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Preface

Transition metals comprise roughly half of the periodic table of elements. Their
known chemistry occupies a rather larger fraction of non-carbon research literature
to make up an enormous subject which continues to grow at a fast rate. No
encyclopedia can encompass the century or more of achievement, let alone a single
book. Here, we do not even begin to try. What is offered, however, is an outline of
a theoretical structure for transition-metal chemistry at an elementary level that
hopefully provides a consistent viewpoint of this widely varying and fascinating
subject. By ‘elementary’ we mean early-to-mid UK degree level, and essentially
non-mathematical: we do not mean, on the other hand, unsubtle, lacking in
provocation or patronizing.

It has often been asserted that the ‘driving forces’ of inorganic chemistry vary
throughout the periodic table so that we must focus on A here but on B there. If by
this is meant that the major factors are A and B here and there, we have no quarrel.
It is, however, utterly unsatisfactory for anyone coming to grips with the subject
not to understand why A rules here and not there. We need an underlying structure
and understanding if we wish more than to apply given recipes: something between
the recipes and the impossibility of deriving chemistry from quantum theory and
fundamental particles. This is a tall order. The present offering is an attempt within
just the transition-metal series. Although the last chapter relates to the lanthanide
series, we are mainly concerned with the first transition series only.

A central theme in our approach, which we believe to be different from those of
others, is to focus on the changing chemistry associated with higher, middle and
lower oxidation state compounds. The chemical stability of radical species and open-
shell Werner-type complexes, on the one hand, and the governance of the 18-electron
rule, on the other, are presented as consequences of the changing nature of the
valence shell in transition-metal species of different oxidation state.

A goodly part of any text on ‘theoretical’ inorganic chemistry necessarily includes
an account of crystal- and ligand-field theories. Usually, however, these theories are
presented as a self-contained discipline. Although they have certainly provided
wonderful opportunities for the exercise of group theory and physics within the
inorganic chemistry syllabus, the student of chemistry can well be forgiven for
wondering what they actually have to say about chemistry. It is necessary to go
quite far into the purely symmetry-based aspects of crystal-field theory if only to
explain the number of bands that occur in the spectra of transition-metal species or
the gross features of their magnetic properties. And we do so in this book also,
although we do not take the space to cover these matters all the way to the end of a
UK bachelor course. What we do focus on particularly, though, and what is often
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too lightly skipped over in many other texts, is the light thrown by the crystal- and
ligand-field theories upon ‘chemical bonding and structure in the transition block.
This is an interactive enterprise in that it is equally important to understand why
ligand-field theory should ‘work’ anyway.-It is also important — though subtle, so
we only make a start on it — to appreciate the utterly different nature of ligand-field
theory on the one hand, and of molecular-orbital theory on the other.

In all these discussions, we separate, as best we might, the effects of the d
electrons upon the bonding electrons from the effects of the bonding electrons upon
the d electrons. The latter takes us into crystal- and ligand-field theories, the former
into the steric roles of d electrons and the geometries of transition-metal complexes.
Both sides of the coin are relevant in the energetics of transition-metal chemistry,
as is described in later chapters.

We have agonized somewhat over the title of this book. Although it might put
some readers off, we stuck with it for it really summarizes the kernel of our
approach. This is not a compendium of chemical syntheses or properties, but rather
an attempt to bring together in a single yet non-simplistic way many important
bonding and theoretical principles that hopefully make more sense of this wide and
fascinating subject. We hope that the path we have plotted through this important
area of inorganic chemistry will commend itself to other teachers. Our lecture
courses at Cambridge broadly follow this scheme, many of the central ideas of
which were first presented in an article in Coordination Chemistry Reviews (99,
1990, p 199).

One of us (M.G.) thanks Professors Bill Hatfield, Tom Meyer and their colleagues
at the University of North Carolina, Chapel Hill, NC, U.S.A. for their hospitality
whilst much of this book was written.
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1 An Introduction to Transition-Metal
Chemistry

1.1 What is a Transition Element?

The transition elements comprise groups 3 to 12 and are found in the central region
of the standard periodic table, an example of which is reproduced on the endpaper.
This group is further subdivided into those of the first row (the elements scandium
to zinc), the second row (the elements yttrium to cadmium) and the third row (the
elements lanthanum to mercury). The term ‘transition’ arises from the elements’
supposed transitional positions between the metallic elements of groups 1 and 2
and the predominantly non-metallic elements of groups 13 to 18. Nevertheless, the
transition elements are also, and interchangeably, known as the transition metals in
view of their typical metallic properties.

The chemistry of the transition elements has been investigated for two centuries,
and in the past fifty years these elements and their compounds have proved to be a
nearly ideal touchstone for many of the models which have been developed to
understand structure and bonding. The elements range from the widespread to the
extremely rare; iron is the fourth most abundant element (by weight) in the earth’s
crust, technetium does not occur naturally. Elements such as gold and silver have
been known in the native state since antiquity, whereas technetium was first prepared
in 1937. Most of the elements exhibit a typical silvery metallic appearance, but
gold and copper are unique in their reddish coloration and mercury is the only
metal which is liquid at ambient temperatures. Compounds of the transition elements
account for the majority of coloured inorganic materials, and many pigments are
relatively simple derivatives of these elements; however, not all transition-element
compounds are coloured.

What are the common features that unite these elements? It is surprisingly difficult
to find a single definition which satisfactorily encompasses all of the transition
elements. The elements occur at that point in the periodic table where the d orbitals
are being filled. The first row transition elements coincide with the filling of the 3d,
the second row with the filling of the 44, and the third row with the filling of the
5d orbitals. We define a transition element as possessing filled or partially filled
valence d orbitals in one or more of its oxidation states. This definition excludes
the elements in groups 13 to 18. The electron configurations of the transition
elements are presented in Table 1-1.

The outer configurations of the transition metals in Table 1-1 imply, and detailed
spectroscopic investigations confirm, that the 34 orbitals lie at higher energies than
the 4s orbitals. On the other hand, the configurations of the M?* ions listed, in

Transition Metal Chemistry.M. Gerloch, E. C. Constable
Copyright © 1994 VCH Verlagsgesellschaft mbH, Weinheim
ISBN: 3-527-29218-7



2 1 An Introduction to Transition-Metal Chemistry

Table 1-1. The electronic configurations of the transition elements.

Scandium [Ar]3d'4s? Yttrium [Kr]4d'5s? Lanthanum [Xe]5d'6s?
Titanium [Ar]3d%4s? Zirconium [Kr]4d?5s? Hafnium [Xel4f“5d%6s?
Vanadium [Ar]3d34s*® Niobium [Kr]4d*5s! Tantalum [Xeldf*5d%6s?
Chromium  [Ar]3d%4s! Molybdenum [Kr]4d*5s! Tungsten [Xeldf'*5d*6s?
Manganese [Ar]3d4s? Technetium  [Kr]4d>5s? Rhenium [Xeldf145d%6s?
Iron [Ar]3d®4s? Ruthenium [Krl4d’5s! Osmium [Xeldf“45d%6s?
Cobalt [Ar]3d74s? Rhodium [Kr]4d®5s! Iridium [Xel4f'45d76s?
Nickel [Ar]3d%4s? Palladium [Kr]4d 955 Platinum [Xeldf*5d%s!
Copper [Ar]3d'%4s! Silver [Kr]4d 55! Gold [Xeldf'*5d06s!
Zinc [Ar]3d %452 Cadmium [Kr]4d'°5s2 Mercury [Xel]df*5d'%6s?

Table 1-2 for example, reveal the loss of electrons from the 4s shell in preference to
the 3d, so that in these species the 4s orbitals are the higher in energy.

The explanation of these facts is not difficult but is subtle. We recall that the
energies of all hydrogen orbitals belonging to the same principal quantum shell (n)
are equal: the 3d, 3p and 3s hydrogen orbitals are degenerate. These orbital subsets

Table 1-2. The electronic configurations of the transition-metal ions in the divalent and triva-
lent states.

M 2+ M 3+ M 24 M I+
Scandium [Ar]3d%s° Iron [Ar]3d®4s® [Ar]3d>4s°
Titanium [Ar]3d!4s° Cobalt [Ar]3d74s° [Ar]3d®4s®
Vanadium [Ar]3d>4s° [Ar]3d%4s° Nickel [Ar]3d®4s®  [Ar]3d74s°
Chromium [Ar]3d*4s° [Ar]3d34s° Copper [Ar]3d°4s° [Ar]3d¥4s®
Manganese  [Ar]3d%4s°® [Ar]3d*4s° Zinc [Ar]3d'%4s°

lose their degeneracy, however, in many-electron atoms. Orbitals with smaller orbi-
tal angular momentum quantum numbers (smaller /) possess increasing numbers of
nodes in their radial functions and are referred to as increasingly ‘penetrating’.
Thus, a 3s electron experiences a larger effective nuclear charge and is more tightly
bound than a 3p electron; a 3p is in turn more tightly bound than a 3d. Next, we
recall that the energy separations between adjacent principal quantum shells in
hydrogen decrease with increasing n. Taking both factors together, we expect that
sooner or later, with respect to increasing atomic number, the more tightly bound
orbital subsets of the n'® principal quantum shell will be more tightly bound and
decrease in energy below the higher orbital subsets of the (n—1)® principal shell.
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For neutral atoms, that cross-over begins around the start of the transition-metal
series. The balance between the 4s and 3d orbital energies is delicate, however, and
other factors, not discussed so far, can reverse the general trend. One such factor is
the exchange stabilization associated with the filled and half-filled d shell. This will
be familiar from discussion of ionization energies throughout the first long row of
the periodic table when one considers the marked discontinuities at the p* and p®
configurations; this theme is taken up in more detail in Chapter 8.

Now consider the ionization process yielding the M?* jons in the first row
transition-metal series. The configuration adopted in the ion does not depend solely
upon the relative orbital energies of the (energetically close) 4s and 3d orbitals in
the neutral atom. It also depends upon the relative energies of the putative ions
3d"24s* and 3d"4s°, for example. Let us consider each in turn. Removal of electrons
from the 3d shell relieves some electron—electron repulsion and deshields the 4s
orbital somewhat: both 34 and 4s shells will be more tightly bound in an M>* ion.
Removal of electrons from the 4s shell, however, depletes the inner (sub-nodal)
regions of their electron density with the result that the 3d orbitals are very much
less well shielded and become much more tightly bound. It is perfectly possible in
principle, and actually the case in practice, that the 3d orbital energy dips down
below that of the 4s orbital as a result.

1.2 Complexes and Coordination Compounds

The systematic investigation of the chemistry of the transition elements began in
the nineteenth century, and it rapidly became apparent that many of the compounds
were somewhat different from those with which chemists were then familiar. There
was a clear difference between the behaviour of simple ionic compounds such as
sodium chloride and typical transition-element compounds such as FeCl,-4H,0. It
was also obvious that the compounds did not resemble the typically covalent
compounds of organic chemistry. It was considered that many of the compounds
formed by transition metals were of a complex constitution, and they were
accordingly known as complexes.

The seminal studies on these complex compounds were conducted by Alfred
Werner in an intensive period of work at the turn of the century.” A typical example
of the problems that Werner addressed lies in the various compounds which can be
obtained containing cobalt, ammonia and chlorine. Stable and chemically distinct
materials with formulations Co(NH;),Cl; (n = 4,5 or 6) can be isolated. The concepts
of valency and three-dimensional structure in carbon chemistry were being
developed at that time, but it was apparent that the same rules could not apply to

* Alfred Werner (1866 — 1919) was awarded the Nobel prize for chemistry as a recognition of
these studies in 1913.
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these complex compounds. Werner’s key postulate was that a given metal ion could
exert fwo different types of valence. The first of these related to the number of
anionic groups which was associated with the compound and was termed the primary
valence. Thus, the three compounds discussed above all contain three chloride
groups and possess a primary valence of three. In modern terms, we would equate
the Werner primary valency with the oxidation state. The novel idea that Werner
introduced was that of secondary valency, which referred to the number of groups
attached to a metal centre. The crucial observation was that the secondary valence
could refer to the attachment of both anionic and neutral groups to the metal centre.
Werner also recognized that in the same way that a metal had one or more
characteristic primary valences, a given metal ion also had a number of characteristic
secondary valences. He noted that the most common secondary valences were four
and six. The secondary valence related to the number of groups which were directly
attached to the metal atom in the first or inner sphere. Additional groups could be
associated less strongly with a more distant second or outer sphere. Neutral ligands
could occupy the inner but not the outer sphere. The cobalt centres in the three
compounds Co(NH3),Cl3 (n = 4,5 or 6) all possess a primary valence (oxidation
state) of three, and the characteristic secondary valence for cobalt(ur) is six. Thus
Co(NH3)4Cl3 possesses four ammonias and two chlorides in the inner sphere and a
chloride in the outer sphere, Co(NH3)5Cl3 possesses five ammonias and one chloride
in the inner sphere and two chlorides in the outer sphere, and Co(NH3)¢Cl3 possesses
six ammonias in the inner sphere and three chlorides in the outer sphere. Chemical
and physical evidence was presented to support these contentions.” At the time
Werner developed a number of descriptions for the bonding in such compounds
which were related to the structures of more familiar organic species. We will not
be concerned with these, but note that secondary valence is equivalent to the mo-
dern term coordination number.

The interactions in such compounds are now better understood, and the term
complex now has a more specific meaning. Not all transition-metal compounds are
complexes, but many are. The terms complex and coordination compound are now
used almost interchangably.

* Particular use was made of conductivity measurements of cobalt(ur) and platinum(ir) complexes
which allowed a facile determination of the number and type of ions present in solution. For
example, the compounds Co(NH;),Cl; would give a monocation and an monoanion (n=4), a
dication and two monoanions (n = 5) and a trication and three monoanions (h=6) respectively.
In some cases, it was also possible to distinguish chemically between inner and outer sphere
chloride by precipitation of the outer sphere species as AgCl.
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1.3 The Coordinate Bond

In a typical covalent bond, such as is found between carbon and hydrogen in
methane, each atom is considered to contribute one electron to the two-electron,
two-cenire bond which is formed. However, we can envisage a second type of
covalent bond in which we still have a two-centre, two-electron bond, but where
both of the electrons come from one of the atoms or from a molecule. This type of
bond is known variously as a coordination, a dative covalent or a donor—acceptor
bond. A compound containing such bonding is known as a coordination compound.
The atom (or molecule) which provides the two electrons is known as the donor.
The other atom (or molecule) is known as the acceptor. The term complex is used
to describe a coordination compound in which the acceptor is a metal (usually, but
not necessarily, a transition metal) atom or ion. In those coordination compounds in
which the acceptor is a metal atom or ion, the donor is known as a ligand (from the
Latin word ligare, which means to bind). It is interactions of this nature which are
responsible for the binding of ligands to a metal ion and with which we will be
concerned for the remainder of this book. Note that this is a formal description of
the donor —acceptor interaction between the ligand and the metal and conveys little
about the actual electron distribution. It is in no way a comment about the ‘real’
electron distribution in transition-metal compounds. We will return to this topic in
Section 1.8.

1.4 Ligand Types

It is probably true that almost every conceivable molecule, atom or ion could act as
a ligand under some circumstance or other. However, certain types of ligands are
commonly encountered, and it is these, together with the vocabulary which they
generate, that we introduce at this stage.

The majority of ligands are either neutral or anionic. Those which coordinate to
a metal ion through a single atom are described as monodentate or unidentate.
Examples of such ligands which we have encountered thus far include water,
ammonia and chloride. A more extensive listing of common ligands is found in
Table 1-3. We stress at this point that there is no difference in kind between the
interactions of a metal centre with either neutral or anionic ligands.

A number of general features in Table 1-3 is apparent. Complexes may be
cationic, neutral or anionic. Ligands may be simple monatomic ions, or larger
molecules or ions. Many ligands are found as related neutral and anionic species
(for example, water, hydroxide and oxide). Complexes may contain all of the same
type of ligand, in which case they are termed homoleptic, or they may contain a
variety of ligand types, whereby they are described as heteroleptic. Some ligands
such as nitrite or thiocyanate can coordinate to a metal ion in more than one way.
This is described as ambidentate behaviour. In such cases, we commonly indicate
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Table 1-3. Some typical monodentate ligands and representative complexes that they form.

Monodentate ligands Donor atom Example

02 0 [MnO,]~

Halides, F-, Cl-, Br~, I~ F, Cl, Br, 1 [NiCl,]?-, [CrFq]*-

H- H [ReH,]?-

NCS- NorS [Cr(NH;)s(NCS)1?*
[Cr(NH3)s(NCS)]*

NO,- Nor O [Co(NH;)s(NO,)1**
[Co(NH;)s(ONO)]**

RS- S [Fe(SPh),]-

CN- C [Fe(CN)qJ*-

HO- o) (Zn(OH),)*"

H,0 (0] [Mn(H,0)¢]*

NH; N [Co(NH3)6}**

phosphines, PR, P [Pt(PMes,),]

x
@ pyridine, py
N7 N [Ni(py)el**

CO C [Mn(CO)s]~

RCN N [Ru(NH;)s(NCMe) |2

(CHs),S S [Pt{(CHs;),S },Cl,]

the atom which is involved in coordination to the metal by italicizing it, as in the
N-bonded thiocyanate in the ion [Cr(NH;)s(NCS)]*.

Ligands which interact with a metal ion through two or more donor atoms are of
particular importance in coordination chemistry. The number of donor atoms
involved is indicated by the denticity — a didentate (or bidentate) ligand interacts
with metals through two donor atoms, a tridentate (or terdentate) through three, and
so on. If two or more of the donor atoms are interacting with the same metal centre,
the ligands are described as chelating and the complexes as chelates. It is generally
found that there is an extra stability associated with complexes which contain
chelating ligands — the so-called chelate effect (this is discussed in detail in Chapter
9). In Table 1-4 we list some common polydentate ligands together with the
abbreviations by which they are commonly known. Once again, note that both neu-
tral and anionic ligands are found, and that the range of donor atoms is great. A
new feature of these polydentate ligands is that they may contain mixtures of diffe-
rent donor atoms within the same ligand. Note also that a range of cyclic ligands is
known, each of which provides a central cavity for a metal ion. The study of such
macrocyclic or encapsulating ligands is of considerable current interest.
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Table 1-4. Some typical polydentate ligands and their complexes.

Polydentate ligands Donor atoms Example

Didentate

x
YY acetylacetonate, 0.0’ {Cr(acac),]

o 0- pentane-2,4-dionate,
acac
(0] O
H oxalato,
-0 o~ ox 0,0’ [Fe(ox),]*
0]
glycinato,
WN o O0- gl N,0 [Cu(gly).]
H,NCH,CH,NH,
1,2-diaminoethane, N,N' [Co(en),]**
ethylenediamine, en.
Ph,PCH,CH,PPh,
bis(diphenylphosphino)-ethane, dppe PP [Fe(dppe),(CO)]
AsMe,
1,2-bis(dimethylarsino)- ! ; -
Q benzene, diars As,As [CrCly(diars)]
AsMe,
Ph Ph
-s S— S,S' [Re(S,C,Phy);]
N.N' Mn(b =
J N\ /\ 2:2-bipyridine, (Ma(bpy):]
\ / 2,2'-dipyridyl,
=N N bipy, bpy
1,10-phenanthroline, ~ N,N' [Ru(phen);]*

phen
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Table 1-4. (Continued)

Polydentate ligands Donor atoms Example
Tridentate

H,NCH,CH,NHCH,CH,NH,

Diethylenetriamine, 1,4,7-triazaheptane, N,N',N" [Co(dien),)**

bis(2-aminoethyl)amine, dien.

N,N',N" [Cr(tpy).]™*

2,2':6',2"-terpyridine,
terpyridyl, tpy, terpy

Macrocyclic

)

[0}
[ j 18-crown-6 0, [K(18-crown-6)]*
0 0
K/O\/I

NH HN 1,4,8,11-tetrazacyclo- N,N',N",N" [Ni(cyclam]?

[ j tetradecane, cyclam

NH HN

1.5 Coordination Number

The coordination number of a metal ion in a complex is defined as the number of
donor atoms bonded to the metal centre. In most cases it is simple to determine.
The coordination number is six in the complex species [Fe(H,0)s]*, [Fe(py)s]*,
[Fe(CN)g]*, [Fe(bpy);]** and [Fe(tpy),]**. Note that when chelating ligands are
involved, it is the number of donor atoms and not the number of ligands which
defines the coordination number. The coordination number is not so easily defined
when we consider those organometallic complexes in which ligation involves
n-bonding of two or more centres within the ligand to a metal. For example, in the
anion [PtCl;(H,C=CH,)], the platinum interacts equally with the rwo carbon atoms
of the ethene ligands. Is the coordination number four or five? A special
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nomenclature has been developed to describe the types of interaction encountered
in organometallic compounds, and the concept of coordination number is probably
not particularly useful in this context.

Again, remember that coordination number is equivalent to Werner’s secondary
valence.

1.6 Geometrical Types and Isomers

Coordination compounds show a wide variety of regular, and an infinite range of
irregular, geometries for the arrangement of the ligands about the metal centre.
However, for the first row transition metals, a few geometries by far outweigh all
of the others. The regular polyhedra upon which complexes are commonly based
are the octahedron (six coordination) and the tetrahedron (four coordination). A
significant number of four coordinate complexes exhibit a planar geometry and in
Chapter 7 we rationalize the occurrence of this structural geometry. One of the
consequences of complexes adopting specific geometries is the occurrence of
isomers. We review these only briefly, and the interested reader will find more
information in the “suggestions for further reading” at the close of this chapter.

Several different types of isomers arise in transition-metal coordination
compounds, and these are described below.

Structural isomers: These are compounds in which the isomers are related by the
interchange of ligands inside the coordination sphere for those outside it. A classical
example of this phenomenon is observed in the compounds of formula CrCl;(H,0)e-
As usually obtained from chemical suppliers, this is a green solid in which only
two of the chloride ions are coordinated to the metal. This is formulated
[Cr(H,0),CL]CI-2H,0. Solutions of this compound in water slowly turn blue-
green as a coordinated chloride ion is replaced by a water molecule and the com-
plex [Cr(H,0)sCl]Cl,-H,0 may be isolated. More commonly, structural isomers are
related by the exchange of anionic ligands and counter ions, rather than neutral
ligands. Typical examples include the pair of complexes [Co(en),Br,]Cl and
[Co(en),BrClI]Br.

Linkage isomerism: This is a special type of structural isomerism in which the
differences arise from a particular ligand which may coordinate to a metal ion in
more than one way. In Table 1-3 we indicated that a ligand such as thiocyanate
could bond to a metal through either the nitrogen or the sulfur atom, and the complex
ions [Co(NH;)s(NCS)]* and [Co(NH3)s(SCN)]** are related as linkage isomers.

Coordination isomerism: This is an interesting type of isomerism which can occur
with salts in which both the cation and the anion are complex ions. Consider the
salt [Co(bpy)s] [Fe(CN)4] containing one cobalt (1) and one iron (11) centre: coor-
dination isomers of this would include [Fe(bpy);] [Co(CN)e], [Co(bpy), (CN),]
[Fe(bpy)(CN)al, [Fe(bpy)2(CN),][Co(bpy)(CN),], and [Co(bpy)s][Fe(CN)g].

Geometrical isomerism: This is an important topic which played a crucial role in
the development of coordination chemistry. Werner used the number of isomers
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which could be isolated for a range of cobalt(in) complexes to establish the
octahedral character of the CoLg species.

A planar complex of the type [Pt(NH;),Cl,] can exist in two forms depending
upon the relative spatial orientation of the two chloride ligands. They can be at 90°
to each other to give the cis form (1.1), or at 180° to give the trans isomer (1.2).

Cl TH3

H;N —Pt—Cl Cl—Pt—Cl
NH3 NH3
1.1 1.2

In six coordinate complex ions such as [Co(NHj;),Br,]*, a similar situation exists,
in which the bromine ligands adopt either a cis (1.3, 1.4) or a trans arrangement
(1.5). The reader should note the identity of the cis isomers despite the different
drawings (1.3 and 1.4). In a similar manner, complexes of the type [MX;Y;] may
adopt two structures, depending upon the relative arrangement of the three identical
groups in the octahedron. If the three X groups are arranged about a single triangular
face, then the facial (or fac) isomer (1.7) is obtained, whereas if they are arranged
in three of the four sites of the equatorial plane, the meridional (or mer) isomer
(1.6) is obtained.

NH; Br Br
| ,
el msedn RS
| | |
NH; NH;3 Br
cis trans
13 1.4 1.5
Y X
| |
=My §>T<YY
l Y
mer fac
1.6 1.7

Notice the ‘loose’ use of the term octahedral to describe six-coordinate complexes
which are based upon an octahedral geometry, but which, by virtue of the presence
of different ligand types, are of lower symmetry than O, This is a common usage
which should give rise to no difficulties. Note also how introduction of chelating
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ligands into the coordination shell may reduce the number of isomers which are
possible. Thus, although there are two isomers of [Pt(NH;),Cl,], it is only possible
to form the cis isomer of [Pt(en)Cl,] (1.8). This is because the relative positions of
the nitrogen donor atoms in the en ligand are dictated by the CH,CH, linker group
— the two donor atoms cannot ‘stretch’ to occupy trans positions. Similarly, it is
only possible to obtain the cis isomer of the cation [Co(NH3),(en)]** (1.9).

NH;
w G
2 | H:N e
N‘ll’t—Cl N = O A
</1\11-12 | Hy
NH;
1.8 1.9

A final type of isomerism which we mention here also arises most commonly
when chelating ligands are present. If a molecule possesses neither a plane nor a
centre of symmetry, it is chiral. (This definition is not strictly correct, but will
suffice for most transition-metal complexes.) Chiral species may exist in two forms
which are related as mirror images. These have identical chemical and physical
properties unless they are interacting with something else which is chiral, in which
case they differ. That may be a chiral reagent (to give diastereomeric compounds)
or polarized light. A typical example of a chiral complex is found when three
chelating ligands are coordinated to an octahedral centre, as in the cation
[Ru(bpy)s]**. Two different forms of this cation, related as mirror images, are
possible (1.10 and 1.11). These may be separated by formation of salts with chiral
anions, and exhibit different and opposite rotations of polarized light. Note also that
the cation [Co(en),Br,|* (1.12 and 1.13) is chiral, but [Co(NHj;)4Br,]* is not.

0. D u oD
D D

1.10 1.11 1.12 1.13

Another way of drawing these isomers emphasizes the three-fold nature of the
basic octahedron rather than its four-fold properties (1.14-1.17).
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1.7 Oxidation State

Ocxidation state is a frequently used (and indeed misused) concept which apportions
charges and electrons within complex molecules and ions. We stress that oxidation
state is a formal concept, rather than an accurate statement of the charge distributions
within compounds. The oxidation state of a metal is defined as the formal charge
which would be placed upon that metal in a purely ionic description. For example,
the metals in the gas phase ions Mn* and Cu* are assigned oxidation states of +3
and +1 respectively. These are usually denoted by placing the formal oxidation state
in Roman numerals in parentheses after the element name; the ions Mn* and Cu*
are examples of manganese(1r) and copper(1).

Box 1-1

Older texts often employ an alternative nomenclature in which the suffixes -ous and -ic are
encountered. In general, these labels only apply to the most common oxidation states of the
metals, -ic referring to the higher oxidation state and -ous to the lower. Using this
nomenclature, copper(n) is referred to as cupric and copper(1) as cuprous. The system
works well if there are only two common oxidation states for a metal ion, but if there are
more, the scheme becomes either ambiguous or unwieldy as a variety of prefixes are
added.

It is usually easy to define the oxidation state for simple compounds of the
transition metals. In the case of neutral compounds, we assign charges as if the
compound were ionic. Thus, MnCl, is regarded as {Mn?**, 2C1-} and is correctly
described as manganese(u) chloride. Similarly, WO; as {W®%, 30?-} is tungsten(vi)
oxide. Since ligands which bear no formal charges in an ionic formulation may be
ignored, [Cr(H,0);Cl;] is a chromium(ii) compound, and Ni(OH),, NiBr,,
NiBr,-3H,0, NiBr,-6H,O and NiBr,9H,0 are all nickel(it) compounds. The
assignment of oxidation state makes no implications regarding the nature of the
bonding within the molecule — all of the various hydrated forms of CrCl; are
chromium(m) compounds. Oxidation state is merely a formal scheme: there is no
implication that tungsten(vi) oxide necessarily contains W% ions. Furthermore,
problems with the assignment of oxidation state can arise with even apparently
simple compounds. Consider, for example, Fe;O,. If the compound were ionic, we
would have four O?~ ions. In order for the entire compound to be neutral, the three
iron atoms must possess an overall charge of +8. The ensuing assignment of an
oxidation state of +8/3 to each iron is not particularly meaningful. A compound of
this type is best regarded as a mixed oxidation state oxide, {FeO + Fe,O3} or
Fe'"Fe,"O,, in which there are both iron(u) and iron(ur) centres.

Cations and anions are treated in an exactly similar manner, remembering to take
the overall charge of the species into account. If only neutral ligands are present,
the oxidation state of the metal ion is equal to the overall charge on the ion. Thus,
[Fe(H,0)6]** and [Ni(NH;)s]** are iron(ir) and nickel(u) complexes respectively. If
charged ligands are present, formal charges are assigned on the basis of an ionic
description. Thus, the ion [Ni(CN),]?~is treated as containing a cationic nickel centre
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and four anionic cyanides. Since the four cyanides give a total charge of —4, the
nickel must be assigned a charge of +2 in order for the ion to possess an overall
charge of —2, and it is therefore a nickel(1) complex. Similarly, [MnQO,] " is treated
as {Mn’*, 40%-} and is a manganese(vi) compound. Once again, we stress that this
in no way implies that the ion [MnO,] - actually contains a Mn’" ion. By the way,
aqueous solutions of transition-metal compounds frequently contain ions such as
[M(H,O)4]"*: as water is the most common solvent encountered in chemical
reactions, these species are often (but incorrectly) referred to as solutions containing
M"* ions (see Box 1-2).

It is quite possible for a metal centre to possess a zero or negative oxidation
state. Thus, the species [Cr(CO)] and [Fe(CO),}*~ are chromium(0) and iron(-2)
complexes. We will see in a later chapter that it is not a coincidence that these low
formal oxidation states are associated with ligands such as carbon monoxide.

Some ligands pose problems in the assignment of a formal oxidation state to a
metal centre. Nitric oxide is a case in point. The ligand may be formulated as either
anionic NO~ or cationic NO*, and there follows the appropriate ambiguity in
assignment of the oxidation state of the metal ion to which it is bonded. These
problems arise when it is not clear as to what charge is appropriate to assign to the
ligands in the ionic limit. We have repeatedly emphasized the formal character of
the concept of oxidation state and turn now to a different general concept which
helps us address the real electron distributions in compounds.

Box 1-2

It is very common for inorganic chemists to ‘neglect’ or ‘ignore’ the presence of solvent
molecules coordinated to a metal centre. In some cases, this is just carelessness, or laziness,
as in the description of an aqueous solution of cobalt(i) nitrate as containing Co®* ions.
Except in very concentrated solutions, the actual solution species is [Co(H,0)s]*". In other
cases, it is not always certain exactly what ligands remain coordinated to the metal ion in
solution, or how many solvent molecules become coordinated. Solutions of iron(mr) chloride
in water contain a mixture of complex ions containing a variety of chloride, water, hydroxide
and oxide ligands.

When dealing with the kinetic or thermodynamic behaviour of transition-metal systems,
square brackets are used to denote concentrations of solution species. In the interests of
simplicity, solvent molecules are frequently omitted (as are the square brackets around
complex species). The reaction (1.1) is frequently written as equation (1.2).

[Co(H,0)6]* + 4C1- = [CoCl, - + 6H,0 1.1
Co* + 4Cl- = [CoCL,]*- (1.2)

Whilst this will be satisfactory when dealing with kinetic data in which reactions
involving the solvent will not explicitly appear in the rate equations, it is not appropriate
when we consider equilibrium constants. As an exercise, consider the formation of [Ni(en),]*
from aqueous solutions of nickel(i) chloride and en (en = H,NCH,CH,NH,); write the
equations with the inclusion and the omission of the water molecules. Can you recognize
the driving force for the formation of the chelate in each case?




14 1 An Introduction to Transition-Metal Chemistry

1.8 Electroneutrality Principle

It was recognized early on that the formality of ‘dative covalency’ in coordination
compounds presents some difficulties. Many inorganic compounds are conveniently
thought of as ionic salts in which there is an essentially complete charge separation
between cationic and anionic species. Compounds of the group 1 and group 2 metals
tend to be readily categorized as ‘ionic’. Dissolution of a salt of a group 1 or a
group 2 metal results in the formation of solutions containing solvated cations and
anions — only in concentrated solutions are there significant cation-anion
interactions beyond simple ion-pairing. However, the ionic model does not appear
to be suitable for the description of the properties of many transition-metal
compounds. For example, the compound K,[Fe(CN)] dissolves in water to give
solutions containing solvated potassium ions and the [Fe(CN)g]*~ ion, rather than
solvated potassium, iron(1ir) and cyanide ions. The interactions between the cyanide
and the iron(n) centre appear to result in longer lived species than result from
simple electrostatic interactions of the type observed in sodium chloride. This is, of
course, the sort of argument which led to the development of the description of
coordination compounds in terms of donor-—acceptor interactions between the
ligands and the metal centre.

Let us now examine the consequences of the formation of a donor-acceptor
bond in a little more detail. If the donor—acceptor bond is completely covalent,
then we record net transfer of one unit of charge from the donor to the acceptor as
a direct consequence of the equal sharing of the electron pair between the two
centres. This result leaves a positive charge on the donor atom and a negative
charge on the acceptor atom. The limiting ‘ionic’ and ‘covalent’ descriptions of a
complex cation such as [Fe(H,0)¢]** are shown in Fig. 1-1.

+
OH, OH,
+ +
OH, OH, H0-.. |3~ _.oH,
Fe 3 + "Fel +
OH; OH, H0 OH,
+
o, OH,

Figure 1-1. Limiting valence bond representations of the cation [Fe(H,0)q]**.

We have already commented that the ‘ionic’ structures are not in accord with the
chemical properties of coordination compounds. However, there are also a number
of objections to the covalent description. The charge distribution is such that the
iron(in) centre bears a three minus charge, whereas the oxygen atoms of the water
ligands each bear a single positive charge. This would be unrealistic in view of the
electronegativities of these elements (Fe, 1.8; O, 3.5), which predict that the Fe—O
bond should be polarized in the sense Fe®— 0% . The problem was addressed by
Pauling, who recognized that, in reality, it was not appropriate to describe most
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bonds as being purely ‘ionic’ or purely ‘covalent’. He developed a description of
the bonding between a metal and its ligands which included considerable ionic
character in the metal —ligand bonds within a basically covalent régime. In order to
determine the amount of ‘ionic’ character within a given metal —ligand bond, Pauling
framed his electroneutrality principle. In this, he opined that the actual distribution
of charges within a molecule is such that charges on any single atom are within the
range—1 to +1. )

We shall see how this works by reconsidering the ion [Fe(H,0)q]**. An ‘ionic’
description results in a +3 charge on the metal centre, whilst a ‘covalent’ description
gives the metal a —3 charge. Now the electroneutrality principle suggests that the
‘ideal’ charge on the metal centre is zero. That would be achieved if the iron centre
gains a total of three electrons from the six oxygen donor atoms; in other words, if
each oxygen loses one half of an electron rather than the whole electron which the
fully covalent model demands (1.18). Pauling describes this situation as 50%
covalent (or 50% ionic).

1/2+

OH,
1i2+
1/2+
HZO."\ _.»-OHZ
2+ SFe
1/2+
1™ | on,
OH,
1/2+
1.18

We shall return to this topic in Chapter 9. Remember that the unequal distribution
of electrons within bonds results in a continuous variation from ‘covalent’ to ‘ionic’
bonding.

1.9 Rationalization of Complex Geometries

The coordination geometries of main group compounds are generally rationalized in
terms of the Valence Shell Electron Pair Repulsion (VSEPR) or Gillespie-Nyholm
model. The reader will recall that in this scheme, the spatial arrangement of atoms
and groups about a central atom is dictated solely by the number of such groups
and by the number of stereochemically active lone pairs. The model only considers
mutually repulsive interactions between the various ligands and lone pairs present
in the valence shell (or equivalently, between bond pairs and lone pairs in the
valence shell) and makes no assumptions about the nature of the bonding except
insofar as it is predicated upon a particular number of lone pairs. The assumption is
generally made that all electrons in the valence shell — both lone pairs and bonding
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pairs — are stereochemically active. This model is remarkable for both its simplicity
and its general applicability. The basic method involves the totalling of the number
of atoms or groups and lone pairs associated with the central atom, and deriving a
structure based upon the appropriate n-vertex polyhedron.

Box 1-3
These are the polyhedra which are used for the basic structural types:
vertices polyhedron coordination geometry
3 triangle trigonal planar
4 tetrahedron tetrahedral
5 trigonal bipyramid trigonal bipyramidal
or  square-based pyramid square (-based) pyramidal
6 octahedron octahedral

If the central atom has different groups or atoms around it, or if one or more of
the vertices of the polyhedron is occupied by a lone pair, then variations in bond
angles will occur such that distorted polyhedral arrangements are obtained. In its
quantitative forms, the VSEPR model parameterizes each individual interaction and
makes very accurate predictions of the distortions which are to be expected.

This model has been successfully applied to the structures of many thousands of
main group compounds, and bond angles within a few degrees of the experimentally
observed values are usually correctly predicted. The basic model is only concerned
with repulsive interactions between atoms and other atoms or lone pairs. Nowhere
in the model is any consideration given to the attractive nature of the bonding
which is present (single, double or triple bonds) or to the ways in which the central
atom atomic orbitals must be utilized in attaining the desired geometry: once again,
except for the assignment of the number of nonbonding electron pairs no as-
sumptions about the bonding are made. Many texts suggest that the VSEPR model
may not be usefully applied to transition-metal compounds. This is not so.

Kepert has developed a repulsion model for the prediction and rationalization of
angular coordination geometry in transition-metal complexes at various levels of
detail. His basic model considers the ligands to be arranged upon the surface of a
sphere enclosing the central metal ion. The distances between donor atoms of
chelating ligands are fixed as determined by intra-ligand bonding. This apart,
Kepert’s model allows for free variation in the angular geometry, that is, free
movement of all donor atoms (or chelate groups as appropriate) on the surface of
the notional sphere, subject to a 1/7" repulsive force between them. Nowhere in the
basic model is any consideration given to the nature of the metal —ligand bonding
or to the steric potential of the d configuration. In application to thousands of
compounds, the model consistently predicts angular geometries which agree with
experiment to within about 2°. The relative energies of these conformational minima
depend, of course, upon the value of n in the repulsion law invoked (n = 2, 6 and
12 have all been investigated) but the angular positions of these minima are almost
independent of #.
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There is one striking group of exceptions to the otherwise almost unbroken
success of Kepert’s approach. No model predicated solely upon the repulsions
between monodentate ligands (or between bonds) can account for the planarity of
some four-coordinate complexes. Yet hundreds of planar d® complexes like
[Ni(CN),]*- or [PtCl,]*~ are known. Clearly, Kepert’s model is to be augmented and
we discuss this matter further in Chapter 7.

Box 1-4

The compound [Zn(tpy)Cl,] (1.19) contains a planar tridentate ligand with nitrogen donor
atoms. The geometry is often described as trigonal bipyramidal with the three 2,2":6',2"-
terpyridine donor atoms occupying one equatorial and the two axial sites. Kepert’s
calculations actually predict a geometry that is far closer to the ideal square-based pyramid.
His predictions are well confirmed by crystallographic analysis.

Thus far, we have only considered the angular geometry of complexes; variations
in bond lengths also pose challenges. For example, the gross inequality of bond
lengths in [NiF¢)*~ and many copper(ir) and chromium(im) complexes requires an
explanation. Questions of this kind are also addressed in Chapter 7.

1.10 Review of Properties of Transition-Metal Compounds

Finally, we summarize some of the properties of transition-metal compounds and
attempt to distinguish those which are characteristic of a transition-metal complex
as opposed to any metal complex.

Variable oxidation state — One obvious feature of transition-metal chemistry is
the occurrence of a number of characteristic oxidation states for a particular metal
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Table 1-5. The oxidation states of first row transition-metals.

Sc Ti \'% Cr Mn Fe Co Ni Cu Zn
0 and lower N Y \/ N \/ N N
+1 N L T R B
2 Voo W W W W W W W
BW N W W A W WY
¥ N A L L
+5 WA A v
+6 W v
+7 W

v Known
YV  Commonest oxidation states

ion. In general, these oxidation states are readily interconverted. This tendency to
form a variety of oxidation states is displayed in Table 1-5.

Note that the occurrence of a maximum oxidation state, corresponding to the
removal of all the valence shell electrons and the adoption of a d° configuration,
does not occur after manganese. In Chapter 9 we see how this reflects the contraction
of the poorly penetrating 3d orbitals as the nuclear charge increases and it becomes
progressively more difficult to remove electrons.

The exhibition of variable valency is indeed a characteristic of transition metals.
Main group metal ions such as those of groups 1 or 2 exhibit a single valence state.
Other main group metals may show a number of valencies (usually two) which are
related by a change in oxidation state of two units. This is typified by the occurrence
of lead(1v) and lead(m) or thallium(ir) and thallium(1). However, all the transition
metals exhibit a range of valencies that is generally not limited in this manner.

Low oxidation states — An important characteristic of transition metal chemistry
is the formation of compounds with low (often zero or negative) oxidation states.
This has little parallel outside the transition elements. Such complexes are frequently
associated with ligands like carbon monoxide or alkenes. Compounds analogous to
Fe(CO)s, [Ni(cod),] (cod = 1,4-cyclooctadiene) or [Pt(PPh;];] are very rarely en-
countered outside the transition-metal block. The study of the low oxidation
compounds is included within organometallic chemistry. We comment about the
nature of the bonding in such compounds in Chapter 6.

Colour — A striking feature of transition-metal compounds is their colour. Whether
it is the pale blue or pink hues of copper(i) sulfate and cobalt(m) chloride, or the
intense purple of potassium permanganate, these colours tend to be associated most
commonly with transition-metal compounds. It is rare for compounds of main group
metals to be highly coloured.

Unpaired electrons and magnetism — One of the consequences of the open
(incompletely filled) ¢ configuration of transition-metal ions may be the presence
of one or more unpaired electrons. Such compounds could be described as radicals,
and they are detected by techniques such as electron spin resonance spectroscopy.
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However, while transition-metal ions often contain unpaired electrons, they exhibit
none of the reactivity that is commonly associated with such radicals outside the d
block. There is no behaviour comparable to that of the highly reactive and short
lived radicals such as CH;. Also associated with the presence of unpaired electrons
in these species is the phenomenon of paramagnetism. The long —term stability of
many compounds with unpaired electrons is a characteristic of the transition-metal
series.

Formation of coordination compounds and variable coordination number — Both
the transition and the main group metal ions form coordination compounds. There
is no difference in kind between the complexes formed between cobalt(ur) and
ammonia and those between lithium and water. Though the absolute stabilities may
vary, large ranges of stability constants are observed for both main group and
transition-metal ions. Transition-metal complexes may gain or lose ligands to change
geometry and so do main group complexes. The existence of coordination chemistry
in the transition-metal block does not set these metals apart from those of the main
groups.

Suggestions for further reading

1. F. Basolo, R.C. Johnson, Coordination Chemistry, 2nd ed., Science Reviews.
— This is an easy to read introduction to the area.
2. J.LE. Huheey, E.A. Kieter and R.L. Kieter, /norganic Chemistry, Harper Collins,
New York, 1993.
— An excellent general introduction to inorganic chemistry, with first rate chapters
dealing with transition metal chemistry.
3. EA. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New
York, 1989.
— A relatively comprehensive work with a great deal of descriptive material
concerned with transition metal chemistry.
4. A.G. Sharpe, Inorganic Chemistry, 2nd ed., Longman, London, 1992.
— A general text with a number of relevant chapters.
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2.1 Spectral Features

We discover a far-reaching generality of transition-metal compounds simply by
looking at bottles on the laboratory shelves. By and large — and with many
exceptions to be sure — compounds of transition metals are coloured, while those of
the main group metals are not. Furthermore, the colours are gentle rather than vivid
— weak rather than strong — and often group together with the metal ion involved.
Thus, many copper(u) complexes are blue, while those of nickel(ir) are green;
manganese(iT) compounds are only weakly coloured; a wide range of colours are
associated with the different oxidation states of vanadium. Look again and these
generalizations are seen to fail, but there are clearly some patterns to be found. We
shall expend considerable time and effort discovering and understanding these
patterns and generalities, not just because it might be fun to make theories about
the pretty colours but because they are the outward manifestations of much of the
underlying electronic structure in transition-metal complexes. To be honest, it is
only with hindsight that we can say what is probed by the spectral features, so that
many parts of the arguments we shall develop must be by assertion: but then, that is
true of other, more conventional, approaches too.

Electronic absorption spectra of a few typical transition-metal complexes are
shown in Fig. 2-1. The following features are to be noted.

a. All absorptions are broad, often up to 2000 cm~' wide yet occasionally down to
100 cm~'. Atomic line spectra are of the order 1 cm~! in width.

b. Most bands in the near IR, visible and near UV are weak and about 10? to 10*
times weaker than bands characterizing dyestuffs. These are called ‘d—d’ bands.

c. Often, much more intense bands occur at higher energies, usually in the ultraviolet
region. These comprise so-called ‘charge-transfer’ bands as well as ligand-centred
n—m* and m—7* transitions.

d. The spectra of most octahedral complexes of ions with the configurations d!, d*,
d® and d° are characterized by a single absorption, while those for many cor-
responding d?, d*, d’ and d® complexes have up to three main absorptions.

e. The spectra of d° complexes show a large number of very weak absorptions,
some of which are relatively sharp.

f. The perceived colours of these complexes by transmission are those
complementary to the absorptions. Suppose white light impinges upon a sample
from a direction labelled z. At appropriate absorption frequencies, the electronic

Transition Metal Chemistry.M. Gerloch, E. C. Constable
Copyright © 1994 VCH Verlagsgesellschaft mbH, Weinheim
ISBN: 3-527-29218-7
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Figure 2-1. Typical absorption spectra of transition-metal complexes.
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arrangements in the molecules change as energy is absorbed. About 10'8 seconds
later, the same energy (frequency) is re-emitted and the ground state electronic
arrangement is recovered. However, the light is emitted equally in all directions
normal to the incident electric displacement. When viewed along direction z, less
of the absorbed frequencies are observed than if no resonance had occurred and
we record a net absorption in our spectrum. Further, the colour that we observe
with our eyes is, of course, determined by absorptions occurring only in the
visible part of the electromagnetic spectrum.

g. With the latter point in mind, we note the colours of the permanganate ion (deep
purple) and of the tetrachloro- and tetrabromocuprate(n) ions in Cs,[CuCl,] and
Cs,[CuBr,] (yellow and brown). That for the tetrabromo complex is rather intense
because the origin of the charge-transfer band lies lower in energy than that for
the tetrachloro complex and we could describe the brown colour of Cs,[CuBry]
as a sort of ‘red-black’.

Box 2-1

Spectrometers frequently record spectra on a wavelength scale (nm). This is because
dispersion by gratings and prisms is more nearly linear in wavelength than in frequency.
On the other hand, frequencies of transitions are directly related to the energy changes
which are of more chemical significance. We shall report transition energies throughout
this book on frequency scales. Frequency and wavelength are reciprocally related and10,000
wavenumbers (cm™') = 1000 nm.

