYd, Yd,i = Xd,i,l, 

Xd,i,2 = Xd,i,3 + L d ,i,2Yd, 

(5.3.98) 

(5.3.99) 

Xd,i,qi = Ad,i,aXa + Ad,i,bXb + Ad,i,cXc + Ad,i,dXd + Ud,i, (5.3.100) 

for some appropriate constant vectors Ad,i,a, Ad,i,b Ad,i,c and Ad,i,d' To 

complete the whole process, we recall the dynamical equations associated 

with Xb as derived in STEP SCB.5, i.e., for each Xb,i' i = 1,2, ... , Ph, 

Xb,i,l = Xb,i,2 + Lbb,i,lYb + Lbd,i,lYd, Yb,i = Xb,i,l, (5.3.101) 

Xb,i,2 = Xb,i,3 + Lbb,i,2Yb + Lbd,i,2Yd, (5.3.102) 

(5.3.103) 
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Finally, we note that the invariant index lists 11, 12, 13 and 14 of Morse [100], 
or equivalently the invariant zero structure, the right invertibility structure 

S:' the left invertibility structure St and the infinite zero structure S~ (see 
Definition 3.6.3), of the given system I: can be easily obtained from the 
above structural decomposition. In particular, we have 

S;(I:) =12 = {rl,r2, ... ,rmJ, st(I:) =h = {h,l2, ... ,lpb}' 
(5.3.104) 

S~(I:) =14 = {Q!,Q2, ... ,qmd}' (5.3.105) 

and 11 is related to the eigenstructure of Aaa , i.e., the eigenvalues and the 

sizes of their associated Jordan blocks. We note that these properties will 
be further justified in detail in Section 5.6. 

This completes the algorithm that realizes the structural decomposition or the 
special coordinate basis of general strictly proper multivariable systems. • 

We illustrate the above algorithm in the following example. 

Example 5.3.1. Consider a strictly proper system I: characterized by (5.3.1) with 

0 0 2 -1 2 0 -1 2 0 -1 0 2 2 
0 2 4 -5 3 2 -4 3 2 -4 0 5 0 
0 -1 -1 1 0 -1 1 0 -1 1 -1 -1 1 
0 0 0 3 -2 0 3 -3 0 3 1 -1 0 
0 2 2 0 -2 2 1 -3 2 1 1 1 -2 
0 3 3 -1 -2 3 0 -2 3 0 2 2 -3 

A= 0 3 3 -1 -2 3 -1 -1 3 0 1 3 -3 
0 3 3 -1 -2 3 -1 0 3 0 1 4 -3 
0 2 2 1 -1 2 0 0 2 1 1 3 -1 
1 1 1 1 0 1 0 1 1 0 2 2 0 
0 0 -2 4 -2 0 2 -2 0 2 1 -2 0 
0 -1 -3 7 -3 -1 4 -3 -1 4 2 -4 1 

-1 0 0 1 1 0 -1 2 0 -1 0 0 2 

1 1 0 0 
1 1 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 1 1 

B= 0 1 1 1 
0 1 2 2 
1 1 1 1 
1 1 1 1 
0 0 0 0 
0 0 0 0 
1 1 1 0 
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and 

c- [: 
1 1 -1 0 1 -1 0 1 -1 -1 2 

-~ ] 0 0 1 -1 1 0 -1 1 0 0 0 
- 0 1 1 0 -1 1 0 -1 1 0 1 0 -1 . 

0 0 0 1 -1 0 1 -1 0 1 1 -1 0 

We proceed to construct the structural decomposition or the special coordinate 

basis of E by following the detailed procedures given in the constructive proof of 

Theorem 5.4.1. 

STEP SCB.1. Initialization. 

We first partition 

c=[~}[~ 
1 1 -1 0 1 -1 0 1 -1 -1 2 

-~] 0 0 1 -1 1 0 -1 1 0 0 0 
1 1 0 -1 1 0 -1 1 0 1 0 -1 ' 
0 0 1 -1 0 1 -1 0 1 1 -1 0 

and set 
Zl := Cl , Z2 := C2, Z3:= Ca, Z4:= C4, 

Also set Zd := [], Wd := [], and Zb := []. where [] stands for an empty 
matrix. Lastly. we set v := 0 and w := O. 

STEP SCB.2. Repetitive differentiation of the system output. 
Noting that 

._ /2 _ 1 (II) (1) 
f·- ~: - ~ , 

with It = 1, we partition 

Zl=[Cl,t}=[O 11 -101 -101 -1 -1 2 -1], 

and compute 
Cl,lB=[O 0 0 0]. 

Thus, we have 

rank ([ ~dB ]) = 0 = rank (Wd), 

which satisfies the condition of Case 2. i.e., (5.3.32). Next. we let Cl,l = Cl,l 
and calculate 

Cl,2=C1,lA=[O 0 0 2 -1 02 -2 0 21 -10]. 
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It is easy to check that 

rank ([ 6~'2]) = 5 > rank (Z) = 4, 

which corresponds to Sub-case 2.1, i.e., (5.3.42). We then update Z and Z 1 as 

follows: 

Z,= [ Z 1 = [ ~ 
1 1 -1 0 1 -1 0 1 -1 -1 2 

-~ 1 0 0 1 -1 1 0 -1 1 0 0 0 
1 1 0 -1 1 0 -1 1 0 1 0 -1 , 

01,2 0 0 0 1 -1 0 1 -1 0 1 1 -1 0 
0 0 0 2 -1 0 2 -2 0 2 1 -1 0 

and 

Zl := [g~:~] = [~ 1 1 -1 0 1 -1 0 1 -1 -1 2 -1 ] 
0 0 2 -1 0 2 -2 0 2 1 -1 o . 

Similarly, because h = 1, we partition 

Z2 = [C2,Ij = [0 0 0 1 -1 1 0 -1 1 0 0 0 0]' 

and compute 
C2,lB = [1 1 0 o l. 

It is simple to see that 

rank ([ d;tB ]) = 1 > rank(Wd ) = 0, 

which satisfies the condition of Case 1, i.e., (5.3.29), and thus implies that the 
chain of integrators associated with the 2nd output variable reaches a system input. 
We then stop this output from further differentiation by setting h := 0 and thus 

Also, set 

Zd:=[;:]=[O 0 0 1 -1 10 -1 1 0 0 0 0]' 

Wd = [OWdB ] = [1 1 0 0], 
2,1 

and 
v := v + 1 = 1, ql = rank (Z2) = 1. 
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We now move on to the next output variable. Again, noting that h = 1, we 

partition 

Z3 = [G3•1 ] = [0 1 1 0 -1 1 0 -1 1 0 1 0 -1], 

and compute 

Then, check 

rank ([ G~dB]) = 1 = rank (Wd), 

which corresponds to Case 2, 

Zd=[Zd.I]=[Gd.1.Ql]=[O 001 -1 10 -11000.0] 

and 

Clearly, we have C3,lB = Wd. Thus, we calculate 

C3•1 =C3,1-Cd,1.Ql=[O 11 -100000010 -1] 

and 

C3,2=C3,lA=[1 1 1 -421 -321 -3 -1 3 -1]. 

Next, check 

rank ([ C~2]) = 6 > rank(Z) = 5, 

which satisfies the condition of Sub-case 2.1. We set 

0 1 1 -1 0 1 -1 0 1 -1 -1 2 -1 
0 0 0 1 -1 1 0 -1 1 0 0 0 0 

Z:= [t ] = 
0 1 1 0 -1 1 0 -1 1 0 1 0 -1 
0 0 0 1 -1 0 1 -1 0 1 1 -1 0 3,2 

0 0 0 2 -1 0 2 -2 0 2 1 -1 0 
1 1 1 -4 2 1 -3 2 1 -3 -1 3 -1 

and 

Z3 := [g::~] = [~ ~ ~ =! ~ ~ _~ ~ ~ _~ _~ ~ =~]. 
As the last flag 14 = 1, we proceed to partition 

Z4 = [G4•1 ] = [0 0 0 1 -1 0 1 -1 0 1 1 -1 0], 

and compute 

, 
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Obviously, 

rank ([ G~dB ]) = 1 = rank (Wd). 

It belongs to Case 2. Note that we have so far obtained 

Zd=[Zd,l]=[Gd,l,Ql]=[O 0 0 1 -1 1 0 -1 1 0 0 0 0], 

and 
Wd = [1 1 0 0]. 

Clearly, C4,lB = Wd. We then calculate 

C4,1=C4,1-Cd,1,Ql=[0 0 0 0 0 -110 -111 -10], 

and 

C4,2 = C4 ,lA = [1 0 0 -3 2 0 -3 3 0 -3 -1 2 0]. 

Next, check 

rank ([ t~'2]) = 7 > rank (Z) = 6, 

which belongs to Sub-case 2.1. We then replace Z and Z 4 with 

0 1 1 -1 0 1 -1 0 1 -1 
0 0 0 1 -1 1 0 -1 1 0 

Z:= [CZ ] = 

0 1 1 0 -1 1 0 -1 1 0 
0 0 0 1 -1 0 1 -1 0 1 

4,2 0 0 0 2 -1 0 2 -2 0 2 
1 1 1 -4 2 1 -3 2 1 -3 
1 0 0 -3 2 0 -3 3 0 -3 

and 

Z .- [64,1 ] _ [ 0 0 0 0 0 -1 1 0 -1 1 
4·- 64,2 - 1 0 0 -3 2 0 -3 3 0 -3 

As the flag 

/=U~)=m 

-1 2 -1 
0 0 0 
1 0 -1 
1 -1 0 
1 -1 0 

-1 3 -1 
-1 2 0 

1 -1 ~] . -1 2 

is not identically 0, we will have to repeat STEP SCB.2. Since It = 1, we partition 

Zl = [G1,1 ] = [0 1 1 -1 0 1 -1 0 1 -1 -1 2 -1] 
G1,2 0 0 0 2 -1 0 2 -2 0 2 1 -1 o ' 

and compute 
C1,2B = [2 2 0 OJ. 
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Observe that 

rank ([ C~dB]) = 1 = rank (Wd), 

which belongs to Case 2. Again, so far, we have obtained 

Zd = [Zd.d = [Cd.1,Ql ] = [0 0 0 1 -1 1 0 -1 1 0 0 0 0], 

and 

Clearly, C1,2B = 2Wd. We then calculate 

G\,1=C1,1=[O 1 1 -1 0 1 -1 0 1 -1 -1 2 -1], 

(\,2 = C1,2 - 2Cd,1,Ql = [0 0 0 0 1 -2 2 0 -2 2 1 -1 0], 

and 

(\3=(\2A=[21 1 -311 -321 -303 -1]. 

It is simple to verify that 

rank ([ 6~'3]) = 7 = rank (Z), 

which corresponds to Sub-case 2.2. There are no more inherent integrators in the 
chain associated with this output variable. We then set h : = 0 and thus the flag, 

f~G~)~m 
Moreover, we replace Z 1 and Zb with 

Zl := [61,1 ] = [0 
1 1 -1 0 1 -1 0 1 -1 -1 2 -1 ] 61•2 0 0 0 0 1 -2 2 0 -2 2 1 -1 o ' 

and 

Zb := [;~] = [~ 1 1 -1 0 1 -1 0 1 -1 -1 2 -1 ] 
0 0 0 1 -2 2 0 -2 2 1 -1 o ' 

and set 
w:= w + 1 = 1, h = rank(ZI) = 2. 

Noting that fa = 1, we partition 

Z3 = [C3,1 ] = [ 0 1 1 -1 0 0 0 0 0 0 1 0 -1 ] 
C3,2 1 1 1 -4 2 1 -3 2 1 -3 -1 3 -1 ' 
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and compute 

which satisfies the condition of Case 2. Again, for easy reference, we recall that 

Zd=[Zd,I]=[Cd,I,Ql]=[O 0 0 1 -1 1 0 -1 1 0 0 0 0], 

and 

Clearly, C1,2B = - Wd. We then calculate 

G3,1=C3,1=[0 11 -1 00000010 -1], 

G3,2 = C3,2 + Cd ,l,Ql = [1 1 1 -3 1 2 -3 1 2 -3 -1 3 -1], 

and 

G3,3 = G3,2A = [-2 1 1 1 -1 1 1 -2 1 1 0 -1 0]. 

Next, we verify that 

rank ([ 6~3 ]) = 8 > rank (Z) = 7, 

which belongs to Sub-case 2.1. Thus, we replace Z and Z 3 with 

0 1 1 -1 0 1 -1 0 1 -1 -1 2 -1 
0 0 0 1 -1 1 ,a -1 1 0 0 0 0 
0 1 1 0 -1 1 0 -1 1 0 1 0 -1 

Z:= [OZ ] = 
0 0 0 1 -1 0 1 -1 0 1 1 -1 0 
0 0 0 2 -1 0 2 -2 0 2 1 -1 0 

, 
3,3 

1 1 1 -4 2 1 -3 2 1 -3 -1 3 -1 
1 0 0 -3 2 0 -3 3 0 -3 -1 2 0 

-2 1 1 1 -1 1 1 -2 1 1 0 -1 0 

and 

[0",] [0 1 1 -1 0 0 0 0 0 0 1 0 -I] Z3 = 03 ,2 = 1 1 1 -3 1 2 -3 1 2 -3 -1 3 -1 . 
63,3 -2 1 1 1 -1 1 1 -2 1 1 0 -1 0 

Next, noting that!4 = 1, we have 

Z4 = [C4,1 ] = [ 0 0 0 0 0 -1 1 0 -1 1 1 -1 ~] , C4,2 1 0 0 -3 2 0 -3 3 0 -3 -1 2 
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and 

which belongs to Case 2. Recall once again that 

Zd = [Zd.d = [Cd.1m ] = [0 0 0 1 -1 1 0 -1 1 0 0 0 0 ], 

and 

Clearly, C4,2B = -2Wd. We then calculate 

C4,1 = C4,1 = [0 0 0 0 0 -1 1 0 -1 1 1 -1 0], 

C4,2=C4,2+2Cd,1,Ql=[1 00 -1 02 -3 1 2 -3 -1 20], 

and 

C4,3=C4,2A=[-3 -1 -1 5 -2 -1 4 -3 -1 40 -42], 

and verify that 

rank ([ 6~'3]) = 8 = rank (Z), 

which corresponds to Sub-case 2.2. There are no more inherent integrators in the 
chain associated with this output variable. Therefore, we set f 4 := 0 and thus the 
flag, 

f~ (~J ~ 0), 
Furthermore, we replace Z4 and Zb with 

Z ._ [64•1 ] _ [0 0 0 0 0 -1 1 0 -1 1 1 -1 ~] , 4·- 0 - 1 0 0 -1 0 2 -3 1 2 -3 -1 2 4,2 

Zb := [Zb ] = [~] Z4 Zb,2 

- [~ 
1 1 -1 0 1 -1 0 1 -1 -1 2 

-~ ] 0 0 0 1 -2 2 0 -2 2 1 -1 
- 0 0 0 0 0 -1 1 0 -1 1 1 -1 o ' 

1 0 0 -1 0 2 -3 1 2 -3 -1 2 0 

and set 
w:= w+ 1 = 2, l2 := rank (Z4) = 2. 
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We further note that h = 1 and thus have to partition 

[C3,1] [0 1 1 -1 0 0 0 0 0 
Z3 = C3,2 = 1 1 1 -3 1 2 -3 1 2 

C3,3 -2 1 1 1 -1 1 1 -2 1 
-~ -! ~ =!], 

1 0 -1 0 

and compute 

C3,3B = [1 1 1 0], rank ([ C~dB]) = 2 > rank (Wd) = 1, 

which belongs to Case 1. The chain of integrators associated with this output 
variable has thus reached a system input. Thus, we set the flag f3 = 0 (the flag 
vector, J, is now identically 0), and replace 

z [ Zd ] [Zd'l] d:= Z3 = Zd,2 

[j 
0 0 1 -1 1 0 -1 1 0 0 0 

-~ 1 1 1 -1 0 0 0 0 0 0 1 0 
1 1 -3 1 2 -3 1 2 -3 -1 3 -1 ' 
1 1 1 -1 1 1 -2 1 1 0 -1 0 

Wd .= [ Wd ] = [Wd,l ] = [1 
1 0 ~] , . C3,3B Wd,2 1 1 1 

and v := v + 1 = 2, q2 = rank (Z3) = 3. 

STEP SCB.3. Interim Transformations. 

It is simple to calculate that md = v = 2, Ph = w = 2, nd = ql + q2 = 4, 
nb = II + l2 = 4 and no = 13 - nd - nb = 5. We then select an no x n matrix, 

such that 

[

0 -1 0 0 0 0 0 0 0 0 0 0 0] 
0100000001000 

Zo = 0 0 0 0 0 0 1 0 0 0 0 0 0 , 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 

-2 

0010000101000 
0100000011000 

-1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 1 0 1 
1 0 0 0 0 0 0 1 1 
1 1 -1 0 1 -1 0 1 -1 
0 0 0 1 -2 2 0 -2 2 
0 0 0 0 -1 1 0 -1 1 
0 0 -1 0 2 -3 1 2 -3 
0 0 1 -1 1 0 -1 1 0 
1 1 -1 0 0 0 0 0 0 
1 1 -3 1 2 -3 1 2 -3 
1 1 1 -1 1 1 -2 1 1 

0 
0 
0 
0 
0 

-1 
1 
1 

-1 
0 
1 

-1 
0 

0 0 
0 0 
0 0 
0 0 
0 0 
2 -1 

-1 0 
-1 0 

2 0 
0 0 
0 -1 
3 -1 

-1 0 
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is nonsingular. Let We be chosen as 

[ 0 0 0 1] 
We = 0 1 1 0 [ ~~ 0~1 001

1 
~~ 1 :} W = [~:] = 

is nonsingular. The transformation, M, associated with the output variable can be 
traced back from (5.3.37), which is given as 

M ~ [~ ~~ ~ ~l 
We obtain a transformed system (Ai ,E1 ,G'I):= (SAS-~ SBW-~ MCS- 1 ) with 

-6 -3 -2 1 0 
14 9 6 -3 0 
5 4 2 -1 0 

14 11 7 -3 0 
23 16 10 -5 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
4 3 2 -1 0 
0 0 0 0 0 
0 0 0 0 0 
4 3 2 -1 0 

and 

-5 -8 -8 -14 
9 16 10 
3 2 1 
8 10 4 

14 23 12 
0 1 0 
1 1 2 
0 0 0 
0 0 0 
2 6 1 
0 0 0 
0 0 0 
1 3 -1 

0 -1 0 0 
0 2 1 0 
0 0 1 1 

-1 2 3 1 
0 3 2 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 0 0 

00000 
o 0 0 0 0 
o 1 000 
00010 

28 
5 

20 
41 

0 
2 
1 
0 
8 
0 
0 
4 

4 1 4 -5 
-6 2 -11 8 

0 3 -3 1 
-3 5 -11 4 
-8 5 -18 11 

2 0 0 0 
0 0 0 0 

-2 0 0 0 
0 -1 -1 1 
1 1 -4 2 

-1 0 1 0 
0 0 0 1 
0 3 -1 1 
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STEP sCB.4. Determination OfXd' 

In fact, the subsystem associated with Xd has already been properly identified 

in the transformed system in STEP SCB.3. Following the definitions of the trans

formed state, input and output variables as given in the algorithm, we can rewrite 

the transformed system as the following: 

xo = Aooxo + AObXb + AOdXd + BOdUd + BOeue, 

with 

-3 -2 1 
14 9 6 -3 [-' Aoo = 5 4 2 -1 ~ , BOd = ~ ~, 0] [ 0 -1] 

Boe = [i 1]' 14 11 7 -3 o -1 2 
23 16 10 -5 003 

[-l 
-8 -8 -14] [ 4 

1 4 
16 10 28 -6 2 -11 

AOb = 2 1 5 , AOd = 0 3 -3 
10 4 20 -3 5 -11 

14 23 12 41 -8 5 -18 

the dynamics associated with Xb,l, 

ib,l,l = Xb,1,2 + 2Yd,1, Yb,l = Xb,l,l, 

i b,1,2 = Xb,l,l + Xb,1,2 + 2Xb,2,1 + 2Xb,2,2, 

the dynamics associated with Xb,2, 

Xb,2,2 = -Xd,2,1 - Xd,2,2 + Xd,2,3, 

the dynamics associated with Xd,l, 

-!] 
1 , 
4 

11 

(5.3.106) 

(5.3.107) 

(5.3.108) 

(5.3.109) 

Xd,l,l = [4 3 2 -1 O)xo+[2 6 1 8)Xb+[1 1 -4 2)Xd+Ud,1, 

Yd,l = Xd,l,l, and finally the dynamics associated with Xd,2, 

Xd,2,1 = Xd,2,2 - Yd,l, Yd,2 = Xd,2,1, 

Xd,2,2 = Xd,2,3, 

Xd,2,3 = [4 3 2 -1 O]xo+[l 3 -1 4]Xb+[O 3 -1 I]Xd+Ud,2. 

The subsystems associated with Xd are in the desired form, whereas those associ
ated with Xb are not and the Xo part needs to be further decomposed. 
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STEP seD.5. Determination of Xb. 

Following (5.3.72)-(5.3.76) and (5.3.106)-(5.3.109), we obtain the required 
transformations for Xb and Yb as follows: 

Xb,l,l = Xb,l,l, Yb,l = Xb,l,l = Yb,l, (5.3.110) 

Xb,l,2 = Xb,l,2 - Xb,l,l - 2Xb,2,l, (5.3.111) 

Xb,2,l = Xb,2,l - Xd,2,l, Yb,2 = Xb,2,l = Yb,2 - Yd,2, (5.3.112) 

Xb,2,2 = Xb,2,2 + Xd,2,l - Xd,2,2, (5.3.113) 

which translate into the following state and output transformations, 

1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 

Sb = 0 0 0 0 0 -1 1 -2 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 -1 0 0 
0 0 0 0 0 0 0 0 1 0 1 -1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 

and 

Mb= [~ 
0 0 

~l· 1 0 
0 1 

-1 0 
--- - 1- - 1 The resulting transformed system is (A2 ,B2,c2):= (SbA1Sb ,SbBl,MbC1Sb ) 

with 

-6 -3 -2 1 0 -13 -8 -24 -14 4 -9 -10 -5 
14 9 6 -3 0 25 16 42 28 -6 16 17 8 

5 4 2 -1 0 5 2 5 5 0 3 2 1 
14 11 7 -3 0 18 10 24 20 -3 9 9 4 
23 16 10 -5 0 37 23 58 41 -8 22 23 11 
0 0 0 0 0 1 1 2 0 2 2 0 0 
0 0 0 0 0 1 0 2 0 2 2 0 0 
0 0 0 0 0 0 0 0 1 -1 -1 0 0 
0 0 0 0 0 0 0 0 0 -1 -1 0 0 
4 3 2 -1 0 8 6 13 8 1 6 4 2 
0 0 0 0 0 0 0 0 0 -1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
4 3 2 -1 0 4 3 5 4 0 4 3 1 
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iJ 2 = iJ 1 and 62 = 61 , or in the state-space equations: 

(5.3.114) 

with A oo , BOd, Boc being the same as those in the previous step, and 

25 16 42 28 
[

-13 -8 -24 -14] 

AOb = 5 2 5 5, 
[ 

4 -9 
-6 16 

AOd = 0 3 
-3 9 

-10 
17 
2 
9 

23 

-;] 
1 , 

18 10 24 20 4 
37 23 58 41 -8 22 11 

the dynamics associated with Xb,1, 

Xb,1,1 = Xb,1,2 + Yb,1 + 2Yb,2 + 2Yd,1 + 2Yd,2, Yb,l = Xb,l,l, 

Xb,1,2 = Yb,l + 2Yb,2 + 2Yd,1 + 2Yd,2, 

the dynamics associated with Xb,2, 

Xb,2,1 = Xb,2,2 - Yd,l - Yd,2, Yb,2 = Xb,2,1, 

the dynamics associated with Xd,l, 

Xd,1,1=[43 2 -1 0]xo+[8 613 8]Xb+[1 6 4 2]Xd+Ud,1, 

Yd,l = Xd,l,l, and the dynamics associated with Xd,2, 

Xd,2,1 = Xd,2,2 - Yd,1, Yd,2 = Xd,2,1, 

Xd,2,2 = Xd,2,3, 

The subsystems associated with Xb are now indeed in the desired form. 

STEP SCB.6. Elimination OfUd from (5.3.114). 

From the dynamical equations of Xd, we obtain 

=(Xd,1,1)_[4 3 2 -1 0] _[8 
Ud Xd,2,3 4 3 2 -1 0 Xo 4 

Substituting this into (5.3.114), we obtain 

. - - - (Xd 1,1) _ 
Xo = Aooxo + AObXb + AOdXd + BOd .' + Bocuc, 

Xd,2,3 
(5.3.115) 

where the coefficient matrices Aoo. AOb and AOd can be calculated in a straight
forward manner. 
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STEP SCB. 7. Elimination ofxd,1,1 and Xd,2,3 from (5.3.115). 

Defining a new state variable, 

- B (Xd,11) Xo := Xo - Od " 
Xd,2,3 

which can be translated into a new state transformation, 

[

0 0 0 0 0 
IT. 00000 

SOl = [; t], T01 = 0 0 0 0 0 
8 0 0 0 0 1 

o 0 0 0 0 

o 0 1] o 0 -2 
o 0 0, 
o 0 -2 
o 0 -3 

- - - - -1 .- - -1 we get a new transformed system (A3, B 3, C3) := (S01A2SOl ,S01B2, C2SOl ) 

with 63 = 61 and 

-2 0 0 0 0 -9 -5 -19 -10 4 -5 -7 -2 
6 3 2 -1 0 17 10 32 20 -5 8 11 4 
5 4 2 -1 0 5 2 5 5 1 3 2 2 

10 8 5 -2 0 18 10 27 20 0 7 7 6 
11 7 4 -2 0 25 14 43 29 -6 10 14 7 
0 0 0 0 0 1 1 2 0 2 2 0 0 
0 0 0 0 0 1 0 2 0 2 2 0 0 
0 0 0 0 0 0 0 0 1 -1 -1 0 0 
0 0 0 0 0 0 0 0 0 -1 -1 0 0 
4 3 2 -1 0 8 6 13 8 2 6 4 2 
0 0 0 0 0 0 0 0 0 -1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
4 3 2 -1 0 4 3 5 4 1 4 3 1 

0 0 0 0 
0 0 1 0 
0 0 1 1 
0 0 3 1 
0 0 2 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 0 0 

STEP SCB.8. Elimination of Xb,1,2, Xb,2,2, Xd,2,2 and Xd,2,3 from the dynamics 

associated with Xo. 
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First, noting the coefficients associated with Xb,I,2, Xb,2,2, and Xd,2,a in Aa, 
we obtain a state transformation, 

802 = [~ ~02], T02 = [-~~ ~ -~~ ~ ~ ~ =~ ~l' 
8 -10 0 -20 0 0 0 -6 0 

-14 0 -29 0 0 0 -7 0 

-2 0 0 0 0 6 0 11 0 4 -5 -3 0 
6 3 2 -1 0 1 0 2 0 -5 8 9 0 
5 4 2 -1 0 12 0 21 0 2 4 6 0 

10 8 5 -2 0 28 0 52 0 0 7 17 0 
11 7 4 -2 0 14 0 25 0 -5 11 16 0 
0 0 0 0 0 1 1 2 0 2 2 0 0 
0 0 0 0 0 1 0 2 0 2 2 0 0 
0 0 0 0 0 0 0 0 1 -1 -1 0 0 
0 0 0 0 0 0 0 0 0 -1 -1 0 0 
4 3 2 -1 0 12 6 23 8 2 6 6 2 
0 0 0 0 0 0 0 0 0 -1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
4 3 2 -1 0 8 3 15 4 1 4 5 1 

B4 = Ba and C4 = C1 • Next, observing the coefficients associated with Xd,2,2 

in A4 , we obtain another state transformation, 

[

0 0 0 0 0 3 

[
1 11 ] 0 0 0 0 0 -9 

80S = ; ;3 , Tos = 0 0 0 0 0 -6 
8 0 0 0 0 0 -17 

o 0 0 0 0 -16 

o 0] o 0 
00, 
o 0 
o 0 

--- - 1 -- 1 and the resulting transformed system (A5 ,B5 ,C5 ):= (80sA4803, 80sB4, C4803 ) 
with E5 = Es, C5 = C1 and 

-2 0 0 0 0 6 0 11 0 1 1 0 0 
6 3 2 -1 0 1 0 2 0 4 12 0 0 
5 4 2 -1 0 12 0 21 0 8 20 0 0 

10 8 5 -2 0 28 0 52 0 17 45 0 0 
11 7 4 -2 0 14 0 25 0 11 31 0 0 
0 0 0 0 0 1 1 2 0 2 2 0 0 

A5= 0 0 0 0 0 1 0 2 0 2 2 0 0 
0 0 0 0 0 0 0 0 1 -1 -1 0 0 
0 0 0 0 0 0 0 0 0 -1 -1 0 0 
4 3 2 -1 0 12 6 23 8 2 16 6 2 
0 0 0 0 0 0 0 0 0 -1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
4 3 2 -1 0 8 3 15 4 1 14 5 1 
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STEP SCB.9. Separation ofxa and XC. 

Observing from the resulting transformed system (A5' iJ 5, (;5), we have 

io=.4ooxo + LObYb + LOdYd + Bocuc 

[
-2 0 0 0 0] [6 11] [ 1 6 3 2 -1 0 1 2 4 

= 5 4 2 -1 0 xo+ 12 21 Yb+ 8 
10 8 5 -2 0 28 52 17 
11 7 4 -2 0 14 25 11 

1] [0 0] 12 1 0 
20 Yd+ 1 1 uc. 

45 3 1 
31 2 0 

Next, we apply the result of Theorem 4.4.1 of Chapter 4 to decompose the pair 

(.400, Boc) into the CSD form. Noting that (.400, Boc) is exactly the same as the 
pair given in Example 4.4.1, it follows from (4.4.8) that the sub-state and input 
transformations are given as 

where 

[

10000] o -1 0 0 1 
Tos = 0 -2 1 1 1 , 

2 -5 1 1 3 
o -3 0 1 2 

and the resulting transformed subsystem: 

(5.3.116) 

[ 
-2 0 0 0 0 1 [0 0 1 ( ~a) = ~ ~ ~ ~ ~ (xa.) + £obYb+ £OdYd+ ~ ~ U c . 

Xc 0 0 0 0 1 Xc 0 0 
5 -1 1 1 2 0 1 

The controllability index of (.400, Boc) is given by {rl' r2} = {I, 2}, which shows 
that there are two subsystems associated with xc. The details of these subsystems 

will be given in the last step. 

STEP SCB.lO. Finishing touch. 
Putting everything together, we obtain the following nonsingular input, output 

transformation and state matrices: 
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-1 -1 1 -1 3 -3 0 0 0 1 2 1 0 

-1 0 5 0 10 0 0 0 0 0 3 2 1 

0 -1 -2 0 -4 -1 0 0 0 0 0 0 0 

0 0 1 1 0 1 0 0 0 0 0 0 0 

0 0 0 1 -1 0 0 0 0 0 0 0 0 
1 -1 2 0 4 0 1 0 1 0 4 1 0 

rs = 0 -2 2 0 5 0 1 1 1 0 6 2 0 
1 -3 7 0 14 1 1 1 2 -1 11 4 1 
0 -2 4 0 9 0 0 1 1 0 7 3 1 
1 -1 5 0 10 0 0 0 1 0 6 2 1 
1 1 0 2 0 4 0 0 0 0 0 0 0 
1 1 1 2 1 4 0 0 0 0 0 0 0 
0 0 2 1 6 2 0 0 0 0 2 2 1 

and the final transformed system (.4, B, 6) = (r;l Ars , r;l Brj , r;;-lCrs) in the 

structure of the special coordinate basis with 

-2 0 6 0 11 0 0 0 0 1 1 0 0 
1 1 -2 0 -5 0 0 0 0 1 1 0 0 
0 0 1 1 2 0 0 0 0 2 2 0 0 
0 0 1 0 2 0 0 0 0 2 2 0 0 
0 0 0 0 0 1 0 0 0 -1 -1 0 0 
0 0 0 0 0 0 0 0 0 -1 -1 0 0 

.4.= 0 0 -1 0 -2 0 0 0 0 1 1 0 0 
0 0 10 0 16 0 0 0 1 4 8 0 0 
5 -1 -1 0 -3 0 1 1 2 5 13 0 0 
2 -2 12 6 23 8 1 1 2 2 16 6 2 
0 0 0 0 0 0 0 0 0 -1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
2 -2 8 3 15 4 1 1 2 1 14 5 1 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 1 
1 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 0 0 

[ 
0 0 0 0 0 0 0 0 0 1 0 0 0 1 
000 000 000 0 1 0 0 

6 = -0
0
::---::-0 +-:-1--:::0--:::0:--:0=-+0::---=-0 ----.:..O~O--=O~O=--..:..-.00 . 

000 1 0 0 0 000 0 
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To be complete, we can express the transformed system state, input and output 

variables as follows: 

(
xa) (Xb,l,l) 

X - r Xb _ Xb,l,2 
-5 ,Xb- , 

Xc Xb,2,l 

Xd Xb,2,2 

( X) (Xd,l,l) c,l,l X 
d,2,l 

Xc = Xc,2,l ,Xd = X ' 
X d,2,2 

c,2,2 
Xd,2,3 

and 

Y = r 0 (~:). Yd = (~::~). Yb = (~::~). 
together with the dynamical equation associated with Xa , given by 

the dynamical equations associated with Xb, given by 

and 

Xb,l,l=Xb,l,2+[1 2]Yb+[2 2]Yd, Yb,l=Xb,l,l, 

Xb,l,2=[1 2]Yb+[2 2]Yd, 

Xb,2,l = Xb,2,2 - [ 1 1] Yd, Yb,2 = Xb,2,l, 

Xb,2,2 = - [1 l]Yd, 

the dynamical equations associated with Xc, given by 

and 

Xc,2,l=Xc,2,2+[1O 16]Yb+[4 8]Yd, 

(5.3.117) 

Xc,2,2=[5 -l]xa +[l 1 2]xc-[1 3]Yb+[5 13]Yd+Uc,2, 

and the dynamical equations associated with Xd, given by 

Yd,l = Xd,l,l, 
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and 

It is clear from the above structural decomposition that the invariant indices of 

Morse and the invertibility structures as well as infinite zero structure of the given 

system are as follows: 

s:p~) = 12 = {rl,r2} = {1,2}, st(~) = 13 = {h,12} = {2,2}, 

s~(~) = 14 = {Ql, Q2} = {1,3}, 

and 11 is related to A(Aaa) = {-2, I}, the eigenvalues of Aaa. 

5.4 Nonstrictly Proper Systems 

We now present in this section the structural decomposition or the special co

ordinate basis of general nonstrictly proper multivariable systems. We will also 

present all the structural properties of such a decomposition with rigorous proofs. 

To be specific, we consider the following nonstrictly proper system ~ character

ized by 

{ X = A x + B u, 

y = C x + D u, 
(5.4.1) 

where x E ]Rn, U E ]Rm and y E ]RP are the state, input and output of E. Without 

loss of generality, we assume that both [ B I D' 1 and [C D 1 are of full rank. 

The structural decomposition or the special coordinate basis of nonstrictly 

proper systems follows fairly closely from that of strictly proper systems given 

in Section 5.3. However, in many applications, it is not necessary to decompose 

the subsystems Xb and Xc into chains of integrators. On the other hand, in many 

situations, it is necessary to further separate X a , the subsystem related to the in

variant zero dynamics of the given system, into subspaces corresponding to the 

stable, marginally stable (or marginally unstable) and unstable zero dynamics. 

We summarize these changes in the following theorem. 

Theorem 5.4.1 (SCB). Given the system ~ of (5.4.1), there exist nonsingular 
state, output and input transformations r s, r 0 and r i , which decompose the given 
E into six state subspaces. These state subspaces fully characterize the finite and 

infinite zero structures as well as the invertibility structures of the system. 
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The new state, input and output spaces are described by the following set of 

equations: 

and 

Xc = Acexe + BoeYo + LebYb + LedYd 

(5.4.2) 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(5.4.8) 

+ Be (E~x; + E~ax~ + Etaxt) + Beue, (5.4.9) 

Yo = COax;;: + cgax~ + criaxt + CObXb + COcXc + COdXd + Uo, (5.4.10) 

and for each i = 1,2, ... , md, 

Xi = Bq; (Ui + Eiax;;: + Efax~ + E~xt + EibXb + EieXc + EidXd) 

+ Aq;Xi + LiOYo + LidYd, (5.4.11) 

(5.4.12) 

Here the states x;. x~. xt. Xb. Xc and Xd are respectively of dimensions n;. 
n~. nt. nb. nc and nd = E~dl qio while the state Xi is of dimension qi for 
each i = 1,2, ... , md. The control vectors Uo. Ud and Ue are respectively of 

dimensions mo. md and me = m - mo - md. while the output vectors Yo. Yd and 

Yb are respectively of dimensions Po = mo. Pd = md and Ph = P - Po - Pd. The 
matrices Aq;. Bq; and Cq; have the fonn 

(5.4.13) 
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Assuming that Xi, i = 1,2, ... , md, are arranged such that qi :::; qi+l, the matrix 

Lid has the particular form 

(5.4.14) 

with the last row being identically zero. Moreover, A(A;;:a) C C-, A(A~a) Ceo 

and A(Ata) c c+. Also, (Ace, Be) is controllable and (Abb, Cb) is observable. 

Proof. It is simple to verify that there exist nonsingular transformations U and V 

such that 

UDV = [lmo 0] ° 0' 
(5.4.15) 

where mo is the rank of matrix D. In fact, U can be chosen as an orthogonal 

matrix. Hence hereafter, without loss of generality, it is assumed that the matrix 

D has the form given on the right-hand side of (5.4.15). One can now rewrite 

system E of (5.4.1) as, 

A X + [Bo Bd (:~), 

[ 10° ~] (:~), 
(5.4.16) 

where the matrices Bo, Bb Co and Cl have appropriate dimensions. Thus, we 

have 

(5.4.17) 

and 

(5.4.18) 

Hence, we have 

Following the results of Theorem 5.3.1, one can obtain nonsingular state, input 

and output transformations r s, 1\ and to which give a structural decomposition 

for the strictly proper system 

{ 
i; = Al X + Bl Ul, 

Yl = Cl X, 
(5.4.20) 

where Al := A - BoCo. The additional decomposition of Xa into x;;:, x~ and 

xt follows from the result of Theorem 4.2.1 in Chapter 4. Thus, the result of 

Theorem 5.4.1 follows. • 
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For future use, we rewrite the structural decomposition of E in a more compact 

form: 

- -1 A=fs Afs=As+BoCo 

A;;:a 0 

0 A~a 
0 0 

= 
0 0 

BeE~ Be Ega 
BdEda BdE~a 

BOa 
Bga 

+ Bta 
[C~ 

BOb 
Boe 
BOd 

0 L;bCb 

0 L~bCb 
A+ aa L~bCb 
0 Abb 

Be Eta LebCb 

BdEta BdEdb 

cga cta 

BOa 
Bga 

Bta 

COb 

0 

0 

0 

0 

0 

0 

0 

0 

Ace 

BdEde 

COe 

0 

0 

0 

0 BOb 
Boe 
BOd 

0 Be 

_ -1 [ Co ] [C~ cga 
C = f 0 Cf s = Cs = ~ ~ 

Bd 
cta 
o 
o 

~] , [
Imo 0 

- -1 
D = f 0 Df j = Ds = 0 0 

o 0 

where 

0 

L;dCd 

L~dCd 
L~dCd 
LbdCd 
Lcd Cd 

Add 

COd] , 

COe 
o 
o 

COd] 
Cd , 
o 

Add = Add + BdEdd + LddCd, 

for some constant matrices Ldd and Edd of appropriate dimensions, and 

Add = blkdiag{ Aql , Aq2 , ... ,Aqmd }, 

(S.4.21) 

(S.4.22) 

(S.4.23) 

(S.4.24) 

(S.4.2S) 

(S.4.26) 

Bd = blkdiag{ B q1 , Bq2 , ... ,Bqmd }, Cd = blkdiag{ Cq1 , Cq2 , ... ,Cqmd }, 
(5.4.27) 

with (Aq;, Bq;, Cq;) being defined earlier in (S.4.13). 
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We are now ready to present the important properties of the above structural 

decomposition. For clarity in the presentation, the detailed proofs of these prop

erties will be given in the next section. 

Property 5.4.1. The given system ~ is observable (detectable) if and only if the 

pair (Aobs , Gobs) is observable (detectable), where 

Aobs := [ Aaa 0] C ._ [Goa GOe ] 
BeEea Aee ' obs·- Eda Ede ' 

(5.4.28) 

and where 

[1 
0 

o ] Aaa := A~a o , GOa := [GOa Gga Gta] , 
0 Ata 

(5.4.29) 

Eda:= [Eda E~a Eta], Eea:= [E; E2a E~l· (5.4.30) 

Also, define 

Aeon := [AOa LA::b], Beon:= [~~: f::], (5.4.31) 

[ BOa] [L~l [L~l BOa:= B~ , Lab:= L~b , Lad:= L~d . 

BOa Lab Lad 

(5.4.32) 

Similarly, ~ is controllable (stabilizable) if and only if the pair (Aeon' Beon) is 
controllable (stabilizable). 

Property 5.4.2. The structural decomposition also shows explicitly the invariant 
zeros and the normal rank of~. To be more specific, we have the following 
properties: 

1. The normal rank of H (s) is equal to mo + md. 

2. Invariant zeros ofr; are the eigenvalues of A aa, which are the unions of the 

eigenvalues of A~a' A~a and Ata' 

Obviously, r; is of minimum phase if and only if n ~ + nt = O. Otherwise, it is of 
nonminimum phase. 

In order to display various multiplicities of invariant zeros, let X a be a non

singular transformation matrix such that Aaa can be transformed into the Jordan 
canonical form of (2.3.39), i.e., 

(5.4.33) 
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where Ji, i = 1,2, ... , k, are some ni x ni Jordan blocks: 

(5.4.34) 

For any given a E '\(Aaa), let there be Ta Jordan blocks of Aaa associated with a. 
Let na,l, na,2, ... , na,T" be the dimensions of the corresponding Jordan blocks. 
Then we say a is an invariant zero of E .. with multiplicity structure S~(E.) (see 

also [115]), 

S~(E.) = {na,l,na,2, ... ,na,T,,}' (5.4.35) 

The geometric multiplicity of a is then simply given by T a, and the algebraic 
multiplicity of a is given by ~r:l na,i' 

The following then characterizes the property of the blocking zeros of E (see 

also Chen et al. [28]). 

Property 5.4.3. Assume that the given system E of (5.4.1) is controllable and 

observable. Then, a complex scalar a is a blocking zero ofE, i.e., H(a) == 0, if 
and only if a is an invariant zero ofE with a geom~tric multiplicitYT a = mo+md' 
the normal rank of H (s). 

The structural decomposition can also reveal the infinite zero structure of E as 
defined in Chapter 3. The following property pinpoints this. 

Property 5.4.4. E has mo = rank(D) intinite zeros of order O. The infinite zero 
structure (of order greater than 0) oEE is given by 

(5.4.36) 

That is, each qi corresponds to an infinite zero of order qi' In particular, for a 
stricdy proper S1S0 system E, we have S~ (E) = {ql}, where ql is the relative 
degree of E. The given system E is said to be of uniform rank if either m 0 = 0 

andql = q2 = ... = qmd' ormo of:. 0 and S~(E) = 0. 

The special coordinate basis exhibits the invertibility structure of a given sys

tem E in a simple fashion. 

Property 5.4.5. The given system E is right invertible if and only if x b (and hence 
Yb) are nonexistent, left invertible if and only if x c (and hence uc) are nonexis
tent, and invertible if and only if both Xb and Xc are nonexistent. Moreover, E is 
degenerate if and only if both Xb and Xc are present. 
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The structural decomposition decomposes the state space of ~ into several 

distinct parts. In fact, the state space X is decomposed as 

(5.4.37) 

Here X; is related to the stable invariant zeros, i.e., the eigenvalues of A;;:a are the 

stable invariant zeros of 1:. Similarly, X~ and X: are respectively related to the 

invariant zeros of 1: located in the marginally stable and unstable regions. On the 

other hand, Xb is related to the right invertibility, i.e., the system is right invertible 

if and only if Xb = {O}, while Xc is related to left invertibility, i.e., the system 

is left invertible if and only if Xc = {O}. Finally, Xd is related to zeros of 1: at 

infinity. 

There are interconnections between the subsystems generated by the structural 

decomposition and various invariant geometric subspaces. The following proper

ties show these interconnections. 

Property 5.4.6. The geometric subspaces defined in Definitions 3.7.2 and 3.7.4 

are given by: 

1. Xa- EB X~ EB Xc spans V-(1:). 

2. X: EB Xc spans V+ (1:). 

3. X; EB X~ EB X: EB Xc spans V*(1:). 

4. X: EB Xc EB Xd spans S-(1:). 

5. Xa- EB X~ EB Xc EB Xd spans S+(1:). 

6. Xc EB Xd spans S*(1:). 

7. Xc spans R*(1:). 

8. Xa- EB X~ EB X: EB Xc EB Xd spans N*(1:). 

Property 5.4.7. The geometric subspaces defined in Definition 3.7.5, i.e., SA (1:) 

and VA (1:), can be computed as follows: 

(5.4.38) 
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where 
(5.4.39) 

and where K b is any matrix of appropriate dimensions and subject to the con
straint that Abo + KbCb has no eigenvalue at >.. We note that such a K b always 
exists as (Abb, Cb) is observable. 

(5.4.40) 

where Xa>.. is a matrix whose columns form a basis for the subspace, 

(5.4.41) 

and 
(5.4.42) 

with Fe being any matrix of appropriate dimensions and subject to the constraint 
that Aee + BeFe has no eigenvalue at >.. Again, we note that the existence of such 
an Fe is guaranteed by the controllability of (Aee, Be). Clearly, if>. rt >'(Aaa), 
wehaveV>..(~) ~ VX(~) andS>..(~) ;;2 SX(~). 

We illustrate the above structural properties in the following example. 

Example 5.4.1. Let us reconsider the system I: of Example 5.3.1, i.e., consider 
a matrix quadruple (A, B, C, D) with (A, B, C) being the same as those given in 
Example 5.3.1 and D = O. All the necessary transformations required to trans
form the given system into the special coordinate basis have already been obtained 
in Example 5.3.1. For the computation of various geometric subspaces, we need 
to further decompose the subsystem associated with x a. i.e., (5.3.117), using the 
result of Theorem 4.2.1. In particular, the following sub-transformation on x a, 

[ 0.9487 0] (x;;:) 
Xa = -0.3162 1 xt, 

will transform the dynamics of Xa into the diagonal form. i.e., 

( X;;:) _ [-2 0] (x;;:) + [6.3246 11.5950] + [1.0541 1.0541] xt - 0 1 xt 0 -1.3333 Yb 1.3333 1.3333 Yd· 

It is straightforward to verify that I: is neither controllable nor observable. It 
has two uncontrollable modes at -0.618 and 1.618, respectively, and has one 
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unobservable mode at O. The given system, ~, has a normal rank equal to 2, and 

has one stable invariant zero at - 2 and one unstable invariant zero at 1. It has an 
infinite zero structure, 

S~(~) = {I, 3}. 

The system is neither right nor left invertible as both Xb and Xc are present in its 
structural decomposition, i.e., it is a degenerate system. The various geometric 

subspaces of ~ can be trivially obtained through our structural decomposition and 
they are given as: 

-2 0 0 0 1 0 0 0 
-3 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
4 1 0 1 1 0 1 

V-(~) = im 2 1 1 , V+(~) = im 2 1 1 1 
6 2 3 1 1 2 
2 0 1 2 0 1 1 
4 0 0 1 1 0 0 1 
2 0 0 0 -1 0 0 0 
2 0 0 0 -1 0 0 0 
0 0 0 0 0 0 0 0 

-2 1 0 0 0 
-3 0 0 0 0 

1 1 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
4 1 1 0 1 

V·(~) = im 2 2 1 1 1 
6 3 1 1 2 
2 2 0 1 1 
4 1 0 0 1 
2 -1 0 0 0 
2 -1 0 0 0 
0 0 0 0 0 

-1 0 0 0 1 2 1 0 
0 0 0 0 0 3 2 1 

-1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

-1 1 0 1 0 4 1 0 
S-(~) = im -2 1 1 1 0 6 2 0 

-3 1 1 2 -1 11 4 1 
-2 0 1 1 0 7 3 1 
-1 0 0 1 0 6 2 1 

1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 0 0 2 2 1 
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-2 0 0 0 1 2 1 0 
-3 0 0 0 0 3 2 1 

1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
4 1 0 1 0 4 1 0 

S+(E) = im 2 1 1 1 0 6 2 0 
6 1 1 2 -1 11 4 1 
2 0 1 1 0 7 3 1 
4 0 0 1 0 6 2 1 
2 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 
0 0 0 0 0 2 2 1 

0 0 0 1 2 1 0 
0 0 0 0 3 2 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
1 0 0 4 1 0 

S*(E) = im 1 1 1 0 6 2 0 
1 1 2 -1 11 4 1 
0 1 1 0 7 3 1 
0 0 1 0 6 2 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 2 2 1 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 1 

'R*(E) = im 1 1 1 
1 1 2 
0 1 1 
0 0 1 
0 0 0 
0 0 0 
0 0 0 

-2 -1 0 0 0 1 2 1 0 
-3 0 0 0 0 0 3 2 1 

1 -1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
4 -1 1 0 1 0 4 1 0 

N*(E) = im 2 -2 1 1 1 0 6 2 0 
6 -3 1 1 2 -1 11 4 1 
2 -2 0 1 1 0 7 3 1 
4 -1 0 0 1 0 6 2 1 
2 1 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 2 1 
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-2 0 0 
-3 0 0 

1 0 0 
0 0 0 
0 0 0 
4 -4 -3 

V.\(E) = im 2 -2 1 , ,\ = -2, 
6 -2 -4 
2 2 -1 
4 0 -5 
2 0 0 
2 0 0 
0 0 0 

-2 0 2 0 0 0 1 2 1 0 
-3 10 10 0 0 0 0 3 2 1 

1 -5 -4 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 0 
0 -1 0 0 0 0 0 0 0 0 
4 4 4 1 0 1 0 4 1 0 

S.\(E) = im 2 5 5 1 1 1 0 6 2 0 , ,\ = 1. 
6 15 14 1 1 2 -1 11 4 1 
2 9 9 0 1 1 0 7 3 1 
4 10 10 0 0 1 0 6 2 1 
2 4 2 0 0 0 0 0 0 0 
2 5 3 0 0 0 0 0 0 0 
0 8 7 0 0 0 0 2 2 1 

We note that ,\ = - 2 and ,\ = 1 correspond respectively to the stable and the 

unstable invariant zeros of E. 

