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Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has pro-
duced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among others.
In return, the challenges of the new emerging areas are proving an abundant source
of stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical re-
search developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

Since its inception, the International Symposium on Experimental Robotics
(ISER) was published by Springer. Since the four past editions, ISER has found
a more suitable home under STAR, together with other thematic symposia devoted
to excellence in robotics research.

The Thirteenth edition of Experimental Robotics edited by Jaydev P. Desai, Gre-
gory Dudek, Oussama Khatib and Vijay Kumar offers in its fourteen-chapter vol-
ume a collection of a broad range of topics in field and human-centered robotics.
The contents of these contributions represent a cross-section of the current state
of robotics research from one particular aspect: experimental work, and how it re-
flects on the theoretical basis of subsequent developments. Experimental validation
of algorithms, concepts, or techniques is the common thread running through this
large collection of widely diverse contributions, spanning from design to dynamics
and control, from manipulation to planning and control, from learning to sensing
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and navigation, from multi-robot to human-robot interaction, from aerial to marine
robotics, from social robotics to life-science applications.

From its warm social program to its excellent technical program, ISER culmi-
nates with this unique reference on the current developments and new directions of
experimental robotics – a genuine tribute to its contributors and organizers!

Naples, Italy Bruno Siciliano
January 2013 STAR Editor



Preface

The International Symposium on Experimental Robotics (ISER), which began in
1989, is a biennial symposium bringing together researchers from all over the world.
Sponsored by the International Foundation of Robotics Research (IFRR), this sym-
posium’s primary goal is to bring together researchers who are at the forefront of
experimental robotics research to present their work in a single-track format. ISER
contributions focus on developments of novel experimental platforms, new valida-
tion methods, innovative techniques for solving challenging experimental problems,
and new robotic systems.

The 13th International Symposium on Experimental Robotics was held in Québec
City, Canada, at the Fairmont Le Château Frontenac, on June 18–21, 2012. There
was an open call for contributions, and after a review process organized by the in-
ternational steering committee, 65 papers were selected for presentation at the sym-
posium. The technical program included sessions on design, dynamics and control,
aerial robotics, multi-robot, learning, social robotics, manipulation, applications to
the life sciences, planning and control, field robotics, marine robotics, sensing and
navigation, and human-robot interaction. In addition, the program included an inter-
active session that brought exciting multimedia presentations. Each session began
with a dedicated introduction by its chair summarizing and connecting the associ-
ated contributions.

The program also featured two invited presentations at the symposium given by
Masayuki Inaba from The University of Tokyo and Howie Choset from Carnegie
Mellon University. A highlight of the interaction created during the symposium was
the panel organized at the scenic Montmorency Falls, which brought much exciting
and stimulating discussion among the participants.

This volume includes the collection of contributions presented at the symposium
as well as the session introductions, which provide summaries of the accepted pa-
pers in each session. We are grateful to Philippe Giguère and his team from Laval
University for the outstanding organization of the various activities during the sym-
posium. We would also like to thank Krys Dudek for all the efforts she devoted to the
design and management of the symposium website. The greatest words of thanks go
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of course to the authors and participants for all their contributions to the excellence
in the technical program and social interaction, making this edition of ISER a great
success.

Jaydev P. Desai, University of Maryland, College Park
Gregory Dudek, McGill University

Oussama Khatib, Stanford University
Vijay Kumar, University of Pennsylvania
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Part I: ISER Session Summary on “Design” 

Clément Gosselin 

Laboratoire de robotique, Département de génie mécanique 
Université Laval, Québec, Qc, Canada 

Session Summary  

The session on design covered a variety of topics ranging from novel haptic devices 
to underwater robots. Although these topics may seem unrelated, the articles 
presented in this session conveyed a common message: robot design is a challenging 
task that is best addressed using a global approach focusing on the tasks to be 
performed by the robots. Therefore, the presentations included both analytical 
derivations and clever engineering design. The first paper presented the 
development of an inertia generator. The goal of this work is to design a hand held 
device whose inertia can be programmed by moving internal masses in reaction to 
the acceleration of the frame, measured using accelerometers. A one-dof prototype 
was shown, which demonstrated the feasibility of the principle. The second paper 
dealt with the design of caging end-effectors. Caging end-effectors depart from 
traditional grasping systems in that they are based on purely geometric constraints. 
In many applications, caging may be used to relieve robots from high precision 
demands. A prototype based on permanent magnet inductive traction rails was 
demonstrated and experimental results were discussed. The third paper presented 
conceptual and experimental results demonstrating the ability of underactuated 
hands to manipulate small objects between their fingertips. Underactuated hands are 
considered a promising concept for robotics because they include a limited number 
of actuators. However, fingertip manipulation is a challenge for such hands. Some 
solutions were proposed in this paper to alleviate this drawback. The fourth paper 
introduced a robotic fish and its propulsion and control principle. Miniature CO2 
cartridges are used in conjunction with a custom pressure regulating system and 
embeddable electro-permanent magnet valves. A prototype was demonstrated that 
emulates natural caudal fin and peduncle movements. Finally, the last paper 
addressed the modelling of stick-slip actuators, which are the foundation of modern 
micromanipulation. The effect of static loads on these actuators is studied, which 
leads to better models that were confirmed experimentally. Globally, the work 
presented in the session on design raised issues that are crucial to modern robotics 
and novel effective solutions were proposed to address them. 



On the Development of a Programmable Inertia
Generator

Clément Gosselin, Alexandre Lecours, Thierry Laliberté, and Frédéric Lessard

Abstract. This paper presents a preliminary investigation on a one-degree-of-free-
dom programmable inertia generator. An inertia generator is a hand-held haptic
device that has a programmable inertia. By moving internal masses in reaction to
accelerations induced by the user, the effective intertia of the device is modified in
order to render a prescribed perceived inertia. In this paper, a one-degree-of-freedom
device with one internal moving mass is proposed. The dynamic modelling of the
system is first presented. Then, a controller is designed to produce the appropriate
motion of the internal mass in reaction to the acceleration induced by the user. A
prototype is presented and experimental results are discussed.

1 Introduction

It is common, for training or entertainment purposes, to actively prescribe the dy-
namics rendered by a robotic system. For instance, impedance control is used in
haptics or physical human-robot interaction (pHRI) in order to simulate virtual envi-
ronments. This approach can be implemented using fixed-base haptic devices which
are controlled to produce a desired behaviour (see for instance [7] and many others).

In interactive systems (e.g. computer games), hand-held devices are also often
used. These devices are typically passive [13] and are unable to produce kinesthetic
feedback. However, as shown in [1], [11], it is possible to include moving masses in
hand-held devices in order to produce an illusion of an external force. This approach
can also be used with rotating mechanisms in order to produce the illusion of an
external moment [2], [15].

The work reported in this paper addresses a similar but different challenge. The
long-term objective of this initiative is to design a hand-held device that has a
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programmable inertia. The effective inertia of such a device is modified by moving
internal masses in reaction to the accelerations imparted to the hand-held system
by the user. Using this approach, the inertia perceived by the user manipulating the
hand-held device can be prescribed arbitrarily, within the physical constraints of the
mechanical system.

In this paper, a preliminary investigation on a one-degree-of-freedom (one-dof)
device is reported. The main objective of this first phase of the work is to assess the
feasibility of the concept. In order to vary the perceived inertia, a moving mass is
mounted on a slider within the manipulated one-dof physical interface. By moving
the internal mass in reaction to an accelerometer signal, a prescribed effective in-
ertia can be rendered. The paper is structured as follows: after providing a general
description of the concept of inertia generator, the dynamic model of the one-dof
mechanical system studied here is derived. Then, a controller is designed to pro-
duce the appropriate motion of the internal mass in reaction to the accelerations. A
description of the physical one-dof prototype is then provided. Finally, experimental
results are given and interpreted.

2 General Concept of Inertia Generator

The general concept of inertia generator is represented schematically in Fig. 1. Con-
sider a box which is held by a user and inside of which a set of masses are mounted
on actuated sliders or revolute joints. For example, three masses could be mounted
on orthogonal actuated rails and three inertias could be mounted on orthogonal actu-
ated pivots. Alternatively, one single rigid body could be attached to the end-effector
of a 6-dof parallel mechanism that can produce translations and rotations of this
mass in arbitrary directions. When the user imparts accelerations to the box, the lat-
ter are measured by a set of accelerometers and the masses are displaced in order
to render a prescribed inertia. If the ratio of the moving masses to the mass of the
frame of the box is large enough, accelerating the internal masses will produce a
significant change in the external apparent inertia of the box. For instance, if the
user is accelerating the box along the x axis and it is desired to render an inertia that
is smaller than the physical inertia of the system, the mass(es) will be accelerated
in the opposite direction in order to reduce the effective inertia. Similarly, if it is
desired to render an inertia that is larger than that of the physical system, then the
mass(es) will be moved in the direction of the acceleration imparted by the user in
order to increase the apparent inertia.

The principle of the inertia generator is akin to that of motion simulators[14] and
to that of acceleration compensation for vibration isolation[6, 5]. In such applica-
tions and in this work, the concept of washout filter is important[8]. The principle
of the washout filter is to include a low-frequency command in the control loop that
aims at bringing the mechanism to a neutral configuration so that it is ready for the
next acceleration input. The neutral configuration is defined as one in which all di-
rections of motion are feasible with approximately the same range of motion in all
directions. This concept is discussed in the control section of the paper.
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Fig. 1 Schematic representation of the concept of inertia generator

3 Dynamic Modelling of a One-Degree-of-Freedom Inertia
Generator

A schematic representation of the one-dof inertia generator is given in Fig. 2. The
external frame of the device has a mass m1 and is subjected to the external force
F1 applied by the user. It is assumed that the direction of motion is horizontal. An
actuator is included in the device to move a second mass m2 mounted on a slider
attached to the frame of mass m1. The force applied by the actuator on mass m2 is
noted F2 while the friction force between the two masses is noted Ff . The position of
the frame of the device with respect to a fixed inertial frame is noted x1, the position
of mass m2 with respect to the inertial frame is noted x2 and x3 denotes the position
of mass m2 with respect to mass m1. Therefore, one has

x2 = x1 + x3, ẍ2 = ẍ1 + ẍ3. (1)

x1

x2

x3

m1

m2

F1

F2
Ff

Fig. 2 Schematic representation of the one-dof inertia generator
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It is desired to render a prescribed inertia, noted ma, when the user applies forces on
the device. Therefore, the desired behaviour can be expressed as

F1 = maẍ1 (2)

where ẍ1 is the acceleration of mass m1 with respect to the fixed inertial frame.
Applying Newton’s second law to each of the moving masses, one obtains

F1 − (F2 −Ff ) = m1ẍ1 (3)

F2 −Ff = m2ẍ2 (4)

where ẍ2 is the acceleration of mass m2 with respect to the fixed inertial frame.
Substituting eq.(1) into eqs.(3) and (4) and rearranging, one has

F1 = (m1 +m2)ẍ1 +m2ẍ3 (5)

F2 = m2ẍ1 +m2ẍ3 +Ff . (6)

Equations (5) and (6) represent the dynamics of the two-dof system comprising
the mobile frame of mass m1 and the sliding mass m2. Referring to eq.(2), it is
desired to obtain an expression for the force F2 to be applied by the actuator in order
to render the inertia ma. To this end, eq.(2) is first substituted into eq.(5), which
leads to

m2ẍ3 = (ma −m1 −m2)ẍ1. (7)

Substituting the latter equation into eq.(6) then leads to

F2 = (ma −m1)ẍ1 +Ff . (8)

Finally, eq.(7) is rearranged in order to determine the acceleration required at the
actuator, namely by rewriting it as

ẍd3 =
(ma −m1 −m2)ẍ1

m2
(9)

where ẍd3 is the desired relative acceleration.

4 Controller Design

Based on the dynamic model presented in the previous section, a control scheme can
be developed in order to render the prescribed inertia ma. The system is designed to
react to the acceleration of the moving frame of mass m1. To this end, an accelerom-
eter is mounted on the frame, which provides a measurement of its acceleration ẍ1.
The control strategy is based on the combination of three terms, namely: a feedfor-
ward term (including friction compensation), a feedback term, and a washout term.
Each of these contributions is now detailed.



On the Development of a Programmable Inertia Generator 7

4.1 Feedforward and Friction Compensation

The feedforward term is based on the dynamic model developed in the preceding
section. Equation (8) is used to compute an estimation of the the force to be applied
at the actuator based on the measured acceleration ẍ1 and on an estimation of the
friction force Ff . A simple friction compensation can be written as:

Ff = fc + fv (10)

where fc and fv are respectively the Coulomb and viscous friction forces with

fc = c(1− e−α |ẋd3|)sign(ẋd3) (11)

fv = vẋd3 (12)

where c is the Coulomb friction coefficient, v the viscous friction coefficient and α
is a tuning parameter. The exponential term is used to reduce the chattering induced
by friction compensation when the velocity is near zero. The desired velocity is
used for friction compensation in order to reduce the command noise, although the
measured velocity could also be used. Other more complex friction models could
also be used (see for instance[16, 4, 3, 9, 10]), including stiction for example, but the
simple friction compensation given in eqn. (10) provided good experimental results.

4.2 Feedback

The desired acceleration of mass m2 can be computed using eq.(9). In order to
achieve this relative acceleration, it would be possible to use a feedback control
(e.g. PID control) with a relative acceleration measurement (e.g. accelerometer or
second derivative of the position). However, acceleration control is not very prac-
tical mainly because the measured acceleration is known to be very noisy. Instead,
velocity or position control can be implemented using an integration technique.

First, the discrete desired velocity required to render the desired acceleration is
obtained with a zero-order-hold integration1:

ẋd3(k) = ẋd3(k− 1)+ ẍd3(k)Ts (13)

while the position is obtained by integrating a second time, namely:

xd3(k) = xd3(k− 1)+ ẋd3(k− 1)Ts+
1
2

ẍd3(k)T
2

s (14)

where Ts is the sampling period, k is the time step and xd3, ẋd3 and ẍd3 are respec-
tively the desired position, velocity and acceleration.

One should note that this integration method is used to achieve acceleration
control in physical human-robot interaction with admittance control schemes [12]
and that, although it is preferable to use the desired velocity of the preceding step

1 Alternatively, a bilinear discretization can be used.
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(ẋd3(k−1)), the measured velocity can alternatively be used in the above equations.
The desired acceleration is then rendered using velocity or position control, which is
more practical and can be achieved using a simple PID controller or more complex
algorithms.

4.3 Washout

As explained in a preceding section, the goal of the washout filter is to ensure that
the moving mass is kept as close as possible to its neutral position in order to be
ready to accommodate arbitrary acceleration inputs. For the one-dof system studied
here, this amounts to keeping mass m2 as close as possible to its mid-range position
in order to avoid the mechanical limits (end of stroke). To this end, a virtual spring-
damper system modelled as follows is used:

Fw =−Kw(x3 − xw)−Cwẋ3 (15)

where Fw stands for the washout force, Kw is the washout spring stiffness, Cw is
the washout damping factor and xw is the neutral position. The adjustment of the
washout parameters is based on the analysis of the above second-order system.
Knowing the mass to be moved m2, one obtains

Kw = m2ω2
w (16)

Cw = 2m2ζwωw (17)

where ωw is the washout natural frequency and ζw is the damping factor. The
washout natural frequency should be chosen low enough so that it does not signifi-
cantly impact the rendering. On the other hand, it should be high enough to ensure
that mass m2 is kept close enough to its neutral position. In order to cope with this
compromise, the washout natural frequency is adjusted according to the acceleration
of the frame, ẍ1. The following heuristic rule is used:

ωw =

{
0 if |ẍ1|> ẍ1t

ωw0

(
1− ẍ2

1
ẍ2

1t

)
otherwise.

(18)

where ωw0 is the default washout natural frequency and ẍ1t is an acceleration
threshold above which the washout is deactivated. In this work, ωw0 = 2s−1 and
ẍ1t = 0.3ms−2 are used.

5 Experiments

The prototype used in the experiments reported in this paper is shown in Fig. 3.
Mass m1 consists of an aluminium plate equipped with wheels that can roll with
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low friction on a table top or on a floor. A DC motor is mounted on the plate to-
gether with a rail and pulleys while mass m2 consists of a small steel plate and a
trolley. The motion of mass m2 is actuated by the DC motor and transmitted with a
closed-loop belt. An accelerometer is mounted on the base plate in order to measure
the acceleration of the frame, ẍ1. Also, an ATI MINI-40 force/torque sensor can
be attached to the plate to measure the force F1 applied by the user on the inertia
generator and a second accelerometer can be mounted on mass m2. The latter two
measurements (force F1 and acceleration ẍ2) are not used by the controller but only
for experimental validation and analysis.

�����

���� � ���� �

	
��

�
�
���
�
�

Fig. 3 Prototype of a one-dof inertia generator used in the experiments

5.1 Model Validation

A first experiment was performed in order to validate the dynamic model. In this
experiment, the frame (mass m1) is moved manually while the second mass (m2) is
free to slide on the rail. The interaction force (F1) and the acceleration of each of
the masses (ẍ1 and ẍ2) are measured. The measured accelerations are then compared
with those computed using the measured force and the dynamic equations, in order
to validate the model. The results are shown in Fig. 4. It can be observed that, al-
though the results are not perfect, the model is sufficiently realistic to be used for
control purposes.

5.2 Interaction Experiments

Experiments were performed using the prototype described above, which has the
following characteristics: m1 = 2.45kg and m2 = 2.32kg, for a total moving mass
of 4.77kg. The effect of the prescribed inertia ma is easily perceived by the user.
However, in order to obtain quantitative data, the force and acceleration data were
recorded in order to compare the results with the desired dynamics given by eqn. (2).

Figures 5 to 8 present the results obtained with a prescribed mass varying from
ma = 1.25kg to ma = 6.00kg. On the graphs, the force applied by the user (measured)
is compared with the rendered force (maẍ1) where ẍ1 is the measured acceleration.
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Fig. 4 Model validation. The solid lines represent measured quantities while the dashed lines
represent accelerations computed using the dynamic model and the measured force.
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Fig. 5 Experimental results with ma = 1.25kg. The solid line represents the measured force
while the dashed line is the model force (maẍ1) where ẍ1 is measured with an accelerometer.
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Fig. 6 Experimental results with ma = 2.45kg. The solid line represents the measured force
while the dashed line is the model force (maẍ1) where ẍ1 is measured with an accelerometer.
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Fig. 7 Experimental results with ma = 4.77kg. The solid line represents the measured
force while the dashed line is the model force (maẍ1) where ẍ1 is measured with an
accelerometer.
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Fig. 8 Experimental results with ma = 6.00kg. The solid line represents the measured force
while the dashed line is the model force (maẍ1) where ẍ1 is measured with an accelerometer.

6 Discussion

It can be observed from the experimental results that the prescribed inertia is gener-
ally well rendered. When the prescribed mass is close to the total mass (m1 +m2),
e.g., with ma = 4.77kg, the results are obviously very good since the demands on the
actuator are very low. These results can serve as a basis for the analysis of the results
obtained in more demanding situations. Basically, if ma is very close to (m1 +m2),
the errors correspond to the estimation errors introduced by the control loop and the
measurements themselves.

When the prescribed inertia is more significantly different from the total mass,
the actuator is much more sollicited and the error tends to increase, as observed
in Figs. 5 and 8. Nevertheless, the results are still acceptable, especially consid-
ering that the resolution capabilities of the user are limited. For example, with
ma = 1.25kg (Fig. 5) the rendered mass is approximately 1.5kg. It can be observed
in the latter figure that the measured forces are slightly larger than the prescribed
forces. On the other hand, if the prescribed inertia is larger than the total mass, e.g.,
ma = 6.00kg (Fig. 8), the measured forces tend to be slightly smaller than the pre-
scribed forces. These results demonstrate the feasibility of the concept. They also
highlight the importance of properly selecting the ratio between m2 and m1, which
in turn raises the issue of the power to mass ratio of the actuator. Ideally, the mass
ratio (m2/m1) should be maximized so that the impact of the moving mass is maxi-
mized. One possible design avenue is to include the actuator in the moving mass in
order to increase the mass ratio. Using this principle, the power to mass ratio of the
actuator becomes less important.
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7 Conclusion

The concept of inertia generator was proposed in this paper. In a hand-held iner-
tia generator, internal masses are moved in reaction to accelerations induced by the
user such that the effective intertia of the device is modified in order to render a
prescribed perceived inertia. This paper presented preliminary investigations on a
one-dof inertia generator that has the capability to render a translational inertia in
one direction. The dynamic model of the system was first derived. Based on this
model, a controller was proposed that uses the measured acceleration of the frame
as an input and determines the motion of the internal mass as an output. The con-
troller is based on an integration of the acceleration signal in order to alleviate the
difficulties associated with noisy accelerometer signals. A velocity or position con-
trol can therefore be used. Experimental results show that, although the power to
mass ratio and the moving mass to frame mass ratio of the prototype are not high,
the latter is capable of rendering a significant range of inertias. Future work includes
the investigation of multi-dof inertia generators and the experimentation with more
advanced prototypes.
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Design of Distributed End-Effectors
for Caging-Specialized Manipulator
(Design Concept and Development of Finger Component)

Rui Fukui, Keita Kadowaki, Yamato Niwa, Weiwei Wan,
Masamichi Shimosaka, and Tomomasa Sato

Abstract. In this paper, we propose a novel design of end-effectors that is
specialized in caging manipulation. Caging manipulation has several advantages
comparing with traditional grasping manipulation. For example, caging can allow
small gap/margin between end-effectors and a target object, making the manipulator
relieved from constant contact and precise control. Therefore, caging manipulator
can avoid many problems from dynamics. Regardless of its advantages, intelligent
caging manipulators have not be realized. This is because, for one thing, it may
demand many actuators to realize flexible geometrical constraint (caging), for the
other thing, kinematic constraints of a general purpose manipulator prevents us from
applying direct caging approaches. We address this problem by introducing a novel
design/framework of end-effectors that is inspired by ROBOTWORLD. The frame-
work utilizes permanent magnet inductive traction method. The method is suitable
for coexistence of multiple robots and for reduction of actuator number by sharing
the same actuators. We discuss the concept and the basic framework of the proposed
caging manipulator and development of a finger component prototype. After that we
conduct basic experiments to evaluate the feasibility of caging manipulation and to
reveal the obstacles (challenges) for our manipulator.

1 Introduction

Our research group aims to realize a manipulation robot in logistics as shown
in Fig. 1. We are especially focusing on stable manipulation of packed objects.
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As an example of market products for logistical use, KIVA Systems Corp. developed
an automatic object transfer robot system[3]. In that system, robots can manipulate
stockers, but the item-level manipulation is executed by human workers. We would
like to realize an item-level manipulation robot for logistical use. The right-below
text area shows the target specifications of our manipulator.

Distributed
end

effectors

Transfer
target object

Base robot arm

Fig. 1 Conceptual sketch of a caging manip-
ulator in logistics applications

• Target objects (Packed daily-use objects
are assumed)

– Shape : hexahedron family and cylin-
der family

– Size : maximum is A4 size (210×297
[mm]), minimum is cylinder from 30
to 50 [mm] in diameter.a

– Weight : less than 1 [kg]

• Entire weight : less than 5 [kg]
⇒The end-effectors are supposed to be in-
stalled on a general-purpose robot arm.

• Time to transfer an object : within 10 [s]

a The maximum size is determined by con-
sidering the previous work[4] and the min-
imum size assumes objects such as a PET
bottle.

1.1 Related Work

To realize stable object manipulation, there are two major problems. The first is
difficulty in acquisition of a precise geometrical model for the target object, while
the second is difficulty in precise recognition of the surface properties for the target
object.

As for the first problem, thanks to the recent technology improvement of stereo
cameras or depth imagers, it becomes feasible to acquire geometrical information
from sensors and control a robot based on the acquired information[12]. However,
they suffer from problems of eye direction and occlusion and cannot get full and
precise information. To overcome the model insufficiency, some researchers com-
pare the acquired information with data-base, and construct a manipulation strategy
based on the limited information[5, 2, 1].

Regarding the second problem, in traditional robotic manipulation, “Force Clo-
sure” is the basis of the manipulation, but the simplified model is too fragile to
address practical problems. In contrast, some researches developed tactile contact
sensors to realize human-like haptic sense[8, 6]. But the human haptic sense is so
complex that it is still far from full imitation of the human capability.

Consequently we focus on more flexible manipulation framework “Caging”[9, 7,
10]. As shown in Fig. 2, caging can constrain an object in its “cage” geometrically.
The caging condition can allow small gap between the robot hand and the object.
That means the caging manipulation can escape from the force control. In addition,
the caging condition is independent from the object’s surface properties.
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1.2 Problem Statement

If we develop an anthropomorphous caging hand as shown in Fig. 3, the number of
actuators is 16. Comparing with a simple gripper hand that needs only one actua-
tor, 16 actuators are too redundant. Therefore, this paper discusses design of more
sophisticated and concise framework for the caging manipulator.

(b) Caging(a) Grasping

Fig. 2 Conceptual images of grasping
and caging

Horizontal slider

Vertical slider

Nail for
vertical
support

Rotation
center of fingers

Finger # : 4

# of DOF: 16

Fig. 3 Conceptual image of anthropomorphous
caging hand

2 Technical Approach and Basic Design

First of all, in the caging condition, constant contact between the end-effectors and
an object is unnecessary. To utilize the advantage of its loose restriction, our ma-
nipulator surrounds the object gradually by moving constraint structures one by
one. The basic idea of the framework is inspired by Robotworld[14]; where sev-
eral robots work in the shared workspace. To realize a caging operation, following
functions are required.

Function 1: To measure the position and shape of the target object.
Function 2: To plan the alignment of the constraint structures that leads to caging
condition.
Function 3: To locomote the constraint structures one by one.
Function 4: To constrain the object in required directions.
Function 5: To transfer the object while keeping the caging condition.

It is effective to reduce the required number of actuators in Function 3 for a concise
framework. To realize the reduction, permanent magnet inductive traction method
[13] can be a powerful key technology. Fig. 4 shows the proposed framework. In the
framework, each function is assigned to each component. We designate this frame-
work as “distributed end-effectors”. The end-effectors comprise following three
components.

(1) Sensing Component

A depth imager (e.g. Microsoft Kinect, Swiss Ranger) and two dimensional code
(2D-Code) reader are the main instruments of this component. They acquire the
shape and position of target object.
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Partition
plate

Target object

Caging module
(L-shaped type)
Caging module
(Flat type)

Slider module

Connector to a robot arm

Finger component

Palm component

Distributed driven module

xyθ actuator

Connecting module

Nail to constrain 
an object vertically 
at the tip of 
caging modules

Permanent magnets
support fingers

Fig. 4 Framework of the proposed end-effectors (caging manipulator)

(2) Palm Component

This component consists of a xyθ actuator, distributed driven modules and a
connecting module. The distributed driven modules support the finger components
under the partition plate with permanent magnet pairs. The connecting module is
installed at the motion part of the xyθ actuator, and it makes connection with the
distributed driven module by inserting connection pins. The connecting module also
drives the vertical motion of the slider module in the finger component. This palm
component is the key part to save the number of required actuators.

(3) Finger Component

This is the main component to constrain the target object. Horizontal constraint is
realized by a body plate of the finger front. In contrast, vertical constraint is realized
by a nail installed at the bottom of the component. When an object is too close to a
neighbor object, another nail is inserted at the edge of the target object and the palm
component pushes the object to make enough space for inserting the caging module
(i.e. the distributed fingers) as shown in Fig. 5.

 

  

Side viewTop view

Shortage
of space

Fig. 5 Conceptual image of drag function



Design of Distributed End-Effectors for Caging-Specialized Manipulator 19

Summary of the End-Effectors’ Framework

We use names “palm” and “finger” to make it easy to understand the framework,
however, the structure itself is quite different from human hand. Especially almost
all motion axes are orthogonal to each other, therefore, it is very easy (intuitive) to
design the finger alignment strategy. Fig. 6 shows the task flow. In this framework,
the number of actuators is nine (one in each four fingers + five in the palm). This is
drastically concise comparing with the anthropomorphous caging hand that has 16
actuators.

(1) Sensing shape/position
      of objects (Sensing module)

(2) Computing caging formation

(3) Alignment of finger compo.
     (xy   actuator and 
      distributed driven module)

(4) Moving down caging module
      (Slider module)

(5) Nail insertion under object
     (Caging module)

(6) Object transfer

(7) Release nails
     (Caging module)

(8) Moving up caging module
     (Slider module)

(3),(4) (5)

(6)

(1),(2)

Fig. 6 Task flow of the caging manipulator

3 Development of Finger Component Prototype

Fig. 7 shows the developed finger component. Its weight is 300 [g], and the thickness
of the caging module is 10 [mm]. The caging module gives geometric constraint to
a target object , and the slider module drives the caging module vertically.

3.1 Design Details of the Caging Module

The caging module has three functions; (a) To give horizontal geometric constraint,
(b) To give vertical geometric constraint and (c) To drag the object horizontally.

The side body plate of the caging module realizes function (a). The plate has
two variations as shown in Fig. 8. If the object is hexahedron family, it can be caged
with two L type caging modules. Because the L type caging modules is equivalent to
two flat type caging modules, but it is faster and easier to operate. A horizontal nail
realizes function (b). The nail is installed at the bottom of the caging module and
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Slider
module

Caging
module

Fig. 7 The developed finger component

(a) Flat type

Two
direction
constraint

(b) L type
(c) Examples
of alignment

One
direction
constraint

Fig. 8 Variations of caging module

it is rotated and inserted under an object to support weight of the object. Function
(c) is realized by inserting a thin nail between the wall of a box and an object (or
between objects), and by dragging the object horizontally as shown in Fig. 5.

The most important design key point is how to actuate the two nails by one actu-
ator. As shown in Fig. 9, the both nails are driven by gear transmission mechanisms.
The center gear (b) has half non-toothed part, and the part makes it possible to se-
lect/switch a driving nail.

3.2 Design Details of the Slider Module

The slider module realizes height control of the caging module. Generally speaking,
precise height control is essential because the height of the caging module has a
large effect to the nail insertion force. However, it is very difficult to detect precisely
the bottom boundary of an object. That means precise vertical mechanisms such as
lead screw and rack & pinion are useless.

The caging module hangs via a wire, and is driven vertically by winching the
wire as shown in Fig. 10. The connecting module rotates a pulley to winch the wire
via a magnet coupling. This crane mechanism needs a tensioner to keep the wire
tension constant, and the tensioner can detect a contact with the floor or an object.

[Cross section view of gears]

b

a c

DC motor

ba c

Horizontal nail Vertical nail

Fig. 9 Motion of horizontal and vertical nails

Pulley to 
winch wire

Magnet
coupling A A

Slider mechanism
using hollow pipes

[A-A cross-section]

Pulley

M  g

M  g

Driving
by wire

n

s
(Ms+Mn)g 

Driving source
is installed at 

the connecting
module

Fig. 10 The crane mechanism using wire and
magnet coupling
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The crane mechanism is suitable for making a coherent state between the caging
module and the floor. Therefore, it does not need precise height control to align the
nail at the boundary.

4 Experiments

4.1 Feasibility Test of Caging Manipulation

Fig. 11 shows the experimental test bench to evaluate the feasibility of caging
manipulation. The test bench can imitate a vertical pick-up motion (One DOF)
of a robot arm that is equipped with the distributed end-effectors. As a driving
source of the distributed driven modules, a manual xyθ table was implemented.
One developed finger component and two dummy fingers are used for constraining
an object. The dummy finger has the same dimension (size) and hangs under the
partition plate with permanent magnets. But it is not installed with the actuators and
sensors, therefore, the dummy finger needs to be actuated by human hands.

Eight kinds of daily-use objects are selected as manipulation target objects. Fin-
gers’ alignment is designed empirically as shown in Fig. 12. As a basic idea, for-
mation (a) is applied for cylinder shape, formation (b) for general hexahedron and
formation (c) is applied for hexahedron with high aspect ratio (thin box). In the
future, we will use the our developed algorithm [16] to realize automatic planning.

The experimental procedure is as follows; (1) To align the finger component and
dummy fingers around the object, (2) To control the height of slider module and
insert the horizontal nail under the object, (3) To brake the slider and simulate the
arm vertical motion, (4) To check the robustness of the caging by applying external
force from the outside of the cage. By executing this experiment, it was confirmed
that all eight objects can be caged and resist against external force even if there
are 5 [mm] margins between the caging module and the object. Fig. 13 shows the
experimental results.

Trapezoidal
screw threads 

Shell
plate

xy table (manual)

Dummy
fingers

x

y

Fig. 11 Experimental environment
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(Formation a) 
3 flat type modules 

for cylinder

(Formation b) 
2 L type modules
for cuboid with
 low aspect ratio

(Formation c) 
2 L and 1 flat type modules for 
cuboid with high aspect ratio

Fig. 12 Caging formations

CD case

Packing tape

Hardcover book

Spray can

A4 binder

Bowl

Tissue box

Mug cup

Fig. 13 Experimental results (Snapshots of con-
strained target objects)

4.2 Performance Experiment of Horizontal Nail Insertion

The horizontal nail insertion is the most uncertain process in the task flow. We evalu-
ated its performance by experiments. Fig. 14(a) shows the experimental setup where
θ is the angle of chamfer and M is the object mass. Chamfered distance is fixed at
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0 0/5 0/5 0/5 0/5 0/5 0/5
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30 5/5 5/5 5/5 2/5 0/5 0/5
40 5/5 5/5 5/5 5/5 5/5 5/5
50 5/5 5/5 5/5 5/5 5/5 5/5
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Fig. 14 Results of the horizontal nail insertion experiment
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1 [mm], meanwhile the angle of chamfer is varied. The horizontal nail is actuated
by a DC motor. Each configuration is examined five trials, and each success rate is
counted.

Fig. 14(b, c, d) is the results of the nail insertion when the object mass (M) is
100 [g], 500 [g], and 1 [kg] respectively. In the table, each box is painted in deep
orange where the nail insertion succeeded in all five trials, in light orange where it
succeeded from one to four trials, and white where all trials failed.

A gap made by chamfer (chamfer gap) is the allowable limit of nail-floor gap
to insert the nail. Blue lines (insertion limit line) are boundary lines between an
area where the nail-floor gap is smaller/larger than the chamfer gap. In Fig. 14(b),
the nail was inserted over insertion limit line, and this is because the object was
lift up by the insertion force. In Fig. 14(c), the insertion limit line has enormous
influence, and the nail insertion becomes impossible outside of it. In addition, the
angle of chamfer (θ ) also has influence on the nail insertion, and its influence is
remarkable when the nail-floor gap is large. Smaller nail-floor gap makes it easier to
insert the nail especially when θ is between 10 [deg] and 70 [deg]. Unfortunately,
the nail insertion under the 1 [kg] object was impossible, although the motor has
theoretically sufficient power to insert the nail.

5 Conclusion

Thorough this work, we have two main experimental insights as following.

(1) What are OBSTACLES for our caging manipulator?

Through the development and experiments, we have found four obstacles for our
manipulator.

(1) Size/Dimension of the horizontal nail in the caging module
(2) Stiffness of the slider module and the partition plate
(3) Three dimensional rotation of the target object with high aspect ratio
(4) Too small gap or chamfer between the target object and the floor

(1) Size/Dimension of the horizontal nail: The horizontal nails are important parts
to support weight of the target object. However the size is restricted by the thick-
ness and width of the caging module. In addition, the size of the horizontal nail has
large relation to the allowable margin/gap between the caging module and the target
object. Consequently in the experiment A, we needed more number of fingers com-
paring with initial intuition. That is, we used three finger components to constrain
the objects with high aspect ratio.

(2) Stiffness of the slider module and the partition plate: When inserting the hor-
izontal nail under the target object or lifting up the object, vertical force is applied to
the tip of caging module. To reduce the unintended deformation of the caging mod-
ule, not only the slider module but also the partition plate should be stiff enough.
This is because the bend of the partition plate can induce the misalignment of the



24 R. Fukui et al.

caging module. In current condition, we selected aluminum plate for the partition,
but in the next prototype we will try more stiff material such as non-magnetic stain-
less steel.

(3) Three dimensional rotation of the target object: In the feasibility experiment,
two L type caging modules and one flat type caging module are necessary to cage
an object with high aspect ratio. If we use only two L type caging modules, the
end-effectors need to support the vertical force (weight) at the opposing corners.
However in this condition, the object rotates in the axis of the diagonal line. Conse-
quently we need to introduce a sensing process and a finger alignment algorithm that
is suitable for manipulating an object with high aspect ratio. Or we can introduce the
“grasping by caging”[11, 15] technology to build a loose-contact-based grasping by
starting from contact free caging.

(4) Too small gap or chamfer: The horizontal nail insertion is the only process
that needs to consider the effect of friction. In the experimental result (Fig. 14(d)),
it is found that the motor requires more power than expected. There is tiny round
part at the tip of the horizontal nail, consequently the round part may collide with
the chamfer at the bottom of the target object. To overcome the problem, we need to
execute more experiments and estimate the uncertain effect of the friction between
the nail and target object.

(2) Advantages and disadvantages of caging manipulation

Table 1 summarizes the advantages and disadvantages of our proposed caging ma-
nipulator compared with the traditional grasping manipulator. The grasping ap-
proach has a large advantage in its versatility, hence many researchers adopt this

Table 1 Summary of qualitative comparison in grasping and caging manipulators

•Impossible to control its posture inside the 
hand

•Difficult to manipulate soft/deformable objects
•Need to prepare multiple structures
to realize a solid cage

•Complex structures
compared with 1 DOF gripper

•Allow little error
of a geometrical object model

•Need sophisticated force control
to realize constant contact

•Difficult to configure optimal internal force
•Difficult to evaluate manipulation stability
in its operation

Approach Grasping (Force Closure) Caging

Principle Force constraint
by grasping force or frictional force Geometrical constraint by Caging

•Can control object posture inside the hand
•Can be realized with small number of 
actuators only for power grasp
(e.g. 1 DOF gripper)

•Possible to manipulate soft/deformable objects

•Allow substantial error
of a geometrical object model

•Needless of constant contacts
between end-effectors and an object

•Needless of force control
•Can manipulate a solid object
regardless of its surface properties

•Wide range of the manipulation target size 
(Large object)

•Concise structures compared with 
anthropomorphic robot hands

•Impossible to control its posture inside the 
hand

•Difficult to manipulate soft/deformable objects
•Need to prepare multiple structures
to realize a solid cage

•Complex structures
compared with 1 DOF gripper

•Allow little error
of a geometrical object model

•Need sophisticated force control
to realize constant contact

•Difficult to configure optimal internal force
•Difficult to evaluate manipulation stability
in its operation

Approach Grasping (Force Closure) Caging

Principle Force constraint
by grasping force or frictional force Geometrical constraint by Caging

•Can control object posture inside the hand
•Can be realized with small number of 
actuators only for power grasp
(e.g. 1 DOF gripper)

•Possible to manipulate soft/deformable objects

•Allow substantial error
of a geometrical object model

•Needless of constant contacts
between end-effectors and an object

•Needless of force control
•Can manipulate a solid object
regardless of its surface properties

•Wide range of the manipulation target size 
(Large object)

•Concise structures compared with 
anthropomorphic robot hands

Advantages

Disadvantages
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strategy. In contrast, the caging manipulator doesn’t need force control and it is ro-
bust against the surface properties of the target object. Unfortunately a caging ma-
nipulator may not be good at operation of a soft and deformable object. Human-like
robot hand has a large potential to realize versatile manipulation, in contrast, the
proposed caging manipulator is promising to perform stable object manipulation
that cannot be realized by human-like robot hand.
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Experiments in Underactuated In-Hand
Manipulation

Lael U. Odhner, Raymond R. Ma, and Aaron M. Dollar

Abstract. This paper shows conceptually and experimentally that underactuated
robotic hands can stably grasp and manipulate objects placed between the finger-
tips. Small objects grasped between a planar pair of two-link underactuated fin-
gers having one tendon each are shown to be manipulable over a range of in-hand
configurations that can be predicted analytically. The manifold of predicted stable
configurations is found by seeking the minimum energy configuration of the elas-
tic fingers under constraints from the actuator tendons and the contact constraints
with the grasped objects. Experimental results are shown from HANDLE, a novel
underactuated hand capable of a variety of dexterous in-hand tasks.

1 Introduction

Although many years of effort have gone into the development of anthropomor-
phic, highly-actuated hands, many of the hands in regular use by consumers and
researchers (those not directly involved in the design of hands) are parallel jaw grip-
pers, such as those used by the Kuka YouBot [1] or the Willow Garage PR2 [2],
or hands with simplified multilink fingers, such as the Barrett Technologies Bar-
rettHand [3] or the Robotiq Adaptive Grippers [4]. This widespread preference for
simple hands is due in large part to limitations on the force capabilities of most
arms; the durability of simpler hands compared to more complex ones is also a
compelling factor. However, the advantages of simple hands come at a cost: such
hands are generally designed to acquire and maintain static grasps, sacrificing the
ability to manipulate objects within the hand.

As part of a collaboration with iRobot Corporation and Harvard University, the
authors have been working on the design of a new robotic hand for the DARPA

Lael U. Odhner · Raymond R. Ma · Aaron M. Dollar
Yale University, Department of Mechanical Engineering and Material Science,
New Haven, CT, USA
e-mail: {lael.odhner,raymond.ma,aaron.dollar}@yale.edu

J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 27–40.
DOI: 10.1007/978-3-319-00065-7_3 c© Springer International Publishing Switzerland 2013



28 L.U. Odhner, R.R. Ma, and A.M. Dollar

ARM-H program. ARM-H was concieved to design next-generation robotic hands
that are simple enough for widespread use, but also capable of performing more de-
manding manipulation tasks. The resulting product, the Hardened Adaptive Novel
Low-cost End-effector (HANDLE), has five actuators and is packaged so that it fits
on the end of a Barrett WAM, and is shown in Fig. 1. Our work on HANDLE has fo-
cused on designing underactuated fingers that are capable of manipulating a grasped
object within the workspace of the hand. Several underactuated hands in the litera-
ture can pinch an object by locking the finger joints against clutches or hard stops
[5, 6], or by introducing a concave shape to the fingertip [7]. The results presented
in this paper improve on the state of the art demonstrating an underactuated hand ca-
pable of moving a pinched obejct continuously in the plane defined by two opposed
fingers. No clutches or hard stops are used; instead, the passive elastic properties
of the hand are exploited to alter the minimum energy configuration of a pinched
object.

This paper is organized in the following order: In Section 2, the design of the
HANDLE fingers will be introduced, and the mechanics of obtaining a two-fingered
pinch grasp with the hand will be explained. Section 3 discusses how the underactu-
ated fingers can be used to reposition a pinched object within the workspace of the
hand. Because of the limited number of actuators, not all object configurations can
be reached. However, the manifold of reachable configurations can be computed
using a grid search algorithm. Finally, Section 4 shows experimental results from
HANDLE manipulating several small objects of varying width and curvature.

Fig. 1 The iRobot/Harvard/Yale HANDLE is a novel lightweight robot hand capable of per-
forming a variety of precision grasping and in-hand manipulation tasks

2 Finding Stable Pinch Grasps with HANDLE

The design of HANDLE was derived from the SDM Hand, an underactuated hand
whose fingers are molded as a single solid piece [8]. Similarly, the fingers of HAN-
DLE, shown in Fig. 2, employ in-molded polyurethane flexures as joints between
the proximal and distal finger links. The proximal links are attached to the hand
with pin joints via a free-wheeling pulley. The fingers are actuated by a single flexor
tendon running the length of the finger. The pulley radius on the proximal joint and
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the distance from the tendon to the flexure midplane on the distal joint are both 9
mm, so that the actuated torque on the two joints is approximately equal. The elastic
restoring force on the distal joint is provided by the polyurethane flexure; a return
spring attached to the proximal joint is tuned to provide 1/5 the angular stiffness
(Nm/rad) of the distal joint, in accordance with previous optimizations for reliable
underactuated grasping [9].

Fig. 2 The fingers on HANDLE are underactuated, having a single flexor tendon which runs
the length of the finger

2.1 Acquiring Stable Pinch Grasps

HANDLE has been experimentally found to be capable of acquiring pinch grasps on
a range of objects, such as the 9 Volt battery shown at the right in Fig. 1. This grasp
is not a planar form closure in the sense that the actively exerted forces do not fully
span the space of wrenches on the grasped object. Nonetheless, the grasp is stable
and repeatable because the fingers seek a reliable minimum energy configuration
while satisfying contact constraints between the fingertips and the objects. In this
section we will explain the modeling assumptions used to predict the stability and
equilibrium position of the hand while pinching an object.

The behavior of the HANDLE fingers is similar to that of other serially under-
actuated fingers, such as the linkage-based fingers on SARAH [10], or the pulley-
based fingers on Hirose’s soft gripper [11]. As a finger is actuated, it closes inward
on an arc defined by the minimum energy of the finger for the applied tendon length
constraint [12]. Because of the underactuated design, contact on the finger from an
object will deform the finger, and produce an elastic reaction force at the point of
contact proportional to the magnitude of the disturbance. Due to the design of the
fingers on HANDLE, this contact force is large enough that an object in between
two fingers will see a significant contact force when two fingers sweep in to a rest
position which interferes with the object, as seen at left in Fig. 3. The plot in Fig. 3
shows a plot of the measured internal forces on a grasped object (a 19 mm wide load
cell) as a function of tendon excursion, starting at 12 mm of tendon travel, when the
fingers first touch the object. The peak fingertip force of the prototype hand shown
here is 19 N for an object of this size.
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2.2 Modeling Stable Pinch Grasps

To evaluate the stability of a grasp, assumptions must first be made about the dis-
turbance forces the object might experience. The rank-based criterion for assessing
force closure stability (that the positive span of the wrenches on the grasped object
encompasses an arbitrarily large disturbance) is not useful, as the compliance of the
underactuated fingers limits the magnitude of the forces that can be applied to the
object. Instead, we assume that disturbance forces will be small. This is actually
not a bad assumption to work under for the manipulation of small objects; the ef-
fect of gravity is often insignificant, especially if the pinch forces on the object are
sufficient, and many such tasks occur in environments where unplanned collisions
are unlikely. Under such circumstances, we will consider a grasp to be stable if it
lies at an energy minimum with respect to the configuration of both the hand and
the grasped object [16]. To ascertain whether this is true, a model of the hand was
constructed using the Freeform Manipulator Analysis Toolkit (FMAT), an exten-
sible toolkit for quasi-static modeling of rigid-body and flexible mechanisms [13].
FMAT is based on energy-based models of rigid links and deformable elastic bodies,
and finds the constrained equilibrium configuration q∗ of any mechanism having a
configuration vector q by solving the energy minimization problem:

q∗ = argmin
q,λ

(
U(q)−λT c(q)

)
(1)

Here U(q) is the potential energy in the fingers as a function of elastic joint defor-
mation, and c(q) is a vector of constraints on the hand and the grasped object having
a set of corresponding constraint forces λ . The links of the finger were constrained
by the tendons (a constraint on the length of the tendon running along each finger).

Fig. 3 Internal force in an underactuated pinch grasp is generated by driving the fingers to an
equilibrium configuration which interferes with the pinched object
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The fingertip constraints were represented as normal constraints and no-slip rolling
conditions between a grasped object and the fingertips. These contact conditions
were modeled by constraining the difference in arc length along the surface of the
grasped object and the arc length along the fingertip (shown in Fig. 4). To find the
initial position of the no-slip contact, the configuration of the object was assumed
to be the symmetric configuration at which the fingertips just touch the object; this
initial pose was used to provide an initial condition for rolling constraints. The mod-
els of the fingers are available for download along with the Freeform Manipulator
Analysis Toolkit [13]. Modeling a hand with continuum joints such as those on the
SDM Hand and HANDLE is difficult; a bending flexure has in principle an infinite
number of degrees of freedom. The FMAT implements a model previously devel-
oped by the authors relying on the fact that the Euler-Bernoulli bending of a flexure,
while high-dimensional, is smooth, and thus can be projected on a basis of smooth
curvature functions [14]. Using this model, the in-plane behavior of the flexure can
be adequately represented by only three parameters, q1,q2 and q3, which do not cor-
respond to serial joint angles in the same way as in a pseudo-rigid body model [15].
Instead, the effect of each parameter is distributed along the length of the flexure.
This model is more convenient than a pseudo-rigid body model because the energy
is quadratic with respect to the configuration parameters:

Udist =
EIdist

2

(
q2

1 +
q2

2

3
+

q2
3

5

)
(2)

Here EIdist is represents Young’s modulus and the bending moment of the distal
flexure joint. The kinematics of the flexure joints are also represented in terms of
these parameters; details on the computation of the finger kinematics as a function
of the smooth curvature basis can be found in [14].

Fig. 4 Once an internal force is maintained on the grasped object, no-slip rolling contact was
assumed between the object and the finger pad. The position-controlled tendons are treated
as rigid constraints.
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The rotation of the proximal finger joint is described by a fourth parameter q4,
and the joint stiffness by kprox:

Uprox =
kprox

2
q2

4 (3)

In addition to these parameters needed to describe the deformation of each finger,
the in-plane configuration of the pinched object (x,y,θ ) must be added to the vector
of configuration parameters for the hand/object system. These configuration param-
eters do not carry any associated energy if gravity is negligible, but interact with the
joint energy through the fingertip constraints. Because all of the energy functions as-
sociated with motion of the hand and grasped object are quadratic functions of the
configuration parameters, finding a static equilibrium position using Castigliano’s
theorem is equivalent to solving a quadratic program with nonlinear constraints cor-
responding to the fingertip constraints and the constraints imposed by the flexor ten-
dons. The Freeform Manipulator Analysis toolkit uses Matlab’s optimization toolkit
to find these equilibrium positions.

2.3 Assessing Constraint Validity

Given an equilibrium configuration and the constraint forces on tendons and finger-
tips, the validity of the grasp can be further assessed by checking the conditions on
each constraint. For example, normal forces between the fingertips and a grasped
object must be positive in order to maintain contact; the tendon forces must be neg-
ative. Additionally, limits must be set to ensure that a pinched object cannot roll of
the fingertips, either into or out of the hand. A routine was written to automatically
check these kinematic and kinetostatic bounds on stability, returning a boolean value
determining stability. No-slip contacts were not considered in this stability check,
because the coefficient of friction with a surface varies from object to object. In-
stead, the stablity check routine returns a scalar value μcrit corresponding to the
minimum coefficient of friction needed to keep the no-slip contact:

μcrit = max

(
λs,i

λn,i

)
(4)

Here λs,i and λn,i are the shear and normal forces at the ith no-slip contact between
the fingertips and the object.

2.4 Summary

Modeling the configuration of the fingers and grasped object in HANDLE’s stable
pinch grasps can be posed as a problem of energy minimization, in the same fashion
one might analyze the deformation of a monolithic rigid body under constraints.
The critical difference in the case of pinch grasp modeling is that the necessary
conditions for the fingertip constraints must be met if a pinch grasp is to remain
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stable. These conditions have been expressed in a form where grasp stability can
be quantified, in terms of the boolean conditions (normal constraints and tendon
tension constraints), and in terms of scalar conditions (minimum friction coefficient
needed for stability).

3 Manipulation

From the model just developed for finding equilibrium configurations of a pinched
object, it is straightforward to generalize to a model of manipulation within the
workspace of the hand. Modeling manipulation is a matter of determining the
change in configuration of an object held between the fingers as the tendon length
constraints are varied. Thus, one manipulates with the underactuated hand by using
the tendon constraints to shift the equilibrium configuration of the grasped object.
Another way of looking at this is to see the manifold of tendon excursions and the
manifold of object configurations as related by some mapping, which is a home-
omorphism if the constrained energy function is convex and thus returns unique
solutions. However, because there are only two actuators in the pinching fingers de-
scribed here, the entire manifold of object configurations (x,y,θ ) will not be reach-
able. Instead, it will be a sub-manifold embedded in this space.

3.1 Manifold Exploration

In order to understand what the manifold of manipulable object configurations looks
like, methods of discrete approximation were developed. By slowly contracting the
finger tendons to the point where the fingers barely make contact with the grasped
object, a single stable point on the manifold can be identified. A grid of points is then
expanded out from this initial point (marked as point 1 in Fig. 5). At each point, the
boolean stability condition for the grasp is checked and the minimum necessary
friction coefficient μcrit is identified. The approximated manifold of manipulable
configurations resulting from this process is shown in Fig. 6 for a 25 mm diameter
cylinder. At left, the projections of the manifold onto the xy plane and the xθ plane
show that, the rotation of the object is antisymmetric about the center of the object,
and that the approximate magnitude of the largest rotation possible is close to 1
radian. The gradient coloring on the manifold shows the quality of the grasp as
determined by the value of μcrit .

Several features of interest can be observed on this manifold. First, the coeffi-
cient of friction needed to maintain a pinch grasp increases as the tendons are both
pulled. This can be explained by examining configuration 4 on Fig. 5. As the fingers
pinch inward on a round object, the fingertips roll up onto the outside of the object.
Thus, the contact forces tend to eventually eject the object inward toward the palm.
This is sometimes a desirable property; often one acquires a small object in a pinch
grasp and then wishes to transition into a power grasp further in the palm. Another
feature of interest is the semicircular region in the xy projection, corresponding to
the fingertip grasps at the edge of the workspace. Looking at this edge on the xθ
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projection, it is clear that the object can be rolled back and forth in this region to
rotate it to nearly the full extent possible. This information could either be used for
to tailor the finger design (to ensure that a particular class of object can be rolled
between the fingers over a desired range) or to plan manipulation operations such as
finger gaiting.

Fig. 5 The manifold of manipulable configurations for an object can be found by constraining
the object at its initial point of contact (1), and varying the tendon constraints to map out a
grid of stable configurations. Some examples of the corresponding pinched configurations are
shown at right. The origin in tendon excursion space corresponds to the fingers completely
extended.

4 Experiments

In order to understand how the a priori predictions of manipulability made in the
previous section relate to the behavior of the real robot hand, several experiments
were conducted with a prototype of HANDLE. Several small objects were selected,
each having a different width and radius of curvature. The test objects, shown in
Fig. 7, were printed on a Stratasys 3D printer. A TrakStar measurement system
from Ascension Technology was used to measure the position and orientation of
each object.

At the start of each test, the HANDLE manipulator was placed in a planar con-
figuration as shown in Fig. 8 and used to grasp the objects in a centered pinch grasp.
The object was placed so that the fingers could make contact without moving the
hand. The third finger perpendicular to the plane of the table was held fixed, and
not used for the experiment. The path of the tendon trajectory for each object was
separately calibrated in order to determine the largest looping trajectory within the
hand’s workspace that could be realized with without a significant amount of slip.
Four waypoints along each object’s test trajectory were tuned so that the object
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Fig. 6 The manifold of manipulable configurations for a 25 mm cylinder is shown, along
with the corresponding stable region in tendon space. The coloring on the plot indicates μcrit ,
the minimum friction coefficient needed for stablity. The origin on the object configuration
corresponds to the center of the palm.

Fig. 7 A series of test objects used to test the predictive value of the pre-computed manipu-
lability mappings

experienced less than 3mm of net displacement after returning to the initial pinch
grasp. During this empirical workspace identification, the position and orientation
of the object in Cartesian workspace were also recorded for each set of actuation
commands.
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4.1 Results

The results of a transit around the workspace with the five objects are shown in
Figures 9, 10, and 11. The trajectory of each object is shown superimposed on the
computed manifold of manipulable configurations, in the xy and xθ projections. One
salient feature from these results was the degree to which the empirically determined
“safe” trajectories stayed mostly within regions in which the required coefficient of
friction μcrit was smaller than about 0.3. This was not as predictive for the objects
having larger radii of curvature (such as objects C and D), but supports the idea that
hands designed for rolling small objects should be designed with an eye toward this
performance metric.

Another significant result was the degree to which the relative angular rotation
rate with respect to x and y travel tracked the theoretical predictions. The curves
trace out the predicted manifolds, deviating from the surface primarily in discrete
slip events, as seen with object B (in Fig. 9) and object C (in Fig. 10). The slip
events were noticeable by eye when the tests were performed - typically, the object
would reach a point in the workspace where the predicted critical coefficient of
friction was higher, and the shearing motion of the broken contact would cause a
rotation of the object relative to the fingers. The practical impliation of this result is
that feed-forward models will be of limited usefulness for planning and controlling
object position. This is not terribly surprising; however, in these cases the object was
never unstable in a larger sense. It remained safely held between the fingers. With
a richer set of tactile sensors for determining contact location on the fingers, one
could easily imagine a model-based manipulation framework capable of recovering
from this kind of error.

Fig. 8 The apparatus used to measure the position and orientation of a manipulated object
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Fig. 9 Tracking results for two objects, one having a radius of 12.5 mm and a width of 25
mm, (A, left) and one having a radius of 10 mm and a width of 20 mm (B, right). Object B
shows a typical angular slip event at the right hand side of the xθ projection.

Fig. 10 Tracking results for objects C (radius 30 mm, width 20 mm) and D (flat edges, width
20 mm). The narrower range of translation and rotation observed in object D were due to
properties of the rolling contact for flat objects, compared to the smaller radii in all the other
objects.
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The final observed source of disagreement between the underactuated manipula-
bility models and the experiments was the the errors caused by breakdown of the
ideal contact constraints for configurations near the edge of the workspace. This
was particularly true for the flat object (D) and the 30 mm radius object (C). Both
of these objects were predicted to have narrow ranges of lateral motion, manifest-
ing as either a massive increase in the required coefficient of friction or a kinematic
travel limit, which caused the manifold exploration program to halt. The physical
cause of these limits was the limited range of rotation which a flat object can un-
dergo. In practice, the fingertip contact constraints ceased to act as idealized rolling
constraints, and instead allowed some slip. For this reason, the angular prediction
errors are higher for these objects. Better models for these edge cases could clearly
improve the predictive capapbility of pre-computed manipulability manifolds.

Fig. 11 Tracking results for object E, and some photographs illustrating the configuration of
the hand and object at points along the trajectory

4.2 Summary

The experimental results validate the basic premise of the manipulation model put
forth here, namely, that altering the equilibrium configuration of a grasped object
within the hand can be used to perform basic in-hand manipulation tasks captured
by the manifold of manipulable object configurations. The computed manifolds are
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representative of the regions in space which can be reached within the workspace of
the hand. Errors due to slippage and high internal forces were observed, and tend to
be discrete events that do not necessarily affect the stability of the grasped object.

5 Conclusions

In this paper, we have shown that fingertip grasping and manipulation of small
objects with an underactuated hand is possible, and also practical with no special
modifications to a fairly generic fingertip geometry and link configuration for an un-
deractuated hand. The HANDLE fingers can move and reorient small objects within
the hand, and the range of motion and rotation of the objects can be approximated
with analytical models. The most valuable purpose these results serve is to erode
the set of necessary conditions which must be imposed on a robot design in order to
consider it fit for manipulation. Underactuated fingers are not capable of obtaining a
pinch grasp in which arbitrary disturbance forces can be resisted; however, it is of-
ten safe to assume that the acquisition and manipulation of a small object does not
involve such disturbances. In these cases, the analysis presented here offers some
idea of how the design, planning and execution of in-hand manipulation tasks can
be carried out.
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Towards a Self-contained Soft Robotic Fish:
On-Board Pressure Generation and Embedded
Electro-permanent Magnet Valves

Andrew D. Marchese, Cagdas D. Onal, and Daniela Rus

Abstract. This paper details the design, fabrication and experimental verification of
a complete, tetherless, pressure-operated soft robotic platform. Miniature CO2 car-
tridges in conjunction with a custom pressure regulating system are used as an on-
board pressure source and embeddable electro-permanent magnet (EPM) [9] valves
[13] are used to address supporting hardware requirements. It is shown that this
system can repeatedly generate and regulate supply pressure while driving a fluidic
elastomer actuator (FEA) [7, 14, 13]. To demonstrate our approach in creating teth-
erless soft mobile robots, this paper focuses on an example case-study: a soft robotic
fish. An underactuated propulsion system emulating natural caudal fin and peduncle
movement is designed, fabricated, and subsequently experimentally characterized.

1 Introduction

One key requirement in creating robots that are integral parts of our daily lives is
body elasticity. Elasticity is a form of intelligence embedded within the mechan-
ics of a robot body. A soft robot is inherently safe and adaptive. It can deform and
absorb energy in case of a collision [1]. Environmental uncertainty is less of a prob-
lem, reducing complexity in modeling, planning, and control. Soft robots have many
potential applications [20], including bio-inspired robotics [6].

Among alternatives, fluid pressure is a suitable actuation method for soft robots.
This form of mechanical energy induces stresses directly inside an elastomer [21],
to enable a large actuation range, limited only by the mechanical strength of the
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material. We build our robots relying on a novel actuator technology, tagged as
fluidic elastomer actuators (FEAs) [7, 14, 13]. FEAs use synthetic elastomer films
as pneumatic or hydraulic bending elements. They are operated by the expansion of
embedded fluidic channels under pressure input.

This family of soft robots has a unique set of challenges. A fluidic actuation
principle requires a pressure source [8] for operation, which limits mobility and
mainstream usage. For mobile applications, these robots need to generate the actua-
tor supply pressure on-board. Furthermore, to address, pressurize, and depressurize
actuators, this class of robots requires a valve array, which can occupy considerable
real-estate and be cumbersome to install on-board. In order to create completely
tetherless fluid-powered soft robots, actuator supply pressure and control valves
must be moved on-board. To date, the authors are aware of only a single system
[14] that accomplishes this task.

Building on our previous results, this paper presents a complete, tetherless,
pressure-operated soft robotic platform by addressing both challenges: (1) We use
miniature CO2 cartridges with custom pressure regulating systems as on-board
pressure sources; and (2) we use a new, embeddable, and energy-efficient electro-
permanent magnet (EPM) [9] valve [13] to address supporting valve requirements.

Fig. 1 Fish prototype realized with fluidic actuation system. The system is composed of (A)
CO2 storage and release mechanism, (B) elastic reservoir vessel, (C) embeddable electro-
permanent magnet (EPM) valves [13], (D) fluidic elastomer actuator [7, 14, 13], (E) custom
CO2 regulator board, (F) custom EPM driver board, (G) custom boost converter, and (H)
lithium polymer battery.

To demonstrate our approach in creating tetherless fluid-powered soft robots, this
paper focuses on an example case-study: a soft robotic fish (see Fig. 1). One com-
mon way fish achieve forward swimming is by composite caudal fin, peduncle, and
body movement [2]. Motion in the fish’s tail elegantly sheds vortices forming a jet
with high propulsive efficiency [17] [18]. To emulate such motion, many electrome-
chanical robotic fish utilize several actuators to drive joints within a multi degree-
of-freedom tail. MIT’s Robotuna utilizes six, 3 horsepower servomotors in its six
DOF tail [4] [3]. G9, a robotic fish developed at the University of Essex, employs a
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4 DOF tail [12] and NAF-I utilizes one passive and two active joints [22]. However,
because of supporting hardware requirements, we do not yet have the capabilities to
drive more than a single fluidic elastomer actuator onboard our robotic platform.

To meet the constraints of having a limited number of available actuators, but
needing a wave-like motion, this paper develops an underactuated caudal fin and
peduncle requiring only a single, bi-directional FEA, a locomotion scheme which
can be realistically integrated within our soft robotic fish. We base our initial fin
design on findings from [15], where a single electromechanical actuator was used to
drive a compliant caudal fin. Considering the well documented hydrodynamic com-
plexity of fish locomotion [19] [5] [10], we attempt to experimentally characterize
various underactuated fish tail designs and control policies.

In the following sections, we present the design, implementation, and experimen-
tal verification of this novel, self-contained, fluidic robotic system and its propulsion
system. Section 2 individually details the five major subsystems of the platform and
their function within the aggregate system. Section 3 details experimental methodol-
ogy and results used to verify critical aspects of system functionality. Lastly, section
4 explores major experimental insights.

2 Technical Approach

There are several enabling subcomponents of the self-contained fluidic actuation
system. These subcomponents allow the system to simultaneously generate and reg-
ulate actuator supply pressure and control the deformation of FEAs.

In short, CO2 is released from a high pressure (800 psi) canister to generate low
driving pressure (3.5 psi) in an elastic reservoir. Miniature control valves allow gas
to deplete from the reservoir into actuators and govern actuator pressurization.

2.1 CO2 Storage and Release Mechanism

Detailed in Fig. 2 (A), this component houses an 8 gram CO2 canister (I) punctured
by a commercially available trigger valve (K). Valve displacement, and correspond-
ingly CO2 release, is controlled by a linear voice coil (J). To facilitate trigger valve
actuation under onboard power constraints, a preload spring (L) is employed.

2.2 Elastic Reservoir Vessel

Detailed in Fig. 2 (B), this spherical, thick-walled silicone elastic vessel is filled
with gas by A and depleted of gas by running the actuators, (D). Past a certain
internal volume, pressure within the vessel remains relatively constant independent
of volume changes. Such vessel design is highly advantageous in driving a FEA:
air may leave the vessel and enter the actuators while the vessel passively maintains
constant driving pressure and alleviates the system from continually replenishing
the reservoir.
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Fig. 2 Self-contained fluidic actuation system. The system is composed of (A) CO2 storage
and release mechanism, (B) elastic reservoir vessel, (C) embeddable electro-permanent mag-
net (EPM) valves [13], (D) fluidic elastomer actuator [7, 14, 13], (E) custom CO2 regulator
board, (F) custom EPM driver board, (G) custom boost converter, and (H) lithium polymer
battery.

2.3 Electropermanent Magnet (EPM) Valves

Detailed in Fig. 2 (C), these embeddable control valves are a vast improvement both
in size and energy consumption on the authors’ previous work [13]. These valves
turn ON and OFF gas flow with only a momentary pulse of energy (8 ms, 5 A)
through coils (M) surrounding hard magnetic material and require no input energy
to indefinitely maintain a state. A pulse either establishes or cancels a magnetic field
in a fluidic channel, moving a small steel ball (N) away from or towards a sealing
orifice.

2.4 Control Circuitry

Detailed in Fig. 2 (E and F). E measures elastic vessel (B) internal pressure as feed-
back for a bang-bang control routine used to drive the linear voice coil (J). F drives
EPM valves (C) by controlling input current pulse duration and direction. E sup-
presses F when pressure drops below threshold and the reservoir is being filled.
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2.5 Underactuated Caudal Fin and Peduncle

The caudal fin and peduncle were designed to meet the functional objective of
producing forward thrust while meeting the constraint of being driven by a sin-
gle bi-directional FEA, detailed in Fig. 2 (D). The actuator is shown in a restored,
or depressurized state (O) and in a fully displaced, or pressurized state (P). Fig. 3
details the fabricated underactuated caudal fin (A) and peduncle (B) system. The
compliant caudal fin is cut from 10 mil PEEK (Polyether ether ketone) film and is
secured to the elastomer actuator using 2-56 nylon machine screws (C). The con-
straining (center) layer of the actuator is also composed of PEEK material and acts
to quickly return the elastomer actuator to its restored state during depressurization.
The actuator is cast from ECOFLEX 0030 silicone rubber.

Fig. 3 Underactuated cau-
dal fin (A) and peduncle (B).
The caudal fin is composed
of a thin PEEK material
and joined to the peduncle,
a fluidic elastomer actua-
tor (FEA), through small
screws at (C).

3 Results

Figure 4 displays top-view snapshots of our prototype system during operation. In
this experiment, all sub-components are assembled and programmed to work to-
gether to verify system functionality. An elastic reservoir vessel acts as a passive
pressure regulator for the high-pressure CO2 cartridge and EPM valves drive a fin-
shaped bidirectional FEA at 1 Hz.

Fig. 4 The fluidic actuation
system is used to realize
natural, fish-like motion. In
(1) the elastic reserve vessel
(red-dashed circle) is unin-
flated. In (2) the reserve ves-
sel is inflated with CO2 gas.
The right and left sides of
the fin shaped bidirectional
fluidic elastomer actuator
are pressurized, curving the
fin to the left (3) and right
(4) sides, respectively.
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3.1 Fluidic Actuation System Performance

Fig. 5 depicts the system regulating supply pressure, Psup, (blue) between a reference
(dashed line) and threshold (solid line) in the presence of actuator pressurization and
depressurization (red) at 1 Hz. Time period (A) represents the CO2 valve initially
opening, (B) gas filling the elastic vessel (3 seconds), (C) CO2 valve closing (0.5
seconds), and (D) the elastic pressure vessel maintaining a relatively constant supply
pressure while EPM control valves drive rapid actuation. Event (F) represents initial
pressurization of the system and event (E) the initial passive closure of the EPM
control valves. Pressure is sampled at 50Hz.
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Fig. 5 Fluidic actuation system generating and regulating supply pressure (blue curve)
between a reference (dashed line) and threshold (solid line) in the presence of actuator pres-
surization and depressurization (red curve). As the actuator depletes reservoir volume, prop-
erties of the elastic vessel passively regulate supply pressure and enable infrequent CO2 valve
actuation.

The fluidic actuation system was run according to the following algorithm:

Algorithm 1. Control Algorithm for Fluidic Actuation System
Error = Re f erence−Psup

if Error < T hreshold and valve is closed then
CO2 valve idle

end if
if Error ≥ T hreshold and valve is closed then

(1) Suppress actuation, (2) Open CO2 valve
else

(1) Close the valve, (2) Unsuppress actuation
end if
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Table 1 summarizes the system running for an extended duration of time. Here, a
single fluidic actuator was driven at 1 Hz under the pressurization characterized in
Fig. 5. Elastic vessel fill volume was varied from test 1 to test 2 and adjusted prior
to running the system.

Table 1 Measured system parameters during extended operation

Test Duration Vessel Fills Actuations Charge Consumed Gas Consumed

1 184a (sec) 20 85 96 (mAh) 1080b (mL)
2 180a (sec) 20 65 127 (mAh) 880b (mL)

a Test terminated due to excessive heating of boost converter.
b Estimate from average vessel expansion (1.9 and 1.8 in. respectively).

The pressure-volume relationship within the reservoir is highly non-linear. Ini-
tially, as volume within the vessel increases, pressure increases. However, past a
certain internal volume ( 15 mL), pressure within the vessel remains relatively con-
stant independent of volume changes. This “plateau pressure” is proportional to ves-
sel wall thickness and is experimentally characterized in Fig. 6. Here, volume was
manually injected into vessels of varying wall thickness (0.125, 0.25, and 0.375 in.)
using a 60 mL capacity syringe in 2 mL increments up to 20 mL and 10 mL incre-
ments up to 40 mL. At each volume corresponding gauge pressure measurements
were collected.
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Fig. 6 The reserve vessel’s internal pressure remains relatively constant independent of vol-
ume changes past a specific volume increase ( 15 mL). This ”plateau pressure” is proportional
to the vessel’s wall thickness. Black represents a wall thickness of 0.375 in., red 0.25 in., and
blue 0.125 in. In all vessels, O.D. was initially 1.25 in.
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3.2 Underactuated Caudal Fin and Peduncle Performance

3.2.1 Experimental Setup

In order to evaluate the static thrust produced by a variety of caudal fin and peduncle
combinations under various control policies in a controlled setting, the experimental
assembly detailed in Fig. 7 was fabricated. The purpose of this assembly was to
suspend a robotic fish tail and fin (A) vertically in a tank of water (50.8 cm long,
25.4 cm wide, 30.5 cm high) and measure the resulting stationary thrust force of
a given control policy through a force transducer (C), (LSB200 2 lb Cap, FUTEK
Advanced Sensor Technology, Inc.). Supports were fabricated to both secure the tail
to the force transducer (B) and secure the entire described apparatus to the walls
of the water tank (D). A similar vertical experimental setup was used in a paper
detailing the effects of caudal fin compliance on propulsive force [15].

The amplified force transducer signal was acquired at 500Hz using a USB-6211
DAQ (National Instruments). In software, the force signal was zeroed prior to run-
ning a policy and, after a stabilization period, averaged over three policy-dependent
cycle periods. Fig. 8 (a) details the force signal over three periods for a control policy
resulting in net thrust. An average negative force is produced corresponding to trans-
ducer compression or vertical thrust force. Additionally, pressure inside both sides
of the fluidic elastomer actuator was measured using two ASDX series 15 psi differ-
ential pressure transducers (Honeywell Sensing and Control). Fig. 8 (b) details the
corresponding pressure profile for the above referenced control policy. Furthermore,
two control valves (100 psi, 2 watt, 411 series, ASCO) were used to pressurize and
depressurize each side of the bi-directional actuator (four control valves total). The
valve array was driven by a custom embedded controller responsible for realizing
policies, detailed in Sec. 2.4. Policies were communicated from a host PC to the low
level embedded controller through a MATLAB serial communication interface.

(a) (b)

Fig. 7 Experimental setup used to measure the static thrust produced by various control poli-
cies for various caudal fin and peduncle combinations. The apparatus consists of a force
transducer (C) secured to the vertically suspended fish tail (A) through a support at (B). A
second support (D) suspends the entire apparatus vertically in a tank of water.
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Fig. 8 Transducer compressive or vertical thrust force signal profile over three strokes of a
control policy resulting in a net thrust (a) and internal elastomer actuator pressure profile over
the same time period (b)

3.2.2 Policy Parametrization

Control policies were parameterized using as few variables as possible. Fig. 9 details
policy parametrization. A policy, α , consists of four time periods, T1 - T4, which
when summed define one cycle of a periodic stroke. T1 is the pressurization time of
the right elastomer actuator segment, and is realized by closing the right actuator’s
outlet valve and opening the inlet valve. When the right actuator pressurizes, the
peduncle curves to the left. T2 is the depressurization time of the right elastomer
actuator, and is realized by closing the actuator’s inlet valve and opening the outlet.
At the onset of depressurization, the peduncle begins to return to its restored state.
T3 and T4 represent identical time periods for the left actuator. Policies were re-
alized with 1 ms precision. A minimum of 25 ms was imposed on T1-T4, as this
corresponds to the fastest realizable switching frequency of the solenoid valves. A
maximum was empirically determined for each actuator to avoid damaging elas-
tomer channels.

Fig. 9 Control policies,
α , were parameterized
using pressurization and
depressurization times of
the bidirectional actuator.
T1 and T2 correspond to
the pressurization and de-
pressurization times of the
left-side actuator and T3 and
T4 to the right-side actua-
tor, respectively. These four
times constitute one cycle of
a periodic stroke.
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3.2.3 Test Scenarios

A total of 64 tests were conducted. Two FEAs, or peduncles, were evaluated: small
measuring 1.27 by 2.54 by 0.95 centimeters and large measuring 2.54 by 2.54 by
0.95 centimeters. Two fin areas were evaluated: small measuring 15.5 and large
measuring 32.1 square centimeters. Two control strategies were evaluated, active
depressurization and passive depressurization. During active depressurization, T2
and T4 were held at control limit minimums (25 ms) allowing the pressurization of
one side of the bidirectional FEA to forcefully depressurize the other side. During
passive depressurization, T2 and T4 were equal to T1 and T3 allowing each side
of the FEA sufficient time to depressurize before the other is pressurized. Lastly,
pressurization times, T1 and T3, were set equal and varied incrementally from either
83 or 142 ms (depending on depressurization strategy) to 450 or 750 ms (depending
on actuator size limitations).

During each scenario static force (F): the average thrust force over three oscil-
lations after a stabilization period, wake (W): double fin oscillation amplitude, and
Pressure (P): mean peak internal actuator pressure after stabilization were calcu-
lated. In addition, efficiency was estimated for each scenario as: F

6T1PV̇
in milliNew-

tons per unit of input energy, where V̇ is an estimated volumetric flow rate and is
constant for all scenarios.

Fig. 10 details the frequency wake product as a function of the system’s control
input, pressurization time, for the small actuator. In general, independent of fin area
or depressurization strategy, the frequency-wake product increased with pressuriza-
tion time. However, as expected the product begins to plateau as both oscillation
amplitude and frequency plateau with linear increases in pressurization time.

Fig. 10 Frequency-wake
product as a function of the
system’s control input, pres-
surization time, for the small
actuator. Here, red and blue
represent large and small
fin areas respectively and
squares and circles represent
passive and active depres-
surization (vent) strategies
respectively.
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Fig. 11 details the stationary thrust produced as a function of frequency-wake
product for the small actuator. In general, independent of fin area or depressurization
strategy, the thrust force increased near-exponentially with frequency-wake product.
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Fig. 11 Stationary thrust
produced as a function of
frequency wake product for
the small actuator
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Furthermore, Fig. 12 details the estimated efficiency, or output force per unit
input energy, as a function of the frequency-wake product for the small actuator. In
general, a higher product resulted in greater efficiency.

Fig. 12 Estimated effi-
ciency, or output force
per unit input energy, as
a function of the frequency-
wake product for the small
actuator

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Frequency x Wake [cm s−1]

E
ffi

ci
en

cy
 [m

N
 J

in−
1 ]

Small Actuator

Fig. 13 details both the frequency-wake product as a function of pressurization
time and stationary thrust force as a function of frequency-wake product for the
larger actuator. In general, the results are similar to the the smaller actuator; how-
ever, a notable difference is that during a passive depressurization strategy (squares)
the larger actuator’s ability to generate thrust decreases past a certain frequency-
wake product. We believe this is due to longer than necessary depressurization times
creating a sudden decrease in fin velocity during the stroke. Essentially, when one
side of the actuator depressurizes, the fin returns to its neutral, restored state, and if
the fin reaches this restored state before the alternate actuator side begins to pres-
surize the fin can be slowed to a stop in the middle of a stroke.



52 A.D. Marchese, C.D. Onal, and D. Rus

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

16

18

20

Pressurization Time [s]

F
re

qu
en

cy
 x

 W
ak

e 
[c

m
 s

−
1 ]

Large Actuator

 

 

Large Fin, Passive Vent
Large Fin, Active Vent
Small Fin, Passive Vent
Small Fin, Active Vent

0 5 10 15 20
0

5

10

15

20

25

30

Frequency x Wake [cm s−1]

S
ta

tic
 T

hr
us

t [
m

N
]

Large Actuator

(a) (b)

Fig. 13 Frequency-wake product as a function of pressurization time and stationary thrust
force as a function of frequency-wake product for the large actuator

4 Main Experimental Insights

EPM Valve Efficiency. During experiments in Table 1, an 8 ms pulse of 5 A was
used to drive the EPM control valves. Two valves were used at the inlet and outlet
of the single actuator, and 4 pulses were required per actuation cycle. In test 1, the
valves consumed an estimated 3.8 mAh during the 85 actuations, a mere 4% for the
total energy consumed. In test 2, estimated EPM energy consumption amounted to
2.3%

CO2 Capacity Limits. Using Van der Waals non ideal gas equation, the maximum
theoretical volume available in the system is 3.5 Liters.(

p+
n2a
V 2

)
(V − nb) = nRT (1)

Where, p is the supply pressure (0.125 MPa), T gas temperature (296 K), R gas con-
stant, n number of moles (0.182), a measure of attraction between particles (0.364
Jm3

mol2 ), and b volume excluded by a mole of particles (0.00004267 m3

mol ).

Reservoir Fill Volume. As the results in Table 1 indicate, for the same duration of
time a larger periodic fill volume allows the system to spend more time operating
the fluidic elastomer actuators and expend less energy opening and closing the CO2

valve.

Underactuated Caudal Fin and Peduncle. As is shown in the experimental re-
sults, pressurization time provides control authority, though limited, over frequency-
wake product and correspondingly stationary force generation. Physical limitations
on pressurization time and frequency-wake coupling inhibit arbitrarily large fre-
quency wake products.

Considering only the active depressurization strategy scenarios, with the larger
fin area both the small and large actuators had the same average efficiency 0.79 mN

Jin
.
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However, with the smaller fin area the small actuator was almost twice as efficient
as the larger actuator with average efficiencies of 1.83 and 1.13 mN

Jin
respectively.

Many researchers have thoroughly investigated the propulsive efficiency of flap-
ping foils in a dynamic setting [11] [16] [17]. For these studies, efficiency and thrust
coefficients of oscillating foils were determined as a function of Strouhal number,
a critical parameter describing vortex pattern formation behind moving foils, and a
parameter that is dependent on, among other quantities, stream/body velocity. This
current analysis is limited to zero body velocity, so we cannot assume any of the
same underlying hydrodynamic phenomena (i.e. reverse Karman street) are at work.
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An Empirical Study of Static Loading
on Piezoelectric Stick-Slip Actuators
of Micromanipulators

Aayush Damani, Manikantan Nambi, and Jake J. Abbott

Abstract. Piezoelectric stick-slip actuators have become the foundation of modern
micromanipulation. Due to difficulty in closed-loop control with manipulators that
use piezoelectric stick-slip actuators, methods for open-loop control with a human
in the loop have been developed. The utility of such methods depends directly on
the accuracy of the open-loop models of the manipulator. Prior research has shown
that modeling of piezoelectric actuators is not a trivial task as they are known to
suffer from nonlinearities that degrade their performance. In this paper, we study the
effect of static (non-inertial) loads on a prismatic and a rotary piezoelectric stick-slip
actuator, and obtain a model relating the step size of the actuator to the load. The
actuator-specific parameters of the model are calibrated by taking measurements in
specific configurations of the manipulator. Results comparing the obtained model to
experimental data are presented.

1 Introduction

Micromanipulation deals with small motions on the order of 10−3 to 10−6 m. Un-
der the guidance of electron and optical microscopes, micromanipulation is now
commonly used in the areas of MEMS construction and characterization, isolation
and characterization of individual materials, and manipulation of single cells. The
development and use of commercial manipulators like the Kleindiek MM3A [3],
the Zyvex Nanomanipulator [5], Imina Technologies miBot [2], SmarAct Actuators
[4], and the Attocube Nanopositioners [1] has increased with the demand for precise
standardized tools for micromanipulation.

Piezoelectric stick-slip actuators have become the foundation of modern mi-
cromanipulation due to their simple structure, high positional accuracy, unlimited
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movable distance, and high stability due to support by guiding surfaces [10]. Due to
their useful characteristics, these actuators have been extensively used in manipu-
lation of micro/nano-sized objects, medical devices, camera lens actuation systems,
and in bio-sciences [7, 19]. These actuators consist of a piezoelectric element and
a sliding mass that moves relative to the piezoelectric element (Fig. 1). Typically,
these actuators have no sensor feedback (with the exception of SmarAct Actuators
[4]), and hence, the individual joints of the manipulators are controlled open-loop,
using one knob per joint. Due to difficulty in implementing real-time closed-loop
controllers (which are generally based on vision feedback [9, 11]) for microma-
nipulators, methods to control them open-loop that capitalize on the intelligence of
the human user are being developed [17, 20]. The utility of such methods depends
directly on the accuracy of the open-loop models of the manipulator used.

Modeling of piezoelectric actuators is not a trivial task as they are known to
suffer from nonlinearities such as hysteresis, creep, and drift, which degrade their
performance [14, 12, 16]. A number of researchers have mathematically modeled
the dynamics of piezoelectric stick-slip actuators [6, 8]. Peng et al. [18] used a pre-
sliding friction model to explain the dynamics of stick-slip actuators, and obtained
an empirical model for the effect of end-effector mass on the step size of the actuator.
Lockwood et al. [15] found that when gravitational force was acting parallel to the
axis of their stick-slip actuator, the step size and corresponding displacement rate
in the downward direction was observed to be 14.7% greater than in the upward
direction. Thus, it is known that static (i.e., noninertial) loads in the direction of
motion of the actuator increases the step size and vice-versa. However, this effect
has not been well characterized in the past.

In this paper, we study the effect of static loads on a prismatic and a rotary
piezoelectric stick-slip actuator, obtain an empirical model relating the step size
to the load, and develop a method to calibrate the parameters of the empirical
model using measurements from the actuators. The modeling experiments presented
herein were performed for the coarse (stepping) mode of operation of the actuator

1 2 3

voltage

time1

2

3

D

d

Fig. 1 Functional description of a piezoelectric stick-slip actuator. A saw-tooth voltage is
applied to the piezoelectric element. As the voltage slowly increases from 1 to 2, the piezo-
electric element stretches by a distance D, and due to friction between the piezoelectric el-
ement and the sliding mass, the sliding mass also advances (stick phase). When the voltage
is quickly reduced from 2 to 3, the piezoelectric element quickly shrinks, but the inertia of
the sliding mass prohibits it from moving backward as quickly, resulting in a net forward dis-
placement of the sliding mass of d < D (slip phase). This is also known as the coarse mode
of operation of the actuator. In the fine (traditional) mode, the voltage signal between 1 and 2
is controlled to achieve fine positioning.
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(Fig. 1). The empirical models derived can be used with algorithms developed in
[17] to perform intuitive teleoperation of the micromanipulator’s end-effector, rather
than controlling individual joints. With piezoelectric stick-slip actuators, the step
size is stochastic, with a hard-to-model variance about a load-dependent mean. The
method presented in this paper deals with modeling this mean. The method is pri-
marily designed to provide an accurate estimate of the size of the next commanded
step, such that a user’s desired motion command can be accurately mapped to a re-
quired number of joint steps. Having a more accurate model of joint stepping could
also lead to a method to estimate the joint configuration in manipulators without
joint sensing, but such estimation methods would be subject to drift, and as such
would need to incorporate additional sensing methods to be useful in practice.

2 Technical Approach

The commonly used Kleindiek MM3A manipulator is used in this study (Figs. 2 and
3). It has three degrees of freedom (DOF) with two rotary joints and one prismatic
joint, which use piezoelectric stick-slip actuators. Due to the discrete step nature
of these actuators, as well as the MM3A’s controller, commands are given in the
form of number of steps to be taken along a given joint. The joints of the MM3A
lack sensor feedback, hence, it is difficult to obtain accurate measurements of the
step size. To study the effect of static loads on the step size of a joint j, we use the
average step size given by:

γ ji =
R j

Nji
(1)

where R j is the total range of joint j (4π/3 rad for the rotary joints and 12 mm for
the prismatic joint), Nji is the total number of steps required by joint j to travel
through R j, and i ∈ {+,−} indicates the direction of joint motion.

As the step size for each joint is small (on the order of 1 μm), it is difficult to
visually detect when a joint reaches its end of travel. However, the actuators make a
distinct noise when they hit a mechanical stop. This knowledge is used to develop an
audio limit switch that detects the end of travel for a joint. Custom software mon-
itors the sound from a microphone at each instant and computes the Fast Fourier
Transform (FFT) of the audio signal. The change in sound when a joint hits a me-
chanical stop is detected as a peak in the power of the FFT. The frequency at which
this peak occurs, and the intensity of the peak, is different for each joint and has to
be tuned before each experiment.

By measuring γ ji at different configurations of the manipulator, we study the
effect of gravitational loads on the rotary and the prismatic joint (no other external
forces are acting on the manipulator). Because an individual joint cannot distinguish
a gravitational load due to the distal links from an equivalent load due to a force
applied at the end-effector (passing through the manipulator’s Jacobian), our results
generalize to all static (i.e., noninertial) loads. Nonlinear regression is used to fit a
function, based on our knowledge of the load acting on the actuator, to the empirical
data, to obtain a relation for the step size of the form γ ji = Γji(g,α ji), where α ji is a
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set of actuator specific parameters, and g is the gravity vector. The actuator specific
parameters α ji of the model are then calibrated for by using γ ji measurements at
selected configurations for each joint. Significance of unmodeled factors such as
change in environmental conditions from day to day are analyzed by performing
ANOVA on the data obtained for γ ji.

3 Results

This section contains the main empirical modeling results of this paper. The experi-
ments that were conducted to obtain these results are detailed in Section 4.

3.1 Effect of Unmodeled Factors

Environmental conditions (e.g., temperature, humidity) are uncontrolled in our ex-
periments, so we will not incorporate these factors into our model (although it is
possible that they could be incorporated in the future [13]). To minimize these un-
modeled effects on the open-loop control of the Kleindiek MM3A, we propose to
calibrate the joints before each session of use. This assumes that there is a significant
change from day to day that warrants such recalibration. To substantiate this claim,
the average step size for prismatic joint 3 and the rotary joint 2 in the positive (γ3+
and γ2+) and negative (γ3− and γ2−) directions were taken on two different days,
which would incorporate a change in environmental conditions. The positive direc-
tion for the prismatic joint means moving out from 0 mm to 12 mm as defined by the
z2 direction. For the rotary joint, the positive direction is defined by the right-hand
rule about the z1 axis. For the prismatic joint, the configuration of the manipulator
was kept constant at q2 =−π/2, θ = 0, and ψ = 0 on both days, and three readings
each of the step size values γ3+ and γ3− were taken on each day. For the rotary
joint, γ2+ and γ2− was recorded at q3=0 mm, θ = −π/2, and ψ = 0. In these con-
figurations, there is no effect of gravity on the joint being investigated, isolating the
unmodeled factors of interest.

An ANOVA test on the data shows that the difference in step size on different
days is statistically significant (p < 0.05) for both positive and negative directions

Fig. 2 Kleindiek MM3A. With
the z0 axis initially vertical, the
base frame is rotated by θ about
x0 and then rotated by ψ about
the new y0. (a) Isometric view at
θ = 90◦. No gravitational loads
acting on joints 2 or 3. (b) Side
view at θ = 0◦, with gravitational
loads acting on both joints 2 and
3. ζ = ψ−q2.
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Connection to serial port MM3A 
Manipulator

Microphone

NC Unit

(a) (b) (c)

Fig. 3 The Kleindiek MM3A manipulator is shown at different orientations. (a) q2 =−π/2,
θ = 0, and ψ = 0 (b) q2 =−π/2 and ψ = 0 at a particular θ (c) q2 = −π/2 and θ = 0 at a
particular ψ .

for both the prismatic and the rotary joints. The ANOVA test also shows a significant
difference in the step size between the positive and negative directions within a given
day for both joints. Thus, calibration is recommended each time the manipulator is
to be used, and different calibration parameters should be found for each direction
of motion.

3.2 Modeling of a Prismatic Joint

Fig. 4 shows the results for the modeling experiments on the prismatic joint. The
gravitational load on the prismatic joint is varied by changing the angles q2, θ , and
ψ (see Fig. 2). Curve 1 in Fig. 4a shows γ3+ recorded at θ = −π/2 such that there
is no load due to gravity along the joint regardless of q2. At q2 = −π/2 on curve
1, the entire structure of the manipulator is aligned with the axis of the prismatic
joint, absorbing the recoil caused due to the quick stepping nature of the actuator,
resulting in a maximum value for γ3+. The result from curve 1 is converted into an
efficiency factor as:

ηi(q2) = 1− bi|cosq2| (2)

Joint 3 has a maximum stepping efficiency of 1 at q2 = −π/2. The reduced step
size (i.e., the reduction in stepping efficiency) at values of q2 other than −π/2 is
likely due to the component of the recoil force of the actuator acting perpendicular
to the link connecting joint 1 to joint 2 causing a small deflection in the link (which
is not infinitely rigid). This effect is captured by the |cos(q2)| term in ηi(q2). The
free parameter bi captures the loss of stepping efficiency when the prismatic joint is
fully perpendicular to the maximum-efficiency configuration.

To isolate the effect of gravity without any loss of stepping efficiency due to re-
coil, q2 is fixed at −π/2 such the manipulator arm is always outstretched, and the
gravitational load is changed by varying ψ ; results of this experiment are shown
by curve 2, which is the pure effect of gravity on γ3+. Results for γ3− are similar to
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Fig. 4 (a) Experimental data for the step size of the prismatic joint (γ3i) as a function of ζ ,
plotted at θ = 0 and −π/2, with data recorded on three different days. (b) Model equation
fitted to experimental data for a single day (Day 1) at θ = 0 and−π/3, with ψ = 0. Calibrated
parameter values of a+ = 972, b+ = 0.27, c+ = 372, a− = 899, b− = 0.25, and c− = −436
were found using the three calibration configurations described in the text.

γ3+, but mirrored about ζ = π/2 as can be been from curves 3 and 4 in Fig. 4a,
indicating that moving joint 3 outward with ζ = 0 is equivalent to moving joint 3
inward at ζ = π .

We hypothesized a model that combines the information in curves 1 and 2 as:

γ3i = ηi(q2)(ai− ci cos(ζ )cos(θ )) (3)

The model has six actuator-dependent parameters (α3 = {a+,a−,b+,b−,c+,c−})
that can be identified by measuring γ3+ and γ3− at the three different configurations:
(q2,θ ,ψ) = (−π/2,0,0), (0,−π/2,0), and (0,0,0). This process of finding the
free parameters for the prismatic joint is explained in Section 3.3. The parameter
ai represents the basic step size of the joint when no gravitational load or recoil
inefficiency is acting on the joint, measured at (−π/2,0,0). It can be seen that curve
1 and curve 2 intersect at the value of ai. The term ci cos(ζ )cos(θ ) is a function of
the component of the gravitational load due to the weight of the distal link acting
along the axis of the joint. The parameter bi was defined above.

3.3 Calibration Procedure for a Prismatic Joint

The step size model for the prismatic joint as described in Eq. 3 has six unknown
parameters that can be calibrated for by taking six measurements of γ3i as shown in
Fig. 5. For simplicity, the average step size at a known configuration of q2, θ , and
ψ is denoted by γ3i(q2,θ ,ψ). The following procedure is used to identify the six free
parameters α3 = {a+,a−,b+,b−,c+,c−} of the prismatic joint:
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(a) (b) (c)

Fig. 5 Calibrating configurations (in sequence) for identifying the six unknown parameters
of the model of the prismatic joint (joint 3). (a) ai is calculated by measuring γ3i at (q2,θ ,ψ)
= (-π/2,0,0), (b) bi is calculated using ai calculated in the previous step and γ3i at (q2,θ ,ψ)=
(0,-π/2,0), and (c) ci is calculated using the values of ai and bi above, and γ3i at (q2,θ ,ψ)=
(0,0,0).

1. First, γ3+(−π/2,0,0) and γ3−(−π/2,0,0) are measured at (q2,θ ,ψ) = (−π/2,0,0)
and by substituting in Eq. 3, we find parameter ai of the model by the following
relation:

ai = γ3i(−π/2,0,0) (4)

2. Next, γ3+(0,−π/2,0) and γ3−(0,−π/2,0) are measured at (q2,θ ,ψ) = (0,−π/2,0)
and using Eq. 3 and the calculated value of ai, we find parameter bi using the
following relation:

bi = 1− γ3i(0,−π/2,0)

ai
(5)

3. Finally, γ3+(0,0,0) and γ3−(0,0,0) are measured at (q2,θ ,ψ) = (0,0,0), and by sub-
stituting these values in Eq. 3 along with ai and bi, we find parameter ci using the
following relation:

ci = ai−
γ3i(0,0,0)

1− bi
(6)

The order of the three steps above, which correspond to steps (a), (b), and (c), re-
spectively, does not have to be carried out in any specific order. In practice, it may
be more efficient to conduct the calibration in a different order that requires less
joint movements (e.g., (b), (c), (a)).

Fig. 4b shows the model plotted against experimental data for a single day at
θ = 0 and−π/3 with ψ fixed at 0. The value of θ =−π/3 is not included as one of
the calibration configurations mentioned above, yet the model captures the step size
of the joint as a function of the configuration. We observe similar results in other
configurations. Thus, the calibrated parameters can completely characterize the ef-
fect of the load due to gravity on the prismatic joint in any arbitrary configuration
of the manipulator.
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3.4 Modeling of a Rotary Joint

Two experiments were performed to study the effect of gravitational loads on the
rotary joint 2 (in an effort to study static loading in general). In experiment 1, θ is
kept at −π/2 such that there is no load due to gravity on the joint, in an attempt to
verify that the joint has a consistent behavior throughout its range of motion if other
factors are controlled. Variation in γ2i is studied in different sub-ranges of q2, for
q3 = 0 mm and 12 mm. From the results of experiment 1, it is safe to conclude that
the step size of the rotary joint is relatively constant throughout its range of motion
when no load due to gravity is acting on the joint, since the variation in step size
for different values of q2 in this configuration is found to be less than ±2%, with no
discernible trend in the data. Fig. 6 shows the experimental results for experiment 2
in which θ is kept at zero such that there is load due to gravity on the joint; here the
gravitational load on joint 2 is a function of its own position q2.

The model for static loading on the rotary joint is derived based on the physics
that, if θ = 0, the torque on joint 2 is related to gravitational loads as τ2 ∝ gsin(q2),
where g is the acceleration due to gravity; the constant of proportionality is related
to the mass and lengths of the distal links, which are unknown to us. The empirical
model to predict the step size for the rotary joint is formulated as:

γ2i = γ2i,θ=±π/2 + di sin(ζ ) (7)

where γ2i,θ=±π/2 denotes the direction-dependent step size of the rotary joint when
there is no effect of gravity on the link (i.e., at θ =±π/2), di is a free parameter that
denotes the maximum increase in step size over the baseline step size γ2i,θ=±π/2, and
ζ = ψ− q2 as described in Fig. 2. We assume that the step size at θ = −π/2 and
θ = π/2 would be equal to the step size at q2 = 0 and q2 = −π when ψ = θ = 0,
since there is no torque due to gravity on the joint in any of these cases.
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Fig. 6 Step size (a) γ2− and (b) γ2+ as a function of ζ at q3 = 0 and 12 mm, ψ = 0, and
θ = 0. γ2i is recorded for intervals of π/6 from −π/6 to 7π/6 and is plotted at the midpoint
of each interval as explained in Section 4.
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It can be seen that the nature of step size in the positive direction is an inverted
form of its nature in the negative direction. This is attributed to the fact that the
load due to gravity acts against the direction of motion of the joint in the positive
direction, and with it in the negative direction. Hence, the step size obtained in
the positive direction, γ2+, will be less than that obtained at θ = −π/2 where no
gravitation load is acting on the joint. The opposite holds true for the step size in
negative direction, γ2−. In other words, downward steps are bigger that horizontal
steps, which in turn are bigger than upward steps, as we would expect.