There are many more details to be recognized within even the spectra illustrated
in Fig. 2-1: sometimes, we observe bands which have split into two or more
components, so that some of the generalizations above are spoilt. We shall look into
these matters in some detail in due course. For the moment, there are two main
features of all ‘d—d’ spectra upon which we must focus:

1) ‘d—d’ bands are relatively weak, and
2) the number and patterns of ‘d—d’ absorptions are characterized by the
molecular geometry and by the d" configuration.

We shall return to 1) in Chapter 4. Here we consider the significance of the d"
configuration.

2.2 The Valence Shell

The species discussed so far belong to the class we might label Werner-type
complexes. We use this description to differentiate from carbonyl-type or other low
oxidation state complexes. We stay with Werner-type complexes exclusively until
Chapter 6. The radial waveforms for 3d, 4s and 4p orbitals of the metals in such
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R (y) P

Figure 2-2. Schematic representation of the radial waveforms for 3d, 4s and 4p orbitals in first
row transition-metal ions of intermediate oxidation state (Werner-type complexes).

complexes are shown qualitatively in Fig. 2-2 and emphasize a most important
point. This is that the 34 orbitals in Werner-type complexes are much more ‘inner’
than either the 4s or 4p orbitals. Though hardly core-like, the radial extension of
the 34 orbitals is not great. Overlap of the metal 34 orbitals with ligand functions is
correspondingly small. Before claiming that the extent of admixture of the d orbitals
into the bonding molecular orbitals of a complex is also small, however, we must
consider the relative energies of all orbitals involved. We expect the orbital energy
ordering for metals in higher oxidation states to be: ligand donor function < metal
3d < metal 4s < metal 4p. On these grounds alone, metal orbital participation in any
bonding molecular orbitals formed would be expected to decrease in the order 3d>
45> 4p as the energy separation between metal and ligand orbitals increases. But as
we have noted from Fig. 2-2, the ordering on overlap grounds would be 4p = 45 >
3d.

These trends are sketched in Fig. 2-3. We argue that while the energy matching
favours strongest participation of the 3d function amongst the metal functions, these
orbitals are sufficiently withdrawn or contracted that their poor overlap with ligand
functions leaves the metal 4s orbital as the dominant metal contribution in the
bonding.

This idea is a central thesis in this book. We shall re-emphasize the point again
and again, and justify our position increasingly as we progress. Here, we make just
one or two remarks about it. Firstly, we are not saying that the metal d orbitals
aren’t involved in the orbitals that bind a complex, but merely that their participation
is small. It is perfectly possible, however, to develop a consistent picture of chemical
bonding, spectral and magnetic properties together using, as a starting point, the
idea that the d orbitals have effectively no participation in the bonding orbitals.
This will seem a strange idea to many since the implication of all teaching texts, so
far as we are aware, is that “transition-metal chemistry is about the consequences of
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bonding contribution

3d 4s 4p

Figure 2-3. Contribution to bonding from energy matching with ligand orbitals (O), and from
overlap with ligand orbitals (@).

d-orbital overlap.” We consider that such a view sets up a false prejudice in the
mind of the reader and has engendered serious misunderstanding of the subject we
call ‘ligand-field theory’, as we shall discuss. It is to be acknowledged that our
assertion that the d-orbital participation in the bonding orbitals of a complex is
small leaves open the question of ‘how small is small?’. As we shall see, however,
even the limiting assumption of negligible participation of the d orbitals provides a
most valuable viewpoint. So, with the promise to return to this seminal question
and to refine our position, let us now see something of what follows from the
proposition.

The proposition is that the bonds holding a Werner-type complex together are
dominated by overlap of unspecified ligand orbitals with the transition-metal 4s
orbital. The latter is, of course, spherically symmetric, so that the attractive
(bonding) forces are largely undirected. This bequeaths to secondary repulsive
forces, like ligand —ligand repulsions, the determination of the molecular angular
geometry. Straightaway, therefore, the reason for the phenomenal success of Kepert’s
model, as described in the first chapter, is apparent. To be utterly simplistic about
it: at this level, the metal doesn’t care about the angular geometry, but the ligands
do. The picture is very rough, of course, and still fails to explain the existence of
planar complexes. We return to that question in Chapter 7.

Two other, closely related, consequences flow from our central proposition. If
the d orbitals are little mixed into the bonding orbitals, then, by the same token, the
bond orbitals are little mixed into the d. The d electrons are to be seen as being
housed in an essentially discrete — we say ‘uncoupled’ — subset of d orbitals. We
shall see in Chapter 4 how this correlates directly with the weakness of the spectral
‘d—d’ bands. It also follows that, regardless of coordination number or geometry,
the separation of the d electrons implies that the d” configuration is a significant
property of Werner-type complexes. Contrast this emphasis on the d" configuration
in transition-metal chemistry to the usual position adopted in, say, carbon chemistry
where sp, sp? and sp?® hybrids form more useful bases. Put another way, while the 2s
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and 2p subshells fogether comprise the valence shell in carbon chemistry, the d
subshell of Werner-type complexes retains a free-ion-like integrity alongside a metal
valence shell of 4s (with some 4p) character.

2.3 The Roles of d Electrons

Surely a natural question to ask at this stage is ‘if the d orbitals essentially don’t
overlap with the ligand orbitals, what role, if any, do they play?’. Although there is
an implication in that question that any role is minor, that is not the case at all. The
d electrons interact with the bonding electrons. Let us emphasize the word ‘interact’:
it refers to a mutual action. The d electrons are affected by the bonding electrons
and the bonding electrons are affected by the d electrons. We can progress a long
way by considering these two aspects separately. Ultimately, to be sure, we must
refine our arguments to make due recognition of the interaction.

The effects of the bonding electrons upon the d electrons is addressed within the
subjects we call crystal-field theory (CFT) or ligand-field theory (LFT). They are
concerned with the d-electron properties that we observe in spectral and magnetic
measurements. This subject will keep us busy for some while. We shall return to
the effects of the d electrons on bonding much later, in Chapter 7.

Suggestions for further reading

1. The Roles of d-Electrons in Transition Metal Chemistry: A New Emphasis, M .
Gerloch, Coord. Chem. Rev., 1990, 99, 199,

2. PW. Atkins, Molecular Quantum Mechanics, Oxford University Press, Oxford,
1970.

3. ILN. Murrell, S.F.A. Kettle, J.M. Tedder, Valence Theory, 2nd ed., Wiley,
New York, 1969.
— The last two references have more to say on the radial forms of atomic orbitals.
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3.1 The Crystal-Field Premise

During the first twenty years or so of this century, an incredibly detailed
understanding of atomic line spectra was built up with the application of the, then
new, quantum theory. Indeed, the development of quantum theory came about in
part by the need to understand these spectral properties. We shall have to review
some basic features of the theory of atomic spectra for our present purposes, but we
shall leave it for the moment.

In the later 1920’s, physicists, rightly flushed with their successes with
interpreting the rich, sharp spectra of atoms and gas phase ions, sought to extend
their reach to the broader (and fewer) absorption bands that characterize the spectra
of ions in crystalline matrices.” These bands occur at utterly different frequencies
to those of the corresponding free ions so that there is no similarity at all between
the spectra of free ions and of those in ionic or covalent lattices.

Crystal-field theory (CFT) was constructed as the first theoretical model to
account for these spectral differences. Its central idea is simple in the extreme. In
free atoms and ions, all electrons, but for our interests particularly the ‘outer’ or
non-core electrons, are subject to three main energetic constraints: a) they possess
kinetic energy, b) they are attracted to the nucleus and c) they repel one another.
(We shall put that a little more exactly, and symbolically, later). Within the
environment of other ions, as for example within the lattice of a crystal, those
electrons are expected to be subject also to one further constraint. Namely, they
will be affected by the non-spherical electric field established by the surrounding
ions. That electric field was called the ‘crystalline field’, but we now simply call it
the ‘crystal field’. Since we are almost exclusively concerned with the spectral and
other properties of positively charged transition-metal ions surrounded by anions of
the lattice,”™ the effect of the crystal field is to repel the electrons.

Those electrons must not only avoid each other but also the negatively charged
anionic environment. In its simplest form, the crystal field is viewed as composed
of an array of negative point charges. This simplification is not essential but
perfectly adequate for our introduction. We comment upon it later.

" It is interesting that the very broad, so-called ‘spin-allowed’ transitions, like most of those in
Fig. 2-1, were not actually recognized as such until the 1950°’s. This was because of the
characteristics of the spectrograph rather than the spectrometer.

™ To be contrasted with a negatively charged metal surrounded by positively charged groups.
The idea of neutral ligands with donor lone pairs will be considered in due course.

Transition Metal Chemistry. M. Gerloch, E. C. Constable
Copyright © 1994 VCH Verlagsgesellschaft mbH, Weinheim
ISBN: 3-527-29218-7
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3.2 Splitting of d Orbitals in Octahedral Symmetry

We are concerned with what happens to the (spectral) d electrons of a transition-
metal ion surrounded by a group of ligands which, in the crystal-field model, may
be represented by point negative charges. The results depend upon the number and
spatial arrangements of these charges. For the moment, and because of the very
common occurrence of octahedral coordination, we focus exclusively upon an
octahedral array of point charges.

Figure 3-1. The angular forms of the five d orbitals.

The set of five d orbitals share a common radial part like that sketched in Fig.
2-2. Their angular parts are shown in Fig. 3-1. Let us consider the six point charges
in an octahedral array to be disposed along the positive and negative x, y and z axes
to which these d orbitals are referred. This is conveniently drawn, as shown in Fig.
3-2, by placing the charges at the centres of each face of a cube, itself centred on
the metal atom. By comparing the orbitals in Fig. 3-1 with the crystal field of point
charges in Fig. 3-2, we observe that some orbitals are more directed towards the
point charges than others. The d.2 and d,2_,2 orbitals are directed exactly towards
the six charges while the d,,, d,, and d,, have lobes which lie between the x, y and z
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Figure 3-2. The d,»_,2 orbital points towards (four of) the ligands and d,, points between those
ligands.

axes on which the charges are situated. Therefore, an electron placed in the d,,
orbital will be less repelled by the crystal field than one placed in the d,2_j2 . It is
obvious that the dispositions of the d,,, d,. and d,, orbitals with respect to the point
charges are energetically equivalent. It is not obvious, but nonetheless true, that the
repulsion suffered by an electron in the d,2_,2 orbital is the same as that by one in
the d.2 orbital (see Box 3-1).

Altogether then, the energies of the five d orbitals (strictly of the electrons within
them) in octahedral symmetry separate into two groups as shown in Fig. 3-3. All d
orbitals are raised in energy by repulsion in the crystal field, but two go to higher
energies than the other three. Since spectroscopy and, indeed, most other d electron
properties of interest to us are concerned with relative energies, or splittings, rather
than with absolute energies, a more usual representation of the differential crystal-
field effect upon d orbitals is that shown in Fig. 3-4. We draw the energy levels
with respect to the mean energy of the whole d orbital set. This so-called

d2,d2 2

|

|

ll

Figure 3-3. Two d orbitals are raised in energy more than the other three.
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Box 3-1

Each Tobe of the d,»_2 orbital interacts predominantly with one point charge. The repulsive
effects relate to the electron density within any given orbital so we might describe the
interaction in units of ‘lobe repulsion’ and say that, for the d,2_,> orbital, this amounts to 42
= 16 repulsion units (4 squared because electron density =< y?).

The d. orbital can be written as a linear combination of two different orbitals which
(Eq. 3.1) look like the d,» ,» orbital but referred to the xz and xy planes: d2 2 and d

d2= (dae+dap)l \//E (3.1)

This identity is sketched below.

The d2_,» and d2_,» orbitals each interact with four point charges in precisely the same
way as does the dxz,v,:z orbital. Again the repulsion relates to electron density, so the total
interaction of the combination is (4/./2)* + (4/./2 )* = 16 of our repulsion units. In other
words, the d2 and d,2 ,2 orbitals are degenerate in octahedral symmetry.

‘barycentre’ rule means that if the splitting between the two subsets of orbitals is
labelled A, the higher pair lie at an energy +0.6 A, and the lower trio at —0.4 A,
("Barycentre’ means a ’centre-of-gravity’ type of rule.) An older alternative label
for the octahedral-field splitting is 10Dg where, in the literal crystal-field model we
have introduced thus far, g is the charge on each ligand and D is a quantity related
to the geometry. We shall make no use of these old meanings and just refer to Dg as
a sort of ‘dipthong of consonants’. In this notation, the pair of orbitals lies at +6 Dq
and the lower trio at —4 Dg. Both A, and 10Dg are in common use and we shall
swap between them at will.

The subsets of d orbitals in Fig. 3-4 may also be labelled according to their
symmetry properties. The d2/d,2_,2 pair are labelled e, and the d,,/d,./d,, trio as t,,.
These are group-theoretical symbols describing how these functions transform under
various symmetry operations. For our purposes, it is sufficient merely to recognize
that the letters a or b describe orbitally (i.e. spatially) singly degenerate species, e
refers to an orbital doublet and ¢ to an orbital triplet. Lower case letters are used for
one-electron wavefunctions (i.e. orbitals). The g subscript refers to the behaviour of
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Box 3-2

Another way to view the barycentre rule is to consider first the bringing up to the metal of
a spherical shell of negative charge which increases the energies of all five d orbitals
equally. Then, in this notional picture, if the spherical shell of charge redistributes towards
the apices of an octahedron, those orbitals directed towards those apices suffer a further
repulsion and energy increase, while those directed in between, acquire a relative stability.

d2 d2 2 e, +06 Ay or+6Dg

H

Ay, or 10Dg

a

d

Xy

dy dy 1 1 = 0.4 Ay or -4Dgq

Figure 3-4. Barycentre splitting of the d orbitals in octahedral symmetry.

these functions under inversion through a centre — gerade or even. As all d orbitals
are centrosymmetric, all d subsets are here labelled g. The subscript 2 in 1,, gives
further symmetry information. We do not require this here and must just accept the
label as a name.

For a transition-metal ion in an octahedral environment with a single d electron
(configuration '), the ground state arises when that electron is placed in the lower
energy t,, subset. Upon absorption of an appropriate energy — A, the electron is
promoted into the higher energy e, subset. Redistribution of the electron within the
15, set involves no energy change and will take place spontaneously and continuously
because of the equivalence of the three cartesian directions in the octahedron. Thus,
only one energy change within the d orbitals is possible and corresponds to the
transition t,;— e,. Illuminating such d' ions with light of varying frequency, as in
spectroscopy, may bring about that single transition when the frequency Av is such
that hv = A, The ‘d-d’ spectrum of the d' ions comprises this single optical
transition.

Yet another representation of the d orbital splitting in Fig. 3-4 is that shown in
Fig. 3-5. Here, we imagine that the charges on the six ligands are smoothly varied
or that their distances from the metal atom are so varied or that the radial extension
of the d orbitals is changed; or, of course, any combination of these. The splitting
pattern (1, + e,) remains unchanged for it is a property of the octahedral disposition
of the point changes. The magnitude of the splitting parameter A, however changes
as the strength of the repulsions between d electrons and point charges changes. As
such A, thus measures the strength of the crystal field.

Now suppose the system of metal and charges we have discussed represents a
metal ion complexed by six ligands. These vibrate continuously. One such vibration
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Figure 3-5. The variation of the octahedral splitting with respect to smoothly changing the
magnitude of Ay,

involves the bonds lengthening and shortening together — a so-called ‘breathing’
mode. When the ligands are closer to the metal, the repulsions suffered by the d
electrons are larger than when the ligands are more distant. So, during the course of
the vibration, the crystal field strength varies between the limits indicated in Fig.
3-5. Such vibrations typically take place in about 10! sec. An optical event
involving absorption and reemission between the 1,, and e, subsets takes place in
about 10-'®sec. A beam of light, incident on a sample, therefore effectively ‘sees’
stationary molecules (the Frank-Condon principle). In a sample containing many
such molecules, however, the light encounters molecules in every part of their
vibrational cycles and so we observe electronic ‘d—d’ transitions at frequencies
everywhere between the extreme vibration limits indicated in Fig. 3-5. Simple theory
predicts that A, is inversely proportional to the fifth power of the bond length
(more sophisticated calculations actually give rather similar results). The energy
spread indicated in Fig. 3-5 is therefore actually rather large and ‘d—d’ transitions
are typically observed as broad bands, maybe 2000 to 3000 cm~! wide.

3.3 Splitting of d Orbitals in Tetrahedral and Other
Symmetries

Tetrahedral Symmetry

Perhaps only slightly less common than octahedral symmetry is tetrahedral
symmetry. We now examine the d orbital splitting in this environment. The story is
much the same as above, except that it is now convenient to place the four point
charges of the tetrahedron as shown in Fig. 3-6. Here ligands are put at alternate
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Z

Figure 3-6. The angle subtended by a lobe of d,2_,» and M —L is greater than that subtended by
a lobe of d,, and M-L.

corners of a cube centred about the metal. We retain the same axis frame so that x,
y and z are again directed towards the midpoints of the cube faces. The d,, and
d._,» orbitals are included in the figure for discussion (the shading has no
significance other than to differentiate these two orbitals).

We note that the lobes of d,, are directed towards the midpoints of the cube
edges, whereas those of d,2 ;2 point towards the midpoints of the cube faces. It is
apparent that the lobes of d,, are oriented more nearly towards the point charges
than are those of d,2_,» An electron in d,, is thus repelled more than one in d2_,2.
Once again, it is obvious that the situations for d,, and d,, electrons are entirely like
that for d,, (permute the axis labels again) so these orbitals form a subset of three.
Less obviously, the d2 and d,2_,» are equivalent and form a subset of two. The
splitting diagram for the five d orbitals in a tetrahedral crystal field is shown in Fig.
3-7. Once more, orbital energies are indicated with respect to a barycentre rule. The
splitting is called A, (or 10Dg — which can be confusing; see Section 3.11) and the
trio lies higher in energy than the pair. The d orbital subsets are labelled 7, and e.

dxy, dy, ,dyz; b :+04 A, or+4Dq

d

I

Ay, or 10Dg

d2 d2 2 e:-06 A, or-6Dg

—y

Figure 3-7. Barycentre splitting of d orbitals in tetrahedral symmetry.
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Note the absence of the g subscripts here. Although the d orbitals are still centro-
symmetric, the tetrahedral environment lacks a centre of inversion. The d orbitals
are therefore not classified with respect to a symmetry element which doesn’t exist:
the absence of the g subscript does not imply the opposite — i.e. u (ungerade or
odd).

Overall, then, we observe that the orbitals are inversely split in the tetrahedron
with respect to the octahedron. However, the differentiation between the subsets in
the octahedron was based on orbitals being oriented directly at or between the point
charges; in the tetrahedron, all d orbitals point between the ligands, though some
are closer to the point charges than others. Accordingly, the magnitude of the
tetrahedral splitting is less than that in the octahedron. Simple geometrical
calculations show that, for the same metal (same d orbital radial functions) and for
the same bond lengths, these splittings are related by the expression in Eq. (3.2).

Alet = 4/9 A(wct (32)

In practice, these conditions of radial waveforms and bond lengths will not be
met exactly, so that a rough rule is that A, = 0.5 A, in real systems. Once again,
only one electronic, ‘d—d’, absorption is expected (and observed), although much
shifted towards the red relative to that in an analogous octahedral complex.

Other Environments

The splitting patterns in crystal fields of symmetries other than octahedral or
tetrahedral can be worked out using broadly similar principles. In general, the d-
orbital degeneracy is raised (meaning decreased!) even more and there result up to
five energetically discrete subsets. That in turn begets more splitting parameters
like A, and often the situation ceases to be simple (see Box 3-3). We shall look at
some of these situations briefly in later chapters. For the moment, it suffices to
restrict our concern to the so-called ‘cubic symmetries’ — octahedral and tetrahedral.
So many complexes possess these symmetries, or at least approximately, that this
restriction is not too serious at this stage.

3.4 Holes: d! and d°

The discussion above might have pertained for example, to the energies and
electronic spectra of titanium(i) compounds. The same ideas can be applied with
just one modification to the d-electron properties of copper(i1) complexes and other

" Some prefer to write A, = — */y A, in order to emphasize the inversion of ¢ and e orbital
subsets. However, if A, and A, are defined as the orbital splittings, it is probably best to omit
the sign.
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Box 3-3

As an example of the effects of lower symmetry, consider the splitting of the d-orbital
energies in a tetragonally elongated octahedron. This could arise either through the obvious
arrangement of two long trans contacts (bond lengths) and four short, or by ligand
dissimilarities as in a trans MA,B, complex.

The weaker field along the B...B direction
repels a d;2 electron less than that in the A4
plane, and destabilizes the d,,/d,, pair less
than the d,: ’

B dy2 2
‘C dp

d —
dX_)"
—— dy,dy;
free octahedral tetragonally
ion field elongated
octahedron

d® ions. Consider an octahedral d° complex with the so-called ‘strong-tield’
configuration #,5e; as shown on the left side of Fig. 3-8. This electronic arrangement,
or configuration, clearly corresponds to the electronic ground state for the lower-
lying t,, orbital set being filled while the higher-lying e, set is incompletely filled.

On absorption of an energy A, one of the ,, electrons will be promoted into the
e, set, as on the right side of Fig. 3-8. As the ¢, set is now full, no further electronic
promotions are possible so that this corresponds to the one and only excited state of
the octahedral d° configuration. We thus observe a single absorption band in the
‘d—d’ spectrum. The excitation f,8ej — njeg is equivalent to the transfer of the hole
in the ¢} configuration into the #,, set. We may view a transition in a d° complex as
a redistribution of a single hole (lack of electron) within a full d shell. However,
while the transition of a single electron in octahedral d' complexes involves the
shift #,, — e, the transition of a single hole in the corresponding d” system involves
the shift e, — £,,. A similar inversion follows for tetrahedral complexes. We shall
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Figure 3-8. The electronic transition for octahedral d° ions.

have more to say about this hole formalism later. For the moment, it suffices to
note that octahedral and tetrahedral complexes of d! or d° configurations give rise
to just one electronic transition in their ‘d—d’ spectra. Some of the general features
of Fig. 2-1 are thus explained. Unfortunately, the explanation of the greater number
of transitions in, say, d* complexes is more difficult and lengthy. We must look at
that, however: it is our next topic. In mastering it we shall enter quite deeply into
the subject of crystal-field theory and learn more about the energetics of d electrons
in transition metal complexes.

3.5 More Transitions for d?

Let us look now at the case of a d” ion in octahedral symmetry. The orbital splitting
is again as given in Fig. 3-4. With two d electrons, however, rather more electronic
arrangements within the #,, and e, subsets are possible. At first sight there are three:
both electrons may be housed in the 1,, subset, both in the e, or one electron in
each, as indicated on the left of Fig. 3-9. In fact there are many more and they arise
for two reasons. The first concerns spin, since the electrons could either share a
common spin or their spins could be opposed. In the former case, the total spin
quantum number for the pair of electrons is (/2 + '/2) or 1 while, in the latter, it is
(*/2—1/2) or 0. The two-electron states associated with these spin quantum numbers
are called (spin) triplets or singlets respectively. For those somewhat unfamiliar
with these labels, we provide a brief review in the next section. Now, in this section,
we consider only those electronic arrangements of maximum spin. We do this for
two reasons. Firstly, Hund’s first rule defines the ground term of a free ion to be
one of maximum spin multiplicity (see Section 3.6). Secondly, as will be discussed
in Chapter 4, electronic transitions between states of the same spin multiplicity are
much more allowed (the spectral bands more intense) than those involving a change
of spin. So we focus here on the spin-triplet states. However, even discarding the
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Figure 3-9. Four spin-triplet terms arise for d2.

spin-singlet states, there arise four discrete types of spin-triplet arrangement rather
than the three one might at first anticipate. Let us see why.

Firstly, consider the spatial degeneracies of spin-parallel electronic arrangements
within the configurations #3,, f.el, ei. Parallel spins must be placed in different
orbitals, of course, because of the Pauli exclusion principle. So spin-parallel
arrangements within the 73, configuration necessarily involve one up-spin (say)
electron in each of two of the members of the f,, orbital set. There are three such
arrangements. (The same result is to be had by noting that the empty orbital can be
any one of three). We label this group of arrangements by the crystal-field term
symbol, *T), (see Box 3-4).

Next we consider the configuration ¢Z. A spin-parallel arrangement must involve
one electron in each of the two members of the e, subset. Ignoring spin (for we

Box 3-4

The left superscript indicates that the arrangements are all spin triplets. The letter T refers
to the three-fold degeneracy just discussed and it is in upper case because the symbol
pertains to a many-electron (here two) wavefunction (we use lower-case letters for one-
electron wavefunctions or orbitals, remember). The subscript g means the wavefunctions
are even under inversion through the centre of symmetry possessed by the octahedron
(since each d orbital is of g symmetry, so also is any product of them), and the right
subscript 1 describes other symmetry properties we need not discuss here. More will be
Lsaid about such term symbols in the next two sections.
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Box 3-5

Again the left superscript indicates the spin-triplet nature of the arrangement. The letter A
means that it is spatially (orbitally) one-fold degenerate and it is upper-case because we
describe two-electron wavefunctions. The subscript is g because the product of d orbitals
is even under the octahedral centre of inversion, and the right subscript 2 must remain a
mystery for us once again.

have fixed that as spin-parallel), there is only one way of filling this orbital subset.
This unique arrangement is labelled by the term symbol *A,, (see Box 3-5).

As the energy of the e, orbital set in the octahedron is larger than that of the t,,
the energy of the configuration e? is greater (by 24, that is, A, for each electron)
than that of #3,. It should not be surprising that the energy of the *A,, term (group of
wavefunctions) is higher than that of the *T}, term discussed above. Note, however,
that the energy of the *A,, term is not determined solely by the 24, promotion as
we shall see.

We have left the configuration rje] till last because it involves some new ideas.
Actually, as will be apparent, all three configurations involve exactly the same
principles. While their variety is not immediately apparent from our discussion of
the e and 1,} configurations, it is with the f,3e}. Now the f,;e; configuration symbol
means that one electron is to be placed within the #,, subset and one within the e,.
We have agreed to consider only those arrangements with parallel spins. The #,,
electron may be housed in any one of three orbitals while independently the e,
electron may occupy one of two. Altogether therefore, there are (3 x 2) = 6 spatial
arrangements for these two electrons. However, the six arrangements are not
degenerate. They form up into two sets of three, with the term symbols *T,, + T,
(the rules of the labelling are now hopefully clear enough). Why are the energies of
these two terms different? Also of note is that the difference in their energies is not
at all trivial, being around twice the magnitude of the crystal-field splitting A, in
many systems.

The answer has been given in Section 3.1. We have focused upon crystal-field
energies, that is, upon the need of the metal d electrons to avoid the regions of
higher negative charge in the crystal (or molecular) environment. With more than
one d electron (or hole), as here, we must not forget that these electrons also need
to avoid each other. Our discussion in the present section thus far has omitted
consideration of interelectron repulsion energy. Recall our caveat when asserting
that the relative energy of the T, (from 1,}) and the *A,, (from e?) is not given
simply by A, the energy splitting of the r,, and e, orbitals. That is because the
electron—electron repulsion energies for these two arrangements are not the same.
They are not the same because the spatial proximity of members of the e, orbital
pair is not the same as that for members of the #,, set. Similarly, the proximities and
interelectron repulsion energies vary within the electronic arrangements of the #,}e;
configuration, as we now discuss.

Taking one electron from each of the 1,, and e, subsets, we can form high- and
low-energy spatial triplets, *T5, and *T,, as shown in Eq. (3.3) (we write xy for d,,,
etc).
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Tyt (xy)(22) D=y (k) (x?=y?)
(3.3)

T (en(P=yY)  (yz)(Z2) (x2)(z%)

The °T,, term wavefunctions lie lower in energy than those of the T,
Qualitatively, we can rationalize this energy ordering most easily by considering
the first component of each of these terms. The relevant pairs of orbitals are shown
in Fig. 3-10. The orbital pair (xy)(x?-y?®) is obviously much more crowded together
than is the (xy)(z?) pair and so the interelectron repulsion energy associated with the
former arrangement is much greater than with the latter.

d

d, 22

Xy

Figure 3-10. Relative electron crowding for different orbital pair densities.

On the right side of Fig. 3-9 are represented the relative energies of the two 37T,
terms, the 75, and *A,,. The ground term is the *T), from the #; configuration. Spin-
allowed electronic transitions (those between terms of the same spin angular
momentum — but see also Sections 3.6, 3.7 and Chapter 4) now take place upon
excitation from 37,,—T,,, —%A,,, —°T),. The ‘d-d’ spectra of octahedrally
coordinated @* ions thus exhibit three bands. Similar arguments for tetrahedrally
coordinated d? ions yield three transitions also, but this time from a *A, ground
term: *A,—T,, =T, —°T,. Clearly, similar results apply to those d® ions having
two holes in a full d shell rather than two electrons. We shall look at these hole
equivalencies more carefully in Section 3.7.

The approach we have adopted for the d? configuration began from the so-called
‘strong-field” limit. This is to be contrasted to the ‘weak-field’” scheme that we
describe in Section 3.7. In the strong-field approach, we consider the crystal-field
splitting of the d orbitals first, and then recognize the effects of interelectron
repulsion. The opposite order is adopted in the weak-field scheme. Before studying
this alternative approach, however, we must review a little of the theory of free-ion
spectroscopy
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3.6 Atomic Orbitals and Terms

The present section is offered as a review of the jargon of the theory of free-ion
spectroscopy with little in the way of any free-standing explanation.”

A transition metal with the configuration d' is an example of a ‘hydrogen-like’
atom in that we consider the behaviour of a single (d) electron outside of any
closed shells. This electron possesses kinetic energy and is attracted to the shielded
nucleus. The appropriate energy operator (Hamiltonian) for this is shown in Eq.
(3.4).

O 2 (3.4)

2m r

H

H-like —
Solutions to the Schrédinger equation (3.5) are called one-electron wavefunctions or
orbitals and take the form in Eq. (3.6)

]{H—like¢ =£¢ (3-3)

¢ =R, (Y. (6,0) (3.6)

The radial functions, R depend only upon the distance, r, of the electron from the
nucleus while the angular functions, Y}ln (6,0) called spherical harmonics, depend
only upon the polar coordinates, 6 and ¢. Examples of these purely angular
functions are shown in Fig. 3-11.

Yoo Yo Yy Y30

Figure 3-11. The shapes of the angular functions are determined only by the theory of angular
momentum in spherical symmetry.

The orbitals are labelled 1s; 2s, 2p; 3s, 3p, 3d; etc. to indicate the principal
quantum number #n (here equal to 1, 2, 3.....) and the orbital angular momentum
quantum number, /, according to the code in (3.7).

" This topic is described fully, but at the same level as adopted in the present book, in
‘Orbitals, Terms and States’.
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Associated with each [ value are (2/ + 1) values of m,, ranging [, [-1.....—1,
describing the z component of the angular momentum. Thus, we find one s function,
three p functions, five d functions, and so on.

The Hamiltonian (3.4) is a function of the usual spatial coordinates (x, y, z or r,
6, ¢). Electrons possess the intrinsic property of spin, however, which is to be
thought of as a property in an independent, or orthogonal, space (spin space). Spin
is actually a consequence of the theory of relativity but we shall merely graft on the
property in an ad hoc fashion. The spin, s, of an electron (don’t confuse with s
orbitals!) takes the value 1/2 only. The z component of spin, m,, takes (2s + 1)
values of m,, ranging s, s—1,...—s. Thus for the single electron, m; = +1/2 or —1/2,
also labelled o or B, or indicated by T or {.

Now consider a d? ion as an example of a so-called ‘many-electron’ atom. Here,
each electron possesses kinetic energy, is attracted to the (shielded) nucleus and is
repelled by the other electron. We write the Hamiltonian operator for this as follows:

2

n . n €

}[many = [}[H-Iike (l) + Zi<jr_ (38)
i

where each pair of the n electrons in the d" configuration suffer mutual repulsions
that are inversely proportional to the instantaneous distance, r;, between them. The
sum in the second part is for i < j in order not to count these pair-wise interactions
twice and to prevent the i electron repelling itself. This second operator is called
the Coulomb operator. Solutions, ¥ for this Hamiltonian,

i, W=LV¥ (3.9)
are called ‘many-electron’ wavefunctions, or term wavefunctions, because they
describe the behaviour of many (n) electrons as a group. They are nor orbitals.
These groups of wavefunctions — terms — possess the qualities of orbital- and spin-
angular momentum, just like the orbitals of (3.5), however. Their orbital angular
momentum is labelled by L, according to the code:

L= 0 1 2 3 4 5 ce (3.10)
S P D F G H

and associated with each L value are (2L + 1) values of M;, referring to the z
components of the orbital angular momentum.

The spin angular momentum of a term is labelled with S and may take integrally
separated values based on 0 or 1/2 depending upon the d" configuration; viz. S = 0,
1, 2...or S = 1/2, 3/2, 5/2... Associated with each such § value are (25 + 1) values
of M; for the z components of spin angular momentum, with M, taking the values §,
S-1...-8.
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The total form of the many-electron wavefunctions, V, of (3.9) can be computed
for free ions but only after lengthy numerical procedures. Let us imagine this to
have been done and ask what angular momentum properties are assocated with
these solutions. We find them aggregating into groups — terms — characterized by
appropriate pairs of orbital- and spin-angular momenta: L, S. Instead of so labelling
them, they are conventionally described by term symbols of the form 25+'L. Examples
are 2D, >F,°S etc, pronounced doublet D, triplet F,sextet S, etc. Each of these terms is
(2L + 1)(2S +1)-fold degenerate because there are (2L +1) M, values for each L and
(28 +1) M values for each S; and spin- and orbital-angular momenta are indepen-
dent properties (in the absence of spin-orbit coupling). The degeneracies of 2D, 3F,
8§ terms, for example, are 10, 21, 6.

Note that, throughout this discussion, we have used lower-case letters when
refering to orbitals and upper-case when we mean many-electron wavefunctions.
There arises the question of, ‘what are the relationships between / and L, or between
s and S 7. They are determined by the vector coupling rule. This states that the
angular momentum for a coupled (i.e. interacting) pair of electrons may take values
ranging from their sum to their difference (Eq. 3.11).

Lol+bh, I+6hL=-1,....1-1l (3.11)
The same” goes for spin angular momentum (Eq. 3.12).

S—s + 85, 85 +8s-1, ... s - 5l (3.12)

The rule means that the angular momentum of each of a pair of electrons may be
parallel — meaning about the same physical axis and in the same sense — or opposed,
and that the quantum condition allows only integrally separated values between
these limits. For the d? case, the [ value for each electron is 2 and so L can take the
values 4, 3, 2, 1 or 0, corresponding to the labels G, F, D, P, S. The s value for each
electron is 1/2, so S can take values 1 or 0 and there may thus arise terms G, 3F,
3D, 3P, 38, 'G, 'F, 'D, 'P, 'S. However, not all these terms do arise for the ‘equivalent’
d electrons of the d? configuration, because some electronic arrangements violate
Pauli’s exclusion principle while others ignore the fact that electrons are
indistinguishable. For the d? configuration, the first electron may have any one of
five m; values and any one of two m, — or 10 possibilities altogether. The second
electron is left with only 9 choices of the (m,, m,) combination because of the
exclusion principle — hence yielding 90 arrangements for the pair. However, the
indistinguishability of electrons means we cannot assign meaning to the adjectives
“first” and ‘second’ here and have thus counted each arrangement twice. Altogether,
therefore, the d* configuration is 45-fold degenerate. It can be shown to give rise to
the term set: 'G, 3F, 'D, 3P, 'S. The (2L + 1)(2§ + 1)-fold degeneracies of these
terms are 9, 21, 5, 9 and 1 respectively, adding to 45, as required.

" The vector coupling rule applies to all forms of angular momentum:
I+ o JiHia- 1, ljr = jol
where each jcanbe s, S, [, L, jor J.
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Figure 3-12. Free ion terms arising from the d? configuration.

All this is summarized in Fig. 3-12. The energy ordering of the free-ion terms is
not determined by consideration of angular momentum properties alone and in
general yields only to detailed numerical computation. The ground term — and only
the ground term — may be deduced, however, from some simple rules due to Hund.

Hund’s first rule: The ground term will be one of maximum spin-
multiplicity (maximum S)

Hund’s second rule: If ambiguity remains, the maximum-spin ground term will
then be one with maximum L

So for d?, the ground term is a spin triplet, and 3F rather than *P. Let us recap
one or two points. A configuration describes an orbital assembly in which no
recognition is made of the Coulomb interaction between electrons: there are 45
equally good (equi-energetic) ways of arranging two d electrons with regard to their
kinetic energy and attraction to the nucleus. When we recognize that these electrons
repel and otherwise interact through the Coulomb operator, we observe the term
splitting on the right-side of Fig. 3-12. There are now 21 ways of equal minimum
energy in which two d electrons possess kinetic energy, are attracted to the nucleus,
and avoid each other (as best they might). For the (assumed) ordering in Fig. 3-12,
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we note that there are 9 second-best ways of satisfying these three constraints, and
so on. The 21 best ways happen, as it were, to share the common angular moment-
um properties, designated by the term symbol *F, and so on again. Each member
(state) of each term is a two-electron wavefunction, describing one or another
particular arrangement of exactly two electrons.

The electrons have coupled through the agency of electrostatic (repulsive)
interactions. Electrons may also couple via the (independent) means of magnetic
interaction we call spin-orbit coupling. This effect is generally smaller than the
electrostatic coupling and we shall largely ignore it in this book. Spin-orbit coupling
is not unimportant, especially when one comes to consider the magnetic properties
of transition-metal compounds. However, we return now to our main enquiry
concerning the effects of crystal fields upon these wavefunctions.

3.7 Crystal-Field Splitting of Free-Ion D Terms

Term wavefunctions describe the behaviour of several electrons in a free ion coupled
together by the electrostatic Coulomb interactions. The angular parts of term
wavefunctions are determined by the theory of angular momentum as are the angu-
lar parts of one-electron wavefunctions. In particular, the angular distributions of
the electron densities of many-electron wavefunctions are intimately related to those
for orbitals with the same orbital angular momentum quantum number; that is,

Box 3-6

The electron distributions in term wavefunctions and orbitals may be the same or
complementary, as shown below

(2) () ©
. J
Y
electron density possible forms of the electron
ina density in the corresponding
d orbital partof a D term

The identity of (b) with (a) is obvious. In (c), a section of the density is shown to take the
form of a spherical density from which a density of the form (b) has been subtracted.
Alternatively, (c) may be viewed as a distribution of positive charge in the form of (b).
Whether components of a D term take the form (b) or (c) depends upon the number of
electrons described by the many-electron wavefunction.
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when L = [. So the shapes of electron densities for the five members of a D term
are closely related to the shapes of the densities in the five d orbitals.

In an octahedral crystal field, for example, these electron densities acquire diffe-
rent energies in exactly the same way as do those of the d-orbital densities. We
find, therefore, that a free-ion D term splits into 75, and E, terms in an octahedral
environment. The symbols 7>, and E, have the same meanings as 1, and e,, discussed
in Section 3.2, except that we use upper-case letters to indicate that, like their
parent free-ion D term, they are generally many-electron wavefunctions. Of course
we must remember that a term is properly described by both orbital- and spin-
quantum numbers. So we more properly conclude that a free-ion term 21D splits
into *'E, + 25*!T,, in octahedral symmetry. Notice that the crystal-field splitting has
no effect upon the spin-degeneracy. This is because the crystal field is defined
completely by its ordinary (x, y, z) spatial functionality: the crystal field has no spin
properties.

Consider, for a change, the ground term of the ¢* configuration. A quick way of
determining the free-ion ground term (and only the ground term) is as follows.
Hund’s rules require that the ground term be of maximum spin multiplicity. We
draw a set of five boxes to represent the five m; values for d orbitals placing the
four electrons in parallel

m; = 2 1 0 -1 -2

o

spin formation. Pauli’s exclusion principle then requires that these electrons occupy
different d orbitals (different m,; values). The total z component of orbital angular
momentum M; is just the sum of the individual m, values, 2+ 1 + 0-1=2.
All other possible arrangements of four parallel electrons within the set of five
boxes yield M, values in this way which range from 2 to —2. Hence L for the set is
2, i.e. D. The total spin quantum number M; is Y (m); =4 x 1/2 =2 and hence S =
2. The ground term is therefore *D. In an octahedral field the °D term splits to give
T», + E, octahedral-field terms. (They are still called ‘terms’ because they are all
many-electron wavefunctions).

Finally, consider also the case of the d' configuration. The ground (and in this
case, only) term, worked out as above, is *D. The reader may object that for d', we
should not use upper-case labels because we are dealing with a single electron
rather than with a many-electron wavefunction. But we can do so, because the word
‘many’ subsumes the particular case of ‘one’. To say that the 2D term of d' splits
into °T,, + 2E, in an octahedral crystal field is merely to put our knowledge of the
d—t,, + e, splitting onto a uniform basis so that we can compare all 4"
configurations. There are other advantages too, as we shall see in Section 3.10.
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3.8 Crystal-Field Splitting of Free-Ion F Terms

The ground term of the d” configuration is *F. That of d® is also *F. Those of d* and
d” are *F. We shall discuss these patterns in Section 3.10. For the moment, we only
note the common occurrence of F terms and ask how they split in an octahedral
crystal field. As for the case of the D term above, which splits like the d orbitals
because the angular parts of their electron distributions are related, an F term splits
up like a set of f orbital electron densities. A set of real f orbitals is shown in Fig.
3-13. Note how they comprise three subsets. One set of three orbitals has major
lobes directed along the cartesian x or y or z axes. Another set comprises three
orbitals, each formed by a pair of ‘clover-leaf’ shapes, concentrated about two of
the three cartesian planes. The third set comprises just one member, with lobes
directed equally to all eight corners of an inscribing cube. In the free ion, of course,
all seven f orbitals are degenerate. In an octahedral crystal field, however, the

X Oory orz X Oory orz

Figure 3-13. Angular forms of the seven f orbitals.
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electron densities associated with these orbitals are differentially repelled. Those
for the first set are repelled most because the orbital lobes are pointing directly at
the various ligands. Those of the second set are equivalent amongst themselves and
are repelled less since they point between the ligands. The unique f-orbital density
is the least repelled because each lobe is even further from the ligand sites. All this
is summarized in Fig. 3-14, showing the splitting of f orbitals in an octahedral field
as Fig. 3-4 showed the equivalent splitting for d orbitals. The orbital subsets are
labelled 1, t,,, a, respectively for the three sets described above. All f orbitals are
odd (ungerade) under inversion through the centre of symmetry possessed by the
octahedral field and so are labelled with the u subscript here.

Aoy

I

Iy

Figure 3-14. Splitting of f orbitals in octahedral symmetry.

F terms split analogously but, because we are here considering F terms arising
from d" configurations (we could, but don’t, consider F terms arising from f”
configurations, by the way), the many-electron wavefunctions are built from products
of d orbitals of g symmetry. Hence, the octahedral-field terms arising are necessarily
of g symmetry and so we get the result F—T,, + T,, + A,,. Another consequence of
the difference between F terms built from d-orbital products versus f orbitals is that
the sign or sense of the splitting depends upon the number of d electrons and may
or may not be the same as that shown for the f orbitals in Fig. 3-14. There are
various ways of determining whether the 3F term from d? splits with a 7}, term
lowest in energy, or with the A, term lowest. Although we have not prepared the
groundwork in the present text to describe the more direct of these routes, we are
able to decide the issue, however, by reference to the strong-field scheme. Thus, in
the case of d?, for example, we know from the discussion in Section 3.5 that the
lowest energy arrangement in an octahedral field is orbitally three-fold degenerate.
This establishes the term splitting for the d? case as that shown in Fig. 3-15. Note,
once again, that both free-ion and octahedral-field terms are all spin triplets.
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d2

Figure 3-15. Splitting of the 3F term arising from the d? configuration in octahedral symmetry.

3.9 Free-Ion S and P Terms in Crystal Fields

An § term, like an s orbital, is non-degenerate. Therefore, while the effect of a
crystal field (of any symmetry) will be to shift its energy, there can be no question
of its splitting. The ground term for the d° configuration is %S. In an octahedral
crystal field, this is relabelled °Aj,; in tetrahedral symmetry, lacking a centre of
inversion, it is labelled °A;.

The three p orbitals are directed along the three cartesian axes and so, in an
octahedral crystal field, suffer equal repulsion from point charges sited on those
axes. The energies of the three p orbitals, therefore, remain degenerate. Similarly, a
free-ion P term remains unsplit in octahedral or tetrahedral crystal fields and is
labelled T, or T, respectively.

The only spin-triplets arising from the d? configuration are 3F (ground) and 3P.
The effects of an octahedral or tetrahedral field upon these two terms are
summarized in Fig. 3-16.

We note that three spin-allowed electronic transitions should be observed in the
‘d—d’ spectrum in each case. We have, thus, arrived at the same point established
in Section 3.5. This time, however, we have used the so-called ’'weak-field’
approach. Recall that the adjectives ‘strong-field’ and ‘weak-field’ refer to the
magnitude of the crystal-field effect compared with the interelectron repulsion
energies represented by the Coulomb term in the crystal-field Hamiltonian,

n . n 62
He = Zi Hy (D) + Zi<jr_ + Ver (3.13)
ij

where V¢ris the so-called crystal-field potential. Its a question of the order in which
we consider these two effects. In the weak-field scheme, we begin with the free-ion
terms left after the Coulomb interactions and then consider a weak crystal-field
potential. In the strong-field approach, we begin with the strong-field configuration,
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Figure 3-16. Octahedral field spin-triplet terms arising for d2.
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Figure 3-17. A partial correlation diagram for d2 showing weak- (left) and strong-field (right)
limits for spin-triplet terms.
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recognizing the crystal-field splitting of the d orbitals, and then take account of the
interaction repulsion energies. Of course, the true state of affairs in any real metal
complex lies somewhere inbetween the weak-field and strong-field limits. The
continuum between these limits is shown semi-quantitatively by the (partial)
correlation diagram in Fig. 3-17. On the left are shown the effects of the progressi-
ve introduction of the components of the crystal-field Hamiltonian, Hcrin the order
given in Eq. (3.13) — the weak-field approach. On the right, these contributions are
taken in the order Hy ., Vcr and Coulomb. The term energies inbetween the weak-
and strong-field limits vary across the abscissa with respect to the relative
magnitudes of the Coulomb and crystal-field contributions. Unjoined lines in the
diagram refer to spin-singlet terms which are otherwise omitted for simplicity. The
diagram indicates that, for d° in octahedral symmetry, the ground T\, term from *F
correlates with the strong-field configuration ,3; that the *7, correlates with nye,;
A, with e?; and that the °T,, term arising from the 3P free-ion term — labelled
3T)(P) as opposed to *T(F) — correlates with t,3e;.