5.5 Proofs of Properties of Structural Decomposition 

In what follows, we provide rigorous proofs for all the properties of the special 

coordinate basis of general nonstrictly proper systems given in Section 5.4. With

out loss of generality, but for simplicity of presentation, we assume throughout 

the rest of this section that the given system E has already been transformed into 

the form of Theorem 5.4.1 or into the compact form of (5.4.21) to (5.4.24), i.e., 

o 
o 

BOb 
B = [Bo Bll = Boc 

o 
o 
o 

[

Boa 

BOd Bd 
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and 

We further note that Add' Bd and Cd have the forms 

Add = blkdiag { Aql , Aq2 , ... , Aqmd }, 

and 

Bd = blkdiag { Bqll Bq2 , ... , Bqmd }, Cd = blkdiag { Cqll Cq2 , ... , Cqmd }, 

where Aqi , Bqi and Cqi , i = 1,2, ... , md, are defined as in (5.4.13). 

Proof of Property 5.4.1. Let us define a state feedback gain matrix F as 

[CO. 
COb COe 

COd 1 F = - Eda Edb Ede E;d . 
Eea 0 0 

Then, we have 

[~ 
LabCb 0 L~Cd 1 

A+BF= ~ Abb 0 LbdCd 
LebCb Ace Lcd Cd . 

0 0 Add + LddCd 

Noting that (Ace, Be) is controllable, we have for any .x E C, 

rank [ A + BF - M B] 

[

Aaa-M LabCb 0 Lad Cd 

=rank 0 Abb- M 0 LbdCd 
o LebCb Aee-M Lcd Cd 
o 0 0 Add+LddCd-M 

[

Aaa -M LabCb 0 LadCd 

= rank 0 Abb - M 0 LbdCd 
o 0 Ace-AI 0 

o 0 0 Add+LddCd-AI 

[
Aeon - .xl 0 Beon! Cd BeonO 

= rank 0 Ace-AI 0 0 

o 0 Add+LddCd-AI BOd 

BOa 0 

BOb 0 

BOe 0 
BOd Bd 

BOa 0 

BOb 0 

o 0 

BOd Bd 

o 0 1 o Be, 
Bd 0 

(5.5.1) 
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where 

Aeon = [A;a L:b~b], Beon = [Beono Beon! 1 = [~~: f::]. 
Also, noting the special structure of (Add' Bd, Cd), it is straightforward to verify 
that [ A + B F - )..[ B 1 is of maximal rank if and only if [ A eon - >'1 Beon 1 is of 

maximal rank. By Lemma 3.8.1, we have that (A, B) is controllable (stabilizable) 

if and only if (Aeon' Beon) is controllable (stabilizable). 

Similarly, one can show that (A, C) is observable (detectable) if and only if 

(Aobs , Cobs) is observable (detectable). • 
Proof of Property 5.4.2. Let us define a state feedback gain matrix F as in (5.5.1) 

and an output injection gain matrix K as 

[
Boa Lad Lab 1 

K = _ BOb Lbd 0 . 
Boe Led Leb 
BOd Ldd 0 

(5.5.2) 

We have 

[T 
0 0 0 

A = A + BF + KC + KDF = 
Abb 0 

o 1 0 Aee o ' 
0 0 Add 

[0 
0 

~l - a a 
B=B+KD= ~ 0 

Bd 

O=C+DF= [~ 0 0 

~d] , 0 0 
Cb 0 

and 

[1m • 0 ~] D=D= 0 0 
o 0 

Let t be characterized by the quadruple (A, iJ, 6, iJ). It is simple to verify that 
the transfer function of t is given by 

H(s) = O( sI - .4.)-1 ii + jj = [Ir Cd (sI - ~dd)-l Bd ~]. (5.5.3) 
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Furthermore, we can show that 

1 

1 
(5.5.4) 

1 

By Lemmas 3.8.1 and 3.8.2, we have 

normrank{H(s)} = normrank{H(s)} = mo + md. 

Next, it follows from Lemmas 3.8.1 and 3.8.2 that the invariant zeros of ~ and 
E are equivalent. By the definition of the invariant zeros of a linear system, i.e., a 
complex scalar a is an invariant zero of E if 

[A - aI iJ] y 

rank 6 15 < n + normrank{H(s)} = n + mo + md, 

and also noting the special structure of (Add' Bd, Cd) and the facts that (Abb, Cb) 
is observable, and (Ace, Be) is controllable, we have 

[ A-aI rank{Pt(a)} = rank (} ~] 
Aaa-aI 0 0 0 0 0 0 

0 Abb-aI 0 0 0 0 0 
0 0 Aee-aI 0 0 0 Be 

= rank 0 0 0 Add-aI 0 Bd 0 
0 0 0 0 Ima 0 0 
0 0 0 Cd 0 0 0 
0 Cb 0 0 0 0 0 

= nb + ne + nd + mo + md + rank {Aaa - aI}. 

Clearly, the rank of Pt{a) drops below n + mo + md if and only if a E A{Aaa ). 
Hence, the invariant zeros of E, or equivalently the invariant zeros of~, are given 
by the eigenvalues of Aaa, which are the union of A{A~), A{A~), and A{Ata). 
This completes the proof of Property 5.4.2. • 

Proof of Property 5.4.3. By definition, a being a blocking zero of ~ implies that 
P{a) = C{aIn - A)-l B + D = O. Let us define 

[Wl W2 ••• Wm ] = 1m 
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and 
zi=(o1n-A)-lBwi, i=1,2, ... ,m. 

Now it is trivial to see that (z:, wD', i = 1,2, ... ,m, are linearly independent and 

satisfy 

rain -A -B] [Zi]_ 
C D Wi - 0. 

Thus, a is an invariant zero of 'E with its geometric multiplicity T a satisfying the 

condition, Ta ~ mo + md· But if Ta > mo + md, it can easily be shown that 'E 
is neither controllable nor observable, which is a contradiction to the assumption 

that'E is controllable and observable. Hence, T a = mo + md. 

To prove the sufficiency, we consider the following. If T a = mo + md, then 

it is straightforward to verify that there must exist Zi and Wi, i = 1,2, ... , m -

mo - md + Ta = m, such that 

[ aInC- A -ff] [~:] = 0, 

where Zi, i = 1,2, ... , m, are linearly independent. In what follows, we will 

show that Wi, i = 1,2, ... , m, are also linearly independent. First assume that 

Wi, i = 1,2, ... , m, are linearly dependent. Then there exist constants Ci, i = 
1,2, ... ,m, such that 

m m 

Zo = L CiZi -:P ° and Wo = L CiWi = 0. 
i=l i=l 

This implies that 

(aln - A)zo = Bwo = ° and CZo + Dwo = CZo = 0. 

Hence, a being an output decoupling zero of 'E contradicts the assumption that 'E 

is controllable and observable. This shows that Wi, i = 1,2, ... , m, are linearly 
independent. We next consider, 

P(a) [WI W2 ... wm]=[C(aIn-A)-lB+D][Wl W2 

which implies that P(a) = 0. Thus, a is a blocking zero of 'E. 

W m ] =0, 

• 
Proof of Property 5.4.4. It follows from Lemmas 3.8.1 and 3.8.2 that the infinite 

zeros of 'E and t are equivalent. It is clearly seen from (5.5.3) and (5.5.4) that the 

infinite zeros of t, or equivalently the infinite zeros of 'E, of order higher than 0, 

are given by 

S~('E) = S~(t) = {ql' Q2,"·, Qmd}' 

Furthermore, t or 'E has mo infinite zeros of order O. • 
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Proof of Property 5.4.5. Again, it follows from Lemmas 3.8.1 and 3.8.2 that E 
or H (s) is (left or right or non) invertible if and only if i; or fI (s) is (left or right 
or non) invertible. The results of Property 5.4.5 can be seen from the transfer 
function fI(s) in (5.5.3). • 

Proof of Property 5.4.6. We will only prove the property of the geometric sub
space V*(E), i.e., 

I~ ]}. 

Here rs = In as the given system E is assumed to be already in the form of 
structural decomposition. It follows from Lemma 3.8.2 that V * is invariant under 
any output injection laws. Let us choose an output injection gain matrix K as in 
(5.5.2). Then, we have 

[~ 
0 0 0 

~ 0 Abb 0 

o 1 A=A+KC= 
BcEca 0 Ace o ' 
BdEda BdEdb BdEdc Add + BdEdd 

and 

[0 0 
io] 

~ ~ 0 0 
B=B+KD=B= o 0 

o Bd 

Let f: be a system characterized by (A, il, C, D). Then, it is sufficient to show 
the property of V* (E) by showing that 

I~ ]} 

First, let us choose a matrix F as given in (5.5.1). Then, we have 

~ ~ 0 [

Aaa 

A+BF= ~ 

o 
o 

Ace 
o 
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[0 0 0 

~d ] C+DF= 0 0 0 
o Cb 0 

It is now simple to see that for any 

{[Ino 
, E X.al X, ~ Un ~ I~ ]}, 

we have 

,~ (~). 
and 

C"') {[In. (A + BF)( ~ A"~,, E im ~ I~']} ~ X.$~, 
and 

(C+DF)(=O. 

Clearly, Xa ED Xc is an (.4 + BF)-invariant subspace of jRn and is contained in 

ker (C + D F). By the definition of V *, we have 

(5.5.5) 

Conversely, for any ( E V*(t), by Definition 3.7.2, there exists a gain matrix 
FE jRmxn such that 

(5.5.6) 

and 
(C + DF)( = 0. (5.5.7) 

(5.5.6) and (5.5.7) imply that for any ( E V*('E), 

(C + DF)(.4 + BF)k( = 0, k = 0,1, ... , n - 1. (5.5.8) 

Thus, (5.5.5) and (5.5.8) imply that 

[

Ina 

(C + DF)(A + BF)' ~ } 1 = 0, k = 0,1, ... ,n - 1. 
nc 

° 
(5.5.9) 
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Next, let us partition this F as follows: 

We have 

and 

[ 
Fao - COa FbO - COb 

F = Fad - Eda Fbd - Edb 
Fae - Eea Fbe 

Feo - COe FdO - COd] 
Fed - Ede Fdd - Edd . 

Fcc Fde 

° o 
Ace + Be Fcc 

BdFed 

where Add = Add + BdFdd' Then, using (S.S.9) with k = 0, we have 

} 1 =0, no 

o 
which implies 

Fao = 0, Feo = 0, 

and 

C+DF= [~ ~ ~ ;Od] , 
o Cb 0 

(S.S.IO) 

where symbo}s* represent some matrices of less interest. Using (S.S.9) with 

k = 1 together with (S.S.10), we have 

and 

(C + DF)(A + BF) = (S.5.11) 

In general, one can show that for any positive integer k, 

(S.S.12) 
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and 

(C + DF)(A + BF)k = [ O~ * 
* o * 1 o C (A**)k d dd . 

o 0 
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(5.5.13) 

As a by-product, we can easily show that Fad = 0 and Fed = O. because of 

the fact that (Add' Bd, Cd) is controllable. observable. invertible and is free of 

invariant zeros. Now. for any 

it follows from (5.5.8) and (5.5.13) that 

Cb(Abb)k(b = 0, k = 0,1, ... , n - 1, 

which implies (b = 0 because (Abb , Cb) is observable. and 

Cd(Add)k(d + *. (b = Cd(Add)k(d = 0, k = 0,1, ... , n - 1, 

which implies (d = 0 because (Add' Cd) is also observable. Hence. 

and 

V*(f:) ~ Xa EB Xc' 

Obviously. (5.5.5) and (5.5.14) imply the result. 

(5.5.14) 

Similarly. one can follow the same procedure as in the above to show the 

properties of other subspaces in Property 5.4.6. • 
Proof of Property 5.4.7. Let us prove the property of V'\(~). It follows from 

Lemmas 3.8.1 and 3.8.2 that V'\ is invariant under any state feedback and output 

injection. Thus. it is sufficient to prove the property of V,\ (:E) by showing that 
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where E is as defined in the proof of Property S.4.2, X a>. is a matrix whose 
columns form a basis for the subspace, 

and 

with Fe being a matrix of appropriate dimensions such that Ace + BeFe - )..[ is 
invertible. 

For any ( E V>.(E), by Definition 3.7.S, there exists a vector W E em such 
that 

[A 6)..[ Z] (~) = 0, 

or equivalently, 

Aaa->..J 0 0 0 0 
0 Abb -)..[ 0 0 0 
0 0 Aee-)..[ 0 0 
0 0 0 Add -)..[ 0 

0 0 0 0 Imo 

0 0 0 Cd 0 

0 Cb 0 0 0 

Hence, we have 

(Aaa - )..[)(a = 0, 

which implies that (a E im {Xa>.}, 

0 
0 
0 

Bd 

0 

0 

0 

0 
0 

Be 
0 

0 
0 

0 

which implies that (b = 0 as (Abb, Cb) is observable, and 

(a 

(b 

(e 

(d =0. 

Wo 

Wd 
We 

(S.5.1S) 

(5.5.16) 

(S.S.17) 

which implies that (d = 0 and Wd = 0 as (Add' Bd, Cd) is square invertible and 
free of invariant zeros. We also have 

(Ace - AJ)(e + Bewe = 0, 
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which implies that 

(Acc + BcFc - )..I)(c + Bc(wc - Fc(c) = 0, 

or 

(c = (Acc + BcFc - )..1)-1 Bc(Fc(c - Wc) = Xc.>.(Fc(c - wc). 
Hence (c E im {Xc.>.}, Clearly, 

{ [

xa.>. 

(On ~ ~A]}. 
(5.5.18) 

Conversely, for any 

we have (b = 0, (d = 0, (a E im {Xa.>.}, which implies that ()"I - Aaa)(a = 0, 
and (c E im {Xc.>.}, which implies that there exists a vector W c such that 

(c = Xc.>.wc = (Acc + BcFc - )..1)-1 Bcwc. 

Thus, we have 

Let 

W = (::) = ( ~ ) . 
Wc Fc(c - Wc 

It is now straightforward to verify, by using (5.5.15), that 

By Definition 3.7.5, we have 

(5.5.19) 

Finally, (5.5.18) and (5.5.19) imply the result. 

The proof of S.>. (~) follows from the same lines of reasoning. • 
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5.6 Kronecker and Smith Forms of the System Matrix 

In this section, we will demonstrate how the structural decomposition or the spe
cial coordinate basis can be easily employed to compute the Kronecker canonical 
form (see Section 3.6 of Chapter 3) and Smith form of the (Rosenbrock) system 
matrix of a given system E characterized by (5.4.1). We first recall that the Kro
necker canonical form of the system matrix of E, i.e., PE(S), is invariant under 
nonsingular state, input and output transformations, r s, r i and r 0' and is invariant 
under any state feedback and output injection. Such a fact follows directly from 
the following manipulation: 

U~(s)V = [r~l _:~~1] [Sf ~ A -:] [~p ~J 

= [Sf - (.4 + B..F +_K..C + i<DF) -(B +D- i<D)] 
C+DF 

= [Sf - Au -!lK] 
CP D' 

where (A, iJ, C, D) is the transformed system and is given by 

(5.6.1) 

- -1 - -1 - -1 --1 A = rs Ars, B = rs Bri, C = ro crs, D = ro Dri, (5.6.2) 

F and k are respectively the state feedback and output injection gain matrices 
under the coordinate of the transformed system, and finally, I: u characterized by 
the quadruple (Au, BK , Cf , D) is the resulting transformed system under the state 
feedback and output injection laws. 

We are now ready to show that the Kronecker canonical form of PE (s) can 
be obtained neatly through the special coordinate basis of E. The following is a 
step-by-step algorithm that generates the required nonsingular transformations U 
and V for the canonical form: 

STEP KeF. 1. Computation of the special coordinate basis of I: . 

Apply the results of Sections 5.3 and 5.4 to find nonsingular state, input and 
output transformations, r s E cnxn, ri E IRmxm and roE IRPxp, such that 
the given system E is transformed into the special coordinate basis as given 
in Theorem 5.4.1 or in the following compact form: 

[ 

Aaa LabCb 0 Lad Cd 1 
A- - 0 Abb 0 LbdCd B ,.., - + oVO. 

BeEea LebCb Ace LcdCd 
BdEda BdEdb BdEdc Add + BdEdd + LddCd 
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B = [Bo Bd = BOb 0 [

Boa 0 

Boe 0 

BOd Bd 
and 

_ [CO] [coa C= = 0 
C1 0 

COb CDc COd 1 _ [Imo 0 o 0 Cd , D = 0 0 
Cb 0 0 0 0 

We further note that Add' Bd and Cd have the following forms, 

Add = blkdiag { Aql , ... , Aqmd }, 

and 
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(5.6.3) 

Bd = blkdiag { Bql , ... , Bqmd }, Cd = blkdiag { Cq1 , ... , Cqmd }, 
(5.6.4) 

where Aqi' Bqi and Cqi , i = 1,2, ... , md, are defined as in (5.4.13). Also, 
we assume that Aaa is in the Jordan canonical form, i.e., 

Aaa = blkdiag {Ja,l, Ja,2, ... , Ja,k}, 

where Ja,i, i = 1,2, ... ,k, are some ni x ni Jordan blocks: 

J d· { } [0 I ni - 1 ] a,i = lag ai, ai,· .. ,ai + 0 0 ' 

(5.6.5) 

(5.6.6) 

and (Abb, Cb) is in the form of the observability structural decomposition 
of Theorem 4.3.1, i.e., 

Abb = Abb + LbbCb = blkdiag{ Abb,l, ... , Abb,Pb } + LbbCb, (5.6.7) 

and 

(5.6.8) 

with 

Abb,i = [~ 110-1 ], Cb,i = [1 0], i = 1,2, ... ,Ph. (5.6.9) 

Finally, (Ace, Be) is assumed to be in the form of the controllability struc
tural decomposition of Theorem 4.4.1, i.e., 

Ace = A~e + BeEee = blkdiag{ Aee ,I, ... ,Aee,me } + BeEee, (5.6.10) 
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and 

Be = blkdiag{ Be,l, ... , Be,rne }, (5.6.11) 

with 

(5.6.12) 

STEP KCF.2. Determination of state feedback and output injection laws. 

Let 

(5.6.13) 

and 

[

BOa Lad Lab 1 
f< = _ BOb Lbd Lbb . 

Boe Led Leb 
BOd Ldd 0 

(5.6.14) 

It is straightforward to verify that the resulting E KF is characterized by 

[Au 
0 0 

~ l' B, = [~ o 0 1 
Au= ~ Abb 0 o 0 

0 A~e 
' (5.6.15) o Be 

0 0 Add 0 Bd 0 

and 

C, = [~ 
0 0 0] [1m • 

0 

~] . 0 0 ~d , iJ = ~ 0 (5.6.16) 

Cb 0 0 

STEP KCF.3. Finishing touches. 

It is now simple to verify that the (Rosenbrock) system matrix associated 
with EKF has the following form: 

1. The corresponding term associated with J a,i is given by 

[ 
s - ai ~ ~ . . -1 l' sI - Ja,i = 

s - ai 
S - eli 

(5.6.17) 

which is already in the format of (3.6.12). 
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2. The corresponding term associated with (A bb,i, Cb,i) is given by 

[-1 0] [ Cb,i ] [~1.. ~1]' o hi sl - Abb,i -
(5.6.18) 

which is in the format of (3.6.13). 

3. The corresponding term associated with (Acc,i, Bc,i) is given by 

(5.6.19) 

which is again already in the format of (3.6.14). 

4. Lastly, the corresponding term associated with (Aqi' Bqi' Cqi ) is given 

by 

s -1 0 

[Sl - Aqi -:qi] = (5.6.20) 
Cqi 

s -1 0 
s -1 1 0 0 0 

Let 

U" ~ [I 
., . 1 !], V" ~ - [! 0 

~] . (5.6.21) ... 0 1 
... 0 -1 1 0 

Then, we have 

[
SI - Aqi 

Uqi C qi 
-Bqi ] o Vqi = 

[

1 -s 

1 
(5.6.22) 

which is now in the format of (3.6.15). 

The Kronecker canonical form of the system matrix of ~ 10" or equivalently 
the system matrix of~, i.e., (3.6.11), can then be obtained by taking into ac
count the additional transformations given in (5.6.18) and (5.6.21) together 

with some appropriate permutation transformations. This completes the al
gorithm. 
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The above algorithm for constructing the Kronecker canonical form of PE (s) 
has been implemented in an m-function, kef. m, in [87]. Next, we proceed to 
compute the Smith form of the system matrix, PE (s). We recall the definition of 
the Smith form from the classical text of Rosenbrock and Storey [113]. Given a 

polynomial matrix A ( s ), it was shown in [113] that there exist unimodular trans
formations M ( s) and N ( s) such that 

8(s) = M(s)A(s)N(s) = [D~S) ~], (5.6.23) 

where 
(5.6.24) 

and where each Pi ( s ), i = 1, 2, ... , r, is a monic polynomial and Pi ( s) is a factor 
of PHI (s), i = 1,2, ... , r - 1. Note that a unimodular matrix is a square poly
nomial matrix whose determinant is a nonzero constant. 8(s) of (5.6.23) is called 
the Smith canonical form or Smith form of A(s). In what follows, we will show 

that it is also straightforward to obtain the Smith form of PE (s), the system matrix 

of~, by using the structural decomposition technique. 

STEP SMITH. 1. Determination of the Kronecker form of PE (s). 

Utilize the special coordinate basis of ~ to determine the Kronecker canoni

cal form of PE (s) as given in the previous algorithm. However, for the com
putation of the Smith form of P E (s), we need not to decompose Aaa into 
the Jordan canonical form, which might involve complex transformations. 
Instead, we leave Aaa as a real-valued matrix. Note that the transformations 
involved in the Kronecker canonical form are constant and nonsingular, and 
thus unimodular. 

STEP SMITH.2. Determination of unimodular transformations. 

1. Using the procedure given in the proof of Theorem 7.4 in Chapter 3 
of Rosenbrock and Storey [113], it is straightforward to show that the 

term sl - Ja,i in (5.6.17) can be reduced to the Smith form 

ni-I 

(sl - Ja,i) ~ diag{'W, (s - (liti}. (5.6.25) 

In general, following the procedure given in [113], we can compute 
two unimodular transformations Ma(s) and Na(s) such that sl - Aaa 
is transformed into the Smith form, i.e., 

Ma(s)(sl -Aaa)Na(s) = {Pa,I(S),Pa,2(S), ... ,Pa,n.(S)}. (5.6.26) 
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Clearly, these polynomials are related to the invariant zero structures 
of the given system ~. 

2. The term corresponding to (Abb i, Cb i) given in (5.6.18) has a con-, , . 
stant Smith form: 

J ([~I .. ~I])h 
(5.6.27) 

Note that the first term on the right-hand side of the above equation is 
a unimodular matrix. 

3. Similarly, the Smith form for the term corresponding to (Acc,i, Be,i) 
given in (5.6.19) is also a constant matrix: 

II.. 01 = I .. ([' -I 

s 
J) N .. (,), (5.6.28) 

where 

Nr;(s) = - [ : 

sri s 

(5.6.29) 

is a unimodular matrix. 

4. Lastly, the Smith form for the term corresponding to (A q;, Bq; ,Cqi ) 
given in (5.6.21) is an identity matrix: 

I,,+1 ~ I,,+1 ([I ~:: 7 ])[1 8 ] 

(5.6.30) 
Once again, the last term of the equation above is a unimodular matrix. 

Finally, in view of (5.6.26) to (5.6.30) together with some appropriate per
mutation transformations, it is now straightforward to obtain unimodular 
transformations M (s) and N (s) such that 

M(s)~(s)N(s) = [D~(S) ~], (5.6.31) 
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where 

nbcd 

DE(S) = diag{"O,Pa.l(S),Pa.2(S), ... ,Pa.na(S)}, (5.6.32) 

We illustrate the results of this section in the following example. 

Example 5.6.1. Consider the system characterized by (5.4.1) with 

[ 1 -1 o 0] 
B - [~ ~] , A= 0 1 o 1 

-1 2 1 1 ' - 0 

-1 3 1 1 1 

(5.6.33) 

and 

[0 0 0 1] 
C= 0 1 0 0 ' D=[~~], (5.6.34) 

which is already in the form of the special coordinate basis with an invariant zero 

at 1, and na = nb = nc = nd = 1. Following the algorithm given in Steps KCF.l 

to KCF.3, we obtain 

-_ [1 -3 -1 
F - 1 0-1 [ 

0 1] [1 0 0 0] -1 - -1 -1 0 0 0 0 
0]' K = -1 - 2 ' AKF = 0 0 0 0 ' 

o 0 0 0 0 0 

and BK = B, CF = c, iJ = D, and the required two nonsingular transformations, 

1 0 0 0 0 -1 1 0 0 0 0 0 
0 0 0 0 0 -1 0 1 0 0 0 0 

U= 
0 1 0 0 1 1 

V= 0 0 1 0 0 0 
0 0 1 0 1 2 

, 
0 0 0 0 0 1 

, 

0 0 0 -1 0 0 1 -3 -1 0 1 -1 
0 0 0 0 1 0 1 0 -1 1 0 0 

which transform P E (s) into the Kronecker canonical form, i.e., 

s-1 0 0 0 0 0 
0 -1 0 0 0 0 

UPE(S)V = 0 s 0 0 0 0 
0 0 S -1 0 0 
0 0 0 0 1 -s 
0 0 0 0 0 1 
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Next, following the algorithm given in Steps SMITH. 1 and SMITH.2, we obtain 

two unimodular matrices, 

0 0 0 0 0 1 
0 0 1 0 1 2 

M(s) = 
0 0 0 -1 0 0 
0 0 0 0 1 0 
1 0 0 0 0 -1 
0 -1 0 0 -1 s-1 

and 
0 0 0 0 1 0 
1 0 0 0 0 0 

N(s) = 
0 0 0 0 0 -1 
0 0 0 1 0 0 

-3 0 1 s-1 1 1 
0 -1 0 0 1 s-1 

with det[M(s)] = -1 and det[N(s)] = 1, which convert PE(S) into the Smith 
form, i.e., 

1 0 0 0 0 0 
0 1 0 0 0 0 

M(s)~(s)N(s) = 0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 s-1 0 
0 0 0 0 0 0 

Clearly, the polynomial in the entry (4,4) of the Smith form of PE(S) above, i.e., 
s - 1, results from the invariant zero of~. 

5.7 Discrete-time Systems 

The special coordinate basis or the structural decomposition for general discrete
time systems is almost identical to that given in Section 5.4 for continuous-time 
systems. For easy reference, we summarize in this section the results for discrete
time systems. We consider a discrete-time system characterized by 

{ x(k+l) = A x(k) + B u(k), 

y(k) = C x(k) + D u(k), 
(5.7.1) 

where x E an, u E am and y E ap are the state, input and output of~. As usual, 

we assume that both [B' D'] and [C D] are offull rank. 

Theorem 5.7.1 (DSCB). Given the system ~ of (5.7.1), there exist nonsingular 
state, output and input transformations r 8' r 0 and n, which decompose the given 
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~ into six state subspaces. These state subspaces fully characterize the finite and 
infinite zero structures as well as invertibility structures of the system. 

The new state, input and output spaces are described by the following set of 

equations: 

and 

x~(k+l) = A~ax~(k) + BoaYo(k) + L;:dYd(k) + L~Yb(k), 

x~(k+l) = A~ax~(k) + Bgayo(k) + L~Yd(k) + L~bYb(k), 

x~(k+l) = A:ax~(k) + Briayo(k) + L~dYd(k) + L~bYb(k), 

xc(k+l) = Accxc(k) + Bocyo(k) + LcbYb(k) + LcdYd(k) 

(5.7.2) 

(5.7.3) 

(S.7.4) 

(5.7.S) 

(S.7.6) 

(S.7.7) 

+Bc [E~x~(k) + E~ax~(k) + E~x~(k)] + Bcuc(k), (S.7.9) 

Yo(k) = Co;.x~(k) + C8ax~(k) + Cta.x~(k) + CObXb(k) 

+ Cocxc(k) + COdXd(k) + uo(k), (S.7.10) 

and for each i = 1,2, ... , md, 

xi(k+ 1) = AqiXi(k) + LiOYO(k) + LidYd(k) + Bqi [Ui + E~x~(k) 

+ E?ax~(k) + E~x~(k) + EibXb(k) + EicXc(k) + EidXd(k)] , (S.7.11) 

(5.7.12) 

Here the states x;;:, x~, x;t, Xb, Xc and Xd are respectively of dimensions n;;:, 
n~, n;t, %, nc and nd = I::dl qi, while the state Xi is of dimension qi for 
each i = 1,2, ... , md. The control vectors Uo, Ud and Uc are respectively of 



5.B. Exercises 183 

dimensions mo, md and me = m - mo - md, while the output vectors Yo, Yd and 
Yb are respectively of dimensions Po = mo, Pd = md and Pb = P - Po - Pd' The 
matrices Aq" Bq, and Cq, have the form 

(5.7.13) 

Assuming that Xi, i = 1, 2, ... , md, are arranged such that q i ~ qi+ 1, the matrix 
Lid has the particular form 

(5.7.14) 

with the last row being identically zero. Moreover, '\(A;a) C Co, '\(A~) C CO 
and '\(Ata) C C®. Also, (Ace, Be) is controllable and (Abb, Cb) is observable. 

We note that the properties of the structural decomposition for discrete-time 
systems are identical to those of the continuous-time counterpart, i.e., Properties 

5.4.1-5.4.7. 
Finally, we would also like to point out that many of the system structural 

properties, such as the geometric subspaces, for example, do not require the de
composition of the subspaces X b, Xc and Xd into chains of integrators, for which 
numerical problems might arise when the given system data are ill-conditioned. 
We refer interested readers to a recent result by Chu et al. [36], which shows that 
the separation of Xa , Xb , Xc and Xd without detailed structures of chains of inte
grators can be carried out by using some almost orthogonal transformations. We 
have implemented their algorithm in an m-function, called scbraw. m. In our 
toolkit of [87], we have made use of this numerically stable m-function whenever 
it is possible. When it is necessary to decompose the subsystems into the form of 
chains of integrators, the algorithm given in Section 5.3 is used, which requires 
fewer iteration steps compared to that given in Sannuti and Saberi [122]. 

5.8 Exercises 

5.1. Compute a special coordinate basis for the SISO system 

[1 1 1 0] [1] . 0 0 1 1 1 
x = 1 0 0 1 x + 1 U, Y = [1 -1 

1 100 1 
1 -1] x. 

Identify the invariant zeros and the relative degree of the given system. 
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5.2. Utilize the properties of the special coordinate basis to construct a fourth 
order controllable and observable SISO system, E, for each of the follow
ing five cases: 

(a) E has no invariant zeros and has a relative degree of 4. 

(b) E has one invariant zero at {I} and has a relative degree of 3. 

(c) E has two invariant zeros at {I, 2}, and has a relative degree of 2. 

(d) E has three invariant zeros at {I, 2, 3}, and has a relative degree of 1. 

(e) E has four invariant zeros at {±j, ±I}. and has a relative degree of O. 

5.3. Compute a special coordinate basis for the MIMO system 

. [-: 1 1 1] [0 0] -1 -2 -2 0 -1 
x= 

0 0 ~ x+ _~ ~ u, 0 
1 2 3 

and 

y = [~ o 0 1] 
1 1 1 x. 

Verify that the system is neither left nor right invertible, and has one unsta
ble invariant zero and one infinite zero of order 1. 

5.4. Compute a special coordinate basis for the MIMO system 

x= 

and 

[ 
1 1 1 

-1 -1 -2 
000 
1 2 3 

-2 0 -1 1] [0 0] 
~ x+ _~ ~ u, 

y = [~ ~ ~!] x + [~ ~] u. 

Verify that the system is invertible. Also, obtain the invariant zeros and the 
infinite zero structure of the system. 

5.5. Utilize the properties of the special coordinate basis to construct a fourth 
order invertible, controllable and observable MIMO system, E, for each of 
the following cases: 

(a) E is strictly proper, and has an infinite zero structure S~ = {I,3}. 
which implies that 1: is free of invariant zeros. 
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(b) I; is strictly proper, and has an infinite zero structure S~ = {2,2}, 
which implies that ~ is free of invariant zeros. 

(c) I; is strictly proper, and has one invariant zero at {I} and an infinite 

zero structure S~ = {1,2}. 

(d) I; is strictly proper, and has two invariant zeros at {±j} and an infinite 

zero structure S~ = {I, I}. 

(e) ~ is nonstrict~y proper, and has three invariant zeros at {I, ±j} and 

an infinite zero structure S~ = {I}. 

(f) ~ is nonstrictly proper, and has four invariant zeros at {±l, ±j} and 
no infinite zero of order higher than O. 

5.6. Construct a third order strictly proper and right invertible system, ~, with 
two inputs and one output, for each of the following cases: 

(a) ~ has an infinite zero of order 2, and has no invariant zeros. 

(b) ~ has an infinite zero of order I, and has one invariant zero at { -1 }. 

Moreover, the obtained systems must be controllable and unobservable. 

5.7. Construct a third order strictly proper and left invertible system, I;, with 
one input and two outputs, for each of the following cases: 

(a) E has an infinite zero of order 2, and has no invariant zeros. 

(b) ~ has an infinite zero of order I, and has one invariant zero at { -1 }. 

Furthermore, the obtained systems must be uncontrollable and observable. 

5.S. Construct a second order system, ~, which has the following properties: (i) 
~ is neither left nor right invertible; (ii) E is uncontrollable and unobserv
able; (ii) ~ is free of finite zeros and is free of infinite zeros of order higher 
than 0; and (iv) ~ is nonstrictly proper with both [C D] and [B' D'] 
being of full rank. 

5.9. Compute geometric subspaces, V * , S*, n * and N* , for the systems given 
in Exercise 5.1, Exercise 5.3 and Exercise 5.4. 

5.10. Compute geometric subspaces, V>. and S>., with .oX = I, for the systems 
given in Exercise 5.3 and Exercise 5.4. 
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5.11. Consider a SISO system, E, which is already in the SCB form as given in 

Theorem 5.2.1, i.e., 

Xa = Aaaxa + LadY, 

Xl = X2, Y = Xl, 

or in the matrix form: 

Aaa Lad 
0 0 

x=Ax+Bu= 
0 0 

Eda El 

and 

y=CX=[O 

Let 

B:= B + 

0 
1 

0 
E2 

1 

Ka 
0 

0 
0 

0 Xa 0 
0 Xl 0 

X2 + U, 
1 0 

End Xnd 1 

0 ... O]x. 

Ka 
0 

0 
1 

Construct the special coordinate basis for the new system, t, characterized 
by X = Ax + Bu, and Y = Cx. Show that E and t have the same 
relative degree. Also, show that the invariant zeros of E are given by the 

eigenvalues of .Aaa := Aaa - KaEda. 

5.12. It follows from Theorem 5.3.1 that each subsystem associated with X d of 
E can be expressed as 

. [* Iq;-l] [0] ( ) Xd,i = * * Xd,i + 1 Ud,i + * , 

and 

Yd,i = [1 0] Xd,i' 

Show that the subsystem from Ud,i to Yd,i is invertible, controllable and 
observable, and is free of invariant zeros. This implies that the subsystem 
associated with the whole Xd from its input Ud to output Yd is invertible, 
controllable and observable, and is free of invariant zeros. 
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5.13. Determine the Kronecker canonical form and Smith form for the systems 

given in Exercise 5.3 and Exercise 5.4. 

5.14. Given a linear system, ~, with its special coordinate basis being given as 
in Theorem 5.4.1, prove Property 5.4.6 for S * , i.e., 

5.15. Given a linear system, ~, with its special coordinate basis being given as 
in Theorem 5.4.1, prove Property 5.4.7 for S ~, i.e., 

{ [
>"1 - Aaa 

S,(1O) = im r, ~ 

where 

and where K b is any matrix of appropriate dimensions and subject to the 
constraint that Abb + KbCb has no eigenvalue at >... 



Chapter 6 

Decompositions of Descriptor 
Systems 

6.1 Introduction 

In this chapter, we focus on the structural decomposition of a more general type 
of linear time-invariant systems, namely, linear descriptor systems. Descriptor 
systems, also commonly called singular or generalized systems in the literature, 
appear in many practical applications including engineering systems, economic 
systems, network analysis, and biological systems (see e.g., Dai [43], Kuijper [79] 
and Lewis [80]). In fact, many systems in real life are singular in nature. They are 
usually simplified as or approximated by proper systems because of the lack of 
efficient tools for dealing with descriptor systems. The structural analysis of lin
ear descriptor systems, using either an algebraic or a geometric approach, has at
tracted considerable attention from many researchers during the past three decades 
(see e.g., Chu and Mehrmann [37], Chu and Ho [38], Fliess [53], Geerts [57], 
Lewis [80-82], Lewis and Ozcaldiran [83], Loiseau [93], Malabre [97], Misra et 
aI. [99], Van Dooren [143,144], Verghese [146], Zhou et aI. [161], and the ref
erences cited therein). Generally speaking, almost all the research works dealing 
with descriptor systems are the natural extensions of their proper counterparts, 
although these extensions are usually nontrivial. 

It has been extensively demonstrated and proven for proper systems that sys
tem structural properties, such as finite and infinite zero structures and invertibility 
structures, playa very important role in solving various control problems includ
ing H2 , Hoo control and disturbance decoupling (see e.g., [22] and (120)). The 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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structural properties of descriptor systems and their applications to the control 
problems of descriptor systems are however less emphasized in the literature. In 
this chapter, we present a structural decomposition technique for general multi
variable linear descriptor systems. Similar to its counterpart in Chapter 5, such a 
technique can be used to capture and display the structural properties of general 
descriptor systems. It can also be regarded as a natural extension and counterpart 
of the results in Chapter 5 for proper systems. However, it will be seen shortly 
that the structural decomposition of a general multivariable descriptor system is 
much more involved. Such a decomposition technique is expected to be a power

ful tool for solving a large variety of control problems for descriptor systems, H 2 

and H 00 control, model reduction and disturbance decoupling, to name just a few. 
The results of this chapter, especially those for continuous-time systems, follow 
closely from the works reported earlier in [64,65]. 

We consider a continuous-time system t characterized by 

t : { E x = A x + B u, 
y = ex + D u, 

(6.1.1) 

where x E IRn , u E IRm and y E IRP are respectively the state, input and output 
of the system, and E, A, B, C and D are constant matrices of appropriate dimen

sions. The system t is said to be singular if rank(E) < n. As usual, in order 
to avoid any ambiguity in the solutions to the system, we assume throughout this 
chapter that the given descriptor system t is regular, i.e., det(8E - A) ~ 0, for 
all 8 E C. Traditionally, the Kronecker canonical form, a classical form of ma
trix pencils under strictly equivalent transformation, has been used extensively in 
the structural analysis of descriptor systems. Malabre [97] presents a geometric 
approach and introduces structural invariants of descriptor systems. In that paper, 
some definitions are shown to be consistent with others directly deduced from ma
trix pencil tools. It extends many geometric and structural results from the proper 

systems to the descriptor systems. 
As seen in Chapter 3 for proper systems, the Kronecker canonical form ex

hibits the finite- and infinite-zero structures (i.e., invariant indices) of the system, 
and shows the left and right null-space structures. The same technique has also 
been adopted to define invariant indices of descriptor systems (see, e.g., Malabre 

[97]). We recall that two pencils 8Ml - Nl and 8M2 - N2 of dimensions m x n 
are strictly equivalent if there exist constant nonsingular matrices P and Q of 
appropriate dimensions such that 

(6.1.2) 
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It was shown in Gantmacher [56] that any pencil sM - N can be reduced, under 

strict equivalence, to a canonical quasi-diagonal form, which is given by 

- _ [blkdiag{sf -J,Lh,"" Llq , Rr1 ,··. ,Rrp ' f -sH} 
Q(sM-N)P= o ~J. 

(6.1.3) 

In the context of this chapter, we will focus on 

i.e., the (Rosenbrock) system matrix pencil associated with E. In (6.1.3), R k and 

Lk are the k x (k + 1) and (k + 1) x k bidiagonal pencils, respectively, 

(6.1.5) 

J is in Jordan canonical form, and sf - J has the following E t=l di pencils as its 

diagonal blocks, 

[
s - Pi ~~ 

sfm · . - Jm · . (Pi) := S,l 1,) 1 ' -1 
s - Pi 

(6.1.6) 

j = 1,2, ... , di , i = 1,2, .. . ,15, and H is nilpotent and in Jordan canonical form, 

and f - sH has the following d pencils as its diagonal blocks, 

1 
(6.1.7) 

j = 1,2, ... , d. Then, {(s - pi)mi,j, j = 1,2, ... , di } are finite elementary 

divisors at Pi, i = 1,2, ... ,8. The index sets {rl' r2, ... ,rp} and {h, 12, ... , 1q} 
are right and left minimal indices, respectively. {(II s) nj, j = 1,2, ... , d} are 

the infinite elementary divisors. The definition of structural invariants of E is 

based on invariant indices of its system pencil. For descriptor systems, the right 

and left invertibility indices are right and left minimal indices of the system pencil 

respectively, the finite and infinite zero structures of a descriptor system are related 

to finite and infinite elementary divisors of the system pencil. 
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Note that the computation of the invariant indices of the system pencil of the 

descriptor system E is actually quite simple. Without loss of any generality, we 
assume that E is in the form of 

(6.1.8) 

and thus A, Band C can be partitioned accordingly as 

(6.1.9) 

Rewriting the system pencil of (6.1.4) as 

[ 
sl - Ann -Ans -Bn] [SI _ Ax 

~(S) = -Asn -Ass -Bs = Cx 
Cn Cs D 

-Bx] 
Dx ' 

(6.1.10) 

it is simple to see that the invariant indices of E are equivalent to those of a proper 

system characterized by (Ax, Bx, cx, Dx). All the invariant indices can thus be 
computed accordingly (see, e.g., [91)). It is also clear from (6.1.10) that the Kro

necker canonical fonn of a descriptor system cannot capture all the system struc

tural properties as it is identical to those of a proper system! In this chapter, our 

focus is not on the computation of the invariant indices, but the derivation of a 
constructive algorithm that decomposes the state space of the given system into 
several distinct parts, which are directly associated with the finite and infinite zero 
dynamics, as well as the invertibility structures of the given system. 

It is interesting to note that there are fundamental differences between the 
structure of a descriptor system and that of a proper system. For descriptor sys
tems, as we will see shortly, some of the state variables are totally zero, which 

implies that the state trajectories of descriptor systems generally do not span the 

whole an space, and some are linear combinations of input variables and their 

derivatives. Our decomposition technique given in this chapter will automatically 

and explicitly separate these redundant dynamics of descriptor systems, which 

cannot be captured through the Kronecker canonical form. We further note that 

besides these unique properties, the remaining state variables have similar struc

tures to those of proper systems given in Chapter 5. 
As mentioned earlier, it is expected that the technique presented in this chapter 

will play a similar role in solving a variety of control problems for descriptor 
systems as its counterpart has played in the context of proper systems. We would 
like to point out that research related to descriptor systems and control is far from 
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complete. It is our belief that the results of this chapter will emerge as an important 

tool for tackling many descriptor systems and control problems. 

This chapter is organized as follows. Section 6.2 gives the structural decom

position algorithm for SISO systems. Section 6.3 presents the structural decompo

sition algorithm for general MIMO systems and the structural properties of such 

systems. The proofs of the results in Section 6.3 are given in Section 6.4. Sec

tion 6.5 deals with discrete-time systems. 

Throughout this chapter, u (v) denotes the v-th derivative of u, where v is a 

nonnegative integer. With a slight abuse of notation, we occasionally write u (v) as 

sVu when it does not cause ambiguity. Here, s can be regarded as a differentiation 

operator or the variable in the Laplace transform. 

6.2 SISO Descriptor Systems 

We consider in this section the descriptor system of (6.1.1) with m = p = 1. As 

expected. the computation involved in the structural decomposition of SISO sys

tems is much simpler than in the structural decomposition of general multivariable 

systems. Also, for simplicity, we assume in this section that the state variable of 

~,x(t), is a continuous function of tat t = o. We have the following theorem. 

Theorem 6.2.1. Consider the descriptor system ~ of (6.1.1) with P = m = 1 

satisfying the usual regularity assumption, i.e., det(sE - A) t:. 0 for sEC. There 

exist nonsingular state, input and output transformations r s E ]Rnx n, n E ]R and 

raE ]R, and an n x n nonsingular matrix r e (s). whose elements are polynomials 
of s, which together give a structural decomposition of~ described by the set of 

equations 

(D XdER
n

" Xd= CjJ (6.2.1) 

Xz E ]Rn., Xe E ]Rne, Xa E ]Rna, y = raY, u = rju, (6.2.2) 

and 

Case 1: Ifnd = 0, i.e., Xd is nonexistent, then we have 

Xz = 0, 

X - u-(v) e - , } (6.2.3) 
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Case 2: lfnd > 0, we have 

Xz = 0, 

Xe = (leu(v) , 

Xa = Aaaxa + LadYd, 

Xdl = Xd2, (6.2.4) 

Xd2 = Xd3, 

. M L -(v) 
Xdfid = daXa + ddYd + U , ii = Yd = Xdl· 

Here, v is a nonnegative integer, Aaa , Boa, C, D, Lad, Mda and Ldd, if existent, 
are constant matrices of appropriate dimensions, and (l e is a nonzero scalar. 

Proof. The following is a step-by-step constructive proof for the structural de
composition of E. 

STEP SISO-SDDS.l. Preliminary Decomposition. 

This step, adopted from Dai [43], is to separate the given descriptor system 
into a proper subsystem and a special descriptor subsystem (hereafter we 

call it EA Decomposition). First, we note that the regularity assumption on 
the given system (6.1.1) implies the existence of a real scalar f3 such that 
det (f3E + A) -::j:. O. Next, we define 

E = ((3E + A)-l E. (6.2.5) 

It follows from the real Jordan canonical decomposition, i.e., Theorem 4.2.2, 
that there exists a nonsingular transformation T E IR fi X fi such that 

TET-1 - [El 9] 
- 0 E2 ' (6.2.6) 

where El E IRfi1 Xfil is a nonsingular matrix and ~ E IRfi2Xfi2 is a nilpo

tent matrix. Lastly, we let 

(6.2.7) 

It is then straightforward to verify that 
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(In2 - ~E2)-1 ] TET- l 

iJ 
(6.2.8) 

where N = (In2 - f3E2)-1 E2. It is simple to show that for any positive 
integer h, 

(6.2.9) 

Clearly, N is a nilpotent matrix because E2 is nilpotent. Next, noting that 
(f3E + A)-l A = In - f3E, we have 

P AQ = [Er (In2 _ ~E2)-1 ] T(f3E + A)-l AT-l 

[E-l 0 ] 
= b (In2 - f3E2)-1 T(In - f3E)T- l 

_ [Ell 0 ] [Inl -f3El 0 ] 
- 0 (In2 - f3E2)-1 0 In2 - f3 E2 

= [~l I~2 ] . (6.2.10) 

We also partition accordingly 

PB = [~~] and OQ = [01 C2]. (6.2.11) 

Then, the given descriptor ~ can be decomposed into the following two 
subsystems: 

(6.2.12) 

and 

(6.2.13) 
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STEP SIS0-soos.2. Decomposition of~2' 

If B2 = 0, we have Xz = X2, n z = n2, Xe = 0, ne = 0 and v = O. For this 
case, the following procedure does not apply. We jump directly to STEP 

SIS0-soos.3. 

For the case when B 2 f:. 0, it follows from Theorem 4.4.1 that there exist a 

nonsingular transformation T2 and an a f:. 0 such that 

(

XVI) n v Xv2 
Xz E lR " Xv E lR d, Xv = : ' 

XVVd 

(6.2.14) 

r.- I NT = [JeD Nee] r.- I B = [B2e ] 
220 J' 220' n. 