If the manipulator were to be tilted by an angle θ �= 0, then the torque due to
gravity on joint 2 would become proportional to the cosine of the gravitational com-
ponent, such that the model of Eq. 7 should be modified as:

γ2i = γ2i,θ=±π/2 + di sin(ζ )cos(θ ) (8)

3.5 Calibration Procedure for a Rotary Joint

Fig. 7 shows the calibration sequence for rotary joint 2, which gives us values for
the joint-specific parameters, di and γ

2i,θ=±π/2
, for the rotary joint in the positive and

negative directions. For simplicity, the average step size at a known configuration
of q3, θ , and ψ is denoted by γ2(q3,θ ,ψ) unless otherwise mentioned. The following
procedure is followed to obtain the free parameter:

1. γ2−(0,0,0) and γ2+(0,0,0) are measured by driving joint 2 across its range from
q2 = π/6 to −7π/6 in the negative direction and then in the positive direction at
(q3,θ ,ψ) = (0,0,0).

2. The prismatic joint is then fully extended. γ2−(12,0,0) and γ2+(12,0,0) are measured
by driving joint 2 across its range from q2 = π/6 to−7π/6 in the negative direc-
tion and then in the positive direction at (q3,θ ,ψ) = (12mm,0,0).

3. The manipulator is then tilted by setting θ =−π/2 such that there is no gravita-
tional torque on joint 2. γ2−(12,−π/2,0) and γ2+(12,−π/2,0) are measured by driving
joint 2 across its range from q2 = π/6 to −7π/6 in the negative direction and
then in the positive direction at (q3,θ ,ψ) = (12mm,−π/2,0).

4. The prismatic joint is then fully retracted. γ2−(12,−π/2,0) and γ2+(12,−π/2,0) are
measured by driving joint 2 across its range from q2 = π/6 to −7π/6 in the neg-
ative direction and then in the positive direction at (q3,θ ,ψ) = (0mm,−π/2,0).

Since γ2 is a function of q2 at each instant, it not a trivial task to calculate the
parameter di from Eq. 8 by using the average step size values (γ2i) that are available
to us based on the entire range of motion. A simulation of the model shown in Eq.
8 was implemented wherein a number of different values of the free parameters
γ2i,θ=−π/2 and di were given to the simulation as inputs, and the simulation returns
the step size at each instant and the total number of steps required to move through
the joint’s entire range. The total number of steps obtained is then used to calculate
the simulated average step size γ2i,θ=0.

Fig. 8 shows the simulation results obtained for the rotary joint after stepping
q2 through its full range of motion from π/6 to −7π/6 for fixed arbitrary (typical)
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(b) (c) (d)(a)

Fig. 7 Calibrating configurations (in sequence) for identifying the six unknown parameters
of the model of the rotary joint 2. q2 is driven across its full range from π/6 to -7π/6 in the
negative and positive directions at (a) q3 = 0 mm, θ = 0, and ψ = 0; (b) q3 = 12 mm, θ = 0,
and ψ = 0; (c) q3 = 12 mm, θ = −π/2, and ψ = 0; and (d) q3 = 0 mm, θ = −π/2, and
ψ = 0.
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Fig. 8 Simulated model of the step size of joint 2 in (a) the negative direction, and in (b) the
positive direction. The values of γ2,θ=0 and γ2,θ=−π/2 are fixed, and θ was kept at zero in
simulation. The nature of data obtained in simulation agrees with experimental results shown
in Fig. 6.

values of γ2i,θ=−π/2 and di. The figure shows the dependence of step size on the cur-
rent configuration. This validates our model of the rotary joint 2 with data observed
in experiments (Fig. 6). It was found that the difference between the two average step
size values γ2i,θ=0 and γ2i,θ=−π/2 have a quadratic relation with the free parameter
di as shown in Fig. 9. Irrespective of the individual values of γ2i,θ=0 and γ2i,θ=−π/2,
the free parameter value di remains the same (difference of less than 1 μrad) for the
same difference between the two step size values. The simulation was performed
such that the range of values for γ2i,θ=0− γ2i,θ=−π/2 obtained in simulation was
from −9.2 μrad to 9.2 μrad, because this was the range of γ2i,θ=0− γ2i,θ=−π/2 ob-
served in experiments. A relation for computing di was formulated by fitting the
simulation results obtained to a quadratic function as shown in Fig. 9. The equation
formulated using nonlinear least-squares regression is:

di = 3.41(γ2i,θ=0− γ2i,θ=−π/2)
2 + 0.025(γ2i,θ=0− γ2i,θ=−π/2)

+6.42× 10−7 (9)

From Fig. 6, we see that γ2i,θ=−π/2 and di are a function of q3, as q3 changes the
inertial load on joint 2. Different values of di can be calculated when q3 = 0 and
12 mm using Eq. 9, and the effect of changing q3 is reflected in the values of γ2i,θ=0
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Fig. 9 Variation of the free parameter di with respect to change in difference between γ2i,θ=0
and γ2i,θ=−π/2 at different values of γ2i,θ=−π/2. The vertical dash lines represent the range
of this difference as observed in experiments.

and γ2i,θ=−π/2. The relation between di and q3 cannot be derived with just two data
points, and this change in step size due to inertial loading will be studied in the
future, but we find a simple linear interpolation provides accurate results.

Fig. 10a-d shows the predicted model for γ2i after computing di via calibration
against experimental data collected on a single day with q3 = 0 and 12 mm. Fig.
10e-f shows the data collected at θ =−π/4 which is used to test the validity of the
model for θ �= 0. The predicted models obtained after calibration are found to be
accurate to within 1 μrad (±2%). Thus, the free parameters for the rotary joint can
be calibrated for by using eight γ2i measurements.

4 Experiments

The experiments in this paper were designed to isolate and study the effect of static
loads on the rotary and prismatic joints of a Kleindiek MM3A. The gravitational
load acting on the prismatic joint (joint 3) along the direction of its motion can be
described by the angles q2, θ , and ψ (Fig. 2). To study the effect of gravity on the
prismatic joint, data was recorded in two different experiments. For each value of
q2, θ , and ψ , γ3+ was first recorded followed by γ3−. In experiment 1, γ3+ and
γ3− were recorded at different values of q2 and θ in the range of 0 to π and 0
to −π/2, respectively, in increments of π/6 with ψ fixed at 0. For each value of
q2, data was recorded for different values of θ before moving on to the next value
of q2. In experiment 2, q2 was fixed at −π/2 (outstretched) and the gravitational
load was varied by changing ψ , with θ = 0. γ3+ and γ3− were recorded for one
condition in experiment 1 followed by the corresponding condition in experiment
2, before recording data for the next condition in both experiments. This distributes
any drift in γ3+ and γ3− due to time equally in both experiments. One trial for
each condition in both experiments was taken per day for three consecutive days
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Fig. 10 (a) Model equation fitted to experimental data taken on a single day for γ2i at (a)
q3 = 0 mm, θ = 0, ψ = 0 in the negative direction, with d−=3.83 μrad (b) q3 = 0 mm, θ =
0, ψ = 0 the in positive direction, with d+=-8.15 μrad (c) q3 = 12 mm, θ = 0, ψ = 0 in
the negative direction, with d−=23.94 μrad (d) q3 = 12 mm, θ = 0, ψ = 0 in the positive
direction, with d+=-19.40 μrad (e) q3 = 0 mm, θ = −π/4, ψ = 0 in the negative direction,
with d−=6.91 μrad (f) q3 = 0 mm, θ = −π/4, ψ = 0 in the positive direction, with d+=-
10.24 μrad

to take into account the effect of unmodeled changes in environmental conditions.
Curves 1 and 3 in Fig. 4a are obtained from γ3+ and γ3−, respectively, recorded in
experiment 1 using the values when θ = −π/2, for all three days. Curves 2 and
4 are obtained from γ3+ and γ3−, respectively, recorded in experiment 2. Fig. 4b
shows γ3+ and γ3−for experiment 1 recorded on Day 1 when θ = 0 and−π/3. Data
from experiments 1 and 2 performed on the same day were used to derive the model
parameters shown in Fig. 4b.

For modeling a rotary joint, two experiments were performed on joint 2. Ini-
tially, γ2+ and γ2− was measured for the entire range of motion for the joint with
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q3 = 0 mm and 12 mm. Using a custom-made fixture, joint 2 was then moved in
intervals of π/6 for q2 from 0 to π and γ2i was calculated for each interval. The av-
erage step size of each interval is assumed to be the step size at the midpoint of the
interval as shown in Fig. 6. This allows us to study the variation in γ2i as a function
of q2. γ2i was recorded in both negative (γ2−) and positive (γ2+) directions. In ex-
periment 1, the mentioned sequence of collecting data was performed at θ =−π/2.
When θ = −π/2, there is no torque due to gravity on the rotary joint, and the step
size observed is purely due to the inertial load on the joint and the inherent prop-
erties of the actuator. In experiment 2, θ is kept at zero. A gravitational torque is
present on the rotary joint, and the step size obtained is influenced by gravitational
loading on the joint. One set of data for both experiments was recorded on three
different days. Fig. 6 shows the results for γ2i in experiment 2 for all three days,
with θ = 0. Fig. 10a-d shows the data for γ2i from experiment 2 for a single day
with the predicted model fitted to the experimental data. An additional set of data
was recorded at θ =−π/4 to check the validity of the model described in Eq. 8, the
results of which are shown in Fig. 10e-f.

5 Main Experimental Insights

From the experiments performed in this paper, it was concluded that the step
size of a piezoelectric stick-slip actuator can be modeled as having two summed
components—a baseline step size that occurs when there is no static load acting
on the joint, and a positive/negative contribution due to any static load acting on
the joint—and that this two-component step size must be modified to account for
the manipulator being in a configuration in which its compliance decreases the effi-
ciency of the stick-slip movement.

Models relating the step size to the static loads were developed for a prismatic
(joint 3) and a rotary joint (joint 2) of the Kleindiek MM3A. The actuator-specific
parameters of the model can be calibrated for by taking 14 measurements of the
average step size (6 for the prismatic joint and 8 for the rotary joint) in specific
configurations of the manipulator. The models can accurately predict the step size
of the joints at a given manipulator configuration. Kleindiek does not provide spec-
ifications for step size of the joints of the MM3A, so we compare the accuracy of
our model to a simpler constant-step-size model when there is no static load acting
on the joints, i.e., γ3i at (q2,θ ,ψ)=(−π/2, 0, 0) for the prismatic joint, and γ2i at
(q3,θ ,ψ)=(0,0,0) for the rotary joint. The maximum error in the developed model
is approximately 15% for the prismatic joint, and 2% for the rotary joint, as com-
pared to 40% and 7% for the prismatic and rotary joints, respectively, when using
the constant-step-size model. Changes in environmental conditions have an effect
on the parameters of the model; consequently, the model for the joint parameters
should be recalibrated each day.

Fig. 6 shows that there is a significant effect of the joint 3 variable q3 on the
step size of the rotary joint 2. Also, γ2i,θ=−π/2 and di are functions of q3. This is
expected, as a change in q3 will lead to a change in inertial load on joint 2 and a
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change in the step size of joint 2. The effect of inertial loads on the step size are not
addressed herein and will be studied in the future.

Joint 1 is another rotary joint with the same range as joint 2 and having the same
properties except for the change in static load value. Hence, the model and cali-
bration routine for joint 2 can be extended to joint 1. The only difference in the
calibration routine would be that at θ = 0 there is no effect of gravity on joint 1,
while at θ = −π/2 the gravity is perpendicular to the joint axis. So, in short, the
definition of the terms, γ2i,θ=0 and γ2i,θ=−π/2 would be interchanged.

Models developed in this paper for the step size of piezoelectric stick-slip actua-
tors are not perfect. Hence, when these models are used in teleoperation algorithms
like the one proposed in [17], there will be drift in the position of the end-effector
due to the accumulation of error in the model. However, this problem can be over-
come as recently developed piezoelectric actuators have sensors with micro- and
nanometer resolution [4]. This sensor feedback could be used to remove drift in the
position, but the models of step size will still be necessary to command multiple
steps in a single command to the joint before sensor feedback is obtained.

The experiments in this paper were performed in a room without tight climate
control. When using the manipulator inside an SEM, frequent recalibration might
not be necessary, since the manipulator will be in a vacuum. However, the audio
limit switch used to detect end of travel will not work in a vacuum, and will need to
be replaced by an accelerometer-based sensor mounted on the manipulator (when
sensor feedback is not available) to detect the end of travel during calibration. The
experiments in this paper were performed using a Kliendiek MM3A, but we expect
the results to generalize to other similar devices that utilize peizoelectric stick-slip
actuators.
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Part II: ISER Session Summary on  
“Dynamics and Control” 

Patrick van der Smagt 

Institute for Informatics, 
Technische Universität München 

The ISER is unique in that it focuses on experimental results, without leaving 
theory out of sight. This session is an excellent example thereof: the four papers 
demonstrate how their theoretical approaches can be used in practical settings. 
Interestingly, three out of four people focus on human-robot interaction. 

In that, the paper “Identification of human limb stiffness in 5 DoF and 
estimation via EMG” by Lakatos et al. proposes a method to identify impedance 
parameters of the human arm in realistic settings, and verify their method through 
actual measurements.  These data are very applicable to the paper “Motor vs. 
Brake: Performance and Safety Analysis in Hybrid Actuation for Human-Friendly 
Robots” by Shin et al., where a new, variable-impedance actuator is proposed 
which combines pneumatic with electric actuation, combining the high power 
density of the former with the accuracy of the latter.  Methods can be evaluated 
with the approach described in “Rapid Prototyping of Planning, Learning and 
Control in Physical Human-Robot Interaction” by Lawitzky et al. In this paper, a 
hierarchical system of abstraction layers allows for faster evaluation of parts of the 
system. Finally, biological models and robotic implementation join in “Effective 
Use of Rear Legs in Quadrupedal Dynamic Climbing” by Miller et al., where two 
biology-based walking models are extended to four-legged walking⎯where the 
models originally stemmed from. 

 
 
 
 
 
 



Rapid Prototyping of Planning,
Learning and Control in Physical
Human-Robot Interaction

Martin Lawitzky, José Ramón Medina Hernández, and Sandra Hirche

Abstract. Physical human-robot interaction (pHRI) is a highly challenging
research topic: it requires real-time decision making capabilities by the robot;
it involves the human as a source of uncertainty in the coupled dynamical
system; and the quality of interaction cannot be evaluated by classical objec-
tive measures only but requires psychological experiments. Here we propose
a rapid prototyping system in order to develop and evaluate methods for
planning, learning, and control enabling pro-active and goal-directed physical
robotic assistance to the human. With this rapid prototyping system we are
able to quantify the benefits of two novel methods that combine feedback
planning and learning from demonstration in a cooperative load-transport
task.

1 Introduction

Recent advances in robotics research render the prospect of robotic assis-
tants entering weakly structured, daily-life domestic, and industrial scenar-
ios within reach of the next decade. Some of the most challenging problems
are in the area of pro-active and goal-directed physical robotic assistance to
the human. Research in this area imposes a number of particular challenges
beyond those of mobile manipulation: The direct physical coupling with the
human requires real-time planning and instant decision making capabilities
of the robot. In addition, the uncertain and temporally varying behavior of
the human is difficult to model. As result predictions or simulations of hu-
man behavior suffer from high uncertainty. Anticipation of the partner’s ac-
tion, however, is key for successful joint action [27]. Furthermore, methods for
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continual negotiation and role allocation using the haptic channel are required
as the motion plans of the human and the robot will be different in the most
general case. The quality of interaction cannot be evaluated based on classical
purely objective measures only, but requires psychological experiments. This,
in turn, requires robust, safe, and flexibly changeable experimental systems
suitable for studies with näıve users.

The contribution of this work is twofold: i) We present a rapid prototyp-
ing experimental environment for the development of integrated planning,
learning and control schemes for pHRI, their objective evaluation, and psy-
chological evaluation in näıve-user studies. It includes a high-fidelity virtual
reality (VR) system with a two degrees-of-freedom (DoF) haptic interface and
the seamless transfer of the implemented schemes to a highly integrated mo-
bile robot using a real-time capable modular software system. ii) We present
novel results on the combination of planning and learning mechanisms for
goal-directed assistance in physical human-robot interaction using this rapid-
prototyping setup. In particular, the complementary properties of a learning
algorithm [3] and a feedback-planning algorithm [31] are examined, to derive
strategies for a synergetic combination of these two approaches. As proto-
typical task we investigate the cooperative transport of an object from an
initial to a final configuration through a cluttered environment. Similar con-
ditions are found in mobility assistance to humans, physical rehabilitation,
and computer-aided assembly. The synergy strategies are superior over the
individual schemes as validated in a näıve-user study and a proof-of-concept
full-scale experiment.

1.1 Related Work

Most of the existing approaches towards motion generation for goal-oriented
robotic physical assistant behavior can be classified as either a) planning-
based approaches or b) learning-based approaches. In particular, feedback-
planning approaches suit the need for instant decision making while explicitly
incorporating environment constraints. Learning approaches, in turn, enable
the (probabilistic) modeling and prediction, i.e. intention recognition, of the
human partner after a training phase. Incremental learning approaches, which
are considered here, continuously adapt the prediction model, i.e. are also
capable to capture temporal variations in human behavior. While feedback-
planning approaches find kinematic solutions neglecting task dynamics, no
prior training data set is required to apply them in new scenes.

Motion planning in the context of physical robotic assistants finds only
little reference in the literature. Täıx et al. present a method improve the
sampling strategy of a path planner through haptic input while support-
ing the human guide to find the goal in a two-dimensional virtual real-
ity scenario [29]. Feedback motion planning for haptic guidance using a
cell-decomposition method is proposed in the context of computer-aided
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design [24]. While planning-based approaches estimate the desired direction
of motion indirectly by assuming a shortest-path cost function, it is well
known that the estimation of the human partner’s intention is crucial for in-
tuitive physical human-robot interaction [7]. Methods to estimate human in-
tention based on the minimum-jerk assumption [8] are often deployed [20, 4].
Within the programming-by-demonstration framework a significant body of
methods to learn motion patterns from human demonstration, to recognize
such, and to estimate human intention are developed. A few works sucess-
fully apply probabilistic approaches like Gaussian mixture models [11, 12]
and time-based Hidden Markov Models [19, 21] to the intention recognition
problem in pHRI, see also [2] for an excellent survey. So far, most of the
existing works investigate individual algorithms for planning [29, 24], learn-
ing/prediction [20, 4, 12, 19], and control [26, 16, 15, 15, 32, 6] for physical
human-robot interaction in a separate way. Only very few works consider
the combination of learning and control in pHRI [12, 21]. To the best of the
authors knowledge there exists no work — except our own [17] — on the
combination of planning and learning for pHRI.

The remainder of this article is organized as follows: A structural rapid-
prototyping framework for pHRI is proposed in Section 2, the experimental
setup is described in Section 3. Section 4 describes the evaluation methods
leading to the results presented in Section 5.

Notation: Bold characters are used for vectors and matrices. The configura-
tion space of the manipulated rigid object is denoted C which is a man-
ifold C = R

2 in two-dimensional case without rotation and C = R
3 × RP

3

in the three-dimensional case with rotation. The obstacle region is de-
noted Cobs ⊆ C. The remaining configurations are called free space denoted
Cfree = C \ Cobs.

2 Technical Approach

The quality of assistance benefits from goal-oriented robot behavior – in
contrast to purely reactive behavior – as shown for example in cooperative
load transport tasks [18, 23]; the behavior can be generated from plan-based
strategies [14] as well as motion reproduction strategies [21, 22]. For simplicity
and clarity we focus here on the physical assistance in the redundant degrees
of freedom of the task, i.e. a more pro-active robot reduces the required
human effort to solve the task.

2.1 Architecture for Integrated Planning, Learning
and Control

The complexity of the problem of goal-oriented behavior design in pHRI
requires a systematic decomposition into simpler modules Mixed real-time
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criticality and the continual negotiation process with the human partner
suggests a decomposition inspired by the cognitive architecture known as
the Extended Control Model (ECOM) [9]. We propose a dynamic feed-
back control structure that embeds anticipatory control mechanisms as well
as compensatory schemes to cope with unexpected behavior of the human
partner or the environment. The proposed architecture for integrated plan-
ning, learning, and control in pHRI is depicted in Fig. 1. The anticipatory
behavior is composed by a) a feedback planning scheme that generates a
goal-directed force up from the current object configuration xm, b) a learning-
based method that generates a force ul depending on the observations of con-
figuration xm, velocity ẋm, and the human effective wrench uh (calculated
from the force applied at the grasp point ûh). and c) a situation-dependent
fusion technique that decides on the robot’s virtual exerted force. For compen-
sation of deviations from the anticipated trajectories, a compliance control
scheme is used.

Planning
Algorithm

Human
Partner

Learning
Algorithm

Virtual
Admittance

Pos.-Controlled
Robot w. Object

Object
Geometry

Fusion

Anticipatory
Control

Compensatory
Controlup

ul ûh

ur

uh

xm,ẋmxc

Fig. 1 Architecture for integrated planning, learning and control in pHRI

Following this structure, different alternative implementations of anticipa-
tory and compensatory control layers are experimentally evaluated on our
rapid prototyping experimental system:

Anticipatory Control. In this work, two concurrent implementations of the
anticipatory layer, the sampling-based neighborhood graph (SNG) for feed-
back planning [31] and the time-based HMM (tHMM) learning, recognition
and a learning-based framework [19, 21] are briefly reviewed. Alternatively,
joint planning through automatic segmentation and verbal communication
in combination with intention recognition implements perception and mod-
eling of the task and the partner behavior [21]. Motion generated from the
learned human motion model and the estimated human intention or plan-
based alternatives [14] implement alternative anticipatory building blocks.
Alternatives for the implementation of compensatory control include static
role allocation (leader/follower) [18] or dynamic effort sharing strategies [23].
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Alternatively, a risk-sensitive optimal feedback control scheme generates an in-
tuitive robot force contribution depending on observed human execution vari-
ability [22].

Compensatory Control. We assume the robotic assistant is feedback-
controlled such that the commonly manipulated object follows a virtual ob-
ject impedance that is rendered with inertia matrix M , and virtual viscous
friction D.

Mẍ+Dẋ = uh + ur, (1)

where x denotes the object pose and uh and ur the effective wrenches by
human and robot, respectively. Motion generation algorithms continuously
produce wrenches up, ul that act on a virtual admittance in superposition
with the human partner’s force uh exerted through the object on the end
effector of the robot.

3 Experimental Setups of the Rapid Prototyping
System

A rapid prototyping experimental system is developed in which complex al-
gorithms for pHRI can be evaluated in plug-and-play fashion — also in user
studies — using modular building blocks. In a first stage the developed algo-
rithms are tested on a 2-DoF haptic device in a virtual haptic environment.
Afterwards, they are directly transferred to a large-scale anthropomorphic
mobile robotic system with integrated visual tracking and laser-range based
localization schemes.

3.1 High-Fidelity Virtual Reality System in 2-DoF

Psychological and other quantitative measurements require a safe experi-
mental environment with controlled conditions. Therefore, a 2-DoF VR sys-
tem (see Fig. 2(a)) is deployed for quantification of the performance of
novel methods. The virtual-reality environment consists of a 2-DoF linear-
actuated device (ThrustTube) with a free-spinning handle at the grasp point.
A force/torque sensor (JR3 ) attached to the handle measures the human in-
teraction force. The virtual scene is visually represented on a display placed
on top of the interface. The scene information can be imported from virtually
any standard monochrome pixel or vector graphics file and is automatically
rendered as stiff environment. A virtual rigid polygon or ellipsoid object with
distributed grasp points can be specified and emulated.

For haptic rendering of arbitrary scenes the scene information is im-
ported from any standard monochrome pixel or vector graphics file and is
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(a) 2-DoF VR platform (b) Full-scale setup

Fig. 2 Experimental Systems

automatically rendered as stiff environment. The control algorithm is imple-
mented in Matlab/Simulink’s Real-Time Workshop and executed on Linux
Preempt/RT at a frequency of 1 kHz.

3.2 6-DoF Experimental System with Mobile
Manipulator

After successful evaluation in the 2-DoF VR system the algorithms are trans-
ferred to the a full-scale cooperative transport scenario with a human-sized
mobile manipulator in a highly integrated experimental environment. In par-
ticular, properties such as scalability to higher degrees of freedom, robustness
to noise in autonomous mobile manipulation and safe behavior outside the
expected motion corridor are evaluated. The mobile robot used in this ex-
periment, see Fig. 2(b), locomotes with a four-wheeled omni-directional mo-
bile platform, which offers roughly human-like maneuverability and smooth
motion [13]. Two identical anthropomorphic 7-DoF manipulators provide a
human-like work space [28]. The manipulators are equipped with a Schunk
PG70 two-finger parallel grippers which allow a tight grasp of objects [21].
They are mounted onto JR3 force/torque sensors. A point cloud of the envi-
ronment is acquired using a tilted Hokuyo UBG laser range finder. Two Sick
S300 laser range finders scan for obstacles on floor level. A ceiling camera
system consisting of 40 cameras covers a space of 10x10m and supports the
localization of humans and robots. The software framework is based on the
modular real-time architecture ARCADE [1]. It interfaces to ROS in a seam-
less manner; for example ROS algorithms are utilized for self-localization.
The admittance-type control algorithm is implemented analogously to the
VR setup and communicates with other software modules through the high-
bandwidth real-time data base RTDB [10] at a frequency of 1 kHz.

Similar to the VR scenario, a virtual admittance is rendered in world
coordinates at the robot’s end effector. The mobile platform is controlled such
that the manipulability is maximized and joint limits are avoided. Following
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this strategy, transferabiliy of methods and results from the VR setup is
simplified as only the end effector configuration remains to be controlled by
the anticipatory scheme.

4 Evaluation in the Rapid Prototyping System

To examine goal-oriented behavior strategies in our proposed rapid prototyp-
ing system, we consider the problem of a human-robot dyad cooperatively
moving an object from a start configuration x(0) ∈ Cfree to a different final
configuration x(tgoal) ∈ Cfree through a cluttered environment. The human
partner and the robot are assumed to control their posture such that they
keep a constant configuration relative to the object on the two-dimensional
ground plane (x0,y0), see Fig. 3. Aspects of approximation of person-object-
robot representations for motion planning are discussed in [5].

x0

y0z0

φ

θ
ψPerson

Object

Robot

Fig. 3 6-DoF reduced geometric model of the cooperation partners and the object
used for calculation of free configuration space Cfree

We deploy one planning-based and one learning-based approch for goal-
directed robotic assistance and proposed two different schemes to combine
the strengths of both approaches.

4.1 Feedback Motion Planning

A feedback motion planning algorithm generates a feedback function K(x)
for all positions x ∈ Cfree in the accessible configuration space Cfree. The
SNG is a very comprehensible method, sufficiently efficient to cover higher-
dimensional configuration spaces applicable for settings with 6-dimensional
object poses at a viable resolution as required for our large-scale scenario.
Therefore, the entire configuration space is randomly clustered into overlap-
ping hyperballs, and Dijkstra’s algorithm is applied to plan on the connected
graph from the ball containing the initial configuration to the ball contain-
ing the final configuration. Finding the shortest path within hyper balls is
straightforward.
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In this planning-based approach the robot computes its motion plan based
on environmental constraints and possibly under consideration of manipula-
bility constraints by the human partner. In consequence the robot plan will
generally differ from the human planand an online negotiation is required.

Cobs

Cfree

Clearn

Cdemo

Fig. 4 Subsets of the configuration space C = R
2

Given a desired magnitude of velocity and a desired maximum robot force
level, the force1 vector up is calculated straightforwardly with the virtual
object’s inverse dynamical model.

4.2 Learning from Demonstration

Instead of directly calculating a goal-directed plan, learning-based approaches
to physical robotic helpers rely on human-behavior anticipation. This prin-
ciple requires a model of the task and the human partner, which is acquired
from previous demonstrations.

Here we deploy time-based Hidden Markov Models (tHMM) to represent
human demonstrations in a compact manner. Advantageously, tHMMs con-
strain the human motion prediction to the zone of influence of the configu-
ration space Clearn ⊆ Cfree around the demonstrated configurations Cdemo ⊆
Clearn. This feature is crucial in order to increase safety and ensure intuitive
motion generation in direct interaction with a human partner. The added
explicit time information and Gaussian Mixture Regression provides a gen-
eralization of smooth trajectories of the encoded demonstrated human be-
havior [19]. The human-motion predictions serve as a goal for the robot’s
anticipatory motion generation, as explained in [21] and are used to generate
a learning-based virtual force ul.

In this learning-based approach the robot initially behaves passive, i.e. ur =
0 during the task execution and observes the executed trajectory which can
be assumed to be close to the human partner’s intended path.In subsequent

1 Force in the 2D case, wrench in the 6D case.



Rapid Prototyping of Planning, Learning and Control in pHRI 81

trials the robot adopts this as its own motion plan. Note that the space of
learned trajectories is generally only a subspace of the free space, but gener-
ally the subspace of learned trajectories is larger than the space of demon-
strated trajectories Cdemo ⊆ Clearn ⊆ Cfree, see Fig. 4. Algorithms for motion
learning and reproduction have limited generalization capabilities and can
thus cover regions neighboring the demonstrated trajectories.

4.3 Synergy Strategies Based on Planning
and Learning

Given the advantages of each individual scheme for motion generation, we
derive two strategies to exploit synergies in the following.

Prediction-Quality-Based Homotopy Blending. This method exploits
the probabilistic characteristics of the motion recognition and prediction algo-
rithm. As recognition uncertainty grows, the goal-oriented fall-back solution
generated by the feedback planning algorithm dominates. The proposed ho-
motopy blends between the output functions up and ul of the planning and
learning schemes

ur = γul + (1− γ)up

with prediction certainty γ ∈ [0, 1]. The outputs of the planning algorithm
and the learning algorithm are denoted up and ul respectively. We regard the
the unnormalized likelihood of the state estimate as a measure for certainty,
see also [30]. This strategy overcomes the limitation of the learning-based
algorithm to produce active task contributions only within the zone of influ-
ence Clearn and blends continuously into the feedback motion plan valid for
the entire accessible configuration space Cfree.

Cost-Based Fusion of Strategies. This method is based on the paral-
lel evaluation of the strategies and a cost-based fusion using a sophisticated
hierarchical multi-criteria decision making (MCDM) algorithm on the effi-
cient (Pareto) frontier. For each of the planning and the learning-based ap-
proaches an individual utility is evaluated. The utility function U(x, ẋ,u) of
the planning scheme is calculated through simulation of the effects of different
forces up and ul on the cost to go by evaluation feedback plan. The utility is
maximal for force vectors along the planning algorithm output up and and
minimal for the opposite direction. The utility value of 0 is cost-neutral and
is reached for directions orthogonal to the planned direction of motion.

The utility function of the learning-based algorithm is described by the
prediction certainty γ ∈ [0, 1]. The certainty value of 1 is reached at the mean
direction of the motion prediction according to the unnormalized likelihood
of the prediction.
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A hierarchical MCDM-scheme inspired by [25] is deployed: The output of
the learning-based approach is evaluated for its utility U(x, ẋ,ul). In case the
utility is positive, the output of the learning-based approach is accepted, ur =
ul. Otherwise, the closest direction to ul on the efficient frontier with non-
negative utility U(x, ẋ,ur) ≥ 0 is selected

ur = argmax
u∈{ui|U(x,ẋ,ui)≥0∩ |ui|≤|ul|}

uTul. (2)

This results in a rotation of any ul with negative utility U(x, ẋ,ul) onto the
hyperplane orthogonal to up.

5 Quantitative Evaluation Results

In order to quantify the performance of the proposed algorithms, a quantita-
tive user study was performed utilizing the proposed rapid prototyping setup.
Four conditions are tested: a) assisted by feedback planning, b) assisted by
motion reproduction, c) homotopy switching based on prediction certainty,
and d) a multi-criterion decision making algorithm.

The proposed approaches are evaluated in experiments with cooperating
humans. This section describes the evaluation criteria and the quantitative
results. For illustration, the feedback plan as well as the learned task models
in pHRI in the small scale experiment in 2 DoF are shown in Figs. 6(a)-6(c),
and for the large scale setup in 6 DoF in Figs. 6(d) -6(f).

A small pilot study in a virtual reality scenario was conducted yielding
the results depicted in Fig. 5. Seven non-paid participants (age mean: 27.1,
std: 1.5) were asked to move a virtual point mass object of 100 kg, through
a simple maze from a starting configuration to a final configuration through
the scene without colliding with the virtual obstacles visually and hapti-
cally displayed. The virtual object was exposed to a virtual viscous friction
of 400Ns/m.

Each participant repeated the experiment five times per each of the four
conditions after five training trials without assistance.

5.1 Quantitative Measures

We evaluate the following criteria in order to rate the performance of the
proposed approaches:

– Mean root-mean-square (RMS) deviation from the participant’s path τx,H5

after five trials

xRMS =

√
1

T

∫ T

0

d(x(t), τx,H5)2dt

with distance for point x(t) to path τx,H5
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d(x(t), τx,H5) = minxτ∈τx,H5‖xτ − x(t)‖.

This measure indicates the rate of convergence towards routine.
– Mean disagreement uD which can be defined orientation invariant:

uD =

⎧⎨
⎩
−uh
‖uh‖ · ur, if uh · ur < 0 ∧ uh �= 0

0, otherwise.

Larger values of disagreement uD indicate that the human and the robotic
partner produce a higher amount of counteracting, and therefore inefficient
forces.

– Mean completion time Tmean as indicator of efficiency of the cooperation.

Regarding the RMS deviation over trials, the conditions c) Homotopy blend-
ing and d) MCDM show fastest convergence and are in a similar range
as the b), the pure learning-based approach. The pure planning-based ap-
proach a) leads to slower convergence. The measurements of mean disagree-
ment show that the conditions a), c) and d) show equally low disagreement.
The completion times of the fusion strategies c) and d) are similar to those of
the planning-based approach and lower than in the learning-based strategy.

5.2 Experiments in 6 DoF

Our large-scale experiment is used to validate the approaches presented in
Section 5 in a lifelike scenario. The cooperative transport of a car part is
considered through the cluttered lab environment, see Fig. 5 for a map.
The cooperatively manipulated object, a 1.2m car part (b) weighing 1.9 kg.
For fast computation, parallelized implementations on an Intel Core i7 920
at 2.67GHz were utilized. The computation times for our prototypical 6D-
problem are given in Table 1.

Table 1 Computation times of SNG and tHMM for robotic partner behavior gen-
eration in 6D

Computation step SNG tHMM

Generate neighborhood graph from point cloud (α = Pc = 0.985) 639 s
Planning per new goal configuration < 1 s
Expectation Maximization after each observation ∼ 5 s
Direction lookup per control iteration < 50μs
Viterbi and regression during execution < 500μs
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Fig. 5 Evolution of quantitative measures over trials

5.3 Main Experimental Insights

Our rapid prototyping environment is instrumental to investigate properties
relevant to the application of cooperative load transport. A few insights are
given here: The behavior of the planning-based approach does not evolve with
the number of trials whereas the learning-based approach renders a purely
reactive behavior in the first trial but converges towards the human partner’s
desired trajectory. Outside the area of observed demonstrations, however, the
learning scheme is bound to observe the human but the planning approach is
active for the entire free configuration space. This is due to the fact that the
environment representation used in the feedback planning scheme is explicit
and not implicitly given through rough training data. The planning scheme
requires a desired velocity magnitude and a planning precision to operate.
In contrast, the learning approach is sensitive to the number of states, the
number of Gaussians per state, and the weighting of input importance. An
advantage of the learning scheme is the linear complexity with respect to the
input dimension whereas the feedback-planning approach scales exponentially
with the output dimension. Depending on the application, both individual
algorithms show different strengths and can render the preferable solution.
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(a) Feedback motion plan (b) Ergodic tHMM

(c) Left-to-right tHMM (d) Planar components of feedback plan

(e) x/y components of Gaussians (f) Magnified central region of Fig. 6(e)

Fig. 6 Motion generation algorithms in a 2 DoF virtual haptic maze (a)-(c), and
in 6 DoF in the 10x10m experimental area mapped by a laser-range finder (d)-(f)
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The presented framework also provides a structured way to identify strate-
gies to exploit synergies between both approaches, showing the additional
complementary benefits of fusion-based strategies. From the quantitative re-
sults it is visible that the fusion strategies c) and d) combine the strengths of
the planning-based and the learning-based approaches a) and b). These fu-
sion methods outperform the planning-based approach regarding the required
adaptation of the human and leads to small disagreement compared to the
learning-based approach. The completion time under these conditions is on
the level of the planning approach throughout all trials and is significantly
lower than the unassisted condition in the first trial of the learning-based
approach.

6 Conclusion

In this work, we demonstrate that our novel proposed modular architecture
for prototyping of goal-directed physical robotic assistants embeds well var-
ious different approaches for anticipatory control. Transfer of methods and
results from user studies on a 2-DoF high-fidelity VR setup to a 6-DoF leaves
computational complexity as greatest remaining challenge. As an exemplary
study, novel fusion-based strategies between planning and learning-based ap-
proaches show additional benefits towards interaction performance and vali-
date the applicability of the presented framework.
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Identification of Human Limb Stiffness
in 5 DoF and Estimation via EMG

Dominic Lakatos, Daniel Rüschen, Justin Bayer,
Jörn Vogel, and Patrick van der Smagt

Abstract. To approach robustness and optimal performance, biological musculo-
skeletal systems can adapt their impedance while interacting with their environment.
This property has motivated modern robotic designs including variable-impedance
actuators and control methods, based on the capability to vary visco-elastic proper-
ties actively or passively. Even though variable-impedance actuation and impedance
control in robotics is resolved to a great part, a general set of rules by which
impedance is adjusted related to the task at hand is still lacking. This paper aims
to fill this gap by providing a method to estimate the stiffness of the human arm in
more than two degrees of freedom by perturbation. To overcome ill-conditionedness
of the impedance and inertial matrices, we propose and validate methods to sep-
arately identify inertial and stiffness parameters. Finally, a model is proposed to
estimate the joint stiffness from EMG-measurements of muscle activities.

1 Motivation, Problem Statement, Related Work

Dynamic interaction with the environment means handling impacts and unknown
contact forces. Therefore compliant systems are active topics of research in the
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field of robotics. Surpassing traditional rigid robots, the control loops of modern
robotic systems are extended with additional impedance parameters, viz. stiffness
and damping.

Even though the implementation of impedance control in robotics is resolved to
a large part, one important issue still needs to be addressed: how are the impedance
parameters set to optimally perform a task? Traditionally, robotic tasks are only de-
fined in target end-effector positions or, in some cases, end-effector trajectories; but
the impedance around these positions or trajectories remains a matter of common
sense, at best. For instance, when performing a peg-in-hole task, high stiffness in the
perpendicular and low stiffness in the lateral directions, so as to allow for imprecise
positioning while solving the task, appears to be useful. But how do we find general
rules-of-thumb for setting these extra parameters?

Beside heuristic methods tuning the impedance parameters, mimicking the be-
havior of the human arm is an auspicious field of research, and leads to what we
call biologically-inspired robotics. By measuring and subsequently analyzing hu-
man arm impedance parameters, we can attempt to extract general rules and project
these to the robotic domain.

The human arm’s capability to alter its impedance has motivated multiple de-
velopments of robotic manipulators and control methods. It provides advantageous
during manipulation such as robustness against external disturbances and task adapt-
ability. However, how the impedance of the arm is set depends on the manipulation
situation; a general procedure is lacking.

The only direct method to measure stiffness in a functioning feedback system
is to apply external force perturbations to the limb and to measure the resulting
displacements; such measurements have only been satisfactorily realized in planar
(2D) movements [8, 12, 4, 5, 10, 2, 11]. To date, no fully satisfactory methods exist
to investigate the time-varying impedance during movements. Early efforts were
subject to error because they assume that subjects perform the same movement on
repeated trials and they ignore the non-linear inertial properties of the musculo-
skeletal system.

We provide a method to identify human arm impedance in more than 2 degrees
of freedom. We do this by initially identifying the kinematic and inertial parame-
ters of the arm through movement. Subsequently we identify stiffness parameters of
the human arm in 5 degrees of freedom (shoulder, elbow, and lower arm rotation),
while taking the numerical stability of the data into account. The data are related to a
representation of the stiffness by electromyography (EMG) signals which, in combi-
nation with the kinematics, gives us a 3D Cartesian identification of the impedance
parameters of the human arm.

2 Technical Approach

An adequate model describing the human limb dynamics can be separated in two
power interconnected subsystems: the mass inverse dynamics of the skeleton (in-
cluding the mass distribution of the muscles)
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Γ(q, q̇, q̈, ξ) = τ + τext , (1)

where q ∈ Rn are joint positions, ξ ∈ R≤10n are base inertial parameters and τext are
external torques and general impedance functions of the muscular system, acting as
force elements on the joints:

τ = −h(q, q̇, a) . (2)

We assume h : q, q̇, a→ τ to be continuous, while the muscle activities a are motor
commands, which are able to shift the equilibrium point of the impedance. Thus,
linearization in the working point xd � (q(t = 0), q̇(t = 0), a(t = 0)) yields:

h� = h|xd
︸︷︷︸

τd

+
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∣

∣

∣

∣

xd

ã + . . . . (3)

Additionally, we assume that activations a = const. (this can be fulfilled by certain
experimental conditions); consequently the joint torques acting due to muscles can
be approximated by:

τ = −τd − Kq q̃ − Dq ˙̃q , (4)

where q̃ = q − qd is the tracking error, τd are equilibrium torques and Kq, Dq are
joint stiffness and damping matrices, respectively.

Identifying the complete parameter set (i.e., ξ, Kq and Dq) from measurements
of τext would lead to an ill-conditioned least-squares problem [7], thus we estimate
ξ separately by projecting the inertial forces to the subject’s mounting base where
they can be measured with a force / torque sensor, i.e.,

χ0(q, q̇, q̈, ξ) = χsensor . (5)

Once the inertial parameters ξ are known, the not directly measurable joint torques τ
can be estimated via the inverse dynamic model and the identification model reduces
to

Kq q̃ + Dq ˙̃q = τext − Γ(q, q̇, q̈, ξ) − τd , (6)

where only the left hand side is unknown. This separation allows severed identifi-
cation of parameters for each subsystem—to overcome the problem of badly scaled
least-squares estimations [7].

The complete 5-DoF identification procedure requires the following steps:

1. Identification of center of rotation for the 3-DoF shoulder joint and 2-DoF elbow
joint, respectively;

2. Solving inverse kinematics, which gives an approximation of the Jacobian
matrix;

3. Estimating the inertial parameters via kinematics data and base force / torque
sensing;

4. Separated identification of the impedance parameters while EMG signals of the
active muscles are recorded;

5. Train a model in order to predict stiffness from EMG data which finally gives the
possibility to estimate stiffness without mechanical measurements.
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2.1 Kinematic Identification

To identify the positions of the human limb joints, a method proposed by [1] is
conducted. We assume that at least two axes of rotation intersect. The absolute posi-
tion r of the point of intersection can be represented via markers placed at the joint
adjacent body segments, i.e.

r1 = p1 + RT
1 d1 , (7)

r2 = p2 + RT
2 d2 , (8)

where pi and Ri denotes the absolute position and orientation of a marker and di

is the distance of the intersection point w.r.t. the ith marker. Thus minimizing the
integral error

S =
1
T

∫ T

0
(r1 − r2)T (r1 − r2) dt , (9)

determines the unknown d1 and d2.

2.2 Inverse Kinematics

The kinematics of the human limb consists of uncertainties, e.g., non-ideal joints and
varying segment lengths. In order to minimize these errors we propose a numerical
solution of the inverse kinematics, i.e.

arg min ‖T(q)T−1
d − I‖F , (10)

where T(q) and Td are the parameterized and desired homogeneous transformation
matrix to the wrist, respectively and ‖.‖F denotes the Frobenius matrix norm. This
optimization problem is continuous and unconstrained and can be solved with, e.g.,
a quasi-Newton method.

2.3 Inertial Parameter Model

For the identification of the inertial parameters, a model can be considered where
the dynamical forces / torques are projected to a coordinate system at the sub-
ject’s mounting base, i.e., under the seat (a similar approach was proposed by [13]).
The equations of this model can be obtained analytically by means of the iterative
Newton-Euler formalism:

χi =

[

f i

ni

]

=

[

Fi(q, q̇, q̈, ξ) + Ri,i+1(q) f i+1
Ni(q, q̇, q̈, ξ) + Ri,i+1(q)ni+1 + p̃i,i+1(q)

(

Ri,i+1(q) f i+1
)

]

,

for i = nbody, nbody − 1, . . . , 0 , (11)

where χi is the wrench acting on the ith body. Ri,i+1 and pi,i+1 are the relative rotation
and distance between body i and i + 1, respectively. Furthermore, f i+1 and ni+1 are
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Cartesian forces and torques propagated from the (i + 1)st body. Finally, Fi and Ni

are the forces and torques due to the inertial dynamics. They can be computed by:

Fi = miv̇i + ˙̃ωiSi + ω̃i
(

ω̃iSi
)

, (12)

Ni = Θiω̇i + ω̃i (Θiωi) +˜Siv̇i . (13)

Herein ω̃ ∈ R3×3 denotes the skew symmetric tensor composed of components
ω ∈ R3. vi, ωi and v̇i, ω̇i are absolute translational and angular velocities and ac-
celerations of the ith body. The inertial parameters mi ∈ R, Si ∈ R3, and Θi ∈ R3×3

(i.e., mass moments zeroth, first, and second order) are linear in the base base pro-
jected model χ0(q, q̇, q̈, ξ) = χsensor and can be identified by common least-squares
estimations.

2.4 Impedance Identification

Due to the constraint of energy conservation the force field generated by mechanical
stiffness must be integrable [6], i.e., stiffness matrices are symmetric and positive
definite (SPD). In order to enhance the robustness of the identification procedure we
also determine the stiffness separated from damping. Therefore we take the reduced
model

Kq q̃ = τext − Γ(q, ξred) − τd , (14)

into account. This model is valid for the stationary case q̈ = q̇ ≈ 0. In that case the
stiffness balance the (non-linear) gravity and external torques.

The identification model is linear in Kq and consists of the form

AX = B , (15)

where A = q̃T , X = KT
q and B = (τext − Γ(q, ξred) − τd)T . To ensure the SPD

constraint the area criterion proposed by [3]:

f (Y) =
∥

∥

∥AY − BY−T
∥

∥

∥ , (16)

where X = YYT , will be minimized. When P = AT A and Q = BT B the unique
solution is given by

K̂q = X̂ = UPΣ
−1
P UQ̃ΣQ̃UT

Q̃
Σ−1

P UP , (17)

where

P = UPΣ
2
PUT

P , (18)

Q̃ = ΣPUT
PQUPΣP = UQ̃Σ

2
Q̃

UT
Q̃
, (19)

are the Schur decompositions of P and Q̃, respectively.



94 D. Lakatos et al.

2.5 Stiffness Determination from EMG

To predict a stiffness matrix Zi from EMG data xi, a nonlinear two-layer model was
used. As Zi is symmetric and positive definite, we note that it can be decomposed
into Zi = LiLT

i via the Cholesky decomposition.
Constraining the output of our model to be positive definite and symmetric can

thus be done by not modeling Zi, but Li instead.
In more detail, given N time windows {xi} ⊂ Rn×m where n is the length of the

time windows and m is the number of EMG electrodes, we predict the components
of the Cholesky decomposition via

li =
1
N

W1σ (W2φ(xi) + b2) + b1 , (20)

where φ is a function that extracts features from each time window andσ is a nonlin-
ear function applied component-wise. We then turn li into a lower-triangular matrix
Li by rearranging the components from vector into matrix form. The final prediction
is subsequently formed by Yi = LiLT

i .
The parameters of the model θ = {W1,W2, b2, b1} are either matrices W1 and W2

or vectors b1 and b2. To learn such model, we assume that the measurements of the
stiffness matrices {Zi} are subject to Gaussian noise and minimize the negative log
likelihood:

log λ �
∑

i

‖Yi − Zi‖2 . (21)

The resulting optimization problem is unconstrained and continuous. The gradients
are efficiently computed via dynamic programming and the chain rule. Thus, stan-
dard off-the-shelf optimizers are used to find good solutions for θ.

3 Experiments

During the whole experiment subjects were seated on a special chair depicted in
Figure 1(a) while the upper body was restrained by a seat belt. At the wrist a plastic
cuff supported the connection to the robot’s end-effector. JR3 force / torque sensors
were placed at the interconnection (between robot and limb) and at the subject’s
mounting base (under the seat). The data of both force / torque sensors were sam-
pled at 2 kHz. To estimate the kinematic configuration optical tracking markers were
placed at the upper body, upper arm and forearm, respectively. We used data from
Vicon T10 cameras to track the markers position and orientation, sampled at 500 Hz.
To map EMG to stiffness, we recorded EMG signals from eight sources on the arm
(see Fig. 1(b)). We used Delsys Trigno wireless electrodes, sampled at 2 kHz. Ex-
perimental instructions and visual feedback were given to the subject via a display.

At the beginning of an experimental session, data from the optical tracking sys-
tem was recorded to identify the subject’s individual joint positions and compute
the arm kinematics. Here the subject was instructed to move all joint axes of the
limb randomly. After this, data (40 trials) for the inertial parameters were gathered,
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while different predefined kinematic limb configurations had to be reached in free
movement. These initial recordings where followed by the final stiffness identifica-
tion procedure in which subjects had to fulfill a force task. The subject’s wrist was
coupled to the light-weight robot’s end-effector and desired and actual interaction
forces / torques were displayed. After holding a certain force / torque level (4 levels
in Cartesian X and Z direction each) for a random duration between 1.5 and 2.5
seconds, the robot perturbs the limb in one direction randomly chosen from the 10
possibilities (two for each joint DoF). All smooth (polynomial fifth order) displace-
ments were planned in joint coordinates of the human limb with an amplitude of
≈ 0.08 rad via the Jacobian matrix, i.e., Δxrobot = J limb(q)Δq. Typical disturbances
are shown in Figure 2.

(a) (b)

Fig. 1 a Experimental setup: (1) DLR light-weight robot applies disturbances to the human
arm, (2) JR3 force / torque sensor measures interaction forces, (3) JR3 force / torque sensor
measures subject’s mounting base forces, (4) Vicon T10 optical tracking system, (5) Sub-
ject’s visual feedback. b EMG electrode placement for estimating stiffness from EMG. A
total number of 8 electrodes are placed. EMG signals of dominant muscles involved in shoul-
der and elbow joint movements are gathered: brachioradialis (BRAD), biceps long (BILH),
deltoid clavicular (DELC), pectoralis major clavicular (PMJC), deltoid scapular (DELS), tri-
ceps long (TRIO), triceps lateral (TRIA), and triceps medial (TRIM).

4 Results

4.1 Estimated Stiffness and Prediction via EMG

After estimating the joint positions, the inverse kinematics of all trials (i.e., inertial
and stiffness measurements) were computed. First identification results are obtained
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from stationary parts of the recorded data, i.e., where the velocity is lower than a
certain threshold. Therefore the inertial identification model reduces to

χ0(q, ξred) = χsensor (22)

where ξred contains the mass moments zeroth and first order. To estimate ξred, mean
values of the joint angles q (where q̇ ≈ 0) and mean values of associated base
wrench componentsχsensor,i where i = 3, 4, 5 were used for least-squares regression.

The stiffness identification procedure was also based on the reduced model where
qd and τd was obtained by taking the mean values in the time interval before the on-
set of the disturbance. Analogously, a second interval for q and τ was chosen after
the displacement. For descriptive reasons, typical estimated joint stiffness matrices
are transformed to Cartesian coordinates and visualised as stiffness ellipsoids in Fig-
ure 3. Each stiffness matrix Kq was determined from 50 disturbance measurements;
consequently each map was constructed from 50 sets of 8 × 400 data points. We
preprocessed the EMG data with a full wave rectification and split the data into time
windows of length 70 afterwards. For φ we picked the maximum along each of the
signals followed by two layers of unsupervised feature extraction using the approach
of [9]. We chose 100 soft rectified linear units as the nonlinearity in our model:
σ(x) = ln(1 + exp x). All hyper parameters of the learning process were selected by
random search and picking those which performed best on a held out validation set.
The average normalized root mean squared error for the multi-layered model was
0.3378. In contrast, a linear model never achieved 0.39 or better. For an example of
the predicted stiffness matrices, see Figure 4.
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Fig. 2 Typical disturbances exerted by the light-weight robot, mapped to human arm’s joint
space. To demonstrate the repeatability the data is aligned along the time axis.
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4.2 Comments

Estimating joint stiffness in more than two degrees entails a chain of model as-
sumptions, while model uncertainties accumulate from kinematics over inertial to
stiffness identification. The identification of inertial parameters depend on measured
joint angles q (and their derivatives) and are based on force / torque data measured
on the mounting base, i.e., the measurement range must include human’s whole
body mass. These are affected by the following assumptions:

• For human arm’s kinematics it is assumed that the shoulder joint is an ideal spher-
ical joint and the elbow joint consist of two orthogonal, intersecting axes. Fur-
thermore, it is assumed that optical markers placed on the upper and lower arm
do not move relative to the skeleton. Both issues, extensively studied in [1], lead
to biased estimates of joint angles q and their time derivatives.

Fig. 3 Cartesian stiffness
ellipsoids of estimated joint
stiffness matrices. Each el-
lipsoid represents the force-
field generated due to spher-
ical displacements (here, the
radius r = 5 mm). The el-
lipsoid’s origins are shifted
to the point of pretension
forces F = (FX , FY , FZ)T .
Additionally, the principle
axes (eigenvalues) of stiff-
ness ellipsoids are displayed
as straight lines.
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Fig. 4 Hinton diagrams of the stiffness matrices based on EMG prediction (left), estimation
from force perturbations (middle) and the absolute value of their difference (right). Black
boxes correspond to negative, white to positive values while the size represents the magni-
tude. Data was taken from the testing set.
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• In particular for some small mass moments of inertia, the reaction force at the
mounting base undercuts the sensitivity of the force / torque sensor.

• For the stiffness identification we assume that muscle activation a are constant.
This implies fast perturbations, where displacements are stabilized in a short time
(cf. [7]). Otherwise a change in activations would have changed the impedance.

This chain of assumptions forces us to analyze the results depicted in Fig. 3 inten-
sively. For instance, from planar measurements it is known [5] that stiffness ellipses
align their major axis in the direction of the pretension force applied. For the present
estimations this effect can be observed only in the direction of FZ .

5 Main Experimental Insights

In this work we have introduced a new and unique method to measure the stiffness
of the human arm in 5-DoF joint space, viz. 3 shoulder DoF, the elbow flexion, and
the lower arm rotation. Identification of arm kinematics and deriving the Jacobian
matrix allows for transferring the measured joints stiffnesses to the Cartesian do-
main. We thus pioneered the measurement of human arm impedance in more than 2
Cartesian coordinates.

Furthermore, we have proposed and incorporated a multi-layered regression
model which maps surface EMG signals to joint stiffness. With this method, com-
bined with a detailed kinematic model, we can accurately estimate arm impedance
without the need of mechanical perturbations. This is essential in order to determine
human arm impedance not only in static positions but also along a trajectory during
task execution, without the need of perturbation measurements.

Given this framework we are now able to investigate how humans modulates arm
impedance in any task. The resulting measurements can be used to derive methods
of impedance modulation for robotic arms.
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Motor vs. Brake: Comparative Studies on
Performance and Safety in Hybrid Actuations

Dongjun Shin, Xiyang Yeh, Takashi Narita, and Oussama Khatib

Abstract. Human-centered robotics draws growing interest in utilizing pneumatic
artificial muscles (PAMs) for robots to cooperate with humans. In order to address
the limited control performance which prevents PAMs from being more widely
used, a hybrid actuation scheme has been proposed to combine PAMs and a low
inertia DC motor, and presented significantly improved control performance with-
out loss of robot safety. While the DC motor provides high precision and reliability,
the small motor has, however, difficulties in dealing with the large stored energies
of the PAMs, especially in the events of PAMs failure and large initial load changes.
In order to further ensure robot safety, we developed a new hybrid actuation scheme
with PAMs (macro) and a particle brake (mini), which provides high torque-to-
weight ratio and inherent stability. We then conducted comparative studies between
hybrid actuations with (1) a DC motor and (2) a brake in terms of robot safety and
performance. Experimental comparisons show that the hybrid actuation with PAMs
and a brake provides higher energy efficiency for control bandwidths under 2 Hz,
and is capable of effectively reducing large impacts due to the brake’s high torque
capacity and passive energy dissipation. These comparative studies provide insight
that the hybrid actuation with PAMs and a brake can be a competitive solution
for the applications that require high efficiency, but accept a relatively low control
performance, for example, a waist joint.

1 Introduction

Human-centered robotics draws growing interest in inherently safe actuations for
robots to cooperate with humans. Notable achievements are series elastic actua-
tor [1], variable impedance actuator [2], and distributed macro-mini actuation [3].
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In addition, considerable research has employed pneumatic artificial muscles (PAMs)
for their high force-to-weight ratios and inherent compliances [4–6]. Low output
impedance of PAMs over a wide frequency range enables PAMs to reduce large
impact forces during unforseen collisions.

However, PAM’s limited control performance prevents it from being more widely
used. Due to their air compressibility and viscous/coulomb friction in a braided
shell, force and position control bandwidths are limited.

Hybrid Actuation: In order to address the performance limitations, Shin et al.
proposed a hybrid actuation approach, which consists of a pair of PAMs coupled
in parallel to a low-inertia DC motor [7]. The low-pass behavior of PAMs naturally
partitions the reference input torques into low frequency (macro) and high frequency
(mini) actuation components. The macro torque component is primarily sustained
by the muscles while the resultant torque error is compensated by the DC motor.
This configuration improves the overall bandwidth as the fast DC motor compen-
sates for slow dynamics of the muscles.

Other works have employed a magnetic brake along with PAMs. Ahn et al. used a
magneto rheological brake (MR-brake) with phase switching control in order to im-
prove the control performance of PAMs [8]. Senkal and Gurocak developed a haptic
joystick using PAMs and a spherical MR-brake [9]. Nagai and Nakamura imple-
mented the position and vibration control of PAMs by actively adjusting viscosity
coefficients using a MR-brake [10].

Problem Statement: The hybrid actuation schemes significantly reduces possible
dangers by employing the novel design for low effective inertia and utilizing inher-
ent damping and limited flow rate of PAMs.

Brakes provide higher torque-to-weight ratios than DC motors and stable dis-
sipative operations, which are robust to non-ideal velocity feedback due to noise
and phase lag issues [11]. These characteristics positively contribute to robot safety.
Their slightly non-linear characteristics, however, result in some difficulties in con-
trol, and their passive natures allow for torque compensation only in the opposite
direction of motion. Furthermore, all of previous works have been focused on per-
formance improvements, but effects on robot safety without compromising control
performance remains to be addressed.

On the other hand, while the hybrid actuation with PAMs and a DC motor re-
markably improves control performance while minimizing loss of robot safety, the
limited torque capacity of the mini DC motors may result in difficulties in respond-
ing to changes in large inertial load at high speeds (e.g., accidental muscle puncture).

In order to understand characteristics of each hybrid actuation and optimally select
a mini actuator for a desired application, we investigate and compare robot safety and
performance of hybrid actuations with (1) a DC motor or with (2) a brake.

Section 2 provides a technical approach which includes control strategies and
hardware descriptions of both hybrid actuations. Section 3 and 4 describe the exper-
imental setup and show results, respectively. Finally, Section V concludes the paper
with discussion.
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+

+
+

Fig. 1 Hybrid actuation scheme [7]. PAM is employed as the macro actuation while mini
actuation can be a DC motor or a brake. Note that the brake compensates for the torque error
in the opposite direction of motion.

2 Technical Approach

In order to achieve low effective inertia but high torque capacity, we employed
PAMs as a low frequency actuation (macro actuation). Since torque and position
control bandwidth is significantly limited by their slow dynamics, a small high
frequency actuation (mini actuation) is essential to increase a dynamic range with
maintaining/improving robot safety. In this paper, we employed a brake or a motor
as a mini actuation to investigate advantages and disadvantages of each actuation.

2.1 Control Strategy

The basic control strategy in this paper is the hybrid actuation concept proposed in
[12]. The motor or brake is coupled in parallel to the robot joint, which is driven
by PAMs. An adaptive force feedback controller was implemented for PAMs as
follows:

C(s) =
22.5

K
s+ 6

s+ 300
s+ 25

s+ 0.01
(1)

where, K is an adaptive controller gain, which is a function of muscle length.
Using the hybrid actuation concept, the motor or brake torque command is ob-

tained from joint torque error by PAMs as shown in Fig. 1. In case of a motor, mini
actuation is a simple open-loop control since it is a bidirectional actuator and output
torque is quite linear to input current. Unlike a motor, the brake can only produce
unilateral opposing torques; only the overshoot torques can be reduced. In our con-
trol framework (Fig. 1), when the brake is used in place of the DC motor, we control
the brake using a phase switching controller [8] as follows:

τm = Ked |θ̇ |ε (2)

where, Ked is the damping gain for the joint velocity θ̇ and ε = 0 or 1 for the off
and on state for the brake, respectively. The phase plane switching surfaces were
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(a) Step plane (b) Phase plane

Fig. 2 Phase plane switching control strategy [8]. Brake activation can be fine-tuned using
the parameter h. During the active state (b ∼ c, d ∼ e), the brake produces opposing torque
as outlined in Equation (2) to compensate overshoots and undershoots. Proper selection of h
improves control performance by selectively deactivating the brake when the joint accelerates
to the set point, for example in a ∼ b.

constructed similarly as [8]. The control strategy allows the user to fine-tune when
the brake needs to activate such that fast dynamic response can be achieved despite
the brake’s dissipative nature. Fig. 2 illustrates how each switching surface param-
eter affects the dynamics of the system. The parameters were empirically found as
h =−50 and Ked = 0.5 with the error defined as e = qd− q.

Note that a linear model relating torque and current is used for the control of
brakes. Interestingly, the brake does not transfer torque viscously in shear mode
[13]. This means the brake torque is practically determined by a magnetic field, i.e.,
an input current, rather than an input velocity unless the velocity is significantly low
(0.04 rad/s). Since the brake torque is proportional to the input current alone, the
brake is easily controllable within its torque range.

The high torque density of a brake enables it to hold a joint with high stiffness,
reduce overshoots, and maintain stability under large inertial changes while keep-
ing low effective inertia. Due to its intrinsic passivity, a brake does not incorrectly
inject energy into a system even in case of non-ideal velocity feedback because of
noise and phase lag. These characteristics further ensure robot safety under various
circumstances.

2.2 Hardware Design

In order to effectively investigate and compare a motor and brake, we incorporated
a brake in the existing hybrid actuation testbed, which combines PAMs and a motor.
All hardware descriptions of the existing testbed are included in [12].
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Table 1 Actuator Comparison

Actuator Advantage Disadvantage
PAM High force density Difficult to control

Compliance
DC motor Accurate Low torque density

Easy to control
Particle brake High torque density Passive actuator

Inherently stable Static friction

A magnetic particle brake is employed in the hybrid actuation in the form of a
physically dissipative damper to stably reduce large impact forces. When current is
applied to the coil of the brake, magnetic flux binds magnetic particles in the powder
cavity. As current increases, the bond between the particles becomes stronger, which
results in higher resistance/braking torque to the rotor.

Although MR-brakes have higher torque-to-weight ratio than particle brakes [9],
the available MR-brakes in the market are too large and heavy for human-friendly
robot applications. Electro rheological (ER) brakes, on the other hand, need ex-
tremely high control voltage which is potentially unsafe [8], and hysteresis brakes
have very low torque-to-weight ratio [14]. Table 1 shows a comparison of the char-
acteristics of an electric motor, a PAM, and a magnetic particle brake.

One drawback of the particle brake is its static torque, which is typically deter-
mined by static friction and rotor inertia. Although this torque is compensated by a
controller, the smallest brake that meets torque requirement should be chosen.

3 Experimental Setup

In order to evaluate and compare the performance of various hybrid actuation
schemes, we set up an experimental testbed as shown in Fig. 3. The testbed employs
three actuators: PAMs for macro actuation, and a DC motor or a particle brake for
mini actuation. A pair of antagonistically actuated PAMs (Shadow Robot, 20 mm
diameter) is connected to the joint with 15 mm-radius circular pulleys. Addition-
ally, we had a particle brake (Placid Industries, B1-24-1F) and a DC motor (Maxon
Motor, RE30, 310007) connected in parallel with PAMs. For fair comparison of
performance and safety, we closely matched the weight of the brake with that of the
DC motor, although a larger brake has substantially higher torque density. For the
best mini actuation performance, we also employed a highly stiff cable-driven pul-
ley transmission with the reduction ratio of 10:1. All three actuators are connected
to the joint in parallel. Table 2 shows the technical specifications of mini actuations
in the testbed.

For the experiments of impact reduction, we used another actuator to exert im-
pulsive forces on the robotic link of the testbed.
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Output link 
Pneumatic Muscles 

Particle Brake 
(Placid Industries, B1-24-1F)  
m = 0.250 kg

 = 0.110 Nm 

Electrical Motor  
(Maxon, RE30, 310007)  
m = 0.238 kg   

 = 0.086 Nm 

Fig. 3 Testbed of hybrid actuation combining PAMs and a DC motor or a particle brake, all
of which are connected to the joint in parallel. For fair comparison of performance and safety,
we closely matched the weight of the brake with that of the DC motor.

Table 2 Technical specifications of the motor and brake

Actuator Motor Brake
Manufacturer Maxon motors Placid Industries
Product Model RE30 - 310007 B1-24-1F
Max Continuous Torque 86.2 mNm 110.0 mNm
Torque Constant 25.9 mNmA−1 1466.7 mNmA−1

Mechanical Time constant 3 ms 4-8 ms
Weight 0.238 kg 0.250 kg

4 Experimental Results

To investigate tracking performance and safety of two hybrid actuation schemes, a
series of experiments was conducted.

4.1 Performance Analysis

Fig. 4 and 5 show the 5◦ step response and 10◦ sinusoidal position tracking of
each actuation scheme, respectively. Hybrid actuation with PAMs and a DC mo-
tor achieves the best performance. Since the DC motor is able to produce bidirec-
tional active torques at high frequencies, it improves performance in the transient
and steady states. Meanwhile, the addition of the particle brake manages to dampen
overshoots and to improve settling time.
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Fig. 4 Step response compari-
son. Macro only actuation results
in the largest overshoots. The ad-
dition of the particle brake damp-
ens the overshoots and reduces
settling time. Macro and DC mo-
tor actuation achieves the best
performance due to the high fre-
quency torque contribution from
the DC motor.
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Fig. 5 Sinusoidal position tracking for 10◦. The hybrid actuation with PAMs and a brake
achieves a position control bandwidth of 2 Hz, while the DC motor mini actuation increases
the bandwidth to 6 Hz [12].

Fig. 6 shows the energy consumption comparison with respect to position control
bandwidth. At low control bandwidths, the hybrid actuation with PAMs and a brake
provides significantly more efficient operation, although the maximum achievable
control bandwidth is limited to 2 Hz. A larger brake has higher energy efficiency,
and thus can further improve the efficiency of the system.

4.2 Safety Analysis

To investigate the safety of the joint under various schemes, we simulated a mechan-
ical fault by disconnecting one of the muscles and releasing the joint while keeping
the other muscle preloaded. The preload was achieved by controlling the pressure
of the muscle at 207 kPa.

To reduce the velocity and impact force of the swinging link, we commanded the
brake or the DC motor to apply an opposing torque. Fig. 7 shows the capability of
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Fig. 6 Energy consumption comparison with respect to position control bandwidth. At low
control bandwidths, the hybrid actuation with PAMs and a brake provides significantly more
efficient operation, although the maximum achievable control bandwidth is limited to 2 Hz.
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Fig. 7 Response comparison to
instantaneous load changes. At
0.5 Nm opposing torque which is
the output torque due to the max-
imum DC motor torque after the
transmission, neither the particle
brake nor the DC motor is able to
significantly slow down the mov-
ing link. With full brake torque is
exerted, the brake is able to bring
the motion of the link to a halt at
0.05 sec. Note that the change in
direction of motion is a result of
collision with the link bumper.

the DC motor and the particle brake to dampen the motion of the swinging link. With
the maximum compensation torque of 0.5 Nm, which is the output torque capacity
corresponding to the maximum DC motor torque after the transmission, neither the
brake nor the DC motor is able to reduce the link velocity significantly. Compared
to the brake, the DC motor, with its faster dynamics, is able to more effectively
dampen the link’s motion. However, when the brake exerted its full torque, the link
is brought to a halt at approximately 0.05 sec later.

In addition, we conducted the experiments of impact reduction. Fig. 8 shows that
the hybrid actuation with a DC motor achieves better rejection performance for a
small amplitude impact, while the brake mini actuation more effectively reduces a
large amplitude impact. Since brakes are able to passively dissipate energies, the
new hybrid actuation is able to achieve high damping capability. Meanwhile, the
damping property of the hybrid actuation with a DC motor is limited by noise, phase
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Fig. 8 Comparison of impact reduction. Both hybrid actuation schemes achieves almost the
same rejection performance for a small amplitude impact, while the brake mini actuation
more effectively reduces a large amplitude impact. The new hybrid actuation is able to achieve
high damping due to the brake’s capability to passively dissipate energy.

lag, and interference between muscle and motor. This limitation may result in dan-
gerous motions in the case of large impacts, which the motor cannot effectively
cope with.

In summary, experimental results show that the hybrid actuation with a DC motor
generally provides better tracking performance than with a brake. In addition, a
DC motor provides a faster dynamic response to instantaneous (small) changes in
load or unexpected impacts. On the other hand, while maximum achievable control
bandwidth is limited, the new hybrid actuation with a brake consumes less energy
given the same control performance. Furthermore, a brake can effectively respond
to a large change in an inertial load and even stably reduce a large amplitude impact
due to its high torque capacity and passive dissipative nature. This prevents the
robot from generating unfavorable and unsafe motion in the case of unexpected
large impacts.

5 Conclusion

In order to further ensure robot safety, we have developed and implemented a new
hybrid actuation with PAMs and a magnetic particle brake within a macro-mini ac-
tuation concept. The high torque density of a brake maintains low effective inertia,
while significantly damping large accidental torque due to muscle failure. Further-
more, the brake’s physically dissipative damping enables the new actuation to stably
reduce large amplitude impacts, which may result in unfavorable motions and dan-
gers. These characteristics enable the brake mini actuation not only to effectively
reduce large impacts, but also to improve dynamic control performance over the
PAMs-alone actuation.
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In order to understand characteristics of each hybrid actuation and optimally se-
lect a mini actuator for a desired application, we have investigated and compared
robot safety and performance of hybrid actuations with (1) a DC motor or with (2)
a brake. Experimental results show that the hybrid actuation with PAMs and a DC
motor achieves better position tracking performance and faster dynamic response to
instantaneous load changes or unexpected small impacts (≈ 20 N) than PAMs and
a brake. Meanwhile, the hybrid actuation with PAMs and a brake consumes less en-
ergy for the tracking bandwidths less than 2 Hz, which is the maximum achievable
control bandwidth of the current system with a brake. Furthermore, the new actua-
tion can both effectively respond to changes in a large inertial load due to brake’s
high torque capacity and robustly reject large impacts (≈ 100 N) due to brake’s pas-
sive energy dissipation. These properties help to prevent the robot from generating
unfavorable or unsafe motions. For the applications that requires high efficiency, but
accepts a relatively low control performance, for example, a waist joint, the hybrid
actuation with PAMs and a brake can be a competitive solution.

Similarly to the hybrid actuation discussed in [15, 16], brake sizing is essential
to determine robot performance and safety. Smaller brake size will improve con-
trol performance due to its lower inertia and faster response time, but its smaller
braking torque significantly limits the capability for large disturbances and accident
impacts. In addition, mini actuator sizing is substantially dependent on joint stiff-
ness and muscle pressure [16]. Therefore, PAMs with an optimal brake should be
considered. The analysis of experimental results suggests that the combination of a
DC motor and a brake as mini actuations may provide meaningful results. However,
the development of this actuation should be accompanied by not only optimal siz-
ing of a DC motor and a brake, but also appropriate actuator torque participation,
minimizing the interference between two actuators.
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Examining the Effect of Rear Leg Specialization
on Dynamic Climbing with SCARAB:
A Dynamic Quadrupedal Robot for Locomotion
on Vertical and Horizontal Surfaces

Bruce Miller, Camilo Ordonez, and Jonathan E. Clark

Abstract. Recent investigations into biological locomotion have resulted in the de-
velopment of reduced order templates that emphasize the role of lateral dynamics
in achieving rapid and robust fore-aft movement, such as the Full-Goldman model
for dynamic climbing and the Lateral Leg Spring model for horizontal plane run-
ning. The observation of individual animals demonstrating locomotion via both of
these models motivates the development of a single platform that can do so as well.
However, a drawback in developing a robot directly from these models stems from
both having a bipedal configuration. While a bipedal robot could be designed, the
restriction of control approaches, reduction in stability, and preclusion of leg dif-
ferentiation motivates the development of a platform with additional limbs. In this
study, we describe the development of the first quadrupedal platform capable of in-
stantiating the Full-Goldman model, as well as the Lateral Leg Spring model. In
particular, the climbing behavior is characterized and the effect of rear leg posture
is examined for locomotion on a vertical surface. We demonstrate that climbing be-
havior can be impacted by the configuration of the rear legs and that minimizing
the magnitude of rear leg sprawl may improve efficiency, while rear sprawl postures
with a larger magnitude may improve robustness.

1 Introduction

Animals have shown the capacity to rapidly and nimbly navigate unstructured en-
vironments and utilize diverse forms of locomotion to traverse different regimes
[8, 13, 17, 21]. To better understand the characteristics that lead to the fast, robust
movement exhibited by biological creatures, ‘templates’ have been developed to
examine the dynamics that enable high-performance locomotion [12]. Templates
are reduced-order dynamical models that simplify complex biological locomotory
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dynamics into a more tractable problem, facilitating the understanding of how ani-
mals move with the speed and dexterity observed in nature. Several robots have used
templates as a locomotive basis to produce high speed, robust locomotion, demon-
strating how the effective application of principles gleaned from biology can lead to
improved performance in mechanical systems [9, 15, 19, 24].

Recent studies of biological locomotion have highlighted the important role of
lateral dynamics in achieving robust, high-speed locomotion [4, 13]. This has led to
the development of reduced-order models for scansorial and terrestrial locomotion
that incorporate lateral force generation via a sprawled leg posture. Two such mod-
els are the Full-Goldman (FG) model for dynamic climbing [13] and the Lateral
Leg Spring (LLS) model for horizontal plane running [21]. Though these models
operate in different regimes, there are several parallels in the system dynamics and
configurations, suggesting a natural compatibility for their incorporation in a sin-
gle platform capable of utilizing both locomotion modalities. Furthermore, studies
have shown that as individual animals move from horizontal to vertical surfaces, the
forces generated switch from pushing, characteristic of LLS running, to pulling, em-
blematic of FG climbing [20]. Although robotic platforms have been developed for
the individual models [9,23], no robot has yet instantiated two dynamic locomotion
models on the same platform.

While these models and platforms provide insight into the dynamics of biological
locomotion, the simplification to bipedal configurations reduces their scope. Having
only two limbs restricts control approaches that can be considered, limits navigable
environments, complicates the maintenance of balance and stability, and precludes
the utilization of leg differentiation in steady state locomotion. This last point is
accentuated by studies of animals and other multi-legged robots that have demon-
strated that improved locomotion performance can be realized via the utilization of
fore-aft leg specialization [10, 11].

In this study, we extend the bipedal FG climbing model to a quadrupedal config-
uration and describe the design and fabrication of SCARAB (Scansorial and Cur-
sorial Ambulation with a Robust, Adaptive roBot), the first quadrupedal platform
capable of dynamic climbing on a planar surface. The robot is also designed to run
on level and sloped surfaces in a manner described by the LLS running model and to
transition between scansorial and terrestrial regimes as well. This platform enables
and motivates the investigation as to how the configuration of the rear legs affects
dynamic climbing and how it can be optimized to improve climbing performance.

The remaining sections of this paper are organized as follows. Section 2 presents
the FG climbing model and LLS running model used as the basis for the develop-
ment of the physical platform, as well as scaling arguments and a dynamic simula-
tion of the platform. Section 3 describes the design of SCARAB and its components.
Section 4 details the experimental procedures utilized in both the simulation and ex-
perimental studies. The results of the simulation and physical experiments and a
discussion of their implications are given in Section 5. Section 6 summarizes the
contributions of this study and suggests avenues for future developments.
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2 Modeling and Simulation

SCARAB was designed to be able to rapidly traverse both level and vertical
surfaces. To guide the development of this platform, two biologically inspired
models for dynamic locomotion were utilized as templates. These models, the Full-
Goldman model for dynamic climbing and the Lateral Leg Spring model for hor-
izontal plane running, are described in Sections 2.1 and 2.2, respectively. Both of
these models were developed at a 2g scale, necessitating the use of dynamic scaling
to scale the models’ elements to a size that is more suited to platform develop-
ment. The details of dynamic scaling are described in Section 2.3. Finally, a sim-
ulation was developed to more accurately model the robot, which is presented in
Section 2.4.

2.1 Full-Goldman Climbing Model

Animals of varying size, leg number, attachment mechanism, and morphology have
demonstrated the capacity for rapid vertical locomotion. While it would seem that
differing climbing strategies would be adopted for these animals, the center of mass
trajectories and ground reaction force profiles show similar characteristics [13]. Two
key points can be extracted from these observations. First, the center of mass trajec-
tories appear to be pendular even though climbing animals typically have multiple
legs in contact with the climbing substrate at the same time, restricting free pendular
dynamics. Second, significant lateral forces are generated, almost half those gener-
ated in the fore-aft direction, indicating that lateral dynamics play a crucial role in
rapid vertical locomotion [16]. The dynamics generating this climbing behavior are
captured in the reduced-order Full-Goldman (FG) model for dynamic climbing. A
schematic of the model is shown in Fig. 1A.

Fig. 1 Models for dynamic locomotion. (A) Schematic of the FG dynamic climbing model.
(B) Schematic of the LLS horizontal plane running model. (C) Model utilized for the dynamic
simulation of climbing and running with a quadrupedal platform.
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The model is composed of a rigid, distributed mass body of mass m and moment
of inertia I attached to two massless legs with a nominal length of l0 consisting of
a spring of stiffness k in series with a linear actuation element. The base of the legs
are fixed a distance d1 above the center of mass and d2 to the left and right. These
attachment points, the hips, are rigid joints, locking the legs at a prescribed sprawl
angle β , defined as the angle between the longitudinal axis of the body and the axis
along the length of each leg. At the end of each leg is a foot that can attach to the
climbing substrate as a freely rotating pin-joint.

During climbing, each step begins with a touch-down event, which occurs when
one foot establishes contact with the climbing surface, beginning the stance phase
for that leg. At this point the leg spring is at its rest length and the linear actuation el-
ement is maximally extended. The actuation element then begins to contract, pulling
the body towards the stance foot pivot as the body swings as a pendulum about this
point. While the stance leg contracts, the opposing leg extends the actuation element
to the maximal length to prepare for the next step. The stance foot maintains contact
with the climbing substrate until the actuation element has fully contracted, at which
point the contact is broken for the stance foot while the opposing foot establishes
contact and begins the next step. This leg follows the same behavior until the first
foot again touches down. The period between two touch-down events of the same
leg is defined as a stride. The model continues to take alternating steps to generate
the climbing behavior.

2.2 Lateral Leg Spring Running Model

As with rapid climbing, similar locomotion characteristics have been exhibited by
animals of various sizes and morphologies for locomotion on level surfaces. The
sagittal plane dynamics have been well described by the Spring Loaded Inverted
Pendulum (SLIP) model [5, 6]. However, this model neglects the lateral plane
dynamics, which play an integral role in locomotion, particularly in the case of
sprawled posture animals. The Lateral Leg Spring (LLS) model was developed to
account for these effects and to describe the dynamics of horizontal plane of running
animals [22]. A schematic of this model is shown in Fig. 1B.

The configuration of the LLS running model is similar to that of the FG climbing
model. Two axially elastic legs are attached to a rigid, distributed mass body. How-
ever, two important differences exist between the models. First, the attachment of
the legs to the body at the hip serves as a freely rotating pin joint rather than locking
the legs at a fixed sprawl angle. Second, there is no axial actuation element in the
legs, as the model is energetically conservative. This could not be the case for dy-
namic climbing since kinetic energy is constantly being converted to gravitational
potential and must be replenished through actuation.

A running step begins with a touch-down event, at which point the foot beginning
stance establishes contact with the running surface with the leg fully extended and
at the desired sprawl angle. The body moves towards the stance foot under its own
momentum, compressing the spring and storing energy as elastic potential while
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rotating around the stance foot and hip joint. The spring then extends, accelerating
the body away from the stance foot and rotating the body. When all elastic potential
has been returned to the system, the stance foot detaches and the flight foot estab-
lishes contact, beginning the next step. Since the hip acts as a freely rotating pin
joint about which the body can rotate during stance, in the flight phase, the leg must
be reset to the desired initial sprawl angle. The process is symmetrical between the
left and right legs and the passage of two steps (one with the left leg and one with
the right leg) constitutes a stride.

2.3 Dynamic Scaling

The similarities in configuration and locomotion of the FG climbing model and
LLS running model simplifies the development of a platform capable of exempli-
fying both locomotion modalities. However, a significant obstacle to designing a
platform based on these models is scale. Since the inspiration for these models was
cockroaches and small geckos, the model parameters are specified for an overall
mass of approximately 2g. The desired mass for the platform was set at 2kg, fol-
lowing power density arguments suggesting the upper limit for a dynamic climbing
platform using conventional DC motors to be at approximately this size [16]. To
preserve the dynamic characteristics that are the reason for embedding these mod-
els in the platform, dynamic scaling is utilized [21]. The derivation of the dynamic
scaling laws have been previously described [21, 10, 1]; therefore, in this paper we
only present the scaling relations and the resulting parameter values, which can be
found in Table 1.

While the parameter values for the scaled models were similar in most aspects,
the desired leg stiffnesses show significant deviation. Since the nominal stiffness
for climbing was twice that for running, it was desirable to develop a mechanism
by which the effective leg stiffness could change when operating in the different
modalities. This was done by developing a leg that had a different stiffness when
loaded while extending (utilized for LLS running) and contracting (utilized for FG
climbing), which is described in detail in Section 3.

Table 1 Dynamic scaling relations and parameter values for scaling the reduced-order mod-
els to 2kg. For model and scaled values, the left value corresponds to the FG (climbing) model
value while the right value corresponds to the LLS (running) model value. Note that there is
no actuation length for the LLS model because it is energetically conservative.

Parameter Model Values Scale Factor Scaled Value Robot Values

Mass (kg) 0.002 / 0.0025 αM 2 / 2 1.88

Leg Stiffness (Nm−1) 6 / 3.5 α2/3
M 600 / 300 640 / 320

Leg Length (m) 0.0154 / 0.017 α1/3
M 0.154 / 0.158 0.200

Actuation Length (m) 0.0092 / – α1/3
M 0.092 / – 0.088

Stride Frequency (Hz) 9 / 10 α−1/6
M 2.85 / 3.28 Varies

Expected Velocity (ms−1) 0.20 / 0.25 α1/6
M 0.63 / 0.76 Varies
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2.4 Dynamic Simulation

After determining the dynamically scaled values for a 2kg platform, a dynamic sim-
ulation was developed in Working Model 2D R©. The simulation has a quadrupedal
configuration and was designed with mass distributed in the legs and actuation
mechanisms to better model the physical system, as shown in Fig. 1C. This sim-
ulation was used to verify dynamic similarity to the template, as well as for mo-
tor selection, controller design, and investigation of the effect of varying rear leg
posture. It will additionally be used in performing parameter variation studies and
examining transitions between climbing and running. While the model was devel-
oped for and is capable of demonstrating both climbing and running behavior, only
the climbing simulation is detailed in this work. A detailed examination of the run-
ning behavior is omitted in order to allow a more in depth analysis of the climbing
behavior, in particular, the role of fore-aft leg specialization.

3 Physical Platform

After demonstrating that the dynamic simulation preserved the climbing behavior of
the FG model, the first prototype of SCARAB was designed, consisting of four legs
for actuation and attachment, an electronics package for control of the robot, and a
central body to connect the individual components. The fully assembled platform,
shown in Fig. 2A, is approximately 50cm long and 30cm wide, depending on the
configuration of the legs, and has a mass of 1.88kg.

Each leg, shown in Fig. 2B, is actuated via a Maxon RE-max 24 motor (Maxon
222049) with a 24:1 planetary gearhead (Maxon 14397). The motor is in series with
a 3:2 bevel gear set, which drives a crank-slider mechanism to vary the rest length of
the leg. This mechanism is used to add (or remove) energy during locomotion. Ad-
ditionally, each leg has a linear spring in series with the crank-slider, which reduces
the peak ground reaction forces, lowering the stress on the leg and reducing peak
loads on the motor. It also assists with attachment, allowing the loading on the foot
to increase gradually. As mentioned in Section 2.3, the shin, which houses the leg
spring, was designed so it exhibited a different effective stiffness during running and
climbing in a manner similar to that used on RiSE v1 [3]. The mechanism utilized
for this was a slider braced between two sets of compression springs, which can be
seen in Fig. 2B. Since the springs were not attached to the slider, moving the slider
one way or the other would only engage one set of springs. By appropriate selection
of the spring stiffnesses on both sides, the leg could behave with two separate ef-
fective stiffnesses depending on the direction of compression. The design of the leg
is intentionally similar to a previous sagittal plane runner [2], facilitating the future
implementation of SLIP-like running on level and sloped surfaces.

A foot is attached to the end of each leg for attachment to the climbing substrate.
At this stage of development, the goal of the attachment scheme was to utilize a
simple, passive mechanism that would enable reliable attachment without impacting
the dynamic performance of the robot. To this end, the foot is designed to utilize



Examining the Effect of Rear Leg Specialization 119

Fig. 2 Assembled robot and individual components. (A) Photograph of SCARAB on the
climbing surface. (B) Close up of the rear left leg, which is identical to the rear right leg.
The front legs are the same except for the toe, which is reversed for attachment when the leg
is extended. (C) Picture of the custom expansion board for the electronics system. The fully
assembled electronics package has this board as the bottom layer, while the top layer can be
seen in (A).

a hook-and-loop attachment mechanism. Each foot uses a single toe to allow the
attachment point to function as a pin joint. The toe is a debarbed fish hook that has
been bent to allow the point to catch the climbing surface. While this mechanism
is fairly simple, it demonstrates directional adhesion in a manner comparable to
that utilized by animals and previous climbing robots [14, 24, 18]. Additionally, the
length of the toes on the front leg and back leg are different to position the robot at
approximately a 10◦ angle relative to the climbing substrate. This allows the robot
to pull itself towards the wall while in stance to improve the success of attachment at
touch-down. The climbing substrate is a 2.5m by 1.25m vertical wooden wall with
Berber carpet affixed to the climbing surface.

For platform operation, independent control of four actuators at a 1kHz update
rate was desired. In addition, the control system needed to be compact and light-
weight. This motivated the development of a custom electronics package around the
Gumstix Overo R© Fire. This controller was chosen due to its small footprint, high
clock frequency, expandable memory capacity, and the availability six pulse width
modulation (PWM) and analog-to-digital lines. The primary drawback was the lack
of sufficient general purpose input/output (GPIO) lines. To overcome this limitation,
a custom expansion board, shown in Fig. 2C, was designed based on the architecture
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of several Intel microprocessors [7], employing a multiplexed address/data bus and
a separate control bus. This configuration is able to address up to 16 8-bit devices
(or up to 128 individual GPIOs) to communicate with the central processor, though
the current design only utilizes 4 of these device addresses. The electronics pack-
age enabled the utilization of two dual quadrature decoders and four single channel
motor drivers to track and control the motors, while weighing only 298g and fitting
into a 11cm by 13cm footprint.

The body to which the legs and electronics are attached is a 30cm by 30cm alu-
minum frame. The legs are each attached at the hips, located 12.5cm in both fore-aft
and lateral directions from the center of the frame, while the electronics are mounted
directly over the center of the body. This configuration places the geometric center
of mass of the platform approximately in the center of the robot.

For both climbing and running, SCARAB utilizes a trotting gait, in which the
front right and rear left legs are in stance while the front left and rear right legs are
in flight and vice versa. To control positioning of the legs and to maintain the phase
offset of the trotting pairs, position control of the individual leg motors is utilized.
Each motor is given a desired trajectory that is prescribed by the stride frequency
without any information about the position of the other motors. The motor tracks
this desired trajectory using a proportional controller.

4 Experimental Procedure

The aim of the experimental tests described in this work is two-fold. The first goal
is to verify the similarity of the physical platform, simulation, and the FG climbing
model. The second is to examine the effect of rear leg configuration on climbing
behavior. The development of the quadrupedal SCARAB enables the examination
of fore-aft leg specialization, which has been shown to be beneficial for running
robots but had yet to be tested in the scansorial regime.

To quantify the behavior of the platform, experimental data was gathered using
motion capture and current and voltage sensing. Whole body position and velocity
data was obtained via a motion capture system using a high-speed digital camera
(Casio Exilim EX-F1) that tracked 2 LED markers located above and below the
center of mass of the robot. Motion tracking data was captured at 300 f ps and ana-
lyzed in MATLAB R© using a custom point-tracking script. Power consumption was
calculated from the current draw of the robot and the input voltage. A VektrexTM

VCS10 current sensor and a Sparkfun R© Logomatic V2 was used to measure and log
the current draw of the robot, which was synchronized with the motion capture data
and input voltage to determine the total system power consumption and efficiency
during climbing.

The first experimental goal of verifying the similarity between SCARAB, the
quadrupedal simulation, and the FG model was performed by comparing center of
mass trajectories as well as fore-aft and lateral velocity profiles over the course of a
stride. Since the FG model utilizes a sprawl angle of 10◦, this angle was selected for
the sprawl angle of the front legs on the quadrupedal platforms. A rear sprawl angle
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of 10◦ was also selected for this comparison. For the physical platform, the motion
capture system was used to gather data from 15 trial runs, which were compiled to
generate an average center of mass trajectory and velocity profiles over the course
of a stride. In each trial, the robot was placed at the bottom of the wall and climbed
to the top. To help minimize transients, only the data from the final stride was used
for the verification. The simulated data was obtained through forward simulation of
the quadrupedal model. The simulation was allowed 15 strides to reach steady state
before data was gathered from a single stride.

In the second set of experiments, the effects of rear leg posture were investigated.
Several rear leg configurations were examined, as shown in Fig. 3. The first case
was an outward-sprawled configuration, which showed similarity to the observed
leg orientation of sprawled posture animals during climbing (though not necessar-
ily their force generation). The second case was a zero-sprawl configuration, which
was expected to demonstrate similar rear leg function to cockroaches [13]. The third
case was an inward-sprawled configuration and was expected to reproduce ground
reaction forces observed in the rear legs of geckos when climbing rapidly [4]. Over-
all, five rear sprawl angles were examined, ranging from −20◦ to 20◦ in 10◦ in-
crements, with negative angles corresponding to inward-sprawl and positive angles
corresponding to outward-sprawl.

Three behavior characteristics were examined for each configuration: fore-aft
velocity, lateral velocity, and efficiency. The fore-aft velocity corresponds to the
mean fore-aft velocity during the stride. The lateral velocity was calculated as the

Fig. 3 Examined configurations for the rear legs of the platform and expected fore-aft and
lateral ground reaction forces which would be generated when the front-left and rear-right
legs are in stance. (A) Configuration in which rear legs are sprawled outward. (B) Config-
uration in which the rear legs have no sprawl. (C) Configuration in which the rear legs are
sprawled inward.
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root-mean-square lateral velocity during the stride. Finally, the efficiency was de-
termined via specific resistance (SR), calculated by SR = P/mgv, where P is the
average power consumption during the stride, m is the mass of the robot, g is the
acceleration due to gravity, and v is the average fore-aft velocity. Note that lower
values for SR are more efficient.

5 Results

In preliminary experiments, the robot was run on vertical and horizontal surfaces
and demonstrated mean speeds of up to 0.17 ms−1 when climbing a vertical surface
and up to 0.43 ms−1 when running across level ground. The climbing results are
further discussed below while the running will be more fully examined in future
work to allow for an improved analysis of the two locomotion modalities.

The velocity profiles over the course of a single stride for the FG model, the
dynamic simulation, and SCARAB are shown in Fig. 4. Both fore-aft and lateral
velocity exhibit similar profiles for all three. However, the fore-aft speed is lower
than predicted by dynamic scaling (see Table 1). This is the result of running the
quadruped at a 1.5Hz rather than the dynamically scaled frequency of 2.85Hz,
which was due to failure to establish attachment with the front feet at high stride
frequencies. While several factors likely contributed, the most significant is proba-
bly that the stiffness of the rear legs being less than the dynamically scaled values.
Since the rear toes were made long enough to produce a 10◦ angle between the body
and the wall, they also acted as a cantilever beam in series with the leg, which was
not accounted for in the development of the platform. This resulted in a lower nat-
ural frequency of the leg, such that when attempting to climb at the dynamically

Fig. 4 Fore-aft (Vy) and lateral (Vx) velocity profiles during a stride. (A), (B), and (C) show
velocity profiles for the FG model [13], the quadrupedal simulation, and SCARAB, respec-
tively. The error bars in (c) show the standard deviation for the velocity at increments of the
stride.
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scaled frequency, the rear springs would not be able to return the energy stored dur-
ing leg extension. It also pivoted the body about the rear toe attachments, pitching
the front feet away from the wall. However, the similarity of the qualitative shape of
the profiles demonstrates that SCARAB still exhibits the lateral force generation and
oscillating velocity profile characteristic of the climbing template. Furthermore, in-
creasing the speed of the dynamic simulation results in the expected mean climbing
speed being realized.

Rear leg sprawl variations were also examined, as shown in Fig. 5. From these
results, several trends can be noted. First, moving from more outward-sprawled
postures to more inward-sprawled postures increases vertical climbing speed by
10%. Second, zero-sprawl postures exhibit the lowest peak lateral velocities while
a sprawled posture, whether inward or outward, increases the lateral velocity, up
to twice the magnitude of the zero-sprawl configuration. While low lateral veloc-
ity may at first seem desirable, lateral velocities of approximately half the climbing
speed have been shown to correspond to more stable climbing [9]. Third, although
the magnitude of the difference is small (only about 1%), a similar trend to lateral
velocity is observed for specific resistance. This indicates that climbing with a zero-
sprawl posture may slightly improve efficiency while more sprawled postures may
be better suited when stability is most essential.

The effects of utilizing an inward-sprawled posture were unable to be tested on
the physical robot due to attachment failure. This is a result of out of plane roll that
was not captured in the 2D dynamic simulation. The roll results in the front foot

Fig. 5 Behavior characteristics as a function of rear sprawl angle. (A), (B), and (C) show the
effect of varying rear sprawl angle on the mean fore-aft velocity, the peak lateral velocity,
and the specific resistance of the quadrupedal simulation, respectively. (D), (E), and (F) show
effect of varying rear sprawl angle for the same behavior characteristics on the experimental
platform. The error bars show the standard deviation in the experimental results.
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missing the climbing substrate when the leg begins contracting, causing the robot
to fall off the wall. This effect has been seen in previous dynamic climbing robots
and has been dealt with in the past through stabilization via a roll bar extended off
the rear of the platform [9]. While the lack of a roll bar keeps the experimental
platform from utilizing inward-sprawled configurations, the robot is able to climb
successfully with no rear sprawl or outward-sprawled legs, suggesting that the rear
legs, when not sprawled inward, reduce out of plane roll.

Results for the outward and zero-sprawl configurations show similar trends to the
simulation data. To assess the significance of the trends, two-sample t-tests were per-
formed between the behavior characteristics of the zero-sprawl and the 20◦ outward-
sprawled configurations. A significant decrease in SCARAB’s mean climbing speed
(p < 0.001) was observed as the sprawl angle was increased from 0◦ to 20◦, as
well as increases in both peak lateral velocity (p < 0.0001) and specific resistance
(p < 0.001). It is worth noting that the improvement in efficiency on the physical
platform is greater than observed in simulation, and is likely the result of measuring
efficiency via electrical power on SCARAB rather than mechanical power, as was
done in simulation. These results corroborate the simulation findings and suggest a
trade off between efficiency and stability.

6 Conclusions

In this work, we present the design and experimental validation of SCARAB, the
first quadrupedal robotic platform capable of dynamic climbing on a planar surface
and horizontal plane running on level ground. Validation studies showed that the
platform exhibited dynamically similar behavior profiles to the biologically-inspired
Full-Goldman climbing template. In addition, SCARAB was used to investigate
the effects of functional leg specialization on climbing performance. Simulation
results showed consistent trends among the behavior characteristics. First, increased
speed can be achieved through the utilization of inward-sprawled gaits. Second,
increased magnitude of rear leg sprawl can increase the maximum lateral velocity
during climbing. This has been previously shown to correlate to, and potentially
contribute to, improved stability to perturbations. Third, efficiency is best for zero-
sprawl configurations, though the improvement in specific resistance is slight. The
results from the experimental platform agree with the simulation findings. However,
the utilization of inward-sprawled configurations failed due to unmodeled out of
plane roll that caused attachment failure on the robot.