We have noted how the relative term energies vary across the diagram. In
particular, while the energy separations between the three strong-field configurations
on the right are A, or 10Dg, the energy separations between the *T),, *T5, and 3A2g
terms arising from *F on the extreme left (weak-field limir) are 8Dqg and 10Dgq, as
shown. So while the *T,, and *A,, terms stay 10Dq apart right across the diagram,
the energy separation, *T',(F)«>’T,,, varies from 8Dg to 10Dgq as the crystal field is
increased (note that this change is over and above that due to the variation in the
value of Dgq itself). This effect is often represented by the diagram in Fig. 3-18.
On the left side of the diagram, the energy separation between the 3P and *F terms
of the free ion is denoted as 15B, where B is a parametric measure of the magnitude
of the Coulomb interaction — in effect, B is for interelectron repulsion what Dg is
for the crystal field. It is not appropriate here for us to enquire further into the
choice of this, seemingly odd, symbolism.” Moving one step to the right in Fig. 3-
18, we see the crystal-field term energies in the weak-field limit. Note that the
unsplit *P term does not shift either. This is because V¢p is defined with respect to a
barycentre rule so that, as elsewhere in both Fig. 3-17 and 3-18, the crystal-field
effects ignore the overall shifts of Fig. 3-3 and refer just to splitting energies. Then,
as we move to the right of Fig. 3-18, the energies of both *T), terms shift by some
small amount xDgq. This is because these wavefunctions possess the same symmetry
and can mix together (in the same way that two s type molecular orbitals in a
diatomic molecule can mix together). As they mix, their energies change such that
the energy of the higher one [*T,(P)] increases while that of the lower one [*T,(£)]
decreases by the same amount. From Fig. 3-17, we know that the 3T]g(F) takes an
energy 8Dg less than T, in the strong-field limit. Hence, x in Fig. 3-17 lies between
0 and 2. Again, the actual magnitude of x in any real system is a measure of the
relative magnitudes of the crystal-field and interelectron repulsion effects. The

" Except to note that the occurrence of the coefficients 15 and 10 in 158 and 10Dgq obviate the
need for fractions here or elsewhere in crystal-field theory: thus, they are there for reasons of
convenience and definition only.
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Figure 3-18. Interaction between
T o(F) and *T,(P) terms.

Figure 3-19. Schematic represen-
tation of the energy variations of
the spin-triplets of d2.
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changes across Fig. 3-18 are not discontinuous, of course, but smooth and may be
redrawn as in Fig. 3-19. The energies of the *A,, and *T>, terms vary linearly with
Dq with constant relative slopes of 10Dq. Those for the two *T), terms curve away
from one another (as if they repel each other). We shall refer to this diagram again
in Section 3.11.

3.10 Splitting Patterns for d” Ground Terms

A complete description of the effects of a crystal field upon a d* ion would include
similar analysis of the behavours of all terms arising for that d" configuration. Box
3-7 summarizes the case for d2, and in Box 3-8, we illustrate a method of using Fig.
3-19 to determine Dg and B values from real spectra.

Much useful understanding of the processes of crystal-field theory, however, can
be had from a study of just the free-ion ground terms. Application of the simple
process in Section 3.7 identifies the ground terms for d” free ions as 2D, 3F, *F, °D,
6S, 5D, *F, 3F, 2D for n = 1 to 9 respectively. There are some interesting patterns in
this series. Firstly, note that the ground terms for d'°~" configurations are the same
as for d". This is because a d'°~" configuration of electrons behaves in many ways
like a d" configuration of holes. There is no question of any inversion here, however,
because two holes repel each other just as do two electrons. This symmetry between
d'*" and d" configurations extends to all terms. It does not apply to the absolute
energies of any of the free-ion terms, however, for the mutual shielding for 10—n
electrons is not the same as for n electrons. Secondly, if spin is ignored, we also
observe a symmetry at the 1/4 and 3/4 periods”. Thus, the orbital (spatial) parts of
the ground terms for d°*" are the same as for d”, as also are those for d'°~" like d*.
The reason for this can be seen in two ways. With the restriction to the ground term
(i.e. of maximum spin multiplicity), d*" involves n holes in the half-shell of five d
orbitals. The number and manner of the arrangement of, say, three electrons amongst
the five d orbitals is the same as the number and manner of two holes: similarly for,
say, d’ and d® configurations. The other way to look at it, with the same restriction
of maximum spin multiplicity, is as follows: The configuration d**" (maximum spin)
is like that for d” plus a filled half-shell. Thus, for n = 1:

T T T T |islike | 4

Ignoring spin, the ground term for d°* is the same as for d”. But, from the first
symmetry, as described above, that d1%" is like d”, this implies that d>" is like d”
for the ground term. By way of emphasis: the symmetry at the half-period — d'°-*

* The 1/4, 1/2, and 3/4 periods occur between d* and d* at d° and between d’ and d¥,
respectively.
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Box 3-7

Supplementing the knowledge we have so far about the splitting of S, P, D and F terms in
octahedral fields is the fact that a G term gives rise to A,y + E, + T5, + T, crystal-field
components. The diagram in the figure below — a so-called ‘Tanabe-Sugano’ diagram -
shows the energies of all octahedral-field terms arising from the d? configuration as
functions of Dg and B. By convention, energy levels are plotted with respect to the ground
term. Curvatures in these variations result in part from mixing between terms of the same
kind (same spin and spatial symmetry) and in part because this method of presentation has
the ground term along the abscissa.
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like d" — applies to all terms of these configurations while the symmetries at the
1/4 and 3/4 periods apply only to the ground terms.

The effects of an octahedral crystal field upon each of the ground terms is shown
in Fig. 3-20. This diagram was constructed as follows. From our previous
discussions, D—=T,, + E,, F=T), + T5, + Ay, (with T,, always in the middle), and
S—A,, For the d' configuration, ?T, lies lower than ?E,. The symmetries we
observed for the ground terms of the free-ion terms at the 1/4, 1/2 and 3/4 periods
also apply for the crystal-field splittings except that, while two electrons (or holes)
always repel one another for the Coulomb contribution, electrons are repelled by
the crystal field but holes are attracted. So these symmetries give the same results
for the two-electron Coulomb operator but inverse results for the one-electron
crystal-field operator. Applying these rules, the 2D of d? yields ?T, and ?E, terms in
the opposite energy order to those of d', i.e. ?E, lower than *T5,. The °D term of d*
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Box 3-8

The figure below abstracts just the spin-triplet part of the Tanabe-Sugano diagram in the
previous box. Suppose we have recorded the electronic ‘d—d’ spectrum of [V(H,0)]* and
identified two out of the three possible ‘spin-allowed’ (triplet—triplet) bands at energies
17,200 cm~' and 25,600 cm
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The question arises ‘to which of the transitions *7,—*T5,,—3A,,,—°T,,(P) do these bands
correspond?’.

We proceed by determining at what value of Dg/B on the abscissa is the ratio 256/172 =
1.49 reproduced by the plot: this is shown by the vertical broken line in the figure . Then
we construct the horizontal broken lines to meet, as shown. For v, we find E/B on the
ordinate as 25.9, and for v, we get E/B = 38.7. From either we find, therefore, that B = 665
cm~'. On referring back to the vertical line we thus find 10Dg = 18,600 cm . At the same
time we have established that v, corresponds to the transition —*7,,(F) and v, to —°T,(P).
The transition —>3A2g(F) is predicted to lie at ca. 36,000 cm~1.

also splits inversely with respect to the 2D term of d!; the D term of d® splits
inversely with respect to d° and hence the same way round as for the 2D of d'.

Turning now to the F terms. We have previously established that the ground term
of d* in octahedral symmetry is *T,. Therefore, by the symmetry in the 1/2 period,
that for d® is *A,, and by the symmetries in the 1/4 and 3/4 periods, the ground
terms for d* and d” are *A,, and *T), respectively.

Finally, the ¢S term of d° does not split and is labelled °A,,: d° is its own hole-
equivalent. While there seems to be a lot to remember in Fig. 3-20, all one needs to
commit to memory is the ordering for, say, d! and d°?. The hole formalisms —
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inversions at 1/4, 1/2 and 3/4 periods — do the rest. Lastly, consider tetrahedral
symmetry. In Section 3.3, we saw how the d orbitals split with (d,,, d,,, d,,) higher
in energy than (d_2, d2_,2); in other words, inverted with respected to the octahe-
dral- field splitting. One reason why some prefer to write (3.2) as A = —*9A. 1s to
indicate that ‘the tetrahedral crystal field is (4/9 times) the negative of the octahedral
field’. This remark is not intended to confuse but merely to provide background to
our assertion now that all splitting diagrams in Fig. 3-20 are inverted for tetrahedral
crystal fields. Of course, the g subscripts are omitted in the tetrahedral case.

3.11 Orgel Diagrams

The information in Section 3.9 and Section 3.10, referring to the crystal-field
splittings of ground terms and all terms of the same spin multiplicity, can be very
neatly encapsulated within two famous diagrams due to Orgel. Somewhat analogous,

E
Eg)
TZ(g)
I Dq
T
Ey
d', df tet d!, d° oct
d*, & oct d*, & tet

Figure 3-21. Orgel diagram for energies of octahedral or tetrahedral terms arising from free-
ion D terms.
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Figure 3-22. Orgel diagram for energies of octahedral or tetrahedral terms arising from free-
ion F or P terms.

and more comprehensive, diagrams for the effects of crystal fields on all terms
arising from a given d" configuration are called Tanabe-Sugano diagrams: an
example was given in a Box 3-7 above. The Orgel diagrams are shown in Fig. 3-21
and 3.22. They refer to the octahedral- or tetrahedral-field splitting of ions with D
or F ground terms respectively. Ions with d', d*, d°® or d° configurations possess
only one term of maximum spin multiplicity — 2D or °D, as appropriate. The crystal-
field Ty, and E(, terms that arise are unique in each case and there are no
interactions between terms of the same symmetry as in Section 3.9. Thus, the
energies of these Ty, and E,, terms vary linearly with 10Dg as shown in Fig. 3-21.
The two sides of the figure depict the situations with either a T, term or an E,
term being lowest in energy. The slopes of the lines arise from the barycentre rules
so that the energy of the more degenerate Ty, term slopes more gently than that of
the E, term. This corresponds to the energies +6Dg and —4Dgq in Fig. 3-4, for
example. The inversions in the 1/4, 1/2 and 3/4 periods as well as that on changing
octahedral for tetrahedral symmetry are all accounted for in the abscissa labels.
Recall our remark in Section 3.3 that we sometimes refer to the orbital triplet-
singlet splitting in both octahedral and tetrahedral symmetry as 10Dg, rather than
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Aoy OF Ay The context should remove ambiguity. On the other hand, that very
ambiguity means that Orgel’s diagrams are always drawn with Dg varying along
the abscissae, regardless of octahedral or tetrahedral symmetry. Equivalently, the g
subscripts are enclosed in parentheses here so that these diagrams serve both
geometries.

Similar rules of construction have been followed in Fig. 3-22. Here, the higher
lying 3P or *P terms (as appropriate) are included. Curvatures due to the repeated
(mixing) T, terms are shown, corresponding to the representation we have
discussed in Fig. 3-19. Note, however, that the interaction between terms of the
same symmetry is essentially inversely proportional to their energy separation: the
closer they are in energy the more they mix and ‘repel’ one another. Because of the
various inversions we have described, the highest energy term arising from an F
term can be the T, In this case, the T,(F) and T,,(P) would be brought into close
proximity and might be expected to cross with increasing crystal-field strength.
Their interaction prevents their crossing (see also the ‘non-crossing rule’) and the
curvatures displayed in the Orgel diagrams in these circumstances are very great.

3.12 Concluding Remarks

In the next chapter we look at the intensities of ‘d—d’ electronic transitions. We
shall see that transitions between terms of the same spin-multiplicity are much
more intense than those involving a change of spin. It is for this reason that our
focus in the present chapter has been on the former. We have seen that for &', d*, d°
and & configurations in octahedral or tetrahedral environments, there is only one
so-called ‘spin-allowed’ transition. For &2, d°, d’ and d® configurations there are
three. There are none at all for ions with the ¢° configuration. The energies of the
transitions in the former group depend only upon the strength of the crystal field
that is, upon the extent to which the metal electrons seek to avoid the ligands. On
the other hand, the transition energies for ions in the second group are functions of
the extents to which the d electrons avoid each other and the external environment.
Quantitative considerations of both contributions yield much chemical information,
as we shall see in Chapter 6.

Our discussions throughout have been based on the crystal-field model. That is
to say, the physical origin of the splittings has been ascribed to the repulsion of the
d electrons by negatively charged ligands. Even at this early stage in our exposition,
it is well to realize that the same qualitative picture would emerge whatever the
detailed physical origin of these splittings is, provided it is such that the d electrons
closest to ligand electron density are most raised in energy. In one sense, of course,
that will suffice as a definition of repulsion, but there is much more to be said yet
about the origin of these effects.
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Suggestions for further reading

1.
2.

B.N. Figgis, Introduction to Ligand Fields, Wiley, New York, 1966.

F.A. Cotton, Chemical Applications of Group Theory, 3rd ed., Wiley, New

York, 1990.

— These references describe the material of chapter more fully and at a somewhat
more technical level; they provide good insight.

. C.J. Ballhausen, Introduction to Ligand-Field Theory, McGraw-Hill, New

York, 1962.

. 1.S. Griffith, Theory of Transition Metal Ions, Cambridge University Press,

Cambridge, 1961.
— These two books delve much more deeply, and at a much more mathematical
level, into this subject.

. M. Gerloch, Orbitals, Terms and States, Wiley, New York, 1986.

— This book describes these quantities for atoms and linear molecules thoroughly
but at a not-too-difficult mathematical level.






4 The Intensities of ‘d—d’ Spectra

4.1 Transition moments

We shouldn’t think of the absorption of light by a molecule in an anthropomorphic
way as if the molecule takes in the light and looks for something to do with it! The
various electronic states in a molecule correspond to discrete arrangements of the
electrons in the molecule. When we refer to a molecule as ‘being in its ground state
or one of its excited states” we mean that it has such-and-such an electronic
arrangement with such-and-such an energy. The absorption of light by a molecule is
an interaction of the light with the molecule. The effect upon the molecule is that
its electrons rearrange from one state to another. We talk of a spectroscopic transition
from one electronic state to another. As mentioned in Section 2.1, the lifetime of
excited electronic states is normally very short — say 1078 sec — and the electrons
spontaneously rearrange to the ground state with re-emission of the light. These tran-
sitions only take place when the frequency (or energy, via the relationship £ = hv)
of the light matches the energy difference between the two states involved in the
transition. The probability of a given transition taking place depends upon the initial
and final states and upon the transition-inducing properties of the light; where we
start, where we finish, and what causes it. We define a transition moment, Q, as the
integral,

0= J. W*,q ¢+ (light operator) * W, dt
= < Y, | light operator | y,> 4.1

where W,y and y,, represent the ground and excited state wavefunctions. The
intensity, /, of this transition — that is, its probability — is given by the square of the
transition moment,

1 < Q? (4.2)
or by I e« Q*Q when Q is complex.

Now we need to know a little about the nature of the transition-inducing light.
Light is a longitudinally propagating transverse oscillating electromagnetic field.
As shown in Fig. 4-1, the electric and magnetic oscillations are at right angles to
one another and to the direction of propagation. The arrows in the diagram
emphasise that at any point along the propagating beam, there are electric and

Transition Metal Chemistry.M. Gerloch, E. C. Constable
Copyright © 1994 VCH Verlagsgesellschaft mbH, Weinheim
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E

Figure 4-1. Light as transverse electric (E) and magnetic (B) oscillating fields normal to the
propagation direction.

magnetic fields of definite sign or parity (except, trivially, where they are zero). In
short, these electric and magnetic fields are dipolar. We write our operator for the
light in Eq. (4.1), therefore, as a combination of electric and magnetic dipole
operators. However, essentially because of the small size of molecules (or of the
chromophoric part of the molecule — meaning that part undergoing electronic
transitions) compared with the wavelength of the light typically used, the ability of
the magnetic dipole to cause transitions is very slight — typically 10-* times that of
the electric dipole. Accordingly, we need not consider so-called magnetic-dipole
transitions any further and write transition moments as

0 = < Ylerlyey, > (4.3)

where the electric-dipole operator er comprises the electronic charge, e, and the
radius vector, r, describing the orientation of the unit light electric dipole.

4.2 Selection Rules

Suppose each state wavefunction in Eq. (4.3) can be written as a simple product of
space-only and spin-only parts: then Q is given by

Q =< l//space I//spin l erI l/’vspace Il/'spin > (4‘4)

where we have changed notation by using primes for the excited state for
typographical reasons. The space parts of the wavefunctions depend only upon
ordinary (x, y, z) space while the spin parts are functions only of spin space. The
operator er is a function only of ordinary space and therefore does nothing to any
spin function. Regrouping variables within the integral, O, we find Eq. (4.5).
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0 =< Yo | €8 | Wipace > < Wipin | W'ipin > (4.5)

Regardless of the nature of the space parts, Q vanishes if Y, # ¥/ If Q vanishes,
so does /. Thus we have the so-called spin-selection rule which denies the possibi-
lity of an electronic transition between states of different spin-multiplicity and we
write AS = 0 for spin-allowed transitions. Expressed in different words, transitions
between states of different spin are not allowed because light has no spin properties
and cannot, therefore, change the spin.

Now consider a transition between states of the same spin. The ‘spin overlap
integral’, < Wi | W'pin>, in Eq. (4.5) is non-zero: if all relevant functions are
normalized, it is unity. So we turn our attention to the space part of Q (Eq. 4.6).

Q = < Wyuce | €r | Yoo > ; space part (4.6)

Generally, such integrals are calculable only with great difficulty because we
rarely know the exact forms of the wavefunctions y. However, a great deal can be
established simply by considerations of symmetry. We rely on a general
mathematical concept that integrals of odd functions vanish. An odd function is one
with two parts (or, in general, two sets of parts) which are identical in shape but
opposite in sign. An even function is one with parts which are identical in shape
and sign. Figure 4-2 shows some examples. A particular, though not unique, subset
of such functions are those which are odd or even with respect to inversion through
a centre of symmetry. Examples we are familiar with are the d and p orbitals, being
even and odd respectively.

NAY

odd odd
even
even

Figure 4-2. Examples of odd and even functions.

Let us enquire about the electric dipole transition moment between two d orbitals
as expressed in Eq. (4.7).
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Qe =< dlerld > (4.7)

The d orbitals are centrosymmetric and are of g symmetry. The light operator,
being dipolar, is of u symmetry. The symmetry of the whole function under the
integral sign in (4.7) — that is, for the product d-r-d—is g X u X g, namely u. The
integral over all volumes of a u function vanishes identically. Since Q in (4.7) then
vanishes, so does the intensity /. In short, ‘d—d’ transitions are disallowed.

This is an example of the parity rule, also known as Laporte’s rule: transitions
between orbitals or states of different parity are forbidden. It means that all d—d,
p-p, s—s and f-f orbital transitions, for example, are forbidden. Actually, the
disallowedness of these transitions is underscored by another selection rule. The
photons of light possess one unit of angular momentum (a spatial property). The ab-
sorption of a photon during the course of a transition vectorially adds exactly one unit
of angular momentum to the molecule. This means that the two orbitals in a tran-
sition must have orbital angular momenta that differ by exactly one unit: Al = 1.
Note also that the orbital selection rule is Al = +1 and NOT AL = *1. The absorption
of one photon of light leads to the rearrangement of one electron, that is, we are
dealing with a one-electron property here — hence the lower-case /. So transitions
s = p,p—d,d— fare allowed but not d — d etc.: the rule also forbids transitions
like s — d or p — f which would be allowed by the parity rule.

4.3 ‘Violation’ of the Selection Rules

These selection rules appear to predict that transition-metal complex spectra will
have no ‘d—d’ bands. But, of course, they do! The rules are strictly absolute: they
may not be violated at all. Their apparent violation derives from the nature of the
electronic states involved in any transition. At the beginning of Section 4.2, we
supposed that the relevant wavefunctions could be factorized into space-only and
spin-only parts. While that is nearly true, it isn’t exactly so. The magnetic interaction
which couples the orbital- and spin-angular momenta of electrons, that we call
‘spin-orbit coupling’, means that neither spin nor orbital properties are constant
with time. In the same way that the electrostatic coupling between electrons causes
the angular momenta of each electron to vary with time in favour of constant spin
and orbital momenta for the electrons as a group, the magnetic interaction yields
only a fotal angular momentum that is constant. For a single electron, we write the
total angular momentum j as the vector sum in (4.8)

j=l+s 4.8)
and for a group of electrons, we write it as in (4.9).

J=L+S (4.9)
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A term label like *F, for example, is thus no longer strictly meaningful for it implies
constant spin- and orbital angular momentum properties (S = 1, L = 3). One
consequence of spin-orbit coupling is a ‘scrambling’ of the two kinds of angular
momentum. So a nominal *X term may really more properly be described as a
mixture of terms of different spin-multiplicity as, for example, in Eq. (4.10).

c3xv
or “or

X+a'Y
40 + bR, etc (4.10)

The mixing coefficients a and b in (4.10) depend upon the efficiency of the spin-
orbit coupling process, parameterized by the so-called spin-orbit coupling coefficient
A (or { for a single electron). As A—0, so also do a or b. Spin-orbit coupling
effects, especially for the first period transition elements, are rather small compared
with either Coulomb or crystal-field effects, so the mixing coefficients a or b are
small. However, insofar that they are non-zero, we might write a transition moment
as in Eq. (4.11).

< 93X ler| W >

<X +a'Ylierl'W+b3Z >

<Xlerl ' W>+ab<'Yler|3Z>+a<'Yier|'W>+b<3X|er!3Z>.
(4.11)

0

Il

The first two terms in the expansion are strictly zero because of the spin selection
rule, while the last two are non-zero, at least so far as the spin-selection rule is
concerned. So a ‘spin-forbidden’ transition like this, “X’—‘'W’, can be observed
because the descriptions *X and 'W are only approximate: that is why we enclose
them in quotation marks. To emphasize: the spin-orbit coupling coefficients for the
first row transition elements are small, the mixing coefficients a and b are small,
and hence the intensities of these spin-forbidden transitions are very weak.

Consider now spin-allowed transitions. The parity and angular momentum
selection rules forbid pure d <> d transitions. Once again the rule is absolute. It is
our description of the wavefunctions that is at fault. Suppose we enquire about a
‘d-d’ transition in a tetrahedral complex. It might be supposed that the parity rule
is inoperative here, since the tetrahedron has no centre of inversion to which the d
orbitals and the light operator can be symmetry classified. But, this is not at all
true; for two reasons, one being empirical (which is more of an observation than a
reason) and one theoretical. The empirical ‘reason’ is that if the parity rule were
irrelevant, the intensities of ‘d—d’ bands in tetrahedral molecules could be fully
allowed and as strong as those we observe in dyes, for example. In fact, the ‘d—d’
bands in tetrahedral species are perhaps two or three orders of magnitude weaker
than many fully allowed transitions.

The theoretical reason is as follows. Although the placing of the ligands in a
tetrahedral molecule does not define a centre of symmetry, the J orbitals are
nevertheless centrosymmetric and the light operator is still of odd parity and so
d—d transitions remain parity and orbitally (Al = 1) forbidden. It is the nuclear
coordinates that fail to define a centre of inversion, while we are considering a
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transition of electron coordinates. However, with respect to those nuclear
coordinates, no functions can be labelled as g or u. It is entirely possible that
proper wavefunctions (solutions of the Schrodinger equation for the molecule) may
involve mixtures of, say, d and p wavefunctions. A true wavefunction that we label
‘d’ (using the quotation mark convention again) might more properly be expressed
as in Eq. (4.12).

‘d’=d + cp (4.12)

Appropriate transition moments then take the form in Eq. (4.13).

<d lerl‘d’ >

<d+cplerld +cp'>

<dlerld >+cc'<plerlp'>+c<plerld >+c <dler|p >
(4.13)

Q

The first two parts of the expression vanish exactly because of Laporte’s rule,
while the last two survive both parity and orbital selection rules to the extent that
the mixing coefficients ¢ and ¢’ are non-zero in noncentric complexes.

Experimentally, spin-allowed ‘d—d’ bands (we use the quotation marks again)
are observed with intensities perhaps 100 times larger than spin-forbidden ones but
still a few orders of magnitude (say, two) less intense than fully allowed transitions.
This weakness of the ‘d—d’ bands, alluded to in Chapter 2, is a most important
pointer to the character of the d orbitals in transition-metal complexes. It directly
implies that the admixture between d and p metal functions is small. Now a ligand
function can be expressed as a sum of metal-centred orbitals also (see Box 4-1).
The weakness of the ‘d—d’ bands also implies that that portion of any ligand
function which looks like a p orbital when expanded onto the metal is small also.
Overall, therefore, the great extent to which ‘d—d’ bands do satisfy Laporte’s rule
entirely supports our proposition in Chapter 2 that the d orbitals in Werner-type
complexes are relatively well isolated (or decoupled or unmixed) from the valence
shell of s and/or p functions.

Now look at octahedral complexes, or those with any other environment posses-
sing a centre of symmetry (e.g. square-planar). These present a further problem.
The process of ‘violating’ the parity rule is no longer available, for orbitals of
different parity do not mix under a Hamiltonian for a centrosymmetric molecule.
Here the nuclear arrangement requires the labelling of 4 functions as g and of p
functions as u; in centrosymmetric complexes, d orbitals do not mix with p orbitals.
And yet ‘d—d’ transitions are observed in octahedral chromophores. We must turn
to another mechanism. Actually this mechanism is operative for all chromophores,
whether centrosymmetric or not. As we shall see, however, it is less effective than
that described above and so wasn’t mentioned there. For centrosymmetric systems
it’s the only game in town.

When discussing the origin of the large widths of ‘d—d’ bands in Chapter 2, we
noted that molecules are always vibrating. Some of these vibrations are such as to
remove a centre of inversion. Consider just the one example in Fig. 4-3. This
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Box 4-1

Bonding orbitals in a metal complex may be thought of as molecular orbitals built from
appropriate metal and ligand functions. In the case of an M-L ¢ bond orbital, v, for
example, we write

Yo =ocu Mg+ 0L @,
where M, and @, are metal and ligand o orbitals, and ¢y, ¢; are some mixing coefficients.
It is usual to think of the metal orbital as centred upon (that is, expressed with respect to)

the metal and of the ligand orbital as centred on the ligand. Diagramatically, this can be
represented as the following.

@+®b_ﬁ@.@

M tbGL Yo
For many purposes, it is more convenient to express all functions with respect
to just one origin — most usually the metal. The expansion theorem may be exploited to

express any function as an (infinite) sum of convenient ‘basis’ functions. Here we write the
function centred on the ligand as a linear combination of functions centred on the metal

D= a;sM + apl + adY + a f¥+ ..

The figure below illustrates how such a linear combination of metal orbitals (taken
sequentially in the diagram for heuristic reasons) can reproduce the orbital on another

centre.
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Box 4-1 (Continued)

The point of this little diversion has been to show how a bond orbital like y, above can,
quite generally, be thought of as some linear combination of just metal-centred orbitals.

Now, ultimately, the metal d orbitals become admixed with a little of the bond orbital y
and so within that final mixture we find both d and p type orbitals (others too, but we focus
here just on the d—p mixing). If the whole MLy complex is centrosymmetric, all such d—p
mixings cancel identically, but not otherwise. Now comes the point. When such d-p
mixing survives, was the p orbital originally on the metal (e.g. a metal 4p), or part of the
ligand function @? Of course, we cannot say. However, knowing that Laporte’s rule is so
well obeyed in practice, means that such d—p mixing is small and hence, even if all the p
character originated on the ligand, we conclude that the metal-ligand orbital mixing is
small.

vibration mode of an octahedron involves the stretching of one bond together with
a simultaneous contraction of the bond on the opposite side of the metal (the other
ligands make minor movements also, as shown). During the course of the vibration,
therefore, the nuclear arrangement lacks any centre of inversion. At any instant
during the vibration, d—p mixing can occur (other than at the trivial point of zero
distortion) and, in the manner of Eq. (4.13), a ‘d—d’ transition can become partially
allowed. The reader may object that during the other half of the vibration, the
nuclear displacements will be reversed, as shown on the right in Fig. 4-3, so that
the orbital mixing may change from d.+cp, to d,—cp,. Yet this doesn’t imply
cancellation of contributions to the transition moment or intensity. This is because,
once again, the typical period of a vibration is about 107" sec, compared with the
approximately 107'® sec lifetime of the electronic excitation. During the course of a

Figure 4-3. An ungerade vibration of an octahedron.
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Box 4-2 B

Selection rules: a reminder.

A mistake often made by those new to the subject is to say that ‘The Laporte rule is
irrelevant for tetrahedral complexes (say) because they lack a centre of symmetry and so
the concept of parity is without meaning’. This is incorrect because the light operates not
upon the nuclear coordninates but upon the electron coordinates which, for pure d or p
wavefunctions, for example, have well-defined parity. The lack of a molecular inversion
centre allows the mixing together of pure d and p (or f) orbitals: the result is the mixed
parity of the orbitals and consequent non-zero transition moments. Furthermore, had the
original statement been correct, we would have expected intensities of tetrahedral ‘d—d’
transitions to be fully allowed, which they are not.

single vibrational cycle of the nuclei, there is time for around 10° electronic
excitations! Put it another way. An incident beam of light encounters an ensemble
of many (perhaps 10%°) molecules which appear stationary but at all possible stages
of the vibrational cycle. For each encounter of light and molecule, an effectively
static d~p mixing is in place and a ‘d—d’ absorption can occur. Overall, the
‘violation” of the parity rule in vibrating octahedral chromophores is less than in
static tetrahedral ones because the average degree of d—p mixing is less in the
dynamic environment than in the static. Typically, ‘d—d’ bands for octahedral
complexes are about ten to one hundred times weaker than those for tetrahedral
complexes. The mechanism just described is often called ‘vibronic’ coupling.

4.4 Intensity ‘Stealing’

Occasionally, some bands which might otherwise be expected to be weak are
observed to be quite strong. Two examples are shown in Fig. 4-4. The first shows
the electronic spectrum of a solution containing [CoCl,]*~ ions in nitromethane. For
this d’ system, we expect three spin-allowed transitions and these are observed at
roughly 3500, 7000 and 14,000 cm~!. They correspond (see Chapter 3) to the
excitations *A, — *T,, — *T\(F) and — *T,(P) respectively. Note, however, that the
band at 14,000 cm™' comprises several sub-maxima. In part, they are assigned to
components of the *7,(P) term that arise due to spin-orbit coupling. At least one
component, however, is assigned to a spin-forbidden transition, *A,—?X(*G). The
details of the assignment are unimportant for us. The feature of particular
interest here is that the intensity of the spin-forbidden transition is comparable with
those of the spin-allowed transition. Other spin-forbidden transitions elswhere in
the spectrum are very weak indeed, as generally expected. Why is this particular
spin-forbidden band so strong? Well, recall the process that leads to spin-forbidden
bands being seen at all. In Eq. (4.11), the allowedness of such transitions is pro-
portional to the mixing between states of different spin angular momentum caused
by spin-orbit coupling. The degree of such mixing is in turn proportional to the
spin-orbit coupling coefficient which is quite small for the first row transition-metal
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Figure 4-4. a) Spectrum of [CoCl,]*" and b) Spectrum showing intensity stealing from a
charge-transfer band at higher energy.

ions. However, it is also roughly inversely proportional to the energy separation of
the states being mixed in this way. Occasionally, and the tetrachlorocobaltate(i1) ion
presents just such a case, spin quartet and doublet (here) terms are brought into
close energetic proximity by the crystal field. The resulting scrambling of these
terms by spin-orbit coupling can then be very large indeed, and it is quite possible
that the true wavefunctions can approach 50:50 quartet-doublet character. Under
these circumstances, the ‘spin-forbidden’ transition may acquire a much larger
intensity than usual. Of course, the intensity gained in this way is at the expense of
the intensity of the ‘spin-allowed’ transition since it is ‘diluted’, as it were, by the
admixed doublet character. Between them, the *A,—“‘T\(P)’ and “A,— 2X(CG)’
transitions possess some total intensity. As the spin-orbit induced mixing scrambles
those wavefunctions, the distribution of intensity between them becomes more equal.
We say that the spin-forbidden transition acquires intensity by ‘stealing’ from the
spin-allowed band. Actually, all spin-forbidden intensities arise in this way, for the
process summarized in Eq. (4.11) is really the full story, but the expression ‘intensity
stealing’ appears to be reserved for bands with ‘unusually’ high intensities due to
their close proximity to more intense transitions.

The second example in Fig. 4-4 shows how a (spin-allowed or spin-forbidden)
band lying close to a charge transfer band may acquire unusually high intensity. We
shall discuss charge-transfer bands more in Chapter 6. For the moment, we note
that they involve transitions between metal d orbitals and ligands, are often fully
allowed and hence intense. On occasion, the symmetry of a charge transfer state
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may differ from that of an energetically proximate d state in a way that can be
matched by a molecular vibration. If so, the two states can become mixed and the
‘d-d’ transition acquires extra intensity at the expense of the charge-transfer band.
The mixing may be small but when the charge-transfer band is very intense, the
augmentation of the ‘d—-d’ intensity in this way can be considerable.

4.5 ‘Two-Electron Jumps’

Sometimes, spin-allowed bands are much weaker than otherwise expected. There
can be many reasons for this, most of which require more detailed analysis than we
are able to present here. One particular case, however, can be discussed. It is well
illustrated by the spectra of octahedral cobalt(1) species, an example being shown
in Fig. 4-5. Three spin-allowed transitions are expected for these d’ complexes,
namely ‘T (F)—*T, —*As,, —*T1,(P) — see Chapter 3. The bands in Fig. 4-5 are
so labelled. Note the weakness of the *T,,—*A,, transition. The situation is quite
typical of the spectra of octahedral cobalt(i1) complexes. On occasion, the —*A,,
transition barely appears as a weak shoulder on the —*T(P) band and can be
missed. Why is this band so weak? We get the answer by looking at the d’
correlation diagram, the spin-allowed part of which is shown in Fig. 4-6. Observe
how the ground term *T (F) in the weak field correlates with the strong-field
configuration fje3; ‘T, and ‘T, (P) with t,je3; and “A,, with 1,jej. At the strong-
field limit, therefore, the transitions *T(F)—*T,,, —*T,(P) involve the promotion
of one electron from the #,, subset to the e, subset. On the other hand, the transition
4T (F)—>*A,, correlates with the promotion of two electrons from the f,, to the e,
set. This is an example of a so-called ‘two-electron jump’. It is intrinsically less
probable than a one-electron jump and so the —*A,, band is only weakly observed.

Of course, in real systems, the relative contributions of Coulomb and crystal-
field effects are such as to place chromophores somewhere inbetween the weak-
and strong-field limits. In that case, a real ‘T (F) — *A,, transition is not a pure
two-electron jump, so that some intensity is observed.
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Figure 4-5. Spectrum of an octahedral cobalt(t) complex showing a weak *T,, — “A,, band.
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Figure 4-6. Partial correlation diagram for the spin-quartets of d7 ions in octahedral symmetry.

Box 4-3

Absorption of one photon of light results in the relocation (with respect to space, spin or
both) of one electron. It is possible, but extremely unlikely, that a second photon, together
with its associated electronic rearrangement, can be absorbed before the ground state is re-
acquired upon expulsion of a photon. It’s unlikelyhood is because the lifetime of the
excited state is typically only 10-!* seconds or so.

4.6 ‘Spin-Flip’ Transitions

Here we comment on the shape of certain spin-forbidden bands. Though not strictly
part of the intensity story being discussed in this chapter, an understanding of so-
called spin-flip transitions depends upon a perusal of correlation diagrams as did
our discussion of two-electron jumps. A typical example of a spin-flip transition is
shown inFig. 4-7. Unless totally obscured by aspin-allowed band, the spectra of
octahedral nickel (1) complexes display a relatively sharp spike around 13,000
cm~!. The spike corresponds to a spin-forbidden transition and, on comparing band
areas, is not of unusual intensity for such a transition. It is so noticeable because it
is so narrow — say 100 cm~' wide. It is broad compared with the 1 -2 cm™' of free-
ion line spectra but very narrow compared with the 2000-3000 cm~' of spin-
allowed crystal-field bands.
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Figure 4-7. Spectrum of a typical, octahedral nickel(i1) complex.

We briefly discussed the origin of the band widths of crystal-field spectra in
Section 3.2. The broadening results from the way molecular vibrations affect ground
and excited state energies differently. Sometimes, however, the response of ground
and one or more excited states to bond length (and other vibrational) changes can
be similar. The variations of all terms arising from the d® configuration with A, are
shown in Fig. 4-8. This is another Tanabe-Sugano diagram of the type that we saw
earlier for the d? configuration.

Notice how the energies of the 'E, and 'T, terms from 'D vary with Dg in very
nearly the same way as does that of the ground *A,, term. Because of this parallelism,
the transition energy from *A,,(*F)—>'E,('D) hardly changes during the course of
any vibration that affects the magnitude of Dg. The transition is thus seen as a
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sharp feature. Notice also that the same is not true of other spin-forbidden
transitions. What is it about these particular spin-forbidden transitions that causes
this parallel energy behaviour? A consideration of a complete d® correlation dia-
gram helps provide the answer. The various electronic transitions we consider
involve, in the strong-field limit, the rearrangement of electrons within or between
the 7,, and e, subsets. Some transitions, however, do not involve any spatial
rearrangement but only a spin change. A transition from a spin-triplet term (with
S =1 and two unpaired electrons) to a spin-singlet term (with S = 0 and no unpaired
electrons) can be achieved by reversing the sense of just one electron spin. If that is
all that happens — that is, if the spatial distribution of the electrons remains
unchanged — we refer to the transition as a ‘spin-flip’ transition. Since the spatial
arrangements in ground and excited states for such a transition are the same, their
responses to variations in the crystal-field strength (a space-only property) are the
same, and the parallelism in diagrams like the one in Fig. 4-8 results. To emphasize
this simple idea, we note that the transition within the #,, subset is an example of a
‘spin-flip’ transition. Note, once more, that not all spin-forbidden transitions involve
only spin changes, so not all are of the spin-flip type and not all, therefore, are
sharp. Our example of a ‘spin-flip’ transition is indicated by the arrow in Fig. 4-8.

4.7 The Effects of Temperature Change

We have just discussed one aspect of the shapes of ‘d—d’ bands. For interest’ sake,
we finish this chapter with one more. It concerns the frequent, but not invariable,
observation that band maxima may move somewhat towards the blue (higher
frequency) end of the spectrum as a sample is cooled. In Fig. 4-9 are sketched
potential energy curves for the ground and an excited electronic state. The ‘ladders’
represent the fundamental and various harmonic vibrational states associated with
each electronic state. The vibrational states are typically separated by a (very) few
hundred wavenumbers. Most molecules occupy the lowest vibrational state of the
ground electronic state. One or more of the higher vibrational states are occupied to
extents depending upon temperature and the Boltzmann distribution. Essentially no
molecules occupy the excited electronic states. Electronic transitions promote
molecules from members of the ground electronic state to members of the excited
one. Those promoted from the higher lying vibrational states absorb light of a lower
frequency than those promoted from the lowest vibrational state. As a sample is
cooled, less molecules occupy the higher vibrational states and so the average
electronic transition energy increases: the band maximum moves towards the blue,
as sketched in Fig. 4-10. The progressive removal of the lower-energy. transitions
on cooling is referred to as the loss, or depletion, of ‘hot bands’. The effect in Fig.
4-10 is not always observed for it depends upon the relative lateral displacements
of the two potential wells in Fig. 4-9. Such variations are difficult, if not impossible,
to calculate and hence predict.

In addition to these possible blue shifts, there is a general rule that the intensities
of the ‘d—d’ spectra of centrosymmetric molecules decrease with cooling while
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those of acentric chromophores do not. This follows from our discussions in Section
4.3 in which we noted that the origin of ‘d—d’ intensities is vibronic (i.e. dy-
namically sourced) in centrosymmetric species but intrinsic (statically sourced) in
non-centrosymmetric chromophores.

etc.

N
'hot bands'

Figure 4-9. Transitions occur from ground and vibrationally excited states of the ground
electronic state to various vibrational components of the electronically excited state.
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Figure 4-10. The qualitative appearance of the spectral band energies corresponding to the
transitions in Fig. 4-9.
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4.8 Summarizing Remarks

Crystal-field theory (and its successor, ligand-field theory, which we discuss in
Chapter 6) forms a significant, and indeed large, part of standard texts and teaching
courses in transition-metal chemistry for several interconnected reasons. It is
remarkably successful at rationalizing a great body of spectroscopic and, as we
shall see in the next chapter, magnetic data. It provides, at first level at least, a
broadly accessible exercise in the exploitation of quantum mechanics and group
theory. And, provided no questions of great detail or subtlety are put, it has
predictive power, too. Again, we shall see more of that in the next two chapters.
For the most part, its success and appeal are to be laid at the door of symmetry. The
numbers of transitions to be expected in ‘d—d’ spectra, and their patterns, are
determined at root by symmetry in one guise or another. Matters with more chemical
import inevitably involve factors of a continuously variable kind and when such
considerations are incorporated into the crystal-field idea, predictions inevitably
become more qualitative and arguments more subtle. A little of all this is evident in
our descriptions of the ‘violation’ of electric-dipole selection rules. The rules are
clear and sharp. Nature circumvents them a little by rendering them somewhat
irrelevant. It all has been to do with the character of the wavefunctions in real
systems, which are eigenfunctions of a, generally, complicated Hamiltonian. The
labels we use are useful because they are approximately apt. However, because they
are approximate, the rules get broken. How do we know these labels are reasonably
apt? Because the rules are only just broken. The d orbitals, though much affected by
the molecular environment, tend to mind their own business.

Suggestions for further reading

1. B.N. Figgis, Introduction to Ligand Field, Wiley, New York, 1966, Chapter 9.

2. FA. Cotton, Chemical Applications of Group Theory, 3rd. ed., Wiley, New York,
1990.

3. P.W. Atkins, Molecular Quantum Mechanics, 2nd ed., Oxford University Press,
Oxford 1983.

4. P.W. Atkins, Physical Chemistry, 5th ed., Oxford University Press, Oxford, 1994.

5. R.S. Berry, S.A. Rice, J. Ross, Physical Chemistry, Wiley, New York, 1980.

— All these references discuss selection rules from various points of view.
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5.1 High-Spin and Low-Spin Configurations

In Chapter 3, we concentrated on the numbers and patterns of spin-allowed ‘d-d’
transitions because, as we discussed in Chapter 4, they are usually more intense and
obvious than the spin-forbidden ones. In fact, the perceived colours of most
transition-metal complexes are determined by the spin-allowed ‘d—d’ bands. Implicit
throughout our discussions in Chapter 3 was an assumption that the spin-
degeneracies of the crystal-field ground terms were the same as those of the
corresponding free ions. We are not referring here to the fact that crystal-field terms
arising from a free-ion term carry the same spin label, for that is always true.
Rather, we are addressing the contest between interelectron repulsions and the crystal
field. In the weak-field limit, the crystal-field ground term must be one of maximum
spin-multiplicity because such is the case for the free ion itself and the free ion is
the ultimate limit of a weak crystal field. To see if any different result is possible,
we must move towards the strong field. We begin at the strong-field limit itself.

In Fig. 5-1 we represent possible strong-field ground configurations for d” ions
in octahedral symmetry. Consider each d” ion in turn. For d'the lowest energy
orbital arrangement (strong-field configuration) is that housing the solitary electron
in the lower-lying #,, orbital subset. For d2, it is similarly best to place both electrons
within the 1, subset: the same goes for the three electrons of d*. For d* we have a
choice: we can place all four electrons within the lower-lying #,, set and suffer the
crowding entailed in placing two electrons within the same orbital or we put three
electrons in the #,, set and one in the e, set and suffer instead the promotion energy
ty—>e,; Ao The choice in any particular case depends upon the relative energy
penalties incurred from interelectron repulsion or from the crystal field. In the
context of the present discussion, the penalty from interelectron repulsion is often
called the pairing energy, P. Now, notice also, that all four electrons will take
parallel spins in the configuration #,je; because of Hund’s rule while two electrons
must pair up their spins in 5. These two arrangements or configurations are called
high-spin or low-spin, as appropriate. We refer here to the net spin of an electronic
arrangement, that is, to how many unpaired electrons there are. One may formalize
the result with the inequalities given in Eq. (5.1).

for high spin: Ager <P
(5.1)
for low spin: At >P

Transition Metal Chemistry.M. Gerloch, E. C. Constable
Copyright © 1994 VCH Verlagsgeselischaft mbH, Weinheim
ISBN: 3-527-29218-7
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For the d° configuration, we similarly have two choices corresponding to the
strong-field configurations £, and f,Je? for low- and high-spin arrangements
respectively. The reader may ask why we don’t consider an intermediate-spin
arrangement t,je;. There is an ‘all-or-nothing’ reason. If A, is too great to allow
the promotion of one electron from f,; it is still too great to allow the double
promotion to f,;eZ. Conversely, if the pairing energy is too great to allow the forming
of one pair of electrons, it is too great to yield two pairs. No octahedral d° ions are
known with an intermediate-spin arrangement. The same is not true for molecules
with other symmetries, e.g. planar, but that is not at issue here.

The rest of Fig. 5-1 is completed in like manner. The 4" ions with n = 4,5,6,7
offer two choices — high- or low-spin — while for n = 1,2,3,8,9 only one arrange-
ment of lowest energy is possible. It is left as an exercise for the reader to construct
a similar diagram for d” ions in a tetrahedral field and show that high- and low-spin
choices exist for n = 3,4,5,6 but not for n = 1,2,7,8,9. Few if any examples of low-
spin tetrahedral 4" complexes exist, however, because A, being only 4/94,, is not
usually sufficient to prevent the e — f, promotion i.e. P > A, always.

For the octahedral case in Fig. 5-1, we include mention of the number of unpaired
electrons associated with each arrangement. For real molecules we could use this to
determine which configuration is lowest in energy — whether A, or P were the
greater — if only we had some experimental method of measuring the number of
unpaired electrons. There is such a method and it depends upon the interaction of
these molecules with a magnetic field.

5.2 The Qualitative Origin of Paramagnetism

All substances interact with a magnetic field — there are no exceptions. Substances
may be subdivided according to their manner of interaction with magnetic fields in
various ways. An old classification which is directly empirical and generally useful
is to group materials together which are either a) repelled, b) attracted or c) attracted
very strongly. Only the latter are commonly recognized in everyday life. They are
called ferromagnets. The group is not large — soft iron, cobalt, a few other metals
and alloys, as well as a small number of special compounds. Their interaction with
magnetic fields is many orders of magnitude stronger than that of the materials in
groups a) or b). The origins of their ferromagnetic property lies in cooperative
interactions between molecules or atoms and their study properly lies within the
realm of physics. Fascinating though they are, we have no more to say about them.

Substances in group a) are repelled by a magnetic field and are called diamagnets.
Diamagnetism is a universal atomic (and, hence, molecular) property and is
generally very small in magnitude. That a bar magnet actually does repel a piece of
paper, for example, can only be demonstrated with rather delicate apparatus. The
much smaller, though nevertheless extensive, group of materials that are weakly
attracted by a magnetic field define paramagnets. Many transition-metal compounds
fall into this class. Paramagnetism, when it is present, is generally larger (often
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much larger) than diamagnetism. So although diamagnetism is universal in atoms —
and hence molecules — it is almost invariably swamped by the paramagnetic effect
when that is present. Even so, the attraction of copper sulphate crystals, which are
paramagnetic, to a magnet can only be observed, once more, with delicate apparatus.
Diamagnetism is the essence of chemical shifts in nuclear magnetic resonance
spectroscopy, for example, and so is a very important topic elsewhere in chemistry.
For our present area, however, diamagnetic effects are treated as corrections to any
paramagnetism. Our remarks on magnetism from now on are therefore confined
exclusively to the case of paramagnetism.