(6.2.15) 

and 

(6.2.16) 

where (JeD, B2e ) is a controllable pair. Since N is a nilpotent matrix and 

thus has all its eigenvalues at 0 and B 2e is a column vector, (JeD, B2e ) can 
actually be written as, 

J. = [0 IVd-l] 
eO 0 0 (6.2.17) 

Also note that I n • has all its eigenvalues at O. As such, it is simple to verify 
that ~2 is decomposed into the following two subsystems: 

(6.2.18) 

which implies that X z = 0 for all t, under the assumption that x(t) is a 

continuous function of t at t = 0, and 

which is equivalent to 

or 

... , Xv2 = XvI' 

Clearly, (6.2.21) implies 

1 
Xe .'= XvI = _u(v) and n 1 e = , 

a 

(6.2.19) 

(6.2.20) 

(6.2.21) 

(6.2.22) 
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where v = max(O, Vd - 1). The output Y2 can then be expressed as 

(6.2.23) 

STEP SISO-SDDS.3. Decomposition of Finite and IniiniteZero Structures ofr.. 

Observing the results in (6.2.12), (6.2.13), (6.2.18), (6.2.21), (6.2.22) and 
(6.2.23), it is clear that the given system r. has been transformed into the 
following format: 

Xz = 0, 
1 

Xe = _u(1J), 
a 

and a proper system, 

Next, let us partition 

C2c = [Cvl Cv2 . .. CV1Jd J . 

Thus, the proper system (6.2.25) can be rewritten as, 

where 

and 

{ X = ~ x + ~ it, 
Y = C x + D u, 

o 0 aBl 
000 

1 0 0 
o 1 0 

(6.2.24) 

(6.2.25) 

(6.2.26) 

(6.2.27) 

1 
it = _u(1J) , C = [C1 Cv Cv Cv J tJ Cv a 2 . . . 1Jd -1 1Jd' = 1 , 

ifVd > 1, or 

1 x = Xl, U = -u, 
a 
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We have the following two distinct cases. 

Case 1. D i- 0, which corresponds to Case 1 of Theorem 6.2.1. In this 

case, it is simple to obtain Xd = 0, nd = 0, Xa = x, na = nI + v and 

- - - 1 - - - 1 Xa = (A - BD- C)Xa + BD- y = Aaaxa + BoaY 

and 
Y = CXa + Da-Iu(v) = CXa + Du(V), 

if we let u = fju = au. 

(6.2.28) 

(6.2.29) 

Case 2. D = 0, which corresponds to Case 2 of Theorem 6.2.1. It follows 
from Theorem 5.2.1 that there exist nonsingular transformations f"s, f 0 and 

f\ such that when we apply the changes of coordinates 

--f- --f- (xa) -f - __ 1 (v)_f-.-(v) x - sX - s ,Y - oY, u - -u - lU , 
Xd a 

(6.2.30) 

to the system in (6.2.27), and in view of (6.2.22), we have 

i = [Aaa LadCd] X + [ ° ] u(v), 
BdMda Add Bd 

(6.2.31) 

and 
(6.2.32) 

where Add, Bd and Cd have the form 

A - [0 InrI] B _ [0] 
dd - * ° ' d - 1 ' Cd = [1 ° ... OJ. (6.2.33) 

Let 
u = fjU = af\u =} .!.u(v) = f\u(v). 

a 
(6.2.34) 

This completes the algorithm for the structural decomposition of the given 

SISO descriptor system. • 

We illustrate the above decomposition technique in the following example. 

Example 6.2.1. We consider a descriptor system of (6.1.1) with 
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and 

C = [0 1 0 0 0], D=O. 

We first choose a scalar f3 = -1 and obtain 

and 

1.4142 1.4142 -0.7071 -1.4142 
0 0 1.2248 0 

P= 0 -1.4142 -1.4142 1.4142 
0 -1 0 1 
0 0 0 1 

0.7071 0.4083 0 0 
0 0 0.7071 0 

Q= 0 -0.8165 0 0 

1 
0 

PEQ= 0 
0 
0 

0 
-0.7071 

0 0 
1 0 
0 1 
0 0 
0 0 

0.7071 
-1.2247 

0 
0 
0 
0 
0 

0 -0.7071 0 
0.4083 0 1 

0 0 0 
0 0 0 
0 , PAQ= 0 0 
0 0 0 
0 0 0 

-0.7071 
-1.2248 

1.4142 
1 
0 

0 
1 
0 
0 
0 

0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 1 

P B = 1.4142, CQ = [0 0 0.7071 0 1 J, 
1 
o 

199 

(6.2.36) 

with nl = 3 and n2 = 2. The given descriptor system can then be decomposed 

into the following subsystems: 

and 

with 

Al = [~o ~ ~ l' Bl = [-~:~~~! l' C1 = [0 0 0.7071], 
o 0 1.4142 
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and 

N = [~ ~], B2 = [ ~ ], C2 = [0 1]. 

Noting that B2 is nonzero and ~2 is already in the required form of (6.2.15), 

we have 

a = -1, X z = 0, u = -xv, Xe = Xv = -u, Vd = 1, 

and the auxiliary proper system 

with 

and 

1 
X=XI, u=-u=-u, 

a 

[ 
0 0 0 1 [ -0.7071 1 A = Al = 0 0 0 , fJ = aB I = 1.2248, 
o 0 0 -1.4142 

C = C1 = [0 0 0.7071], jj = 0, 

which corresponds to Case 2 of STEP SISO-SDDS.3. Following the result of Theo
rem 5.2.1, we obtain the required state, output and input transformation matrices, 

I's= 1 0 -1.2248 , fo=l, I'i=-l, [ 
0 -1 0.7071 1 
o 0 1.4142 

which transform the auxiliary proper system into the required structural form: 

Finally, we obtain all the necessary transformations as 

[ 

0 
o 

fe = 0 
-1.414~ 

o 
-1 

-1.2248 
-2.1213 

-1 

o 1 0 I 011 
o 1.2248 0, 
o 2.1213 1.4142 

-1 1 1 
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0 0 0.4083 -0.7071 0 
1 0 0 0 1 

rs = 0 0 -0.8165 0 1 
0 0 0 0 -1 
0 1 0.4083 0.7071 -1 

and 

rj=l, ro=l, 

with which the given descriptor system is transformed into the special form 

and 

o 0 000 
o 0 0 0 0 
o 0 1 0 0 x= 
00010 
o 0 0 0 1 

1 
0 
0 
0 
0 

0 
1 
0 
0 
0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

y = [1 0 I 0 0 11 ] X. 

The decomposed system can be rewritten as 

Xz = 0, Xe = -ii, 

and 

6.3 MIMO Descriptor Systems 

0 
1 

x+ 0 ii, 
0 
1 

201 

We first summarize the structural decomposition of multivariable descriptor sys

tems in the following main theorem. All its properties will also be given. For 
clarity of presentation. the constructive algorithm for the structural decomposi

tion and proofs of all its properties will be given separately in Section 6.4. 

Theorem 6.3.1 (SDDS). Consider the multivariable linear descriptor system ~ of 
(6.1.1) satisfying det (sE - A) "f. 0 for sEC. Then. 

1. there exist coordinate-free nonnegative integers n z , ne, na , nb, nc, nd, md, 

mo, me, Pb, and positive integers qi, i = 1,2, ... ,md, ifmd > 0; and 
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2. there exist nonsingular state and output constant transformations r s E lR n x n 

and roE lRP x P, as well as an m x m non:.ingular input transformation r i ( S ) , 

whose inverse's elements are some polynomials of s (i.e., its inverse con
tains various differentiation operators), and an n x n nonsinguiar transfor

mation r e(s), whose elements are polynomials of s, which together give a 
structural decomposition of ~ and display explicitly its structural proper
ties. 

The structural decomposition of~ can be described by the following set of equa
tions: 

and 
Xz 
X~ 

GD' G;)' x= Xa 
, fj = u= Xb 

Xc 
Xd 

and 

where I n• E lRnz xnz has all its eigenvalues at 0, 

Xa = Aaaxa + BoaYo + LadYd + LabYb + sLaz(s)xz, 

Xb = AbbXb + BObYo + LbdYd + sLbz(s)xz, 

Yb = CbXb + CbzXz + sCbzs(s)xz, 

(6.3.1) 

(6.3.2) 

(6.3.3) 

(6.3.4) 

(6.3.5) 

(6.3.6) 

(6.3.7) 

(6.3.8) 

Xc = Accxc + BocYo + LcdYd + LcbYb + BcMcaxa + Bcuc +sLcz(s)xz, (6.3.9) 

Yo = COaxa + CObXb + COcxc + COdXd + Uo + Cozxz + sCozs(s)xz, (6.3.10) 

and for each i = 1,2, ... , md, 

Xdi = Aq;Xdi + LiOyo + LidYd + SLiz(S)Xz 

+ Bq; (Udi + MiaXa+ MibXb + MicXc + f MijXd j ) , (6.3.11) 
3=1 
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Ydi = CqiXi +Cqizxz +SCqiZS(S)xz, Yd = CdXd +CdzXz+SCdzs(S)Xz , (6.3.12) 

for some constant submatrices of appropriate dimensions, and for some matrices 

whose elements are polynomials of s. Here the states XZ, Xe, Xa, Xb, Xc and Xd 

are of dimensions nz, ne, na , nb, nc and nd = E:'d1 qi, respectively, while Xdi 

is of dimension qi for each i = 1, 2, ... , md. The control vectors uo, Ud and Uc 
are of dimensions mo, md and me = m - mo - md, respectively, while the output 

vectors Yo, Yd andYb arerespectivelyofdimensionsmo, md andpb =p-mO-md' 

The pair (Abb , Cb) is observable, the pair (Ace, Be) is controllable, and the triple 

(Aqi , Bqi , Cqi ) has the form 

Aqi=[~ IQo- 1 ]' BQi=[~]' Cqi =[1 0 ... OJ. (6.3.13) 

Assuming that Xi, i = 1,2, ... , md, are arranged such that qi ~ qi+1, the matrix 
Lid will be in the particular form 

Lid = [Lil Li2 ... Lii- 1 0 ... 0], 

with its last row being all zeros. 

(6.3.14) 

A constructive proof of the structural decomposition in Theorem 6.3.1 will 

be given in the next section. The following corollaries of Theorem 6.3.1 give a 

compact matrix form for the structural decomposition and establish its equivalence 

to the original system. The proofs of these corollaries follow from the constructive 

proof of Theorem 6.3.1. 

Corollary 6.3.1. The structural decomposition of'2:. of Theorem 6.3.1 can be rep

resented as follows: 

= 

I n• 

o 
o 
o 
o 
o 

o 0 
o 0 
o In. 
o 0 
o 0 
o 0 

000 
000 
000 

Inb 0 0 
o Inc 0 
o 0 Ind 

A = re(s)Ars = As + s\l1(s) 

In. 0 0 
o In. 0 

B rr 0 0 Aaa 
= ovo+ 0 0 0 

o 0 Be Mea 
o 0 BdMda 

o 
Nez(s) 
Laz(s) 
Lbz(S) 
Lez(s) 
Ldz(S) 

o 
o 

LabCb 
Abb 

LcbCb 
BdMdb 

00000 
o 000 0 
00000 
00000 
o 0 0 0 0 
00000 

o 
o 

Lad Cd 
LbdCd 
LedCd 

Add 

(6.3.15) 

+ w(s), 

(6.3.16) 

+s\l1(S), 
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o o o 

(6.3.17) 

(6.3.18) 

(6.3.19) 

where q, (s) is an n x n matrix with entries being some polynomials of s, 

Bo = 

and 

o 
o 

Boa 
BOb 
Boc 
BOd 

, Co = [0 0 COa COb COe COd], (6.3.20) 

(6.3.21) 

and where q,R(S) is a matrix with its elements being some polynomials of s. 

Corollary 6.3.2. Let ~ s be a descriptor system characterized by a constant matrix 
quintuple, (Es, As, Bs, Cs , Ds), which has a transfer function 

(6.3.22) 

Let H ( s) be the transfer function of the original descriptor system (6.1.1). Then, 

(6.3.23) 

which shows that the transfer functions of the original system ~ and the system 
characterized by ~s are related by some nonsingular transformations. 

Next, we would like to note that it does not lose too much generality to assume 

that the state variable of I;, x(t), to be a continuous function oft at t = 0, which 
simply means that there is no sudden jump from x(O-) to x(O+). Then, it is 
straightforward to show that (6.3.4) implies that X z = 0, for all t. We summarize 
below the physical features of the state variables in our structural decomposition 
under such a minor assumption: 
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1. The state Xz is purely static and identically zero for all time t. It can neither 
be controlled by the system input nor be affected by other states. 

2. The state Xe is again static and contains a linear combination of the input 
variables of the system and their derivatives of appropriate orders. 

3. The state Xa is neither directly controlled by the system input nor does it 
directly affect the system output. 

4. The output Yb and the state Xb are not directly influenced by any input, 
although they could be indirectly controlled through the output Yd. More
over, (Abb, Cb) forms an observable pair. This implies that the state Xb is 
observable. 

5. The state Xc is directly controlled by the input uc, but it does not directly 
affect any output. (Ace, Be) forms a controllable pair. This implies that the 
state Xc is controllable. 

6. The variables Udi control the output Ydi through a stack of qi integrators. 
Furthermore, all the states Xdi are both controllable and observable. 

As will be seen shortly, all the invariant properties of the given system can be 
easily obtained from our structural decomposition. Furthermore, it is simple and 
interesting to observe from the structural decomposition of E of Theorem 6.3.1 
that there are redundant state variables associated with the given system. An im
mediate application of such a technique is to reduce the descriptor system to an 
equivalent proper system as the state variable x z is identically zero, and the state 
variable Xe is simply a linear combination of the system input variables and their 
derivatives. As such, from the input-output behavior point of view, the given de
scriptor system can be equivalently reduced to the following proper system: 

Xa = Aaaxa + BoaYo + LadYd + LabYb, 

Xb = AbbXb + BObYo + LbdYd, Yb = CbXb, 

Xc = Accxc + BocYo + LcdYd + LcbYb + BcMcaxa + Bcuc, 

Yo = COaxa + CObXb + COcxc + COdXd + UQ, 

and for each i = 1,2, ... , md, 

Xdi = Aq; Xdi + LiOYO + LidYd 

(6.3.24) 

(6.3.25) 

(6.3.26) 

(6.3.27) 

+ Bq; (Udi+Mi&Xa + MibXb + MicXc + f MiiXdi ) , (6.3.28) 
3=1 
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(6.3.29) 

As such, we can expect that many results related to systems and control theory of 

proper systems can be extended to descriptor systems without too much difficulty. 

This is the most significant property of the structural decomposition technique 

developed in this chapter. 

We mentioned earlier that the structural decomposition of Theorem 6.3.1 has 

the distinct feature of revealing the structural properties of the given descriptor 

system ~. We are now ready to study how the system properties of~, such as 

the stabilizability, detectability, finite and infinite zero structures, can be obtained 

from the decomposition of the system. 

We first recall the definitions of stability, stabilizability and detectability of 

linear descriptor systems from the literature (see, e.g., Dai [43]). 

Definition 6.3.1 (Stability, Stabilizability and Detectability). The system ~ of 

(6.1.1) is said to be stable ifits characteristic polynomialdet(sE - A) has all roots 
in C -. It is said to be stabilizable if there exists a constant matrix F of appropriate 
dimensions such that the roots of det( sE - A - B F) are stable. Similarly, it is said 
to be detectable if there exists a constant matrix K of appropriate dimensions such 
that the roots of det( sE - A - K G) are stable. 

We have the following property. 

Property 6.3.1 (Stabilizability and Detectability). The given system ~ of (6.1.1) 

is stabilizable if and only if (Aeon, Beon) is stabilizable, and is detectable if and 
only if (Aobs , Cobs) is detectable, where 

B [Boa Lad] 
eon'- BOb Lbd ' (6.3.30) 

and 

A [ Aaa 0] C [ GOa COe ] 
obs:= Be Mea Ace' obs:= Mda Mde . (6.3.31) 

The definition of invariant zeros of descriptor systems can be made in a similar 

way as that for proper systems (see Chapter 3) or in the Kronecker canonical form 

associated with ~ (see, e.g., Malabre [97]). 

Definition 6.3.2 (Invariant Zeros). A complex scalar a E C is said to be an 

invariant zero of the descriptor system ~ of (6.1.1) if 

rank{PE(a)} < n + normrank{H(s)}, (6.3.32) 
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where 
H(s) = C(sE - A)-l B + D, (6.3.33) 

and normrank{ (H( s)} denotes the normal rank of H (s), which is defined as its 
rank over the field of rational functions of 8 with real coefficients, and PI; (8) 
is the system pencil associated with I: as given in (6.1.4). Invariant zeros of I: 
correspond to Pi in (6.1.6). 

The following property shows that the invariant zeros of I: can be obtained 
through the structural decomposition in a trivial manner. 

Property 6.3.2 (Invariant Zeros, Normal Rank). The invariant zeros of I: are 
the eigenvalues of Aaa. The normal rank of I: is equal to mo + md. 

We note that the Jordan canonical structure of Aaa corresponds to list 11 of 
Morse [100] of the system. In fact, in many applications, it is useful and necessary 
to further separate the state variable associated with the invariant zero dynamics, 
i.e., Xa, into a stable part, an unstable part and the part associated with invariant 
zeros on the imaginary axis. It follows from Theorem 4.2.1 that there exists a 
nonsingular transformation, say Ta, such that 

o 
A~ 
o 

(6.3.34) 

where A(A;;:a) C C- are the stable invariant zeros, A(A~) C CO are the invariant 
zeros on the imaginary axis, and A(Ata) c C- are the unstable invariant zeros. 

The infinite zero structure of the given system I: can be defined as the structure 
associated with the corresponding block of (6.1.7) in the Kronecker canonical 
form of 11:(8). It can also be defined using the well-known Smith-McMillan 
form or list 14 of Morse [100]. 

Property 6.3.3 (Infinite Zero Structure). E has mo infinite zeros of order O. 
The infinite zero structure (of order greater than 0) ofE is given by 

(6.3.35) 

i.e., for each i = 1,2, ... , md, I: has an infinite zero of orderqi, respectively. 

Our structural decomposition can also exhibit the invertibility structure of a 
given descriptor system E. Basically, for the usual case when matrices [B' D'l 
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and [C D 1 are of maximal rank, the system I: or equivalently H (s) is said to be 
left invertible if there exists a rational matrix function L( s) such that 

L(s)H(s) = 1m. (6.3.36) 

The system I: is right invertible if there exists a rational matrix function R( s) such 
that 

H(s)R(s) = 1p. (6.3.37) 

Moreover, I: is said to be invertible if it is both left and right invertible, and I: 
is noninvertible, or degenerate, if it is neither left nor right invertible. Again, the 
detailed invertibility structures of I: are related to the corresponding left and right 
minimal indices associated with the blocks of (6.1.5) in the Kronecker canonical 
form of PE(s). In fact, the right and left minimal indices are respectively equiv
alent to the observability indices of (A bb, Cb) and the controllability indices of 
(Aee, Be), which are respectively related to lists 13 and 12 of Morse [100]. 

Property 6.3.4 (InvertibiUty Structure). I: is right invertible if and only if x b 

and hence Yb are nonexistent, left invertible if and only if x e and hence U e is 
nonexistent, and invertible if and only if both x b and Xe are nonexistent. 

6.4 Proofs of Theorem 6.3.1 and Its Properties 

We now present complete proofs for the main results of the previous section, i.e., 
Theorem 6.3.1 and all its structural properties. 

Proof of Theorem 6.3.1. The following is a step-by-step algorithm for the struc
tural decomposition of general multivariable descriptor systems. 

STEP MIMO-SDDS .1. Preliminary Decomposition. 

This step is to separate the given descriptor system into a proper subsystem 
and a descriptor subsystem with a special structure. This step is identical 
to STEP SISO-SDDS.1 in Section 6.2. It is to find two nonsingular matrices 
P E IRnxn and Q E IRnxn such that 

(6.4.1) 

and 

(6.4.2) 
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where A1 , B1 , B2 , C1 and C2 are matrices of appropriate dimensions, and 

N is a nilpotent matrix with an appropriate nilpotent index, say h, i.e., 

Nh-1 =j:. 0 and Nh = O. Equivalently, ~ can be decomposed into the 

following two subsystems: 

(6.4.3) 

and 

(6.4.4) 

where Xl E ~nl and X2 E ~n2 with n1 + n2 = n, and y = Y1 + Y2. 

STEP MIMO-SDDS.2. Decomposition of X z and Xe. 

The key idea is to separate the controllable and uncontrollable parts of the 

pair (N, B2 ) in ~2. It follows from Theorems 4.4.1 and 4.4.2 of Chapter 4 
that there exist nonsingular coordinate transformations 

(6.4.5) 

such that 

A (xv) X2 = Xz ,Xv = ( 
Xv1 ) 
Xv2 

: ,Xz E ~nz, 

xvne 

u= (6.4.6) 

where 

Xvi E ~Pi , Xvi = ( 
Xvi,l ) 
Xvi 2 

: ' ,i = 1,2, ... ,ne , 

X V l"Pi 

Jv1 0 0 N1z 

0 Jv2 0 N2z 

0 0 Jvn• N n•z 

N = T-1 NT. = [Jv Nzv] 
s s 0 Jnz 

0 0 0 Jnz 
Bl1 B12 B 1n• B1z 
0 B22 B2ne B 2z 

0 0 B n•n• Bn.z 
0 0 0 0 
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and where (Jv , Bv) is controllable. Moreover, the fact that N is nilpotent 

implies that Jvi and I n• have all their eigenvalues at 0, and Jvi, Niz, Biz 

and Bij have the following forms, 

Jvi = [!: I], Niz = [~i~~:~I]' Bii = [!], (6.4.7) 

o 0 0 0 7]~z,Pi 1 

[ 

biz,l ] 

bi,,~-I ' 
(6.4.8) 

As such, by the transformation of (6.4.5), ~ 2 is decomposed into the sub

systems 

and for i = 1,2, ... ,ne , 

no 

JviXvi + Nizxz = Xvi + BiiUi + L BijUj + BizU., 
j=i+l 

which is equivalent to 

no 

(6.4.9) 

(6.4.10) 

JviXvi = Xvi + BiiUi + L Bijuj + Bizu. - (NiZXZ)' (6.4.11) 
j=i+l 

Because of the special structure of J vi, we have, for i = 1, 2, ... , ne. 

no 

XVi,2 = Xvi,l + L bij,l Uj + biz,l U. - 7]iz,lXz , 

j=i+l 
no 

XVi,3 = Xvi,2 + L bij,2Uj + biz ,2u • - 7]iz,2 Xz, 

j=i+l 

n. 

XVi,Pi = Xvi,pi-l + L bij,Pi-1Uj+biz,Pi-l U• -7]iz,Pi-l Xz , 
j=i+l 

(6.4.12) 

(6.4.13) 
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Repeatedly differentiating Ui of (6.4.13), we obtain 

pi-2 n. Pi-2 Pi 

A(Pi- l ) '" '" b A(k) '" b A(k) '" (k) Xvi, I = -Ui - ~ ~ ij,k+l U j - ~ iz,k+1 U. + ~ 'fJiz,k X z . 

k=O j=i+l k=O k=l 
(6.4.14) 

Let us define a new input variable 

Pi 

Ui = -Xvi,l + L 'fJiz,kX~k) = 1/Ji(S)U, (6.4.15) 
k=l 

for an appropriate vector 1/Ji (s) whose elements are polynomials of s. Then, 

we can rewrite (6.4.12) as follows: 

ne ne 

XVi,2 L bij,1 Xvj,p; + L bij,l Uj + biz,l u. 
j=i+l & p;>l j=i+l & p;=l 

Pi. ne 

- U· + '" n· kX(k) + '" b·· n· x' t ~ ·,tZ, z ~ tJ,I"Jz,p; z, 

k=2 j=i+l & P; >1 

ne ne 

XVi,3 = Xv i,2 - L bij,2 Xvj,p; + L bij,2Uj 

j=i+l & p;>l j=i+l & p;=l 
n. 

+ biz ,2U• - 'fJiz,2 X z + L bij ,2'fJjz,p;Xz , 

j=i+1 & Pi>l 

ne ne 

XVi,Pi = XVi,Pi-1 - L bij,Pi-1Xvj,p; + L bij,Pi-lUj 

Next, define 

j=i+l & p;>1 j=i+l & p;=l 
n. 

+biz ,Pi-1 U• -'fJiz,Pi-lXZ+ L bij,Pi-l'fJjz,p;Xz ' 

j=i+1 & Pi>1 

PI 

-Xvl,l + L 'fJ1z,kX~k) 
k=l 
P2 

-Xv2,l + L 'fJ2z,kX~k) 
k=l 

P". 

'" (k) -Xvne,l + ~ 'fJnez,kXz 

k=1 

(6.4.16) 

(6.4.17) 
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and 

( 

Xyl,l ) 
Xy 2,1 

Xe = . 

Xyne,l 

= -Ue + 

Pl 

L T}1z,kX~k) 
k=l 
P2 

L T}2z,kX~k) 
k=l 

(6.4.18) 

where Nez(s) is a matrix whose elements are polynomials of s. It is now 

straightforward to verify that the transformed system of ~ 2 as given in 

(6.4.4) can be rearranged into the form 

Xe = -ue + sNez(s)xz• 

X2 = A2X2 + B2eue + B2*u* + sB2z (s)xz• 

Y2 = 62X2 + D2eue + [SD2Z(S) + 6z1xz • 

(6.4.19) 

where X2 consists of all the state variables of Xy that are not contained in Xe. 

and A2 , B2e , B2*, 62 , D2e and 6z are constant matrices of appropriate di

mensions, and B2z (s) and D2z (s) are matrices with their entries being some 

polynomials of s. Furthermore, ~ 1 of (6.4.3) can be rewritten as follows: 

{
Xl = Alxl + ~12~2 + ~le~e + ~h~* + S~lZ(S)XZ' 
Yl = ClXl + C12 X 2 + Dleue + Dhu* + sDlz(s)xz• 

(6.4.20) 

for some constant matrices A12 , Ble , Bh , 612 , the and Dh of appropri

ate dimensions, and for some matrices BlZ(S) Dlz(s), whose elements are 

some polynomials of s. 

STEP MIMO-SDDS.3. Formation of a Proper System and Final Decomposition. 

The key idea is to form a proper system from the subsystems (6.4.19) and 

(6.4.20), and then apply the result of proper systems to obtain a structural 

decomposition for the original system given in (6.1.1). Following (6.4.19) 

and (6.4.20), we obtain a proper system 

_ { j; = A x + B u + Bz(s) xz. 
~: 

Y = ex + D u + Dz(s) xz. 
(6.4.21) 
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where 

(6.4.22) 

.4= [~1 1122], B= [~~: ~~:], Bz{s) = [:~~:~:n, (6.4.23) 

Dz{s) = Cz + sihz{s) + SD2z{S), (6.4.24) 

and 

(6.4.25) 

It then follows from the result of Theorem 5.4.1 that there exist nonsingular 

transformations i"s E jRnxn, where n = n - ne - nz, 1'0 E jRPxp and 

1'i E jRmxm such that when they are applied to E, i.e., 

where Xa E jRna, Xb E jRnb, Xc E jRnc, Xd E jRnd, Uo E jRno, Uc E jRmc, 

Ud E jRmd , Yo E jRno , Yb E jRPb , Yd E jRmd , 

we have 

Xb = AbbXb + BObYO+LbdYd + sLbz(s)xz, 

Yb = CbXb + CbzXz + SCbzs(S)Xz, 

(6.4.28) 

(6.4.29) 

(6.4.30) 

Xc = Accxc+BocYo+LcdYd+LcbYb+Bc [uc+ Mcaxal+sLcz(s )xz, (6.4.31) 

Yo = COaxa +CObXb +Cocxc +COdXd +uo+Cozxz +sCozs (s )xz, (6.4.32) 

and 

Xdi = AqiXdi + LiOyo + LidYd + sLiz(s)xz 

+Bqi (Udi + MiaXa+MibXb+ MicXc + ~ MijXd j) , (6.4.33) 
3=1 
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Ydi = CqiXdi + CqiZXZ + SCqiZS(S)XZ, Yd = CdXd + CdzXz + SCdzs(S)Xz, 
(6.4.34) 

with (Aqi' Bqi' C qi ) having the special form as given in (6.3.13). 

This completes the proof of Theorem 6.3.1. • 
Finally, we note that the results of Corollaries 6.3.1 and 6.3.2 follow from the 

above construction procedures and some tedious manipulations. 

Proofs of Structural Decomposition Properties. Once the results in the fol

lowing two lemmas are established, the proofs of the properties of the structural 

decomposition of descriptor systems can be carried out in a similar way as those 

for proper systems given in Section 5.5 of Chapter 5. 

Lemma 6.4.1. Consider a system ~ characterized by (E, A, B, C, D) or in the 

state space form of (6.1.1). Then, for any state feedback gain F E lR mxn satisfy
ingdet(sE-A-BF) =t 0, the system with thestatefeedback~p characterized 
by (E, A + B F, B, C + D F, D) has the following properties: 

1. ~p is stabiJizable if and only if~ is stabilizable; 

2. the normal rank of~F is equal to that of~; 

3. the invariant zero structure of~p is the same as that of~; 

4. the infinite zero structure of~F is the same as that of~; and 

5. ~p is (left or right or non) invertible if and only ifE is (left or right or non) 
invertible. 

Proof. Item 1 is obvious. Item 2 follows from the reductions 

Hp(s) : = (C + DF)(sE - A - BF)-l B + D 

= (C + DF)(sE - A)-l [1 - BF(sE - A)-l r 1 B + D 

= (C + DF)(sE - A)-l B [1 - F(sE - A)-lBr1 + D 

= [C(sE - A)-l B + D] [J - F(sE - A)-l Br1 

=H(s)[1-F(sE-A)-lBr1 • (6.4.35) 

Next, noting that 

(6.4.36) 
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and the fact that the invariances of PE (s) are strictly equivalent under nonsingular 

constant transformations of the form in (6.1.2), Items 3,4 and 5 follow. • 

Lemma 6.4.2. Consider a system :E characterized by (E, A, B, C, D) or in the 
state space form of (6.1.1). Then, for a constant output injection gain K E IR nxp 

satisfyingdet(sE-A-KC) t. 0, the system with theoutputinjection:EK charac

terized by (E, A+KC, B+KD, C, D) has the following properties: 

1. :EK is stabilizable if and only if:E is stabilizable; 

2. the normal rank of:EK is equal to that of:E; 

3. the invariant zero structure of:EK is the same as that of:E; 

4. the infinite zero structure of:EK is the same as that of:E; and 

5. :EKis (left or right or non) invertible if and only if:E is (left or right or non) 

invertible. 

Proof: It is a dual version of Lemma 6.4.1. • 
It follows from Corollary 6.3.2 that the properties of the transformed system 

:Es are equivalent to those of the original system. The proofs of the structural 

properties of descriptor systems can be carried out as those for proper systems. 

We leave the details for the interested readers. 

We illustrate the structural decomposition of general descriptor systems and 

its properties in the following example. 

Example 6.4.1. We consider a descriptor system of (6.1.1) characterized by 

1 0 0 0 0 0 0 1 1 0 
0 0 1 0 0 0 0 -1 0 1 
0 0 -1 1 -2 0 2 -2 1 1 

E= 0 0 -1 1 -3 0 3 , A=h, B= -1 1 1 
0 -1 0 0 0 1 0 -1 0 1 
0 0 1 0 -1 0 1 -2 1 1 
0 -1 0 0 0 1 0 -1 0 1 

(6.4.37) 

and 

C = [ 1 1-2 0 0 1 2 -1 ] [-1 1 ~] . (6.4.38) 
-1 1 0 1 o ' D= 1 -1 0 0 
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STEP MIMO-SDDS.l. Preliminary Decomposition. 

It is simple to note that the given system is already in the forms of (6.4.2) 

with nl = 1, n2 = 6, 

Xl = Xl + [ 1 1 01 U, 

YI = [~] Xl + [-~ ~ ~] u, 

and E2 being characterized by 

0 1 0 0 0 0 -1 0 1 
0 -1 1 -2 0 2 -2 1 1 

NX2= 
0 -1 1 -3 0 3 

X2 = X2+B2U = X2+ 
-1 1 1 

-1 0 0 0 1 0 -1 0 1 
u, 

0 1 0 -1 0 1 -2 1 1 
-1 0 0 0 1 0 -1 0 1 

and 
[ -2 0 0 1 2 -1 ] 

Y2 = C2X2 = -1 -1 1 0 1 o X2· 

STEP MIMO-SDDS.2. Decomposition of x z and Xe. 

Using the toolkit of [87], we obtain two nonsingular transformations 

1 0 0 0 0 0 
0 1 0 0 0 1 

T;~U 
0 

~l' Ts = 
0 1 1 0 0 0 

1 
0 0 0 1 0 0 

, 
1 0 0 0 1 1 

0 

0 0 0 1 0 1 

which transform E2 into the canonical form 

X2 = Ts (~:) , (XVI) Xv = , 
Xv2 

U~T;(~), 
0 1 0 0 0 1 0 0 1 
0 0 1 0 0 1 0 1 1 
0 0 0 0 0 1 1 0 0 
0 0 0 0 1 1 0 0 1 
0 0 0 0 0 1 0 1 0 
o 000 0 0 000 

and 
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The transfonned system of ~2 can then be written as 

} (6.4.39) 

Xv l,2 = Xvl,l + fl. - xz , 

Xv 2,2 = Xv 2,1 + fl. - xz , } (6.4.40) 

and 
o . Xz = Xz ::} Xz = 0, (6.4.41) 

as well as 

Y2 = [~] Xv l,3 + [~] X v2,2 + [~] Xz • (6.4.42) 

Hence, we have n z = 1, ne = 2, PI = 3, P2 = 2, 

Xvl,l = --al - ft2 - (ft. + ft. ) + (xz + Xz + X~3») , 

and 

Next, define 

ii, = (~) = (~.+ X: !~: H. ) = [~ : '; 1] G:) , 
and 

(
XVl,l) _ (xz + xz + X~3») _ Xe = = -Ue + . +.. = -Ue + sNez(s)xz, 
Xv 2,l Xz Xz 

where 

N. ( ) = [82 + 8 + 1 ] ez s 8+1· 

Then, (6.4.39) and (6.4.40) can be rewritten as 

Xvl,2 = -Ul + ft. + (Xz + X~3») , 
Xvl,3 = Xvl,2 - X v2,2 + ft., 
Xv 2,2 = -U2 + ft. + xz , 

or in the matrix fonn 
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Also, (6.4.42) can be rewritten as 

Y2 = [~ ~ ~] X2 + [~] X z • (6.4.44) 

Further, we have 

[0 1 0] 
DTi=OOO' (6.4.45) 

In view of (6.4.39), (6.4.40) and (6.4.45), we can rewrite E 1 as 

(6.4.46) 

and 

(6.4.47) 

STEP MIMO-SDDS.3. Formation of a Proper System and Final Decomposition. 

Combining (6.4.43), (6.4.44), (6.4.46) and (6.4.47), We obtain an auxiliary 

proper system 

{ X = ~ x + ~ u + ~z(8) Xz, 

Y =Cx+Du+Dz(8)Xz, 

with 
_ = (Xl) _ = (ue) X • ,u . , 

X2 u. 

[

1 0 -2 
o 0 0 
o 1 0 
o 0 0 

-1] [ 0 -l ' B = -~ o 0] [ 3] o 1 - 8 2 +8 
o 1 ' Bz(s) = sO' 

-1 1 8 

and 

c= [~ ~ ~ ~], D= [~ ~ ~], Dz(s) = [8;1]. 
Again, using the toolkit of [87], we obtain 

[-1 0 0 0] 
- 0 1 -1 1 
rs = 0 0 -1 1 ' 

1 0 1 0 

na = 1, nb = 0, nc = 1, nd = 2, 
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o -1 2] [0 -1 2 -1 --1 - - 0 
o 1 -2 ' fs Bfi = 1 

1 -1 -1 0 

and 

--1-- _ [0 0 1 0] --1- _ [8+1] 
f 0 Cf s - 0 0 0 1 ' f 0 Dz (s) - 0 . 

Finally. the structural decomposition of the given descriptor system is given 

by 

Xe = - [~ ] Uc - [~ _ n Ud + S [ 8
2
:: t 1 ] X z , Ud = ( ::~) , 

Xa = 2xa + [-1 2]Yd - 3sxz, 

Xc = -Xc + xa + [2 -1] Yd + Uc + S(S2+S)Xz, 

( Xdl) [-2] [0] [1 -2] [8+3] Xd2 = -3 Xa + 1 Xc + -1 -1 Yd + ud + s 8+3 Xz, 

and 

Yd = (Ydl) = (Xdl) + [8+1] Xz. Yd2 Xd2 0 

It is simple to see now from the above decomposition that the given system 
is right invertible with one invariant zero at s = 2 and two infinite zeros 
of order 1. The given system has one state variable. which is identically 
zero. and two state variables. which are nothing but the linear combination 
of the system inputs and their derivatives. These state variables are actually 
redundant in the system dynamics. For completeness. we give below all the 
necessary transformation matrices: 

0 0 0 0 -1 0 1 
0 -1 82 - 8 _82 82 - S 0 8 - 82 
0 8 0 0 -8-1 -8 8 

fe(s) = -1 -1 -2 2 -1 1 1 
0 -1 82 - 8-1 _82 82 - 8 1 8 - 82 
1 1+8 2 -2 1-8 -1-8 8-1 
1 2+8 3 -2 1-8 -2-8 8-1 
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0 0 0 -1 0 0 0 
0 -1 0 0 0 0 0 
1 0 0 0 1 -1 1 

fs = 0 0 0 0 1 -2 2 
0 0 -1 0 0 0 0 
1 -1 0 1 0 1 0 
1 0 -1 0 0 0 0 

and 

r,'(s) ~ [ S~l 
-8 

o 1 fa = [~ n· -8 1 , 
-82 +28+1 -8 -8-1 

We note that the 8-dependent input transformation f i (s) simply implies that 

( ~cl) = [ ~ ~ ~ 1 il + [~ = ~ ~ 1 u + [-~ ~ ~ 1 u. 
Ud2 -1 0 0 2 -1 -1 1 0 -1 

The compact form of the structural decomposition of E (see Corollary 6.3.1) 

is given by 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 

1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 2 0 -1 2 
0 0 0 1 -1 2 -1 
0 0 0 -2 0 1 -2 
0 0 0 -3 1 -1 -1 

0 0 0 
0 0 1 
2 -1 0 
0 0 0 
0 0 1 
1 0 0 
0 1 0 
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and 
0 0 0 0 0 0 0 

S2 + S + 1 0 0 0 0 0 0 
s+l 0 0 0 0 0 0 

-3 0 0 0 0 0 0 
S2 + S 0 0 0 0 0 0 
s+3 0 0 0 0 0 0 
s+3 0 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 -1 s+l -s -1 
0 0 0 -1 0 -1 0 

W(S) = 0 0 0 0 0 0 0 
0 0 0 0 -1 s+l -s -1 
0 0 0 -1 0 -1 0 
0 0 0 -1 0 -1 0 

We = [ ~ 0 0 1 0 1 o ] [ -l/s 0 ~ ] . 0 0 0 0 0 o ,Wd(S) = 0 0 

It is straightforward to verify that 

Wex + Wd(S)U = [~] X z , 

and 

6.5 Discrete-time Descriptor Systems 

In this section, we present the structural decomposition of general discrete-time 

descriptor systems and their structural properties, which is analogous to that for 

continuous-time systems. We consider a discrete-time descriptor system ~ char

acterized by 
~ : {E x(k+l) = A x(k) + B u(k), 

y(k) = C x(k) + D u(k), 
(6.5.1) 

where xE IRn , uE IRm and y E IRP are respectively the state, input and output of the 

system, and E, A, B, C and D are constant matrices of appropriate dimensions. 

Also, we assume that ~ is regular, i.e., det(zE - A) ~ 0, for z E C. We have the 

following theorem. 

Theorem 6.S.1. Consider the discrete-time descriptor system ~ of (6.5.1) satis
fying det (zE - A) ~ 0 for z E C. Then, there exist nonsingular state and output 
transformations r. E jRnxn and roE jRPxp , as well as an m x m nonsingular input 
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transformation fi(z), whose inverse has all its elements being some polynomials 
of z (i.e., its inverse contains various forward shifting operators), and an n x n 
nonsingular transformation f e(z) E jRnxn, whose elements are polynomials of 
z, which together give a structural decomposition of~ and display explicitly its 
structural properties. 

The structural decomposition of~ can be described by the set of equations 

(6.5.2) 

and 
Xz 

Xe 

y= GJ u= (~). x= Xa 

Xb 
, 

Xc 

(6.5.3) 

Xd 

and 
xz(k) = 0, (6.5.5) 

xe(k) = Beouo(k) + Becuc(k) + BedUd(k), (6.5.6) 

xa(k+l) = Aaaxa(k) + Boayo(k) + LadYd(k) + LabYb(k), (6.5.7) 

xb(k+l) = AbbXb(k) + BObYO(k) + LbdYd(k), Yb(k) = CbXb(k), (6.5.8) 

xc(k+l) = Accxc(k) + BocYo(k) + LcdYd(k) + LcbYb(k) 

+ BcMcaxa(k) + Bcuc(k), (6.5.9) 

and for each i = 1, 2, ... , md, 

Xdi(k+ 1) = B" [Udi(k)+ M ... x.(k) + M,bXb(k)+ M",x,(k) + ~ M'jxdj(k) 1 
+ Aq;Xdi(k) + LiOyo(k) + LidYd(k), (6.5.11) 

(6.5.12) 
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for some constant submatrices of appropriate dimensions. Here the states x z, Xe , 

Xa , Xb, Xe and Xd are of dimensions n z , ne, n a , nb, ne and nd = E:'~ qi, 

respectively, while Xdi is of dimension qi for each i = 1, 2, ... , md. The control 

vectors uo, Ud and U e are of dimensions mo, md and me = m - mo - md, 

respectively, while the output vectors Yo, Yd and Yb are respectively of dimensions 

mo, md andJJb = p-mO-md· (Abb, Cb) is observable, (Ace, Be) is controllable, 

and (Aqi' Bqi' Cqi ) has the form 

(6.5.13) 

Assuming that Xi, i = 1, 2, ... , md, are arranged such that q i ~ qi+ 1, the matrix 

Lid will be in the particular form 

L ii - 1 0 ... 0], (6.5.14) 

with its last row of Lid being all zeros. 

Lastly, we note that the properties of the structural decomposition of discrete
time descriptor systems are analogous to those of continuous-time systems in Sec

tion 6.3. We conclude this chapter by noting that research in the system theory and 

control of descriptor systems is far from being completed. More studies are nec

essary before we can fully understand the complete picture of descriptor systems 

and control. Again, it is our belief that the results presented in this chapter can 

serve as an important tool for future research in the area. 

6.6 Exercises 

6.1. It is well known that the commonly used PID control law, 

u(t) = Kpe(t) + Ki lot e(r)dr + Kde(t), 

cannot be expressed in a strictly proper or proper state-space form. But, it 

can be represented by a descriptor system. Show that the following de

scriptor system is a realization of the above PID control law: 

[
1 0 
o 0 
o 1 

and 
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where the state variable is given by 

(Xl) t 
X = :: ,Xl = 10 e(r)dr, X2 = e(t), X3 = e(t). 

6.2. Verify that the following descriptor system is another realization of the PID 
control law given in Exercise 6.1 : 

[1 0 0] [0 o 0 0 x= 0 
o 1 0 0 

and 

6.3. Show that the descriptor systems given in Exercise 6.1 and Exercise 6.2 
have the same structural invariant indices as a proper system characterized 
by 

. [0 1] [0 0] Xaux = 0 0 Xaux + 1 0 Uaux , 

and 

[0 -1] [0 1] 
Yaux = Ki Kp Xaux + Kd 0 U aux • 

6.4. Verify that the descriptor systems given in Exercise 6.1 is regular. Find the 
required nonsingular transformations P and Q for the systems such that 
the matrix pair. 

can be transformed into the EA decomposition form. 

6.5. Construct a structural decomposition for the descriptor system given in 
Exercise 6.1. Verify the result of Corollaries 6.3.1 and 6.3.2. Does the 
result of Corollary 6.3.2 agree with the transfer function of the PID control 
law given in Exercise 6.1 ? 

6.6. Derive an alternative procedure that realizes the EA decomposition of a 
pair of square matrices. (E, A). using the Kronecker canonical form of the 
matrix pencil, sE - A. 
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6.7. Compute a structural decomposition for the descriptor system 

Ex = Ax + Bu, y = Cx + Du, 

where 

o 1 1] [0 0 0 0] [1 1] 000 0111 11 
1 0 1 ,A= 0 0 0 0 ,B= 1 0 ' 
000 1110 ·11 

and 

[ 1 1 1 1] [0 0] C = 1 0 1 -1 ' D = 0 0 . 

Verify Properties 6.3.1 to 6.3.4 using the structural decomposition obtained 

above. 

6.S. Construct a sixth order descriptor system with two inputs and two outputs, 

which has nz = ne = na = nb = nc = nd = 1 with an invariant zero at 

-1. Obviously, the obtained system is neither left nor right invertible, and 

has an infinite zero of order 1. Moreover, it has one state variable being 

identically zero and another state variable being directly associated with an 

input variable. 



Chapter 7 

Structural Mappings of 
Bilinear Transformations 

7.1 Introduction 

In this chapter, we present a comprehensive picture of the mapping of struc

tural properties associated with general linear multivariable systems under bilin

ear and inverse bilinear transformations. We will investigate in depth how the 

finite and infinite zero structures, as well as the invertibility structures of a gen

eral continuous-time (discrete-time) linear time-invariant multivariable system are 

mapped to those of its discrete-time (continuous-time) counterpart under the bi

linear (inverse bilinear) transformation. We note that a similar version of this 

chapter was included earlier in a monograph by the first author i.e., [22], in which 

he had utilized the results of the bilinear transformations and their structural map

ping properties to solve general Riccati equations and discrete-timeH 00 control 

problems. Nonetheless, this chapter actually builds a bridge for linear system the

ory between the continuous-time domain and the discrete-time domain. As will 

be seen shortly in Chapter 8, the results of this chapter will be useful in solv

ing another problem in linear systems, i.e., system factorizations for discrete-time 

systems. 

The bilinear and inverse bilinear transformations have widespread use in dig

ital control and signal processing. It has been shown in [22] that the bilinear 

transformation plays a crucial role in the computation of infima for discrete-time 

H 00 control, as well as in finding the solutions to discrete-time Riccati equations. 

The results presented in this chapter were first reported in Chen and Weller [30]. 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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In fact, the need to perform continuous-time to discrete-time model conversions 

arises in a range of engineering contexts, including sampled-data control system 

design, and digital signal processing. Consequently, numerous discretization pro

cedures exist, including the zero- and first-order hold input approximations, the 

impulse invariant transformation, and the bilinear transformation (see, e.g., [7] 

and [55]). Despite the widespread use of the bilinear transform, a comprehen

sive treatment detailing how key structural properties of continuous-time systems, 

such as the finite and infinite zero structures, and invertibility properties, are in

herited by their discrete-time counterparts is lacking in the literature. Given the 

important role played by the infinite and finite zero structures in control system 

design, a clear understanding of the zero structures under bilinear transformation 

would be useful in the design of sampled-data control systems, and would com

plement existing results on the mapping of finite and infinite zero structures under 

zero-order hold sampling (see, e.g., [6] and [60]). 

In this chapter, we present a comprehensive study of how the structures, i.e., 

the finite and infinite zero structures, invertibility structures, as well as the geomet

ric subspaces of a general continuous-time (discrete-time) linear time-invariant 

system are mapped to those of its discrete-time (continuous-time) counterpart un

der the well-known bilinear (inverse bilinear) transformation 

( z -1) s=a --
z+1 

a+s 
¢> Z= --. 

a-s 

7.2 Mapping of Continuous- to Discrete-time Systems 

(7.1.1) 

In this section, we consider a continuous-time linear time-invariant system 'E c 
characterized by 

'Ec : {X = A x + B u, 
y = C x + D u, 

(7.2.1) 

where x E IRn , y E IRP, U E IRm and A, B, C and D are matrices of appropriate 

dimensions. Without loss of generality, we assume that both matrices [C D] and 

[B' D'] are of full rank. 'Ec has a transfer function 

Gc(s) = C(s1 - A)-l B + D. (7.2.2) 

Let us apply a bilinear transformation to the above continuous-time system, by 

replacing s in (7.2.2) with 

s = ~ (~) = a (~) T z+1 z+1' 
(7.2.3) 
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where T = 2/a is the sampling period. As presented in (7.2.3), the bilinear 

transformation is often called Tustin's approximation [7], while the choice 

(7.2.4) 

yields the pre-warped Tustin approximation, in which the frequency responses 

of the continuous-time system and its discrete-time counterpart are matched at 

frequency WI. In this way, we obtain a discrete-time system 

( 
Z - 1 )-1 

Gd(Z) = C a--I - A B + D. 
z+l 

(7.2.5) 

The following lemma provides a direct state-space realization of G d (z). A 

similar result can also be found in [55]. 

Lemma 7.2.1. A state-space realization of G d (z), the discrete-time counterpart 
of the continuous-time system I:c of (7.2.1) under the bilinear transformation 
(7.2.3), is given by 

where 

or 

or 

I:d { x(k+l) = ~ x(k) + ~ u(k), 

y(k) = C x(k) + D u(k), 

A = (aI + A)(aI - A)-I, 

iJ = J2a (aI - A)-l B, 

C = ffa C(aJ - A)-I, 

iJ = D + C(aJ - A)-l B, 

A = (aI + A)(aI - A)-I, 

iJ = 2a (aI - A)-2 B, 

6 = c, 
iJ = D + C(aJ - A)-l B, 

A = (aI + A)(aI - A)-I, 

iJ = B, 
6 = 2a C(aI - A)-2, 

iJ = D + C(aI - A)-lB. 