This study has provided a preliminary examination of quadrupedal dynamic
climbing, but there are still several avenues that deserve further attention. In particu-
lar, a thorough exploration of the stability and robustness of the SCARAB platform
will be undertaken, as well as an investigation of attachment mechanisms, such as
those used by RiSE [24] and StickyBot [18], to explore options for climbing on
various natural and man-made surfaces and to assess the challenges of using these
mechanisms during dynamic locomotion.
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While only the dynamic climbing behavior has received in depth analysis thus
far, preliminary investigations into running on level surfaces have been conducted
and a detailed analysis is forthcoming, as well as examinations of both the running
and climbing performance of SCARAB on sloped surfaces. The capacity for loco-
motion via both modes enables the investigation of why animals change the lateral
force generation from pushing to pulling as the slope of a surface increases [20], a
distinguishing characteristic between the FG and LLS models, and which may have
a significant effect on the stability and efficiency of running on inclined surfaces.
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Session Summary  

Following the success at the previous ISER and IROS-2011 this years ISER also 
had an interactive session, where authors have an opportunity to provide a more  
1-2 interaction as they discuss their research. This is a great model for having 
interactive presentations rather than the usual one-way presentation of research. 
The model is particularly well suited for experimental research, which typically 
has simulation models, video or detailed graphics, all of which is suited for 
interactive discussions. 

The interactive session included 9 papers that cover the areas of Human-Robot 
Interaction, Multi-Robot Coordination, Mapping and Long-term Autonomy, and 
Perception and Control. The paper by Carton et al discusses design of a service 
robot that can safely approach people in dynamic environments. The method 
utilizes human behavior data to plan safe paths and to design associated control 
strategies. The method in particular considers speed and distance parameters to 
evaluate optimal control strategies. The second paper on human-robot interaction 
describes the Jedi-bot system that was developed at Stanford. The robot is design 
for execution of the adversarial game of sword fighting. To achieve this a kinect 
sensor is used to detect the sword and its trajectory and compute an intersecting 
trajectory. The system uses a highly reactive control strategy and was 
implemented on the KUKA Light Weight Robot 4 using the fast research 
interface. The paper by Gergondet et al describe a system for tele-operation of 
small humanoid robotics using a brain-computer interface to allow users that may 
be paralyzed or motor impaired to interact with intelligent devices such as a robot. 
Abichandani et al report on design of a multi-robot system for path coordination. 
The method utilizes a receding horizon approach applied to mixed integer non-
linear programming. They approach takes communication constraints into account 
and has been evaluated on teams of robots that include up to 5 members and 
performing in complex work environments. Worchester et al present a multi-robot 
task decomposition method. The objective is to perform multi-robot assembly of 
large-scale structures. The system uses a sensor-based approach to detect the 
current state and pieces available to complete the assembly process. The system 
generates a plan for sub-assemblies and uses that for control of mobile platforms 
for cooperative assembly. Rogers et al present a system for multi-robot 
exploration and mapping of indoor environments. The exploration process is 
driven by a set of evolving frontiers that control the robot coordination process. 
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The system has been tested in office like environments and includes teams of up to 
9 robots. The system has been used to explore environments that cover more than 
10,000 sq ft. Ott & Ramos present an approach for unsupervised clustering of 
sensory data to allow for on-line generation of semantics and doing so while 
honoring real-time processing constraints. To achieve this the method utilizes 
affinity propagation and introduction of meta-points. Yodar presents a method for 
using stereovision to estimate the pose of work pieces to be picked up. In small 
series manufacturing CAD models may not be readily available and for such 
situations it is desirable to directly use stereo based pose estimation. Three 
different strategies for estimation of pose are evaluated and grasping use a marker 
based end-effector strategy is presented. Finally, Sharf presents a strategy to use 
Blimps as part of art-displays. Two different blimp designs are considered 
together with two different control strategies, one using a fast motion with less 
accuracy and another that has higher accuracy but is significantly slower. 

 
 
 
 



Real-Time Clustering for Long-Term Autonomy

Lionel Ott and Fabio Ramos

Abstract. In the future robots will have to operate autonomously for long periods
of time. To achieve this, they need to be able to learn directly from their environ-
ment without human supervision. The use of clustering methods is one possibil-
ity to tackle this challenge. Here we present extensions to affinity propagation, a
clustering algorithm proposed by Frey and Dueck [5], which makes it suitable for
real-time and long-term use in robotics applications. The proposed extension, called
meta-point affinity propagation, introduces so called meta-points which increase the
performance of the clustering and allows for incremental usage. Additionally we
propose a method that enables us to obtain probabilistic cluster assignments from
any affinity propagation based clustering method. We show experimental results on
the quality and speed of meta-point affinity propagation as well as the probabilistic
cluster assignments. Furthermore, we demonstrate how meta-point affinity propa-
gation allows us to process data sets much larger then what affinity propagation is
able to handle.

1 Introduction and Related Work

Our long-term vision is to enable robotic systems to explore and build models of
unknown environments over extended periods of time without human supervision
or prior knowledge. This requires methods that allow the robot to build a model from
observations in an unsupervised manner. Such methods need to be efficient as robots
typically have limited resources and the operations need to be performed in a timely
manner. In addition to creating a model, another important part is the exploitation
of the model for higher-level tasks crucial for autonomy such as obstacle avoidance,
exploration or scene understanding.
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We approach building such environment models from a clustering perspective.
Clustering allows us to group similar data together into clusters in an unsupervised
way. In our case, the data are the sensory readings of the robot. However, with no
prior information about the data, only methods that can infer the number of clusters
automatically are suitable.

The contributions presented in this work are two fold. First, we introduce meta-
point affinity propagation, a novel method to efficiently cluster large amounts of
noisy data. Secondly, we present a method that allows any algorithm based on affin-
ity propagation to obtain probabilistic clustering assignments. We show how these
contributions allow us to cluster large numbers of points in a fraction of the time
it takes standard affinity propagation. Additionally, we demonstrate how the prob-
abilistic interpretation of cluster assignments can be used to evaluate the quality of
clustering results.

1.1 Related Work

The most prominent clustering methods that are capable of inferring the number of
clusters from data are latent Dirichlet allocation [2], spectral clustering [10], DB-
SCAN [4] and more recently affinity propagation [5]. All of these methods differ
in the types of assumptions they make, their complexity and flexibility. Unsuper-
vised learning has been used by Happold et al. [7] in order to learn colour based
models which enables them to predict terrain traversability from image data. A dif-
ferent approach, with the same goal, was proposed by Kim et al. [8] in which they
use the experience of a robot as it drives through the environment to learn a model
that maps visual appearance to terrain traversability. Visual appearance can also be
used directly, for example, Giguere et al. [6] use k-means clustering to learn the
model of a coral reef for the purpose of steering a robot such that it remains above
the coral reef. The work by Steinberg et al. [13] uses Dirichlet process mixture
models to learn models of the benthic habitats present in image data gathered by
an AUV. Such methods are not limited to image data as shown by Modayil and
Kuipers [9], who learn object models from laser scan data using a simple clustering
method. A different method that learns models from 3D point clouds is presented by
Ruhnke et al. [12], who employ spectral clustering to cluster models based on their
consistency.

2 Approach

We cast the task of building a model of the environment as a clustering problem.
We use affinity propagation [5], a state-of-the-art clustering method, to build the
model of the environment. Affinity propagation has many advantages for our pur-
pose. First, there is no need to define the number of clusters a priori as they are
determined from the data itself. Second, the only inputs required are the similarity
values between data points which can be any sensible value in the context of the
application, and is not required to be a metric. These similarity values are then used



Real-Time Clustering for Long-Term Autonomy 131

... i k ...

r(i,k)

a(i,k)

a(i,k′) r(i′,k)

Fig. 1 Messages exchanged by affinity propagation between nodes in each iteration. Both
messages take into account the accumulated values of the other message at the given node.

by affinity propagation to compute the clustering solution by iteratively computing
two messages, availability and responsibility. Availability a(i,k) is the message sent
from point k to point i and encodes how good of an exemplar k would be for i based
on evidence available to point k. While responsibility r(i,k), sent from point i to
k, encodes how suited point k is as an exemplar for point i given the information
available in i. After initialising all messages to 0 they are computed iteratively until
convergence is achieved. The actual equations used to compute the messages are
shown below:

r(i,k) = s(i,k)− max
k′s.t.k′ �=k

(
a(i,k′)+ s(i,k′)

)
(1)

a(i,k) = min
(

0,r(k,k)+ ∑
i′s.t.i′ /∈{i,k}

max
(
0,r(i′,k)

))
(2)

a(k,k) = ∑
i′s.t.i′ �=k

max
(
0,r(i′,k)

)
, (3)

where s(i,k) is the similarity between points i and k. Figure 1 shows how these two
messages interact with each other. One can see that both messages are computed
using the values of the other messages accumulated at the node.

In this work, we use cameras to perceive the robot’s environment and thus need
a compact way to represent the visual appearance of observations. To this end we
split the images observed by the robot into small rectangular patches. For a 640×
480 image the patches are typically 80× 60 in size. From these, we extract HSV
colour space histograms and histograms of local binary patterns [11], thus capturing
both colour and texture information. The similarity between features obtained from
observations in this way is computed as the sum of the histogram similarities, i.e.:

sim(H1,H2) =−dist(Hcolour
1 ,Hcolour

2 )− dist(H texture
1 ,H texture

2 ) , (4)

where H1 and H2 are the histograms of the colour and texture information for each
of the image patches. The distance dist between two histograms is computed using
the Bhattacharyya distance of two histograms.
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2.1 Meta-point Affinity Propagation

While standard affinity propagation produces good results, it is too slow to process
thousands of data points in a few seconds. We therefore propose a method called
meta-point affinity propagation which is inspired by ideas presented in Cao et al.
[3]. The main idea is that data points which are close in feature space can be grouped
together and replaced by a single meta-point. In robotics, similar observations occur
frequently for example multiple observations made from a similar pose. By replac-
ing such redundant observations with a single aggregated one, we effectively reduce
the number of points involved in the computation of affinity propagation.

A meta-point Pi stores the following information:

Pi = {count,mean,exemplar, last-update} , (5)

with the fields having the following meaning:

Pi.count number of points represented by the meta-point
Pi.mean the mean value of all represented data points
Pi.exemplar representative raw data point for this meta-point
Pi.last-update time the meta-point has been updated last

Besides the immediate effect of reducing the computational burden, the concept of
meta-points has two additional benefits:

• the number of meta-points is dependant on the size of the feature space;
• random observations can be dealt with in a straight forward way.

The first point is a direct consequence of the usage of meta-points instead of raw
data points. If a robot moves in a static environment all observations will be mapped
to one of the meta-points after a while and thus no new meta-points will be cre-
ated. The second point requires us to distinguish between two types of meta-points:
Cluster-points that represent the points used for clustering, and noise-points which
are ignored during the clustering. A meta-point is considered a cluster-point once
it represents enough raw data points, otherwise it is considered a noise-point. This
allows us to discard points generated from random observations such as spurious
readings from a laser scanner. Put differently we can detect and ignore outliers in
our observations.

The most important part of meta-point affinity propagation is the handling of new
observations. The pseudo code in Algorithm 1 shows the steps performed in order
to add a point p into either the set of cluster-points P or the set of noise-points N.
Figure 2 shows the possible cases described above and in Algorithm 1. We keep
these two sets separate for performance reasons. A new data point is added to an
existing data point, either cluster-point or noise-point, if the meta-point is similar
enough to the data point. Otherwise a new meta-point is created from the new raw
data point. In case that the data point was added to a noise-point and this one now
represents enough points to be considered a cluster-point is moved to the set of
cluster points P.
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Cluster Point

Noise Point

A

B

C

Fig. 2 Visualisation of meta-points and the different cases that can occur when adding a new
data point. A is merged into the cluster-point while B is merged into the noise-point. Finally,
C is used to create an entirely new meta-point.

Computing the actual clustering result is then performed using standard affinity
propagation using the cluster-point data. The two parameters required by meta-point
affinity propagation are, {θmin-points,θsimilarity}. They define the minimal number of
points required for a meta-point to be considered during the clustering and the max-
imal difference in similarity between a meta-point and a new point for it to be con-
sidered part of that meta-point respectively. The similarity threshold is tied to the
range of values the chosen similarity measure can take on. The minimum number of
points is related to the rate at which observations are made. If the value is too low
many points that can be considered noise will be added and if it is too high actual
clusters that appear only rarely may not be added. In order to prevent noise-points to
turn into meta-points by accumulating over long periods of time one can also prune
noise-points that have not been observed for a set period of time. In the extreme case
where both parameters are set to zero we recover the original affinity propagation
algorithm.

This form of merging data points obviously assumes that small changes in the
feature space distance result in no noticeable change of the object class to be clus-
tered. Additionally the handling of noise only addresses noise which results from
random measurements or one off sensing failures. It does not detect or handle
complete failure of a sensor or systematic noise, as these produce consistent and
continuous observations.

2.2 Probabilistic Cluster Assignments

Affinity propagation performs hard cluster assignments, i.e. each data point is
assigned to exactly one cluster. Often times, however, assignments are not this clear-
cut. Furthermore, probabilistic methods are widely used in robotics since they en-
able us to deal with uncertainties of representations in a principled way. Thus a
probabilistic interpretation of the clustering would be highly beneficial. As it turns
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ADD-DATA-POINT(p)

1 nn = NEAREST-NEIGHBOUR(P, p)
2 if DIST(nn, p)< θsimilarity
3 UPDATE-META-POINT(nn, p)
4 else
5 nn = NEAREST-NEIGHBOUR(N, p)
6 if DIST(nn, p)< θsimilarity
7 UPDATE-METAPOINT(nn, p)
8 if nn .count ≥ θmin-points
9 P = P∪nn

10 N = N \nn
11 else
12 noise = CREATE-META-POINT(p)
13 N = N∪noise

Algorithm 1. Pseudo code detailing the steps performed by meta-point affinity propagation
when a new data point is added. P is the set of cluster-points, N the set of noise meta-points
and θ the parameters.

out we can derive such an interpretation by analysing the internal representation of
affinity propagation in the following way.

We start by finding the set of exemplars E in the typical way of affinity propaga-
tion, that is by selecting set of indices k for which:

ek ∈ E : a(k,k)+ r(k,k) > 0 , (6)

holds, i.e. all points for which the value of the self-availability and self-responsibility
is greater then zero. The probability of an observation i belonging to cluster k is then
defined as

p(i = k) =
1
Z

f (a(i,k)+ r(i,k)) , (7)

where
Z = ∑

e∈E
f (a(i,e)+ r(i,e)) (8)

is the normalization factor and f is a function that maps its inputs to the range [0,1].
In our case we use the logistic function:

f (x) =
1

1+ e−x , (9)

as it covers the values typically taken on by affinity propagation well. From this
probability distribution we can obviously recover the hard assignment affinity
propagation makes as:

argmax
k

p(i = k) (10)
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However, we also gain the ability to reason about an observation in terms of its fit
with respect to the current clustering. From the entropy of the assignment, obtained
as:

H(i) =−
n

∑
k=1

p(i = k) log p(i = k) , (11)

we can tell how well the clustering can explain the observation. A small entropy
value indicates a well explained data point, i.e. a peaked distribution, whereas a
large value indicates an observation that can be explained similarly well by multiple
clusters.

In addition to the evaluation of a single observation we can extend this to the en-
tire clustering solution in order to obtain an overall quality measurement. A measure
of the quality of the clustering solution is interesting as for humans it is easy to tell if
the result obtained by clustering is meaningful. However, a robot lacks this intuition
and thus a way to quantify the quality of clustering results is of great importance.
The evaluation of clustering results has been the focus of intense research and there
are different methods to obtain such a measure, see [1] for an overview. However,
most of the proposed methods are intended to assign a score to a clustering solu-
tion in order to compare different clustering methods against each other. As such
they require a reference clustering solution as ground-truth. In robotics, however,
obtaining ground-truth is often hard, if not impossible, and in our case no reference
clustering exists. For this reason methods that rely on a reference clustering are not
suitable for our application. A possible way to evaluate the clustering solution with
the information we have access to is to compute an average entropy. This indicates
how well all individual points clustered can be represented by the end result. Here
again a low value indicates a good solution.

3 Experiments

3.1 Clustering Results and Speed

In a first set of experiments we compare the clustering results obtained by affin-
ity propagation and meta-point affinity propagation on synthetic data, as shown in
Figure 3. We use this to easily show the differences between the two algorithms. In
the case without noise we can see that both methods find a good clustering solution,
as indicated by the coloured points. The difference between the two is that affinity
propagation has to cluster all the data points, whereas meta-point affinity propaga-
tion only has to cluster the meta-points, indicated by the bigger circles. This makes
a large difference in speed, which can be seen in Table 1.

As mentioned in Section 2.1, an additional advantage of meta-point affinity prop-
agation over affinity propagation is the ability to deal with random observations. For
the synthetic data we simulate such random observations by adding data points from
a uniform distribution. Figure 3c and Figure 3d show typical results for both meth-
ods under these conditions. One can see that affinity propagation creates a larger
number of clusters compared to the result obtained on the same data without noise.
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(a) AP no noise (b) MPAP no noise

(c) AP with noise (d) MPAP with noise

Fig. 3 (a), (b) Exemplary results of affinity propagation and meta point affinity propaga-
tion on data without noise. (c), (d) Exemplary results of affinity propagation and meta-point
affinity propagation with uniform noise. The small circles indicate the meta-points found by
meta-point affinity propagation. The colouring indicates points that have been assigned to the
same cluster.

This is due to the fact that affinity propagation has to assign each data point to a
cluster and cannot consider some observations as noise and ignore them. This may
in some cases, depending on the chosen parameters, result in clusters to be split as
can be seen in Figure 3c. Meta-point affinity propagation, on the other hand, first
builds meta-points which allows the method to reject points it considers to be noise
and then the clustering has only to compute the solution for data without or reduced
amount of noise. Comparing the meta-points for the data with and without noise
we can see that in both cases they cover the actual clusters. Consequently, as far
as meta-point affinity propagation is concerned, there is no noise in the data to be
clustered.

From the plots of the synthetic data it is easily visible how meta point affinity
propagation represents the original data with fewer data points. This allows meta
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AP

MPAP

Fig. 4 Exemplars found by both methods for a set of 1200 patches from an outdoor data set.
From left to right we can see: brick wall, asphalt, tree, grass, wood chips and red concrete.

Fig. 5 The exemplars obtained from batch-processing around 900 images collected in an
outdoor environment using meta-point affinity propagation. The exemplars are not as unique
as in Figure 4, however, the data was not pre-processed either.

point affinity propagation to be significantly faster then affinity propagation, as the
numbers in Table 1 show. As affinity propagation has quadratic runtime the gaps
between the two methods will keep increasing if more points from the same un-
derlying model are added as meta-point affinity propagation will only update the
meta-point statistics while affinity propagation has to handle entirely new points.

Figure 4 shows the exemplars obtained when clustering 1200 image patches that
represent tree, grass, brick wall, asphalt, red concrete and wood chips. One can see
that both methods find the same types of clusters with the big difference being the
number of points involved in the clustering and the resulting speed which is shown
in Table 1. The timing values include the entire processing of the data, i.e. feature
extraction and management of meta-points. The reduction in data points by meta-
point affinity propagation is quite drastic as only around 10% of the original data is
retained while still producing the same clustering result.

Finally, we used meta-point affinity propagation to batch-process images cap-
tured while the robot was moving through the environment for 15 to 30 minutes.
The clustering of these images requires several thousands of data points to be han-
dled. The “Large-Scale Data” section in Table 1 shows the exact numbers. Standard
affinity propagation can’t handle this amount of data in a reasonable amount of time.
However, using meta-point affinity propagation we are able to reduce these numbers
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Table 1 Results for different clustering tasks. Synthetic data shows the results of the 2D
example, outdoor data shows the results for the 1200 outdoor image patches data set and
large-scale data shows results for entire sequences captured by a robot moving through the
environment. For each of the data sets we show the number of clusters obtained, the number
of actual data points clustered and the total run-time.

Synthetic Data
Method Clusters No. raw points No. clustered points Duration (s)

AP no noise 10 2000 2000 60.61
AP with noise 35 2500 2500 63.43
MPAP no noise 10 2000 121 0.08
MPAP with noise 10 2500 122 0.08

Outdoor Data
Method Clusters No. raw points No. clustered points Duration (s)

AP 6 1200 1200 8.79
MPAP 6 1200 79 1.84

Large-Scale Data – MPAP only
Dataset Clusters No. raw points No. clustered points Duration (s)

Outdoor 10 31464 594 185
Indoor 10 48600 626 307

to manageable sizes, requiring just over one percent of the original amount of data
to be retained. The durations shown are obtained by processing large batches of
images to meta-point affinity propagation at once and then running the clustering.
This is repeated until all images have been added. The final exemplars obtained in
this way for the outdoor dataset is shown in Figure 5.

The results shown here from both synthetic and real images shows that meta-
point affinity propagation obtains results that are comparable with affinity propaga-
tion but at a fraction of the computational cost. The added robustness of
meta-point affinity propagation to noise makes this new method very appealing for
use in robotics.

3.2 Probabilistic Cluster Assignments

To show the performance of our probabilistic cluster assignment we build a model
out of the previously used 1200 image patches representing grass, trees, wood chips,
asphalt, brick wall and red concrete. The exemplars obtained from the clustering are
shown in Figure 4. We can see that for images containing the appearance of only a
single cluster, as shown in Figure 6 the probability distribution is peaked around the
corresponding cluster. When we look at the more interesting cases in Figure 7 where
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Fig. 6 Examples of probability distributions for single observations of uniform appearance.
From top to bottom we have grass, asphalt and brick wall.

there is more then one cluster represented, as is the case in the top two images, we
can see that they contribute the two largest peaks in the distribution. Finally, if we
look at the last image in Figure 7 which obviously does not belong to any of the
clusters we can see that the overall distribution is rather flat compared to the other
cases. Compared to the hard assignment of affinity propagation which would have
assigned this image to the “red concrete” class the probability distribution informs
us that we can not trust the cluster assignment much.
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Fig. 7 Examples of probability distributions of single observations with mixed or unknown
appearance. From top to bottom we have a scene with grass and wood chips, grass and red
concrete and finally an indoor seating area which is not covered by the clustering.

4 Conclusion

In this paper we presented an extension to affinity propagation called meta-point
affinity propagation, which allows us to cluster data in real-time and incrementally.
Furthermore, we proposed a generic way to extract probabilistic cluster assignments
for affinity propagation based methods. In experiments we show how meta-point
affinity propagation obtains results similar to affinity propagation, however, at a
much lower computational cost. We also show how the probabilistic cluster assign-
ments can help to evaluate the clustering of a single observation or the entire clus-
tering result. This combination of incremental real-time clustering with probabilistic
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assignments will allow us to build meaningful models of the environment a robot
operates in. Such models will adapt to changes in the environment and can also be
used for example to guide the robot in the exploration of its surroundings.
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3-Dimensional Tiling for Distributed Assembly
by Robot Teams

James Worcester, Rolf Lakaemper, and Mong-ying Ani Hsieh

Abstract. We consider the assembly of a three dimensional (3D) structure by a team
of heterogeneous robots capable of online sensing and error correction during the
assembly process. The automated assembly problem is posed as a general 3D tiling
problem where the assembly components/tiles consist of various shapes and sizes.
For a desired 3D structure, we first compute the partition of the assembly strategy
into Nc sub-components that can be executed in parallel by a team of Nc assembly
robots. To enable online error detection and correction during the assembly pro-
cess, mobile robots equipped with visual depth sensors are tasked to scan, identify,
and track the state of the structure. The objective is to enable online detection of
missing assembly components and reassignment of these components to the team
of assembly robots. We present the development of the planning, sensing, and con-
trol strategies employed and report on the experimental validation of these strategies
using our multi-robot testbed.

1 Introduction

Distributed autonomous assembly of general two (2D) and three dimensional (3D)
structures is a complex task requiring robots to have the ability to: 1) sense and
manipulate assembly components; 2) interact with the desired structure at all stages
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of the assembly process; 3) satisfy a variety of precedence constraints to ensure as-
sembly correctness; and 4) ensure the stability and structural integrity of the desired
structure throughout the assembly process. While the distributed assembly problem
represents a class of tightly-coupled tasks that is of much interest in multi-robot sys-
tems [1], it is also highly relevant to the development of next generation intelligent,
flexible, and adaptive manufacturing and automation.

The execution of tightly-coupled tasks by multi-robot teams has mostly focused
on cooperative grasping and manipulation [2, 3]. These works, however, do not ad-
dress the challenges imposed by the need to satisfy specific precedence constraints
during assembly to ensure correctness and stability of the desired structure. Existing
approaches to distributed assembly can be broadly classified as micro/nano-scale or
self-assembly and macro-scale assembly. In self-assembly, the objective is to devise
local rules with global guarantees on assembly of stochastically interacting compo-
nents [4, 5, 6]. Macro-scale assembly approaches include [7, 8]. In [7], assembly is
achieved through a combination of robots with limited sensing and actuation capa-
bilities and assembly components capable of storing and communicating location
information with the robots. The focus of this work is on designing a set of con-
sistent local attachment rules that ensure completeness and correctness of the as-
sembly. In [9, 10], a workload partitioning strategy is presented to enable a team of
robots to achieve parallel construction at the macro scale. The approach maintains
a Voronoi decomposition of the structure based on the assembly robots’ locations
by minimizing the total difference in the masses of the assembly components in
each cell.

In this work, we pose the 3D assembly problem as a three dimensional tiling
problem where the team of robots is given a description of the desired structure.
The structure is obtained by tiling, or connecting, a collection of assembly com-
ponents of varying shapes and sizes. The assembly components attached to each
based on predefined attachment sites and may differ depending on the geometry
and size of the components. Given a desired 3D structure, we build on our previ-
ous work [11] to determine an allocation of the assembly task into subcomponents
to enable parallel assembly by a team of autonomous robots. The objective is to
determine the appropriate partition of the assembly task such that local attachment
constraints, specified by the geometry of adjacent assembly tiles/components, and
global precedence constraints, specified by structural stability requirements can be
satisfied while minimizing workload imbalance among the team. While we have
shown that the proposed partitioning strategy ensures the correctness of the dis-
tributed assembly strategy, the allocation is performed a priori and thus is unable to
cope with execution time assembly errors, e.g., incorrect and/or missed placements.
To enable online error detection and correction of the assembly process, we consider
the addition of a small number of mobile scanning robots capable of providing real-
time visual feedback of the state of the structure during the assembly process. The
objective is to enable the mobile scanning robots the ability to inform the assembly
robots, in real-time, when an assembly tile/component has been incorrectly or not
placed. Our main contribution is to experimentally show that a heterogeneous team
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of assembly and scanning robots can improve the robustness and enable the online
adaptation of any given assembly strategy.

The paper is organized as follows: We describe our methodology in Section 2.
The experimental setup and results are presented in Section 3. The experimental
insights and lessons learned are reported in Section 4. We conclude with directions
for future work in Section 5.

2 Methodology

Let Sd denote the desired 3-D structure and M denote the number of distinct as-
sembly components/tiles/blocks where ti denote a component/tile/block of type i.
We will assume that each tile of type i can be described as a general polytope and
that the robots know the geometries of the different tile types a priori. Furthermore,
every tile of type i will have a fixed number of attachment sites. These attachment
sites are locations where tiles can mate and lock onto other tiles.

To assemble the structure Sd , we assume a team consisting of Na assembly robots,
and Ns scanning robots, equipped with visual depth sensors. The scanning robots
will be tasked to sense the state of structure during the assembly process. The as-
sembly robots will use the information provided by the scanning robots to ensure
correct placement of their respective tiles ti.

2.1 Task Partitioning

Given Sd and Na assembly robots, we employ the approach described in [11] to de-
termine an appropriate partitioning of the assembly of Sd into Na tasks that can be
executed in parallel. The objective is to arrive at a partition that maximizes paral-
lel execution of the assembly while minimizing workload imbalance between the
robots without violating any of the placement precedence constraints between the
assembly components. The approach uses Dijkstra’s algorithm with multiple start-
ing nodes to generate a set of assembly tasks for each robot. This results in a par-
titioning of components of Sd such that each robot’s task is composed of tiles that
are closest to the starting node. The starting nodes are chosen to be equally spaced
along the exterior. This initial allocation strategies is then improved with a second
phase of node trading to yield a more balanced workload among the robots. The
last step of this approach is the generation of an assembly sequence for each robot
that minimizes the time a robot must wait for the placement of supporting tile by
another robot. This is achieved by maximizing the time between a placement and
the placements of any supporting tiles.

It is important to note that the approach described in [11] is a partitioning strategy
that is executed a priori and generates a distributed assembly strategy for a team Nc

robots given Sd , and {t1, . . . , tM}.
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2.2 Visual Feedback

To provide information to the robots about the current state of the physical structure
Sp as it is being assembled, we implement a feedback system using visual depth
sensors. The objective is to use online sensing to compare Sp with the robot’s in-
ternal model of the currently assembled structure Sa, and to provide control data to
the building process, based on differences between Sp and Sa. To keep an updated
representation of the state of Sp, we add a sensing robot to the system, which is
equipped with a depth sensor Kp, in our case the Microsoft Kinect sensor. The robot
constitutes the system for visual inspection (VI). The VI-robot is independent of
construction robots. It runs a prioritized exploration algorithm, which aims to map
and update the dynamically changing physical structure with priority on currently
targeted building regions. The input to this system is the internal structure Sa (Figure
1(b)), which models what the system is expected to see from the physical structure
Sp (Figure 1(a)), and the raw visual sensor data (3D point cloud, Figure 1(c)), the
output is a state for every block ti of the internal structure Sa, denoting if the tile
is present, missing, or occluded (currently no visual information about the tile is
available).

Before an assembly robot adds a part ti to the physical structure Sp, it queries the
VI-system, if the targeted region data is updated and Sp matches the expected state
of Sa. For this comparison, we simulate a robot internal system containing Sa and
a virtual Kinect sensor Kv. Using ray-tracing, we simulate a Kinect scan of Sa. The
outcome of the simulated ray tracing is compared with the real scan of the physical
Kinect Kp to compute the state for each tile ti ∈ Sa. The following sections will
explain the VI system in more detail.

2.2.1 Coordinate System Matching

To compare the outcome of the physical scan and the virtual scan, we must find
Pv, the pose of Kv in the virtual system. If we let Pp denote the pose of Kp in the
physical system, then Pv has to equal Pp. The positioning is performed in multiple
steps consisting of an overhead localization system, a floor based correction, and
an Iterative Closest Point (ICP) alignment. In the following we use a right handed
coordinate system. The horizontal plane is described by (x,z), height is described
by the y-axis.

First, an overhead localization system gives an estimate of the horizontal (x,z)
position of Kp. This includes the (x,z) coordinates as well as the yaw α , i.e. the
rotation angle around the y-axis. The overhead localization system is provided by a
network of cameras with errors in (x,y) below 5 cm and angular errors in α of ¡10
degrees.

To complete Pp, the missing pose-parameters y (the Kinect’s height) and β ,γ
(pitch and roll, i.e. rotation around x and z axis respectively) are determined by a
floor-based correction. We perform floor detection in the point cloud Cp resulting
from the physical scan. Since the floor in the physical system defines the x−z plane,
a transformation Tf , which aligns the floor’s normal with the y axis of the virtual
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system completes the estimate of Pp. We compute Tf by regression of the floor
points to their projections in the x− z plane (point to plane correspondence). As
such, we note that Tf has no y-rotation component, i.e. the Kinect’s yaw, as previ-
ously determined by the overhead system, is not altered by an otherwise ambiguous
rotation. In addition, we re-compute the translational part of Tf in the x− z plane,
such that only the vertical position of Kv is affected.

While there are errors in the localization and ground plan position estimates and
noise in Cp, they provide a sufficiently good starting point for an Iterative Closest
Point (ICP) alignment [12]. We use Pp as a starting estimate for Pv, therewith we
also transform Cp: we set Cp ← Tf Cp. We perform a 6D (3 location parameters, 3
directional parameters) point to plane ICP, with the goal to align Cp to Sa. ICP is
a well known technique in robotics and computer vision, successfully applied to
align (3D) point clouds, especially for robot mapping [13]. Given two point clouds
C1 and C2, it finds, in an iterative way, a (locally) optimal transformation Tc that
minimizes the squared sum of distances between points in C1 and their iteratively
re-determined closest neighbors in TcC2. ICP is known robust and fast as long as
a good starting estimate of the point-poses is provided. In practice, the previously
described steps to compute Pp proved to be sufficient as a starting point.

We perform a fast point-to-plane ICP version: C1 ⊂Cp originates from the phys-
ical scan Cp, and consists of a subset of points, being candidates for points belong-
ing to Sp. C2 is iteratively generated as the projection points of C1 onto the virtual
structure Sa. Internally, Sa is represented as a set of planar patches, describing the
geometry of the tiles ti. Storing the tiles of Sa together with a hierarchy of axis
aligned bounding boxes (AABB) allows for fast computation of the projections of
C1 onto Sa. The hierarchy is given naturally: we store an AABB for the structure Sa,
for each tile ti ∈ Sa and each planar patch p ∈ ti. Using this hierarchy of bounding
boxes, C1 results in a relatively small subset of Cp. In addition, we omit points that
belong to the floor, as determined by the floor detection step. A single Kinect scan
in hi-res (640 x 480) contains about 300000 points, the typical point cloud of can-
didates describing reflections from the structure Sp, after filtering, typically reduces
the number of points to less than 10000. We limit our ICP to a maximum of 10 iter-
ations. ICP results in TICP, an accumulated rotation and translation to align C1 to Sa.
When we apply TICP to Pp, this reduces pose errors from the former computation.
We set Pv = TICPPp. See Figure 1(d) for the result of this step.

ICP not only provides the pose Pv of Kv in the virtual system, but also the pro-
jection points C̄1 of C1 onto the structure Sa. We therefore compute a connection
between the physical point cloud and the virtual structure. In fact, for each tile ti
in Sa, we can determine how many projected points, called physical support points
si ⊂ C̄1 of ti are projected on ti. The set of support points tells us, if a tile ti of the
virtual structure Sa is seen in the physical world. A tile ti with a sufficient number
of support points is present. However, the converse argument is not valid, since a
tile without support could be physically present, but occluded. The next step, ray
tracing, solves this problem.
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2.2.2 Ray Tracing

This step determines the set of reflection points of a scan of the virtual Kinect Kv

with pose Pv of the virtual building Sa. We position the virtual Kinect at pose Pv

and simulate a ray-tracing using the Kinect’s optical properties (resolution, view
angles). Again, since the virtual building Sa is stored using planar polygons and
a hierarchy of axis aligned bounding boxes, the ray intersection can be performed
very efficiently. For each ray, we compute the closest intersection with a tile ti from
the Kinect, resulting in a virtual point cloud Cv. For each point in Cv, we know
the supported tile ti (i.e. the tile the generating ray intersected with). Ray tracing
determines the support sets in the virtual system, that is, the support that we should
see under the condition Sa = Sp. In contrast, C̄1 determines the real support, i.e. the
support we do see. See Figure 1(e) for the result of the ray tracing step.

2.2.3 Tile Classification

Differences in support from Cv and C̄1 respectively determine if a tile is classified
as present, missing, or occluded.

For every tile ti, denote the number of physical and virtual support points by pi

and vi respectively. Define r as the minimum ratio between pi and vi, r =min( vi
pi
, pi

vi
),

tr is a threshold value for this ratio, set to 0.7. For our purpose, it proved to be
sufficient to only compare the number of support points of each tile, i.e., we are not
explicitly using any geometric differences. Support below a threshold of 100 points
is set to 0.

The state of a tile ti of Sa reflects its presence in the physical structure Sp. We
determine this state as follows:

• vi = 0⇒ the tile is occluded.
• vi �= 0 and pi = 0⇒ the tile is missing.
• vi �= 0 and pi �= 0 and r ≤ tr ⇒ the tile is missing. This case implicitly tests

geometric differences.
• vi �= 0 and pi �= 0 and r > tr⇒ the tile is present.

If the state of a tile ti is “missing”, the building robots have to adjust. “Present”
signals, that ti ∈ Sa and ti ∈ Sp at the expected position, the building process can
continue. If a tile is in state “occluded’, the VI-robot has to re-scan the building
from a different position before the building process can proceed. See Figure 1(f)
for an example.

2.3 Online Error Correction

The VI-robot(s) is responsible for assigning the replacement of any missing tiles it
discovers. It does this by managing an auction for each block that should have been
placed but is absent. Each assembly robot sends a message to the VI-robot(s) after
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Vision Feedback System. (a) Physical structure Sp (b) Virtual structure Sa. Note that
Sp and Sa differ in this example: the long rectangle (front right) in the virtual structure is not
present in Sp, it is replaced by a small cube. In the building process, this is an example of
a missing/incorrect tile. (c) Green points show raw input data Cp from the physical Kinect
sensor Kp. The Kinect’s pose Pv in the virtual system was determined by the overhead po-
sitioning system. This figure shows the coordinate matching before floor based correction
and ICP (d) After floor-based correction, ICP and candidate filtering: the yellow dots show
the pose-corrected raw kinect data C1, aligned to the virtual building. Points of the original
raw data which were unlikely to support the structure were removed (floor- and bounding box
based filtering). (e) Ray tracing: the red lines show some rays of the simulated Kinect Kv scan
to determine the visibility of tiles ti ∈ Sa. Yellow dots show the aligned real data C1, green
dots the result of the virtual scan Cv. The difference in support for each tile from yellow and
green dots (real/virtual support points) is used to determine the state of each tile. (f) Result:
Green tiles: present in Sa and Sv. Yellow tile: occluded (please note that this tile is occluded
from view point Pv, as seen in (e). Here we rotated the view to make it visible). Red tile:
Missing in Sp. The vision system correctly identified the front right rectangle as missing.
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placing a tile. The VI-robot monitors these messages to maintain a state vector q,
where qi is 1 if the block has been placed and 0 otherwise. After each placement,
the VI-robot reports a sensing vector qs

j, where qs
j is 1 if the block is definitely

present, −1 if it is missing, and 0 if the presence or absence of the block cannot
be determined. Then, if qi ∗ qs

j = −1, a block that a robot claims to have placed
is determined to be missing. Once the error has been detected, the scanning robot
sends a message to inform the assembly robots that the block is missing and asks
for bids to determine which robot will replace the missing block. Each robot then
constructs a bid based on the following criteria:

bi = wi−A∗ ci+B∗ di j, (1)

where bi is the bid of the ith robot, wi is the remaining workload of the ith robot, ci

is the number of blocks still to be placed that are directly supported by the missing
block, and di j is the distance between the missing block and the ith robot’s cache.
The constants A and B are weights that can be optimized experimentally.

3 Experimental Validation

3.1 Setup

To evaluate the performance of the proposed online error detection and correction
strategy, we implemented the proposed distributed assembly strategy on our multi-
robot assembly testbed. The testbed consists of two mini-mobile manipulators (M3
robots), or Nc = 2, shown in Figure 2, each equipped with an iRobot Create base,
a Crustcrawler 5 DOF arm, 802.11b wireless communication, and a Hokuyo URG
laser range finder (LRF). The LRF was used by the assembly robots to detect, pick,
and place the tiles during the assembly process. In addition to the two M3 robots,
the testbed included one scanning robot equipped with a iRobot Create base and
a Microsoft Kinect visual depth sensor. Overhead localization for the robots was
provided using two visual cameras.

Fig. 2 Team of two assembly robots and one VI-robot with a partially completed structure
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Each robot was given the global position of the structure’s center and the posi-
tions of their respective parts cache. The assembly parts were plastic tiles of various
shapes and sizes (side lengths from 4−17 cm), each with a given set of magnetic at-
tachment sites (see Figure 3(a)). Each robot was assigned their respective assembly
plans determined by [11]. The assembly plans consisted of a list of tile identifiers in
the computed assembly order. Distributed implementation of the plan was achieved
by encoding the immediate supports for each component in the plan to ensure robots
wait for the placement of a missing support tile by another robot before placing their
parts.

The assembly tiles were grouped by type and placed in predefined locations in
the workspace. The idea is to have a separate parts cache for each tile type. In our
experiments, we considered the distributed assembly of 3D structures composed of
14 tiles with 5 distinct tile types. Figure 3(b) shows the desired structure for the
experiment. To simulate missed placements, random assembly tiles were removed
at various times during the assembly process.

(a) (b)

Fig. 3 (a) Sample assembly tiles. (b) Desired structure to be assembled.

3.2 Results

Fourteen experimental trials were run on the scanning robot for the desired structure
shown in Figure 3(b). During each trial, one or more random assembly tiles were
removed at different parts of the assembly process. Figure 4 shows the results of
one of the experimental trials where the missing tile was successfully detected by
the scanning robot. Out of twenty-two removed blocks, the scanning robot was able
to successfully detect twelve of the missing tiles and reported undetermined for
the other ten. There were no false positives during these trials, and only one false
negative where a tile was reported as missing when it was actually present. The
smaller tiles (square and triangle) were always reported as undetermined, while the
larger tiles were always detected as missing after they had been removed in these
trials.
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(a) (b)

Fig. 4 (a) Tile removed. (b) Missing tile reported by the scanning tile.

Table 1 summarizes the assembly partition obtained at the start of an experimen-
tal trial for each robot. The tiles allocated to each robot are shown in the order in
which they are supposed to be placed. Table 2 shows the updated assembly alloca-
tion as tiles are removed during the experiment, including the workload reallocation
after the detection of errors.

Table 1 Initial Allocation for the 3D Structure in Fig. 3(b)

Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Trapezoid 6 Octagon 5
Octagon 4 Square 8
Square 9 Square 10

Long Rectangle 11 Long Rectangle 12
Triangle 13 Triangle 14

4 Experimental Insights and Lessons Learned

The execution of complex tasks by a team of heterogeneous robots in a complex
and dynamic environment with limited resources poses significant challenges. Most
existing assembly strategies do not explicitly address the impact of sensing and ac-
tuation noise on the performance of a team of autonomous robots tasked to assemble
complex three dimensional structures in an actual physical space. In our work, we
consider the real-time on-board sensing requirements necessary for online adapta-
tion of any distributed assembly strategy.
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Table 2 Allocation After Detection of a Missing Tile

Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Removed tile 7
Trapezoid 6
Octagon 4 Trapezoid 7

Removed tile 4
Square 9 Octagon 5

Removed tile 5
Octagon 4 Square 8

Removed tile 8
Octagon 5

Long Rectangle 11 Square 10
Triangle 13 Long Rectangle 12

Removed tile 13
Square 8 Triangle 14

Triangle 13

In our experimental setup, we considered two types of real-time on-board sens-
ing: 1) the ability to localize the individual assembly tiles for pick-up and placement
by the assembly robots, and 2) the ability to determine the state of the assembly
structure during the entire assembly process. In both cases, the relative small size of
the assembly tiles in relation to the sensing and actuation precision of the actuators
and sensors used in the system posed significant engineering challenges. However,
the ability to overcome these limitations at the small scale suggests that one can be
more confident in the performance of the algorithms when employed on larger full
scale systems.

5 Future Work

In this work, we presented a distributed 3D assembly strategy with online visual
feedback to enable realtime error detection and correction. Our approach enables the
online verification and adaptation of general 3D assembly strategies. An immediate
direction for future work is to improve the visual feedback system to provide more
detailed assessment of the state of the assembly structure. In particular, the reduction
of false negatives by visually inspecting the structure via different viewpoints. A
second direction for future work is to extend the visual feedback system to enable
identification of incorrect assembly placements as well as missing tiles. Finally, we
would like to enable online adaptation of the assembly strategy in the presence of
incorrect tile placements. This, in conjunction with the visual feedback system, can
significantly increase the robustness and adaptability of the system.
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JediBot – Experiments in Human-Robot
Sword-Fighting

Torsten Kröger, Ken Oslund, Tim Jenkins, Dan Torczynski,
Nicholas Hippenmeyer, Radu Bogdan Rusu, and Oussama Khatib

Abstract. Real-world sword-fighting between human opponents requires extreme
agility, fast reaction time, and dynamic perception capabilities. In this paper, we
present experimental results achieved with a 3D vision system and a highly reactive
control architecture which allows a robot to sword fight against human opponents.
An online trajectory generator is used as an intermediate layer between low-level
trajectory-following controllers and high-level visual perception. This architecture
allows robots to react nearly instantaneously to the unpredictable human motions
perceived by the vision system as well as to sudden sword contacts detected by
force and torque sensors. Results show how smooth and highly dynamic motions
are generated on-the-fly while using the vision and force/torque sensor signals in
the feedback loops of the robot motion controller.

1 Introduction

Born as a class project [1, 2], the idea of the “JediBot” is a robot that performs
sword fighting against a human opponent. The basic requirements for implementing
a sword-fighting robot are (i) a reliable visual perception system that detects mo-
tions of the opponent and its sword, (ii) a reactive motion generation and control
system for the robot to be able to immediately react to the opponent’s motion, and
(iii) compliant and reactive motion control capabilities for physical human-robot in-
teraction. Furthermore, appropriate attack and defense strategies are required that
make use of the three mentioned aspects.
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Fig. 1 Reactive motion generation and control during
physical human-robot interaction with “JediBot”

This paper describes (a)
the hardware and (b) soft-
ware system of “JediBot”, (c)
experimental results of human-
robot interaction during sword-
fighting, and (d) how readers
can replicate the system and
run experiments with their own
system set-up. Figure 1 illus-
trates the suggested setup: A
KUKA/DLR Lightweight Robot
[3] is equipped with a foamed
wooden sword, and a 3D cam-
era (MS Kinect, [4]) is used
to perceive the human opponent
and its sword. The two most
challenging parts that make use
of recent research outcomes are
3D Visual Perception and Online
Trajectory Generation.

3D Visual Perception. Based on underlying technology from PrimeSense [5], 3D
cameras such as Microsoft Kinect [4] have started to simplify 3D visual perception
procedures in robotics. Our approach to detect the opponents posture and sword in
unstructured environments operates on 3D data. One of the most popular descriptors
for 3D data is the Spin-image presented by Johnson et al. [6], which is a 2D rep-
resentation of the surface surrounding a 3D point and is computed for every point
in the scene. Two of the key technologies for online segmentation operations are
provided by FLANN (Fast Library for Approximate Nearest Neighbors, [7]) and
RANSAC (Random Sample Consensus, [8]). All required 3D perception methods
and algorithms for this task are provided by PCL (Point Cloud Library, [9,10]). How
these methods are applied is, for instance, shown in [11].

Online Trajectory Generation. Reactive online motion generation is required
to immediately react to motions of the human opponent and to contacts between
the robot’s and the opponent’s sword. Broquère et al. [12] published a method that
uses an online trajectory generator for an arbitrary number of independently acting
degrees of freedom. The approach is very similar to the one of Liu [13] and is
based on the classic seven-segment acceleration profile. The work of Haschke et
al. [14] presents an online trajectory planner in the very same sense as [15] does.
The proposed algorithms generate jerk-limited trajectories from arbitrary states of
motion. All required motion generation concepts for this task are provided by the
Reflexxes Motion Libraries [16, 17].
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Fig. 2 Overall control scheme of “JediBot”. It can be subdivided into three units: the visual
perception hardware and software (left), the real-time motion generation and control unit
(top), and the KUKA/DLR Lightweight Robot IV (bottom).

2 Technical Approach

Figure 2 gives an overview of the system’s hardware and software components,
which consist of three main blocks:

• hardware and software for visual detection of the human opponent its sword,
• a real-time motion generation and control unit, and
• the robot arm with a sword mounted to its hand (cf. Fig. 1).

The following three subsections describe these components, and Sec. 3 discusses
the interplay between them.

2.1 Human Opponent and Sword Detection

The hardware component of the JediBot vision system is a Microsoft Kinect sensor
which provides both a standard RGB color image and a stereo camera derived depth
image at up to 30 fps and 640× 480 pixels in resolution. The software component
is based on the Point Cloud Library (PCL) [9]. At startup the system goes through
an automatic calibration routine, in which the sword is placed in two perpendicular
positions which are known in the robot’s frame and then detected in the Kinect
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Fig. 3 Screen shots showing the precision and robustness of the RANSAC segmentation [8]
of the human’s sword (yellow) in different configurations

reference frame. This is done using the same algorithm that detects the opponent’s
sword (described bellow).

Multiple measurements are taken at each position and averaged to reduce noise.
Using this data, an affine transformation between the robot and Kinect reference
frames is calculated using functions built into PCL. Once the calibration routine is
complete, the entire point cloud is transformed into the robot frame as soon as it is
captured, so that the results of all further processing are automatically in the robot
reference frame.

To detect the sword, the point cloud is first filtered based on depth to eliminate
background points. Based on the calibration data, an HSV (hue, saturation, value)
color segmentation is performed to select points, which are approximately the same
color as the sword. Then a RANSAC algorithm is used to fit a line in three di-
mensional space to determine end points of the most stick-like object. Finally, the
length of the detected sword is compared to the expected length, and the detection
discarded if it is too long or too short to further reduce false positives. Figure 3 illus-
trates three sample results. The sword speed, calculated from its movement between
two or more successive frames, is also used because it proved to be the most reliable
method of detecting when an opponent begins their swing. This processing pipeline
is split across multiple threads to improve performance.

2.2 Online Trajectory Generation

The Online Trajectory Generation algorithms of [16] are contained in the Reflexxes
Motion Libraries [16,17]. They lets us compute synchronized motions for N degrees
of freedom from any state of motion Mi−1 at instant Ti−1 represented by position,
velocity, and acceleration vectors with N elements each,

Mi−1 = (�Pi−1, �Vi−1, �Ai−1) . (1)

The algorithm will transfer the system from this state of motion into the desired
target state
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Mtrgt
i = (�Ptrgt

i , �V trgt
i ,�0) (2)

under consideration of the current maximum values for velocity, acceleration, and
jerk,

Bi = (�V max
i , �Amax

i , �J max
i ) . (3)

The output values of the algorithm define the desired state of motion Mi at Ti =
Ti−1 + T cycle, where T cycle is the value of the control cycle time. After the transfor-
mation into actuator space, the values of joint position�qi and its derivatives are used
as command variables for the joint controller.

The values of �Amax
i are permanently updated using the forward dynamic model,

for which a constant maximum torque vector�τ max is assumed:

�Amax
i = �f

(
�qi, �̇qi, �τ

max) . (4)

As we will learn in Sec. 3, this will allow for the use of discontinuous input signals
Mtrgt

i of a switched system while permanently guaranteeing steady, jerk-limited,
synchronized robot motions for all N degrees of freedom:

∀ n ∈ {1, . . . , N} :

|nPi − nPi−1| ≤ nVi−1 T cycle + 1
2 nAi−1

(
T cycle

)2 ± 1
6 nJ max

i

(
T cycle

)3 ∧
|nVi − nVi−1| ≤ nAi−1 T cycle ± 1

2 nJ max
i

(
T cycle

)2 ∧
|nAi − nAi−1| ≤ nJ max

i T cycle ∧ |nVi| ≤ nV max
i ∧ |nAi| ≤ nAmax

i .
(5)

Because of this property, the trajectory generation can guarantee that it will send
control commands to the robot at perfectly regular intervals (a requirement for the
robot to opperate properly) even if it recieves target states of motion at highly irregu-
lar intervals. Thus, the image processing hardware and software does not necessarily
have to be real-time capable, and its interface with the real-time trajectory generator
can be very simple, consisting only of sending the desired states of motion whenever
they become available. (cf. Fig. 2). A sample trajectory for three degrees of freedom
is shown in Fig. 4.

2.3 Robot Hardware

A KUKA Light-Weight Robot IV [3, 18] was controlled through the Fast Research
Interface [19, 20] with a control cycle time of T cycle = 1ms. The simplicity of our
setup is based on the control scheme of Fig. 2. Its three components as well as their
interfaces were implemented with a focus on overall computational efficiency. The
robot end-effector only consists of a foamed wooden sword (cf. Fig. 1).
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Fig. 4 Position and velocity progressions of Mi and M trgt
i during a motion in defense mode.

While M trgt
i is only updated sporadically, the computed trajectory is provided at a rate of

1 KHz, such that the robot reacts instantaneously to sensor signals.

3 Sword Fighting Strategies

In order to implement appropriate sword fighting strategies using the three compo-
nents described in the previous section, four control modes have been implemented:
defense, attack, contact, and hover.
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Defense (def) The robot defends itself by attempting to block attack swings of
the human. The pose of the human’s sword, obtained by the vision
system, is used to determine the desired position and orientation of
the robot’s sword. When the human’s sword is within a specified
defense range and the velocity of that sword in the direction of
the robot exceeds a certain threshold value, the robot moves to the
blocking position.
In the blocking position, the midpoint of the robot’s sword is placed
on the defense line, which is a line between the midpoint of the hu-
man’s sword and a predefined defense point which represents the
center of the robot (cf. Fig. 5). The robot’s sword is oriented such
that it is orthogonal to both the defense line and the human’s sword.
Mathematically speaking, the robot’s sword is oriented parallel to
the direction of the cross product between the directions of the hu-
man’s sword and the defense line. As the human’s sword moves in
towards the robot’s sword, the robot will push its sword proportion-
ally outward along the defense line until they meet.

Attack (att) When the opponent’s sword is beyond the defense range, the robot
executes periodic attacking motions, swinging toward the opponent
from a randomly selected direction.

Contact (con) Detection of collisions between the human and robot swords is
done using the torque sensors in each of the robot’s joints. If the
human blocks an attack motion, the robot detects this though the
increased torque in its joints, and it immediately recoils, returning
to the defensive position. This mode is activated in the same control
cycle contact is detected.

Hover (hov) If no human sword is detected, the robot enters idle mode, where
the bot sword just hovers around a specified position and orienta-
tion until a human oponent’s sword is detected.

In the scheme of Fig. 2, the discrete value of

σi ∈ {de f , att, con, hov} (6)

selects the signal source of Mtrgt
i that is used to feed the online trajectory generator:

Mtrgt
i =

⎧⎪⎪⎨
⎪⎪⎩

Mde f
i if σi = de f

Matt
i if σi = att

Mcon
i if σi = con

Mhov
i if σi = hov

. (7)

σi can change spontaneously based on the fight strategy and on sensor signals. For
instance, if contact is detected, σi = con will be applied in the same control cycle.
How the value of σi is selected and how the components of Fig. 2 interact, will be
described in Sec. 4.
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Fig. 5 During defense mode, the midpoint of the robot’s sword (red) lies on the defense line,
which is a line between the midpoint of the human’s sword (green) and a predefined defense
point

In order to provide a compliant behavior of the end-effector while both swords
are in contact, the stiffness vector�ki is adjusted. Assuming a contact was detected at
a time instant Tc, the following function is used:

�ki =

⎧⎨
⎩
�kmin +

(
Ti − Tc
T recover

) (
�kmax − �kmin

)
if Ti ≤ Tc + T recover

�kmax if Ti > Tc + T recover
.

(8)
T recover is the time until the maximum stiffness�kmax is achieved again. As long as
the contact detection indicates contact, Tc is set to Ti. The damping vector �di remains
constant.

4 Robot Sword Fighting Experiments and Results

The key aspect for achieving a good human-robot interaction behavior during the ex-
periments is an appropriate motion strategy. The simplicity and very high reactivity
of the proposed control scheme allow the system to freely realize different strategies.
Based on the usage of multiple sources for desired states of motion Mtrgt

i , the sys-
tem switches between them depending on the current state, strategy, and situation.
This allows the robot make instantaneous use of sensor signals.

For example, if contact is detected at an instant Ti (σi = con), Mcon
i and an ad-

justed value of�ki will be applied in the same control cycle already. After the re-
coiling motion is completed, the robot can either attack again or switch to defend
mode.

The overall strategy defines when and how to set the selection variable σi. The
most appropriate behavior has been achieved with defense mode as default strategy.
If the human’s sword is beyond the defense radius, then the attack mode is initi-
ated. The contact mode is only active while the swords are in contact after an attack
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Fig. 6 Position progressions of Mi and M trgt
i while switching between different modes over a

period of 23 s. Although arbitrary switching procedures are triggered by σi (i.e., M trgt
i = Mσ

i
is not steady), a jerk-limited and executable motion Mi is generated online in each control
cycle (cf. Fig. 4). The switching sequence of σi is def–att–con–def–att–con–def.

motion (cf. eqn. 8). Figure 6 shows the desired and the achieved steady progres-
sions of the robot’s end-effector position that is achieved during arbitrary switchings
of σi.

The vision processing chain on the left of Fig. 2 typically runs at rates of 10 –
15 fps, but since some parts of the processing pipeline take place in parallel, the
latency is up to 300 ms. The need to calculate sword speed between two successive
frames and other delays in the sword command and control further increase the
latency. The total system latency between the opponent beginning a swing with their
sword and the beginning of robot motion in response is typically around 500 ms.
While it is possible for the opponent to move faster than this, it is commonly fast
enough for the robot to respond.

As indicated in Fig. 3, the quality of recognition is very high, with very few false
positives or dropped frames. If the sword was pointed straight at the Kinect, such
that only its tip is visible, it could not be detected, but it typically only needs to
be angled about 15 degrees away from the camera to allow detection. By properly
positioning the camera it is possible to ensure that the sword would rarely pass
through this narrow cone, and when it does, it would only be for a very brief amount
of time.

Based on the visual sword detection, the desired defense pose and velocity
(Mde f

i ) are continuously updated. As indicated in Fig. 4, the image processing loop
runs at a different rate than the robot motion controller (10 – 15 Hz and 1 KHz); as
soon as a new value of Mde f

i is provided, it will be immediately applied in the next
robot control cycle.
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5 Conclusions

Target State Switching

Real-world experimental results of a switched-system using a selection variable (σi)
to select between different desired target states of motion were shown (cf. Fig. 6).
Despite its simplicity, this approach promises to simplify and improve sensor-based
robot motion control, because robots can react instantaneously and in different ways
to unforeseen sensor signals and events.

Human-Robot Interaction

Using the approach of target state switching, jerk-limited executable motions are
generated online, such that robots can permanently respond to human motions de-
ploying sensor signals in the feedback loops.

Reliability and Robustness

The recognition of the opponent’s sword based on camera data of a MS Kinect 3D
camera using segmentation procedures of the Point Cloud Library (PCL) works very
reliably. If there is a significant translational and/or rotational error or if there is a
dropped frame, a jerk-limited and executable motion will always be generated by the
Reflexxes Motion Libraries, such that the system is stable despite erroneous sensor
signals. The overall control scheme reacts deterministically and runs very robustly
because only a joint position or impedance controller is required.

Replicable Implementations and Experiments

The two main software components, the Point Cloud Library (PCL), the Reflexxes
Motion Library, and the interface software for the KUKA/DLR Lightweight Robot
are freely available [10,17,20], such that the proposed control scheme can be easily
duplicated with very reasonable efforts. If other robots are used, only a trajectory
tracking controller is required. For visual perception, only a MS Kinect 3D camera
is required [4].

Implementation Time: Three Weeks

The original “JediBot” was entirely created by students of the class CS225A at Stan-
ford University [1] within only three weeks. Despite many iterations to improve the
system and to exhibit it at the 2011 IEEE International Conferences on Intelligent
Robots and Systems, the control scheme of Fig. 2 remained with relatively few mod-
ifications. Using [10, 17], the scheme is very simple and straight-forward to imple-
ment even for students with limited experience in robotics. The websites of [10,17]
provide tutorials and examples for the presented matter.
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Development of Aerobots for Satellite 
Emulation, Architecture and Art 

Inna Sharf, M.S. Persson, David St-Onge, and Nicolas Reeves* 

Abstract. In this paper, we present two unique aerobots: the spherical blimp used 
for satellite emulation and the cubic blimp developed for use in floating architec-
ture and visual art. The blimp designs bear a number of similarities, in particular, 
their construction with an exoskeleton, full actuation to enable six-dof motion and 
requirement for autonomous localization. Experimental results are presented to 
demonstrate the closed-loop control for station-keeping, as well as the selected 
performance statistics such as maximum speeds attained and time the aerobots can 
remain afloat. Additional qualitative results are presented from the experiments 
with satellite capture and artistic performances and common challenges with fur-
ther use in the intended and new applications will be outlined. 

1    Introduction 

The concept of aerobot, i.e., an autonomous flying robot, has been around for sev-
eral decades. The use of balloons or airships as aerobots has been explored in-
depth in the context of planetary exploration [1].  Indoor applications of such sys-
tems, beyond their use for educational purposes, are rare. In this paper, we would 
like to present two aerobots developed for two very different purposes, yet with 
the a ? design and features which have much in common. The first platform, de-
veloped in the Aerospace Mechatronics Laboratory at McGill (AML) is a spheri-
cal airship, the design of which was motivated by one of the authors’ research on 
the problem of robotic grasping of objects in space. In particular, the airship 
represents a novel concept for emulating gravity-free conditions in a laboratory 
setting and has been used to develop autonomous algorithms for satellite capture 
in the context of satellite rescue and on-orbit servicing operation. The second  
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platform was designed and constructed at the NXI Gestatio Design Laboratory of 
the University of Quebec in Montreal. It originates from an architectural myth 
studied by its creator, professor Reeves, architect and artist. Reeves envisioned 
more than 10 years ago the possibility of developing flying objects whose shape 
would be in strong contradiction with the idea of flying or hovering. Such hover-
ing structures as well as the paradox they represent (see Fig. 1) would constitute 
an architectural statement by themselves: they somewhat materialize the old and 
mythical dream of an architecture freed from the law of gravity –– an image that 
can be found along the whole history of architecture, in many civilizations [2]. 
The cubic shape, chosen for the [Voiles|SAILS] aerobot prototypes (see Fig. 1), 
makes them conceptually similar to bricks, the basic unit of construction, and 
gives them the potential to assemble into bigger structures. From that conceptual 
starting point, the first prototypes developed to date show a high potential for vis-
ual art installations, as well as for hybrid theatrical performances where aerobots 
interact with human actors. The cubic aerobot described in this paper, called Try-
phon, evolved into a research-creation platform bringing the disciplines of engi-
neering, performing art, architecture and visual art together. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 [Voiles|SAILS] Concept: a) Krutikov flying cities and b) Simulation of interactively 
assembled Tryphons 

1.1    Related Work 

The description of related work will be presented in relation to the two applica-
tions for which the aerobots were designed. Starting with the application of  
satellite emulation in the laboratory setting, previously developed experimental fa-
cilities for satellite emulation are usually built by using a spherical air bearing [3].  
Experimental test-beds for space robotics research typically use one of the follow-
ing concepts to emulate weightless environment of space on earth: (a) the robot 
moves on a flat horizontal surface; (b) a neutral buoyancy water tank; (c) compli-
cated gravity compensation systems and (d) a free-fall tower. 
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To the best of our knowledge, no other aerobot has been used to date for archi-
tectural research and exploration. The closest systems somewhat comparable to 
the concepts used in the [Voiles|SAILS] program for architectural research are the 
rapid prototyping printers. From a computer generated, or a computer assisted de-
sign, the architect can get a small scale version to better visualize the 3D presence 
of the building. In terms of robots and art, many examples may be found since the 
Norman White installation “Facing Out Laying Low” in 1977 [4]. Robotic art is a 
field of media art that is increasingly explored by contemporary artists; this helped 
by the development of easy to use systems such as the Arduino open-source com-
puting platform [5]. Hybrid performances are still very rare, but among the most 
known are the “Grace State Machines” of Bill Vorn (University of Concordia) or 
the “Hexapod” of Stelarc (University of Western Sydney) [6]. 

This manuscript describes the design, development and experiments conducted 
with the two aerobots. Where appropriate, similarities between the two aerobot 
platforms are highlighted and commonality of issues related to the development of 
autonomous capabilities and autonomous operations are discussed. Results are 
presented which demonstrate the performance of the two aerobots for each of their 
intended applications. In particular, for the spherical airship, we showcase its ca-
pability to produce general rotational motion and the free-floating nature of its  
response as a result of interaction with a robotic arm during capture. For the  
Tryphon robot, we focus on the high reliability and reproducibility of generated 
interactions with a human, as well as its long lasting autonomy for standalone in-
stallations. The geometry is also mandatory to describe as it is key to floating  
architecture explorations. 

2    Aerobots Design, Construction and Control 

2.1    Design 

The balloon employed for satellite emulation is a custom design spherical airship 
equipped with six propellers, accompanying control electronics, onboard power, 
and sensors for pose estimation. The design (see Fig. 2a) was motivated by three 
principal requirements: 1) the balloon must closely emulate a free-floating object 
which requires it to be neutrally buoyant and balanced; 2) it must carry a grapple 
fixture, initially, a simple design and ultimately more sophisticated designs; 3) it 
has to be capable of a range of motions including rotation about a fixed axis and 
tumbling to emulate, for example, a spin-stabilized satellite or a spacecraft out of 
control. Moreover, these motions need to be generated in a controlled manner to 
allow multiple experimental tests under the same conditions.  

After several design iterations over a period 2003-2007, the current design, 
shown in Figure 2 incorporates the following main components:  

 
1) A light 6-ft diameter spherical bladder bag, made of 2.5 mil thick polyure-

thane for a maximum net lift of 3.34 kg.  
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2) A rigid frame (Fig. 2), designed and manufactured in-house,  made up of  
three carbon-fiber hoops with light-weight honey-comb cores arranged nor-
mal to each other. Each ring in turn made up of quarter-length arcs intercon-
nected at small carbon-fibre extensions (see Figure 2b). The frame allows for 
easier and more reliable balloon assembly and to eliminate the inaccuracies 
introduced by the deformable blimp bag on the airship dynamics and control. 
The balloon bag is inflated inside this structure and supports it through a  
friction fit.   

3) Six identical propellers mounted in ducted fans, consisting of DC motors 
driving 48 mm diameter propellers within 35 mm long plastic cylinders (see 
Figure 3a). At a nominal voltage of 8.4 VDC, each thruster is capable of pro-
ducing up to 0.45 N thrust in its primary direction or up to 0.25 N in its re-
verse direction. The propellers are mounted in custom-made supports, in a 
symmetrical arrangement on the sphere. With the chosen arrangement of the 
propellers the balloon is fully actuated and in theory, is capable of producing 
decoupled motions in all three translations and rotations.   

4) Six speed controls for the propellers. The ducted fan speed control electronics 
perform two main functions: signal conditioning and amplification of the con-
trol signal.  The incoming standard PWM signal is converted to a bipolar 
PWM signal zeroed around 50% duty cycle, allowing for forward and reverse 
thrusting of the ducted fans. 

5) The sensor suite on the airship includes two types of sensors: an Inertial Mea-
surement Unit (IMU) Microstrain GX1 and a laser rangefinder (Hokuyo 
URG-04LX). The sensors communicate wirelessly with the ground station via 
two pairs of Bluetooth transceivers. 

6) The battery used on the balloon to power the propellers and the speed control 
electronics is an 8.4 VDC, 400 mAh lithium-polymer battery. A second bat-
tery powers the IMU, the laser rangefinder and the Bluetooth transceivers. 

7) A composite-material grapple fixture affixed to the structure for experiments 
in capture of the airship by the robotic arm. 
 

Fig. 2 Helium airship for satellite emulation: a) Current airship configuration; b) Joint of 
two hoops of the rigidizing structure 
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Fig. 3 Balloon propellers in the mount on the structure and Vicon marker cluster around 
one of the propellers              

 
In order for the airship to closely emulate a free-floating object in space it must be 
both neutrally buoyant and balanced, thereby eliminating the effects of gravity. 
With these conditions met, the unactuated airship freely floats in air and has no 
preferred orientation. An additional desirable property is for the airship to have a 
diagonal inertia matrix in the body-fixed frame, the axes of which are aligned with 
the three orthogonal propeller thrusts. To meet these requirements, the locations of 
components which can be placed freely on the ring structure were determined to 
achieve the center of mass close to the geometric center of the 6-ft sphere and a 
nearly diagonal inertia matrix. The airship is also equipped with 6 posts affixed to 
the propeller mounts on which balancing masses can be easily placed to aid with 
the balancing procedure. The final balancing is carried out manually by the opera-
tor, again with the aid of balancing masses.  

The Tryphon robot flies thanks to an inflatable cubic blimp, with the side of 
2.05 metres, and similarly to the spherical blimp, it is filled with helium. The ma-
terial used for the blimp is 3.5 mil thick polyurethane, which weighs 3.5 oz per 
square yard (0.12kg/m2). The blimp itself is made of six square faces welded to-
gether. As with any other balloon shape, the faces become convex when the bal-
loon is inflated and more pressure tends to make it more spherical. To maintain a 
cubic shape, the blimp has to be constrained by a rigid structure –– an exoskele-
ton. Therefore, unlike the case of the spherical blimp, where the exoskeleton is 
primarily used for mounting equipment on the blimp, the structure confining Try-
phon is there to maintain its cubic shape. The structure is made of carbon fiber 
tubes, strips and rods (see Fig. 4a). Each edge is a triangular truss of 2.25 metres 
length and the whole structure weighs approximately 1 kg. Assembly of the cube, 
including filling it with helium, can be completed in less than two hours by two 
people. 
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Similarly to the spherical airship, the structure of Tryphon also supports all the 
electronics as well as the propulsion system. The actuators consist of small ducted 
fans, with ducts and propellers made of carbon fiber. Four are located at the mid-
point of each bottom edge and oriented in the x and y positive directions. Another 
four motors are similarly placed along the vertical edges (see Fig.4b). Positioning 
the motors this way allows an independent control of the translations of the robot 
along the x, y and z axes. Since there is no motor on the top trusses, and since 
most of the batteries are fixed to the bottom trusses, the global centre of mass of 
the system lies about 20 cm below the centroid of the cube. As a consequence, the 
robot cannot turn upside down and its roll and pitch angles are thus stabilized in a 
passive way. 

To fix the body reference frame, for both the spherical airship and the cubic 
blimp, the origin of the frame is located at the blimp centroid. This choice is made 
to simplify the formulation of the dynamics equations since the centre of mass can 
easily change, depending on the equipment mounted on the robot. For example, 
the use of textiles to hide the edges of Tryphon, or a change in the sensors' confi-
guration, will modify the mass distribution. 

In the current prototype of the cubic blimps, the bladder used is made of thicker 
material, which allows the blimp to maintain nearly perfect equilibrium for several 
days: usually 3 to 6 days, depending on the room temperature variations. The 8 
batteries allow a soft control of the oscillation when stabilizing, installation known 
as the “Paradoxal Sleep”, for about 6 to 8 hours in optimal room conditions (no 
ventilation, and constant temperature). In harsh environment, like a building hall, 
or with heavy interaction, like in hybrid performances, the airship can operate for 
approximately 2 to 3 hours with its current set of batteries. Table 1 presents a 
comparison of the design of the two blimps. 

 

Fig. 4 Tryphon design: a) Structure of one carbon fiber truss and its polycarbonate ducts;  
b) Layout of actuators and sensors 

2.2    Control of Aerobots 

The spherical airship is controlled from a ground-station PC that transmits com-
mands to the airship wirelessly over a Futaba radio. The ground-station PC  



Development of Aerobots for Satellite Emulation, Architecture and Art 173
 

performs all computations for the controller.  The controller resides in the Simu-
link environment with the QuaRC toolbox and soft real-time target developed by 
Quanser. Initially [7], a PD controller was implemented on the airship with gains 
adjusted through simulation and by a trial and error process. The state feedback 
for the controller in [7] was obtained from the measurements  by the Vicon mo-
tion-capture system, which is a set of six infrared cameras mounted along the  
periphery of the lab. They track retro-reflective markers affixed to the spherical 
airship (see Figure 2b). The system therefore provides position and orientation da-
ta for the blimp; velocities were calculated by taking finite differences of the pre-
vious 10 samples. Recently [8], we have implemented optimal LQR and LQG 
controllers on the airship and improved the state estimation from Vicon measure-
ments  by using the Unscented Kalman filter with angular velocity measurements 
from the onboard IMU.  

 
Table 1 Design comparison of two blimps 

 Satellite emulator Tryphon 
Structure Molded carbon fiber 

rings 
Assembled carbon fiber 
rods, tubes and strips in 
12 triangular sections 
trusses 

Balloon Spherical white bladder, 
2.5mil polyurethane. 

Truncated white cube 
bladder, 3.5mil polyure-
thane. 

Motors 6 GWS fans 8 to 12 Alfa carbon fiber 
propellers and duct 
mount on Mega brushless 
motors 

Sensors IMU, Laser range finder, 
MoCap external system 

16 sonars, 8 light sensors, 
compass, accelerometer 

Batteries 8.4 VDC, 400 mAh LiPo 

(there sholud be two bat-
teries here ?) 

8 LiPo 2500mAh 

Brain Computer off board Gumstix onboard compu-
tation 

Other  20 hubs to allow different 
sensor configurations 

 
The control architecture of the [Voiles|SAILS] aerobots evolved over the 

course of many performances and installations created by actors, visual artists and 
other artists involved in the project [9]. In 2006, the first autonomous control was 
reactive to the physical attributes of the space. Compass and sonars were the only  
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sensor inputs used to stabilize the aerobots relatively to a fixed setup. A simple 
distributed PID controller (one by sensor, one by motor and one by robot state) 
was sufficient for these needs at that time. Since then, an accelerometer and a gy-
roscope were added to provide the aerobots with more information on its state. 
Light sensors and microphones were also implemented for human interactions. A 
study of different controller approaches led to the use of a fuzzy controller in 
completely autonomous and stand-alone installations (without human interaction) 
while the performances with actors or dancers rely on a PID controller onboard 
and a trajectory planning algorithm used in parallel with the fuzzy controller. 

The development focus was set on embedding the hardware and control in the 
robot, with only a laptop running a custom designed java interface to allow the 
technician operating the aerobots in their installations to monitor its battery and 
mechatronic states. For research and creation purposes, the team is currently ex-
ploring the potential of external motion capture systems, such as the Vicon system 
used for the AML spherical blimp. Such a system could be used to detect visitors, 
to enhance the interactions as well as to control the motion of the blimp and to bet-
ter understand the dynamics of its unique shape. 

3    Closed-Loop Control Experiments with Aerobots 

In this section, we present a sampling of experimental results obtained for the 
aerobots to demonstrate the hovering performance of the two blimps under the PD 
control. As mentioned earlier, the Tryphon usually relies on its onboard computer 
and sensors for control. For the experimental results presented here, however, ex-
periments were conducted in a large room equipped with a Vicon tracking system 
in order to understand the aerobot dynamics in flight and to evaluate the controller 
performance. Specifically, a PD controller combined with a Kalman filter of Vi-
con pose measurements was implemented in Matlab for off-board closed-loop 
control. 

The relevant experimental response statistics of the controllers are stated in Ta-
ble 2 in addition to “application” related statistics, such as the time that the aero-
bots can remain afloat and the maximum translational and rotational speeds 
achieved in our laboratory environments.  

Fig. 5 displays the hovering performance (position response) of the spherical 
and Tryphon blimps under PD control, with pose feedback provided by the Vicon 
motion capture system. The corresponding results for attitude response are shown 
in Fig. 6. Fig. 7 presents the response of the spherical blimp to light translational 
and rotational disturbances, demonstrating the rise times of approximately 5 
seconds, settling times of 15 seconds, and overshoot of approximately 10%, al-
though the latter partituclarly is difficult to define because of the poorly defined 
steady state. Analogously, in Fig. 8, we include the step position response of the 
Tryphon aerobot, showing the rise time of 15 seconds, settling time of approx-
imately 50 seconds and overshoot of around 25%.   
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From the results in Table 2, we observe that the station-keeping control of the 
spherical blimp is better than of Tryphon. In particular, the RMS errors for posi-
tion regulation of the two blimps are 0.028 m and 0.101 m respectively, while the 
corresponding errors for attitude regulation are 0.017 rad and 0.122 rad. On the 
other hand, Tryphon can maintain neutral buoyancy for a significantly longer time 
period, nearly one day. Tryphon is also able to reach a higher translational speed, 
although the results obtained for the AML spherical blimp were limited by the size 
of the laboratory at McGill. At the same time, the spherical blimp can reach a 
higher rotational speed, because of better aerodynamic characteristics.   

 
Table 2 Experimental performance comparison of two blimps 

 Satellite emulator Tryphon 
Regulation position er-
ror (RMS) 

0.028 m 0.101 m 

Regulation attitude error 
(RMS) 

0.017 rad 0.122 rad 

Neutral buoyancy time ~1 hour ~24 hours 
Max. translational speed  0.3 m/s 0.75 m/s (observed) 

1m/s (simulated) 
Max. rotational speed  2.3 rad/s 1.6 rad/s  

4    Applications of Aerobots 

4.1    Satellite Emulation Experiments 

A number of experiments have been carried out with the spherical airship em-
ployed as a free-floating target for capture by the seven-dof robotic arm housed in 
the laboratory. Snapshots of the satellite capture experiments are shown in Fig. 9 
for a successful capture of the slowly translating airship by its grapple fixture. The 
fidicial three-dot mark on the airship is employed for visual servoing of the robot 
when its end-effector is sufficiently close to the grapple fixture. The capture also 
involves the planning of the optimal interception trajectory, as per the algorithm 
described in [10]. 

The airship has been recently used as an aerial platform for testing and evalua-
tion of state estimation and localization algorithms that we have developed for an 
entirely different unmanned aerial vehicle: a quadrotor platform [11]. Indeed, be-
cause of its inherent safety and user-friendliness, the airship represents an ideal 
platform for testing and evaluation of many planning and control aspects of  
autonomous aerial vehicles. 
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Fig. 5 Position regulation of the AML spherical (left) and Tryphon (right) blimps  
 
 

 

 
Fig. 6 Attitude regulation of the AML spherical (left) and Tryphon (right) blimps  

 
 

 
Fig. 7 Recovery from position disturbance (left) and attitude disturbance (right) of the 
AML spherical blimp 
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Fig. 8 Step response in X-position of Tryphon 
 

Fig. 9 Snapshots of airship capture maneuver with 7 dof robotic arm 
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4.2    Tryphon Performance Experiments 

Since the development of the robotized version of the [Voiles|SAILS] prototypes, 
numerous performances and installations have been achieved. In Figs. 10 and 11, 
we include pictures of three performances conducted since 2006 in a variety of 
venues. The first picture on the left shows an event at the Montreal Science Center 
in 2008, based on the idea to introduce robots to children. Actress Veronique 
Daudelin is shown explaining the functionalities of Nestor, the smallest brother of 
Tryphon. During the performance, she triggered different scripted actions by using 
various stimuli: a quick movement in front of a sonar initiated a rotation of the 
aerobot, a powerful beam of light on a light sensor attracted the aerobot to the 
middle of the space. Children were also invited to start such interactions with  
Nestor. 

Fig. 11a shows a picture of the first performance of the [Voiles|SAILS] aero-
bots, in 2006 at the Museum of Civilization in Quebec city. Three early blimp ver-
sions with a linden structure, called Mascarillons, were hovering in a large room 
in the dark. When a visitor approached, a real-time projection of an actress’ eyes 
illuminated the closest aerobot’s sides and the visitor could start a discussion with 
a “peculiar intelligence,” simulated by an actress hidden behind the scene. 

Finally, over the period from 2009 to 2010, numerous workshops were con-
ducted with actors from a theater company, the “Théâtre des 4 coins”. During each 
workshop, lasting for two weeks, the actors visited a room with one or more Try-
phons to develop movements, choreography, scenarios and interactions with the 
blimps. The first public demonstration based on these workshops will be held in 
Sao Paulo FILE festival in July 2012. The show will be based on a partially im-
provised choreography and the aerobot will be controlled by the dancer’s  
movements and singing. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 10 Interactive Performance in Montreal Science Center. Actress: Véronique Daudelin. 
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Fig. 11 Left: discussion with an aerobot at the Quebec Museum of Civilization, 2006; right: 
art residency with the Theatre des Quatre Coins at Laval University, Quebec, 2010 

 
The above example events illustrate the specific constraints that determined the 

design of the Tryphons, which are quite different from those that defined the AML 
spherical aerobot’s. The Tryphons were planned from the very beginning with ar-
tistic/performance objectives in mind. Thus, their abilities and functionalities were 
to be used for the sake of conveying expressions and emotions through combina-
tions of translations, rotations, states and behaviours; they were seen as embed-
ding notions of personality and identity. While the first installations involved only 
reactions from visitors, the cubes were designed to interact with humans (audience 
or performers) though a variety of sensors. Scripted interactions with actors have 
been possible for the past three years, and many relevant observations were made 
prior to that from the visitors’ reactions to the cubes. These observations allowed 
us to refine the aerobot’s sensing abilities in order to create full interactive per-
formances, in which performers and aerobots interact through real hybrid choreo-
graphies. In particular, they influenced the number and positioning of sonar  
sensors on the cube’s periphery, and led us to use compared informations from 
different sensor sources, in order to compensate from the imprecisions inherent to 
any kind of sensing device. 

Interactions with humans can lead to applications in the fields of museology or 
event design. The cubes “have been invited” to fashion design shows; with a prop-
er sensor configuration, they could be used as individual or group guides for exhi-
bitions or historical places. In addition to the possibility for them to speak through 
sound transducers, they could display written information on their faces thanks to 
micro video projectors inserted in the helium bladder.  

Similarly to the AML spherical blimp, the cubes can also be used for engineer-
ing applications. Profiting from their cubic shape, which allows them to assemble 
into structures, several horizontal or vertically connected cubes can lift multi-
kilogram payloads, like flying cranes. In indoor large spaces, they could be used to 
carry objects or pieces with excellent degree of precision. The cubes can become 
test-beds for the development of control algorithms for 6 DoF objects in zero-
gravity environment. In this case though, their particular geometry imposes certain 
limits: because of the cubic shape, their moments of inertia depend on their  



180 I. Sharf et al. 
 

rotation axis. However, that very same shape allows for investigation and imple-
mentation of autonomous assembly algorithms for applications to space structure 
assembly and other missions. 

5    Conclusions and Future Work 

We have summarized the development and experiments conducted with two 
unique indoor aerobots: the spherical blimp developed at McGill and the square 
Tryphon blimp developed at UQAM. The aerobots represent a significant depar-
ture from conventional lighter-than-air vehicles, both in their design and intended 
applications. Future work holds many more challenges with respect to developing 
motion planning, state estimation and control strategies for fully autonomous op-
eration of the blimps for the intended applications: accurate trajectory tracking for 
satellite emulation and for indoor navigation, docking of airships for recharging, 
self-assembly of Tryphons into free-floating structures and autonomous beha-
viours in response to artists’ commands for hybrid performances. 
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Experimental Multi-Vehicle Path
Coordination under Communication
Connectivity Constraints

Pramod Abichandani, Kenneth Mallory, and Mong-ying Ani Hsieh

Abstract. The main contribution of this paper is the experimental valida-
tion of a decentralized Receding Horizon Mixed Integer Nonlinear Program-
ming (RH-MINLP) framework that can be used to solve the Multi-Vehicle
Path Coordination (MVPC) problem. The MVPC problem features path-
constrained vehicles that begin their transit from a fixed starting point and
move towards a goal point along fixed paths so as to avoid collisions with
other robots and static obstacles. This framework allows to solve for time
optimal velocity profiles for such robots in the presence of constraints on
kinematics, dynamics, collision avoidance, and inter-robot communication
connectivity. Experiments involving up to five (5) robots operating in a rea-
sonably complex workspace are reported. Results demonstrate the effect of
communication connectivity requirements on robot velocity profiles and the
effect of sensing and actuation noise on the path-following performance of the
robots. Typically, the optimization improved connectivity at no appreciable
cost in journey time, as measured by the time of arrival of the last-arriving
robot.

Keywords: Multi-Vehicle, Motion Planning, Communication connectivity
constraints, Mixed Integer Non-Linear Programming, Path Coordination,
Receding Horizon.

1 Introduction

The problem of Multi-Vehicle Path Coordination (MVPC) is formally de-
fined as follows: Given a group of vehicle robots that have fixed and known
paths connecting an initial and a goal location, generate time-optimal velocity
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profiles that satisfy kinematic, dynamic, collision avoidance, and communi-
cation connectivity constraints.

While a significant body of work has been devoted to path planning for
mobile robots (e.g., [1], [2]), we focus our work on the relatively untouched
area of communication-centric velocity planning along predetermined routes.
More often than not, one does not get the liberty of planning an arbitrary
path around sparse obstacles, and rather, must follow a prescribed route.
This is especially true in situations where multiple driverless car-like vehicles
operate in an urban environment. The formulations and results provided
in this paper address the communication-centric motion planning challenges
associated with such unmanned operations.

Several approaches have been used to address the problem of path co-
ordination of multiple robots [1], wherein multiple robots with fixed paths
coordinate with each other so as to avoid collisions and reach destination
points. These approaches include the use of coordination diagrams [3], con-
strained configuration space roadmaps [4], and grouping robots with shared
collision zones into subgroups [5]. In [6], mixed integer linear programming
(MILP) formulations were used to generate continuous velocity profiles for
a group of robots that satisfy kinodynamics constraints, avoid collisions and
minimize task completion time. This body of work was extended in [7], [8],
and [9], where the authors address the communication requirements of the
problem by incorporating physical layer communication connectivity models
and using state-of-the-art interior-point methods to solve the resulting non-
linear programming (NLP) and MINLP formulations. Readers are referred
to [10] and the exhaustive list of references therein for Mathematical Pro-
gramming (MILP, NLP, MINLP) based motion planning formulations and
solution techniques. One of the main advantages of Mathematical Program-
ming (MP) based frameworks is that they allow incorporation of a rich set of
constraints that represent the nuances of a typical motion planning problem.
For the work described in this paper, the MP-based RH-MINLP framework
facilitates a systematic study of the interplay between inter-robot wireless
communication and robot speed profiles.

Most closely related to the work presented in this paper is [11], where
the authors present a decentralized receding horizon formulation for multi-
ple aircraft path planning using MILP to generate provably safe trajectories.
Similar to [11], the solution algorithm presented here features a sequential de-
cision ordering mechanism. Numerical simulation results for the RH-MINLP
framework experimentally verified here were reported in previous work [9].

Only a handful of studies have documented practical implementations of
MP-based motion planning (e.g. [11], [12]) and to the best of our knowledge,
this paper presents the first experimental results for MVPC under commu-
nication connectivity constraints using RH-MINLP.
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2 Technical Approach and Problem Formulation

Figure 1 describes the technical approach adopted in this work. A group
of two-wheeled differential drive mobile robotic vehicles travel along fixed
and known piecewise cubic spline paths in their workspace while maintaining
communication connectivity with nconn neighboring vehicles. The feasibil-
ity criteria for trajectories require that the robots’ kinematic and dynamic
constraints be satisfied, along with the imperatives of avoiding collisions
and obeying the communication connectivity constraints. The distributed
decision-making and computations are simulated on a central computer us-
ing matlab, which interfaces with the MINLP solver milano [13]. This com-
puter communicates the optimal speed profile information to each robot via a
wireless communication link. The computer receives real-time robot location
and speed information. The three main elements of the problem - robot paths,
inter-robot communication - and receding horizon planning are discussed in
the following sections.

2.1 Robot Motion and Fixed Paths

Consider a group of N two wheeled differential drive mobile robots shown
in Figure 1. The robots move in a global (X, Y) Cartesian co-ordinate plane
and are represented by the following kinematic model with associated non-
holonomic constraints (that disallow the robot from sliding sideways).

ẋ = s cos(θ); ẏ = s sin(θ); θ̇ = ω (1)

ẋ sin(θ)− ẏ cos(θ) = 0. (2)

Here s and ω are the linear and angular speeds of the robot, respectively; x,
y and θ are the coordinates of the robot with respect to the global (X, Y)
coordinate system.

Each robot i = 1, . . . , N has a given start (origin) point oi and a given end
(goal) point ei. O is the set of all start (origin) points. oi ∈ O, ∀i = 1, . . . , N .
E is the set of all end points. ei ∈ E, ∀i = 1, . . . , N . The Euclidean distance
between two robots i and j is denoted by dij . The robots are required to
maintain a minimum safe distance dsafe from each other in order to avoid
collisions. At any given discrete time step, the distance between the current
location and the goal point for robot i is given by digoal. s

i and ωi denote the
speed and angular velocity, respectively, of robot i along its path at a given
time.

Each robot i follows a fixed path represented by a two dimensional piece-
wise cubic spline curve of length U i, which is obtained by combining two one
dimensional piecewise cubic splines x(u), and y(u), where the parameter u is
arc length along the curve. Let κ(u) be the curvature along the spline curve.

For each robot i,
ωi(u) = si(u)κi(u) (3)
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Fig. 1 Experimental approach for implementing the RH-MINLP algorithm for
MVPC under communication connectivity constraints

These piecewise cubic splines have continuous first derivatives (slope) and sec-
ond derivatives (curvature) along the curve. This property makes the path
kinematically feasible. Furthermore, upper and lower bounds on the speed,
acceleration and angular speed (turning rate) are enforced, thereby taking the
robot dynamics into account. The paths represented by the two dimensional
piecewise cubic splines along with the constraints on speed, accelerations and
turn rates result in a kinodynamically feasible trajectory. For a detailed dis-
cussion on spline curve design and analysis, see [14] and its references. Other
path primitives that result in twice continuously differentiable functions in
our constraints such as quintic curves, polar splines, and cubic spirals can
easily be accommodated using this framework.

2.2 Communication Model

Each robot is equipped with a wireless transceiver node. Consider two robots
that try to communicate with each other at a given point in time. The Eu-
clidean distance between them is denoted by d. The signal transmission power
of the wireless node placed on the transmitter robot is denoted by Ptr . The
received signal power of the wireless node placed on the receiver robot is de-
noted by Pr. The power experienced by the receiver robot node is calculated
using Friis’s equation [15]

Pr = PtrGtGr

(
λ

4πd

)α
(4)



Experimental MVPC under Communication Connectivity Constraints 187

where α is the path loss exponent. The noise σ is assumed to be thermal
(kTBF ). λ is the wavelength and is equal to c/f , where c = 3 x 108 m/s
and f = 2.4 x 109 Hz. The values of Gt and Gr (antenna gains) are assumed
here to be 1. The values of the path-loss exponent α range from 1.6 (indoor
with line of sight) to 6 (outdoor obstructed) depending on the environment.

The Signal to Noise Ratio (SNR) experienced by the receiver robot is
calculated using the relationship SNR = Pr/σ to determine whether the
robots are in communication range of each other. If the SNR experienced
by a receiver node placed on a robot is above a predefined threshold ηc, the
two robots are considered to be in communication range of each other. For a
known Ptr and α, the condition SNR ≥ ηc can be modified appropriately as
d ≤ ηd, where ηd defines the maximum communication range beyond which
path-loss results in loss of communication.

2.3 Receding Horizon

The parameter t represents steps in time. Thor is the receding horizon time.
At each time step t, each robot must calculate its plan for the next Thor time
steps, and communicate this plan with other robots in the network. While the
robots compute their trajectory points and corresponding input commands
for the next Thor time steps, only the first of these solutions is implemented,
and the process is repeated at each time step. Tmax is the time taken by
the last arriving robot to reach its end point. At t = Tmax the scenario is
completed. If a robot reaches the goal point before Tmax, it continues to stay
there untill the mission is over. However, if required, it can still communicate
with other robots.

Each robot plans its own trajectory by taking into account the plans of
all other robots at each discrete time step. For a given time step t, each
robot determines its speed for the next Thor time steps starting at time t
i.e. si(t), . . . , si(t+ Thor) and implements the first speed si(t+ 1) out of
all these speeds. In this way the plan starting at time step t + 1 must be
computed during time step t. Thus during each time step t, each robot com-
municates the following information about its plan P i(t) to other robots:
P i(t) = [pi(t) . . .pi(t + Thor)], where pi(t) = (xi(t), yi(t)) is the location of
the robot i on its path at time t calculated based on the optimal speed si(t).

2.4 Decision Ordering

The robots are assigned a pre-determined randomized decision order. The
decentralized algorithm presented here sequentially cycles through each robot
thereby allowing each robot to solve its planning problem in the order ord(i),
i ∈ {1, . . . , N}.
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3 Optimization Model Formulation

Each robot i solves the optimization problem Oi(t) indicated by (5)-(17) in
the order ord(i) that it has been assigned.

minimize

t+Thor∑
k=t

digoal(k) (5)

subject to ∀j ∈ {1, . . . , N}, j �= i

∀k ∈ {t, . . . , t+ Thor}
(xi(0), yi(0)) = oi (6)

ui(0) = 0 (7)

ui(k) ≤ U i (8)

ui(k) = ui(k − 1) + si(k)Δt (9)

(xi(k), yi(k)) = psi(ui(k)) (10)

smin ≤ si(k) ≤ smax (11)

amin ≤ ai(k) ≤ amax (12)

digoal(k) = U i − ui(k) (13)

dij(k) ≥ dsafe (14)

dij(k) ≤M(1− Cij(k)) + ηd (15)∑
j:j �=i

Cij(k) ≥ nconn (16)

Cij(k) ∈ {0, 1} (17)

3.1 Decision Variables

In (5)-(17), the main decision variables are the speeds, si(t), . . . , si(t+Thor),
for robot i at time t. The values of the remaining variables are dependent on
the speeds.

3.2 Objective Function

Equation (5) represents the objective function to be minimized. This formu-
lation forces the robots to minimize the total distance between their current
location and the goal position over the entire receding horizon. Constraint
(13) defines the distance to goal digoal(k) for each robot i = 1 . . .N at time-

step k, ∀k ∈ {t, . . . , t + Thor} as the difference between it’s path length U i
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and the total arc length travelled ui(k). The choice of this objective function
results in the robots not stalling and moving to their goal position as fast as
possible (minimum time solution).

3.3 Path (Kinematic) Constraints

Constraints (6)-(10) define the path of each robot. The constraints (6), (7),
and (8) form the boundary conditions. Constraint (6) indicates that each
robot i has to start at a designated start point oi. Constraint (7) initializes
the arc length travelled u to zero value. Constraint (8) provides the upper
bound on the arc length travelled. Constraint (9) increments the arc length
at each time step based on the speed of the robot (Δt = 1). Constraint (10)
ensures that the robots follow their respective paths as defined by the cubic
splines. The function psi(ui(k)) denotes the location of robot i at time step
k, ∀k ∈ {t, . . . , t + Thor} after travelling an arc length of ui(k) along the
piecewise cubic spline curves. It should be noted that the constraint (10) is
a non-convex nonlinear equality constraint.

3.4 Speed and Acceleration (Dynamic) Constraint

Constraints (11)-(12) are dynamic constraints and ensure that the speed si(k)
(and hence, angular velocity) and the acceleration ai(k) for each robot i =
1, . . . , N at each time-step k, ∀k ∈ {t, . . . , t+ Thor} are bounded from above
(by smax and amax respectively) and below (by smin and amin respectively).
These constraints are determined by the capabilities of the robot and the
curvature κ(u) of the paths represented by the spline curve. Here we assume
that the curvature of the paths is within the achievable bounds of the angular
speed and radial acceleration of the robots. Hence the angular speed required
by the robots corresponding to the optimal speed is always achievable, and
can be determined by (3).

3.5 Collision Avoidance Constraint

The non-convex constraint (14) ensures that there is a sufficiently large dis-
tance dsafe between each pair of robots to avoid a collision at all times.

3.6 Communication Connectivity Constraint

Constraints (16) and (17) state that vehicle i should be in communication
range of at least nconn vehicles. This means that, for at least nconn values of
j = 1, . . . , N , j �= i, the condition dij ≤ ηd should be satisfied. The remaining
vehicles may or may not be in communication range of i. In order to express
this requirement, we introduce a constant M and formulate constraint (15),
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which states that if Cij(k)= 1 then vehicles i and j are within communica-
tion range. If Cij(k) = 0, then the constraint will be trivially satisfied for a
sufficiently largeM . Constraint (15) is an example of a big-M constraint [16].

In the numerical implementation, an equivalent form of constraint (16) as
(dij(k))2

(M(1− Cij(k)) + ηd)
≤ (M(1 − Cij(k)) + ηd) is used, in order to avoid the

nondifferentiability of a Euclidean distance calculation within the nonlinear
solver. The nondifferentiability is not going to occur at the optimal solution
due to the collision avoidance constraint keeping dij sufficiently large, but
during the initial iterations of the milano solver, it may cause numerical
difficulties. The reformulation removes the potential of such an occurrence
and provides numerical stability.

3.7 RH-MINLP Algorithm

All robots are initially assumed to be in communication range of each other.
The general outline of the algorithm is as follows:

For any time step t, let each robot i implement the following algorithm:
Start: Start at time t

– Step 0 - An order is enforced in terms of which robot plans its trajectories
first. The ordering can be randomly assigned or can be assigned a priori.

– Step 1 - Based on its decision order ord(i), each robot i solves the problem
Oi(t+ 1) at time t by taking into account the following plans:

1.1 Plans Pj(t + 1) for robots j, ∀j ∈ {1, . . . , N}, j �= i whose ord(j) <
ord(i) - these robots have already calculated their new plans, and

1.2 Plans Pζ(t) for robots ζ, ∀ζ ∈ {1, . . . , N}, ζ �= i whose ord(i) < ord(ζ)
- these robots are yet to calculate their new plans.

– Step 2

2.1 If a feasible solution is found, the new plan is P i(t+ 1).
2.2 If Oi(t+1) is infeasible then use the previously available plan P i(t) for

the next Thor − 1 time steps i.e. the new plan

P i(t+ 1) = P i(t)\pi(t) (18)

where pi(t) = (xi(t), yi(t))

– Step 3 - Broadcast this plan to the other robots.

End: End by t+ 1, and repeat
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(a) 5 robots case 1 (b) 5 robots case 2

Fig. 2 Five mSRV-1 robots at their starting points in their workspace with static
obstacles. Two cases studied during the experimentation are shown above.

4 Experiments

Experimental validation of the proposed strategies was conducted using our
multi-robot testbed which consists of 5 modified SRV-1 robots (mSRV-1) in a
4.5x4.5 meter workspace shown in Figure 2. The mSRV-1 is a modified version
of the Surveyor, Inc. SRV-1 robot that is equipped with a 600 MHz Blackfin
embedded processor, 802.11b wireless communication, wheel encoders, and a
color camera. Localization for the individual robots was provided by a net-
work of overhead cameras. Optimal speeds for each robot, determined by
the proposed optimization framework, is achieved via a low-level trajectory-
following PID controller. Table 1 provides the parameters of the experimental
setup. The decentralized RH-MINLP algorithm is simulated on a computer
using the matlab-milano combination. milano is a matlab-based solver
for MILP and MINLP problems. It uses a branch-and-bound method for han-
dling integer variables, and an interior-point method for solving the nonlinear
relaxations. Source code for milano has been made available online [17].