It is convenient to begin with a classical picture. Paramagnetic substances are
considered to comprise molecules with permanent magnetic dipole moments, m.
They may be regarded here as miniature bar magnets. All discussions of bulk
magnetism concern molecules en masse — molecular ensembles. In the absence of
an applied field, a paramagnetic sample comprises molecules whose permanent
magnetic dipoles are oriented randomly, as indicated in Fig. 5-2a, because of the
ever present thermal agitation to which all molecular ensembles are subject. On ap-
plication of an external magnetic field, these molecular magnets will fend to align
parallel to the field. We can safely neglect here any tendency of the molecular

P D

a\y AN

Figure 5-2. In the absence of an applied magnetic field a), the molecular magnetic dipoles are
randomly oriented; on application of an external field b), the dipoles tend to orientate parallel
to the field.

magnets to align parallel because of their magnetic interaction with each other: that
is because the strength of the magnetic field from any one such magnet is tiny as
compared with the externally applied field (which could be thought of as arising
from 10°° or more such aligned molecular magnets). Once again, thermal agitation
will prevent their aligning perfectly (Fig. 5-2b). Any particular molecular magnet
aligned exactly parallel to the field, B, will possess energy —m-B, while the energy
of any such magnet aligned exactly antiparallel will be +m-B relative to their energy
before the application of the field. Molecular magnets oriented between these extre-
mes will acquire energies between these limits. In Fig. 5-3, we represent the ther-
mal distribution of an ensemble of molecular magnets in an applied field. Since, on
average, the molecular magnets tend to align more with the field than against it, the
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+m.B

-«—— mean energy in field

Figure 5.3. The classical picture: the energies of dipoles varies continuously from parallel
alignment with the applied magnetic field (—m-B) to antiparallel (+m-B). On the right is shown
the distribution of molecules that results and the lower mean energy of the ensemble relative
to the field-free environment.

average energy of the ensemble is less in the presence of an external field than in
its absence, as also indicated in the figure. The phenomenon of paramagnetism thus
arises because the energy of an ensemble of molecular magnets decreases — the
ensemble acquires more stability — on application of a magnetic field: the sample is
attracted by the field. It is attracted because, if otherwise unconstrained, the sample
will move from a place of no field into a field for, by doing so, its energy is
reduced. The energy change involves a redistribution between that for molecular
alignment and that for thermal agitation; there is no exchange of energy with the
magnetic field itself. Any (very, very slight) warming of the sample on application
of the field is soon dissipated, an effect whose reverse usage allows for the technique
of adiabatic cooling (see Box 5-1)

Box 5-1

The technique of adiabatic cooling is used to achieve temperatures lower than can be ob-
tained by the conventional techniques of immersing a sample in liquid helium under low
pressure, a process which might cool a sample to around 1.6 K. To cool a sample further,
one can proceed as follows. The method depends upon the sample being held within a
paramagnetic container. During the conventional cooling process, the paramagnetic holder
is held within a strong magnetic field. According to the usual Boltzmann statistics, more
molecules of the container occupy the lower energy levels than the higher ones. When
equilibrium has been achieved, the magnetic field is switched off. The split energy levels
return to a degenerate condition and the distribution of the molecules of the paramagnetic
container reverts to a situation like that on the extreme left of Fig. 5-3. This change in
distribution requires an input of thermal energy. That energy is taken from the environment,
including the sample. Cooling of samples down to millikelvin levels can be achieved in
this way.
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The greater the magnitude of the applied field, the greater the energy difference
between parallel and antiparallel alignment of the molecular magnets and the less
able is the thermal agitation to randomize the molecular orientations. So, as shown
on the right in Fig. 5-3, the mean energy of the ensemble decreases with increasing
magnetic field strength. This effect is exploited in various ‘force technique’ methods
of measuring magnetism. The Gouy method is illustrated in Fig. 5-4. The sample is
taken in the form of a cylindrical rod — or, in the case of powders or solutions,
contained within a cylindrical glass tube — to make integrations trivial. The sample
is suspended from a chemical balance, or any other force-measuring device, and
placed so that its bottom end lies near the strongest part of a magnetic field and its

e ——
JAN

N Figure 5-4. Schematic arrangement for the Gouy
technique. The sample must be placed asymmetrically
(vertically) in the magnetic field.

top end near the weakest part. The source of the magnetic field is conveniently
provided by an electromagnet (or permanent magnet). Suppose the sample is
balanced in the absence of the magnetic field. On switching on the electromagnet,
(or on introducing the permanent magnet) the sample will move toward the stronger
part of the field because more of the sample will enter a strong field and the energy
loss, as in Figure 5-3, will be greater. On re-taring the balance, we observe the
sample to weigh more in the field than out of it. In SI units, the force, F, on the
cylindrical sample of cross-sectional area, a, is

1
F=Zuazt’ (5.2)
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where H is the strength of the magnetic field at the bottom of the sample and ¥ is
the mean volume susceptibility of the sample (see Box 5-3 for units).

We now modify the classical picture set out above to accommodate quantum
mechanics.” Instead of talking about permanent molecular magnetic dipoles, we
postulate (for the moment, but we shall return to the point shortly) that paramagnetic
molecules are those whose occupied energy levels (usually the ground or near-
ground levels) possess a degree of degeneracy that is removed by the application of
a magnetic field. (We discuss an exception to this under ‘temperature independent
paramagnetism’, later). Instead of Fig. 5-3, we construct Fig. 5-5. The splitting of
the levels (a) in a magnetic field is symmetrical (b), as it was in the classical
picture. The distribution of molecules amongst the component states is no longer
equal in the presence of the applied field. An appropriate (Boltzmann) population
histogram for the distribution of molecules amongst these states is shown in (c).
Once again, we see that the mean energy of the molecular ensemble is less after
application of the field than before it and the phenomenon of paramagnetism follows
once more.

E
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Figure 5-5. The quantum mechanical picture: discrete population histograms take the place of
continuous distributions. The overall paramagnetism increases with increasing field strength.

* A careful classical analysis of all magnetization phenomena shows them to vanish identically!
The interactions of matter with magnetic fields that we observe on a day-to-day basis are
purely quantum phenomena just as the existence of magnetic fields is a relativistic phenomenon.
The classical prediction of vanishing magnetism is really as great a failure of the classical
regime as the better-known ‘Ultraviolet catastrophe’.
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Also illustrated in Fig. 5-5, is the greater splitting (d) that follows an increased
magnetic-field strength, whose splitting is, in fact, linear in the field strength, B.
The Boltzmann distribution changes accordingly to (e), the mean energy decreases,
and the force on the sample in a Gouy experiment increases. Quantitative analysis
shows that the force on the sample varies linearly with the field strength until that
field grows very large when the effect falls off and one observes (theoretically and
experimentally) the phenomenon of magnetic saturation, as shown in Fig. 5-6. Under
normal laboratory conditions, magnetic saturation is rarely observed.

slope = susceptibility

saturation

force

B

Figure 5-6. Saturation and the definition of magnetic susceptibility, y.

Box 5-2

Classically, ‘saturation’ occurs when the field is so strong and/or the thermal agitation
(temperature) is so feeble that all the molecular dipoles are aligned with the field. Then, of
course, increasing the applied field more is unable to cause any further alignment.

Rather than quote some (mass normalized) force on the sample at each of several
field strengths, it is sufficient to report the slope of the linear part of the curve in
Fig. 5-6. This slope is called the magnetic susceptibility of the sample. Units for
susceptibility, y , and related quantities to be discussed in this section are reviewed
in Box 5-3.

The effect of temperature upon the situation in Fig. 5-5 is to modify the
Boltzmann distribution. Lowering the temperature depopulates the higher-lying
energy levels in favour of the lower. Therefore, susceptibility increases with
decreasing temperature. Quantitative studies of the simple (first-order”)

“‘First-order’ means that we consider nothing beyond that described here. In ‘second-order’,
we would include the effects of mixing between ground and excited states brought about by the
magnetic field. This is briefly discussed under ‘second-order Zeeman effects’ later.



5.2 The Qualitative Origin of Paramagnetism 85

Box 5-3

Units for magnetochemical quantities
B=H+4nM : CGS

B and H can be quoted in gauss
B=u,H+M) : SI

B and H are quoted in tesla (T): 1T = 10* gauss

Several texts describe B as the applied magnetic field and H as the field in the sample. This
is incorrect since both B and H exist inside and outside the sample. B is the magnetic field
associated with a current loop source. H is the magnetic field associated with a (fictitious)
magnetic point monopole: see Magnetism and Ligand-Field Analysis by M. Gerloch
(Cambridge University Press, 1983). B and H differ very little with respect to magnitude
or direction for weakly magnetic (non-ferromagnetic) materials. Many confusions about B
and H arise because of this.

B/H = po(1 + x) : SI
B/H =1+ 4ny : CGS

where y is the volume susceptibility (dimensionless). Gram susceptibility, J,, is defined by

Xe = XIp

where p is the density of the sample. Molar susceptibility, yu, is defined by
An = XgM

where M is the molecular weight of the material. In the SI system, ), is measured in
m*mol~'; in the CGS system it is measured in cm® mol-!. To convert y,, values quoted in the
CGS system into SI values, multiply by 4z x 10°¢,

Effective magnetic moments, f, defined in (5.4), are quoted in Bohr magnetons in
either SI or CGS systems. In the CGS system the Bohr magneton is 0.92731 x 10 erg
gauss™! whilst in the SI system it is 0.92731 x 1072 A m? molecule™. The magnetic moment,
Uerr, 18 then 2.8279(y,, T)2 B.M. in the CGS system, and 7.9774 x 10%(y, T)"? B.M. in SI.
These expressions yield the same numerical values for p., so that expressions like (5.6),
(5.7), (5.10) and (5.11) etc. remain valid in both CGS and SI systems.

circumstances of Fig. 5-5 predict that paramagnetic susceptibilities are inversely
proportional to temperature. In the later years of the last century, Pierre Curie
summarized a wealth of experimentation on paramagnetic substances with the law
that bears his name:

Curie’s Law x=CIT (5.3)
where C is called Curie’s constant. As a plot of y versus 1/T is a straight line,

according to this law and first-order theory, there is no need to report y values at
different temperatures (see Fig. 5-7). It is sufficient to report the slope of such a
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Figure 5-7. Curie Law behaviour of y, 1/y and p.; with respect to temperature.

relationship, and that slope is just C. For historical reasons we need not pursue, it is
conventional instead to report a quantity known as the effective magnetic moment,
U, for a sample where p. is proportional to the square root of C:

en  —
et = — X7 54
Herr e VA (5.4)
which is approximately the same as the relationship in Eq. (5.5).
Uit = 2.828 /4T (5.5)

Insofar that Curie’s law is true, f is independent of temperature, for that is how
we arrived at Eq. (5.5). In practice, Curie’s law is rarely obeyed exactly and,
occasionally, it is quite seriously flouted. Nevertheless it is still conventional to
quote . values but it is then necessary to quote them over a range of temperatures.
Although we might just as well report susceptibility values in these circumstances,
conventions die hard. In any case, the temperature variation for U immediately
and transparently reveals any departures from Curie’s Law in a way that the
temperature variation of susceptibilities might not.

We have seen how the phenomenon of paramagnetism follows from the
assumption that paramagnetic molecules possess appropriate degenerate states which
split in a magnetic field. The question arises as to ‘what molecular property leads to
these degeneracies?” and hence ‘what does a magnetic susceptibility ultimately
measure?’. The answer is that paramagnetic moments or susceptibilities are a
measure of angular momentum — both spin- and orbital-angular momentum or the
total angular momentum when that is a more appropriate quantity (i.e. when the
effects of spin-orbit coupling are large). Physically, and in outline only, it is simple
to see why this should be so. All measurements involve an interaction between the
system and the apparatus. Interactions only take place between quantities of the
same kind. Orbiting or spinning electrons generate magnetic fields; applied magnetic
fields are generated by circulating electrons (current loops).

The angular momenta of atoms are described by the quantum numbers L, S or J.
When spin-orbit coupling is important, it is the total angular momentum J which is
a constant of the system. A group of atomic wavefunctions with a common J value
— akin to a term, as described in Section 3.6 — comprise (2J + 1) members with M;
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Figure 5-8. Spin-orbit coupling splits the *F term into three levels *F,. An externally applied
magnetic field splits up the levels into their M; components.

values ranging J , J-1,...—J. The (2J + 1) degeneracy of such a level, as it is called,
is removed completely by an external magnetic field, as shown in Fig. 5-8. The
result, as we have seen, is paramagnetism. Quantitative analysis of these circum-
stances yields the formula in Eq. (5.6)

Merr = gNJ(T+1) (5.6)

where g is defined as in Eq. (5-7).

JUI+D+SS+HD) - L(L+1)

=1+
8 2J(J+1)

5.7

The L and S values are those from which the J value was formed via the vector
coupling rule.” These formulae strictly apply only for the magnetism of free-ion
levels. They provide a good aproximation for the magnetism of lanthanide
complexes, as we shall note in Chapter 10, but provide no useful account of the
magnetic properties of d block compounds.

A corresponding formula (Eg. 5.8), due to Van Vleck, has been derived for free
atoms in which the effects of spin-orbit coupling can be ignored.

e = LL+ 1) +4S(S+1) (5.8)

Again, however, this is strictly applicable only for free ions. Even though spin-orbit
coupling is much less important for the first row of the d block, this formula
provides a far less good approximation for d -block complexes than Eq. (5.6) does
for lanthanide complexes. The reason is that the ground, and other, terms in these d
complexes differ grossly from those of the corresponding free ion. These differences
are one result of the crystal field.

“(see ‘Orbitals, Terms and States’, Ch. 4).
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5.3 “Orbital Quenching’ and the ‘Spin-Only’ Formula

We have nearly made contact again with our crystal-field discussions in Section
5.1. In order that magnetic measurements be useful to us, however, we need to
study the angular momenta associated with various crystal-field terms. First, we
recall that no crystal field affects the spin angular momentum of any given free-ion
term.” As we observed in Section 3.7, crystal fields act only upon the spatial parts
of wavefunctions. If a parent free-ion term has a spin-degeneracy (2S + 1), so also
do the crystal-field terms that derive from it. Thus, any changes in angular moment-
um brought about by a crystal field concern only the orbital (spatial) part.

Consider the orbital angular momentum of a free-ion *F term. Here L = 3 and the
orbital degeneracy is 7. Application of Van Vleck’s formula (5.8) predicts an
effective magnetic moment,

Hetr =13.4+4.1-2 =+/20 (5.9)

In octahedral symmetry, the F term splits into A,, + T, + T, crystal-field terms.
Suppose we take the case for an octahedral nickel(ir) complex. The ground term is
*A,. The total degeneracy of this term is 3 from the spin-multiplicity. Since an A
term is orbitally (spatially) non-degenerate, we can assign a fictitious L. value for
this of 0 because 2L +1 = 1. We might employ Van Vleck’s formula now in the
form

Ueir = JLeﬁ(Leﬁ +1)+4S(S+1) (5.10)

Box 5-4

Strictly, L is defined only as a quantum number for a spherical environment - the free ion.
The use of L. = 0 for A terms or L = 1 for T terms on the grounds that (2L + 1) equals
the degeneracy of these terms is, however, legitimate as used here. There is a close parallel
between the quantum mechanics of 7 terms in octahedral or tetrahedral symmetry on the
one hand, and of P terms in spherical symmetry on the other.

and so predict a magnetic moment, fg = V8. In other words, for this *A,, ground
term, the crystal field has completely removed the orbital angular momentum. We
say that the orbital angular momentum has been guenched.

Now take the case for an octahedral vanadium(i) ion. For d?, the ground term is
°Ty,. The spatial degeneracy of a T term is three-fold and we describe this with L
= 1. Using (5.10) we find U = V10. So for this Ty, term, the crystal field has
quenched some, but not all, of the angular momentum of the parent free ion F term.

* Except, apparently, insofar that for some d" configurations a strong crystal field may bring
about a ‘low-spin’ configuration as described in Section 5.1. However, in these cases, the
corresponding ligand-field terms correlate with excited free-ion terms which still have the
same spin-multiplicity as that of the strong-field term.
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Analogous arguments apply to the various ground terms of octahedral or tetrahedral
d?, d3, d" and d® complexes.

The ground term for octahedral or tetrahedral d> complexes is orbitally non-
degenerate (°A,, or A, respectively) and so, once again, we expect no orbital
contribution to the magnetic moment. The situations for d*, d*, d®and d° are special
in one respect. When the ground term is 7, or T,, we have Ly = 1 and partial
quenching as before. When, however, it is an E, or E term, our simple ploy of using
L. doesn’t work and, in fact, these terms give rise to no orbital contribution at all
(see Section 5.5). They are known as non-magnetic doublets because of this. Beware
of this jargon, by the way, for the lack of magnetism only refers to the orbiral
contribution; magnetism still arises from the spin angular momentum of 2E, or °E,
terms. Some explanation for the lack of orbital angular momentum for these cubic-
field E terms will be given shortly. Meanwhile, we note that the phenomenon applies
only to these E terms arising in strict octahedral or tetrahedral symmetry. Lower
symmetry environments also define E terms on occasion, but these are not generally
bereft of orbital angular momentum.

Altogether then, Van Vleck’s formula for free ions is inappropriate for the
paramagetism of crystal-field terms. Crystal fields partly or completely quench the
orbital angular momentum (spatial degeneracy). To the extent that such quenching
is complete, we might consider using the limiting case of Van Vleck’s equation
where the magnetism is ascribed to the spin-angular momentum alone. This yields
the so-called spin-only formula (Eq. 5.11).

[

U = J4S(S+1) (5.11)

Now the total spin-angular momentum quantum number S is given by the number,
n , of unpaired electrons times the spin angular momentum quantum number s for
the electron, that is, § = r/2. Substitution of this relationship into Eq. (5.11) yields
an alternative form of the spin-only formula,

Ueo = /n(n+2) (5.12)

which directly expresses the effective magnetic moment in terms of the number of
unpaired electrons. Of course, as discussed above, there may be some orbital
contribution in any particular complex, but to the extent that the spin-only formula
is appropriate, it provides the measure of the number of unpaired electrons that we
required at the end of Section 5.1.

Box 5-5
number of unpaired electrons 1 2 3 4 5
U/ BM 1.73 283 387 490 5.92

By way of example, a d°iron(m) complex with a magnetic moment close to 1.73
must, by reference to Fig. 5-1, be low-spin with A, >P since an iron(i) complex
with A, < P would have a magnetic moment of 5.92.
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5.4 Orbital Contributions

We have seen that there are orbital contributions to the magnetic moments of
complex ions with T ground terms but not with A or E terms. These rules are only
approximate, for the quantitative theory of paramagnetism is a rather complicated
affair that we can do no more than skim in this book. One group of refinements to
our earlier statements recognizes the over simplistic description of the true molecular
wavefunctions. We saw the same sort of thing in our discussion of electric-dipole
selection rules in Section 4.3. Although interelectron repulsion and crystal-field
energies are much greater than spin-orbit coupling energies, the latter cannot be
ignored when we look at properties as sensitive as ‘d—d’ intensities or magnetic
susceptibilities. Let us, therefore, take a second look at the ground wavefunctions
of octahedral d® ions.

Ignoring spin-orbit coupling, it is exact to label these ground wavefunctions with
the term label *A,, and it is equally exact to use the spin-only formula for the
magnetic moment. Strictly, however, we should not ignore spin-orbit coupling for it
causes some mixing between the A, ground term and, for example, the higher-
lying 375, term (Eq. 5.13).

W(Ay) = WCAy) + ¢ YTy (5.13)

The mixing has nothing to do with the possibility of any molecules populating
the *T,, term, which is typically 12,000 cm™ above the ground state term. The
population of such a term is of the order 120029 at room temperature (K7 ~ 200
cm™! at 300 K), which is absolutely negligible. The mixing arises because a
description of the molecular Hamiltonian in terms of Eq. (5.14) is incomplete and
should be replaced with Eq. (5.15).

2
n . n €
H, =Y H, () + ZKJT +V,, (5.14)
ij

2
Hy =Y H D)+ ZL},-‘;— + Ve +ALS (5.15)
ij

Wavefunctions like y(*A,,) are eigenfunctions of #, but those of #f are slightly
different. In writing them like y(**A,,”) we merely indicate what the wave functions
are most nearly like. The functions y(**4,,”) can be expressed in literally an infini-
te variety of ways, although these must be explicitly determined. One way which is
rather convenient for further discussion is that shown in Eq. (5.13). In words, we
might say that ‘under spin-orbit coupling, the “A,,” term looks as if it contains
some 75, character’.

The extent of the mixing — the magnitude of ¢ in (5.13) — is proportional to the
cause of the mixing and inversely proportional to the energy separation of the
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original terms being mixed, that is, ¢ «< A/A., in this case. The admixture of T
character into the formal A ground term implies admixture of orbital angular
momentum. Detailed theory yields the expression,

.ucff = Auso( 1 - 4MA0¢:1) (5 . 1 6)

as the result of this on the paramagnetic moment. For an octahedral nickel(m)
complex, for example, A, is typically 12,000 cm™, A4 is —315 cm™' (negative because
d® is a more-than-half-filled shell), y,, = 2.83 and so, from Eq. (5.16), we calculate
HUere = 3.13. This is, indeed, the sort of value that is typically observed for such
complexes. For octahedral chromium(ur) complexes, d°, with formal *4,, ground
terms, the less-than-half-filled d shell means A is positive — though rather less than
that for d® in magnitude — and Eq. (5.16) predicts magnetic moments somewhat less
than that given by the spin-only formula, and that is also observed in practice. The
formula in Eq. (5.16) applies to all cubic-field systems having an A,, ground term.

Box 5-6

Reminder: The one-electron spin-orbit coupling coefficient, ¢, is intrinsically positive. The
many-electron spin-orbit parameter A is defined by

A=+ {08

and A takes positive values for a less-than-half-filled shell, and negative values for a more-
than-half-filled shell. These signs conform with Hund’s third rule that minimum J values
lie lowest in energy for less-than-half-filled shells, and bighest in energy for more-than-
half-filled ones.

Box 5-7

Some useful spin-orbit coupling coefficients:

Ton Ti3+ V3 Cr* Mn?** Fe? Co* Ni Cu*
{fem™ 55 210 270 350 410 530 630 830
AMlem™! 155 105 90 88 -102 -177 -315 -830

A similar expression has been derived for cubic-field complex ions having an E
ground term (Eq. 5.17).

,ueff = .uso( 1 - ZMAoct) (5 17)

The basis for this formula is just the same as described above but, in this case,
spin-orbit coupling admixes the higher-lying T, term wavefunctions into the ground
E(y. The coefficient 2 in Eq. (5.17) rather than the 4 in Eq. (5.16) arises from the
different natures of the wavefunctions being mixed together.

These two formulae describe orbital contributions to ground A or E terms that
arise by so-called second-order spin-orbit coupling with appropriate excited
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wavefunctions. For complexes with 7 ground terms, the effects of spin-orbit coupling
are first-order and rather complicated. We describe them in barest outline only.
Recall how a free-ion 3F term splits under spin-orbit coupling to give three so-
called levels, 3F,, 3Fs, 3F,, with total angular momenta J values of 4, 3 and 2
respectively. In a similar way, a *T), crystal-field term, for example, splits into three
components with J values of 2, 1 and O (we use the vector coupling rule with S = 1
and L. = 1). The energy separations between these components are typically of the
order 50-500 cm™' for first row transition-metal complexes and so there are
significant molecular populations of each of them. Each component generally splits
up in an applied magnetic field and gives rise to a contribution to the magnetic
moment which depends, in part, upon the population of that component. This
immediately tells us that the magnetic moments of such systems are generally
temperature dependent, at least because the populations of the original components
are temperature dependent.

In addition to this complex behaviour is the second-order Zeeman effect. The
splitting of a degenerate set of wavefunctions by an applied magnetic field, as
illustrated in Fig. 5-5, is called a first-order Zeeman splitting. Consideration of this
effect alone always yields a Curie-Law behaviour and temperature-independent
magnetic moments. However, spin-orbit coupling is not the only mechanism that
can scramble wavefunctions. The applied magnetic field itself effectively polarizes
the wavefunctions as well as changing their energies in such a way that any one
wavefunction looks as if it has some of the character of (most) other wavefunctions
admixed. This is the second-order Zeeman effect. (In truth, there is only one Zeeman
effect and these names merely refer to two parts of a mathematical expansion). The
amount of such magnetic-field-induced mixing is (again) proportional to the cause —
the magnetic moment operator — and inversely proportional to the energy separations
of the wavefunctions being admixed. For typical laboratory magnetic fields, the
numerators here are of the order 0.1-1 cm™ so the second-order Zeeman effects
are often very small indeed. However, in the case of an ion with a formal orbital
triplet ground term split into fairly close-lying spin-orbit components, these effects
can be quite important. This is because the mixing induced by the magnetic field,
though proportional to the small magnetic-field term (small numerator), is inversely
proportional here to a fairly small energy denominator. They can be calculated, but
a discussion of how is outside our present scope. Suffice it to say that the magnetic
moments of ions with formal orbital triplet ground terms have orbital contributions
which are not simply estimable by the tactic of using L.y = 1 as we described
earlier. Furthermore, they tend to vary considerably with temperature.

For ions with formal orbital singlet ground terms, it is often quite adequate to
ignore second-order Zeeman terms since any magnetic-field-admixed wavefunctions
are energetically well removed from the ground state. There is one type of situation,
however, when these small effects are observable because they are the only
contribution to magnetic susceptibilities. The classic case is that of low-spin
octahedral cobalt(ur) complexes. From Fig. 5-1, we note the ground strong-field
configuration to be ¢. The subshell is full and hence uniquely defined. There is no
spin- or space-degeneracy associated with this electronic arrangement and it is
labelled 'A,,. Having no degeneracy at all, it cannot be split by an applied magnetic
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field and so we expect no paramagnetism, just the diamagnetism that is a property
of all atoms. Experimentally, however, such systems are observed to be slightly
paramagnetic with magnetic moments of about 0.5 BM that vary with temperature
according to a square-root relationship, i o /7. Actually, this temperature
dependence of p is misleading because of the way in which . is defined in Eq.
(5.4). It conceals the more interesting fact that the susceptibility is independent of
temperature. Indeed, the phenomenon we describe here is called femperature-inde-
pendent paramagnetism (T.1.P.) Its origin is as follows.

The ground state is indeed non-magnetic as discussed above, but only in first
order. That is, there is no first-order splitting — no first-order Zeeman effect. There
is however, a second-order Zeeman effect in which the applied magnetic field mixes
various excited-state character into the ground state. Some of that excited-state
character arises from degenerate (paramagnetic) states. As a result of the mixing,
the ground 'A,, state remains non-degenerate (and so cannot split) but decreases in
energy by an amount proportional to the magnetic perturbation squared and inversely
proportional to the energy separation between the admixed states. All the molecules
populate this unique ground state and the system has acquired a lower energy by
exposure to the applied field. It is therefore paramagnetic. However, because the
ground state is unique there can be no change of thermal distribution amongst
levels as the temperature is changed and so the paramagnetic susceptibility is inde-
pendent of temperature.

5.5 Orbital Contributions at the Strong-Field Limit

Our discussions of orbital contributions to magnetic moments began with the sim-
ple rules for A, E and T terms in the weak-field limit. Analogous rules can be
constructed when we consider ions in terms of their strong-field configurations. We
already had an example with the 7% configuration of octahedral cobalt(m) above.
An orbital contribution will be made when there is an orbital degeneracy. In the
configurations t.;, f,3, 14, tr; there exists the respective three-fold spatial degeneracies
given below.

T T Ny T 7 (I NV

There are no spatial ambiguities for the #,} or £,§ configurations below.

T T (RS I IR 3

For the cubic-field (octahedral or tetrahedral) subshells e, there is spatial
degeneracy for e, but not for e. Nevertheless, neither of these configurations give
rise to an orbital contribution to the magnetic moment. The conditions for orbital
contributions to arise in strong-field configurations are that the orbitals must be
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Box 5-8

Orbital angular momentum associated with the d,, and d,. orbitals as a pair.

The orbitals d,, and d,, can be expressed in terms of the complex forms d; and d_; whose
angular parts are given by the spherical harmonics Y% and Y_,?, respectively. The matrix of
orbital angular momentum about the z axis in the complex basis is

1

and we observe the obvious result that d;, and d_, orbitals have *1 unit of orbital angular
momentum about the z axis. In the real orbital basis, where

i
dxz=7d_+d
75+ d)

1 ..
de= (dy = d) (ii)

the equivalent matrix under /, is

(ii)

On diagonalization, we find the real d orbitals to possess £1 unit of orbital angular
momentum about z, when taken as a pair. Although the matrices (i) and (iii) tell the same
story, one can barely draw the complex orbitals dy; yet their angular momentum is obvious.
If we prefer to use the real forms in (ii), which we can draw, the orbital angular momentum
is hidden in the imaginary off-diagonal elements of (iii). These off-diagonal elements have
the form

<dJlld,> = <d J-ild,> (iv)

or, in other words, [, rotates d,, into d,, (and multiplies it by —i). Now the combinations (ii)
(or, conversely, di; from d,,, d,;) can only be constructed if they are degenerate. All these
features, fully discussed for p, and p, orbitals in ‘Orbitals, Terms and States’, are
encapsulated within the rules given in the main text above.

degenerate, that the degenerate subsets must be neither full, empty nor exactly half-
full, and that at least two of the orbitals within a subset must be related by rotation
about the z axis. Within the 7, subset, d,, becomes d,, on rotation about z and so
gives rise to an orbital contribution. On the other hand, d.2 and d,2 ,» of the e subset
are not related by rotation about z and give no such orbital contribution. They form
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the so-called ‘non-magnetic doublet’ discussed earlier. Although these conditions
for orbital magnetic contributions are consistent with the summary given earlier in
this section, they must surely seem no more than a magical recipe. For those familiar
with the real and complex forms of wavefunctions, a more satisfactory explanation
of these rules is given in Box 5-8. Exemplifying the use of the rules in application
to the strong-field octahedral configurations of Fig. 5-1, for example, we note that
orbital contributions are expected for d!, d?, low-spin d*, low spin d°, high-spin d°,
low-spin d’, and d° configurations.

5.6 The Chemical Relevance of Departures
from the Spin-Only Formula

Careful and detailed studies of ‘d—d’ spectra and magnetic susceptibilities, prefer-
ably on samples in the form of single crystals, can yield considerable insight into
the bonding in transition-metal complexes. One thinks here of the various specialist
techniques that are part of contemporary research which, of course, form no part of
our brief in this book. It is the case, however, that our somewhat technical
discussions of orbital contributions, second-order Zeeman effects and the like, are
of direct relevance to the simple exploitation of paramagnetism in inorganic
chemistry. They were recognized to be such even in the early days of crystal-field
theory and magnetochemistry.

As we have seen, magnetism may be exploited — strictly through the spin-only
formula — to count the number of unpaired electrons in a complex and thence to
infer something of the nature of the bonding in that complex. This early idea is still
employed today at a ‘finger printing’ level. Within the context of our opening
remarks in Section 5.1, a count of unpaired spin can differentiate between strong-
field and weak-field environments. These unpaired-electron counting games can
only work so simply, however, if we have a strong correlation between the measured
property of susceptibility (or effective magnetic moment) and the number of
unpaired electrons. The ‘spin-only’ formula in Eq. (5.11) offers that simple
connection. Like so much else in chemical theory, however, it only works when it
works! Our discussions in the past few sections show that the formula is sometimes
excellent, often reasonably accurate, but just as often inadequate. As such, the
simplicity offered by the spin-only relationship is spoilt. Since we do understand
why and when, however, as described briefly above, simplicity may have been lost
but not understanding.

These remarks are made, therefore, to assure the reader that connections between
the number of unpaired electrons in a complex and its magnetic properties — and
indeed much more detail — are perfectly possible and well understood, notwith-
standing the necessarily brief review of the subject that has been possible in the
present non-specialist text.
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5.7 Summary

In crystal fields of any symmetry, ambiguities can, but need not, arise in assigning
the spin-degeneracy of the ground configuration. Such ambiguities arise from the
conflict between the desire of electrons to avoid each other versus their desire to
avoid negatively charged regions in the environment. In octahedral species, the
spin-degeneracy is determined by the relative size of A, and the mean pairing
energy P. The crystal-field splitting in tetrahedral complexes of the first row
transition-metal complexes is never greater than the pairing energy so that,
empirically, only high-spin tetrahedral complexes are observed. The spin-degeneracy
of actual systems may be determined from measurements of the magnetic moment.
The simplest relationship between spin and magnetism is the limiting case of the
spin-only formula relating magnetic moment directly to the number of unpaired
electrons. More careful scrutiny of crystal fields and magnetism provides a ‘second
tier’ of sophistication in which departures from the ‘spin-only’ formula can be
anticipated. Orbital contributions to magnetism — which is the antithesis of orbital
quenching — are of second order for ions with A or E ground terms, but of first
order and complicated for T ground terms. Once again, these qualitative rules derive
essentially from symmetry. The details of the physical nature and origins of crystal-
field splittings are irrelevant for their establishment. Similar remarks have been
made at the conclusions of each of the last three chapters. It is time now to come to
grips with the more quantitative side of crystal-field theory and to correlate its
successes with other notions of chemical bonding.

Suggestions for further reading

1. B. N. Figgis, Introduction to Ligand Fields , Wiley, New York, 1966, Chapter 10.

2. F. E. Mabbs, D. J. Machin, Magnetism and Transition Metal Complexes, Chapman
and Hall, London, 1973.

3. M. Gerloch, Magnetism and Ligand-Field Analysis, Cambridge University Press,
Cambridge, 1983.
— This is a technical research book on these topics.



6 Ligand Fields, Bonding and
the Valence Shell

6.1 The Nephelauxetic Effect

We saw in Chapter 3 how three spin-allowed transitions arise in octahedral or
tetrahedral complexes of metals with d2, d*, d7 or d® configurations. We also learned
that the energies of those transitions depend upon the magnitudes of the crystal
field splitting parameter, 10Dg and of the interelectron repulsion between the d
electrons themselves. One might suppose that while 10Dg measures the strength of
the interaction between the metal d electrons and their ligand environment, the
interelectron repulsion is merely a property of the metal itself. That is not so,
however, for the parameter B measures the d—d interactions in the metal within its
particular environment. Interelectron repulsion energies are every bit as much a
probe of the molecular environment of a metal ion as are crystal-field energies. For
any given metal complex with a d?, d?, d7 or d® configuration®, careful analysis of
experimental transition energies yields values of both B and Dg. Such analyses
have been performed for scores, if not hundreds, of transition-metal spectra. So far
as the B parameters are concerned, two general observations have emerged: a) B
values for metal complexes are smaller than the values B, for the corresponding
free ions and b) B values may be placed in essentially fixed orders related to ligand
or metal.
First, observation a), often written as

B=B/B, <1 (6.1)

and called the nephelauxetic effect, expresses the fact that the repulsions between
the d electrons in a complex are less than those in the corresponding free ion. This
implies that the average distance between the d electrons in a complex is larger
than the average for the corresponding free ion.

Filling out observation b), it is found that for a series of complexes with a
common metal, the nephelauxetic effect increases in the order given in Eq. (6.2)

nephelauxetic effect increasing —
F < H,0 <NH;<en < 0x> < NCS " <Cl-<CN <Br <TI’ (6.2)
B/B, decreasing —

* Again, we restrict discussion to spin-allowed transitions here. In general, of course, crystal
field effects compete with interelectron repulsion for all d" configurations, exceptfor n=1 or 9.

Transition Metal Chemistry.M. Gerloch, E. C. Constable
Copyright © 1994 VCH Verlagsgesellschaft mbH, Weinheim
ISBN: 3-527-29218-7
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The ordering of ligands in Eq. (6.2) is about the same, regardless of the central
metal. Analogously for a series of complexes with a common set of ligands, the
nephelauxetic effect increases in the order

nephelauxetic effect increasing—
Mn(1) < Ni(m) = Co(1) < Mo(i) < Re(1v) < Fe(in) < Ir(i1) < Co(in) < Mn(1v)
B/B, decreasing— (6.3)
and, again, the ordering of metals is roughly independent of the ligand set. In fact,
it is possible to present the nephelauxetic effect, very roughly, as a simple multi-

plicative function of independent metal and ligand parameters (Eq. 6.4).

(By—B)/By = (1- B) = h(ligands) x k(metal) 6.4)

Table 6-1. Some typical ~ and k values.

Ton k Ligand h

Co(11) 0.24 6 Br- 2.3
Co(urn) 0.35 6 Cl- 2.0
Cr(1mr) 0.21 6 CN- 2.0
Fe(in) 0.24 3en 1.5
Mn(1r) 0.07 6 F- 0.8
Ni(m) 0.12 6 H,O 1.0
V(i) 0.08 6 NH, 1.4

Box 6-1

Examples: a) Using the values in Table 6-1, we find the nephelauxetic reduction for
[NiF¢]* to be 0.8 x 0.12 = 0.096, that is, B/B, = 0.904 or that B in this complex is reduced
by about 10% relative to B, for the Ni** ion.

b) For [Co(NH;)]**, (1-§) = 1.4 x 0.35 = 0.49, that is, B in this complex is about half of
that for the Co* ion.

Qualitatively, at least, there is a unifying theme and chemical correlation to be
found in these series. Namely, § values decrease with increasing reducing power of
the ligands and/or increasing oxidizing power of the metal ions. These two
statements can be joined to yield the simple result:

B values decrease as negative charge is transferred from the ligands to the metal.

We can understand this powerful generalization directly from our view of the
valence shell in Werner-type complexes as laid out in Chapter 2. Recall that as an
extreme limit for Werner-type species, we consider the metal contribution to the
valence shell for the first-row elements as 4s and 4p, with 3d orbitals excluded. So,
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the bonds holding the complex together are very largely built from the 4s/4p metal
orbitals together with appropriate ligand orbitals. As we pass from a free ion to a
complex, or as we traverse either of the nephelauxetic series (6.2) or (6.3), an
increasing amount of electron density is donated by the ligands into the 4s and/or
4p metal orbitals. These metal orbitals are of the more penetrating type as they
have subsidiary maxima fairly close to the metal nucleus (Fig. 2-2). Therefore, a
small but significant part of the donated ligand electron density enters those
penetrating regions. That density lies between the metal nucleus and the bulk of the
‘innocent’ 3d electrons. Consequently, the 3d electrons are more shielded from the
nuclear charge in complexes than in the corresponding free ions, and more shielded
in complexes characterized by greater ligand — metal electron donation than those
characterized by less. The greater shielding of the 34 orbitals results in their being
less well bound, and their radial distribution thus grows. The 3d orbitals grow more
bulky and more diffuse, and the average distance between d electrons increases.
Therefore, the average interelectron repulsion energy decreases, the B/B, values
decrease, and the nephelauxetic effect increases.

The name nephelauxetic means ‘cloud-expanding’. The explanation for it, which
we have just reviewed, will be found elsewhere in the literature under the name
‘central-field covalency’. The magnitude of the nephelauxetic effect depends upon
the metal, its oxidation state, and the ligands bound to it as summarized in Egs.
(6.2) and (6.3) and Table 6-1. For hexaaquo complexes of various first-row metal(11)
ions, for example, B/B, ranges from 0.8 to 0.9; for many iodo or sulfur donor
ligands, one finds B/B, values in the range 0.5 to 0.7; in certain low-spin cobalt(ir)
compounds, B/B, values as low as 0.1 -0.3 have been observed. However, because
of certain artefacts in the way the B parameter is defined, none of these ne-
phelauxetic effects should be viewed as implying more than modest expansions of
the 3d electron clouds. Not the least of such considerations is the fact that the
interelectron repulsion energy varies inversely with respect to the electron —electron
separation so that we get a reciprocal relationship between B and the degree of
cloud expansion, rather than a linear one.

6.2 The Spectrochemical Series

The magnitude of Dg in any given complex is clearly a direct measure of the
interaction between the ‘spectral’ metal d electrons and their molecular environment.
As for the nephelauxetic effect, values of Dg have been collated for a large number
of species and found to fit, very approximately, another multiplicative relationship
of metal and ligand functions (Eq. 6.5).

Dq ~ f(ligands) x g(metal) (6.5)

Again, ligands may be ordered according to the magnitude of Dg roughly
independently of the central metal (Eq. 6.6)
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I-<Br < SCN- < ClI"< F < 0% = OH = H,0 < NCS < NH; < CN- < PR; < CO
Dgq increasing— (6.6)

and metals can be placed in an order roughly independent of the ligand set (Eq.
6.7).

Mn(1) < Ni(n) < Co(u1) < Fe(in) < Cr(i) < Co(mm) < Ru(imn) < Mo()
< Rh(m) < Pd(u) < Ir(ur) < Pt(iv)
Dgq increasing— 6.7)

These orderings are called the spectrochemical series. At a purely empirical level,
the collection of f and g values (Eq. 6.5) in Table 6-2 is reasonably adequate to
predict A, values for various metal-ligand combinations that did not define it. The-
se values are also useful in connection with an empirical relationship known as the
the law of average environment. This law asserts that the splitting parameter Dg for
a metal complex with a mixed set of ligands is given by the appropriately weighted
average of the corresponding unmixed complexes. For example, from Table 6-2,
A, Tor [NiFg]* is 8010 cm™ and for [Ni(H,O)]?* it is 8900 cm™'; the law of
average environment predicts that A, for [NiF,(H,0),]* is 8806 cm™.

Box 6-2

This procedure is strictly invalid, of course, since the symmetry of a six-coordinate complex
with dissimilar ligands cannot be exactly octahedral. In this case, further splitting of the d
orbitals takes place which is not representable by a single splitting parameter like A,..
However, if the departure from O, symmetry is slight, so that spectral bands are broadened
rather than split, the law of average environments retains utility.

Table 6-2. Some typical f and g values.

Ion g Ligand f
Co(1n) 9.3 6 Br- 0.76
Co(m) 19.0 6 CI- 0.8
Cr(in) 17.0 6 CN- 1.7
Fe(in) 14.0 3 en 1.28
Mn(1r) 8.5 6 F 0.9
Ni(1) 8.9 6 H,O 1.0
V(i) 12.3 6 NH; 1.25

An explanation for the nephelauxetic series came readily to hand. Lets see how
successfully we can provide one for the spectrochemical series. First, note that A,
values increase with decreasing size of the donor halides:

I <Br <ClI"<F
decreasing size— (6.8)
increasing A, —
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and this seems reasonable in terms of the simple crystal-field model set out in
Section 3.1 in which shorter bonds would indeed imply larger values of Ay
However, the ability of the crystal-field model to rationalize the spectrochemical
series stops right there. Thus, we might also expect orbital splitting energies to vary
according to the charge on the ligands. We observe however, from Eq. (6.6) that the
negatively charged halogens produce less orbital splitting than neutral water or
ammonia ligands. Secondly, note that H,O, OH~ and O% ligands define very similar
Ay values, We then observe from Eq. (6.7) that A, increases with metal oxidation
state (Eq. 6.9).

M) << M) < M@v)
Age INCrEeases— (6.9)

This would not be expected simply on the basis of a crystal-field model, for the d
orbitals will contract with increasing positive charge and hence interact less well
with the ligand ‘point charges’. The modest decreases in bond length as one traver-
ses the series (Eq. 6.9) are unlikely to compensate for, let alone override, the effects
of such orbital contraction. Finally, to add to the confusion, we also note from Eq.
(6.7) that A, values increase as we go down the periodic table (Eq. 6.10).

3d << 4d < 5d
A, INCreases— (6.10)

This might be compatible with the electrostatic model in that the radial extensions
of 4d and 5d orbitals are greater than that of 3d; but then the diffuseness of these
orbitals increases along the series in Eq. (6.10) and that would tend to decrease the
Ay values.

These and many similar observations made over the years all make it clear that
the simple electrostatic basis of the pure crystal-field model utterly fails to provide
even a qualitative understanding of the spectrochemical series. This failure in no
way casts doubt upon our successful interpretation of the nephelauxetic effect above.
This is because crystal-field theory is incompatible with our views about bonding
in the valence shell. Should the reader object to having been ‘led up the garden
path’ for the past three chapters, he should remember that, notwithstanding the total
failure of crystal-field theory to explain the magnitudes of the splitting parameters,
their patterns and all properties flowing from them are accounted for with
extraordinary success by this model. As we shall see, in replacing crystal-field
theory it would be stupid in the extreme to ‘throw out the baby with the bath
water’.
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6.3 Bonding in Octahedral Complexes

One might well wonder what crystal-field theory has to do with chemical bonding.
After all, all interactions between metal and ligands are deemed repulsive: there is
no mention of attractive binding forces. In this respect, crystal-field theory is hardly
a chemical theory at all. To be fair, it was not developed to be one either. The
qualitative ideas of the approach, being essentially only dependent upon the d”
configuration and molecular symmetry, are, however, quite compatible with bonding
theory, as we shortly describe. We shall also see how the gquantitative aspects of
crystal-field theory, as exemplified by the spectrochemical series, are illuminated
by a study of the bonding in transition-metal complexes. The approach we make is
through a consideration of molecular orbitals in octahedral species.

6.3.1 Molecular Orbitals in Diatomic Molecules

Let us first briefly review the construction of molecular orbitals in simple diatomic
molecules, AB, using the linear combination of atomic orbitals (LCAQO) scheme.
The end product for the first long row of the periodic table is the well-known
diagram in Fig. 6-1. We focus on two broad principles that are exploited in the
construction of this diagram: one has to do with symmetry and overlap, the other
concerns energies.

g%

Figure 6-1. Schematic molecular
a.0. m.o. a0. orbital diagram for heteronuclear
for A for AB for B first-row diatomics.
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As to the first, we note the interaction of the s orbital of atom A with the s
orbital of B, the p, with the p, and the p,, pair of A with the p,, pair of B. In
principle, of course, we could have considered the possibility of an interaction
between, say, the s orbital on A with a p, orbital on B as shown in Fig. 6-2. The
sketch shows that net overlap between these orbitals is zero and so no bonding or
antibonding molecular orbitals are formed in this way. Now the labels s and p, here

in-phase positive
overlap
X

L.

out-of-phase negative
overlap

Figure 6-2. Zero net overlap between s (o) and p, (x,) orbitals.

are symmetry labels for free atoms. Had we characterized these same orbitals with
respect to the cylindrical symmetry of the molecule to be formed, the s orbital
would be labelled o, and the p, together with its partner p,, would be labelled r.
Then, using the rule that orbitals of different symmetry do not overlap, our
conclusion about the nonbonding interaction between these orbitals follows
immediately. While all this is well-known, and almost trivial in the present example,
the classification of fragment orbitals according to the symmetry of the molecule to
be formed gains considerable utility in more complicated systems.

Turning to the second point about energies, we recall how the stabilization of the
bonding molecular orbital with respect to the lower of the two atomic orbitals, and
the destabilization of the antibonding one with respect to the higher lying atomic
orbital, depend upon the magnitude of the relevant overlaps between the interacting
atomic orbitals and upon their starting energies. Large bonding and antibonding
energy shifts are favoured by large overlap and/or good energy matching between
the relevant atomic orbitals. The smaller 7—7* energy gap relative to the o- o*
(from p, — p, overlap) in our example is expected in view of the less good ‘sideways’
overlap of two p, orbitals relative to the ‘head-on’ overlap of two p, orbitals.