} 

} 

} 
Here we clearly assume that matrix A has no eigenvalue at a. 

(7.2.6) 

(7.2.7) 

(7.2.8) 

(7.2.9) 
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Proof. First, it is straightforward to verify that 

( 1 )-1 
Gd(Z) = C a; ~ 1 I - A B + D 

= (z + 1)C[a(z - 1)1 - (z + 1)Ar1 B + D 

= (z + 1)C(a1 - A)-1 [z1 - (a1 + A)(a1 - A)-1r1 B + D 

= zC(a1 -A)-l(z1 -.4fB+ [C(a1 _A)-l( z1 -.4fB+D). (7.2.10) 

If we introduce Gd(z) = zC(a1 - A)-1 (z1 -.4) -1 B, it follows that 

{ 
x(k+1) = A'x(k) + (a1 - A,)-1C'u(k), 

_, (7.2.11) 
y(k) = B'x(k+1) = B' A x(k) + B'(a1 - A,)-1C'u(k), 

-, 
is a state-space realization of G d (z ), from which 

Gd(Z) = C(a1 - A)-1 (z1 -.4) -1 .4B + C(a1 - A)-1 B. (7.2.12) 

Substituting (7.2.12) into (7.2.10), we obtain 

Gd(z) = C(a1 - A)-1 (z1 -.4) -1 (.4 + 1)B + [C(a1 - A)-1 B + DJ 

= 6 (zI -.4) -1 8 + D, 

and the rest of Lemma 7.2.1 follows. • 
The following theorem establishes the interconnection of the structural proper

ties of Ec and Ed, and forms the core of this chapter. The proof of this theorem is 

very tedious, and hence will be given in Section 7.4 for clarity in the presentation. 

Theorem 7.2.1. Consider the continuous-time system E c of (7.2.1) characterized 
by the quadruple (A, B, C, D) with matrix A having no eigenvalue at a, and 
its discrete-time counterpart under the bilinear transformation (7.2.3), i.e., Ed 
of (7.2.6) characterized by the quadruple (.4,8,6, D) of (7.2.7). We have the 

following properties: 

1. Controllability (stabilizability) and observability (detectability) of Ed: 

(a) The pair (.4,8) is controllable (stabilizable) if and only if the pair 
(A, B) is controllable (stabilizable). 
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(b) The pair (A, 6) is observable (detectable) if and only if the pair (A, C) 
is observable (detectable). 

2. Effects of nonsingular state, output and input transformations, together with 
state feedback and output injection laws: 

(a) For any given nonsingular state, output and input transformations T s, 

To and 11, the quadruple 

(7.2.13) 

is the discrete-time counterpart under the bilinear transformation of 

the continuous-time system 

(7.2.14) 

(b) For any FE IRmxn with A + BF having no eigenvalueata, define a 

nonsingular matrix 

Ti:= 1+ F(aI - A - BF)-lB 

= [I - F(aI - A)-l Btl E IRmxm, (7.2.15) 

and a constant matrix 

F:= v'2a F(aI - A - BF)-l E IRmxn. (7.2.16) 

Then a continuous-time system ~CF characterized by 

(A + BF,B,G + DF,D), (7.2.17) 

is mapped to a discrete-time system ~dF' characterized by 

(A + BF, BTj, C + DF, DTd, (7.2.18) 

under the bilinear transformation (7.2.3). Here we note that ~ CP is 
the closed-loop system comprising ~c and a state feedback law with 
gain matrix F, and ~dF is the closed-loop system comprising ~d and 

a state feedback law with gain matrix F, together with a nonsingular 
input transformation Ti. 

(c) For any K E IRnxp with A + KG having no eigenvalue at a, define a 

nonsingular matrix 

(7.2.19) 
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and a constant matrix 

f< := 5a (aJ - A - KC)-1 K. (7.2.20) 

Then a continuous-time system ECK characterized by 

(A + KC,B + KD,C,D), (7.2.21) 

is mapped to a discrete-time system EdK, characterized by 

- - - - - - --1 - --1-
(A+KC,B+KD,To C,To D), (7.2.22) 

under the bilinear transformation (7.2.3). We note that E CK is the 
closed-loop system comprising Ec and an output injection law with 
gain matrix K, and EdK is the closed-loop system comprising Ed and 
an output injection law with gain matrix f<, together with a nonsingu-
1ar output transformation to. 

3. Invertibility and structural invariant indices lists 12 and 13 of Ed: 

(a) 12(Ed) = 12(Ec), andI3(Ed) = 13(Ec). 

(b) Ed is left (right) invertible if and only ifEc is left (right) invertible. 

(c) Ed is (non) invertible if and only ifEe is (non) invertible. 

4. The invariant zeros of Ed and their associated structures consist of the fol
lowing two parts: 

(a) Let the infinite zero structure (of order greater than 0) of E c be given 
by 

(7.2.23) 

Then z = -1 is an invariant zero of Ed with the multiplicity structure 

(7.2.24) 

(b) Let s == a f= a be an invariant zero ofEc with the multiplicity struc
ture 

(7.2.25) 

Then z = f3 = (a + a) / (a - a) is an invariant zero of its discrete-time 
counterpart Ed with the multiplicity structure 

(7.2.26) 
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5. The infinite zero structure of E d consists of the following two parts: 

(a) Let mo = rank (D), and let md be the total number of infinite zeros 
ofEc of order greater than O. Also, let T a be the geometric multiplicity 
of the invariant zero of Ec at s = a. Then, we have rank (D) = 
mo +md - Ta· 

(b) Let s = a be an invariant zero of the given continuous-time system E c 
with a multiplicity structure 

(7.2.27) 

Then the discrete-time counterpart Ed has an infinite zero (of order 
greater than 0) structure 

6. The mappings of geometric subspaces: 

(a) V+(Ec) = S-(Ed)' 

(b) S+(Ec) = V-(Ed)' 

Proof. See Section 7.4. 

(7.2.28) 

• 
We have the following two interesting corollaries. The first is with regard to 

the minimum phase and nonminimum phase properties of Ed, while the second 

concerns the asymptotic behavior of Ed as the sampling period T tends to zero 

(or, equivalently, as a --t 00). 

Corollary 7.2.1. Consider a continuous-time system E c and its discrete-time coun
terpart Ed under the bilinear transformation (7.2.3). Then it follows from 4(a) and 
4(b) of Theorem 7.2.1 that 

1. Ed has all its invariant zeros inside the unit circle if and only ifE c has all its 
invariant zeros in the open left-half plane and has no infinite zero of order 
greater than 0; 

2. Ed has invariant zeros on the unit circle if and only if E c has invariant 
zeros on the imaginary axis, and/or E c has at least one infinite zero of order 
greater than 0; and 
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3. Ed has invariant zeros outside the unit circle if and only ifEe has invariant 
zeros in the open right-half plane. 

Corollary 7.2.2. Consider a continuous-time system E c and its discrete-time coun
terpart Ed under the bilinear transformation (7.2.3). Then, as a consequence of 

Theorem 7.2.1, Ed has the following asymptotic properties as the sampling pe

riod T tends to zero (but not equal to zero): 

1. Ed has no infinite zero of order greater than 0, i.e., no delays from the input 

to the output; 

2. Ed has one invariant zero at z = -1 with an appropriate multiplicity struc
ture ifEe has any infinite zero of order greater than 0; and 

3. The remaining invariant zeros of Ed, if any, tend to the point z = 1. More 
interestingly, the invariant zeros of Ed corresponding to the stable invariant 

zeros of Ee are always stable, and approach the point z = 1 from inside 
the unit circle. Conversely, the invariant zeros of E d corresponding to the 

unstable invariant zeros ofEc are always unstable, and approach the point 
z = 1 from outside the unit circle. Finally, those associated with the imag
inaryaxis invariant zeros ofEc are always mapped onto the unit circle and 

move toward the point z = 1. 

The following example illustrates the results in Theorem 7.2.1. 

Example 7.2.1. Consider a continuous-time system E c characterized bya quadru

ple (A,B,C,D) with 

and 

A= 

1 100 1 0 
o 1 1 0 1 0 
o 0 1 0 1 0 
o 0 0 3 1 0 
o 0 0 0 0 1 
1 1 1 1 1 1 

B= 

o 0 
o 0 
o 0 
1 0 
o 0 
o 1 

C =[~ 0 01
1
00 ] D [~] 00010' =lfTO-· 

(7.2.29) 

(7.2.30) 

We note that the above system Ee is already in the form of the special coordi

nate basis as in Theorem 5.4.1. Furthermore, Ec is controllable, observable and 

invertible with one infinite zero of order 0, and one infinite zero of order 2, i.e., 

S~(Ec) = {2}. The system Ec also has two invariant zeros at s = 2 and s = 1, 

respectively, with structures S;(Ec) = {I} and St(Ec) = {3}. 
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1. If a = 1, we obtain a discrete-time system Ed characterized by the quadru-

ple (A,iJ,6,D), with 

1 2 -3 1 0 -2 1 -2 
-2 -1 2 0 0 0 0 0 

A= 0 -2 1 0 0 0 -../2 0 0 
0 0 1 -2 0 0 

, B=- -1 0 
, 

2 
0 0 -2 0 -1 0 0 0 
0 0 -2 0 -2 -1 0 0 

6 = ../2 [0 0 1 -1 0 0] 
2 0 0 -2 0 0 0 ' 

- 1 [1 0] D=2 0 0 . 

Utilizing the toolkit of [87], we find that Ed is indeed controllable, observ
able and invertible, with one infinite zero of order 0 and one infinite zero of 

order 3, i.e., S~(Ed) = {3}. Ed also has two invariant zeros at z = -3 and 
z = -1 respectively, with structures S~3(Ed) = {I} and S~1 (Ed) = {2}. 

2. If a = 2, we obtain another discrete-time system Ed, characterized by 

0 -2 -5 3 -3 -3 3 -3 
-2 -1 -2 2 -2 -2 2 -2 

A= -1 -2 0 1 -1 -1 - 1 1 -1 
1 2 3 -6 1 1 

, B=- -5 1 
, 

2 
-1 -2 -3 1 -2 -1 1 -1 
-2 -4 -6 2 -6 -3 2 -2 

and 

- 1 [ 1 2 3 -5 1 -!], - 1 [ -1 -!], c= 2 -1 D=--2 -3 1 -1 4 1 

which is controllable, observable and invertible with one infinite zero of 
order 0 and one infinite zero of order 1, i.e., S~(Ed) = {I}. It also has 
two invariant zeros at z = 3 and z = -I respectively, with structures 
S;(Ed) = {3} and S:1 (Ed) = {2}. in accordance with Theorem 7.2.1. 

7.3 Mapping of Discrete- to Continuous-time Systems 

We present in this section a similar result as in the previous section, but for the in
verse bilinear transformation mapping a discrete-time system to a continuous-time 
system. We begin with a discrete-time linear time-invariant system Ed character
ized by 

Ed : {X(k+l) = ~ x(k) + ~ u(k), 
y(k) = C x(k) + D u(k), 

(7.3.1) 
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where x E lin, y E liP, U E lim and A, B, 6 and b are matrices of appropriate 
dimensions. Without loss of generality, we assume that both matrices [C jj 1 and 
[Ii jj'] are of full rank. Ed has a transfer function 

(7.3.2) 

The inverse bilinear transformation of (7.3.2) can be obtained by replacing z with 

i.e., 

a+s z=--, 
a-s 

( )
-1 

- a+s - - -Hc(s)=C -I-A B+D. 
a-s 

(7.3.3) 

(7.3.4) 

The following lemma is analogous to Lemma 7.2.1, and provides a state-space 
realization of Hc(s). 

Lemma 7.3.1. A state-space realization of He (s ), the continuous-time counter
part of the discrete-time system I:d of (7.3.1) under the inverse bilinear transfor
mation (7.3.3), is given by 

where 

or 

or 

I:c : {:i; = A x + B u, 
y = C x + D u, 

A = a(A + 1)-l(A - I), 

B = $a (A + 1)-1 E, 
C = $aC(A+I)-l, 

D = D-C(A+I)-lE, 

A = a(A + 1)-l(A - I), 

B = 2a(A+I)-2B, 

C = 6, 
D = b - 6(.4 + I)- l B, 

A = a(.4 + 1)-l(A - I), 

B = E, 
C = 2a C(.4 + 1)-2, 

D = D - C(.4 + 1)-1 E. 

} 

} 

} 
Here we clearly assume that the matrix A has no eigenvalues at -1. 

The following theorem is analogous to Theorem 7.2.1. 

(7.3.5) 

(7.3.6) 

(7.3.7) 

(7.3.8) 
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Theorem 7.3.1. Consider the discrete-time system Ed of (7.3.1) characterized by 
the quadruple (A, B, C, b) with matrix A having no eigenvalues at -1, and its 
continuous-time counterpart under the inverse bilinear transformation (7.3.3), i.e., 

Ec of (7.3.5) characterized by the quadruple (A, B, C, D) of (7.3.6). We have the 

following properties: 

1. Controllability (stabilizability) and observability (detectability) of Ec: 

(a) The pair (A, B) is controllable (stabilizable) if and only if the pair 

(A, B) is controllable (stabilizable). 

(b) The pair (A, C) is observable (detectable) ifand only if the pair ( A, C) 
is observable (detectable). 

2. Effects of nonsingular state, output and input transformations, together with 
state feedback and output injection laws: 

(a) For any given nonsingular state, output and input transformations T s, 

To and 11, the quadruple 

(7.3.9) 

is the continuous-time counterpart of the inverse bilinear transforma
tion, i.e., (7.3.3), of the discrete-time system 

(7.3.10) 

(b) For any P E IRmxn with A + BP having no eigenvalue at -1, define 
a nonsingular matrix 

(7.3.11) 

and a constant matrix 

(7.3.12) 

Then a discrete-time system Edp, characterized by 

(A + BP, B, C + bP, b), (7.3.13) 

is mapped to a continuous-time counterpart Ecp, characterized by 

(A + BF, B11, C + DF, D11), (7.3.14) 
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under the inverse bilinear transformation (7.3.3). Note that f:dF is the 

closed-loop system comprising f:d and a state feedback law with gain 

matrix F, and f:dp is the closed-loop system comprising f:d and a 

state feedback law with gain matrix F, together with a nonsingular 
input transformation Ti . 

(c) Foranyk E IRnxp with.A+ko havingnoeigenvaluesat-l,define 
a nonsingular matrix 

and a constant matrix 

K := ../2Q, (1 +.A + kO)-l k. 

Then a discrete-time system f: dK , characterized by 

(A + ko,B + kb,O,b), 

is mapped to a continuous-time f: cK, characterized by 

(A + KC,B + KD, To-1C, To-l D), 

(7.3.15) 

(7.3.16) 

(7.3.17) 

(7.3.18) 

under the inverse bilinear transformation (7.3.3). We note that f:dK 
is the closed-loop system comprising f:d and an output injection law 
with gain matrix k, and ECK is the closed-loop system comprising 
f:c and an output injection law with gain matrix K, together with a 

nonsingular output transformation To. 

3. Invertibilityand structural invariant indices lists 12 and 13 off:c: 

(a) 12(f:c) = 12(Ed), andI3(Ec) = 13(Ed)' 

(b) f:c is left (right) invertible if and only if f:d is left (right) invertible. 

(c) Ec is (non) invertible ifand only if Ed is (non) invertible. 

4. The invariant zeros of f:c and their structures consist of the following two 

parts: 

(a) Let the infinite zero structure (of order greater than 0) of f:d be given 

by 

(7.3.19) 

Then s = a is an invariant zero of f:c with the multiplicity structure 

(7.3.20) 
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(b) Let z = a f. -1 be an invariant zero of f:d with the multiplicity 

structure 
(7.3.21) 

Then s = (J = a ~+ i is an invariant zero of its continuous-time coun
terpart f:c with the multiplicity structure 

(7.3.22) 

5. The infinite zero structure of f:c consists of the following two parts: 

(a) Let rno = rank (D), and let rnd be the total number of infinite ze

ros of f:d of order greater than O. Also, let T -1 be the geometric 
multiplicity of the invariant zero of f:d at z = -1. Then we have 

rank (D) = rno + rnd - 7-1· 

(b) Let z = -1 be an invariant zero of the given discrete-time system f:d 
with the multiplicity structure 

(7.3.23) 

Then f:c has an infinite zero (of order greater than 0) structure 

6. The mappings of geometric subspaces: 

(a) V-(Ed ) = S+(Ec). 

(b) S-(Ed) = V+(Ec). 

(7.3.24) 

Proof. The proof of this theorem is similar to that of Theorem 7.2.1. • 

We illustrate the result above with the following example. 

Example 7.3.1. Consider a discrete-time linear time-invariant system f:d charac-
terized by a matrix quadruple (.4, B, C, D) with 

-1 0 0 1 0 1 0 0 0 0 
0 -1 1 1 0 1 1 0 0 0 
0 0 -1 1 0 1 1 0 0 0 

..1= 0 0 0 1 0 1 1 B= 0 0 0 (7.3.25) 
1 1 1 1 1 1 1 0 0 1 
1 1 1 1 1 1 1 1 0 0 
0 1 1 1 1 1 1 0 1 0 
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and 

[
0 0 0 1 0 0 0] 

6= 0 0 0 0 0 1 0 , 
o 0 0 0 0 0 1 

[
0 0 0] D= 0 0 0 . 
000 

(7.3.26) 

Again the above system is already in the form of the structural decomposition. It 

is simple to verify that :Ed is controllable, observable and degenerate, i.e., neither 

left nor right invertible, with two infinite zeros of order 1, i.e., S~(:Ed) = {I, I}, 

I2 (:Ed) = {I} and 13 (:Ed) = {I}. It also has one invariant zero atz = -1 with a 

structure of S~l (:Ed) = {I, 2}. Applying the result in Lemma 7.3.1 (with a = 1), 

we obtain :Ec which is characterized by (A, B, C, D) with 

5 0 0 -2 0 -2 2 1 -1 0 
0 3 4 -2 2 -2 -2 1 1 -1 
0 -2 3 0 0 0 0 0 0 0 

A= 0 0 2 -1 0 0 0 , B=V2 0 0 0 
-2 0 -2 2 -1 2 0 -1 0 1 
-2 0 -2 2 0 1 0 0 0 0 

2 0 -2 0 0 0 1 0 0 0 

C~V2[ ~ 0 -1 1 0 0 

~l ' [~ 
0 

~l 0 1 -1 0 0 D= 0 
-1 0 1 0 0 0 0 

Then, it is straightforward to verify, using the software toolkit of [87], for example, 

that :Ec is controllable, observable and degenerate with an infinite zero structure 

of S~(:Ec) = {I, 2}, 12 (:Ec) = {I} and 13 (:Ec) = {I}. Furthermore,:Ec has one 

invariant zero at s = 1 with associated structure St(:Ec) = {I, I}, in accordance 

with Theorem 7.3.1. 

Finally, we conclude this section by summarizing in a graphical form in Fig

ures 7.3.1 the structural mappings associated with the bilinear and inverse bilinear 

transformations. 

7.4 Proof of Theorem 7.2.1 

We present in this section the detailed proof of Theorem 7.2.1. For the sake of 

simplicity in presentation, and without loss of generality, we assume, throughout 

the proof, that the constant a in (7.2.3) is equal to unity, i.e., a = 2fT = 1. We 

will prove this theorem item by item. 
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l(a). Let f3 be an eigenvalue of A, i.e., f3 E -X(A). It is straightforward to verify 
that f3 -I -I, provided A has no eigenValue at a = 1 and a = (f3 - 1) / (f3 + 1) is 
an eigenvalue of A, i.e., a E -X(A). Next, we consider the matrix pencil 

[f31 - A B) = [f31 - (I - A)-l(I + A) v'2(I - A)-l B) 

= (I - A)-l [f3(I - A) - (I + A) v'2 B) 

= (I - A)-l [(f3 - 1)1 - (f3 + I)A v'2 B) 

= (I - A)-l [aI - A B) [(f3 +ol)In v'20 1m] . 

Clearly, rank [f31 -A B) = rank [aI -A B], and the result l(a) follows. 

1(b). Dual of l(a). 

2(a). The proof of this item is trivial. 

2(b). It follows from Lemma 7.2.1 that the discrete-time counterpart E elF of the 
bilinear transformation of Ecp, characterized by (A + BF, B, C + D F, D), is given 
by (Ap, Bp, Cp, Dp) with 

Ap = (I + A + BF)(I - A - BF)-l, 
Bp = v'2 (I - A - BF)-lB, 

Cp = v'2 (C + DF)(I - A - BF)-l, 
Dp = D + (C + DF)(I - A - BF)-IB. 

} (7.4.1) 

We first recall from Chapter 2 the following matrix identities, i.e., (2.3.14) and 
(2.3.15), which are frequently used in the derivation of our result: 

(I + Xy)-l X = X(I + YX)-I, . (7.4.2) 

and 

Next, we note that 

Ap = (I + A + BF)(I - A - BF)-l 

= (I + A + BF)(I - A)-I[I - BF(I - A)-Itl 

= [A + BF(I - A)-I][I - BF(I - A)-ltl 

= [A + BF(I - A)-I][I + BF(I - A - BF)-l] 

= A+ABF(I-A-BF)-I+BF(I-A)-I[I+BF(I-A-BF)-I] 

= A+ABF(I -A-BF)-I+BF(I _A)-I(I -A)(I -A-BF)-l 
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and 

= A+ABF(I-A-BF)-l+BF(I-A-BF)-l 

= A + (A + I)BF(I - A - BF)-l 

= A + 2(1 - A)-l BF(I - A - BF)-l 

=A+BP, 

Bp = v'2 (I - A - BF)-lB 

= v'2 [I - (I - A)-l BFj-l(I - A)-l B 

= v'2 (I - A)-l B [I - F(I - A)-l Brl = BTi. 

Also. we have 

Cp = v'2 (C + DF)(l- A -BF)-l 

and 

= v'2 (C + DF)(I - A)-l [I - BF(l- A)-ltl 

= v'2 (C + DF)(I - A)-l [I + BF(I - A - BF)-l] 

= v'2 C(I - A)-l + v'2 DF(I - A)-l 

+ v'2 (C + DF)(I - A)-l BF(I - A - BF)-l 

= C + v'2 [DF(I - A)-l(I - A - BF) 

+ (C + DF)(I - A)-l BF] (I - A - BF)-l 

= C+v'2[DF-DF(I _A)-l BF+C(I _A)-l BF+DF(I _A)-l BF] 

x (I-A-BF)-l 

= C + [D + C(l- A)-l B]v'2 F(I - A - BF)-l 

= C+DP, 

Dp = D + (C + DF)(l- A - BF)-lB 

= D + (C + DF) [I - (I - A)-l BF] -1 (I - A)-l B 

= D + (C + DF)(I - A)-l B [I - F(I - A)-l B]-l 

= {D [I - F(I - A)-l B) + (C + DF)(I - A)-l B} Ti 
= {D - DF(I - A)-l B + C(I - A)-l B + DF(I - A)-l B} Ti 

= DTh 

which completes the proof of 2(b). 
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2(c). This item is the dual of 2(b). 

With the benefit of properties of 2(a)-2(c), the remainder of the proof is con
siderably simplified. It is well-known that the structural invariant indices lists of 
Morse, which correspond precisely to the structures of finite and infinite zeros as 

well as invertibility, are invariant under nonsingular state, output and input trans

formations, state feedback and output injection. We can thus apply appropriate 
nonsingular state, output and input transformations, as well as state feedback and 

output injection, to ~e and obtain a new system, say ~~. If this new system has ~d 

as its discrete-time counterpart under bilinear transformation, then from Properties 

2(a)-2(c) it follows that ~d and ~d have the same structural invariant properties. 
It is therefore sufficient for the remainder of the proof that we show that 3(a)-6(b) 

are indeed properties of ~ d . 
Let us first apply nonsingular state, output and input transformations r s, r 0 

and r i to ~c such that the resulting system is in the form of the special coordinate 

basis as in Theorem 5.4.1, or, equivalently, the compact form in (5.4.21)-(5.4.24) 

with Aaa and GOa being given by (5.4.29), Eda and Eca being given by (5.4.30), 

and BOa, Lab and Lad being given by (5.4.32). We will further assume that Aaa 

is already in the Jordan form of (2.3.39) and (5.4.34), and that matrices A aa' Lad, 
Bao , Eda , GOa, Eca and Lab are partitioned as follows: 

where matrix A~a has all its eigenvalues at a = 1, i.e., 

0 InB •1 - 1 0 0 
0 0 0 0 

A~a = I + (7.4.4) 

0 0 0 Ina •Ta -1 

0 0 0 0 

and A:a contains the remaining invariant zeros of ~c. Furthermore, we assume 
that the pair (Ace, Bc) is in the controllability structural decomposition form of 
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Theorem 4.4.1, and the pair (Abb' Cb) is in the observability structural decompo
sition form of Theorem 4.3.1. Next, define a state feedback gain matrix 

and an output injection gain matrix 

COa COb 
Eda Edb 
E~a 0 

Here, Eee is chosen such that all *S in the controllability structural decomposition 

of (Ace, Be) are canceled out, i.e., 

is in Jordan form with all diagonal elements equal to O. Similarly, Lbb is chosen 
such that 

Abb := Abb - LbbC~, 

is in Jordan form with all diagonal elements equal to O. Likewise, Edd and Ldd 
are chosen such that 

is in Jordan form with all diagonal elements equal to 0, which in tum implies 

Cd{l- Add)-lBd = I md • (7.4.5) 

The matrices Bf, B~, Cf and C~ are chosen in conformity with A!a of (7.4.4) as 
follows: 

0 0 0 
0 1 0 

Ba := [B~ Baj.-1 .- (7.4.6) 

0 0 0 
0 0 1 

and 

C',~ [~J~ [I 
0 0 

1] . 0 0 
(7.4.7) 

0 1 
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This can always be done, as a consequence of the assumption that the matrix A 

has no eigenvalue at a = 1, which implies that the invariant zero at a = 1 of E c is 
controllable and observable. 

Finally, we obtain a continuous-time system E~ characterized by the quadru

ple (A*,B*,C*,D*), where 

(7.4.8) 

[1 

0 

{l 
0 

B* = p-lr;l(B + KD)ri = 0 
Bd 
0 

(7.4.9) 

[~ 
0 0 0 cr] C* = r;;-l(C +DF)rsp = 0 0 Cd o , 

Cb 0 0 0 
(7.4.10) 

and 

[If 0 

~l' D* = r;;-lDfi = 0 
0 

(7.4.11) 

where P is a permutation matrix that transforms A~a from its original position, 
i.e., Block (1, 1), to Block (5, 5) in (7.4.8). 

Next, define a subsystem (As, Bs, cs, Ds) with 

(7.4.12) 

and 

C [ 0 C2] D [fmo 0] 
s:= Cd 0 ' s:= 0 O· (7.4.13) 

It is straightforward to verify that with the choice of B a and C a as in (7.4.6) and 

(7.4.7), As has no eigenvalue at a = 1. Hence A * has no eigenvalue at a = 1 ei

ther, since both Abb and A~c have all eigenvalues at 0, and A:a contains only the 

invariant zeros of Ec which are not equal to a = 1. Applying the bilinear transfor-



7.4. Proof of Theorem 7.2.1 247 

mation (7.2.3) to ~~, it follows from the result of Lemma 7.2.1 that we obtain a 
discrete-time system ~d' characterized by the quadruple (A*, il, C·, V*), with 

(7.4.16) 

and 

(7.4.17) 

Our next task is to find appropriate transformations, state feedback, and output 
injection laws, so as to transform the above system into the form of the special 
coordinate basis displaying Properties 3(a)-6(b) of the theorem. 

To simplify the presentation, we first focus on the subsystem characterized by 
(Aa, Ea, Cs, Vs) with 

(7.4.18) 

and 

(7.4.19) 

Using (7.4.5) in conjunction with (2.3.19), it is easy to compute (I - As)-l = 

[ Xl (I -Add)-l BdCf(1 -Aaa _BaCO)-l] 
(I -Aaa _Boca)-l BfCd(1 -Add)-l (I -Aaa _BOCO)-l ' 

where 

and hence 
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where 

(I -A~d)-l BdI +Cf(I -A~a _Baca)-l Bfl] 
(I -Ac:.a _Baca)-l Bf ' 

and 

D _ [I+C~(I-A~a-Baca)-lB~ C~(I-A~a-Baca)-lBf] 
s - Cf(I-A~a-Baca)-lB~ I+Cf(I-A~a-Baca)-lBf' 

Noting the structure of A~a in (7.4.4), and the structures of Ba and ca in (7.4.6) 

and (7.4.7), we have 

and 

o 

o 
o 

-1 
0 

0 
0 

0 
0 

0 
-Ina'Ta -1 

0 
0 

, (7.4.21) 

-1 
0 

C~(I - Aaa - Bac a)-l Bf = 0, 

Ca(I _ A _ Bac a)-l Ba _ [0 0] 
aa - 0 -ITa . 

Thus, Bs, Os and Ds reduce to the following forms: 

B _../2 [ 0 (I-A~d)-lBd[I+Cf(I-A~a-Baca)-lBfl] 
s- (I-A~a-Baca)-lB~ (I-A~a-Baca)-lBf ' 

C, = v'2 [[HCf(I - A:' - B.C~)-l BflCd (I - A.id)-l 

C~(I -A~a - Baca)-l] 
Cf(I -A~a _Baca)-l ' 
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and 

b _ [/+C~(I-A~a-Baca)-lB~ 0 ] 
s - 0 I+Cf(I-A~a-Baca)-lBf . 

Next, define 

and 

from which it follows that 

where 

- - - - h[ 0 0] 
Bsc = Bs + KsDs = 2 (I -A~a _Baca)-l B~ (I -A~a _Baca)-l Bf ' 

and 
- - - - In [0 C~(I -A~a - Baca)-l] 

CSC = Cs + DsFs = v 2 . o Cf(I -A~a _Baca)-l 

Next, re-partition Ba and ca of (7.4.6) and (7.4.7) as follows: 

where both iJ a and C a are of maximal rank. We thus obtain 

and 
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Using (7.4.4) and (7.4.21). straightforward manipulations yield 

o 
= 

o [-2In~.1"m-l -~n -InG .1"G 

1 0 
o 0 

o 1 
o 0 

and 

~.. ~ ~l . . . . . . . 
... 0 1 

Moreover. it can be readily verified that each subsystem characterized by the ma
trix triple (Aai, Bai , Cai ). i == 1,2, ... , To. with 

-2] - [-1] o ' Eai = 0' Cai = [0 -1], 

has the following properties: 

and 

It follows from Theorem 5.4.1 that there exist nonsingular transformations r so. 

roo and ria such that 



7.4. Proof of Theorem 7.2.1 

and 

o 
1 

o 
o 

o 
o 

o 
1 
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(7.4.24) 

-* - * - * - * Now, let us return to l:d characterized by (A ,B ,C ,D ) as in (7.4.14) to 

(7.4.17). Using the properties of the subsystem (As, Es, Os, fJs) just derived, we 
are in a position to define appropriate state feedback and output injection gain 

-* - * matrices, say F and K ,together with nonsingular state, output and input trans-
-* -* -* 

formations r s ' r 0 and r i ' such that 

A;cB := (i":)-l (A* + i/ P* + j(* 0* + j(* fJ* F*) i": 
(I +A:a)(J -A:a)-l 0 0 0 

o (I+Abb)(I-Abb)-l 0 0 
= o 0 (I +A~c)(J _A~c)-l 0 

o 0 0 
o 0 0 

-** with Aaa given by (7.4.22), and 

o 
o 
o , (7.4.26) 

B:" ,~ (i';)-l (B' + k'v') i'> [~ 

c:",~ (i';)-l (C' + V'P') i':= U 

0 
0 
0 
0 

Ed 

(I-~)-'B' ] , (7.4.27) 

0 0 0 

~ 1 ' Cb(I - Abb)-l 0 0 
0 0 0 Cd 

(7.4.28) 
and 

(7.4.29) 

Clearly, l:;CB characterized by (A~B' B~, O~B' fJ:CS) has the same lists of struc
tural invariant indices as l:d does, which in turn has the same lists of structural 
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invariant indices as 1:d. Most importantly, 1:;cB is in the form of the special coor

dinate basis, and we are now ready to prove Properties 3 (a)-6(b ) of the theorem. 

3(a). First, we note that 12(1:d) = 12 (1:;CB)· From (7.4.26) to (7.4.29) and the 

properties of the special coordinate basis, we know that 12(1::CB) is given by the 

controllability index of the pair 

((I + A~e)(1 - A~e)-I, (I - A~e)-l Be) or ((I + A~e)(1 - A~e)-l, Be). 

Recalling the definitions of A~e and Be: 

0 1£1-1 0 0 0 0 
0 0 0 0 1 0 

A~e = , Be = 
0 0 0 I£me -1 0 0 
0 0 0 0 0 1 

we readily verify that the controllability index of 

((I + A~e)(1 - A~e)-l, Be) 

is also given by {l'1,.e2, ... ,.emJ, and thus 12 (l:d) = 12(l:e). 

Likewise, the proof that 13 (1:d) = 13 (l:e) follows along similar lines. 

3(b)-3(c). These follow directly from 3(a). 

4(a). It follows from the properties of the special coordinate basis that the invariant 
- * -** zero structure of l:SCB' or equivalently ~d, is given by the eigenvalues of Aaa and 

(I + A:a)(1 - A:a)-l, together with their associated Jordan blocks. Property 4(a) 
-** corresponds with the eigenvalues of Aaa of (7.4.22), together with their associated 

Jordan blocks. First, we note that, for any z E C, 

zl - A::: = [(z - 1)1 - (z + l)Add + 2(1 - Add )-1 BdCd] (I - Add )-1. 
(7.4.30) 

Recall the definitions of Add' Bd and Cd: 

0 1nq1 - 1 0 0 0 0 
0 0 0 0 1 0 

Add = , Bd = 
0 0 0 Iqmd -1 0 0 
0 0 0 0 0 1 

and 

Cd= U 
0 0 n 0 1 
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It can be shown that 

where Qi(Z) E Cnq; xnq; is given by 

z+I -(z + 1) 0 0 0 
2 z-I -(z + 1) 0 0 

Qi(Z) = 2 0 z-I 0 0 

2 0 0 z-I -(z + 1) 
2 0 0 0 z-I 

(7.4.31) 

for i = 1,2, ... , md. It follows from (7.4.30) that the eigenvalue of A:: is the 
scalar z that causes the rank of 

to drop below nd = ~:'dl qi. Using the particular form of Qi(Z), it is clear that 
the only such scalar z E C which causes Q i (z) to drop rank is z = -1. More

over, rank { Q i ( -I)} = nq; - 1, i.e., Q i ( -1) has only one linearly independent 
eigenvector. Hence, z = -1 is the eigenvalue of A::, or equivalently the invariant 
zero of Ed, with the multiplicity structure 

8:'1 (Ed) = {ql, Q2, .. ·, qmd} = 8~(Ec), 
thereby proving 4(a). 

4(b). This part of the infinite zero structure corresponds to the invariant zeros of 
the matrix (/ + A:a) (I -A:a)-I. With A:a in Jordan form, Property4(b) follows 
by straightforward manipulations. 

5(a). The proof of this item follows directly from (7.4.29). 

5(b). This follows from the structure of (Ad, Ed, Cd) in (7.4.23) to (7.4.25), in 
conjunction with Property 5.4.4 of the special coordinate basis. 

6(a)-6(b). We let the state space of the system (7.2.1) be X and be partitioned in 
the subsystems of its special coordinate basis as 

x = Xa- E9 x2 E9 X: E9 Xb E9 Xc E9 Xd. (7.4.32) 

We further partition XI as 

(7.4.33) 
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where XJ is associated with the zero dynamics of the unstable zero of (7.2.1) at 
s = a = 1 and X~ is associated with the rest of the unstable zero dynamics of 
(7.2.1). Similarly, we let the state space of the transformed system (7.2.6) be X 
and be partitioned in its special coordinate basis subsystems as 

(7.4.34) 

with X~ being further partitioned as 

(7.4.35) 

where X~l is associated with the zero dynamics of the invariant zero of (7.2.6) at 
z = -1 and X~* is associated the rest of the zero dynamics of the zeros of (7.2.6) 
on the unit circle. Then, from the above derivations of l(a) to 5(b), we have the 
following mappings between the subsystems of Ec of (7.2.1) and those of Ed of 
(7.2.6): 

x-a <==? X;, 
Xd 

-0 
<==? X a1 , 

x,0 -0 
a <==? Xa*, 

Xj; -+ (7.4.36) <==? X a , 

Xb <==? Xb, 

Xc <==? XC, 

X~ <==? Xd. 

Noting that both geometric subspaces Vx and Sx are invariant under any nonsin
gular output and input transformations. as well as any state feedback and output 
injection, we have 

(7.4.37) 

and 

Unfortunately, other geometric subspaces do not have such clear relationships as 
above. 

This concludes the proof of Theorem 7.2.1 and this chapter. • 
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7.5 Exercises 

'7.1. Consider a continuous-time system, 1:c , characterized by 

[-1 0 1 0 

t] x+ [! I] u, 
x ~Ax+Bu= ~ 

1 1 0 
0 1 0 
1 1 1 
1 1 1 

and 

~) x + [~ ~) u. y = Cx+Du= [~ 0 1 0 
0 0 0 

(a) Compute its discrete-time counterpart, 1:d. under the bilinear trans-

formation 
z-1 s=--. z+1 

(b) Use the Linear Systems Toolkit to compute the geometric subspaces, 
V*, V-, V+, S*, S-, S+, n *, and N*, for the continuous-time 
system, 1:c , and the subspaces, V*, V-, V+, S*, S-, S+, n*, and 

N*, for the discrete-time counterpart, 1:d. 

(c) Verify that V+(1:c) = S-(1:d) and S+(1:c) = V-(1:d). Comment 
on the relationship of other subspaces. 

7.2. Prove Corollary 7.2.1 and Corollary 7.2.2. 

7.3. Consider a continuous-time system, 1: c , characterized by 

[-1 0 0 0 

;]x+m u' 

o 1 0 0 
x = Ax + Bu = 0 0 0 1 

o 0 -1 0 
1 1 1 1 

and 

y = Cx = [0 0 0 0 l]x. 

Compute the invariant zeros of its discrete-time counterpart, 1: d, under the 
bilinear transformation 

s=a(:~D =~(:~~), 
with the sampling period, T = 0.5,0.4,0.3,0.2,0.1,0.05, and 0.01. Verify 
the result of Corollary 7.2.2 by plotting the invariant zeros of the resulting 
discrete-time systems on a complex plane. 
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7.4. Given a stable continuous-time system, E c, with a transfer function 

Gc(s) = C(sI - A)-l B + D, 

and its discrete-time counterpart under the usual bilinear transformation, 
Ed, with a transfer function 

Gd(Z) = C (a; ~ ~ I - A) -1 B + D = C(zI - A)-l iJ + h, 

where A, iJ, C and iJ are as given in Lemma 7.2.1, show that Ed is stable, 
and 

Also, show by an example that, in general, 

Hint: Refer to Section 2.4 of Chapter 2 for the definition and computation 

of the H2-norm and Hoo-norm of continuous- and discrete-time systems. 

7.5. Consider a continuous-time system characterized by 

x=Ax+Bu, y=Cx+Du. 

Another popular method that can be employed to discretize the system 
is the zero-order-hold (ZOH) transformation. It can be shown that the 
discrete-time equivalence of the continuous-time system under the ZOH 
transformation with a sampling period, T, is given by 

x(k + 1) = Azx(k) + Bzu(k), y(k) = Cx(k) + Du(k), 

where 

A. = eAT, B. = (LT 
eMdr) B. 

LetGc(s)=C(sI _A)-l B+D andGz(z)=C(zI -Az)-lBz+D. Show 
by an example that, in general, 

7.6. Suppose that the continuous-time system of Exercise 7.3 is discretized us
ing the ZOH transformation. Compute the invariant zeros of the resulting 

discrete-time equivalence with T = 0.5,0.4,0.3,0.2,0.1,0.05, and 0.01. 
Plot these invariant zeros on a complex plane, and comment on the result. 



Chapter 8 

System Factorizations 

8.1 Introduction 

System factorizations such as the well-known inner-outer factorization and its 

dual version, the cascade factorization of nonminimum-phase systems have been 

extensively studied and used in the literature. The so-called minimum-phase/all
pass factorization plays a significant role in several applications, prominent among 

them being singular filtering (see e.g., Halevi andPalmor [61], and Shaked [128]), 

cheap and singular optimal LQ control (see, e.g., Shaked [129]), and loop transfer 
recovery (see, e.g. Chen [18], Saberi et a1. [116], and Zhang and Freudenberg 
[159]), while its dual version, the inner-outer factorization, has played an impor
tant role in solving problems related to robust and H 00 control (see, e.g., [54] and 
references cited therein). Traditionally the minimum-phase/all-pass factorization 
has been carried out by spectral factorization techniques (see, e.g., Shaked and 
Soroka [130], Soroka and Shaked [134], Strintzis [137], and Thel [142]). The 

role that the minimum-phase/all-pass factorization plays in the control literature 
as well as various methods available for such a factorization are well documented 
by Shaked [127]. The inner-outer factorization is also very well studied in the 
literature, and there are several papers that provide state space based algorithms 
for such a factorization. For example, Chen and Francis [35] and Weiss [148] 
have derived algorithms that are applicable for certain classes of systems. In ad
dition, we will also introduce a generalized factorization technique, which has 
several promising applications. In particular, it can be easily modified to solve 
the well-known system zero placement problem, which will be studied in detail in 
Chapter 9. The contents of this chapter are based on our early works (i.e., Chen et 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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al. [26]. Lin et al. [88] and [89]). in which we successfully constructed the above 
mentioned factorizations for general systems using the structural decomposition 
techniques presented in the previous chapters of this book. 

To be more specific. let us consider a left invertible nonminimum-phase sys
tem 1:: characterized by the matrix quadruple (A, B, 0, D). 

{ X = A x + B u, 
y = 0 x + D u, 

(8.1.1) 

where the state vector x E R.n. output vector y E R.JI and input vector u E R.m. 
Without loss of generality. we assume that [B' D'l and [0 D 1 are of maximal 
rank. Let the transfer function of 1:: be 

G(s) = O(s1 - A)-l B + D. (8.1.2) 

For the minimum-phase/all-pass factorization. it is required that the given system 
1:: be detectable. The minimum-phase/all-pass factorization of G(s) is expressed 

as 
G(s) = Gm(s)V(s), (8.1.3) 

where Gm (s) is left invertible and of minimum-phase. and satisfies 

G(s)G'(-s) = Gm(s)G:n(-s), (8.1.4) 

whereas V (s) is a stable and right invertible all-pass factor satisfying 

V(s)V'(-s) = 1. (8.1.5) 

The problem is then to construct matrices Bm and Dm such that a system 1::m 

characterized by the matrix quadruple (A, Bm, 0, Dm) has the intended transfer 
function Gm (s ). Also. the invariant zeros of 1:: m are those minimum-phase invari
ant zeros of 1:: and the mirror images of nonminimum-phase invariant zeros of 1::. 
On the other hand. in loop transfer recovery and in other applications such as finite 
zero placement problems. one does not necessarily require a true minimum-phase 
image of 1::. What is required is a model which retains the infinite zero structure 
of 1:: and whose invariant zeros can be appropriately assigned to some desired lo
cations in the open left-half complex plane. With this point in mind. we introduce 
a generalized cascade factorization of the form 

G(s) = GM(s)U(s). (8.1.6) 

Here GM(s) is the transfer function matrix of a system 1::M• which has the same 
infinite zero structure as that of 1::. is of minimum-phase with all its invariant 
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zeros located at desired locations and is left invertible. On the other hand, U ( s) is 
square, stable, invertible and asymptotically all-pass in the sense that 

U(s)U'(-s) -t I as Isl-+ 00. (S.1.7) 

As mentioned earlier, the inner-outer factorization is actually a dual version 

and a special case of the minimum-phase/all-pass factorization. It only deals with 
stable and proper systems. Thus, it requires that the eigenvalues of A in the given 

system E of (S.l.l) are all in C -. Dually, it requires E to be stabilizable (instead 

of being detectable as in the case of minimum-phaselall-pass factorization). The 

inner-outer factorization can be expressed as 

(S.1.S) 

where Gj(s) is an inner factor of G(s), i.e., Gj(s) is a stable and proper transfer 

function satisfying 

(S.1.9) 

and Go (s) is an outer factor of G (s), i.e., Go (s) is stable and proper and has a 
right inverse being analytic in C+, which is equivalent to the fact that Go(s) is 

right invertible and has no invariant zeros in C + . 
For clarity and for ease of reference, we first consider the case when the given 

system is strictly proper in Section S.2, whereas the results for general nonstrictly 

proper systems are given in Section S.3. Finally, we note that all these factoriza

tions can be done similarly for discrete-time systems, which will be addressed in 
Section S.4. 

8.2 Strictly Proper Systems 

We consider in this section the situation when the given system E of (S.1.1) is 
strictly proper, i.e., D = O. For the minimum-phase/all-pass factorization and 
generalized cascade factorization, we assume that E is left invertible, while for the 

inner-outer factorization, we assume that E is right invertible. For the minimum

phase/all-pass factorization and inner-outer factorization, we further assume that 

E has no invariant zeros on the imaginary axis. The result for such a case is fairly 

straightforward and is very useful in numerous applications and in fact, most of 
the references cited in the introductory section of this chapter dealt with only this 
special class of systems. These restrictions will, however, be removed in the next 
section. 
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We first present a step-by-step algorithm for the construction of the minimum
phase/all-pass factorization. 

STEP FACT-Sp.I. 

Utilize the result of Theorem 5.3.1 (see also the compact form of the special 
coordinate basis in Section 5.4 of Chapter 5) to find nonsingular transforma
tions rs E IRnxn, ro E IRPxp and ri E IRmxm such that the given system 
E, i.e., the matrix triple (A, B, C), can be transformed into the form of the 
special coordinate basis. More specifically, we have 

L~bCb 
L~Cb 

Abb 

BdEb 

B=r;'Br,= UJ 
c = r;;lcrs = [~ ~ ~b ~d] and B~Bd = I. 

(S.2.1) 

(S.2.2) 

(S.2.3) 

Here A(Ata) C C+ and A(A;a) C C- are respectively the nonminimum
phase and minimum-phase invariant zeros of E. Also, we note that the pair 
(A~, Et) is observable whenever E is detectable. 

STEP FACT-Sp.2. 

Solve the Lyapunov equation 

(8.2.4) 

for P > O. Note that such a solution always exists since A~ is unstable 
and (A~, E;t) is observable. Next, compute 

(8.2.5) 

and 

(8.2.6) 
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STEP FACT-SP.3. 

Define ~m to be a system characterized by a matrix triple (A, B m , C) and 

(8.2.7) 

This completes the procedure for constructing the minimum-phaselall-pass 

factorization of~. 

We have the following theorem. 

Theorem 8.2.1. Consider a detectable, left invertible and nonminimum-phase sys
tem ~ of(8.1.1) with D = 0 and with all its nonminimum-phase invariant zeros 

in C+. Then, its minimum-phase/all-pass factorization is given by 

G(s) = Gm(s)V(s), (8.2.8) 

where V (s), the stable all-pass factor, is given as in (8.2.7), and G m (s), the mini
mum phase image of~, is the transfer function of~ m characterized by the matrix 

triple (A, Bm, C) with Bm given as in (8.2.6), i.e., 

(8.2.9) 

Furthermore, ~m is left invertible and has the same infinite zero structure as that 
of~ with its transfer function G m (s) satisfying 

Gm(s)G:U(-s) = G(s)G'(-s). (8.2.10) 

The all-pass factor V (s) satisfies V (s) V' ( - s) = I and has all its poles at the 
mirror images of the nonminimum-phasezeros of~. 

Proof. We first show that Ata - K: E: is a stable matrix. By examining (8.2.4) 

and (8.2.5), we have 

A+ - K+E+ = A+ - p-l (E+)' r!r·E+ = p-l (-A+)' P (8211) aa aa aa alIa aa'" 

which implies that Ata - K: E: is indeed a stable matrix. 

Next, we proceed to prove that ~m is of minimum-phase, left invertible and 

has the same infinite zero structure as that of~. Without loss of generality, we as

sume that ~ is in the form of the special coordinate basis as that in Theorem 5.3.1 

of Chapter 5. Thus, ~m can be rewritten as 

. + - A+ + + L+ L+ K+ Xa - aaXa adYd + abYb + a U, 
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x;; = A;;ax;; + L~Yd + D;:bYb, 

Xb = AbbXb + LbdYd, Yb = CbXb, 

Xd =A~dXd+LdYd+Bd [u+E;txt +E;;x;; +EbXb+EdXd] , Yd = CdXd, 

for some submatrices of appropriate dimensions. Let us now define a new state 

variable 

(8.2.12) 

Since B~Bd = [, it is then straightforward to verify that 

and 

X~ = (Ata - K;t E;t)x~ - K;t E;; x;; + L~bYb 
- K;t EbXb + (L~d - K;t B~Ld)Yd 

+ (AtaK;t B~ - K;t Ed - Kt E;t K;t B~ - K: B~Add)Xd, 

Xd =A~dxd+LdYd+Bd [u + E;tx~+E;;x;; +EbXb+(Ed+K;t Bd)Xd] . 