Table 1 Parameter values for experiments

Thor 3 smin 0 amin -0.33 m/s2

M 10 smax 0.33 m/s amax 0.33 m/s2

4.1 Experimental Scenarios

To understand the practical effects of inter-robot communication on motion
planning, the following two sets of experiments were studied:
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1. Pre-planned speed profiles: In the first set of experiments, the MVPC
problem was pre-solved and the pre-planned optimal linear and angular
speeds were communicated to the robots, one step at a time.

2. Real-time speed profile generation: In the second set of experiments,
real-time location feedback provided by the motion-tracking system was
incorporated into the optimization problem. At each discrete time-step,
the real-time location feedback was utilized to calculate the speed profile
for the next Thor time steps. The linear and angular speeds for the next
time time step were communicated to the robots.

4.2 Experimental Results and Insights

Several aspects of the MVPC problem were analyzed during the experiments
documented in this section. Specifically, the focus was on studying

– The effect of communication constraints on the velocity profiles of the
robots and on the solution computation times, and

– The effects of sensing and actuation noise on the performance of the robots.

For an experiment where ηd = 2.9m, Figure 3 shows the trajectories for first
case of the 5 robot scenario shown in Figure 2(a) for nconn = 0 (no commu-
nication connectivity requirement) and nconn = 3. While the optimization
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Fig. 3 Effect of change in nconn on the trajectory of Robot 1 for the first case of
the 5 robot scenario shown in Figure 2(a)
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Fig. 4 Speed profiles of Robots 1 and 2 for the first case of the 5 robot scenario
shown in Figure 2(a)

allows for more stringent communication connectivity requirements without
significantly degrading the scenario completion time, the speed profiles of
the individual robots are affected. The most visible changes are observed in
Robot 1 trajectory as evidenced by the triangular markings that represent
the position of the robots along their paths while following their optimal
speed profiles.

Figure 4 shows the velocity profiles of both robots for these two scenarios.
Typically, the robots whose times of arrival at their respective destinations
are less than the scenario completion time change their speed profiles to
comply with the new communication constraint. For this experiment, Robot
2 happens to be the last arriving robot. As seen in Figure 4, the arrival to
destination time of Robot 2 does not change.
Tmax for this experiment increases from 61.6 seconds to 62.4 seconds as

nconn goes from 0 to 3. Table 2 enlists Tmax for a variety of experiments.
It is observed that even with more stringent communication connectivity
requirements, there is no appreciable increase in Tmax values. Again, this is
attributed to the fact that the faster robots slow down to accommodate the
more stringent communication connectivity requirements.

Table 2 Tmax in seconds for various pre-planned scenarios

nconn

N 0 1 2 3

2 (ηd = 1.65 m) 51.22 51.27 - -

3 (ηd = 1.65 m) 51.44 52.22 51.66 -

4 (ηd = 2 m) 52.56 52.83 52.39 52.42

5 (ηd = 2.9 m) 61.60 61.60 64 62.40
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Table 3 Average RMSE in meters for two 5-robot scenarios (3 trials per scenario)

Case Pre-planned Real-time feedback

Figure 2(a) 0.0612 0.0507

Figure 2(b) 0.0873 0.0836
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Fig. 5 Effect of sensor and actuation noise as demonstrated by the RMSE between
the desired and the actual paths. Paths whose curvature changes quickly result in
high RMSE values.

Post-processing the overhead localization data allows to quantify the ef-
fects of sensing and actuation noise on the performance of the robots by
calculating the RMSE between the desired robot paths and the actual paths
traversed by them. The actual paths traversed by the robots are ascertained
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by recreating cubic splines using position feedback provided by the overhead
cameras. For the 5-robot scenarios depicted in Figure 5, it was observed that
in general the real-time feedback reduced the RMSE as evidenced in the
Table. 3. The actual and desired robot paths for this case are shown in
Figure 5(a). The RMSE becomes particularly pronounced when the curva-
ture of the fixed paths changes rapidly between successive discrete time steps
as shown in 5-robot scenario of Figure 5(b).

During the experiments, it was found the decision order ord(i) of the robots
i = 1, . . . , n can qualitatively affect the solution of each robot depending on
the geometry of the paths. Due to the inherent decentralized decision making,
certain robots’ decisions may render the coordination problem difficult to
solve for other robots. In some cases, reassigning a different decision order
ord(i) of the robots i = 1, . . . , n helped improve overall solutions. Also in
some cases, certain robots’ decisions can render the coordination problem
infeasible for other robots regardless of the decision ordering used. In such
cases, the robots may use their plans from the previous time steps as indicated
by Step 2.2 of the RH-MINLP algorithm.

5 Conclusion and Lessons Learned

A decentralized RH-MINLP formulation for solving multi-vehicle path coor-
dination problems under communication constraints was presented and ex-
perimentally verified. The effect of communication connectivity constraints
on the robot velocity profiles and experimental runtimes were reported. The
effects of sensor and actuation noise were quantified in terms of the RMSE
between the desired path and actual path traversed by the robots.

Mathematical Programming (MP) provides a powerful framework for solv-
ing communication -centric multi-vehicle motion planning problems. The pro-
posed framework and associated experimental results facilitate the practical
study of the trade-offs between mobile robot trajectories and inter-vehicle
communication connectivity requirements. The results provide an insight into
the technical challenges associated with the implementation of MP, specifi-
cally MINLP, based motion planning. While these results are encouraging,
there are several challenges associated with the practical implementation of
an MP-based motion planning framework that still need to be addressed. In
addition to the kinodynamic, collision avoidance, and communication con-
nectivity constraints, it is important to account for the constraints imposed
from noise in the sensors and the errors of the actuators in implementing the
optimal commands perfectly. While the RMSE values reflect the performance
of lower-level robot controllers and allow for better gain selection, ultimately
the control issues need to be reflected in the MP formulations.

While MP-based frameworks prove to be effective for a small number of
robots, in order for them to be used with a large number of robots, the
computational bottlenecks resulting from non-convexities and/or the size of
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the problem should be handled effectively. In recent work [18], highly efficient
code has been written to implement convex optimization solution algorithms
in real time. The effectiveness of these algorithms in solving multi-vehicle
motion planning problems remains to be seen. Future work will focus on
developing formulations that can capture lower-level robot control issues and
that are amenable to fast solution times for a large number of robots.
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Proactively Approaching Pedestrians
with an Autonomous Mobile Robot
in Urban Environments

Daniel Carton, Annemarie Turnwald, Dirk Wollherr, and Martin Buss

Abstract. This paper presents a trajectory planning method enabling au-
tonomous robots to approach people in dynamic environments to initiate a
conversation proactively. It is shown how integrating human inspired param-
eters in optimal control based motion planning enables people to predict and
read the purpose of a motion more easily.

Experimental evaluations in literature propose to incorporate human-like
aspects since the intended action becomes more comprehensible for humans.
Therefore, factors like approach speed, distance to the person, positioning
near the person, trajectory shape, and the avoidance method are adopted
from human behavior to generate motions. The presented trajectory planner
is designed to improve the human-like appearance of an approach motion
implementing these aspects. Human-likeness is evaluated according to nat-
uralness and comfort of the approach behavior. By executing corresponding
trajectories, the approach movement appears more natural and the intended
action is easier to predict for humans.

This paper formulates the motion planning procedure as an optimal con-
trol problem. Human-like behavior is generated through specific constraints
and cost. In order to achieve correct timing, appropriate trajectory shape
and the desired behavior for collision avoidance in a dynamic environment,
the optimization is split into three consecutive steps. An implementation of
a planning algorithm for dynamic environments, capable of online replan-
ning, is proposed. Experiments conducted with this system showed the ap-
propriateness of speed and distance parameters. Further statistical results
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confirmed that the shape of a trajectory significantly affects the naturalness
of an approach motion.

1 Introduction

Latest developments in service robotics, increase the necessity for information
exchange between human collaborators and robot assistants due to the com-
plexity of collaborative tasks. There are two scenarios where an initiation of a
conversation is needed: to provide/to retrieve information to/from humans.
While issuing information would usually leave the initiative to humans, a
robot is required to approach humans proactively to gather information from
interaction. Thus, instead of exclusively reacting, a robot has to commence
an interaction in the latter case. This imposes a trajectory planning problem
which is tackled in this paper. A robot has to approach a person in order to
get close enough for an interaction while simultaneously drawing the person’s
attention.

It is shown in literature [4] that humans understand more reliably what
a robot intends when it executes human-like motions. It is inconvenient for
nearby humans if motions executed by a robot are not easily predictable and
interpretable. This gains special importance in crowded areas and is termed
readability in [30]. Accordingly, the goal is to improve the readability (pre-
dictability) of motions executed by a robot for humans in its vicinity. Follow-
ing this, aspects listed in literature for human navigation in a social context
are adopted: smooth trajectory shapes, specified approach speed, appropri-
ate human-robot distance, positioning in the field of view and the behavior
for human-like dynamic obstacle avoidance [18]. These social parameters help
drawing the person’s attention without creating an obtrusive or obliging situ-
ation. Thus, the approached person decides whether the interaction request is
accepted. In order to assess the readability of an approach motion, conditions
from social psychology like naturalness, comfort, or sensation are used.

In this paper we expand optimal control based motion planning by social
elements to model intuitively readable human-like movements. Resulting tra-
jectories let the approach movement look more natural thereby showing the
robot intention more apparently. Integrated on a robotic platform the system
facilitates the ability to approach walking persons applying spatio-temporal
planning with incorporation of motion prediction methods. Dynamic ob-
stacle avoidance is realized during the planning step by slowing down or
speeding up.

The remainder of this paper is organized as follows. The subsequent Sec.
2 describes the use case for the proposed approach. Sec. 3 discusses related
work by pointing out parallels and contributions. An optimal control based
problem formulation is given in Sec. 4. Details regarding our exemplary im-
plementation are presented in Sec. 5. Experimental results based on this
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realization are shown in Sec. 6. Conclusions are drawn in Sec. 7 where future
work is proposed as well.

2 Experimental Application Scenario: The IURO
Project

Outside of experiment-taylored laboratory settings the world is constantly
changing its appearance and requirements for robotic systems. Therein, an
autonomous robot is confronted with a large variety of situations that chal-
lenge it in performing its task. In order to interpret the environment and select
appropriate actions, robots require knowledge. Many approaches favor pre-
programmed or learned knowledge to cope with the vitality of dynamic envi-
ronments. However, as situations and objectives may change unpredictably
it is inevitable that an autonomous system is confronted with a situation
the robot designer has not foreseen. Learning technologies are often too time
consuming to resolve such situations. Yet, overcoming this problem requires
the robot to deal with this knowledge gap. One viable resource for acquiring
the missing information is asking human passers-by. Requesting help from a
person raises the question what abilities robots need to successfully retrieve
missing information from humans and how they are supposed to act. This
is the central question investigated in the Interactive Urban RObot (IURO)
project.

Within IURO the paradigm of missing prior information that has to be
gathered from human-robot interactions is the focal point. A robot without
map information, internet access, or GPS support is placed in an urban envi-
ronment with the task of reaching a designated place within the city. Human
passers-by are the only source of information available to establish a hypoth-
esis about the goal location. Generating this hypothesis from human-robot
interactions demands perception abilities, proactive behavior, modalities for
internal state representation to carry the intention, as well as communication
capabilities. More specifically the IURO robot is facing the following multi-
disciplinary challenges: Firstly a specialized mechatronic platform optimized
for outdoor performance is required. Environment perception algorithms al-
low for understanding scenes. Communication in natural dialogs is used to
query specific information. Aspects of nonverbal communication let the in-
teraction appear more natural and pleasant. Finally navigation in dynamic
environments is the key ability to reach another location.

This paper elaborates the specific navigation problem of approaching a
human in an urban environment. This ability is crucial for the IURO robot
as it is the entry point for every interaction which the system heavily relies on.
For this reason, the motion planning is construed for proactive and socially
acceptable approaching behavior as well as good readability of the intention
as these aspects are assumed to increase the number of successful interaction
initiations.
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3 Classification within the State of the Art

Approaching humans requires a fusion of multiple research areas to generate
well readable motions. Fundamentals in trajectory planning are applied to
reach a goal pose in front of the approached target. Motion prediction is
used to estimate the position of this goal pose. Dynamic obstacle avoidance
is necessary because in a dynamic environment the target person as well as
passers-by have an impact on the robot trajectory. Lastly, to achieve human-
like motions that increase the readability of an approach, user studies with a
focus on human approach are taken into account. Subsequently, similarities
and differences between the work at hand and publications in the mentioned
fields are presented.

Trajectory planning includes the generation of time profiles along with the
path which is required to navigate in dynamic environments. This field fea-
tures a wide range of publications, so that we only address the most related
ones. Latombe [19] and LaValle [20] are often referred to as groundwork for
motion planning. These standard algorithms are also applied in [35] which
focuses on shortest/fastest path search, neglecting the path shape and cur-
vature constraints. Indeed, [26] indicates that smooth and jerk limited paths
are considered as more convenient by humans. These trajectory properties
are satisfied by Bézier curves as Choi et al. show in [6] and [8]. The approach
of optimizing Bézier curve parameters is adopted in this work. Fraichard [13]
includes timing by means of a state-time space for planning optimal paths
in a dynamic environment with moving obstacles. In [11] a library of pre-
defined velocity profiles for different purposes is applied to an optimization
based trajectory planner. Similarly, our work uses suitable velocity profiles for
readability improvement but generates them during an optimization process.
This allows for adjusting velocities during path execution in order to react to
dynamic changes in the environment or to slow down when the target person
is close.

Many researchers employ the velocity obstacle space for path planning
and dynamic obstacle avoidance [34]. Fiorini [12] uses this space to optimize
conservative trajectories with respect to time. In [27] velocity obstacles are
utilized in an adaptive time horizon developing a representation for absolutely
safe velocities. Masehian et al. [21] intercept a target and avoid static and
moving obstacles by evaluating the set of all collision free directions. The
approach proposed in this paper resembles these methods but also considers
social acceptance parameters.

Reaching an appropriate final pose at about the same time as a mov-
ing target person requires movement prediction. Besides, the planned trajec-
tory needs to take crossing passers-by into account. In [3] Bennewitz et al.
realize motion prediction for humans using Gaussian-Mixture-Models. An-
other probabilistic approach is shown in [14] where Partially Observable
Markov Decision Processes (POMDPs) are employed. Statistical data asso-
ciation combined with a particle filter predict motions in [23]. A grid model
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containing motion probabilities is shown in [31]. Prediction of future poses
based on Kalman filtering is described in [9, 29]. In favor of its computa-
tional efficiency a Kalman filter is implemented in our approach that assumes
humans to be walking on a straight line and at constant velocity.

User studies yield insight into the effects of robot behavior on human at-
titude towards the machine. A variety of research groups run experiments
to reveal the underlying aspects. Edward Hall [15] introduces the proxemics
model which is considered a groundwork for many interaction scenarios. Wal-
ters et al. [32, 33] analyze the comfortable approach distance and estimate
it to be between 0.5m and 1.2m. This was reconfirmed in [5] which also
examined favorable approach poses, along with [16, 24, 32, 36], for static
and moving persons. Preferable approach directions are frontal left and right
with no significant difference for walking people. In [5] it is further shown
that appropriate approach speed and slowing down from 0.6m/s to 0.4m/s
nearby the approached person has a positive effect on the comfort level. Au-
tonomous approach behaviors implemented on a real robot are less common.
The human aware motion planner (HAMP) [25] incorporates social aspects
that consider a person’s position, posture and field of view. A planner based
on the Dynamic Window Approach is proposed in [17] which addresses so-
cial acceptance by considering proxemics. Yet, the implemented approach is
not capable of approaching moving persons. In [22, 28] a moving person is
approached in a shopping mall using path prediction. It is shown that proac-
tive behavior improves the success rate for interaction initiations but without
integrating further human-like aspects. The shopping mall setting, however,
is prepared to be fully observable in contrast to our setting where outdoor
navigation without map knowledge is considered.

4 Problem Statement

This section defines the robot trajectory planning problem for human ap-
proach in dynamic environments. From a given initial pose the robot has to
plan its trajectory to reach a goal pose (position and orientation). The goal
pose is estimated from the position and orientation of the target person or
from the path prediction step for moving persons. The path planner has to
find a valid path from the initial to the final pose while avoiding static ob-
jects. In order to keep the trajectory shape fixed and avoid dynamic obstacles
the velocity profile has to be adapted. Concurrently, the overall timing con-
straint of reaching the goal pose simultaneously with the person has to be
taken into account. If emerging objects lead to a blocked path or, for the dy-
namic situation, the robot can not reach the goal at approximately the same
time as the target, the path needs to be replanned to a reachable predicted
goal pose.

In order to meet the timing constraint, a superordinate optimization is de-
fined that is solved iteratively after every successful generation of a trajectory
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with the associated velocity profile. From these steps a minimum time tmin, re-
quired by the robot to reach the goal pose, is received if the actual goal pose is
not reachable within the maximum time horizon tE, where tE is defined as the
time available to the robot to reach the currently selected goal pose. The pos-
sible approach timings are discretized in absolute time. Then a minimization
of the needed time between the robot start position xR(λ(0)) = (x(0), y(0))T

and the goal position xG = xR(λ(tE)) = (x(tE), y(tE))
T is aimed for. Ba-

sically, a search for the fastest approach is performed taking into account
multiple solutions. This search is restarted if a new tmin is provided. For-
mulated as a nonlinear optimization problem with the objective to find a
minimum for tE minimizing Jtime while subject to the respective constraints:

find tE

min Jtime(tE) =

∫ tE

tmin

1 dt

s.t. tE = vHsH, tE > tmin, tmin,init = 0, λ(0) = 0, λ(tE) = 1,

xR(λ(t)) = B(λ(t),pn), xG(λ(tE)), O =
⋃
i

Oi

(1)

where vH ∈ IR is the estimated speed of the target person in the velocity
space V , sH is the distance the person has traversed during tE and λ(t)
is a monotonically increasing function that maps the time horizon [0, tE]
to the curve parameter 0 ≤ λ ≤ 1. The Bézier solution B(λ(t),pn) is a
special parametrized solution subspace to the path planning optimal control
problem. This subspace is utilized in reference to the attributes of Bézier
curves depicted later in Sec. 5. Bézier curves of degree n are defined by
their control points pn = (x, y)T . The workspace for the robot is denoted as
W and the occupied space corresponds to the trajectory B(λ(t),pn) ⊂ W .
Objects Oi and moving objects Oi(t) are summed up as a unified occupancy
O =

⋃
iOi. The starting point xR(λ(0)) ⊂ W and the human’s position

xH ⊂ W are known from robot localization and target tracking. The term tA
depicts The starting time, t the actual time and tE is the maximum time to
the currently selected goal pose xG ⊂ W in front of the person at xH.

As a basic concept in trajectory planning a non-holonomic robot is used
to let the movement appear natural as proposed in [1] and to avoid trajec-
tories where a turning on spot is part of the approach. Moreover we split
the optimization for motion planning into two consecutive steps. Firstly, a
path of minimum length in the static environment is generated using Bézier
curves avoiding objects by shaping the curve accordingly. Secondly, velocity
and parameters constituting social aspects are optimized and generate the
velocity profile on the trajectory.
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The trajectory generation is formulated as a minimization of the path
length:

Jpath(pn) =

∫ xR(λ(tE))=xG

xR(λ(0))

ds+ θ1

∫ λ(tE)

λ(0)

(
xR(λ(t)) −Oi
‖xR(λ(t)) −Oi‖

)−1
dt (2)

with the respective constraints:

xR(λ(t)) = B(λ(t),pn), dmin ≤ |xG(λ(tE))− xH(tE)| ≤ dmax, |κ| ≤ κmax

where xR is the robot position on a Bézier curve B(λ(t),pn) of degree n = 4
with 0 ≤ λ ≤ 1, the adjustable control point p2 and the defined control points
p0 = xR(λ(0)), p1 = f(p0), p3 = f(p4, xH(tE)) and p4 = xR(λ(tE)) =
xG(λ(tE)).

xR(λ(t)) = B(λ(t),pn) =

n∑
i=0

(
n
i

)
(1− λ(t))n−itipi (3)

The goal position xG(λ(tE)) on the predicted linear trajectory, is assumed to
be fixed for the current time step. This pose will be modified over time if the
second optimization step fails to meet the timing constraints. The curvature
κ is denoted as:

κ =
ẋ(λ(t))ÿ(λ(t)) − ẏ(λ(t))ẍ(λ(t))

[ẋ2(λ(t)) + ẏ2(λ(t))]
3
2

(4)

and θ1 is an arbitrary parameter weighting the distance the robot should
keep from obstacles. The nonlinear optimization problem with the objective
to find a free control point p2 in the Bézier curve that minimizes Jpath under
the respective constraints is defined as follows:

find p2

min Jpath(p2)

s.t. xR(λ(t)) = B(λ(t),p2)

dmin ≤ |xG(λ(tE))− xH(tE)| ≤ dmax, κmin ≤ κ ≤ κmax

(5)

In order to generate velocity profiles that support the acceleration and decel-
eration for dynamic obstacle avoidance, the obstacles O are transformed into
the Bézier curve space λ(t) yielding Oi(λ(t)). An obstacle occupies a certain
area in this space depending on its dimensions and the time it takes to cross
the trajectory. A two-point-boundary-value problem is formulated resulting
in a velocity profile. The following costs apply:

Jvel(λ̇(t)) =

∫ tE

tA=0

λ̇2(t)dt+ θ2

∫ tE

tA=0

1

λ(t) −Oi(λ(t))dt+ θ3
λ̇(t)

1− λ(t) (6)
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With the constraints:

tE = vHsH, λ(0) = 0, λ(tE) = 1

0 ≤ v ≤ vmax, t = tE if λ(t) = 1, v = 0 if λ(t) = 1

where a new ending time tE has to be found if λ(t) < 1 and t ≥ tE. vR(t) =
λ̇(t) ⊂ V is the velocity profile followed by the robot and θ2 as well as θ3 are
arbitrary parameters weighting the distance vR(t) should keep from obstacles
in the curve space and the deceleration close to the target person.

The approach is formulated as a nonlinear optimization problem with the
objective to find a velocity profile λ̇(t) minimizing Jvel subject to its con-
straints:

find λ̇(t)

min Jvel(λ̇(t))

s.t. tE = vHsH, λ(0) = 0, λ(tE) = 1

0 ≤ v ≤ vmax, t = tE if λ(t) = 1, v = 0 if λ(t) = 1

(7)

By applying this method, the first step will generate a collision free path
constrained in curvature within the static environment. Since the shape is
fixed, the velocity mapping in step two will force the robot to slow down or
speed up for moving obstacle avoidance. Given that the timing constraint
does not hold, the overall time optimization will provide a new goal pose to
the planning method.

Constraints enhancing social acceptance of the approach path exist in all
optimization steps. At first, the timing confinement to preserve the perceived
proactivity. Further, the distance related cost in step one will keep the trajec-
tory away from objects and moving humans as passing closely is usually per-
ceived as uncomfortable. Selecting a Bézier curve with curvature constraints
opts for natural and smooth paths. Velocity profiles generated in step two al-
low for moving obstacle avoidance in spite of the fixed path which is necessary
to enhance the readability of the intention. The second term keeps the robot
from passing shortly behind a moving obstacle that just crossed the path.
The last part of Jvel influences the velocity profile close to the approached
human by reducing the speed gradually. A sidewise or frontal approach po-
sition with appropriate orientation is implicitly defined within the goal pose
xG, given the person’s orientation is known.

5 Implementation

This chapter presents an integrated real time capable system that approxi-
mates the developed optimal control problem in Chap. 4 by applying a rule
based brute force search. This system allows conducting user studies to con-
firm parameter effects or to develop further aspects that affect readability.
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For motion planning Bézier curves are used since they feature properties
which are beneficial for the readability as well [10]. Firstly, the starting point
p0 and the endpoint pn of a Bézier curve are freely controllable. For human
approach these points are fixed to the robot and target person position and
change since both move. Secondly, tangents at p0 and pn that connect p0,
p1 and pn−1, pn allow the definition of the final position and orientation.
Thirdly, as the k-th derivative of a Bézier curve is still continuous [7], the
curve has continuous curvature. Accordingly, trajectories are consistent con-
tinuations of each other if their respective starting and ending point are the
same which is the case when continuous online replanning is applied. Lastly,
due to the k-fold differentiability [7] Bézier curves supply smoothness and
continuous jerk.

A maximum time frame for the trajectory construction is given by the
fact that a person is only approachable until she has reached a distance
which the robot is unable to catch up with. The trajectory origin is always
set at the robot position whereas the final pose depends on the predicted
movement (position, speed) for the person. Without loss of generality the
person’s orientation is assumed to be known. Given the mentioned attributes
a cubic Bézier curve is used for static scenarios as one can see in Fig. 1.

xHp0

p1

p2 p3

Fig. 1 Trajectory for Bézier curve of degree three in free space

In the collision case the degree is increased to four such that one control
point, here p2, pulls the curve away from the obstacle as shown in Fig. 2.
By checking for discontinuities in the laser scan, object dimensions are as-
sessed and extremal points found. Searching for a collision free curve, p2 is
shifted iteratively. The control points p0, p1 remain on the line defined by

p0

p1

p2

p3 p4

eright

eleft

xH

Fig. 2 Trajectory for Bézier curve of degree four in the collision case
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the initial orientation, the starting point p0 = xR(λ(0)) and p1 while p2, p3

or alternatively p3, p4 are defined through the position of the human xH, the
ending point pn = xG and the final orientation. Therefore,turning on spot
never results from this planning process. The point positions can be defined
as optimization constraints:

p1 = f(p0) = p0 + η1

(
x
y

)
(8)

p2 = f(p3, xH) = p3 + η2 (p3 − xH) (9)

where η1 and η2 are arbitrary parameters and p3 = xG depicts the goal
pose that employs social aspects like human-robot distance, positioning in
the field of view and preference for sidewise approach. For degree four curves
the constraint on p2 and p3 is dependant on the obstacle dimension and its
extremal points eleft and eright. Pulling the curve out on the side of eright
leads to the following:

p2 = eright + η3 (eright − eleft) (10)

p3 = f(p4, xH) = p4 + η4 (p4 − xH) (11)

where η3 and η4 are arbitrary parameters. Given the planned curve, it is
discretized in time and space forming a trajectory. The primary velocity
profile assumes that maximum speed is possible due to absence of collision
with a deceleration nearby the goal pose as proposed in [5]. The velocity
profile is then adapted to provide the slow down or speed up for avoidance of
moving obstacles. At first a safety region with radius rsafe is assumed around
every discrete position on the trajectory. For a moving obstacle crossing the
trajectory, the entrance time tenter and the emission time tleave are calculated
applying a constant velocity model. Based on this concept the robot has to
execute the trajectory up to the colliding position wcol−1 or to the position
wend+1 after the critical point to avoid the obstacle as it leaves the zone or
before it crosses. This is realized in the velocity profile by accelerating or
decelerating. Fig. 3 illustrates the concept.

4 5

10wi wi+1 wcol

tleave

tenter

rsafe

Fig. 3 Collision zones indicated by circles with a continuous line around a waypoint
with high collision potential
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Finally the arrival time at each trajectory point is estimated by the dis-
tance of two discrete points and the according velocity. After that, the velocity
profile of the whole trajectory has to be considered in order to assess if the
final goal pose is reached in time and the robot arrives simultaneously with
the target person. This leads to an iterative algorithm capable of adapting
the trajectory, velocities and goal positions online.

The separation of spacial and temporal planning entails that the trajectory
shape does not change with the velocity profiles making the movement more
predictable. Obstacle avoidance therefore follows a human-inspired approach
[18]. The real-time capability enables the system to adapt in case of tracking
errors or dynamic changes in the environment.

6 Experiment

For assessing the human perception of the approach behavior, we set up an
experiment where a robot moves towards a standing person. We asked the
probates to rate the convenience of the robot velocity, the distance where
it stopped, how natural the motion seemed and how comfortable they felt
during the approach.

Fig. 4 ACE platform moving outdoors with mounted Eddie emotional display

This user study was conducted on the ACE (Autonomous City Explorer)
platform [2] displayed in Fig. 4. The design of ACE, the predecessor of IURO,
is less human-like and pleasing but since only the movement should be in the
focus, an elaborate design can induce distractive effects. In order to enforce
the focusing on the movement the emotional display is unmounted as well.
Thus, further studies are possible to evaluate the influence of human-like
design features on the naturalness of the approach. As free space for an ap-
proach is needed the experiment was set up in the lobby of a public building.
The robot is started by an instructor for each of the four different approaches
from a position in 4m distance opposite to the probate. The probate takes
three different orientations: facing the robot or ±90◦ looking to the left or
right. The according trajectories are shown in Fig. 5. Subsequent to each sce-
nario the probate rates naturalness, approach speed, approach distance and
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left (L) right (R)front left (FL) front right (FR) 

Fig. 5 Paths executed during the four different approaches of a static person

sensation on a questionnaire using a 10-point Likert scale. Randomization of
the approach scenario succession was applied to exclude bias effects.

Table 6a shows the parameters for this study with further illustration in
Fig. 6b, where vmid is the mean robot speed, vend the velocity at a distance
below 1.5m to the person, Rend the final approach distance, αout the angle
describing the part of the field of view where the robot stops in and αin

defines an area which provides the goal positions for sidewise approaches.

Parameter Value

vmean 0.45m/s
vend 0.23m/s
Rend 0.55m
αin 30◦

αout 35◦
αout

αin −αin

−αout

Rend

Fig. 6 Parameters for the user study and possible robot goal poses in front of a
human within ϕ ∈ [−αout, αout]

The experiment was carried out with 10 probates in the age group from
21 to 38 years and academic high school diploma or higher degree who
were rather experienced in the field of robotics. Descriptive statistical re-
sults were acquired from an analyses of repeated measures using a parametric
test (ANOVA). The velocity ratings were principally optimal with a trend
to slow. Figure 7 top left shows mean and variance where 0 indicates ”too
slow”, 50 ”optimal” and 100 ”too fast”. The stopping distance (within the
personal space) was rated comfortable showing differences between sidewise
and frontal approach. Mean and variance in Fig. 7 top right are scaled from
0 ”very uncomfortable” to 100 ”very comfortable”. Significant results were
found in the naturalness condition, Fig. 7 bottom left. The scaling ranges
from 0 ”artificial” to 100 ”natural”. The outcome shows significant differences
comparing left and front right approach with σL,FR = 0.019 as well as right
and front left/right approach with σR,FL = 0.046 and σR,FR = 0.018. The
left and front left scenario diverge almost significantly with σL,FL = 0.058.
The mean effect size assuming sphericity is medium to high with F (3, 27),
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Fig. 7 Descriptive statistics with mean and standard deviation. Results are given
for the approach directions L=left, R=right, FL=frontal left, FR=frontal right

p < 0.0001, η2partial = 0.586. According to that, the power of 0.999 indicates
that the naturalness condition is a strong benchmark for path shape taking
into account the small sample size. Considering comments of the probates,
the less natural rating for the frontal approach originates from the fact that
the robot slightly turns away and then comes back towards the person, Fig. 5.
Probates referred to this movement as hard to interpret. The sensation rating
is scaled from 0 ”very uncomfortable” to 100 ”very comfortable” showing a
slight difference between frontal and sidewise approaches, as shown in Fig. 7
bottom right. Over all the approach behavior is rated comfortable showing
that people were not intimidated by the robot.

Follow up studies will investigate naturalness by e.g. employing various
shapes for frontal or sidewise approaches. By integrating an approach from
behind it is further assessable whether comfort and naturalness follow the
assumed characteristics. Currently running user studies compare our method
to a simple movement to a position in front of the person that also allows
turning on spot. As of now, results for velocity, distance and comfort remain
stable. Indeed, the ratings for naturalness show a strong trend for the simple
approach behavior to be perceived as less natural.

7 Conclusions and Future Work

The problem of increasing the readability for optimal control based trajec-
tory planning in the setting of human approach is discussed in this paper. An
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analytical formulation of the problem is provided along with an integrated
planning algorithm enabling a mobile robot to approach a moving person
autonomously in a dynamic environment by planning in space and time con-
secutively. The human-inspired avoidance mechanism further enforces the
natural appearance. The applied parameters for approach speed and distance
are rated positively. Frontal approaches come too close presumably because
the maneuverability of the person is constrained in this case. We identified
that trajectory shape is an important factor when evaluating the naturalness
of the approach behavior.

In this paper it is shown how human-like approach behaviors improve the
readability and social acceptance of planned trajectories. We approximate the
optimization problem by a rule based implementation. The integrated sys-
tem facilitates a motion planner for proactive human approach in dynamic
environments that avoids static and moving obstacles. It is capable of on-
line replanning for limited numbers of dynamic obstacles and a constrained
spatial horizon enabling the planner to adapt to a dynamically changing
environment. The Bézier curve based trajectories feature smooth shapes to
further enhance the natural appearance of the motion. Due to this simplicity
the amount of avoidable static objects is constrained such that the algo-
rithm is not complete. Yet, this paper shows that complicated trajectory
shapes provide lower naturalness and are less readable compared to a direct
approach.

Future work will concentrate on experiments to confirm and find social
parameters. Large scale experiments within the IURO setting will serve as
further benchmarks. Studies comparing multiple planning methods with re-
spect to resulting trajectory shapes will yield cues on readability enhance-
ments. As the performance of the system relies on predicted paths a more
advanced approach is to be integrated. Finally, improving the system by tak-
ing into account the mutual interactions between humans, the robot and
obstacles will further raise social acceptance of the motion.
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Multitask Humanoid Control
with a Brain-Computer Interface:
User Experiment with HRP-2

Pierre Gergondet, Abderrahmane Kheddar, Christoph Hintermüller,
Christoph Guger, and Mel Slater

Abstract. In this paper, we present our approach to design a brain-computer
interface (BCI) that allows the user to perform multitask humanoid con-
trol. We efficiently integrate techniques from computer vision and the task-
function based control together with the brain-computer interface into an
immersive and intuitive control application despite the well-known short-
comings of BCI. This approach is assessed in a user experiment involving
4 subjects who successfully controlled the HRP-2 humanoid robot in a sce-
nario involving both grasping tasks and steering. The user experiences and
the interface performances are presented and give a rich insight into future
research that can be made to improve and extend such interface.

1 Introduction

Brain-computer interfaces (BCI) [1] allow bypassing the usual communica-
tion channels between a human and a computer such as hand or voice input
interfaces. Instead, they allow the users to communicate his intentions to the
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computer. In return, the user is able to control different application (software
or device) systems connected to the BCI. Recent work has already demon-
strated impressive capability for controlling mobile robots, virtual avatars or
humanoid robots [2].

However, the use of BCI in those previous works has been limited to the
accomplishment of a single task, for example: steering a robot. Our work
attempts to make more tasks available to the user. It originates from the
VERE project, which aims at embodying the user’s conscience into a virtual
avatar or a physical robot. Therefore, we aim at allowing the user to perform
a wide range of actions with an emphasis on liberty and reactivity. The
scenario that is demonstrated in this paper illustrates the approach we have
taken and combines both locomotion and manipulation tasks, that is whole-
body motion.

Using the well-known brain pattern: steady-state visually evoked
potentials (SSVEP), we allow the user to perform humanoid whole-body
control. We efficiently integrate techniques from computer vision and the
task-function based control. We propose to use task-function primitives as
affordances on objects of interest detected through the robot’s embedded
cameras. The user is fed with direct vision feedback from those cameras. Our
main contributions and novelties are the following:

• By using well-known techniques from image processing, objects of inter-
est are detected within the scene and automatically blinked at different
frequencies. SSVEP allows identifying which object is of the user’s interest.

• Integrating BCI and task-based control allowing instant and smooth task
integration in the controller.

• A transition state machine proposes switching between whole body ma-
nipulation and locomotion tasks. During locomotion, SSVEP is also used
to choose direction and speed of locomotion during which visual feedback
is continuously displayed to the user.

• Our approach is assessed in real experiments using the HRP-2 robot con-
trolled from an electroencephalography (EEG) cap and g.BCIsys (g.tec
medical engineering GmbH, Austria). The scenario of these experiments
allows the user to achieve multiple tasks.

2 Technical Approach

This section introduces three major components of our system: (i) the brain-
computer interface, (ii) the stack-of-tasks (SoT) controller for the robot, and
(iii) the robot visual perception system. The integration of these components
is also a key to the extended capacities of our system. This integration occurs
at two levels of interaction: between the visual system and the BCI on the
one hand, and between the BCI and the SoT controller on the other hand.
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2.1 Brain-Computer Interface

In recent years, several frameworks such as OpenViBE or BCI2000 have in-
troduced a similar three-layer model to produce BCI application as shown in
Figure 1.

Fig. 1 General design of a BCI system

The signal acquisition layer monitors the physiological signals from the
brain through one or several physical devices and digitizes these signals to
pass them onto the signal-processing unit. The signal-processing unit is in
charge of extracting features — e.g. power spectrum, signal energy — from
the raw signals, and pass them onto a classification algorithm to distinguish
the intentions of the user. Finally, these decoded intentions are passed onto
the user application.

In this work, we employ the widely used electroencephalography (EEG)
technique for signal acquisition because it is non-invasive, cheap and allows
for real-time acquisition even though it suffers from poor spatial localization
accuracy and a poor signal to noise ratio.

The brain features we decided to exploit are the steady-state visually
evoked potentials (SSVEP). The SSVEP describe the activities that the brain
generates when the user observes a flickering stimulus. The method relies
uniquely on the user’s attention to the stimulus. It also allows detecting that
the user is maintaining his attention on a given stimulus and to detect a shift
of attention in a few seconds. The process we used to extract the SSVEP
is based upon the minimum energy classifier approach introduced in [3]. It
provides a zero-class implementation that allows to detect that the user is
not interested in interacting with the system. After a short training, about 6
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minutes, it is able to operate at an 80% recognition rate [4] for 4 classes and
can provide a new command every 200ms. This is a satisfactory performance
for an SSVEP-based BCI system [5].

Recursive and Enforced SSVEP Selection

As mentioned previously, our SSVEP extraction process can reach an 80%
successful recognition rate with a short training phase. However, given the
nature of the SSVEP stimuli, errors are bound to happen over the course of
the experiment due to distraction or fatigue [6]. Therefore, the 100% mark
would be difficult to reach. This unreliability of the decision outcome becomes
an important problem when using the BCI to control an avatar, especially
if the decision that was taken cannot be reversed. Moreover we aim at mini-
mizing the number of frequencies that we can detect to ensure high accuracy
while keeping the training time as short as possible. Therefore we devised an
SSVEP-based selection paradigm that allows for a large number of commands
and puts an emphasis on accuracy.

To increase the number of commands we used a simple recursive selection
algorithm. For example, if we have sixteen commands available but only
trained the system to detect four different frequencies we split each command
into four groups. The user then selects one of these groups and finally selects
a command among the four commands in this group.

To enforce the selection we ask the user to maintain his attention on the
command he wants to select for a certain time. We consider this command as
the actual intention of the user only if he was able to maintain his attention
”long enough’, which in our case means three seconds, i.e. fifteen successive
classifications.

User Interface

We also developed an application framework for the user interface that allows
practical switching between different BCI paradigms, thus allowing multiple
tasks control with our BCI system.

The framework relies on a core class: BCIInterface. Its role is to create
the graphical interface, handle and distribute events and get the different
primitives of the library working together. As illustrated in Figure 2, the
main graphical loop executes the following operations for each frame:

1. Get and handle events, pass unhandled events to DisplayObjects and Com-
mandInterpreter.

2. Receive the current command from the BCI thanks to a CommandReceiver
instance.

3. Give this command to a CommandInterpreter instance that will update the
controlled system status and/or the DisplayObjects to give feedback to the
user according to its implementation.

4. Display a Background instance and then display all DisplayObjects.
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Fig. 2 A display loop iteration by the BCIInterface core

Additionally, the elements that require synchronous operations to work - e.g.
a CommandReceiver that receives commands over the network - can imple-
ment another loop; this loop is run in a separate thread to have no impact
on the display loop performance and it does not require any extra work from
the developer. A paradigm switch can be triggered by the owner of the BCI-
Interface instance or by the CommandInterpreter.

2.2 Stack of Tasks Controller

The task-function based control is a powerful control paradigm to design
complex behaviors for robots without explicit trajectory planning at the joint
or Cartesian level. A task can be seen as motion primitives or constraints that
can be defined directly or indirectly in the robots sensory space. The desired
task can be defined simply as a state or a state error vector in the sensory
space, which is mapped into the robots motor space (joint actuators) using
an appropriate projection operator, e.g. the robot’s jacobian in kinematics.
A complex behavior can then be planned as a succession of tasks, which
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can in turn be structured into a hierarchical way: a stack of tasks. This
formalism proved to be particularly suited for the control of highly redundant
robots; we have demonstrated several complex scenarios using this powerful
control tool with our HRP-2 humanoid robot [7]. We have also extended this
controller, called simply stack-of-tasks (SoT), to address issues such as tasks
scheduling and the fundamental issue of control continuity under discreet
tasks scheduling operations in the SoT, such as tasks insertion, removal and
swapping. Our controller is able to insert or remove tasks components, on
the fly, and we can adapt it to be used in a BCI control context.

2.3 Vision System

Our vision system is built around a lightweight core that operates different
cameras and plugins aimed at realizing a specific task such as transmitting
images over the network or recognizing objects within the scene.

Objects Recognition

The object recognition method is based on the work presented in [8] and
its extension to account for color properties of objects in [9]. This method
relies on the construction of a vocabulary set of texture-related features and
color-related features. These features are trimmed down to a restricted set
through a k-means clustering algorithm, associated to the relevant objects
and organized in a kd-tree for efficient closest neighbor research needed by
the recognition algorithm. This allows this method to scale very well as when
the objects database grows, the vocabulary itself does not grow but evolves
and enriches itself.

The recognition algorithm then consists in (i) extracting interest points in
the scene, (ii) computing color and texture features at those interest points,
(iii) match those features with the ones from the vocabulary, (iv) each feature
from the vocabulary will then cast a vote for the relevant object - this voting
mechanism is further explained afterward - (v) the object presence is decided
based upon its best score value. The score each object will give is determined
from a training set where the algorithm knows the objects present in the
scene. The votes are computed so that the more specific to an object a feature
is the bigger vote it will cast. For example, if the same feature is extracted
from 10 images with 10 different objects in the scene it will contribute a 0.1
vote to each object. However, among the same set, if a feature is found only
twice, it will cast a 0.5 vote for the two objects involved in these two scenes.
Finally, a second pass over the training set allows us to define threshold
score above which the object presence is assumed. Thanks to the sharing
of features among different objects, the recognition algorithm can operate
very efficiently, above 15 Hz even in rich scenes, and the features selected for
classification permits a consistent detection of the objects.
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Shape Extraction

In order to allow a smooth integration of the detected objects within the user
interface, we extended this method to detect the objects’ shapes.

To do so, we need to collect more data when we build the vocabulary as
well as during the course of the algorithm. During the training run, when we
create a link between a feature and the object, we register two information
from the training image: the shape of the object and the position of the
feature point. During the recognition process, we maintain a list of all voters
for each object. For each voter, we register the point of interest position in
the image being processed, the link it is associated with and where the vote
is casted.

Once an object and its center have been detected, we extract the voters
that voted for the object around the object’s center. Each voter is ultimately
linked to an object’s mask from the vocabulary set through the link it holds.
For each of these masks, we compute an homography from the points in the
vocabulary set to the matched points in the processed image. The points
are filtered before the homography computation. If multiple points in the
processed image match the same point in the vocabulary set, we keep the one
for which the distance between the point and the center of the object is closest
to the same distance for the vocabulary point. The same selection criterion is
applied when the same point in the processed image matches different points
in the vocabulary set, which can happen when the texture match and the
color match are different points from the same image of the vocabulary set.
The vocabulary object that retains the most matching points in the end is
selected and its shape is deformed thanks to the computed homography which
allows us to match the shape of the object in the processed image.

2.4 BCI and Visual System Integration

When the user is interacting with the world through the robot he needs
to be informed about the capacities of the robot and the interaction it can
operate with the world. To do so we integrate visual stimuli on top of the
video feedback fed to the user. We can distinguish two kinds of integrated
stimuli: static ones and dynamic ones. On the one hand, the static stimuli
are relative to the current operation mode of the robot. In visual exploration
mode they will consist in flickering arrows to control the robot’s gaze, while
in steering mode a similar set of arrows will control the robot’s speed. On
the other hand, the dynamic stimuli are controlled by the visual system.
This allows presenting the user with the objects he will be able to interact
with. A flickering stimulus is shown at the detected center of the object,
communicated by the vision system. Their color is chosen to fit the recognized
object. The result can be observed in Figure 3 and in the experiment video
linked below.
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Fig. 3 Interface for object grasping: images are streamed from the vision server,
object-related stimuli are positioned thanks to the objects detection plugin

2.5 Tasks Selections with a BCI

Contrary to other interfaces used to control a robot, EEG-based BCI is a
rather unreliable and very slow interface. In other words, the user will not be
able to guide efficiently an arm to grasp an object in a certain position and
in a particular way. What s/he will be able to request however is an action
that results from an association of the recognized object of intention and the
afforded task (or tasks). For example, “grasp object A, given that this “object
A has been detected and localized in the real world via the visual system and
presented to the user as explained previously. This naturally translates into
considering tasks as affordances on the environment objects.

This approach is reminiscent of the shared-control approach that has been
often used in BCI-based control since it allows the user to perform the same
task better with less input commands. However, the system does not only rely
on its own intelligence to perform the task based on a limited input, it also
shares its knowledge of the environment with the user to present affordable
tasks to him, that is what we refer to as shared intelligence.
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3 Experiment Scenario

The scenario is designed to illustrate multitask control, i.e. locomotion and
manipulation, via BCI.

At first, the user is presented, through the robot’s eyes, with multiple
objects - known from the recognition system - put on a cupboard. In this
phase, the user selects the object he wishes to interact with. The selection
relies on an SSVEP paradigm: the objects are blinked as discussed in the
previous section. Once this selection happens, the robot grasps the object
and the second phase of the experiment begins.

In the second phase, the user steers the robot freely in its environment to
a location of his choice. The steering is done through SSVEP. Three stimuli
allow the user to control the robot orientation and make it move forward, a
fourth one allows him to stop the robot. Once the robot is stopped, the final
phase begins.

In the final phase, the user recursively selects a position within the visual
field of the robot. The selection of a position makes the robot drop the object
above this position thus achieving the experiment.

To confirm the usability of the interface, the user is given two instructions
that define his mission: (a) which object to pick up from the cupboard and (b)
which sixteenth of the screen to select at the end. To evaluate the objective
performances of the interface we measure the time taken to achieve each
phase and the success rate of the missions.

4 Experiments

4.1 Material and System Setup

We use a g.USBamp (24 Bit biosignal amplification unit, g.tec Medical En-
gineering GmbH, Austria) to acquire the EEG data from the user’s brain at
a sampling frequency of 256 Hz, bandpass filtered between 0.5 and 30 Hz
with a notch filter at 50 Hz to get rid of the power line noise. The electrodes
positioning is shown in Figure 4. We use 8 Ag/AgCl active electrodes. The
electrodes are placed on the POz, PO3, PO4, PO7, PO8, O1, O2 and Oz
positions of the international 10-20 system [10], Fpz is used as the ground
electrode and the earlobe as a reference.

The experiment was carried out using the HRP-2 humanoid robot. The
subject, equipped with an EEG cap, is comfortably seated in an armchair,
about 1 meter away from of a 17” LCD screen. In such setup the accurate
display of SSVEP stimuli is ensured thanks to the method proposed in [11].
The SSVEP stimuli frequencies that were used in this work are: 6, 8, 9 and
10 Hz. Those were carefully selected to have neither common first or second
harmonics and are below 20 Hz to minimize the risk of eliciting an epileptic
crisis in healthy subjects as advised in [12].
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Fig. 4 Electrodes positions for the experiment

4.2 Results

A video showing the interface in action as well as the robotic counterpart
can be retrieved at the following URL: http://pbs.dinauz.org/Videos/ISER-
2012.avi.

Four users performed the scenario that we described. Each of them per-
formed the scenario five times with different conditions, i.e. different objects
and different drop locations. Over the 20 trials, the users’ selections were
consistently accurate thanks to the enforcing of SSVEP selection we setup.
In Figure 5 we report their average performance over the multiple trials.

The phase 1 and phase 3 times are consistent with the performance of
our SSVEP classification method and the adoption of the enforced SSVEP
selection process. The system operates on a 3 seconds window of EEG data
and we require the user to maintain his attention on the stimulus for 3 seconds
before we make a conclusion about his intention. The phase 3 involves the
recursive SSVEP paradigm described earlier and thus the time needed to
reach a conclusion in phase 3 is about twice the time needed in phase 1.

The enforced SSVEP selection paradigm also proved its usefulness during
the trials as no misinterpretation of the user’s intentions occurred during
these phases for all subjects across all trials. However, we chose to enforce
the selection a 3 seconds period which covers 15 decisions by the SSVEP
extraction process. To achieve a more reactive experience, this activation
time could be tuned down according to the classifier performance with the
user. This would allow the system to reach a conclusion more rapidly while
keeping a very high-level of accuracy.

Finally, the phases 2 times illustrate interesting effects of training and
motivation on the scenario performance. The performance of each subject
over each trial can be seen in Figure 6. It shows that the user’s performance
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Fig. 5 Average performance of each user over the experiment trials

Fig. 6 Walking phase performance for each subject and trial
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in the navigation phase improve after each trial. Two factors, reported by
the users, can explain this phenomenon. On the one hand, the users felt
more and more comfortable with the interface. They progressively learned
how to compensate for the lag of the SSVEP extraction process and they
also acquainted themselves with the environment and the way it is perceived
through the robot’s camera. Indeed, this camera has a rather constrained
field of view which is well suited for the stereo application it is used for but
makes it particularly difficult for the user to understand the robot’s location
in space. On the other hand, the user also used more ‘aggressive’ strategy
to reach their destination because they felt more comfortable steering the
robot but most importantly because they wished to ‘beat’ their previous
time which illustrates the importance of motivation in the context of BCI
applications [13].

5 Future Works

The success of the experiment and positive feedback from the users confirm
the viability of the concepts presented throughout this paper. This section
discusses possible improvements and issues left unaddressed in this work re-
garding the problem of task selection and parameterization through BCI, and
the navigation in unknown environment.

5.1 BCI and Tasks Selection

This work addresses the issue of mapping tasks to environment objects by
conceiving tasks as affordances on objects. From the control feedback and
visual perception we can infer a feasible task among those attached to the
objects. However, two main issues are left to be dealt with: task selection
among many and task parameterization.

We are now able to understand that the user wants to interact with an
object. If we wish to pursue the embodiment of ones conscience into an avatar,
we also have to be able to understand why the user wants to interact with this
object as the visual and control information may not be enough to conclude
which afforded task should be selected. A good example to illustrate this
issue is the one of a bottle of water. If we want to pour some of its content
into a glass we will not grasp it like if we want to put this bottle in a bag.
However, in the current state of this work, such a distinction cannot be done,
as we are only able to understand that the user wants to “interact with the
bottle”. This is the problem of task selection among many.

The second unaddressed issue regarding the task selection concerns the
task parameterization. The problem here is to select the appropriate gain,
i.e. speed of execution, and variant of the task, e.g. grasp with left or right
hand. Addressing these problems is difficult, as it requires a much deeper
understanding of the user’s intention than current EEG-based BCI permits.
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A possible solution may rely on the measurement of user’s satisfaction as
the robot executes the demanded task. Measuring the stress of the user for
example could be used to modulate the gain of the task while understanding
the EEG features related to user’s satisfaction will allow to cancel the current
task and try another one to fit the user’s expectation. However, from the
robot’s control perspective, task backtracking is also an open and complex
problem that will have to be tackled to allow this kind of parameterization.

5.2 Landmark-Assisted Navigation

The phase 1 and phase 3 of the experiment’s scenario are good examples
of the benefits of shared-control in BCI control application. Within a few
second of selection, the user can command the execution of complex tasks
by the robot while ‘relaxing’. In phase 2, the user continuously commands
the robot to guide to its final position. The benefit of such method is that
it allows the user to reach any position he wants in the robot’s environment.
However, it is also tiresome for the user, especially over long period of control,
and the speed of the robot has to be limited to allow a fine control by the
user.

To improve this situation, we will investigate an hybrid scheme of naviga-
tion control that mixes full control approach and shared control approach. In
this navigation scheme, the object recognition module presented in this paper
is used during navigation to detect known objects in the robot’s environment,
these objects are then proposed for selection to the user as in the first phase
of the scenario. If the user selects an object, the 3D model of this object can
be tracked in the scene [14] to approach it efficiently without further input
from the user. Once the object has been reached, the user once again controls
the robot either to reach its final destination or to find another landmark to
go to.

6 Conclusion

We presented our method to control a humanoid robot through a brain-
computer interface within a multitask scenario. The key of this work is to
not rely on a pre-defined set of task and thus differs from classical approach
in BCI control application. In place, the tasks are dynamically constructed
from the tight collaboration of the visual system, control architecture and
user’s intention extraction process and are presented to the user in a user-
friendly way together with the visual feedback of the robot. In a scenario
we designed to illustrate these concepts, four users were able to successfully
control a HRP-2 humanoid robot in a multitask scenario.

Future works will focus on resolving the many issues raised during the
development of this new architecture in the three different fields it involves.
We believe that, extending upon this work, we can provide strong solutions
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to the problems of user embodiment and whole-body control through brain-
computer applications.
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Coordination Strategies for Multi-robot
Exploration and Mapping

John G. Rogers III, Carlos Nieto-Granda, and Henrik I. Christensen

Abstract. Situational awareness in rescue operations can be provided by teams of
autonomous mobile robots. Human operators are required to teleoperate the current
generation of mobile robots for this application; however, teleoperation is increas-
ingly difficult as the number of robots is expanded. As the number of robots is
increased, each robot may interfere with one another and eventually decrease map-
ping performance. Through careful consideration of robot team coordination and
exploration strategy, large numbers of mobile robots be allocated to accomplish the
mapping task more quickly and accurately.

1 Motivation

Projects like the Army Research Laboratory’s Micro-Autonomous Systems Tech-
nology (MAST) [1] seek to introduce the application of large numbers of inex-
pensive and simple mobile robots for situational awareness in urban military and
rescue operations. Human operators are required to teleoperate the current gener-
ation of mobile robots for this application; however, teleoperation is increasingly
difficult as the number of robots is expanded. There is evidence in human factors
research which indicates that the cognitive load on a human operator is significantly
increased when they are asked to teleoperate more than one robot [18].

Autonomy will make it possible to manage larger numbers of small robots for
mapping. There is a continuum of options as to the degree of shared autonomy
between robot and human operator [11]. Current robots employed in explosive ordi-
nance disposal (EOD) missions are fully tele-operated. At the other extreme, robots
can be given high-level tasks by the operator, while autonomously handling low-
level tasks [3] such as obstacle avoidance or balance maintenance. In this paper, our
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robot teams occupy the latter end of the spectrum; we imagine that the operator has
tasked the robot team to autonomously explore and map an unknown environment
while focusing on the high level task of looking for survivors.

In the multi-robot scenario, resources are distributed amongst a team of robots
instead of concentrated on one large and expensive machine. This distribution of-
fers a number of advantages and disadvantages over the single robot case. The dis-
tributed team is able to continue its mission even if some of the robots are disabled
or destroyed. A single robot can only explore or monitor at one location at a time;
however, the multi-robot team can provide situational awareness in many locations
at once. Unless the single robot is able to move much faster than the multi-robot
agents, the lone robot will be slower in performing the exploration and mapping
task. These advantages are taken for a multi-robot team at the cost of increased
complexity in communication and coordination.

As the number of robots is increased, each robot may interfere with one another
and eventually decrease the performance of the mapping task. Careful considera-
tion of exploration strategy and coordination of large numbers of mobile robots can
efficiently allocate resources to perform the mapping task more quickly and more
accurately.

Mobile robot simultaneous localization and mapping (SLAM) has been thor-
oughly addressed in the literature, see [2] and [6] for a detailed review of the history
and state-of-the-art in SLAM research. The specific techniques used in this paper
are based upon the Square Root SAM algorithm [4] [5] which uses the well-known
algorithms of linear algebra least-squares system solving to compute the map and
robot trajectory based on a set of measurements.

Multi-robot mapping and exploration was addressed in [9] and [17]. These pa-
pers build a map using up to 3 robots with a decision-theoretic planner which trades
off robot rendezvous operations with frontier exploration. These robots rendezvous
to determine their relative pose transforms to provide constraints to recover the final
map. In contrast, our approach does not require this rendezvous step because land-
marks are globally data associated between each robot on a central map coordinator.
The exploration strategy used is similar to our strategy called Reserve; however, we
will not use a rendezvous step and do not require a decision-theoretic planner.

2 Technical Approach

We use the Robot Operating System (ROS) from [12]. ROS provides interprocess
communication as well as coordination of sensor data with pose information. Our
robot algorithms are implemented as a distributed set of programs which run in
the ROS system. In addition, we make use of several implementations of common
mobile robot software components which are provided in the ROS distribution such
as motion planning, obstacle avoidance, platform control, and IMU and odometry
filtering.
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2.1 Mapping System

Our mapping system is based upon the GTsam library developed at Georgia Tech.
This library extends the Square Root SAM technique in [5] with sparse linear alge-
bra in a nonlinear optimization engine. We have extended the GTsam library with
a framework based upon the M-space formulation of Folkesson and Christensen [8]
called OmniMapper. OmniMapper is a map library based upon a system of plug-
ins which handle multiple landmark types simultaneously. We have used the Omn-
iMapper in the past to build maps using multiple types of landmarks such as walls,
doors, and objects [14] [13] [16]. This implementation builds maps of planar regions
corresponding to walls and tables from [15].

Fig. 1 OmniMapper

Each robot in the team builds a map locally with the OmniMapper and sends map
data to the map coordinator. Each robot can incorporate new landmark measure-
ments whenever it has moved far enough from the last pose where measurements
were made. In the current implementation this is set to 10cm. When a robot finishes
optimizing its local map with new landmark measurements, all relevant information
needed by the map coordinator is packaged and transmitted.

The information which is needed by the map coordinator to incorporate a new
piece of information from a team member consists of many components. First, the
sensor measurement data is needed. In the current implementation, this consists of
the extracted plane information consisting of a plane equation along with a convex
hull of points along the perimeter of the plane. This represents a significant com-
pression over an alternative scheme where all point-cloud data could be transmitted



234 J.G. Rogers III, C. Nieto-Granda, and H.I. Christensen

and processed at the master node. Secondly, the team member’s integrated odometry
is transmitted. This allows the master node to compute the odometric relative pose
since the prior landmark measurement data was incorporated; this is used to insert a
relative pose factor and also give initial conditions for data association. Finally, the
team member’s local map pose is transmitted. This is used by the master node to
compute a map pose correction. This correction is sent back to the team member so
that it knows it’s relative pose in the global map frame. This knowledge is needed
so that the team member can interpret exploration goals correctly.

The map coordinator maintains trajectories for each of the robots in the team.
Measurements from each robot are merged into one global view of the landmarks.
This is realized through a simple modification to the standard OmniMapper through
duplication of data structures tracking indexing data and pose information used for
interaction with GTsam into arrays. This implementation potentially allows for an
unlimited number of team members to build a map together.

Most modern SLAM approaches use a pose graph [10] which is generated via
laser scan matching in 2D or point-cloud ICP in 3D. This approach is effective
for single robot mapping; however, it has some drawbacks for larger multirobot
mapping. Scan matching and ICP algorithms are computationally intensive and
matching across many robots would rapidly become intractable. Also, point cloud
representations are large and their transport over a wireless link could be prohibitive
if the link is limited in capacity due to mesh network routing or environmental in-
terference. To address these limitations, our robots extract relevant, parsimonious
features from the environment and transmit them to the master node.

Each turtlebot in these experiments maps planar wall structures using a Microsoft
Kinect sensor. Planar segments corresponding to walls are extracted from point
clouds via a RANSAC [7] based algorithm [15]. Points are uniformly sampled from
the point cloud and any sufficiently large set of points coplanar with these three
points are selected as a plane and are removed from the point cloud. This process
is repeated until up to four planes are extracted or a fixed number of iterations is
reached. To improve the speed of plane extraction, the Kinect point cloud is com-
puted at QQVGA ( f rac18) resolution, which achieves 1̃Hz frame rate.

The Kinect sensor on each robot has a narrow field-of-view which is not ideal for
detecting exploration frontiers. To alleviate this problem, we incorporated a strategy
by which each robot will rotate periodically to get a 360 degree view of its surround-
ings. This data is synchronized with robot odometry to synthesize a 360 degree laser
scan. This synthesized laser scan is sent to the local mapper and forwarded to the
global mapper. At the global mapper, it is linked to a trajectory pose element and
used to populate an occupancy grid. This occupancy grid is re-computed after every
map optimization so that a loop closure will result in a correct occupancy grid map.
The frontier based exploration strategies detailed below use this occupancy grid to
find the boundary between clear and unknown grid cells.
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2.2 Exploration Strategy

Each robot team leader uses a frontier based exploration strategy similar to the one
used in [17]. An exploration frontier is defined on a costmap cellular decomposi-
tion where each cell has one of three labels: Clear, Obstacle, and Unknown. The
costmap is initialized as Unknown. Costmap cells are set to Obstacle corresponding
to locations where the Kinect sensor detects an obstacle in the environment. The
cells on a line between the obstacle cell and the robot’s current location are set to
Clear. Exploration frontiers are defined as Clear cells which are adjacent to at least
one neighbor where the label is Unknown.

Fig. 2 Global maps using the Reserve coordination algorithm described in this paper

The high level robot exploration goal allocation is centrally planned on the same
workstation where the global map is constructed. There are many choices which can
be made by the exploration planner when choosing which robot or group of robots
should move towards an exploration goal. We have chosen to employ a greedy strat-
egy by which the nearest robot or team is allocated to a goal instead of a more so-
phisticated traveling-salesman type of algorithm. We believe that this is appropriate
because the exploration goals will change as the robots move through the environ-
ment; re-planning will be required after each robot or team reaches an exploration
goal.

2.3 Coordination Strategy

The coordination strategy used between robot agents as well as the number of robots
are the independent variables in the experiments performed in this paper. The co-
ordination strategy refers to the proportion of robots which are dispatched to each
exploration goal. On one extreme, a single robot can be sent to explore a new goal;
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at the other extreme all available robots can be sent to a new goal. Larger robot
teams sent to a new exploration goal will improve availability of new agents at the
location of new exploration goals are discovered. The larger group has spare robots
which can be quickly allocated to explore new goals, such as those discovered when
the team moves past a corridor intersection or t-junction. If the group of robots al-
located to a navigation goal is too large, then the robots can interfere with each
other due to local reactive control of multiple agents with respect to dynamic ob-
stacles and limited space in corridors. The strategies selected for testing trade off
availability (robots are close and able to explore branching structure quickly) with
non-interference (robots do not get in each other’s way).

The first coordination algorithm is called Reserve. In this algorithm, all unallo-
cated robots remain a the starting locations until new exploration goals are uncov-
ered. When a branching point is detected by an active robot, the closest reserve robot
will be recruited into active status to explore the other path. This strategy has low
availability because all of the reserve robots remain far away at the entrance; how-
ever, it has minimal interference because the exploring robots will usually be further
away from other robots.

Fig. 3 A map built by three robots using the Reserve cooperative mapping strategy

The second coordination algorithm is Divide and Conquer. In this strategy, the
entire robot group follows the leader until a branching point is detected. The group
splits in half, with the first n

2 robots following the original leader, robot n
2 + 1 is

selected as the leader of the second group, and robots n
2 + 2 through n are now

members of its squad. Once there are n squads with one robot, no further divide op-
erations can be made and new exploration goals will only be allocated once a robot
has reached a dead-end or looped back into a previously explored area. This algo-
rithm maximizes availability, but potentially causes significant interference between
robots.

An example 3D map built by two robots as they approach a branch point can be
seen in figure 4(a). At this point, the robot team splits and each team member takes
a separate path, as seen in figure 4(b). The map shown is built concurrently with
local maps built on each robot. The global map is used to establish a global frame
of reference for robot collaboration message coordinates.
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(a) Two robots approach the intersection. (b) Two robots split and move past the in-
tersection

Fig. 4 An illustration of the Divide and Conquer exploration strategy. As the robots approach
an intersection, the team must split and recruit new partner robots from the reserved units.

3 Experiments

The setting for the multi-robot mapping task for this series of experiments consists
of a team of robots being introduced into a single entrance in an unknown envi-
ronment. Each robot is an inexpensive Willow Garage TurtleBot; a team of nine of
these robots is shown in figure 3. The TurtleBot was chosen for this application due
to its low cost and the ease of integrating large numbers of robots through ROS.
The TurtleBot platform is based on the iRobot Create base. The robots make mea-
surements of planes with a Kinect sensor, and use an onboard IMU together with
odometry to estimate ego-motion.

We evaluated the performance of various robot coordination strategies in the
multi-robot exploration and mapping task. An example scenario for the Divide
and Conquer cooperative mapping strategy can be seen in the panorama image in
figure 3.

We performed a series of experiments to demonstrate the performance of our two
cooperative mapping strategies. A total of 6 runs were performed for each coopera-
tion strategy, team size, and starting location. For each experiment run, the TurtleBot
team explored the environment from a wedge-shaped starting configuration, which
can be seen in figure 3. These experiments were performed in an office environment.
In order to measure the exploration and mapping performance in each location, we
chose specific starting locations which are labeled Base1 and Base2 in figure 3.
These starting locations were chosen because the area around the robot teams could
be blocked off so there is only one initial exploration frontier, directly in front of the
lead robot. This initial configuration was chosen to represent a breaching behavior
which would be needed for implementation of collaborative mapping in a hostile
environment.
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(a) A map built by seven robots in an experiment using the Reserve coopera-
tive mapping strategy.

(b) The same map shown from a different angle to demonstrate 3D
plane features which are used for map landmarks.

Fig. 5 Global maps gathered by a team of seven mobile robots
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Fig. 6 Our nine TurtleBots used in these experiments

Fig. 7 An example scenario for the experiments described in this paper. Three teams of two
robots are exploring the branching hallway structure in an office environment. In this illustra-
tion, the robots are using the Divide and Conquer cooperative mapping strategy.

4 Results

We performed a series of experiments for this paper which demonstrate team perfor-
mance based upon coverage in a mapping task on an unknown office environment.
Robot team sizes were varied from 2 to 9 robots. An map built with 7 robots at
TurtleBots using the Reserve strategy is seen in Figure 5(a). An image showing
the same final global map from a side view demonstrates the 3D plane features in
figure 2.3.

Each of the collaboration strategy and robot team size experiments were per-
formed from two starting locations. These starting locations are labeled Base1 and
Base2 in figure 3. A series of interesting locations was determined in advance by ex-
amining the building floor-plan; these points of interest are also marked in figure 3.
Each experiment run gets a score based on how many of these points of interest are
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Fig. 8 Our office environment where the experiments were performed. The areas labeled
Base1 and Base2 are the initial position of the robots. Red lines indicate artificial barricades
to restrict the initial exploration of the robot teams to simulate a breach entrance into a hostile
environment. Blue squares indicate the position of points-of-interest. Results are reported on
the number of these points-of-interest visited by the robot team.

visited and mapped before a time limit is reached. This score represents the effec-
tiveness of that algorithm and team size at providing coverage while exploring an
unknown map.

In the first experiment series from Base1 in figure 3, both strategies achieve re-
duced exploration coverage per robot as the team size is increased, as can be seen in
the graphs in figure 9. In this starting location, there is limited space to maneuver,
so both strategies generate significant interference between robots trying to move to
their goals. In several instances, pairs of robots even crashed into each other due to
the limited field-of-view of their sensors. We believe that the Divide and Conquer
strategy results in figure 9(b) indicate that the team was slightly more effective than
the Reserves strategy in figure 9(a). At the largest team size of 9 robots, the Divide
and Conquer strategy usually visited one additional point-of-interest more than the
Reserves strategy. Additional qualitative impressions are that the Divide and Con-
quer strategy explored the points-of-interest that it reached more quickly than with
the Reserves strategy. For both strategies, the best team size appears to be 6 robots
in this starting location.
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(b) Divide and Conquer

Fig. 9 Results from the first starting area
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(b) Divide and Conquer

Fig. 10 Results from the second starting area

In the second set of experiments, the robot teams were placed in the starting area
labeled Base2 in figure 3. As in the first experiment, the per-robot performance of
both strategies decreased as the number of robots were increased. This series of
experiments demonstrates a marked improvement of the Divide and Conquer strat-
egy over the Reserves strategy as can be seen in figure 10. The Divide and Con-
quer strategy causes more robots to be making observations of exploration frontiers
due to the fact that groups contain more than one robot. These additional observa-
tions of the frontier allow the Divide and Conquer strategy to find exploration fron-
tiers faster than the Reserves strategy, and therefore explore more points-of-interest.
The second experiment started from an area where there is more room to maneu-
ver. This allowed the Divide and Conquer strategy to have less interference since
the entire team moved together out of the starting area into the larger area before
any divide operations were performed. The Reserves strategy still had to initially
maneuver from the cramped starting location. As in the first experiment, the Di-
vide and Conquer strategy qualitatively explored the environment faster than the
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Reserves strategy. The best value for the number of robots is 6, which is the same
value found in the first experiment.

5 Discussion

We have presented experiments which evaluate two collaboration strategies which
can be used by teams of mobile robots to map and explore an unknown environ-
ment. We have also evaluated the impact of the number of robots on coverage in the
exploration and mapping task.

The first collaboration strategy, called Reserves keeps a pool of unallocated
robots at the starting location. A new robot is activated when there are more ex-
ploration frontiers than currently active robots. This strategy was intended to min-
imize the amount of interference between robot agents since robots would be far
away from each other during exploration. The results from our experiments do not
indicate that this strategy results in less interference than other strategies since per-
formance decreases more when more robots are added in some environments. The
Reserves strategy is significantly slower at exploring the environment than other
strategies.

The second collaboration strategy, called Divide and Conquer has all available
robots proceed in one large group. Once there are two exploration frontiers, at a
corridor t-junction for example, the team will divide in half and each sub-team will
follow one of the exploration frontiers. This process will be repeated with teams
dividing in half each time they see branching structure in the environment. It was
anticipated that this strategy would result in higher interference since robots would
be maneuvering close together; however, the increased availability of robots near
new exploration frontiers offsets this phenomenon.

Divide and Conquer appears to be a more effective strategy than Reserves for ex-
ploring and mapping an unknown environment. There are additional hybrid strate-
gies which could now be considered such as the Buddy System, which modifies the
Reserves strategy with teams of 2 robots instead of 1. We believe that this strategy
will mitigate much of the slowness of the Reserves strategy while still minimizing
interference.
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Experiments Comparing Precision  
of Stereo-Vision Approaches for Control  
of an Industrial Manipulator 

John-David Yoder, Jeffrey West, Eric Baumgartner, Mathias Perrollaz,  
Michael Seelinger, and Matthew Robinson* 

1   Motivation, Problem Statement, Related Work 

Despite years of research in the area of robotics, the vast majority of industrial 
robots are still used in “teach-repeat” mode.  This requires that the workpiece be 
in exactly the same position and orientation every time.  In many high-volume 
robotics applications, this is not a problem, since the parts are likely to be fixtured 
anyway.  However, in small to medium lot applications, this can be a significant 
limitation.  The motivation for this project was a corporation who wanted to 
explore the use of visual control of a manipulator to allow for automated teaching 
of robot tasks for parts that are run in small lot sizes. 

Since the 1970s, researchers have been proposing ways to use vision in order to 
solve this problem. While the purpose of this paper is not to provide a complete 
review of vision-based robotic manipulation, an excellent overview of early work 
is found in [1].  There has been success in the application of such technologies, 
especially in 2-D and 2.5-D problems [2].  Despite the fact that the theory for the 
solution of this problem has been established, there are limited implementations of 
full 3-D applications.  Basically, the reasons for this come down to “the devil is in 
the details” and, in real 3-D applications, the accuracy, robustness, and cost-
effectiveness of vision-based systems have been insufficient to justify widespread 
use. 
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A variety of efforts have been put forth to solve the problem of vision-based 
robotic manipulation.  Visual Servoing offers promise by “closing the loop” in the 
image plane [3].  However, in many assembly tasks, the robot end effector 
obscures the target when it gets close to task completion.  Several methods have 
been proposed to get past this limitation, such as outfitting both the robot and the 
workpiece with fiducials that remain visible [4], or “eye-in-hand” in cases where it 
is possible to place the camera(s) in the robot end effector.  Another limitation of 
visual servoing is that in general it provides the least accuracy in the direction of 
the focal axis. Camera Space Manipulation [5][6] offers an alternative 
methodology and has been shown to allow completion of high-precision 3-D 
tasks.  Unfortunately, this method does not allow standard stereo cameras to be 
used, as it requires widely separated and  highly vergent cameras and utilizes the 
simplified orthographic model (though later work created accuracy similar to the 
pinhole model) [7]. 

The Mars Exploration Rovers used stereo vision with calibration for placing 
instruments on rock and soil targets [8], but this showed some limitations in 
accuracy [9].  Recently, in space robotics applications, two additional approaches 
have been offered, HIPS [9] and AGATE [10][11].  Both of these approaches have 
shown promise on space-related platforms to produce high-precision, vision-based 
manipulation using stereo cameras, with an application of instrument placement.  
These papers also reported large numbers of experiments.  In particular, [9] 
showed the improved accuracy using HIPS compared to precalibrated stereo on 
NASA testbeds.  However, these testbeds typically have inaccurate kinematics 
(backlash, inconsistent zero offsets, lack of rigidity, etc.). 

2   Technical Approach 

In response to a request from a local manufacturer, several of the authors were 
involved in a project to use computer vision to automate the teaching of a robot 
task for parts with small lot sizes.  The details of that task are found in [12].  
While the corporation was pleased with the results of the project, the accuracy 
obtained was not sufficient for all of their parts.  As such, the authors have begun 
a detailed investigation of the accuracy obtained, and how that compares to other 
approaches.  It should be noted that the industry-focus of this project has 
influenced the technical approach. 

The goal of this paper is to answer the question of whether techniques such as 
AGATE can create significant improvement in accuracy when applied to an 
industrial robot by using local data to modify the parameters of the camera-robot 
model.  Also, while AGATE was developed for mobile manipulation (as it can 
control the mobile base and the manipulator relative to a visual target), this paper 
will use AGATE techniques for a fixed-base manipulator.  The paper further 
includes the first direct comparison of AGATE with HIPS.  Future work will 
compare these methods directly to visual servoing and traditional camera 
calibration techniques. 
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HIPS and AGATE both make use of the CAHVOR camera model [13].  In both 
cases, the cameras can be calibrated using a standard checkerboard, but are 
typically calibrated by moving the manipulator through a series of poses in camera-
space.  In summary, a least-squares minimization is completed to compute the 
CAHVOR parameters based on data sets made up of 3-D robot positions and the  
2-D image-plane appearance of the end effector in each camera.  This minimization 
is completed after the manipulator moves through a pre-programmed set of 
positions designed to cover a significant portion of the robot’s workspace and view  
of the camera(s). The CAHVOR parameters are then updated with additional 
measurements when they are available. Such measurements can be obtained while 
the end effector is approaching the target point.  Addition of the localized samples 
results in a mapping between image space and physical space that is not globally 
accurate, but is very accurate relative to the manipulator in the region of the target 
point.  This general approach has been shown to work well even in the presence of 
large kinematic errors [9][11].  Both HIPS and AGATE have been shown to 
provide the following advantages compared to traditional calibration methods:  
robustness to poor kinematics, the ability to deal with changes to the internal and 
external parameters of the camera, and the ability to achieve high precision 
manipulation relative to visually specified points.  In addition, AGATE has  
been shown to be able to control mobile manipulators, and use more than two 
cameras [11]. 

Robinson [9] showed the advantage of HIPS (which finds the CAHVOR model 
parameters based on manipulator observations of fiducials on the manipulator) 
over pre-calibrated stereo, and the advantage of adding the local information – 
both in simulation and in a large number of experiments with a mobile 
manipulator.  However, the manipulator in question was not as accurate as a 
typical industrial manipulator – it was less rigid and had significant kinematic 
errors (it was a prototype on a mobile manipulator testbed).  The primary goal of 
this study is to see if a similar improvement takes place using an industrial 
manipulator, or whether the improved rigidity and kinematic accuracy negates any 
improvement due to on-the-fly CAHVOR model updates.  For consistency with 
[9], we will call the version of the code that does not update the CAHVOR camera 
models during approach “Static AGATE” and the version that does update the 
camera models “Dynamic AGATE”.  

3   Experiments 

Experiments were conducted with the 6-axis ABB IRB-140 robot shown in  
Figure 1. The vision sensor is a pair of Point Grey Flea2 cameras, delivering  
640 x 480 RGB images at 15FPS. As shown in Figure 2, Cameras are placed on a 
common portable support with a baseline separation of 15cm, and are placed 
approximately 2.5m from the workspace.  While the cameras are effectively 
parallel, no particular efforts were taken to ensure a proper rectified configuration.  
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Fig. 1 Experimental Setup Fig. 2 Camera System 

 
  

 

Fig. 3 Close up of marker attachment and LEDs on robot end-effector 
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Fig. 4 Robot Coordinate System 
 
 
The communication between the robot and the PC is performed through the 

serial port, with a message-based protocol. The C++ program for perception, 
control and command runs on a desktop PC equipped with an INTEL XEON 
W3505 (2009), dual core 2.54GHz, with 4GB of RAM. 

Central to HIPS or AGATE is the ability to locate the end effector of the robot 
as it moves through the workspace. These image-plane locations, along with the 
corresponding location of the robot, are used to update the CAHVOR camera 
parameters.  To simplify this task, the robot’s end-effector is equipped with a LED 
blinking system as shown in Figure 3. The blinking frequency is roughly a third of 
the frequency of the cameras to avoid possible aliasing. We chose a rather simple 
design of the LED lamp, which does not require synchronization between the 
emitter (LED) and the receiver (camera). This is possible because the arm can be 
static during the acquisition of a set of images. Once the images are acquired, two 
images, respectively representing the mean value and the standard deviation over 
time of the intensity of each pixel, are computed. The cyan component of both 
images is computed using the green and blue planes (because our LEDs produce 
cyan rather than blue light). Then connected components of high standard 
deviation are extracted. These regions are detected as LEDs if their mean value 
over the cyan image is also sufficiently high. 

All control is done by the ABB’s controller. A directly-connected serial 
connection is used to transfer commands and coordinates to the ABB. More 
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details about the system, and the implementation of a precise manipulation task, 
can be found in [12]. 

A typical experiment consists of placing a fiducial in the workspace.  For 
Dynamic AGATE, the robot is commanded to move half the distance to the target, 
and an additional measurement is made.  If the results of this measurement are 
within normal bounds, this point is used to update the CAHVOR parameters.  The 
process is repeated several times, until the robot is less than 4mm from the final 
goal, at which point it is moved to the final goal position.  For Static AGATE, 
once the fiducial is found, the robot is moved directly to the target. 

 

4   Results 

To provide a measure of accuracy, the robot end 
effector was equipped with a standard whiteboard 
marker.  The marker was placed in a holding 
device that provides approximately 1cm of 
compliance along the axis of the marker (shown 
in Figure 3).  Circular fiducials were placed in the 
workspace, and the robot was instructed to 
approach the center of the fiducial and stop 5mm 
above the fiducial (above corresponds to the Z 
axis) of the base frame of the robot. 

The jog mode of the robot is then used to move 
straight down to mark the fiducial.  The vertical 
travel during the jog is used to measure the error in the Z direction.  The distance 
from the mark to the center of the fiducial circle can be used to measure the error 
in the X-Y plane in the robot base frame, since the fiducials are placed on this 
plane.  The X-Y-Z coordinate frame of the robot is shown in Figure 4.  A sample 
of the marked fiducial is given in Figure 5.  To provide a sense of scale, the outer 
diameter of the black circle is 76mm. 

Thirty tests were conducted using Static AGATE and Dynamic AGATE.  The 
tests consisted of 20 different physical locations throughout a region of the 
workspace (ten of the positions are reached twice).  Table 1 shows a summary of 
these measurements, under “TEST SET ONE”.  In summary, the mean error with 
Dynamic AGATE was 11.0mm, while the mean error with Static AGATE was 
14.6mm.  A t-test showed this to be significant at the 95% confidence level  
(t=-2.169, significance =0.038).  Dynamic AGATE showed a standard deviation 
of 7.8mm, reduced from 9.9mm with Static AGATE.   

Looking at the data in Table 1, it is clear that most of the difference between 
the two is due to the XY-plane error.  Comparing only this error, Dynamic 
AGATE resulted in a mean error (distance from the center of the cue) of 9.6mm 
compared to 13.5mm for Static AGATE.  A t-test showed this to be significant at 
the 95% confidence level (t=-2.135, significance =0.041).  It is also worth noting 
that the standard deviation of the errors was reduced by over 20% with Dynamic 
AGATE as well. 

 
Fig. 5 Marked fiducial 
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Using the data sets obtained during the calibration process and during the tests, 
a direct comparison was completed between AGATE and HIPS.  Both methods 
were used to project the observed locations of the LEDs from camera-space into 
physical space.  The methods use different approaches for this process.  While full 
details are outside the scope of this paper (see [9] and [11]), HIPS find the 3-D 
point at the center of the shortest line between the projecting rays.  AGATE finds 
the 3-D point that minimizes the image-plane error between the measured and 
projected points.  Despite these differing approaches, the results were very similar.  
The average difference (as measured by the norm of the vector between the 3-D 
projections) was 0.021mm, and the standard deviation was 0.025mm.  Given the 
scale of the other errors involved, the conclusion is that AGATE and HIPS would 
produce the same accuracy of control. 

 

 
Table 1 Summary of Results 

 

    

STATIC 
AGATE 
(mm) 

DYNAMIC 
AGATE 
(mm) % change 

Statistically 
Significant? 

TEST SET 1   

  Mean X-Y error 13.5 9.6 29 YES 

  Standard dev. X-Y 9.9 7.8 22   

  Mean total error 14.6 11.0 25 YES 

  Standard dev. Total 9.4 7.3 23   

TEST SET 2   

  Mean X-Y error 8.0 7.1 11 NO 

  Standard dev. X-Y 5.0 3.1 39   

  Mean total error 8.7 8.2 6 NO 

  Standard dev. Total 5.2 2.4 53   

5   Understanding the Source of Positioning Errors 

To draw any conclusions from the data presented, there must be an understanding 
of the sources of error that are included in the errors reported in Table 1.  The 
basic sources of error will be enumerated here: 

1) Errors due to the limitations on the mechanical system.  That is, a motor can 
only be commanded to within one encoder count – this limitation on the 
precision of control will manifest itself as an error in the final measurement. 

2) Error due to inaccuracies in the models and the limitations of the algorithms. 
3) Error in making the measurement. 
4) Error in the detection of the target. 
5) Error in the detection of the LEDs.   



252 J.-D. Yoder et al.
 

6) Error due to the kinematic modeling of the LEDs and the marker. 
7) Error in ensuring that the same physical point is selected in both cameras 

(correspondence error). 
 

While these are all sources of error, error #1 is very small for an industrial robot.  
ABB reports repeatability, not accuracy, of their robots.  The repeatability of the 
ABB 140 used in these tests is ± 0.03mm [14], which is insignificant compared to 
all other errors. 

 
Error #2 is related to the approach, and will be discussed later.  
 
Error #3 has been minimized by physically marking the fiducial for later 

measurement.  However, since the marker makes a point that has a diameter of 
over 1mm, it is likely that an error on the order of 1mm is reasonable for this item.  
A detailed examination of this could be undertaken by having multiple people 
measure the location of each mark, but this was not done for the experiments 
described here. 

Using a fiducial limits the magnitude of error #4, the detection of the target.  
Multiple measurements were taken (though not a statistically significant number), 
and it was found that the standard deviation on the location of the center of the 
fiducial was approximately 0.2 pixels.  While the volume of a voxel varies 
throughout the workspace, it is approximately 1.67x5.00x1.67mm (in X, Y, Z, 
respectively).  Thus, simply due to the resolution, one should expect errors with a 
standard deviation of approximately 1mm.   

Regarding error #5, the LEDs are detected using image-differencing in order to 
reduce the likelihood of false positives.  A center-of-gravity approach is used to 
find the center of each LED, and the two LED locations are combined into an 
“average” of their locations in order to reduce errors and eliminate the ambiguity 
between the two.  Multiple tests were run and the standard deviation for the 
detection of the LEDs was found to be negligible. 

Error #6 would always be present – the kinematics of any tool that is added on 
to the robot must be modeled and would always include error.  Note that when 
used in teach-repeat mode, this error would not cause any positioning errors.  
Because of the plan to use this in industry, the standard ABB functions were used 
to “teach” the ABB the location of the points of interest (the tip of the marker, and 
the point between the two LEDs).  This involves taking the point being taught to 
the same point in physical space from four different directions.  The ABB then 
completes a least-squares minimization to locate the point relative to the robot 
coordinate system.  For the data set shown in Table 1, the mean error for the 
marker was 0.73mm, while the mean error for the LED center position was 
0.41mm. 

Error #7, the correspondence error, is very important, and is related to the 
detection errors.  Essentially this error is due to the fact that a given item (LED, 
fiducial, etc.) in X-Y-Z space will produce 4 values in camera space (assuming 
two cameras).  If both cameras detect EXACTLY the same physical point, then 
there is no inconsistency between the camera-space measurements and the 
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physical space measurements.  However, this is impossible to do (as stated earlier, 
finding the center of the fiducial, for example, has a standard deviation of 0.2 
pixels).  An error of 1 pixel in the horizontal location of an item in one of the 
cameras, for instance, will create an error of over 20mm when it is projected back 
into physical space using the AGATE method.  This was found to be identical 
using HIPS. 

When computing the parameters of the CAHVOR camera model, many of 
these errors are included.  Recall that this computation is based on the image-plane 
location of the LEDs and the corresponding physical location of the robot.  Thus, 
errors #1-3, and #5-7 are included (all errors other than the marker kinematics and 
the fiducial errors).  In our experiments over multiple calibrations, these lead to a 
mean reconstruction error in the CAHVOR model of approximately 5mm.  The 
reconstruction error is found by using the CAHVOR parameters to project the 
LED locations back into 3-D space and comparing those locations to the actual, 
recorded 3-D locations of the robot. 

Given this understanding of the errors, some changes were made to the 
experimental procedure.  To mitigate the effects of the error of detection of the 
target (#4), and the related error in correspondence of the target (#7), the center of 
the fiducial was found ten consecutive times, and the average position of the 
center was used.  The system was taught the positions of the LED and marker 
again in order to mitigate error #6.  Thresholds were updated in order to take into 
account the large effects of correspondence error.  Finally, the CAHVOR 
parameters were updated again.   

After these changes, another 30 tests were conducted using both Static AGATE 
and Dynamic AGATE.  These results are shown in Table 1 as “TEST SET 2”.  
There is a clear improvement compared to TEST SET 1.   In summary, the mean 
total error was 8.2mm for Dynamic AGATE, and 8.7mm for Static AGATE, a 6% 
improvement using Dynamic AGATE.  The mean X-Y error was reduced to 
7.1mm for Dynamic AGATE, and 8.0mm for Static AGATE, an 11% 
improvement using Dynamic AGATE.  These differences are not statistically 
significant at a 95% confidence level.  It is worth noting, however, that the 
standard deviation of the total error was reduced over 50% using Dynamic 
AGATE. 

6   Main Experimental Insights 

There are three major experimental insights from this work. 

1) For TEST SET 1, Dynamic AGATE produced a statistically significant 
improvement compared to Static AGATE. 

2) For TEST SET 2, in which the system had reduced errors in terms of target 
identification and the kinematic model of the LED and Marker, Dynamic 
AGATE still produced better results, but not at a level to show statistical 
significance.  The variation in positioning errors, however, was greatly 
reduced. 

3) For the system described here, AGATE and HIPS produce effectively the 
same results. 
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It should be noted that the Dynamic AGATE discussed to this point in the paper 
typically resulted in six to eight model updates.  Experiments were conducted to 
see if additional updates would further improve the accuracy.  In order to do this, 
the approach was modified so that the robot moved one third of the way to the 
target each time rather than half way.  This resulted in, on average, five additional 
updates per experiment.  Another 30 experiments were conducted in this manner.  
However, no statistically significant change was observed.  Thus it was concluded 
that this number of updates slowed the system without a significant advantage in 
accuracy. 

The accuracy is not as high as that shown in previous work with AGATE and 
HIPS.  Examining the sources of error described above, there are a variety of 
reasons for this increased error.  Error #1 is much smaller than other systems 
tested, and errors #2 and #3 are comparable.  Error #6, however, is larger.  In 
previous work with HIPS and AGATE, highly accurate kinematic models of the 
end effectors (specifically the relationship between the end effector and the 
fiducials) were used.  It is more realistic for an industrial tool which will have to 
be changed regularly to have an operator use the tool-teaching algorithms built-in 
to the ABB.  However, this introduces more error.  Taking the mean of errors #1, 
#3, and #6 would predict a mean error of approximately 2mm.   

Errors #4, #5, and #7, however, should be expected to be larger in the 
experiments described in this paper than in previous work using HIPS or AGATE.  
This is because the distance from the cameras to the workspace is much greater 
(2.5m in this case compared to approximately 0.5m in previous studies).  This 
leads to increased error in several ways.  First, it increases the error in locating  
the target and the LEDs in the image plane.  Second, it increases the size  
of a voxel.  Thirdly, and most importantly, it increases the importance of stereo 
correspondence error.  The importance of this effect was shown in [15].  But in 
that set of experiments, the error shows was only 1.5mm/pixel.  In the experiments 
shown in this paper, the stereo correspondence error was over 20mm/pixel.  Given 
the magnitude of these errors, showing an positioning overall error on the order of 
10mm is consistent with expectations.  

It is also worth noting that a major advantage of this methodology is that it 
allows the placement of the stereo rig on a simple tripod.  This tripod can be 
moved relative to the robot without impacting the performance of the system, 
since the system can re-estimate the CAHVOR camera model at any time.  In 
industrial settings, the cameras would certainly be fixed – but this would provide 
the ability to adjust if the cameras are bumped or moved during operation or 
maintenance activities.  The method furthermore does not require that the images 
are rectified, and the alignment of one camera relative to the other is arbitrary, as 
long as the workspace can be seen by both cameras. 

7   Continuing Work 

While the work to date has shown that Dynamic AGATE shows improvement 
over Static AGATE, and that AGATE and HIPS produce effectively the same 
result, much work remains to be done.  In particular:  
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• Build a more accurate tool holder to improve the accuracy of measurements.  
It is unclear how much of the current error is due to the methodology, and 
how much is due to inaccuracy in the tool holder.  As can be seen in Figure 3, 
the current setup is simply clamped on, in a manner that is neither accurate 
nor repeatable. 

• Comparison with traditional CAHVOR stereo (using a checkerboard for 
calibration). 

• The use of more than two cameras (which is directly supported in AGATE). 
• Comparison with an “off the shelf” disparity-based stereo system.   
• Comparison with visual servoing. 

 
When complete, it is expected that this will provide a rich dataset of direct 
comparison of four different, previously-published approaches to the problem of 
visually-guided manipulation.  The one approach not specifically examined is 
Camera-Space Manipulation.  While this approach has shown very good results, it 
requires widely separated and highly vergent cameras, and therefore would require 
a completely different experimental setup than the other methods.  This would 
make a direct comparison difficult. 
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Session Summary  

Aerial robotics is a rapidly growing area. Recent advances in lightweight and 
durable airframes, low-power processors, compact batteries, and miniature low-
power sensors have driven the development of small, ready-to-fly platforms that 
are excellent testbeds for research in advanced motion control, planning, multi-
robot coordination, and sensor fusion, to name a few. At the other end of the size 
spectrum, military acquisition and deployment of unmanned drones has gone up 
nearly four orders of magnitude in a little over a decade. In spite of these dramatic 
advances, the level of autonomy of aerial robots is still relatively low and much 
remains to be done to develop systems that can function reliably in shared airspace 
over long periods of time in tandem with human operators while enduring 
significant environmental perturbation. The four papers in the session on Aerial 
Robotics highlight recent progress in various aspects of these problems. Das et al. 
in ‘Environmental Sensing using Land-based Spectrally-selective Cameras and a 
Quadcopter’, address the problem of planning a survey by an aerial vehicle that 
can best utilize high-fidelity but incomplete information from sensors deployed on 
the ground.   Shen and Michael in ‘State Estimation for Indoor and Outdoor 
Operation with a Micro-Aerial Vehicle’ described an algorithm for mapping using 
an aerial vehicle that rectifies the drift accumulated indoors when GPS is 
unavailable, thus enabling near-seamless indoor-outdoor operation. In ‘Influence 
of Aerodynamics and Proximity Effects in Quadrotor Flight’, Powers et al. 
describe a mechanical model for a small quadrotor that accounts for ground (and 
ceiling!) effect. An interesting application is the ability to use the difference 
between the predicted and actual rotor speeds as a sensor that measures proximity 
to the environment. Finally, Kottas et al. in ‘On the Consistency of Vision-aided 
Inertial Navigation’ give an analysis (and a practical demonstration) of estimator 
consistency when an inertial system is aided by a vision system observing features 
in the environment. Notably, this work is promising not only for aerial platforms 
but also to human-worn augmentation systems (e.g., for the visually impaired).  

 
 



Environmental Sensing Using
Land-Based Spectrally-Selective
Cameras and a Quadcopter

Jnaneshwar Das, William C. Evans, Michael Minnig,
Alexander Bahr, Gaurav S. Sukhatme, and Alcherio Martinoli

Abstract. We investigate the reconstruction of an environmental scalar field
using robotic mobility and heterogeneous sensing. Using two land-based,
immobile, co-located spectrally selective cameras, and a non-contact infrared-
based temperature sensor on a quadcopter, we study the problem of recon-
structing the surface temperature of the ground under survey. Both land units
— a thermographic camera for low-resolution thermal images and a commer-
cial digital camera for high resolution truecolor images — are mounted on
an elevated camera rig. We explore methods for field reconstruction using a
combination of the three imaging sensors. First, we show that the quadcopter
data is correlated with the synoptic snapshots obtained by the thermal imag-
ing camera. Next, we demonstrate upsampling of the low-resolution thermal
camera data with truecolor images. This results in high-resolution reconstruc-
tion of the temperature field. Finally, we discuss adaptive sampling techniques
that utilize the mobility of the quadcopter to ‘fill the gaps’ in data acquired
by the thermal imaging camera. Our work experimentally demonstrates the
feasibility of heterogeneous sensing and mobility to effectively reconstruct
environmental fields.

1 Introduction

Fast sampling of terrestrial environmental fields is of importance for vari-
ous studies. In this work, we address rapid sampling of environmental fields
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using static and mobile imaging sensors. Specifically, we demonstrate
effective reconstruction of the surface temperature field of a patch of vege-
tation. Accurate monitoring of surface temperature is desirable for
atmospheric boundary layer studies over complex terrain [1], to cite one ex-
ample. We describe an experiment where the surface temperature of a region
is observed with images from a land-based thermal imaging camera aug-
mented with truecolor images from a parallel-mounted commercial digital
camera. In addition, a downward-facing non-contact infrared temperature
sensor mounted on a quadcopter serves as a mobile sensing platform. The
land-based thermal imaging camera is mounted at an elevation along with
the truecolor camera, providing snapshots of the surface temperature and
high resolution true-color images respectively. The quadcopter serves as a
fast aerial observation platform, allowing rapid sampling of surface tempera-
ture using its downward-facing temperature sensor. This provides both speed
and flexibility compared to land-based observation platforms such as robotic

Fig. 1 Illustration of the experimental
setup to sample the surface temperature
of a patch of land

rovers. This work has three goals:
a) investigate upsampling of the
thermal camera data using high res-
olution truecolor images from the
digital camera, b) compare the tem-
perature data acquired by the quad-
copter with the synoptic thermal
image captured from the thermal
camera, and c) to explore adap-
tive sampling strategies that use
the synoptic data from the thermal
camera to guide the quadcopter to
regions of high prediction uncer-
tainty. Our goal is to demonstrate
synergistic use of mobile and static
sensors for rapid characterization of
environmental phenomena. Such a
capability is necessary when there
are constraints on the use of land-
based imaging sensors resulting in
sparse data. This can happen due to
long distance between test site and the land-based camera, or insufficient el-
evation of the camera rig. By using mixed sensing, we can reconstruct the
temperature field at a resolution higher than that provided by the individual
sensors.

The paper is organized as follows. In Section 2 we briefly describe related
work. In Section 3, we lay the groundwork for the analysis of the experimental
data by describing our technical approach. In Section 4, we describe our field
setup followed by analysis of the data from the field trials. We conclude with
a summary and discussion of future work in Section 5.
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2 Related Work

Ecological monitoring of large farmlands using UAVs has been studied for
rapid mapping and classification of vegetation [2]. Adaptive sampling for
environmental monitoring has been investigated in the context of intelli-
gent placement of static sensor nodes [3], and informative paths for mobile
aquatic platforms [4, 5]. Upsampling of multimodal remote sensing images
has been explored to fuse low-resolution hyperspectral images with high-
resolution truecolor images [6]. Our work presents an agile setup that pro-
vides a quick reconstruction of the environmental field in a region by use
of selective spectral-cameras operating at different resolutions, aided by the
mobility of a quadcopter.