We shall shortly draw on both of these symmetry and energy aspects of Fig. 6-1
in the construction of molecular orbitals for the octahedron. First, however, let us
extend the picture to molecules with more than two atoms.
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6.3.2 Molecular Orbitals in Polyatomic Molecules

Figure 6-1 is a typical molecular orbital diagram in that molecular orbitals in the
middle are shown as arising from atomic orbitals on the left and right. The question
arises as to what an equivalent diagram might look like for, say, a triatomic
molecule. Should we construct one in three dimensions with atomic orbitals of A
shown on the left, those of B on the right, and those of C behind? It is possible. But
what do we do for a molecule with seven atoms as in an ML, octahedral complex,
for example? We could explore seven-dimensional diagrams! Well we don’t do that.
Instead, we consider the molecule as notionally broken into fragments which we
then consider two at a time. For a triatomic system ABC — linear or not — we could
proceed by one of three routes: 1) combine atomic orbitals of A and B to form
fragment orbitals for the moiety A—B, and then combine these with atomic orbitals
of C to arrive finally at molecular orbitals for the complete ABC molecule, 2)
combine B with C to get BC, followed by final combination with the atomic orbitals
of A or 3) combine A with C to form AC, and thence include B to get the same
final result. A natural question at this stage is to ask whether one particular route is
better than the others. But then, what is meant by ‘better’? Presumably the best
route is that which makes the most of any molecular symmetry and so yields the
required result in the shortest time. We illustrate this idea in the following
construction of molecular orbitals for the water molecule.

6.3.3 Molecular Orbitals for the Water Molecule*

The water molecule possesses two mirror planes of symmetry, as shown in Fig. 6-3.
One mirror plane lies in the plane of the diagram through which the whole molecule
reflects into itself across the plane. The other, through the oxygen nucleus in the yz
plane of the figure, and shown by the dotted line, reflects H, into H, and vice versa.

z (into the page)

N

a H,

Y

Figure 6-3. One mirror plane is the plane of the page, the other (----) is normal to the page.

* A fuller and interesting account of molecular ( and of ‘equivalent’) orbitals will be found in
Murrell, Kettle, Tedder, Valency Theory, 2nd ed., Wiley, New York, 1969, p 190.
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We construct molecular orbitals for the complete H,O molecule, by first considering
combinations of the symmetrically related hydrogen atomic orbitals, and then by
combining these with the oxygen atomic orbitals. We proceed by three steps: (A)
combine the H 1s orbitals and classify them according to their behaviour with
respect to the mirror planes discussed above, (B) classify the oxygen atomic orbitals
with respect to the same molecular symmetry, and (C) form H,O bonding and
antibonding molecular orbitals by overlap of H---H and O orbitals of matching
symmetry.

Step (A): Form combinations of H s orbitals

yz mirror plane s
’ symmetry of combination

Type

Ls (i) symmetric with respect to reflection in
both yz and xz mirror planes

s

¥o

Step (B): Classify O atomic orbitals

Ls (i) antisymmetric (changes sign) with respect
to yz mirror; symmetric with respect to plane
of paper (xz)

'z mirror plane .
) P symmetry of combination

Type
symmetric with respect to
: both yz and xz mirror planes

ZP}' 8 (i)

2p, ‘ (ii) antisymmetric with respect to yz ;
' symmetric with respect to xz

2. (ii))  symmetric with respect to yz;

N but antisymmetric with respect to x:
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Step (C): Combine like with like

O ©

©

©

N
bonding
symimetry
} type (i)
antibonding
~
bonding
symmetry
> type (i)
antibonding
/
~
bonding
symmetry
> type (i1)
antibonding
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The hydrogen orbitals do not form a combination of symmetry type (iii) and so
leave the oxygen p, orbital as nonbonding.

To complete the full molecular orbital diagram we should consider energies
(determined in part by relevant overlap integrals) and the possibility of mixing
between the molecular orbitals shown above as of like symmetry. However, we
need not bother with all that here. The purpose of this exercise has been to introduce
the concept of group orbitals. In our example, we constructed two such group
orbitals — those in step (A) showing the constructive and destructive combinations
of H 1s atomic orbitals. It is of no consequence that the magnitude of the overlap
between these orbitals on well separated atoms is very small. We may still consider
a combination like [wi(H,) + yw(H)]/ V2 to be a group orbital. Then, as we have
seen in step (C), these group orbitals are combined with symmetry matching oxygen
atomic orbitals. Ignoring questions of relative energies and other quantitative matters,
a final molecular orbital diagram (Fig. 6-4) may be constructed in a similar fashion
to that shown for the diatomic case.

(iii)

2p,

a.0. symmetry types group orbitals
for O of H,O m.o. for H+-H

Figure 6-4. Schematic molecular orbital diagram for water.

We are now ready to apply the ideas in the preceding three sections to the
construction of molecular orbitals in octahedral complexes.
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6.3.4 The Molecular Orbital Diagram for Octahedral Complexes:
Local M-L o Bonding

We begin by restricting consideration of the bonding in octahedral complexes to
interactions between the metal and any one ligand but involving only local o
orbitals. By this we mean that we imagine each ligand to have only s or metal-
directed p orbitals (or both) available for overlap with the metal. We label the
available orbital on ligand i as o;. Further, and important, complications that arise
when we include local ligand 7 orbitals into our scheme, are discussed in Section
6.3.6.

With this restriction to only local M—L o bonding, we proceed as we did for the
water molecule above. Just as the two hydrogen atoms are there spatially related by
the molecular mirror symmetry, so here are the six ligands related by the molecular
octahedral symmetry. So, in step (A), we combine the ligand orbitals and classify
the resulting group orbitals according to the octahedral symmetry. Then, in step
(B), we label the metal atomic orbitals according to that same symmetry, and finally,
in step (C), we combine like with like.

The results of pursuing steps (A), (B) and (C) are given in Table 6-3 and Figs. 6-5,
6-6 and 6-7. Let us consider them in detail. In Fig. 6-5 we see how the combination
of ligand orbitals, (0, + G, + O3 + Oy + Os + 0¢)/~/6, is symmetry matched to the
central metal s orbital (the factor/6 is included simply to normalize this group

Table 6-3. Labelling of metal and ligand group orbitals in O, symmetry.

Symmetry Metal orbital Ligand group orbital
a, s 1/VJ6(0 + 0>+ Oy + Oy + Os + G5
e, E 1/V12(20; + 20, — 0, — G, — O, — Os)
dep 1/2 (6, — 05 + 04 — Os)
T Pe 1/v2 (0, - o)
Py 1/2(0; - 03)
P 172 (03 - 0%)

orbital). The appropriate symmetry label for this combination in octahedral (O,)
parity is a;,. Recall our use of these labels in Chapter 3: @ means one-fold spatial
degeneracy, g means even (symmetric) under inversion through the centre of
symmetry. In combining the metal s orbital with this ligand group orbital, we
construct bonding (b) or antibonding (a) molecular orbitals for the complete ML,
complex, depending upon whether the two orbitals (metal and ligand group) are in
phase or out of phase:
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Woiolary) = ax(s) + bi(01+ G2 + O3 + Oy + O5 + Cp) 6.11)

Vinolarg) = aix(s) — bi(01 + 02 + 03 + Oy + 05 + 0p)

where a,, ay, by, b) are all positive. (The reason why a; # a; and b, # b; derives from

the inclusion of non-zero overlap integrals between metal and ligand group orbitals).
The three-fold degenerate set of p orbitals are labelled #,, (¢ for three-fold, u for

odd under inversion through the centre of symmetry). As shown in Fig. 6-6, each

metal p orbital matches symmetry with ligand group orbitals comprising just two

bonding a,, interaction antibonding a), interaction

Figure 6-5. Interaction with the metal s orbital.

&
&~

bonding antibonding

rlul tluz

Figure 6-6. Bonding and antibonding #,3, t,; combinations are similar but with orbital densities
along the x or y axes respectively.
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out of the six available ligand o functions. Bonding and antibonding ¢#,, molecular
orbitals for the octahedral molecule are then formed as

Wt‘;m(t'ﬁ) = alZ(Px) + b2(01—64)
Vao(hh) = ayy(py) — by (01— 03) (6.12)

together with equivalent (and degenerate) combinations between p, with (0,— 0s)
and between p, with (03— Gy).

In Fig. 6-7, similar procedures are followed for the metal d orbitals. The
d,2_orbital-symmetry matches with the in-plane group combination (6\—,+03—05)/2
to give the molecular orbitals described in Eq. (6-13).

y y
00:00 . ‘DXG’ :

. 2y . . 2_y2
bonding e, antibonding ez

DENC

00‘00 :

C/ D %
D (D Q

0“0. :

bonding e,* antibonding eg:‘

Figure 6-7. Interaction with the metal d,2 2 and d,2 orbitals.
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W?no(eézfyz) = a3 y(d22) + b3(01- 0, + 04— 05)

a0 oxly? , , (6.13)
Violer ) = aix(d22) - bi(01— 0, + 04— 05)

The different shape of the 42 orbital is matched by the ligand group orbital
(205 + 204— 01— 02— 04— G,—,)/x@, and we get the molecular orbitals in Eq. (6.14).

Vho(el) = aixd? ) + by(20; + 2045~ 61— 0, 04— ) 6.14)
Vio(e; ) = diy(d2 ) ~bi(20; + 205~ 0\~ 0y~ 04— 03) '

Finally, note that no combination of ligand o orbitals interacts with members of
the metal 1,, set. The vanishing overlap between any ligand o orbital and, say, the
d,, orbital is illustrated in Fig. 6-8. Overall, therefore, the metal t,, orbitals are non-
bonding in this scheme. Recall how the 2p. orbital of oxygen is similarly nonbonding
to the hydrogen orbitals in water.

Y

D
=
N/

)

?

Figure 6-8. Impossible symmetry matching of ligand o orbitals with metal d,,. Similar results
apply for the xz and yz planes.

We now collect together the various parts illustrated in Figs. 6-5 — 6.7 by making
some simple assumptions about the relative magnitudes of these metal-ligand
interactions. In this we refer to the arguments given in Section 2.2, namely, that the
bonding interaction between the metal 4s orbital and the ligands will be greater
than that for the metal 4p and that, because of radial compactness, the metal 3d
orbitals will form the weakest interactions of all. Qualitatively, therefore, the
complete molecular orbital diagram for a first-row octahedral complex with only
local M- L o interactions is expected to like that in Fig. 6-9.
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a; g*
metal atomic — ligand group
orbitals orbitals

60

Figure 6-9. Schematic m.o. diagram for metal and o-bonding ligands in O, symmetry.

The final step is to house the electrons. Each ligand, acting as a ¢ donor, is
considered to offer a lone pair of electrons. This is the case regardless of whether
the ligand is formally negatively charged, like CI-, or neutral like NH;. Ultimately,
these electrons are shared by the metal and ligand so that there is no implication,
now or later, that the ligand ‘donates away’ or ‘loses’ two negative charges. In
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addition to these twelve electrons are n more, originating from the d” configuration
of the metal, giving (12 + n) in all. Applying the Aufbau principle, we place twelve
of these electrons in the lowest six bonding molecular orbitals, a,,, #;, and e,, as
indicated in the figure by crosses. The remaining n electrons then occupy the
nonbonding #,, orbitals and the antibonding e} orbitals. We differentiate between
the first twelve and the remaining » electrons by crosses and arrows, not because
these electrons are different in any way — for, of course, they are not — but to
emphasize the connections between the present molecular orbital approach on the
one hand, and the ideas of crystal-field theory on the other. Thus, the lowest six
filled molecular orbitals provide an account of the binding, attractive forces between
the metal and the ligands. Above them lie first the #,, and then the (antibonding) e;
orbitals, amongst which are distributed the same number of electrons as defined by
the metal d" configuration. In short, we may map this latter distribution onto that
discussed so fully earlier under the heading ‘crystal-field theory’.

Crystal-field theory accounts for the r,,—e, splitting, A, in terms of the diffe-
rential repulsion of the various electrons by ligands viewed as point charges. Within
the molecular orbital scheme, on the other hand, that splitting is seen in terms of
the antibonding energy of the ¢} molecular orbital (and of the £,,, as we shall see in
the next section). In turn, larger antibonding (repulsive) energies for the ¢} molecular
orbitals are to be associated with larger bonding (attractive) energies for the e,
molecular orbitals. Antibonding interactions are repulsive, as bonding ones are
attractive.

Immediately, therefore, we have one insight into the spectrochemical series by
noting that both bonding and antibonding energy shifts of ¢, and e} orbitals are

Box 6-3 e,”

L group
orbitals

eg g
Weak M -L interactions lead to Strong M —L interactions lead to large
small stabilization of e, orbitals stabilization of e, orbitals and large

and small destabilization of e} destabilization of e}
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closely related to the donor ability of the ligands in the given complex. However,
we need to do more work yet before we can construct any really successful account
of the spectrochemical series. We will return to this question shortly. Furthermore,
we warn the reader that the immediately preceding discussion is somewhat naive
and must be re-addressed later (see Section 6.4).

6.3.5 Charge-Transfer Transitions

The ‘d—d’ bands involve electronic rearrangements within the ,, and e, (now e})
orbitals. The so-called ‘charge-transfer’ bands, on the other hand, involve transitions
between one or the other of these ‘d’ orbital subsets and other molecular orbitals in
Fig. 6-9. Some of these concern the promotion of an electron from the bonding ¢,
orbitals into the f,, or e, orbitals, others may concern electronic transitions from the
t/e, orbitals into the #;f antibonding orbitals. We focus on these two types of
transition, rather than a,,— e, etc., as they alone amongst the many promotions
possible in Fig. 6-9 involve a parity change: u — g or g — u. Provided other
selection rules are satisfied, therefore, such transitions may be fully allowed. It is
also obvious from the qualitative ordering of molecular orbitals in the figure that
these electronic transitions will occur at higher energies (larger promotion energies)
than those of ‘d—d’ type transitions. We thus have an explanation for the
generalization, exemplified in Section 2.1, that transition-metal spectra often show
intense bands at higher energies than the weak ‘d-d’ bands. Recall here the
discussion about the perceived colours of the chloro- and bromocuprate ions in
Section 2.1.

The name ‘charge-transfer’ arises from the fact that these transitions take place
between 1,, or e, orbitals, which are largely of metal character (little mixed with
any ligand orbitals), and members of the bonding or antibonding sets that possess
very much greater ligand character. Hence, these transitions involve a much greater
displacement of charge, one way or the other, between metal and ligand than do
‘d—d’ transitions.

Finally, we must remember that just as a ‘d—d’ spectrum is not properly described
at the strong-field limit — that is, without recognition of interelectron repulsion and
the Coulomb operator — neither is a full account of the energies or number of
charge-transfer bands provided by the present discussion. Just as a configuration
I, ey gives rise to several terms, often with different spin, so also do excited
configurations like 7 'e7 1,1*. So we must expect the charge-transfer spectrum to be
every bit as complicated as the ‘d—d’. While we do not pursue this complex matter
further in this book, it is always well to keep in mind the fact that molecular orbital
diagrams like that in Fig. 6-9 are but the beginning of any bonding picture.

6.3.6 Metal-Ligand 7 Bonding

Each local metal —ligand interaction in a complex might include a contribution from
7 bonding. We now remove the restriction of only local o bonding adopted above,
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and consider the contribution of 7 bonding ligands to our molecular orbital scheme.
Important differences arise between ligands as x donors or as 7 acceptors and we
study these two situations side-by-side. For concreteness’ sake, we may envisage
the 7 orbitals on either type of ligand as p functions on the ligating atoms directed
normal to the local M—L vector. Combinations of ligand 7 orbitals form only one
group of importance that is symmetry matched to metal orbitals. These group
orbitals, of #,, symmetry in the octahedron, comprise a degenerate set of three and
are shown in Fig. 6-10 together with the appropriate members of the r,, set of metal
d orbitals with which they overlap.

We now incorporate the bonding and antibonding f,, molecular orbitals of Fig.
6-10 into the energy diagram of Fig. 6-9. So as not to obscure the important issues

y

L

o 9.
@gg ()

bonding anti-bonding

v @%E
8 Ogg

Figure 6-10. Symmetry matching of metal t,, orbitals with ligand & functions. Similar diagrams
may be drawn in the xz and yz planes.

Box 6-4

Other group orbitals deriving from ligand = functions transform as #,,, t;,, and #,,. The t,,
group orbital can match the symmetry of some of the metal f orbitals and the ¢,, matches
some metal g orbitals; we are concerned with neither of these here. The 1, ligand group
orbital can overlap with the #,, set of metal p orbitals already used for ¢ bonding. Any such
overlap is expecled to be small, however, involving as it does ‘sideways’ overlap of metal
p and ligand p orbitals on well separated centres. Accordingly, we also neglect this
contribution to our bonding scheme, but here only for reasons of simplicity.
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that arise, we draw incomplete diagrams, as in Fig. 6-11, in which only the e,
orbitals of the o-bonding scheme are made explicit. Two diagrams are presented,
one for each of the two cases of ligand 7 donors and 7 acceptors. In Fig. 6-11a, we
recognize that the z orbitals of m-donor ligands will be of relatively low energy
(like the o-donor orbitals) and be filled in the free ligands. Consequently, the bond-
ing octahedral ,, molecular orbitals will also be filled. The crystal-field splitting
parameter, Ay, is now identified with the energy gap t,¥ —e¥. Recall how crystal-
field theory considers all d orbitals as repelled by the ligands, but the e, more than
the 1,, subset because they point directly at the ligands. In the molecular orbital

(a) ligand & donors (b) ligand 7 acceptors

Figure 6-11. Metal -ligand 7 bonding in O, symmetry. The boxed orbitals are filled with
electrons — notionally from the group of six ligands.

scheme of Fig. 6-11, the antibonding interaction with the e, orbitals is greater than
that with the #,,, principally because ¢ overlap is greater than 7. Finally, note that
Ay Is less for a ligand which is both a o- and 7-donor than for a pure o-donor.
Greater o bonding increases the energy of the e} orbitals and A,.,, while greater «
bonding increases the energy of the 5} orbitals and hence decreases A,.,. It is these
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opposing trends that we see as partly responsible for the lower position (smaller
A,.) of the halogens in the spectrochemical series than that of the z-neutral ammonia
ligand, for example.

In Fig. 6-11b we consider the case of m-acid (acceptor) ligands. Here, the ligand
functions are empty high-energy ligand molecular orbitals we label 7*. We will
look at an example shortly. The stacking of the octahedral molecular orbitals now
takes on the different ordering shown in Fig. 6-11b and, because the bonding 1,,
orbitals are empty (the ligands are m-accepting now), the crystal-field splitting, A,
is associated with the energy gap f,,—e7. This time, the greater the n-acidity of the
ligand set, the lower the energy of the bonding t,, orbitals and the greater A,.. The
position of the CO ligand at the higher end of the spectrochemical series is ascribed
to their strong n-accepting role. Overall, therefore, study of the bonding in octahedral
complexes by molecular orbital methods predicts that A, will be smaller for n—
donor ligands and larger for m-acceptors, with m-neutral species inbetween. Broadly,
that is what is found experimentally.

6.4 Ligand-Field Theory

The discussions of the past few sections are often cited to define ligand-field theory
as the application of molecular orbital theory to transition-metal complexes. It is no
such thing. Certainly we can see how, from a first look at chemical bonding by
molecular orbital methods, one should not take a literal, that is pure electrostatic,
view of the origins of crystal fields. Apart from those already raised in Section 6.2,
there are abundant objections to the simplistic crystal-field view. Numerical
computations of the magnitude of A, within a variety of electrostatic models have
yielded widely disparate estimates — some even of the wrong sign. As Van Vleck
made clear in 1935, the important conclusion to be drawn from schematic studies
like those described above is that the quantity A, is to be viewed as a parameter of
the system which, inter alia, subsumes the consequences of covalent bonding. Most
importantly, note too how such bonding could be dominated by non-d orbitals just
as much as being a roughly equal property of all orbitals.

Let us look a little more closely at this last point. Suppose, for the sake of
argument, that we take the extreme viewpoint mentioned in Section 2.2 that the 3d
orbitals of a first-row transition metal (in higher oxidation states, remember) are so
contracted that they effectively do not overlap with the ligand orbitals at all. This
would imply that the 1,,—e} energy gap in Fig. 6-9 should be vanishingly small.
Suppose further that the complex under consideration is one formed with neutral,
rather than negatively charged, ligands. Any pure crystal-field (point-charge) splitting
of the 1,, and e, orbital subsets would similarly be expected to be very small. Even
under these combined circumstances, however, we should still expect to observe a
significant #,,—e, energy splitting. That would arise from the Coulombic interaction
of the d electrons with the non-spherical environment. For, don’t forget, even if the
3d orbitals overlap insignificantly with the ligands, the same is not true of the 4s



118 6 Ligand Fields, Bonding and the Valence Shell

Box 6-5

By the way, recall the trend in Eq.(6.9) which was at odds with the crystal-field premise.
Within the ligand-field picture, both bonding electron density and (in the limit, nonbonding)
d-electron density are increasingly drawn in towards the metal nucleus with increasing
formal metal charge. These two electron densities are accordingly brought into closer
mutual proximity and consequently, D¢ values increase along this series.

(or 4p). That overlap, and bonding, is what holds the complex together and the
bonding electron distribution which results is octahedrally deployed, not spherically.
All in all, therefore, we would find the #,, and e, subsets of the 3d electrons
energetically differentiated by their differing proximities to the bonding electron
density. In effect, the d electrons may be thought of as repelled by the bonds rather
than by the ligands as point charges. Since the bonding electron density takes large
values even in those regions reasonably close to the metal nucleus, the d-electron -
bonding electron interaction is expected to be significant. Of course, a numerical
computation of the #,,— e, splitting would be an extremely complex affair, not least
because it would be predicated on a full all-electron calculation of the bonding
itself. Nevertheless, even without such a calculation it is apparent that the quantity
we call A,,, though reflecting the underlying bonding in a given complex, must not
be naively thought of as simply — perhaps linearly — related to the r,,—e, splitting
that one might compute in a construction of a schematic diagram like Fig. 6-9. Note
too that any differences between the schematic molecular orbital diagram and a full
all-electron calculation (the latter is, in any case, virtually impossible with current
computational facilities) are likely to be large with respect to the scale of the ligand-
field energies.

So, ligand-field theory is the name given to crystal-field theory that is freely
parameterized. The centrally important point is that ligand-field calculations,
whether numerical or merely qualitative, explicitly or implicitly employ a ligand-
field Hamiltonian, very much like the crystal-field Hamiltonian, operating upon a
basis set of pure d orbitals. Instead of the crystal-field Hamiltonian (Eq. 6.15),

n €

Hop = 2«,/7 +V,, (6.15)
i

in which Vcr takes a form describing the potential energy established by an array of

point charges, for example, we use the ligand-field Hamiltonian (Eq. 6.16),
Hyp =30 UG +Vi, (6.16)

in which Vi is an effective one-electron operator called the ligand-field potential.
Note also that interelectron repulsions are no longer calculated with the explicit
Coulomb operator, as in Eq. (6.15), but by an effective, two-electron operator U(i,j).
This change is commensurate with the nephelauxetic effect, in which free-ion B,
values are replaced with B values in the complex, in recognition of electron density
changes brought about by covalency.



6.4 Ligand-Field Theory 119

Box 6-6

A simple example of an ‘effective’ operator with which the reader will be familiar is the
use of Z.e/r as the effective nuclear potential experienced by an electron outside of a
closed inner shell. Thus, we may compute the energies and wavefunctions for a 2s or 2p
electron outside a 1s? shell, using the ‘hydrogen-like’ Hamiltonian,

1 7 e

Hywe=-5V" -

2 r
but note that the value of Z. is different for an outer 2s electron compared with a 2p
electron. Well-known discussions of this difference centre upon the concept of variable
shielding and orbital penetration, of course.

It is no part of our thesis in this book to get too technical. At the same time,
however, it is surely unacceptable that a qualitative approach should avoid all
mention of technicalities if that tactic results in a complete misunderstanding of the
quite different standings of ligand-field theory on the one hand, and molecular-
orbital theory on the other. Molecular orbital based discussions, like those in the
immediately preceding sections, provide insight into some of the trends in, and
factors affecting, ligand-field parameters. However, these two models do not map
onto one another as computational procedures. Furthermore, the ligand-field
approach is closer to the end result so far as d electron properties are concerned,
than are various conventional molecular orbital schema.

Molecular orbital calculations may employ any convenient basis and, in many-
electron applications, those bases will generally include within them some
recognition of all kinds of two-electron interactions. Metal s, p and d functions, for
example, will be treated in this regard on essentially equal footings. In ligand-field
calculations, on the other hand, all manipulations are made with respect to a pure d
basis, this being defined only with respect to the angular momentum property, being
given by [ = 2, with no required statement about the radial part which might
otherwise define a free-ion 3d function. Furthermore, d—d interaction energies are
explicitly dealt with separately from all others (so we have separate parameters,
like B for ‘d—d’ interelectron repulsions on the one hand, and A, for the ligand-
field on the other). One is to realize that it is, a priori, strange and unexpected to
find that useful calculations of ‘d—d’ spectral transition energies and magnetic
properties, amongst others, can be performed in this way. The d orbitals are explicit
in such calculations while all others (metal s, p; ligand functions) are left implicit
within the effective operators of Eq. (6.16). Molecular orbital calculations, on the
other hand, include all reasonable orbitals explicitly within a chosen basis set and
the operators are direct in the sense that they do not contain within them any other
basis functions. Molecular orbital calculations are thus formally able to provide
quantitative accounts of all molecular properties ab initio while ligand-field theory
relates only to d-electron properties, and then only in a parametric fashion. From
this remark, it might appear that the molecular orbital technique is clearly the
superior. However, within the domain of transition-metal ‘d—d’ spectra and
magnetism, the fact is that, while ligand-field theory uniformly and consistently
provides a quantitative account of experiment together with much insight into the
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underlying chemical bonding, corresponding molecular orbital calculations are today
too complex to compete at all in practice. It is equally evident that empirical
molecular orbital methods are also ill-suited to this special range of properties.

There is a parallel to ligand-field theory elsewhere in chemistry. The Hiickel
theory of organic 7 electron systems analogously focuses on just one subset of
electrons. While various 7 orbitals are recognized explicitly, the roles of the o—
bonding framework in such species are kept implicit, being ‘folded into’ the effective
operators of the model. The Hiickel approach (and here we mean the ‘simple’ Hiickel
model rather than various Extended Hiickel approaches) is extraordinarily successful
as a parametric model of a particular set of electrons. The successes of Hiickel
theory and ligand-field theory, strictly within their own domains, is owed to the
way in which Nature keeps separate the relevant electronic sets. In 7-electron theory,
orthogonality is of the essence; in ligand-field theory, the (less perfect) decoupling
of d electrons from all others derives from their relatively contracted nature, as
discussed in Section 2.2. Were the d electrons less decoupled, i.e. more admixed
with the valence shell, ligand-field theory simply would not work. By ‘work’, we
don’t just mean qualitatively, as established perhaps merely by symmetry, but
quantitatively. It is unfortunate that the space and level of presentation prevent our
justifying and exemplifying that ligand-field theory really does work at a quantitati-
ve level: we ask the reader to be assured that it is so.

Finally, on this question of the efficacy of ligand-field theory depending on
Nature’s selection of a relatively isolated subset of electrons, consider what might
be the limits to the domain of this approach. As will be discussed briefly in Chapter
10, the f orbitals in lanthanoide complexes are even more ‘buried’ beneath the
valence shell than are the d electrons in the main transition series. It will be of no
surprise, therefore, to learn that ligand-field studies on the spectra and magnetism
of lanthanoide complexes, though technically rather more complex than for the d
block species, are entirely successful. On the other hand, suggestions which have
been made in the literature from time-to-time that ligand-field techniques might be
applicable to p-block compounds are ill-founded. There is no corresponding set of p
electrons that is well isolated from other electrons in those systems. Similarly,
ligand-field theory is not applicable to the charge-transfer spectra described in
Section 6.3.5 for there we stepped outside of the d shell and included members of
the valence shell itself. The above are clear-cut examples of the applicability of
ligand-field theory; of the domain or ‘regime’ of the theory. Less clear areas also
come to mind in which the approach may gradually begin to fail. These might
include, perhaps, the periphery of the d block, perhaps the third transition series.
Paradoxically, and unfortunately, it is difficult to test this proposition since in those
systems, charge-transfer spectra frequently obscure the ‘d—d’ bands whose analysis
might provide the answer. To circumvent this, we might consider complexes in low
oxidation states. Indeed we have at last reached that long promised topic.
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6.5 Synergic Back-Bonding

Just as the statement that ‘such-and-such a compound is stable’ is meaningless
unless one adds ‘with respect to’ something, so also is the definition of a ligand as
a ‘good donor’. A dramatic illustration of this idea is provided by carbon monoxide.
A molecular orbital diagram for the free CO molecule is shown in Fig. 6-12. We
note that the highest occupied molecular orbital (HOMO), 30, is a o-bonding orbi-
tal extending beyond the internuclear vector:

a.0. m.o. a.o.
for for for
C CO O

Figure 6-12. Schematic molecular orbital diagram for carbon monoxide.
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The lobes of electron density outside the C—O vector thus offer o-donor lone-pair
character. Surprisingly, carbon monoxide does not form particularly stable complexes
with BF; or with main group metals such as potassium or magnesium. Yet transition-
metal complexes with carbon monoxide are known by the thousand. In all cases,
the CO ligands are bound to the metal through the carbon atom and the complexes
are called carbonyls. Furthermore, the metals occur most usually in low formal
oxidation states. Dewar, Chatt and Duncanson have described a bonding scheme for
the metal — CO interaction that successfully accounts for the formation and properties
of these transition-metal carbonyls.

We see from Figure 6-12 that free carbon monoxide is bound in both ¢ and 7
modes. As oxygen is more electronegative than carbon, resulting in the lower
energies of the oxygen atomic orbitals than the carbon ones in the figure, the bonding
7 molecular orbital, 17, favours oxygen:

one member of the bonding
C— 0

It m.o. in CO
(the other member is normal to the page)

Correspondingly, the (empty) antibonding 27 molecular orbital favours the carbon:

g\ empty 1°
one member of the antibonding 9
C—mmmm O

21 m.o. in CO
®

In low oxidation states, transition metals possess filled or partly filled d shells.
The Dewar-Chatt-Duncanson model envisages some of that electron density in
(local) d, (e.g. d.,, d,) orbitals being donated into the empty n* orbitals of the
carbon )}nonoxide:

- +
@ O Donation of metal d,, electron
C—o 9 —» 2 density into the 7,* molecular

M

®) orbital of CO. An analogous
process may be drawn in
+ N the yz plane.
A
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Accordingly, the CO moiety acquires negative charge. The consequent exigencies
of the electroneutrality principle are then met by the CO group donating this charge
back to the metal via its now expanded o-donor orbital:

o+ o~

(\ P Enhanced o donor ability of the
° ‘ C 03 CO towgrds the enhanced
~—— 7 accepting metal.

The effect is cyclic or synergic. The ¢ donation accumulates charge on the metal
which donates back to the #* orbital of the carbonyl. An equilibrium is reached in
which the (perhaps) neutral metal becomes bound to the neutral, ‘poor ¢ donor’
carbonyl by both strong ¢ and 7 bonds. The o-donor function of the carbonyl group
is enhanced, or established, by the 7 acidity of this ligand, and by the enhanced ¢
acidity of the metal brought about by its ability to rid itself of excess charge through
‘back-bonding’. The synergic back-bonding mechanism would fail if the metal were
in too high an oxidation state for it would then lack the essential electron density to
donate back to the carbonyl and so establish that ligand’s o-donor ability.

Box 6-7

Some prefer to introduce the back-bonding model by arguing first that ¢ donation from the
carbonyl! ligand causes too great an accumulation of negative charge on the metal so that
the metal then tends to establish its electroneutrality by back-donation to the carbonyl
7% orbitals. Since the whole process is synergic, it matters little at what point in the cycle
one begins the description. However, the present, perhaps unusual, path was chosen so as
to highlight the initial poor ¢ donor ability of the carbonyl ligand. Again, this is, no doubt,
a matter of taste....

A similar account of the bonding in Zeise’s salt, K[PtCl;(C,H,)], is offered by
the Dewar-Chatt-Duncanson model. In this complex, the ethene ligand bonds ‘side-
on’ to the metal. The synergic back-bonding, shown in Fig. 6-13, involves donation
from the filled m molecular orbital of the ethene together with back-bonding from
the metal into the empty 7* orbital of the ligand.

This bonding mechanism is expected for complexes of electron-rich metals with
ligands offering both o-donor and m-acceptor functions. The underlying driving
force for synergic back-bonding derives from the operation of the electroneutrality
principle together with the existence of two (or more) discrete electronic pathways
to satisfy it. The Dewar-Chatt-Duncanson model is widely accepted. However, it
provides us with a problem at this point. We have repeatedly emphasised the mini-
mal roles of metal d orbitals in overlap with the ligands and yet the back-bonding
mechanism can only succeed if the metal d orbitals overlap with the various ligand
functions. It is curious that some argue that the (undoubted) validity of the Dewar-
Chatt-Duncanson model demonstrates a universally active role for metal d functions
in metal —ligand bonding orbitals. There is, however, another way.
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/N\
Figure 6-13. Synergic back-bonding in a platinum alkene complex. In (a), the interaction of a
(filled) platinum 5d orbital with the 7° molecular orbital of the alkene is shown, whilst in (b),

the interaction of a dsp hybrid orbital with the 7 molecular orbital of the alkene is shown. Note
that the two interactions result in electron density moving in opposite directions.

6.6 Valence Shells in High and Low Oxidation States

That way is to recognize that the nature of the valence shell is not constant but
varies throughout the transition-metal series as, indeed, do most chemical priorities
throughout the periodic table. The valence shell for Werner-type complexes,
described in Section 2.2 in its limiting form, excludes the relatively tightly bound
3d orbitals. The exclusion is not total, of course, because of the tail of the 3d radial
wavefunction and as evidenced by the (small) ‘violation’ of Laporte’s rule. One
expects the situation to be different in low oxidation state complexes like the
carbonyls. Here, the lesser formal effective nuclear charge results in all electrons —
3d, 4s and 4p orbitals — being less well bound, but to differing degrees. From our
discussion of the electron configurations of transition-metal atoms in Chapter 1, for
example, we learned that the 4s electrons are often more strongly bound than the 3d
electrons. This arises, we recall, because of the more penetrating character of the 4s
orbitals. They themselves are thus partly exposed to a higher effective nuclear charge
and also their penetration serves to screen the 3d electrons more from the nucleus.
Qualitatively, therefore, the differences between the radial forms of 3d, 4s and 4p
orbitals in higher and lower oxidation states are expected to follow the trends
illustrated in Fig. 6.14. We see that, in low oxidation state species, the radial extent
of the 3d orbitals is much more like that of the 4s and 4p orbitals than it is in
higher oxidation state complexes. The valence shell now comprises all these orbital
sets. Now the d orbitals can overlap significantly with appropriate ligand functions
and no conflict with the back-bonding model is evident. Furthermore, as the d
orbitals are now fully engaged in the bonding process and exposed to the envi-



6.6 Valence Shells in High and Low Oxidation States 125

3d
B 4s
&
— r

higher oxidation states
) 3d 4s
x

’
lower oxidation states

Figure 6-14. The 3d orbitals enter the valence shell in lower oxidation states.

ronment, one does not expect to find stable, open d shells. Unpaired electrons, for
example, within the d or valence shells should be particularly unstable with respect
to any process that fills the shells. In short, we expect to observe an 18-electron
rule [2 x (5 + 1 + 3) for the 3d + 4s + 4p subshells] governing electron counts, just
as one sees the 8-electron rule within the first long series of the periodic table.
Configurations with open shells and unpaired electrons in Werner-type complexes
are stable and common (indeed, the norm) because the open d shells essentially lie
inside the valence shell. As observed in the introductory survey of Chapter 1, there
is no tendency towards organic-like free-radial behaviour with Werner-type
complexes having unpaired electrons. With very few exceptions, the same is not
true in carbonyl-type chemistry of transition metals in low oxidation states. Overall,
therefore, we argue that the change from higher to lower oxidation state chemistry
signals an important change of bond type in a way that the change from main group
to Werner-type transition-metal chemistry does not.

This change in bond type, though discontinuous, is blurred. The passage from
one oxidation state to another is discontinuous in the sense that it is associated with
discrete additions or removals of individual electrons. It is blurred, on the other
hand, because the electroneutrality principle will minimize any local charge
concentrations. We saw one example of this in Section 6.1. The nephelauxetic effect
arises because the radial distribution of the d shell expands as ligands donate nega-
tive charge into the more penetrating regions of the 4s and/or 4p shells. The
nephelauxetic effect thus defines a spread of differential orbital expansion somewhat
akin to the differences shown in Fig. 6.14. However, the range of radial variation
from the nephelauxetic effect for any given formal oxidation state is, as commented
at the end of Section 6.1, generally expected to be less than that characterizing
different oxidation states. In Fig. 6-15, we provide a schematic indication of this
‘blurring’.

Amongst the consequences to be expected from the change from Werner-type
behaviour to carbonyl, low oxidation state chemistry is a breakdown in the efficacy
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Figure 6-15. Nephelauxetic expansions of the d orbitals are expected to be less than those
resulting from integral changes in oxidation state.

of the ligand-field method. Calculations of spectral splittings between states which
are no longer well described by combinations of pure d functions cannot be expected
to succeed well at all. As discussed in Section 6.4, ligand-field theory works within
a domain - the ligand-field regime, if you like — and lower oxidation state complexes
are expected to fall increasingly outside of that domain. Unfortunately, it may not
be easy to demonstrate this expected failure experimentally. The greater orbital
mixing and larger d orbital splittings expected for the low oxidation state type of
valence shell generally result in decreased energies of charge-transfer bands and
greater proximity of ‘d—d’ transitions to these charge-transfer bands. The result is
that spectral features that might be assigned as ‘d—d’ type are frequently obscured
by intense charge-transfer absorptions. A general paucity of apparent ‘d-d’
transitions thus precludes any thorough testing of the gradual breakdown of the
ligand-field method that is to be expected in low oxidation state transition-metal
chemistry.

6.7 Electroneutrality and the Elasticity of the d Shell

The synergic, or interactive, nature of the back-bonding mechanism was strongly
emphasized in Section 6.5. Despite that emphasis, some find it natural to focus
upon the change on the ligand: & back-donation by the metal enhances the ¢ basicity
of the carbonyl group. However, one might equally observe that carbon monoxide
binds to transition metals because the metals act, in low oxidation states, as
exceptionally good acceptors. Acceptors are atoms or molecules which readily absorb
electron density. Transition metals can do this either because they start out as
positively charged atoms (but not for carbonyls, of course, because these ligands
are intrinsically poor o donors) or because they can divest themselves of the charge
by passing it onto other atoms (ligands) (see Chapter 9) or, indeed, back to the
original donor. There is even a third way in which transition metals can reduce
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charge concentration; namely, by the nephelauxetic effect. On receiving electron
density from one or more ligands, the expansion of the d shell, which, as we have
seen, may have little overlap with the ligand functions, spreads some of the metal
electron density out over a larger volume of space. As expressed in Chapter 1, the
electroneutrality principle asserts that atoms will acquire only small overall charge.
However, the principle is more general than that, for it really means that charge
will be more evenly distributed. The enlargement of an atom, or of a subset of its
electron density, is an equally effective way of reducing charge density. The elasticity
of approximately nonbonding  orbitals in transition metals confers upon the d-
block metals an extraordinarily facile redox chemistry. Recall that an important
subgroup of redox reactions in transition-metal chemistry is that involving stepwise
gain or loss of electrons without bond rupture or overall geometry change. In part,
this is to be laid at the door of elastic d orbitals. Of course, a great deal of redox
chemistry does involve bond rupture and ligand change, thus also characterizing the
broad spread of transition-metal chemistry, as it does elsewhere in the periodic
table. Something of this is discussed in Chapter 9.

6.8 The Bonding Contributions of d Orbitals

We have emphasized the change of bond type that accompanies the growing
participation of the metal 4 orbitals in the valence shell of transition-metal
complexes on passing from high to low oxidation states. In order to make this
point, we have perhaps overstressed the similarity between the Werner-type
complexes in the d block and the chemistry of main group metals. We conclude this
chapter, therefore, with the seeming volte face of asserting that, notwithstanding the
small overlap of 3d orbitals with ligand orbitals in Werner-type compounds, their
contribution to overall bonding is by no means negligible.

Once more, to make the point, let us take the extreme view that the 3d orbitals
overlap negligibly with the ligand orbitals. Then, as described in Section 6.4, the
repulsive or Coulombic interaction of the d electron density with that of the bonding
electrons results in their differentiation as monitored by ligand-field splittings. As
pointed out in Section 2.3 and explored in some detail in Chapter 7, that interaction
impinges on the bonds themselves. The physical approach of metal and ligands may
be frustrated to a greater or lesser extent by the d electron density. This hindrance
will depend upon the spatial distribution of the d electron density and, in turn, upon
whether the complex is in a ‘high-spin’ or ‘low-spin’ state, where that is appropriate.
It is obvious then that the existence of the d electron density will generally have a
marked effect upon net bond strengths and, on occasion, molecular geometry. Again,
we shall see more of this in Chapter 7. In this sense, therefore, it would be
appropriate to recognize that, even in higher oxidation state complexes, the d orbitals
have a significant role in bonding even where their overlap with the ligands may be
minimal.
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Furthermore, as discussed in Section 6.7, the ability of the elastic d orbitals to
function as electron ‘sinks’ contributes greatly to the rich variety of redox chemistry
that is so characteristic of the d-block elements. Here too, therefore, we recognize
the ‘bonding’ role of the d orbitals in Werner-type complexes as well as in carbonyl-
type chemistry.

In many respects, this is the kernel of this book. For years it has not been too
clear how one could consistently account for the wide variety of transition-metal
chemistry in a way that does not conflict with the equally varied phenomena of
spectroscopy and magnetochemistry that are so well rationalized by ligand-field
theory. There is a tendency — psychologically quite natural, no doubt — for those
interested in synthetic and mainstream chemistry not to look too closely at theory
and physical properties, and, of course, vice versa. However, there has always been
the need, surely, to build a logical synthesis of, or bridge between, these two aspects
of the same subject. We hope that our presentation in this book goes some way
towards providing that overview.
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6. M. Gerloch, R.G. Woolley, “The Functional Group in Ligand-Field Studies: The
Empirical and Theoretical Status of the Angular Overlap Model”, in Prog.
Inorg. Chem., 31, 371.

7. M. Gerloch, “The Cellular Ligand-Field Model”, in Understanding Molecular
Properties, (Eds.: 1.S. Avery, J.P. Dahl, A.E. Hansen), Reidel, 1987, p.111.

— Despite the title in reference (6), both references (6) and (7) describe the cellular
ligand-field model.



7 Steric Effects of Open d Shells

At the end of Chapter 2, we emphasized the inferaction between the broadly non-
bonding d electrons and all other electrons housed in the bonding orbitals of Wer-
ner-type complexes. Most of the material we have covered since then has been
concerned with the effects of the bonds upon the d electrons. Now we turn to the
effects of the d electrons upon the bonds. We shall see that, although the d orbitals
overlap little with the ligand orbitals in Wernerian complexes, they do make
significant contributions to what is collectively called the ‘metal-ligand bonding’.

In a nutshell, the d electrons repel the bonding electrons. They get in the way of
the bonds and, to a greater or lesser degree, frustrate the attraction between metal
and ligands. In essence, the proposed minimal overlap of d orbitals with the ligands,
but significant repulsive interaction with the bonds, is equivalent to a focus upon
the two-electron operator rather than the one-electron operator; that is, upon
repulsions rather than overlap.

7.1 Bond Lengths in Octahedral Complexes

Consider the repulsive effects of the d electrons in a series of MLy complexes as the
d configuration of the central metal varies across the transition-metal series. All d
electron density will repel the bonding electron density. The effects on the #,, electron
density will be relatively small, however, as these orbitals largely lie inbetween the
bonding regions. On the other hand, e, electron density directly frustrates the
bonding.

In Figure 7-1, we sketch the effects upon bond lengths predicted to arise from
the repulsive role of the d shell in both high-spin and low-spin octahedral species.
Of course, experimental bond lengths are also expected to decrease across the period
due to the usual increase in Z, that arises from the monotonic increase in nuclear
charge together with the imperfect self-shielding of non-core electrons. Figure 7-2
presents typical variations in ionic radii as determined from experimental metal -
ligand bond length measurements for both divalent and trivalent metals of the first
transition period. The qualitative agreement between theory and experiment is evi-
dent.

Two further consequences of the steric activity of open d shells are also important.
One, which might seem somewhat circular but does not, in fact, involve any ‘double
counting’, is that longer bonds are accompanied by smaller ligand-fields, that is, by
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Box 7-1

It is common to use plots of ionic radii, as in Fig. 7-2, for the transition metals as functions
of d" configuration rather than the bond lengths. These are constructed by subtraction of
appropriate ligand ionic radii from experimental bond lengths. As usual, one assumes an
additivity between varying metal radii and a constant ligand radius. One might be concerned
with two aspects of such a procedure: a) why use ‘ionic’ ligand radii rather than ‘covalent’,
and b) might not the ligand ‘radius’ vary in response to the variable acidity of the metal
across the series. We could avoid these imponderables by plotting typical bond Iengths,
noting that any variation in metal acceptor ability should vary with Z.; and the d
configuration as in Fig. 7-1, but it is not usually possible to obtain a suitable series of
complexes with similar ligands.
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Figure 7-1.The repulsive effects of
the d shell on bond lengths. Small
' i " i " ' ' ' ' J increases are expected with
o 1 2 3 4 5 6 7 8 9 10 occupancy of the t,, subset, large
configuration ones with occupancy of the e,.
097 mm
0.8
0.7 MdII)
0.6
Figure 7-2. Effective ionic radii
05 , : , , . : . , | , of high- and low-spin divalent and
’ 0 1 2 3 4 5 6 7 8 9 10 trivalent ions of the first row

configuration
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smaller Dg or A, values. The other is that variations in bond energies and the
overall thermodynamic stabilities of complexes will accompany these bond length
variations. We shall take up these themes in the next chapter.

7.2 Planar Coordination in d®* Complexes

Planar coordinated systems, you will recall from Chapter 1, formed a major group
of exceptions to the otherwise very successful geometry modelling of Kepert. That
model explicitly neglected any steric role for the non bonding electrons, however.
Let us now recognize and incorporate the steric activity of the d shell in d® systems.

First, consider an octahedral nickel(u) complex. The strong-field ground
configuration is f,5ef. The repulsive interaction between the filled #,, subshell and
the six octahedrally disposed bonds is cubically isotropic. That is to say, interactions
between the #,, electrons and the bonding electrons are the same with respect to x, y
and z directions. The same is true of the interactions between the six ligands and
the exactly half-full e, subset. So, while the d electrons in octahedrally coordinated
nickel() complexes will repel all bonding electrons, no differentiation between
bonds is to be expected. Octahedral d® coordination, per se, is stable in this regard.