It then follows from STEP SCB.8 in the proof of Theorem 5.3.1 in Chapter 5 that 

there exists a nonsingular transfonnation T such that 

and 
.!.m (A+ K+E+) -m K+E- - Lm Lm 
xa = aa - a a Xa - a a Xa + adYd + abYb, 

x;; = A~x;; + D;:dYd + L~Yb, 
Xb = AbbXb + LbdYd, Yb = CbXb, 

Xd = AddXd +LdYd+Bd [u+E;tx~+E;;x;; +E~xb+Edxd] , (8.2.13) 

Yd = CdXd, 

for some matrices L!:d" L::b, E~ and Ed of appropriate dimensions. The state 

equations in (8.2.13) is now in the fonn of the special coordinate basis of Theorem 

5.3.1. Hence, it follows from the properties given in Section 5.4 of Chapter 5 that 

~m and ~ have the same infinite zero structure and that ~ m is left invertible. 

Furthennore, the invariant zeros of ~ m are given by 

-K;tE;;] "..-A- C ..... 
aa 

(8.2.14) 
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Hence, ~m is of minimum-phase. 
We now proceed to show that V (s) V' ( - s) = I. From the Woodbury or 

Sherman-Morrison-Woodbury formula, i.e., (2.3.13), and (8.2.4) and (8.2.5), we 

have 

V- 1(s) = {fi [I - E: (sI - A:a + K: Et) -1 Kt] fi1}-1 

= fi [I + E:(sI - Ata)-l Kt] fi1 

- 1+ r·E+(sI - A+ )-1 P-1(E+)'r! - la aa a I 

= 1+ riEt(sp - PA:a)-l(Et)'r: 

= 1+ fiEt [sp + (A:a)' P - (Et)'f:riE:] -1 (Ed)'f: 

= I - fiEt p-1 [-sI - (A:a)' + (Et)' (Kt)'] -1 (Et)'r: 

= I - (rD- 1(Kt)' [( -sI - A:a + Kt En-1]' (Et),f( 

= (fi1)' { 1- (Kt)' [( -sl - Ata + Kt Et)-l]' (Et)'} r( 

= V'( -s). 

Here, we note that the poles ofV(s) are the eigenvalues of the stable matrix -At., 
and the poles of V -1 (s) are the nonminimum-phase invariant zeros of ~, namely 

A(A:a)' 
Finally, we are ready to show that G ( s) = G m ( S ) V ( s ). Let us define 

and 

[
SI - At. 

- - -1 0 
cI> = (sl - A) = 0 

-BdEt 

-L~bCb 
-L;;-bCb 
sl - Abb 
-BdEb 

A lSI ~ A:a sI ~ A~a =ff:g: =ff:g: ]-1 
cI> = 0 0 sI - Abb -LbdCd . 

o - BdE~ - BdEb sI - Add 

In view of (8.2.2), (8.2.3) and (8.2.6), it is straightforward to verify that 

Em = E + K, ~ = (~-1 - EE)-l, 
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and 

Hence, 

G(S)V-l(S) = rocci>Brilri [I + E:(s1 - Ata)-l K:] ri 1 

= ro [Cci>B + C(ci>-l - BE)-l BEci>K]ri1 

= ro{ Cci>B + C[(ci>-l - BE)-lci>-l - 1jci>K }ri1 

= ro( Cci>B + Cci>K - Cci>K)ril 

= r oCci>(B + K)ril 
= Gm(s). (8.2.15) 

This completes the proof of Theorem 8.2.1. • 
We demonstrate the above results by the following example. 

Example S.2.1. Consider a square and invertible system I: characterized by a 

matrix quadruple (A, B, C, D) with 

1 0 0 1 n B~[~ n 0 1 1 0 

A= 0 0 1 0 
1 0 0 1 
0 1 0 1 

(8.2.16) 

and 

c=[O 0 011 
000 0 ~], D=[~ ~] . (8.2.17) 

It is simple to verify that I: has a transfer function 

Also, I: is controllable and observable and has an invariant zero at s = 1. Fur

thermore, it is easy to verify that I: is already in the special coordinate basis form 

with 

[ 1 0 0] [1 0 0] 
Ata = ~ ~ ~ , E: = 0 1 0 . 
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We thus obtain, 

K:=[~ :], Bm=[! ~1' 
V(s) = [::: (s ~ 1)2] , 

(s + 1)2 

and 

Whenever the given system ~ has invariant zeros on the imaginary axis, no 

minimum-phase image of ~ can be obtained by any means. In what follows, 

we introduce a generalized cascade factorization, which is a natural extension of 

the minimum-phase/all-pass factorization. The given nonminimum-phase and left 

invertible system is decomposed as 

G(s) = GM(s)U(s). (8.2.18) 

Here GM(s) is of minimum-phase, left invertible and has the same infinite zero 

structure as that of ~, while U ( s) is a square, invertible and stable transfer function 

which is asymptotically all-pass. All the invariant zeros of G M( s) are in a desired 

set Cd C C-. If the given system ~ is only detectable but not observable, the set 

Cd includes all the unobservable but stable eigenvalues of~. In this way, all the 

awkward or unwanted invariant zeros of ~ (say, those in the right half s-plane or 

close to the imaginary axis) need not be included in G M (s). Such a generalized 

cascade factorization has a major application in loop transfer recovery design. For 

instance, by applying the loop transfer recovery procedure to G M(S), one has the 

capability to shape the overall loop transfer recovery error over some frequency 

band or in some subspace of interest while placing the eigenvalues of the observer 

corresponding to some awkward invariant zeros of ~ at any desired locations (see, 

e.g., [116]). We further note that this generalized cascade factorization can be 

immediately adopted to solve the well-known zero placement problem, which is 

to be studied in detail in the next chapter. 

Let us assume that the given system ~ has been transformed into the form 

of the special coordinate basis as in (8.2.1) to (8.2.3). Let us also assume that 
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in the special coordinate basis formulation, Xa is decomposed into x;;:- and x: 
such that the eigenvalues of A:a contain all the awkward invariant zeros of ~, 

including all the unstable invariant zeros, invariant zeros on the imaginary axis 

and some unwanted stable invariant zeros, provided that these awkward zeros can 

be controlled. 

As expected, procedures for constructing this generalized cascade factoriza

tion are quite similar to those of the minimum-phase/all-pass factorization. Thus, 

we directly summarize such a factorization in the following theorem. 

Theorem 8.2.2. Consider a left invertible and nonminimum-phase system ~. As
sume that it has been transformed into the special coordinate basis as given in 
(8.2.1) to (B.2.3) and assume that its awkward invariant zeros are observable and 
are dumped in A (A :a). One can then construct a generalized cascade factorization 
(B.2.18) such that 

1. The minimum-phase counterpart of ~ is given by ~ M characterized by the 
matrix triple (A, BM, C) with a transfer function GM(s) = C(sI _A)-l BM, 
where 

B. = r,ii.r,' = r, [Yl r,', (8.2.19) 

Here K;t is specified such that ,X( Ata - K;t E;t) are in the desired locations 
in C-. Moreover, ~M is also left invertible and has the same infinite zero 
structure as ~. 

2. The stable factor U ( s) is given as 

(8.2.20) 

Moreover, 

U- 1 (s) - r· [I + E+(sI - A+ )-1 K+] r-1 
- 1 a aa ai' (8.2.21) 

and U (s) is asymptotically all-pass, i.e., 

U(s)U'( -s) -t I as lsi -t 00. (8.2.22) 

The above result can be regarded as a dual version of the problem of zero 

placement studied in the literature (see e.g., [139]). 



8.2. Strictly Proper Systems 267 

Proof. Without loss of generality, we assume that E is in the form of the special 
coordinate basis. Following the proof of Theorem 8.2.1, we can show that there 
exists a nonsingular state transformation such that EM is transformed into the form 
of the special coordinate basis as 

.!.M (A+ K+E+) -M K+E+ - LM LM Xa = aa - a a Xa - a a Xa + adYd + abYb, 

for some matrices L~, L~b' Eb and Ed of appropriate dimensions. Hence, it 
follows from the properties of the special coordinate basis that EM and E have 
the same infinite zero structure and that EM is left invertible. Furthermore, the 
invariant zeros of EM are given by 

(8.2.23) 

Hence, EM is of minimum-phase. Moreover, the left state and input zero directions 
associated with the minimum-phase invariant zeros of E remain unchanged in 

EM. The equality of G(s) = GM(s)U(s) follows directly from (8.2.15). Since 
U(s) ~ I as lsi ~ 00, hence U(s)U'( -s) ~ I as lsi ~ 00. This completes the 
proof of Theorem 8.2.2. • 

We illustrate this generalized factorization with an example. 

Example 8.2.2. Consider a system E as given in [159] and characterized by 

and 

with 

A = [-~ -~ o 0 
o 0 

o 
o 

-0.2 
o 

0] o 
o ' 

-0.2 

[
-0.5 

B = -2.5 
0.3 
1.5 

c = [~ ~ ~ ~], D = 0, 

-1.25] -2.5 
1.25 ' 
3.5 

G s _ 1 [-0.2(S - 1) 1] 
( ) - (s + 1)(s + 0.2) -(s - 1) s + 3 . 

(8.2.24) 

(8.2.25) 
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This system is square and invertible with two invariant zeros at s = 1 and s = 2. 
The minimum-phase image and the all-pass factor of I: are obtained as 

and 

[ 
0.7353 -0.8088] 

B = 1.4706 -1.6176 
m -0.9353 0.8088' 

-2.4706 2.6176 

1 [-0.2(S + 3.9412) 0.6470] 
Gm(s) = (s + l)(s + 0.2) -(s + 2.1765) s + 2.2941 ' 

. [ (s - l)(s - 0.9414) 
(s + l)(s + 2) 

V(s) = 
-1.7646(s - 1) 
(s + l)(s + 2) 

-1.7646] 
s+2 

s + 0.9414 . 

s+2 

The following is a cascade factorization of I:, 

[ 
0.5 0] B _ 3.75 -3.75 

M - -0.7 0' 
-4.75 4.75 

G (s) _ 1 [-0.2(S + 3) 0] 
M - (s + l)(s + 0.2) -(s + 4) s + 4 ' 

and 

[ 

s-1 
s+3 

U(s) = 1 

(s + ~)(s + 4) 

-5 1 s+3 
s2+s-11 . 

(s + 3)(s + 4) 

It is simple to see that GM(s) has two invariant zeros at s = -3 and s = -4. 

We conclude this section by constructing the inner-outer factorization of a 
stable, strictly proper and right invertible transfer function G(s) with no invari
ant zeros on the imaginary axis. Let the matrix triple (A, B, C) be a realization 
of the transposed system of G(s), i.e., G'(s), which is obviously left invertible. 
Then, the constructive algorithm given in STEPS FACT-Sp.l to FACT-SP.3 for the 
minimum-phaselall-pass factorization would automatically yield an inner-outer 
factorization for G(s). We summarize this result in the following theorem. The 
proof of this theorem is obvious in view of that of Theorem 8.2.1. 
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Theorem 8.2.3. Consider a stable, strictly proper and right invertible transfer 

function G(s) with no invariant zeros on the imaginary axis. Let (A, B, C) be 
a realization of its transposed system, G'(s), with (A, C) being detectable. Let 

G'(s) = Gm(s)V(s) (8.2.26) 

be a minimum-phaselall-pass factorization ofG' (s) as in Theorem 8.2.1. Then, 

G(s) = Gi(S)Go(s) = V'(s)G:n(s) (8.2.27) 

is an inner-outer factorization of G ( s ), where G i ( s) = V I ( s) is an inner factor of 

G(s), i.e., 

G:(-S)Gi(S) = V(-S)V'(S) = I, (8.2.28) 

and Go (s) = G:n (s) is an outer factor, whose right-inverse is analytic in C + . 

8.3 Nonstrictly Proper Systems 

We now present factorizations for a general system ~, characterized by a ma

trix quadruple (A, B, C, D), which is not necessarily left or right invertible and 

whose direct feedthrough matrix D might be nonzero. For the generalized cas

cade factorization and inner-outer factorization, ~ might have invariant zeros on 

the imaginary axis. For the minimum-phase/all-pass factorization, we still need 

to assume that ~ has no invariant zeros on the imaginary axis. As in the pre

vious section, we will first present a step-by-step constructive algorithm for the 

minimum-phase/all-pass factorization. 

STEP FACT-NSP.l. 

Utilize the result of Theorem 5.4.1 of Chapter 5 to find nonsingular trans

formations r s E IRnxn , roE IRPxp and ri E IRmxm such that the given 

system~, i.e., the matrix quadruple (A, B, C, D), can be transformed into a 

form similar to the compact form of the special coordinate basis in (5.4.21) 

to (5.4.24). More specifically, we would like to arrange the transformed 

system as follows: 

Ace BcEta, BcE~ LebCb LedCd 
0 Ata 0 L~bCb L~dCd 

- -1 A = rs Ars = 0 0 A;;-a L;;:-bCb L;;:-d Cd 

0 0 0 Abb LbdCd 
BdEdc BdEta BdEda BdEdb Add 
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BOc 
Beta 

+ BOa [COc eta COa COb COd], (8.3.1) 

BOb 
BOd 

BOc 0 Bc 
Beta 0 0 [1m• 

0 i] , iJ = r;IBri = Boa 0 0 , i> = r;; 1 Dn = ~ 0 
BOb 0 0 0 

BOd Bd 0 
(8.3.2) 

and 

(8.3.3) 

Here'\(Ata) C c+ and'\(A~) C C- are respectively the unstable and the 
stable invariant zeros of E. 

STEP FACT-NSP.2. 

Let 

and 

Ax = [Aocc BcEta] _ [0 0 Bc] r:-l 
A + ,Bx - 0 0 0 l' 

aa 

ex = [COc eta] D = [Imo 
E E+' x 0 

de da 

o 0] r:-l 
I'md 0 l' 

(8.3.4) 

(8.3.5) 

r 12 r 13 ] r r _1 11 12 2 r22 r23 , rm = [r' r] . (8.3.6) 
r ' r 12 22 

23 33 

It follows from Property 5.4.1 of the special coordinate basis that the pair 
{Ax, Cx} is detectable whenever the pair (A, C) is detectable. We then 
solve the Riccati equation 

AxPx+PxA~+BxB~-(CxPx+DxB~)'(DxD~)-l(CxPx+Dx~) = 0 
(8.3.7) 
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for Px > O. It will be shown later that such a solution alway exists. Next, 

compute 

Kx:= [~~ ~!] = (CxPx+DxB~)'(DxD~)-l, (8.3.8) 

and 

BcO +KcO Ked 
B:r, +K:O K+ [I"-ad 

Bm=rs B- 0 r-1 
Dm = ro ~ aD m' 

BbO 0 

BdO Bd 
(8.3.9) 

STEP FACT-NSP.3. 

Define I:m to be a system characterized by a quadruple (A,Bm,C,Dm) 
and 

V(s) = r m [Cx(sI - Ax + KxCx)-l(Bx - KxDx) + Dx]. (8.3.10) 

This completes the procedure for constructing the minimum-phaselall-pass 

factorization for a general system I:. 

We have the following theorem. 

Theorem 8.3.1. Consider a general detectable system E of (8.1.1) with all its 
unstable invariant zeros in C+. Then, its minimum-phaselall-pass factorization is 
given by 

G(s) = Gm(s)V(s), (8.3.11) 

where V (s ), the stable all-pass factor, is given as in (8.3.10), and G m (s ), the 

minimum-phase image ofE, is the transfer function of Em characterized by the 

matrix quadruple (A, Bm, C, Dm) with Bm and Dm being given as in (8.3.9), i.e., 

(8.3.12) 

Furthermore, Em is left invertible and has the same infinite zero structure as that 
of I: with its transfer function G m (s) satisfying 

Gm(s)G:n(-s) = G(s)G'(-s). (8.3.13) 

The all-pass factor V (s) satislies V (s ) V' ( - s) = I. 
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Proof. We first note that since (Ax,Cx) is detectable and (-Ax, Bx) is stabi

lizable, it follows from Richardson and Kwong [111] that (8.3.7) has a unique, 

symmetric and positive definite solution, i.e., P x = P~ > O. Let us now show that 

Ax - KxCx is a stable matrix. Let 

Px-1 = [P~l P12 ]. 
P12 P22 

Then pre-multiplying equation (8.3.7) by p;l, we obtain 

Px-1(Ax _ KxCx)Px = [-(A~c + B*crB~pll)1 0] 
-(A;a)' , 

where 

and 

r = f33 - [f~3 f~31 (f m)2 [~~:] . 
It is worth noting that r is a positive definite matrix and Pl1 is the unique positive 

definite solution of the algebraic Riccati equation 

PllA~c + (A~c)' Pll + Pll Bcr B~Pll - [Cbc E~cJ(r m)2 [~::] = O. 

Hence, >'(Ax - KxCx) = >'(-A;a) U >'(-A~c - BcrB~pl1) are all in C-, and 

thus Ax - KxCx is indeed a stable matrix. We are now ready to prove that ~ m 
characterized by the matrix quadruple (A, B m, C, Dm) is of minimum phase, left 

invertible and has the same infinite zero structure as ~. Without loss of generality, 

we assume that 1: is in the form of the special coordinate basis as in (8.3.1) to 

(8.3.3). Let us define 

and 

o 0 0 
o 0 Cb 
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Then, by the construction and the properties of the special coordinate basis (see 

Section 5.4), the system ~m characterized by (A, Bm, C, Dm) and the system i; 
characterized by the matrix triple (A, iJ, 0) have the same finite and infinite zero 

structures and the same invertibility properties. Then following the same proce

dure as in the proof of Theorem S .2.1, it is easy to show that i; is left invertible 

and has the same infinite zero structure as that of ~. Furthermore, i; has invariant 

zeros at 

where *'s denote matrices of not much interest. 

Next, we proceed to show that V(8)V'( -8) = I. It follows from (S.3.7) and 
(S.3.S) that 

and 

We then have 

AxPx + PxA~ + BxB~ - Kx(CxPx + DxB~) = 0, 

Dx(B~ - D~K~) = -CxPx, 

V(8)V'( -s) = r m [Cx(sl - Ax + KxCx)-l(Bx - KxDx) + Dx] 

x [(B' - D' K')(sl - A' + G' K,)-lG' + D']r' x xx x xx x xm 

= 1 + r mCx(sl - Ax + KxCx)-l(Bx - KxDx) 

x (B' - D' K')(-sl - A' + C' K')-lC'r x xx x xx xm 

- r mCx(sl - Ax + KxCx)-l pxc~r m 

- r mCxPx( -81 - A~ + C~K~)-lC~r m 

= 1 + r mCx(sl - Ax + KxCx)-l [(Bx - KxDx) 

x (B~ - D~K~) - Px( -sl - A~ + C~K~) 
- (81 - Ax + KxCx)Px] (-sl - A~ + C~K~)-lC~r m 

= 1 + r mCx(sl - Ax + KxCx)-l [KxCxPx + KxDxB~ 

- BxD~K~ - PxC~K~] (-sl - A~ + C~K~)-lC~r m 

=1. 

We now proceed to show that G(8) = Gm(s)V(s). Let us define 

cpx(s) = (sl - Ax + KxCx)-l, 
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[
CPx(S)] 

~.(s) = ~ , 

and 

It then follows that 

and 

- - - -1 
B=rs[Bo Bd Bc]rj , 

Bmrm=rs[1'30 O]+rSBK' 

Bmr mDx = rslBo 0 0] ri l + rs [BK 0] ri l , 

Dmr mCxcpx(S) = crs~x(s), 

We now have 

Gm(s)V(s) = [C(sI - A)-l Bm + Dm]r m 

x [Cx(sI - Ax + KxCx)-l(Bx - KxDx) + Dx] 

= C(sI - A)-l Bmr m 

x [Cx(sI - Ax + KxCx)-l(Bx - KxDx) + Dx] 

+ DmrmCx(sI - Ax + KxCx)-l(Bx - KxDx) + D 

= C(sI - A)-l [Bmr mCxCPx(s)(Bx - KxCx) + Bmr mDx 

+ (sI - A)rs~x(s)(Bx - KxDx)] +D 

= C(sI - A)-lrs { ([Bo 0] + BK)CXCPx(s)(Bx - KxDx) 

+ [Bo 0 0] ri1 + [BK 0] ri1 

+ r;l(sI - A)rs~x(s)(Bx - KxDx)} + D 

=C(sI-A)-lrs{[I 0 0 Of(Bx-KxDx) 
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+ [Bo 0 0Jri1 +[BK oJril} +D 

= C(sI-A)-lrs{[Bo 0 OJ+[O Bd 0]+[0 0 BcJ}ri1+D 

= C(sI - A)-l B + D 

= G(s). 

Finally, the fact that G(S}G'(-8) = Gm(S)G~(-8) follows immediately from 
the fact that V(8)V'( -8} = I. • 

We illustrate the above results by the following example. 

Example 8.3.1. Consider a system E characterized by (A, B, C, D) with 

1 1 1 1 1 0 0 1 
0 1 0 1 1 0 0 0 

A= 0 0 -1 1 1 , B= 0 0 0 (8.3.14) 
0 0 0 1 1 0 0 0 
1 1 1 1 1 0 1 0 

and 

c=u 
0 1 0 n, D=U 

0 n· 0 0 0 0 (8.3.15) 
0 0 1 0 

The given E has a transfer function G ( 8 ), 

1 
G(8) -

- 85 - 384 - 283 + 382 - 8 

[ ,'-38'-2,,0'+3,'-, 84 +28-1 "-"-38'+1] 
x 0 S4 - 283 + 28-1 83 -82 -8+1 . 

0 sl-82 -8+1 82 -1 

This system is neither left nor right invertible and has two invariant zeros at 
{-1, 1}. Hence, it is of nonminimum phase. Moreover, it is easy to verify that E 
is in the form of the special coordinate basis with 

Ax = [~ n, Bx = [~ ~ ~], Cx = [~ n, 
Dx = [~ ~ ~], r m = [~ ~]. 

Thus, following the procedure given in STEPS FACT-NSP.2 to FACT-NSP.3, which 
involves solving a Riccati equation, we obtain, 

[ 1.412771 1.063856J 
Kx = -0.348915 2.255424 ' 
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and 

[ 

1.412771 
-0.348915 

Bm= 0 
o 
o 
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1.063856] 
2.255424 [1 0] o ,Dm = 0 0 , 
000 
1 

1 
Gm(S)= 53 4 2 3 +3 2 [Gm1(S) Gm2 (S)] , S - S - S S-S 

1 
V(s) - -=------

- S2 + 2.73205s + 1. 73205 

[s2+ 1.31928s-0.06386 
x -1.06386s+ 1.41277 

where 

-1.06386s-1.19157 S+1.25542] 
s2-0.58723s-0.76169 s-0.65109 ' 

Gm1(s) = 1.06386s3-1.41277s2-1.063868+1.41277 , [ 
S5 -1.58723s4 - 4.1106s3 -1.58723s2 - 0.30217 s + 1.41277] 

1.06386s2 - 0.34892s -1.41277 

and 

Gm2{s) = s4+1.31928s3-1.06386s2-1.31928s+0.06386 . [
2.06386S4+3.44699S3-0.93614S2-2.51085S+0.06386] 

83 + 2.31928s2 + 1.255428-0.06386 

A similar generalized cascade factorization can also be obtained for general 
nonstrictly proper and non-left invertible systems. We have the following result. 

Theorem 8.3.2. Consider a general system E, which has been transformed into 
the special coordinate basis as given in (8.3.1) to (8.3.3). Assume that its awkward 
invariant zeros are observable and are dumped in A(Ata)' One can then construct 
a generalized cascade factorization G (s) = G M (8) U (s) such that 

1. The minimum-phase counterpart ofE is given by EM characterized by the 

matrix quadruple (A, EM, C, DM ) with a transfer function matrix GM(s) = 
C(sI -A)-l BM+DM , where 

D. = r{r ~] r;" 
(8.3.16) 
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and where 

K - [KeD Ked] 
x - K+ K+ 

aD ad 
(8.3.17) 

is specified such that A(Ax-KxCx) are in the desired locations in C-. Here 

we note that Ax, Cx and r m are as defined in (8.3.4) to (8.3.6). Furthermore, 
~M is also left invertible and has the same infinite zero structure as~. 

2. The factor U (s) is given as 

where U (s) is stable, right invertible and asymptotically all-pass, i.e., 

U(s)U1 ( -s) --t I as lsi --t 00. (8.3.19) 

Proof. It follows the same line of reasoning as in the proof of Theorem 8.2.2. • 

We illustrate this generalized factorization by the following example. 

Example 8.3.2. Consider the same system ~ given in Example 8.3.1. Let us 

choose Kx such that A(Ax - KxCx) = {-2, -3}. We then obtain 

2 1 -4 4 1 0 [ 2 1] 
Kx = [-4 4]' BM = ~ ~ , D. = [~ ~], 

2s4 + 7 s3 + Is2 - 6s ] 
S4 + 3s3 - S2 - 3s , 

S3 + 4s2 + 3s 

and 

1 [S2+3S -S-3] 
U(s) = s2 + 5s + 6 2s + 2 S2 - 5 . 

Finally, we conclude this section with the following theorem dealing with the 

inner-outer factorization for general systems. 
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Theorem 8.3.3. Consider a general nonstricdy proper and stable transfer func
tion G(s), which might have invariant zeros on the imaginary axis. Let the ma

trix quadruple (A, B, C, D) be a realization ofits transposed system, G'(s), with 
(A, C) being detectable. Let us treat all theinvariantzerosofG(s) or(A, B, C, D) 
on the imaginary axis as 'good ones' and dump them in .x(A;a)' and then follow 
the result of Theorem 8.3.1 to construct a 'minimum-phase/all-pass factorization' 
ofG'(s), i.e., 

G'(s) = Gm(s)V(s), (8.3.20) 

where Gm (s) is left invertible and has no invariant zeros in C +, and V (s) is an 
all-pass factor. Then, 

G(s) = Gj(s)Go(s) = V'(s)G:n(s) (8.3.21) 

is an inner-outer factorization of G ( s ), where G j ( s) = V' (s) is an inner factor of 

G(s), i.e., 
G:(-s)Gi(s) = V(-s)V'(s) = I, (8.3.22) 

and Go (s) = G~ (s) is an outer factor, whose right-inverse is analytic in C + . 

8.4 Discrete-time Systems 

In this section, we consider system factorizations for a general discrete-time sys

tem characterized by 

{ 
x(k+1) = A x(k) + B u(k), 

y(k) = C x(k) + D u(k), 
(8.4.1) 

where the state vector x E ]Rn, output vector y E ]RP and input vector u E ]Rm. 

Without loss of generality, we assume that [B' D'] and [C D] are of maximal 

rank. Let the transfer function of E be 

G(z) = C(zI - A)-l B + D. (8.4.2) 

Since the generalized cascade factorization, which results in an asymptotic all

pass factor, does not make too much sense in the discrete-time setting, we will 

investigate only the inner-outer factorization and the minimum-phase/all-pass fac
torization for the system of (8.4.1). For a proper and stable transfer function G (z ), 
its inner-outer factorization is defined as 

(8.4.3) 
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where Gi(Z) is an inner matrix satisfying G'(Z-l)G(Z) = I, and Go(z) is an 

outer matrix, which is right invertible and has no infinite zeros and no invariant 
zeros outside the unit disc (i.e., ((;0). Similarly, the minimum-phaselall-pass fac

torization of G(z), which does not possess any invariant zeros on the unit circle. 

is defined as 

G(z) = Gm(z)V(z), (8.4.4) 

where Gm(z) is left invertible and of minimum-phase with no infinite zeros, and 

V(z) is an all-pass factor satisfying V(z)V'(Z-l) = I. 
In principle. we can follow similar arguments as in the continuous-time case 

of the previous sections to obtain explicit expressions for these factorizations. Ac
tually, this was what Lin et al. [89] had done in deriving the expressions for the 

discrete-time inner-outer factorization. In this section, however. we will show that 

with the help of the bilinear transformation and inverse bilinear transformation of 

Chapter 7, the discrete-time system factorization problem can be converted into 

an equivalent problem in the continuous-time setting, which can be solved using 

the results of Sections 8.2 and 8.3. The procedure is straightforward: 

1. STEP D-FACT.1. 

Apply the inverse bilinear transformation of (7.3.3) with a = 1 to the 

discrete-time system (8.4.1) or its transfer function in (8.4.2) to obtain a 
continuous-time mapping: 

0(8) = G(z)i = c (11 + 8 I _ A) -1 B + D. 
z=(Hs)/(l-s) - s 

(8.4.5) 

A state-space realization of O(s) can be found in Lemma 7.3.1. 

2. STEP D-FACT.2. 

Utilize the result of Theorem 8.3.1 to find a minimum-phaselall-pass fac
torization of G(s). 

(8.4.6) 

or utilize the result of Theorem 8.3.3 to obtain an inner-outer factorization 

ofO(s), 
(8.4.7) 

3. STEP D-FACT.3. 

Apply the bilinear transformation (7.2.3) with a = 1 to compute 

Gm(z) = Gm(s)1 ' V(z) = V(8)1 (8.4.8) 
s=(z-l)/(z+1) s=(z-l)/(z+l) 
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for the minimum-phase/all-pass factorization, or to calculate 

Gi(Z) = Gi(s)1 ' Go(z) = Go(s)1 (8.4.9) 
8=(z-1)/(z+1) 8=(z-1)/(z+1) 

for the inner-outer factorization. The state-space realizations of the corre

sponding discrete-time transfer functions can be found using Lemma 7.2.1. 

4. STEP D-FACT.4. 

Then the inner-outer factorization of G(z) is given by 

(8.4.10) 

and the minimum-phase/all-pass factorization is given by 

G(z) = Gm(z)V(z). (8.4.11) 

The claim of the above algorithm follows from the results of the following 

lemmas. 

Lemma 8.4.1. Consider a continuous-time transfer function V (s) and its discrete
time counterpart V (z) under the bilinear transformation. Then, V (s) is an all-pass 
(inner) factor if and only ifV(z) is all-pass (inner) factor. 

Proof. If V (s) is an all-pass in the continuous-time domain, i.e., 

- -, 
V(s)V (-s) = I, 

then 

V(Z)V'(Z-l) = V (:-=..!) V' (Z-l - 1) 
z + 1 Z-1 + 1 

-(Z-1) -, (Z-1) - -I 
=V z+l V -z+l =V(s)V(-s)=I. 

Thus, V(z) is an all-pass factor in the discrete-time domain. Similarly, we can 

show the converse part and the result for the inner factors. • 
Lemma 8.4.2. Consider a continuous-time transfer function Go (s) and its dis

crete-time counterpart Go (z) under the bilinear transformations. Then, Go (s) is 
an outer matrix if and only if G 0 (z) is an outer matrix. 

Proof. It follows directly from Theorems 7.2.1 and 7.3.1. • 
We illustrate the results of this section in the following example. 
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Example 8.4.1. Consider a discrete-time system E characterized by (A, B, C, D) 
with 

[0.5 0 0 0.2 0.2] [0 o 1] o 0 0 1 1 0 o 0 
A= 0 0 1.1 o 1, B= 1 o 0 , (8.4.12) 

o 0 0 1 1 0 o 0 
-0.2 0.2 -0.2 -0.1 0.1 0 1 0 

and [0 0 0 o 0] [1 0 0] C= 0 0 0 o 1 , D= 0 0 0 . (8.4.13) 
000 1 0 000 

It is simple to verify that (A, B) is stabilizable and that the above system is neither 
left nor right invertible with two invariant zeros at z = 0 and z = 1.1 and one 
infinite zero. 

Following the formulae given in Lemma 7.3.1, we obtain a continuous-time 
counterpart of E, which is characterized by (A, E, a, D) with 

and 

[

-0.31799 -0.02302 0.01096 
0.11508 -1.17263 0.08220 

A = 0.10960 -0.16441 0.12591 
0.11508 -0.17263 0.08220 

-0.23017 0.34525 -0.16440 

0.14906 
1.11796 
0.11234 
0.11796 

-0.23592 

0.11508] 0.86313 
0.82203 , 
0.86313 

-0.72626 

[
0 0 1] 000 

B= 1 0 0 , 
000 
010 

D = [-0.0822~ -0.8631~ -0.1150~]' 
0.04110 0.43157 0.05754 

a = [ 0.3476~ -0.6365~ 0.2169~ 004742~ 1.4563~l. 
-0.23136 0040458 -0.14960 0.20388 -1.15975 

Utilizing the algorithms given in the previous section and the toolkit of [87], we 
obtain an inner-outer factorization of G(8) = 6(81 - A)-IE + D as follows: 

where the inner factor Gi(8) is characterized by (Ai, Ei, ai, Di) with 

[
-0.82764 -0.90098 0.00289] [-0.24313 -0.30779] 

Ai = -0.08007 -0.62084 0.00520, Ei = -0.43738 -0.55371 , 
-0.94833 -0.87474 -0.04635 0.73049 -0.69541 
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Cj = -1.88731 -2.05455 0.00660, Dj = -0.55442 -0.70187 , [ 
0.11903 -0.04326 -0.09426] [ 0.78472 -0.61986] 

2.08383 1.02727 -0.00330 0.27721 0.35094 

and the outer factor 00(8) is characterized by (Ao, Bo, Co, Do) with 

[

-0.31799 -0.02302 0.01096 
0.11508 -1.17263 0.08220 

Ao = 0.10960 -0.16441 0.12591 
0.11508 -0.17263 0.08220 

-0.23017 0.34525 -0.16441 

0.14906 
1.11796 
0.11234 
0.11796 

-0.23592 

0.11508] 0.86313 
0.82203 , 
0.86313 

-0.72626 

- - [-0.04494 0.14716 0.06847 0.11731 0.46051] 
Bo = B, Co = -0.05843 0.18861 -0.06712 0.27241 0.57146 ' 

and, 
D = [ 0.84168 0.59817 0.07976] 

o -0.54774 0.75726 0.10097 . 

The minimum-phase/all-pass factorization of a (8) is given by 

where the minimum-phase image am (8) is characterized by a matrix quadruple 

(Am, Bm, Cm, Dm) with 

[

-0.31799 
0.11508 

Am = 0.10960 
0.11508 

-0.23017 

-0.02302 
-1.17263 
-0.16441 
-0.17263 

0.34525 

0.01096 
0.08220 
0.12591 
0.08220 

-0.16441 

0.14906 
1.11796 
0.11234 
0.11796 

-0.23592 

0.11508] 0.86313 
0.82203 , 
0.86313 

-0.72626 

[

-0.10357 -0.14446] 
-0.65755 -0.91712 

Bm = 0.87426 -0.49682 , 
-0.65755 -0.91712 

[ 
0.81270 -0.58268] 

Dm = -0.57419 -0.65978 , 
0.28709 0.32989 

-0.20767 -0.28966 

[ 
0 0 0 

Cm = 0.34763 -0.63652 0.21699 
-0.23136 0.40458 -0.14960 

0.4742~ 1.4563~]' 
0.20388 -1.15975 

and the all-pass factor V (8) is characterized by (Av, Bv , C v, Dv) with 

[
-0.33259 0.04006 -0.01323] 

Av = -0.29863 -0.71383 0.19158, 
0.18651 1.07034 -0.35706 
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[
0 0.00440 -1.05564] 

Bv = 00 -1.77426 -0.23657 , 
1.10808 0.14774 

(; = [0.09721 0.55790 -0.21093] 
v 0.13559 0.77813 -0.29420 ' 

and 
15 = [ 0.81270 0.57757 0.07701] 

v -0.58268 0.80557 0.10741 . 

Next, using the formulae in Lemma 7.2.1 for the bilinear transformation, we 
obtain an inner-outer factorization of G(z) = C(zI - A) -1 B + D as follows: 

-0.62348 
Ai = -0.05852 

[ 0.12162 
0.26315 0.00612 ,Bi = -0.43738 

0.00000] [ -0.24313 
-0.55371 , 
-0.30779] 

-0.96763 -0.49091 0.90628 0.73049 -0.69541 

-0.07883 
Ci = -1.08171 

[ 0.21692 
-0.27353 

-0.17176] [ 0.70943 
-0.00435 ,Di = 0 

-0.56940] 
o , 

1.27885 -0.71087 0.00000 0 0 

and the outer Go(z) is characterized by (A, B, Co, Do) with 

c = [-0.20269 0.20269 -0.02878 0.38891 0.74970] 
o -0.25253 0.25253 -0.36910 0.74531 0.89188 ' 

and 
D = [ 0.86753 1.01343 0] 

o -0.67536 1.26267 0 . 

Lastly, the following minimum-phase/all-pass factorization of G(z) is obtained 
from its continuous-time counterpart 

G(z) = Gm(z)V(z), 

where the minimum-phase image Gm(z) is characterized by (A, Bm, C, Dm) with 

[

-0.10357 -0.14446] 
-0.65755 -0.91712 0.81270 -0.58268 

Bm = 0.87426 -0.49682 , Dm = [-0.65755 -0.91712], 
-0.65755 -0.91712 0 0 
-0.20767 -0.28966 
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and the all-pass factor V(z) is characterized by (Av, Bv, Cv , Dv) with 

Av = -0.26015 0.27488 0.18251, Bv = 0 -1.77426 -0.23657, [ 
0.49301 0.02831 -0.01055] [0 0.00440 -1.05564] 

0.00000 1.00941 0.61628 0 1.10808 0.14774 

and 

C = [-0.06518 0.19822 -0.14833] D = [ 0.81270 0 0] 
v -0.09091 0.27647 -0.20688' v -0.58268 0 0 . 

8.5 Exercises 

8.1. Given a stable and proper transfer function matrix, G ( s ), and its minimum

phase/all-pass factorization, 

G(s) = Gm(s)V(s), 

show that 

O"max[V(jw)] = ... = O"min[v(jW)] = 1, 

and 

Also, show that for the inner-outer factorization of G(8) = G i (8)Go (8), 
we have 

and 

8.2. Show that the results of Exercise 8.1 are valid for discrete-time systems as 

well. 

8.3. Given a continuous-time system characterized by a transfer function ma-

trix, 

[ 83 + 82 - 8 - 1 -382 + 3] 
82 -1 -38 + 3 

G (8) - --=--:---:---::---:---::--___ ~~ 
- 84 + 583 + 1682 + 16s + 28 ' 

or by a state-space realization, 

[ 

1 1 
. 0-1 
x = 2-3 

-8 -2 
J l] x+ [H] u, 
-3 -4 1 0 
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and 

[ 0 0 0 1] 
Y = 0 1 0 0 x. 

The system is stable, controllable and observable. It is neither left nor right 

invertible with an unstable invariant at 2 and an infinite zero of order L 

(a) Find a minimum-phaselall-pass factorization for G (s). 

(b) Find an inner-outer factorization for G ( s ) . 

(c) Verify the results of Exercise 8.1. 

8.4. Given a discrete-time system characterized by a transfer function matrix, 

[ Z2 - 0.2z + 0.01 O.lz - 0.01] 
O.lz - 0.01 0.01 

G(z) = z3 _ 0.2Z2 - O.Olz + 0.001 ' 

or by a state-space realization, 

and 

[
0.1 0.0 

x(k + 1) = 0.1 0.1 
0.1 0.1 

0.1] [0 0.1 x(k) + 0 
0.0 1 

[0 0 1] y(k) = 1 0 0 x(k). 

n u(k), 

The system is stable, controllable and observable. It is neither left nor right 

invertible with an infinite zero of order 1 and with no invariant zeros. 

(a) Find a minimum-phaselalI-pass factorization for G(z). 

(b) Find an inner-outer factorization for G (z ). 

(c) Verify the results of Exercise 8.2. 



Chapter 9 

Structural Assignment via 
Sensor! Actuator Selection 

9.1 Introduction 

As is well-known in the literature, the structural properties of linear systems, such 

as the finite and infinite zero structures and the invertibility structures, have played 

very important roles in many areas of linear systems and control (see, e.g., robust 

and Hoo control, Chen [22], H2 optimal control, Saberi et al. [120], and con

strained control systems, Lin [85], Hu and Lin [67]). We believe that one of the 

major difficulties in applying many of the useful multivariable control synthesis 

techniques, such as H 2 and H 00 control, to actual design is the inadequate study 

of the linkage between control performance and design implementation that in

volves hardware selection, e.g., appropriate sensors suitable for robustness and 

performance. This linkage provides a foundation upon which performance trade

offs can be incorporated at the preliminary design stage. Thus, one can introduce 

careful control design considerations into the overall engineering design process 

at an early stage. For example, it is well understood in the literature that it is al

ways troublesome to deal with systems with nonminimum-phase zeros in control 

system design. However, it is evident from the results in Chapter 8, i.e., Theorems 

8.2.2 and 8.3.2, that by properly adding or relocating the locations of actuators 

(see the additional term K;t in BM of (8.2.19) for example) or dually adding or 

relocating the locations of sensors, the designer is able to totally remove the trou

blesome nonminimum-phase invariant zeros and obtain better performance. Our 

objective in this chapter is to study the flexibility in the structural properties that 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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one can assign to a given linear system, and to identify sets of sensors and actua
tors which would yield desirable structural properties. 

It is appropriate to trace a short history of the development of the techniques 
related to structural assignments of linear systems. Most results in the open liter
ature are related to invariant zero or transmission zero (i.e., finite zero structure) 
assignments (see, e.g., Emami-Naeini and Van Dooren [51], Karcanias et al. [74], 
Kouvaritakis and MacFarlane [77], Patel [108], Vardulakis [145], Syrmos [139], 
and Syrmos and Lewis [140]). It is important to point out that all the results re
ported in the literature so far, including the ones mentioned above, deal solely with 
the assignments of the finite zeros, and the infinite zero structure and other struc
tures such as invertibility structures of the resulting system are either fixed or of 
not much concern. Only recently had Chen and Zheng [31] proposed a technique, 
which is capable of assigning both finite and infinite zero structures simultane
ously. Up to date, to the best of our knowledge, only the result of Liu, Chen 
and Lin [92] deals with the assignment of complete system structures, including 
finite and infinite zero structures and invertibility structures. In this chapter, we 
present the techniques of [31], which deals with simultaneous finite and infinite 
zero structure assignment, and [92], which is capable of assigning general struc
tural properties. More specifically, we consider a linear time-invariant system 
characterized by the state space equation 

x = Ax+Bu, (9.1.1) 

where x E an is the system state and u E am is the control input. The problem 
of structural assignments or sensor selection is to find a constant matrix, C, or 
equivalently, a measurement output, 

y=Cx, (9.1.2) 

such that the resulting system characterized by the matrix triple (A, B, C) would 
have the pre-specified desired structural properties, including finite and infinite 
zero structures and invertibility structures. We note that this technique can be 
applied to solve the dual problem of actuator selection, i.e., to find a matrix B 
provided that matrices A and C are given such that the resulting system char
acterized by the triple (A, B, C) would have the pre-specified desired structural 
properties. Throughout this chapter, a set of complex scalars, say W, is said to be 
self-conjugated if for any w E W, its complex conjugate w * E W. 
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9.2 Simultaneous Finite and Infinite Zero Placement 

We start with the simultaneous finite and infinite zero placement problem for SISO 

systems because the solution to this problem is relatively simple and intuitive. It 

is also helpful in understanding the derivation of the result for MIMO systems. 

9.2.1 SISO Systems 

We consider in this subsection the finite and infinite zero assignment problem for 

system (9.1.1) with m = 1. We first have the following theorem, the proof of 

which is constructive and gives an explicit expression of a set of output matrices, 

n, such that for any element in n, the corresponding system has the prescribed 

finite zero and infinite zero structures. 

Theorem 9.2.1. Consider the unsensed system (9.1.1) characterized by (A, B) 

with AE IRnxn and BE IRnxl. LetC:= {kd be the controllability index of (A, B) 

and let the number of uncontrollable modes be no. Also, let {VI, V2, .•. , vno } be 

the uncontrollable modes of (A, B). Then for any given integer ql, 0 < ql :S kl' 

and a set of self-conjugated scalars, {ZI' Z2, . .. ,Zkl-ql}' there exists a nonempty 
set of output matrices n c IR 1 x n such that for any C E n the resulting system 

(A, B, C) has no + kl - qi invariant zeros at {VI, V2, ... ,Vno ' ZI, Z2,· .. ,Zkl-qJ 

and has an infinite zero structureS~ = {qd, i.e., the relative degree of (A, B, C) 
is equal to qi . 

Proof. It follows from Theorem 4.4.1 that there exist nonsingular state and in

put transformations Ts and Ti such that (A, B) can be transformed into the con

trollability structural decomposition form of (4.4.7). Next, we rewrite (4.4.7) as 

follows, 

[ ~o ~ Ikl_Oql_l ~ 
A= ° 0 0 1 

o 0 0 0 

* * * * 

° 1 ° o , 
Iq~-I 

(9.2.1) 

where * represents a matrix of less interest. 

Let 

a(s) := sk1-ql + alskl-ql-l + ... + ak1-ql (9.2.2) 

be a polynomial having roots at Zl, Z2, ... , Zkl-ql' Also, let us define 
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Then the desired set of output matrices n is given by 

O:={CEIR1xnIC=a[Q akl-ql Q 1 O]Ts-l,O¢aEIR,QElRlxno}. 

(9.2.3) 
In what follows we will proceed to prove that the resulting system with any C E n 
has all the properties stated in Theorem 9.2.1. Let us define 

A [0 
Aaa:= ° A [0]' Eda:= 1 ' 

and 

A .- [0 Iq1-l]' 
dd·- * * ' A [0]' Cd:= 1 ' (9.2.5) 

It is simple to see that the pair (Aaa, Eda) is observable and 

has eigenvalues at Zl, Z2, ... , Zkl-ql' Also, it is straightforward to verify that the 
system (A, B, C) has the same finite (invariant) zero and infinite zero structures 
as (A,B, C), where 

and 

It follows from the proof of Theorem 8.2.1 that there exists a nonsingular state 
transformation T such that 

g)Eda 
AC 

Aaa 

BdEda 

and 

where 
(9.2.6) 

Note that (T-l AT, T- 1 B, CT) is now in the form of the special coordinate basis 

of Theorem 5.2.1. Thus it follows from the properties of the special coordinate 
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basis that (T-1 AT, T- 1 iJ, CT). or equivalently (A, B, C). has an infinite zero 

structure S~ = {ql} and invariant (finite) zeros at 

(9.2.7) 

This completes the proof of Theorem 9.2.1. • 
The following corollary shows that {} of (9.2.3) is complete. 

Corollary 9.2.1. The set of output matrices {} in (9.2.3) is complete. i.e., any 
output matrix C for which the resulting system (A, B, C) has all properties listed 
in Theorem 9.2.1, is a memberof{}. 

Proof. Let C be such that the resulting system (A, B, C) has invariant zeros at 

{VI, V2, ••• , vnol U {Zl, Z2, ••• , Zkl -qJ and has a relative degree ql ~ kl . It is 
obvious that C can be written in conformity with (9.2.1) as 

(9.2.8) 

where d E JR.1xno. e E JR.,11 E JR.IX(kl-ql-I), 9 E JR. and ~ E JR.1X(ql-I). Note 

that 

[AqlB ... AB B]=Ts[Aq1n ... An n]Ts- 1 

000 

=Ts 
1 0 0 T.-1 

8 • 

* ... 1 0 

* 
... 

* 1 

Then, it is simple to verify that the fact that (A, B, C) has a relative degree q I, 

i.e., 

CB = CAB = '" = CAql-1 B = 0, 

and CAql B '# 0, implies that ~ = 0 and 9 '# O. Thus, we have 

(9.2.9) 

where 0: = g. Following the same procedure as (9.2.4) to (9.2.6), it can be shown 
that the invariant zeros of (A, B, C) are given by A(Ao) = {vI, V2, ••• , vno} and 

(9.2.10) 
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Since (Aaa, Eda ) is a single output system, [e/a bja r is uniquely determined 

by the closed-loop eigenvalues {Z1' Z2, ... ,Zkl-ql}' Hence 

(9.2.11) 

and C En. • 
We illustrate the above result in the following example. 

Example 9.2.1. Consider a system characterized by 

(9.2.12) 

It is simple to see that the pair (A, B) is already in the form of the controllability 
structure decomposition with a controllability index C = {3}. Then it follows 
from Theorem 9.2.1 that one has freedom to choose output matrices such that the 
resulting systems have: 1) infinite zero structureS~ = {3} with no invariant zero, 
2) S~ = {2} with one invariant zero, and 3) S~ = {I} with two invariant zeros. 
The systems with the following output matrices respectively have such properties: 

C1 = a [1 0 0], 

and 

where 0 ::f. a E R These can be easily verified by computing the corresponding 

transfer functions. We have 

and 
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9.2.2 MIMO Systems 

We now proceed to solve the simultaneous finite and infinite zero placement prob

lem for MIMO systems. As in the SISO case, we will first state our result in a 
theorem and then give a constructive proof which generates an explicit expression 
of a nonempty set of output matrices 0 such that for any CEO, the resulting 
system (A, B, C) is square invertible and has the chosen finite and infinite zero 
structures. A construction procedure will be summarized in a remark as an easy
to-follow algorithm. 