3 Technical Approach

Our goal is to investigate the use of mixed sensing in the form of static land-
based cameras and a quadcopter to rapidly sample the surface temperature of
a terrestrial patch of vegetation. We will first describe the land-based camera
rig and the quadcopter, followed by a discussion of unwarping and correction
of the thermal and truecolor images. We then describe the three contributions
of this work for mixed sensing field reconstruction: a) upsampling of thermal
images using high-resolution truecolor images (Subsection 3.3), b) comparison
of quadcopter data with land-based camera images (Subsection 3.4), and c) an
adaptive sampling scheme for the quadcopter to augment land-based sensors
(Subsection 3.5).

3.1 Sensing Apparatus

Fig. 2 The camera rig consisting of a
thermographic camera and a digital true-
color camera mounted on a pan-tilt head

The sensing apparatus consists of
three imaging sensors, two mounted
on a land-based camera rig, and
one mounted on a quadcopter.
The camera rig consisted of an
FLIR A320 thermographic camera
with a resolution of 640x480 and
a CANON 300D digital camera,
both mounted on a tripod head,
triggered by a computer to si-
multaneously capture truecolor and
thermal images of the survey site.
The aerial platform was an As-
cending Technologies Hummingbird
quadcopter. It used its onboard
computer to log data from a
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non-contact IR temperature sensor at a rate of 5 Hz along with GPS data at
1 Hz. We chose an IR-based temperature sensor so that the quadcopter would
share a similar modality with the thermographic camera. A human operator
maneuvered the quadcopter via remote control. The IR sensor captured the
emitted IR radiance from a 10 degree view of field. Hence the temperature
captured by the sensor was dependent on the height from the target. How-
ever, in this work, we did not model the sensor properties, and ignored the
height of the quadcopter in flight.

3.2 Image Unwarping and Correction

Fig. 3 The quadcopter in-flight with the
downward looking infra red temperature
sensor

We first explore fusion of the ther-
mal and truecolor images for quick
inspection of the scene. Since the
thermal and truecolor cameras are
mounted at an elevation, generating
a perspective view of the scene, we
compute perspective transforms to
unwarp the truecolor and thermal
images. First, we manually marked
four landmarks in the thermal im-
age and the truecolor image. We se-
lected corners of man-made structures such as metal electric poles and con-
crete slabs because these were easily recognizable in both the thermal and
truecolor images.

Next, we must ensure that all data shares a common frame of reference. We
proceed by transforming all images to the Earth’s coordinate frame, with an
approach similar to that used during the image unwarping step. Landmarks
in the thermal and truecolor images are used along with landmarks in a
satellite truecolor image of the scene obtained from commercial map servers
(e.g., Google Earth). The transformation was computed using the OpenCV
library. Once a perspective transformation matrix is computed, we obtain
the unwarped data points z = [x, y, t]T , where x is the longitude, y is the
latitude, and t is the color value of the pixel that was unwarped.

3.3 Upsampling

To demonstrate upsampling of sparse thermal data using dense truecolor
data, we subsample a sparse set of points from the unwarped thermal camera
image along with the corresponding truecolor pixel values1. Our goal is to
learn a model that predicts surface temperature at unobserved locations using
1 Computed using a nearest neighbor search with the thermal camera data points.
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the truecolor data. The underlying assumption is that surface patches with
similar color will have similar temperature.

Gaussian Process Regression

We use Gaussian process regression (GPR) [7], a nonlinear Bayesian regres-
sion technique commonly used in geostatistics under the name ‘Kriging’. It
assumes that the samples from the function to be estimated are normally
distributed with the covariance between samples given by a ’kernel’ or co-
variance function. We consider the case where the observations are unbiased,
that is, the mean of the joint Gaussian distribution is zero. This can be sim-
ply satisfied by ’demeaning’ the observed data. As a result of its formulation,
GPR automatically achieves model regularization from data only, without
having to choose model complexity parameters a priori. Additionally, GPR
is defined completely by a kernel function that controls how quickly the in-
put space becomes decorrelated. This enforces smoothness constraints in the
trained function, ideal for spatial models where usually the observed values
for nearby input samples are more correlated than the ones farther apart.

Assume we have training data given by D = < x1, y1 >, ..., < xn, yn >,
drawn from the noisy process,

yi = f(xi) + ε (1)

where ε is a Gaussian noise term.
Given the training data, posterior mean and covariance for a test data

point x∗ is given by the following equations,

GPμ = k∗(K + σ2
nI)
−1y (2)

GPΣ = k(x∗, x∗) + k∗(K + σ2
nI)
−1k∗ (3)

The kernel function k is usually chosen to be a squared-exponential function
given by,

k(xp, xq) = e−
1

2λ2 |xp−xq|2 (4)

where λ is the decorrelation length scale. The hyperparameters for the kernel
function can be learned using iterative methods such as conjugate gradient
descent. K is the Gram matrix with its elements given by Kpq = k(xp, xq),
I is the identity matrix, and k∗ is the vector of covariances between the test
data point and the training data points.

To apply the GPR model to upsample thermal image data, let us consider
the unwarped pixels from the truecolor camera given by the vector Xtc =<
Lontc, Lattc, Rtc, Gtc, Btc >. We use nearest neighbor search to obtain a
training dataset of thermal camera image data points and their correspond-
ing truecolor pixel data. This is given by Xtrain =< Lon, Lat, R,G,B >,
and Ytrain = T . Now, we use GPR to learn a function f that maps predic-
tion points Xtest =< Lontest, Lattest, Rtest, Gtest, Btest > where Lontest and
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Lattest are the longitude and latitude of unobserved locations, and Rtest,
Gtest,and Btest are the RGB pixel values from the high-resolution images
captured by the truecolor camera corresponding to the query points.

3.4 Comparison of Quadcopter and Thermal Camera
Data

To investigate the feasibility of using a quadcopter along with a land-based
thermal camera, we need to compare the data obtained by the two sensors.
Linear interpolation on the quadcopter sensor data on a regular grid im-
mediately reveals visual similarity with the thermal imaging camera data.
However, for a quantitative comparison of the two datasets, we compute the
Pearson correlation coefficient for quadcopter data and the co-located ther-
mal camera data calculated using nearest-neighbor search on each quadcopter
data point. The Pearson correlation coefficient is given by,

R =

∑n
i=0(xi − x̄)(yi − ȳ)√∑n

i=0 (xi − x̄)2
∑n
i=0 (yi − ȳ)2

(5)

where x and y are the two sensor data streams being compared. Higher values
of R indicate a stronger correlation.

The imaging sensors on the thermographic camera and the IR sensor on the
quadcopter are not cross-calibrated at the outset. For calibration, we choose
a 440 sample data window (90 seconds) of the quadcopter data that is highly
correlated with the thermal camera data (R>0.8) and use it to learn a linear
mapping from raw quadcopter data to corrected quacopter data, given by,
tcorr = a1t+ a2, where t is raw quadcopter data point, tcorr is the corrected
data point, and a1 and a2 are regression coefficients.

3.5 Adaptive Sampling with Quadcopter

Fig. 4 illustrates the sparsity of data away from the thermal camera once the
acquired image is unwarped. This effect is more pronounced when the camera
rig is farther away from the test site, or not highly elevated. This scenario
will be common in unstructured environments. Also, there are sections of the
thermal image (the vertical corners) without any data points. Our goal is to
investigate field reconstruction that takes into account the uncertainty of esti-
mates from the thermal camera data as a result of data sparsity. We propose
greedily collecting data from regions with high variance. We use a sparser
version of the thermal camera data to build a probabilistic spatial model of
the temperature field using GPR as described earlier for the upsampling task.
Then, we greedily add data points and analyze how many points are needed
from the quadcopter data to reduce uncertainty in the reconstructed thermal
image.
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Fig. 4 Perspective corrected (top-view) thermal camera data highlighting sparsity
of measurements farther away from the camera (bottom of the image), and complete
lack of data in the top right and left corners

4 Experiments and Results

We carried out a series of field experiments on the EPFL campus in a 25m x
22m area with a significant portion being vegetation (grass), and a section of
gravel path (Fig. 5). This provided a natural environmental field for the mea-
surement of surface temperature. The land based camera-rig was mounted on
a tripod at an elevation of 5m and at a distance of 20m from the experiment
site. Images were captured simultaneously by both cameras every minute
during the course of the experiment. For our analysis, we use one such con-
current snapshot. The quadcopter was operated manually at a mean height
of 3.8m by a human pilot for a period of 10 minutes to capture the surface
temperature over a lawnmower pattern as shown in Fig. 6. We show results
from one of the field trials.

4.1 Image Unwarping and Correction

Fig. 7 shows the result of using visual landmarks in the truecolor and thermal
images to find the transformation between the two cameras, which was then
used to generate an overlaid image of the scene showing both truecolor and
thermal images. This is useful as an initial overview of the scene and can be
obtained in realtime. Next, we obtained a remotely-sensed truecolor image of
the scene from a commercial map-server. From this, we used visual landmarks
to compute a perspective transform to unwarp the images from the thermal
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Fig. 5 The experiment site was a 25m X 22m patch of land with varying density
of grass, and a gravel path. The camera-rig was at a height of 9m from the test site,
at a distance 30 m from the nearest edge of the test site.

(a) The quadcopter path
(solid red path) from one of
the experiment runs. A hu-
man operator maneuvered
the quadcopter to carry
out a ‘lawnmower’ pattern.

(b) Quadcopter temperature data
points from the field trial.

Fig. 6 Data from quadcopter field trial
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(a) Truecolor image from
Canon 300D digital cam-
era.

(b) Thermal image from
FLIR A320 thermo-
graphic camera.

(c) Truecolor and ther-
mal image superimposed
after image registration.

Fig. 7 Landmarks in the truecolor and thermal images used to generate an overlaid
image for quick survey of the scene

(a) Unwarped truecolor
image.

(b) Unwarped thermal camera image and linear inter-
polated quadcopter temperature data.

Fig. 8 Visual comparision of corrected truecolor image, thermal image, and inter-
polated quadcopter data

camera and the digital truecolor camera. Fig. 8 shows the unwarped top
view of the truecolor and thermal images. We performed interpolation on the
GPS-tagged surface temperature data collected by the quadcopter for initial
visual comparison of the two datasets. Fig. 8b shows this image.

4.2 Upsampling

As described in Section 3, we use GPR on thermal camera data augmented
with truecolor data to predict temperature at unobserved locations where
truecolor data are available. The result of the upsampling analysis is shown
in Fig. 9.
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(a) Sparse thermal camera data. (b) Sparse truecolor data corresponding
to thermal camera data.

(c) Dense prediction points, with true-
color data.

(d) Estimated thermal field.

Fig. 9 Upsampling thermal camera data with high-resolution truecolor data using
Gaussian process regression with input augmented with RGB data

4.3 Comparision of Quadcopter and Thermal Camera
Data

We computed the Pearson correlation coefficient between the quadcopter data
points and the perspective corrected data points from the thermal imaging
camera. Since the thermal camera data density is much higher than the quad-
copter data, we found the Euclidean nearest-neighbor thermal data points to
the quadcopter data. Fig. 10 shows the quadcopter data alongside nearest-
neighbor thermal camera data. The two vectors were of length 3607 data-
points each, and showed R = 0.477, demonstrating a statistically significant
correlation between quadcopter data and thermal camera data. Additionally,
to analyze the effect of outliers in the quadcopter data (for example, due to
unfavorable altitude), we computed the Pearson coefficient on a sliding win-
dow of 440 data points (corresponding to 90 second of quadcopter flight time).
The resulting distribution of correlation coefficient is shown in Fig. 11a.
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Fig. 10 Quadcopter data points (left) and nearest-neighbor thermal camera data
points (right)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Corr2

F
re

q
u

en
cy

 (
%

)

(a) Pearson correlation coefficient dis-
tribution for a sliding window of
440 datapoints over quadcopter and
nearest-neighbor thermal camera data.

28 30 32 34 36 38 40 42 44
25

26

27

28

29

30

31

32

33

Quadcopter temperature

T
he

rm
al

 c
am

 te
m

pe
ra

tu
re
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copter and thermal camera data.

Fig. 11 Correlation between quadcopter and thermal camera data, and plot of
linear cross-calibration fit
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Next, we cross-calibrate the quadcopter data with the thermal camera data
by finding a linear fit to a section of the quadcopter and thermal camera data
with R>0.8. Fig. 11b shows the the data points and the resulting linear fit.

4.4 Adaptive Sampling with Quadcopter

We flew the quadcopter remotely to carry out lawnmower surveys of the test
area capturing samples of temperature with the downward looking IR temper-
ature sensor. From this, we can choose points to emulate adaptive collection
of data. This approach allows us to try various techniques adaptively without
having to perform multiple experiments. We use a subsampled version of the
thermal camera image as the pilot data to learn a GPR-based probabilistic
regression model of the temperature field. We then use the variance of the
field to greedily choose new sample points. As a reference, we show the re-
constructed field from the quadcopter data in Fig. 12a. Fig. 12b shows the
initial reconstruction of the temperature field from the thermal camera data.
The top left and right corner of the reconstructed field are regions that ex-
hibit extrapolation, with high associated uncertainty, as showed in Fig. 12c.
Data from the quadcopter is used to fill these gaps, and in Fig. 12d, we see
twenty additional data points added greedily to the reconstruction from the
cross-calibrated quadcopter dataset. Each addition of a data point is followed
by relearning of the temperature field. As seen in this figure, as a result of
addition of the new samples, the top left corner of the field now exhibits
moderate temperature.

5 Discussion and Conclusions

In this paper, we presented an experiment using mixed sensing to reconstruct
the surface temperature of a patch of land. A land-based camera-rig consisting
of a thermographic camera and a high-resolution truecolor camera was used
to generate upsampled thermal images of the experiment site. A quadcopter
equipped with a downward looking IR temperature sensor measured surface
temperature during flight. We compared the data from quadcopter with the
thermal camera and found they are correlated (Pearson coefficient of 0.47).
Finally, we investigated adaptive sampling strategies to fill gaps in thermal
camera data using the quadcopter. We achieved this by using data from a
quadcopter run offline.

This work has limitations that merit future work. First, we have not in-
cluded the quadcopter altitude in the estimation of the temperature field.
Since the IR temperature sensor has a relatively large field of view, the alti-
tude has an impact on the measured data. This likely this has an impact on
the correlation between the quadcopter data gathered during the field trial
and the corresponding thermal camera data. Fig. 13 shows the distribution
of altitude for the 10 minute flight at the experiment site. In the future, we
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(a) GPR reconstruction on a regular
grid for quadcopter data. Black dots
show training data locations.

(b) GPR reconstruction on a regular
grid for thermal data. Black dots show
training data locations.

(c) Prediction variance for recon-
structed thermal image. Red regions
show high uncertainty.

(d) GPR reconstruction on a regular
grid for thermal data after 20 adaptive
samples from quadrocopter dataset.

Fig. 12 GPR reconstructed thermal and quadcopter data

Fig. 13 The distribution of quadcopter altitude during the field trial
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plan to model the IR-based temperature sensor as a pixel-average sensor and
take into account the effect of height while reconstructing the temperature
field. Second, we have used RGB data from the truecolor camera to aug-
ment the thermal camera image to perform upsampling. We plan to explore
other characteristics of the land patch in addition to RGB for this task. Fi-
nally, we have not carried out online adaptive sampling experiments with the
quadcopter. Instead, we collected data using a lawnmower survey and used
the data offline to emulate new samples. In future, we will carry out online
experiments to validate our approach.
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State Estimation for Indoor and Outdoor
Operation with a Micro-Aerial Vehicle

Shaojie Shen and Nathan Michael

Abstract. In this work, we detail a methodology for estimating the state of a micro-
aerial vehicle (MAV) as it transitions between different operating environments with
varying applicable sensors. We ensure that the estimate is smooth and continuous
throughout and provide an associated quality measure of the state estimate. We
address the challenge of maintaining consistency between local and global mea-
surements and propose a strategy to recursively estimate the transform between dif-
ferent coordinate frames. We close with experiments that validate the approach and
the resulting performance as a MAV navigates between mixed indoor and outdoor
environments.

1 Introduction

In this paper, we focus on the problem of estimating the state of a micro-aerial
vehicle (MAV) while operating in and transitioning between indoor and outdoor en-
vironments. Aerial vehicles offer mobility and perspective advantages over ground
platforms and can transition through small openings such as windows and doors.
This fact makes MAVs particularly applicable to problems such as search-and-
rescue and surveillance. In recent work, we focused on the problem of autonomous
indoor navigation in multi-floor environments using only onboard sensing and com-
putation [1]. Through our previous work, we developed a methodology that enables
mapping, localization, planning, and control of a MAV in complex indoor environ-
ments. This paper builds upon this previous work to permit operation in both indoor
and outdoor environments, including transitions between these mixed environments.

The problem of autonomous navigation with an aerial vehicle in outdoor or in-
door environments is thoroughly studied in the literature. Julier and Uhlmann [2]
and Merwe et al. [3] propose state estimation methods using IMU and GPS sensors
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Fig. 1 We address the estimation of the state of a micro-aerial vehicle as it transitions be-
tween indoor and outdoor environments. While the robot is equipped with a laser, GPS, mag-
netometer, and IMU, only a subset of those sensors may be operational at any time given the
robot’s state and the sensor operating conditions.

for navigation in outdoor environments. Recent developments toward autonomous
MAV operation in indoor environments using onboard sensors (IMU, laser, and
camera) include the works of Grzonka et al. [4], Bachrach [5], and Blosch et al. [6]
as well as our own work [1].

A challenge in operating in both indoor and outdoor environments is the fact that
the performance of sensors can vary between environments; sensors can provide
meaningful data in one environment while becoming compromised in another en-
vironment. In this work, we consider a vehicle equipped with a standard GPS unit,
laser range finder, magnetometer, and IMU (Fig. 1). The GPS provides relatively
inaccurate and latent information compared to the other sensors and is only oper-
ational when outdoors and in view of satellites. Similarly, the magnetometer only
provides accurate information when outdoors. The laser scanner provides accurate
information indoors but is compromised by direct sunlight and provides limited to
no information in large open spaces. The IMU is consistent and operational in both
indoor and outdoor environments but is too inaccurate to enable stable feedback
control as the only source of information. Conditions that challenge the sensor ca-
pabilities extend beyond just indoor and outdoor transitions and include negotiating
GPS-shadowing due to buildings and trees. A summary of sensor characteristics and
limitations is provided in Table 1.

Table 1 Characteristics and limitations of the onboard sensors on our MAV platform

Sensor Indoor Transition Outdoor Frame Accuracy Relevant Failure Modes
GPS × √ √

Global Low Obstructed view of satellites
Magnetometer × √ √

Global Low Magnetic interference
Laser

√ √ × Body High Direct sunlight, open spaces
IMU

√ √ √
Body Low None
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Consistency between local and global reference frames also becomes a challenge
when operating in environments where the primary position sensors provide either
relative or global state information. The fusion of global observations from GPS
and relative observations from sensors such as lasers and cameras is addressed by
Carlson [7] and Schleicher et al. [8]. These authors propose strategies to introduce
additional global constraints to the existing simultaneous localization and mapping
(SLAM) formulation to handle the correspondence between local and global frames.
Although these methods yield reasonable results, there is no guarantee that the re-
sulting pose estimate is low-latency and smooth, which is of vital importance for
stable feedback control of MAVs. Moore et al. [9] investigate the problem of main-
taining smoothness in the state estimate and handling position discontinuity due to
GPS interference, but these methods do not directly extend to a MAV as the ap-
proach relies on information only available to a ground vehicle (wheel odometry).
Additionally, we require a notion of the quality of the estimate as we wish to lever-
age robust control methods that require both a mean and covariance measure of the
state estimate [10].

While there are similarities in terminology in our presentation to submap-based
SLAM approaches [11, 12], there are fundamental differences in the problem defi-
nition and approach. For submap-based SLAM, local maps are created via a sparse
sampling of the robot trajectory and local maps are assumed to be accurate. Local
maps are linked by incremental motion constraints or loop-closure correspondence.
Pose graph optimization techniques can be applied to obtain globally consistent
maps [13, 14]. However, for this work, local maps are created based on sensor avail-
ability rather than distance, we do not limit the size of local maps, and we allow for
the existence of estimation errors within each local map. Further, our local maps are
not linked by any incremental motion constraints, and thus the above optimization
techniques are no longer applicable.

2 Approach

In this section we discuss our approach to estimating the state of the MAV during
indoor and outdoor operations. We discuss the necessity of using different reference
frames for state estimation in Sect. 2.1. In Sect. 2.2, we detail an Unscented-Kalman
Filter (UKF) formulation that includes process and measurement models for the sen-
sors under consideration. We discuss globally consistent map building and manage-
ment, as well as loop closure detection and map correction in Sect. 2.3. We conclude
by integrating planning and control modules into our proposed approach to form a
complete autonomous aerial navigation system (Sect. 2.4).

We build upon our previous work [1] and therefore assume the existence of a
laser-based SLAM solution running in real-time onboard the robot. The output of the
laser-based SLAM is a pose estimate of the robot in three dimensions with respect
to the map generated via the laser observations.
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Fig. 2 Graphical illustration of the use of different coordinate frames in our work. The robot
travels along a straight line (black) between two buildings (cyan) in the global frame. When
navigating outdoors and away from buildings, only GPS is available as the primary position
sensor, and the resulting pose estimate is inaccurate (dotted line). Laser-based SLAM pro-
vides an accurate position estimate (dashed line) in a local map (yellow) when navigating
indoors or close to the buildings. We address the problem of ensuring consistency between
global and local information sources by creating a navigation frame and estimate its transform
to the global frame using a recursive formulation.

2.1 Reference Frames

We define four reference frames for this work.

• Body frame: defined with respect to the body of the robot and denoted by (·)b.
All laser and IMU measurements are made in the body frame.

• Global frame: defined with respect to the inertial frame and denoted by (·)g . All
global measurements (GPS and magnetometer) are made in the global frame.

• Local frame: defined with respect to the origin of the laser-based localization so-
lution when transitioning between regions of mixed sensor information (clarified
below) and denoted by (·)l.

• Navigation frame: defines the reference frame used by the onboard feedback con-
trol (clarified below) and denoted by (·)n.

Multiple local frames may be defined through the course of an experiment (see
Fig. 2). A new local frame is created when the covariance matrix associated with
the laser-based localization, which is computed via an inversion of the Fisher’s In-
formation Matrix of the laser scan [15], changes from singular to nonsingular. Such
events correspond to when the laser sensor provides sufficiently salient information
that we may again include this information in the state estimate (i.e. the sensor is
no longer in a failure mode). In experimentation, this event usually occurs when the
robot starts to observe strong geometric structures (e.g. buildings) or escapes from
strong direct sunlight. Note that even if the laser-based localization fails to provide a
valid solution, the state of the robot in the current local frame can still be estimated
via sensor measurements made in other frames (IMU, GPS and magnetometer) and
transformed into the local frame.
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As noted above, maintaining a consistent, smooth, and continuous state estimate
for use by the onboard feedback control is of particular importance when working
with a MAV and considering operation in mixed environments. We define the frame
associated with this state estimate as the navigation frame and now detail its defini-
tion. For the sake of brevity, we only consider the pose of the robot,p, in this section
and simplify the estimation problem to consider a 2D system (x and y) where the
vertical position and velocity of the robot is estimated by downward facing laser
beams and a pressure sensor. Therefore, the GPS and magnetometer sensors pro-
vide 2D pose and velocity observations while the laser-based localization system
provides a 2D pose estimate. Roll and pitch angles are obtained directly from the
IMU.

Denote the true global pose of the robot as pg and the global pose estimate of
the robot as p̂g . Similarly, the pose in the kth local frame is given by plk. The direct
output of the laser-based localization system, which is a noisy estimate of plk, is
defined as p̂lk. To simplify the presentation, we use the pose compounding (⊕) and
inverse (�) operators to capture the transformation between different coordinate
frames [16].

Consider a robot, initialized at the global origin, that moves into and out of re-
gions with available laser-based localization information such that it now considers
the definition N local frames. The true global pose of the robot is:

pg = p
lf
1 ⊕ p

lf
2 ⊕ · · · ⊕ p

lf
N−1 ⊕ plN (1)

whereplfk is the final pose of the vehicle in the kth local frame. As plfk is unavailable,
we consider the estimated value:

p̂
lf
k = p

lf
k ⊕ e

lf
k k = {1, · · · , N − 1}

p̂lN = plN ⊕ elN

where e
lf
k and elN are estimation errors. We define the pose in the navigation frame

as follows:

p̂nN = p̂
lf
1 ⊕ p̂

lf
2 ⊕ · · · ⊕ p̂

lf
N−1 ⊕ p̂lN

=
(
p
lf
1 ⊕ e

lf
1 ⊕ p

lf
2 ⊕ e

lf
2 ⊕ · · · ⊕ p

lf
N−1 ⊕ e

lf
N−1 ⊕ plN

)
⊕ elN

= pnN ⊕ elN

(2)

where the subscript (·)N in pnN indicates the number of local frames integrated into
the navigation frame. Hence, the navigation frame serves a similar role as wheel
odometry for ground robots. Clearly pnN �= pg as pnN incorporates the accrual of
error in pose estimates and is therefore suitable for applications that mainly require
only local accuracy, such as feedback control and obstacle avoidance. Thus, we
define pnN as the robot pose in the navigation frame (see Fig. 2). The estimated pose
in the navigation frame, p̂nN , follows a similar error model as the pose estimate in
the current local frame p̂lN .
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We must now consider the transform between the global frame and the navigation
frame. For notational convenience, we first define qk as:

qk = p̂
lf
1 ⊕ p̂

lf
2 ⊕ · · · ⊕ p̂

lf
k . (3)

Therefore, if there areN local frames, then q1, · · · , qN−1 are all known and readily
computed constant transforms.

Define the time-varying rigid body transform from the navigation frame to the
global frame as tnN such that:

pg = tnN ⊕ pnN . (4)

As tnN is not directly accessible, we estimate this transform (with error e):

t̂nN = tnN ⊕ e.

The resulting global pose estimate may be written as:

p̂g = t̂nN ⊕ p̂nN = tnN ⊕ e⊕ pnN ⊕ elN .

For this work, we consider the state estimation problem in the navigation frame,
transforming all global sensor information into this frame via tnN . We now discuss a
recursive filtering formulation that permits estimation of this transform along with
the state of the robot.

2.2 UKF-Based Sensor Fusion

We employ a UKF framework with delayed measurement compensation to estimate
the pose and velocity of the robot, hidden sensor bias parameters, and the transfor-
mation between the global and navigation frames [3]. All quantities, unless other-
wise specified, are defined with respect to the navigation frame. We also assume
that N local frames have been created since the beginning of the experiment. The
subscript and superscript (·)nN will be omitted for the remainder of the paper. The
system state is defined as:

x =
[
r, ṙ,Φ, ab,Ψb, t

l
N

]
T (5)

where r = [x, y, z] T is the position of the robot and Φ = [φ, θ, ψ] T is the
roll, pitch, and yaw Euler angles that represent the 3D orientation of the robot.
ab =

[
abx , aby , abz

]
T is the bias of the 3D accelerometer in the body frame

and Ψb = [φb, θb]
T is the bias of the roll and pitch estimate from the IMU.

tlN =
[
Δxl, Δyl, Δψl

]
T is a 2D rigid body transformation between the global

frame and navigation frame and related to tnN . The definition of tlN is discussed
later in this section. As the UKF formulation follows a similar structure to existing
works [3], we only briefly discuss the process model and provide specific details
pertinent to the measurement update step.
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Process Model

We consider an IMU-based process model:

xt+1 = f(xt, ut, vt)

u = [ω, a] T = [ωx, ωy, ωz, ax, ay, az]
T

v = [vω, va, vab
, vΨb

] T

where u is the body frame angular velocities and linear accelerations from the IMU.
v represents additive Gaussian noise associated with the gyroscope, accelerometer,
accelerometer bias, and IMU attitude bias.

Measurement Model – Laser-Based SLAM

The measurement from the laser-based localization relative to the local frame is:

z̃lN =
[
x̃lN , ỹ

l
N , ψ̃

l
N

]
T.

We transform this measurement into the navigation frame prior to the measurement
update. The transformed laser measurement is:

z̃nN = qN−1 ⊕ z̃lN

where qN−1 is defined in (3). The measurement model is linear and may be written
as:

znN = Hnx+ nnN , Hn =

⎡
⎣1 0 0
0 1 03×6 0 03×8

0 0 1

⎤
⎦

where Hn extracts the 3-DOF pose in the state and nnN is additive Gaussian noise.
Note that the laser-based localization error covariance matrix is obtained in the

local frame, not the navigation frame. We must transform this covariance matrix to
the navigation frame. Assuming independence between the noise for position and
heading, the covariance matrix of nnN is:

ΣnN =

[
Σnxy 02×1

01×2 σnψ
2

]
, Σnxy = RψqN−1

ΣlxyR
T
ψqN−1

where RψqN−1
is the 2D rotation matrix obtained from the heading component in

qN−1, and Σlxy is a laser-based covariance measure and computed using the meth-
ods proposed in [15]. The standard deviation in heading remains the same in both
the local frame and the navigation frame (e.g. σnψ = σlψ). The measurement up-
date for the laser-based localization is linear and can be performed via a KF update
step.
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Fig. 3 The effects of accrued error in the estimate of the transformation from the navigation
frame into the global frame, tnN , are amplified as the robot moves away from the global origin.
We choose to estimate tlN rather than tnN directly in our recursive filter formulation. Here, we
show experimental data collected when transitioning between local frames. The red and black
lines show the measurement prediction, zg , and the dashed magenta lines show the raw GPS
position measurement, z̃g . In Fig. 3(a), we try to estimate tnN directly. As the robot moves
away from the origin, the UKF is unable to directly estimate tnN , resulting in inconsistency
between the measurement prediction and the actual GPS measurement. Figure 3(b) shows
the result of the proposed approach (estimating tlN ), where the measurement prediction is
consistent with the actual measurement.

Measurement Model – GPS and Magnetometer

GPS provides information about the horizontal vehicle position and velocity in the
global frame. We ignore GPS altitude information as it is generally inaccurate. The
magnetometer provides a measure of global orientation. The assembled measure-
ment vector is:

z̃g =
[
x̃g, ỹg, ˜̇xg, ˜̇yg, ψ̃g

]
T.

We now motivate the estimation of tlN in the system state (5). Recall that tnN rep-
resents the transformation from the navigation frame into the global frame and in-
cludes the accrual of estimation errors during the evolution of the vehicle operation.
As the robot moves away from the global origin, the effects due to error in the
estimate of the transformation are amplified. Consequently, the estimator perfor-
mance decreases. Therefore, rather than estimate the transform directly, we treat the
transform as a compound operation on the current and prior transforms and pose
estimates:

tnN ⊕ qN−1 = t̂
nf

N−1 ⊕ qN−1 ⊕ tlN

where t̂nf

N−1 is the estimated transformation between the global frame and the navi-
gation frame at the time of the initialization of the current local frame. This approach
moves the origin of the frame transform from the global origin to qN−1.
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Based on the above discussion, the GPS measurement model is defined as:

tnN = t̂
nf

N−1 ⊕ qN−1 ⊕ tlN � qN−1 = [Δx, Δy, Δψ] T

zg = hg(x) + ng =

⎡
⎢⎢⎢⎢⎣
RΔψ

[
x
y

]
+

[
Δx
Δy

]

RΔψ

[
ẋ
ẏ

]
ψ +Δψ

⎤
⎥⎥⎥⎥⎦+ ng

and can be performed via a nonlinear UKF measurement update procedure. The
consequence of estimating tlN and indirectly computing tnN is a significant improve-
ment in overall estimator accuracy and consistency (see Fig. 3).

Measurement Model – Altitude, Roll, and Pitch

The vertical position and velocity of the robot is observed by downward facing laser
beams and a pressure sensor while the roll and pitch angles are obtained from the
IMU. Therefore, the third measurement is assembled as:

z̃a =
[
z̃, ˜̇z, φ̃, θ̃

]
T.

As za is a subset of the system state x, this measurement model follows a linear
form:

za = Hax+ na, Ha =

⎡
⎢⎢⎣04×2

1
0
0
0

04×2

0
1
0
0

0
0
1
0

0
0
0
1

04×4

0
0
1
0

0
0
0
1

04×3

⎤
⎥⎥⎦

whereHa extracts the required elements in the system state andna is additive Gaus-
sian noise.

2.3 3D Map Generation

We associate a 3D local map with each local frame. If a valid laser-based localization
solution is available, the laser scan is transformed into the local frame and the 3D
map is created and updated via a multi-volume occupancy grid data structure [17].
We may transform the local map associated with local frame k into the global frame
via its origin in the navigation frame qk−1 and the corresponding estimated frame
transform t̂nk .

We match the current local map against all previous local maps using a multi-
resolution scan matching algorithm [18]. Detection of correspondences between the
current and previous local maps results in the alignment and merger of these maps.
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2.4 Planning and Control

While the focus of this work is on estimation, we validate our approach by integrat-
ing it with the planning and control components of the autonomous aerial navigation
system. All experimental results consider the overall performance of the navigation
system.

We use an RRT-based planner for online trajectory generation and obstacle avoid-
ance given the current 3D map. The desired goals for the planner are provided by
high-level commands from the human operator.

We employ a gain-scheduled LQR controller based on pre-computed optimal
gains at various levels of state estimate accuracy [10]. To establish the expected
state estimate accuracy across different environments, we experimentally obtain a
set of representative covariance matrices by flying the robot in different environ-
ments and determine LQR gains offline. In practice, we find that this step is only
necessary once and the pre-computed gains are applicable to all other experimental
environments.

All high-level goals are provided by the operator in the global frame and trans-
formed into the navigation frame prior to being sent to the planner and controller.
Note that the transform tnN is time varying and therefore the desired waypoint in
the navigation frame changes over time. This subtle point highlights a key contribu-
tion and goal of this work, that despite the drift and non-smooth nature of GPS and
magnetometer information along with changing reference frames, we defer these
considerations to the goal definition in the navigation frame, not the vehicle state
estimate.

3 Experimental Results

3.1 Experiment Design and Implementation Details

We present experimental results to demonstrate the performance of the proposed
algorithm in mixed indoor and outdoor environments. We first detail a representative
experiment that investigates the validity of the methodology detailed in this work.
We then briefly outline experimental trials in other environments to demonstrate
repeatable performance.

The robot platform is sold by Ascending Technologies, GmbH [19] and equipped
with an IMU (accelerometer, gyroscope), magnetometer, and pressure sensor. We
developed custom firmware to run at the embedded level to address feedback con-
trol and estimation requirements. The other computation unit onboard is a 1.6GHz
Atom processor with 1GB of RAM. All sensing and processing is done onboard the
robot without need for external infrastructure. We outfitted the robot with a Hokuyo
UTM-30LX (laser) and a uBlox LEA-5T GPS module. A custom 3D printed mount
is attached to the laser that houses mirrors and redirects a small number of laser
beams upward and downward. Communication with the robot for monitoring ex-
periment progress is via 802.11n networking. Figure 1 shows a picture of our robot
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platform. All algorithm development is in C++ using ROS [20] as the interfacing
robotics middleware.

There are two modes of operation for our robot (1) high-level waypoint con-
trol (discussed above) and (2) kinematic control using a desired velocity command
provided by the operator. Switching between control modes can be done seam-
lessly without aborting the experiment. In either operation mode, the robot is au-
tonomously controlled using the onboard state feedback and operator guidance (via
desired waypoint or velocity inputs). As operator input, planning, and control are
not the focus of this work, we only note that we switch between these modes during
the experiments based on operator preference.

3.2 Autonomous Flight with Indoor/Outdoor Transitions

We now detail a representative field experiment conducted at an urban operations
(UO) testing facility. Aerial satellite imagery of the experimental site and the result-
ing 3D map generated online by our system are shown in Fig. 4(a). The experimen-
tal site contains indoor environments, outdoor environments with building structure,
and open outdoor spaces.

The experiment begins as the robot takes off in an open courtyard where laser-
based localization fails to provide any valid solution (Fig. 5(a)), The robot flies
inside a nearby building via an open window (Fig. 5(b)) and navigates the various
rooms and corridors of the building (Fig. 5(c)) prior to exiting the building through a
door located on the second story of the building (Fig. 5(d)). The robot then flies near
a sparse wooded area (Fig. 5(e)). The robot is intentionally oriented away from the
building so that the laser scanner does not observe any strong geometric structures.
The experiment concludes as the robot returns to the courtyard, yielding loop clo-
sure across multiple local maps (Fig. 5(f)). Three local maps are created during the
experiment and aligned into a globally consistent map when the robot returns to the
courtyard and detects loop closure. An overlay of the resulting globally consistent
3D map with the corresponding satellite imagery is detailed in Figs. 4(b) and 4(c).

The estimated trajectory of the robot in the navigation frame is shown in Fig. 6(a).
We are always able to obtain the position estimate in the global frame, p̂g, via the
current transform estimate t̂nN (according to (4)) as shown in Fig. 6(b). A compar-
ison between the position estimate in the navigation frame and the global frame
(with reference GPS measurements) is shown in Fig. 6(c). It is clear that when valid
GPS measurements are available, the global position estimate, p̂g, is consistent with
these global measurements, showing the validity of the recursively estimated frame
transform t̂nN . While the navigation frame drifts over the length of the vehicle tra-
jectory, the role of the navigation frame is to maintain a locally consistent state
estimate. The smoothness and continuity of the position and velocity estimate in the
navigation frame is presented in Fig. 7.

To highlight the performance of the position estimate and associated estimator
quality resulting from switching sensors, we provide the position estimate and cor-
responding 3σ error bounds for a subset of the trajectory in Fig. 8. We can clearly
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(a)

(b) (c)

Fig. 4 Aerial imagery of the experiment site with an overlay of the 3D map generated online
during the experiment. Both large open spaces and confined indoor spaces are observed in
the experimental setting. Perspective views of the map are visible in Figs. 4(b)-4(c). Videos
of the experiments are available at http://mrsl.grasp.upenn.edu/shaojie/ISER2012.m4v.

see changes in the estimation quality when adding or removing the laser-based lo-
calization from the system. However, note that even during rapid sensor addition
and removal, the position estimate remains smooth and continuous.

3.3 Operation in Different Environments

To demonstrate that our approach is applicable in a variety of environments, we pur-
sued two additional field tests at the Franklin Field at the University of Pennsylvania
(Fig. 9(b)) and a training building at the Philadelphia Fire Academy (Fig. 9(c)). In
both cases, the experiment considered at least one outdoor to indoor transition and in
the latter case, also included operation in a multi-story building. Due to space con-
straints, we do not detail the full analysis of the experimental results here and only
show an overlay of the resulting global trajectories on the corresponding satellite im-
agery. Although there is no ground truth information available, we can empirically
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(a) (b) (c)

(d) (e) (f)

Fig. 5 The MAV flies between indoor and outdoor environments during an experimental trial.
We highlight the position of the robot with a red circle.
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Fig. 6 Trajectory of the robot in the navigation frame (Fig. 6(a)) and the global frame
(Fig. 6(b)). Figure 6(c) shows a comparison between the state estimate in the navigation
and global frame.
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Fig. 7 Position and velocity estimate in the navigation frame in X-Y directions. Note that
there are no discontinuities or jumps in the position estimate despite adding and removing
sensors.
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Fig. 8 A detail of the position estimate with associated error bounds corresponding to Fig. 7
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Fig. 9 Autonomous flight experiments in multiple environments. The red trajectory in
Fig. 9(a) is detailed in Sect. 3.2.
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verify that the there is no conflict between the estimated trajectories of the robot and
the satellite imagery. All analysis of the resulting experimental data yields similar
commentary to the discussion in Sect. 3.2.

4 Conclusion and Future Work

In this work, we detail a methodology for estimating the state of a micro-aerial ve-
hicle as it transitions between different operating environments with varying appli-
cable sensors. We propose using a separate coordinate frame, called the navigation
frame, to ensure smoothness in the state estimate and provide robust handling of
sensor failures. We address the challenge of maintaining consistency between local
and global measurements and propose a strategy to recursively estimate the trans-
form between different coordinate frames. We present field experiments of a MAV
navigating between mixed indoor and outdoor environments using the onboard state
estimate for feedback control. We close by analyzing experimental results, show-
ing local smoothness, global consistency, as well as repeatability of the proposed
approach.

We are interested in moving forward by enhancing our current methods with
vision-based state estimation methods so that our system can handle more general
environments where laser and GPS information may be unavailable or unusable. We
are also interested in adapting our current map alignment and loop closure methods
to incorporate information from multiple robots.
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Influence of Aerodynamics and Proximity
Effects in Quadrotor Flight

Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev,
Bruce Kothmann, and Vijay Kumar

Abstract. The dynamic response and performance of a micro UAV is greatly in-
fluenced by its aerodynamics which in turn is affected by the interactions with fea-
tures in the environment in close proximity. In the paper we address the modeling of
quadrotor robots in different flight conditions that include relative wind velocity and
proximity to the ground, the ceiling and other robots. We discuss the incorporation
of these models into controllers and the use of a swarm of robots to map features in
the environment from variations in the aerodynamics.

1 Introduction

With recent advances in aerial robotics it is now possible to design and build vehi-
cles that can fly autonomously in three-dimensional, cluttered, indoor environments.
However, flying close to such obstacles as pillars, through windows, close to the
ground or near ceilings changes the dynamics of the vehicle because of changes in
the aerodynamics. For autonomous flight, it is essential to understand and antici-
pate these changes and develop controllers that are responsive and adapt to these
changes. Indeed, we want to be to exploit the asymmetry introduced by features in
the environment the same way birds are able to do during flight [8].

Nature also offers many benefits of flying in flocks in close proximity. Experi-
mental evidence suggests benefits of higher efficiency [7], superior localization [6],
better decision making [5], and survival [15]. Similar benefits can be potentially
realized in groups of aerial robots. Once again it essential to be able to model the ef-
fects of flight in close proximity and develop controllers that are informed by these
models.

We are interested in autonomous micro helicopters, exemplified by coaxial ro-
tor crafts [3], ducted fans [16], quadrotors [4] and hexarotors, and specifically in
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small quadrotors such as the ones recently demonstrated in [11] that weigh less than
100 grams, are less than 0.25 meters, and are agile in three-dimensional flight. In
quadrotors, the lift generated by the aircraft depends on the flow conditions near
the propellers and the propeller speeds. These are coupled with the rigid body dy-
namics, the dynamics of the propeller and the motor dynamics. In a quadrotor, an
onboard motor controller is used to control the motor current with feedback loops
that incorporate information from onboard gyros and accelerometers and position
relative to either features in the environment or with respect to a global coordinate
system. However, the actual motor speed and the effective forces and moments act-
ing on the airframe are a complex function of the aerodynamics. It is this function
that must be properly understood and modeled in order to produce agile flight.

Previous investigation of quadrotor aerodynamics has shown the importance of
considering aerodynamics in quadrotor control [9]. We take a different approach
here that incorporates blade element theory. We choose this approach in order to
frame our considerations in terms of rotor speeds.

In this paper, we describe the modeling of a single rotor and the robot (Sec. 2)
as well as our testbed (Sec. 3). We investigate the effect of proximity to surfaces on
thrust produced (Sec. 4) and measure thrust versus speed in different flow condi-
tions with our experimental test rig and in-flight data (Sec. 5). We show that the lift
produced by a propeller is affected by relative wind velocity and by proximity to the
ground and ceiling and develop empirical models that lend themselves to control.
Finally, we demonstrate applications to control and sensing (Sec. 7).

2 Dynamics and Control

The dynamic model and control for the micro quadrotor is based on the approach
in [13]. As shown in Figure 1, we consider a body-fixed frame B aligned with the
principal axes of the quadrotor (unit vectors bi) and an inertial frame A with unit
vectors ai. B is described in A by a position vector r to the center of mass C and
a rotation matrix R. In order to avoid singularities associated with parameterization,
we use the full rotation matrix to describe orientations. The angular velocity of
the quadrotor in the body frame, given by ω̂B = RT Ṙ, where ˆ denotes the skew-
symmetric matrix form of the vector.

As shown in Fig. 1, the four rotors are numbered 1-4, with odd numbered rotors
having a pitch that is opposite to the even numbered rotors. The angular speed of
the rotor is ωi. The resulting thrust, Ti, and the reaction moment, Mi, are given by:

Ti = kT ω2
i , Mi = kMω2

i (1)

where the constants kT and kM are empirically determined for a propeller in still
air. For our micro quadrotor, the motor dynamics have a time constant less than 10
msec and are much faster than the time scale of rigid body dynamics and aerody-
namics. Thus we neglect the dynamics and assume Ti and Mi can be instantaneously
changed. Therefore the control input to the system, u, consists of the net thrust in
the b3 direction, u1 = Σ4

i=1Ti, and the moments in B, [u2,u3,u4]
T , given by:
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Fig. 1 The reference frames and propeller numbering convention
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where L is the distance from the axis of rotation of the propellers to the center of the
quadrotor.

The Newton-Euler equations of motion are given by:

mr̈ = −mga3 + u1b3 (3)

ω̇ = I −1

⎡
⎣−ω×I ω +

⎡
⎣ u2

u3

u4

⎤
⎦
⎤
⎦ (4)

where I is the moment of inertia matrix along bi. The main error in this model
comes from the simplistic assumption underlying (1) that the lift force and drag
moments are directly proportional to the square of the motor speed. In reality they
are complex functions of the motor speed and environmental conditions.

Given a desired trajectory, rT , the controller derives the input u1 based on position
and velocity errors:

u1 = (−Kpep−Kvev +mga3) ·b3 (5)

where ep = r− rT and ev = ṙ− ṙT . From the desired acceleration and a chosen yaw
angle the total desired orientation can be found. As described in [13], the desired
moments are expressed as a function of an orientation error, eR, and an angular
velocity error, eω :

[u2,u3,u4]
T =−KReR−Kωeω , (6)
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Fig. 2 The kQuadNano [1]

where KR and Kω are diagonal gain matrices. Finally we compute the desired rotor
speeds to achieve the desired u.

3 Experiment Testbed

For the experiments presented in this work we use the kQuadNano developed by
KMel Robotics [1] shown in Figure 2. The vehicle uses four 8 cm diameter fixed-
pitch propellers. The vehicle propeller-tip-to-propeller-tip distance is 21 cm and the
total weight with a battery is about 76 grams.

We use a Vicon motion capture system [2] to sense the position of each vehi-
cle at 100 Hz. This data is streamed over a gigabit ethernet network to a desktop
base station. High-level control is done in MATLAB on the base station which sends
commands to each quadrotor at 100 Hz. The base station sends, via custom radio
modules, the desired commands, containing orientation, thrust, angular rates and
attitude controller gains to the individual quadrotors. The onboard rate gyros and
accelerometer are used to estimate the orientation and angular velocity of the craft.
The main microprocessor runs an attitude controller and sends the desired propeller
speeds to each of the four motor controllers at 600 Hz. A more detailed description
of the experimental setup is presented in [12].

Experiments were also performed using a custom thrust test rig. The test rig
includes a load cell from Transducer Technologies rated for 100 g for measuring
thrust and electronic instrumentation for data collection. The rotor for testing is
mounted on a rod and attached to a lever which transmits the thrust to the load cell.
The test rig is pictured in Fig. 3a.
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(a) Thrust Test Rig

V
α

ω

(b) Diagram of Rotor

Fig. 3 The test rig (left) and a schematic showing the relative wind speed and the angle of
attack, α

4 Effect of Proximity to Horizontal Surfaces

It is known that rotorcraft operating near surfaces experience a “ground effect”
where the rotors produce more thrust per unit power compared to flight at a large
distance from the ground. One proposed mathematical description of ground effect
[10], based on the method of images, is

T
T∞

=
1

1− ( R
4z)

2
(7)

Here R is the radius of the rotor, z is the vertical distance from the ground, T is the
thrust produced by the propeller in ground effect, and T∞ is the thrust produced at
the same power outside of ground effect. Note that for z

R = 2 the predicted ratio
between T and T∞ is just 1.016. Therefore, this formula predicts that ground effect
is negligible when the rotor is more than one diameter off the ground, z

R > 2 [10].
In order to test the ground effect in flight, the quadrotor was commanded to hover

at a range of distances above the ground for 10 seconds and the average rotor speed
required to maintain hover was recorded. This test provides a relationship between
height and angular speed required to produce a constant thrust. The data for this
test is shown in Fig. 4a. The general trend predicted by (7) is observed in this data
since the propeller requires a lower rotor speed to maintain hover at lower heights.
However, in this data the ground effect can be observed up to about 20 cm ( z

R = 5)
which is significantly higher than (7) predicts.

Unlike larger helicopters, micro quadrotors can be used for indoor missions. This
motivates the investigation of a “ceiling effect” which is present when the vehicle is
close to an overhead plane. Performing a similar experiment, we found data for the
ceiling effect as shown in Fig. 4b. The ceiling effect is not as large as the ground
effect as observed by the smaller change in average rotor speed for the same sepa-
ration. Note that while the ground effect pushes the vehicle away from the ground,
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(b) Ceiling Effect

Fig. 4 Effect of proximity to horizontal surfaces. Each data point is based on 10 seconds
of hover data for a vehicle with propellers with R = 4 cm. Note that noise could likely be
reduced by averaging data for a longer time period.

the ceiling effect pulls the vehicle towards the ceiling which can cause a crash in the
worst case.

5 Aerodynamics of Vertical and Forward Flight

The thrust produced by a rotor in flight is in general a function of the relative velocity
between the rotor and the surrounding air, V , as well as the angle of attack α as
shown in Fig. 3b. For the situation where α = π

2 , the craft is said to be in climb.
The velocity of the slipstream increases as it passes through the rotor. We refer to
this additional velocity imparted by the rotor as the induced velocity, ν . Momentum
theory analysis relates the additional kinetic energy of the air at an infinite distance
from the rotor to the thrust, and provides us with an expression for the thrust in
climb or descent [10]:

T = ṁw = 2ρAν |V +ν| (8)

Here T is the rotor thrust, ρ is the density of air, A is the area swept by the rotor, ṁ
is the mass flow through a disc of area A and w is the velocity of the air an infinite
distance after it has passed through the rotor. In order to have a complete system of
equations, we turn to blade element theory to find another expression for the thrust
in climb from a rotor [10]:

T =
ρabcω2R3

4

(
θtip− V +ν

ωR

)
(9)

Here ω is the rotor speed, R is the radius of the rotor, θtip is the pitch angle at the
blade tip, a is the lift curve slope, b is the number of blades on the rotor, and c is
the blade chord. a, b, c, and θtip are functions of the rotor geometry alone. Note that
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if V is 0, the induced velocity is equal to
√

T
2ρA , and this expression becomes the

familiar T = kω2 in (1).
Given (8) and (9), a climb velocity V and angular speed ω we can solve a

quadratic equation for ν and then use either expression to find the thrust. In (9)
we have two groups of terms describing the geometry of the rotor which depend
on assumptions about the rotor construction, e.g., that it is ideally twisted and has a
constant chord. By grouping the terms we can rewrite (9) as

T = k1ω2 + k2(V +ν)ω (10)

where k1 and k2 are determined by the rotor geometry and the density of air. One
approach for finding these constants would be to measure the physical parameters
of the propeller, however, this approach suffers from reliance on many assumptions
about the blade geometry. Instead we choose to empirically determine these con-
stants. We collect test rig and in-flight data to find the constants which best describe
the experimental data. The in-flight test was performed by commanding a micro
quadrotor to ascend or descend at a constant velocity. We then measured the steady
state rotor speed to determine ω required to produce a thrust of mg at the given ver-
tical velocity. Several data points were collected for each velocity by adding small
amounts of weight to the quadrotor to vary the required thrust. In addition, mea-
surements from the thrust test rig provide data for a variety of rotor speed and thrust
combinations. We use the thrust from all these trials to compute the induced veloc-
ity from (8). Next we note that the unknowns appear linearly in (10). We combine
the data from all trials and use a linear least squares method to determine the con-
stants which best fit the data. The experimental data and the fitted model is shown in
Fig. 5. The maximum error between the fit and the experimental data is .64 g over
all trials.
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Once we have constants k1 and k2, we can predict the thrust at a given V and ω
using our model following a two step process:

1. First, solve for ν by finding the roots of the quadratic equation formed from (8)
and (9). Choose the positive root as the reasonable physical induced velocity.

2. Substitute ν into equation (9) to find the predicted thrust.

We can implement this procedure in reverse to find the ω which produces a given
thrust at the current vertical velocity. The inclusion of this approach in the control
law improves tracking performance as shown in Sec. 7.

In forward flight, we must add angle of attack, α , to our model as shown in
Fig. 3b. The equations for thrust become

T = 2ρAν
√

V 2 + 2Vν sinα +ν2 (11)

and

T =
ρabcω2R3

2
(

θ
3
+

V 2 cos2 αθ
2ω2R2 +

V sinα +ν
2ωR

) (12)

where θ is the pitch angle and is a function of rotor geometry alone as we are con-
sidering fixed pitch rotors [10]. The equation for ν is now a fourth order polynomial
instead of a quadratic. We characterized the dependence of thrust on rotor speed
using the thrust test rig for five angles of attack and four wind speeds at each angle.
The total thrust produced by the rotor decreases notably with increased wind speed
in a given direction. As the angle of attack increases, the thrust variation due to
wind speed decreases, as the component of wind velocity perpendicular to the rotor
increases more slowly. At α = 30◦, the effect of wind speed has decreased signifi-
cantly, such that the largest observed difference between the no wind condition and
the highest wind speed condition is 1 g.

While the data from the test rig is consistent with our model, it is not completely
consistent with the data collected in free flight. We suspect this is primarily due to
our inability to reproduce the flow conditions during free flight. The data from the
test rig in the no wind condition is consistent with the in flight data and so was used
in fitting the model. This is a subject of ongoing investigation as we continue to
determine the best model for wind effects on small aerial vehicles.

6 Effect of Neighboring Vehicles

Micro quadrotors can be used in teams to cooperate to accomplish tasks that they
individually cannot perform. If we are to reliably control formations of vehicles,
we should be aware of the effects that neighboring quadrotors have on one another.
It is known that vehicles have difficulty flying in the downwash of other vehicles
[14]. Here we investigate the effect of nearby quadrotors in the same plane. We
flew quadrotors along the same 3 meter long trajectory but in several scenarios as
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Fig. 6 The dependence of thrust on rotor speed and wind speed

illustrated in Fig. 7. For the first scenario (quadrotor 1) we evaluated the perfor-
mance of a single quadrotor flying by itself without neighbors. For the second sce-
nario (quadrotors 2, 3 and 4) we investigated the effect of quadrotors traveling in
close proximity in the same direction. And for the final scenario (quadrotors 5, 6
and 7) we tested the effect of quadrotors traveling close together but in different
directions. For each scenario the command to an individual quadrotor was the same.
Each quadrotor was commanded to start at hover, accelerate at 1 m/s2 to a speed
of 1.5 m/s and then decelerate to a stop at the same acceleration all at a constant
height of 1 m. Note that for the scenarios with multiple vehicles the desired separa-
tion between vehicles was set to 40 cm.

Each scenario was run for 10 trials. The standard deviations in position error for
each quadrotor for each trial, labeled 1-7, are shown in Fig. 8. As expected, the
error is the direction of travel is the worst. There does not appear to be a significant
change in any error from one configuration to another. One interesting observation
is that the leading quadrotor (number 2) in the second scenario exhibits a slightly
larger error in the direction of travel than the vehicles that follow it (numbers 3 and
4). We hypothesize that this is because quadrotors 3 and 4 are “drafting” quadrotor
2 and experience less aerodynamic drag which leads to slightly increased tracking
performance.
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Fig. 7 Three scenarios for testing the effect of neighboring vehicles. Dotted lines separate
the scenarios and arrows illustrate the commanded trajectories for the vehicles. Left: A single
quadrotor. Middle: Three quadrotors moving in the same direction. Right: Three quadrotors
moving in opposite directions.

Fig. 8 Standard Deviations in Position Errors for 10 trials for each of the 3 scenarios shown
in Fig. 7. The number along the x axis indicates that the 10 data points above it correspond to
the trials for the vehicle number shown in Fig. 7. The dotted lines separate the three scenarios.

7 Applications

7.1 Blind Terrain Mapping

Here we exploit the ground effect discussed in Sec. 4 to enable a team of quadrotors
to build a height map of the terrain over which they fly. No sensors are required
to build this map, only knowledge of the average rpm required to hover. At slow
forward velocities, we can assume that the thrust produced is approximately thrust
required to hover. We used a team of five micro quadrotors to sweep an area of
varying height in the z direction at a lateral speed of 6 cm/s at a constant height
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of 20 cm. Vehicles flew at a separation distance of 60 cm and made four equally
spaced passes through the environment. Three different 60 cm × 60 cm blocks with
heights of 15 cm, 10 cm, and 6 cm were placed in the environment. We recorded the
low-pass filtered rotor speed required to hover along each trajectory. This data can
be used with the ground effect data shown in Fig. 4a to create a map of the terrain
height underneath the vehicles. The rotor speed required to hover collected during
the experiment is compared to the required rotor speed predicted from our model
and the actual terrain map is shown in Fig. 9. Here darker colors represent smaller
rotor speeds (taller terrain). From the data we can clearly identify the location of
the tallest two blocks in the environment and somewhat identify the presence of
the shortest block. Note that this approach is not likely useful for developing high-
resolution ground maps with a high degree of accuracy but it is useful for getting a
rough estimate of the terrain map. In addition, it may be useful in detecting sudden
changes in height during mapping for verification of other sensors.
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Fig. 9 Terrain Map - darker colors represent smaller rotor speeds and taller terrain

7.2 Control Compensation

Our standard quadrotor control law assumes the relationship between thrust and ro-
tor speed is simply T = kT ω2. However, as described in Sec. 5 this is only true
when a propeller is in a stationary air field. Here we show that we can improve our
controller performance by replacing the standard mapping with our model fit to the
data for a quadrotor described in Sec. 5. As shown in Fig. 10a, when commanded to
follow a trajectory along the z axis ascending at a velocity of 1.9 m/s, the standard
uncompensated controller causes the quadrotor to lag behind the desired position up
to 6 cm. This is because the propeller produces less thrust when ascending than it
does when stationary for the same rotor speed. In Fig. 10b, we use a compensated
controller that takes into account the vertical velocity of the vehicle in order to cal-
culate the desired rotor speed from the desired thrust. This compensated controller
reduces the maximum error to 2 cm for the same trajectory.
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(a) Uncompensated (b) Compensated

Fig. 10 z error when following an ascending vertical trajectory at 1.9 m/s. The trajectory is
2.7 m long and the commanded acceleration when starting and stopping is 2 m/s2.

As shown in Fig. 11, the controller compensation improved performance to a
greater extent with increasing ascent velocity as expected. The compensation did
not have an appreciable effect on performance in descent. This is likely because
the increase in thrust during descent is not as great as the decrease in thrust during
ascent for the same speed.

Fig. 11 Compensated and Uncompensated Controller Performance. The deviation from the
trajectory decreases with added compensation.

8 Conclusions

In this paper, we address the modeling of aerodynamic effects for a small quadrotor
flying through three-dimensional environments in close proximity to environmental
features and neighboring quadrotors. We develop models from first principles that
explain the dependence of thrust generated by the propellers on different parameters
and empirically determine the coefficients for this model. We present data collected
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for a single rotor on a test rig as well as data collected from quadrotors in flight. We
show how such models can be used to improve performance in flight and to infer the
presence of ground features without additional sensors for blind mapping. A logical
future step is to test the rotor performance in a larger variety of wind conditions,
from strictly laminar flow to turbulent or time varying flow, in order to characterize
the performance.

In the future, we plan to apply the results of this work to more complicated esti-
mation and control problems, which will allow more robust operation of quadrotors
in diverse environments. Further investigation of the influence of aerodynamics on
the operation of small multi-rotor vehicles will allow engineers to make better de-
cisions when designing vehicles and their controllers. In addition, experimentally
verifiable models of quadrotor aerodynamics will help enable UAVs to detect and
correct for the fluctuating environments that they encounter while in operation.
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On the Consistency of Vision-Aided Inertial
Navigation

Dimitrios G. Kottas, Joel A. Hesch, Sean L. Bowman, and Stergios I. Roumeliotis

Abstract. In this paper, we study estimator inconsistency in Vision-aided Inertial
Navigation Systems (VINS). We show that standard (linearized) estimation ap-
proaches, such as the Extended Kalman Filter (EKF), can fundamentally alter the
system observability properties, in terms of the number and structure of the unob-
servable directions. This in turn allows the influx of spurious information, leading
to inconsistency. To address this issue, we propose an Observability-Constrained
VINS (OC-VINS) methodology that explicitly adheres to the observability proper-
ties of the true system. We apply our approach to the Multi-State Constraint Kalman
Filter (MSC-KF), and provide both simulation and experimental validation of the
effectiveness of our method for improving estimator consistency.

1 Introduction

Many estimation problems in robotics, and in particular localization, involve non-
linear process and measurement models. Existing estimators, such as the Extended
Kalman Filter (EKF), often suffer from inconsistency when applied to such tasks.
As defined in [2], a state estimator is consistent if the estimation errors are zero-
mean and have covariance smaller than or equal to the covariance calculated by the
filter. In other words, an inconsistent estimator is overconfident in the accuracy of
its estimates and its errors grow over time, possibly even causing divergence.

Julier and Uhlmann [14] first reported EKF inconsistency for 2D Simultaneous
Localization and Mapping (SLAM). Since then, others have developed methods that
seek to mitigate inconsistency in 2D SLAM (e.g., [1, 5]). However, little was known
about the causes of inconsistency until recently. Specifically, in [9, 11] we have
shown that a main cause of inconsistency is the mismatch between the observabil-
ity properties of the linearized system used by the EKF [or the Unscented Kalman
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Filter (UKF)] and the underlying (true) nonlinear system. As a remedy, after iden-
tifying the unobservable directions either analytically [9] or numerically [10], we
enforced them, either indirectly, by appropriately selecting the linearization points
where the Jacobians are evaluated [11], or directly, by projecting the Jacobians onto
the observable portion of the state space [10].

While most of the emphasis has been on 2D, very little is known about the incon-
sistency of 3D localization. This is primarily due to the complexity of the motion
and measurement models involved in estimating a 15 (instead of 3) dimensional
state. In this paper, we focus on Vision-aided Inertial Navigation Systems (VINS)
that fuse data from a camera and an Inertial Measurement Unit (IMU) to track the six
degrees-of-freedom (d.o.f.) pose of a sensing platform. Numerous VINS approaches
have been presented in the literature, including methods based on the EKF [4, 22],
UKF [6], and Batch-least Squares (BLS) [26]; however, these have not investigated
the issue of VINS inconsistency.

The main contributions of this paper are the following:

• We study the observability properties of VINS and analytically determine the
four unobservable directions (i.e., rotation about the gravity vector and global
translation).

• We identify and solve the conditions that the VINS propagation and measurement
Jacobians need to satisfy in order to ensure that the observability properties of
the estimator match those of the true linearized system.

• We validate the proposed approach and demonstrate its capability to improve
consistency through Monte-Carlo simulations and real-world experiments.

Although the proposed methodology is general enough to be applicable to any lin-
earized estimator (e.g., EKF, UKF), in regular or inverse filter form, and regardless
of the number of robot poses considered (smoother vs. filter), due to space limita-
tions, we hereafter focus on Visual-Inertial Odometry (VIO) using the Multi-State
Constraint Kalman Filter (MSC-KF) [22].

The remainder of this paper is organized as follows: We first review the related
work (Sect. 2), followed by a description of the VINS model and the observability
properties of VINS (Sect. 3). In Sect. 4, we introduce our Observability Constrained
(OC)-VINS methodology for mitigating inconsistency, which we apply to the MSC-
KF (Sect. 5). We validate our approach with simulation trials (Sect. 6) and real-
world experiments (Sect. 7). Lastly, we provide our concluding remarks and discuss
our future research directions (Sect. 8).

2 Related Work

For the task of IMU-camera extrinsic calibration, Mirzaei and Roumeliotis [19], as
well as Kelly and Sukhatme [15], have analyzed the system observability using Lie
derivatives [7] to determine when the IMU-camera transformation is observable.
Jones and Soatto [13] studied VINS observability by examining the indistinguish-
able trajectories of the system [12] under different sensor configurations (i.e., in-
ertial only, vision only, vision and inertial). Martinelli [18] utilized the concept of
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Fig. 1 Sensor platform comprising an IMU and a camera. {I q̄G,
GpI} are the quaternion of

orientation and position vector describing the pose of the sensing frame {I} with respect to
the global frame {G}. The feature’s 3D coordinates in {G} and {I} are denoted as Gf, and If,
respectively.

continuous symmetries to show that the IMU biases, 3D velocity, and absolute roll
and pitch angles are observable for VINS.

VINS inconsistency was recently investigated by Li and Mourikis [16]. Specifi-
cally, they studied the link between the VINS observability properties and estima-
tor inconsistency for the bias-free case, and leveraged the First-Estimates Jacobian
(FEJ) methodology of [9] to mitigate inconsistency in VIO. In contrast to their work,
our approach has the advantage that any linearization method can be employed (e.g.,
computing Jacobians analytically, numerically, or using sample points) by the esti-
mator. Additionally, we show that our approach is flexible enough to be applied in
a variety of VINS problems such as VIO or SLAM.

In this work, we study the observability properties of the ideal linearized VINS
model (i.e., the one whose Jacobians are evaluated at the true states), and show it has
four unobservable d.o.f., corresponding to three-d.o.f. global translations and one-
d.o.f. global rotation about the gravity vector. Due to linearization errors, the number
of unobservable directions is reduced in a standard EKF-based VINS approach, al-
lowing the estimator to gain spurious information and leading to inconsistency. To
address this problem, we introduce a modification of the EKF-based VINS where
its estimated Jacobians are updated so as to ensure that the number of unobserv-
able directions is the same as when using the true Jacobians. In this manner, the
global rotation about the gravity vector remains unobservable (as it should) and the
consistency of the VINS EKF is significantly improved.

3 VINS Model

In what follows, we present an overview of the propagation and measurement mod-
els that describe the general case of a VINS, along with the main results of our ob-
servability analysis. For simplicity, we consider the case of a single physical feature
being observed over multiple time steps; however, the analysis is straightforward to
extend to the multiple feature case.
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3.1 State Vector and Propagation Model

The 19×1 system state includes the IMU pose and linear velocity together with the
time-varying IMU biases and the 3D coordinates of the feature (see Fig. 1), i.e.,

x =
[

I q̄T
G bT

g
GvT

I bT
a

GpT
I | GfT

]T
(1)

where I q̄G(t), GpI(t), and GvI(t) are the orientation, position, and velocity of the IMU
frame {I} with respect to the global frame {G}, bg(t) and ba(t) are the gyroscope
and accelerometer biases, and Gf is the feature’s position expressed in {G}.

The system model describing the time evolution of the state is (see [27]):

I ˙̄qG(t) = 1
2 Ω (Iω(t))I q̄G(t), GṗI(t) = GvI(t), Gv̇I(t) = Ga(t) (2)

ḃg(t) = nwg(t), ḃa(t) = nwa(t), Gḟ(t) = 0 , (3)

where Iω and Ga are the rotational velocity and linear acceleration, and

Ω(ω)�
[−�ω×� ω
−ωT 0

]
, �ω×��

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (4)

Here, �ω×� denotes the skew-symmetric matrix parameterized by ω . The
time-varying biases are modeled as random-walk processes driven by white
zero-mean Gaussian noise nwg(t) and nwa(t), respectively, with autocorrelations
E[nwg(t)nwg

T (τ)] = Qwgδ (t − τ) and E[nwa(t)nwa
T (τ)] = Qwaδ (t − τ). The gy-

roscope and accelerometer measurements, ωm and am, are:

ωm(t) =
Iω(t)+bg(t)+ng(t) (5)

am(t) = C(I q̄G(t))(
Ga(t)− Gg)+ba(t)+na(t). (6)

The noise terms, ng and na, are modeled as zero-mean white Gaussian random pro-
cesses. The gravitational acceleration Gg is known with respect to the global frame
{G}. The matrix C(q̄) is the rotation matrix corresponding to the quaternion q̄.
Lastly, the time derivative of Gf is zero, since the camera observes a static scene.

Linearizing at the current estimates and applying the expectation operator on both
sides of (2)-(3), we obtain the state estimate propagation model

I ˙̄̂qG(t) =
1
2

Ω(Iω̂(t))I ˆ̄qG(t),
G ˙̂pI(t) =

Gv̂I(t) ,
G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t)+ Gg (7)

˙̂bg(t) = 03×1 ,
˙̂ba(t) = 03×1,

G˙̂f (t) = 0 (8)

where â(t)=am(t)−b̂a(t), and Iω̂(t)=ωm(t)−b̂g(t).
The 18× 1 error-state vector is defined as

x̃ =
[

Iδ θ T
G b̃T

g
GṽT

I b̃T
a

Gp̃T
I

Gf̃T
]T

. (9)
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For the IMU position, velocity, biases, and the observed feature, an additive error
model is utilized (i.e., ỹ = y− ŷ is the error in the estimate ŷ of a quantity y), while
for the quaternion we employ a multiplicative error model [27]. The main advantage
of such an error model is that it allows us to represent the attitude uncertainty by a
3× 3 covariance matrix, which is a minimal representation.

The linearized continuous-time error-state equation is

˙̃x(t) =
[

Fs(t) 015×3

03×15 03

]
x̃(t)+

[
Gs(t)
03×12

]
n = Fc(t) x̃(t)+Gc(t)n (10)

where n =
[
nT

g nT
wg nT

a nT
wa

]T
, Fc is the error-state transition matrix, and Gc is the

input noise matrix, with

Fs =

⎡
⎢⎢⎢⎣

−�ω̂(t)×� −I3 03 03 03
03 03 03 03 03

−CT (I ˆ̄qG(t))�â(t)×� 03 03 −CT (I ˆ̄qG(t)) 03
03 03 03 03 03
03 03 I3 03 03

⎤
⎥⎥⎥⎦ , Gs =

⎡
⎢⎢⎢⎣
−I3 03 03 03
03 I3 03 03
03 03 −CT (I ˆ̄qG(t)) 03
03 03 03 I3
03 03 03 03

⎤
⎥⎥⎥⎦ .

The discrete-time state transition matrix from time t1 to t, Φ (t, t1), is computed
in analytical form [8] as the solution to the matrix differential equation Φ̇ (t, t1) =
Fc (t)Φ (t, t1), with initial condition Φ (t1, t1) = I18. As we show in [8], the struc-
ture of Φ (tk+1, tk) = Φ (tk+1, t1)Φ (tk, t1)

−1 when the state contains the IMU pose,
velocity, biases, and a single landmark is given by

Φk+1 = Φ (tk+1, tk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 03 03 03 03

03 I3 03 03 03 03

Φ31 Φ32 I3 Φ34 03 03

03 03 03 I3 03 03

Φ51 Φ52 δ tI3 Φ54 I3 03

03 03 03 03 03 I3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (11)

In the ensuing analysis, we consider k≥ 1 and define Φ1 := Φ (t1, t1) = I18.

3.2 Measurement Model

As the sensor platform moves in the environment, the camera observes point fea-
tures, which are tracked across images. Generally, in a VINS [21], these measure-
ments are exploited to concurrently estimate the motion of the sensing platform and,
optionally, the structure of the environment.

We employ the pinhole camera model to describe the perspective projection of
the 3D point f on the image plane and model the measurement zk at time step tk, i.e.,

zk = 1/z
[
x y
]T

+ηk,
[
x y z

]T
= If = C(IqG)

(
Gf− GpI

)
, (12)
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where C(IqG) is the rotation matrix from {G} to {I} and ηk follows a Gaussian
distribution with E[ηk] = 02×1 and E[ηkηT

k ] = σ2
η I2. Note also that, without loss of

generality, we express the image measurement in normalized pixel coordinates, and
consider the camera frame to be coincident with the IMU1. By differentiating the
nonlinear measurement model (12), we obtain the measurement Jacobian:

Hk = Hcam
[
HθG 03×9 HpI | Hf

]
(13)

Hcam =
1
z

[
1 0 −x

z
0 1 −y

z

]
, HθG = �If×�, HpI =−C(I q̄G) , Hf = C(I q̄G) .

3.3 System Observability Analysis

In order to compute the analytical expressions of the four unobservable directions,
we form the observability matrix M(x∗) =M, as a function of the linearization point
x∗, for a system observing a feature over time steps t1 . . . tN , i.e.,

M =

⎡
⎢⎢⎢⎣

H1Φ1

H2Φ2Φ1
...

HNΦN · · ·Φ1

⎤
⎥⎥⎥⎦ . (14)

Lemma: In VINS, when using the true state to evaluate H and Φ , each block row
of the observability matrix has the following form

Mk = Hcam,kC
(

I q̄G,k
)[�Gf−GpI,1− GvI,1δ tk−1 +

1
2

Ggδ t2
k−1×�C(I q̄G,1)

T Dk −Iδ tk−1 Ek −I3 I3
]
,

where δ tk−1 = (k− 1)δ t, and Dk and Ek are time-varying matrices.

Proof: See [8].

Theorem: The right nullspace of the observability matrix of a VINS spans four
directions, i.e.,

MN1 = 0, N1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

03 C(I q̄G,1)
Gg

03 03×1

03 −�GvI,1×�Gg
03 03×1

I3 −�GpI,1×�Gg
I3 −�Gf×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎦
=

[
NR,1

N f ,1

]
(15)

where the 15× 4 matrix NR,1 comprises the nullspace elements corresponding to
the sensor platform (robot) state, and the 3× 4 matrix N f ,1 corresponds to the fea-
ture. We note that, the first three columns of the matrix N1 correspond to global
translations, while its fourth column corresponds to global rotations about Gg.

1 We perform both intrinsic and extrinsic camera/IMU calibration off-line [3, 19].
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Proof: See [8].
In the preceding analysis, the system is linearized at the true state, hence, the

aforementioned unobservable directions correspond to the true linearized system
model. In practice, we do not have access to the true state and hence we typically
linearize at the current state estimate. However, this causes the observability matrix
of the estimated system M̂ = M(x̂) to have higher rank (a fact that can be easily
verified by numerically evaluating M̂ during any experiment).

4 Observability-Constrained VINS (OC-VINS)

Ideally, we would like to design a filter that adheres to the true unobservable direc-
tions of the system. However, this would require knowledge of the true sensor pose
and landmark position, which is clearly unrealizable in practice. Alternatively, we
require that the estimator adheres to the number and structure of nullspace direc-
tions by ensuring that M̂N̂1 = 0 is satisfied for every block row of M̂, i.e.,

ĤkΦ̂k . . . Φ̂1N̂1 = 0, k ≥ 1. (16)

We do so by appropriately modifying Φ̂k and Ĥk at each time step so that2

N̂k+1 = Φ̂k+1N̂k , ĤkN̂k = 0, k ≥ 1 (17)

where N̂k, k ≥ 1 is computed analytically based on (15). We hereafter present our
method for initializing the nullspace (Sect. 4.1), and employing the nullspace to
preserve the system observability properties during the propagation (Sect. 4.2) and
update (Sect. 4.3) steps of the filter.

4.1 Nullspace Definition at Time Step k

At each time step, we compute the nullspace N̂k as a function of the state estimate,
and use it to enforce the unobservable directions. For the robot state, the initial
nullspace as well as the nullspace at all subsequent times are [8]

N̂R,1 =

⎡
⎢⎢⎢⎢⎣

03 C
(

I ˆ̄qG,1|1
)

Gg
03 03×1

03 −�Gv̂I,1|1×�Gg
03 03×1

I3 −�Gp̂I,1|1×�Gg

⎤
⎥⎥⎥⎥⎦ , N̂R,k =

⎡
⎢⎢⎢⎢⎣

03 C
(

I ˆ̄qG,k|k−1
)

Gg
03 03×1

03 −�Gv̂I,k|k−1×�Gg
03 03×1

I3 −�Gp̂I,k|k−1×�Gg

⎤
⎥⎥⎥⎥⎦ , (18)

2 Although this could also be accomplished by appropriate selection of the linearization
points (as in [9]), we instead choose to employ information projections of the Jacobians
Ĥk and Φ̂k since this allows more freedom in the way that we compute these matrices
(e.g., analytically, using sample points as in the UKF, or through numerical integration for
Φ̂k).
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where the notation x̂i| j denotes the estimate of quantity x at time-step i computed
using measurements up to time-step j. For each feature, the corresponding nullspace
block element is

N̂ f ,k =
[
I3 −�Gf̂�|�×�Gg

]
, (19)

where Gf̂�|� is the first estimate of the feature’s position, initialized at time step �.

4.2 OC Propagation: Modification of the State Transition Matrix
Φ

During each propagation step, we must ensure that N̂k+1 = Φ̂k+1N̂k. We note that
the first block-column of this constraint is automatically satisfied by the structure of
Φ̂k+1 [see (20)], so we focus on the fourth column of N̂k+1 = Φ̂k+1N̂k, which we
write element-wise as:⎡
⎢⎢⎢⎢⎢⎢⎣

C
(

I ˆ̄qG,k+1|k
)

Gg
03×1

−�Gv̂I,k+1|k×�Gg
03×1

−�Gp̂I,k+1|k×�Gg
−�Gf̂�|�×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ̂11 Φ̂12 03 03 03 03

03 I3 03 03 03 03

Φ̂31 Φ̂32 I3 Φ̂34 03 03

03 03 03 I3 03 03

Φ̂51 Φ̂52 δ tI3 Φ̂54 I3 03

03 03 03 03 03 I3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

C
(

I ˆ̄qG,k|k−1
)

Gg
03×1

−�Gv̂I,k|k−1×�Gg
03×1

−�Gp̂I,k|k−1×�Gg
−�Gf̂�|�×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎦
. (20)

This results in constraints on the block-elements Φ̂11, Φ̂31, and Φ̂51 (see [8]). Specif-
ically, for Φ̂11 we require that:

C
(

I ˆ̄qG,k+1|k
)

Gg = Φ̂11C
(

I ˆ̄qG,k|k−1
)

Gg ⇒ Φ̂11 = C
(

I,k+1|k ˆ̄qI,k|k−1

)
. (21)

The constraints for Φ̂31 and Φ̂51 are

Φ̂31C
(

I ˆ̄qG,k|k−1
)

Gg = �Gv̂I,k|k−1− Gv̂I,k+1|k×�Gg (22)

Φ̂51C
(

I ˆ̄qG,k|k−1
)

Gg = �δ tGv̂I,k|k−1 +
Gp̂I,k|k−1− Gp̂I,k+1|k×�Gg (23)

both of which are in the form Au = w, where u and w are nullspace elements that
are known. We seek to find a perturbed A∗, for A = Φ̂31 and A = Φ̂51 that fulfills
the constraints (22) and (23). We formulate this as a minimization problem:

min
A∗
||A∗ −A||2F , subject to A∗u = w (24)

where || · ||F denotes the Frobenius matrix norm. Applying the method of Lagrange
multipliers, we solve (24) in closed form as A∗ = A− (Au−w)(uT u)−1uT .

We compute Φ̂11 from (21), and Φ̂31 and Φ̂51 from (24) and construct the observ-
ability constrained discrete-time propagation Jacobian matrix.
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4.3 OC Update: Modification of the Measurement Matrix H

During each update step, the measurement Jacobian must satisfy ĤkN̂k = 0, i.e.,

Ĥcam
[
ĤθG 03×9 ĤpI | Ĥf

]
⎡
⎢⎢⎢⎢⎢⎢⎣

03 C
(

I ˆ̄qG,k|k−1
)

Gg
03 03×1

03 −�Gv̂I,k|k−1×�Gg
03 03×1

I3 −�Gp̂I,k|k−1×�Gg
I3 −�Gf̂�|�×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎦
= 0. (25)

The first block column of N̂k dictates that Ĥf = −ĤpI . We substitute this equality,
and rewrite the fourth column of (25) in a compact form as

Ĥcam
[
ĤθG ĤpI

][ C
(

I ˆ̄qG,k|k−1
)

Gg
�Gf̂�|�− Gp̂I,k|k−1×�Gg

]
= 0. (26)

This is a constraint of the form Au = 0, where u is a fixed quantity determined
by elements in the nullspace, and A comprises elements of the measurement Jaco-
bian. We compute the optimal perturbed matrix A∗ that fulfills (26), by solving a
problem of the same form as (24) to obtain the modified elements of the measure-
ment Jacobian. Specifically, after computing A∗ = A−Au(uT u)−1 uT , we recover
the measurement Jacobian elements as

ĤcamĤθG = A∗1:2,1:3 , ĤcamĤpI = A∗1:2,4:6 , ĤcamĤf =−A∗1:2,4:6 (27)

where the subscripts (i:j, m:n) denote the submatrix spanning rows i to j, and
columns m to n.

5 Application: Observability-Constrained MSC-KF
(OC-MSC-KF)

The MSC-KF [20] is a VINS that performs tightly-coupled visual-inertial odometry
over a sliding window of m poses, while maintaining linear complexity in the num-
ber of observed features. The key advantage of the MSC-KF is that it utilizes all the
constraints for each feature observed by the camera over m poses, without requir-
ing to build a map or estimate the features as part of the state vector. We hereafter
describe how to apply our OC-VINS methodology to the MSC-KF.

Each time the camera records an image, the MSC-KF creates a stochastic
clone [24] of the sensor pose. This enables the MSC-KF to utilize delayed image
measurements; in particular, it allows all of the observations of a given feature fi

to be processed during a single update step (when the first pose that observed the
feature is about to be marginalized). Whenever the current pose is cloned, we also
clone the corresponding nullspace elements to obtain an augmented nullspace, i.e.,
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N̂aug
k =

[
N̂k

N̂k,clone

]
, where N̂k,clone =

[
03 C

(
I ˆ̄qG,k|k−1

)
Gg

I3 −�Gp̂I,k|k−1×�Gg

]
. (28)

During propagation, the current state estimate evolves forward in time by integrating
(7)-(8), while the current clone poses are static. We employ (21)-(23) to compute the
observability-constrained discrete-time state transition matrix Φ̂k, and propagate the
covariance as

Paug
k+1|k =

[
Φ̂k 015×6m

06m×15 I6m

]
Paug

k|k

[
Φ̂

T

k 015×6m

06m×15 I6m

]
+

[
Qk 015×6m

06m×15 06m

]
(29)

where Paug
i| j denotes the covariance of the augmented state (corresponding to m

cloned poses, along with the current state).
During the MSC-KF update step, we process all measurements of the features

observed by the m-th clone (i.e., the one about to be marginalized from the sliding
window of poses). We utilize (26) to compute the observability-constrained mea-
surement Jacobian, Ĥk, for each measurement and stack all observations of the i-th
feature across m time steps into a large measurement vector

⎡
⎢⎣

z̃k
...

z̃k−m

⎤
⎥⎦=

⎡
⎢⎣

Ĥk
...

Ĥk−m

⎤
⎥⎦
[

x̃aug

f̃

]
+

⎡
⎢⎣

ηk
...

ηk−m

⎤
⎥⎦= Ĥxx̃aug + Ĥ f f̃+η (30)

where Ĥx and Ĥ f are the Jacobians corresponding to the augmented state vector
x̃aug, and to the feature, respectively. To avoid including f into the state, we marginal-
ize it on-the-fly by projecting (30) onto the left nullspace of Ĥ f , W. This yields

WT z̃ = WT Ĥxx̃aug +WT η ⇔ z̃′ = Ĥ′xx̃aug +η ′, (31)

which we employ to update the state estimate and covariance using the standard
EKF update equations.3

6 Simulation Results

We conducted Monte-Carlo simulations to evaluate the consistency of the proposed
method applied to the MSC-KF [22]. Specifically, we compared the standard MSC-
KF (Std-MSC-KF) with the Observability-Constrained MSC-KF (OC-MSC-KF)
(see Sect. 4 and Sect. 5). We employed the Ideal-MSC-KF, whose Jacobians are
linearized at the true states, as a benchmark, since it fulfills the observability prop-
erties of the true linearized system.

We evaluated the Root Mean Squared Error (RMSE) and Normalized Estimation
Error Squared (NEES) over 30 trials (see Fig. 2) in which the camera-IMU plat-
form traversed a circular trajectory of radius 5 m at an average speed of 60 cm/s,

3 The interested reader is referred to [20] for a more complete perspective.
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Fig. 2 The average RMSE and NEES over 30 Monte-Carlo simulation trials for orientation
(above) and position (below). Note that the OC-MSC-KF attains performance indistinguish-
able from the Ideal-MSC-KF.

and observed 50 randomly distributed features per image. The camera was modeled
with a 45 deg field of view, and measurement noise with ση = 1 px. The IMU was
modeled with MEMS quality sensors. As evident from Fig. 2, the OC-MSC-KF out-
performs the Std-MSC-KF and attains performance almost indistinguishable from
the Ideal-MSC-KF in terms of RMSE and NEES. This indicates that ensuring an
estimator respects the observability properties of the true system, plays a key role in
improving both the accuracy and consistency of VINS.

(a) (b)

Fig. 3 (a) The experimental testbed comprises a light-weight InterSense NavChip IMU and
a Point Grey Chameleon Camera. The dimensions of the sensing package are approximately
6 cm tall, by 5 cm wide, by 8 cm deep. (b) An AscTech Pelican on which the camera-IMU
package was mounted during the experiment.
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7 Experimental Results

We further validated the proposed OC-MSC-KF on real-world data. Our hard-
ware testbed consists of a Point Grey monochrome monocular camera with reso-
lution 640x480 pixels and an InterSense NavChip IMU, both of which were rigidly
mounted on an AscTec Pelican quadrotor (see Fig. 3). We begin with an overview
of our image processing approach, followed by the experimental evaluation.

After acquiring image k, it is inserted into a sliding window buffer of m images,
{k−m+ 1,k−m+ 2, . . .,k}. We then extract features from the first image in the
window using the Shi-Tomasi corner detector [25] and track them pairwise through
the window using the KLT tracking algorithm [17]. To remove outliers from the
resulting tracks, we use a two-point algorithm to find the essential matrix between
successive frames. Specifically, given the filter’s estimated rotation (from the gyro-
scopes’ measurements) between image i and j, i ˆ̄qj, we estimate the essential matrix
from only two feature correspondences. This approach is more robust than the five-
point algorithm [23] because it provides two solutions for the essential matrix rather
than up to ten. Moreover, it requires only two data points, and thus it reaches a
consensus with fewer hypotheses when used in a RANSAC framework.

At every time step, the robot poses corresponding to the last m images are kept
in the state vector, as described in [24]. Upon completion of the image processing,
all the features that first appeared at the oldest robot pose (corresponding to image
k−m+ 1) are processed following the MSC-KF approach, as discussed in Sect. 5.

The sensor platform traversed three loops of total length 50 m in an indoor area
and finally returned to its initial position. At the end of the trajectory, the Std-MSC-
KF had a position error of 18.73 cm, while the final error for the OC-MSC-KF was
16.39 cm (approx. 0.38% and 0.33% of the distance traveled, respectively). In order
to assess the impact of inconsistency on the orientation estimates of both methods,
we used as ground truth the rotation between the first and last images computed
independently using BLS and feature point matches. The Std-MSC-KF had final
orientation error

[
0.15 −0.23 −5.13

]
deg for roll, pitch, and yaw (rpy), while the

rpy errors for the OC-MSC-KF were
[
0.19 −0.20 −1.32

]
deg, respectively.

In addition to achieving higher accuracy, for yaw in particular, the OC-MSC-KF
is more conservative since it strictly adheres to the unobservable directions of the
system. This is evident in both the position and orientation uncertainties. We plot the
y-axis position and yaw angle uncertainties in Fig. 4, as representative results. Most
notably, the yaw uncertainty of the OC-MSC-KF remains approximately 1.13 deg
(3σ ), while for the Std-MSC-KF it reduces to 0.87 deg (3σ ). This indicates that the
Std-MSC-KF gains spurious orientation information, which leads to inconsistency.
Lastly, we also show the 3D trajectory along with an overhead (x-y) view. It is
evident that the Std-MSC-KF yaw error impacts the position accuracy, as the Std-
MSC-KF trajectory exhibits a rotation with respect to the OC-MSC-KF.
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Fig. 4 (above) The position and orientation uncertainties (3σ bounds) for the yaw angle and
the y-axis, which demonstrate that the Std-MSC-KF gains spurious information about its
orientation. (below) The 3D trajectory and corresponding overhead (x-y) view.

8 Conclusion

In this paper, we analyzed a root cause of inconsistency in VINS, specifically, the
gain of spurious information due to incorrect system observability properties of an
EKF-based VINS estimator. We introduced an observability-constrained framework
for explicitly enforcing the correct number and structure of unobservable directions
by modifying the system and measurement Jacobians. We applied this methodology
to the MSC-KF, and showed improved consistency both in simulations and through
real-world experiments. Our future research directions include investigating other
sources of VINS inconsistency, such as the existence of local minima, and extending
our work to systems with multiple exteroceptive sensing modalities.
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on “Multi-Robot” 

Nathan Michael 

University of Pennsylvania 

Session Summary 

Multi-robot systems often require inter-robot sensing to enable cooperative control 
and localization for possibly large numbers of robots. The papers in this section 
address several challenges associated with the modeling of relative inter-robot 
sensors and the design of localization and control algorithms that are cognizant of 
the computational capabilities of the vehicles in the multi-robot system. 

The paper by Prorok and Martinoli addresses the problem of multi-robot 
localization using relative range and bearing measurements resulting from 
multiple ultra-wideband (UWB) Time Difference of Arrival (TDoA) sensors. A 
measurement model is proposed to capture the variability in sensor performance 
for line-of-sight (LOS) and non-LOS conditions in complex environments. A 
multi-robot localization strategy is formulated and evaluated in experimentation 
via a team of ground robots to establish the characteristics and accuracy of the 
model and localization approach. 

The paper by Charrow et al. considers the development of a cooperative 
strategy for a team of mobile robots to actively localize and control to a stationary 
target with unknown location in a complex indoor environment via range-only 
TDoA sensors. A sensor model and estimation approach are proposed that address 
the effects of LOS and non-LOS conditions on the accuracy of the target 
localization. An active control strategy based on the maximization of mutual 
information between each vehicle’s target belief distribution is evaluated in 
experimentation on a team of ground vehicles in complex indoor environments. 

The paper by Gowal and Martinoli proposes a decentralized receding-horizon 
control approach for multi-robot rendezvous based on noisy relative inter-robot 
observations. The associated cost function and optimization strategy are carefully 
designed to operate in real-time on a robot with limited computational capabilities 
and memory. Experimental evaluation of the approach and the effects of 
computational delays on a team of resource-constrained ground vehicles provides 
insight into the algorithm performance when considering multiple optimization 
strategies. 
 

 



Accurate Localization with Ultra-Wideband:
Tessellated Spatial Models and Collaboration

Amanda Prorok and Alcherio Martinoli

Abstract. Ultra-wideband (UWB) localization is a recent technology that promises
to outperform many indoor localization methods currently available. Despite its de-
sirable traits, such as precision and high material penetrability, the resolution of
non-line-of-sight (NLOS) signals remains a very hard problem and has a signifi-
cant impact on the localization accuracy. In this work, we address the peculiari-
ties of UWB error behavior by building models that capture the spatiality as well
as the multimodal nature of the error statistics. Our framework utilizes tessellated
maps that associate multimodal probabilistic error models to localities in space. In
addition to our UWB localization strategy (which provides absolute position esti-
mates), we investigate the effects of collaboration in the form of relative position-
ing. We test our approach experimentally on a group of ten mobile robots equipped
with UWB emitters and extension modules providing inter-robot relative range and
bearing measurements.

1 Introduction

Due to its large frequency spectrum, UWB is able to penetrate through objects in
NLOS scenarios, and thus alleviates the LOS constraint imposed by other sensor
types relying on media such as infrared, ultrasound, visible light or narrow-band ra-
dio. This advantage ultimately enables localization over large ranges and in dynamic
environments [4], which makes UWB an attractive candidate for indoor applications
such as asset management, inventory tracking and assembly control, for a variety of
different industries. Nevertheless, NLOS scenarios may cause biases in the signal
propagation times, which leads to significant localization errors. In order to guar-
antee reliable and accurate performance, these biases need to be addressed by an
effective localization strategy.
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In this paper, we consider the problem of absolute localization of a team of
mobile robots for unknown initial conditions. We design an algorithm that works
in conjunction with a tessellated spatial error model built a priori. Our solution
targets miniaturized platforms equipped with low-power sensing modalities, and
we ultimately envision its portability onto much smaller devices such as embed-
ded/portable tags. Our localization strategy uses time-difference-of-arrival (TDOA)
measurements from two or more UWB base station pairs and on-board dead-
reckoning information. Lastly, as it is commonly known that multi-robot collabo-
ration is able to compensate for deficiencies in the data owned by a single robot
[1, 6], we extend our approach to include relative (inter-robot) range and bearing
observations.

Recently, UWB has received some attention within the robotics community. The
studies in [2] and [3] develop probabilistic models for biased UWB range measure-
ments which are combined with on-board odometry data. Yet, both papers model
NLOS biases within augmented-state particle filters that do not take LOS/NLOS
path conditions and bias probability distributions into account explicitly, and that
depend on the motion of the mobile target. Furthermore, given the novelty of UWB
positioning systems in the robotics community, to the best of our knowledge, no
significant studies have been performed on the fusion of UWB with on-board ex-
teroceptive sensors, in the case of single-robot systems, nor any on-board relative
positioning sensors, in the case of multi-robot systems. Lastly, this work is amongst
the first to model UWB TDOA errors as a function of space.

2 Technical Approach

Our proposed method is a culmination of our ongoing research efforts in the domain
of indoor localization, combining two main elements: an UWB system capable of
absolute positioning [9, 11], and a collaborative multi-robot system capable of rela-
tive observations [7, 10].

2.1 UWB Localization

UWB is a radio technology which is characterized by its very large bandwidth
compared to conventional narrowband systems, and in particular features high po-
sitioning accuracy (due to a time resolution in the order of nanoseconds), and high
material penetrability (due to a bandwidth typically larger than 0.5 GHz). Despite
these desirable traits, the resolution of multipath signals remains a hard problem—
the complexity of implementing state-of-the-art direct signal path detection algo-
rithms is exacerbated by the necessity of maintaining very high sampling rates (in
the order of several GHz). Thus, our approach addresses the occurrence of both
LOS and NLOS signal paths by proposing a probabilistic measurement model that
captures this multimodal error behavior. But because NLOS biases are originally
introduced by the clutter in a given environment, the perceived error behavior is
actually a spatial phenomenon. Thus, even if a non-spatial error model is able to
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represent the error distribution in mixed LOS/NLOS signal path environments, a
spatial model will very likely produce better results. Yet, given the sharp (discon-
tinuous) transitions from LOS to potentially harsh NLOS localities in space, devel-
oping a viable spatial UWB error model is a hard problem. The goal of this work is
indeed to develop such a spatial error model. Given the reasons elaborated above,
we resort to a mapping technique that allows us to tessellate space into areas, and
where each area is associated with a unique error model. Indeed, we exploit the
ability of our error model to capture and adapt to all types of UWB propagation,
and spatially customize the parametrization of this model using the underlying tes-
sellation (to ultimately produce a map, which can be fine-tuned according to user
requirements).

When using UWB for localization, the measured quantity is time-of-flight. How-
ever, in practice, time-of-arrival (TOA) systems are rarely implemented due to the
complexity induced by the required synchronization of a mobile node with the base
stations. Instead, it is a common choice to implement time-difference-of-arrival
(TDOA) systems which are significantly more practical, since only the synchro-
nization among base stations is required. This, in turn, enables a significant minia-
turization of the emitter boards (to an order of a few centimeters in size), as well as
a reduction of the consumption power (to an order of mW).

2.1.1 Framework

We consider a pair of UWB base stations 〈Bu,Bv〉, both fixed and well-localized
in an absolute coordinate system, and a robot Rn at position xn, equipped with
an UWB emitter tag. At any given time, the robot Rn may receive a measured
TDOA value τ̂uv,n from any pair of base stations 〈Bu,Bv〉. We denote by Tn,t =
{〈τ̂uv,n,t ,〈Bu,Bv〉〉|∃〈Bu,Bv〉 ∈ B} the set of TDOA measurements received by a
robot Rn at a given time t. The TDOA measurement error Δτuv,n for robot Rn and
base station pair 〈Bu,Bv〉 is defined as the difference between the nominal (error-
free) TDOA value at the actual robot position and the measured TDOA value

Δτuv,n(τ̂uv,n,xn) = τ̂uv,n− τuv,n(xn), (1)

where τuv,n(xn) = ru(xn)− rv(xn), and ru(xn) is the range between base station Bu

and xn. In order to model the UWB error behavior, we take account of spatiality by
defining a set Muv of NA areas Muv = {〈Aa,θθθ uv,a〉|a = 1, . . . ,NA} where θθθ uv,a is a
parameter vector, and Aa ⊂R

2. Note that the areas are disjoint
⋂

n Aa = /0 and
⋃

n Aa

covers the whole space. In other words, each area Aa is associated with a parameter
vector θθθ uv,a, as illustrated in Figure 1(b). We refer to Muv as the map for base station
pair 〈Bu,Bv〉, and denote the set of all maps as M = {Muv|∃〈Bu,Bv〉 ∈B}, where
B is the set of all base station pairs. Furthermore, we define a function muv : R2 �→Θ
that maps to any position in two-dimensional space a parameter vector in the finite
set Θ : muv(xn) = θθθ uv,a such that ∃〈Aa,θθθ uv,a〉 ∈Muv with xn ∈ Aa. Finally, we model
the error Δτuv,n(τ̂uv,n,xn) for a given base station pair 〈Bu,Bv〉 with a probability
density function p that covers an area Aa (such that xn ∈ Aa) and that depends on
the parameter vector θθθuv,a. We define our error model as
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Fig. 1 (a) System of two robots at positions xn, xm and two well-localized UWB base stations
Bu and Bv. The figure shows the true ranges ru(xn) and rv(xn) of robot Rn to the respec-
tive base stations, as well as a segment of the hyperbola resulting from the range-difference
measurement τuv,n. The figure also depicts the relative robot range rmn = rnm, and the relative
bearing values φmn and φnm. (b) Distinct UWB error models p(Δτuv,n;θθθuv,a) are mapped to
individual areas Aa.

p(Δτuv,n;θθθ uv,a)� p(Δτuv,n(τ̂uv,n,xn);muv(xn)). (2)

Practically, we solve the problem of localizing with UWB measurements in two
steps. First, we collect a data set covering the working environment to build the
maps in M . Second, during the actual exercise, we use M to look up UWB error
models in function of the current estimated positions, and then use these models
within a localization filter to evaluate incoming UWB observations.