Now consider a molecular stretching vibration that alternately elongates and
compresses axial (parallel to z, let’s say) and equatorial bonds as outlined in Fig.
7-3. Imagine an extreme vibration of this kind that eventually distorts an octahedral
molecule so as to gradually remove two frans ligands (again, let this direction be

!
- S T
_ 1\ AN
Figure 7-3. Vibrational distortion leading to a planar complex.

taken as 7). The ligand-field splitting diagram changes as illustrated in Fig. 7-4. For
ligands regarded as point negative charges or as ¢ donors, the ligand-field along z
decreases with respect to that along x or y. A simple mnemonic is that “elongation
along z stabilizes orbitals with the letter z in them”; d2, is less repelled and more
stabilized than d,2_,» while d,, and d,, are more stable than d,,, although the splitting
of the 1, orbital set is less than that of the ¢, set because the #,, orbitals are less
closely directed towards the ligands. As shown in Fig. 7-4, a sufficiently large axial
elongation of the octahedron, accompanied by a commensurate shortening of the
equatorial bonds in response to the electroneutrality principle, raises the energy of
the d2_2 sufficiently that the electrons pair up in the d2 orbital, despite the penalty
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Figure 7-4. Schematic splitting of 4 orbitals in a planar environment. The ordering of the
lowest four orbitals in unimportant here. The x?~y? orbital lies much higher in energy than the
other d orbitals, and the low-spin arrangement follows.

of pairing energy. In short, the molecule adopts a low-spin (xz, yz)*(xy)*(z%)?*
configuration rather than the high-spin (xz, yz, xy)%(z%)'(x*> —y?)! configuration of the
near-octahedron. Now note that the doubly filled d2 orbital in the low-spin
configuration offers two electrons’ worth of repulsion along the z direction while
the empty d._,2 orbital provides no repulsion at all to the equatorial ligands. In
other words, the planar coordination, which we imagined as being achieved by
drawing out two trans ligands from a perfectly stable octahedron, is seen to be
stable also with respect to d-electron repulsions. Furthermore, the d2 electron pair
situated above and below the coordination plane provides a strong disincentive to
the return of the axial ligands; that is to say, this nonbonding lone pair of electrons
tends to frustrate donor addition to, or adduct formation with, planar nickel(ir)
species. Also completing what at root is a cyclic, effectively synergic, process, we
note that the absence of d-electron repulsions from the d,2 2 orbital encourages the
closer approach of the four ligands. This in turn allows these four ligands to satisfy
the acidity of the metal atom as the six more distant ligands did in the octahedron.
Altogether, therefore, we see that both octahedral and planar geometries are stable
with respect to the steric activity of the open d shell.

We also see how a planar geometry for d® complexes can be preferred over a
tetrahedral one. With no regard to the steric role of the d shell, one expects, with
Kepert, to observe tetrahedral geometry for all four-coordinate complexes. On the
other hand, should planar coordination be once achieved for the d® configuration, it
will resist distortion towards the tetrahedron because of the repulsive effect of the
lone pair normal to the plane. Kepert has observed that the placing of even one or
two tenths of an electron charge between tetrahedrally disposed ligands on each
side of, and close to, the metal directly favours a switch to planar geometry. In
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other words, four ligands plus two half lone pairs adopt an octahedral array. In
short, Kepert’s basic model needs to be supplemented by a recognition of the steric
role of an open d shell.

If this is so, then how is it that his model works so well in other cases without
that addition? Well in many, though not all, cases, the additional effects of the d-
electron repulsions are to modify bond lengths rather than bond angles. We discuss
such an example in the next section. Before doing so, however, there is more to say
about planar coordination.

We have argued that, once achieved, planar coordination in d® systems is stable
with respect to higher coordination number or tetrahedral distortion. The question
arises then about what circumstances favour planarity in the first place. In particular,
we enquire about the occurrence of tetrahedral verses square planar stereochemistry
for d® complexes. Why, for example, is the [Ni(CN),]* ion planar but [NiCl,]*
tetrahedral?

First, note that there is a parallel relationship between high-spin tetrahedral d*
and spin-paired planar d® as compared with the octahedral and planar situations
just described. Analogous to Fig. 7-4, we have Fig. 7-5. Do not be confused about
the reversed labelling of the xy and x*-y? orbitals at the extremes of Fig. 7-4 and
7-5 for the plane. The reversal is an artifact of the way we define the global axis
frames for the tetrahedron and octahedron (see Figs. 3-2 and 3-6). Thus, on
squashing a tetrahedron to a square plane, we find the M—L bonds lying inbetween
the x and y axes while they lie along these axes for the situation depicted in Fig.
7-4.

Once again we see how the planar geometry is stabilized by removal of ‘repul-
sive’ electrons from the d,, (ligand-directed) orbital. The achievement of planar
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Figure 7-5. Compare with Fig. 7-4, but note the change of axis frame so that xy(oct) —
x-y¥(tet).
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coordination again involves the pairing up of electrons and the contest between the
ligand-field promotion energy (E(xy) — E(x*~y*)) and the pairing energy. That contest
is most likely to be resolved in favour of the planar, low-spin arrangement for
ligands higher in the spectrochemical series giving rise to greater ligand-field
splittings. Thus, we find planar [Ni(CN),]? but tetrahedral [NiCl,]*.

Box 7-2

In principle, we might expect to observe the low-spin d® arrangement even in a distorted
tetrahedral complex, provided that the associated ligand-field splittings are large enough.
One such example is found in the complex [Nil,(Ph,PCH,CH,0CH,CH,OCH,CH,PPh,)]:

o~ O 4
~{ "\\\\ (f \? o
NS S

The change from high- to low-spin d® configurations is necessarily discontinuous.
A given complex is either on one side of the divide or the other. We conclude this
section with a look at how the steric role of the d shell can affect angular geometries
within a series of just high-spin, nominally tetrahedral nickel(r) complexes.

Before [Et;N],[NiCl,], containing nearly tetrahedral [NiCl,]* ions was first
synthesized, it was thought that ‘tetrahedral’ geometry must be forced in four-
coordinate nickel(1r) species by including into the coordination shell such bulky
groups as triphenylphosphine. Indeed, the very first non-planar, four-coordinate
nickel(11)) complexes to be prepared were the bis-halo-bis(triphenylphosphine)
nickel(11) molecules, NiX,(PPh;), X = Cl, Br, I). It was no surprise to find that none
of these molecules possessed very near tetrahedral symmetry. It was puzzling,
however, to observe that their geometries deviate from tetrahedral towards planar
coordination increasingly along the series X = Cl, Br, 1. In fact, the bis-iodo complex
is planar coordinated. The increasing bulk of the halogens along this series might
have led one to expect deviations from planarity that increase as iodine replaces
bromine, or as bromine replaces chlorine. Clearly, the increased flattening of the
tetrahedron on passing from the bis-chloro through to the bis-iodo complex occurs
in spite of, rather than because of, steric repulsion between the ligands.

Recall, then, the positions of the halogens within the nephelauxetic series. More
negative charge is donated to the central metal from the iodine ligands than from
the bromine ligands, which in turn donate more than the chlorine ligands.
Furthermore, it has been shown by modern ligand-field analysis that the extent of
these charge donations is greater in the bis-phosphine complexes than in the tetra-
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halo complexes as a result of the 7 acidity of the phosphine ligands. Refer now to
the splitting diagram for flattened tetrahedral d® species in Fig. 7-5. While the four
t, electrons in the pure tetrahedron are distributed equally amongst the three d
orbitals, they are now arranged in favour of the d,,, d,, orbital pair. Conversely,
there is less d electron density in the d,, orbital — the ‘#,” orbital most nearly directed
at the ligands in the flattened tetrahedral coordination. Overall, the tendency of a
tetrahedron to distort towards a plane will be greater the more important the repul-
sive interactions between the d electrons and the bond orbitals become. Those
repulsions are expected to increase as the d orbitals expand in response to the
increasing nephelauxetic effect along the series Cl < Br < 1. In short, we argue that
it is the d-electron —bonding electron repulsions that determine the relative angular
geometries of these bis-halo-bis-phosphine nickel(i1) complexes.

7.3 Trigonal Bipyramidal Coordination

The steric activity of open d shells is well illustrated by the ligand fields and bond
lengths in five-coordinate complexes with formal trigonal bipyramidal geometry.
Consider the series of complexes [M"(Megtren)Br]*, where Megtren is tris((dimethyl-
amino)ethyl)amine. The Megtren ligand is a tripodal tetraamine donor and the
coordination geometry of this series of complexes is shown in Fig. 7-6. Metal -

Br

Figure 7-6. Coordination geometry in [M"(Megtren)Br]* species.
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ligand bond lengths for these molecules with M = Co(1r), Ni(1), Cu(11) and Zn(i1) are

listed in Table 7-1. Our discussion focuses upon the differences between the axial
and equatorial metal — nitrogen distances.

Table 7-1. Bond lengths and d orbital configurations for [M"(Mestren)Br]* cations.

Co(1r) Ni(u) Cu(nu) Zn(11)
M - N(ax)/ A 2.15 2.10 2.07 2.19
M-N(eq)/ A 2.08 2.13 2.14 2.11
M -Br/ 2.43 2.47 2.39 2.45
z . . . .
xy, X—-y* ¢ :. i HH
Xz, ¥Z . . . M

Consider first what pattern would be expected for the zinc(i1) complex. Here, the
d shell is full (d'°) and therefore offers equal repulsion in all directions. As such,
we should be able to make a prediction based solely upon bond-pair repulsions as
in VSEPR theory. We predict that the axial Zn—N bond should be longer than the
equatorial Zn—-N bonds because it suffers three bond-bond repulsions at 90° while
each equatorial bond suffers only two such repulsions at 90°. The experimental
bond lengths in Table 7-1 support this view. Now consider the cobalt(if) complex.
In the three-fold symmetry of the trigonal bipyramid, the d orbitals split up as
shown in Table 7-1. The d2orbital is highest in energy because it points directly at
the ligands, the degenerate d,,, d.2.,2 pair lies in the plane of the equatorial ligands
and the electrons in these two orbitals are the next most repelled, and the degenerate
d,, d,, pair is directed inbetween the ligands and is the most stable. All complexes
in this series are high-spin. Their strong-field configurations are indicated in Table
7-1. In each case, the d,,, d,, orbital subshell is full and, for the cobalt complex,
there is one electron in each of the remaining three d orbitals (in effect, one in the
d? orbital directed mostly along z and two in the d,,, d,.2 _2 pair involved, between
them, with the x and y directions). The repulsions offered towards the axial and
equatorial ligands by this electronic arrangement are thus essentially equal. We
therefore expect to find the same relationship between axial and equatorial bond
lengths in this cobalt(i1) complex as in the zinc(m). The bond lengths in Table 7-1
support this. Although their absolute values differ between the d7 and d'° complexes,
of course, because of the overall trend in Z to increase across any period, we do
find longer axial and shorter equatorial Co-N bonds as predicted. Turning now to
the d° copper(11) complex, we note that the d., d2_2 orbital pair is full while the d.2
orbital still houses only one electron. The d-orbital to ligand orbital repulsions in
the equatorial plane are thus much greater than along the three-fold axis and the
bond length pattern is reversed. What is actually observed is a marked shortening of
the axial bond. This results from the combined effects of the change in steric activity
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of the open d shell and of the increased effective nuclear charge on replacing cobalt
by copper. Copper is the stronger acceptor and the drive towards electroneutrality is
satisfied most easily by a close approach of the axial ligands since they are least
hindered by the d-electron distribution.

These bond length variations are complemented by analogous changes in the
strengths of the local ligand fields associated with the various ligands. Local ligand-
field strengths are represented and monitored in a version of the ligand-field model
called cellular ligand-field theory. While space and level do not allow any full
discussion of this powerful modern approach, some idea of its basis is presented in
Box 7-3 for those with an interest.

7.4 The Jahn-Teller Effect

A somewhat abstruse group-theoretical (symmetry based) theorem was published in
the late 1930°s by Jahn and Teller. It is in effect that “For non-linear molecules, a
nuclear configuration which begets an orbitally degenerate occupied state is unstable
with respect to one without such orbital degeneracy.” In the 1950’s, Orgel exploited
this theorem to rationalize anomalous geometrical features of copper(i) and
chromium(r) compounds. Empirically, it is found that formally octahedral or
tetrahedral d° complexes are highly distorted and, to a slightly lesser extent, the
same is true of high-spin octahedral d* species also. Typical of these distortions is
that while equatorial metal —oxygen bond lengths, for example, in ‘octahedral’
copper complexes are about 2.0 A, axial bonds for two trans ligations take values
anywhere between 2.3 and 2.9 A. These are large effects and are not observed in
complexes of metal ions with other d” configurations, unless caused by apparent
ligand constraints (chelation, for example). The explanation of this effect — generally
known as the Jahn-Teller effect — exploits the Jahn-Teller theorem.

In octahedral symmetry, the ground term of the d° configuration is ?E,, as
discussed in Chapter 3. This is an orbitally degenerate state and hence subject to
some nuclear distortion that removes the degeneracy. The situation is represented in
Fig. 7-7 where we investigate the effects of a tetragonal molecular distortion. Since
the Jahn-Teller theorem does not determine the type of distortion that must occur,
we look at the tetragonal one simply because most ‘octahedral’ copper(in) distortions
roughly conform to this. In Fig. 7-7, we see that the e} configuration of the regular
octahedron is degenerate (*E,) because the hole may be sited in the d2 or dg2.,2
orbitals with equal probability. Tetragonal elongation or compression of the octa-
hedron removes the degeneracy of the e, orbital pair to leave ?A4,, or ’B;, —
corresponding to the hole being housed in the d2 or d,2_» orbital respectively —
ground terms which are, of course, nondegenerate. The driving force for the
distortion is, once again, the steric activity of the open d shell.

In high-spin species (to which the theorem is not restricted), perusal of the
appropriate configurations for octahedral complexes across the transition period
(see Fig. 5-1) shows that d* and d° configurations are candidates for the Jahn-Teller
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Box 7-3

Consider the local interactions between d orbitals, referred to a local frame, and various
bond orbitals. In Fig. A, we represent such interactions for orbitals characterizing local &

M-L
obond
orbital

Figure A

symmetry. The d, orbital (d.? ) suffers a shift in energy that we label e, (we use the lower-
case e for the energy shift of an orbiral.). The equivalent situation for a 7 interaction in the
local xz plane is shown in Fig. B and defines the local ligand-ficld parameter e,. An

analogous
. L dy " Tem

—Z
= e
e = dne ?r/lgf;nd
orbital
Figure B

interaction in the yz plane defines e,, These various parameters relate directly to the nature
of any o, 7, or m, bonding within the local region of space. Thus, for a metal-pyridine
ligation, for example, one expects that bonding orbitals between metal (4s/4p) orbitals and
ligand orbitals will exist for o and 7, (where L means perpendicular to the pyridine plane)
interactions but not for 7, Detailed analysis confirms this sort of prediction. The (global)
ligand field for the complex as a whole is constructed by appropriate additions of such
local, or cellular, ligand fields. This powerful approach provides a means by which analysis
of global ligand-field phenomena — spectral transition energies, intensities, optical activity
as well as various magnetic properties — may probe the underlying bonding in a complex.
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Figure 7-7. Splitting of d orbitals for clongated and compressed octahedral fields.

Box 7-4

This might be effected by six equal bond lengths with unequal interbond angles:

clongation compression

< kK

tetragonal distortions

@ C

a<90° a>90°
B>90° B<90°

trigonal distortions

A tetragonal distortion is one that maintains the four-fold symmetry of the octahedron.
Here, we consider two equal trans metal-ligand bond lengths being different from the other
(equal) four. A trigonal distortion maintains the three-fold symmetry from the octahedron.
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effect because of orbital degeneracy in the e, configurations and d', d?, d®, and d’
configurations because of orbital degeneracy in their £, shells. However, Jahn-
Teller effects arising out of f,, shells that are incompletely (but not exactly half-)
filled are much smaller in magnitude than those associated with e; or e;
configurations. This is because the t,, orbitals interact less with the bonds than do
the e, orbitals, being directed inbetween them. Once again, in evidence of the
interactive nature of d electrons in the ligand environment, the splitting of the t,,
orbitals due to Jahn-Teller distortion is small and the distortion due to the unevenly
filled #,, subshell is also small. We comment further on the difference between
unevenly filled #,, and e, shells shortly. For octahedra, only d* and d° configurations
are expected — and observed — to suffer significant Jahn-Teller distortions.

For tetrahedra, orbital degeneracies in the higher-lying t, orbital subset should
give rise to larger distortions than in the e set. On this basis, one expects distorted
tetrahedra for d*, d*, d® and d° configurations. Tetrahedral d* and d* complexes are
very rare. Tetrahedral d® complexes are reasonably common but occur often with
reasonably regular geometries. It is likely that the lack of any significant Jahn-
Teller distortion here is due to the strong-field limit being a poor description of the
many-electron ground state in these systems. Tetrahedral copper(i1), d°, complexes,
on the other hand, show large distortions, most frequently in the form of a flattening
towards square planar geometry (see Box 7-5).

Returning to the octahedral species, there is one curious feature to the types of
distortion observed in practice. The scheme in Fig. 7-8 shows how the distorted
octahedron acquires a stability over the regular octahedron in d* and d° systems
equal to one half of the splitting of the e, orbital pair. This arises as follows. To
maintain the same mean ligand-field strength — in effect, to satisfy the
electroneutrality principle to the same extent — a lengthening of two frans bond
lengths is accompanied by a (lesser) shortening of the four equatorial bonds, or vice
versa: this results in a barycentre splitting of the e, orbitals as shown in Fig. 7-7. If
we label that splitting as 28 with respect to the energy of the octahedral e, orbitals,

Box 7-5

\ In Cs,[CuCly], o =~ 130°

’ In Cs,[CuBry], o = 140°

Cu

/
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the d 2 is stabilized by 6 upon elongation, for example, while the d,2_2 is destabilized
by the same amount. The lower energy orbital houses two electrons (stabilization
28 ) while the higher one houses just one electron (destabilization §), giving an
overall stabilization of § which is one half of the e, orbital splitting due to distortion.
No stabilization is associated with the splitting of the #,, orbital set here because
this set is full in d° or exactly half-filled in d* Since the foregoing argument is
symmetrical with respect to elongation or compression of the octahedron, the labels
on the two members of the e, set are irrelevant. We might therefore expect elongated
octahedra to occur roughly as often as compressed ones. Empirically, however, very
many more elongated chromium(i) complexes are observed than compressed ones,
and no compressed copper(i1) complexes are observed at all (ignoring any with that
geometry imposed by chelate ring strain and the like). Clearly, our explanation is
incomplete.

Crystal-field theory accounts for d-orbital energy shifts in terms of the differenti-
al repulsive effects of negative point charges: the various d orbitals are raised in
energy. Ligand-field theory also refers to a raising of d-orbital energies, at least
when the bond orbitals with which they interact are lower in energy than the d
orbitals: such is the case for ligands acting in &- or m-donor modes. Occasionally,
d-orbital energy shifts can be to lower energies, however. One case with which we
are familiar is when a bonding orbital is higher in energy than the d orbital, as for
ligations in the m-acceptor mode (see Section 6.3.6). Another case, not discussed so
far, is when a d orbital interacts significantly with another suitable orbital of higher
energy. Here we consider the antibonding a,, orbital of predominantly 4s parentage
(see Fig. 7-8).

In strict octahedral symmetry, no proximate bonding or antibonding orbital arising
from outside the d shell has the same symmetry as the members of the d shell. In
the tetragonal symmetry of the present distorted octahedra, however, this is no
longer true. The d-orbital symmetry labels in the tetragonal (D, point symmetry
group) environment are: d2 (ay,); d-,2 (byy); di(byy); didy(e,). The predominantly
4s antibonding orbital, labelled a,, in octahedral symmetry, is still of a;; symmetry
in the tetragonal environment. There arises, therefore, the possibility of interaction
between, in effect, the metal 4s orbital and the d,z orbital, but only the d2 orbital.
As the energy of the 4s orbital is higher than that of the d,2 , the interaction is such
as to stabilize the d2 orbital further. This is true for both elongated and compressed
octahedral geometries as shown in Fig. 7-8. We can expect the extra stabilization,
S,' of the d2 orbital to be roughly similar for either sense of distortion. However, in
the elongated octahedron, two electrons occupy the d:2 but only one in the
compressed geometry. This provides the asymmetry we seek. The energy gap
between the various d functions and the antibonding a,} is expected to be much
less at the right end of a transition period than the left because of the more
penetrating character of the 4s metal orbital together with the increased effective
nuclear charge at the right end. So this extra stabilization, due to d-s interactions,
that favours elongated geometries over compressed is expected to be more significant
for copper(m) complexes than for chromium(i). As noted above, both geometry
types are possibly observed experimentally for the d* system, but only the elongated
one for d*
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Figure 7-8. Orbital splitting diagrams for 4° complexes with elongated and compressed
octahedra.

The driving force for Jahn-Teller distortions in transition-metal complexes is the
open d shell. It is likely that explanations for them along the lines given above
would have come about even if the theorem of Jahn and Teller had not been
discovered. We make this remark not to denigrate that powerful piece of work, but
as an attempt to defuse any mystery that might otherwise attach to Orgel’s
application of that group-theoretical construction.

The smaller magnitudes of distortions associated with unevenly filled t,, subshells
in octahedral complexes relative to those deriving from unevenly filled e, subshells
invites a little thought. From Fig. 7-7 we see how a distorted geometry for an open
e, shell is more stable than an undistorted one. The splitting, 26, is a measure of
that relative stability. Suppose for the moment that one were to focus upon that
splitting energy as an absolute goal that is to be achieved in various situations. That
is to say, suppose the measure of the relative stability of the distorted over the
undistorted geometry is just given by the low-symmetry field splitting. If so, we
might expect a larger physical distortion for open f,, shells than for open e, shells.
That is because, for a given distortion, the splitting of the e, orbitals which point
directly at the ligands is greater than that of the t,, orbitals directed inbetween. This
predicts a result which is contrary to empirical fact. If, on the other hand, we
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recognize the driving force for the distortion as the steric activity of the open d
shell, we see immediately that the repulsive hindrance of f,, electron density is less
than that of the ligand-directed e, density. An octahedral molecule with an open e,
shell will distort more than one with an open 1, shell. In consequence, certain
orbital splittings occur and confirm, as it were, the distortion in the manner of Fig.
7-7. However, there is no simple or direct way in which we can estimate the
magnitudes of these orbital splittings and their associated stabilizing effects a priori.

The Jahn-Teller effect is pervasive. We have described its manifestation in
electronic ground states leading to static distortion: the so-called ‘static Jahn-Teller
effect’. When the tendency to distort involves smaller energies that are comparable
with either spin-orbit coupling or vibrational energies, static distortions may not be
observed. Instead, strong coupling of electronic and nuclear motions may result and
give rise to the ‘dynamic Jahn-Teller effect’. Unfortunately we cannot pursue this
matter here. We further note that ‘unexpected’ splittings are sometimes observed in
‘d-d’ spectral bands. These have been ascribed to Jahn-Teller effects in excited
states.

Box 7-6

Example: The spectrum of [Ti(H,O)s]** ions, whose ground state geometry is nearly perfectly
octahedral, is characterized by a large splitting.

absorbance

I | |
10 15 20 25

viem™ x 107

Only one band maximum is expected, of course, corresponding to the T,,— *E, transition.
The splitting of the asymmetric peak is ascribed to a Jahn-Teller splitting of the excited
state which latter involves the open e, configuration e,

Finally, we should recognize that there can also be second-order Jahn-Teller
effects. Above, we address orbital degeneracies within the ground state. However,
since spin-orbit coupling, for example, can admix orbitally degenerate excited states
into an orbitally non-degenerate ground state, Jahn-Teller effects can be observed in
second-order. Once again, we do no more than mention these matters here.
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Suggestions for further reading

1. D.L. Kepert, Inorganic Stereochemistry, Springer-Verlag, Berlin, 1982.
— The scope of Kepert’s model is, herein, made plain.

2. 1.S. Griffith, Theory of Transition Metal lons, Cambridge University Press,
Cambridge, 1961.

3. C.J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes,
McGraw-Hill, New York, 1979.
— This last reference is for those who would like to see the Jahn-Teller theorem

at a technical level.



8 Complex Stability and Energetics

8.1 The Thermodynamic Stability of Complexes

The thermodynamic stability of coordination compounds is relatively easy to
determine, and provides us with a valuable pool of data from which we may assess
the importance of ligand-field and other effects upon the overall properties of
transition-metal compounds. The bulk of this chapter will be concerned with the
thermodynamic stability of transition-metal compounds, but we will briefly consider
kinetic factors at the close.

The stability of a complex is conveniently expressed in terms of the thermo-
dynamic stepwise stability constant K as defined in Eq. (8.1).

ML, + L= ML, (8.1
K = [ML,] / (IML,_»][LD

We should note at this point, that the above reaction implicitly refers to aqueous
solutions, and that, for convenience, we have explicitly excluded free and
coordinated solvent molecules. Strictly, the above relationships should be written as
in Eq. (8.2).

M(H;0) Loy + L= M(H0)6.,L, + H,O (8.2)
K = [M(H,0)¢_,L,1[H,0] / (IMH;0)¢7-Liu-n1[L])

For obvious reasons, we tend to use the simpler form, although we will discuss
some of the limitations shortly. We may also consider overall stability constants, 3,
(Eq. 8.3).

M + nL= ML,I (83)
B.= [ML,] / [IMI[LI"

There is an obvious relationship between K, and f3, as expressed in Eq. (8.4).

log,, B, = X log,, K, (8.4)
0

Transition-metal complexes span an enormous range of stabilities. One of the
principal aims of this chapter is to attempt to understand some of the factors which
control these, and to determine the importance of ligand-field effects. Very extensi-
ve compilations of stability constants are available.

Transition Metal Chemistry.M. Gerloch, E. C. Constable
Copyright © 1994 VCH Verlagsgesellschaft mbH, Weinheim
ISBN: 3-527-29218-7
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8.2 The Chelate Effect and Polydentate Ligands

Ligands containing more than one donor atom which can bond to a metal centre are
termed polydentate or multidentate. Such ligands are extremely important and have
played crucial roles in the development of coordination chemistry. Well known
examples include 1,2-diaminoethane (ethylenediamine, en); 2,4-pentanedionate
(acetylacetonate, acac™); 2,2'-bipyridine (bpy); and 1,2-diaminoethane-N, N, N, N’-
tetraacetate (edta*) (Fig. 8-1).

H2N NH2 e

en acac”

bpy edta +—

Figure 8.1. Some common polydentate ligands.

When two or more donor atoms from the same ligand are coordinated to a single
metal centre, the ligand is said to be chelating. It is a general observation that
chelated complexes of polydentate ligands are al/ways more thermodynamically
stable than those of the same metal with an equivalent number of comparable
monodentate ligands. That is to say, the equilibrium

MLH + (LL)n/Z;\ M(LL)n/z + I’lL
(L = monodentate ligand, LL = didentate ligand)

lies to the right. This is exemplified in the data for the Ni*/ en/ NH; system
presented in Table 8-1.
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Table 8-1. Stability constants for some nickel(i1) complexes of ammonia and 1,2-diaminoethane.

log,o K
Ni2* + 2NH,= Ni(NH;)2* 5.04
Ni(NH;),** + 2NH,;= Ni(NH;),* 2.92
Ni(NH),2* + 2NH;= Ni(NH,)* 0.78
Ni** + en= Ni(en)** 7.45
Ni(en)** + en= Ni(en),** 6.23
Ni(en),** + en= Ni(en);** 4.34
Ni(NHa),2" + en= Ni(en)?* + 2NH, 2.41
Ni(NH,),2* + 2en= Ni(en),* + 4NH, 3.31
Ni(NH;)¢** + 3en= Ni(en);>* + 6NH; 3.56

8.2.1 Thermodynamic Origins of the Chelate Effect

We may relate the equilibrium constant to the free energy change for a reaction
(Egs. 8.5 - 8.7).

AG® = — RTInK (8.5)
AG® = AH-TAS (8.6)
InK = (AS/R) - (AH/RT) (8.7)

The various thermodynamic terms for the formation of 1:1 complexes of transition
metals with 1,2-diaminoethane are presented in Table 8-2.

Table 8-2. Thermodynamic terms for the formation of 1:1 complexes of first row transition
metals with 1,2-diaminoethane.

M2 AG/kJ mol ™’ AH/KJ mol™! TAS (298K)/kJ mol-!
Mn -159 -11.7 4.2
Fe -24.7 -21.3 3.3
Co -33.9 —-28.8 5.0
Ni -43.9 -37.2 6.7
Cu -61.0 -54.4 6.6
Zn -33.0 -28.0 5.0

M(H,0)s** + en= M(en)(H,0),/** + 2H,0

In each case, both the entropy and enthalpy terms favour the formation of the
chelated complex, regardless of the d-electron configuration. Note, however, that
outside the d block, i.e. with alkaline earths and other main group metals, it is often
found that the entropy term is dominant.
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[Ca(H,0)¢]** + edta* = [Ca(edta)]*~ + 6H,0

AG/KY mol-!  AH/KJ mol™ TAS (298K)/k] mol~!

-62.0 -26.0 36.0
In some cases, the enthalpy term may actually oppose the formation of the
chelated complex, although the entropy term outweighs it to give an overall
favourable free energy term. In general, this situation is the exception rather than
the rule.

[Co(H,0)s1** + [P30,0]° = [Co(P30,9)F~ + 6H,0

AG/KJ mol~'  AH/KJ mol~! TAS (298K)/kJ mol~!

-45.0 18.8 63.8

8.2.2 Contributions to the Chelate Effect — The Enthalpy

When two ligand donor atoms are brought into proximity upon bonding to a metal
ion, an electrostatic repulsion between the negative charges or dipoles is experienced.
In the case of two monodentate ligands, this repulsion increases as the ligands are
brought together, whereas in the case of a didentate ligand it is already ‘built in’
(Fig. 8-2).

Q
NH,
/// = HN N = un NH,
H,N © N
QD M

Figure 8-2. Schematic representation for the formation of a complex. In the case of the
monodentate ligands, there is a greater unfavourable nitrogen—nitrogen repulsion involved in
bringing the ligands together.

We must also consider the changes in solvation of the ligands which occur upon
coordination. If we consider an amine in water, we would anticipate strong
hydrogen-bonding. If we compare 1,2-diaminoethane with ammonia, we would
expect the latter to be more highly solvated. This corresponds to a more unfavourable
enthalpy associated with the desolvation.
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8.2.3 Contributions to the Chelate Effect — The Entropy

The simplest way of thinking about the entropic contribution is to consider the
‘half-way’ stage in the formation of a chelate complex (Fig. 8-3).

X~
X
AT
\Y
Y
Figure 8-3. The final ring-closure step in the formation of a chelate.

In forming the chelate complex, there is a high probability of the second donor
atom Y forming a bond to the metal whereas, with monodentate ligands, the
probability is much lower. In other words, once the first M-L bond is formed, the
second donor atom is held close to the position required for the formation of the
second bond.

In more mathematical language, the favourable entropy term is associated with
the release of a large number of monodentate ligands upon the formation of the
chelate.

[Cu(NH;),(H,0),]** + en= [Cu(NH;),(en)]** + 2H,0

2 molecules 3 molecules
AG/k] mol-! AH/KJ mol-! TAS (298K)/kJ mol-!
-15.5 -8.0 8.64

There is also an entropy term associated with the desolvation of the ligands. This is
much more difficult to assess, and may make for either favourable or unfavourable
contributions to the overall entropy changes.

We now consider what ligand-field theory may contribute to an understanding of
the variation in stabilities of transition-metal complexes as a function of the d
configuration.

8.3 Ligand-Field Stabilization Energies

Recall the splitting of the d orbitals in octahedral environments. The energies of the
t,, and e, subsets are shown in Fig. 8-4 with respect to their mean energy. We have
used the conventional ‘barycentre’ formalism. In effect, we express the energy of
an electron in the t,, or e, orbitals with respect to the total energy possessed by a
set of five electrons equally distributed amongst the five d functions. Alternatively,
we say that our reference energy is that of a d electron within the equivalent
spherical mean field.
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Figure 8-4. Splitting of the d orbitals in an octahedral ligand field.

In Fig. 8-5, we illustrate the orbital occupancies in the strong-field limit for d! to
d® configurations in high- and low-spin arrangements. The d-orbital energies we
associate with each f,jey configuration are computed with respect to our barycentre
origin. For example, for the high-spin d* configuration in octahedral symmetry,
fiei, we add up the energies of the d electrons as (—4 Dq) + (-4 Dg) + (-4 Dq) +
(+6 Dg) to get —6 Dg (or —0.6 A.,). We call these configuration energies Ligand-

Low-spin

Figure 8-5. Electron configuration for octahedral, high- and low-spin species.
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Field Stabilization Energies, or LFSE’s. The variation in LFSE across the transition-
metal series is shown graphically in Fig. 8-6. It is no accident, of course, that the
plots intercept the abscissa for d° d° and d'° ions, for that is how the LFSE is
defined. Ions with all other d configurations are more stable than the d°, d° or d'°
ions, at least so far as this one aspect is concerned. For the high-spin cases, we note
a characteristic ‘double-hump’ trace and note that we expect particular stability
conferred upon d* and d® octahedral ions. For the low-spin series, we observe a
particularly stable arrangement for d® ions. More will be said about these systems
in the next chapter.

——e—— high-spin

1
——-&--- low-spin
l,A\
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o L’ ‘s
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5
[ 11
() T T T 1 hd T T T T hd
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3
d electron configuration

Figure 8-6. Comparison of LFSE terms for high- and low-spin d" configurations in octahedral
ligand fields.

LFSE’s for tetrahedral species are computed in a similar manner. They are
compared with the results for octahedral systems in Fig. 8-7. No illustration of
LFSE’s for low-spin tetrahedral ions is included here because, as noted in Chapter
5, the much smaller values of A relative to A, ensures that pairing energies P
always outweigh the ligand-field terms in practice.

The trends summarized in Figs. 8-6 and 8-7 arise inevitably from ligand-field
theory. The LFSE terms are additional to those arising from the repulsive effects of
the d electrons discussed in Section 7.1. Both contributions arise simultaneously,
their common origins lying in the unequal filling of the d-orbital subsets. To some
extent, these effects interact in that the magnitudes of the LFSE terms depend
directly upon the strengths of the ligand fields which themselves vary in the same
qualitative manner as functions of the t,7ey configurations. It is not correct, however,
to argue that the variation of Dg with bond length is the only consequence of the
steric role of the d configuration. Both d electron density and bonding electron
density are affected, as we have seen.
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Figure 8-7. A comparison of high-spin octahedral and tetrahedral ligand-field stabilization
energies for various d” configurations.

8.4 Energy and Structural Consequences in Real Systems

We shall now look at a number of thermodynamic and structural variations in
transition-metal compounds which owe their origins, at least in part, to the properties
of open d shells.

8.4.1 Hydration Energies of Transition Metal(11) Ions

In Fig. 8-8 are plotted hydration energies for the first row, transition-metal divalent
ions. Water is a fairly weak-field ligand and so all these [M(H,0)q]** species are
high-spin. We observe a ‘double-hump’ variation in AHyy, but with respect to a
gently curving, upward sloping curve. The similarlity between the relevant plot in
Fig. 8-6 and the experimental data in Fig. 8-8 has long been claimed as a splendid
vindication of ligand-field theory at large. And so it is — but the variations in the
observed data of Fig. 8-8 compound many trends simultaneously and it is instructive
to consider them all.

The enthalpies of hydration plotted in this figure refer to the process in Eq. (8.8).

M*(g) + aq — [M(H,0)s]**(aq) (8.8)

On the left, the divalent metal ion is spherical with a d-electron configuration
which is amply described as d”. On the right, the metal is engaged in six
octahedrally disposed bonds and its d-electron configuration is best recorded as
1rey. The electronic contributions to the hydration process refer, as usual, to the
formation of the bonds and the attraction of electrons to the central metal, to the
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Figure 8-8. Hydration energies for divalent transition metal ions.

interaction of the d electrons with the bonds, and to the interaction of the d electrons
with each other. We consider each of these in turn.

(i) Once more, let us take the extreme view that bond formation in these Wer-
nerian complexes involves overlap of appropriate ligand orbitals with the metal 4s
(and 4p) but not with the 3d orbitals. We adopt this hueristic extreme only to
emphasize the largely separate roles of the s+p versus d orbital sets. The metal 4s
(and 4p) overlap with the ligand will increase across the transition-metal period
owing to the decrease in covalent or ionic radius of the metal that accompanies the
increasing value of Z as discussed in Section 7.1. This effect accounts for the main
underlying trend in Fig. 8-8. However, as we saw Section 7.1, the metal radii vary
unevenly because of the steric effects of the f,3ey configuration and so this effect
already contributes to the ‘double-hump’ form of the experimental plot in Fig. 8-8.

(ii) Then we have the ‘double-hump’ contribution from the LFSE. Quantitatively,
LFSE’s are predicted as multiples of the ligand-field parameter Dg. However, Dq
itself varies across the period since the ligand-field strength is affected by the
proximity of the bond orbitals and the d orbitals. One obvious factor here is that Dg
should increase with decreasing bond length; another is that Dg should decrease as
the 3d orbitals contract with increasing Z.;. Experimental Dg values for divalent
and trivalent first row transition-metal hexaaqua ions are plotted in Fig. 8-9. These
data do seem to reflect those predicted trends somewhat. We must always remember
that Dq values are a complex function of many factors, however, so that the trends
in Fig. 8-9 cannot be explained as simply as suggested here. Nevertheless, the
dependence of the LFSE’s upon Dg, as in Figs. 8.5-8.7, is not affected by our
ability to predict the Dg values themselves.
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Figure 8-9. Dg for first row transition metal [M(H,0)¢]** and [M(H,0)4]** cations.

(iii) We must look at the contribution to the hydration energies which arises from
the interactions of the d electrons with each other. Behind this, in fact, is the
recognition that our derivation of LFSE’s took no account of such interelectron
repulsion and exchange, for we implictly began the discussion at the strong-field
limit. There are various ways of including the Coulomb terms and the following
should be instructive.

Within the hydration process in Eqn. (8.8), a spherical ion M?" becomes a
(hydrated) octahedral ion, [M(H,0),]**. Part of the Coulomb energy of the free ion
concerns repulsion and exchange terms within the d” configuration. This is replaced
by equivalent repulsion and exchange terms within the #3ef configuration. Let us
estimate the trends in these quantities separately.

From the outset, we recognize that Z. increases as we traverse the transition-
metal period, thereby contracting the orbitals and increasing both the Coulomb and
exchange integrals. Let us separate this general trend from the discontinuous ones
which arise from the uneven filling of the d or #,,e, shells. Here, we focus upon the
latter.

a) Repulsion terms in the free ions. Plot (a) in Fig. 8-10 indicates the variation in
d—d repulsion energy as the d shell is progressively filled across the period. It has
been constructed in recognition of the fact that all d electrons repel all others; the
effect is especially large when two electrons are obliged to share the same orbital.

b) Exchange terms in free ions. These are shown in plot (b) of Fig. 8-10. Here,
the occurrence of each pair of parallel spin electrons within the same d shell gives
rise to an attractive exchange energy. The number of parallel-spin electron pairs in
the 4" configurations varies as 0, 0, 1, 3, 6, 10, 10, 11, 13, 16, 20 for n = 0 to 10
respectively.

¢) Repulsion terms in the high-spin octahedral ions. These are estimated as above
and shown as plot (c) in Fig. 8-10. At this level of approximation, they are the same
as in the free ion. The fact that the d orbitals are no longer equi-energetic is of no
consequence here.
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Box 8-1

A reminder about Coulomb and exchange integrals

Coulomb and exchange integrals arise in connection with the two-electron Coulomb operator
eYr;,. Coulomb integrals take the form:
2

1.2 = [ a*0p*@) (<) ap@drdr, (8.9)

B Je(a*a)l-e(b*b)zdrdr
- 1 2

ha

(8.10)

where a and b are the spatial parts of different orbitals. By grouping together those parts
of the integrand that refer to the same variables — electrons 1 and 2 — as in Eq.(8.10), the
integral J(1,2) takes the form of a Coulombic repulsion between the charge clouds of
orbitals a and b separated by distances rj,. J(1,2) is called a Coulomb integral because of
that.

However, because of the indistinguishability of electrons, we must also include an
integral of the form:

eZ

K(1.2) = [a*b*@) (<) a@pbdrdr, @.11)

2

_ fﬁ@f@&dr‘d% (8.12)

ha

On grouping functions of the same variable again, as in Eq. (8.12), we find K(1,2) to
describe something like the repulsion between ‘overlap charge clouds’. This has no classical
parallel and the integral is simply called the ‘exchange’ integral, for that is how it arose
quantum mechanically.

Both J and K integrals are intrinsically positive and both vary in such a way that the
closer together the electrons 1 and 2, the larger the relevant integral. As we are considering
here @ and b to be different d orbitals, and as such belonging to the same atom, the
magnitudes of the appropriate J and K integrals will be roughly comparable. Furthermore,
the energies of the high-spin ground states in the species under present consideration will
have the form E = ¢,J — ¢,K, with ¢, and ¢, positive. So, although J and X are intrinsically
positive, while the Coulomb term gives rise to an increase in energy (repulsion), the
exchange term incurs a decrease because of the minus sign (attraction). The idea that
electrons can, in part, attract each other is, of course, a purely quantum phenomenon,
arising ultimately from the indistinguishability of like particles.

d) Exchange terms in the octahedral ions. These are shown as plot (d) in Fig. 8-
10. Now, because the #,, and e, orbital subsets are nondegenerate, the numbers of
equivalent, parallel-spin, electron pairs are much less, as shown in Table 8-3.

Within the first-order estimations made here, it is apparent that no change in d—d
repulsion energy accompanies the hydration process. Second-order adjustments
would, of course, take account of the change in mean d-orbital radius on complex
formation. Let us agree to stop at the simple level of correction here. Overall,
therefore, the significant Coulombic change on hydration concerns the loss of
exchange stabilization.
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e) The differences in exchange terms. Plot (e) in Fig. 8-10 represents the change
in exchange energy due to the break up of degenerate parallel spins; once more, we
have only made ‘first-order’ estimates. Here we see, yet again, a ‘double-hump’
contribution to the hydration energy. But we must be careful to read the plot the
right way round. Plot (e) shows an increasing loss of stability following parallel-
spin, electron pair disruption. So, the contribution to hydration energies will follow
the trend shown in Fig. 8-11. This is the trend to be added to the Z, bond length
and LFSE variations. We may only guess their relative contributions. Figure 8-12
presents a possible scenario.

Table 8-3. The number of pairs of degenerate electrons with parallel spins in free-ion d" and
octahedral t,);e} configurations.

Free ion d° d’ d? d? d* a’ d° d’ d? d° d"°
config.

Number 0 0 1 3 6 10 10 11 13 16 20
of parallel
spin pairs
Octahedral t,0el  ty) ts; PH tie; tiel thge; tper thier tiel tie;

config.
(high-spin)

Number of 0 0 1 3 3 4 4 5 7 7 8
parallel
spin pairs

The plots A—F in Fig. 8-12 are defined as follows. A is the variation due to the
changing Z.; B is that due to bond weakening from to the repulsive effects of the
t;;ey configuration, C is the LFSE plot of Fig. 8-6, D is a ‘correction’ of this for the
variation in Dg shown in Fig. 8-11, and E is the exchange term of Fig. 8-10. The
combined contributions from A, B, D and E are plotted as F. Overall, therefore, we
reproduce the form of the experimental enthalpy curve in Fig. 8-8. While satisfying,
even this is not the last word. This is because we have made our estimates of the
various energy contributions in terms of the strong-field limit. The hexaquo
complexes lie towards the weak-field end of the appropriate correlation diagrams.
The weak-field ground term for a d* octahedral complex, for example, is *T,(F). As
we saw in Chapter 3, this term mixes with the excited 37,(P) term. The 3T (F)
term correlates in the strong-field limit with the configuration #,2 while the 3T,,(P)
state correlates with f3el. In an intermediate field therefore, we can describe the
ground wavefunctions as combinations of £,; and fye; with mixing coefficients that
depend upon the relative magnitudes of interelectron repulsion and the octahedral
ligand field. It is certainly possible to correct our view of hydration energies in
order to take all this into account: however, once again, we have no simple way of
gauging the relative importance of the contributions described in Fig. 8-12. So let
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Figure 8-10. A comparison of Coulombic and exchange contributions in the free-ion and high-
spin octahedral complexes (see text).
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to
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Figure 8-11. Contributions to AH,, due to disruption of numbers of degenerate, parallel
electrons.
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Figure 8-12. Contributions to heats of hydration: A = Z;; B = bond weakening due to steric
activity of #,7e7 configuration; C = LFSE as multiples of Dg; D = LFSE, allowing for variation
in Dg; E = exchange energy; F=A + B + D + E.

us be content” to recognize the many factors that are important while observing that
the overall thermodynamic results of Fig. 8-8 are comprehensible, in principle, in
terms of these factors. Let us remember also that an explanation of the facts of Fig.
8-8 is not simply forthcoming from the LSFE plot of Fig. 8-6 alone.

8.4.2 Lattice Energies of MCl, Species

In Fig. 8-13 are plotted lattice energies for MCl, species. The metal ions are high-
spin and lie in octahedral sites in the lattice. The ‘double-hump’ form of the curve
is obviously similar to that for the hydration energies we have just discussed. The
reasons for the observed trend in lattice energy are virtually identical to those
described for hydration energies. In one system, a metal(ir) ion is octahedrally
coordinated by six water molecules within a liquid medium; in the other, a metal(i)
ion is octahedrally coordinated by six chlorine atoms within a solid lattice.

* Included in these would be the contributions that arise because of the different radial extents
of the d orbitals in the free ion and complex. The factors (a) and (c) in Fig. 8-10 will not cancel
exactly but, because of their general form, this ‘correction’ is not expected to grossly modify
the qualitative form of plot F in Fig. 8-12 .
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lattice energy

Figure 8.13. Lattice energies for the formation of MCl, compounds.

8.4.3 The Spinels

Spinels are compounds containing metals and group 16 elements of general formulae
AB,X,. The X* anions form an almost perfect cubic close packed array in which X
may be O, S, Se or Te. By far the most numerous are the oxide spinels AB,O,.
Spinel itself is MgAl,0O,. The unit cell comprises 32 oxygen atoms and the formula
AgB603,. The A metal ions are found in u, v or vi formal oxidation states and the
B metal ions then have 1, 1 or 1 oxidation states respectively. Again, the most
common spinels are oxide species in which A are divalent and B are trivalent
metals. The cubic close packed anion lattice generates twice as many tetrahedral
holes as octahedral ones. In so-called ‘normal’ spinels, the trivalent cations occupy
half of the octahedral sites and the divalent cations one eighth of the tetrahedral
sites: A'B30,. In the ‘inverse’ spinel structure, one half of the trivalent cations
occupy tetrahedral sites, while the other half and all the divalent cations occupy
octahedral sites: B'(AB)°O,.

Typical species having the ‘normal’ structure are CdAl,O,, ZnAl,O,, MnAI",0,
and ZnFe™,0,. Examples having the ‘inverse’ arrangement are Ni'Fe,0, and
Fe"Fe™,Q, (Fe;0, or magnetite). The question arises as to what factors determine
the choice of ‘normal’ or ‘inverse’ structure. The most immediately obvious of
these are size and charge. Generally, size considerations would predict that the
smaller trivalent cations should occupy the smaller tetrahedral holes rather than the
larger octahedral ones. Charge considerations, on the other hand, predict that greater
lattice energies would result when the more highly charged cations are surrounded
by the greater number of anions defining an octahedral hole. Straightaway, therefore,
we see a conflict between these two factors and any real spinel structure involves a
balance between the two. The charge factor appears to dominate in the ‘normal’
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spinels. What has all this to do with the d shell and ligand-field theory? Well, the
inversion of the structure in spinels like NiFeQ, is widely cited as a manifestation
of the role of LFSE. The argument goes as follows.