Theorem 9.2.2. Consider the unsensed system (9.1.1) characterized by (A, B) 
with A E Iinxn and B E Iinxm. Assume that B is of full rank. Let the controlla
bility index of (A, B) be given bye := {kl, k2, ... , km } and let the pair (A, B) 
have no uncontrollable modes. Also, let {VI, V2, ••• , vno } be the uncontrollable 
modes of (A, B). Then for any givensetofintegers,S~ := {ql, q2, ... ,qm} with 
0< qi ::; ki' i = 1,2, ... , m, and a set of self-conjugated scalars, {ZI' Z2, .. • ,zd 
where l := E:'I (ki - qi), there exists a nonempty set of output matrices 0 C 

lim x n such that for any CEO, the corresponding system characterized by (A, B, C) 
has the following properties: 

1. (A, B, C) is square and invertible; 

2. (A, B, C) has no + l invanantzeros at {VI,,,,, Vno ' ZI, ... , zdj and 

3. (A, B, C) has an infinite zero structure S~ = {ql, ... , qm}. 

Proof. Again, it follows from Theorem 4.4.1 that there exist nonsingular transfor-
mations Ts and 11 such that the pair (A, B) is transformed into the controllability 
structural decomposition form of (4.4.7). Next, we rewrite A and iJ as follows, 

Ao 0 0 0 0 0 0 0 0 
0 0 Ikl-ql-I 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 Iql 0 0 0 0 

A= * * * * * 
... 

* * * * 
0 0 0 0 0 0 Ikm-qm-I 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 I qm - I 

* * * * * 
... 

* * * * (9.2.13) 
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0 0 
0 0 
0 0 
0 0 

B= 1 0 
(9.2.14) 

0 0 
0 0 
0 0 
0 1 

and define 
0 Ikl-ql-l 0 0 
0 0 0 0 

Aaa := (9.2.15) 

0 0 0 Ikm-qm-l 

0 0 0 0 

and 
0 0 
1 0 

Lad:= (9.2.16) 

0 0 
0 1 

Note that (Aaa, tad) is controllable and, in fact, is in the controllability structural 
decomposition form. Let us also define 

{ - mxl I ( - - -) } Fa:= FaEIR A Aaa-LadFa ={Zl,Z2, ... ,Zl} . (9.2.17) 

For any Fa E Fa, we partition it in conformity with (9.2.16) as 

(9.2.18) 

and define a corresponding m x n matrix, in conformity with (9.2.13) and (9.2.14), 

c,= [:~ 
Ffl FA 1 0 Ffm Flm 0 

rJ. (9.2.19) 

F!l F~l 0 0 F!m F~m 1 

where 

K= []J (9.2.20) 
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is any arbitrary constant matrix of dimensions m x no. The desired set of matrices, 

0, is then given by 

0:= { C E lRnxm I C = rCTs- 1 with f< E lRmxno , Fa E Fa, 

r E lRmxm and det(r) -=I 0 }. (9.2.21) 

Now, we proceed to prove the properties of the resulting system (A, B, C) 
for any CEO. We note that the finite and infinite zero structures of (A, B, C) 
are equivalent to those of (A, E, C) because they are related by some nonsingular 
transformations Ts, 11 and r. Observing the structure of (A, E, C), we see that 
there exists a permutation matrix P E IR n x n such that 

and 

where 

0 I q1 - 1 0 0 0 0 

* * .. , * * 1 0 

Add := Ed := 

0 0 0 I q .... - 1 0 0 

* * ... * * 0 1 

and 

Cd': U 0 ... 0 

!l 0 ... 1 

Again, as was done in the SISO case, by dualizing the arguments in the proof 
of Theorem 8.2.1, it can be shown that (A, E, C), or equivalently the system 
(A, B, C), has an infinite zero structure S~ = {ql, q2, ... , qm} and has invariant 
zeros at 

A(Ao) U A (Aaa - iadFa) = {V1,V2"" ,Vno ,Zl,Z2, ... ,Zt}. 

This completes our proof of Theorem 9.2.2. • 
The following remarks are in order. 
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Remark 9.2.1. 

1. The uncontrollable modes of (A, B) are automatically included in the set of 
invariant zeros of(A,B, C) foranyC such that (A,B, C) is square invert
ible. Hence, the invariant zeros at VI, V2, ••. , vno ' in both Theorems 9.2.1 
and 9.2.2, cannot be re-assigned. However, they can be excluded from the 
invariant zeros of a left invertible or noninvertible system. This will be done 
in the next section when we deal with the general structural assignment. 

2. Unfortunately, it can be shown by examples that n of (9.2.21) is not nec
essarily complete for m > 1. That is there exists an output matrix C such 
that the resulting system (A, B, C) has all the properties listed in Theorem 
9.2.2 but C f/. n. 

Remark 9.2.2. We note that the construction procedure of the desired set of out
put matrices n is buried in the proof of Theorem 9.2.2. We would like to suntma
rize in the following lines an easy-to-follow step-by-step algorithm that generates 
this n. 

1. Given a matrix pair (A, B), compute nonsingular transformations Ts and Tl 
such that (Ts- 1 ATe, ~-l BTl) is in the controllability structural decompo
sition form and obtain the controllability index {k 1 , k2' ... , km }. 

2. Specify a desired infinite zero structure for the resulting systems in a set of 

integers, {q1, Q2, ... , Qm} with 0 < qi ::;: ki' i = 1,2, ... , m. 

3. Specify a self-conjugated set of desired invariant zeros, {z 11 Z2, ••• , zt}, 

wherel = E:I(ki - qi)' 

4. Define (Aaa, Lad) as in (9.2.15) and (9.2.16), and compute the set Fa as 
(9.2.17). 

5. Finally, compute the desired set of output matrices n as in (9.2.21). 

We illustrate Theorem 9.2.2 in the following example. 

Example 9.2.2. Consider a two-input system characterized by 

(9.2.22) 
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Using the software package of [87], we obtain that 

[
1 -2 1 0] o 1 -2 1 

Ts = 0 0 1 -2 ' 
000 1 

and the controllability structural decomposition form of (A, B) is given by 

[0 1 0 0] [0 0] 
- -1 1 1 -2 1 - -1 1 0 

A = Ts ATs = 0 0 0 1 ' B = Ts B = 0 0 ' 
1 -2 1 1 0 1 

with a controllability index C = {2,2}. Following the procedure in the proof of 

Theorem 9.2.2, we obtain a set of output matrices 

!l1 = {r [:~ ~ :: ~] Ts- 1 I a1 + a4 = a1 a 4 - a2 a 3 = 2, 

f E JR2X2 withdet(f) i= 0 } 

such that for any C E !l1 the resulting system (A, B, C) has an infinite zero 

structure S~ = {1, 1} and two invariant zeros at -1 ± j 1. The following is 

another set of output matrices that we obtain, 

!l2 = { f [! ~ ~ ~] Ts- 1 I a E JR, f E JR2X2 with det (f) i= 0 }. 

It is easy to verify that for any C E !l2 the corresponding system (A, B, C) has 

an infinite zero structure S~ = {1, 2} and one invariant zero at -1. 

9.3 Complete Structural Assignment 

Having studied in the previous chapters all the structural properties of linear sys

tems, i.e., the finite zero and infinite zero structures as well as the invertibility 

structures, we are now ready to present in the following theorem the result of the 

general system structural assignment. 

Theorem 9.3.1. Consider the unsensed system (9.1.1) with B being offu1l rank. 

Let the controllability index of (A, B) be given byC = {k1' k2 , ••• , km }, and the 

uncontrollable modes of (A, B), if any, be given by 6. = {V1' V2, . .. ,vnJ. Let 

(9.3.1) 
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(9.3.3) 

Moreover, we let Al be a set of complex scalars 

(9.3.4) 

where 9 c is self-conjugated and so is 6 1 C 6. For simplicity, we assume that 
the entries of.62 = .6 \ 6 1 are distinct. Furthermore, 81 is chosen such that 

me md 

81 ~n- Lli- Lqi-nO' (9.3.5) 
i=1 i=1 

Finally, let 

(9.3.6) 

be a set of positive integers with 1'1 ~ 1'2 ~ ... ~ J.tPb' which satisfy the con
straint 

Pb me md 

81 + no + L J.ti + L li + L qi = n. (9.3.7) 
i=1 i=1 i=1 

Then, there exists a nonemptysetO C R.(md+Pb)xn such that for any C En, the 
resulting system characterized by the matrix triple (A, B, C) has the following 
properties: its invariant zeros are given by Alo its invariant indices 12 = A2, 

13 = A3 and 14 = A4, or equivalently, the iniinite zero structure of the triple 
(A, B, C) is given by A4, and its invertibility structures are respectively given 
by A2 and A3 . Figure 9.3.1 summarizes in a graphical form the above general 
structural assignment. 

Proof. We will give a constructive proof that would yield a desired set n. We first 
introduce the following key lemma, which is crucial to the proof of Theorem 9.3.1. 

Lemma 9.3.1. Consider a linear system E characterized by a triple (A, E, C). 
Assume that it is already in the form of the special coordinate basis of Theo
rem 5.4.1 or in the compact form of (5.4.21) to (5.4.23), i.e., 

(9.3.8) 
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VI Al 

11 
Vno 

A3 
kl 13 

(A,B) k2 . n 
A2 

A2 
12 

km 
A4 

A4 

14 

Figure 9.3.1: Graphical summary of the general structural assignment. 

and 

- [0 0 0 Cd] C= 
0 Cb 0 o . (9.3.9) 

Let 

[Au 
Mab 0 

M~ 1 ~ 0 Abb 0 LbdCd 
A'-

.- BeEea BeEeb Ace Med ' 
BdEda BdEdb BdEde Add 

(9.3.10) 

with any constant submatrices Mab, Mad, Mbd and Med of appropriate dimen
sions. Then, the matrix triple (A, h, a) has the same structural invariant indices 
11,12 ,13 and 14 as those ofE. 

This lemma can be routinely shown by considering the transposed systems 
characterized by (A', 0' , hi) and (A', 0' , hI). The result follows from the pro
cedure given in STEP SCB.8 of the proof of Theorem 5.3.1. 

Now, we are ready to give a detailed proof to Theorem 9.3.1. It follows from 

Theorem 4.4.1 that there exist nonsingular state and input transformations To and 

11 such that the transformed pair, 

(9.3.11) 

is in the controllability structural decomposition form of (4.4.7) with its control

lability index being C = {kl' k2' ... , km }. In view of the properties of the special 
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coordinate basis, it is simple to see that each input channel in B 1 could either 

be assigned to the state variables associated with Xc or Xd of the resulting sys

tem. However, if we assign a particular input channel to be a member of X c of 

the desired system, we will have to assign the whole block associated with this 

particular channel to it. This is because of the following reasons: 1) the whole 

block is controllable by the input channel; and 2) both dynamics of x a and Xb 

cannot be controlled by input channels associated with Xc. On the other hand, 

there is no such a constraint for the structure associated with x d, i.e., the infinite 

zero structure. 

Let A2 and A4 be given respectively as in (9.3.1) and (9.3.3), and let 

me md 

nc = Lii and nd = Lqi. (9.3.12) 
i;:;l i=1 

It is simple to verify that there exist permutation transformations PI and ~1 such 

that 

and 

where 

0 1£1-1 0 0 0 0 

* * * * 1 0 

Ace := , Be = 
0 0 0 Ilmc - 1 0 0 

* * * * 0 1 

0 IW1-q1-1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 I q1 - 1 0 0 0 0 

* * * * * * * * 
A. := 

0 0 0 0 0 IWmd-Qmd-l 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 I Qmd - 1 

* * * * * * * * 
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and 
0 0 
0 0 
0 0 
1 0 

Ed = 
0 0 
0 0 
0 0 
0 1 

and where *s are submatrices of less interest. 

Next, it is simple to see that there exist another pair of permutation matrices 

P2 and l'i2 such that the transformed pair 

(A3, B3) := (P2- 1 A2P2, P2- 1 B2l'i2) 

has the following form, 

where 

0 
0 

A~d = 
0 
0 

and 

Let us define 

o 0 
A:b 0 

Be' * Ace 
Bd' * Bd' * 

I q1 - 1 0 
0 0 

0 
0 

0 0 I qmd -1 

0 0 0 

0 IW1-Ql-l 

0 0 

A:b = 
0 0 
0 0 

CF [1 
0 

0 

0 
1 

, Bd = 

0 
0 

0 0 
0 0 

0 IWmd -Q"'d-1 

0 0 

0 

J 1 

0 
0 

(9.3.14) 

0 
1 

which is in conformity with the structures of A~d and Bd in (9.3.14). We further 

define 

C3 = [0 0 0 Cd 1 , (9.3.15) 
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which is in conformity with structures of A3 and B3 in (9.3.13). The result of 
Lemma 9.3.1 implies that there exists a nonsingular state transformation T3 such 
that 

and 

where 

Aab = [~o A ~ ], Labd = [L? ]. 
ab abd 

(9.3.16) 

In view of the properties of the special coordinate basis, it is simple to see that the 
triple (A4, B4, C4) is in the form of the special coordinate basis with its structural 

invariant indices 12 = A2, ~ = A4, 13 being empty and its invariant zeros being 
A(Aab). 

Next, we define a new output matrix, 

(9.3.17) 

where 

Kc = [KCl KC2J, 

which is partitioned in conformity with Aab and Labd in (9.3.16) with Kcl being 
an arbitrary matrix of appropriate dimensions and K c2 being chosen such that 

and the remaining eigenvalues of A:b - L:bdKc2 are real and distinct. Moreover, 
these remaining eigenvalues of A:b - L:bdKc2 are distinct from the entries of 
~2' This can be done because the pair (A:b , L:bd) is controllable. Dualizing the 
arguments in the proof of Theorem 8.2.1, we can show that there exists a state 
transformation T4 such that 
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and 

Again. the triple (As, Bs, Cs) is in the form of the special coordinate basis and 
has the same structural indices 12 • 13 and 14 as the triple (A4' B4, C4). Moreover. 
its invariant zeros are given by the eigenvalues of Aab - LabdKc. in which matrix 

Aab - LabdKc can be rewritten as 

Aab - LabdKc = [-L:t° K A* LO * K ]. 
abd cl ab - abd c2 

We next find a transformation Tab such that Aab - LabdKc is transformed into 
the form 

Aab = Tat/ (Aab - LabdKc) Tab = [Aoa 1::], 
where A(Aaa) = Al ~l U 8 c with 8 c given in (9.3.4). and Abb being a 
diagonal matrix. Let 

[
Tab 0 0] 

Ts= 0 IO. 
o 0 I 

Then. we have 

[~ Mab 0 
LoA Cd 1 

A6 = Ts- I AsTs = 0 Abb 0 LbdCd 

Bc ·* Bc ·* Acc Lcd Cd ' 

Bd·* Bd ·* Bd .* Add + Bd· * 

and 

The remaining task is to assign the structural invariant indices 13 to coincide 

with the given set A3 = {/LI, /L2,· .. ,/LPb}' which can be done by choosing the 
following output matrix. 
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where 

- [C~l ~.. ~ 1 
Cb - : •. : , 

o ... CbPb 

and where Cbi. i = 1,2, ... ,Ph, is a 1 x J.ti vector with all its entries being 
nonzero. Utilizing the result of Lemma 9.3.1 one more time, we can show that 

the triple characterized by (A6, B6! 66) has its invariant zeros at A(Aaa). and its 

structural invariant indices 12 = A2, Is = As and 14 = A4, respectively. Let 

p = md + Ph. We finally obtain the desired set, 

{} = {fo [~ 6b ~ ~d] (ToP1P2TsT4Ts)-11 fo E jRPxp is nonsingular} . 

(9.3.18) 
This completes the proof of Theorem 9.3.1. • 

The following remarks are in order. 

Remark 9.3.1. If A2 is set to be empty, then the resulting system will be left 
invertible. Similarly, if As is set to be empty, the resulting system will be right 
invertible. 

Remark 9.3.2. We note that if the entries of ~ 2 are not distinct, then the assign
ment of As will be slightly more complicated. We would have to utilize the result 
of the reallordan canonical form of Theorem 4.2.2 to assign A s in accordance 
with the reallordan block structure of the part of A 0 assigned to As. 

We now present the following two examples to illustrate our results. In the 
first example, we follow the algorithm given in the proof of Theorem 9.3.1 to 
yield a set of constant matrices such that for any of its members, the resulting 

system has desired invariant indices lIto 14 • In the second example. we study a 

benchmark problem for robust control of a flexible mechanical system proposed 
by Wie and Bernstein [149]. We will identify sets of sensors that would yield the 
best performance under the H 00 almost disturbance decoupling framework. 

Example 9.3.1. Consider the linear system characterized by 

3 0 1 -1 1 0 1 1 1 
2 0 1 -1 1 0 0 1 1 

x=Ax+Bu= 
2 0 0 0 1 0 0 1 1 (9.3.19) 
1 0 0 0 1 0 + 0 0 1 

u. 

1 0 0 0 0 1 0 0 1 
1 0 0 0 0 0 0 0 1 
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Following Theorem 4.4.1 and the toolkit of [87], we obtain the state and input 

transfonnations, 

-0.5 
0 

To = 0 
0 
0 
0 

and 

-0.516398 -0.258199 -0.512989 -0.307794 
-0.258199 -0.258199 -0.205196 -0.205196 

0 -0.258199 -0.102598 -0.205196 
0 0 -0.102598 -0.102598 
0 0 0 -0.102598 
0 0 0 0 

Ti = [-O'o~ -0.25819~ ~l ' 
o -0.102598 

-0.102598 
-0.102598 
-0.102598 
-0.102598 

, 
-0.102598 
-0.102598 

which take the given pair (A, B) into the following controllability structural de-

composition fonn, 

1 1.032796 0 1.025978 0 0 
0 0 1 0 0 0 

Al = 
1.936492 2 1 1.986799 1.192079 0 

0 0 0 0 1 0 
, 

0 0 0 0 0 1 
4.873397 5.033223 2.516611 5 3 1 

and 
1 0 0 
0 0 0 

B I = 
0 1 0 
0 0 0 

, 

0 0 0 
0 0 1 

with a controllability indexC = {I, 2, 3}. In view of the results of Theorem 9.3.1, 

we have the following admissible choices of Al to A4, 

A2 = {I}, A4 = {I, I}, Al = {-3}, A3 = {2}. 

Following the proof of Theorem 9.3.1, we obtain PI = I, 

0 0 0 1 0 0 
1 0 0 0 0 0 

P2 = 
0 0 0 0 1 0 
0 1 0 0 0 0 

, 
0 0 1 0 0 0 
0 0 0 0 0 1 
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T3 = I,and 

[ 0 0 0] [1 0] Aab = 0 0 1 , Labd = 0 0 . 
00001 

Then, it is straightforward to verify that the following gain matrix K c, 

K = [-0.072739 0.031699 2.214148] 
c 2.234751 -0.973901 1.072739 ' 

places the eigenvalues of Aab - LabdKc at -3, 0 and 2. The first eigenvalue is 
chosen to coincide with the specification of A 1 and the other two are chosen to be 
distinct. Next, we carry on the procedure in the proof of Theorem 9.3.1 and obtain 

0.183616 -0.399509 -0.334800 0 0 0 
-0.085347 -0.916729 0.144674 0 0 0 

T4 = 0.256040 0 0.289349 0 0 0 
0 0 0 -0.707107 0 0 

, 
-0.550849 0 -0.669600 0 1 0 
-0.768121 0 0.578698 0 0 1 

Ts = I, and 

6, = [~ 
0 0 0 1 [] , 0 0 0 0 

ill il2 0 0 

where ill 'I- 0 and il2 'I- O. Finally, we obtain a desired set of output matrices, 

n={r.[~ 
0 0 0 1 ~] rx r. E 11.'" and det(r.) "0 } , 0 0 0 0 

ill il2 0 0 0 

where 

0 -6.76078 6.76078 14.17556 -37.56982 23.39426 
0 1.57356 -1.57356 7.33281 -7.20391 -0.12890 

rx= 0 5.98250 -5.98250 -12.54373 -0.44033 12.98406 
2.82843 -5.65685 2.82843 -5.65685 2.82843 2.82843 

0 0.28172 -4.15470 3.28230 -17.11718 17.70786 
0 -8.65515 8.65515 18.14757 -28.60333 0.70897 

It is now simple to verify, using the toolkit of [87], that the resulting matrix triple 
(A, B, C) with C being a member of {l indeed has an invariant zero at -3, and 
invariant indices 12 = A2 = {I}, 13 = A3 = {2} and 14 = {I, I}. 

Example 9.3.2. We consider a benchmark problem for robust control of a flex
ible mechanical system proposed by Wie and Bernstein [149]. Although simple 
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Xl X2 - -
~ u 

~ MassI Mass 2 
WI 

Figure 9.3.2: A two-mass-spring flexible mechanical system. 

in nature, this problem will however provide an interesting example how sensor 
selection can affect the design performance. The problem is to control the dis
placement of the second mass by applying a force to the first mass as shown in 
Figure 9.3.2. The dynamic model of the system is given by 

(9.3.20) 

(9.3.21) 

or in the state space representation, 

where Xl and X2 are respectively the positions of Mass 1 (with a mass of ml) and 
Mass 2 (with a mass of m2), k is the spring constant, u is the input force, and WI 

and W2 are the frictions (disturbances). For simplicity, we choose ml = m2 = 1 
and k = 1. It is natural to define an output to be controlled as h = X 2, i.e., 
the position of the second mass. Thus, the plant model used for robust control 
synthesis is given by 

-1 [ 
0 

x = Ax+Bu+Ew = ~ 

and 

(9.3.23) 
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It is simple to verify that the subsystem (A, B, C2 ) is of minimum-phase and 

invertible. Hence, the disturbance w can be totally decoupled from the output 

to be controlled, i.e., h, under the full state feedback. Our objective next is to 

identify sets of measurement output or the locations of sensors that would yield 

the same performance as that of the state feedback case. It follows from the results 

of [22,147] that this can be made possible by choosing a measurement output, 

(9.3.24) 

such that the resulting subsystem (A, E, C1 ) is left invertible and of minimum

phase. Following the procedure given in the previous section, we first transform 

the pair (A, E) into the controllability structural decomposition (CSD) form of 

Theorem 4.4.1. This can be done by the state and input transformation 

[ 
0.316228 0 

1'; = 0 0.316228 
o -0.316228 0 

o -0.316228 

0.707107 0] 
o 0.707107 

0.707107 0 ' 
o 0.707107 

and 
1'; = [ 0.316228 0.707107] 

1 -0.316228 0.707107 . 

The controllability structural decomposition form of the pair (A, E) is given by 

[ 
0 1 0 0] [0 0] -2 0 0 0 1 0 

A1 = 0 0 0 1 ' E1 = 0 0 ' 
000 0 0 1 

(9.3.25) 

with a controllability index of (A, E) being {2, 2}. Following the proof of Theo

rem 9.3.1, we obtain the following set of measurement matrices, 

(9.3.26) 

such that for any C 1 E {}1, the resulting subsystem (A, E, C 1) is square invertible 

with two infinite zeros of order 2 and with no invariant zeros. Hence, it is of 

minimum-phase. It is well-known that higher orders of infinite zeros would yield 

higher controller gains, which is in general not desirable in practical situations. 

In what follows, we will identify a set of measurement matrices, {} 2, such that 

for any C1 E {}2, the resulting subsystem (A, E, Cd is of minimum-phase and 

square invertible with two infinite zeros of order 1 and two invariant zeros at -1. 
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The following O2 is such a set obtained again using the procedure given in the 
proof of Theorem 9.3.1: 

O2 = { ro [~ ~ ~ ~] I ro E 1R2X2, det(ro) i- o}. (9.3.27) 

Thus, it is straightforward to verify that the H 00 almost disturbance decoupling is 
achievable for the flexible mechanical system of (9.3.22)-(9.3.23) together with a 
measurement output y = C1x, where C1 E 0 1 or C1 E O2 . In fact, we can show 
that the H 00 almost disturbance decoupling for the system cannot be achieved if 
there is only one sensor allowed to be placed in the system, i.e., one would have 
to place two or more sensors in the system in order to decouple the disturbance 
(the frictions) from the position of the second mass. 

9.4 Exercises 

9.1. Consider a linear system characterized by 

and 

[
1 1 0 

.00 1 
x = Ax + Bu = 0 0 0 

1 1 1 

y=Cx=[O 1 OOjx, 

which has an unstable invariant zero at 1 and a relative degree of 3. 

(a) Determine a new measurement matrix, 61, such that the resulting 
new system characterized by (A, B, ( 1) has an invariant zero at -1 

and has the same relative degree as the original system characterized 
by (A,B,C). 

(b) Determine a new measurement matrix, 62 , such that the resulting 
new system characterized by (A, B, ( 2 ) has two invariant zeros at 
-1 and - 2, and has a relative degree of 2. 

(c) Determine a new measurement matrix, 63 , such that the resulting 
new system characterized by (A, B, ( 3) has three invariant zeros 
at -1, -2 and -3, and has a relative degree of 1. 

(d) Determine a new control matrix, B 1, such that the resulting new 
system characterized by (A, B 1, C) has an invariant zero at -1 and 
has the same relative degree as the original system characterized by 
(A,B,C). 
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(e) Determine a new control matrix, B2 , such that the resulting new sys

tem characterized by (A, B2, C) has two invariant zeros at -1 and 
- 2, and has a relative degree of 2. 

(f) Determine a new control matrix, B3, such that the resulting new sys
tem characterized by (A, B 3, C) has three invariant zero at -1, - 2 
and -3, and has a relative degree of 1. 

9.2. Consider an electric system given in the circuit below, in which the voltage 
of the circuit load, i.e., the controlled output, h, cannot be measured, and 
the disturbance input, w, is to be rejected. 

IOn DISTURBANCE Ion 
+ 

u IF 

Circuit for Exercise 9.2 

0.1 H 

L 

o 
A h 
D 

l __ ..... _____ .. 

(a) Verify that the state-space realization of the system from the control 
input, u, to the controlled output, h, can be expressed as follows: 

with 

{ X = A x + B u + E W, 

h = C2 X + D2 u, 

A= 5 [
-0.25 

o 

and 

c, = [0 0 1], D, = 0, % = (:J 
where Xl is the voltage across the 1 F capacitor, X2 is the current 
through the 0.1 H inductor, and finally X3 is the voltage across the 
2 F capacitor. 
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(b) Show that if the inductor current is the only measurement available, 
i.e., 

y=C1x+D1w=[O 1 Ojx+O·w, 

the resulting subsystem from the disturbance, w, to the measurement 
output, y, is of nonminimum phase. In this case, it is not possible to 
find a proper and stabilizing controller for the system that can achieve 
Boo almost disturbance decoupling from w to h. 

(c) Show that if the 1 F capacitor voltage can be measured, i.e., 

then the resulting subsystem from w to y is of minimum phase, and 
thus, there exists a proper and stabilizing controller for the circuit 
such that the disturbance, w, can be almost decoupled from the con
trolled output, h. 



Chapter 10 

Time-Scale and 
Eigenstructure Assignment 
via State Feedback 

10.1 Introduction 

We present in this chapter one of the major applications of the structural decom

position techniques of linear systems in modem control system design, namely, 

the asymptotic time-scale and eigenstructure assignment (ATEA) design method 

using state feedback. The concept was originally proposed in Saberi and Sannuti 

[117,118] and developed fully in Chen [18] and Chen et al. [27]. It is decentral

ized in nature and is in fact rooted in the concept of singular perturbation methods 

of Kokotovic et al. [75]. It uses the structural decomposition of a given linear 

system characterized by a matrix quadruple (A, B, C, D) to design a state feed

back gain F such that the resulting closed-loop system matrix A + BF possesses 

pre-specified time-scales and eigenstructures. The specified finite eigenstructure 

of A + B F is assigned appropriately by working with subsystems which represent 

the finite zero structure of the given system, whereas the specified asymptotically 

infinite eigenstructure of A + BF is assigned appropriately by working with the 

subsystems which represent the infinite zero structure of the given system. Such a 

design method has been utilized intensively to solve many control problems, such 

as Hoc control (see, e.g., Chen [22]), H 2 optimal control (see, e.g., Saberi et al. 

[120]), loop transfer recovery (see, e.g., Chen [18], and Saberi et al. [116]), and 

the disturbance decoupling problem (see, e.g., Chen [22], Lin and Chen [86], and 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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Ozcetin et 81. [106,107]). It will be seen shortly that the ATEA design technique 

is a good way of capturing the core differen~es between H 2 and H 00 control. 

For simplicity, we assume throughout this chapter that the given system has no 

invariant zeros on the imaginary axis (or unit circle) if it represents a continuous

time (or discrete-time) system. Detailed treatments of systems with imaginary (or 

unit circle) invariant zeros can be found in Chen [22], Lin and Chen [86], and 

Saberi et a1. [120], for the different applications. 

10.2 Continuous-time Systems 

In this section, we describe the technique of the asymptotic time-scale and eigen

structure assignment (ATEA) design for continuous-time systems together with 

its applications in solving H2 and Hoo control as well as disturbance decoupling 

problems. Consider a continuous-time linear system ~ characterized by 

{ X = A x + B u, 
(10.2.1) 

y = C x + D u, 

where x E lR,n, U E lR,m and y E lR,P are the state, input and output of~. Without 

loss of generality, we assume that (A, B) is stabilizable, and both Band C are of 

full rank. As indicated earlier, we assume that ~ does not have any invariant zeros 

on the imaginary axis. 

10.2.1 Design Procedures and Fundamental Properties 

In what follows, we present a step-by-step algorithm for the ATEA design method. 

The properties of this design method will be summarized in a theorem together 

with a detailed proof. 

STEP ATEA-C.l. 

Transform ~ into the structural decomposition or the special coordinate ba

sis form as given by Theorem 5.4.1, that is, compute nonsingular state, input 

and output transformations f s, fj and f 0 that transform the given system ~ 

into the special coordinate basis form of Theorem 5.4.1, which can also be 

put in the following compact form: 

A;a 0 L;:bCb 0 L;:dCd 

0 A+ aa L~bCb 0 L~dCd 
- -1 A = fs Afs = 0 0 Abb 0 LbdCd 

BcE~ Be Eta LcbCb Ace LcdCd 

BdEda BdEta BdEdb BdEdc Add 
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BOa 
Bta 

+ BOb [COa cta COb COe COd] , (10.2.2) 

Boe 
BOd 
BOa 0 0 

Bta 0 0 
B = r;-lBri = BOb 0 0 (10.2.3) 

Boe 0 Be 
BOd Bd 0 

[CO. cta COb COe CM] 
C = r~lcrs = ~ 0 0 0 Cd , (10.2.4) 

0 Cb 0 0 

[1 .. 0 i] , iJ = r~lDri = ~ 0 (10.2.5) 
0 

where in particular, 

(10.2.6) 

with Add' Bd and Cd being as given in (5.4.26) and (5.4.27) of Chapter 5. 
Next, we define 

L~bCb] [Bria] [L~] 
A ,Bos = ,Lsd = ,(10.2.7) 

bb BOb Lbd 

and 

Bs = [Bos Lsd 1 . (10.2.8) 

STEP ATEA-C.2. 

Let Fs be chosen such that 

(10.2.9) 

and partition Fs in conformity with (10.2.7) and (10.2.8) as 

(10.2.10) 
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It follows from the property of the special coordinate basis that the pair 
(Ass, Bs) is controllable provided that the pair (A, B) is stabilizable. Then. 

we further partition Fsl = [F~ FbI] as 

+ F~2 Fb12 [ 
F~1 FbU 1 

Fsl = [Fal FbI] = : :. ' (10.2.11) 

F:tmd Fb1md 

where F:ti and Fbli are of dimensions 1 x nt and 1 x nb. respectively. 

STEP ATEA-C.3. 

Let Fe be any arbitrary me x ne matrix subject to the constraint that 

(10.2.12) 

is a stable matrix. Note that the existence of such an Fe is guaranteed by 
the property that (Ace, Be) is controllable. 

STEP ATEA-C.4. 

This step makes use of the fast subsystems. i = 1,2, ... , md. represented 
by (5.4.11). Let 

be the sets of qi elements. all in C-. which are closed under complex con
jugation. where qi and md are as defined in Theorem 5.4.1. Then. we let 
Ad := Al U A2 U··· U Amd • Fori = 1,2, ... ,md. we define 

q; 

PieS) := II (s - Ai;) = sq; + Fi1 sq; -1 + ... + Fiq;-IS + Fiq;o (10.2.13) 
;=1 

and a sub-gain matrix parameterized by tuning parameter. c. 

(10.2.14) 

STEP ATEA-C.S. 

In this step. various gains calculated in STEPS ATEA-C.2 to ATEA-C.4 are 
put together to form a composite state feedback gain for the given system 
E. Let 

(10.2.15) 
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and 

Then, the ATEA state feedback gain is given by 

where 

and where 

COc 

Edc 

° 
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(10.2.16) 

(10.2.17) 

(10.2.18) 

(10.2.19) 

(10.2.20) 

(10.2.21) 

This completes the ATEA algorithm for continuous-time systems. 

We have the following result. 

Theorem 10.2.1. Consider the given system ~ of (10.2.1). Then, the ATEA state 
feedback law u = F(c:)x with F(c:) being given as in (10.2.18) has the following 
properties: 

1. There exists a scalar c:* > ° such that for every c: E (0, c:*], the closed-loop 
system comprising the given system ~ and the ATEA state feedback law is 

asymptotically stable. Moreover, as c: -7 0, the closed-loop eigenvalues are 

given by 

(10.2.22) 

There are a total number of nd closed-loop eigenvalues, which have infinite 
negative real parts as c: -7 0. 
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2. Let 

c.=r.[~ (10.2.23) 

Then, we have 

H(s,e):= [C+DF(e)][sI-A-BF(e)t1 -t [0 Hs(s) 0 O]r;l, 
(10.2.24) 

pointwise in sase -t 0, where 

(10.2.25) 

Proof. Before proceeding to prove the theorem, we need the following lemma to 

establish some preliminary results. 

Lemma 10.2.1. Let a matrix triple (A, B, C), where A E lR.nxn , B E lR.nxm and 
C E lR.pxn , be right invertible and of minimum-phase. Let F(e) E lR. mxn be 
parameterized in tenns of e and be of the fonn 

F(e) = N(e)r(e)T(e) + R(e), (10.2.26) 

where N(e) E lR.mxp , r(e) E lR.pxP , T(e) E lR.pxn and R(e) E lR.mxn. Also, 
r( c) is nonsinguJar. Moreover, assume that the following conditions hold: 

1. A+BF(e) is asymptotically stable for all 0 < c ~ c* wherec* > 0; 

2. T( c) -t W C as c -t 0 where W is some p x p nonsingular matrix; 

3. as c -t 0, N(c) tends to some finite matrix N such that C(sI - A) -1 EN 
is invertible; 

4. as c -t 0, R(c) tends to some finite matrix R; and 

5. r-1(e) -t 0 asc -t O. 

Then as e -t 0, we have C[sI - A - BF(c)]-l -t 0 pointwise in s. 

Proof of Lemma 10.2.1. We first let N* E lR.mx(m-p) be such that 

N= [N N*] 

is an m x m nonsingular matrix, and rewrite R as 
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whereRI E IRPxn andR2 E lR(m-p)xn, respectively. Then, for sufficiently small 

c, F(c) has the asymptotic form 

where 

F(c) = N(c)r(c)T(c) + R(c) '" N [r(c)T~; + Rl ] 

= Nf' [T(c) + ~~I(c)Rl ] , 

r- - [r(c) 0] 
- 0 I' 

Thus, F(c)iRB, where iR = (sl - A)-I, has the asymptotic form 

F(c)iRB '" G=Nr [T(c) + ~~I(c)Rl ] iRB. 

Noting that 

(I-G)-1 =N(I_N-1GN)-1 N-\ 

we have the following reductions: 

CiRB[1 - F(c)iRB]-1 F(c) '" CiRB(1 - G)-1 F(c) 

= CiRBN (I - N-1GN) -1 N-1 F(c) 

(10.2.27) 

'" CiRBN (I -r [T(c)+~~I(c)Rl ] iRBN) -1 r [T(c)+~~I(c)Rl ] 

= CiRBN 
x [r-1 (c) -[T(c)+r-l(c)Rl]iRBN -[T(c)+r-1(c)Rl]iRBN*]-1 

-R2iRBN I -R2iRBN* 

x [T(c)+~~l(c)Rl ] 

'" CiRBN [-WCiRBN -WCiRBN* ]-1 [WC] 
-R2iRBN 1- R2iRBN* R2 

_ CiRBN [-WCiRBN -WCiRBN*] -1 [W 0] [C] 
- -R2iRBN 1- R2iRBN* 0 I R2 

* [-CiRBN -CiRBN*] -1 [ C ] 
= [CiRBN CiRBN] -R2iRBN 1- R2iRBN* R2 

=[-1 0] [i2] 
=-c, (10.2.28) 
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which implies that as c -+ 0, 

Cq>B[I - F(c)q>Br1 F(c) -+ -C, pointwise in s. 

Now, using the well-known matrix inversion identity of (2.3.16), i.e., 

(I - NM)-l = 1+ N(I - MN)-l M, 

we have 

C[sI - A - BF(c)r1 = C[q>-l - BF(c)r1 

= Cq>[I - BF(c)q>rl 

= Cq>{ 1+ B[I - F(c)q>Br1 F(c)q>} 

= Cq> + Cq>B[I - F(c)q>Brl F(c)q> 

-+ Cq> - Cq> 

= 0 as c -+ O. 

This completes the proof of Lemma 10.2.1. 

(10.2.29) 

(10.2.30) 

• 
We are now ready to prove the results of Theorem 10.2.1. We first show that 

the closed-loop system under the ATEA state feedback u = F{c)x with F{c) 
given in (10.2.18) is asymptotically stable. Without loss of generality, we assume 
that the given system (A, B, C, D) is in the form ofthe special coordinate basis of 
Theorem 5.4.1. It is straightforward to verify that the closed-loop system matrix 

is given by 

* 1 Lsd Cd 

Add -BdF :(c)+LddCd 

Obviously, the closed-loop system has n;; + nc eigenvalues at A(A~) C C- and 

A(A~c) c C-. It is thus sufficient to show the stability of the closed-loop system 

by showing the stability of the subsystem matrix 

Asmtx = [Ass-BosFs? i:.sdCd ]. 
( ) (10.2.31) 

- BOdFsO-BdFsl c Add -BdFd(c)+LddCd 

In view of the special structures of Add' Bd and Cd, it is simple to see that the 
stability of Asmtx is equivalent to the stability of an auxiliary subsystem charac
terized by the state space equations 

(10.2.32) 
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and fori = 1,2, ... ,md, 

where 

(10.2.35) 

(10.2.36) 

and 

Si(c) = diag{ 1, c, ... ,cqi - 1 }. (10.2.37) 

We first define a state transformation 

[

FSli 1 
x. ~ x" Xi ~ xi + ! x" i ~ 1,2, ... ,1Ild; => 

We then have 

(10.2.39) 

and fori = 1,2, ... ,md, 

(10.2.40) 

(10.2.41) 

where Lis = Lis - LidFs1 . For future use, we note that the state transformation 

of (10.2.38) has the form 

- [I 0] rs = * I ' (10.2.42) 

and the system matrix for the state equations of (10.2.39) to (10.2.41) is given by 

(10.2.43) 

where 

(10.2.44) 
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Next, we define another state transformation: 

The transformed state equations are then given by 

(10.2.46) 

and fori = 1,2, ... ,md, 

(10.2.47) 

The stability of the above system follows' obviously from the standard results of 

the singular perturbation methods of Kokotovic et al. [75]. For completeness, 

we let Ps and Pi, i = 1,2, ... , md, be positive definite matrices satisfying the 
Lyapunovequations 

(10.2.48) 

and fori = 1,2, ... ,md, 

(10.2.49) 

We note that such Ps and Pi always exist because A~s and Aq; - Bq; Fi are asymp
totically stable. Finally, we define a Lyapunov function, 

md 

V(x) = x~Psxs + L X~PiXi ~ o. (10.2.50) 
i=l 

Evaluating it along the trajectory of (10.2.46) and (10.2.47), we obtain 

(10.2.51) 

where Xsd is a constant matrix of appropriate dimensions and independent of c. 
Then, it is simple to see that there exists a scalar c* > 0 such that for every 
c E (0, c*], V :5 O. Hence, the subsystem matrix Asmtx of (10.2.31) is indeed 
asymptotically stable for all c E (0, c*]. This completes the proof of Item 1 of 
Theorem 10.2.1. 
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We next move to show Item 2 of Theorem 10.2.1. Without loss of generality, 
but for simplicity of presentation, we assume that the nonsingular transformations 
rs = f and ri = f, i.e., we assume that the system (A, B, r;;-lc, r;;-l D) is in the 
form of the special coordinate basis. In view of (10.2.18), let us partition F(c) as 

where 

[
Cila 

Fo = - ~ 

and 

cta + F~ COb + FbO COe 
o 0 0 
000 

COd] 
o , 
o 

Fd(e)o+Edd ]. 

(10.2.52) 
Then we have 

-Fbo 0 0] 
~b ~ ~d , 

and 
0 0 
0 0 

A=A+BFo, B= 0 0 (10.2.53) 
0 Be 

Bd 0 

With these definitions, we can write H(s, c) as 

H(s,c:) = C [Sf - A - B F(c:)r 1 • 

Then in view of (10.2.52), it can be easily seen that F(c:) has the form 

F(c:) = Nr(c:)T(c:) + R, 

where 

and 
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while T(c) satisfies 

T(c) -t Tern, 

as c -t 0, where 

and 

(10.2.54) 

Dualizing the arguments in the proof of Theorem 8.2.1 of Chapter 8, it is straight

forward to show that the triple (..4,.8, em) is right invertible and of minimum 

phase. Thus, it follows from Lemma 10.2.1 that 

em [s1 -..4 - .8F(c)] -1 -t 0, (10.2.55) 

pointwise in s as c -t O. Next, let 

where 

o OJ. 

We have 

(10.2.56) 

pointwise in s as c -t O. In view of (10.2.42) and (10.2.43) together with some 

matrix inversion identities, e.g., (2.3.19) of Chapter 2, we can obtain 

(10.2.57) 

where *s are matrices of not much interest, and 
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and 

X 24 (S, e) = (sI - A~s)-1 Lsd Cd 

. [sI - Add + BdFd(e) - LddCd - Lds(sI - A~s)-l LSdCdr~ 

Then, we have 

X24 (S, e) = (sI - A~s)-l LsdCd[sI - Add + BdFd(e)r1 

. {I - [Ldd+Lds(sI _A~s)-l LSd] Cd[sI -Add +BdF d(e)rl}-~ 

Note that (Add' Bd, Cd) is square and invertible with no invariant zeros and thus 

it is of minimum phase. Also note the structure of F d (e), which satisfies all the 

properties as stated in Lemma 10.2.1. It then follows from Lemma 10.2.1 that 

(10.2.58) 

pointwise in s as e -t 0, and hence X 24 (s, e) -t 0 pointwise in s as e -t O. 

Similarly, we can show that 

(10.2.59) 

pointwise in s as e -t O. It is clear now that 

Hs(s, e) -t Ce [sI - A - .aF(e)] -1 -t [0 Hs(S) 0 01, (10.2.60) 

pointwise in s as e ~ O. This completes the proof of Theorem 10.2.1. • 

10.2.2 H2 Control, Hoc Control and Disturbance Decoupling 

In a typical control system design, the given specifications are usually transformed 

into a performance index, and then control laws which would minimize a certain 

norm, say H2 or Hoc norm, of the performance index are sought. In what follows, 

we will demonstrate that by properly choosing the sub-feedback gain matrix F s 

in STEP ATEA-C.2, the ATEA design can be trivially adopted to solve the well

known H2 and Hoc control as well as disturbance decoupling problems. 

To be specific, we consider a generalized continuous-time system E with a 

state-space description: 

{
X = A x + B u + E w, 

E y = x, 

h = C x + D u, 

(10.2.61) 
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where x E Rn is the state, u E Rm is the control input, W E Rq is the external 
disturbance input, y = x is the measurement output, and hER P is the controlled 
output of E. We assume that (A, B) is stabilizable and (A, B, C, D) has no in
variant zeros on the imaginary axis. Then, the standard optimization problem is 

to find a control law 

u=Fx, (10.2.62) 

such that when it is applied to the given system (10.2.61), the resulting closed
loop system is internally stable, i.e., A(A+BF) C C-, and a certain norm of 
the resulting closed-loop transfer function from the disturbance input w to the 
controlled output h, i.e., 

Hhw(S) = (C + DF)(sI - A - BF)-l E, (10.2.63) 

is minimized. We will consider in this section the problems of H 2 optimal control 

and Hoo control. In particular, H2 optimal control is to minimize the H2-norm of 

Hhw (s) over all the possible internally stabilizing state feedback control laws (see 

Definition 2.4.5 of Chapter 2 for the definition of the H 2-norm of continuous-time 
systems). For future use, we define 

'Y2 := inf { IIHhWll21 u = Fx internally stabilizes E } . (10.2.64) 

Similarly, the standard Hoo control is to minimize the Hoo-norm of Hhw(S) over 
all the possible internally stabilizing state feedback control laws (see Definition 
2.4.5 of Chapter 2 for the definition of the H 00 -norm of continuous-time systems). 
For future use, we define 

'Y~ := inf {IIHhWlloo I u = Fx internally stabilizes E} . (10.2.65) 

We note that the determination of this 'Y~ is rather tedious. For a fairly large 
class of systems, 'Y~ can be exactly computed using some numerically stable 
algorithms. In general, an iterative scheme is required to determine 'Y~. We 
refer interested readers to the work of Chen [22] for a detailed treatment of this 
particular issue. For simplicity, we assume throughout this section that 'Y ~ has 
been determined and hence it is known. 

Finally, for the case when (A, B, C, D) has no invariant zeros on the imagi
nary axis, the disturbance decoupling problem (either in H 2 sense or in H 00 sense) 
is to find an appropriate state feedback control law of (10.2.62) such that A + B F 

is asymptotically stable and Hhw(S) -+ 0, pointwise in s as c -+ o. 
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We summarize in the following the solutions to the H 2 and H 00 control as well 
as disturbance decoupling problems. We assume that r s, r j and r 0 are the nonsin
gular state, input and output transformations that transfonn the matrix quadruple 
(A, B, C, D) into the special coordinate basis as in (10.2.2)-(10.2.5). Let 

E- .- r-1E-.- s -

E;; 
Et 
Eb 
Be 
Ed 

We have the following theorem. 

(10.2.66) 

Theorem 10.2.2. Consider the generalized continuous-time system E character

ized by 00.2.61). The ATEA design can be easily adapted to solve the H 2 and 
Hoo control as well as disturbance decoupling problems for E. More speciJically, 
we have 

1. lfthe sub-feedback gain matrix Fs in STEP ATEA-C.2 is chosen to be 

(10.2.67) 

where Ps > 0 is a solution of the algebraic Riccati equation 

PsAss + A~sPs +C~Cs - (PsBs +C~Ds)(D~Ds)-l (B~Ps +D~Cs) =0, 
(10.2.68) 

then the resulting closed-loop transfer function from w to h under the cor
responding ATEA state feedback law has the following property: 

IIH hwl12 = II [C + DF(c)][sI - A - BF(c)t1 EI12 -t ,;, (10.2.69) 

as c -t 0, i.e., the corresponding ATEA state feedback law solves the H 2 

suboptimal control problem for E. Furthermore, 

(10.2.70) 

2. Given a scalar, > ,~ ~ 0, if Fs in STEP ATEA-C.2 is chosen to be 

where Ps > 0 is a solution of the algebraic Riccati equation 

PsAss + A~sPs + C~Cs + PsEsE~Psh2 

(10.2.71) 

-(PsBs + C~Ds)(D~Ds)-l(B~Ps + D~Cs) = 0, (10.2.72) 
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then the resulting closed-loop transfer function from w to h under the cor
responding ATEA state feedback law has the following property: 

II Hhwlloo = II[C + DF(c)][sI - A - BF(c)t1 Elloo < 'Y, (10.2.73) 

for sufficiently small c, i.e., the corresponding ATEA state feedback law 

solves the Hoo 'Y-suboptimal control problem for~. 

3. If Es = 0, which has been shown in [22) to be the necessary and sufficient 

condition for the solvability of the disturbance decoupling problem for ~, 
then the ATEA state feedback law with any arbitrarily chosen Fs (subject 
to the constraint on the stability of A~s) has a resulting closed-loop transfer 
function Hhw(s, c) with 

Hhw(s, c) --t 0, pointwise in s as c --t 0, (10.2.74) 

i.e., any ATEA state feedback control law solves the disturbance decoupling 
problem for~. 

Proof. In view of the property of the ATEA design, i.e., (10.2.24), and (10.2.66), 

we have 

pointwise in s as e --t O. Then, it follows from the well-known results (see, e.g., 
[50] and [120]) that the state feedback law with a gain matrix given in (10.2.67) 

has a resulting closed-loop transfer function H s,hw (s) with 

(10.2.76) 

and the state feedback law with a gain matrix given in (10.2.71) has a resulting 

closed-loop transfer function Hs,hw(S) with 

IIHs,hwlloo < 'Y, :::} IIHhw(S, e)lloo < 'Y, for sufficiently small e, (10.2.77) 

and lastly, any ATEA state feedback gain has a reSUlting closed-loop transfer func

tion Hs,hw(S) = 0 provided that Es = 0, which implies that Hhw(s, e) --t 0 

pointwise in s as e --t O. 