2.1.2 UWB Error Model

Our baseline error model [13] for the range1 between a base station Bu and a target
node (robot) at position xn is

r̂u = ru(xn)+ ε +Ybu (3)

where ru(xn) represents the true distance, bu is a non-negative distance bias intro-
duced by a NLOS signal propagation, and ε ∼ pN (0,σ2

N ) is a zero-mean Gaussian
measurement noise with variance σ2

N , common to all base stations. The bias bu

is modeled as a log-normal random variable bu ∼ plnN (μu,σu), supported on the
semi-infinite interval (0,∞), and which is associated uniquely to a base station Bu.
The random variable Y qualifies the occurrence of a NLOS signal path and follows a
Bernoulli distribution. Explicitly, it takes the value 1 with probability (1−PLu) and
the value 0 with probability PLu , where PLu is the probability of measuring a LOS
path, and correspondingly, (1−PLu) is the probability of measuring a NLOS path.
For a range error defined as

1 The terms TOA and TDOA are used interchangeably with the terms range and range dif-
ference, respectively, as they differ only by a constant factor (propagation speed).
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Δru(r̂u,x) = r̂u− ru(x) (4)

the TOA measurement model pu describes the likelihood of Δru occurring when
a robot measures a certain range distance r̂u from a base station Bu at an actual
position x with a nominal (actual) range ru (we refer the reader to [11] for a detailed
derivation of pu).

Then, in order to model TDOA instead of TOA observations, we define the dif-
ference range value (i.e. TDOA) between two base stations Bu and Bv to a target
node Rn and model the TDOA error Δτuv as previously shown in Equation 1. Given
this formalism, we can describe the probability density of a given TDOA measure-
ment error Δτuv as the probability density of the subtraction of two random variables
drawn from the probability densities pu and pv, describing the TOA error models of
the two respective base stations. The resulting probability density is

puv(Δτuv)� (pu ∗ p−v )(Δτuv) (5)

which is a convolution of the probability density of the range error Δru and the
mirrored probability density of Δrv (i.e., p−v (Δrv) = pv(−Δrv)).

Although numerical implementations for the TDOA measurement model of
Equation 5 are easily found, they imply nested integrals which may incur a sub-
stantial computational overhead when deploying the model on a real embedded
platform for real-time operation. Also, the model itself is analytically non-tractable,
which causes difficulties when deriving viable estimators. For these reasons, we use
a closed-form approximation [11] to simplify the TDOA measurement model of
Equation 5 to a sum of four terms:

p(Δτuv;θθθ uv,a) =
(

PLu PLv p√2N + PLu(1−PLv)p−lnN ,v+

PLv(1−PLu)plnN ,u + (1−PLu)(1−PLv)p ˜N

)
(Δτuv) (6)

Here, p√2N = pN ∗ p−N , and p ˜N approximates the convolution plnN ∗ p−lnN with
a Gaussian that matches its moments. Hence, the parameter vector θθθ uv,a is

θθθuv,a = [μu,σu,μv,σv,PLu ,PLv ]
T

and μu,μv ∈ R, σu,σv ∈ R
+, and PLu ,PLv ∈ [0,1]. Finally, we note that, given some

ground truth TDOA measurement errors, the parameters of the above equation can
be determined via an efficient Expectation Maximization algorithm (batch mode as
well as online) that maximizes their likelihood [11]. Figure 2 provides an intuition
of the multimodal nature of TDOA error data, and illustrates how our error model
proposes to capture this. In particular, Figure 2(b) illustrates how each of the four
terms of Eq. 6 represents one of the four possible modes of operation for a base
station pair: LOS-LOS, NLOS-LOS, LOS-NLOS, and NLOS-NLOS.
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Fig. 2 (a) Example of the multimodal nature of TDOA error data, in particular those points
contained within the dashed box. This data was collected by a robot moving in a straight line
through an indoor environment with obstacles. (b) We consider a base station pair 〈B1,B2〉.
The plot illustrates the four modes which form the complete multimodal probability density
function shown in Eq. 6. The model parameters are set to: μ1 =−0.43, μ2 =−0.2, σ1 = 0.6,
σ2 = 0.7, PL1 = 0.3, PL2 = 0.5.

2.2 Collaborative Localization and UWB

There is abundant literature discussing various strategies toward solving the multi-
robot localization problem. Our approach distinguishes itself particularly by respect-
ing the following design goals: low cost, full decentralization and scalability, and
asynchrony of relative observations [7, 11]. Given its efficiency in solving the lo-
calization problem for unknown initial conditions and its ability to accommodate
arbitrary probability density functions, our method of choice is the particle filter
(otherwise known as Monte Carlo Localization (MCL)). Our collaboration strategy
exploits associated, inter-robot relative range and bearing observations, which are
evaluated by a dedicated detection model and fused with dead-reckoning informa-
tion (e.g., odometry) to form position estimates.

We subsequently introduce an augmented system by considering both relative
positioning data as well as UWB, schematized in Figure 1(a). Essentially, we pro-
pose a baseline algorithm which fuses UWB TDOA measurements and relative po-
sitioning measurements with dead-reckoning information. Ultimately, the goal is to
experimentally test this algorithm and provide an insight into if and how multi-robot
strategies can contribute to improving the accuracy of UWB.

2.2.1 Framework

Our multi-robot system is composed of NR robots R1, R2,. . . , RNR
, each running

an individual localization filter. The belief of a robot’s pose is formulated as

Bel(xn,t)∼ {〈x[i]n,t ,w
[i]
n,t〉|i = 1, ...,M}= Xn,t (7)
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where M is the number of particles, x[i]n,t is a sample of the random variable
xn,t = [xn,t ,yn,t ,ψn,t ]

T (where xn,t and yn,t are Euclidian coordinates and ψn,t is the

orientation), and w[i]
n,t is its weight. The symbol Xn,t refers to the set of particles

〈x[i]n,t ,w
[i]
n,t 〉 at time t belonging to robot Rn. At any given time t, a robot Rm may

make a range measurement r̂mn,t and a bearing measurement φ̂mn,t of robot Rn.
Thus, with the knowledge of the range and bearing noise values, we define a robot
detection model q which describes the probability that robot Rm detects Rn at po-
sition xn,t , given the detection data dmn,t = 〈r̂mn,t , φ̂mn,t ,Xm,t〉, as

q(xn,t |dmn,t)� q(xn,t |r̂mn,t , φ̂mn,t ,Xm,t ). (8)

2.2.2 Sensor Fusion Algorithm

The routine is shown here in Algorithm 1. Line 3 shows the application of the mo-
tion model, where un,t represents dead-reckoning information. Line 4 shows the
application of the measurement model where Tn,t represents the TDOA data. Line 5
shows the application of the robot detection model, where Dn,t = {dmn,t |Rm ∈Nn,t}
is the set of all communication messages received by robot Rn. In other words, the
detected robot will apply the detection model using data received from the robots
that made the detection. A more detailed description of our robot detection model
can be found in [10]. In addition to using the robot detection model for updating
the belief representation Bel (xn,t), our approach relies on a reciprocal sampling
method [7], shown in line 13.

Algorithm 1. MultiRobot UWB MCL(Xn,t−1,un,t ,Tn,t ,Dn,t)

1: X̄n,t = Xn,t = /0
2: for i = 1 to M do
3: x[i]n,t ← Motion Model(un,t ,x

[i]
n,t−1)

4: w←∏〈τ̂uv,n,t ,Bu,Bv〉∈Tn,t
p(Δτ̂uv,n;muv(x

[i]
n,t))

5: w← w[i]
t ·∏dmn∈Dn,t

q(x[i]n,t |dmn)

6: X̄n,t ← X̄n,t +
〈

x[i]n,t ,w
[i]
n,t

〉
7: end for
8: for i = 1 to M do
9: r ∼ Uniform(0,1)

10: if r ≤ (1−α) then

11: x[i]n,t ∼ X̄n,t

12: else
13: x∼∏dmn∈Dn,t

pmn(x|dmn)
14: end if
15: Xn,t ← Xn,t +

〈
x[i]n,t ,w

[i]
n,t

〉
16: end for
17: return Xn,t
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3 Experiments

The following section details our experimental setup. We then elaborate the practical
implementation of our framework, as introduced in Section 2.1.1.

3.1 Setup

Our experimental setup (Figure 3(a)) consists of three main elements (i) a group of
ten mobile robots, (ii) an UWB positioning system composed of four base stations,
and (iii) two overhead cameras with overlapping views of a 5×3 m2 arena.

(a)

CNLOS

CLOS

(b)

Fig. 3 (a) The 5×3 m2 experimental arena contains an obstacle composed of various ele-
ments made of brick, plaster, metal, wood, and a 3 meter high tube covered in aluminum.
Four UWB base stations are mounted on the ceiling in the corners of the lab room. Two over-
head cameras provide ground truth positioning in the experimental area. (b) In an additional
setup, we test the benefits of collaboration by confining the directions of intercellular robot
detections in between a strongly occluded cell (and thus, predominantly NLOS cell, CNLOS)
and a predominantly LOS cell (CLOS).

To perform experiments, we use ten Khepera III robots that drive randomly in the
arena at a speed of one robot size per second. The Khepera III is a differential drive
robot of 12cm diameter produced by K-Team corporation2, see Figure 4. We use the
robot with a KoreBot II extension board providing a standard embedded Linux oper-
ating system on an Intel XSCALE PXA-270 processor running at 624 MHz. Com-
munication is enabled through an IEEE 802.11b wireless card which is installed in

2 http://www.k-team.com/

http://www.k-team.com/
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Fig. 4 The Khepera III
robot is equipped with a
range and bearing extension
module which utilizes six-
teen infrared LEDs. On top
of this board, we mounted
an active marker (LED)
tracking module, which si-
multaneously carries the
UWB emitter tag.

a built-in CompactFlash slot. The robot uses wheel encoders to provide odometry
readings at 5 Hz. It also uses a relative range and bearing module [12], which is set
to provide the measurements used by the detection model at a frequency of 1 Hz.
The modules’ noise characteristics were empirically determined in our actual setup
(σr = 0.15 · rmn, and σφ = 0.15 rad). We set its maximum detection range to be
1 m. Lastly, the robot is also equipped with an LED-based active marker module
for tracking that also carries the UWB emitter tag, which emits positioning pulses
at a frequency of 10 Hz. The UWB localization system employed in this work is
commercially available from Ubisense3, Series 7000 (sensors and compact tags).
It is installed on the ceiling, in the corners of our 40 m2 laboratory. The overhead
camera system runs on a central processor which also enacts the synchronization
of available ground truth positioning data with all incoming raw sensor data (from
the UWB system as well as from the robots). In order to compute the ground truth
robot positions, the camera system utilizes the open source tracking software Swis-
Track [5]. The average error of the resulting ground truth is roughly 1cm [8]).

In order to create a NLOS setting that occludes direct paths between the UWB
emitters carried by the robots and the four base stations, we install a cross-shaped
obstacle in our arena (see Figure 3(a)). The obstacle is 1.5 m long, 1 m high and
20 cm thick, and is composed of several modules made of various materials (brick,
plaster, metal, wood). At its extremity, in the center of the arena, we attach a 2 m
high tube covered in aluminum. These shapes and materials are chosen in order to
realistically emulate the various effects of a typical indoor environment on UWB
propagation. Finally, Figure 3(b) shows a secondary setup, which we use to test
collaborative strategies more explicitly (as discussed later in Section 4.2).

3.2 Mapping

Since we consider three base station pairs (〈B1,B2〉, 〈B1,B3〉, 〈B1,B4〉), M is
composed of three maps M12, M13, and M14. We use the robots to collect a data
set comprising over 50’000 TDOA values τ̂uv for each base station pair 〈Bu,Bv〉,
and record the associated ground truth positions x, guaranteeing full coverage of
our experimental arena. For each data point τ̂uv, we then calculate the ground truth
TDOA value τuv(x), which, in turn, allows us to compute the TDOA error value

3 http://www.ubisense.net

http://www.ubisense.net
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Δτuv and associate it to the position x. Figure 5 visualizes the resulting data set
of average TDOA error values as a function of space. We observe the higher bias
averages of up to ±2 m in the vicinity of the obstacle (note that TDOA errors are
positive as well as negative). Also, we note that although this figure helps us identify
strongly biased areas, the plotted average error values do not accurately represent
the full multimodal error behavior.

We now proceed with the creation of our set of maps M to be used by the UWB
localization algorithm. In order to build these maps, we discretize our space into
NA = 375 equally sized grid cells of dimension 0.2×0.2 m2, with at least 150 data
points per grid cell and per base station pair. For each cell Aa,a∈ {1, ...,NA} defined
by our grid map, and for each of the three base station pairs, we now estimate (us-
ing Expectation Maximization, as described in Section 2.1.2) the model parameters
θ̂θθuv,a that define a unique TDOA error model per cell. This concludes the mapping
step, and we denote the final set of maps MMM,375.

As a way of validating our multimodal error model, we calculate an additional
set of maps (with the same resolution as above) composed of Gaussian distributions
instead of our proposed error model (Eq. 6). Thus, in the same way as above, we
associate a mean and variance value to each cell in each of the three maps. The
final set of maps comprising (unimodal) Gaussian distributions is denoted MUM,375.
Furthermore, in order to test the effect of spatiality on localization performance,
we build two more sets of maps (one with our multimodal error model, and one
with Gaussians), composed of one single 5×3 m2 cell. We denote these two sets by
MMM,1 and MUM,1.
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Fig. 5 Overhead view of the experimental arena showing the average TDOA error as a func-
tion of space, for three base station pairs (we perform 2D smoothing with a Gaussian kernel
of size 1 on a grid map of 150×250 cells, using over 50’000 UWB TDOA measurements per
base station pair). The cross shape shows the placement of the obstacle and the filled squares
in the panel corners schematically indicate the placements of the base stations with respect to
the layout of the experimental arena.
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To illustrate the concept of our mapping strategy, Figure 6 shows fits of (i) a
Gaussian probability density function, and (ii) the probability density function pro-
posed by our error model in Eq. 6, for 3 difference cell sizes, a) 0.5×0.5 m2, b)
1×1 m2 and c) 2×2 m2. We note that in all cases, the multimodal approach (as
proposed by our error model) suggests a better fit to the data. Also, we see that the
multimodal nature of the error statistics is preserved across different scales.
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Fig. 6 Normalized histograms of TDOA error data for base station pair 〈B1,B2〉. We fit a
Gaussian (in green) onto the data, as well as our proposed error model of Eq. 6 (in red). The
data is collected over a (a) 0.5×0.5 m2 large square, (b) 1×1 m2 large square, and (c) 2×2 m2

large square. The areas of data collection are indicated by the shaded cells in the schematized
arena, in the top right corner of each panel.

4 Results

The paragraphs below discuss two distinct experiments.

4.1 Overall localization Error

Our localization algorithm is evaluated on a data set comprising a 40 minute ex-
periment involving ten robots, initially randomly distributed over the arena. Each
robot runs Algorithm 1 with 100 particles, which are initially uniformly distributed
in the arena (this problem is otherwise known as global localization). Apart from
the modalities described in this paper, the robots use no other sensors to localize.
We discuss the localization performance in terms of the positioning error (distance
to ground truth position) of the center of mass of the particles in a robot’s belief, for
all ten robots used in the experiment. We test the four mapping strategies (Gaussian
vs. multimodal, and 1 cell vs. 375 cells) with and without collaboration—for the
non-collaborative version, we omit the robot detection model (Algorithm 1, line 5).

Figure 7 shows the localization performance as a function of space. We note
the irregularity of the error distribution: higher errors tend to be in the vicinity
of the obstacle. The plots indicate that our multimodal model (MMM) is better than
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Fig. 7 The graphs show the average localization error as a function of space, over a 40 minute
experiment with ten robots. Six different models are tested. On the top row, the robots used
the maps composed of one single cell, and on the bottom row, the robots used the maps
composed of 375 cells. The first column shows results for the Gaussian maps, the second
column for the multimodal error model maps, and the last column uses multimodal maps as
well as collaboration. The dashed line delimits the critical area Cobs around the obstacle.

the Gaussian (MUM), and that a high resolution map (375 cells) is better than a very
low resolution map (1 cell). Furthermore, the results indicate that collaboration may
mitigate errors, in particular in areas prone to high errors due to NLOS: the bottom
right panel (MMM,375 + Coll.) shows a constant distribution of localization errors in
the order of 10 cm.

In order to better understand the performance behavior in critical (NLOS) areas,
Figure 8 discusses the localization errors measured inside the area Cobs as marked by
a dashed line in Figure 7. Figure 8(a) summarizes the results without collaboration,
in the form of boxplots. We can observe that for a fixed granularity, the multimodal
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model outperforms the Gaussian model. Also, increasing the model granularity im-
proves localization performance. Figure 8(b) summarizes the results with collabora-
tion, in the form of boxplots. For three of the four cases, the performance improves
(with a maximum improvement of 18%) with respect to the results of Figure 8(a).
In the best case (MMM,375), we have a median localization error of 7.6 cm. Finally,
for comparison, we note that the median of the maximum likelihood trilateration
estimates (computed with raw TDOA measurements) amounts to 56 cm.
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Fig. 8 Localization error of all ten robots for an experimental run of 40 minutes duration. (a)
Without collaboration. (b) With collaboration . The results are shown in the form of boxplots
(25th, 50th and 75th percentile and whiskers containing 85% of the data). Only errors in Cobs
are considered.

4.2 Evaluation of Collaboration

The previous section establishes that improved performance can be obtained when
collaboration is exploited. Here, we look at a more targeted experiment to better
understand how collaboration contributes to this improvement. We use the setup
shown in Figure 3(b), with two groups of two robots each. The robots’ motion is
delimited by the cell boundaries, which simultaneously defines a new set of maps (in
this case, we denote our set of maps MMM,2, using 2 cells of size 1 m2 each). Also, as
can be observed when comparing Figure 5 to Figure 3(b), the cell CNLOS is located
in a region where significant bias values occur (in particular for base station pair
〈B1,B2〉), whereas cell CLOS is located in a relatively benign region. Importantly,
we note that the cell boundaries are low enough to enable intercellular detections
via the relative positioning modules. This setting allows us to test the following
collaborative configurations (we remind that reader that if robot Rm detects robot
Rn, it is robot Rn that will execute the sensor fusion using detection data sent by
robot Rm, see Section 2.2.2): (i) robots in CLOS detect robots in CNLOS , (ii) robots in
CNLOS detect robots in CLOS, and (iii) any detections are allowed. Figure 9(b) shows
the performances of the three variant strategies. Clearly, method (i) produces the
best results: LOS environments benefit from a high accuracy (due to an essentially
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Fig. 9 (a) Normalized histograms of TDOA error data for all base station pairs (columns) and
both cells CLOS and CNLOS (rows). We fit our proposed error model of Eq. 6 onto the data,
and use the resulting PDF in the set of maps MMM,2. (b) Localization error of four robots (as
shown in Figure 3(b)), employing MMM,2 and using three variant collaboration schemes, for
an experimental run of 20 minutes duration. The results are shown in the form of boxplots.

unimodal distribution with a narrow peak, as shown in Figure 9(a)), and thus, it is
beneficial to allow robots in CLOS to influence the beliefs of the robots in CNLOS .

5 Experimental Insights

Although, in theory, UWB localization has the potential of providing centimeter
level accuracy, in practice, sophisticated strategies are necessary to mitigate the
effect of NLOS biases. Our experiments showed that the error behavior of time-
of-flight based UWB measurements is dependent on the configuration of the envi-
ronment, and thus, can be modeled as a function of space. In conclusion, this work
has allowed us to make three main insights: (I) There is a clear benefit in terms of
localization accuracy when using our multimodal error model instead of a unimodal
Gaussian error model. We have seen that even when using the lowest map granular-
ity, the multimodal model almost matches the performance of the unimodal, Gaus-
sian model with the highest granularity. This conclusion is additionally strengthened
by the five-fold performance improvement over the maximum likelihood estimates.
(II) High resolution maps (i.e. with small cell sizes) result in higher localization ac-
curacy. However, it is to be assumed that low resolution maps may be equally good,
given that the cell separations faithfully separate LOS from NLOS areas, as well as
separate differing NLOS cells from each other. (III) A performance increase can
be obtained by fusing relative positioning information with UWB data, even when
the relative positioning data is potentially noisy. Furthermore, by identifying LOS
and NLOS cells, targeted collaboration strategies can be designed, which promise
to even further improve the localization performance.
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Cooperative Multi-robot Estimation
and Control for Radio Source Localization

Benjamin Charrow, Nathan Michael, and Vijay Kumar

Abstract. We develop algorithms for estimation and control that allow a
team of robots equipped with range sensors to localize an unknown target
in a known but complex environment. We present an experimental model
for radio-based time-of-flight range sensors. Adopting a Bayesian approach
for estimation, we then develop a control law which maximizes the mutual
information between the robot’s measurements and their current belief of the
target position. We describe experimental results for a robot team localizing
a stationary target in several representative indoor environments in which
the unknown target is reliably localized with an error well below the typical
error for individual measurements.

1 Introduction

Having robotic teams that are capable of quickly localizing a target in a
variety of environments is beneficial in several different scenarios. Such a team
can be used in search and rescue situations where a person or object must
be located quickly. Cooperative localization can also facilitate localization of
robots within a team towards tasks like cooperative mapping or surveillance.
Given these multiple applications, it is reasonable to equip the robots with
additional sensors to support localization. In this paper, we focus on the case
where each robot is equipped with a range-only RF sensor. These sensors
provide limited information about the state of the target, necessitating the
development of an active control strategy to localize the target.

There is extensive work on algorithms for localizing stationary nodes using
range sensors notably in open field environments by Kantor and Singh [8].
Spletzer and Taylor [19] also examined a multi-node stationary localization
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problem for both range and bearing sensors with bounded error. Grocholsky
[4] and Stump et al. [20] examined the active control question by designing
controllers which maximized the rate of change of the Fisher information
matrix to localize a stationary target. However, their work assumed that
the belief was Gaussian distributed, which is not the case for typical range
measurements.

In our paper, we present a probabilistic approach for estimating the lo-
cation of a target as well as an information-theoretic control strategy which
seeks to maximize the usefulness of future measurements that the team makes
in the more general non-Gaussian setting. This avenue of research was pur-
sued by Hoffman and Tomlin [5]. They showed how particle filters can be
used in obstacle-free environments with non-linear sensor models to calcu-
late mutual information. We build on their work and extend it to work in
non-convex environments. We also improve on their numerical approximation
of mutual information yielding more efficient and potentially better control
inputs.

Ryan and Hedrick [16] also investigated information-theoretic control and
developed a receding horizon controller for a single mobile robot to track
a mobile target. They approximate mutual information using a randomized
algorithm which does not rely on numerical integration. Our work differs by
focusing on real time control inputs for multiple robots.

These approximation methods are necessary, as näıve approaches to max-
imize mutual information almost immediately lead to significant computa-
tional difficulties. The fundamental complexity arises from an integration
that must be performed over both the state and measurement spaces. While
direct numerical calculations can be used, approximation algorithms for cer-
tain distributions exist. In this work we use the approach by Huber et al. [6]
for approximating the entropy of Gaussian mixture models.

Our work is also closely related to work by Olson et al. [11] and Djugash
et al.[2, 3]. In these works, a single mobile robot localizes itself and the nodes
in a sensor network with many nodes using range measurements. Both of
their experimental results rely on manually driving the robot throughout the
environment. Our work addresses the problem of how robots should move,
which is necessary as we have fewer robots generating measurements.

Both our estimation and control strategies are fully centralized and require
communication throughout the team. This limitation is not significant as the
team’s only sensor is RF-based. If the team was in an environment where
they could not communicate, they could not gather measurements either.

In the rest of this paper we detail our estimation and control algorithms
that enable a team of robots to successfully localize a stationary target in
non-convex environments. Our primary focus is on a series of experiments
that we designed to test our approach across different indoor environments
and a variety of initial conditions. Overall, we are able to repeatedly localize
a target with an error between 0.8-1.9m using only two robots equipped with
commercially available RF range sensors. A highlight of our work is that
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despite the limited information that the team has when they are at any fixed
position, they are able to effectively coordinate and use their mobility so that
the estimate of the target rapidly converges.

2 Technical Approach

In our approach, the robotic team maintains a distribution over possible
locations of the target’s location using a particle filter. The team constantly
seeks to maximize the mutual information between the current estimate of
the target’s state and expected future measurements. Both the filter and the
control directions are computed in a centralized manner.

2.1 Measurement Model

We consider the case where the team’s only way of sensing the target is
through a range-only sensor. A standard approach for building these sen-
sors is to use the Time Difference of Arrival (TDoA) of a signal between
two nodes. Because of this, any delay in the signal’s propagation results in
an over-estimate of the distance. Conversely, an overestimate of the signal’s
speed results in an under-estimation of the distance. We use the nanoPAN
5375 – a TDoA RF sensor which operates in the 2.4GHz spectrum in our ex-
periments and show that it exhibits both positive and negative biases, which
are primarily a function of whether or not the sensors are in line of sight
(LOS) or non line of sight (NLOS). Our data also show that the magnitude
of the bias and variance increase with the true distance between the sensors.

There is significant empirical and theoretical support for treating LOS and
NLOS measurements differently [13, 12]. TDoA methods work best when ra-
dios are not obstructed by obstacles and have clear LOS conditions. However,
when radios do not have LOS they are more likely to be affected by scattering,
fading, and self-interference, causing non-trivial positive biases. We model the
error of the measurement conditioned on the true state as:

p(z | x) =
{
N (z;α0 + rα, rσ2

L) LOS

N (z;β0 + rβ, rσ2
N ) NLOS

(1)

where r is the true distance between the sensors and N (z;μ, σ2) is a normal
random variable with mean μ and variance σ2. α0 and β0 are the biases, while
α and β determine how the biases change with distance. It is straightforward
to calculate the maximum likelihood estimate (MLE) of these parameters
for this model with labeled data. Throughout this paper, we assume that
measurements are conditionally independent of each other given the true
state (i.e. p(z1, z2 | x) = p(z1 | x)p(z2 | x)).

Models for TDoA sensors typically use a biased Gaussian with constant
or time-varying variance [17, 7], whereas (1) is more similar to those used in
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power based range models. We have chosen this approach because, as Patwari
et al. noted, the Gaussian model does not perform as well at large distances
as the tails of the distribution become heavy [12]. Letting the variance in-
crease with distance ensures that the model handles large deviations from
the truth without using a Gaussian mixture model, which would increase the
computational complexity of the control as we discuss later.

2.2 Estimation

Range measurements are a non-linear function of the target state and can
easily lead to non-trivial multi-hypothesis belief distributions as well as rings
and crescents. For these reasons, we use a particle filter for the estimation.
Formally, let xt = [x, y] be the state of the target at time t and cit = [x, y]
be the state of ith member of the team. The full configuration of the team is
ct = [c1t , . . . , c

n
t ]. Each robot makes a 1-d range measurement zit as they move

around the environment. Aggregating these measurements produces a vector
zt = [z1t , z

2
t , . . . , z

n
t ]. Where appropriate, we will write zt(ct) to emphasize

that the measurements depend on the configuration of the team.
The belief at time t is the distribution of the state conditioned on all mea-

surements up to time t. A typical Bayesian filter incorporates measurements
over time recursively and a particle filter approximates this as a weighted
sum of Dirac delta functions [21]:

bel(xt) = η p(zt | xt)

∫
bel(xt−1)p(xt | xt−1,ut) dxt−1 ≈

∑
j

wjδ(xt − x̃j)

(2)
where η is a normalization constant, x̃j is the location of the jth particle
and wj is its weight. While this equation is standard, we wish to emphasize
that the approximation is discrete. As we show in Sect. 2.3, this enables
approximations of mutual information.

Aside from representing complex distributions, particle filters also have the
advantage that they do not require each measurement to be classified as LOS
or NLOS. Assuming that the robots have a map of the environment, they
can use it to determine which of the two distributions in our measurement
model (1) to use on a per particle basis by seeing if a straight line between
the particle and the robot intersects any walls.

While the standard particle filter equations allow for the incorporation of
non-linear control inputs, ut, in our scenario the target is stationary. Despite
this, in our experiments we injected noise into the system to avoid particle
degeneracy problems. Specifically, we perturbed the polar coordinates of each
particle in the local frame of the robot that is making the measurement with
samples from a zero-mean Gaussian distribution. We achieved the best results
by rejecting samples that moved the particle more than a specified distance or
caused their LOS condition to the measuring robot to change. We also used a
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low variance resampler when the number of effective particles dropped below
a certain threshold. All of these techniques can be found in standard books
on estimation (e.g. Probabilistic Robotics [21]).

2.3 Control

Our control strategy is designed to drive the team so that they obtain mea-
surements which lead to a reduction in the uncertainty of the target estimate.
The mutual information between the current belief of the target’s state and
expected future measurements captures this intuitive notion. The advantage
of this approach is that it incorporates the current belief of the target’s state
along with the measurement model to determine how potential future mea-
surements will impact the state. By design the team will move in directions
where their combined measurements will be useful. This is particularly im-
portant when using sensors which provide limited information about the state
of the target.

Formally, we select the next configuration for the robotic team using the
following objective function:

ct+1 = argmax
c∈C

MI[xt, z(c)] = argmax
c∈C

H[z(c)]−H[z(c) | xt] (3)

whereH[x],H[x | z] andMI[x, z] are the differential entropy, differential con-
ditional entropy, and mutual information, respectively, as defined by Cover
and Thomas [1]. The domain of the optimization problem is the configura-
tion space of the team, C. Different configurations of the team will affect the
mutual information by affecting both entropies in (3).

2.3.1 Determining Locations

Typical indoor environments are non-convex, meaning we must maximize
mutual information over a non-convex set. To do this, we propose searching
over a discrete set of configurations of the team. In our experiments, we do
this by creating a connectivity graph along with an embedding into the en-
vironment. At each time step, robots find candidate locations by performing
breadth first search and taking nodes within specified range intervals. Short
ranges allow a robot to continue gathering useful measurements where it is,
while long ranges enable it explore new locations.

To create the connectivity graph we perform a Delaunay triangulation
of the environment and define the incenters of the triangles as nodes. This
requires a polygonal representation of the obstacles, but it is straightforward
to create these from an occupancy grid map. For edges, we connect nodes
from adjacent triangles as well as their transitive closure. Figure 2 shows two
examples of this approach, which we used in our experiments.



342 B. Charrow, N. Michael, and V. Kumar

2.3.2 Calculating the Objective

Hoffmann and Tomlin [5] developed an approach for calculating mutual in-
formation with particle filters that we use here. In particular, they showed
that by using the particle filter’s discrete approximation of the belief, (2), the
entropies can be expressed as:

H[z] ≈ −
∫
z

(∑
i

wi p(z | x = x̃i)

)
log

(∑
i

wi p(z | x = x̃i)

)
dz (4)

H[z | x] ≈ −
∫
z

∑
i

wi p(z | x = x̃i) log p(z | x = x̃i)dz (5)

Where we have dropped the measurement’s dependence on the configuration
of the team for brevity. The approximate equalities are due to the particle
filter’s approximation of the belief.

In our work, we further exploit the assumed conditional independence
of the measurements given the state when calculating the conditional en-
tropy. By exchanging summation and integration, we can rewrite (5) as
H[z(c) | x] ≈ ∑

i wi

∑
j H[zj(cj) | x = x̃i] This reduces the conditional en-

tropy to be multiple separate integrals over a single measurement space –
which can often be done analytically – as opposed to one integral over the
joint space of all measurements the team makes.

The entropy of the measurement distribution (4) is harder to compute.
However, the particle filter transforms the distribution into a finite dimen-
sional mixture model, which enables new approximation techniques.

2.3.3 Approximating Mutual Information

Unfortunately, performing the mutual information calculations in real time
for teams with more than 3 or 4 robots is computationally infeasible: eval-
uating the mutual information of a single configuration requires numerically
integrating over the full measurement space to calculate the measurement
entropy. Rather than performing numerical integration over subsets of the
space [5], we view the measurement distribution p(z) as a mixture model.
The ith component is p(z(c) | x = x̃i) with weight wi, both of which are de-
termined by the ith particle. Because our measurement model is Gaussian, we
can use a deterministic approximation algorithm for evaluating the entropy
of Gaussian mixture models [6].

The algorithm is based on a Taylor series expansion of the logarithmic term
in the integral. This replaces the log term by a sum. Exchanging the order of
integration and summation, the entropy can be expressed as a weighted sum
of the Gaussians’ central moments. The integrals can be calculated analyti-
cally, and only the weighting terms need to be computed online.
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We only use the 0th-order term in the Taylor series expansion:

H[z] ≈ −
∫
z

∑
k

wkN (z;μk, Σk) log g(μk) dz = −
∑
k

wk log g(μk) (6)

g(μk) is the likelihood of the mixture model evaluated at the mean of the kth

component. The computational complexity of this approximation is O(n2l)
where n is the number of particles and l is the number of robots. The time
is linear in l because the conditional independence assumption in the mea-
surement model results in the covariance matrix of the measurements being
diagonal. Table 2 summarizes the computational complexity of the entire
approach.

This approach also works when the measurement model is itself a mixture
of Gaussians. However, this would result in one mixture component for every
separate combination of mixture components from all robots, leading to ex-
ponential growth. This is partly why we use a Gaussian measurement model
with distance dependent variance rather than a Gaussian mixture model.

3 Experiments

3.1 Experimental Design

There are four primary questions that we seek to answer with our experi-
ments: 1) does our measurement model result in an accurate estimate of the
target’s location? 2) is mutual information an appropriate metric to maxi-
mize? 3) does our approximation of mutual information provide reasonable
trajectories? 4) are our results repeatable across different environments and
with various starting conditions?

We design three separate experiments to answer these questions. All of
the experiments have two robots trying to locate a third stationary robot.
To assess repeatability, we run 10 independent trials of each experiment. For
each trial, we let the robots explore the environment without interacting with
them, and only stop them once the filter reaches a stable estimate.

To evaluate the performance of each trial, we calculate the empirical mean
of the filter’s distribution as well as the volume of its covariance matrix (i.e.
its determinant). These statistics are not always an accurate reflection of the
filter’s performance (e.g. the average of two distinct hypotheses may be far
from either hypothesis), but will show whether the filter accurately converges
to a single estimate over time.

We use a qualitative approach to evaluate the trajectories of the robots,
and manually assess whether or not they are reasonable. As a baseline com-
parison, in open environments with no prior knowledge of the target’s loca-
tion, it is best to move two range sensors orthogonally to one another as is
seen in other approaches [4, 20, 11].
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Fig. 1 Starting configurations of robots. Blue dots show the starting location of
the two mobile robots and the red square shows the location of the target.

In Experiment 1, we place two robots within 0.5m of each other and put the
target in NLOS conditions approximately 16m away. A good control strat-
egy for this experiment will result in the robots moving in complementary
directions rather than staying tightly clustered together.

For Experiment 2, we place the robots far away from each other to see
if they still move in complementary directions. The separation also tests
whether the measurement model consistently combines measurements from
different modalities; if the robots follow good trajectories, they will achieve
LOS to the target at different times.

In Experiment 3, we place the robots within 0.5m of each other with the
target more than 30m away. Experiment 3 also takes place in a different
environment. Experiments 1 and 2 take place in Levine Hall at the Univer-
sity of Pennsylvania, which was constructed primarily in 2003 with modern
constructions materials – its walls are primarily made up of wood or metal
framing with drywall. Experiments 3 and 4 take place in Towne Building
which was built in 1906 – its walls are typically made of brick or concrete.

For experiment 4, we again place the robots close to each other with the
target 20m along a hallway that has a slight bend. Raycasts from the robots
to the target barely intersect a wall, making it ambiguous whether or not the
RF signal will exhibit LOS or NLOS behavior. Figure 1 shows the starting
location of the target and robots for each experiment.

3.2 Equipment and Configuration

We use simple differential drive robots equipped with Hokuyo-URG04LX
laser scanners and 802.11s wireless mesh cards for communication. The exper-
imental software is developed in C++ and interfaced via Robot
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Operating System [14]. The range sensor is commercially available as part of
the nanoPAN 5375 Development Kit [10]. The target remains stationary for
the duration of each trial while the mobile robots are limited to a maximum
speed of 0.2m

s . The particle filter and mutual information calculations are
performed on a laptop with 4GB RAM and an Intel Core Duo processor. To
prevent collisions between the mobile robots, we use the Optimal Reciprocal
Collision Avoidance algorithm provided in the RVO2 library [18, 15].

For localization, planning, and determining LOS conditions we use a known
occupancy grid map of the environment with a resolution of 0.05m. The
results of the triangulation algorithm in Sect. 2.3.1 are shown in Fig. 2.
Robots consider nodes within 1.0-2.0m or 8.0-9.0m of their current location
for the control update, which typically result in 7-12 locations per robot.
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Fig. 2 Graphs for candidate locations. Delaunay triangles are shown along with
their incenters which form the vertices of the graph.

We uniformly sample 2500 locations throughout the environment to ini-
tialize the particle filter and run a low variance resampler when the pro-
portion of effective particles drops below 0.3. We calculate the MLE of the
measurement model’s parameters, (1), using a separate dataset gathered in
Levine. During the experiments, we double the MLE variances to prevent
the filter from prematurely converging without affecting the location of the
convergence. Specifically, if σL,MLE and σN,MLE are the MLE values of the
variance for LOS and NLOS conditions, we set σL = 2σL,MLE for LOS and
σN = 2σN,MLE for NLOS. Parameter values for the experiments are listed in
Table 1. We emphasize that the parameters are equivalent for both the Towne
and Levine experiments.
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Table 1 Measurement Model
Parameters

LOS NLOS

α0, β0 2.51 -1.34
α, β 0.20 -0.24
σ2
L, σ

2
N 7.00 14.01

Table 2 Computational complexity of control
law (3) with n particles, l robots, and d potential
locations per robot

Task Cost

Single Evaluation O(n2l)

Solving Objective O(n2ldl)

3.3 Results

Figure 3 shows the error of the nanoPAN 5375’s measurements as a function
of distance. At short distances in LOS conditions the nanoPAN provides con-
sistent measurements with an error larger than 2.0m. In NLOS conditions
there is significant variability in both the mean and variance of the measure-
ments as the distance between source and receiver increases. This data helps
justify our choice of measurement model as it is clear that LOS and NLOS
conditions have different sensor measurement biases and variances.

Overall, our approximation of mutual information resulted in good tra-
jectories for the robots. Figure 4 shows that the robots moved to gain com-
plementary measurements; they moved orthogonally to one another when
possible, and once they had localized the source, they maintained LOS. Fig-
ure 5 shows this process in more detail. Initially, both robots moved away
from each other. Next, the robot on the left moved up the vertical hallway,
while the other robot moved laterally; an orthogonal movement pattern. Once
measurements along the horizontal hallway were no longer helpful due to the
symmetry of the distribution, Fig. 5b, both robots moved up the vertical
hallway, which caused the filter to converge. We stress that these behaviors
arose organically from our objective.

Figure 5 also serves as a good example of the types of distributions that
typical parametric approaches that assume a unimodal distribution cannot
reliably track as there are clearly multiple equally valid hypotheses.

Figures 6 and 7 show the mean and covariance of the estimate over time
across all trials and experiments. Except for Experiment 4, the mean con-
verged to the true state of the target, ultimately surpassing the baseline
accuracy of an individual measurement in LOS conditions. Table 3 provides
the resulting root mean square error (RMSE) of the converged filter. The
slightly increased error in Experiment 3 suggests that the parameters for
the measurement model are not exactly the same as in Levine. However, the
overall error is still low. The fact that the covariance decreases and ends in
the range [−3, 0] on a natural logarithmic scale, shows that filter consistently
converges to a single hypothesis. For reference, the natural logarithm of the
determinant of the identity matrix (i.e. 1 meter variance in only x and y) has
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Fig. 3 Error of nanoPAN range measurements in LOS and NLOS conditions. The
subfigures show standard box-plots with outliers marked as +’s. Each plot contains
approximately 10,000 data points. NLOS conditions are significantly noisier than
LOS conditions with statistics that vary with distance.
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Fig. 4 Trajectories from maximizing mutual information. Each subfigure is a typ-
ical trajectory from each experiment. The robots move to gather complementary
measurements, causing the estimate of the target to converge.
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(a) t = 16.00 (b) t = 30.81 (c) t = 117.13

Fig. 5 Evolution of the particle filter and the robots’ movement in Experiment 1.
Darker particles have higher weight; a robot’s position is shown by a box. a) Early
range measurements cause a ring. b) Both robots move laterally, generating two
hypotheses. c) The robots move up, and the filter converges.

Table 3 RMSE of converged filter across trials

Expt. # Time (s) Mean RMSE (m) Std. Dev. of RMSE (m)

1 140-160 0.83 0.23
2 230-250 0.87 0.46
3 280-300 1.94 0.41
4 130-150 5.79 0.11
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Fig. 6 Distance from weighted average of particles to target location. Each plot
shows 10 trials. Except for Experiment 4, the filter converges with an error below
2m, which is below the median error of the range measurements.
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Fig. 7 Natural logarithm of the determinant of covariance. The spread of the
particles decreases over time, showing the filter converges to a single estimate.
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Fig. 8 RF vs. Geometric LOS. These subfigures show measurements labeled as
LOS or NLOS according to a raycast from the robot to the target location. Geo-
metric LOS does not always accurately predict the negative bias and comparatively
low variance of RF LOS measurements.

a value of 0. The consistent trends across all trials and experiments demon-
strate that the fundamental approach is robust to various starting conditions
and changes in the sensor across environments.

Experiment 4 is the exception to this general trend. In all 3 trials, the
filter converged to a single estimate that was 5.5m away from the target’s
true location. The essential problem is that at the start of the experiment,
raycasts in the environment between a robot and particles near the target
intersect a wall, but the RF interference is low. As Figure 8a shows, the
measurements exhibit negative bias and relatively low variance which are
more consistent with LOS conditions. This highlights the difference between
geometric LOS and RF LOS. It is worth noting that the robots still follow a
reasonable trajectory; this experiment is not a failure of the control.

Figure 8 shows two additional datasets from Levine which exhibit the same
phenomena. Figure 8b shows a dataset gathered by having a robot drive up
and down a long hallway with a target at one end. The robot and target
had geometric LOS for the entire time. Figure 8c shows a dataset where
a robot drove along a short hallway with a target just around the corner.
The robot only had geometric LOS at one end of the hallway. In both of
these experiments, geometric LOS was not always equivalent to RF LOS,
highlighting the need for a different approach to classifying measurements.

4 Future Work

We are currently exploring various methods for classifying measurements as
LOS / NLOS. Our preliminary results suggest that latent variable methods
like Hidden Markov Models (HMM) will not have the same problems as our
geometric method. Morelli et al. [9] previously used a similar approach to
localize a mobile beacon with more than 3 static nodes.

We are also interested in determining how well our approximation of mu-
tual information scales, both as the number of targets increases and as the
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size of the robotic team increases. Longer term, we would like to extend our
methods to track the state of mobile targets.

5 Conclusion

In this paper we described an active control strategy which leverages the
current estimate of the target’s state and knowledge of the sensor model to
direct a team of robots towards locations where they will make informative
measurements. We showed how approximations for the entropy of Gaussian
mixture models can be used to calculate the necessary control inputs in real
time. Most importantly, we presented extensive experimental results where
a pair of robots successfully and repeatedly localize a target in non-convex
indoor environments using commercially available RF-based range sensors.
An implementation of our approach is available from the first author’s website
at http://www.seas.upenn.edu/˜bcharrow
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Real-Time Optimized Rendezvous
on Nonholonomic Resource-Constrained Robots

Sven Gowal and Alcherio Martinoli

Abstract. In this work, we consider a group of differential-wheeled robots endowed
with noisy relative positioning capabilities. We develop a decentralized approach
based on a receding horizon controller to generate, in real-time, trajectories that
guarantee the convergence of our robots to a common location (i.e. rendezvous). Our
receding horizon controller is tailored around two numerical optimization methods:
the hybrid-state A* and trust-region algorithms. To validate both methods and test
their robustness to computational delays, we perform exhaustive experiments on a
team of four real mobile robots equipped with relative positioning hardware.

1 Introduction

Since the 1960s, consensus problems have puzzled the minds of many researchers in
various fields, ranging from computer science to information aggregation [23]. The
term consensus describes the problem of reaching an agreement amongst different
agents on a certain quantity or state. These agents can share information about their
state either by means of communication or observations. In a network of robots,
solving the consensus problem on the position of each agents refers to the task of
controlling them as to reach a common rendezvous point. The ability to meet or to
rendezvous has indeed many practical applications such as formation control [11],
flocking [7], attitude alignment [25] or cooperative aerial surveillance [1]. Addi-
tionally, although this paper specifically addresses the rendezvous of differential-
wheeled robots, its general concept may be applied the wider range of consensus
problems.
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1.1 Related Work

Solving the rendezvous with nonholonomic agents is complex, and proving the con-
vergence property can be difficult. Many works employ feedback linearization to
design relaxed control laws that recreate the holonomic properties [16, 26]; oth-
ers create algorithms that are very specific to their application needs [6, 5]; but
all of them rely on deterministic assumptions both in terms of actuation and sens-
ing. Our previous work [13] incorporates insights from the probabilistic consen-
sus problem [9] to guarantee that differential-wheeled robots can rendezvous under
noisy measurements. However, this approach and all prior approaches to solve the
rendezvous problem on nonholonomic mobile robots rely heavily on strict time-
invariant controllers that yield poor trajectories without consideration to neither
actuation constraints nor the energy spent.

On another front, a great body of literature starting with Meschler [19] in 1963
focuses on the optimization of the rendezvous maneuver, and although efforts to
decentralize the optimization approach using communication between agents have
been made [18], many works remain centralized [20, 4] and thus need global knowl-
edge of the system. We can also observe that most work, including [18], use a pre-
defined cost function and leave no design choices to the user. To tackle the problem
of decentralization with an arbitrary user-defined metric, we rely on a receding hori-
zon controller (RHC) [12]. This RHC needs to run in real-time on our platform, the
Khepera III robot [24] (shown on Fig. 1(a)) equipped with an Intel XScale PXA-270
running at 624MHz without floating-point unit.

In particular, we use two distinct optimization strategies (within our RHC) that
provide real-time capabilities to resource-constrained robots: (i) the hybrid-state A*
algorithm [8] – an optimization strategy based on the A* search algorithm that gen-
erates quickly feasible trajectories for a wide range of cost functions, (ii) a subspace
conjugate gradient trust-region method [2, 3] – a numerical optimization method
that takes advantage of the differential flatness property of our robots. We compare
both strategies in terms of performance and computational requirements. The pur-
pose of this work is then twofold: first, to experimentally verify the convergence of
our mobile robot team using our decentralized approach; second, to compare its ef-
ficiency with that of a centralized equivalent. We note that, to date, no contribution
has addressed the generation of real-time, optimal rendezvous maneuvers on mo-
bile robots performing noisy positioning observations — neither from a theoretical
nor from an experimental point of view. In this work, we focus on the experimental
aspect (the theory is covered in more depth in another concurrent publication [14]).

1.2 Problem Statement

We have a team of N differential-wheeled robots R1, . . . , RN driven by the kinematic
equations: ⎧⎨

⎩
ẋi = ui cosθi

ẏi = ui sinθi

θ̇i = ωi

, (1)
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Fig. 1 (a) A Khepera III
robot with a range and
bearing module attached.
(b) The kinematic model of
a differential-wheeled robot
Ri.

(a)
x

y

θi

ui

ωi

Ri

xi

yi

(b)

where ui = [ui,ωi]
T is the vector of control inputs, with ui the linear translational

speed and ωi the rotational speed, and the vector xi = [xi,yi,θi]
T defines the absolute

pose or state of the robot Ri, as shown on Fig. 1(b).
A robot Ri has a set of neighbors Ni containing all robots R j such that it can

measure the range ei j and bearing αi j to them. Its measurements are affected by
noise such that each observation zi j(t) of R j at time t is defined by

zi j(t) =

[
ẽi j(t)
α̃i j(t)

]
=

[
ei j(t)
αi j(t)

]
+ εz, (2)

where εz is a random noise vector.
Our goal will be to drive all robots to the same meeting point. For each robot Ri,

this rendezvous maneuver should be performed optimally in real-time under a local
user-defined metric Ji(ui) which should only depend on values directly measurable
(either through sensors or communication) or calculable by each individual robot
Ri. Without loss of generality, throughout this paper, we will use the Bolza form
Ji(·) =

∫
Li(·)dt +Vi(·) where Li(·) is a cost rate and Vi(·) is a terminal cost (also

called salvage term).

2 Technical Approach

In this section, we explain in brevity how RHC can guarantee rendezvous with the
addition of optimization constraints, and how to perform each optimization cycle,
on-board, in real-time, using, on one hand, the hybrid-state A* algorithm and, on the
other, a subspace conjugate gradient trust-region method. Additionally, we introduce
a closed-loop control that follows the resulting RHC trajectories.

2.1 Decentralized Receding Horizon Control

To solve our optimization problem (i.e., minimizing Ji(·) whilst guaranteeing the
rendezvous, as seen in Section 1.2), we will rely on RHC. RHC carries many names
such as model predictive control (MPC) or real-time optimization (RTO). It is an
advanced method, widely used in industry, that has the ability to use the available
information on the system at hand to control it optimally under a user-defined cost.
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Fig. 2 Receding horizon
trajectories: R1 plans an
initial trajectory for the next
T seconds and executes that
trajectory blindly for the
first δ seconds; at that point,
R1 plans a new trajectory
(and so on)

R1
Actual trajectory

Planned trajectories

t

δ T

First cycle
Second cycle

Third cycle

Although its requirements in terms of computing power are high [21], it has found
many successful applications, in particular when the underlying system to control
has slow dynamics (i.e., in the order of minutes or seconds). The recent advances in
computing power have in part alleviated this issue, but RHC reaches its limits when
the underlying system is nonlinear, changing fast and has to run on a simple mobile
platform.

RHC is an optimization-based control that uses online, optimal trajectory gener-
ation. The general idea is to plan a feasible and sub-optimal trajectory over a finite
time T horizon and control the system (i.e. the robots) to follow this trajectory over
a sampling time δ (0 < δ ≤ T ). After δ seconds, a new trajectory is recomputed
from the current position until time δ +T and this trajectory is again followed until
time 2δ . This cycle is repeated until the goal is reached. We will denote such a re-
ceding horizon control with the symbol RH (T,δ ). This process is schematized in
Fig. 2, where robot R1 plans during three cycles three trajectories that are tracked
sequentially.

Theorem 1. Given a symmetric and connected group of N differential-wheeled
robots R1, . . . , RN, the decentralized receding horizon control RH (Ti,δi), with
Ti > 0 and 0 < δi ≤ Ti, that solves the following optimization problem on each robot
Ri at time τ:

minimize Ji(ui) =

∫ τ+T

τ
Li(t,xi, x̂i,ui) dt +Vi(τ +T,xi, x̂i,ui)

subject to Eq. 1,ui ∈Ui,xi ∈Xi

such that ∃ki j = k ji > 0 satisfying ui = ∑
R j∈Ni

ki j x̂i j

∃t ≥ τ satisfying ωi(t) �= 0,

(3)

(4)

(5)

(6)

where Xi and Ui are user-defined admissible sets, drives the group almost surely
to a common rendezvous point if x̂i(t) = {x̂i j(t) = [x̂i j(t), ŷi j(t)]T|R j ∈Ni} and the
estimation x̂i j(t) of xi j(t) = ei j cosαi j is unbiased in the time interval t ∈ [τ,τ +δi].

Proof. The proof is omitted for conciseness, but its complete derivation is available
in [14]. ��
Remark 1. As we will see in Section 3, the constraints (5) and (6) can in practice be
ignored when an adequate salvage term Vi(·) is used. In particular, it is sufficient to
penalize inter-robot distances that increase.
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Remark 2. Theorem 1 assumes for each robot Ri the presence of a prediction func-
tion x̂i(t) capable of estimating the position of neighboring robots. As explained
in [14], this function can be implemented using an extended Kalman filter based on
the observations made through the relative positioning hardware.

2.2 Cost Function

To ease our discussion on the algorithmic details, we describe first the cost func-
tion used in our experiments. Given a continuous trajectory for next T seconds, we
discretize it by splitting it into N linear segments of Δ t = T/N seconds each, thus
generating a sequence of N + 1 vertices pi ∈ R

2 with i ∈ {0, . . . ,N}. Additionally,
we assume that there are No obstacles denoted O j with j ∈ {1, . . . ,No}. Each obsta-

cle has a position o( j)
i ∈ R

2 at time iΔ t and an associated uncertainty R( j)
i ∈ R

2×2.
We denote by Δpi = pi− pi−1 the displacement vector at a vertex and by p f the
final position that the trajectory aims to reach. Our cost function is then:

f (p0...N) =

f1︷ ︸︸ ︷
ws

N−1

∑
i=1

(Δpi+1−Δpi)
T (Δpi+1−Δpi)

+we

N

∑
i=1

‖Δpi‖2
2︸ ︷︷ ︸

f2

+wo

N

∑
i=0

No

∑
j=1

Φ(pi;o( j)
i ,R( j)

i )

︸ ︷︷ ︸
f3

+wf ‖p f −pN‖2
2︸ ︷︷ ︸

f4

, (7)

where ws,we,wf ,wo are positive weights and Φ(x; μ ,Σ) is the multi-variate normal
probability density function with mean μ and covariance Σ .

The first term f1 of the cost function forces the trajectory to be smooth: the for-
ward acceleration and rotational speed should be small. The second term f2 penal-
izes fast motion and ensures that minimal energy to spend in actuation. The third
term f3 guides the trajectory away from obstacles and corresponds roughly to a
scaled probability of hitting any of them. The fourth term f4 steers the trajectory to-
wards a goal position by penalizing an excessive distance to it. The first three terms
correspond to the sum of all cost rates over the trajectory, whereas the last term is
the salvage term. To ensure the rendezvous in practice, it is enough to set the goal
position p f to the estimated center of mass of all neighboring robots at time T ,

p f =
1
|Ni| ∑

R j∈Ni

x̂i j(T ). (8)

2.3 Optimization Strategies

The sampling time δ is related to the computational time required by the optimiza-
tion of Eq. (3) [21]. Hence, it is important that this optimization takes as little time
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as possible (to guarantee, in practice, the unbiasedness of the estimator of x̂i j). In
this section, we provide two alternatives capable of efficient real-time optimization.

2.3.1 Hybrid-State A*

The first alternative, explained in [8], is a continuous optimization method derived
from a discrete heuristic search method, the A* search algorithm. The general idea
is to discretize into cells the three-dimensional search space 〈xi,yi,θi〉 represent-
ing the robot’s state. Whereas A* explores the center of those discrete cells and
generates paths that may not be feasible with respect to the kinematic constraints
of Eq. (1), hybrid-state A* associates with each cell a five-dimensional continuous
state 〈xi,yi,θi,ui,ωi〉. Hence the transitions from a cell to the next may change ac-
cording to the stored continuous state. To determine those transitions, we simply
discretize the action that the robot can take during the next Δ t seconds and perform
an Euler integration of the kinematic equations. In particular, we allow the robot
to either keep, increase, or decrease its forward or rotational speed by a constant
increment Δu or Δω respectively. It is clear that hybrid-state A* is not guaranteed
to find the minimal-cost solution because of the discretization of controls and time,
as well as the pruning of all but one continuous-state branches that enter a cell. Fi-
nally, to use hybrid-state A* with RHC, we stop the search when the number of cells
explored on the current branch reaches the number of points N + 1 required by the
trajectory. We note that although hybrid-state A* is memory hungry, it will always
generates feasible trajectories and can be easily modified to include dynamics and
additional constraints with little overhead in terms of computational time.

For completeness, we show through Algorithm 1 the complete routine, where
g(c) represents the real cost of the current path from the starting cell to cell c,
h(s,p) is the heuristic cost to reach position p from a continuous state s and s(c)
is the continuous state associated with cell c. Note that the cost g(c) can be com-
puted by adding up the first three terms of our cost function ( f1+ f2+ f3) until cell c
on the current branch and the heuristic h(c,p) is the last term of this same cost func-
tion. In the context of our experimental test-bed, we observe that this algorithm can
easily make use of fixed-point arithmetic as all variable ranges are known a priori.
Combined with a proper implementation (i.e., efficient priority queue), we obtain a
procedure on our platform, the Khepera III robot. In the experiments of Section 3,
the cell discretization is done by a 64× 64× 52 grid on an area of 2m× 2m× 360◦
centered around the robot. The speed increments Δu and Δω are set to 0.125m/s
and 1.5rad/s respectively and Δ t is set to 0.1s. These values are selected to reach the
best compromise between optimality and computational/memory requirements (the
overall memory usage is 14.8 MB which can easily fit on-board the Khepera III).

2.3.2 Subspace Conjugate Gradient Trust-Region

This second alternative is an efficient non-convex optimization method that uses a
preconditioned conjugate gradient to define a two-dimensional subspace on which
a trust-region method is applied.
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Algorithm 1. Hybrid-state-A*(xi,yi,θi,ui,ωi,p f )
1: closedSet← /0
2: start← getCell(xi,yi,θi)
3: s(start)← 〈xi,yi,θi,ui,ωi〉
4: g(start)← 0
5: openSet← {start}
6: while openSet �= /0 do
7: cell← argminc∈openSetg(c)+h(s(c),p f )
8: if isGoal(cell) or depth(cell) = �T/Δ t� then
9: return generatePathTo(cell)

10: end if
11: openSet← openSet \ cell
12: closedSet← closedSet ∪ cell
13: 〈x,y,θ ,u,ω〉 ← s(cell)
14: for all [u′,ω ′] ∈ {[u,ω]± [Δu,Δω]} do
15: 〈x′,y′,θ ′〉 ← eulerIntegration([u′,ω ′],〈x,y,θ 〉,Δ t)
16: dest← getCell(x′,y′,θ ′)
17: if dest = cell then
18: continue
19: end if
20: newCost = g(cell)+ edgeCost(cell, 〈x′,y′,θ ′,u′,ω ′〉)
21: if newCost + h(〈x′,y′,θ ′,u′,ω ′〉,p f )> g(dest)+h(s(dest),p f ) then
22: continue
23: end if
24: openSet← openSet ∪ dest
25: closedSet← closedSet \ dest
26: s(dest)← 〈x′,y′,θ ′,u′,ω ′〉
27: g(dest)← newCost
28: end for
29: return trajectory impossible
30: end while

Let us consider a function f : Rn �→R, which we want to minimize. We currently
have an estimate x of the solution, which we wish to improve. The basic idea be-
hind the trust-region approach is to approximate the function f with a function q
reflecting the behavior of f in a neighborhood Ω around the point x. This neigh-
borhood is the trust-region. Hence the problem is to find a step s that minimizes
q: mins{q(s)|s ∈ Ω}. If the vector x + s is a better estimate of the solution (i.e.,
f (x+ s) < f (x)), x is set to x+ s; otherwise, it is unchanged and the trust-region
is shrunk. In practice, the approximate function q is defined by the first two term
of the Taylor expansion of f around x and the trust-region is often circular. The
trust-region step then becomes

min
s

{
1
2

sTHs+ gTs | ‖s‖2 ≤ Δ
}
, (9)
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where g and H are the gradient and Hessian of f respectively, and Δ is positive.
Good algorithms to solve Eq. (9) based on the eigenvalues of H exist [22]. However,
they become inefficient when H becomes large. Hence, a good heuristic is to reduce
the original problem into a two-dimensional subspace spanned by an approximate
Newton direction (given in our case by a preconditioned conjugate gradient method)
and the gradient direction.

The method of conjugate gradient (CG) [15] is an effective way to iteratively
solve large-scale linear equations such as Hv = −g (note that, here v is the New-
ton direction) without calculating the inverse of H. Using a preconditioned variant
(PCG) allows for faster convergence by altering the original problem to M−1Hv =
−M−1g, where M is called the preconditioner. Finally, the only costly operation that
PCG needs to perform is the multiplication of H with a vector. Thus, PCG is very
efficient when H is sparse. If the number of points is small (i.e., N < 50), PCG can
be replaced with Newton’s method for greater efficiency; but Newton’s method will
need more memory as the inverse of the Hessian needs to be stored.

For a fast implementation, it is important that the function f be twice differen-
tiable and that both an analytical gradient and Hessian can be computed. In our case,
for the gradient, we have

∂ f
∂pi

= ws(2Δpi+2− 6Δpi+1 + 6Δpi− 2Δpi−1)

−we(2Δpi+1− 2Δpi)

+wo

No

∑
j=1

(R( j)
i )−1Φ(pi;o( j)

i ,R( j)
i )(o( j)

i −pi)

+wf 1i=N(p f −pN), (10)

where 1A is the indicator function of A. The Hessian is then simply the sum of
two sparse matrices: a constant banded matrix H1 representing the first, second and
fourth term of f and a block diagonal matrix H2 composed of 2×2 blocks B0, . . . ,BN

(if we interleave the coordinates of every point pi), with

Bi =
∂ 2 f3

∂p2
i

=
(

R−1(pi− o( j)
i ) · (pi− o( j)

i )T− I
)

R−1Φ(pi;o( j)
i ,R), (11)

where R means R( j)
i . If no collisions are possible (i.e., H2 = 0), it is beneficial to use

Newton’s method to minimize f (if memory allows). Indeed the function f becomes
quadratic and Newton’s method converges in one iteration. Also, as H1 is constant,
its inverse only needs to be calculated once.

Although, less hungry than hybrid-state A* in terms of memory, the subspace
conjugate gradient trust-region method (which we denote from hereon as PCG-TR)
may not generate a feasible trajectory. However, our specific choice of the cost func-
tion f , which penalizes non-smooth trajectories, mitigates this issue. Additionally,
it can be shown that differential-wheeled robots are differentially flat and thus can
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follow a sufficiently smooth trajectory. Algorithm 2 shows the complete routine.
Lines (5-11) compute the two-dimensional subspace while lines (12) and (14-20)
perform a trust-region step.

Algorithm 2. PCG-TrustRegion(xi,yi,θi,ui,ωi,p f )
1: xold← generateInitialTrajectory(xi,yi,θi,ui,ωi,p f )
2: fold← f (xold)
3: Δ ← InitialTrustRegionRadius()
4: repeat
5: 〈g,H〉 ← computeGradientAndHessian(xold)
6: v1← preconditionedConjugateGradient(g,H)
7: v1← v1/‖v1‖2
8: v2← g−v1(vT1 g)
9: v2← v2/‖v2‖2

10: g′ ← [v1v2]
Tg

11: H ′ ← [v1v2]
TH[v1v2]

12: s′ ← argmins

{ 1
2 sTH ′s+g′Ts | ‖s‖2 ≤ Δ

}
13: s← [v1v2]s′
14: x← xold + s
15: f ← f (x)
16: if f < fold then
17: fold← f
18: xold← x
19: end if
20: Δ ← updateTrustRegionRadius(Δ )
21: until convergence
22: return xold

2.4 Computational Delays

In RHC, the optimized trajectory is followed during a time δ during which no feed-
back from the environment is observed. After δ seconds, feedback from the envi-
ronment is incorporated to re-optimize the trajectory. In practice, the amount of time
δ dedicated to follow the trajectory is not fixed. Indeed, one often prefers to opti-
mize the trajectory as fast as possible and use the result as early as possible. The
sampling time δ then directly relates to the computation time needed to optimize
the new trajectory.

It is clear that while the optimization takes place, the robot continues to move
according to the old trajectory which may result in a mismatch between the opti-
mized position and the current position at the time when the optimization completes.
Hence, the robot Ri needs to reacquire (and track) the optimized trajectory. To do so,
it needs to know its current position with respect to the desired new position, here-
after denoted by the coordinates (xd ,yd). This can easily be achieved by integrating
the open-loop controls or, for more precision, by using odometry measurements (in
our case given by wheel encoders which are deployed on most differential-wheeled
robots). Fig. 3 shows a robot with its desired trajectory.
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Fig. 3 Schema of the quan-
tities used by the control law
in Eq. 12 that enable Ri to
reach a trajectory given by
the virtual robot Rd (desired
trajectory) after having fol-
lowed the old trajectory for
too long

Ri

RdRd

Desired trajectory
Old trajectory

e⊥

e‖

eθ

e

βα

Kf udωd

According to the desired trajectory, robot Ri should be located at the position
indicated by the virtual robot reference Rd . Ri is able to calculate the range e and
the bearing α to Rd . It can identify the orientation −eθ (with respect to itself), the
forward motion ud and rotational motion ωd of Rd . Note that β is the bearing to the
point located at a distance Kf ud in front of Rd . We propose the following control
law when Rd moves forward:{

ui = Kuecosα + ud

ωi = Kω esinα +Kbβ +ωd
(12)

with Ku, Kω , Kb and Kf all positive constants. An equivalent control law can be
found when Rd moves backward. Although omitted here for conciseness, it can be
shown that this control law is stable and converges to the desired trajectory.

This strategy bears resemblance to the third strategy proposed by Milam et
al. [21] to account for computation delays, with the exception that, instead of blindly
applying the optimized control inputs (open-loop), we compute corrected control in-
puts based on the optimized trajectory using a tracking layer (closed-loop).

3 Experiments

Experiments are conducted using Khepera III robots in a 3×3m2 arena. This robot
has a diameter of 12cm, making it appropriate for multi-robot indoor experiments.
As shown on Fig. 1(a), we equip each robot with a range and bearing module
allowing for inter-robot positioning. A measurement campaign performed in [13]
showed that the observation noise εz is normally distributed with a covariance
Σ ≈ [0.0221 − 0.0011; − 0.0011 0.0196]. The ground truth position and orien-
tation of each robot is monitored using an overhead camera with SwisTrack [17],
an open-source tracking software. The experiments are designed to analyze four
different controllers:

Reactive. This controller, on top of which we add an obstacle avoidance control as
explained in [10], was presented in [13]. It is a standard reactive controller, which
does not optimize trajectories, nor predicts the future positions of neighboring
robots or obstacles. However, it guarantees the rendezvous mathematically and
was shown to perform under noisy perception particularly well.

Hybrid-state A*. This controller implements Algorithm 1.
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PCG-TR. This controller implements Algorithm 2.
Centralized PCG-TR. This controller implements Algorithm 2, but optimizes si-

multaneously the trajectories of all robots. In particular, the new cost function is

the sum of the individual costs of all robots: ∑Ri
f (p(i)

0...N), where p(i)
0...N are ver-

tices of the trajectory of robot Ri. We note that even if inter-dependencies between
robots avoiding each other arise, the new Hessian matrix stays sparse and the op-
timization stays efficient. While all of the three above controllers use exclusively
on-board resources, this centralized optimization is run off-board on a desktop
computer and uses the information of the tracking system as input. It serves as an
upper-bound on performance.

All controllers are tuned such that the average speed of the robots is about 15cm/s
(i.e., f2 is about the same across all controllers). Four scenarios are selected to pro-
vide a wide-range of situations upon which the different controllers can be tested:

Scenario (a). Four robots are randomly placed in the arena and form a complete
graph (all robots are neighbors). Their task is to perform the rendezvous.

Scenario (b). Two robots R1 and R2 are placed 2 meters apart, facing each other.
Each robot has to reach the initial location of the other robot. These locations are
represented by 2 additional motion-less robots R3 and R4 (whose relative posi-
tions are artificially fed to the robots). Also, R1 and R2 have to avoid each other.

Formally, we have O j = 1 and o(1)k = x̂12(kΔ t) for R1 and o(1)k = x̂21(kΔ t) for R2.
This scenario not only tests collision avoidance, but also how each robot is able to
rendezvous with a fixed goal position.

Scenario (c). Like the previous scenario but with four robots. This is a complex
crossing and is an effective test-bed for analyzing the ability to optimize the tra-
jectories quickly. Examples of trajectories obtained by the robots are shown in
Fig. 4.

Scenario (d). This scenario involves two robots having to rendezvous and two
other robots disturbing this rendezvous maneuver by crossing the arena.

Finally, across all scenarios and controllers, we perform two sets of experiments:

Set I. The first set tests the performance in terms of smoothness f1 of the resulting
ground-truth trajectories of all controllers. The smoothness is a valid performance
indicator, since the average forward speed was the same across controllers and
scenarios, all runs were collision-free ( f3 � f1) and all rendezvous maneuvers
succeeded ( f4� f1). In this set, we did 10 runs per scenario per controller, result-
ing in a total of 160 experimental runs.

Set II. The second set aims to test the degradation of performance in Scenario (a)
when the computational time of the controllers is increased by a fixed additional
delay of 0, 200 and 400ms. Additionally, we test our approach to mitigate com-
putational delays (Section 2.4, closed-loop) against the third strategy proposed
in [21] (open-loop). The performance is measured both through the smoothness
and the convergence speed towards the rendezvous point. We did 5 runs per delay
per mitigation strategy per controller, resulting in a total of 90 experimental runs.
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Fig. 4 Runs performed on
Scenario (c) with (a) the
decentralized PCG-TR vari-
ant and (b) its centralized
equivalent

0.5m

(a)

0.5m

(b)

4 Results

Before diving into the core results, we show that both algorithms are capable of
running in real-time on board of our miniature robots. The average computational
time over all robots and scenarios of Set I is shown in Fig. 5(a). We observe that
PCG-TR is 4.6× faster than hybrid-state A*, averaging 11.2ms per optimization
cycle against 51.15ms (both algorithms run faster than 19.5Hz in average). The
difference in performance is even more stagering when looking at the worst-case
performance, in Fig. 5(b), yielding 23.12ms for PCG-TR and maxing out at 600ms
for hybrid-state A* (600ms is a hard computational time limit imposed on both
optimization strategies to keep real-time capabilities). Indeed, hybrid-state A* may
have to explore many cells when the heuristic does not match the current situation.
However, hybrid-state A* guarantees that the optimized trajectory is feasible. Note
that when run on a single core on a standard desktop computer (Intel R© Core

TM
i7

2.93GHz), PCG-TR averages 0.32ms and hybrid-state A* 1.3ms.
Fig. 6 shows in the form of boxplots, the distribution of the smoothness of each

trajectory of each robot in Set I. Low smoothness values indicate smooth trajec-
tories, whereas high values indicate rough trajectories with many speed changes.
Incidentally, a low value means a better minimization of the cost function. We ob-
serve that PCG-TR and hybrid-state A* perform equally well and provide an im-
provement of about 300% over the standard state-of-the-art reactive controller. Both
algorithms show their capability to minimize the objective function across the wide
range of proposed scenarios. Their performance with respect to the centralized PCG-
TR also suggests that our decentralized approach is competitive (about 74% worse).
Remember that the centralized algorithm uses ground-truth positioning information

0 10 20 30 40 50 60

Hybrid A*

PCG-TR

average computational time [ms]
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(a)

0 100 200 300 400 500 600

Hybrid A*

PCG-TR

worst computational time [ms]

1x

26x

(b)

Fig. 5 (a) Average and (b) worst computational time across all scenarios for PCG-TR and
hybrid-state A* on the real robots on Set I
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Fig. 6 Boxplot of the re-
sulting smoothness of each
controller across all scenar-
ios and all robots. Smaller
values indicate that trajecto-
ries are more smooth (i.e.,
smaller is better). We ob-
serve that the centralized
controller performs best
as expected, PCG-TR and
hybrid-state A* perform
slightly worst but are much
better than the reactive con-
troller. Centralized PCG-TR Hybrid A* Reactive
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Fig. 7 Plots of the smoothness (top row, smaller is better) and convergence rate (bottom
row, higher is better) for the centralized (left column), PCG-TR (middle column) and hybrid-
state A* (right column) controllers for different additional computational delays and different
tracking strategies (open versus closed-loop). The solid lines represent the median while the
shaded region show the 25th and 75th percentiles. The performance worsen as the compu-
tational delay increases although the closed-loop controller (see Section 2.4) mitigates the
added delays and performs better.

and requires the synchronization of our robots, whereas the decentralized variants
only require local observations and no explicit communication. One can qualita-
tively compare trajectories obtained with PCG-TR and its centralized equivalent in
Fig. 4.
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The results of the second set of experiments are shown in Fig. 7. They concern
only the pure rendezvous scenario, Scenario (a), with four robots. On the first row,
we show the smoothness degradation for both the closed-loop and open-loop con-
trol as we increase the computational delay. On one hand, the hybrid-state A* seems
to perform slightly worse and the resulting smoothness degrades more rapidly. This
simple scenario may indeed exacerbate the computational time required by hybrid-
state A*. On the other hand, the benefit of our closed-loop control is to keep the
smoothness almost constant even when computational delay reaches up to 35× the
original computation time (for PCG-TR). The same conclusion can be made when
looking at the second row of Fig. 7. This row shows the average convergence speed
of the inter-robot distances (the higher, the faster the robots converge to the same
rendezvous point). We observe that the performance of the open-loop control worsen
as the one of the closed-loop control stays constant. Overall, the closed-loop control
provides an efficient alternative when the optimization process is slow. However, it
may only be implementable on robots equipped with accurate proprioceptive sen-
sors. Hence, when one can only use the open-loop control, it is important to provide
fast optimization methods such as PCG-TR or hybrid-state A*.

5 Conclusion

In this work, we proposed a RHC capable of performing the rendezvous on a team
of differential-wheeled robots equipped with noisy relative positioning hardware.
This RHC is tested with two complementary optimization procedures and showed,
in both cases, its ability to rendezvous on a wide range of experimental scenarios.
The two optimization procedures are the hybrid-state A* algorithm and a subspace
trust-region method based on PCG. Both algorithms were successfully deployed
on miniature robots, the Khepera III, and are able to run in real-time on-board.
Finally, we developed a closed-loop control that follows the optimized trajectories
and showed superior performance than its open-loop variant. This work provides
an exhaustive analysis of two fast, numerical, optimal approaches to nonholonomic
rendezvous for differential-wheeled robots.
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Part VI: ISER Session Summary  
on “Learning” 

Matthew T. Mason 

Carnegie Mellon University 

Session Summary  

The session entitled "Learning" illustrates just how thoroughly machine learning 
permeates robotics, by gathering four papers that apply machine learning to four 
different robotic applications: driving, object recognition, natural language, and 
manipulation.  In "Learning Autonomous Driving Styles and Maneuvers from 
Expert Demonstration", Silver et al. use machine learning to tune the driving 
behavior of an autonomous vehicle.  Previous research has shown that learning 
performs well in tuning the parameters of the perception system, and that it 
performs well in tuning the parameters of the planning and control system.  This 
paper shows that when both systems are tuned together, learning can perform 
spectacularly well.  In "Unsupervised Feature Learning for RGB-D Based Object 
Recognition" Bo et al. adapt their previous feature learning work to take 
advantage of the most recent imaging technology.  They test the system on 
several different datasets, against several existing systems.  The authors' system 
works both on textured and untextured objects. In one case the authors' system 
outperforms a system tuned specifically for textured objects, when tested on 
textured objects.  In "Learning to Parse Natural Language Commands to a Robot 
Control System", Matuszek et al. address a task familiar to us all:  following route 
directions.  Their system learns to take ordinary instructions like "go down the 
hall past a bunch of rooms and then turn left" and turns them into a robot control 
program.  In simulations, the system correctly follows the directions around 66% 
of the time, which we all know exceeds a human's ability even to remember the 
directions.  In "A Data-Driven Statistical Framework for Post-Grasp 
Manipulation" Paolini et al. develop stochastic models for grasping, placing, 
dropping, and insertion.  Based on thousands of experiments, their system 
produces probability density functions for the pose of a grasped object, chooses 
optimal parameters for subsequent operations, and estimates the likelihood of 
success. 
 

 



Learning Autonomous Driving Styles
and Maneuvers from Expert Demonstration

David Silver, J. Andrew Bagnell, and Anthony Stentz

Abstract. One of the many challenges in building robust and reliable autonomous
systems is the large number of parameters and settings such systems often entail.
The traditional approach to this task is simply to have system experts hand tune var-
ious parameter settings, and then validate them through simulation, offline playback,
and field testing. However, this approach is tedious and time consuming for the ex-
pert, and typically produces subpar performance that does not generalize. Machine
learning offers a solution to this problem in the form of learning from demonstra-
tion. Rather than ask an expert to explicitly encode his own preferences, he must
simply demonstrate them, allowing the system to autonomously configure itself ac-
cordingly. This work extends this approach to the task of learning driving styles and
maneuver preferences for an autonomous vehicle. Head to head experiments in sim-
ulation and with a live autonomous system demonstrate that this approach produces
better autonomous performance, and with less expert interaction, than traditional
hand tuning.

1 Introduction

Building truly robust and reliable autonomous navigation systems remains a chal-
lenge to the robotics community. One of the many barriers to successful deployment
of such systems is the large number of parameters and settings they often entail, with
robust behavior dependent on correct determination of these values. While it is dif-
ficult enough to properly build and parameterize the systems themselves, it is even
harder to determine the correct settings that will properly encode desired behavior in
known scenarios, while also generalizing to the unknown. The traditional approach
to this task involves system experts hand tuning various parameters, which then must
be validated through actual system performance. However, this approach is tedious
and time consuming, while typically resulting in poor system performance that does
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DOI: 10.1007/978-3-319-00065-7_26 c© Springer International Publishing Switzerland 2013
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(a) No Maneuver Preferences (shortest
path)

(b) Desired Behavior

Fig. 1 A simulated example in a binary environment, demonstrating the necessity of prefer-
ences over maneuvers as well as chosen paths. In this example, simply following the shortest
path (a) leads to a long drive in reverse. Especially for vehicles with sensors only in front, a
longer turning maneuver (b) that drives in the forward direction is often preferable.

not generalize. Machine learning, specifically learning from demonstration, offers
a potential solution to this problem. Rather than ask an expert to explicitly encode
his own preferences, he must simply demonstrate them, allowing the system to au-
tonomously configure itself accordingly. Recent work has demonstrated that this
approach can both reduce the amount of expert interaction required, while improv-
ing the resulting system performance.

In the domain of autonomous navigation, this learning approach has mostly fo-
cused on the task of analyzing perceptual information and determining the prefer-
ability of traversing various sections of terrain. However, a robot’s planning system
must determine the best plan that not only considers these preferences, but also
more dynamic considerations such as velocities or accelerations on a vehicle, sta-
bility, etc. This latter problem involves its own set of parameters and tuning, and the
coupled problem requires proper balancing of the tradeoffs of the component prob-
lems. Failure to properly tune the overall system can result in poor performance.
For example, a vehicle that is too averse to swerving may be too willing to traverse
certain obstacles it should avoid, while one that is too willing to swerve will drive in
a jittery fashion. Given that both of these considerations can be scalars derived from
high dimensional vectors, it can be very difficult to properly tune all the necessary
parameters by hand. Since a real system requires tuning for an enormous set of such
problems, producing a truly robust system by hand approaches infeasibility.

This work extends the approach of [14] to the task of learning driving styles and
maneuver preferences for an autonomous vehicle. That is, it not only learns where a
robot should drive, it also learns how to drive. Solving these coupled problems from
the same training inputs ensures the the resulting parameterization produces good
system performance when applied in an online setting. The next section discusses
related work in both autonomous navigation and learning from demonstration. Sec-
tions 3 and 4 discuss learning cost functions from demonstration, and extend known
approaches to the coupled problem of learning maneuvers and driving styles. This
approach is then validated through experimental results presented in Section 5.
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2 Related Work

Autonomous navigation is generally framed as finding the lowest cost (i.e. optimal)
feasible sequence from a start to a goal through some state space. These states could
represent locations in the world, configurations of the robot, actions the robot could
perform, or some combination thereof. The cost of a plan is usually defined as the
sum of costs of individual states. To allow for generalization, costs are usually not
explicitly assigned to specific states, but are rather produced as a function of fea-
tures describing individual states. The function mapping features of states to costs
essentially encodes the preferences that the robot will exhibit; therefore its config-
uration will have a dramatic impact on the robot’s performance. Historically, the
mapping of features to costs has been performed by simple manual construction
of a parameterized function, and then hand tuning various parameters to create a
cost function that produces desired behavior. This manual approach has been fre-
quently used whether the cost functions in question describe locations in the world
[8, 16, 17] or actions to be performed [4, 11, 19]. Unfortunately, this tedious ap-
proach typically produces subpar results, potentially leading to subpar autonomous
performance.

Supervised learning is a popular solution to such tuning tasks, by automatically
adjusting parameters to meet desired criteria. As opposed to just learning parameters
within a specific component of an autonomous system (e.g. Terrain Classification),
learning from demonstration seeks to learn parameters to directly modify end sys-
tem behavior. Traditional learning from demonstration [3] seeks to learn a mapping
directly from states, or features of states, to actions. The advantage of this model free
formulation is that it creates a straightforward learning task. However, this comes
at the cost of difficulty with both generalization to new problems, and sequentially
combining decisions to achieve longer horizon planning.

Recently, model based approaches to learning from demonstration have become
more popular. In contrast to model free, model based learning continues to use the
optimal planning algorithms popular in navigation, and seeks to learn a feature to
cost mapping such that the optimal plan in a given scenario produces desired be-
havior; in this way these approaches are essentially applications of inverse optimal
control. Numerous applications of this approach [7, 9, 14, 20] have demonstrated its
effectiveness at learning navigation cost functions over patches of terrain, improving
autonomous performance and reducing the need for manual tuning.

Although learning from demonstration has been previously applied to the task of
learning preferences over actions and trajectories [1, 6, 18], this work has generally
been focused on more short range vehicle control and path tracking. A notable ex-
ception is [2], which investigated learning driving preferences in a parking lot from
demonstration. However, the coupled problem of learning both terrain and driving
preferences has not been previously addressed.
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3 Learning Navigation Cost Functions from Demonstration

In previous work, the Maximum Margin Planning (MMP) framework [12, 14] was
developed to allow learning cost functions from expert demonstration. MMP seeks
to find the simplest cost function such that an example plan Pe is lower cost than
all other plans, and by a margin. The margin is based on a loss function Le that
encodes the similarity of a plan to the example. Rather than enforce this constraint
over all possible plans, it is only necessary to enforce it against the current minimum
cost plan P∗ under the current cost function C. Thus, MMP can be represented as a
constrained optimization problem

minimize O[C] = |C| subject to (1)

∑
x∈P∗

(C(Fx)−Le(x)) ≥ ∑
x∈Pe

(C(Fx))

P∗ = argmin
P

∑
x∈P

(C(Fx)−Le(x))

Fx represents the feature vector describing state x in some planning state space. Since
it is generally not possible to meet this constraint, a slack term ζ is added, and the
constraint is rewritten as

minimize O[C] = λ |C|+ ζ subject to (2)

∑
x∈P∗

(C(Fx)−Le(x)) − ∑
x∈Pe

(C(Fx))+ ζ ≥ 0

Since ζ is in the minimizer, it will always be tight against the constraint and equal
to the difference in costs. Therefore, ζ can be replaced by this difference to produce
an unconstrained optimization

minimize O[C] = λ |C| + ∑
x∈Pe

(C(Fx)) − ∑
x∈P∗

(C(Fx)−Le(x)) (3)

This objective can be optimized by (sub)gradient descent, using the subgradient

∇O[C] = λ ∇|C|+ ∑
x∈Pe

δF(Fx) − ∑
x∈P∗

δF(Fx) (4)

Simply speaking, the subgradient is positive at values of F corresponding to states
in the example plan, and negative at values of F corresponding to states in the cur-
rent plan. Applying gradient descent directly would involve raising or lowering the
cost at specific values of F , according to the (negative) gradient. To encourage gen-
eralization and limit |C|, this gradient can instead be projected onto a limited set of
directions. As in [10, 12] this projection takes the form of learning a classifier or
regressor to differentiate between states whose cost needs to be raised or lowered,
and then adding this learner to the current cost function.

The final algorithm, known as LEArning to seaRCH (LEARCH) [12] iteratively
computes the set of states (under the current cost function) whose cost should be
raised or lowered, computes a learner to reproduce and generalize this distinction,
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and adds this learner to the cost function. The result is a cost function that is the
weighted sum of set of learners (of whatever form and complexity is desired).

Real world motion planning systems, when fed by a stream of onboard percep-
tual data, generally recompute their plan several times a second to account for the
dynamics of and errors in sensing, positioning, and control. As a result, applying
LEARCH to an actual vehicle requires an understanding of these dynamics with re-
spect to expert demonstration. As a consequence, rather than treat a single demon-
stration as a single example, it must be considered as a large set of examples, which
are chained together by actual robot motion and the passage of time. Each single ex-
ample at an instant in time forms its own constraints as in (3), with the full problem
the sum of these individual optimizations. Solving this problem therefore involves
summing the individual gradients steps from (4) into a single learner update. For
more details on the application of this approach to real world navigation problems
with multiple and noisy example demonstrations, see [14].

4 Learning Driving Styles and Maneuver Preferences

In addition to the practical considerations mentioned above, modern planning sys-
tems are often composed of a hierarchy of individual planners, with each planner
refining the results of previous plans [8, 16]. In such a scenario, LEARCH must be
applied to the lowest level planner, that actually makes the final decision about the
next course of action. Application to higher level planners may be necessary as well,
if they use different cost functions than the lowest level.

The formulation in the previous section referred to generic states in a planner’s
state space. Depending on the planner, these could be locations in the world, ac-
tions to be performed, or combined state-action pairs. A straightforward application
of LEARCH to state action pairs would be possible, directly learning the coupled
problem of balancing terrain and action preferences. However, such a formulation
would be overly complex, in that it would learn a solution in the space of terrains and
actions, rather than each one individually. Depending on the specific learner used,
this could result in poor generalization; for example, preferring soft turns on flat
terrain would not necessarily teach the system to prefer soft turns on hilly terrain.

Instead, this work proposes to decouple the problems by defining the cost of a
state action pair as the decoupled cost of the state plus the cost of the action.

C(P) = ∑
x∈P

C(x) = ∑
x∈P

Cs(F
s
x )+Ca(F

a
x ) x ∈ S×A (5)

That is, two separate cost functions are proposed, one over locations the vehicle
will traverse, and one over actions the vehicle will perform. The overall cost of a
plan is the sum of the costs over individual locations and actions. Specific couplings
between locations and actions (e.g. driving through a ditch or over a bump slowly
may be fine, but is very costly at high speeds) are still possible, by adding features to
express such couplings specifically in Fs or Fa (the state or action feature vectors).
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If this cost formulation is plugged directly into (3), taking the partial derivatives
with respect to Cs and Ca yields

∂O
∂Cs

O[Cs,Ca] = λ ∇|Cs|+ ∑
x∈Pe

δ s
F(F

s
x ) − ∑

x∈P∗
δ s

F(F
s
x )

∂O
∂Ca

O[Cs,Ca] = λ ∇|Ca|+ ∑
x∈Pe

δ a
F(F

a
x ) − ∑

x∈P∗
δ a

F(F
a
x ) (6)

P∗ = argmin
P

∑
x∈P

(Cs(F
s
x )+Ca(F

a
x )−Le(x))

These partials describe an interleaving optimization, where Cs and Ca are each up-
dated one at a time. However, there is still a dependence between the two, as P∗ is
defined with respect to both. That is, for a current pair of cost functions, the func-
tional gradient describes a set of actions to be desired or avoided (given the current
terrain preferences) and a set of terrains to be desired or avoided (given the current
action preferences). Applying LEARCH in this manner leads to the construction of
two separate cost functions, both of which attempt to reproduce expert behavior in
concert with the other.

The LEARCH formulation up to now has assumed that the example plan Pe is
something the planning system could exactly achieve and match. However, in prac-
tice this is rarely the case. Due to finite resolution and sampling of state, and small
differences in perceived and actual vehicle models (and implied kinematic or dy-
namic motion constraints), it is rarely the case that the finite set of plans the planner
could produce will exactly contain Pe. One way to avoid this dilemma is to simply
consider the set of all paths P in (1) to be all possible plans the planner could pro-
duce given a specific planning problem, as opposed to all possible plans that could
exist. In this way, the basic MMP constraint ensures not that the example plan is the
lowest cost plan, but simply that it is preferable to anything else the planner might
produce. Unfortunately, in practice this provides no actual guarantee that the plan-
ner will produce the right behavior online. That is, depending on various resolutions
and discretization, it is possible that during online application, plans will become
available to the planner that are undesirable and lower cost. The result is that learn-
ing in this manner may require a much larger training set than would otherwise be
needed.

An alternate solution to this problem is to in some way project the example plan
onto the possible planner options. Depending on the structure of the problem, the
loss function may provide a natural way to perform this projection. For instance,
if actions are defined simply by a vehicle curvature and velocity, than choosing
the planner action that is closest in these measures to the example action would
seek to ensure similar behavior to the example, while allowing the MMP constraint
to be achievable. This approach has been shown to provide beneficial results to
generalization, as it allows learning to terminate when it is as close to achieving the
example as resolution will allow [14].

A final challenge in learning cost functions over actions is the issue of receding
horizon control. Rather than compute a dynamically feasible plan all the way from a
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(a) Small difference in initial action, large difference in end behavior

(b) Large difference in initial action, small difference in end behavior

Fig. 2 Simple examples of planning problems where, due to receding horizon planning, er-
ror between immediate actions (left) and final behavior (right) do not correspond. Desired
action/behavior is in blue, actual action/behavior is in red.

vehicle’s current state to its goal, it is common for modern motion planners to only
compute such a plan to a set horizon, using a heuristic or lower dimensional planner
as a cost-to-go from the horizon to the goal. The result is that the planner will make
a plan at a certain instant, with no expectation of running this plan to completion;
rather a small section is executed before replanning. This creates a challenge for
learning as it is now possible for very small errors in an immediate action to produce
large errors in final behavior; this is especially problematic when the cost-to-go does
not capture dynamic or kinematic constraints. It is also possible for large errors in
an immediate action to end up being inconsequential, with the final behavior still
quite similar. Figure 2 demonstrates both these cases for a simple planner that uses
constant curvature arcs (see Section 5).

One way to identify when a small error in an immediate action choice will have a
large final effect, or vice versa, is to forward simulate the repeated decision making
of the planner to produce a simulated final behavior. This raises the question of
whether this should actually be the current plan that is used for learning (e.g. P∗).
Unfortunately, using this plan does not produce the proper derivative as in (6) as it
potentially ignores states that, while not encountered in repeated simulation, would
have been encountered in a single choice at a finite point in time. With the effect
of such states on end behavior hidden from the learner, the cost function can not be
properly modified. Therefore, the best way to ensure the correct end behavior is to
ensure the correct choice is made at each instant in time ([13]).

However, while this simulation may not be useful for providing a partial deriva-
tive, it is useful for determining how important an error in an immediate action
selection is. That is, if we define a penalty function Pe that defines error over end
behavior (similar to how Le defines error over an immediate action) then we can
weight individual examples by how consequential they will be. The result is an op-
timization that, rather than bounding Le, bounds PeLe. In practice, this effect is
achieved by weighting individual ∂O

∂Ca
in (6) by Pe
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Fig. 3 Progression of planner behavior in simulation(from top left to bottom right) as a cost
function is learned. Through successive iterations, the planner learns to exit the cul-de-sac to
align itself so as to drive forward to the goal, instead of in reverse.

∂O
∂Ca

O[Cs,Ca] = λ ∇|Ca|+Pe[ ∑
x∈Pe

δ a
F(F

a
x ) − ∑

x∈P∗
δ a

F(F
a
x )] (7)

This approach is formally known as slack re-scaling; for more information (includ-
ing proof of bounds and correctness) see [13]. A nice side affect of this approach
is that it becomes another source of robustness to noisy demonstration (since small
differences in end behavior are lessened in importance).

5 Experimental Results

To test the application of LEARCH and its modifications to learning driving styles
and maneuvers, a local-global planning system was created as in [8, 16], with a local
planner choosing between constant curvature arcs, and a global planner operating
without kinematic constraints. This planner architecture was chosen because it is
simple, well understood, and in practice very effective. However, its effectiveness
is dependent on proper tuning. Without proper tuning it can exhibit jittery or other
undesirable behavior. In addition, since it only plans a single (kinematic) action at
a time, it is incapable of performing more complex maneuvers (e.g. 3 point turns)
without additional tuning. This tuning often takes the form of a state machine based
on the relationship between the current vehicle pose and the current global plan, as
well as a state history.

In addition to any cost accrued due to the locations a plan would traverse, the
planner was implemented with costs based on specific actions (e.g. the final chosen
motion arc). Costs were computed as a function of the features of an action, such as
direction (forward or reverse), curvature, alignment with the heading of the global
plan, and changes in direction or curvature from previous actions. These features
provide enough information such that a state machine is not necessary to perform
more complex maneuvers; however, achieving this capability requires careful tuning.
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Fig. 4 The progression of learned preference models (from left to right) in a validation sce-
nario. The commanded curvature at each point in time is also shown for each example. The
planner first learns to avoid unnecessary turning, and then to favor driving forward and being
aligned with the global path.

5.1 Simulated Experiments

Experiments were first performed in simulation in binary environments, to decouple
any effects of terrain costing. A training set was created by manually driving the
simulated robot through a simple set of obstacle configurations. A cost function was
learned over constant curvature actions that resulted in the planner reproducing the
expert’s driving style (e.g. soft turns were preferred to hard turns when appropriate,
changes in curvature were limited when possible, but obstacles were still avoided).
In addition, the cost function resulted in the planner generating complex maneuvers
by properly chaining together simple actions, despite never planning more than one
action ahead at a time.

Figure 3 provides an example of learning a simple maneuver. Initially, the plan-
ner simply prefers the action that minimizes its cost-to-go (the global planner cost)
and so tracks the global plan in reverse. Over successive iterations, a preference is
developed for aligning the vehicle’s heading with the global path, allowing the robot
to perform a multi-point turn maneuver to turn in reverse and then drive forward.
Eventually, a preference is also learned to avoid changing directions, allowing a sin-
gle reverse turn and then a forward motion. Figure 4 provides an example of how
the learned cost function affects driving style and control. In early iterations, the
system is heavily underdamped and very jittery. Over time, it first learns to smooth
out these oscillations, but then re-allows them in order to achieve other preferences
(namely turning while in reverse). Finally, the system learns to balance both desires,
performing a maneuver by chaining together multiple actions, while at the same
time limiting unnecessary sudden turning. The single large oscillation seen in the
final iteration was in response to almost hitting the wall, demonstrating that these
preferences were properly balanced with those necessary to avoid obstacles.

Experiments were also performed to demonstrate the effect of slack re-scaling
(penalty weighting) as described in Section 4. The training and validation per-
formance during these experiments is shown in Figure 5. As expected, penalty
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(a) Training Penalty
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(b) Validation Penalty
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(c) Training Loss
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(d) Validation Loss

Fig. 5 Learning planner preference models with and without slack re-scaling (weighting ex-
amples by penalty)

weighting results in an optimization that lowers the training error between example
and simulated end behavior, while increasing the error in immediate actions. The
interesting result is in the validation performance, where the optimization without
penalty weighting suffers from increased error and overfitting. This demonstrates
the negative effects of trying too forcefully to correct small examples in actions
(when they don’t significantly effect end performance) and the advantage of penalty
weighting.

A final simulated experiment compared the performance of learning to hand tun-
ing. A human expert (different than the one who drove the vehicle for the training
set) was tasked with manually constructing and tuning a cost function to achieve
the same basic goals (a clean and reasonable driving style, while still producing
complex maneuvers when necessary). During hand tuning, the expert could see the
current performance of the planner in simulation. Every parameter configuration en-
countered during hand tuning was recorded for evaluation. The performance of both
the learned and hand tuned cost function was evaluated over a large set of validation
behaviors. The metrics for comparison are the average loss and average penalty; that
is the average error between the example and planner immediate actions and end be-
havior. The hand tuned system had a final validation loss that was more than 25%
higher than the learned system, and a final validation penalty that was 20% higher.
Of note is that that the final configuration of the hand tuned system was not its best;
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Fig. 6 The E-Gator Robotic Platform used in these experiments

the best configuration’s performance was essentially equivalent to the learned sys-
tem. This exemplifies one of the major issues with hand tuning: in general a human
can only evaluate a small set of examples (relative to an automated system), and so
may not fully understand the quality of a specific configuration during tuning. Also
of note is the amount of expert interaction that was required in each case: approx-
imately 12 hours to hand tune the system, versus less than 2 hours to demonstrate
examples in simulation.

5.2 E-Gator Experiments

Next, the planning system was applied to an autonomous E-Gator vehicle (Figure
6) for operation in outdoor, unstructured terrain. The E-Gator was equipped with a
single actuated LiDAR scanner for producing 3D point clouds. Perception software
described in [5] was ported to this system, allowing the computation of a supporting
ground surface through vegetation, as well as geometric features relating to size
and shape of potential positive obstacles. These features were used as input to a
terrain cost function. The vehicle’s preferred behavior was therefore determined by
two cost functions: one mapping sensor data to costs over terrain (perception), and
another mapping actions to costs (planning). Live expert demonstration (i.e. driving
the vehicle) was then used to learn these two cost functions.

For comparison, yet another robotics expert was tasked with manually creating
and tuning perception and planning cost functions to achieve the same navigation
tasks for the E-Gator. The expert could test parameter configurations in offline sim-
ulation/playback, or on the live vehicle. Every tested parameter configuration was
recorded for comparison. The performance of both sets of cost functions was then
evaluated over a large set of validation behaviors. These results are shown in Figure
7. The metric for comparison across all experiments was validation loss.