LFSE’s for high-spin octahedral and tetrahedral species were plotted in Fig. 8-9.
As a direct result of the smaller values of A, relative to A, the magnitude of the
stabilization energies are significantly less for the tetrahedral than for the octahedral
complexes. Other things being equal, we deduce that LFSE’s favour octahedral
over tetrahedral coordination, except in d° d° or d'° cases where both octahedral
and tetrahedral LFSE’s are zero. Now recall the balance of factors controlling ‘nor-
mal’ and ‘inverse’ spinel structures above and let us supplement them with the
notion that the LFSE favours octahedral coordination for transition-metal ions other
than those with d° d° or d'° configurations. We observe the ‘normal’ structure for
Zn"Fe™,0, and Mn"A1",0,, for example, and in these systems the transition metals
Fe™ and Mn" are &® species. On the other hand, in Ni'Fe,0,, while Fe'" is a d°
ion, Ni'is d8 The LSFE factor therefore favours occupancy of the octahedral sites
by the nickel ions. NiFe,0O, is indeed observed to adopt the ‘inverse’ spinel structure,
(Fegs5)'(NiFe; 5)°0,. A similar situation is observed in Fel'Fe™,O, in which the d°
iron(u) metal preferentially occupies octahedral sites. A more delicate balance occurs
in NiALO, in which a more nearly random site occupancy is observed:
(Al 75Nig25)'(Nig75Al,75)°0,.

The successful rationalization of these transition-metal ‘inverse’ spinel structures
in terms of the relative LFSE’s of tetrahedral and octahedral sites is another
attractive vindication of ligand-field theory as applied to structure and
thermodynamic properties. Once again, however, we must be very careful not to
extrapolate this success. Thus, we have a clear prediction that LSFE contributions
favour tetrahedral over octahedral coordination, except for d” with n = 0, 5 or 10.
We do not expect to rationalize the relative paucity of tetrahedral nickel(ir) species
relative to octahedral ones on this basis, however. Many factors contribute to this,
the most obvious and important one being the greater stabilization engendered by
the formation of six bonds in octahedral species relative to only four bonds in
tetrahedral ones. Compared with that, the differences in LSFE’s is small beer. ‘Why’,
one asks, ‘was our rationalization of spinel structures so successful when we
neglected to include consideration of the bond count?” The answer is that
cancellations within the extended lattice of the spinels tend to diminish the
importance of this term.

Recall that the unit cell in the spinels comprises AgBs03,. In the ‘normal’
structure, there are 16 B ions in octahedral sites and 8 A ions in tetrahedral ones.
That corresponds to 96 octahedral B—O bonds and 32 tetrahedral A—O bonds or
128 bonds in all. In the ‘inverse’ structure, we have 8 B ions in tetrahedral sites,
8 B ions in octahedral ones, and 8 A ions in octahedral sites. This corresponds to 48
octahedral B—-O bonds, 32 tetrahedral B—0O bonds and 48 octahedral A—O bonds
or once again, 128 bonds in all. So the total number of M —O bonds, different types
to be sure, is the same in both ‘normal” and ‘inverse’ spinel structures. We could
spend quite some time estimating the different bond energies of A-O and B-O or of
octahedral versus tetrahedral, but that would undoubtedly involve a lot of guesswork.
We can at least observe that the ‘bond count’ factor difference between the spinel
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structures is ameliorated compared with that involved with discrete octahedra and
tetrahedra, and that this appears to bequeath to the LFSE a dominant role in the
determination of spinel structures.

8.5 The Irving-Williams Series

In the late 1940’s, Irving and Williams investigated the effect of varying the central
metal ion on the stabilities of transition-metal complexes. Somewhat to their
surprise, they found that a general pattern emerged, and that this pattern was
observed both with a wide range of ligands and in the spectrum of biological activity
associated with transition-metal ions. They observed that for any given ligand, the
magnitude of the stability constants varied along the series:

K(Mn) < K(Fe) < K(Co) < K(Ni) < K(Cu) > K(Zn)

Some typical stability constant data are presented in Fig. 8-14, whilst Fig. 8-15
shows some biological manifestations that illustrate the ubiquity of the effect. The
sequence is known as the Irving-Williams series.

Can we rationalize these observations in terms of ligand-field or other effects?
The data that we have presented in Fig. 8-14 refers to the log K,; values for each
ligand with the high spin divalent metal ions. The sequence reflects a number of
simple properties of the cations. Firstly, the trend closely parallels the ‘ionic’ radii

12 7
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Mn Fe Co Ni Cu Zn

Figure 8-14. Variation in log K, values with metal ion for a range of divalent transition-metal
ions.
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Figure 8-15. The biological activity of some transition-metal ions illustrating the Irving-
Williams series.

of the metal ions ; as the metal ions decrease in radius, the metal—ligand interactions
increase in magnitude and the stability of the complex increases. The downturn in
stabilities at the end of the series is associated with the increasing ionic radii. The
second correlation that we can investigate is with the LFSE associated with the
electronic configuration of the metal ion. These data are also presented in Fig. 8-16,
and again there is some parallel with the stability constants; the larger the LFSE,
the more stable the complex.

LFSE

gK foren

ionic
radius

1
T T T T T T
Mn Fe Co Ni Cu Zn

Figure 8-16. Correlation of ionic radius and LFSE with log K, values for divalent transition-
metal complexes of 1,2-dtaminoethane.
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However, consideration in terms of the ionic radius or the LFSE shows that both
factors predict that the maximum stabilities will be associated with nickel(1)
complexes, as opposed to the observed maxima at copper(i1). Can we give a
satisfactory explanation for this? The data presented above involve K, values; and if
we consider the case of 1,2-diaminoethane, these refer to the process in Eq. (8.13).

[M(H,0)¢]** + en= [M(H,0)4(en)|** + 2H,0 (8.13)

What happens if we look at the K, or K3 values for didentate ligands? In general,
the K, values show stability patterns which closely parallel those for K;. However,
the K; values are different. Figure 8-17 presents K; data for transition-metal
complexes of 1,10-phenanthroline and 1,2-diaminoethane (Eq. 8.14).

[M(H,0)]** + 3L= [ML;]** + 6H,0O (8.14)

The first feature that we note is the relative destabilization of the [Cul;]** complexes
compared to the marked stabilization depicted in Fig. 8-16.

The data for the 1,2-diaminoethane complexes now parallels the trends in ionic
radius and LFSE rather closely, except for the iron case, to which we return shortly.
What is happening? Copper(i) ions possess a d° configuration, and you will recall
that we expect such a configuration to exhibit a Jahn-Teller distortion — the six
metal -ligand bonds in ‘octahedral’ copper(n) complexes are not all of equal
strength. The typical pattern of Jahn-Teller distortions observed in copper(i)
complexes involves the formation of four short and two long metal-ligand bonds.

20 7
phen
VI
o 10
2
en
0 T T T T T
Mn Fe Co Ni Cu Zn

Figure 8-17. Stability constant data (log K3) for the formation of transition-metal [ML;]*
complexes.
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Here is the true explanation for the position of copper(i1) in the Irving-Williams
series. When we consider the the replacement of water molecules by up to four
other stronger-field ligands, we expect the incoming ligands to form short (and thus
stronger) copper — ligand bonds. The outcome is that the Jahn-Teller distortion results
in shorter and stronger metal —ligand bonds than might be expected on the basis of
the isotropic ‘ionic radius’ of copper(in). When we come to replace the remaining
two water molecules, we form metal —ligand bonds which are considerably weaker
than expected. This is clearly seen when we consider the sequential data for the
formation of copper(ir) ammine complexes; the formation of pentammine and
hexammine complexes is really very unfavourable. This is also reflected in our
everyday laboratory experience — the addition of excess concentrated ammonia
solution to copper(u) sulphate solutions results in the formation of the familiar deep
blue solution containing the [Cu(NH;),]** ion rather than [Cu(NH;)s]**. This is furt-
her emphasized when we compare the sequential log K, values for copper(n) and
nickel() ammonia complexes (Table 8-4). For the log K, log K,, log K; and log K,
values we see the expected Irving-Williams pattern, with the copper(i) complexes
being more stable than the nickel(II) complexes. However, when we come to the
log K5 and log K, values, we see an inversion, with the nickel(II) complexes being
considerably more stable — indeed the value of log K¢ for the copper(i1) ammonia
system cannot be measured in aqueous conditions.

Table 8-4. Stability constant data for copper(i) and nickel(ir) ammine complexes.

logk; logK, logK; logK, logKs logKe

Cu 42 3.5 2.9 2.1 -0.52
Ni 2.8 2.2 1.7 1.2 0.7 0.03

We further emphasize this destabilization of the fifth and sixth ligands binding to
copper(1l) by considering the log K, log K, and log K; values for 1,2-diaminoethane
complexes (Fig. 8-18). Whereas the log K, and log K, data obey the Irving-Williams
sequence, the log K; parallel the trends in ionic radius and LFSE mentioned earlier.
The data for tris(1,10-phenanthroline) complexes also illustrates the expected trend
(Fig. 8-17). The anomalously high stability of the iron(i1) complex can be readily
explained when one considers that 1,10-phenanthroline is a very strong-field ligand
and that the [Fe(phen);]** cation is low-spin. The low-spin iron(u) centre is smaller
than the high-spin analogue (0.61 A as opposed to 0.78 A) and has a considerably
greater LFSE associated with it (24 Dg as opposed to 4 Dgq).

Our discussion of the Irving-Williams series illustrates, as ever, an important
generalization in transition-metal chemistry: in many cases there is no single, sim-
ple principle which may be invoked to rationalize a given series of observations.
Whilst LFSE effects are very important, they are but one of several factors
controlling structure and thermodynamics.
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Figure 8-18. Stability constants for the formation of 1:1, 1:2 and 1:3 complexes with 1,2-
diaminoethane.

Suggestions for further reading

Most of the standard texts mentioned in Chapter 1 have treatments of the material
discussed in this chapter. In many cases the approaches differ dramatically from
that which we have adopted.

Other texts which have relevant sections include:

1. C.S.G. Phillips, R.J.P. Williams, Inorganic Chemistry, Oxford University Press,
Oxford, 1966.

2. K.F. Purcell and J.C. Kotz, An Introduction to Inorganic Chemistry, Saunders,
Philadelphia, 1977.

3. W.W. Porterfield, Inorganic Chemistry, Addison-Wesley, Reading (MA), 1984.






9 Chemical Consequences
of the d-Electron Configuration

9.1 Introduction

In the preceding chapters we have developed a detailed understanding of the
behaviour of electrons in the d orbitals in transition-metal compounds. Can we now
use this knowledge to rationalize some of the more familiar aspects of transition-
metal chemistry? In this chapter we consider some of the chemical consequences of
the d-electron configuration upon the chemistry of the transition metals. Some of
the phenomena which we study are directly related to the number and arrangement
of electrons in the d orbitals; others are indirectly related, being primarily dependent
upon factors like the ionic radius. We address four main areas of interest to the
coordination chemist: coordination number and geometry, ligand choice, oxidation
state stability and rates of reactions.

9.2 Coordination Number and Geometry

It is reasonable to ask if it is possible to predict what the stoichiometry and geometry
of the product resulting from the interaction of a particular metal ion with a
particular ligand (or ligands) is likely to be. Can we make any progress towards this
goal from our discussions in the earlier part of this book? As will become
increasingly clear, the answer is a mixed one: sometimes the interplay of d electrons
in the valence shell is of prime and direct importance, sometimes of little importance,
but more often it is relevant, yet only in an indirect way.

The dominant features which control the stoichiometry of transition-metal
complexes relate to the relative sizes of the metal ions and the ligands, rather than
the niceties of electronic configuration. You will recall that the structures of simple
ionic solids may be predicted with reasonable accuracy on the basis of radius-ratio
rules in which the relative ionic sizes of the cations and anions in the lattice
determine the structure adopted. Similar effects are important in determining
coordination numbers in transition-metal compounds. In short, it is possible to pack
more small ligands than large ligands about a metal ion of a given size.

This is most simply seen with monatomic ligands like the halides, which are
reasonably approximated as spheres to which a meaningful radius may be assigned
(F, 1.19 A; CI', 1.67 A; Br, 1.82 A; I, 2.06 A). We should preface this discussion
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Copyright © 1994 VCH Verlagsgesellschaft mbH, Weinheim
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with the observation that, for intermediate oxidation states (+2 or +3) in donor
solvents, the vast majority of complexes are based upon a six-coordinate octahedral
geometry; aqueous solutions of divalent transition-metal salts all contain [M(H,0)¢]*"
ions. The octahedral geometry is favoured on electrostatic, ligand-field and packing
grounds. We choose manganese(in), a d°> ion which sutfers no ligand-field imposed
preference for any particular geometry, to make the point. A considerable number
of complex manganese(n) fluorides, ranging from MnF, itself through M[MnF;] to
M,[MnF,], are known; all of these contain six-coordinate MnFg units. In the related
chloro complexes, the octahedral structure is also the most commonly encountered,
although with some M cations, four-coordinate MnCl, units are observed (remember
that the radii of both the manganese and the other cation M are of importance
within the crystal packing). In contrast, the bromo analogues exhibit a variety of
structures in which MnBrg and MnBr, units are equally common. For example, both
K4[MnBrg] (containing a discrete [MnBrg]*" anion) and Cs,[MnBr,] (containing a
discrete [MnBr,]? anion) are isolable compounds. Iodo complexes of manganese(ir)
are rather less common, but the majority appear to contain Mnl, tetrahedra. Similar
patterns exist with other d° and d'° metal ions. For example, iron(u) forms the ion
[FeFg]* with fluoride, whilst both [FeClg]>- and [FeCl,]- are formed with chloride,
and only [FeBr,]™ is known for bromide. Iron(i1) iodo compounds are not commonly
found since the iodide ion is a sufficiently strong reducing agent to usually reduce
iron(1m) to iron(1), with concomitant formation of iodine. A similar phenomenon is
observed in the reaction of iodide with copper(1) salts to give copper(1) iodide and
iodine. With these d° and d'° metal ions, the influence of the electronic configuration
is only indirect, through the ‘ionic radius’ of the metal ion.

One feature, exemplified above, is the tendency with ‘borderline’ ligands for
metals to form stable four- and six-coordinate complexes. This is particularly marked
with ¢! ions such as zinc(n), where the facile interconversion of four-, five- and
six-coordinate species is believed to play an important role in the biological function
of the metal in zinc metalloenzymes such as carbonic anhydrase. Further, it so
happens that with d7 ions such as cobalt() the ligand-field energies associated with
a four-coordinate tetrahedral ColL, complex and an octahedral Col, complex are
similar. A common feature of cobalt() chemistry is the ready interconversion of
these two coordination numbers. In both d’7 and d'° ions, the absence of any
important ligand-field ‘preference’ for a particular coordination number or geometry
is reflected in this facile interconversion between coordination types. A familiar
example of this is seen when an aqueous solution of cobalt(i) chloride is
concentrated. The (dilute) pink solution contains octahedral [Co(H,0O)¢]** ions. Upon
concentrating, the effective concentration of chloride increases and the solution
turns blue as the [CoCl,]* ion is formed. The pink colour is recovered upon dilution
with water. This colour change is the basis of a very simple ‘invisible’ ink, a
message written with dilute cobalt(ir) chloride solution being invisible until the
paper is warmed. The replacement of zinc(i) by cobalt(i) in zinc metalloproteins is
a trick commonly used by bioinorganic chemists. The ionic radii of the two metals
are somewhat similar, as is the tendency to undergo easy changes in coordination
number. The success of the strategy is seen in the observation that the cobalt(ir)
metalloproteins very frequently show activity similar to (occasionally greater than!)
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the native zinc compounds. Why should this metal-ion exchange be useful? Zinc(ir)
is a d'¥ jon with no useful magnetic (diamagnetic) or spectroscopic (no ‘d—d’
transitions) properties, whereas cobalt() is a d’ ion with the associated
paramagnetism and ‘d-d’ spectra.

Size effects are probably most readily illustrated with the highly structured ligands
which characterize contemporary coordination chemistry. The concept of ‘cone-
angle’ was originally developed by Tolman to explain some of the features of
phosphine coordination chemistry. The cone angle, 6, was, at its simplest, defined
as the angle subtended at a nickel centre (defined by a Ni—P distance of 2.28 A)
between vectors extending from the metal forming a tangent with the van der Waals
extremities of the substituents on the phosphine (Fig. 9-1).

Figure 9-1. Definition of the cone angle, 6, for trimethylphosphine.

Let us consider one specific example of how the cone-angle concept provides a
good rationalization of the observed data. The reaction of nickel(n) bromide with
PEtPh, gives a complex [Ni(PEtPh,),Br;]. This complex may be obtained as green
paramagnetic or red diamagnetic forms. The two forms may be interconverted and,
in solution, dynamic equilibria are set up between the two. The red form has planar
geometry and the green one, tetrahedral. There is an interplay of the ligand field of
the relatively strong-field P,Br, donor set, which favours the formation of the square-
planar complex, with the steric repulsions between the relatively bulky phosphine
and halide ligands, which favour the adoption of the tetrahedral geometry in which
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the various ligands are kept as far apart as possible. The cone angles, 8, of a
number of typical phosphines are listed in Table 9-1. If the PEtPh, phosphine is
replaced by PEt;, with a smaller cone-angle, the percentage of the square-planar
complex present at equilibrium increases, whereas replacement by PPh; increases
the percentage of tetrahedral form present at equilibrium. Similarly, the complexes
prepared from nickel(i) chloride favour the square-planar forms, whereas those
from nickel(n1) iodide favour the tetrahedral. In the solid state, the complexes with
small cone-angle phosphines tend to be square-planar whereas those with the larger
cone-angle ligands (generally PAr;; Ar = aryl) tend to be tetrahedral.

Table 9-1. Cone angles for a series of phosphine ligands.

Phosphine (7]

PMe; 118
PEt; 132
PEt,Ph 136
PEtPh, 140
PPh, 145
P(CsH, )3 170

Using extremely bulky ligands such as the bis(trimethylsilyl)amido anion
[(Me;Si),N]-, it is sometimes possible to induce very low coordination numbers in
transition-metal complexes. For example, a series of complexes like
[M{(Me;Si),N};] have been prepared. Other bulky ligands which have been used
include 2,6-di-tert-butylpyridine, tris(mesityl)phosphine and tris(2,6-di-tert-
butylphenyl)phosphine. The use of such bulky ligands to stabilize low coordination
numbers or to stabilize highly reactive centres (by ‘shielding’ them from reaction)
is now well developed. In general, such effects are related purely to the steric bulk
of the ligands, and, once again, the only relationship to the d” configuration arises
through the effective ionic radius of the metal center.”

A further example of ligand control of the coordination number and geometry of
a complex is the use of relatively rigid polydentate ligands. For example, the
phthalocyanato ligand 9.1 imposes a square-planar tetradentate N, donor set onto a
metal ion, and many metals form square-planar complexes with this type of ligand.
Note, however, that some metal ions also coordinate another one or two axial ligands
to give square-based pyramidal or octahedral complexes.

Similarly, the macrocyclic ligand 9.2 is expected to impose a planar pentagonal
N; donor set onto a metal ion. Although metal ions such as lithium form pentagonal

* A number of attempts have been made to rationalize the detailed preferences of particular d”
configurations for certain geometries using molecular orbital and ligand-field based arguments.
These arguments are beyond the scope of this book, and are not of general applicability to
‘normal’ ligands and ‘normal’ oxidation state metal ions.
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planar complexes with this ligand, transition metals coordinate additional axial
ligands to give pentagonal-based pyramidal or pentagonal bipyramidal complexes.

It is probably true to say that we are still unable to predict the number of a given
ligand which will bind to a given metal ion. However, once we know the number of
ligands that bind, we may use the Kepert approach (see Chapter 1) to accurately
predict the spatial arrangement of these ligands. The one exception to both of these
points arises with metal ions which have a d® configuration.

We saw in Chapter 7 how the d® configuration can stabilize the square-planar
arrangement of four ligands about a metal center. This is the one real success that
we bring to this discussion of coordination number and geometry. In the case of
first row transition-metal ions such as nickel(n), it is only very strong-field ligands
which are capable of giving the necessary stabilization. We saw that weak-field
ligands such as chloride give tetrahedral anions like [NiCl,]?>-, whereas strong field
species such as cyanide give square-planar ions like [Ni(CN),]*". As we descend a
triad, however, the ligand-field splittings increase, with the result that nearly all
palladium(i) and platinum(i) complexes are four-coordinate square-planar species.
Again, note that this is not the case for nickel(11), where the majority of complexes
possess six-coordinate octahedral geometries.

A minor success is also seen in complexes of d° and d* ions, in which the
distorted octahedral geometries observed may be rationalized (and indeed predicted)
in terms of the Jahn-Teller effect, and ultimately in terms of the steric activity of
the open d shell. This is a common feature in copper(1) chemistry, and you will
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recall that it was a component in our explanation of the position of copper(i) in the
Irving-Williams series.

The final comment we shall make in this section concerns the formation of
complexes with the low coordination numbers two and three. We remarked above
that the existence of such complexes can be favoured by the use of sterically
demanding ligands like the bis(trimethylsilyl)amido anion. Such ligands tend to be
associated with transition metals to the left of the series. A second group of metal
ions, but to the extreme right of the transition series, is also found to form a range
of two and three coordinate complexes. This can be partially explained on
electrostatic grounds. As we place more and more electrons into the d manifold of
the metal ion, the interelectronic repulsions between the metal ion and the ligands
increase. With a full d shell, these repulsions are sufficient that a range of two and
three coordinate complexes like [Ag(CN),]- and [CuCl;]*" are found with low
oxidation state d'° ions. This observation has been further rationalized in terms of
the relative energies of the ns, np and (n—1)d orbitals. However, it should be noted
that these low-coordinate complexes are only associated with the lower oxidation
states. Zinc(11) exhibits the usual range of four- and six-coordinate complexes.

9.2.1 Coordination Numbers in Low Oxidation State Complexes

We have seen that complexes in low formal oxidation states (+1, zero or negative)
can be stabilized by the use of strongly m-acceptor ligands like carbon monoxide or
alkenes. The stabilization is associated with an increase in the ligand-field splitting
resulting from the overlap of the #,, set of d orbitals with the 7" levels of the
ligands. We also noted that these low oxidation state compounds with m-acceptor
ligands are more covalent, and that the large A values resulted in a marked
stabilization of compounds in which only the nine lowest-lying molecular orbitals
are occupied — the so-called eighteen electron rule. Where the eighteen electron
rule is obeyed, we can predict the number of ligands within a particular low
oxidation state compound.

In many respects, the successes of this model are remarkable. Iron(0) possesses a
total of eight electrons in its valence shell. To satisfy the eighteen-electron rule,
five two-electron donors are needed, and compounds such as [Fe(CO)s] are formed.
These molecules also obey simple VSEPR precepts, and [Fe(CO)s] adopts a trigo-
nal bipyramidal geometry. Conversely, the use of two five-electron donor ligands
such as the strong m-acceptor cyclopentadienyl, Cp, gives the well-known compound
ferrocene (9.3).
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In a similar vein, we observe nickel(0), possessing ten electrons in its valence shell,
to require four carbonyl ligands to satisfy the eighteen electron rule and form
[Ni(CO),}, whilst chromium(0), with six electrons in its valence shell forms
[Cr(CO)¢]. These latter compounds are tetrahedral and octahedral respectively.

What happens if the metal center possesses an odd number of electrons in the
valence shell? Manganese(0) has seven electrons in its valence shell, and requires a
total of 11 electrons to satisfy the eighteen electron rule. We can ‘cheat’ by using
the five electron donor, Cp, and three carbonyl ligands, as in the compound
[(Cp)Mn(CO);3] (9.4). What happens if we only have carbonyl ligands? We could
form either [Mn(CO)s] (17 electrons) or [Mn(CO)s] (19 electrons), although we
know that the latter species is particularly unfavourable. In fact, two things can
happen. The 19 electron species [Mn(CO)s] ‘wants’ 18 electrons in the valence
shell, and can achieve this by the loss of an electron to form the cation [Mn(CO)]".
The alternative is for the Mn(CO); units to dimerize, with the formation of a two-
center, two-electron Mn—Mn bond in [Mn,(CO)] (9.5) and so achieving an 18
electron configuration about each metal center.

M oC—Mh MA—CO
8 | 5 o | oo
8 8
9.4 9.5

When using the eighteen electron rule, we need to remember that square-planar
complexes of d® centers are associated with a 16 electron configuration in the
valence shell. If each ligand in a square-planar complex of a d® metal ion is a two-
electron donor, the 16 electron configuration is a natural consequence. The
interconversion of 16-electron and 18-electron complexes is the basis for the mode
of action of many organometallic catalysts. One of the key steps is the reaction of a
16 electron complex (which is coordinatively unsaturated) with a two electron donor
substrate to give an 18-electron complex.

9.3 Ligand Types — The Concept of Hard and Soft

One of the features of coordination chemistry which we try to explain is the
‘preference’ of certain metal ions for certain ligand types. In this section, we briefly
discuss the models which have been developed to rationalize observed patterns of
ligand recognition. We preface our discussion by noting, however, that the models
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Box 9-1

The common ligands in low oxidation state (organometallic) chemistry and the number of
electrons which they donate to the metal are indicated below. Note that the electron
counting scheme that we use treats all groups as neutral. In other words, we start from
neutral metal centers and treat formally anionic organic fragments as radicals. Further
explanation of this point is to be found in some of the suggestions for further reading.

Ligand Symbol Number of electrons
alkyl R 1
aryl Ar 1
hydride H 1
carbonyl CcO 2
alkene R,C=CR, 2
phosphines R;P 2
allyl _:" ) “‘ 3 (or more rarely, 1)

diene // \\ 4
cyclopentadienyl @ 5 (or more rarely, 3 or 1)

arene ArH 6

The reader is left to determine the valence shell electron count for each of the following
molecules or ions: [MeMn(CO)s], [Cox(CO)s], [PhCr(CO)s], [(CeHg)Mo(CO);], [(CsHg),Mo],
[Cry(CO) o)™, [ReHs]*, [(H,CCHCH,)Mn(CO)s], [(H,CCHCH)Mn(CO),], [(C4He)Fe(CO)s],
[Ti(Cp)a], [Ni(Cp).] and [Ni(H,CCHCH,),]

have very little to do with the d-electron configuration of the transition-metal ion,
and more to do with the ionic size and the charge on the ion.

We begin by considering the stability constants for the formation of halide
complexes with zinc(i1) and mercury(ir) (Table 9-2)

Notice that the stability of the zinc complexes decrease as F > Cl > Br> I, a
trend that is exactly reversed for mercury. Some metals — Class (a) — form complexes

Table 9-2. log K, values for zinc(1u1) and mercury(ir) halide complexes.

M/X F Cl Br 1
Zn(11) 0.8 -0.2 -0.6 -1.3
Hg(m) 1.0 6.7 8.9 12.9

M + X [MX]e
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with stabilities decreasing in the order F > Cl > Br > I, whilst others — Class (») —
form complexes with stabilities increasing in the order F < Cl < Br < I.

Many metal ions parallel the behaviour of either zinc(i1) or mercury(ir), and Pear-
son described them as being Class (a) (hard) or Class (b) (soft) metals respectively.
For example, iron(im) exhibits hard behaviour, whilst lead(ir) is soft (Table 9-3).

Table 9-3. log K; values for iron(1r) and lead(ir) halide complexes.

M/X F Cl Br 1
Fe(un) 6.0 1.4 0.5 -
Pb(1) 0.3 1.0 1.2 1.3

M + X= [MX]@ D

Ligands which form stronger complexes with Class (a) metals are described as
hard and those which form stronger complexes with Class (b) metals are called
soft. Hard metals form more stable complexes with hard ligands and soft metals
form more stable complexes with soft ligands. A listing of hard and soft metals and
ligands is presented in Table 9-4.

Table 9-4. Hard and soft transition-metal ions and ligands.

Hard

Mn(n), Zn(u), Sc(u), Fe(ur), Cr(ir), Co(ir), Ce(ur), Ti(v), HEv), Zr(iv),
V(v), Mo(v), Cr(vr), W(v1), Mn(v)
NH;, RNH,, H,0, HO", ROH, RO, [RCO,], [PO,]*, [SO,)*, [CIO, ], [NOs], F-, CI.

Intermediate

Fe(n), Co(u), Ni(r), Cu(1), Rh(ur), Ir(imr), Ru(ur), Os(11)
ArNH,, py, [N;]~, Br-

Soft

M(o0), Cu(r), Ag(r), Au(r), Hg(1), Cd(mr), Hg(u), Pb(1), Pd(u), Pt(1)
H-, R, CN-, RNC, alkenes, arenes, CO, R;P, (RO);P, R;As, R;Sb, R,S, RSH, RS-, SCN-, I~

Hard metal ions are either highly charged and/or relatively small with a high
charge to radius ratio. This results in the valence shell electrons being strongly
bound to the metal and less available for entering into covalent bonding with a
ligand. Consequently, interaction with ligand donor atoms having high
electronegativities is favoured. Hard—hard interactions are more electrostatic. In
contrast, soft metal centers have low charge to radius ratios and interact with less
electronegative donor atoms. Soft—soft interactions are frequently more covalent in
character.

Of course, many of the ions of interest to a transition-metal chemist are
‘intermediate’ in character - and might do anything!
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9.4 The Stabilization of Oxidation States, and
Reduction Potentials

9.4.1 Reduction Potentials and Thermodynamics

In the introductory chapter we stated that the formation of chemical compounds
with the metal ion in a variety of formal oxidation states is a characteristic of
transition metals. We also saw in Chapter 8 how we may quantify the thermodynamic
stability of a coordination compound in terms of the stability constant K. It is
convenient to be able to assess the relative ease by which a metal is transformed
from one oxidation state to another, and you will recall that the standard electrode
potential, E®, is a convenient measure of this. Remember that the standard free
energy change for a reaction, AG®, is related both to the equilibrium constant (Eq.
9.1)

AG® = —RTIn K 9.1)
and to the standard electrode potential (Eq. 9.2)
AG® = —zFE® 9.2)

where z is the number of electrons involved in the redox process. From Egs. (9.1)
and (9.2), we obtain the relationship between the standard electrode potential and
the stability constant for a redox process as shown in Eq. (9.3).

E® = (RT/zF)InK (9.3)

We can thus use E° values to gauge the effects that various ligands have upon
the stability of one given oxidation state with respect to any other.

9.4.2 Intermediate Oxidation States

Negatively charged ligands are expected to stabilize higher oxidation states, and we
will probe such effects shortly. Meanwhile, we may eliminate the effects of charged
ligands (but not, of course, of different dipoles within a ligand) by comparing
complexes with neutral ligands. Consider the cobalt complexes with six water (Eq.
9.4) and six ammonia ligands (Eq. 9.5).

[Co(H,0)6]** + e — [Co(H,0)e]* EP = +1.84V 9.4
[Co(NH;)¢]** + e~ — [Co(NH;)e]** E® = +0.10V 9.5)

The reduction potentials indicate™ that the cobalt(in) aqua complex is unstable
with respect to the cobalt(u1) state, whereas the cobalt(n) ammine complex is

"Remember that the relevant potentials to consider are there for the oxidation and reduction of
water.
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stabilized. In aqueous solution, we need to consider the various redox processes by
which water itself may be oxidized or reduced — for example, [Co(H,0)¢]** will oxi-
dize water generating dioxygen and cobalt(1r). Note that the large positive E® for the
reaction with water ligands indicates that [Co(H,0)s]* is not likely to be an isol-
able species in water and, in practice, such salts may only be obtained with the
greatest difficulty. Ammonia is a stronger-field ligand than water (fvalues of 1.25
and 1.0 respectively). Cobalt(u) is a d7 ion whereas cobalt(in) has a d® configuration.
The somewhat stronger ligand-field of the six ammonia ligands is enough to stabilize
the low spin d® configuration in the [Co(NH;)s)** ion with its associated large LFSE.
It is interesting to note that very few high-spin cobalt(ir) complexes are known, and
those that are possess negatively charged ligands. It is evident that in order to sta-
bilize cobalt(tn), it is necessary to have ligands which produce a sufficiently strong
field to overcome the pairing energies associated with the formation of a low-spin
configuration. We may usefully imagine the oxidation process to occur in two stages.
Firstly, the rearrangement of the high-spin d’ cobalt(i) ion to a low-spin t5e}
configuration and, secondly, the removal of an electron from the e, orbital of the
cobalt(mr) ion. The larger the ligand-field splitting, the greater the stabilization of
the low-spin d° cobalt(im) complex. It is this ligand-field stabilization of the d° ion
which compensates for the unfavourable electron repulsion associated with the low
spin configuration. The subtlety of the effects involved in determining the observed
E® values is illustrated further by the cobalt 2,2'-bipyridine complexes (Eq. 9.6).

[Co(bpy)s]* + e~ — [Co(bpy)s]* E°= +0.31V (9.6)

Here we focus upon two competing effects. The 2,2'-bipyridine is a strong-field
ligand (f = 1.33) which will give large ligand-field splittings for both the cobalt(ir)
and cobalt(i1) complexes. As we saw for the ammonia complexes, the splitting is
sufficiently large to stabilize a low-spin cobalt(u) state. If this were the only
important contribution, we would expect 2,2'-bipyridine to stabilize the cobalt(m)
state more than ammonia does (since it is a stronger field ligand than ammonia).
However, 2,2'-bipyridine is a m-acceptor ligand (indeed, this is the reason for its
position in the spectrochemical series). The large splittings in the 2,2'-bipyridine
complexes arise from the interaction of filled #,, orbitals on the metal with the 7"
orbitals of the ligand and the resultant lowering of the energy of the 1,, set as shown
in Chapter 6. The electron rich d7 cobalt(mr) ion is a better 7-donor than the higher
oxidation state d° cobalt(ir) ion. Thus, the resultant lowering of the ,, orbitals will
be more effective with the cobalt(i1) than the cobalt(im) ion. The balance is such that
the stabilization of the cobalt(in) state is less with 2,2"-bipyridine than with the
weaker-field NH; ligand! The paradox is that we would normally expect larger
ligand-field effects to be associated with the higher oxidation state. We investigate
this in a little more detail by studying some iron(i1)/(11) complexes in which the d4°
configuration is associated with the lower oxidation state.

[Fe(H,0)61* + e — [Fe(H,0)6]* E° = +0.77V 9.7)

[Fe(bpy):]** + e” — [Fe(bpy)s:]** E® = +0.97V (9.8)
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Consider, then, the iron complexes with water (Eq. 9.7) and 2,2'-bipyridine ligands
(Eq. 9.8). The larger E® with the 2,2"-bipyridine ligand indicates a greater stabili-
zation of the iron(Il) complex with the stronger-field m-acceptor ligand. This is for
exactly the same reasons we discussed when comparing the cobalt complexes. In
this case, the lower oxidation state is stabilized by the 2,2'-bipyridine ligand. This
is because of the favourable ligand-field terms associated with the d% configuration
with the strong field ligand. In the iron complexes, this stabilizes the iron(i) state
whereas in the cobalt complexes, it is the cobalt(ur) state which benefits and in fact,
the blue [Fe(bpy);]** ion is not particularly stable in water. Even this is not the
whole story for we are not really comparing like with like — the 2,2'-bipyridine
complexes of iron are low-spin in both the iron(i) and iron(i) states whereas the
aqua complexes are high spin. So we see the origin of an additional stabilization of
the d® [Fe(bpy);}** complex ion.

As expected, the introduction of negatively charged ligands results in the
stabilization of the higher oxidation states. This is seen most simply in the
comparison of aqua and oxalato complexes of cobalt (Egs. 9.9 and 9.10). Oxalate is
comparable in ligand-field strength to water (f = 0.99) but the negatively charged
ligands stabilize the higher oxidation state. All of our remarks regarding the change
from the high-spin cobalt(i1) to the low-spin cobalt(i1) ion pertain here.

[Co(H,0)6]** + e — [Co(H,0)q]** E® = +1.84V (9.9)
[Co(0x)s]* + e~ — [Co(ox);]* E° = +0.57V (9.10)
[Co(edta)]” + e — [Co(edta)]* E® = +0.6V (9.11)

A similar stabilization of the cobalt(mn) state is observed if we use a chelating
ligand such as edta* (Eq. 9.11), which completely ‘wraps-up’ the metal center.
Here is a most important point. Why do negatively charged ligands stabilize higher
oxidation states? It has more to do with the entropy term associated with the
solvation of the more highly charged ions than the enthalpy term reflecting any
differences in M—L bond strengths.

What happens if we ‘boost’ the effect of negatively charged ligands by choosing
one which is also a strong-field m-acceptor? A good example is provided by the
cyano complexes (Eq. 9.12). Note that in this case, the high-spin square-based
pyramidal cobalt(1r) ion is only coordinated to five cyanide ligands.

[Co(CN)s]* + e~ — [Co(CN)s]*- + CN- E® =-0.83V (9.12)

This may be rationalized in terms of two factors. Firstly, the tendency to build up a
large charge density on the cobalt(n) center would be great (but remember the
electroneutrality principle) and, secondly, the ligands are labilized by the presence
of electron density in the e, orbitals of the high-spin cobalt(i1) ion. The loss of one
negatively charged ligand is not possible in the chelated oxalato or edta complexes
(Egs. 9.10 and 9.11). The massive stabilization of the cobalt(in) state is partially
due to the negatively charged ligands and partly due to the ligand-field stabilization
of the low-spin d° ion.
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Similar effects are observed in the iron complexes of Egs. (9.13) and (9.14). The
charge on the negatively charged ligands dominates the redox potential, and we
observe stabilization of the iron(mn) state. The complexes are high-spin in both the
oxidation states. The importance of the low-spin d® configuration (as in our
discussion of the cobalt complexes) is seen with the complex ions [Fe(CN)¢]*~ and
[Fe(CN)s]* (Eq. 9.15), both of which are low-spin.

[Fe(ox);]* + e — [Fe(ox);]* E® = +0.02V (9.13)
[Fe(edta)]” + e~ — [Fe(edta)]* E® =-0.12V 9.14)
[Fe(CN)¢]* + e~ — [Fe(CN)¢l*+ E° = +0.36V (9.15)

The now-familiar balance of effects operates. The anionic ligands favour the
higher oxidation state (again, associated with a solvation effect), the ligand-field
stabilization of the low-spin d® iron(1) center is considerably greater than that of
the low-spin d° iron(m) center, and back-donation is expected to be greater in the
iron(ir) complex. The latter is indeed the case for the Fe — C distances in the iron(i)
compound are slightly shorter than those in the iron(mr). The overall balance is a
stabilizing of the iron(im) state with respect to complexes with aqua ligands, in
contrast to those with the neutral strong-field ligand bpy.

9.4.3 The Electroneutrality Principle - A Reprise

In Chapter 1 we introduced the electroneutrality principle. We now consider some
of its implications. You will recall that we described the [Fe(H,0)]** ion as 50%
covalent (or ionic). A similar description of 50% covalency may be applied to the
cobalt(IlT) complex ions [Co(H,0)s}** and [Co(NHs)s]**. The higher the oxidation
state, the greater the covalency necessary in the bond to fulfill the requirements of
the electroneutrality principle. The electronegativities of cobalt(im), N and O are
2.0, 3.0 and 3.4 respectively. The smaller difference in electronegativities between
cobalt(ii) and nitrogen than between cobalt(ir) and oxygen means that the Co—N
bond will be more covalent than the Co—O bond. In accord with the requirements
of the electroneutrality principle, [Co(NH;)¢]** will be more favoured than
[Co(H,0)]**. This is one of the observations that we discussed in the previous
section. Note that we have come to the same conclusion without invoking any
knowledge of the number or arrangement of the d electrons.

Let us extend our discussion of the [Fe(H,0)¢]** cation a little further. The
electronegativities of oxygen and hydrogen are 3.4 and 2.2 respectively, and the
O-H bond should thus be polarized in the sense H*—Q%. The electroneutrality
principle applied to the Fe—O interaction resulted in our placing half-positive
charges upon each of the oxygen atoms. If we now consider the H- O interactions,
we may reallocate charges in accord with the electronegativities and the
electroneutrality principle such that the positive charges reside on the hydrogens.
Charge neutrality of the oxygen would then establish a final charge distribution
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which places a quarter positive charge on each hydrogen atom, and each oxygen
atom and the iron center are neutral. The overall charge on the complex ion (12 X
1/4 = 3) is thus, of course, unchanged.

Consider the closely related ion [Fe(H,0)s]**. The only difference is in the for-
mal oxidation state of the metal ion. If an ionic model is assumed (9.6), the charge
on the metal center is +2. A purely covalent model results in the placing of a formal
quadruple negative charge upon the iron center (9.7). To satisfy the electroneutrality
principle, and establish a near-zero charge on the metal, each oxygen atom is

OH, JE)HZ
.

o, o H,0... ‘“F::“'"SHZ
Ot OH; Hzg SHz
OH, o,

9.6 9.7

required to donate 1/3 of an electron (9.8). Pauling describes this situation as being
33% covalent (or 66% ionic). We could envisage further distribution of the electronic
charge such that both the iron and the oxygen atoms are neutral, so giving a 1/6
positive charge associated with each hydrogen atom. We shall return to this
observation shortly. Remember, meanwhile, that there is a smaller positive charge
assigned to the hydrogen atoms in [Fe(H,O)q]** than in [Fe(H,O)q]**.

173+

OH,
1 13+
H,0.. _.OH,
13+ CFel B
13+
13+ OH_2
9.8

Now consider an iron(ir) complex with six negatively charged ligands. The purely
covalent representation places a —3 charge on the metal center and leaves each
ligand neutral. The electronegativity principle makes the iron neutral and places a
half-negative charge upon each ligand. Ligand donor atoms are invariably more
electronegative than metal centers, and so this distribution of charges is favoured.
Compare this situation with that in the [Fe(H,O)¢]** ion in which we ended up
placing positive charge upon the ligands. This phenomenon, which ultimately rests
upon the typical relative electronegativities of the metal and ligands, provides a
second main cause of the stabilization of higher oxidation states by negatively
charged ligands.
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9.4.4 Protic Equilibria Involving Coordinated Ligands

We have just noted that the electroneutrality principle suggests that, in cationic
aqua complexes, the hydrogen atoms of the water ligands acquire positive charge.
Furthermore, we observed that the higher the oxidation state, the greater the positi-
ve charge and the greater the polarization of the O—~H bonds. In other words, the
higher the oxidation state, the more acidic the water ligands become and equilibria
of the type shown in Eq. (9.16) become accessible.

[LsM(OH,)]"*= [LsM(OH)]"-* + H* (9.16)
This is indeed observed and, particularly in higher oxidation states, coordinated
water molecules are relatively acidic (Table 9-5). Water coordinated to an iron(ii)

center is a stronger acid than acetic acid!

Table 9-5. pK, values for coordinated water molecules.

Pk,
H,O 15.6
[AI(H,0)]* 5.0
[Fe(H,0)]** 2.0
[Zn(H,0))? 9.5

If we combine this observation with the previous discussion regarding the use of
negatively charged ligands to stabilize higher oxidation states, we have a self-
regulating way in which aqua ions may ‘adjust’ their coordination environment as
the oxidation state of the central metal ion changes. The higher the oxidation state
of the metal ion, the greater the polarization of the water molecule and the more
acidic it becomes; the more acidic the water, the greater the tendency to form
hydroxide (or even oxide) ligands which then stabilize the high oxidation state of
the metal ion.

Consider some vanadium ions in aqueous solution. Pale violet solutions of
vanadium(i) salts contain the [V(H,0)s]** ion. The vanadium(i) center is only
weakly polarizing, and the hexaaqua ion is the dominant solution species. Aqueous
vanadium(i) solutions are observed to be unstable with respect to reduction of
water by the metal center. In contrast, vanadium(r) is more highly polarizing and
an equilibrium between the hexaaqua and pentaaquahydroxy ion is set up. The pK,
of 2.9 means that the [V(OH,)s]** ion (Eq. 9.17) only exists in strongly acidic
solution or in stabilizing crystal lattices.

[(H,0)sV(OH)**= [(H,0)sV(OH)]** + H*  pK, =29 (9.17)

Vanadium(1v) is even more strongly polarizing. The first deprotonation process is
not observable in aqueous solution. The pentaaquahydroxy ion may be present in
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very strongly acidic solutions, but the dominant solution species is one which is
derived from a second deprotonation of the pentaaquahydroxy complex. This could
give rise to a bis(hydroxy)tetraaqua ion or an oxopentaaqua species. We will see
later that the multiply bonding m-donor oxo group stabilizes higher oxidation state
ions, and it is, in fact, this latter species which is present (Eq. 9.18).

[(H,0)sV(OH,)*= [(H,0)sV(OH)]** + H*
(9.18)
[(H,0)sV(OH)J*= [(H;0);V(=0)]** + H*

The blue [(H,0);V(=0)]** ion is the vanadyl ion which is usually depicted as
VO?, Actually, the vanadium center is still sufficiently polarizing that a third
deprotonation equilibrium is established in aqueous media to generate the ion
[(H,0),V(=0)(OH)]*, which contains water, hydroxy and oxo ligands (Eq. 9.19).

[(H0),V(=0)(H,0)**= [(H,0),V(=O)(OH)]* + H*  pK, 6.0 (9.19)

A similar situation pertains for iron salts in aqueous solution. Solutions of iron(ir)
salts contain the very pale green cation [Fe(H,0)4]?*, although these solutions often
appear with various darker shades as a result of aerial oxidation. In the solid state,
the alum KFe(SO,),-12H,0 is a very pale violet colour, and contains the [Fe(H,0)4]**
ion, Solutions of this compound or other iron(1n) salts are usually varying shades of
yellow, although very pale coloured solutions may be obtained in acidic conditions.
The yellow coloration is due to the deprotonated species which exhibit a ligand -
metal-charge transfer transition in the ultraviolet region which tails into the visible.
Both mono- (Eq. 9.20) and bis-deprotonated (Eq. 9.21) complexes are present in
aqueous solution. Note the difference between the iron(i) and the higher oxidation
state vanadium(iv) complexes. In the latter case, an oxo ligand was generated after
the second deprotonation to stabilize the high oxidation state metal centre, whereas
with the lower oxidation state iron(mr) centre, a bis(thydroxy) complex is formed
(Eq. 9.21).

[(H,0)sFe(OH,)}**= [(H,0)sFe(OH)]** + H* pK,=2.0 (9.20)
[(H,0),Fe(OH,)(OH)]**= [(H,0),Fe(OH),]* + H*  pK,= 3.3 (9.21)

This leads us to a second aspect of the formation of hydroxy ligands in higher
oxidation state complexes. The deprotonation of a coordinated water ligand to a
hydroxy ligand is frequently associated with the formation of polynuclear complexes
in which the hydroxy ligands are associated with two metal ions which they bridge,
as opposed to a single metal center. This is a process which is known as olation and
was first described by Werner in his pioneering studies of kinetically inert cobalt(iir)
complexes.

The vanadium(in) ion [V(H,0)¢]** (9.9) exhibits this behaviour, with a log K of 4
associated with the formation of the hydroxy-bridged dinuclear complex 9.10. This
is a general phenomenon. For example, chromium(u) and iron(i) form strictly
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analogous olated dinuclear complexes. In the case of the iron(mr) species, the process
can proceed further to generate bridging oxy ligands (Egs. 9.22-9.24).

2[(H,0)sCr(OH,)**== [(H,0),Cr(OH),Cr(H,0),]* + 2H* log K = 4.0 (9.22)
2[(H,0)sFe(OH,)**= [(H,0),Fe(OH),Fe(H,0),]** + 2H*  log K = 3.3 (9.23)
[(H,0)4Fe(OH),Fe(H,0),]**= [(H;0):Fe(0),Fe(H;0),]* + 2H* (9.24)

This is only the beginning of a process which ultimately results in the formation
of solid state hydroxides or oxides. Actually, the solution species present in neutral
or alkaline solutions of transition-metal ions are relatively poorly characterized.
The formation of numerous hydroxy- and oxy-bridged polynuclear species makes
their investigation very difficult. However, it is clear that there is a near-continuous
transition from mononuclear solution species, through polynuclear solution species
to colloidal and solid state materials. By the way, the first example of a ‘purely’
inorganic compound to exhibit chirality was the olated species 9.11.