Finally, we note that both Riccati equations (10.2.68) and (10.2.72) have a 

unique solution Ps > 0 as the subsystem (Ass, Bs, cs, Ds) is left invertible with 

no infinite zeros and has no invariant zeros in CO U C-. This completes the proof 

of Theorem 10.2.2. • 

We next illustrate the above results in the following example. 
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Example 10.2.1. Consider a given system (10.2.61) with 

1 0 1 0 0 0 0 1 1 
0 1 1 1 0 0 0 0 1 

A= 1 1 1 1 1 , B= 1 0 , E= 10 , (10.2.78) 
0 0 0 0 1 0 0 0 1 
1 1 1 1 1 0 1 1 0 

and 

C=[~ o 11 0 ~ ] , D = [~ ~]. (10.2.79) o 0 1 

The quadruple (A, B, C, D) is already in the form of the special coordinate basis 
presented in Chapter 5. It is invertible and hence its associated Xb and Xc are 
nonexistent. It has two unstable invariant zeros both at s = 1 and two infinite 
zeros of orders 1 and 2, respectively. Moreover, we have 

and 

Cs = [~ ~], Ds = [~ ~]. 
Since Es -::P 0, the disturbance decoupIing problem for the given system is not 
solvable. We will thus focus on solving the H 2 and Hoo suboptimal control prob
lems for the system. Following the construction procedures of the ATEA algo
rithm in the previous section, we obtain a state feedback 

where 

Fs = [FSll Fs12 ] 
Fs21 Fs22 

(10.2.81) 

is to be selected to solve either the H2 or Hoo control problem. The closed-loop 
eigenvalues of A + BF are asymptotically placed at A(Ass - BsFs), -l/e and 
-1/ e ± j / e, respectively. 

1. H2 Control. Solving the H2 algebraic Riccati equation of (10.2.68), we get 

[ 4 -2] 
Ps = -2 2' 
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Figure 10.2.1: The H2-normofthe closed-loop system vs lIe. 

which gives a sub-feedback gain, 

F8=[_~ ~], 
and 12 = Jtrace (E~PsEs) = v'6. Thus, it follows from (10.2.80) and 
(10.2.81) that the H2 suboptimal control law is given by u = F(e)x, with 

__ [ 2/e + 1 1 lie + 1 1 1] 
F(e) - -4/e2 + 1 4/e2 + 1 1 2/e2 + 1 2/e + 1 . 

Figure 10.2.1 shows the values of the H 2-norm of the resulting closed-loop 
system versus lIe. Clearly, it shows that the H2-norm of the resulting 

closed-loop system tends to 12 = v'6 = 2.4495 as II e -4 00. 

2. Hoo Control. For the case when the quadruple, (A, B, C, D), is right invert
ible, it was shown in Chen (22) that the H 00 algebraic Riccati equation of 
(10.2.72) can be explicitly obtained by solving the two Lyapunov equations 

Ass8s + 8S~8 = BsB~ and AuTa + TsA~8 = E8E~. 
Solving the above Lyapunov equations, we obtain 

1 [1 1] 1 [2 1] 8s =212 andTs =211' 
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Figure 10.2.2: The maximum singular values of the closed-loop system. 

It then follows from Chen [22] that 

"Y~ = J Amax(TsS;-l) = 1.618034, 

and for any "Y > 'Y~, the solution to (10.2.72) can be expressed as 

-1 2"Y2 [2"Y2 -1 1 "Y2] 
Ps = (S8 - Ts/Y) = "Y4 _ 3"Y2 + 1 1- "Y2 "Y2-- 2 ' 

and the sub-feedback gain Fs is given by 

2"Y2 ["Y2 1] 
Fs = "Y4 _ 3"Y2 + 1 1 - "Y2 "Y2-- 2 . 

331 

Hence, given a 'Y > "Y~, it follows from (10.2.80) and (10.2.81) that the 
control law u = F( "Y, e)x, with 

Fh,e) =-

214 
EhC3'Y2+l) + 1 

-212 

E( 'Y'-a-y2+l) + 1 

1+1 
E 

1 

1 

1 

~+l 
1+1 
E 
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is an H 00 'Y-suboptimal controller for sufficiently small c. For illustration, 
we plot the maximum singular values of the resulting closed-loop system 
for a few different pairs of 'Y and c in Figure 10.2.2. The results indeed 
confirm our claim. 

10.3 Discrete-time Systems 

We now present the eigenstructure design method for a discrete-time system char
acterized by 

{ 
x{k + 1) = A x{k) + B u{k), 

y{k) = C x{k) + D u{k), 
(10.3.1) 

where x E IRn , u E IRm and y E IRP are the state, input and output of E. Again, 
we assume that (A, B) is stabilizable, and both B and C are of full rank. We 
further assume that E does not have any invariant zeros on the unit circle. 

10.3.1 Design Procedures and Fundamental Properties 

The design for discrete-time systems is much simpler in comparison to its contin
uous-time counterpart. It does not involve any asymptotic procedure as the stabil
ity requirement of discrete-time systems does not allow us to push the closed-loop 
eigenvalues to infinity. As such, the term asymptotic does not apply to discrete
time systems. However, for uniformity, we still call it an ATEA method for the 
discrete-time case. 

STEP ATEA-D.1. 

Follow Theorem 5.7.1 of Chapter 5 to compute nonsingular state, input and 
output transformations r s, rj and r 0, which transform the discrete-time 
system E of (10.3.1) into the special coordinate basis. For easy reference, 
we re-arrange the compact form of the special coordinate basis as follows: 

A-aa 0 0 L~bCb L~Cd 

BcE~ Ace Be Eta LcbCb LcdCd 
.4= 0 0 A;ta L~bCb L~dCd 

0 0 0 Abb LbdCd 
BdEda BdEdc BdEta BdEdb Add 
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BOa 
Boe 

+ Bta [C~ COe cta COb COd] , (10.3.2) 

BOb 
BOd 

Boa 0 0 

BOc 0 Be 
B= Bta 0 0 (10.3.3) 

BOb 0 0 

BOd Bd 0 

_ [co:. COe cta COb COdl 
C= 0 0 0 0 Cd , (10.3.4) 

0 0 0 Cb 0 _ [l~ 0 

il D= 0 0 (10.3.5) 

0 0 

Next, define 

[ A+ L~bCb L~Cdl [~ ~ l· Ass = ;; Abb LbdCd , Bs = BOb (10.3.6) 

BdEta BdEdb Add BOd Bd 

STEP ATEA-O.2. 

Let Fs be chosen such that A(Ass - BsFs) C C0 , and partition Fs as 

F. _ [F~ FbO FdO] 
s - + . 

Fad Fbd Fdd 
(10.3.7) 

STEP ATEA-O.3. 

Let Fe be any constant matrix subject to the constraint that 

(10.3.8) 

is a stable matrix. Note that the existence of such an Fe is guaranteed by 
the property of the special coordinate basis, i.e., (Ace, Be) is controllable. 

STEP ATEA-O.4. 
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In this step, various gains calculated in the previous steps are put together 

to fonn a composite state feedback gain matrix F. It is given by 

COc Cta+F~ Cob+FbO [C~ 
F=-ri Eda Edc F+ 

ad Fbd Fdd r;l. 
COd+FdO 1 

E~ Fe Eta 0 0 

(10.3.9) 

This completes the ATEA algorithm for discrete-time systems. 

We have the following theorem. 

Theorem 10.3.1. Consider the given system E of (10.3.1). Then, the ATEA state 

feedback law u(k) = Fx(k) with F given as in (10.3.9) has the following prop
erties: 

1. The closed-loop system comprising the given system E and the ATEA state 
feedback law is asymptotically stable. Moreover, the closed-loop eigenval
ues are given by 

(10.3.10) 

2. Let 

(10.3.11) 

Then, we have 

H(z):= (C+DF)(zI -A-BF)-l = [0 0 Hs(z)]r;-l, (10.3.12) 

where 

(10.3.13) 

Proof. It follows from some straightforward manipulations. • 
10.3.2 H2 Control, Hoo Control and Disturbance Decoupling 

As shown in its continuous-time counterpart. we demonstrate in the following 
that by properly choosing the sub-feedback gain matrix Fs in STEP ATEA-D.2. 

the ATEA design can be trivially adapted to solve the discrete-time H 2 and Hoo 
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control as well as the disturbance decoupling problems. More specifically, we 
consider a generalized discrete-time system E characterized by 

{ 
x(k+l) = A x(k) + B u(k) + E w(k), 

E : y(k) = x(k), 

h(k) = C x(k) + D u(k), 

(10.3.14) 

where as usual, x E IRn is the state, u E IRm is the control input, w E IRq is the 
external disturbance input, y = x is the measurement output, and hEIR P is the 
controlled output of E. We assume that (A, B) is stabilizable and (A, B, C, D) 
has no invariant zeros on the unit circle. We focus on finding a state feedback law, 

u(k) = Fx(k), (10.3.15) 

such that when it is applied to the given system (10.3.14), the resulting closed-loop 
system is internally stable, i.e., A(A+BF) CC0, and either the H2- or Hoo-norm 
(see Definition of 2.4.6 of Chapter 2) of the resulting closed-loop transfer function 
from the disturbance input w to the controlled output h, i.e., 

Hhw(Z) = (C + DF)(zI - A - BF)-l E, (10.3.16) 

is minimized. For easy reference, we define 

1'; := inf { IIHhwll21 u(k) = Fx(k) internally stabilizes E } . (10.3.17) 

We also define 

'Y~ := inf {IIHhwlloo I u(k) = Fx(k) internally stabilizes E} . (10.3.18) 

Again. we refer interested readers to the work of Chen [22] for the computation 
of this 'Y~. For simplicity, we assume throughout this section that l' ~ has been 
determined and hence it is known. 

Lastly, for the case when (A, B, C, D) has no invariant zeros on the unit circle, 
the disturbance decoupling problem is to find an appropriate state feedback control 
law of (10.3.15) such that A(A + BF) E Co and Hhw(Z) = O. 

Next, we assume that r s. n and r 0 are the nonsingular state, input and output 
transformations that transform the matrix quadruple (A, B, C, D) into the special 
coordinate basis as in (10.3.2)-(10.3.5). Let 

E;
Ec 

E- .- r-1E - E+ .- s - a 

Eb 

Ed 

(10.3.19) 
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We summarize in the following theorem the solutions to the discrete-time H 2 and 

Hoo control as well as disturbance decoupling problems. 

Theorem 10.3.2. Consider the generalized discrete-time system E characterized 

by (10.3.14). The ATEA design can be easily adapted to solve the H 2 and Hoo 

control as well as disturbance decoupling problems for E. More specifically, we 

have 

1. lfthe sub-feedback gain matrix Fs in STEP ATEA-D.2 is chosen to be 

(10.3.20) 

where Ps > 0 is a solution of the algebraic Riccati equation 

Ps = A~PsAs + C~Cs 
- (A~PsBs +C~Ds)(D~Ds + B~PsBs)-\A~PsBs +C~Ds)', (10.3.21) 

then the resulting closed-loop transfer function from w to h under the cor

responding ATEA state feedback law has the property 

(10.3.22) 

i.e., the corresponding ATEA state feedback law is an H 2 optimal control 
law for E. Furthermore, 

(10.3.23) 

2. Given a scalar'Y > 'Y~ ~ 0, if Fs in STEP ATEA-D.2 is chosen to be 

Fs = [B~PsBs+D~Ds-B~PsEs(E~PsEs-'Y2I)-lE~psBsrl 
. [B~PsAs+D~Cs-B~PsEs(E~PsEs-'Y2I)-lE~PsAs], (10.3.24) 

where Ps > 0 is a solution of the algebraic Riccati equation 

P. -A' P.A +c'rr _ [B~PsAs+D~Cs]'G-l [B~PsAs+D~Cs] 
s - s s s SVS E' P. A S E'P. A ' s S 5 5 S S 

and where 

B~PsEs ] 
E'P.E -",21 ' s 5 S , 

(10.3.25) 

(10.3.26) 
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then the resulting closed-loop transfer function from w to h under the cor
responding ATEA state feedback law has the property 

I/Hhwl/oo = II(C + DF)(zI - A - BF)-l Elloo <" (10.3.27) 

i.e., the corresponding A1EA state feedback law is an H 00 ,-suboptimal 
control law for I::. 

3. If Es = 0, which is the necessary and sufficient condition for the solvability 
of the disturbance decoupling problem for I:: , then the A1EA state feedback 
law with any arbitrarily chosen Fs (subject to the constraint on the stability 
of A~s) has a resulting closed-loop transfer function H hW(Z) = 0, i.e., any 
A1EA state feedback control law solves the disturbance decoupling prob
lem forI::. 

Proof. It follows from Theorem 10.3.1 and the standard results of discrete-time 
H2 and Hoo control (see, e.g., [22,29,120,135]). We note that the discrete-time 
Riccati equations of (10.3.21) and (10.3.25) can be solved nonrecursively using 
the procedures given in Chen [22]. • 
10.4 Exercises 

10.1. Consider the Hoo control for the system given in (10.2.61). Assume that 
(A, B, C, D) is right invertible. It follows from (10.2.23) that C s == 0 and 
thus, the corresponding H 00 -ARE (10.2.72) can be rewritten as 

Show that the above ARE has a positive definite solution if and only if 

,2 > b~l = Amax(TsSs- 1), 

where Ss > 0 and Ts ~ 0 are respectively the solutions of the Lyapunov 
equations 

Also, show that, for, > ,~, the positive definite solution to the H 00 ARE 
is given by 

In fact, ,~ is the infimum for the given H 00 control problem. 
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10.2. Consider a continuous-time system characterized by (10.2.61) with 

and 

[
1 0 
o 2 

A= 0 0 

1 1 

o = [0 0 1 0], D = O. 

It is simple to see that (A, B, 0, D) is already in the form of the special 
coordinate basis with two invariant zeros at 1 and 2, and a relative degree 
of2. 

(a) Solve the corresponding H 2-ARE (10.2.68) for Ps > 0, and compute 
the infimum 'Y2 and an H 2 suboptimal state feedback gain matrix 
F(e), explicitly parameterized in e. 

(b) Determine the infimum 'Y~' Given a 'Y > 'Y~, solve the correspond
ing Hoo-ARE (10.2.72) for Ps > O. Also, calculate an Hoo subopti
mal state feedback gain matrix F( 'Y, e), explicitly parameterized in 'Y 
and e. 

10.3. Consider a general singular H2 or Hoo control problem for 

{ 
:i; = A x + B u + E w, 

!:: y = x, 
h = C x + D u. 

The problem can also be solved by a so-called perturbation approach (see, 
e.g., [160]), in which we define a new auxiliary controlled output, 

Then, the H 2 suboptimal control law for the system can be computed by 
solving the following e-perturbed H2-ARE, 

for Pe > O. The H2 suboptimal state feedback gain matrix is given by 
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Similarly, given a 'Y > 'Y~, the Hoo suboptimal control law for the system 
can be computed by solving the following c-perturbed H oo-ARE, 

A' Pe + PEA + C;Ce + PEEE' Pd'Y2 

- (PEB + C:De)(D~De)-l(D~Ce + B' Pe) = 0, 

for Pe > O. The Hoo suboptimal state feedback gain matrix is given by 

Let us now consider the system given in Exercise 10.2. 

(a) Verify that the solution to the c-perturbed H 2-ARE satisfies 

Pe ~ [~8 ~], as c ~ 0, 

where Ps is the solution obtained in Part (a) of Exercise 10.2. 

(b) Given a'Y > 'Y~, verify that the solution to the c-perturbed H oo-ARE 
satisfies 

PE ~ [~s ~], as c ~ 0, 

where Ps is the solution obtained in Part (b) of Exercise 10.2. 

10.4. Consider a discrete-time system characterized by (10.3.14) with 

A; [~ O~5 ~ ~], B; [~] , E; [~] , 
and 

C = [0 0 1 0], D = O. 

Note that (A, B, C, D) is in the SCB form with two invariant zeros at 0 
and 0.5, and a relative degree of 2. 

(a) Solve the corresponding H2-DARE (10.3.21) for PI > 0, and find the 
infimum 'Y2 and the H2 optimal state feedback gain matrix F. 

(b) Determine the infimum 'Y~. Given a 'Y > 'Y~, solve the correspond
ing Hoo-ARE (10.3.25) for Ps > 0, and calculate the Hoo suboptimal 
state feedback gain matrix F( 'Y). 



Chapter 11 

Disturbance Decoupling with 
Static Output Feedback 

11.1 Introduction 

The problem of disturbance decoupling with or without internal stability by either 
state or measurement feedback is well known and has been extensively discussed 
in the literature for the last three decades. It can be stated as the problem of 
finding a feedback controller such that the closed-loop transfer function from the 
disturbance input to the controlled output is zero at all frequencies. This problem 
actually motivated the development of the geometric approach to linear systems, 
and has played a key role in a number of problems, such as decentralized con
trol, noninteracting control, model reference tracking control, H 2 optimal control 
and H 00 optimal control. The problem of disturbance decoupling with state feed
back (DDP) was solved by Basile and Marro [9] and Wonham and Morse [155], 
and the problem of disturbance decoupling with dynamic measurement feedback 
(DDPM) was solved by Akashi and Imai [1] and Schumacher [126]. Further
more, the problems of disturbance decoupIing with state feedback and internal 
stability (DDPS) and with dynamic measurement feedback and internal stability 
(DDPMS) were, respectively, solved by Morse and Wonham [101], Wonham and 
Morse [155], Imai and Akashi [69] and Willems and Commault [153]. 

For the problem of disturbance decoupIing with constant or static measure
ment feedback (DDPCM), there have only been a few results described in the 
literature. Hamano and Furuta [62] formulated the problem as finding a geometric 
subspace that only covers some special solutions. Recently, Chen [20] obtained a 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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set of explicit conditions for the solvability of the DDPCM and characterized all 
the possible solutions for a class of systems which have a left invertible transfer 
function from the control input to the controlled output. A similar result for this 
class of systems was also reported later by Koumboulis and Tzierakis [76]. More 
recently, Chen et a1. [25] has tackled the problem for more general systems and 
obtained some interesting results. For a system that does not satisfy the invert
ibility condition, [25] uses the special coordinate basis as given in Chapter 5 to 

obtain a reduced-order system. Then a complete characterization of all possible 
solutions to the DDPCM for the given system can be explicitly obtained, if the ob

tained reduced-order system itself satisfies the invertibiIity condition. The main 
contribution of the solutions given in [25] is that these solutions are characterized 
by a set of linear equations. This resolves the well-known difficulty in solving 
nonlinear equations associated with the DDPCM. When the invertibility condition 
is not satisfied, the solutions are characterized by a set of polynomial equations 

related to the obtained reduced-order system. This reduced-order characterization 
significantly simplifies the problem and reduces the computational cost in finding 

solutions to the DDPCM. The works of [20] and [25] form the core of this chapter. 

In this chapter, we consider the DDPCM for general linear time-invariant sys-
tems E characterized by 

{ 

:i; = A x + B u + E w, 

y = 0 1 X + Dl w, 

h = O2 X + D2 U + D22 w, 

(11.1.1) 

where x E jRn is the state, u E jRm is the control input, y E jRl is the measured 
output, w E jRq is the disturbance, h E jRP is the controlled output, and A, B, E, 

Cl , DI, C2, D2 and D22 are constant matrices of appropriate dimensions. Define 
Ep and EQ respectively as the quadruples characterized by (A, B, C2 , D2 ) and 
(A, E, Cll Dt). Then, the DDPCM is to find a constant measurement feedback 
control law, 

u = Ky, (11.1.2) 

with K E jRmxl, such that the transfer function Hhw(S) from w to h of the 
closed-loop system is zero, i.e., 

Hhw(S) = (C2 + D2KCd(sI - A - BKCl)-I(E + BKDI) 

+ (D22 + D2KDt) = O. (11.1.3) 

Furthermore, the problem of disturbance decoupling with constant measurement 
feedback and with internal stability (DDPCMS) is to find a constant measurement 
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feedback control in the form (11.1.2) such that (11.1.3) is satisfied and the closed

loop system state matrix A + B K C I is stable. 

11.2 Left Invertible Systems 

In this section, we present results on the DDPCM and DDPCMS for a class of sys
tems that have left invertible subsystems from the control input to the controlled 
output. In particular, we consider a time-invariant system E characterized by 

{
X = A x + B u + E w, 

y = C1 x, 

h = C2 X + D2 u, 

(11.2.1) 

with the quadruple (A, B, C2 , D 2 ) or Ep being left invertible. For this class of 
systems, we will be able to explicitly express the solvability conditions for the 
DDPCM and DDPCMS. In fact, all the solutions to the DDPCM will be explicitly 
constructed and characterized in terms of solutions to some linear equations. Un
fortunately, we still cannot fully and explicitly parameterize the solutions to the 
DDPCMS. 

First, we use the result of the special coordinate basis in Theorem 5.4.1 to find 
nonsingular transformations r s, r i and r 0 for Ep • Let us define a set of new state, 
control input and controlled output coordinates as follows: 

(11.2.2) 

The system of (11.2.1) can then be transformed into the following form E 8: 

e') ([ Au 
L~Cb L~Cd] ) (X' ) 

Xb = 0 Abb LbdCd + Ao Xb 

Xd BdEda BdEdb Add xd 

+ [ !: ~] (::) + [~ ] W, 
BdO Bd Ed (11.2.3) 

C,d) (~), y = [C1a Clb 

Co) [C~ COb COd] C') [ l~ 0] ( .. ) hb = 0 0 Cd Xb + 0 0 I 

hd 0 Cb o xd 0 0 Ud 
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where 

[
Bao] 

Ao:= BbO [ COa COb COd 1 , 
BdO 

[~]~r;lE' 
and 

[C1a C1b C1d 1 := C1f s' 

It is straightforward to verify that the DDPCM for (11.2.1) is equivalent to the 

DDPCM for (11.2.3). Next, let fa be a nonsingular transformation such that 

-1 aa aa -1 a [ACC Ace] [EC] 
fa Aaaf a = 0 A~~' fa Ea = 0 ' (11.2.4) 

(11.2.5) 

CoS a = [C8a C8a 1 , (11.2.6) 

and 

(11.2.7) 

where the pair (A~, E~) is controllable. We have the following theorem, the 
proof of which yields a constructive algorithm that parameterizes all solutions to 
the DDPCM for the given system. 

Theorem 11.2.1. Consider the system ~ of (11.2.1) with (A, B, C2 , D2 ) being 
left invertible. The DDPCM for ~ is solvable jf and only if 

(11.2.8) 

where Eb, Ed. E~a' C8a and Cfa are as defined from (11.2.3) to (11.2.7). 

Proof. Without loss of generality. we will assume that the given system is in the 
form of (11.2.3) with Xa being further decomposed into the form as in (11.2.4) 

and (11.2.7). 

(~:) Ifker (Cfa) C ker { [~i:]}. there exists at least one K E IRmxl such 

that 

[ C8a] KCc - [C8a] [Ko] CC - 0 E~a + 1a - Eda + Kd 1a - . (11.2.9) 
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Also, if Eb = ° and Ed = 0, it is straightforward to verify that the closed-loop 
system of I; with a static measurement feedback law Ud = K Y is given by 

=0, 

* 
* 
* 
* 

~] [1] 
(11.2.10) 

where *'s are some matrices of not much interest. Clearly, the control law U = K Y 
with K satisfying (11.2.9) solves the DDPCM for I;. 

({::::) Conversely, if the DDPCM is solvable for I;, then, there exists a matrix 
K E lRmxl such that 

(11.2.11) 

First we note that the set of all static measurement feedback laws is a sub-set of 
the set of all static state feedback laws. Thus, it follows from Wonham and Morse 
[155] or Wonham [154] that 

It then follows from the property of the special coordinate basis of Theorem 5.4.1 
that Eb = 0 and Ed = O. Next, let us define 

W := (A + BKCl lim (E)), 

i.e., the smallest (A + BKCl)-invariant subspace containing im (E). Thus, the 
equality in (11.2.11) implies that We ker (C2 + D2KCl ) and by definition 

We V'(A,B,C"D,) ~ X. ~ ~~ {[~ m 
Hence, there exists a similarity transformation T such that 

(11.2.12) 

and 
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where (ACC, EC) is controllable. It is now straightforward to verify that T can be 

chosen as the form 

[
T* 0 0] 

T= 0 I 0 , 
o 0 I 

(11.2.13) 

where T* is of dimensions dim (Xa) x dim (Xa). Let 

(11.2.14) 

We note that (11.2.12)-(11.2.14) imply that 

(11.2.16) 

and 

[ C8a + Koqa cga + KoCfa_ ] T. = [0 *] 
Bd(EJa + Kdqa) Bd(E~a + Kdqa) * , 

(11.2.17) 

where again * denotes a matrix of not much interest. Here we note that (11.2.15)

(11.2.17) imply that the system characterized by the matrix triple 

([A~ A~~] [E~] [ C8a + Koqa cga + KoCfa ]) 
o A~~' 0 ' Bd(Eda + Kdqa) Bd(EJa + KdCfa) 

has no infinite zeros. Then the controllability of (A~~, E~) implies that 

(11.2.18) 

Since Bd is of full column rank (see Theorem 5.4.1), (11.2.18) is equivalent to 

or 

[ C8a ] [ Ko ] C ( C) { [C8a ] } Eda + Kd Cla = 0 ===> ker Cla C ker Eda . 

This completes the proof of Theorem 11.2.1. • 
The following is an interesting and useful proposition, which follows directly 

from the proof of Theorem 11.2.1. 
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Proposition 11.2.1. If the DDPCM for E of(11.2.1) with (A, B, C 2 , D2 ) being 
left invertible is solvable, then all the static measurement gain matrices that solve 
the DDPCM are characterized by 

K := { nK IKE IRffixl and [~t] + KC~a = 0 }, (11.2.19) 

where E~a' C8a and Cfa are as defined in (11.2.7). 

It is interesting to note that if C1 = I, i.e., all the states of E are available for 

feedback, then Cfa is always of full column rank, which implies that ker (Cfa) = 
{O} and the third condition of Theorem 11.2.1, i.e., 

ker(C~a) C ker {[~t]}, 

is automatically satisfied. Hence, the conditions in Theorem 11.2.1 are reduced 

to Eb = 0 and Ed = 0, which is equivalent to the geometric condition im (E) C 

V*(A, B, C2 , D2 ), i.e., the well-known condition for the solvability of the distur
bance decoupling problem with static state feedback (DDP). 

The following theorem deals with the disturbance decoupling problem with 
static measurement feedback and with internal stability (DDPCMS). 

Theorem 11.2.2. Consider the system E of (11.2.1) with (A, B, C2 , D2 ) being 
left invertible. The DDPCMS for E is solvable if and only if 

1. The DDPCM for E is solvable; 

2. The eigenvalues of A~~ are all in the open left-halfplane; 

3. There exists at least one K E K, where K is as defined in (11.2.19), such 
that A + EK01 is asymptotically stable, where 

COb COd], 

and 

[
B;O 0 1 01 = [CPa C1b C1d ], E = BbO 0 rj1. 
BdO Bd 

Here all the submatrices are as defined in (11.2.2)-(11.2.7). 
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Proof. Again, without loss of generality, we assume that the given system is in 
the form of (11.2.3) with x a being further decomposed into the form as in (11.2.4) 
and (11.2.7). 

(=>:) If the DDPCMS for E is solvable, then the DDPCM for E is also 
solvable. It follows from Proposition 11.2.1 that all the solutions that solve the 
DDPCM for E is given by }C of (11.2.19). Then, it is straightforward to verify 
that for any K E }C, 

A + BKCl = rs [Aii A- ~ _] r;l. 
o +BKC1 

(11.2.20) 

The stability of the closed-loop system implies that Aii must be a stable matrix, 
and moreover, there must exist at least one K E }C such that A + EKe! is 

asymptotically stable. 

({:::) The converse part of the theorem follows by simply reversing the above 
arguments. This completes the proof of Theorem 11.2.2. • 

We present in the following a numerical example that illustrates the results we 
have obtained in this section. 

Example 11.2.1. Consider a system characterized by (11.2.1) with 

A= 

and 

-1 0 1 
o -2 1 
o 0-1 
111 
112 
2 2-3 

1 
1 1 
o 1 
1 1 
2 3 

1 0 
o 
o 
1 
4 
6 -4 -5 

,B= 

000 
000 
000 
010 
100 
001 

,E= 

C1 = [~ 1 2 3 4 0] 
0000 l' 

[
1 1 2 2 3 
00010 

C2 = 0 0 0 0 1 
o 0 1 0 0 

o 0] o 0 
o 0 . 
o 0 

1 2 
3 4 
o 0 
o 0 ' 
o 0 
o 0 

It is simple to verify using the software toolkit of [87] that (A, B, C 2, D2 ) is al
ready in the form of the special coordinate basis as in Theorem 5.4.1. Moreover, 
(A,B, C2 , D2 ) is left invertible with two invariant zeros at s = -1 and s = -2, 
respectively, and two infinite zeros of order 1 and 2. Also, Eb = 0 and Ed = 0, 

[-1 0] [1 2] Aaa = 0 -2 ' Ea = 3 4 ' 
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and 

COa = [1 1], Eda = [~ ~], CIa = [~ ~]. 
It is straightforward to see that (Aaa, Ea) is controllable and 

ker { [~~:] } = ker (CIa). 

By Theorem 11.2.1, the DDPCM for this system is solvable. It follows from 

Proposition 11.2.1 that all the static measurement gain matrices that solve the 

DDPCM for the given system are characterized by 

i.e., any u = K y with K E K solves the DDPCM for the given system and any 

K such that u = K y solves the DDPCM for the given system must belong to K. 

Next, it is easy to observe that 

[
-1 0 1 0] [0 0 0] - 1 1 1 1 - 0 1 0 - [2 3 4 

A = 2 2 3 4 ' B = 1 0 0 ' C I = 0 0 0 
-3 -4 -5 6 0 0 1 

After a few iterations, we find that the static measurement feedback gain 

[-1 9] 
K = -1 -15 , 

-2 -20 

achieves complete disturbance decoupling for ~ and guarantees the internal sta

bility of the closed-loop system. The closed-loop poles of A + BKC! are actu

ally located at -1, -2, -11.276, -4.8372, and -0.9434 ± jl.0786. Hence, the 

DDPCMS for ~ is solved. 

11.3 General Multivariable Systems 

In this section, we tackle the DDPCM for general systems. We will first present 

some necessary conditions for the solvability of the problem. 

Theorem 11.3.1. Consider the given system ~ of (11.1.1). If the DDPCM for ~ 
is solvable, then ~ must satisfy the following conditions: 
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2. im (E + BSDI ) ~ V*(Ep) + Bker (D2); 

3. ker(C2 + D2SCd 2 S*(EQ) n C11{im(Dd}; and 

4. S*(EQ) ~ V*(Ep). 

Note that the subspaces V* and S* were defined earlier in Chapter 3. 

Proof. Firstly, if the DDPCM for E is solvable, then it obviously follows from 

(11.1.3) that D22 + D2SDI = 0 with S = -(D~D2)t D~D22D~ (DIDDt. Next, 

applying a pre-output feedback law 

u = Sy +v (11.3.1) 

to the given system (11.1.1), we obtain a new system, 

{
X = (A + BSCI ) x + B v + (E+BSDI ) W, 

y = CI X + DI W, 

h = (C2 + D2SCI) x + D2 V + 0 w. 

(11.3.2) 

Then, following the result of [136], one can show that the problem of disturbance 

decoupling without stability and with general proper dynamic measurement feed-

back, i.e., 

{ 
xemp = Aemp x emp + Bemp y, 

v = C emp xemp + N y, 
(11.3.3) 

for the above system (11.3.2) is solvable if and only if the following conditions 

are satisfied: 

1. im (E + BSDd ~ V* (i:p) + Bker (D2), 

2. ker (C2 + D2SCI ) 2 S*(i:Q) n C11{im (Dt}}, and 

3. S*(i:Q) ~ V*(i:p ), 

where i:p and i:Q are characterized by (A + BSCl> B, C2 + D2SCI , D2) and 

(A + BSCI,E + BSDI,CI,DI ), respectively. It was shown in Chapter 3, 

i.e., Lemmas 3.8.1 and 3.8.2, that both V* and S· are invariant under any state 

feedback and output injection. Thus, we have that V * (Ep) = V* (i:p), S* (EQ) = 
S*(:EQ), and hence the above three conditions are equivalent to Conditions 2-4 

of Theorem 11.3.1. Since the constant measurement feedback is a special case 
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of the general dynamic measurement feedback, it is clear that Conditions 1-4 are 
necessary for the solvability of the DDPCM for the given~. Here we note that 

for the case when D22 = 0, the first condition of Theorem 11.3.1 is automatically 

satisfied and S = o. • 

Theorem 11.3.2. Consider the given system ~ of (11.1.1). Let X and Y be any 
full rank constant matrices such thatker(X) = V*(~p) andim (Y) = S*(~Q)' If 
the DDPCM for ~ is solvable, then the following equation has at least one solution 
N, 

(11.3.4) 

Let N be the set of all the solutions of (11.3.4). Then, any constant measurement 
feedback law u = K y, which solves the DDPCM for ~, satisfies KEN, i.e., K 
is a solution of(11.3.4). 

Proof. If the DDPCM for the system of (11.1.1) is solvable, Conditions 1-4 of 
Theorem 11.3.1 must be satisfied. Utilizing the results of [136], one can show 
that Conditions 1-4 of Theorem 11.3.1 are equivalent to the following conditions: 
S* (~Q) ~ V· (~p) and there exists a matrix N such that 

([~ ~2] + [g2]N[Cl Dd) (S·(~Q)$lRq) ~ (V*(~p)${O}), 
(11.3.5) 

which is equivalent to the existence of a solution N to the equation (11.3.4). More
over, any dynamic measurement feedback law 

{ 
xcmp = Acmp xcmp + Bcmp y, 

u = Ccmp xcmp + N y, 
(11.3.6) 

which solves the problem of disturbance decoupling without stability for ~, must 
have its direct feedtbrough matrix N satisfying condition (11.3.5). Since any static 

measurement feedback law u = K y can be re-written as 

{ 
xcmp = * xcmp + * y, 

u = 0 xcmp + K y, 
(11.3.7) 

where *'s are some matrices of not much interest, hence if u = Ky solves the 
DDPCM for ~, then KEN. 

Finally, we would like to note that for any N E N, we have 
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im(E + BNDd ~ V·(~p) and (C2 + D2NCl)S*(~Q) = {O}. This completes 
the proof of Theorem 11.3.2. • 

Theorems 11.3.1 and 11.3.2 give necessary conditions for the existence of 
solutions to the DDPCM. We now use these results to present a necessary and 
sufficient condition for the solvability of the DDPCM and the DDPCMS for a 
special class of systems. 

Corollary 11.3.1. Consider the given system ~ of (11.1.1). Assume that both 
[C1 D1 ] and [B' D~] are of full rank, ~p is left invertible and ~Q is right in
vertible. Then, the problem of disturbance decoupling with constant measurement 
feedback (DDPCM) for ~ is solvable if and only if 

(C2 + D2NCt}(sI - A - BNCI}-l(E + BND1) + (D22 + D2ND1) == 0, 
(11.3.8) 

where N is a known constant matrix and is given by 

[XAY XE] [Y'C1'] N = -(B'X'XB + D~D2tl [B'X' D'] 
2 C2Y D22 D~ 

X(CIYY'C~ +DID~)-l. (11.3.9) 

Also, the DDPCMS for the given system ~ is solvable if and only if (11.3.8) 
holds, and A + ENGI is stable. Furthermore, both solutions to the DDPCM and 

DDPCMS for the given ~, if existent, are identical. They are uniquely given by 
u=Ny. 

Proof. We first show the DDPCM case. If condition (11.3.8) holds, then it is 
simple to see that u = Ny solves the DDPCM for~. Conversely, if the DDPCM 
for ~ is solvable, then by Theorem 11.3.2 there exists a nonempty set N and any 
constant measurement feedback law u = Ky, which solves the DDPCM for~. 
must satisfy KEN. Under the conditions that ~p is left invertible and [B' D~] 

is of full rank, it follows from the structural decomposition of Chapter 5 that there 
exist nonsingular transformations r s' r 0 and ri such that 

(11.3.10) 

and 

(11.3.11) 
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Thus, we have 

[~] = [~:: ;d] rit, 
Do. 0 

X = [~ ~ ~] r;-l and (11.3.12) 

where both Bd and Do. are of full rank. Hence, [B' X' D~]' are of full column 
rank. Similarly, under the conditions that ~Q is right invertible and [CI D I ] is 
of full rank, one can show that [C I Y DI ] is of maximal row rank. Re-write 
equation (11.3.4) as 

[~~] N[CIY Dd = - [~:~ ;~]. (11.3.13) 

It is simple to see that the above equation has at least one solution. Moreover, 
it is unique and is given by (11.3.9) and thus N is a singleton. Hence, we have 

K = N and condition (11.3.8) holds. 
The result of the DDPCMS is quite obvious as the stability of the closed-loop 

system is governed by the eigenvalues of A + BNCI . • 

Next, we will proceed to tackle the case when a given system does not satisfy 
the conditions posed in Corollary 11.3.1. We will partition the given system ~ of 
(11.1.1) into subsystems using the structural decomposition technique (the special 
coordinate basis) of Chapter 5. From now on, we will assume that the necessary 
conditions for the solvability of the DDPCM in Theorem 11.3.1 are satisfied. The 
following is a step-by-step algorithm. 

STEP DDPCM-R.O.s.l. 

Compute 

N = -(B'X'XB + D~D2)t[B'X' D'] [XAY XE] [y'q] 
2 C2Y D22 D~ 

(CIYY'C~ + DIDD t , (11.3.14) 

and then apply a pre-output feedback u = Ny + v to the given system ~ to 
yield the new system 

{
X = (A + BNCI ) x + B v + (E + BN DI ) w, 

y = CI X + DI W, 

h = (C2 + D2NCI ) x + D2 V + 0 w. 

Furthermore, we have im (E + BN Dd ~ V*(Ep). 
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STEP DDPCM-R.O.s.2. 

Find a nonsiogular transformation r m such that 

and 

e -Ie [CI,O] 
1m :=rm 1 = e I 

1,1 

D -I [DI,o] 
1m := r m DI = 0 I 

where DI,o is of maximal row rank. 

STEP DDPCM-R.O.s.3. 

Utilize the special coordinate basis of Chapter 5 to find the nonsingular 
transformations r 8, rj and r 0' i.e., let 

(11.3.15) 

which yields the transformed system 

[ Cl,Oc C1,oa 
Ym = 

Cl,lC C1,la 

LcbCb 
LabCb 

Abb 
BdEdb 
o Be 
o 0 
o 0 

Bd 0 

C1,Ob CI,Od] (::) + [Dl,o] W, 

C1,lb C1,ld Xb 0 
Xd 

COa 
o 
o 
o 

COb COd] (XC) o Cd Xa 
Cb 0 Xb 
o 0 Xd 

[

ImO 0 0 
+ 0 0 0 

o 0 0 
o 0 0 

i](~) , 
(11.3.16) 
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where 

[
BeO] 

Ao:= ~:: [ COe 

BdO 
COa COb COd 1 , 

and 
(11.3.17) 

Let EN be characterized by (A + BNC1 ,B, C2 + DNC1 , D2)' We further 
note that the decomposition in (11.3.16) has the following properties: The 
pair (Ace, Bc) is controllable and EN is left invertible if Xc is nonexistent; 
(Abb, Cb) is observable and EN is right invertible if Xb is nonexistent; EN is 
invertible if both Xc and Xb are nonexistent; (Add, Bd, Cd) is square invert
ible and is free of invariant zeros; the eigenvalues of Aaa are the invariant 
zeros of EN; and finally. 

It is simple to verify that under the conditions of Theorem 11.3.1. we have 
Eb = O. Ed = O. Moreover. the DDPCM for (11.1.1) is equivalent to that 
for the transformed system (11.3.16). 

STEP DDPCM-R.O.s.4. 

Let f a be a nonsingular transformation such that 

-1 aa aa -1 a [ACC Ace] [EC] 
fa Aaaf a = 0 A~' fa Ea = 0 ' 

and 

COaf a = [C8a C8a 1 , 

Edafa = [EJa ESa]' Ecafa = [E~a E~a], 

where (A~i, E~) is controllable. 

(11.3.18) 

(11.3.19) 

(11.3.20) 

(11.3.21) 

(11.3.22) 



356 Chapter 11. Disturbance Decoupling with Static Output Feedback 

STEP DDPCM-R.O.s.5. 

Define a reduced-order auxiliary system 1;R as follows: 

{ 

XR = AR XR + BR uR + ~ W, 

YR = C 1R XR + DIR W, 

hR = C2R XR + D2R UR, 

where 

AR = [Aocc BcEga] [Bco ] 
Acc + BC [ Coc C8a 1 , 

aa aO 

B = [Bco 
R BC 

aO 

and 

o Bc 0] -1 [Imo o 0 0 rj , D2R = 0 
o 

(11.3.23) 

o 0] r:-1 
o 0 l' 

C -r [Cl,oe Cf,oa] D =r [D1,o] c = [Coe C8a]. 
lR - m ce' lR m 0 ,2R E Ee 

C1,le 1,la de da 

This completes the algorithm. 

Let nx be the dimension of the space spanned by XR' Apparently, nx can 
in general be considerably smaller than n, the dimension of the original system 
(11.1.1). Furthermore, it is simple to see that CAR, BR, C2R' D2R) is right invertible 
without infinite zeros. For the given system 1; of (11.1.1) and the reduced-order 
system 1;R of (11.3.23), we define 

K := { K I U = Ky solves the DDPCM for 1; }, (11.3.24) 

and 

KR := { KR I UR = KRYR solves the DDPCM for 1;R }. (11.3.25) 

We now establish an equivalence between the DDPCM for the given system 
1; in (11.1.1) and that for the reduced-order system 1; R in the following theorem. 

Theorem 11.3.3. Consider the given system 1; of (11.1.1). Assume that Condi

tions 1-4 of Theorem 11.3.1 are satisfied. Then, we have 

(11.3.26) 

where N is given by (11.3.14). Thus, the solvability of the DDPCM for 1; of 
(11.1.1) and that for 1;R of(11.3.23) are equivalent. 
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Proof. Without loss of generality but for simplicity of presentation, we assume 

that the nonsingular transfonnations r s = I, r j = I, r 0 = I and r m = I as all of 

them do not affect the solutions to the DDPCM at all. We will prove the theorem 

in two stages: 

STAGE 1. Assume that the feedback UR = KRYR is a solution for the DDPCM of 

the system ER • Let KR be partitioned as 

Then, KR E KR implies that D2RKRDlR = 0, which implies that Koo = 0 and 

KdO = O. Thus, we have 

X 2 ] ACC + BC (CC + K CC ) , (11.3.27) 
aa aD Oa 01 l,la 

where 

and 

together with 

and 

E E B K D [Ee + BeKcODI 0 ] 
RX:= R + R R IR = 0" 

GRX := [g:~] := G2R + D2RKRGIR 

= [Goc + KOl GI,le 
Edc + KdICI,IC 

Note that KR E KR implies that 

(11.3.28) 

(11.3.29) 
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for all s, or equivalently, 

for i = 0,1, ... , n - 1. Since Eb = 0 and Ed = 0, we have 

For the system (11.3.16). we apply the constant measurement feedback u = K RY 
to obtain 

and 

* * 
* * 
* * 
* * 

C C [ eRXO * * *] Cx := 2 + D2NC1 + D2KR 1 = 0 *' * * ' 

where *'s are some matrices of not much interest. It is now straightforward to 
verify that 

and 

It follows that 

exA~Ex = 0, Vi = 1,2, ... ,n - 1. 

Thus, 
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for all s. Moreover, it is easy to check that Dx := D22 + D2(N + KR)D1 = O. 
Hence, U = (N + KR)y is a solution for the DDPCM of the original system E and 

N + KR is an element of JC or equivalently 

(11.3.30) 

STAGE 2. Suppose that u = Ky is a solution for the DDPCM of the original 
system :E such that 

Hhw(S) = (C2 + D2KCt}(sI - A - BKCt}-l(E + BKDt} 

+ (D22 + D2KD1) = O. (11.3.31) 

Clearly, we have 

(11.3.32) 

Next, we proceed to define the smallest (A + BKCt}-invariant subspace contain
ingim(E+ BKDt} as 

W:= (A+BKC1Iim(E+BKD1))' 

We note that this subspace W is well defined as both A + B K C 1 and E + B K Dl 
are constant matrices. Then equations (11.3.31) and (11.3.32) imply that W C 

ker (C2 + D2K Cd and by definition 

Hence, there exists a similarity transformation T such that 

and 

(C2 + D2KC1)T = [0 Ce], W = span {T [~]}, 
where (A cc , EC) is controllable. It is now straightforward to verify that T can be 

chosen as the form 

(11.3.34) 
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where T. is of dimensions nx x nx. Next, we let KR := K - N. Clearly, KR 
is a solution to the DDPCM for the system in (11.3.16). We further partition the 

subsystem associated with Xa into the form (11.3.18)-(11.3.22), and partition K R 

as 

KR = [~:: ~::l. 
Kco Kc1 
K.o K.1 

(11.3.35) 

It is straightforward to show that D22 + D2K Dl = 0 implies Koo = 0 and 

im (E + BKDI) ~ V·(Ep ) implies KdO = O. Thus, we have D2RKRDIR = O. 
Also, (11.3.33)-(11.3.35) imply that 

(11.3.36) 

and 

(11.3.37) 

where ARX , Eax, CRXO and CRXd are as defined in (11.3.27) to (11.3.29), and a * 
again denotes a matrix of not much interest. Since (Add, Bd, Cd) is invertible, 

which implies that Bd is of full column rank, (11.3.37) is equivalent to 

CRXT. = [g::] T. = [0 * ]. (11.3.38) 

Note that (11.3.36) and (11.3.38) together yield 

for all s. Hence, U R = KRYR is a solution for the DDPCM of the reduced-order 

system ER, which implies that 

K, ~ {KR + N I KR E K,R}' (11.3.39) 

Equations (11.3.30) and (11.3.39) imply K, = {KR + N I KR E K,R}' • 

The following corollaries deal with some special cases for which we are able 

to obtain complete solutions for the DDPCM. Corollary 11.3.2 recovers the results 
that we have obtained in Section 11.2. 

Corollary 11.3.2. Consider the given system E of (11.1.1) with the matrix quadru
ple (A, B, C2 , D2 ), or Ep , being left invertible. Then, the problem of disturbance 
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decoupling with constant measurement feedback is solvable for E if and only if 

Conditions 1-4 of Theorem 11.3.1 are satisfied and 

ker (ctla) C ker { [~~:] } , (11.3.40) 

and all solutions to the DDPCM for this class of systems are characterized by 

[~:]+ [~::l Gl,b = 0 }, 

(11.3.41) 

where K *0 and K *1 are any constant matrices of appropriate dimensions. 

Next, recall the given system E in (11.1.1). We define a transposed system of 

E as 

{
X = A' x + c~ u + c~ w, 

y = B' x + D~ w, 

h = E' x + D~ u + D~2 W. 

(11.3.42) 

It is apparent that the DDPCM for E is solvable if and only if the DDPCM for the 

above transposed system is solvable. Furthermore, if E Q is right invertible, then 

the transposed system satisfies the condition of Corollary 11.3.2. Thus, we have 

the following corollary. 

Corollary 11.3.3. Consider the given system E of (11.1.1). IfE Q is rightinvert
ible, then the set of all possible solutions to the DDPCM for ~ can be obtained by 
applying the result of Corollary 11.3.2 to the transposed system (11.3.42). 

From Corollary 11.3.2 and Corollary 11.3.3, we see how to solve the DDPCM 

for ~ when either ~p is left invertible or ~Q is right invertible or both. It is very 

interesting to note that the solutions can be obtained by solving a set of linear 

equations in the form (11.3.41). Thus, the solutions can be easily computed. 

We now further tackle the case when Ep is not left invertible and ~Q is not right 

invertible. For this case, we use the following algorithm to obtain an irreducible 

reduced-order system, which considerably simplifies the solution of the DDPCM. 

The basic idea is as follows: It is clear from Theorem 11.3.3 that the DDPCM for 

the original system is equivalent to that for a much smaller dimensional auxiliary 

system E R, which is taken from a subset in V* of the original system. We then 

dualize this auxiliary system and apply a similar reduction on it to obtain a new 

auxiliary system whose dynamical order is further reduced. We keep repeating 
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this process until we reach a system that is irreducible. We have the following 

step-by-step algorithm. 

STEP R.R.O.S.l. 

For the given system E, whose Ep is not left invertible and E Q is not right 
invertible, we apply STEPS DDPCM.R.O.s.l to DDPCM.R.O.s.5 to obtain 
a constant matrix N and a reduced-order system E R. Let Ea:,R := ER and 
Na: := N with a = 1. Furthermore, we append a subscript a to all the 

matrices of Ea:,R' 

STEP R.R.O.s.2. 

For Ea:,R' define an auxiliary system E~,R as 

{ 

Xa:,R = A~,R Xa:,R + C~,lR Ua:,R + C~,2R Wa:,R, 

Ya:,R = B~,R Xa:,R + D~,2R Wa:,R, 

ha:,R = E~,R Xa:,R + D~,lR Ua:,R' 

(11.3.43) 

If the above system E~,R does not satisfy Conditions 1-4 of Theorem 11.3.1, 
then the DDPCM for E has no solution and the procedure stops. If the above 
system E~,R cannot be further reduced, we let a := a, fix be the dynamical 
order of Ea:,R and stop the algorithm. Otherwise, go to R.R.O.s.3. 