These experiments demonstrate how the system performance changes for both
the learned and hand tuned systems during tuning/learning. The learned system un-
dergoes a relatively stable optimization procedure, quickly converging to a good
solution and then iteratively refining it. In contrast, during hand tuning the expert
continually changed parameters with large (and often negative) effects on system
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Fig. 7 Validation Loss for the Learned and Hand Tuned autonomy systems

performance. As seen in [14], the expert was able to tune a perception system that
was close to learned quality (within 6%). However, in contrast to simulation (with a
binary world), the expert performed significantly poorer when tuning the planning
system. The expert’s final configuration resulted in more than 2.5 times the error in
action selection, and even the expert’s best configuration (unknown during tuning)
had 25% more error than the learned system. This demonstrates the inherent chal-
lenge not only in tuning perception and planning cost functions to solve independent
problems, but to properly couple them to produce good autonomous performance.

The difference in performance was further explored through a serious of live ex-
periments on the actual autonomous platform. The two final system configurations
(learned or hand tuned perception/planning cost functions) were tested head to head
over a large set of test courses, totaling more than 4 km of autonomous driving.
Several statistics were measured and compared over these runs. Table 1 shows these
statistics, and the statistical significance of any differences. Of note is that the hand
tuned system spent much more time in reverse (dangerous for a vehicle with sen-
sors in front) than the learned system. It would also occasionally oscillate between
forward and reverse driving very rapidly. The hand tuned system exhibited a higher
preference for driving perfectly straight; when it did turn, it generally turned much
faster (and changed curvature faster and more often) than the learned system.
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Table 1 Results of 4 km of autonomous E-Gator experiments comparing learned to hand-
tuned performance. All statistics are on a per test average.

Avg Extra Avg Avg % Time in
Dist (m) Dist (m) Roll (◦) Pitch(◦) Reverse

Learned 69.27/785.5 12.02/148.5 3.71/2.61 4.45/2.29 0.075/0.012
(μ/σ2)
Hand-Tuned 73.09/1791.7 17.15/1293.24 4.24/3.90 4.39/2.15 0.19/0.079
(μ/σ2)
P-value 0.34/0.014 0.23/0.0 0.13/0.14 0.56/0.57 0.016/0.0

Dir Switch Avg Steer Avg Δ % Time Avg Δ Safety
Per m Angle (◦) Angle (◦) Angle �= 0 Angle �= 0 (◦) E-Stops

Learned 0.029/0.0014 9.43/15.46 1.69/0.20 0.33/0.0064 5.19/0.49 0.13/0.12
(μ/σ2)
Hand-Tuned 0.044/0.0079 11.74/14.43 2.08/0.76 0.19/0.0033 10.76/3.60 0.90/1.49
(μ/σ2)
P-value 0.18/0.0 0.011/0.57 0.016/0.0 0.0/0.038 0.0/0.0 0.0/0.0

These differences manifest themselves in the safety of each configuration, as the
hand tuned system required nearly 7 times as many operator interventions (e.g. to
prevent hitting a dangerous obstacle). One of the most common causes of these
interventions was the hand tuned system trying to turn too hard around obstacles.
The obstacles were clearly seen by the perception system; however the coupled
tuning of perception and planning cost functions was such that the vehicle tended
to clip them. It is interesting to note that this behavior was clearly observed during
hand tuning, and much of the final tuning was an unsuccessful attempt to combat
this problem. This demonstrates the difficulty in manually mapping desired behavior
changes into appropriate parameter changes.

A final point of note is the time required to produce each system. The hand tuned
system required 38 hours of expert tuning time, and an additional 18 hours from
a safety operator while tuning on the live vehicle. In contrast, the learned system
required less than 4 hours of combined expert and operator time to collect the nec-
essary training data. So in addition to achieving safer and more stable autonomous
performance, the learning approach required only 1/14 as much human interaction.
For additional data and details of these experiments, see [13].

6 Conclusion

This work addressed the issue of producing properly coupled cost functions for an
autonomous navigation system, to balance preferences describing both where and
how a vehicle should drive. The LEARCH algorithm of the MMP framework [12]
was extended to handle this coupled problem by learning cost functions separately
while still considering their affect on eachother. Issues with finite planner resolution
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and receding horizon control were addressed through modifications to the LEARCH
algorithm, with experimental results validating these new approaches.

Previous work [14] has shown that human experts can hand tune a perception
cost function that is almost equivalent in performance to one that is learned, with
the primary advantage of learning being a major reduction in the amount of expert
interaction required. This same result was duplicated when tuning just a planner cost
function: the human expert was able to do almost as well as the learned system, but
in a far less efficient manner. A closer analysis of the hand tuning process shows
that human experts do not necessarily know when they have achieved their best
performance, whereas a learned system has the advantage of automatic validation.
In addition, it was shown that by learning the proper parameters from demonstration,
a very simple planning system could be configured to result in more complex driving
maneuvers.

When a human expert was tasked with tuning both a perception and planning
system at the same time, this additional coupling proved a major detriment to tun-
ing performance. As opposed to simply taking longer, the hand tuned approach also
produced a system that was significantly lower quality. This decrease in quality was
demonstrated in both offline (simulated) validation, and in online autonomous vali-
dation. In the latter case, the poorer quality of the cost functions manifested itself as
an increase in the number of safety interventions required during autonomy, as well
as a more jittery driving style. These results further demonstrate the effectiveness of
the learning from demonstration approach, both for reducing the amount of time re-
quired to tune an autonomous system, and for improving the quality and robustness
of the result.

Future work is currently focused on application to a variety of autonomous ve-
hicles with a range of planning systems. In addition, the challenge of collecting
and curating large amounts of training data must be addressed. While these ap-
proaches have drastically reduced the amount of time necessary to properly tune
an autonomous system, further improvement is possible. This includes approaches
for identifying the most useful training data [15], as well as alternate approaches to
soliciting expert input and feedback [13].
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Unsupervised Feature Learning for RGB-D
Based Object Recognition

Liefeng Bo�, Xiaofeng Ren, and Dieter Fox

Abstract. Recently introduced RGB-D cameras are capable of providing high
quality synchronized videos of both color and depth. With its advanced sensing
capabilities, this technology represents an opportunity to dramatically increase the
capabilities of object recognition. It also raises the problem of developing expressive
features for the color and depth channels of these sensors. In this paper we introduce
hierarchical matching pursuit (HMP) for RGB-D data. HMP uses sparse coding to
learn hierarchical feature representations from raw RGB-D data in an unsupervised
way. Extensive experiments on various datasets indicate that the features learned
with our approach enable superior object recognition results using linear support
vector machines.

1 Introduction

Recognizing object instances and categories is a crucial capability for an au-
tonomous robot to understand and interact with the physical world. Humans are
able to recognize objects despite large variation in their appearance due to changing
viewpoints, deformations, scales and lighting conditions. This ability fundamen-
tally relies on robust visual representations of the physical world. However, most
state-of-the-art object recognition systems are still based on hand-designed repre-
sentations (features), such as SIFT [26], Spin Images [18], SURF [3], Fast Point
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Feature Histogram [30], LINE-MOD [15], or feature combinations [20, 7]. Such
approaches suffer from at least two key limitations. Firstly, these features usually
only capture a small set of recognition cues from raw data; other useful cues are
ignored during feature design. For instance, the well-known SIFT features capture
edge information from RGB images using a pair of horizonal and vertical gradient
filters while completely ignoring color information. Secondly, the features have to
be re-designed for new data types, or even new tasks, making object recognition
systems heavily dependent on expert experience. It is desirable to develop efficient
and effective learning algorithms to automatically learn robust representations from
raw data.

Recently, several research groups have developed techniques for unsupervised
feature learning from raw vision data [16, 40, 38, 24, 12, 8]. Algorithms such as
deep belief nets [16], denoising autoencoders [40], deep Boltzmann machines [38],
convolutional deep belief networks [24], K-Means based feature learning [12, 4],
hierarchical sparse coding [43], and hierarchical matching pursuit [8] have been
proposed to this end. Such approaches build feature hierarchies from scratch, and
have exhibited very impressive performance on many types of recognition tasks
such as handwritten digit recognition [16, 40, 38], face recognition [24], tiny im-
age recognition [12], object recognition [24, 12, 43, 8], event recognition [8] and
scene recognition [8]. However, the current applications are somewhat limited to
2D images, typically in grayscale.

Recently introduced RGB-D cameras are capable of providing high quality syn-
chronized videos of both color and depth. With its advanced sensing capabilities,
this technology represents an opportunity to dramatically increase the capabilities
of object recognition. It also raises the problem of developing expressive features for
the color and depth channels of these sensors. Inspired by the success of our previ-
ous work, hierarchical matching pursuit (HMP) for image classification, we propose
unsupervised feature learning for RGB-D based object recognition by making hier-
archical matching pursuit suitable for color and depth images captured by RGB-D
cameras. HMP learns dictionaries over image and depth patches via K-SVD [2]
in order to represent observations as sparse combinations of codewords. With the
learned dictionary, feature hierarchies are built from scratch, layer by layer, using
orthogonal matching pursuit and spatial pyramid pooling [8]. Two major innova-
tions are introduced in this work: (1) Unsupervised feature learning on both color
and depth channels; (2) spatial pyramid pooling over sparse codes from both layers
of the HMP hierarchy. Extensive evaluations on several publicly available bench-
mark datasets [20, 10, 39] allowed us to gain various experimental insights: un-
supervised feature learning from raw data can yield recognition accuracy that is
superior to state-of-the-art object recognition algorithms, even to ones specifically
designed and tuned for textured objects; the innovations introduced in this work sig-
nificantly boost the performance of HMP applied to RGB-D data; and our approach
can take full advantage of the additional information contained in color and depth
channels.
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2 Related Work

This research focuses on hierarchical feature learning and its application to RGB-D
object recognition. In the past few years, a growing amount of research on object
recognition has focused on learning rich features using unsupervised learning, hier-
archical architectures, and their combination.

Deep Networks: Deep belief nets [16] learn a hierarchy of features by training
multiple layers recursively using the unsupervised restricted Boltzmann machine.
This pre-training phase has been shown to avoid shallow local minima. The learned
weights are then further adjusted to the current task using supervised information.
To make deep belief nets applicable to full-size images, Lee et al. [24] proposed
convolutional deep belief nets that use a small receptive field and share the weights
between the hidden and visible layers among all locations in an image. Invariant
predictive sparse decomposition [17, 19] approximates sparse codes from sparse
coding approaches using multi-layer feed-forward neural networks and avoid solv-
ing computationally expensive optimizations at runtime. Stacked denoising autoen-
coders [40] build deep networks, based on stacking layers of denoising autoencoders
that train one-layer neural networks to reconstruct input data from partial random
corruption. Deconvolutional networks [44] reconstruct images using a group of
latent feature maps in a convolutional way under a sparsity constraint. These ap-
proaches have been shown to yield competitive performance with the SIFT based
bag-of-visual-words model on object recognition benchmarks such as Caltech-101.

Single Layer Sparse Coding: Sparse coding [31] on top of raw images/patches has
been developed for face recognition [1], digit recognition [28] and texture segmen-
tation [27]. More recently, researchers have shown that single layer sparse coding
on top of SIFT features achieves state-of-the art performance on more challeng-
ing object recognition benchmarks [23, 42, 41, 9, 12, 43]. Yang et al. [42] learn
sparse codes over SIFT features instead of raw image patches using sparse coding
approaches. Their comparisons suggested that such an approach significantly out-
performs the standard bag-of-visual-words model. Wang et al. [41] presented a fast
implementation of local coordinate coding that computes sparse codes of SIFT fea-
tures by performing local linear embedding on several nearest codewords in a code-
book learned by K-Means. Boureau et al. [9] compared many types of recognition
algorithms, and found that the SIFT based sparse coding approaches followed by
spatial pyramid max pooling work very well, and macrofeatures can boost recog-
nition performance further. Coates and Ng [12] evaluated many feature learning
approaches by decomposing them into training and encoding phases, and suggested
that the choice of architecture and encoder is the key to a feature learning system.
Yu et al. [43] showed that hierarchical sparse coding at pixel level achieves similar
performance with SIFT based sparse coding.

Feature Learning for RGB-D: Kernel descriptors [6] learn patch level feature de-
scriptors based on kernels comparing manually designed pixel descriptors such as
gradients, local binary patterns or colors. Adapting this view to depth maps and
3D points, RGB-D kernel descriptors are proposed in [5, 7], and the experiments
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showed that they obtain higher recognition accuracy than hand-designed feature sets
on the RGB-D object dataset [20]. By adapting K-Means based feature learning pro-
posed by Coates and Ng [12] to the RGB-D setting, Blum and colleagues showed
that it is possible to learn RGB-D descriptors from raw data that are competitive
with RGB-D kernel descriptors on the RGB-D object dataset [4].

3 Unsupervised Feature Learning

This section provides an overview of our feature learning architecture. We review
the key ideas behind dictionary learning and discuss our two-layer architecture to
generate features over complete RGB-D images.

Building on our previous work on feature learning for object recognition [8], we
propose two innovations to make the approach suitable for RGB-D based object
recognition. Firstly, we perform feature learning on both color and depth images.
The orignal HMP work [8] uses grayscale images only, insufficient in many cases:
color is distinctively useful for object instance recognition where appearance de-
tails matter, and the depth channel in RGB-D can greatly improve object category
recognition and its robustness. We learn dictionaries and encode features using full
RGB-D data: gray, RGB, depth and surface normal channels. Secondly, as described
in Section 3.2, we extract features not only from the top of the feature hierarchy, but
also from lower layers.

3.1 Dictionary Learning via K-SVD

The key idea of sparse coding is to learn a dictionary, which is a set of vectors,
or codes, such that the data can be represented by a sparse, linear combination of
dictionary entries. In our case, the data are patches of pixel values in RGB-D frames.
For instance, a dictionary for 5×5 RGB-D patches would contain vectors of size
5× 5× 8, where the last component is due to grayscale intensity, RGB, depth and
surface normal values. Grayscale intensity values are computed from the associate
RGB values and normal values are computed from the associated depth values and
their coordinates.

K-SVD [2] is a popular dictionary learning approach that generalizes K-Means.
It learns dictionaries D = [d1, · · · ,dm, · · · ,dM] and the associated sparse codes
X = [x1, · · · ,xn, · · · ,xN ] from a matrix Y of observed data by minimizing the
reconstruction error

min
D,X
‖Y −DX‖2

F s.t. ∀m, ‖dm‖2 = 1 and ∀n, ‖xn‖0 ≤ K (1)

Here, the notation ‖A‖F denotes the Frobenius norm, the zero-norm ‖ · ‖0 counts
the non-zero entries in the sparse codes xn, and K is the sparsity level controlling
the number of the non-zero entries. When the sparsity level is set to be 1 and the
sparse code matrix is forced to be a binary(0/1) matrix, K-SVD exactly reproduces
the K-Means algorithm.
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K-SVD solves the optimization problem (1) in an alternating manner. During
each iteration, the current dictionary D is used to encode the data Y by computing
the sparse code matrix X . Then, the codewords of the dictionary are updated one
at a time, resulting in a new dictionary. This new dictionary is then used in the
next iteration to recompute the sparse code matrix followed by another round ot
dictionary update. We now briefly outline these steps, see [2, 8] for details.

Computing the Sparse Code Matrix via Orthogonal Matching Pursuit: Given
the current dictionary D, optimizing the sparse code matrix X can be decoupled into
N sub-problems; one for each data item yn. The sparse code xn for each item yn is
computed efficiently using orthogonal matching pursuit (OMP) [34], a greedy algo-
rithm. In each iteration, OMP selects the codeword dm that best matches the current
residual, which is the reconstruction error remaining after the codewords chosen
thus far. In the first iteration, this residual is exactly the observation yn. Once the
new codeword is selected, the observation is orthogonally projected onto the span
of all the previously selected codewords and the residual is recomputed. The pro-
cedure is repeated until the desired K codewords are selected. In our unsupervised
feature learning setting, a large number of image patches share the same dictionary
and the total cost of OMP can be reduced by its batch version that keeps some
quantities in memory to save computational cost [13, 36, 8].

Updating the Dictionary via Singular Value Decomposition: Given the sparse
code matrix X , the dictionary D is optimized sequentially via Singular Value De-
composition (SVD). In the m-th step, the m-th codeword and its sparse codes can
be computed by performing SVD of the residual matrix corresponding to that code-
word. This matrix contains the differences between the observations and their ap-
proximations using all other codewords and their sparse codes. To avoid introducing
new non-zero entries in the sparse code matrix X , the update process only con-
siders observations that use the m-th codeword. It can be shown that each itera-
tion of sparse coding followed by dictionary updating decreases the reconstruction
error (1). In practice, K-SVD converges to good dictionaries for a wide range of
initializations [2].

In our hierarchical matching pursuit, K-SVD is used to learn dictionaries at two
layers, where the data matrix Y in the first layer consists of patches sampled from
RGB-D images, and Y in the second layer are sparse codes pooled from the first
layer (details below). Fig. 1 visualizes the learned dictionaries in the first layer for
four channels: grayscale and RGB for RGB images, and depth and surface normal
for depth images. As can be seen, the learned dictionaries have very rich appear-
ances and include separated red, green, blue colors, transition filters between dif-
ferent colors, gray and color edges, gray and color texture filters, depth and normal
edges, depth center-surround (dot) filters, flat normals, and so on, suggesting many
recognition cues of raw data are well captured.

Once dictionaries are learned via K-SVD, sparse codes can be computed for new
images using orthogonal matching pursuit or the more efficient batch tree orthogonal
matching pursuit [8]. Fig. 2 shows an example of an RGB / depth image pair along
with reconstructions achieved for different levels of sparsity. The shown results are
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Fig. 1 Dictionaries learned for different channels. From left to right: Grayscale intensity,
RGB, depth, 3D surface normal (3 normal dimensions color coded as RGB). The codeword
sizes are 5x5x1 for grayscale intensity and depth values, and 5x5x3 for RGB and surface
normal values. Dictionary sizes are 75 for grayscale intensity and depth values, and 150 for
RGB and surface normal values.

Fig. 2 Reconstructed images using the learned dictionaries. Left: Original RGB and depth
images. Middle: Reconstructed RGB and depth images using only two codewords per 5x5
patch. Right: Reconstructions using five codewords.

achieved by non-overlapping 5x5 reconstructed patches. As can be seen, a sparsity
level of K = 5 achieves results that are virtually indistinguishable from the input
data, indicating that this technique could also be used for RGB-D compression,
alternative to [37]. For object recognition, the sparse codes become the features
representing the image or segment, as we describe next.
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3.2 Hierarchical Matching Pursuit

With the learned dictionaries D, hierarchical matching pursuit builds a feature hi-
erarchy by applying the orthogonal matching pursuit encoder recursively (Fig. 3).
This encoder consists of three modules: batch orthogonal matching pursuit, pyramid
max pooling, and contrast normalization (see also [8]).

Fig. 3 Hierarchical matching pursuit for RGB-D object recognition. In the first layer, sparse
codes are computed on small patches around each pixel. These sparse codes are pooled into
feature vectors representing 16× 16 patches, by spatial pyramid max pooling. The second
layer encodes these feature vectors using a dictionary learned from sampled patch level fea-
ture vectors. Whole image features are generated from sparse codes of both first and second
layers.

First Layer: The goal of the first layer is to generate features for image patches
whose size is typically 16× 16 pixels or larger. Each pixel in such a patch is rep-
resented by the sparse codes computed for the pixel and a small neighborhood (for
instance, 5× 5 pixel region). Spatial pyramid max pooling is then applied to these
sparse codes to generate patch level features. Spatial pyramid max pooling partitions
an image patch P into multiple level spatial cells. The features of each spatial cell
C are the max pooled sparse codes, which are simply the component-wise maxima
over all sparse codes within a cell:

F(C) =

[
max
j∈C
|x j1|, · · · ,max

j∈C
|x jm|, · · · ,max

j∈C
|x jM|

]
(2)

Here, j ranges over all entries in the cell, and x jm is the m-th component of the
sparse code vector x j of entry j. Note that F(C) has the same dimensionality as
the original sparse codes. The feature FP describing a 16x16 image patch P are the
concatenation of aggregated sparse codes in each spatial cell

FP =
[
F(CP

1 ), · · · ,F(CP
s ), · · · ,F(CP

S )
]

(3)

where CP
s ⊆ P is a spatial cell generated by spatial pyramid partitions, and S is the

total number of spatial cells. As an example, we visualize spatial cells generated by a
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Fig. 4 Spatial pyramid partitions. Each black dot denotes sparse codes of a pixel that are
computed on a 5×5 small patch around this pixel using batch orthogonal matching pursuit.
Left: Level 2. The 16×16 image patch is partitioned into 4×4 = 16 spatial cells. Each cell
is represented by the component-wise maximum of the sparse codes of pixels within the cell.
Middle: Level 1. The 16× 16 image patch is partitioned into 2× 2 = 4 spatial cells. Here,
maxima are computed over the level 2 cells. Right: Level 0. The whole 16×16 image patch
is one spatial cell. The concatenation of C1 through C21 gives the max pooled feature for the
whole patch.

3 level spatial pyramid pooling on a 16× 16 image patch in Fig. 4. In this example,
the dimensionality of the pooled feature vector FP is (16+ 4+ 1)M, where M is
the size of the dictionary (see also Fig. 3). The main idea behind spatial pyramid
pooling is to allow the features FP to encode different levels of invariance to local
deformations [24, 42, 8], thereby increasing the discrimination of the features.

We additionally normalize the feature vectors FP by their L2 norm
√
‖FP‖2 + ε,

where ε is a small positive number. Since the magnitude of sparse codes varies over
a wide range due to local variations in illumination and occlusion, this operation
makes the appearance features robust to such variations, as commonly done in the
hand-designed SIFT features. We found that ε = 0.1 works well for the recognition
problems we considered.

Second Layer: The goal of the second layer in HMP is to generate features for
a whole image/object. To do so, HMP applies the sparse coding and max pooling
steps to image patch features FP generated in the first layer. The dictionary for this
level is learned by sampling patch features FP over RGB-D images. To extract the
feature describing a whole image, HMP first computes patch features via the first
layer (usually, these patches cover 16× 16 pixels and are sampled with a step size
of 4×4 pixels). Then, just as in the first layer, sparse codes of each image patch are
computed using batch orthogonal matching pursuit, followed by spatial max pooling
(3× 3, 2× 2, and 1× 1 cell sizes). However, in this layer, we perform max pooling
over the sparse codes and the patch level features computed in the first layer:

G(C) =

[
max
j∈C
|z j1|, · · · ,max

j∈C
|z jU |,max

j∈C
|Fj1|, · · · ,max

j∈C
|FjV |

]
(4)
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Here, C is a cell and Fj and z j are the patch features and their sparse codes, re-
spectively. U and V are the dimensionality of z j and Fj, where U is given by the
size of the layer two dictionary, and V is given by the size of the patch level fea-
ture (3). Jointly pooling z j and Fj integrates both fine-grained cues captured by the
codewords in the first layer and coarse-grained cues by those in the second layer, in-
creasing the discrimination of the features (joint pooling improves results over those
reported in our original HMP work [8]).

The features of the whole image/object are the concatenation of the aggregated
sparse codes within each spatial cell. The image feature vector GI is then normalized
by dividing with its L2 norm

√‖GI‖2 + 0.0001.
It should be noted that hierarchical matching pursuit is a fully unsupervised fea-

ture learning approach: no supervision (e.g. object class) is required for dictionary
learning and feature coding. The feature vectors GI of images/objects and their cor-
responding labels are then fed to classifiers to learn recognition models.

4 Experiments

We evaluate our RGB-D hierarchical matching pursuit framework on three pub-
licly available RGB-D object recognition datasets and two RGB object recognition
datasets. We compare HMP to results achieved by state-of-the-art algorithms pub-
lished with these datasets. For all five datasets, we follow the same training and test
procedures used by the corresponding authors on their respective data.

In the first layer, we learn the dictionaries of size 75 with sparsity level 5 on
1,000,000 sampled 5× 5 raw patches for grayscale and depth channels, and dictio-
naries of size 150 on 1,000,000 sampled 5×5×3 raw patches for RGB and normal
channels using K-SVD (see their visualizations in Fig. 1). We remove the zero fre-
quency component from raw patches by subtracting their means. With these learned
dictionaries, we compute sparse codes of each pixel (5× 5 patch around it) using
batch OMP with sparsity level 5, and generate patch level features by max pooling
over 16× 16 image patches with 4× 4, 2× 2, and 1× 1 partitions. Note that this
architecture leads to fast computation of patch level features.

In the second layer, we learn the dictionaries of size 1,000 with sparsity level
10 on 1,000,000 sampled 16× 16 patch level features for all four channels using
K-SVD. With these learned dictionaries, we compute sparse codes of image patches
that are densely sampled from the whole image with a step size of 4× 4 pixels. We
then pool both patch level features and their sparse codes on the whole image with
3×3, 2×2, and 1×1 partitions to generate the image level features. The final image
feature vectors are the concatenation of those from all four channels, resulting in a
feature size of 188,300 dimensions.

The above hyperparameters are optimized on a subset of the RGB-D object
recognition dataset we collected. We empirically found that they work well on
different datasets. In the following experiments, we will keep these values fixed,
even though the performance might improve via tuning these parameters for each
dataset using cross validation on the associated training data. With the learned HMP
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features, linear support vector machines (SVMs) are trained for recognition. Lin-
ear SVMs are able to match the performance of nonlinear SVMs with the popular
histogram intersection kernel [29] while being scalable to large datasets [8].

4.1 RGB-D Object Dataset

The first dataset, called RGBD, contains 41,877 RGB-D images of 300 physically
distinct everyday objects taken from different viewpoints [20]. The objects are orga-
nized into 51 categories arranged using WordNet hypernym-hyponym relationships.
The objects in the dataset are segmented from the background by combining color
and depth segmentation cues. The RGBD dataset is challenging since it not only
contains textured objects such as food bags, soda cans, and cereal boxes, but also
texture-less objects such as bowls, coffee mugs, fruits, or vegetables. In addition,
the data frames in RGBD additionally exhibit large changes in lighting conditions.

Object Recognition. We distinguish between two types of object recognition tasks:
instance recognition and category recognition. Instance recognition is to recognize
known object instances. Category recognition is to determine the category name of
a previously unseen object. Each object category consists of a number of different
object instances. Following the experimental setting in [20], we randomly leave one
object instance out from each category for testing, and train models on the remaining
300 - 51 = 249 objects at each trial for category recognition. We report the accuracy
averaged over 10 random train/test splits. For instance recognition, we train models
on images captured from 30◦ and 60◦ elevation angles, and test them on the images
of the 45◦ angle (leave-sequence-out).

We compare HMP with the baseline [20], kernel descriptors [7], convolutional
k-means descriptors (CKM Desc) [4], and the original HMP [8] (features from the
second layer only; grayscale and depth, but no color and normal) in Table 1. The
recognition systems developed in [20, 7, 22] use a rich set of manually designed
features. As can be seen, HMP outperforms all previous approaches for both cat-
egory and instance recognition. For instance recognition, features learned on color
images substantially improve the performance relative to those on grayscale images.

We performed additional experiments to shed light on different aspects of our ap-
proach. Fig. 5 (left) shows category recognition accuracy as a function of the patch
size in the first layer. A larger patch size helps to improve the accuracy, but becomes
saturated around 5× 5. In Fig. 5 (middle), we show instance recognition accuracy
using features on grayscale images and features on color images from the second
layer only, and features on color images from both layers. As can be seen, features
on color images work much better than those on grayscale images. This is expected
since color information plays an important role for instance recognition. Object in-
stances that are distinctive in the color space may have very similar appearance in
grayscale space. We investigated the object instances misclassified by HMP, and
found that most of the mistakes are from fruits and vegetables. Two misclassified
tomatoes are shown in Fig. 5. As one can see, these two tomato instances are so
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Table 1 Comparisons with the baseline [20], kernel descriptors [7], convolutional k-means
descriptor [4] and the original HMP [8]

RGBD Category Instance
Methods RGB Depth RGB-D RGB Depth RGB-D

ICRA11 [20] 74.3±3.3 53.1±1.7 81.9±2.8 59.3 32.3 73.9
Kernel descriptors [7, 22] 80.7±2.1 80.3±2.9 86.5±2.1 90.8 54.7 91.2

CKM Desc [4] N/A N/A 86.4±2.3 82.9 N/A 90.4
HMP [8] 74.7±2.5 70.3±2.2 82.1±3.3 75.8 39.8 78.9
This work 82.4±3.1 81.2±2.3 87.5±2.9 92.1 51.7 92.8

Fig. 5 Left: category recognition accuracy as a function of the filter size. Middle: instance
recognition accuracy by using features on grayscale images (Gray), features on color images
(RGB) from the second layer only, features on color images from both layers (RGB+). Right:
two tomato instances confused by our approach.

similar that even humans struggle to tell them apart. If such objects are excluded
from the dataset, our approach has more than 95% accuracy for instance recogni-
tion on the RGBD dataset.

We also investigate recognition accuracies using features from the first layer only,
from the second layer only, and from both layers. We observe that integrating fea-
tures from both layers improves performance by about 2 percents. Features from the
second layer are better than those from the first layer for category recognition while
features from the first layer are better than the second layer for instance recogni-
tion. This makes sense intuitively, since coarse-grained information (second layer)
is more important for category recognition whereas fine-grained information (first
layer) is more important for instance recognition.

Pose Estimation. We further evaluated the HMP features for pose estimation,
where the pose of every view of every object is annotated as the angle about the
vertical axis. Each object category has a canonical pose that is labeled as 0◦, and
every image in the dataset is labeled with a pose in [0,360◦]. Similar to instance
recognition, we use the 30◦ and 60◦ viewing angle sequences as training set and
the 45◦ sequence as test set. For efficiency, we follow an independent tree ap-
proach to estimate pose, where each level is trained as an independent classier [21]:
Firstly, one-versus-all category classifiers are trained in the category level; secondly,
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Table 2 Pose estimation error (in degrees) and running time (in seconds) comparison of
several approaches. Indep Tree is a tree of classifiers where each level is trained as indepen-
dent linear SVMs, NN is nearest neighbor regressor, and OPTree is the Object-Pose Tree
proposed in [21]. Median pose accuracies for MedPose, MedPose(C) and MedPose(I) are
88.9%, 89.6% and 90.0%, respectively. Mean pose accuracies for AvePose, AvePose(C) and
AvePose(I) are 70.2%, 73.6% and 75.1%, respectively.

Technique MedPose MedPose(C) MedPose(I) AvePose AvePose(C) AvePose(I) Test Time(s)
NN 144.0◦ 105.1◦ 33.5◦ 109.6◦ 98.8◦ 62.6◦ 54.8

Indep Tree 73.3◦ 62.1◦ 44.6◦ 89.3◦ 81.4◦ 63.0◦ 0.31
OPTree 62.6◦ 51.5◦ 30.2◦ 83.7◦ 77.7◦ 57.1◦ 0.33

This work 20.0◦ 18.7◦ 18.0◦ 53.6◦ 47.5◦ 44.8◦ 0.51

one-versus-all instance classifiers are trained in the instance level within each cate-
gory; and finally one-versus-all pose classifiers in the pose level are trained within
each instance. At test time, category, instance and pose classifiers are run in turn to
estimate the pose of a query object.

Table 2 shows pose estimation errors under three different scenarios. We report
both median pose (MedPose) and mean pose (AvePose) errors because the distri-
bution across objects is skewed [21]. For MedPose and AvePose, pose errors are
computed on the entire test set, where test images that were assigned an incorrect
category or instance label have a pose error of 180.0◦. MedPose(C) and AvePose(C)
are computed only on test images that were assigned the correct category by the
system, and, MedPose(I) and AvePose(I) are computed only on test images that
were assigned the correct instance by the system. We compare HMP to our previ-
ous results [21]. As can been seen from Table 2, with our new HMP features, pose
estimation errors are significantly reduced under all scenarios, resulting in only 20◦
median error even when classification errors are measured as 180.0◦ offset. We vi-
sualize test images and the best matched images in Fig. 6. The results are very
intuitive: estimations are quite accurate for non-symmetric objects and sometimes
inaccurate for symmetric objects for which different poses could share very similar
or exactly same appearances.

4.2 Willow and 2D3D Datasets

We evaluated HMP on two other publicly available RGB-D recognition datasets.
The first dataset, 2D3D, consists of 156 object instances organized into 14 cate-
gories [10]. The authors of this dataset also use a large set of 2D and 3D man-
ually designed shape and color features. SVMs are trained for each feature and
object class, followed by multilayer perceptron learning to combine the different
features. The second dataset, Willow, contains objects from the Willow and Chal-
lenge datasets for training and testing, respectively [39]. Both training and test
data contain 35 rigid, textured, household objects captured from different views by



Unsupervised Feature Learning for RGB-D Based Object Recognition 399

Fig. 6 Test images and the best matched images using HMP features

Fig. 7 Ten of the thirty-five textured household objects from the Willow dataset

Table 3 Comparisons with the previous results on the two public datasets: Willow and
2D3D

2D3D Category Recognition Willow Instance Recognition
Methods RGB Depth RGB-D Methods Precision/Recall

ICCVWorkshop [10] 66.6 74.6 82.8 ICRA12 [39] 96.7/97.4
This work 86.3 87.6 91.0 This work 97.4/100.0

Willow Garage. The authors present a processing pipeline that uses a combination of
SIFT feature matching and geometric verification to perform recognition of highly
textured object instances [39]. Note that 2D3D and Willow only contain highly
textured objects.

We report the results of HMP in Table 3. Following the experimental setting
in [10], HMP yields 91.0% accuracy for category recognition, much higher than the
82.8% reported in [10]. Learning models on training data from the Willow dataset
and testing them on the training data from the Challenge dataset [39], HMP achieves
higher precision/recall than the system proposed in [39], which won the 2011 Per-
ception Challenge organized by Willow Garage. Note that that system is specifically
designed for textured objects and thus could not, in contrast to our learned features,
be applied to untextured objects such as those found in the RGBD dataset.
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4.3 Learning and Vision Datasets

We also tested our model on the feature learning dataset STL-10 [11] and on the vi-
sion dataset MITScenes-67 [35]. We used the same architecture for these datasets
as for RGB-D datasets. The dictionaries are learned on both RGB and grayscale
channels and the final features are the concatenation of HMP features from these
two channels. Following the standard setting in [11], we train linear SVMs on 1000
images and test on 8000 images using our HMP features and report the averaged
accuracy over 10 pre-defined folds by the authors. As can be seen in Table 4, HMP
achieves much higher accuracy than the receptive field learning algorithm [12] that
beat many types of deep feature learning approaches as well as single layer sparse
coding on top of SIFT (SC) [12]. Training linear SVMs on 80 images and testing on
20 images per category on the pre-defined training/test split by the authors, HMP
achieves higher accuracy than many state-of-the-art algorithms: spatial pyramid
matching (SPM) [32], deformable parts models (DPM) [14], object bank (OB) [25],
Reconfigurable Models (RBoW) [33], and even the combination of SPM, DPM, and
color GIST [32].

Table 4 Comparisons with the previous results on the STL-10 and MITScenes-67

STL-10 MITScenes-67
VQ [11] 54.9±0.4 GIST-color [32] 29.7 OB [25] 37.6
SC [12] 59.0±0.8 DPM [14] 30.4 RBoW [33] 37.9

Learned RF [12] 60.1±1.0 SPM [32] 34.4 DPM+Gist-color+SPM [32] 43.1
This work 64.5±1.0 SC [8] 36.9 This work 47.6

5 Conclusions

We demonstrated that recent advances in unsupervised feature learning make it pos-
sible to learn very rich features from raw RGB-D data. Our approach, HMP, con-
sistently outperforms state-of-the-art techniques on five benchmark datasets. Impor-
tantly, even though HMP is designed fsor very general object recognition, it even
outperforms techniques specifically designed for highly textured objects, when ap-
plied to such data. These results are extremely encouraging, indicating that current
recognition systems can be significantly improved without resorting to careful, man-
ual feature design. We believe this work opens up many possibilities for learning
rich, expressive features from raw RGB-D data. In the current implementation, we
manually designed the architecture of HMP. Automatically learning such structure is
interesting but also very challenging and left for future work. Our current experience
is that learning dictionaries separately for each channel works better than learning
them jointly. We plan to explore other possibilities of joint dictionary learning in
the future.
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Learning to Parse Natural Language Commands
to a Robot Control System

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox

Abstract. As robots become more ubiquitous and capable of performing complex
tasks, the importance of enabling untrained users to interact with them has increased.
In response, unconstrained natural-language interaction with robots has emerged
as a significant research area. We discuss the problem of parsing natural language
commands to actions and control structures that can be readily implemented in a
robot execution system. Our approach learns a parser based on example pairs of
English commands and corresponding control language expressions. We evaluate
this approach in the context of following route instructions through an indoor envi-
ronment, and demonstrate that our system can learn to translate English commands
into sequences of desired actions, while correctly capturing the semantic intent of
statements involving complex control structures. The procedural nature of our for-
mal representation allows a robot to interpret route instructions online while moving
through a previously unknown environment.

1 Motivation and Problem Statement

In this paper, we discuss our work on grounding natural language–interpreting hu-
man language into semantically informed structures in the context of robotic per-
ception and actuation. To this end, we explore the question of interpreting natural
language commands so they can be executed by a robot, specifically in the context
of following route instructions through a map.

Natural language (NL) is a rich, intuitive mechanism by which humans can inter-
act with systems around them, offering sufficient signal to support robot task plan-
ning. Human route instructions include complex language constructs, which robots
must be able to execute without being given a fully specified world model such as a
map. Our goal is to investigate whether it is possible to learn a parser that produces
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Fig. 1 The task: Going from NL to robot control. First, the natural language command is
parsed into a formal, procedural description representing the intent of the person. The robot
control commands are then used by the executor, along with the local state of the world,
to control the robot, thereby grounding the NL commands into actions while exploring the
environment.

correct, robot-executable commands for such instructions. We treat grounding as a
problem of parsing from a natural language to a formal control language capable
of representing a robot’s operation in an environment. Specifically, we train a se-
mantic parsing model that defines, for any natural language sentence, a distribution
over possible robot control sequences in a LISP-like control language called Robot
Control Language, or RCL.

The key contributions of this work are to learn grounding relations from data
(rather than predefining a mapping of natural language to actions), and to execute
them against a previously unseen world model (in this case, a map of an environ-
ment), as illustrated in Fig. 1. Training is performed on English commands an-
notated with the corresponding robot commands. This parser can then be used to
transform new route instructions to execution system inputs in an unfamiliar map.
The resulting system can represent control structures and higher-order concepts. We
test our approach using a simulator executing the commands produced.

The remainder of this paper is organized as follows. In the next section, we dis-
cuss related work in human-robot interaction, natural language understanding, and
robot navigation and instruction-following. Sec. 3 describes the technical approach,
the formal execution language we define for this work, and our parser learning sys-
tem. Sec. 4 and Sec. 5 describe the experimental evaluation performed and the re-
sults obtained, and we close with a discussion of insights gained from this work.

2 Related Work

Robot navigation is a critical and widely-studied task in mobile robotics, and fol-
lowing natural-language instructions is a key component of natural, multi-modal
human/robot interaction. Previous efforts have treated the language grounding task
as a problem of parsing commands into formal meaning representations. Several
efforts [14, 23] parse natural route instructions to sequences of atomic actions
that must be grounded into fully specified world models. Other systems learn to
parse navigation instructions, but limit their formal language to a set of predefined
parses [25].
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Fig. 2 The high-level architecture of the end-to-end system. Training is performed by learn-
ing a parser from English instructions to RCL. In the experimental phase, the learned parser
maps NL instructions to an RCL program that is executed by the robot.

Our work falls also into the broader class of grounded language acquisition [24],
in which language is learned from situated context, usually by learning over a cor-
pus of parallel language and context data. Other work shows how parsed natural
language can be grounded in a robot’s world and action models, taking perceptual
and grounding uncertainty into account, thereby enabling instruction for robot nav-
igation, GUI interaction, and forklift operation [30, 4, 28].

Parsing natural language to expressive formal representations such as λ -calculus
has been demonstrated [31, 1, 18]. λ -calculus is able to represent complex robot
control systems [8]; however, to the best of our knowledge, such parser learning
approaches have not yet been applied in the context of robotics. Logic-based con-
trol systems have been used successfully in robotics [11, 3, 5, 9, 16], providing
a powerful framework that can be readily mapped to robot actions, and combina-
tory categorial grammars have been used for semantic mapping [21]; in contrast to
our framework, however, most approaches rely on a manually constructed parser
to map from NL commands to λ -calculus, rather than learning grounding relations
from data.

Our work is most similar to that of Chen & Mooney [7, 6], who perform parser
learning over a body of route instructions through a complex indoor environment
containing objects and landmarks with no prior linguistic knowledge. However, their
work assumes initial knowledge of a map, and does not represent complex control
structures. Compared to our previous approach to parser learning for route instruc-
tion following, the system presented here can represent control structures such as
‘while,’ higher-order concepts such as ‘nth,’ and set operations, and is able to follow
such directions through unknown maps.

3 Technical Approach

As noted in Sec. 2, much of the work on learning to parse natural language route
instructions assumes previous knowledge of the map to be traversed. Intuitively,
our approach is to parse natural language into a high level specification of robot
behavior, which can then be executed in the context of an arbitrary environment.
Differentiating context and meaning in this way lends itself well to tasks in robotics,
where full knowledge of the environment is rarely available. Our approach also
separates the parsing problem from execution, providing a more appropriate layer
of abstraction for robot control. This architecture is shown in Fig. 2.
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3.1 Robot Control Language

We model control structures in a logic-based Robot Control Language (RCL), in-
spired by task execution systems such as PRS [12], RPL [2], and GOLEX [11]. For
a given set of route instructions, RCL represents the high-level execution intended
by the person. Fig. 3 illustrates RCL programs for paths through an automatically
generated, semantically-labeled map [10], along with the instructions correspond-
ing to that path. (RCL is a subset of the typed lambda calculus, and therefore can be
represented in a LISP-like format.)

The language is intended to be high-level enough that different execution sys-
tems can be used for various tasks, rather than specifying low-level actuation and
perception tasks. As such, RCL expressions can encode actions with nontrivial sub-
tasks such as combined perception and action. For example, (exists left-loc)

is a high-level command to the execution system to determine whether there is an
opening to the left, while (move-to forward-loc) tells the robot to move one
node forward in the semantic map. This also allows the language to be quite com-
pact; a full list of RCL commands is given in Fig. 3(a), including terms for logical
expressions, queries about local state, and actions to be performed.

3.2 Parsing

RCL is a formal language defined by a grammar; parsing is the process of producing
an expression in that grammar from some input. In our case, the input is natural
language route instructions, and the parsing target is a statement in RCL that can be
passed to a robot controller for planning or further disambiguation.

For this work, parsing is performed using an extended version of the Unification-
Based Learner, UBL [17]. The grammatical formalism used by UBL is a probabilis-
tic version of combinatory categorial grammars, or CCGs [27], a type of phrase
structure grammar. CCGs model both the syntax (language constructs such as NP
for noun phrase) and the semantics (expressions in λ -calculus) of a sentence. UBL
creates a parser by inducing a probabilistic CCG (PCCG) from a set of training
examples.

PCCG-based algorithms have several characteristics that make them a good
choice for parsing NL instructions. They are robust against noise found in lan-
guage, and they are able to efficiently generate n-best parses using CKY-style pars-
ing [29, 18], allowing for jointly considering a parse model and a world model
derived from sensor data when interpreting instructions into grounded action; next-
best parse search can also be used for “fallback” exploration, e.g., when performing
local error correction. Additionally, the probabilistic nature of PCCGs offers a clear
objective for learning, that is, maximizing the conditional likelihood of training data.

Importantly, UBL can learn a parser solely from training data of the form
{(xi,zi)}, where xi is a natural-language sentence and zi is a corresponding semantic-
language sentence. In brief, UBL learns a model for p(zi,yi|xi;θ ), where θ parame-
terizes the learned grammar G and yi is a derivation in G (zi is completely specified
by yi). UBL uses a log-linear model:
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locations
current-loc:loc robot’s current position
forward-loc:loc location ahead of robot
left-loc:loc to robot’s left
right-loc:loc to robot’s right
exists:t [loc] does [loc] exist?

movement
move-to:t [loc] move to [loc]

turn-left:t take next available left
turn-right:t take next available right

logic
and:t [t] [t] boolean ‘and’
or:t [t] [t] boolean ‘or’
not:t [t] boolean ‘not’

loops
do-until:t [t] [e] do [e] until [t] is true
do-n-times:t [n] [e] do [e] [n] times

querying the type of a node
room:t [loc] is [loc] a room?
junction:t [loc] is [loc] a junction?
junction3:t [loc] is [loc] a 3-way junction?
junction4:t [loc] is [loc] a 4-way junction?
hall:t [loc] is [loc] of type hallway?

mid-level perception
turn-unique-corner:t take available turn
take-unique-exit:t leave a room with one exit

other
<#>:n integers
do-sequentially:t e+ do each thing in turn
verify:t t error if arg is false

(a)

“Go left to the end of the hall.”
(do-sequentially

(turn-left

(do-until

(or

(not

(exists forward-loc))

(room forward-loc))

(move-to forward-loc)))

“Go to the third junction and
take a right.”
(do-sequentially

(do-n-times 3

(do-sequentially

(move-to forward-loc

(do-until

(junction current-loc

(move-to

forward-loc))))

(turn-right))

“Go straight down the hallway past
a bunch of rooms until you reach an
intersection with a hallway on your
left.”
(do-sequentially

(do-until

(and

(exists left-loc)

(hall left-loc))

(move-to forward-loc))

(turn-left))

(b)

Fig. 3 (a) The complete list of terms in Robot Control Language. Hallways, rooms and
intersections are treated as nodes of a map. The return type of each term is given after
its name, followed by the types of any parameters: e (entity), t (boolean), n (number),
loc (map location). (b) gives examples of English sentences from the test corpus and their
RCL interpretations.

p(zi,yi|xi;θ ) ∝ eθ ·φ(xi,yi,zi)

UBL first generates a set of possibly useful lexical items, made up of natural lan-
guage words, a λ -calculus expression, and a syntactic category. (An example lexical
item might be <“left”, turn-left, S>.) The algorithm then alternates between in-
creasing the size of this lexicon and estimating the parameters of G via stochastic
gradient descent [20].
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go to the second junction and go left

S/NP NP/NP NP/N N S\S/S S
(move-to f orward) [null] (do-n-times 2 x) (until ( junction current-loc) y) (do-seq g f ) (turn-le f t)

NP S\S
(do-n-times 2 (until ( junction current-loc) y)) (do-seq g turn-le f t)

NP
(do-n-times 2 (until ( junction current-loc) y))

S
(do-n-times 2 (until ( junction current-loc) (move-to f orward)))

S
(do-seq (do-n-times 2 (until ( junction current-loc) (move-to f orward))) (turn-le f t))

Fig. 4 CCG parse of a test sentence performed by the learned parser. Here the natural lan-
guage input is first, followed by alternating CCG syntactic categorization and λ -calculus
logical forms. The bottom row shows the RCL program to be executed by the robot. (Some
syntax has been changed for conciseness.)

Two types of features θ are used. Lexical features fire when the associated lexical
items are found in a training example (an example lexical item might be <“left”,
turn-left, S>). Semantic features are functions of the logical RCL expression zi.
These are binary features that indicate the co-occurrence of different types of terms
in zi: predicates and their arguments, argument types, predicate co-occurrences, and
shared variables. Once a parser is trained, parses are produced via derivations, using
the learned lexical items and a small set of fixed production rules. Fig. 4 gives an
example derivation of an RCL program (last line) from an input sentence (first line).

3.2.1 Parsing Extensions: Initialization of Lexicon and Parameters

In [17], the lexicon—the set of lexical entries and their weights—was initialized
with entries covering the entirety of each training example: for each pair of terms
found in (xi,zi), one initial lexical entry was created. The model defined by θ con-
tained a parameter corresponding to each lexical item, and these weights were set
using cooccurrence statistics of single words in the natural language with constants
in the semantic language. For example, given the training example:

exit the room and go left
(do-sequentially (take-unique-exit) (turn-le f t))

the algorithm would count one cooccurrence for each of (‘exit’, do-sequentially),
(‘exit’, take-unique-exit), (‘exit’, turn-le f t), and each other (NL-word, logical-
term) pair. The more often such a pair cooccurred, the more important it was con-
sidered for parsing and so the higher its weight in the initial model.

In this work we use a new initialization that is better able to handle our semantic
language. Intuitively, rather than generating lexical items from each word, we al-
low arbitrary subsequences of natural-language words, along with semantic subex-
pressions as defined by the splitting procedure of [17]. As before, this favors (NL,
semantics) pairs that are very predictive of each other, while remaining tractable.

More specifically: for each training example i, we let W (xi) be all subsequences
of words in the NL sentence xi (up to a fixed length, N = 4 in our experiments).
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We define Li to be the initial sentential CCG category of the sentence xi, having
syntactic category S (sentence) and meaning zi. Splits of Li into CCG categories
are recursively explored to depth two, yielding a set of possible syntactic sub-
categorizations R. We then define three count functions: C(w ∈W ), instances of
phrase w in the training data; C(r ∈ R), occurrences of each syntactic category in
the training data; and C(w,r) as the cooccurrence count. The score for lexical entry
(w,r) is then defined to be p(w|r)+ p(r|w), where probabilities are computed using
counts.

Two other improvements made to UBL involve synonyms and ordinals. During
both training and evaluation, if UBL is unable to find a parse for a sentence, it
tries to substitute known synonym lists from a standard dictionary for individual
words. In addition, numbers are special-cased: when an ordinal (numbers such as
‘three’, or counting terms such as ‘second’) is encountered in a training sentence, it
is replaced by a standard symbol, turning that training sentence into a template into
which other ordinals can be substituted freely. As a result, not each ordinal term has
to be encountered in all contexts in the training data.

4 Dataset and Maps

Our primary goal is to evaluate the ability of the system to generate RCL command
sequences that allow a robot to navigate through a labeled map according to NL in-
structions. Maps are labeled according to area type (room, hallway, etc.), but are not
known to the robot in advance. Instead, the robot explores the map simultaneously
with following an RCL program. These experiments are performed in simulation.

We use four maps for our experiments, two each for training and testing (see
Fig. 5). Each map has an associated set of routes through the map that have been
described in English; for training and test purposes, each English route description
is also paired with an associated RCL annotation. Maps A and B—the training and
testing maps from earlier work—were automatically generated using Voronoi Ran-
dom Fields [10] on data gathered by a SICK laser range-finder mounted on a Pioneer
robot. Because these original maps were fairly simple, two additional manually con-
structed maps, C and D, were introduced for training and testing, in order to increase
experimental complexity. All navigation experiments were performed in simulated
execution of RCL commands in these maps.

Language datasets were generated as follows. First, English training and test-
ing data from earlier work [23] was re-annotated in RCL; as in [23] and [7], all
English instructions are segmented into individual movement phrases. This train-
ing set, Sbase, contained 189 unique sentences generated by non-experts. We then
supplemented this data with additional sentences taken from descriptions of four
more complex routes in map C. Twelve non-experts supplied NL directions for those
routes. The resulting enriched dataset, Senr, contains 418 NL route instructions along
with corresponding RCL command sequences, including structures requiring loops
and counting–for example, “Go until you reach a four-way intersection”, or “Go into
the ninth door on the right”. Fig. 6 shows an example of an NL route instruction set
with RCL annotation.
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(a) (b) (c) (d)

Fig. 5 Four maps were used: A, B, C, and D are respectively a computer science building,
an industry research lab, an apartment building, and an academic support building at Cuesta
College. Buildings C and D were selected for their relatively complex structure. Areas are
color-coded according to type: green areas are rooms, blue areas are hallways, and dark and
light gray circles are 4-way and 3-way intersections.

(a) Map trace

“Go straight down the
hallway past a bunch of
rooms until you reach an
intersection with a
hallway on your left;
turn left there.”

(b) English phrase

(do-sequentially
(do-until

(and
(exists left-loc)
(hall left-loc))

(move-to forward-loc))
(turn-left current-loc))

(c) RCL commands

Fig. 6 An example training/testing triplet. (a) The red line shows the path through map B; (b)
a description of the path, written by a non-expert person; (c) the language’s RCL annotation in
Senr. In testing, the annotation is compared to the annotation produced by the learned parser.

5 Experiments

Experimentally, we are interested in whether the robot reaches the desired desti-
nation by exactly following the described path. Since all maps contain loops, any
destination can be reached via an incorrect path; we consider this a failed trial. In
addition to the generated RCL program, the robot begins at a known starting loca-
tion and orientation; local knowledge of the map (adjacent and line-of-sight areas) is
updated continuously as the robot progresses. A trial is considered successful only if
the robot reached the correct destination along the route intended by the instructor,
as our goal is to test instruction-following rather than navigation.

5.1 Baseline, Parser, and Route-Following Experiments

We report on three different experiments used to test the capabilities of our system:
two which evaluate its ability to successfully guide a robot through a map, and one
which evaluates the parsing component directly. Because the complete number of
routes is small and does not necessarily capture map complexity, a large number of
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test routes of various lengths were generated in the test map, and NL descriptions
were generated using route instructions drawn from Sbase and Senr (see Fig. 7 for an
example test route and description).

5.1.1 Baseline

As a baseline, we test our robot control system on the training, test, and map data
used in our previous work, which only contains the 189 comparatively simple route
instructions in Sbase. For this experiment, data was collected on Map A, and tested
against Map B, using the evaluation paradigm from previous work [23]. Perfor-
mance was virtually identical to that work, with the simulated robot successfully
following 71.4% of route instructions. It is not surprising that our new technique did
not significantly improve over the performance of the prior approach, as that data
set was rather small and did not contain complex control structures (while loops,
counting) requiring the additional capabilities provided by this work. Additionally,
this accuracy was achieved using only collected training data, without amplifying
the training set by adding a large number of hypothetical map routes to each natural
language instruction, as was done in [23].

5.1.2 Parser Cross-Validation

In order to evaluate the parser learning system independent of route-following,
we perform ten-fold cross-validation on the enriched dataset Senr, which contains
more complex instructions. This test compares the learned parser output against the
expert-created RCL annotation, rather than testing the full system against a map,
and evaluates performance on individual sentences rather than sets of route instruc-
tions. Table 1 shows precision, recall, and F1 score. A parse is reported to be correct
if it matches the human-supplied RCL program for that phrase, so this test shows
the frequency with which the parsing system recovers the exact RCL program of
unseen commands.

Table 1 Precision, recall, and F1 on cross-validation tests of the extended UBL parser learner

data set precision recall F1 score
enriched 71.0% 72.6% 71.8%

5.1.3 Route Following with Complex Language

The primary experiment of this work is to test following more difficult route instruc-
tions through the complex map D. To determine directly whether this framework can
be used to produce executable Robot Control Language, we performed end-to-end
tests on a large number of paths through map D in Fig. 5. For each test, Senr is split
into training and test data by participant: all English instructions from some num-
ber of non-expert instruction givers (N = 2 in our experiments) is withheld from
training and used to create a test set Stest. The training set is then Strain=Senr−Stest,
or the set of all sentences collected from the remaining participants.
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For each of 10 different sets Stest1−10 (every combination of five different par-
ticipants), 1,200 paths through map D were randomly generated: 1,000 short paths
described by single NL sentences, and 200 paths that required multiple sentences to
express (5, on average). An example test path through the map with NL instructions
is shown in Fig. 7. The learned parser is asked to interpret these novel route instruc-
tions into RCL commands, which were executed by the simulated robot. Table 2
gives a summary of the results.

Table 2 Testing the end-to-end system on 1,000 short and 200 longer sets of route instruc-
tion. Longer routes average five sentences/route; examples of long and short routes and their
associated RCL programs can be seen in Fig. 7 and Fig. 3(b).

data set success (short) success (long)
enriched 66.3± 10.7% 48.9%

5.2 Discussion

Execution of complex language instructions is successful in approximately 66% of
short paths, and 49% of complex paths. In general, longer paths are more likely
to fail than shorter ones: our simulated control system does not attempt any local
error recovery if it encounters an unexpected situation, such as discovering that
the current map location is not of the expected type or failing to find an opening
to the left after a (turn-left) instruction. Intuitively, this metric does not give
any credit for partly-correct parses of route instructions, e.g., cases where the robot
almost reaches the destination.

The high variability of results is likely a product of the experimental setup, in
which Stest is generated from statements by people who did not contribute to train-
ing data, making the learned parser vulnerable to forms of instruction that are id-
iosyncratic to an individual. Given that each person contributed route instructions
for only four routes (five sentences each, on average), it is also possible that only
one or two unparseable instructions occur in a particular data set Stest, such that only
randomly-generated paths containing that instruction fail. Both failure modes could
be improved by either gathering training data from a wider range of people (for
example, using Amazon Mechanical Turk), or by splitting Stest from Senr by paths,
allowing an individual to contribute route instructions to both training and testing
data, but describing different paths or different maps.

Fig. 4 demonstrates the successful derivation of an RCL command from a short
test route instruction using our learned parser. As shown, the parser is able to
correctly express concepts such as counting (’second’) and can generate differ-
ing, contextually correct interpretations of the word ‘go’ (move vs. turn). Fig. 7
shows an example of a long path description that has been successfully parsed by
our system.
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“Go down the long hallway past three
intersections, turn left, take the hallway
to your left, go through two intersections,
turn right, and go forward until you
reach the end of the hall.”

Fig. 7 (left) Example route instruction and (right) corresponding path through map D. Our
approach is able to correctly parse 62.5% of such complex instructions into RCL programs
that control a simulated robot all the way from the start to the end of such a path.

6 Experimental Insights

Several conclusions can be drawn from these experiments. First, it is possible to
learn a parser able to handle complex, procedural natural language commands for
robot instruction. This makes it possible to target a rich robot control language ca-
pable of handling abstract notions such as counting, loops, and conditionals. We
experimentally demonstrate that such a system is able to transform complex natural-
language instructions into a language suitable for use by a robot control system.

In this work we demonstrate that it is possible to combine advanced natural lan-
guage processing with robotic perception and control systems. As an example con-
sider the different, contextually appropriate interpretations of the word ‘go’ in Fig. 4,
where the system learned to interpret ‘go to’ and ‘go left’ as having quite different
meanings. We established that parsing into a procedural language does require ex-
tensions to the parser learning process. We also find that local error recovery would
improve results notably, as would a larger, more diverse natural language corpus to
train over. In future work, the latter might be obtained from Amazon Mechanical
Turk, a system which allows web-based distribution of small tasks to a group of
workers in exchange for small payments [13], which it has been used successfully
for crowdsourcing natural language data-gathering [26].

This work raises a number of possible directions for future research. It will be
worthwhile to see how this system behaves with more complex data that is still
drawn from a real robot; for example, using landmarks retrieved from developing
object recognition systems [19]. While the effort involved in expert annotation of
natural language is far less than that of writing control systems for the tasks, it
still requires experts to be involved in the teaching process. Learning solely from
execution traces, as in [6], has the potential to increase the efficiency of learning.

We find these results extremely encouraging toward grounding complex NL
instructions. The focus of this work is on parsing complex natural language into
a formal Robot Control Language. As such, it is complementary to recent efforts in
mapping such representations to actions and perceptions in the real world [28, 15,
22]. Since our parser is probabilistic in nature, it can also generate a ranked list of
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possible RCL programs, each of which could generate a joint model for grounding.
We believe that such an approach would enable robots to execute very complex
natural language commands.
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A Data-Driven Statistical Framework
for Post-Grasp Manipulation

Robert Paolini, Alberto Rodriguez,
Siddhartha S. Srinivasa, and Matthew T. Mason

Abstract. Grasping an object is usually only an intermediate goal for a robotic ma-
nipulator. To finish the task, the robot needs to know where the object is in its hand
and what action to execute. This paper presents a general statistical framework to
address these problems. Given a novel object, the robot learns a statistical model of
grasp state conditioned on sensor values. The robot also builds a statistical model
of the requirements of the task in terms of grasp state accuracy. Both of these mod-
els are constructed by offline experiments. The online process then grasps objects
and chooses actions to maximize likelihood of success. This paper describes the
framework in detail, and demonstrates its effectiveness experimentally in placing,
dropping, and insertion tasks. To construct statistical models, the robot performed
over 8000 grasp trials, and over 1000 trials each of placing, dropping and insertion.

1 Introduction

Knowledge of the grasp state is often critical to any subsequent manipulation task.
Intuitively, harder tasks demand a more accurate estimation of the state of a grasp
than simpler ones. For example, balancing a cylinder on a table requires more accu-
racy than dropping it into a hole. More generally, consider a manipulator, an object
to manipulate, a task, and a set of actions designed to accomplish the task. In this pa-
per we build a data-driven framework to automate the process of deciding whether
the task is solvable with the available hardware and set of actions, and find the action
most likely to succeed.

The statistical framework proposed in this paper is best suited to model the ex-
ecution of tasks that require grasping an object prior to execution, i.e., post-grasp
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Fig. 1 Procedure to choose the optimal action to accomplish a manipulation task. First, we
learn the belief of the state of the system from sensor readings. Based on that belief, we then
estimate the probability of success of available actions and choose on the best action to take.
Both the state estimation and task requirements are learned using real data.

manipulation tasks. We address the problem by separating it into two independent
steps. First, estimate the sate of the grasp with in-hand sensors, and second, model
the accuracy requirements that the particular task imposes on our state estimation.
This separation yields the benefit that we can use the same model of state estimation
for different tasks, and the same model of task requirements for different manipula-
tors. Using this framework, each sensor reading generates a probability distribution
in task action space, enabling us to find not only the optimal action, but to under-
stand just how likely that action is to succeed.

Figure 1 illustrates the process for placing an object. Sensors in the hand provide
information of the grasp state. First, we estimate the probability distribution of the
pose of the object in the hand. Second, we predict the probability of success of each
available action. Both of these are computed based on data-driven models. Finally,
we choose the action most likely to succeed.

In this paper, we test the framework with three different manipulation tasks: plac-
ing an object, dropping it into a hole, and inserting it. The experimental setup in Fig-
ure 1 consists of a simple gripper [17, 14] mounted on a robotic arm that iteratively
grasps an object from a bin, estimates the distribution of the pose of the object, com-
putes the probability of success for all available actions, chooses the optimal one,
and executes it.

For the experiments in this paper, the manipulated objects are highlighter mark-
ers. The chosen state representation is that of a symmetrical cylinder in the plane
as parametrized by the polar coordinates x = (r, θ) of its axis. That is x ∈ X =
R× SO(2).

2 Related Work

In this paper, we study how uncertainty affects post-grasp manipulation. While
post-grasp manipulation has not been extensively explored, grasp planning with
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uncertainty is a well studied problem. Brost [3] found planar grasps that succeed
even with large uncertainty in object position by exploiting friction. Goldfeder and
Allen [9] approached the problem of grasp planning from a data-driven perspec-
tive. Goldberg and Mason [8] proposed a Bayesian framework to model uncertainty
propagation in manipulation plans and apply it to grasping. Stulp et al. [19] learned
motion primitives to optimize the chance of grasping an object with Gaussian un-
certainty on its location.

The closest work to this paper is probably by Brost and Christiansen [4], who
provided a framework for probabilistic analysis of manipulation tasks to overcome
the shortcomings of the worst-case-configuration-space approach to manipulation.
They applied the framework to plan grasps of planar objects with a parallel jaw
gripper. Dogar and Srinivasa [6] applied a similar idea to clutter and uncertainty in
the context of push-grasping.

Some work has been done on analyzing the grasp outcome as well. Morales et
al. [15] used real grasps on a collection of objects to predict the reliability of the
grasp process. Kang and Goldberg [12] used a random sequence of parallel-jaw
grasps to classify grasped objects using a Bayesian process.

There is plenty of work on statistical frameworks to model uncertainty. POMDPs
[5] (Partially Observable Markov Decision Processes) are a general framework to
optimally plan under uncertainty by tracking the distribution of a system under
some provided state representation. Hsiao et al. [10] used a POMDP framework
to track the belief of the pose of an object and tactile exploration to localize it
by planning among grasping and information-gathering trajectories. PSRs [20, 1]
(Predictive State Representation) are also introduced as a general framework to
learn compact models directly from sequences of action-observation pairs with-
out the need for a hand-selected state representation. Lavalle [13] introduced
information-spaces to formalize the process of propagating uncertainty along
motion strategies.

In the context of post-grasp manipulation, Jiang et al. [11] looked at scenes to
determine good locations to place objects. However, they did not study how robust
the final process of actually placing an object is, which is the subject of our work.
Fu et al. [7] addressed the problem of batting an object to a goal in the presence of
uncertainty. They first maximized information gain in an observation step, and then
chose the action most likely to succeed.

3 Statistical Framework

Our goal in this paper is to find the action a from a set of available actions A that,
given sensor inputs z ∈ Z , maximizes the expected performance of accomplish-
ing a task. The following diagram illustrates three different paths to approach the
problem:
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P (a|z)

Z ×A
(z, a)

��

��

��

X ×A
(x, a)

�� P (a|x)

Bel(X)×A
(P (x|z), a) �� P (a|P (x|z))

The first path proposes to model the performance of an action directly as a function
of sensor observations. How likely a specific action is to succeed and the action to
execute are decided based upon the history of sensor readings. It makes the least
assumptions about the system but is also the most difficult to implement, since the
complexity of the model depends strongly on the dimension of the sensor space,
which might be large.

In the second path, sensor inputs z are first projected into a more compact rep-
resentation of state, noted here by x. In this work, we chose x to be the pose of the
grasped object. The probability of success of an action is then modeled as a function
of the most likely pose of the object rather than the sensor observations z directly.
The intermediate representation x potentially reduces the model complexity, since
the dimension of state space is generally smaller than that of sensor space. On the
other hand, it introduces the possibility of information loss or lack of observability.
Note that it also fails to address uncertainty in the system induced by noisy sensors.

In this paper, we implement the third path, which encapsulates uncertainty by
representing the system by its state belief P (x|z) rather than just by its most likely
value x. By maintaining the distribution of all possible poses of the object, we can
later make a more informed prediction on the probability of success of a given
action.

The dimension of the space of belief distributions Bel(X) is too large to model
the probability of success of an action P (a|z) directly from the belief P (x|z).
We simplify this problem by marginalizing the probability of success of an action
P (a|z) with respect to the true state of the system x:

P (a|z) =
∫
X

P (a|z, x) · P (x|z)dx =

∫
X

P (a|x) · P (x|z)dx (1)

where in the last step, we make the assumption that the state representation x is
informative enough such that the output of an action is conditionally independent of
z, given the true state x.

We will show later that this assumption is key to enable the computation of the
probability of success P (a|z). Note, however, that for some tasks the pose of an
object is not always fully representative of the grasp state. For example, in a com-
pliantly actuated gripper, the state of the actuators also contains information on how
tight the grasp is, which might be relevant to determine the outcome of an action.

Equation (1) models the performance of an action as a function of both P (x|z)
and P (a|x). These characterize the sensing capabilities of the gripper and the
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precision task requirements for a successful task execution, respectively. The fol-
lowing subsections detail the approach to model them, as well as the process to
combine them to give an accurate estimation of P (a|z).

3.1 Learning Sensing Capabilities

The shape of the posterior distribution P (x|z) of the grasp state depends on several
factors, including the geometries of the manipulator and object, the location and
type of sensors, and the type of grasp. Assuming fixed geometries for the manipula-
tor, object, and sensors, we will see that in general, different grasps yield different
shaped belief distributions. We will pay special attention to the sharpness of those
distributions, as an indicator of the confidence we get on the pose of the object.

In this section, we describe the process to model P (x|z) from data. Learning
P (x|z) directly is usually expensive in terms of the amount of data required, since it
can be arbitrarily shaped and the complexity of the model depends on the dimension
of sensor space. To simplify the process, we use Bayes rule to flip the conditioning
in P (x|z) to P (z|x), the likelihood of the system. The likelihood is the distribution
of sensor readings given the true state of the system, which is usually unimodal and
we assume here to follow a Gaussian distribution P (z|x) ∼ N (z;μ(x), σ2(x)).
This leads us to the following equation for our posterior distribution:

P (x|z) = P (z|x)P (x)
P (z)

� N (z;μ(x), σ2(x)) · P (x)
P (z)

(2)

where P (x) is the prior state distribution, and both μ and σ are functions of the
true state of the system x. Given that P (z) is independent of x, we can obviate it
and normalize P (x|z) a posteriori. We now detail the process to estimate the prior
P (x) and posterior P (x|z) distributions from a collected dataset C1 =

{
(zi, xi)

}
i

of pose/sensor readings pairs. Figure 3 shows the data collected for 2000 grasps .

3.1.1 Prior Distribution

The prior distribution P (x) is the distribution of the state of the system before con-
sidering any information in the sensor readings. We regress P (x) by estimating the
density of the pose of the object in state space. We use Kernel Density Estimation
that models P (x) as a sum of kernels:

P (x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3)

where K is a Gaussian kernel, h is the bandwidth parameter and xi are the state
points in the dataset C1. The bandwidth parameter is chosen automatically to mini-
mize the mean integrated squared error following the algorithm in Botev et. al [2].
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Fig. 2 The three most stable configurations of the object/gripper pair used our experiments.
We label them from left to right as clusters I, II and III.

In this paper, the state of the system is represented by the coordinates (r, θ) of the
axis of a grasped cylindrical object. The prior grasp distribution in Figure 3 shows
three main clusters. These correspond to the three most stable grasps yielded by the
combined geometries of object and gripper, shown in Figure 2. The expectation is
for grasps in cluster II and III to be the most stable and informative, since one of the
fingers acts as an alignment feature.

3.1.2 Posterior Distribution

Equation (2) expresses the posterior distribution as a function of μ and σ. Here we
use Gaussian Processes (GP) [16] to regress them as functions of x. For that we
again use the dataset C1. The process is detailed in the following steps:

1. Use a GP on the first half of the data points in C1 to estimate the mean of the
likelihood or observation model P (z|x), μ : X −→ Z . This provides the most
likely set of oberved sensor readings for every possible state of the system x.
This implies training one independent GP for every sensory input, as a function
of r and θ. Note that we will get a better estimation of the observation model for
the regions of the state space that are most often observed, since those areas will
be more populated with the collected data.

2. Complement the second half of the dataset C1 with the sensor readings zi0 =
μ(xi) predicted by the learned observation model, and the squared error yielded
by that predictionΔ2zi = (zi − zi0)2, C+

1 =
{
(zi, xi, zio, Δ

2zi)
}
i

3. Use GPR on C+
1 to regress the variance of the observation model σ2 : X −→

Δ2Z . Again, this implies training one independent GP for every sensor in the
system.

By following these steps, we can now estimate P (z|x) as N (z;μ(x), σ2(x)).
Figure 3 shows the likelihood P (z|x) for an example grasp and the corresponding
posterior distribution P (z|x).
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Fig. 3 [Top-center] State from 2000 graps collected to model the sensing capabilities of the
manipulator. [Top-right] Prior state distribution P (x). [Bottom-center] Likelihood of pose of
the object for an example grasp in cluster I. [Bottom-right] Corresponding posterior distribu-
tion P (x|z) for the example grasp, and the most likely pose of the object.

3.2 Learning Task Requirements

We now model the probability of success of an action, P (a|x). This will tell us how
accurate our estimation of the state of the grasp must be for an action to successfully
execute a task. While not required for our framework, we choose to state parame-
terize the set of actions. For example, for the task of placing a cylindrical object,
if assumed to be at pose p, we design an action ap that turns the cylinder so it is
upright with respect to the ground, and then set it down. Note that ap is an action
parameterized by a chosen state p.

In general, the success of an action depends both on the action ap itself and the
true state of the system x. Since we assume state parametrized actions, we assume
that the probability of success only depends on the difference (x− p). For example,
when placing a cylinder whose estimated axis is 1 degree off from its true state, we
are more likely to succeed than if we try to place an object several degrees off. We
model the outcome of an action ap as a Bernoulli random variable of parameter φap ,
so that:

P (ap = 1|x) = φap(x) = φ(x− p) (4)
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Fig. 4 [1st Row] Examples of successful executions of dropping, placing, and insertion. [2nd
Row] Datapoints from perturbed task experiments. Dark points are successes and light ones
are failures. Notice that the magnitude of the peturbation noise is different for each task. [3rd
Row] Distribution of task requirements P (ap = 1|x) for dropping, placing and insertion,
as a function of the error in state estimation. [4th Row] Average standard deviation of the
regression of the Bernoulli parameter of P (ap = 1|x) obtained with a GP. This is used as a
rough estimate of the convergence of the algorithm and stop criteria.
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The use of state parameterized actions allows us to randomly sample the space of
mismatches (x − p) by choosing to execute the action ap with p = x + ε, where ε
is a uniformly distributed error in the space of system states instead of the optimal
one ax.

We next detail the process of estimating the function φ(ε) from a dataset
C2 =

{
(zi, xi, εi, yi)

}
i
, where εi is the error in system state and yi is the suc-

cess/failure output of the trial. For each task, we uniformly sample εi from E =
[−Δrmax, Δrmax] × [−Δθmax, Δθmax], where Δrmax and Δθmax are chosen to be
large enough where we expect failure for anything outside of that range. We use
a GP on C2 to regress the Bernoulli parameter φ with the outcome of over 1000
executions of each task.

Figure 4 shows the requirements φ(x− p) for three different manipulation tasks:
dropping, placing and insertion of a highlighter marker with a simple hand. As |x−
p| increases, our likelihood of task success decreases, which is as expected. Note
that for the dropping task the probability decreases much slower than placing or
insertion. This indicates that dropping a marker into a hole is easier than balancing
it on a platform or inserting into a small hole. We can be more innacurate and still
succeed at dropping. Insertion is also interesting, as it resembles the shape of an X.
This can be explained by noticing that if we incorrectly try to insert the marker too
high, but also tilted downward, the end of the marker still manages to fit in the hole.
Generating these task requirement distributions allows us to gain key insight into
how robust our post-grasp manipulation tasks are.

In general, the more data, the more accurate the regressed distributions of task
requirements are. The magnitude of the variance returned by the Gaussian Process
Regression can be used to define a stopping criteria. In our case, we use the average
standard deviation to assess how certain we are about the learned distribution. The
bottom graphs in Figure 4 shows how the average standard deviation changes with
the number of experiments for each task.

3.3 Matching Task Requirements with Sensing Capabilities

Here we combine the models of P (x|z) and P (a|x) to estimate the probability of
success of an action ap. For that, we extend (1) as:

P (ap = 1|z) =
∫
X

P (ap = 1|x)P (x|z)dx

=

∫
X

φ(x − p)N (z;μ(x), σ(x)2)
P (x)

P (z)
dx

�
∫
E
φ(ε)N (z;μ(p+ ε), σ(p+ ε)2)

P (p+ ε)

P (z)
dε (5)

where we apply the change of variables ε = x− p.
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In the experiments we approximate the integral numerically. If we grid the space
of mismatches between real state and estimated state into Nr × Nθ, and call the
deviation from the center εij , then we can approximate the integral in (5) by the
following convolution:

P (ap = 1|z) �
Nr∑
i=1

Nθ∑
j=1

φ(εij)N (z;μ(p+ εij), σ(p+ εij))
P (p+ εij)

P (z)
ΔA (6)

where

ΔA =
4ΔrmaxΔθmax

(Nθ − 1)(Nr − 1)

Depending on the maximum value of P (a|z), we can decide either to execute the
task with the optimal action or to abort the execution. Figure 5 shows the predicted
task success distribution for an example grasp.

Note that our framework allows for the compete decoupling of sensing capabil-
ities and task requirements. For a given hand and object, once we have determined
its sensing capabilities, whenever we have a new task, we only have to compute the
task requirements, and then we can follow the above analysis to compute our overall
probability. Imagine another scenario where we have an industrial robot learning in
a room for days at a time. If a mobile manipulator robot learns its sensing capa-
bilities, it can directly use the task requirements learned by the industrial robot to
immediately predict its likelihood of success. If we had chosen to go directly from
sensors to actions, each time we wanted to learn a new task, we would have to start
all over again, without being able to reuse any learned models.

4 Experimental Validation

To validate our framework, we use the same hand and object to complete three
different tasks. This requires one training set for the sensing capabilities of the hand,
P (x|z), and estimating the task requirements, P (a|x), for each one of the tasks.
After learning these functions, for any new grasp, we can predict the action most
likely to successfully execute a task and its expected probability of success.

Figure 6 compares experimental results to model predictions for each of our
tasks. We group grasps by their predicted task success probability and compare
it with their correspondent experimental success rate. For example, if we take all
grasps that were predicted to succeed at an action around 40% of the time, the av-
erage experimental success rate for those grasps should ideally be 40%. Each task
is executed 500 times for validation, and the most likely action is estimated from
information provided by the three finger encoders. For all three tasks, the experi-
mental probability follows the predicted probability, supporting the validity of the
framework.
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Fig. 5 [Top-left] Example grasp. [Top-right] Posterior distribution P (x|z) of the pose of
the object for the example grasp. Note that, for visualization purposes, we have rearranged
the set of possible values for the pose of the marker from θ ∈ [−π, π] to θ ∈ [0, π], and
allowed the distance r to take on negative values. [Bottom-left] Estimated task requirements,
P (ap = 1|x), for the task of placing. [Bottom-right] Estimated probability of success for all
placing actions, P (ap|z) ∀ p.

Depending on the adequacy of the in-hand sensors to capture the real state of
the system and the difficulty of the specific task, each task has a region in which
most predicted probabilities fall. Dropping is the easiest task, followed by placing,
followed by insertion. This could have been predicted by looking at the task re-
quirements and noting that dropping has the widest distribution of success in the
presence of pose error. It is clear from these experiments that the proposed frame-
work successfully predicts the probability of success of actions independently of the
complexity of the task.

Predicting the probability of success of an action allows us to make an informed
decision on what action to execute and improve the overall system performance.
The bottom row of Figure 6 shows the precision-recall curves of the three tasks. As
expected, when we choose to execute a task only when our expected probability is
above a certain threshold, our average success rate of the task increases. By choos-
ing where to set the threshold, we can move along the precision-recall curve, and
achieve a desired performance. Dropping increases from 80% to near 100% success,
placing increases from 40% to 60%, and insertion increases from 50% to 60%.
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Fig. 6 [Top] Comparison between the experimental probability of success and the predicted
one. The shaded region is a 95% confidence interval of the estimation of the Bernoulli pa-
rameter, according to a binomial distribution. The plots show that the predictions follow the
experimental observations quite well. [Bottom] Precision-recall curves of the success in task
execution when conditioning the task execution to the predicted probability go above a cer-
tain thresholding. The plot shows that we can increase our success rate by rejecting low
probability grasps in the three tasks.

5 Conclusion

In this paper, we introduce a general statistical framework to model the likelihood of
success of a post-grasp manipulation task. We contribute the following three steps:

Sensing Capabilities: Using state and sensor pairs, we regress the posterior distri-
bution of the state of an object. Generating a probability distribution of object loca-
tion allows us to understand which grasps give good object localization and which
do not, possibly informing both hand design and grasping strategies. We could at-
tempt to find strategies to reduce uncertainty along the most troublesome directions
and design hands that don’t have grasps where object pose uncertainty is high.

Task Requirements: By perturbing our state, we learn a function for how our
object state accuracy affects our task success probability. Generating a probabil-
ity function of task success for a given object state error would be an excellent tool
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for identifying weaknesses in task execution. We could discover, for example, that
placing fails when our marker is in a certain location, so adding a move to fix this
could greatly improve our overall task success rate.

Task Success Distribution: By combining the two functions above, we can gen-
erate a function of how likely an action is to succeed at a task for any new sensor
input. Note that if we have the same hand but different tasks, we only have to learn
a new task requirement function. If we are executing the same task with different
hands, we only need to learn its sensing capabilities. Knowing the probability of
succeeding at a task before we execute it has many benefits. We can choose to abort
in order to increase our overall success rate and not take unnecessary risks when
success is vital. We should even be able to find an optimal policy to minimize mean
time to success, similar to [18]. Also, because we calculate the entire probability
distribution in action space, this would allow us to choose the best action even in the
presence of constraints or other cost functions.

We performed over 8000 grasps, and 1000 trials each for placing, dropping, and
insertion.

6 Discussion

Assumptions: While the framework discussed in Section 3 is quite general, we
make several simplifying assumptions to actually implement it on a real system.
Although already mentioned in the paper, we summarize them here. First, we as-
sume that the probability of success of an action is conditionally independent of our
sensors given the true state of the system. This is reasonable when we have a good
representation; however, if it is incomplete, our estimate of P (a|x) may be incor-
rect. For example, in the dropping task, the location of the center of mass of the
marker relative to the center of the hand seemed to greatly affect the probability of
success. Given that our state representation is only the axis that the marker lies on,
the center of mass is not observable. This discrepancy was simply treated as extra
noise in our system, and we were still able to accurately predict our probability of
dropping success. Greater accuracy could have been obtained by adding this extra
dimension in our state, although this would have also required us to collect much
more data.

Our second assumption is that given an object pose, each of our sensors was uni-
modal and normally distributed. This is very dependent on the hand, object, and
sensors in question. If the sensors being used cannot fully identify the object pose,
one might consider adding more sensors. Note that even without this Gaussian as-
sumption, one could still find the distribution P (x|z), but comparatively more data
would be required to accurately learn this distribution.

Finally, we assume that the set of actions for executing a task are state parame-
terized. While this is true in most cases, for the instances where it is not, in order to
find P (a|x), for every object state, we would need to sample the space of all actions
and pose errors, again requiring much more data.
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Robustness: In collecting all of the data for the robot to learn, it was clear that hav-
ing a robust system is important but also extremely challenging. For our post-grasp
manipulation tasks we had to focus on three different aspects: object acquisition,
task execution, and post-task reset. With thousands of experiments needed, a hu-
man could not sit there handing the robot objects, as this would not only be time-
consuming but also introduce bias into our system, since the robot might always
grasp the object in the same way. We solved the object acquisition problem by hav-
ing a large bin of objects and training an open-loop grasping strategy that singulates
a marker out of the bin approximately one third of the time.

For task execution, it was important to make sure that the hand did not collide
with the environment, regardless of the pose of the marker or action chosen by the
robot. Finally, for resetting the system after task execution, different strategies were
used depending on the task. For placing, the object was placed at the top of a ramp
and knocked back into the bin. For dropping, after some constraining moves, the
object was grasped out of the hole and dropped back into the bin. For insertion, the
object was held the entire time and then dropped back in. It is important to note that
a fair amount of time was spent designing robust experiments, and this should not
be overlooked when attempting to use our framework in a real setting.

Statistical Analysis: Another area which we would like to focus more effort on is
that of understanding the statistical significance of our distributions. We suggested
the use of the covariance learned using a Gaussian Process as a stopping criterion,
which worked well in practice, but a more thorough analysis is needed.

Carrying statistical significance through all of the distributions would enable us
to compute a confidence bound on our final probability distribution in action space.
This would expand the usefulness of our framework and help us understand how
collecting more data affects our estimates. Another direction that we are interested
in exploring is using active learning to selectively sample so as to reduce overall
data requirements.
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10. Hsiao, K., Kaelbling, L., Lozano-Pérez, T.: Robust grasping under object pose uncer-
tainty. Autonomous Robots 31(2), 253–268 (2011)

11. Jiang, Y., Lim, M., Zheng, C., Saxena, A.: Learning to place new objects in a scene. The
International Journal of Robotics Research (2012)

12. Kang, D., Goldberg, K.: Sorting parts by random grasping. IEEE Transactions on
Robotics and Automation 11(1), 146–152 (1995)

13. Lavalle, S.M., Hutchinson, S.A.: Evaluating Motion Strategies under Nondeterministic
or Probabilistic Uncertainties in Sensing and Control. In: IEEE International Conference
on Robotics and Automation (ICRA), pp. 3034–3039 (April 1996)

14. Mason, M.T., Rodriguez, A., Srinivasa, S.S., Vazquez, A.S.: Autonomous Manipula-
tion with a General-Purpose Simple Hand. The International Journal of Robotics Re-
search 31(5), 688–703 (2012)

15. Morales, A., Chinellato, E., Fagg, A.H., del Pobil, A.P.: Using Experience for Assessing
Grasp Reliability. International Journal of Humanoid Robotics 1(4), 671–691 (2004)

16. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

17. Rodriguez, A., Mason, M.T., Srinivasa, S.S.: Manipulation Capabilities with Simple
Hands. In: International Symposium on Experimental Robotics, ISER (2010)

18. Rodriguez, A., Mason, M.T., Srinivasa, S.S., Bernstein, M., Zirbel, A.: Abort and Retry
in Grasping. In: IEEE International Conference on Intelligent Robots and Systems, IROS
(2011)

19. Stulp, F., Theodorou, E., Buchli, J., Schaal, S.: Learning to Grasp under Uncertainty. In:
IEEE International Conference on Robotics and Automation, ICRA (2011)

20. Wingate, D.: Exponential family predictive representations of state. Ph.D. thesis, Uni-
versity of Michigan (2008)



Part VII: ISER Session Summary  
on “Social Robotics” 

Maja J. Matarić 

University of Southern California 

Session Summary 

As robots get closer to people, different forms of interaction are spawning new 
research topics and subfields.  Human-robot interaction (HRI) can be broadly 
classified into two categories: physical and social/emotional.  Physical interaction 
involves the research areas of manipulation and haptics, among others, and is used 
in medical and rehabilitation robotics.  In contrast, social/emotional interaction 
involves verbal and non-verbal expression and communication, and thus the 
research areas of assistive robotics, social robotics, and socially assistive robotics.  
The field of assistive robotics spans both physical and social/emotional types of 
human-robot interaction.  Socially assistive robotics focuses on the challenges of 
providing motivation, coaching, training, and rehabilitation through non-physical 
interaction; such systems have been validated in hands-off stroke rehabilitation, 
social skill training of children with autism, and eldercare, among others.  In 
contrast, most of rehabilitation robotics focuses on physical interaction with the 
patient; such systems have been validated in hands-on stroke rehabilitation.  
Social robotics focuses on endowing robots with the ability to behave in socially-
aware and engaging ways; such systems have been validated in museums, movies, 
classrooms, and informal settings.  Service robotics can be seen as the 
overarching field that encompasses much of the work above. 

In spite of the session name, the four papers are best described as being in the 
area of human-robot interaction for service robotics, rather than the more 
specific area of social robotics.  Specifically, Bolini et al. is in the area of service 
robotics, Fasola & Matarić is in socially assistive robotics, and Vasquez et al. and 
Weisz et al. are in the area of assistive robotics.  

“Interpreting and Executing Recipes with a Cooking Robot” by Bollini et al. 
presents a system that enables a robot to look up a recipe on line, prepare, and 
bake cookies in a realistic kitchen environment.  As a first step, the robot parses a 
recipe written in natural language into a state/action sequence, which is then 
interpreted into a robot action plan of baking primitives (e.g., pour, mix, scrape).  
The primitives are then executed sequentially, unless replanning is necessary due 
to failure.  Each primitive involves the use of recognition system, grasping, and 
local navigation.  The system was successfully validated with a PR2 robot; the 
cookies were sampled by the authors. 

"Socially Assistive Robot Exercise Coach: Motivating Older Adults to Engage 
in Physical Exercise" by Fasola and Matarić describes the design, implementation 
and user study evaluation of a socially assistive robot coach designed to engage 
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elderly users in seated exercises (i.e., chair aerobics).  The robot coach provides 
three different games to the user and interact verbally and through gestures, 
utilizing social science theories to ensure it is motivating, fluid and highly 
interactive, personable, intelligent, and task-driven.  The system was successfully 
validated with 33 elderly users in a multi-session user study that compared a robot 
coach vs. a computer version of the same coach, demonstrating a strong 
preference for the robot. 

“Human Aware Navigation for Assistive Robotics” by Vasquez et al. describes 
a robotic wheelchair navigation system that takes into account safety, usability, 
comfort and respect of social conventions.  These abilities are achieved through 
an approach that integrates motion planning with long-term motion prediction that 
allows for safe and smooth movement in dynamic environments.  For socially-
aware spatial behavior, the approach involves the use of circular interaction zones 
around people to ensure appropriate social distances are observed in interactions.  
The system was successfully validated both in simulation and in physical robot 
trials with an autonomous robotic wheelchair.   

“Grasping With Your Face” by Weisz et al. describes a brain computer 
interface (BCI) system that enables users with physical disabilities to command a 
robot to grasp objects in the environment.  A vision system identifies the grasping 
targets using a database of models, and then a real-time grasp planner generates a 
grasp for reaching the target object.  The user wears a light-weight headset which 
collects EMG signals that are used both to indicate the target object and to correct 
the generated trajectory as needed.  The end-to-end system was successfully 
validated in several trials involving common household objects. 

 
 
 
 
 
 



Grasping with Your Face

Jonathan Weisz, Benjamin Shababo, Lixing Dong, and Peter K. Allen

Abstract. BCI (Brain Computer Interface) technology shows great promise in the
field of assistive robotics. In particular, severely impaired individuals lacking the
use of their hands and arms would benefit greatly from a robotic grasping system
that can be controlled by a simple and intuitive BCI. In this paper we describe an
end-to-end robotic grasping system that is controlled by only four classified facial
EMG signals resulting in robust and stable grasps. A front end vision system is used
to identify and register objects to be grasped against a database of models. Once
the model is aligned, it can be used in a real-time grasp planning simulator that is
controlled through a non-invasive and inexpensive BCI interface in both discrete
and continuous modes. The user can control the approach direction through the BCI
interface, and can also assist the planner in choosing the best grasp. Once the grasp
is planned, a robotic hand/arm system can execute the grasp. We show results in
using this system to pick up a variety of objects in real-time, from a number of
different approach directions, using facial BCI signals exclusively. We believe this
system is a working prototype for a fully automated assistive grasping system.

1 Motivation

With recent advances in robotics and computer vision, it is possible to imagine a
robotic system to assist people with severely limiting disabilities in activities of
daily living (ADL), improving their quality of life. ADL frequently require the user
to grasp an object stably in a context aware way. Complex hands and manipulators
increase the flexibility and grasping capabilities of a robotic assistant, but at the cost
of requiring more complex control of many DOFs. Our goal is to create a robust
system that can control a dexterous grasping system in real-time using only a small
number of signals from an inexpensive and non-invasive BCI device with minimal
training.
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Online, interactive control of robotic arms and hands for grasping in natural en-
vironments is a difficult problem. Typically, most systems use simple, parallel jaw
grippers which simplifies the grasping process. Using more complex and higher
DOF robotic hands increases the versatility of the system but at the cost of higher
complexity for control. This generally requires more input from the user. More in-
put, however, requires more channels, more processing, higher latencies, and gen-
erally higher cost. Our solution to this trade-off is to use a higher DOF hand with
an accompanying high level interface that offloads the complexity of input require-
ments for the user to a simple and intelligent user interface. To avoid the issue of
increasing the complexity of the input to the hand but maintain the flexibility of the
more complex hand, the user needs a high level and intuitive interface.

2 Prior Work

A significant proportion of BCI-robotics research has focused on manipulating
robotic arms and hands and different strategies for implementing solutions via elec-
trophysiological signals have been investigated. Vogel et al. [26] showed that using
the BrainGate cortically implanted electrode, a subject was able to exercise Carte-
sian velocity control over an end effector and control opening and closing of the
hand. However. this approach requires an invasive device capable of recording a
large number of high quality signals.

It has also been shown that non-invasive devices can exercise effective control
over robotic arms. For example, distal limb surface EMG signals have been used to
control robotic arms in several applications [1, 4]. However, thus far accurate real
time control has only been demonstrated for simple trajectory tracking tasks while
using a large number of signals.

In order to reduce the number and quality of human signals needed, some inter-
mediate level abstractions have been used. In [23], Shenoy et al. demonstrated basic
cartesian control of a robot arm and gripper from 9 forearm electrodes to perform ba-
sic pick and place tasks. Another approach to abstraction is the use of forearm EMG
signals to quickly switch between preset discrete states of various robotic hands
[29, 28, 10, 6, 13]. In many situations in which assistive BCI-robotics would be ap-
plicable, limb EMG signals may not always be available or convenient. Therefore,
various authors have proposed control schemes using face and head EMG signals to
control robotic arms and grippers [20, 8, 18].

EEG has also been developed for BCIs to control robotic arms and hands in sim-
ple tasks. In [24, 9] BCI signals are used to control functional electrical stimulation
to close and open a subject’s wrist. In [17], surface electrode signals related to eye
gaze direction are used to control 2D arm position and EEG signals are used to de-
tect eye blinks to control gripper closing. In [11] hand opening/closing and elbow
flexion/extension are controlled by EEG signals.

The majority of this previous work concentrates on trajectory control. However,
it has been shown that users find BCI control easier using even higher level, goal
oriented paradigms [19]. We have begun to see work that attempts to exploit higher
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level abstractions to allow users to perform more complex tasks with robotic arms.
In [2], EEG signals were used to select targets for pick and place operations for a
small humanoid robot. Waytowich et al. [27] used EEG signals to control pick and
place operations of a 4-DOF Stäubli robot. Bryan et al. [12] presented preliminary
work extending this approach to a grasping pipeline on the PR2 robot. In that work,
a 3D perception pipeline is used to find and identify target objects for grasping and
EEG signals are used to choose between them. In [15], grasping is decomposed to a
4 stage pipeline where EEG signals are used to control transitions between stages.
And in [22], the authors demonstrate an interface to navigate in two dimensions and
select goals in a complex virtual environment and propose a hierarchical control
scheme for learning high level tasks dynamically.

While previous work has shown that complex interactions can be mediated by
BCI signals, thus far a fully developed, end-to-end, real-time, BCI-based grasp-
ing system for complex hands has not been demonstrated. A full grasping pipeline,
which our system addresses, must integrate target selection and localization, multi-
DOF hand configuration planning, and approach trajectory planning with user intent
decoded from a noisy low dimensional BCI signal.

3 Technical Approach

Figure 1 is an overview of our system. A 3D range camera is used to image an ob-
ject to be grasped. This range image is used to both identify and align the object
from a database of existing models [7]. Once the model is chosen and aligned, we
show that four simple signals are sufficient to supervise an online grasp planning
system resulting in robust grasps using real sensor data for object localization. By
carefully reducing the configuration space of our planning and control architecture,
our system enables subjects to select grasps appropriate to the desired task. The user
interacts in real-time with the robot through a kinematic simulator which allows the
user to visualize and supervise all of the elements necessary to plan a task specific
grasp. The goal of this approach is to make simple, inexpensive BCI devices pow-
erful enough to allow users to grasp many objects that are important for everyday
living in a context aware way.

The grasping pipeline is divided up into four stages: object identification and
alignment, grasp planning, grasp review, and grasp execution, which are described
below. This pipeline is controlled using only four facial gestures. The use of these
gestures in each stage of the pipeline is explained in Table 1. In general, gesture 1
serves as a “click” and moves the user through the pipeline. The exception to this is
at points of decision for the user. In these cases, gesture 2 serves as the “YES” option
and gesture 1 becomes ”NO” and returns the user to an earlier point in the pipeline.
Because false positive readings of gesture 1 and 2 have strong consequences, we
found that both are best associated with a concise and strong gesture such as clos-
ing one eye or clenching the jaw. Gestures 3 and 4 control the approach direction
of the hand relative to the object during the grasp planning stage of the pipeline.
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Table 1 A description of the user interface as the user progresses through phases of the
pipeline

Gesture Run Planner Review Grasps Execution

1 start/stop planner cycle through grasps restart
2 n/a select grasp confirm grasp
3 rotate around x-axis n/a n/a
4 rotate around z-axis n/a n/a

These gestures can be maintained to generate continuous motion of the hand over
two degrees of freedom and therefore are best associated with gestures that can be
contracted for several seconds without too much twitching or fatigue.

Object Identification and Localization: Our grasp planner requires a complete
description of the geometry and location of the target object. The raw point cloud
data is gathered by a Microsoft Kinect. In this work, we assume the target is a
member of a known set of objects. We use the method described in [16] to identify
and localize the target object in the scene. Briefly, this method generates features
from pairs of oriented points on the surface of the object. Prospective models are
processed offline and put in to a hash table. Features are sampled from the sensor
data and tested for collision in the hash table. If a sufficient number of collisions
occurs with points on the same model, a varient of RANSAC is used to test the
hypothesis that a set of points in the sensor data corresponds to a particular model
at a particular location. Fig. 2 shows a correctly chosen model aligned with the
range scan. This method is robust and fast enough to demonstrate the efficacy of our
BCI-grasping pipeline.

Grasp Planning Phase: In this work we use the Eigengrasp Grasp Planner devel-
oped by Ciocarlie and Allen, the details of which can be found in [5]. In this system,
grasps are planned through stochastic optimization using simulated annealing. Re-
cent advances in neuroscience research have shown that control of the human hand
during grasping is dominated by movement in a configuration space of highly re-
duced dimensionality[25, 21]. The Eigengrasp Grasp Planner uses these insights to
reduce the the dimensionality of the hand’s joint postures to a subspace with a lower
dimensionality. This allows the planner to function in real time with a human user
in the loop by guiding the planner by partial demonstration. The planner allows the
operator to specify how much the stochastic optimization process can vary each
parameter that describes the demonstration pose against the gradient of the grasp
energy function in searching for a valid, complete grasp. The planner optimizes a
grasp energy function as the sum of two parts, a measure of how nearly a hand con-
forms to the object, and a continuous approximation of the canonical Ferrari-Canny
grasp quality measure. Hand configurations with a high enough quality function are
marked as potentially good grasps. These configurations will put the hand in a po-
sition which is near the object but where the finger configuration is restricted to the
postural subspace described above. The quality of these configurations as starting
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Fig. 1 An overview of the grasping pipeline. In the first phase, the system uses the kinect to
identify and localize the object in the scene. In the second phase, the user guides the planner
to an appropriate approach direction. In the third phase, the user stops the planner and reviews
the available grasps. In the fourth phase, the user sends the grasp to the robot for execution.
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Fig. 2 The point cloud with RGB texture from the vision system. The blue bottle is the
object point cloud, while the green represents the detected model overlain on the scene.

grasp poses is then reassessed after a kinematic simulation of grasping. The hand
approaches the object and closes all of its joints, leaving the postural subspace as
necessary to conform to the object.