NH, 6+
| NH; NH;
3
HsN——Co—OH H ‘
} 7 | | O——Co—NH,
HN 10 Cc,/—o/l
l H NH,
HO
| OH
HiN /Co—NH3
W |
H; NH,

9.11
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9.4.5 The Stabilization of High Oxidation States

There is an interesting paradox in transition-metal chemistry which we have
mentioned earlier — namely, that low and high oxidation state complexes both tend
towards a covalency in the metal —ligand bonding. Low oxidation state complexes
are stabilized by m-acceptor ligands which remove electron density from the electron
rich metal center. High oxidation state complexes are stabilized by 7-donor ligands
which donate additional electron density towards the electron deficient metal centre.

The stabilization of high oxidation state compounds might seem particularly
paradoxical. The highest oxidation states are usually only stabilized by ligands such
as fluoride and oxide. Complex species such as [MnO;F] and [Mn,0,] represent the
stabilization of manganese(vi), [CrO,]*, [Cr,0,]*> and [CrO;Cl]- of chromium(vi),
whilst iron(v1) is observed in Na,[FeO,]. The oxo ligands form formal double bonds
with the metal, and the short M- O distances that result allow efficient transfer of
charge to the electron deficient metal centre. In the case of fluoride, the short M—F
distances (as fluoride is a relatively small ligand) allow efficient overlap between
the filled 2p orbitals of the fluorine and the empty orbitals of the metal. And yet a
further paradox: the ligands which stabilize the highest oxidation states are those
with the most electronegative donor atoms! However, despite the fluorine being
electronegative, it is acting as a 7-donor to the metal!

9.4.6 The d Orbitals, Covalent Character and Variable Oxidation States
— A Summary

In Chapter 6, we introduced the idea of the variable role of the d orbitals in
transition-metal complexes as a function of changing oxidation state. At that point,
we focused upon the difference between low oxidation states and ‘higher’ ones
(meaning those typical of Werner-type compounds; say, +2 or +3). In this chapter,
we have concentrated rather more on high oxidation states and have noted the
‘paradoxical’ variations in the covalent character of the M—L bonds with varying
oxidation state. We now draw these various themes together and provide an overview
of changing bonding character throughout the d-block chemistry.

In Fig. 9-2, we offer a schematic summary of the determinants of covalent
character in transition-metal bonding.

In intermediate and high oxidation states, the (3)d orbitals are increasingly ‘inner’
with respect to the (4)s and (4)p orbitals. As discussed repeatedly throughout this
book, these d orbitals may be considered as largely uninvolved in direct overlap
with the ligand orbitals: they are essentially excluded from the metal’s valence
shell. In changing from, say, the +2 oxidation state to the +7 state, the polarizing
power, or hardness, of the notional M"* ion increases dramatically and non-linearly
(curve 1 in Fig. 9-2). Higher oxidation states will be accessible only with hard
ligands (soft anions would reduce the metal in these higher oxidation states). Though
retained tightly by the ligands, their electron density is drawn towards the more
highly charged metal and so the covalent character of the ML bonds increases
steadily with increasing n. The same conclusion follows with the recognition that
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1 Polarizing power and
clectronegativity of M™

2 Availability of d orbitals
for overlap

3 Resultant covalent character

M-L bond covalent character

+7 +2 -1
Oxidation state

Figure 9-2. The variation of covalent character with oxidation state.

the electronegativity of a progressively more positive metal ion rapidly approaches,
or even surpasses, that of even an atom like fluorine. So the (perhaps) 50% covalent
character of the M—L bonds in typical metal(i) complexes increases with increasing
oxidation state.

On the other hand, a decrease in oxidation state from metal(i) quite rapidly
releases the (3)d orbitals into the valence shell. The d orbitals are full, or frequently
so, so that M—L bonding electron density now derives from both metal and ligand
(this is in contrast to the dative covalency of higher oxidation state complexes in
which the electron density emanates from the ligands alone). We thus observe an
increase in covalent character on decreasing the oxidation state from metal(i1), but
this time originating from the rapidly increasing participation of the (3)d orbitals in
the valence shell (and the emerging dominance of the 18-electron rule). Towards
this extreme, we see the growing importance of soft metal/soft ligand interactions,
mediated by the synergic ‘back-bonding’, first mooted by Chatt, Dewar and
Duncanson.

Throughout the scheme summarized above, we are to understand that multi-
ple bonding involves (3)d,—L, overlap in the low oxidation state complexes, but
(4)p.—L, overlap in the high oxidation state complexes. These latter are generally
characterized by substantially shorter bonds, thus facilitating p,— L, overlap relative
to a presumably small such contribution in less tightly bound Werner-type systems.
In any case, the degree of (4)p,—L, overlap need not be great since all that is
required to satisfy the electroneutrality principle is a sufficient drift of electron
density towards the metal. This could be dominated by o-bonding contributions
although we need not guess the relative proportions of ¢ and 7, however, to make
the main point.
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9.5 Consequences of the d-Electron Configuration
upon Reaction Rates

Thus far, we have focused upon the thermodynamic consequences of the d-electron
configuration. Many everyday observations in transition-metal chemistry have more
to do with the relative rates of reactions rather than the position of a thermodynamic
equilibrium. So now we consider some of the kinetic manifestations of partially
filled d orbitals.

9.5.1 Kinetically Inert and Labile Complexes

It is convenient to divide the discussion of the mechanistic behaviour of transition-
metal complexes into those of labile and non-labile complexes, imperfect though
this division may be. The description of a complex as labile or non-labile is
empirical, being based upon the typical time it takes for a reaction to proceed to
completion. We adopt the suggestion of Taube, which refers to substitution reactions
in which one of the ligands coordinated to a metal center is replaced by another
ligand. If this process is complete in less than one minute (at 298 K with reactant
concentrations of 0.1 M), then the complex is described as labile, whereas if it
takes considerably longer than this time, the complex is described as non-labile or
inert. In what follows, we should note two generalities. Firstly, inert complexes are
not necessarily thermodynamically stable with respect to the reaction under
consideration; conversely, thermodynamically stable complexes often undergo rapid
reactions. Secondly, the properties of lability and inertness are found to be loosely
associated with particular metal ions in particular oxidation states; complexes of
cobalt(ur), chromium(nr) and most second and third row transition metals are
generally inert.

9.5.2 Ligand Substitution Reactions

One of the commonest reactions in the chemistry of transition-metal complexes is
the replacement of one ligand by another ligand (Fig. 9-3) — a so-called substitution
reaction. These reactions proceed at a variety of rates, the half-lives of which may
vary from several days for complexes of rhodium(in) or cobalt(iu) to about a
microsecond with complexes of titanium(1m).

L. ~ 1L +X L. ‘ 1L

S AN

L ' L L ‘ X
L L

Figure 9-3. The substitution of L by X in an octahedral complex.
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The precise mechanism by which this process occurs has been the subject of
considerable study and debate over the past thirty years. Limiting mechanisms would
involve an associative process in which an intermediate or transition state of
increased coordination number is formed (the Sy2 mechanism of organic chemistry
represents a limiting associative process), or a dissociative one with an intermediate
or transition state of lower coordination number (the limiting Sy1 mechanism of
organic chemistry). These mechanisms differ in the relative importance of bond-
making to the incoming ligand and bond-breaking with the leaving ligand in the
transition state. In general, the mechanisms are thought to be of the interchange
type in which bond-making with the incoming group is concurrent with bond-
breaking to the leaving group. These reactions are delineated I, or I; depending
whether bond-making to the incoming ligand or bond-breaking to the leaving ligand
is considered to be dominant in the transition state. In many cases, conventional
kinetic studies do not provide data to allow unambiguous assignment of the
mechanism for substitution reactions. The reader is referred to the reading list at the
end of this chapter for further information upon this vexing subject!

As already mentioned, complexes of chromium(im), cobalt(iit), rthodium(i) and
iridium(in) are particularly inert, with substitution reactions often taking many hours
or days under relatively forcing conditions. The majority of kinetic studies on the
reactions of transition-metal complexes have been performed on complexes of these
metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to
those in organic chemistry, and the techniques which have been developed for the
investigation of such reactions are readily available and appropriate. The time scales
of minutes to days are compatible with relatively slow spectroscopic techniques.
The second reason is associated with the kinetic inertness of the products. If the
products are non-labile, valuable stereochemical information about the course of
the substitution reaction may be obtained. Much is known about the stereochemistry
of ligand substitution reactions of cobalt(i1) complexes, from which certain
inferences about the nature of the intermediates or transition states involved may be
drawn. This is also the case for substitution reactions of square-planar d® complexes
of platinum(ir), where study has led to the development of rules to predict the
stereochemical course of reactions at this centre.

It will not have escaped the reader’s attention that the kinetically inert complexes
are those of d* (chromium(im)) or low-spin d® (cobalt(ir), rhodium(im) or iridium(ir)).
Attempts to rationalize this have been made in terms of ligand-field effects, as we
now discuss. Note, however, that remarkably little is known about the nature of the
transition state for most substitution reactions. Fortunately, the outcome of the
approach we summarize is unchanged whether the mechanism is associative or
dissociative.

Basolo and Pearson, in their classical work on inorganic reaction mechanisms,
developed a ligand-field based approach to understanding the occurrence of
kinetically inert transition-metal ions. They calculated the LFSE associated with the
starting (octahedral) complex for a given d" complex (Dg values were deduced
from actual spectroscopic data). They then considered limiting associative and
disocciative mechanisms leading to seven- or five-coordinate intermediates. The
five-coordinate intermediate in the dissociative process might exist as a square-
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based pyramid or as a trigonal bipyramid. They attempted then to determine the
ligand-field stabilization energy for the intermediate by assuming that the overall
magnitude of the ligand-field from the ligands is unchanged on passing from the
starting complex to the intermediate. Although the justification for this may seem
tenuous, it being argued that the change in number of ligands is countered by
changes in bond lengths, recent and detailed ligand-field analyses support this early
idea. For example, the reduction in the ligand-field expected on going from six to
five ligands is balanced by the five ligands being closer to the metal ion in response
to the requirements of the electroneutrality principle. The ligand-field splittings for
a variety of geometries were so calculated (in terms of A,,). The change in LFSE
between starting complex and intermediate was termed the ligand-field activation
energy (LFAE). A decrease in ligand-field stabilization energy upon passing from
the ground state to the transition state (a positive LFAE in their definition), would
provide an additional contribution to the overall activation energy for the substitution
process. A negative contribution corresponds to a lowering of the activation energy
for substitution. Basolo and Pearson found that the LFAE for substitution of d* or
low-spin d® was positive regardless of the coordination number or geometry of the
transition state. [Perhaps this is just another way of stating that the LFSE for
octahedral d? or low-spin d® centers is high!] Clearly, the approach hinges upon the
reliability of the estimates of the ligand-field stabilization energy for the transition
state, whose detailed geometry is unknown.

<
-

Octahedron Square-based Pentagonal
pyramid bipyramid

Box 9-2

_)c—x

N

The diagram shows the splitting diagrams which are used in calculations of this type. The
LFSE for an octahedral d*® ion is—1.2A.,. The estimated LFSE’s for square-planar five
coordinate and pentagonal bipyramidal seven-coordinate transition states are — 1.0A,. and
—0.774A, respectively, leading to LFAE’s of +0.24,, and +0.426A,, respectively.
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9.5.3 Rates of Electron Transfer Reactions

In the same way that we considered two limiting extremes for ligand substitution
reactions, so may we distinguish two types of reaction pathway for electron transfer
(or redox) reactions, as first put forth by Taube. For redox reactions, the distinction
between the two mechanisms is more clearly defined, there being no continuum of
reactions which follow pathways intermediate between the extremes. In one pathway,
there is no covalently linked intermediate and the electron just “hops” from one
center to the next. This is described as the outer-sphere mechanism (Fig. 9-4).

]r 2+ % 3+ Ir 3+ L 2+
L L L L L L I
) R el Bl o Ll Y Vs
| YL 1 |"YL 1 | YL v

L L L L

M,(II) M,(ITI) M (HII) My(ID)

Figure 9-4. The outer-sphere mechanism for an electron transfer reaction between
two complexes. No covalently-linked intermediate is involved in the reaction.

The second mechanism involves the formation of a covalent bridge through which
the electron is passed in the electron transfer process. This is known as the inner-
sphere mechanism (Fig. 9-5).

The inner-sphere mechanism is restricted to those complexes containing at least
one ligand which can bridge between two metal centers. The commonest examples
of such ligands are the halides, hydroxy or oxo groups, amido groups, thiocyanate

I|J 2+ I[ 3+ L L 5+
L X L L Lo | X I L
o I e Il o o
L | YL L | YL L | YL " | YL

L L L L

M, (1D M, (ID) M, dD) M, 1I)

Il‘ 3+ I‘J 2+ L L 5+
L L X L L | X [ L

~ 11 + \Mz: » ~ 1/ \MZ/

I | YL L 'YL | YL 1 | YL

L L L L

M, (IID) My(ID) M, (111 Ma(1D)

Figure 9-5. The inner-sphere mechanism for an electron transfer reaction between two
complexes. A covalently-linked intermediate is involved in this reaction.



190 9 Chemical Consequences of the d-Electron Configuration

and more complex conjugated organic ligands such as pyrazine (9.12) or 4,4'-
bipyridine (9.13).

N N
A N
(J @
i
o |
N
9.12 9.13

The scheme in Fig. 9-5 above illustrates the case in which the bridging ligand,
X, is transferred from metal center M; to M, in the course of the reaction. Although
this is not a necessary consequence of an inner-sphere pathway, it is often observed,
and provides one method for establishing the mechanism.

It is often very difficult to distinguish one mechanism from another, but some
clever experiments based upon LFSE effects have been designed. In the previous
section, we established that d> and low-spin d° metal complexes are kinetically
inert, and only undergo ligand substitution and displacement reactions with difficulty.
Study of electron transfer reactions between two such kinetically inert metal centers
suggests that the redox processes proceed by outer-sphere mechanisms, since we
cannot form the new metal-ligand bonds necessary in forming the bridged inter-
mediate for an inner-sphere mechanism. Typical studies have involved cobalt(m),
chromium(ir), iron(ir), ruthenium(1r) and osmium(r) complexes. A typical example
of a reaction involving two kinetically inert reactants is given in Eq. (9.25).

[Ru(bpy);]** + [Co(en);]**= [Ru(bpy);]** + [Co(en);]*
ds dsé d’ d’
inert inert labile labile.

(9.25)

In the case of other systems in which one or both of the reactants is labile, no
such generalization can be made. The rates of these reactions are uninformative,
and rate constants for outer-sphere reactions range from 10 to 10" sec”!. No
information about mechanism is directly obtained from the rate constant or the rate
equation. If the reaction involves two inert centers, and there is no evidence for the
transfer of ligands in the redox reaction, it is probably an outer-sphere process.

However, some quantitative interpretation of the rates of outer-sphere reactions
may be made. It is possible to determine the rate constant, ki, for the reaction of
two complex ions [M'Lg¢]*" and [M?L¢]** (Eq. 9.26).

[M'L¢]* + [M2Lg]** — [MIL¢]P* + [M2Lg]* ks (9.26)

Marcus and Hush have developed a theory, which bears their names, that relates the
value of &, to the rates (k;; and k,,) of the ‘self-exchange’ reactions of the two
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components (Eq. 9.27 and 9.28) and the stability constant K, for the reaction of
interest.

[M'Lg]* + [M'L¢J** = [MILgJP* + [M'Lg]?* kyy (9.27)
[M2L¢]?* + [MPLg* — [MZLg]** + [M2Lg]* ka (9.28)

In many cases, the values of kj; and k,, may be directly or indirectly determined.
We shall say no more about this relationship here, other than to indicate that it
proves to be generally applicable, and is sufficiently accepted that the Marcus-Hush
equation is now used to establish when an outer-sphere pathway is operative. In the
context of this chapter, the involvement of the K}, term is interesting for it relates
to the relative stabilization of various oxidation states by particular ligand sets. The
factors which stabilize or destabilize particular oxidation states continue to play
their roles in determining the value of K,, and hence the rate of the electron transfer
reaction.

There is a very special case for self-exchange reactions in which the left side of
the equation is identical to the right side. Accordingly, there is no free energy
change in the reaction, and the equilibrium constant (K;;) must be unity (Eq. 9.29).

[Co(NHy)el** + [Co(NHa)e]** = [Co(NH3)e]** + [Co(NHa)el™ (9.29)
AG®=0 IgKk=0

However, metal ions in higher oxidation states are generally smaller than the
same metal ion in lower oxidation states. In the above example, the Co(i1)— N bonds
are longer than Co(1r) — N bonds. Consider what happens as the two reactants come
together in their ground states and an outer-sphere electron transfer occurs. We
expect the rate of electron transfer from one center to another to be very much
faster than the rate of any nuclear motion. In other words, electron transfer is very
much faster than any molecular vibrations, and the nuclei are essentially static
during the electron transfer process (Fig. 9-6).

Thus, the interaction of the ground state cobalt(ir) complex with long Co—N
bonds and the ground state cobalt(i) complex with shorter Co—N bonds initially

- - 2+ — - 3+
L
L 3+ L L 2+
L\CIO/L L\CO/L L\Clo/L . L\CO/L
v v + L( ~ L
L 1 L L/ L I[ L/ N .
L L
Co(IID) Co(ID) Co(II)* Co(IID*

Figure 9-6. The consequences of a self-exchange electron transfer between a ground state
cobalt(1r) and a ground state cobalt(ir) complex.
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occurs without any rearrangement of Co—N bond lengths. Both products will, of
course, be in vibrationally excited states. The cobalt(i) complex will have
compressed Co—N bonds whilst the cobalt(un) complex will have extended Co~N
bonds. At a later stage, these must relax to the equilibrium Co-N bond lengths
appropriate for each oxidation state. This step involves the emission of energy. Yet
there is no overall energy change in the reaction. The requisite balance derives from
an activation energy associated with the electron transfer process. In order for there
to be no overall energetic change in the electron transfer self-exchange reaction, the
electron transfer must occur between vibrationally excited species with equivalent
bond lengths (Fig. 9-7).

2+

3+ 2
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Co C e Co Co
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Figure 9-7. The self-exchange electron transfer reaction between vibrationally excited cobalt(ix)
and cobalt(nr) complexes.

This is the origin of the various values for self-exchange rate constants. We may
now attempt to rationalize some of these in terms of the d-electron configurations
of the various oxidation states. Consider the self-exchange rate constants for some
iron complexes.

[Fe(phen);]>* k=108 M1 ¢!
[Fe(CN)g]+"* k=10 M s
[Fe(H,0)e]**?* k=10 Mg

The water complexes are high spin, whereas the cyanide and phen complexes are
low spin. In the case of the cyanide and phen complexes, the interconversion of the
S iron(11) and &) iron(in) states simply involves the loss or gain of an electron from
the #,, level. Since these are the orbitals oriented between the ligand donor atoms,
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there will only be minimal changes in the electron-ligand repulsions and small
consequent changes in the Fe-ligand distances. The small changes in Fe-ligand
distances mean that the activation energy for the electron transfer reaction will be
low, and the rate of the reaction will be high. In the water complex, the #3e? iron(ir)
and t,2e? iron(m) states are involved. Once again, the electronic changes are occurring
in the f,, manifold. It is thought that the reason for the very rapid reactions of the
phen complexes are due to the involvement of the 7" orbitals of the ligand in the
electron transfer process.

An interesting contrast is seen when we consider related reactions involving
cobalt (Eq. 9.30). In this case, there is a spin state change in the electron transfer
process. This results in two separate contributions to the high activation energy for
the self-exchange. The high-spin cobalt(i1) complex possesses two electrons in the
e, orbitals. These are oriented directly towards the ligands, and electron-ligand
interactions are expected to result in long Co-ligand distances. In these complexes,
the Co(i1)— N distance is 2.11 A and the Co(im)— N distance is 1.93 A. The activation
energy is high because of this difference in bond lengths, but also because of the
electronic rearrangement that is needed in the process. No longer do we simply
move an electron from one center to another for now a rearrangement of electrons
is to be achieved. For the same reasons underlying the Franck-Condon principle,
we expect to have electron transfer between electronically excited states (Egs. 9.31
or 9.32). Further discussion of this topic is beyond the scope of this book.

[Co(NHa)e]** + e = [Co(NHs)e]?* k=10°M" ¢!

low spin high spin (9.30)
1 el

Co(in) —Co(m*  —Co(w) (9.31)
[22 lzsgeé lz'zeg

Co(1m) —Co(m)* —Co(n) (9.32)
tzg tz(ée; t25ge§

We conclude with a consideration of a few other cobalt self-exchange reactions.
The reaction in Eq. (9.33) is faster than that involving the ammine complexes (Eq.
9.30) because the water is a weaker-field ligand than ammonia. Thus, the activation
energy for the formation of the electronically excited states is lower, as is the
change in Co-ligand distances in the two oxidation states.

[Co(H,0)]** + e~ = [Co(H,0)]* k=1M"1s"! (9.33)
low spin high spin
o hye;

The reaction in Eq. (9.34) is also faster because the bpy ligand is a strong field
ligand and there is no longer any need for electronic rearrangement upon change in
oxidation state. The process is now comparable to those discussed earlier for low
spin iron complexes.
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[Co(bpy)s]** + e = [Co(bpy)s]** k=1M"s"
low spin low spin (9.34)
2 hyey

Finally, we consider the alternative mechanism for electron transfer reactions -
the inner-sphere process in which a bridge is formed between the two metal centers.
The d-electron configurations of the metal ions involved have a number of profound
consequences for this reaction, both for the mechanism itself and for our
investigation of the reaction. The key step involves the formation of a complex in
which a ligand bridges the two metal centers involved in the redox process. For this
to be a low energy process, at least one of the metal centers must be labile.

A number of ingenious experiments have been devised to establish the operation
of this mechanism. These all revolve about the lability or inertness of particular d-
electron configurations. Remember that complexes of first row transition-metal ions
which possess d? or low-spin d¢ electronic configurations are usually particularly
inert with respect to ligand substitution reactions — they are kinetically stabilized.
Consider the reaction of the cobalt(i) complex [Co(NH;)sCI]?* with the chromium(ir)
complex [Cr(H,0)]* in Eq. (9.35). The first step in an inner-sphere process would
be the formation of a chloro-bridged complex. The chloride ligand is better suited
for bridging than either of the neutral water or ammonia ligands. The d® cobalt(mr)
center is kinetically inert, but the d* chromium(1) complex is labile. The intermediate
bridged complex is thus formed by the displacement of a water molecule from the
chromium, and with retention of the cobalt—chloride bonding. If this complex
collapses without electron transfer, it will be the labile Cr—Cl bond which breaks to
regenerate the starting complexes.

[Co™(NH;)sC1]** + [Cr''(H,0)6]** = [(NH3)sCo"(u-CH)Cr"(H,0)s]**
d® d* d® d* (9.35)
inert labile inert labile

On the other hand, if electron transfer does occur within this bridged complex, a
bridged cobalt(i1) -~ chromium(im) complex is generated (Eq. 9.36). The d’ cobalt(ir)
center is labile whilst the d? chromium(m) center is inert.

[(NH;)sCo™(u-C)Cr''(H,0)s]** = [(NH;)sCo™(u-Cl)Cr''(H,0)5]*
dé d* d’ d? (9.36)
inert labile labile inert

If this complex now collapses, it will be the labile Co—Cl bond which is broken,
as opposed to the inert Cr—Cl bond. The labile cobalt(il) complex reacts further
with bulk water to generate [Co(H,0)]*" (Eq. 9.37). The key feature is that a
necessary consequence of this inner-sphere reaction is the transfer of the bridging
ligand from one center to the other. This is not a necessary consequence of all such
reactions, but is a result of our choosing a pair of reactants which each change
between inert and labile configurations. In the reaction described above, the chloride
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ion transfer does indeed occur, thus providing strong circumstantial evidence for
the proposed mechanism.

[(NH;)sCo'(u-C)Cr'(H,0)s]*= [Co(NH;)s(H,0)1** + [Cr"(H,0)sCl1]*
d’ da’ d’ d? (9.37)
labile inert labile inert

Suggestions for further reading

The general textbooks mentioned earlier all discuss various aspects of the material
presented in this chapter.

1. E.C. Constable, Metals and Ligand Reactivity, Ellis Horwood, Chichester, 1990
— This discusses the metal-activated reactivity of ligands.

2. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reactions, Wiley, New York,
1967

— The classic text concerned with inorganic reaction mechanisms.






10 The Lanthanoid Series

10.1 The Lanthanoid Contraction

Thus far, we have focused exclusively upon the d-block metals. For some, the term
‘transition elements’ defines just these d-block species; for others, it includes the
rare earth or lanthanoid elements, sometimes called the ‘inner transition elements’.
In this chapter, we compare the d-block and f-block (lanthanoid) elements with
respect to their valence shells. In doing so, we shall underscore concepts which we
have already detailed as well as identifying both differences and similarities between
certain aspects of ‘main’ and ‘inner’ transition-metal chemistry. We make no attempt
to review lanthanoid chemistry at large. Instead our point of departure is the most
characteristic feature of lanthanoid chemistry: the +3 oxidation state.

The lanthanoids occur under scandium and yttrium in the periodic table. Some
useful data are presented in Table 10-1. On crossing the series of +3 ions from
lanthanum to lutetium, observe the variation of electronic configuration 4f" from n
= 0 to n = 14. Note too, a decrease in ionic radius by about 20% across the series.
The reason for a size reduction across any series in the periodic table is, of course,
the increase in effective nuclear charge that results from the inefficient mutual
shielding of electrons in the same shell, together with the monotonic increase in
real nuclear charge. However, the phenomenon is particularly marked in the
lanthanoid series and is referred to as ‘the lanthanoid contraction’. Perhaps the
main reason for drawing attention to it by this special name lies in its consequences
for the chemistry of the third row d-block elements that follow the lanthanoid series.
That chemistry is strongly affected, as ever, by ionic radius. The increase in size of
the third row d-block elements relative to those of the second row, which is expected
from the increased number of electrons and the higher principal quantum number of
the outer ones, is almost exactly offset by the intervening lanthanoid contraction. In
consequence, there are more similarities between the chemistries of the second and
third row transition metals than between the first and second row elements.

The magnitude of the contraction across the whole lanthanoid series is due partly
to the length of the series — the placement of up to 14 electrons in the 4f shell — and
partly to the poor shielding of one f electron for another. The poor shielding arises
in two ways. Firstly, the form of the radial wavefunction for 4f electrons, like that
of the 3d, involves no inner maxima. Thus, these f orbitals are not of the
‘penetrating’ type, and so little inner electron density is available to shield the outer
regions from the (increasing) nuclear charge. Secondly, f orbitals are often described
as ‘diffuse’. It is important to be clear about the use of this adjective here, however,
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Table 10-1. Configurations and ionic radii for the lanthanoids.

Electronic configurations”

Element Symbol Atomic M3+ M?*ionic
radius/A
Lanthanum La 5d'6s? - 1.061
Cerium Ce 412652 411 1.034
Praesodymium Pr 413657 412 1.013
Neodymium Nd 414652 4f3 0.995
Prometheum Pm 415652 454 0.979
Samarium Sm 4f%6s2 4f> 0.964
Europium Eu 417652 4f° 0.950
Gadolinium Gd 4f75d16s> 4f7 0.938
Terbium Tb 4f65? 4f® 0.923
Dysprosium Dy 4119652 4f° 0.908
Holmium Ho 4111652 4f10 0.894
Erbium Er 4112652 411 0.881
Thulium Tm 4113652 4512 0.869
Ytterbium Yb 4114652 4713 0.858
Lutetium Lu 411454165 4f14 0.848

*Outside of closed [Xe] shell.

since they are not radially diffuse. Indeed, as we shall discuss at length shortly, they
are radially compact. They are angularly diffuse in that f orbitals have many more
lobes than d orbitals, for example. The f orbitals have a larger angular spread and
since they are normalized to unity — corresponding to their housing exactly one
electron (of a given spin) — the local electron density is rather low. This, too,
contributes to the poor self-shielding within the 4f shell.

10.2 The Core-Like Behaviour of f Electrons

The radial spread of the 4f orbitals in lanthanoid +3 ions is so limited that f electron
density is almost totally confined to the inner regions of the lanthanoid ion. Figure
10-1 schematically compares the radial waveforms of the 4f and 6s orbitals. The
situation is rather like that in Fig. 2-1 for the 3d and 4s orbitals in the first row d
block for higher oxidation state species. We have seen what consequences flow
from the relative ‘isolation’ or ‘uncoupling’ of the d electrons in such circumstances.
In particular, recall how the chemical bonding between a d-block metal and its
ligands is effected within a metal valence shell that is largely 4s; and how the d
electrons modify that bonding by ‘secondary’, repulsive and other non-overlap
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Figure 10-1. Radial probability functions for typical 4f and 6s orbitals.

means. The same is true for the lanthanoids, but to a greater extent. The core-like
behaviour of the 4f orbitals in lanthanoid +3 ions is even more pronounced than
that of the 3d orbitals in analogous d-block complexes. There is no significant
contribution from the 4f shell to the valence shell in lanthanoid chemistry. This
does not imply an ionic chemistry of Ln** species, however, any more than that d-
block bonding is primarily ionic. We discuss evidence of covalency in lanthanoid
complexes below. First, we look at the consequences for the f-electron shell of its
‘contracted’ or core-like character.

10.3 Magnetic Properties in the f Block

The number of terms arising from a given f” configuration is generally much larger
than from 4" and follows directly from the greater degeneracy of the f shell. We
shall see something of the complexity of f~block term diagrams in the next section.
However, it is quite simple to work out the ground terms in the f block by using
Hund’s rules. For the f° configuration, for example, we maximize spin by placing
each electron in a separate orbital (so reducing the interelectron repulsion energy).

m, 3 2 1 0 -1 -2 -3
T T T T T T

The total z component of the spin angular momentum, M,, is given by the sum
Y. m, = 3 and implies a total spin for the ensemble of § = 3 and a spin-multiplicity
(25 + 1) of 7. Similarly, X, m, = 3, yielding L = 3. The ground term of f¢ is therefore
’F.

Spin-orbit coupling, which arises from the magnetic interactions amongst
electrons, splits the ’F term into levels 'F; with J values varying from the sum (L +
S ) to the difference IL—SI, as usunal. We find J ranging 0 to 6 in this case. For less-
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Figure 10-2. Splittings of "F ground terms for f® and f* configurations.

than-half-filled shells, as here, Hund’s third rule places the level with the minimum
J value lowest in energy; so the ground level is 7F,. Landé’s interval rule defines
the energy separation between two adjacent levels as A, the spin-orbit coupling
coefficient, times the larger of the two J values. Collecting all these results together,
we establish the splitting pattern for the ground term of f¢ as shown in Fig. 10-2a.
It is left as an exercise for the reader to show that the corresponding ground term
and level stacking for f* ions are as shown in Fig. 10-2b.

Now the magnitudes of the spin-orbit coupling coefficient are much greater in
the f block than the d. Consequently, the energy separations between levels for f-
block ions are usually much larger than the ambient thermal energy, k7. For the f*
ions of terbium(mm), for example, A = 270 cm™ and the first excited level, 7Fs, lies
1620 cm ! above ground. At room temperature, kT = 200 cm™! so that the population
of the 7F; level is about ¢~1629200 which is negligible.

We saw in Chapter 5 that the paramagnetism of a system primarily depends upon
the splitting of populated states within an applied magnetic field. So, for an
(obviously unobtainable) sample of Tb** ions, the magnetic moment is primarily a
function of the ’F level alone. There are second-order contributions arising from
the mixing of higher levels into the ground level by the magnetic field but, as these
are inversely proportional to the energy separation between the mixing levels, they
are generally small. An analytical formula for the effective magnetic moment, L.,
has been derived for the case where only one level, >*!L,, is thermally populated
and second-order contributions are ignored (Eq. 10.1).

L = g J(J +1) (10.1)

In Eq. (10.1), g is the ‘Landé splitting factor’ and is given by the expression in Eq.
(10.2).
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N JJ+D)=LIL+1D)+85(85+1)
2J(J+1)

These formulae explicitly involve only the L, S and J quantum numbers that define
the ground level ¥*!'L;, as required.

The discussion thus far refers to free ions. One can apply the formulae to the
magnetism of d-block compounds but it fails utterly to reproduce experiment. The
inapplicability of Eq. (10.1) is due to two factors: a) the smaller magnitude of A —
at least in the first row < metals — means that level splittings in the free ions are
smaller and molecules significantly populate more than just the ground level, and
b) the formula takes no account of the ligand-field splitting of the free-ion terms.
We have seen that such splittings in the d block are of the order of several thousand
wavenumbers, a perturbation that dwarfs the effects of spin-orbit coupling. Indeed,
spin-orbit coupling is manifest in the magnetic properties of first row d-block
complexes largely as a correction to the ‘spin-only’ formula (though these
corrections are very important for ions with 7 ground terms).

The neglect of the ligand field in Eq. (10.1) leads one to expect no satisfactory
account of the experimental magnetism of lanthanoid complexes either. It is an
empirical fact, however, that Eq. (10.1) accounts extremely well for observed
magnetic moments in most lanthanoid compounds. We compare typical experimen-
tal moments for lanthanoid complexes with those calculated from Eq. (10.1) in Fig.
10-3. Significant discrepancies occur for f° and f® species and we will comment on
these shortly.

The question therefore arises of ‘why does neglect of the ligand field, implicit in
Eq. (10.1), not matter for the f block while it is utterly unacceptable for the d
block?’. The answer is both trivial and subtle. Trivially, the neglect is acceptable

g =1

(10.2)

10 - ..
.‘x \‘.‘
¢ 3
! -.‘
g
i 51
85
=
L _IEETT o, ° L ]
. '
L ]
0 T T T T T N.'; T T T T T T T “I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(Ln**) f* configuration

Figure 10-3. Comparisons between typical observed effective magnetic moments (*) and those
calculated (----- ) with Eq. (10.1).
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for the lanthanoids because the ligand field itself is negligible. The f electrons are
sufficiently buried beneath the valence shell so that they are affected very little by
the ligand environment. The bond orbitals engaged in binding a lanthanoid metal to
its ligands largely lie beyond the radial extent of the f orbitals so that ligand-field
splittings are very small. We shall see in the next section that splittings of tens of
wavenumbers in the f series replace the thousands of wavenumbers in the d series.

The subtle reason, which we do not detail here, is as follows. The splittings
caused by normal laboratory magnetic fields are of the order 0.1 to 1 cm™! only.
These are, of course, small even compared with the small ligand-field splittings
typical of lanthanoid complexes. One might expect, perhaps, that even these small
ligand-field splittings cannot be ignored when considering magnetic properties.
Actually, such expectations are not as reasonable as might first appear, partly because
magnetism is about the changes that occur on application of an external field.
Nevertheless, it requires a theorem due to Van Vleck to show generally and
irrefutably that, so far as mean (spatially averaged) magnetic moments are
concerned, ligand-field splittings which are no larger than about kT have near
negligible effects upon paramagnetism. Incidentally, this same theorem explains
why so many of the simple formulae described in Chapter 4 work satisfactorily
even when molecular geometries depart slightly from rigorous octahedral or
tetrahedral symmetry. It is a crucial theorem for the theory of paramagnetism. This
book, however, is not the place to demonstrate this important result.

Altogether, we can say that the success of Eq. (10.1) in reproducing the magnetic
moments of lanthanoid complexes is due entirely to the very small magnitude of
the ligand-field splittings and so, in turn, to the contracted nature of the f orbitals.

We conclude this section with a further commentary on the discrepancies noted
for the f° and f® systems. Consider first the case of the f° samarium(in) complexes.
The ground term is °H with six levels ranging J = 15/2 to 5/2. The °Hs;, level is
lowest in energy with the first excited level lying 74/2 above it, or some 1650 cm~".
The second-order Zeeman effect, relating to the admixture of the first excited °Hy,
level into the ground °Hs, level (and, indeed, of the yet higher lying levels) is not
negligible in this case. More complete calculations which include these second-
order effects, as Eq. (10.1) does not, do actually reproduce the observed moments
for f5 species very well. Second-order Zeeman terms are also important for f°
europium(in) species. In this case, however, the ground level is 'F,, as we showed
above. Equation (10.1) yields a zero moment for this level. The same result can be
arrived at as follows. The degeneracy of the 7Fy level is (2J+1) = 0. A singly
degenerate level cannot split in a magnetic field (or any other, of course) and so
gives rise to no first-order paramagnetism. The first excited level, ’F, lies 14 above
ground, or about 230 cm~'. (Note, by the way, that for f* ions, the "F; level lies 64
= 1380 cm~! above the ground "F, so illustrating a major difference between f”
configurations and their ‘hole equivalents’). Accordingly, there is a significant
population (e~ 2%2%0) of the first excited level for f°. So, in addition to any se-
cond-order Zeeman corrections, we must include first-order terms relating to
electrons populating this excited level. Once more, a full calculation of these effects
does indeed reproduce the magnetic moments that are typically observed for f°
species.
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Overall, then, the magnetic moments of all lanthanoid complexes are well
reproduced without reference to the ligand field; inter alia, we can infer that the
ligand-field splittings in f-block complexes are no greater than about k7T at room
temperature.

10.4 Spectral Features

Part of the absorption spectrum of an aqueous solution of neodymium(im) —
configuration f* - is shown in Fig. 10-4. The situation shown there is quite typical
of the whole of the lanthanoid series i.e. we could have chosen any f* configuration
equally well to illustrate the main characteristics of the spectra of lanthanoid
complexes. We shall focus on three main features: splittings, band widths and abso-
lute excitation frequencies.

absorbance

)

! 1 ]
20 15 10
viem' x 10°

Figure 10-4. Absorption spectrum of an aqueous solution of Nd** ions.

The solution spectrum is remarkably similar to that of the corresponding free ion
in that slightly split groups of transitions replace the free-ion spectral lines on a
one-to-one basis. These splittings are the ligand-field components. That they
occasionally seem so numerous is due to the more complex geometry of the species,
which is probably [Nd(H,0).]*, as well as to the fact that the greater degeneracy of
the f shell relative to the d shell begets more sublevels even for the same
coordination geometry. We shall not concern ourselves with the details of these
splitting patterns. Suffice to note that here is the direct evidence of the very small
ligand-field perturbations that were deduced from the magnetic properties discussed
in Section 10.3.



204 10 The Lanthanoid Series

By and large, the spectral bands are very sharp as compared with ‘d-d’
transitions in d-block complexes. The sharpness of these ‘f—f transitions follows
immediately from the core-like character of the f shell. It interacts little with the
bond orbitals and other aspects of the environment — hence the small ligand-field
strength — and so the range of interaction throughout a molecular vibration is also
small. The intensities of these transitions are also small. Typical extinction coef-
ficients for ‘d—d’ transitions in centrosymmetric complexes are of the order 5—10.
For acentric chromophores, like the tetrahedra, they may be around 500. Those in
this (typical) lanthanoid system are about 5. Considering that the coordination is
probably that of a tricapped trigonal prism, which is non-centrosymmetric, the
‘f—f intensities are some two orders of magnitude less than might be expected for
a similar d-electron system. Once again, we understand this result in terms of the
much smaller overlap between the metal 4f orbitals and the bond orbitals. The
metal f — ligand orbital mixing cannot be zero, for otherwise Laporte’s rule would
ensure vanishing intensities, but it is very small: smaller than for the d block and,
as we saw in Chapter 4, that is small anyway.

Before moving on to the absolute transition energies in lanthanoid spectra, let us
take stock. The resemblance between the transition energies of lanthanoid complex
spectra and those of the corresponding free ions, taken together with the sharpness
and weakness of the bands and the small magnitudes of the ligand-field splittings,
all concur with the notion of a well-buried f shell. The magnetic moments of
lanthanoid complexes similarly support this view. The f electrons comprise a well
decoupled subset of electrons within these complexes, bequeathing to the metal 6s
(and perhaps other) orbitals the role of the valence shell. We thus observe a situation
like that described for the d electrons in the main transition-block (in higher
oxidation states) complexes, but much more obviously. Both classes of compounds,
however, are covalent in that complex species retain their integrity in many
environments.

Evidence for that covalency comes directly from our last topic, namely, the abso-
lute transition energies of complex ‘f—f spectra. Many of the spectral bands in the
spectra of lanthanoid complexes involve transitions between levels of the same
term and, as such, provide a measure of the strength of the spin-orbit coupling. It is
generally observed that these interlevel spacings are smaller than in the spectra of
the corresponding free ions. Thus, A(complex) < A(free ion). Other transitions occur
between components of different terms. After appropriate (and, unfortunately, rather
complicated) analysis, one may determine the magnitudes of the various interelectron
repulsion parameters, which include, for example, the Racah B parameter discussed
in Chapter 6. It is found, quite generally, that B(complex) < B(free ion). The
magnitudes of these nephelauxetic effects are roughly of the same order as found
for d-block complexes. Similarly, the reductions in A values, as above, — and
obtained again only after lengthy analysis — are of similar proportionate magnitudes
in d- and f-block systems.

Both phenomena attest to the covalency of the chemical bonding in these species.
Incidentally, they also highlight the different characters and implications of the
spectrochemical and nephelauxetic series. Within either lanthanoid- or (higher
oxidation state) d-block species, the ligand orbitals overlap with the metal s functions
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and donate electron density to the metal. The s orbitals (4s for the first row d block;
6s for the lanthanoids) are of the penetrating type (inner maxima) and that portion
of the ligand electron density which occupies these inner regions is particularly
effective in shielding the outer, ‘spectral’, 4f or 3d electrons from the nucleus. The
f (or d) orbitals expand somewhat and so the average distance between f (d) electrons
increases and the interelectron repulsion parameters decrease. It is also the case,
though we do not enlarge on the matter here, that the magnitudes of spin-orbit
coupling coefficients are inversely related to a power of the mean distance of
(spectral) electrons from the nucleus. The reduction in A values goes hand-in-hand
with the reduction in B values, though not pro rata.

The central point, then, is that tiny ligand-field splittings and ‘normal’ sized
nephelauxetic effects in lanthanoid spectra are not at all contradictory. The one
reveals the isolation of the f shell, the other attests to the normality of the metal -
ligand bonding.

Suggestions for further reading

1. Systematics and Properties of the Lanthanides (Ed.: S.P. Sinha), Reidel, 1983.
— Here, the article by Hiifner shows energy levels throughout the f-block.

2. J.H. van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford
University Press, Oxford, 1932.
— This is a great original — see Chapter 9.

3. S.A. Cotton, Lanthanides and Actinides, MacMillan, Basingstoke, 1991.
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— in diatomic molecules 102

— in polyatomic molecules 104
monodentate ligands 6

Na,[FeO,] 184

[Nd(H,0),]** 203
nephelauxetic effect 97ff, 118, 125, 204
nephelauxetic series 99, 134
[(NH;)sCo"(u-CHCr'™(H,0)s]1* 194 f
[(NH3)sCo™(u-CD)Cr'(H,0)5]* 194 f
NiAlLO, 160

NiBr, 12

NiBr,:3H,0 12

Nisz‘GHzO 12

NiBr,-9H,0 12

NiBr,(PPh;), 134
NiCl,(PPh;), 134

[NiCl,|* 22, 133f, 171
[Et,N},[NiCl,] 134
[Ni(CO),] 173

{Ni(cod),] 18

[Ni(CN),)> 12,17, 133,171
[Ni(Cp),] 174

[Ni(en);]>* 13

[NiF,(H,0),]* 100

[NiFe]* 98, 100

[NiFe]*~ 17

NiFeO, 160

Ni"Fe",0, 159f
[Ni(H,CCHCH,),] 174
[Ni(H,0)¢)>* 22, 100
Nil,(PPh;), 134

[Ni(NH3))*" 12

Ni(OH), 12

[Ni(PEtPh,),Br,] 169
NiX,(PPhy),, X = Cl, Br, I 134

non-magnetic doublet 89, 95

normal spinels 159

nuclear magnetic resonance spectroscopy
80

octahedral vanadium(im) ion 88
— magnetic properties 88

open d shells 129

orbital contributions 90

— to magnetism 90

orbital quenching 88

orbitals 46f

— angular from of 46

orbital selection rule 64

Orgel diagram 56 f{f
outer-sphere mechanism 189
overall stability constants, 8, 145
oxidation state 4, 12f, 17

pairing energy 77
paramagnetism 19, 79
paramagnets 79

parity rule 64

Pauling, L. 14

Pauli’s exclusion principle 45
penetrating orbitals 2
permanganate 23
phthalocyanine 171
m-acceptor ligands 117, 178
n-bonding 117

mt-neutral ligands 117
planar coordination 131
planar 4% complexes 17
platinum alkene complex 124
polarizing power 185
polydentate ligands 6f, 146
primary valence 4

protic equilibria 181 ff
[PtCI;(C,H)]™ 123

[PtCL)* 17

[Pt(em)Cl,] 11
[Pt(NH,),Cl,] 10f
[Pt(PPh;);] 18

Racah B parameter 97

Racah & and & values 98

radial probability functions 199
radial wave forms 23

radicals 19

reaction rates 186

reduction potentials 176
[ReHo]> 174

[Ru(bpy)s]** 11, 190
[Ru(bpy)s]** 190



saturation 84

Schrodinger equation 40

secondary valency 4

second-order Jahn-Teller effects 143
second-order Zeeman effect 92f, 202
selection rules 62, 64, 76

- violation 64

self-exchange reactions 191
solvation 148

spectrochemical series 99 ff
spherical harmonics 40
spin-allowed transitions
spinels 159

spin-flip transitions 72, 74
spin-forbidden bands 72

— shape of 72

spin-forbidden transitions 65, 69f, 72
spin-only formula 88f, 95

spin-orbit coupling 44, 64, 91

- coefficients 91

spin-selection rule 63, 65

splitting patterns 52

square planar 131, 133

stability constant K 145

static Jahn-Teller effect 143

steric activity of the open d shell 137
strong-field 39, 48

structure 134

— steric effects upon 134
susceptibility 84

synergic bonding 123

27, 69

Tanabe-Sugano diagram 53f, 57, 73

temperature effect on d—d spectra 74

temperature-independent paramagnetism
83,93

terdentate see tridentate

term label 65

terms 40

term symbols 42

term wavefunctions 41

tetragonal distortion 139

tetragonally elongated octahedron 35

thermodynamic stability 145

[Ti(Cp)a] 174

[Ti(H,0)¢]** 22, 143

total angular momentum 64

Index

trans isomer 10

transition element 1

— occurrence and nomenclature 1
transition moment 61

tridentate ligands 6, 8

trigonal distortion 139
two-electron jumps 71

ultraviolet catastrophe 83
ungerade 34

units 85
[VCl,]- 22
[VCIg* 22
[VCl]* 22

[(H,0),V(=0)(H,0)]** 182

[(H,0),V(=0)(OH)]* 182

[(H0)sV(=0)]*" 182

[(H,0)sV(OH)I** 181

[(H,0)sV(OH)I** 182

[(H,0)sV(OH)** 181

[V(H,0)** 181f

valence shell 23

— in high and low oxidation states 124

valence shell electron pair repulsion
(VSEPR) model 15f, 136

Van Vleck’s formula 87 ff

variable coordination number 19

variable oxidation states 184

vector coupling rule 42, 87

vibrationally excited states 74f

vibronic coupling 69, 75

violation of the selection rules 64

wO; 12
weak-field 39, 48
Werner, Alfred 3
Werner-type complexes 23f, 26, 66
Zeeman effect 92, 202

— second-order 92f, 202
Zeise’s salt 123

zinc metalloenzymes 168
ZnA1204 159

Zn"Fe",0, 159f

[Zn(tpy)Cly] 17
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