STEP R.R.O.s.3. 

Apply STEPS DDPCM.R.O.S.l to DDPCM.R.O.s.5 to E~,R to find another 
matrix N (rename it as N a:+l for future use) and another reduced order 

system, say Ea:+l,R' characterized by 

{ 

Xa:+l,R = Aa:+l,R Xa:+l,R + Ba:+l,R Ua:+l,R + Ea:+l,R Wa:+l,R' 

Ya:+l,R = Ca:+l,lR Xa:+l,R + Da:+l,lR Wa:+l,R. 

ha:+l,R = Ca:+l,2R Xa:+l,R + Da:+l,2R Ua:+l,R' 
(11.3.44) 

If (Aa:+l,R' Ba:+l,R' Ca:+l,2R' Da:+l,2R), which is always right invertible, is 
also invertible, we let a:= a+ 1, fix be the dynamical order of Ea:+l,R' and 
stop the algorithm. Otherwise, let a := a + 1 and then go back to STEP 

R.R.O.s.2. 

Consider the given system (11.1.1) with Ep being not left invertible and E Q 

being not right invertible, and assume that Conditions 1-4 of Theorem 11.3.1 are 
satisfied. We use the results of Theorem 11.3.3, Corollaries 11.3.2 and 11.3.3 to 
obtain the following theorem. 
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Theorem 11.3.4. If the quadruple (A&.R' B&.R' C&.2R' Do..2R) is invertible, then 

the DDPCM for E can be solved using the result of Corollary 11.3.2. Specifically, 
if we let K&.R be the set of all solutions to the DDPCM for E o.•R, then all the 

solutions to the DDPCM for E are given by 

K = { K&.R + N I Ko..R E K&.R, N = Nl + N~ + ... + No. }, (11.3.45) 

if a is an odd integer, or 

{ ' - - , , } K = K o..R + N I Ko..R E K&.R' N = Nl + N2 + ... + No. , (11.3.46) 

if a is an even integer. Obviously, if K&.R is empty, K is empty, i.e., the DDPCM 
to E has no solution at all. 

We illustrate the above results in the following example. 

Example 11.3.1. Consider a system characterized by (11.1.1) with 

-2 0 1 1 1 0 0 0 1 1 
0 -1 1 1 1 0 0 0 0 1 

A= 
0 0 -1 0 1 0 

, B= 
0 0 0 

, E= 
0 

1 1 1 1 1 1 1 0 0 0 
, 

0 0 0 0 0 1 0 0 0 0 
1 0 -3 -4 -5 6 0 1 0 0 

[1 1 2 3 4 ~], Dl = [~] , C1 = 0 0 4 3 2 

and 

[0 0 0 1 0 0] [0 0 0] C2 = 0 0 0 o 1 0 , D2 = 0 0 0 . 
o 0 1 000 000 

It is simple to verify, using the software toolkit of [87], that Ep is neither left nor 

right invertible and E Q is not right invertible. Moreover, Conditions 1-4 of The

orem 11.3.1 are satisfied. Following STEPS DDPCM.R.O.s.l to DDPCM.R.O.s.5, 

we obtain 

and a reduced-order system E1,R characterized by 
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[ -0.4472 1] [0] 
Cl,lR = 0 0 ' Dl,lR = 0 ' 

and 

C l ,2R = [-0.223~ -o.~], Dl,2R = [~ ~ ~]. 
Next, applying STEPS DDPCM.R.O.s.l to DDPCM.R.O.s.5 to the dual system of 

E1,R, i.e., Et,R' we obtain 

[0 0 0] 
N2 = 0 0 0 ' 

and another reduced-order system E 2,R characterized by 

A2,R = -1.5, B2,R = [0 0], E2,R = [0 0.5477], 

and 

C2,lR = [ ~ l' D2,lR = [~ ~l' C 2,2R = -0.9129, D2,2R = [2 0]. 
0.9129 0 0 

Clearly, (A2,R' B2,R, C 2,2R, D2,2R) is invertible as its special coordinate basis has 
no Xb , Xc and Xd components. Using the result of Corollary 11.3.2, we obtain a 
parametrized gain matrix 

Hence, we have 

(11.3.47) 

Any u = K y that is a solution to the DDPCM for the given system satisfies 
K E /C, and any u = K y with K E /C is a solution to the DDPCM for the system 
E. The DDPCMS for the system, unfortunately, is not solvable as it can be verified 

that for any K E /C of (1 1.3.47), A + BKCl always has a fixed eigenvalue at O. 

The following theorem deals with the situation when the solutions to the 
DDPCM cannot be obtained through the solution of linear equations. 
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Theorem 11.3.5. lfthe quadruple (A&,R,B&,R,C&,2R,D&,2R) is not invertible, then 
the DDPCM for the system :E of (11.1.1) is solvable if and only if there exists a 

solution k &,R for the following set of multivariable polynomial equations: 

(C&,2R + D&,2R K&,RC&,lR)(E&,R + B&,RK&,RD&,lR) = 0, 

(C&,2R + D&,2RK&,RC&,lR) (A&,R + B&,RK&,RC&,lR) 

x (E&,R + B&,RK&,RD&,lR) = 0, 

(C&,2R + D&,2RK&,RC&,lR) (A&,R + B&,RK&,RC&,lR)nx 

x (E&,R + B&,RK&,RD&,lR) = O. 

(11.3.48) 

Moreover, all the solutions to the DDPCM for :E, if they exist, are characterized 

by 

K = {K&,R + N I K&,R is a solution of(11.3.48), N = Nl + N~ + ... + N&}, 
(11.3.49) 

if a is an odd integer, or 

K = {K~'R + N I K&,R is a solution of(11.3.48), N = Nl + N~ + ... + N~}, 
(11.3.50) 

if a is an even integer. Clearly, the DDPCM for the given system :E has no solu
tions if (11.3.48) has no solution. 

Unlike the solutions obtained in Corollary 11.3.2 and Corollary 11.3.3, the 

equations given by (11.3.48) are nonlinear polynomial equations in K &,R' In prin

ciple, it is possible to eliminate K &,R from the equations in (11.3.48) subject to the 

existence condition for the real solutions of K &,R in terms of the system data A&,R, 

B&,R, E&,R, C&,lR, D&,lR' C&,2R and D&,2R, and this can be carried out through the 

use of QEPCAD in Collins [39,40]. This is a finite step computation problem, 

but the emerging conditions could be hard to interpret. If we are interested in 

a purely numerical characterization, then the method of Grobner bases combined 

with QEPCAD may be used to find all the solutions for polynomial equations (see, 

e.g., Cox et al. [42]). The computational benefit in finding solutions for :E &,R is 

obvious. 

We note that the result on the reduced-order characterization of the solutions 

to the DDPCM can be used to develop a numerical technique to establish a sta

bilizing constant measurement feedback to the problem of constant measurement 

feedback disturbance decoupling with internal stability (DDPCMS). In principle, 
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the solution for the DDPCMS can also be solved by QEPCAD in Collins [39,40], 
as the stability conditions can be expressed via a finite set of polynomial inequal
ities. 

11.4 Exercises 

11.1. Verify that the DDPCM is solvable for the system characterized by (11.1.1) 
with 

[ -~ 0 j], B=[~]' E=[i], A= -2 
1 

Gl = [~ 0 ~], Dl = [~] , 1 

and 

G2 = [0 0 1], D2 = 0, D22 = O. 

Find all its solutions, and show that the DDPCMS is also solvable for the 
given system. 

11.2. Suppose a given system of (11.1.1) whose irreducible reduced order system 
is given by 

with 

and 

{ 

X&,R = A&,R X&,R + B&,R U&,R + E&,R W&,R, 

Y&,R = Ga,lR Xa,R + Da,lR Wa,R, 

ha,R = Ga,2R Xa,R + Da,2R Ua,R, 

A&,R = -1.5, B&,R = [0 1], E&,R = [0 0.5477], 

G&,lR = [ ~ ], Da,lR = [~ ~], 
0.9129 0 0 

Ga,2R = -0.9129, Da,2R = [2 0]. 

Note that the subsystem (A&,R' B&,R' G&,2R' D a ,2R) is not invertible. Show 
that its corresponding set of multivariable nonlinear polynomial equations, 
i.e., (11.3.48), has a solution. Hence, by Theorem 11.3.5, the DDPCM for 
the given system is solvable. Find all the possible solutions to this set of 
polynomial equations. 



Chapter 12 

A Software Toolkit 

12.1 Introduction 

We have implemented all the algorithms presented in this monograph in MATLAB 

in a software toolkit called Linear Systems Toolkit. The beta version of this toolkit 
is currently available at http://linearsystemskit . net. Interested read
ers might wish to register online on the web site with their names, affiliations and 
email addresses. A zipped file that contains all m-functions of the toolkit will then 
be sent to the registered email addresses. Registered users will also automatically 
receive any advanced version of the toolkit through email. Nonetheless, the own
ers of the toolkit reserve all the rights. Users should bear in mind that the toolkit 
downloaded from the web site or received through email is free for use in research 
and academic work only. Uses for other purposes, such as commercialization, 
commercial development and redistribution without permission from the owners, 
are strictly prohibited. 

The current version of the toolkit consists of the following m-functions in its 
built-in help file: 

Linear Systems Toolkit - Version 0.99 

Released in August 2004 

Decompositions of Autonomous Systems 
ssd - continuous-time stability structural decomposition 
dssd - discrete-time stability structural decomposition 
jcf - Jordan canonical form 
rjd - real Jordan decomposition 

B. M. Chen et al., Linear Systems Theory
© Birkhäuser Boston 2004
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Decompositions of Unforced and Unsensed Systems 
osd - observability structural decomposition 
obvidx - observability index 
bdosd - block diagonal observable structural decomposition 
csd - controllability structural decomposition 
ctridx - controllability index 
bdcsd - block diagonal controllable structural decomposition 

Decompositions and Structural Properties of Proper Systems 
scbraw - raw decomposition without integration chains 
scb - decomposition of a continuous-time system 
dscb - decomposition of a discrete-time system 
kcf - Kronecker canonical form for system matrices 
morseidx - Morse indices 
blkz - blocking zeros 
invz 
infz 
1 invt 
r invt 

invariant zero structure 
- infinite zero structure 
- left invertibility structure 
- right invertibility structure 

normrank - normal rank 
v star - weakly unobservable subspace 
v minus - stable weakly unobservable subspace 
v-plus - unstable weakly unobservable subspace 
s star - strongly controllable subspace 
s minus stable strongly controllable subspace 
s-plus - unstable strongly controllable subspace 
r star - controllable weakly unobservable subspace 
n star - distributionally weakly unobservable subspace 
s lambda - geometric subspace S_{lambda} 
v lambda - geometric subspace V_{lambda} 

Operations of Vector Subspaces 
ssorder - ordering of vector subspaces 
ssintsec - intersection of vector subspaces 
ssadd - addition of vector subspaces 

Decompositions and Properties of Descriptor Systems 
ea ds - decomposition of a matrix pair (E/A) 

sd ds decomposition for descriptor systems 
invz ds descriptor system invariant zero structure 
infz ds descriptor system infinite zero structure 
1 invt ds - descriptor system left invertibility structure 
r_invt_ds descriptor system right invertibility structure 

System Factorizations 
mpfact - continuous minimum-phase/all-pass factorization 
iofact - continuous-time inner-outer factorization 
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gcfact - continuous generalized cascade factorization 
dmpfact - discrete minimum-phase/all-pass factorization 
diofact - discrete-time inner-outer factorization 

Structural Assignment via Sensor/Actuator Selection 
sa_sen - structural assignment via sensor selection 
sa_act - structural assignment via actuator selection 
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Asymptotic Time-scale and Eigenstructure Assignment (ATEA) 
ate a - continuous-time ATEA 
gm2star - infimum for continuous-time H2 control 
h2care - solution to continuous-time H2 ARE 
h2state - solution to continuous-time H2 control 
gm8star - infimum for continuous-time H-infinity control 
h8care - solution to continuous-time H-infinity ARE 
h8state - solution to continuous-time H-infinity control 
addps - solution to continuous disturbance decoupling 
datea - discrete-time ATEA 
dare - solution to general discrete-time ARE 
dgm2star - infimum for discrete-time H2 control 
h2dare - solution to discrete-time H2 ARE 
dh2state - solution to discrete-time H2 control 
dgm8star - infimum for discrete-time H-infinity control 
h8dare - solution to discrete-time H-infinity ARE 
dh8state - solution to discrete-time H-infinity control 
daddps - solution to discrete-time disturbance decoupling 

Disturbance Decoupling with Static Output Feedback 
ddpcm - solution to disturbance decoupling problem with 

static output feedback (DDPCM) 
rosys4ddp - irreducible reduced-order system that can be 

used to solve DDPCM 

There are 66 m-functions in the above Linear Systems Toolkit. Some of these 
m-functions are interactive, which require users to enter additional parameters 
when executed. Some can return results either in a symbolic or numerical form. 

12.2 Descriptions of m-Functions 

In this section, we give detailed descriptions for all the m-functions listed in Linear 
Systems Toolkit. This section is aimed to serve as a user manual for our toolkit. 
It is presented in a usual style as in other documents related to MATLAB. More 
features will be added to it from time to time. The most up-to-date version, when 
available, will be made available through the web site for the toolkit. 
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12.2.1 Decompositions of Autonomous Systems 

SSD Stability Structural Decomposition 

[D,T,nn,no,np] .. SSD(A) 

gives the following block diagonal form for a square matrix: 

D .. inv(T)*A*T .. 
A
o 
o 

o o 
Ao 0 
o A+ 

nn 
no 
np 

where eigenvalues of A-, Ao and A+ are, respectively, in the 
open left-half plane, jw axis and open right-half plane. 

See also DSSD. 

DSSD Discrete-time Stability Structural Decomposition 

[D,T,nn,no,np] = DSSD(A) 

gives the following block diagonal form for a square matrix: 

D inv(T) *A*T 
A
o 
o 

o o 
Ao 0 
o A+ 

nn 
no 
np 

where eigenvalues of A-, Ao and A+ are, respectively, inside, 
on and outside the unit circle of the complex plane. 

See also SSD. 

JCF Jordan Canonical Form 

[J,T] .. JCF(A) 

generates a transformation that transforms a square matrix into 
the Jordan canonical form, i.e., 

inv (T) *A*T J 

J k 

where each block J_i, i=l, 2, k, has the following form: 

See also RJD. 
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RJD Real Jordan Decomposition 

[J,T] = RJD(A) 

generates a transformation that transforms a square matrix into 
the real Jordan canonical form, i.e., 

J 1 
inv (T) *A*T J 

where each block J_i, i=1, 2, k, has the following form: 

eig_i 1 Eig_i I 

J i or 
eig_i 1 Eig_i I 

eig_ i Eig_i 

for real eig_i or for eig_i mu i + j * omiga_i, for which 

See also JCF. 

mu i omiga_i 
-omiga_i mu_i 

12.2.2 Decompositions of Unforced and Unsensed Systems 

OSD Observability Structural Decomposition for Unforced Systems 

[At,Ct,Ts,To,uom,Oidx] = OSD(A,C) 

returns an observability structural decomposition for (A,C). 

Input Parameters: 

x = A X, 

Output Parameters: 
Ao * 0 * 0 1 
0 * I_{k_1-1} * 0 I 

At = inv(Ts)*A*Ts 0 * 0 * 0 I 
I 

0 * 0 * I_{kJ>-1} I 
0 * 0 * 0 ] 

0 1 0 0 0 
Ct = inv(To)*C*Ts 

0 0 0 1 0 

uom unobservable modes & Oidx = observability index of (C,A) 

See OBVIDX, BDOSD and CSD. 
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OBVIDX Observability Index of Matrix Pair (A,C) 

Oidx = OBVIDX(A,C) 

returns the observability index for an unforced system. 

Input Parameters: 

x = A x, y = C x 

Output Parameters: 

Oidx = observability index of (A,C) 

See also OSD and CTRIDX. 

BDOSD Block Diagonal Observable Structural Decomposition 

[At,Ct,Ts,To,ks] = BDOSD(A,C) 

transforms an observable pair (A,C) into the block diagonal 
observable structural decomposition form. 

Input Parameters: 

x = A x, y C x 

Output Parameters: 

A_I 0 0 0 
0 A_2 0 0 

At inv(Ts)*A*Ts 0 0 A 3 0 

0 0 0 A k 

C 1 0 0 0 

* C_2 0 0 
Ct inv(To)*C*Ts = * * C 3 0 

* * * C k 

* * * * 
where 

[ * 1 0 0 

I * 0 1 0 
A i I 

I * 0 0 1 
[ * 0 0 0 

C_i = 1 0 0 0 

ks: contains the sizes of blocks A_I, A_2, A_k. 

See also OSD and BDCSD. 
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CSD Controllability Structural Decomposition for Unsensed Systems 

[At,Bt,Ts,Ti,ucm,Cidx) = CSD(A,B) 

returns a controllability structural decomposition for (A,B). 

Input Parameters: 

x = A x + B u 

Output Parameters: 

[ Ao 0 0 0 0 ) 

I 0 0 I_{k_l-l} 0 0 I 
At inv(Ts)*A*Ts I * * * * * I 

I I 
I 0 0 0 0 I_{kJ>-l} I 
[ * * * * * ) 

0 0 
0 0 

Bt inv(Ts)*B*Ti 1 0 

0 0 
0 1 

ucm = uncontrollable modes & Cidx controllability index 

See also BDCSD, CTRIDX and OSD. 

CTRIDX Controllability Index of Matrix Pair (A,B) 

Cidx = CTRIDX(A,B) 

returns the controllability index for an unsensed system. 

Input Parameters: 

x = A x + B u 

Output Parameters: 

cidx = controllability index of (A,B) 

See also CSD and OBVIDX. 

BDCSD Block Diagonal Controllable Structural Decomposition 

[At,Bt,Ts,Ti,ks) = BDCSD(A,B) 

transforms a controllable pair (A,B) into the block diagonal 
controllable structural decomposition form. 
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Input Parameters: 

x = A x + B u 

Output Parameters: 

A_I 0 0 0 
0 A 2 0 0 

At inv(Ts)*A*Ts 0 0 A_3 0 

0 0 0 A k 

B_1 * * * * ] 

0 B 2 * * * I 
Bt inv(Ts)*B*To = 0 0 B_3 * * I 

I 
0 0 0 B k * ] 

where 
[ 0 1 0 0 ] 0 

I 0 0 1 0 I 0 
A i = I I, B i 

I 0 0 0 1 I 0 
[ * * * * 1 1 

ks: contains the sizes of the blocks A_I, A_2, A_k. 

See also CSD and BDOSD. 

12.2.3 Decompositions and Properties of Proper Systems 

SCBRAW Special Coordinate Basis in a Raw Form (see Chu et al [36]) 

[At,Bt,Ct,Dt,Gms,Gmo,Gmi,dim] = SCBRAW(A,B,C,D) 

decomposes a proper system characterized by (A,B,C,D) into 
a raw SCB form without separating state subspace x_d into 
chains of integrators. 

Input Parameters: 

x = A x + B u, y C x + D u 

Output Parameters: 

x_t At x_t + Bt u_t, Y t = Ct x t + Dt u t -
where x t x a xb x c x d 1 ' with dimensions of 

dim n_a, n_b, n_c, n_d 1, respectively, 

and Gms, Gmo & Gmi = state, output & input transformations. 

See also SCB and DSCB. 
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SCB Special Coordinate Basis for Continuous-time Systems 

[As,Bt,Ct,Dt,Gms,Gmo,Gmi,dim] = SCB(A,B,C,D) 

decomposes a continuous-time system characterized by (A,B,C,D) 
into the standard SCB form with state subspaces x_a being 
separated into stable, marginally stable and unstable parts 
(in continuous-time sense), and x_d being decomposed into the 
form of chains of integrators. 

Input Parameters: 

x = A x + B u, y = C x + D u 

Output Parameters (see Chapter 5) : 

where x t 

dim = 

and Gms, Gmo & Gmi = state, output & input transformations. 

See also SCBRAW, DSCB and SSD. 

DSCB Special Coordinate Basis for Discrete-time Systems 

[As,Bt,Ct,Dt,Gms,Gmo,Gmi,dim] = DSCB(A,B,C,D) 

decomposes a discrete-time system characterized by (A,B,C,D) 
into the standard SCB form with state subspaces x_a being 
separated into stable, marginally stable and unstable parts 
(in discrete-time sense), and x_d being decomposed into the 
form of chains of delay elements. 

Input Parameters: 

x(k+l) 
y(k) 

A x(k) + B u(k) 
C x(k) + D u(k) 

Output Parameters: 

x_t(k+l) (As+B -o C_ O) x_tIkI + Bt u_t(k) 
Y tIkI Ct x_tIkI + Dt u_t(k) 

where x_t x_a~- x_a~O x_a ~ + x_b x c x d 

dim n_a~-, n_a~O, n_a"'+, n_b, n_c, n d 

] , with 

] , 

and Gms, Gmo & Gmi = state, output & input transformations. 

See also SCBRAW, SCB and DSSD. 
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KCF Kronecker Canonical Form of System Matrices 

[Ks,U,V,dims] = KCF(A,B,C,D) 

returns the Kronecker canonical form of a system matrix for a 
system characterized by (A,B,C,D), i.e., 

sI-A -B 
Ks U V 

C D 

where Ks, a symbolic variable, is in the Kronecker form. 

na na 
nb+pb nb 

dims nc nc+mc 
nd+md nd+md 

mO mO 
rO cO 

contains the dimensions of the Kronecker blocks associated with 
x_a, x_b, x_c, x_d, I and 0 (see Chapters 3 and 5) . 

See also SCB, DSCB and MORSEIDX. 

MORSEIDX Morse Invariance Indices of Proper Systems 

[11,12,13,14] = MORSEIDX(A,B,C,D) 

returns Morse structural invariance list for a system 
characterized by (A,B,C,D). 

11 zero dynamics matrix in Jordan form 
12 = I 2 List right invertibility structure 
13 = I 3 List left invertibility structure 
14 I 4 List infinite zero structure 

Note that 11 List should formally contain the invariant 
zeros and the sizes of their Jordan blocks. 

See also INVZ, INFZ, L_INVT and R INVT. 

BLKZ Blocking Zeros of Multivariable Systems 

bzero = BLKZ(A,B,C,D) 

returns blocking zeros of a system characterized by (A,B,C,D). 
A blocking zero, say 'alpha', is such that 

H(alpha) = C (alpha*I - A)A{_l} B + D = 0 

A blocking zero is also an invariant zero. 

See also INVZ. 
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INVZ Invariant Zeros and Structures of Proper Systems 

zrs = INVZ(A,B,C,D) 

returns invariant zeros of a system characterized by (A,B,C,D) 
and their structures. 

zrs • all the invariant zeros of the system 

Note that invariant zeros are sometimes called transmission 
zeros. However, the latter is only defined for controllable 
and observable systems. 

See also BLKZ and INFZ and MORSEIDX. 

INFZ Infinite Zero Structure of Proper Systems 

infzs = INFZ(A,B,C,D) 

returns the infinite zero structure of a system characterized 
by (A,B,C,D). 

infzs = I 4 List of Morse Indices 

See also INVZ, L_INVT, R_INVT and MORSEIDX. 

L_INVT Left Invertibility Structure of Proper Systems 

lefts. L_INVT(A,B,C,D) 

returns the left invertibility structure of a multivariable 
system characterized by (A,B,C,D). 

lefts = I_3 List of Morse Indices 

See also INVZ, INFZ, R_INVT and MORSEIDX. 

R_INVT Right Invertibility Structure of Proper Systems 

rights = R_INVT(A,B,C,D) 

returns the right invertibility structure of a multi variable 
system characterized by (A,B,C,D). 

rights = I_2 List of Morse Indices 

See also INVZ, INFZ, R_INVT and MORSEIDX. 
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NORMRANK Normal Rank of Proper System 

NR = NORMRANK(A,B,C,D) 

returns the normal rank of a linear system characterized 
by (A,B,C,D). 

See also INVZ. 

V_STAR Weakly Unobservable Geometric Subspace 

V = V_STAR(A,B,C,D) 

computes a matrix whose columns span the geometric subspace 
VA{*} for a system characterized by (A,B,C,D). 

Note: 

It is applicable for both continuous- and discrete-time 
systems. 

See also V_MINUS, V_PLUS and S STAR. 

V_MINUS Stable Weakly Unobservable Geometric Subspace 

V = V_MINUS(A,B,C,D[,dc]) 

computes a matrix whose columns span the geometric subspace 
VA{_} for a system characterized by (A,B,C,D). 

Note that by default or if dc= 0, the function returns a 
subspace for a continuous-time system. Otherwise, if 
dc = 1, it computes a subspace for a discrete-time system. 

See also V_STAR, V_PLUS and S MINUS. 

V_PLUS Unstable Weakly Unobservable Geometric Subspace 

V = V_PLUS(A,B,C,D[,dc]) 

computes a matrix whose columns span the geometric subspace 
VA{+} for a system characterized by (A,B,C,D). 

Note that by default or if dc = 0, the function returns a 
subspace for a continuous-time system. Otherwise, if 
dc = 1, it computes a subspace for a discrete-time system. 

See also V_STAR, V MINUS and S_PLUS. 
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S_STAR Strongly controllable Geometric Subspace 

S = S_STAR(A,B,C,D) 

computes a matrix whose columns span the geometric subspace 
S~{*} for a system characterized by (A,B,C,D). 

Note that this function is applicable for both continuous
and discrete-time systems. 

See also S_MINUS, S_PLUS and V STAR. 

S_MINUS Stable Strongly Controllable Geometric Subspace 

S = S_MINUS(A,B,C,D[,dc]) 

computes a matrix whose columns span the geometric subspace 
S~{-} for a system characterized by (A,B,C,D). 

Note that by default or if dc = 0, the function returns a 
subspace for a continuous-time system. Otherwise, if 
dc = 1, it computes a subspace for a discrete-time system. 

See also S_STAR, S_PLUS and V MINUS. 

S_PLUS Unstable Strongly Controllable Geometric Subspace 

S = S_PLUS(A,B,C,D[,dc]) 

computes a matrix whose columns span the geometric subspace 
S~{+} for a system characterized by (A,B,C,D). 

Note that by default or if dc = 0, the function returns a 
subspace for a continuous-time system. Otherwise, if 
dc = 1, it computes a subspace for a discrete-time system. 

R_STAR Controllable Weakly Unobservable Geometric Subspace 

R = R_STAR(A,B,C,D) 

computes a matrix whose columns span the geometric subspace 
R~{*} for a system characterized by (A,B,C,D). 

Note that this function is applicable for both continuous
and discrete-time systems. 
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N_STAR Distributionally Weakly Unobservable Geometric Subspace 

N = N_STAR(A,B,C,D) 

computes a matrix whose columns span the geometric subspace 
NA {*} for a system characterized by (A,B,C,D). 

Note that this function is applicable for both continuous
and discrete-time systems. 

S_LAMBDA Geometric Subspace S_lambda (see Chapter 3 for definition) 

S = S_LAMBDA(A,B,C,D,lambda) 

computes a matrix whose columns span S_{lambda} for a 
system characterized by (A,B,C,D), where 'lambda' is 
either a real or complex scalar. 

Note: This function is applicable for both continuous- and 
discrete-time systems. 

See also V_LAMBDA. 

V LAMBDA Geometric Subspace V_lambda (see Chapter 3 for definition) 

V = V_LAMBDA(A,B,C,D,lambda) 

computes a matrix whose columns span V_{lambda} for a 
system characterized by (A,B,C,D), where 'lambda' is 
either a real or complex scalar. 

Note: This function is applicable for both continuous- and 
discrete-time systems. 

See also S_LAMBDA. 

12.2.4 Operadons of Vector Subspaces 

SSORDER Ordering of Vector Subspace 

ss = SSORDER(X,Y) 

determines the ordering of two vector spaces respectively 
spanned by the columns of matrices X and Y. 

Output Parameters: 

if ss 
if ss .. 
if ss 

-I, subspace spanned by X < that spanned by Y 
0, subspace spanned by X that spanned by Y 
I, subspace spanned by X > that spanned by Y 
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if ss = j = sqrt{-l), they are not related at all. 

See also SSINTSEC and SSADD. 

SSINTSEC Intersection of Vector Subspace 

V = SSINTSEC(X,Y) 

computes intersection of two vector spaces respectively 
spanned by the columns of matrices X and Y. 

The columns of V form a basis for the intersection. 

See also SSORDER and SSADD. 

SSADD Addition of Vector Subspace 

V .. SSADD{X,Y) 

computes the addition of two vector spaces respectively 
spanned by the columns of matrices X and Y. 

The columns of V form a basis for the addition. 

See also SSORDER and SSINTSEC. 

We note that the above functions, although simple, are particularly useful in 
verifying geometric conditions for various control problems, and generating other 
geometric subs paces introduced in the literature. 

12.2.5 Decompositions and Properties of Descriptor Systems 

EA_DS Decomposition for a Pair of Square Matrices (E,A) 

[Et,At,P,Q,nl,n2] .. EA_DS{E,A) 

decomposes (E,A), related to descriptor systems, i.e., 

Ex=Ax+ 

into the following special form: 

Bt = P E Q = I o nl 
o N n2 

At .. P A Q Al 0 
o I 

nl 
n2 

where N is a nilpotent matrix, P and Q are nonsingular. 

See also SD_DS. 
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SD_DS Structural Decomposition of Continuous-time Descriptor System 

[Es,As,Bs,Cs,Ds,Ez,Psi,Psc,Psd,Psr,Gme,Gms,Gmo,iGmi,dim1 
= SD_DS(E,A,B,C,D) 

generates the structural decomposition of a descriptor system 
characterized by (E,A,B,C,D). 

Input Parameters: E x = A x + B u, y C x + D u 

Output Parameters: 

where x t 

(Es,As,Bs,Cs,Ds) has the same transfer function as that of 
the original system. Ez, Psi, Psc, Psd and Psr are some 
matrices or vectors whose elements are either polynomials 
or rational functions of s. In particular, 

Psc * X t + Psd * u t = Psr * x_z. 

Gms, Gmo & iGmi = state, output transformations and the 
inverse of the input transformation, and finally, Gme is 
a nonsingular transformation on matrix E. Both Gme and 
iGmi have their entries being some polynomials of s. 

Note: Also applicable to discrete-time descriptor systems. 

See also EA_SD, SCB and DSCB. 

INVZ_DS Invariant Zeros and Structures of Descriptor Systems 

zrs = INVZ_DS(E,A,B,C,D) 

gives invariant zeros of a descriptor system characterized 
by (E,A,B,C,D) and their structures. 

zrs = all the invariant zeros of the system 

See also INVZ. 

INFZ_DS Infinite Zero Structure of Descriptor Systems 

infzs = INFZ_DS(E,A,B,C,D) 

returns the infinite zero structure of a descriptor 
system characterized by (E,A,B,C,D). 

See also INFZ. 
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L_INVT_DS Left Invertibility Structure of Descriptor Systems 

returns the left invertibility structure of a descriptor 
system characterized by (E,A,B,C,D). 

R_INVT_DS Right Invertibility Structure of Descriptor Systems 

gives the right invertibility structure of a descriptor 
system characterized by (E,A,B,C,D). 

12.2.6 System Factorizations 

MPFACT Minimum-Phase/All-Pass Factorization of Continuous Systems 

[Am,Bm,em,Dm,Av,Bv,CV,Dv] = MPFACT(A,B,C,D) 

calculates a minimum-phase/all-pass factorization for a 
detectable system (A,B,C,D) with transfer function matrix 
G(s), in which both [B' 0'] and [C 0] are assumed to be 
of full rank, and (A,B,C,D) has no invariant zeros on the 
jw axis. 

The minimum-phase/all-pass factorization is given as 

G(s) = Gm(s) V(s) 

where 

Gm(s) • em (sI - Am)A{_l} Bm + Om 

is of minimum-phase and left invertible, and 

V(s) = CV (sI - Av)A{-l} Bv + Dv 

is an all-pass factor satisfying V(s) V' (-s) • I. 

See also IOFACT, GCFACT and DMPFACT. 

IOFACT Inner-Outer Factorization of Continuous-time Systems 

[Ai,Bi,Ci,Di,Ao,Bo,Co,Do] = IOFACT(A,B,C,D) 

computes an inner-outer factorization for a stable proper 
transfer function matrix G(s) with a realization (A,B,C,D), 
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in which both [B' D'J and [C DJ are assumed to be of full 
rank. 

The inner-outer factorization is given as 

G(s) = Gi(s) Go(s) 

where 

Gi(s) = Ci (sI - Ai)~{-l} Bi + Di 

is an inner, and 

Go(s) = Co (sI - AO)~{-l} Bo + Do 

is an outer. 

See also MPFACT, GCFACT and DIOFACT. 

GCFACT Generalized Cascade Factorization of Continuous Systems 

[Am,Bm,em,om,Au,Bu,Cu,DuJ • GCFA~T(A,B,C,D) 

generates a generalized cascade factorization for a system 
(A,B,C,D) with transfer function matrix G(s), in which both 
[B' D' J and [C DJ are assumed to be of full rank, and all 
the 'awkward' invariant zeros of (A,B,C,D) are detectable. 

The generalized cascade factorization is given as 

G(s) = Gm(s) U(s) 

where 

Gm(s) • em (sI - Am)~{-l} Bm + om 

is of minimum-phase and left invertible, and 

U(s) = CU (sI - Au)A{-l} Bu + Du 

is a stable right invertible and asymptotic all-pass, i.e., 

U(s) u' (-s) -> I as lsi -> infinity 

Note that users will be prompted to enter desired zero 
locations to replace those 'awkward' invariant zeros. 

See also MPFACT and IOFACT. 

DMPFACT Minimum-Phase/AII-Pass Factorization of Discrete Systems 

[Am,Bm,em,om,Av,Bv,Cv,Dvl • DMPFACT(A,B,C,D) 
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calculates a minimum-phase/all-pass factorization for a 
detectable system (A,B,C,D) with transfer function matrix 
G(z), which has no invariant zeros on the unit circle. 

The minimum-phase/all-pass factorization is given as 

G(z) ~ Gm(z) VIz) 

where 

Gm(z) ~ em (zI - Am)-{-l} Bm + Om 

is of minimum-phase and left invertible with no infinite 
zeros, and 

V(Z) = CV (zI - AV)-{-l} Bv + Dv 

is an all-pass factor satisfying VIz) V' (liz) I. 

See also DIOFACT and MPFACT. 

DIOFACT Inner-Outer Factorization of Discrete-time Systems 

[Ai,Bi,Ci,Di,Ao,Bo,Co,Do] = DIOFACT(A,B,C,D) 

computes an inner-outer factorization for a stable proper 
transfer function G(z) with a realization (A,B,C,D). 

The inner-outer factorization is given as 

G(z) = Gi(z) Go(z) 

where 

Gi(z) = Ci (zI - Ai)-{-l} Bi + Di 

is an inner, and 

Go(z) = Co (zI - Ao)-{-l} Bo + Do 

is an outer. 

See also DMPFACT and DIOFACT. 

12.2.7 Structural Assignment via Sensor/Actuator Selection 

The next two functions require users to enter design parameters during execution, 
which can only be determined when the system properties are evaluated. The 
functions are actually dual each other. The first one deals with sensor selection 
whereas the second one is about actuator selection. 



386 Chapter 12. A Software Toolkit 

SA_SEN Structural Assignment via Sensor Selection 

For a given unsensed system: 

x = A x + B u 

the function finds a measurement output matrix C such that 
the resulting system characterized by (A,B,C) has the pre
specified desired structural properties. 

Note: Users will be prompted to enter desired structural 
parameters after the properties of the given pair (A,B) 
is evaluated. 

See also SA_ACT. 

SA_ACT Structural Assignment via Actuator Selection 

B .. SA_ACT (A, C) 

For a given unforced system: 
dx!dt = A x, Y = C x 

the function finds an input output matrix B such that the 
resulting system characterized by (A,B,C) has the pre
specified desired structural properties. 

Note: Users will be prompted to enter desired structural 
parameters after the properties of the given pair (A,C) 
is evaluated. 

12.2.8 State Feedback Control with Eigenstructure Assignment 

ATEA Asymptotic Time-scale and Eigenstructure Assignment 

F .. ATEA(A,B,C,D[,option]) 

produces a state feedback law u = F x using the asymptotic 
time-scale structure and eigenstructure assignment design 
method for a continuous-time system characterized by 

x .. A x + B u, 

Users have the 'option' to choose the result either in a 
numerical or in a symbolic form parameterized by a tuning 
parameter 'epsilon'. The latter is particularly useful in 
solving control problems, such as H2 and H-infinity sub
optimal control as well as disturbance decoupling problem. 
By default or choosing option .. 0, the program will ask 
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users to enter a value for 'epsilon' and return a numerical 
solution. Otherwise, if option = 1, F will be in a symbolic 
form parameterized by 'epsilon'. 

Note that users will be asked to enter desired design eigen
structures during execution. The time-scale is parameterized 
by the tuning parameter 'epsilon'. 

See also H2STATE, H8STATE, ADOPS and OATEA. 

GM2STAR Infimum or Optimal Value for Continuous-time H2 Control 

gms2 = GM2STAR(A,B,C,O,E) 

calculates the infimum or the best achievable performance 
of the H2 suboptimal control problem for the system: 

x A x + B u + E w 
h C x + 0 u 

under all possible stabilizing state feedback controllers. 

See also H2STATE, GM8STAR and OGM2STAR. 

H2CARE Solution to H2 Continuous-time Algebraic Riccati Equation 

P = H2CARE(A,B,C,O) 

returns a positive semi-definite solution, if existent, for 
the following algebraic Riccati equation for continuous-time 
H2 optimal control: 

o = PA + A' P + C'C - (PB+C'O) (D'D) -{ -I} (PB+C'D)' 

Note that a positive semi-definite stabilizing solution is 
existent if and only if the quadruple (A,B,C,D) has no 
invariant zeros on the jw axis and D is of full column rank. 

See also H2STATE, H8CARE and H20ARE. 

H2STATE Continuous-time H2 Control Using the ATEA Approach 

F = H2STATE(A,B,C,O[,option)) 

generates a state feedback gain law u = F x, which solves 
H2 suboptimal control problem for the following system: 

x A x + B u + E w 
h = C x + D u 

i.e., the H2-norm of the resulting closed-loop transfer 
matrix from the disturbance, w, to the controlled output, 
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h, is minimized. Use GM2STAR to calculate the infimum or 
the best achievable H2 performance, i.e., gamma_2 A*. 

Users have the 'option' to choose the result either in a 
numerical or in a symbolic form parameterized by a tuning 
parameter 'epsilon'. By default or choosing option = 0, 
the program will ask users to enter a value for 'epsilon' 
and return a numerical solution. Otherwise, if option = 1, 
F will be in a symbolic form parameterized by 'epsilon'. 

See also GM2STAR, DH2STATE, ATEA, H8STATE and ADDPS. 

GM8STAR Infimum or Optimal Value for Continuous H-infinity Control 

gms8 = GM8STAR(A,B,C,D,E) 

calculates the infimum or the best achievable performance 
of the H-infinity suboptimal control problem for the plant: 

x = A x + B u + E w 
h C x + D u 

under all possible stabilizing state feedback controllers. 

See also H8STATE, GM2STAR and DGM8STAR. 

H8CARE Solution to H-infinity Continuous Algebraic Riccati Equation 

P = H8CARE(A,B,C,D,E,gamma) 

returns a positive semi-definite solution, if existent, for 
the following algebraic Riccati equation for continuous-time 
H-infinity control: 

o 

where 

B'P+D'C I' 
PA + A'P + C'C - I GA {_l} 

E'P I 

D'D 0 
G = 

o -gammaA2 I 

B'P+D'C 

E'P 

This CARE is related to H-infinity control for the following 
continuous-time system: 

x = A x + B u + E w 
h C x + 0 u 

Note that a positive semi-definite stabilizing solution is 
existent if and only if the quadruple (A,B,C,D) has no 
invariant zeros on the jw axis, 0 is of full column rank, 
& gamma> gamma_\inftyA*, which can be found using GM8STAR. 
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See also H2CARE, H8STATE, H8DARE and GM8STAR. 

H8STATE Continuous-time H-infinity Control Using the ATEA Approach 

F = H8STATE(A,B,C,D,E,gamma[,option]) 

generates a state feedback gain law u = F x, which solves 
H-infinity gamma-suboptimal control problem for the system: 

x A x + B u + E w 
h C x + D u 

i.e., the H-infinity norm of the resulting closed-loop 
transfer matrix from the disturbance, w, to the controlled 
output, h, is less than the given 'gamma'. The value of 
'gamma' has to be chosen larger than the infimum, 
gamma_\inftyA*, which can be pre-determined using GM8STAR. 

Users have the 'option' to choose the result either in a 
numerical or in a symbolic form parameterized by a tuning 
parameter 'epsilon'. By default or choosing option = 0, 
the program will ask users to enter a value for 'epsilon' 
and return a numerical solution. Otherwise, if option = 1, 
F will be in a symbolic form parameterized by 'epsilon'. 

See also GM8STAR, DH8STATE, ATEA, H2STATE and ADDPS. 

ADDPS Solution to Continuous-time Disturbance Decoupling Problem 

F = ADDPS(A,B,C,D,E[,option]) 

generates a state feedback gain law u = F x, which solves 
the almost disturbance decoupling problem for the system: 

x A x + B u + E w 
h C x + D u 

i.e., the resulting closed-loop transfer matrix from the 
disturbance, w, to the controlled output, h, can be made 
almost zero. The function will return an empty solution if 
the problem for the given system is not solvable. 

Users have the 'option' to choose the result either in a 
numerical or in a symbolic form parameterized by a tuning 
parameter 'epsilon'. By default or choosing option = 0, 
the program will ask users to enter a value for 'epsilon' 
and return a numerical solution. Otherwise, if option = 1, 
F will be in a symbolic form parameterized by 'epsilon'. 

See also ATEA, H2STATE, H8STATE and DADDPS. 
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DATEA Eigenstructure Assignment for Discrete-time Systems 

F = DATEA(A,B,C,D) 

produces a state feedback control law, u(k) = F x(k), using 
the eigenstructure assignment design method for a discrete
time system characterized by 

x(k+1) = A x(k) + B u(k), y(k) = C x(k) + D u(k) 

Note that this function is semi-interactive. Users will be 
asked to enter desired design eigenstructures during 
execution. 

See also DH2STATE, DH8STATE, DADDPS and ATEA. 

DARE Solution to Discrete-time Algebraic Riccati Equation 

[P,errj DARE(A,M,N,R,Q) 

returns a positive semi-definite solution, if existent, for 
the following general discrete algebraic Riccati equation: 

P = A'PA - (A'PM + N) (R + M'PM)~{-1}(M'PA + N') + Q 

using noniterative method reported in Chen's work, Robust 
and H-infinity Control, Springer, London, 2000. 

err is the solution error defined as: 
err = I A' PA- (A' PM+N) (R+M' PM) ~ {-1) (M' PA+N') +Q-P 

which can be used to verify the accuracy of the solution, P, 
to the DARE. 

See also H2DARE and H8DARE. 

DGM2STAR Infimum or Optimal Value for Discrete-time H2 Control 

gms2 = DGM2STAR(A,B,C,D,E) 

calculates the infimum or the best achievable performance 
of the H2 suboptimal control problem for the system: 

x(k+1) 
h(k) 

A x(k) + B u(k) + E w(k) 
= C x(k) + D u(k) 

under all possible stabilizing state feedback controllers. 

See also DH2STATE, DGM8STAR and GM2STAR. 
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H2DARE Solution to H2 Discrete-time Algebraic Riccati Equation 

P = H2DARE(A,B,C,D) 

returns a positive semi-definite solution, if existent, for 
the following algebraic Riccati equation for discrete-time 
H2 optimal control: 

P = A' PA+C' C- (A' PB+C' D) (D' D+B' PB) ~ {-l} (A' PB+C' D) , 

Note that a positive semi-definite stabilizing solution is 
existent if and only if the quadruple (A,B,C,D) is left 
invertible and has no invariant zeros on the unit circle. 

See also DARE, H8DARE and H2CARE. 

DH2STATE Discrete-time H2 Control Using the ATEA Approach 

F = DH2STATE(A,B,C,D) 

generates a state feedback gain law u(k) = F x(k), which 
solves H2 optimal control problem for the system: 

x(k+l) 
h(k) 

A x(k) + B u(k) + E w(k) 
C x(k) + D u(k) 

i.e., the H2-norm of the resulting closed-loop transfer 
matrix from the disturbance, w, to the controlled output, 
h, is equal to the optimal value, gamma_2~*, which can 
be pre-calculated using DGM2STAR. 

See also DGM2STAR, H2STATE, DATEA, DH8STATE and DADDPS. 

DGM8STAR Infimum or Optimal Value for Discrete H-infinity Control 

gms8 = DGM8STAR(A,B,C,D,E) 

calculates the infimum or the best achievable performance 
of H-infinity suboptimal control problem for the plant: 

x(k+l) 
h(k) 

A x(k) + B u(k) + E w(k) 
C x(k) + D u(k) 

under all possible stabilizing state feedback controllers. 

See also DH8ARE, DH8STATE, DGM2STAR and GM8STAR. 

H8DARE Solution to H-infinity Discrete Algebraic Riccati Equation 

P = H8DARE(A,B,C,D,E,gamma) 

returns a positive semi-definite solution, if existent, for 
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the following algebraic Riccati equation for discrete-time 
H-infinity control: 

P 

where 

A'PA + C'C -
B'PA+D'C l' 

I G~{-l} 
E'PA 1 

D'D+B'PB B'PE 
G 

E'PB E'PE-gamma~2 I 

B'PA+D'C 

E'PA 

This DARE is related to H-infinity control for the following 
discrete-time system: 

x(k+l) = A x(k) + B u(k) + E w(k) 
h(k) C x(k) + D u(k) 

Note that a positive semi-definite stabilizing solution is 
existent if and only if the quadruple (A,B,C,D) is left 
invertible, has no invariant zeros on the unit circle, and 
gamma > gamma_\infty~*, which can be found using DGM8STAR. 

See also DARE, H2DARE, H8CARE and DGM8STAR. 

DHBSTATE Discrete-time H-infinity Control Using the ATEA Approach 

F = DHBSTATE(A,B,C,D,E,gamma) 

generates a state feedback gain law u(k) = F x(k), which 
solves H-infinity gamma-suboptimal control problem for 

x(k+l) 
h(k) 

A x(k) + B u(k) + E w(k) 
C x(k) + D u(k) 

i.e., the H-infinity norm of the resulting closed-loop 
transfer matrix from the disturbance, w, to the controlled 
output, h, is less than the given 'gamma'. The value of 
'gamma' has to be chosen larger than the infimum, 
gamma_\infty~*, which can be determined using DGMBSTAR. 

See also DGMB STAR , HBSTATE, DATEA, DH2STATE and DADDPS. 

DADDPS Solution to Discrete-time Disturbance Decoupling Problem 

F = DADDPS(A,B,C,D,E) 

generates a state feedback gain law u(k) = F x(k), which 
solves the disturbance decoupling problem for the system: 

x(k+l) 
h(k) 

A x(k) + B u(k) + E w(k) 
C x(k) + D u(k) 
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i.e., the resulting closed-loop transfer matrix from the 
disturbance, w, to the controlled output, h, can be made 
identically zero. The function will return an empty solution 
if the problem for the given system is not solvable. 

See also DATEA, DH2STATE, DHBSTATE and ADDPS. 

12.2.9 Disturbance Decoupling with Static Output Feedback 

DDPCM Disturbance Decoupling with Static Output Feedback 

K ~ DDPCM(A,B,E,Cl,Dl,C2,D2,D22} 

computes a solution to the disturbance decoupling problem 
with a constant (static) measurement output feedback for 
the following system: 

x A x + B u + E w 
Y 
h 

Cl x + Dl w 
C2 x + D2 u + D22 w 

if the solution is existent. Otherwise, the program will 
return an empty matrix for K. 

See also ROSYS4DDP. 

ROSYS4DDP Irreducible Reduced Order System for Disturbance 
Decoupling with Static Output Feedback 

[Ar,Br,Er,Clr,Dlr,C2r,D2r) 
= ROSYS4DDP(A,B,E,Cl,Dl,C2,D2,D22} 

generates an irreducible reduced order system from the 
original system: 

x A x + B u + E w 
Y 
h 

Cl x + Dl w 
C2 x + D2 u + D22 w 

The reduced order system is characterized by 

x r Ar x r + Br u_r + Er w r 
y_r Clr x r + Dlr w r 
h r C2r x r + D2r u_r 

which can be used to solve the static output disturbance 
decoupling problem for the original system through some 
numerical computation package such as QEPCAD. 

The program will return an empty result if the problem 
for the original system is not solvable. 

See also DDPCM. 
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Finally, we would like to conclude this monograph by noting that we are still 

expanding our toolkit reported above. More features will be added to it from 

time to time. Interested readers might access the most up-to-date information 

about the toolkit through its web site at http://linearsystemskit . net, 

or send inquiries and comments to us through email tobmchen@nus.edu.sg. 

zlSy@virginia.eduoryshamash@notes.cc.sunysb.edu. 
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414 

stabilizability, 157 

state space decomposition, 159 

transformations, 108, 117, 153, 

182 

Stability structural decomposition, 3, 

70 

State feedback, 44,61,231,237,313 

eigenstructure assignment, 313 

Static output feedback disturbance 
decoupling,341 

general systems, 349 

irreducible reduced-order system, 
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