The user is presented with a world in our grasping simulator, GraspIt! [14], that
contains the hand, the object detected by the vision system, and the surface on which
the object sits. Elements of the user interface for the planning phase are shown in
Fig. 3. When planning begins, two clones of the hand are placed into the world,
and the transparency of each of the three hands identifies it to the user. The most
transparent hand represents the planning process and shows samples of the grasp
space region the planner is exploring. This online feedback helps the user choose an
approach direction that best communicates their intent to the planner.

The input hand has intermediate transparency, and the user can control the ro-
tation of the input hand around the x and z axis of the object. This effectively
moves the hand around the surface of a sphere while maintaining that the approach
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Fig. 3 An illustration of the grasp planning user interface in GraspIt!. Here we demonstrate
the three hands of the system. The ‘Planner Hand,’ which is most transparent hand, demon-
strates the current state of the planner. The ‘Input Hand,’ which is of intermediate trans-
parency, is the hand through which the user directs the planning system. Here you can see
the rotational guides which allow the user to visualize their available control directions. The
‘Solution Hand’, which is fully opaque, demonstrates the best grasp currently available. This
is the grasp which is closest to the approach direction that the Input Hand is demonstrating
and which also has the minimal grasp energy.

direction of the hand faces the center of the object. The third hand during the plan-
ning phase is the solution hand which is fully opaque. As the planner runs, it stores
the ten best grasps in a list. The solution hand demonstrates the current best grasp.
The list of best grasps is sorted such that preference is given to solutions that reflect
the user’s desired approach. When the user is satisfied, they can stop the planner and
progress into the review process using gesture 1.

Review Phase: Once the planner is stopped the user has an opportunity to review
the list of best grasps and choose one for execution. As in the previous stage, the
solution hand is used to display the grasps to the user. At any point, the user can
select a grasp which removes the solution hand from the world and closes the input
hand into the chosen grasp. Now the user can evaluate the grasp more closely and
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Fig. 4 An illustration of the review phase. Using one of the facial gestures, the user can cycle
through the available grasps and visualize them in the simulator. The grasps are sorted by
their closeness to the last demonstrated approach vector. If none of the grasps are suitable,
the user can go back to the planning phase with a second facial gesture. Otherwise, the user
selects a grasp to be executed using a third gesture.

examine the quality metrics for the grasp. If the user is satisfied, they can confirm
selection of the grasp and send it to the next stage of the pipeline. If the user does
not want to execute any of the found grasps, they can select the grasp that is closest
to what they have in mind and restart the planning process. Importantly, the next
iteration of planning will not only take the input hand’s position as a constraint but
also the eigengrasp values of this selected grasp.

Execution Phase. Once the robotic control software receives the selected grasp
which is planned relative to the object’s coordinate system, the arm planner decides
if that grasp is achievable given the kinematic constraints of the arm and the vision
system’s estimate of the object’s position in the world. If the planner cannot find a
solution to execute the grasp, it will send a message back to GraspIt! which then
notifies the user. If this occurs, the user can restart the planning phase to find a new
grasp. If the planner can find a solution, then the grasp is executed with the actual
arm and hand.

4 Experimental Results

4.1 Brain-Computer Interface

Hardware: The BCI hardware used for this experiment was the Emotiv EPOC which
is is a low-cost 16 electrode headset. Of the 16 electrodes, 14 are positioned at the



Grasping with Your Face 443

Fig. 5 Two sets of video stills from the actual execution of the system. Top: Clockwise from
the top-left are an image of the user wearing the Emotiv headset and operating the system,
the computer monitor with user interface, and a screen capture of the simulation. Bottom:
User watching the robotic arm implementing the selecting grasp as shown in the simulator
window on the lower left.
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International 10-20 locations corresponding to AF3, AF4, F3, F4, F7, F8, FC5, FC6,
P7, P8, T7, T8, O1, O2. The remaining 2 channels are references and are positioned
at P3 and P4. Each electrode has a sampling rate of roughly 128 hz and a resolution
of 16 bits (14 bits effective). The headset communicates with the computer via a
bluetooth connection.

Software: We used the Cognitiv Suite and Expressiv Suite software that come bun-
dled with the Emotiv Epoc to process the electrophysiological signals. The Cogntiv
Suite is designed to be trained on different cognitive states, usually associated with
mental imagery or imagined movement. However, because the EMG signals from
facial gestures are much stronger and more easily produced in a consistent manner,
we chose to train the Cogntiv Suite on these types of signals instead of cognitive
states. First, the system is trained on a neutral signal to define a baseline signal, then
a set of facial gesture states are learned. In the examples presented here, gesture 1 is
mapped to clenching the jaw muscles and is detected through the Expressiv Suite.
The remaining gestures are detected through the Cognitiv Suite. Gesture 2 is mapped
to closing the right eye, gesture 3 is mapped eyebrow movement, and gesture 4 is
mapped to tensing the muscles around the ear. This combination of classifiers and
gestures was found by trial and error to be reliable for the particular user discussed
in this paper, but the system as a whole is in no way dependent on which particular
gestures are used.

4.2 Robot Setup

Hardware: Our grasping platform is comprised of a 280 model BarrettHand mounted
on a Stäubli TX60L 6-DOF robotic arm. A Microsoft Kinect sensor is used to gen-
erate point clouds of the object.

Software: The Barrett hand is commanded in position control mode using the Open-
WAM driver. Planning for the motion of the arm is done in OpenRave using a bidi-
rectional random tree planner by Berenson et al. [3], and small linear motions near
the object are planned using the built-in inverse kinematics planner on the Stäubli
TX60L arm.

4.3 Training

One subject completed 10 successful training periods on the neutral signal and each
of the three facial gestures that would be processed by the Cogntiv Suite. Each train-
ing period lasts 8 seconds, and after each period the subject is asked whether or not
they were able to maintain the appropriate gesture for the entire time. Only sessions
in which the subject answered yes are considered successful and included in the
training data. During training, the subject is given visual feedback via the motion of
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Results
Approach 1 Approach 2

Object Simulation Grasp Physical Grasp Simulation Grasp Physical Grasp

Flashlight

Detergent Bottle

Flask

Shampoo Bottle

Shaving Cream

Fig. 6 The results of ten different attempts to grasp five objects using two different user-
selected approach directions per object. In each case, the user was able to generate an appro-
priate grasp using the simulator which was then transfered to the robot.

a cube and a power meter, both of which represent the strength of current classifica-
tion. The Expressiv Suite does not need any training, however, the sensitivity of the
classifier for jaw-clenching was adjusted for best performance for the subject.

4.4 Grasping Experiments

The subject used the system to grasp and pick up five common objects: a flashlight,
a flask, a bottle of laundry detergent, a bottle of shampoo, and a canister of shaving
cream. For each setup, the Stäubli arm starts such that it is completely vertical with
the BarrettHand at the top. A simulation world consisting of the hand, the object,
and a surface is presented to the subject who can move the input hand and start the
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planner at any time. For each object, the subject executed grasps from two different
approach directions.

In Fig. 6, we show the results of ten different attempts to grasp five objects
using two different approach directions per object. In each case, we demonstrate
the grasp planned in simulation and the final grasp achieved by the physical
robot. We found that using this grasp planning environment, we were easily and
reliably able to grasp objects. In each case, the physical grasp was successful
on the first attempt. Planning the grasp takes on the order of 10-30 seconds.
The review process takes an additional 10-15 seconds. We refer the
reader to the video at http://robotics.cs.columbia.edu/jweisz/
bciGraspingISER2012 for an example of the entire procedure.

4.5 Discussion

In this work we have described an end-to-end system for grasping objects using
a low-cost, non-invasive BCI device. Although further refinements and user stud-
ies still need to be done, we have shown three important ideas in this paper. First,
we have shown that a user interface using only two user controlled dimensions is
expressive enough to demonstrate the user’s intent by controlling the approach di-
rection of the hand and that the Eigengrasp planner is able to produce reliable and
appropriate grasps using this information alone, vastly simplifying the grasp plan-
ning process. Second, we have shown that a low cost, non-invasive, noisy, low-
bandwidth BCI interface is sufficient to guide the grasp planner. By reducing the
complexity of the grasp planning process, we can accomodate such a BCI device.
Third, a central tenet of this work is that by keeping a human in the loop, we are
able to support context-aware grasping, spanning different grasps for different tasks.
Although the grasp quality measure used by the planner is sufficient to produce a
reasonable list of plausible grasps, it is not sufficient to chose the most reliable and
appropriate grasp among them, which can lead to failures. With a human adding
their own intuition to select a grasp from the candidate list, we have never seen a
failure in grasping the object.

We believe our user interface works well, but it is yet to be tested with multiple
subjects, which is the subject of ongoing research in our lab. As part of this work,
we are also analyzing how much training of the BCI control is needed to create a
competent user. Making the system easy to learn and use is an important goal of this
work. Finally, we are also experimenting with using EEG signals from the Emotiv
EPOC instead of using facial gestures which generate EMG signals.
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Abstract. Ensuring proper living conditions for an ever growing number of elderly
people is a significative challenge for many countries. The difficulty and cost of hir-
ing and training specialized personnel has fostered research in assistive robotics as
a viable alternative. In this context, an ideally suited and very relevant application is
to transport people with reduced mobility. This may involve either autonomous or
semi-autonomous transportation devices such as cars and wheelchairs.

For a working solution, a number of problems including safety, usability and eco-
nomic feasibility have to be solved. This paper presents PAL’s robotic wheelchair,
an experimental platform to study and provide solutions to many of the aforemen-
tioned problems.

1 Motivation, Problem Statement and Related Work

Ensuring proper living conditions for an ever growing number of elderly people
is a significative challenge for many countries. The difficulty and cost of hiring
and training specialized personnel has fostered research in assistive robotics as a
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viable alternative. In this context, an ideally suited and very relevant application is
to transport people with reduced mobility.

In particular, this paper studies the case of a robotic wheelchair. For such a sys-
tem, it is crucial to take into account the actual needs and characteristics of both its
users and the people around them. The platform discussed in this paper has been
designed around the following requirements:

– Safety: The system should avoid collisions with both static and dynamic entities.
– Usability: People with motor disabilities often have problems using joysticks and

other standard control devices. The system should account for this, for example
by favoring the most “reasonable” actions when presented with an ambiguous
command.

– Comfort: Strong accelerations can be untolerable and even dangerous for a
wheelchair user, this imposes an additional constraint on how the robot may
move.

– Respect of social conventions: When moving, a robot may considerably disturb
people around it, especially when its behavior is perceived as unsocial. Even
worse, the wheelchair’s passenger may be held responsible for that behavior. It
is thus important to produce socially acceptable motion.

From the technical standpoint these requirements imply that, in addition to the con-
ventional robot tasks (e.g. localization, path execution) the following points should
be specifically addressed:

– Integrated motion-planning and long-term motion prediction: Most human-
populated environments are highly dynamic, requiring considerable look-ahead
about how other objects will move in order to ensure collision-free robot motion
under “comfortable” accelerations. This motivates the proposed integration of a
long-term motion prediction algorithm based on the idea of typical behavior with
a risk-based motion planning algorithm.

– Interaction detection for socially acceptable robot-motion: Our approach is based
on the simple idea that, when people interact, they often adopt spatial formations
implicitly forming “interaction zones”. Thus, socially acceptable motion can be
enforced by first detecting interaction zones and then computing the risk to in-
vade them.

One of our main ambitions with this platform is to provide an open benchmark
that could be used to compare and evaluate different approaches. This is an im-
portant task given the large diversity of existing wheelchairs [12], including au-
tonomous [6], semi-autonomous [9] and social aware systems [5], [11].

2 Technical Approach

Figure 1 presents an overview of our system’s architecture. It is divided into several
subsystems:
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1. Tracking subsystem: mobile objects are tracked both off-board and on-board the
robotic wheelchair.

2. Prediction subsystem: the prediction subsystem processes data from the trackers
and transforms it into probabilistic predictions about the configuration of the free
space in the environment. It also features a “social filter”, which detects present
and future interactions and creates virtual obstacles corresponding to interaction
zones.

3. Navigation subsystem: the navigation subsystem includes a laser-based localiza-
tion module and a motion-planner which integrate predictions to compute safe
trajectories that are fed to the execution module.

Fig. 1 Achitecture overview

2.1 Tracking Systems

The off-board tracker provides global information about moving obstacles and pro-
vides learning input for our motion prediction module.

At this point, we are still developing and testing our tracking systems. Mean-
while, we have performed several tests using augmented reality markers that people
wear as hats. This has allowed us to validate the overall architecture, even if it is not
a viable solution in the long run.

For the definitive version of the platform, we are working on a basic detect-then-
track system, where moving objects are first detected using a Self-organizing net-
work [13], after this, objects are encoded as a color histogram, and then detected in
later frames using the mean-shift algorithm [1]. Finally, the different detections are
used as input for a tracker based on the Joint Probabilistic data Association Filter.

On the other hand, the on-board system will provide detailed information about
the objects that appear in the robot’s perceptual field. Its main use is to identify in-
teractions between people (e.g. two persons shaking hands). The on-board tracking
performs leg detection using a LIDAR sensor and people detection using the kinect
sensor, according to the technique described in [7].
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2.2 Motion Prediction

The motion prediction subsystem takes tracking data (i.e. position, orientation and
velocity) and outputs K grids, representing the posterior probability of the space be-
ing occupied at times {t1, · · · , tK} in the future. Prediction itself is accomplished with
a Growing Hidden Markov Model [14] and an Extended Kalman Filter but the grid
representation makes it easy to experiment with other prediction algorithms. The
prediction grids are then processed by a fusion module, which currently performs
bayesian sensor fusion as described in [8].

In order to produce socially acceptable motion, we have proposed the “Social Fil-
ter”, which integrates constraints inspired by social conventions in order to evaluate
the risk of disturbance represented by navigation decisions. We focus on detecting
and predicting conversations in the environment surrounding the wheelchair [11].

2.3 Navigation

Our navigation system is based on Risk-RRT [2], a partial motion planner which
integrates motion predictions to provide safe trajectories. We have also extended the
approach by including a mechanism to obtain socially acceptable behavior.

When the wheelchair is transporting a human, it will have to move in a populated
environment where an “optimal” behavior may be perceived as unsocial. People
will become uncomfortable if they are approached at a distance that is deemed to
be too close, where the level of discomfort experienced by the person is related to
the importance of his or her space. This simple idea was formalized introducing the
concept of personal space, first proposed by Hall [3], which characterizes the space
around a human being in terms of comfort to social activity.

Another interesting social situation arises when two or more of the persons in the
environment are interacting. We model interactions using the concept of o-space
which has been developed by sociologists [4]. This space can be observed in casual
conversations among people where participants’ position and orientation are used to
establish boundaries of the space. This space is respected by other people and only
participants are allowed to access to it, therefore the intrusion of a stranger causes
discomfort. In our path planner, human friendly paths are generated by including
a “Social Filter” which transforms those spaces into corresponding cost functions
which lead the robot to avoid them. As a result, the choice of a best path done by
RiskRRT is based on the “probability of success” calculated for every partial path
considering the probability of not encountering a collision along the path and not
entering in a personal space or an o-space [11].

Modeling Personal Space. We have modeled personal space as a mixture of two
gaussians human centered, one for the front and one for the back of the space, the
front is larger as people is more sensitive to this space. Fig. 2 shows an example of
personal space as provided by the Social Filter.
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Fig. 2 Personal space calculated by Social Filter Module. Height of the gaussian means Risk
of disturbance then maximum disturbance is located at human position.

Modeling o-Space. When more than two people are in conversation, they tend to
make a formation with circular shape. The o-space could be taken as a circle whose
center coincides with that of the inner space. For the specific case of two people,
some formations, called F-formations, have been identified as being particularly
frequent [4]. The social filter identifies individual F-formations (Vis-a-vis, L-Shape,
C-Shape or V-Shape) and builds the corresponding o-space. in Fig. 3, the calculated
o-space for a Vis-a-Vis interaction is shown.

Fig. 3 O-space calculated by Social Filter Module for a Vis-a-Vis F-formation. Maximum
risk of disturbance is located at o-space center, in the picture the disturbance is represented
by height of Gaussian.

3 Experimental Results

It is important to highlight that the proposed experimental platform is an ongoing
effort. Thus, the results described below should be considered preliminary. We have
conducted experiments both in simulation and with the real platform as described
in § 3.1 and 3.2, respectively.

Before going into the details of our results, it is convenient to discuss the graphi-
cal elements we will use in our figures. In our tests, humans are represented by a 3D
model of a man or woman (4a), red points are used to represent the personal space
that should be avoided by the robot. Finally, colored squares in front of the human



454 D. Vasquez et al.

represent a simple estimation of future positions, with each color representing a
different moment in time.

The wheelchair (Fig. 4(b)) is represented by a 3D model of a wheelchair sur-
rounded by rounded points that represent explored RiskRRT nodes. As in the case
of people, different colors are associated with different moments in time. The size of
the points represents the computed risk of navigation to that position, where larger
points mean bigger risks. Finally, a red solid line is used to represent the path to be
followed, with a blue arrow indicating the robot’s goal.

Fig. 4 (a) Human visualization and symbols meaning; (b) Robot visualization and symbols
meaning

3.1 Simulation

Test Scenarios. The tests focused on two main functions: predictive navigation and
socially acceptable navigation. In the first case, people interfered with the robot’s
plans by either following the same path than the robot in the opposite direction or
intersecting it at some point. In both cases the robot had to anticipate the human
trajectories and generate an alternative collision-free plan.

In the second case, we aimed to assess the capability of the robot to avoid dis-
turbing or causing discomfort to persons that were not moving but were interacting
with each other. People were arranged in a manner that the direct path to the robot’s
goal would be inside a social interaction zone, so a straight movement to the goal
would violate the interaction zone and therefore, the robot had to find alternative
paths.

Prediction and Navigation. We have conducted extensive tests of the RiskRRT
algorithm in simulation. Fig. 5 shows one iteration of the navigation main loop. As
it can be seen, the resulting trajectory differs from optimal trajectories obtained by
traditional planning algorithms, the robot actually opts for a larger trajectory that
avoids obstructing the moving pedestrians.

In all our simulations the speed of pedestrians has been fixed to one m/s and
maximum speed of our wheelchair is also one m/s.
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Fig. 5 Predictive navigation example. RiskRRT selected a plan (red line) to the goal (blue ar-
row). The chosen path leads the robot to pass by the back of the first person, and then reduces
the speed to let the second person to pass as well. With this strategy, the robot minimizes the
risk of collision and the discomfort caused for the two pedestrians. Once second person has
passed, the algorithm choses a straighter path to the goal. Frames at the right of the figure
show that estimated risk is bigger at future positions of the wheelchair (circles) which are
close to predicted positions of pedestrians (squares).

We have performed a number of tests to assess the effect of including prediction
in our motion planning algorithm. Fig. 6 compares the paths that were obtained us-
ing predictions of pedestrian movements (left column) with those obtained without
predictions (right column). The robot’s initial position is on the left end of the cor-
ridor while the goal is at right end. Since the corridor is narrow, the only way to
avoid colliding or disturbing the pedestrian is by moving aside in the corridor open-
ing before continuing to the goal. In the figure, it is possible to see how, by using
predictions, the wheelchair is capable to detect a possible collision in the middle
of the corridor (6 a)) and to choose an alternative path to reach the goal. Without
prediction it takes a straight path to reach the goal which, at first does not seem to
pose any risk (6 b)) later, when the wheelchair detects the collision (6 d)) and tries
to avoid the person, it is already too late.

Socially Acceptable Navigation. In order to test socially acceptable behavior, we
conducted several simulation tests. Our first test scenario consisted of two inter-
acting people, together with the wheelchair. We realized thirty executions of the
planner in very similar conditions, as it can be seen in Fig. 7, when the social filter
is off, the plans do avoid people but do not respect social space. When the social
filter is turned on again, all the plans managed to respect interaction space without
disturbing the involved people.
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Fig. 6 Qualitative comparison of predictive navigation (first column) vs non predictive navi-
gation (second column). Prediction helps to discover future high-risk states (a) and anticipate
avoidance paths to finally reach the goal (g). Without prediction avoidance begins too late
(f) and a collision is unavoidable (h).

3.2 Real Platform

Experimental Platform. Our mobile platform (Fig. 8(b)) is a robotic wheelchair
manufactured by BlueBotics for the European project MOVEMENT. It is built on
a mobile base equipped with a SICK LMS-200 LIDAR, and a Microsoft Kinect
RGBD camera. The wheelchair is also equipped with an on-board computer to take
care of the low-level hardware control tasks, on top of that it also carries a notebook
computer with the navigation, prediction and tracking software.

In addition to the mobile platform, there is also an external camera (Fig. 8(a))
overlooking the test environment. It is connected to an external computer that
communicates with the wheelchair via wireless network.
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Fig. 7 Socially acceptable navigation. Each figure shows a sample of generated plans (in red)
for thirthy executions of RiskRRT: a) without social filter social spaces are not respected, b)
and c) with social filter, navigation is socially acceptable. In c) people are looking towards
walls, therefore there is no social interacting zone, then navigation respects only their personal
spaces.

(a) Overview of the full experimental setting. (b) Robotic wheelchair.

Fig. 8 Experimental platform

From the software perspective, the system has been implemented as a number of
independent modules using the Robot Operating System (ROS) [10].

Motion Prediction. The proposed prediction algorithms has been extensively vali-
dated and compared about other state of the art techniques [14]. Our approach con-
sistently yields comparable predictions with much smaller models and is able to
update its knowledge as new motion patterns are observed.

To validate the results obtained with our predictor, the scenario chosen to conduct
the experiments is the main hall of INRIA Rhône Alpes (Fig. 9(a). It is an interesting
choice as it has a large flow of people during different times of the day, entering
and leaving the building during lunch hours and at the beginning and the end of a
working day. These conditions provide a realistic and challenging place to conduct
experiments on dynamic environments.

The GHMM has been trained using a set of 190 real trajectories. Volunteers were
asked to move naturally among interest points in the environment, as the entrance
of the hall, the two corridors and the two doors. Fig. 9(b) shows a sample of these
trajectories, where the tree interest points located at the stairs illustrates the three
separate paths that can be taken when climbing it.
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Fig. 9 (a) INRIA Rhône Alpes entrance hall. (b) Real trajectories used in the GHMM
training.

Fig. 10 GHMM learned states (represented by connected nodes) and the prediction of a goal
for a person beginning to move from the left door (represented by larger nodes at the left
portion of the stairs

A great advantage of the GHMM is it capability to automatically create, remove
and merge redundant states while learning, which result in a more efficient training
compared to classical HMM. Fig. 10 illustrates the learned states (represented by
spheres) along the INRIA’s hall.
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Socially Acceptable Navigation. Test were conducted in the INRIA hall, linking
together the tracking, social filters and navigation modules, previously presented.
The tracking module fed information to the social filter module which computed
social interaction zones, according to the orientation and position of humans in the
scene.

Fig. 11(a) shows one image of two persons interacting while the robot passes
by, with a researcher closely following. Fig. 11(b) shows the same situation but
taken from the overhanging camera linked to the tracker computer, where the robot
position, its plan and intended destination can be seen.

Fig. 11 (a) Experimental test with two interacting humans and a robotic chair navigating
among them. (b) Overview camera image of the test scenario with the robot plan overlayed.

Several tests were conducted to evaluate the capability of the robot to avoid zones
that would cause discomfort to the people interacting with each other. We also com-
pared results with and without the social filter module, to demonstrate that not taking
into account the zones of social interaction would result in paths that are shorter but
“rude” or even frightening.

Fig. 12 shows the two experiments that were performed. The image shows
roughly the same initial configuration for the robot and the interacting persons, as
well as the same goal. The only difference is that, in the left column the social filter
has been disabled while in the right one it is active, which is illustrated by the point
cloud between persons.

Due to the absence of a social space, in the left column images, the planning
algorithm treats the humans are simple obstacles, and the chosen path is the one that
moves straight to the goal. However, when the social filter is active, nodes that are
generated inside the interaction zone are penalized with a high risk, and then are
excluded during the path search.

This example clearly shows that although a straight path to the goal can be con-
sidered to be more efficient in terms of energy and total distance that was traveled, it
moves in such a way that it causes discomfort to interacting groups of people in the
environment. On the other hand, the example shown in the right column, manages
to avoid the zone of interaction, at the cost of traveling a longer distance.
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Fig. 12 The robot is represented by a rectangle, the goal by the leftmost arrow, and inter-
acting people by black circles. Images (a,c,e) show the social filter module deactivated, the
resulting trajectory is shorter but socially unacceptable; (b,d,f) images shows a trajectory that
is longer but respects the social interaction zones displayed as clouds of blue points.

4 Conclusions and Future Work

As we have mentioned above, the platform presented in this paper should be consid-
ered work in progress. Nevertheless, we consider that the results we have obtained
until now are both relevant and promising and had been instructive in relation to
several aspects of the problem at the application and the technical level:

– Socially acceptable behavior is very important. Even in our scripted tests, both
interacting people and the wheelchair’s user reported that they felt very uncom-
fortable when the robot passed right through the middle of a talking group.

– Predictive behavior leads to socially acceptable behavior. For example, when
pedestrians were passing through the robot’s path, it often happened that it
stopped (knowing that the path was going to be free) to let the person pass. This
seems to indicate that in many cases, knowing how people will move, the most
reasonable thing to do is to be polite. It also suggests game theory as a possible
way to analyze these interactions.

On the other hand, there are several open fundamental issues that need to be ad-
dressed, in particular, the problem of defining proper ways of evaluating comfort
and social compliance has not been tackled here. The reason lies in the difficulty to
put together experiments which really factor out all those variables that are not be-
ing studied. For example, during our experiments, we were applying questionnaires
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to the wheelchair passenger with very inconclusive results because the environment
contained a flight of stairs going down. The result was that people were too fright-
ened about the wheelchair falling there to be able to consider social discomfort.

As future work we plan to have the help of sociologists to aid in the formulation
of questionnaires that can better capture the variables we want to study, as the com-
fort, for example. We also noticed that the reduced size of the useful space of our
test environment (approximately 70m2) posed limitations to the variety of tests that
we could perform. So future tests will be conducted in a larger and safer (without
stairs) environment, with a larger number of humans and more free space for the
robot to maneuver, so we can better explore the limitations and advantages of our
techniques.
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Socially Assistive Robot Exercise
Coach: Motivating Older Adults
to Engage in Physical Exercise

Juan Fasola and Maja J. Matarić

Abstract. We present the design, implementation, and user study evaluation
of a socially assistive robot (SAR) system designed to engage elderly users
in physical exercise aimed at achieving health benefits and improving quality
of life. We discuss our design methodology, which incorporates insights from
psychology research in the area of intrinsic motivation, and focuses on main-
taining engagement through personalized social interaction. We describe two
user studies conducted to test our design principles in practice with our sys-
tem. The first study investigated the role of praise and relational discourse in
the exercise system by comparing a relational robot coach to a non-relational
robot coach. The second study compared physical vs. virtual embodiment in
the task scenario. The results of both studies demonstrate the feasibility and
overall effectiveness of the robot exercise system.

Keywords: socially assistive robotics, human-robot interaction, exercise
therapy, intrinsic motivation, embodiment, older adults.

1 Introduction

The growing aging population is increasing the demand for healthcare ser-
vices worldwide. By the year 2050, the number of people over the age of 85
will increase five-fold [1], while the shortfall of nurses and caregivers is al-
ready an issue [2]. Regular physical exercise has been shown to be effective at
maintaining and improving the overall health of elderly individuals [3]. Social
interaction, and specifically high perceived interpersonal social support, has
also been shown to have a positive impact on general mental and physical
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Interaction Lab, Computer Science Department,
Viterbi School of Engineering, University of Southern California,
Los Angeles, CA, USA
e-mail: {fasola,mataric}@usc.edu

J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 463–479.
DOI: 10.1007/978-3-319-00065-7_32 c© Springer International Publishing Switzerland 2013



464 J. Fasola and M.J. Matarić

wellbeing [4], in addition to reducing the likelihood of depression [5]. Thus,
the availability of physical exercise therapy, social interaction, and compan-
ionship will be critical for the growing elderly population; socially assistive
robotics (SAR) has the potential to help to address this need.

In this paper, we present the approach, design methodology, implemen-
tation details, and user study evaluation of a novel socially assistive robot
system that aims to motivate and engage elderly users in simple physical
exercise. Our SAR system approach incorporates insights from psychology
research into intrinsic motivation and contributes clear design principles for
SAR-based therapeutic interventions. For system evaluation, we conducted
two user studies with older adults with the following aims: 1) to validate
the system approach and its effectiveness in gaining user acceptance and
motivating physical exercise in older adults; 2) to study the effect of praise
and relational discourse in the system towards increasing user motivation;
and 3) to investigate the effect of embodiment in the system by comparing
user evaluations of similar physically and virtually embodied SAR exercise
coaches.

2 Related Work

The literature that addresses assistive robotics intended for and evaluated
by the elderly is limited but growing. Representative work includes robots
that focus on providing assistance for functional needs, such as mobility and
health monitoring [6], navigation and schedule reminders [7], as well as social
and emotional needs, such as reducing depression [8] and increasing social
interaction [9]. Matsusaka et al. developed an exercise demonstrator robot
to aid lead human demonstrators during simple arm exercises to a training
group [10]. While similar to our work, this robot was not autonomous and
did not have any sensors for which to perceive the users; hence, it did not
provide any real-time feedback, active guidance, or personalized training, all
of which are employed by our system.

Social agent coaches have previously been developed to autonomously as-
sist individuals in tasks such as physical exercise [11, 12], but have largely
been conversational and minimally interactive, without actively monitoring
the activity itself. Our system provides a clear distinction in that the agent,
a robot in our case, not only provides active feedback and task monitor-
ing, but is also directly responsible for instructing and steering the task as
well. Hence, our agent is both an administrator and active participant in the
health-related activity.

While previous studies have investigated the positive effect of physical em-
bodiment within the context of human-agent interaction (e.g., [12, 13, 14]),
most have recruited a participant pool consisting primarily of young adults.
Embodiment studies that have targeted the elderly population include the
work of Heerink et al. [15], which investigated the acceptance of assistive
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social agents by older adults. While similar to our work, the robot used in
their evaluation was a table-top robot (the iCat), and was either controlled via
a human operator during interaction with elderly users (Wizard of Oz study),
or, like their screen agent, interacted with users through a touch-screen inter-
face. Furthermore, the interaction consisted primarily of short, informational
or utility interactions (e.g., medication/agenda reminders, weather forecast,
companionship), lasting about 5 minutes and often for a single session. In con-
trast, our SAR system was designed to engage elderly users in fluid, highly
interactive exercise sessions, completely autonomously, while providing active
feedback, motivation, and guidance on the task, across multiple sessions of
interaction, each lasting 10-20 minutes in duration.

3 Robot Exercise Coach

Our approach to designing our SAR system to help address the physical
exercise needs of the elderly population was motivated by two basic axioms
regarding what a SAR agent must possess, namely: 1) the ability to influence
the user’s intrinsic motivation to perform the task, and 2) the ability to
personalize the social interaction to maintain user engagement and build
trust in the task-based human-robot relationship

3.1 Design Principles

In following the above basic axioms, we developed five design principles for the
SAR system; all are general and can be applied to any SAR-based therapeutic
intervention. The design principles stated that the robot coach should be:

1) Motivating. The coaching style and interaction methodology of our SAR
exercise system was guided by psychology research in the area of intrinsic mo-
tivation, which has been shown to be more effective than extrinsic motivation
in achieving long-term user task compliance and behavior change [16]. The
motivational techniques utilized by our system were primarily derived from
Csikszentmihalyi’s theory of flow [17], which asserts that people are intrin-
sically motivated under conditions of optimal challenge. Towards this end,
we focused on providing a variety of challenging exercise games, of varying
degrees of difficulty, and alternating the games at a regular pace to prevent
user boredom and/or frustrations. We also incorporated indirect competition
and user autonomy into the system design, which have also been shown to
increase intrinsic motivation [18], by having the robot periodically report the
user’s high score and by giving the user control over the exercise routine in
one of the exercise games.

2) Fluid and Highly Interactive. For any task to achieve a state of flow, or
maximal enjoyment, in the user, it must establish a clear set of goals, com-
bined with immediate and appropriate feedback [17]. A primary goal of our
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(a) SAR exercise interaction (b) Physical robot (c) Virtual robot

Fig. 1 Exercise scenario and robot coach embodiments

coaching approach was to provide a fluid interaction, which required the robot
to both perceive the user’s activity and provide active feedback and guidance
in real-time, all with the aim of maintaining user engagement in the task.

3) Personable. The SAR coach employed relationship building characteristics
such as praise, empathy, humor, references to mutual knowledge, continuity
behaviors, politeness, and trust, among others [11]. Praise, which has been
shown to increase intrinsic motivation [19], was given upon successful user
completion of exercise gestures. The user’s name was also often used to per-
sonalize the interaction and to promote the user-robot relationship.

4) Intelligent. Trust is a key component to the success of any careprovider-
user relationship, and one that is closely linked to the intelligence/helpfulness
of the careprovider as perceived by the user [20]. Toward this end, we placed
special attention on adding variety to the robot’s utterances to minimize any
perceived repetitiveness, in addition to accurate monitoring of user activity.

5) Task-Driven. In gaining user trust in the system, it is also important that
the tasks employed not only be healthcare-driven, but also be successful in
achieving the desired therapeutic behavior. In the case of our SAR exercise
coach, this means the tasks must elicit consistent physical exercise among
the users (measurable through objective quantitative metrics).

3.2 Interaction Scenario

The robot exercise system consists of a socially assistive robot whose pur-
pose is to monitor, instruct, evaluate, and encourage users to perform simple
seated physical exercise (“chair aerobics”). The one-on-one interaction sce-
nario consists of the user sitting in a chair across from the robot, with each
facing the other. The system’s physical robot platform is a 19-DOF humanoid
torso with expressive face mounted on a MobileRobots Pioneer base; the vir-
tual robot platform, used in our embodiment comparison user study, is a
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(a) System modules (b) Vision output [21]

Fig. 2 SAR system architecure and user activity recognition output

computer simulation of the same robot. The exercise interaction setup and
robot platforms are shown in Fig. 1.

Four exercise games are available in our system: the Workout game (tra-
ditional exercise coach), the Sequence game (increased repetitions), the Im-
itation game (user autonomy), and the Memory game (cognitive game). In
the Workout game, the robot demonstrates the arm exercises with its own
arms, and asks the user to imitate. The robot shows only one exercise gesture
at a time, and upon successful completion by the user, generates a different
gesture, and the process repeats. The robot gives the user feedback in real-
time, providing corrections when appropriate (e.g., “Raise your left arm and
lower your right arm” or “Bend your left forearm inward a little”), and praise
in response to each successful imitation (e.g., “Great job!” or “Now you’ve
got the hang of it.”). This game has the fastest pace of all the four exer-
cise games, as the users generally complete the requested gestures quickly.
Difficulty increases in the Sequence game, where the robot demonstrates a
gesture pair for the user to repeat three times in sequence (i.e., six gestures
per sequence). Contrastly in the Imitation game, the robot instead imitates
user movements in real-time. Lastly, the goal of the Memory game is for the
user to try and memorize an ever-longer sequence of arm gesture poses, and
thus compete against his/her own high score.

3.3 System Architecture

The system architecture is comprised of six independent software modules,
representing: vision and world model, speech, user communication, behaviors,
robot action, and database management. The vision and world model mod-
ule is responsible for providing information regarding the state of the user
to the behavior module for the robot to make task-based decisions during
interaction. We developed a novel visual user activity recognition algorithm
[21] to recognize user arm poses in real-time, without markers on the user,
using only a monocular camera, which can be performed using either color
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or motion-based segmentation, and is generalizable to other domains. The
speech module communicates to the user through a text-to-speech engine,
while the user communicates through a Wiimote wireless button interface.
The behavior module interfaces with the robot action and database modules,
and is responsible for producing all of the coaching behaviors of the system;
hence, it is the module that implements most of the motivational techniques
outlined in our SAR design principles. A diagram of the system architecture,
along with example vision output, is provided in Fig. 2.

4 Study I: Praise and Relational Discourse

We designed and conducted an intrinsic motivation study to investigate the
role of praise and relational discourse (politeness, humor, empathy, etc.) in
the robot exercise system. Toward that end, the study compared the effective-
ness and participant evaluations of two different coaching styles used by our
system to motivate elderly users to engage in physical exercise. This section
discusses the study methods employed, the dependent measures that were
evaluated, and the outcomes of the study with elderly participants.

4.1 Study Design

The study consisted of two conditions, Relational and Non-Relational, to
explore the effects of praise and communicative relationship-building tech-
niques on a user’s intrinsic motivation to engage in the exercise task with
the SAR coach. The study design was within-subject; participants saw both
conditions, one after the other, and the order of appearance of the condi-
tions was counter-balanced among the participants. Each condition lasted 10
minutes, totaling 20 minutes of interaction, with surveys being administered
after both sessions to capture participant perceptions of each study condition
independently. The following describes the two conditions in greater detail:

1) Relational Condition: In this condition the SAR exercise coach employed
all of the social interaction and personalization approaches described in Sect.
3. Specifically, the robot always gave the user praise upon correct completion
of a given exercise gesture (an example of positive feedback) and provided
reassurance in the case of failure (an example of empathy). The robot also
displayed continuity behaviors (e.g., by referencing past experiences with the
user), humor, and refered to the user by name, all with the purpose of encour-
aging an increase in the user’s intrinsic motivation to engage in the exercise
session.

2) Non-relational Condition: In this condition the SAR exercise coach guided
the exercise session by providing instructional feedback as needed (e.g., user
score, demonstration of gestures, verbal feedback during gesture attempts,
etc.), but did not employ explicit relationship building discourse of any kind.
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Specifically, the robot did not provide positive feedback (e.g., praise) in the
case of successful user completion of an exercise gesture, nor did it demon-
strate empathy (e.g., reassurance) in the case of user failure. Furthermore,
the SAR coach did not display continuity behaviors, humor, or refer to the
user by name.

We recruited elderly individuals to participate in the study through a partner-
ship with be.group, an organization of senior living communities in Southern
California, using flyers and word-of-mouth. Thirteen participants (12 female,
1 male) responded and successfully completed both conditions of the study;
their ages ranged from 77-92 (M = 83, S.D. = 5.28). Half of the participants
(n = 7) engaged in the Relational condition in the first session, whereas the
other half (n = 6) engaged first in the Non-Relational condition. The follow-
ing describes the specific evaluation measures captured in the post-session
surveys:

1) Evaluation of Interaction: Two dependent measures were used to evalu-
ate the interaction with the robot exercise system: the enjoyableness of the
interaction (6 items; Cronbach’s α = .93), and the perceived value or use-
fulness of the interaction (4 items; Cronbach’s α = .95). For both measures,
participants were asked to rate how well each item described the interaction
on a 10-point scale, anchored by “Describes Very Poorly” (1) and “Describes
Very Well” (10).

2) Evaluation of Robot : Three dependent measures were used to evaluate the
robot coach: as a companion (9 items; Cronbach’s α = .86), as an exercise
coach (5 items; Cronbach’s α = .88), and the social presence of the robot
(7 items; Cronbach’s α = .82). All items were rated on a 10-point scale.

3) Direct Comparison of Conditions : In addition to the above evaluation
measures, at the end of the last exercise session we administered one final
survey asking the participants to directly compare the two study conditions
(labeled “first” and “second”) according to ten evaluation categories.

4.2 Results

Evaluation of Interaction Results. 85% of the participants (11 of 13) rated the
Relational condition higher than the Non-Relational condition in terms of en-
joyment, and 77% of the participants (10 of 13) rated the Relational condition
higher in terms of usefulness than the Non-Relational condition. A Wilcoxon
signed-rank test was performed on the data to analyze matched pairs from the
sample population’s evaluations of both study conditions according to the de-
pendent measures; the results show that the participants evaluated the inter-
action with the relational robot as significantly more enjoyable/entertaining
than the interaction with the non-relational robot (W [12] = 4, p < .005),
and as somewhat more valuable/useful than the interaction with the non-
relational robot, although not to a significant degree (W [12] = 15.5, p < 0.10).
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For illustration purposes, Fig. 3(a) shows the average participant ratings of
the enjoyableness and usefulness of the interaction for both study conditions.

Evaluation of Robot Results. 77% of the participants (10 of 13) rated the rela-
tional robot higher than the non-relational robot in terms of companionship,
77% of the participants (10 of 13) rated the relational robot more positively
as an exercise coach, and the comparative ratings of social presence between
the robot conditions were approximately equal, as 54% of participants (7
of 13) reported higher social presence for the relational robot. A Wilcoxon
signed-rank test was again performed on the data; the results show that the
participants rated the relational robot as a significantly better companion
than the non-relational robot (W [13] = 14, p < .05), and as a significantly
better exercise coach than the non-relational robot (W [11] = 7, p < .02).
There was no significant difference in the participant evaluations of social
presence between both robot conditions (W [12] = 28.5, p > 0.2), with both
robots receiving equally high ratings. The average participant ratings of both
robot conditions for all three dependent measures are shown in Fig. 3(b).

Direct Comparison Results. The direct comparison results demonstrate that,
regardless of the order of condition presentation, the participants expressed
a strong preference for the relational robot over the non-relational robot.
Specifically, the relational robot received 82% of the positive trait votes vs.
16% for the non-relational robot, with the remaining 2% shared equally be-
tween them. Notable results include the high number of participants who
rated the relational robot as more enjoyable (10 votes, 77%), better at moti-
vating exercise (11 votes, 85%), more useful (11 votes, 85%), and the robot
they would choose to exercise with in the future (11 votes, 85%). In contrast,
the non-relational robot received a high number of votes for being more frus-
trating (10 votes, 77%) and more boring (10 votes, 77%) than the relational
robot.

4.3 Discussion

The results of the study show a strong user preference for the relational robot
over the non-relational robot, demonstrating the positive effects of praise and
relational discourse in a healthcare task-oriented human-robot interaction
scenario. Comments made by participants after the study further illustrate
the positive response to the relational robot, including “It’s nice to hear your
name, it’s personal. I felt more positive reinforcement,” and from another
participant “The robot encourages you, compliments you; that goes a long
way.” These results provide significant insight into how people respond to
socially assistive robots, and confirm the positive influence that praise and
relational discourse have on intrinsic motivation. Furthermore, the results
validate our SAR design principles, with particular emphasis on the person-
able nature of the robot coach, which in turn influences the motivational
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Fig. 3 Participant evaluations of (a) the interaction and (b) the robot coach, for
both study conditions [21]. Note: significant differences are marked by asterisks (*).

capabilities of the system (e.g., by increasing enjoyment) and its perceived
usefulness (task-driven), as evidenced by the participant evaluation results.
For further analysis and discussion of the study results, the reader is referred
to [21].

5 Study II: SAR Evaluation and Embodiment

We designed and conducted a second, larger, user study with older adult
participants in order to: 1) evaluate the effectiveness of our SAR approach
and system design, and 2) investigate the role of physical embodiment in the
robot exercise system. Specifically, the study compared the effectiveness and
participant evaluation of our physical humanoid robot to that of a computer
simulation of the same robot shown on a flat-panel display.
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5.1 Study Design

To analyze the differences between the physical and virtual embodiments
in the exercise system, we implemented both a between-subjects and within-
subjects study design. Study participants were divided into two groups, phys-
ical robot embodiment vs. virtual robot embodiment, and the study consisted
of a total of five 20-minute sessions of exercise interaction with the system,
conducted over a two-week period. The between-subjects portion of the study
constituted the analysis across both conditions of the data pertinent to the
first four exercise sessions, where participants in both groups interacted solely
with their designated robot embodiment. Distinct from all previous sessions,
in the fifth exercise session participants in both groups interacted with the
alternative robot embodiment (physical robot group with the virtual robot,
virtual robot group with the physical robot). The within-subjects portion of
the study consisted of the data analysis between the fourth and fifth exercise
sessions within each group.

Surveys were administered at the end of the fourth and fifth sessions for
participant evaluation of the SAR system. The same five measures from the
first user study were again used to evaluate both the interaction and robot
coach, with the addition of three measures: helpfulness of the robot (4 items;
Cronbach’s α = .96), intelligence of the robot (4 items; Cronbach’s α = .93),
and social attraction towards the robot (4 items; 7-point scale; Cronbach’s
α = .88).

To help assess the effectiveness of the SAR exercise system in motivating
exercise among the participants, we also collected fifteen different objective
measures during the exercise sessions regarding user performance and com-
pliance in the exercise task. Five performance measures were captured during
user interaction in the Workout game, including: the average time to gesture
completion (from the moment the robot demonstrates the gesture, to success-
ful user completion of the gesture), number of seconds per exercise completed,
number of failed exercises, number of movement prompts by the robot to the
user due to lack of arm movement, and feedback percentage. The feedback per-
centage measure refers to the fraction of gestures, out of the total given, where
the robot needed to provide verbal feedback to the user regarding their arm
positions in order to help guide them to correct gesture completion. Two mea-
sures concerned user activity during the entire exercise session; they were: the
average total number of exercises completed, and number of breaks taken by the
user. The eight remaining measures were captured in the other three exercise
games, and were similar in nature to those captured in the Workout game.

We recruited thirty-three older adults to participate in the study, again
through a partnership with be.group. Half of the participants were placed
in the physical robot group (n = 16), and the other half in the virtual
robot group (n = 17). The sample population consisted of 27 female (82%)
and 6 male (18%) participants, with ages ranging from 68 to 88 (M = 76,
S.D. = 6.32).
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Table 1 Results of between-subjects and within-subjects embodiment comparison

Dependent Measure Physical Robot Virtual Robot P.V. V.P.

Interaction Evaluation Between-Subjects Analysis Within-Subjects Analysis

Enjoyable 7.51 (1.77)* 6.00 (2.01) 6.94 (2.21) 7.11 (2.35)†

Valuable/Useful 8.14 (1.66)* 6.19 (2.39) 7.70 (2.13)†† 7.51 (2.26)*

Robot Evaluation

Helpful 8.11 (1.98)* 6.26 (1.98) 8.28 (1.61) 7.44 (2.48)*

Social Attraction 4.70 (1.40)* 3.61 (1.54) 4.31 (1.43)† 4.36 (1.58)††

Social Presence 7.88 (0.94)* 6.47 (2.01) 6.98 (0.97)** 7.22 (1.66)†

Companion 7.48 (2.07)†† 6.23 (1.84) 7.12 (1.94) 7.42 (1.87)*
Intelligence 8.17 (2.02)† 6.76 (2.09) 7.61 (1.54) 7.79 (2.66)*

Exercise Partner 7.18 (2.17)†† 5.76 (2.18) 6.95 (1.60) 7.01 (2.16)*

P.V. = Physical robot group evaluating the virtual robot (5th session).
V.P. = Virtual robot group evaluating the physical robot (5th session).
††p < .10, †p < .06, *p < .05, **p < .01, ***p < .001.

5.2 Coach Embodiment Comparison Results

A two-tailed independent T-test was performed on the survey data following
the fourth exercise session, to compare participant evaluations of the robot
embodiments as well as their interactions with them across the two study
groups. Survey results from the fourth session were used to perform the com-
parison analysis as they were less likely to contain scores influenced by the
effect of novelty. Table 1 provides the complete set of embodiment comparison
results.

The participants evaluated the interaction with the physical robot embod-
iment as more enjoyable (t[31] = 2.29, p < .03) and as more valuable/useful
(t[29] = 2.72, p = .01) than the interaction with the virtual robot embodi-
ment. In addition, the participants rated the physical robot as significantly
more helpful than the virtual robot (t[31] = 2.66, p = .01), more socially
attractive (t[30] = 2.09, p < .05), and as having significantly stronger social
presence (t[23] = 2.59, p < .02). Evaluations of the remaining measures were
also favorable to the physical robot, though not to a significant degree, as
the participants rated the physical robot as somewhat more of a compan-
ion (t[30] = 1.81, p < .08), more intelligent (t[31] = 1.96, p < .06), and a
moderately better exercise partner (t[31] = 1.87, p = .07) than the virtual
robot.

To test for significant differences between embodiments within each
study group, we used a two-tailed paired T-test to analyze the data gathered
from the fourth and fifth session post-session surveys. The within-subjects
results largely agree with the results of the between-subjects comparison
(see Table 1), with the exception of the physical robot group’s ratings of
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Table 2 Results of direct comparison survey for all n = 33 participants

Physical Virtual Both Equal Binomial Test

Enjoy More 25 (76%)** 6 (18%) 2 (6%) p < .01
More Intelligent 13 (40%) 6 (18%) 14 (42%) p = 0.3
More Useful 21 (64%)* 7 (21%) 5 (15%) p < .05
Prefer to Exercise with 27 (82%)*** 4 (12%) 2 (6%) p < .0001
Better at Motivating 22 (67%)** 4 (12%) 7 (21%) p < .01
More Frustrating 10 (30%) 14 (43%) 9 (27%) p = 0.5
More Boring 4 (12%) 17 (52%)* 12 (36%) p < .05
More Interesting 23 (70%)** 5 (15%) 5 (15%) p < .01
More Entertaining 25 (76%)*** 4 (12%) 4 (12%) p < .001
Choice from now on 25 (76%)** 7 (21%) 1 (3%) p < .01

*p < .05, **p < .01, ***p < .001.

the virtual embodiment, which although lower on average than the physi-
cal embodiment were not significantly different, indicating possible carryover
effects in the evaluation.

As in the first user study, participants were asked to directly compare both
embodiments with respect to ten evaluation categories. The results, provided
in Table 2, show clear preference for the physical robot, which received 81%
of the positive trait votes vs. 19% for the virtual robot among participants
who chose one embodiment over the other (85% of the sample); a significant
margin as indicated by a two-sided exact binomial test (201 votes vs. 63,
p < .0001).

5.3 SAR System Evaluation Results

In order to evaluate the effectiveness of the SAR exercise system, we analyzed
the data of the physical robot group’s fourth session of interaction, together
with the data of the virtual robot group’s fifth session of interaction. There-
fore, the SAR system evaluation results, regarding user perceptions and user
exercise performance, were gathered from all 33 older adult participants and
consist only of participant interactions with the physically embodied robot,
as this condition represented the ideal interaction scenario for users of the
system.

User Evaluations of SAR System. To analyze the user evaluations of
the SAR exercise system, we performed a two-tailed independent T-test to
test for significant differences between the participant ratings of the subjec-
tive measures and a neutral evaluation rating. The neutral evaluation rating
distribution was obtained from a uniform sampling of the rating scale (in-
tegers from 1 to 10) for the approximate number of participants, and has a
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Fig. 4 Participant evaluations of SAR system interaction and robot coach. Note:
Significant differences in comparison to neutral rating are marked by asterisks (*).

mean rating of 5.5 (S.D. = 2.90). This uniform sampling assumes no prior
information regarding user perceptions of the system, and thus is deemed
neutral.

The results of the user evaluation of the SAR exercise system were very
encouraging, as they showed a notable level of user acceptance of the sys-
tem, as evidenced by the high ratings across each of the subjective measures,
and highlighted the effectiveness of our SAR system design principles. The
participants evaluated the interaction with the SAR exercise system as en-
joyable (M = 7.3, S.D. = 2.07) and valuable/useful (M = 7.8, S.D. = 1.99).
The ratings for both measures were found to be significantly more positive
than a neutral evaluation (enjoyableness: t[52] = 2.81, p < .01; usefulness:
t[50] = 3.64, p < .001). These results illustrate the effectiveness of the system
in promoting intrinsic motivation within the users to engage in the healthcare
task (intrinsic motivation is characterized by enjoyment [17]), and in guiding
the task-driven interaction towards achieving beneficial health outcomes for
the user.

Regarding user perceptions of the robot coach of the SAR exercise system,
the participants rated the robot highly and significantly more positive than
neutral in terms of helpfulness (M = 7.8, S.D. = 2.25; t[54] = 3.42, p < .01),
intelligence (M = 8.0, S.D. = 2.35; t[56] = 3.68, p < .001), social presence
(M = 7.5, S.D. = 1.38; t[41] = 3.48, p < .01), and as a companion (M =
7.4, S.D. = 1.94; t[50] = 3.08, p < .01). The participants also rated the robot
coach favorably in terms of social attraction (M = 4.5 (on a 7-point scale),
S.D. = 1.48; t[62] = 1.22, n.s.), and as an exercise partner (M = 7.1, S.D. =
2.14; t[53] = 2.45, p < .02). These results illustrate the personable nature and
intelligence of the robot coach, as perceived by the participants, both of which
aid in the development of trust within the human-robot relationship, and
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Table 3 User exercise performance statistics for all n = 33 older adult participants

Performance Measure Mean (std.)

Workout game:
Time to Gesture Completion (seconds) 2.54 (0.80)
Seconds per Exercise 5.37 (0.88)
Feedback Percentage 7.4% (4.8%)
Number of Failed Gestures 0
Number of Movement PromptsW 0

Sequence game:
Time to Gesture Completion (seconds) 5.73 (1.37)
Number of Sequences Completed 4.97 (1.16)
Number of Gesture Pairs Completed 14.9 (3.41)
Feedback Percentage 19.6% (11.2%)

Memory game:
Maximum Score 6
Average Maximum Score 3.52 (1.25)
Time per Gesture Attempt (seconds) 7.62 (3.98 )

Imitation game:
Number of Movement PromptsI 0.37 (0.63)

Entire Session:
Total Number of Exercises Completed 107.75 (18.1)
Number of Breaks Taken 1 (1.26)

were design goals of our SAR system approach towards providing successful
therapeutic interventions. A plot showing participant evaluations of the SAR
system interaction and robot coach is shown in Fig. 4.

User Exercise Performance Statistics. The collected statistics regarding
participant performance in the exercise task were also very encouraging, as
they demonstrated a consistently high level of user exercise performance and
compliance within the exercise task.

User compliance and performance in the Workout game were high. The av-
erage gesture completion time was 2.54 seconds (S.D. = 0.80), and the over-
all exercise performance averaged 5.37 seconds per exercise (S.D. = 0.88),
which also includes time taken for verbal praise, feedback, and score reporting
from the robot. The low percentage of necessary corrective feedback, averag-
ing 7.4%, combined with zero failures, and zero movement prompts during
the interaction sessions, are all very encouraging results, as they suggest
that the participants were motivated to do well on the exercises consistently
throughout the interaction.

A summary of all statistics regarding user performance, including those
from the Sequence, Memory, and Imitation games, can be found in Table 3.
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The consistently high level of exercise performance achieved by the study
participants, as evidenced by the results, validates the effectiveness of the
SAR exercise system approach and design methodology in motivating elderly
users to engage in physical exercise, and demonstrates the potential of the
technology to provide guided care and to help elderly users achieve beneficial
health outcomes.

5.4 Study Expansion with Young Adults

To analyze and compare user evaluations and embodiment effects across
age groups, we expanded the study to include 33 young adult participants
(6 female, 27 male), yielding a combined sample of 66 participants, all of
whom engaged in five sessions of interaction with our SAR exercise system
(330 sessions total). The results of the study with young adults were largely
consistent with those observed with the older adult participants. Among the
combined results, a two-sided exact binomial test showed the physical robot
coach received significantly more positive votes than the virtual robot coach
upon direct comparison (425 votes vs. 103, p < .0001). For further discussion
of the results of both the young adult and combined populations, we refer
the reader to [22].

6 Conclusions

We have presented a set of design principles for socially assistive robots in
therapeutic contexts, and a novel robot system that embodies and validates
those principles, designed to motivate and engage elderly users in physical
exercise. Our SAR system approach, design methodology, and implemen-
tation details were discussed, including five SAR design principles which
can be applied to a variety of human-robot interaction-based healthcare
interventions.

Results of the user evaluation of the SAR exercise system in two user
studies with older adults were presented, which together showed strong par-
ticipant preferences for relational and physically embodied coaches. The suc-
cessful acceptance of the SAR exercise system from elderly users, as evidenced
by the high participant evaluations of the system and consistent exercise per-
formance in both user studies, validates our SAR system approach, design,
algorithms, and effectiveness, and illustrates the potential of SAR technology
to help older adults achieve beneficial health outcomes and improve quality
of life.
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Interpreting and Executing Recipes
with a Cooking Robot

Mario Bollini, Stefanie Tellex, Tyler Thompson,
Nicholas Roy, and Daniela Rus

1 Motivation

The creation of a robot chef represents a grand challenge for the field of robotics.
Cooking is one of the most important activities that takes place in the home, and
a robotic chef capable of following arbitrary recipes would have many applica-
tions in both household and industrial environments. The kitchen environment is a
semi-structured proving ground for algorithms in robotics. It provides many compu-
tational challenges, such as accurately perceiving ingredients in cluttered environ-
ments, manipulating objects, and engaging in complex activities such as mixing and
chopping. Yet it also allows for reasonable simplifying assumptions due to the in-
herent organization of a kitchen around a human-centric workspace, the consistency
of kitchen tools and tasks, and the ordered nature of recipes. We envision a robotic
chef, the BakeBot, which can collect recipes online, parse them into a sequence of
low-level actions, and execute them for the benefit of its human partners. We present
first steps towards this vision, by combining techniques for object perception, ma-
nipulation, and language understanding to develop a novel end-to-end robot system
able to follow simple recipes and by experimentally assessing the performance of
these approaches in the kitchen domain.1

2 Problem Statement

This paper describes progress towards a robotic system which is able to read and ex-
ecute simple recipes. The robot is initialized with a set of ingredients laid out on the

Mario Bollini · Stefanie Tellex · Tyler Thompson · Nicholas Roy · Daniela Rus
Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology
e-mail: {mbollini,stefie10,tcthompson,nickroy,rus}@csail.mit.edu

1 Video of recipe execution:
http://people.csail.mit.edu/mbollini/bakebot_planning.mp4

J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 481–495.
DOI: 10.1007/978-3-319-00065-7_33 c© Springer International Publishing Switzerland 2013

http://people.csail.mit.edu/mbollini/bakebot_planning.mp4


482 M. Bollini et al.

table and a set of natural language instructions describing how to use those ingre-
dients to cook a dish such as cookies, salad, or meatloaf. For example, ingredients
might include flour, sugar, butter, and eggs arrayed in labeled bowls on the table,
and instructions might include statements like “Add sugar and beat to a cream.” We
assume the robot has access to a model of the environment including the set of in-
gredients and their labels, and the location of tools such as the oven. In addition,
it has a repertoire of primitive actions, such as pouring ingredients into a bowl and
mixing them. The robot must parse the text of recipe and infer an action sequence
in the external world corresponding to the instructions. It then executes the inferred
action sequence on the PR2 robotic manipulation platform, performing the motion
and task planning necessary to follow the recipe to create the appropriate dish. For
example, for the instructions above, the robot might empty the bowl of sugar into
the mixing bowl, then stir the ingredients in the bowl. Figure 2 shows the BakeBot
system inputs and outputs.

Fig. 1 BakeBot, a PR2 robot system that executes simple baking recipes. The PR2 is modified
with a protective covering to prevent damage from spills and a spatula which is bolted to the
end effector to enable mixing.

3 Related Work

Many previous authors have described robotic systems for following natural lan-
guage instructions. Previous work focused on understanding natural language route
directions [9, 10, 6] and mobile-manipulation commands [12]. Similar to existing
approaches, our system learns a model that maps between the text of the instructions
and a reward function over actions in the predefined state-action space, specifically
focusing on the domain of following recipes. Recipes present a unique challenge
to these approaches because of the richer space of actions inherent to the cooking
domain. BakeBot uses the low-level manipulation and perception system described
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Fig. 2 The human interaction with the BakeBot system for recipe execution. First the person
provides the plain-text recipe and the measured ingredients. Then BakeBot infers a sequence
of baking primitives to execute that correspond to following the recipe. If BakeBot encounters
an unsupported baking primitive, it asks its human partner for help executing the instruction.
The end result is baked cookies.
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in Rusu et al. [11]. Beetz et al. [2] have demonstrated dispensing pancake batter
from a premixed container and flipping the pancakes on a skillet. In this paper we
demonstrate an end-to-end robot cooking system capable of implementing any bak-
ing recipe that requires pouring, mixing, and oven operations on premeasured in-
gredients provided to the system. Our system is able to follow recipes downloaded
from the internet; we demonstrate it by following two different recipes in the real
world and by further evaluating its performance on a larger test set in simulation.

Fig. 3 Architecture of the BakeBot system. The NL system processes the plain text recipe,
producing a high-level plan which is sent to the robot. For each instruction in the high-level
plan, the motion planner assembles a motion plan and executes it on the PR2 robot.

4 Technical Approach

The robot’s goal is to read the text of a natural language recipe, and use it to infer
an action sequence in the environment that corresponds to preparing the dish de-
scribed in the recipe. The robot first segments the recipe into sentences based on
punctuation. Then for each sentence, it infers an action sequence in the environment
corresponding to the words in the sentence. After executing the action sequence suc-
cessfully, the robot will have produced the appropriate dish, for example cookies,
brownies, or meatloaf. The system architecture appears in Figure 3.

We formally define a state-action space for the kitchen domain using primitive
actions such as mix, pour, and bake. Within this state space, many specific action
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trajectories can be followed, yielding a variety of different dishes. In order to follow
a specific recipe, we define a reward function based on the text of the recipe. The
robot uses forward search to find the sequence of states and actions that maximizes
reward, then executes those actions in the external world. Because the text of the
recipe generates the reward function, this optimization corresponds to finding an
action sequence that follows the recipe.

4.1 State/Action Space for the Kitchen

We define a state Sk as the collection of unused ingredients Si
k in the workspace, the

mixing bowl Sb
k and its contents, the cookie sheet Ss

k and its contents, and a toaster
oven So

k and its temperature and contents. Given any state Sk, we define actions(Sk)
to be the set of available actions in that state:

• For each unpoured ingredient Si
k, pour(Si

k,S
b
k) ∈ actions(Sk).

• If nonempty(Sb
k) then mix(Sb

k) ∈ actions(Sk).
• If nonempty(Sb

k) then scrape(Sb
k ,S

s
k) ∈ actions(Sk).

• If empty(So
k) then preheat(So

k) ∈ actions(Sk).
• If empty(So

k)∧nonempty(Ss
k) then bake(Ss

k) ∈ actions(Sk).

After executing an action such as pour in state Sk, the next state Sk+1 contains one
less unused ingredient, and the mixing bowl Sb

k+1 contains the corresponding poured
ingredient. Although the currently available actions do not always execute robustly
on the real robot, they support a surprising array of recipes, ranging from brownies
to meatloaf to salads. Over time we plan to increase the robustness of the existing
actions and add additional ones such as chopping and whisking in order to increase
the range of recipes that the robot supports.

If no supported action exists for an instruction, the robot prompts the user, vi-
sually via the terminal and audibly via a text-to-speech synthesizer, to execute the
action. This enables a wider array of actions than the manipulation platform and
motion primitive set currently support by leveraging support from a human partner.

4.2 Reward Function

In order to follow a recipe, the system takes as input the natural language text of a
recipe and induces a reward function over the state/action space. The reward func-
tion is learned from a labeled dataset of recipes paired with the correct action se-
quence. Formally, a recipe consists of a list of sentences d1 . . .dN . For each sen-
tence, the system infers a sequence of states S1 . . .SK that maximizes the reward
function R:

argmax
S1...SK

∑
j

R(d j,Sm . . .Sn) (1)

We define the reward function as a probability distribution parametrized using a
log-linear model [3]. The model is trained from a corpus of recipes annotated with



486 M. Bollini et al.

the correct action. The feature functions are bag-of-words features crossed with the
presence of specific actions and arguments in the state sequence. For example, a
feature would be “Mix” ∈ d j∧ pour ∈ S1 . . .Sk. The system takes positive examples
from the annotations. To form negative examples, it finds action trajectories which
result in an incorrect final state. The system then finds model parameters which
maximize the likelihood of this training set using a gradient descent algorithm.

We use a beam search to jointly optimize the action sequence across multiple
sentences. The sequence of states and actions is then passed to the execution model
to run on the physical robot.

4.3 Plan Assembly

The inferred state/action sequence is interpreted into a robot action plan of bak-
ing primitives. Each baking primitive corresponds to a single cooking action and
consists of a collection of motion primitives with STRIPS-style preconditions and
effects and a STRIPS-style description of the goal[8]. The action plan is represented
as a sequential finite state machine of ordered baking primitives corresponding to
the inferred state/action sequence.

If no supported baking primitive exists for an action in the state/action sequence
a user interaction state is created and inserted into the state machine, enabling the
system to follow recipes that might involve instructions for which no baking primi-
tives exist. For example, if the system encounters a primitive for chopping walnuts,
which it cannot execute itself, it asks its human partner for assistance (via text output
and audibly via a text to speech synthesizer).

4.4 Plan Execution

Once a sequence of baking primitives has been inferred, the robot executes them se-
quentially. When executing a baking primitive, the system (1) infers a set of Boolean
planning predicates that correspond to the world state, (2) symbolically plans a se-
quence of motion primitives to execute the baking primitive from the current state,
(3) parametrizes the motion primitive sequence into an executable sequential state
machine, and (4) executes the state machine. If execution fails the system estimates
the current state and replans a new sequence of motion primitives to accomplish the
baking primitive. This enables the system to recover from many errors experienced
during recipe execution.

Detecting and Pouring Ingredients

We utilize the ROS tabletop manipulation pipeline [11] to find the ingredients on the
preparation table. First the system finds objects on the table using an algorithm [5]
that combines multiple detections across the tabletop into a single state represen-
tation of the objects in front of the robot. The system is given a mapping between
segmented objects and ingredient names; no object recognition is used to match
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the clusters to an object database. This approach provides more robust performance
to bowl size variation, and more importantly, is more robust to varying ingredient
volumes (and shapes) within the ingredient and mixing bowls.

Once the robot has detected ingredients on the table, it manipulates them us-
ing the pour baking primitive. The pour baking primitive contains the following
motion primitives: ingredient bowl grasps, lifting, moving an object over the table
with orientation constraints, pouring, shaking, and discarding an empty ingredient
bowl. The task space for bowl grasps and pours are discretized into four cardinal
bowl orientations at the 12, 3, 6, and 9 o’clock positions around the bowl circum-
ference. This simplified task and motion-plan specification limits bowl positions to
a small, intuitive set while providing versatility. If planning or pouring from a bowl
grasp pose fails another pose is attempted. After the ingredient is poured, the robot
discards the ingredient bowl.

Mixing and Scraping

The mix and scrape baking primitives use motion primitives for bowl grasps, mov-
ing an object over the table with orientation constraints, pouring, moving the spatula
across the table, mixing, and scraping. These primitives use both end effector posi-
tion and compliance control techniques.

For mixing, the robot performs a grasp of the mixing bowl to hold it in place.
It moves the other end effector, with an attached spatula, via end effector po-
sition control over the mixing bowl. It then activates the end effector Cartesian
force/compliant controller [1], plunging the spatula down into the batter. Next the
robot executes a series of linear and circular mixing trajectories to ensure the batter
is well-combined. Mixing is performed open-loop: the system does not know how
well-mixed the batter is. We attempted to use joint-torques to estimate batter con-
sistency but this was unsuccessful. Other approaches include using computer vision
techniques to visually sense the batter consistency. The mixing strategy aims for
well-combined batter, at the expense of time and the risk of over-mixing.2 When
mixing is completed the system uses a compliant trajectory to wipe the spatula on
the rim of the mixing bowl before switching back to position control to reset the end
effector.

To initiate scraping, the robot grasps the mixing bowl and lifts it over the cookie
sheet. It pours the contents of the bowl into the cookie sheet, then moves spatula
inside of the bowl. Next it executes a compliant scrape trajectory to dislodge any
batter that remains stuck inside of the mixing bowl. This trajectory also presses the
batter down into the cookie sheet, ensuring one large flat cookie.

Oven Operation

The bake baking primitive uses motion primitives for base navigation, handle recog-
nition, grasping, following endpoint trajectories, and compliant oven opening.

2 Overmixing a flour-based batter can cause baked goods to become tough.
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The robot first drives an open-loop path to the oven and servos to its final position
based on the detection of the oven handle. It locates the handle using point cloud
segmentation in front of the combined surface of the front of the oven and the hang-
ing tablecloth under the oven. Localization on the oven handle eliminates the need
for mapping as the odometry of the PR2 base is sufficient to drive from the prepa-
ration table to within range to perform oven handle detection. The robot opens the
oven by grasping the handle and executing a hybrid force/compliant trajectory. The
trajectory follows position waypoints pulling away from the oven while maintaining
a constant downward force, opening the oven door with limited a priori information
about the oven [4].

The robot drives back to the table, grasps the cookie sheet, and returns to the
oven. It inserts the cookie sheet into the oven by following a path of end-effector
waypoints in the workspace. Finally it closes the oven with the same manipulator
by following a joint trajectory that brings the end effector into contact with the open
door and pushes the door upwards. After baking is complete, the robot follows a
similar process to remove the finished product from the oven.

5 Experiments

We evaluate our approach in three ways. First, we performed two experiments using
our platform: we passed recipes through our language processing system to create
robot instruction sets, and we executed the instruction sets on the physical robot
system. The robot’s workspace is initialized with a set of objects containing the
ingredients and implements necessary to follow the recipe; the system does not parse
the ingredients list. Finally, we compared our recipes to human performance by
comparing the number of baking primitives supported by our framework to those
needed for a set of ten recipes sampled from Joy of Cooking.

We collected a dataset of 60 recipes from the internet, describing how to make
simple dishes such as brownies, meat loaf, and peach cobbler. For each recipe, we
formally specified the specific ingredients and implements necessary to follow the
recipe. This initialization is given to the robot. Next, for each instruction in the
recipe text, we annotated the sequence of primitive actions the robot should take
in order to follow that instruction. We used 45 recipes from this corpus to train the
model, and 15 recipes to test it. A sample recipe from the test set appears in Figure 4,
together with the automatically inferred action sequence.

5.1 Real-World Demonstration

The robot system operates in a kitchen environment consisting of two work surfaces,
one for preparation and another to support a standard toaster oven (preheated to the
temperature specified in the instruction set).

We assume that the kitchen is mise en place; ingredients are pre-measured and
distributed on bowls on the table. Equipment includes four plastic ingredient bowls
of various sizes and colors containing premeasured ingredients, a large plastic
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Recipe Text

Afghan Biscuits
200g (7 oz) butter
75g (3 oz) sugar
175g (6 oz) flour
25g (1 oz) cocoa powder
50g cornflakes (or crushed weetbix)

Soften butter.
Add sugar and beat to a cream.
Add flour and cocoa.
Add cornflakes last.
Put spoonfuls on a greased oven tray.
Bake about 15 minutes at 180◦C (350◦F).

Inferred Action Sequence

pour(butter,bowl);mix(bowl)
pour(sugar,bowl);mix(bowl)
pour( f lour,bowl); pour(cocoa,bowl)
pour(corn f lakes,bowl);mix(bowl)
scrape()
preheat(350);bake(pan,20)

Fig. 4 Text from a recipe in our dataset, paired with the inferred action sequence for the robot

mixing bowl, and a metallic pie pan. The items are arranged in a grid on the table,
with the relative position of every item noted in our ingredient-resolution program.

First, we assessed the robustness of the physical capabilities of the robot by per-
forming extensive tests on a single recipe: “Afghan Biscuits” (which appears in
Figure 4). Minor failures, such as the fingers slipping off of the oven door halfway
through the opening procedures or the inverse kinematic planner requiring a restart,
were corrected during runtime and the tests were allowed to continue. More serious
failures, such as spilling an ingredient or scraping the contents of the mixing bowl
onto the floor or table, that required the system to be fully restarted or a new piece
of code to be written caused the termination of the test. We tested the full end-to-
end system, from robot instructions through finished dish, 27 times on this recipe,
of which 16 ran to completion, with an average runtime of 142 minutes from start
to finish. On average, mixing ingredients in the bowl takes 27 minutes to execute.
Adding an ingredient takes on average 8 minutes; scraping from the bowl onto a
cookie sheet takes 16 minutes, and putting an item into the oven takes roughly 18
minutes. The robot is able to successfully execute actions in a cooking domain, al-
though much more slowly and with many more failures than a human. A pictorial
representation of the baking process is shown in Figure 5.

Next, we selected two recipes from our test set and used our recipe follow-
ing system to execute them from plain-text recipes through the finished dish. We
executed two runs each of “Afghan Biscuits” and “Quick’N Easy Sugar Cook-
ies,” demonstrating the end-to-end system integration and the robot’s ability to
physically execute several recipes.
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Fig. 5 A pictorial timeline of the baking process
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5.2 Quantitative Evaluation of Recipe Processing

We performed a quantitative evaluation in simulation to assess the system’s ability at
finding a plan to understand a variety of recipes. First, we assessed the system’s per-
formance at inferring an action sequence for specific sentences in the recipes. The
15 recipes in the test set contained a total of 92 individual sentences. Of these sen-
tences, the system correctly inferred exactly correct plans for 49% of them. Many of
the errors consist of omitting an ingredient, as in “Mix with hands – form small balls
and flatten on ungreased pan.” which referred to all ingredients in the recipe; for this
command the system inferred only pour(sugar,bowl);mix(bowl) but excluded other
ingredients such as butter and flour.

Next, we evaluated the system’s performance when inferring the complete action
sequence for the recipes. The system correctly inferred action sequences for 26.67%
of the test set (4/15). As in the instruction-level tests, most of the errors consist of
omitting an ingredient for a single instruction, resulting in the rest of the action
sequence becoming incorrect.

Finally, we assessed the performance of instruction-level and end-to-end infer-
ence with respect to changing training corpus size in Figure 6 and Figure 7. We kept
the recipe test set constant through these tests. We started with a training set of one
random recipe, trained the system with that training set, and evaluated the perfor-
mance of the system using the test set. At each step, we added 5 random recipes
(up to a maximum of 45 recipes) to the training set. The results for the instruction-
level evaluations are shown in Figure 6 and the results of the end-to-end evaluations
are shown in Figure 7. These graphs reflect the asymptotic nature of the training
set size; we see a large initial improvement in inference performance when we add
more recipes to the training set, but the improvement diminishes with each addition
step.

Fig. 6 Instruction-level recipe inference performance with varying training set size
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Fig. 7 End-to-end recipe inference performance with varying training set size

5.3 Comparison to Human Performance

Finally, we assess the types of actions supported by the system compared to a human
chef. First, we compared our supported primitives to a brownie recipe performed by
a human, annotated within the CMU Multimodal Activity Database [7]. We found
that our mise en place assumption eliminated 67% of the annotated actions. Of the
remaining actions performed by the human, our instruction set supports 79%. The
two unsupported types of actions were greasing a cookie sheet and cracking eggs.
Our compliant controller could be used to implement a greasing technique (using
Crisco and a paper-towel, for example). However, cracking eggs is unsupported be-
cause of limitations in the PR2’s manipulation and perception capabilities.

Next, we compared our instruction set to a set of ten recipes sampled from Joy of
Cooking [13], ranging from corn dogs to salsa fresca.3 The system is able to execute
67% of the 120 instructions from these recipes. Adding motion primitives to support
waiting for specific events, such as boiling or tenderness, as well as stove operations
would increase the fraction of supported instructions considerably. It is worth noting
that while the BakeBot system supports a large subset of the recipe instructions, it
lacks the dexterity and perception to perform more complicated actions. Any aspir-
ing chef can attest that simply going through the motions of a recipe is insufficient
to guarantee tasty food. For example, when making scones, an instruction like “Cut
in [cold butter]... until the size of small peas” is challenging even for human chefs
to execute so that the scones have their distinctive flakiness.

We compare these figures to our corpus of simple baking recipes, of which 76%
were supported by the BakeBot system. Of the 101 unsupported sentences, 24 were

3 Recipes from Joy of Cooking: corn dogs, tart green salad, eggs in a basket, fettuccini with
butter and cheese, Israeli couscous pilaf, carrot cake, classic scones, salsa fresca, Belgian
beef stew, and roasted whole salmon.
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waiting for the cookies/brownies to cool before removing from the pan, 17 were
associated with greasing the cookie sheet, and 8 were simply descriptive statements
or friendly notes (i.e. “Do not overbake” and “Enjoy!”).

While performance can be increased by adding more manipulation primitives, we
believe that improved system extereoception would yield the most significant recipe
execution benefits. Many recipes in the Joy of Cooking set and within our baking
recipe corpus require feedback to determine whether or not a step of the recipe is
completed. For example, a recipe may require onions to be sauted until translucent.
First order implementations to sense this onion state may use vision systems to
identify color transformations. More capable systems may use thermal imaging to
sense the temperature of the onions and correlate this temperature to the desired
activation temperature of the chemical reaction associated with onion translucence.
We see the long-term potential for robotic cooking systems to leapfrog human chefs
through the integration of advanced sensing and feedback systems.

6 Main Experimental Insights

In this paper we presented BakeBot, a robotic chef that is capable of following
textual recipes in a kitchen environment. We demonstrated that the robot is able to
successfully follow two different recipes in the real world. In addition, we performed
a quantitative evaluation of the system’s performance at following instructions from
a larger set of recipes in simulation. Our approach represents first steps towards a
robotic chef capable of executing arbitrary recipes in the home environment.

Executing the recipes on the robot shows a functioning end-to-end system that
successfully integrates language processing, object recognition, task planning, and
manipulation. Our set of motion primitives enable a variety of simple baking recipes
to be executed on the robot, and we demonstrated two successfully experimen-
tally. The compartmentalization of motion planning and execution into primitives
enables the system to support a wide array of recipes while minimizing software
development and debugging effort.

The natural language component of the system shows promising performance at
understanding individual instructions; it inferred exactly correct actions for many
instructions, and many of the mistakes were due to missing one or two ingredients
from aggregate phrases such as “Sift together the dry ingredients.” However, the
robot’s physical and perceptual capabilities limited the scope of the recipe process-
ing. For example, the system ignores a warning such as “Do not brown; do not over
bake” because detecting the color of overcooked cookies through an oven door is an
unsolved perceptual problem. BakeBot is a demonstration of the challenges faced
when integrating large robotic control systems. The overall robustness of the Bake-
Bot is limited by the inherent complexity of a system executing such a difficult task;
the top-level cooking system is vulnerable to faults in its software substrate. The
difficulty of maintaining a system built upon a constantly updated software base
reflects a need for improved software management for robotic systems.
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The key limitation of the system is its lack of robustness. Failure in any of the
robot’s systems leads to a failure to successfully follow the recipe: in the natu-
ral language system, the perceptual system, or the control system. Actions in the
real-world demonstration often failed to execute successfully because of inability to
adapt to unexpected situations in the environment. For example, flour being piled
too high in a bowl caused the grasp planner to aim for the flour rather than the edge
of the bowl. For another example, the tabletop manipulation package occasionally
chose to grasp the ball of batter in the center of the mixing bowl, rather than the rim
of the bowl, because the batter presented a more salient grasp feature than the rim
of the bowl. The large number of environmental interactions and sequential baking
primitives to complete the baking task make BakeBot particularly sensitive to even
low probabilities of subsystem failure.

Our experimental performance was demonstrative of the issues faced in the con-
struction of large robotic systems. The performance of complex tasks such as cook-
ing require the interaction of many systems and subsystems. This iteration can often
be error-prone and difficult to fully characterize or debug, oftentimes leaving the
top-level system vulnerable to faults in its software substrate.

We have focused thus far on creating a functioning end-to-end system for semi-
structured home environments. System robustness will improve as its underlying
manipulation software matures and as better perception of the environment increases
the system’s ability to deal with uncertainty and correct its own mistakes. We plan
to expand the repertoire of the system by designing additional motion primitives to
enable actions such as chopping, blending, and frying, introducing new challenges
for manipulation, perception, and natural language understanding.
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Session Summary  

The session on manipulation concurrently illustrates how far the hardware for 
robotic manipulation has come and—through the sophisticated strategies 
employed to achieve robustness—how further improvements would be welcome. 
Each paper in this session addresses different aspects of manipulation: precision 
and power grasping, manipulating bulky objects and non-rigid bodies, and non-
prehensile manipulation. The research described in these works share techniques 
(e.g., manipulation primitives, motion planning), hardware (the Willow Garage 
PR2 robot), or both. ‘Load Equalization on a Two-Armed Robot via 
Proprioceptive Sensing’ by Leontie et al. introduces the problem of equalizing 
loads from bulky objects, for which force and form closure may not be possible, 
on the two arms of a robot. The paper demonstrates robust application of the 
strategy to multiple bulky objects, including non-rigid objects. ‘Mapping Grasps 
from the Human Hand to the DEXMART Hand by Means of Postural Synergies 
and Vision’ uses a mapping from human hand motions to the DEXMART robotic 
hand toward improving grasp planning and control. The authors, Ficuciello et al., 
apply the Microsoft Kinect vision system to demonstrations of human subjects 
grasping, and then map these performances to produce power and precision grasps 
with the DEXMART hand. ‘Manipulation with Multiple Action Types’, by Barry 
et al., introduces a randomized sampling algorithm, DARRT, for planning with 
multiple types of possibly non-prehensile manipulation actions. They apply their 
method toward manipulating plates from an initial configuration to a goal 
configuration using manipulation primitives. Finally Lakshmanan et al.’s paper, ‘A 
Constraint-Aware Motion Planning Algorithm for Robotic Folding of Clothes’, 
presents a motion planning algorithm for the problem of manipulating clothing via 
manipulation primitives. The use of primitives helps avoid the problem of 
infeasible plans that afflicted the same research group’s initial foray into robotic 
folding.  
 

 

 



Load Equalization on a Two-Armed Robot via
Proprioceptive Sensing

Roxana Leontie, Evan Drumwright, Dylan A. Shell, and Rahul Simha

Abstract. As humans we use our arms and bodies in addition to our hands to grasp
objects. We (and robots) often cannot use caging or closure strategies when manip-
ulating bulky objects. This paper studies manipulating such objects in the context of
a particular task: equalizing a load across the arms of a two-armed robot. Our PR2
robot performs this task using only proprioceptive force sensing and a simple, re-
active equalization strategy. We demonstrate the robot robustly performing this task
using numerous and various objects (e.g., boxes, pipes, broomsticks, backpacks).

1 Introduction

Recent research in robotic manipulation has
delivered mobile robots with advanced au-
tonomous capabilities (e.g., [1, 2, 3]). The
robot typically manipulates via a gripper
or hand, though manipulation using the
whole arm and even the body—thereby pro-
viding enhanced manipulation capabilities
(e.g., grasping when the hands are already
loaded)—has been studied [4, 5, 6, 7, 8].

We have been investigating applications
of arm and body manipulation for which
caging and closure are difficult or impossible (as in the figure above), such as
manipulating bulky objects, manipulating multiple objects simultaneously (e.g., a
stack of boxes, a bundle of ski equipment), or manipulating articulated objects
(e.g., a squirming child). In applications such as these, the manipulated object or
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objects are restrained from moving—sometimes only unilaterally—in some
directions while being free to move in others.

2 Background and Related Work

We introduce the following subproblem of caging-free and closure-free arm/body
manipulation: given a two-armed robot manipulating an uneven load with its arms,
equalize the load such that the arms maintain the load with nearly identical torques.
Here we define a load as one or more objects.

Research has established that a load is statically balanced if the projection of the
load’s center of mass (COM) lies within the polygon of support (defined for our
problem as the contact manifold between the load and the robot’s arms). It should
be clear to the reader that load equalization trivially yields static balancing. We
also note that load equalization bestows several benefits apart from stabilizing the
load dynamically, including reducing energy consumption by the actuators (if such
consumption is approximated using the integral of squared torque, as customary),
avoiding lateral postural shifts in humanoids [9], and increasing dynamic stability
of the robot [10].

Similar in spirit to our problem of bimanual load equalization is the “devil stick-
ing” task investigated by Schaal and Atkeson [11, 12, 13]. That research also sought
to achieve dynamic stability of the object (the “baton”), though by using dynamic
movements of the robot rather than precise manipulation. We view both approaches
as effective strategies for manipulation without caging or closure; our approach (the
latter) is more applicable to larger loads and more powerful on slower robots.

Our work is the first (of which we are aware) to use proprioceptive force sens-
ing in a Robotics application, though our approach—which uses PID control state
to sense load on our robot’s arms—is identical to that described by Wolpert and
Kawato [14] (they also use the error between a motor controller’s prediction and the
robot’s state).

3 Technical Approach

Our experimental platform is the Willow Garage PR2. The dynamics equations for
this multibody system would nominally take the form:

M(q)q̈+C(q, q̇)q̇+G(q) = τ + J(q)Tfload (1)

where q are the generalized coordinates of the system, M(q) is the generalized
inertia matrix, C(q, q̇) is the matrix of fictitious forces, G(q) is the vector of grav-
itational forces, τ is torque applied by the arms to counteract the load, J(q) is a
Jacobian matrix and fload is a vector of spatial forces (corresponding to the load)
acting on one or more of the robot’s links. The PR2 employs counter-balancing
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springs (as a safety mechanism) that nearly eliminate gravitational acceleration of
the arms; thus, G(q) is approximately zero. Assuming that the robot moves suffi-
ciently slowly (i.e., q̇, q̈ � 0) the torques applied by the actuators effectively equal
the generalized forces from the load; thus, we can study load equalization with only
the PR2’s PID control state, albeit at some loss of modeling accuracy (a truly accu-
rate dynamics model of the PR2 does not currently exist, to our knowledge). Thus,
we use only proprioceptive sensing (i.e., no vision, LIDAR, etc.) to equalize the
load.

We formulated our fully reactive (i.e., no planning or intensive computation is
employed) equalization strategies from anecdotal experience. For example, humans
may move their arms outward to redistribute a load; we tried this simple strategy
first. Unfortunately, that strategy failed to account for frictional forces acting be-
tween the object and the robot’s arms: Coulomb’s friction model predicts greater
frictional forces will be applied to the arm under greater load. Accordingly, the ob-
ject (undesirably) moved along with that arm in our experiments, thus failing to shift
the COM as desired. We developed two new strategies to address this difficulty: the
Tilting strategy (Section 3.1) and the Lock-Move-Release strategy (Section 3.2).

3.1 Tilting Strategy

The Tilting strategy, depicted in Figure 1, tilts the object by raising one arm and low-
ering the other until sufficient load has been shifted such that the object will slide
along the arm to be moved outward. This strategy is predicated on the object pos-
sessing highly similar frictional properties at the points of contact with the robot’s
arms. Additionally, frictional forces must be sufficiently large such that the object
does not slide off the robot’s arms when tilted.

The strategy begins by tilting the arms until the imbalance is swapped: if we
initially detect x units of force on arm A and y units of force on arm B, where
x− y = Δ > 0, we move arm A upward and B downward until the force on B be-
comes ε > 0 units greater than the force on A. Arm A is then moved outward until
Δ load has been transferred, though the object may need to be tilted again during
this process to keep the load on B greater than on A. We note that this strategy is
sensitive to the frictional properties of manipulated objects: the strategy is not only
predicated on nearly equal frictional characteristics at the contact points, but also
depends on sufficient frictional effects to keep the manipulated object from sliding
off the robot’s arms when tilted.

We found this strategy worked poorly. Manipulated objects would slide off of the
arms before sufficient weight had shifted; alternatively, joint limits would frequently
prevent the object from being tilted enough for sufficient load redistribution. An
successful series of steps showing the robot performing this strategy can be seen in
Figure 2.



502 R. Leontie et al.

EVALUATE MOVE UP

MOVE 
OUTWARD

MOVE DOWN

load not
equalized

load equalized

start

load shifted

sufficient
load

transferred

done

load not
shifted

insufficient
load transferred

(update load
transferred)

Fig. 1 State transition diagram for the Tilting strategy

Our failure to get this strategy working reliably led to the creation of the second
strategy, described below.

3.2 Lock-Move-Release Strategy

In the Lock-Move-Release strategy, the robot first grasps the object between its upper
arm and forearm (Lock). The other arm then moves outward (Move), and finally the
object is released from the grasp (Release). This process repeats until the load is
equalized.

In the EVALUATE state, the robot analyzes the proprioceptive feedback from
the arms (obtained from their PID controllers) to evaluate whether a load (if any)
is equalized. To account for settling time (i.e., the time it takes for the system to
converge to a steady state), we apply a simple filtering strategy: the controller cannot
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(a) evaluate (b) lifting

(c) moving outward (d) moving downward

Fig. 2 A series of photos depicting the robot performing the Tilting strategy

EVALUATE LOCK

MOVE 
OUTWARD

RELEASE

load not
equalized

load equalized

start

done

done

done

Fig. 3 State transition diagram for the Lock-Move-Release strategy
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leave the EVALUATE state until the sensed change in load on the two arms is
smaller than 0.1 units1 for at least 100ms. If—after the robot is determined to be in
a steady state—the sensed difference in load on the two arms is 1.0 units or greater,
the controller transitions to the LOCK state.

In the LOCK state, the robot immobilizes the object on the arm with lesser load
by grasping it between the upper arm and the forearm: we assume that the object is
placed approximately on the elbow joints. By restraining the object in this manner,
we can move the other arm outward without the object also moving. The grasping
movement takes place over two seconds; although the movement can generally be
performed more quickly, we find that faster movements often reduce the accuracy
of the proprioceptive feedback (due to the need for the system to settle).

The LOCK state transitions immediately to the MOVE OUTWARD state. This
state predetermines the distance to move the arm outward toward minimizing re-
peated adjustments (i.e., repetitions of holding, moving, and releasing). We compute
this distance using several steps. First we employ forward kinematics to estimate the
location of points of contact between the arms and object. Next we compute the ob-
ject’s initial COM (i.e., its COM before immobilization) as depicted in Figure 4.
Given the contact points s and p and the loads x and y on the arms in the EVALU-
ATE state, we determine the position of the COM as follows. Noting that the COM

is at p if x= 0 and the COM is at s if y = 0 , then the COM is at
s+p

2
if x= y.

By extension, for arbitrary x and y, the COM is located at:

x̄=
xs+yp
x+y

(2)

Using the current location of the object’s COM, our final step employs inverse kine-
matics to estimate the distance to move the arm outward to equalize the load (this
calculation will assume rigidity of the object, but our experience indicates that this
assumption works well in practice even for deformable objects) using the distances
between the contact points and COM (d1 and d2 in Figure 5). The distance to move
outward is calculated as:

d= |d2 −d1| (3)

The robot then executes the outward movement at a constant speed (i.e., dependent
on distance moved) to avoid excessive settling time, as described above.

Finally, the robot releases the object from its grasp in the RELEASE state, and
the forearm returns to its original position. This slow movement occurs over 3.5 sec-
onds, again to avoid excessive settling time. An successful series of steps showing
the robot performing this strategy can be seen in Figure 6.

1 According to Willow Garage, the force units are not calibrated to SI or any other
measurement system.
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Fig. 4 Knowing (or estimating) the points of contact points (s,p) and forces applied to
the arms (xN and yN) allows us to estimate the center-of-mass of manipulated objects
(Equation 2)

Fig. 5 Computing the distances between the contact points and the estimated center-of-mass
allows us to determine how far outward we should move the arm with greater applied load
(Equation 3)
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(a) evaluate (b) locking

(c) moving outward (d) releasing

Fig. 6 A series of photos depicting the robot performing Lock-Move-Release strategy

4 Experiments and Results

This section discusses a number of experiments conducted using the Lock-Move-
Release strategy.

4.1 Balancing a Load with COM Projection within the Support
Polygon

One of our first experiments with the Lock-Move-Release strategy tested whether the
robot could equalize loads with centers-of-mass located non-equidistantly between
the robot’s arms yet with projections remaining within the support polygons. The
transparent photo of the robot in Figure 7 shows the manipulated object used in the
experiments in Sections 4.1–4.3: a 2.7m, 1.4kg iron pipe. That figure also depicts
the object’s geometric center (marked in pink near the robot’s left arm); the geomet-
ric center is located near the pipe’s COM. The data plotted in Figure 7 correspond
to immobilizing the object with the robot’s right arm (0–2.5) seconds), shifting the
load (2.5–6 seconds), and releasing the object (6–9.5 seconds); the plot shows that
the actuator force decreases when the object is grasped and increases on release. We
have yet to observe a failure using the Lock-Move-Release strategy over numerous
experimental trials with variable initial condition (location of the pipe’s geometric
center within the support polygon).
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Fig. 7 Plot of the “shoulder lift” motor torques during the load equalization process corre-
sponding to a trial of the first experiment: as seen in the photo, the geometric center of the
pipe (marked in pink near the robot’s left arm) lies within the object’s support polygon.

4.2 Equalizing Time Varying Loads

A second series of experiments tested the ability of our strategy to handle time vary-
ing loads (as if objects were continually added to the robot). The first ten seconds
of the plots in Figure 8 correspond to the robot equalizing loads from only the iron
pipe (identically to the conditions described in the previous section). After each load
was equalized, we added an additional load (0.6–0.85kg) to the pipe at a point with
projection near or at the inside edge of the support polygon (depicted by the pho-
tos in Figure 8). The plots at approximately fifteen seconds correspond to the robot
beginning to re-equalize the loads. The re-equalization process requires fewer than
ten seconds to complete.

4.3 Equalizing Time Varying Loads Added Outside the Support
Polygon

A third series of experiments (depicted in Figure 9) was designed to stress the ability
of our strategy to handle loads near the margin of dynamic instability. The exper-
imental setup for these trials was identical to those described above but with the
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Fig. 8 Plots of the “shoulder lift” motor torques during the load equalization process corre-
sponding to two trials of the second experiment: as shown in the photos, magnetic weights
have been added to the iron pipe near (top) and directly above (bottom) the robot’s left elbow
to effect a change to the load
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Fig. 9 Plot of the “shoulder lift” motor torques during the load equalization process corre-
sponding to a trial of the third series of experiments: as seen in the transparent photo (near
the right elbow), a magnetic weight has been added well outside the support polygon of the
iron pipe to simulate a modification to an equalized load

additional load (a 0.6kg weight) placed well outside of the support polygon. We
tested various positions of the weight—including at the end of the 2.7m iron bar—
and still observed complete success of our strategy. The equalization process for
the added load generally required two iterations (this was the case with the trial
depicted in Figure 9): the first iteration (13–20 seconds) nearly equalized the load,
while the second iteration yielded full equalization. As with the plots in Figure 8,
the plot in Figure 9 shows that both the detection and equalization of the added load
was conducted quickly.

4.4 Equalizing a Load from a Box

We also experimented with the Lock-Move-Release strategy on objects of different
shapes, such as boxes (one of which is depicted in Figure 10). For the data plotted in
Figure 10, the box’s position shifted during the lock and release phases of the strat-
egy, thereby introducing significant noise into the process (as evident in the plot).
Nevertheless, no failures were encountered; Figure 10 corresponds to an initially
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Fig. 10 Plot of the “shoulder lift” motor torques during the load equalization process corre-
sponding to the robot equalizing a load from a cardboard box

unequal load from a box that is equalized in fewer than ten seconds using only a
single iteration of our strategy.

4.5 Load Equalization with Non-rigid Objects

We conducted a final series of experiments on bulky non-rigid objects (camping
backpacks with frames removed; see Figure 11) with non-uniformly distributed
loads. These experiments entailed having the robot equalize one backpack placed
on the robot’s arms followed by a second backpack placed on top of the first one.
Again, no failures were encountered, though the equalization process required three
iterations.

4.6 Miscellaneous Testing

We also performed a number of tests of our strategy using very light objects (0.25
kg)—though one would expect that load equalization would not be in great need for
such objects on current robots with bimanual manipulation capabilities. Again, we
never observed a failure of the strategy.
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Fig. 11 Plot of the “shoulder lift” motor torques during the load equalization process con-
ducted on non-rigid bodies (camping backpacks with frames removed and non-uniformly
distributed loads)

5 Main Experimental Insights

This section discusses distinct insights gleaned from the development of the Lock-
Move-Release strategy and the performance of the robotic platform during the ex-
periments with respect to both primary (i.e., load equalization) and ancillary (i.e.,
grasping) tasks.

5.1 Ability to Equalize Loads

The PR2 can very robustly equalize loads applied by various objects using a simple
reactive strategy (this is likely explains much of its robustness), minimal sensory
data, few assumptions on object geometry or mass distribution, and little modeling.
More sophisticated strategies might yield faster equalization, though we sense that
we are near the PR2’s performance envelope:dynamically equalizing shifting loads
does not seem possible with this robot. Due to the minimal assumptions used in our
work and the simplicity of our strategy, we predict that our approach will transfer to
other manipulation platforms without difficulty.
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Fig. 12 Sample grasps of various objects manipulated by the robot’s arms during the course
of our experiments

5.2 Insights from Use of Purely Proprioceptive Sensory Data

The PR2 is slightly better able to detect uneven loading for heavier objects than
for lighter ones; it can be challenging to distinguish an uneven load from noise
(hence our unit threshold for triggering the equalization strategy). This finding cor-
responds with an informal experiment conducted by the authors: each of us was able
to accurately compare masses for only relatively heavy objects (greater than several
kilograms). Thus, while proprioceptive sensory data is likely sufficient for heavier
objects, lighter objects may require the addition of visual or tactile sensory data.

5.3 Insights from Arm Grasping

The PR2 seems quite capable of grasping objects placed onto various points on its
arms. We tested assorted objects, including planks, broomsticks, pipes, boxes, and
backpacks (among others), during the course of our experiments. The PR2 never
failed to grasp an object with its arms and seemed fairly insensitive to the positioning
of the objects. We would be curious to see a study gauging effectiveness of grasping
with the arms against grasping with the grippers (at least, but not limited to, the
PR2). Sample arm grasps realized during performances of our strategy are depicted
in Figure 12.



Load Equalization on a Two-Armed Robot via Proprioceptive Sensing 513

References

1. Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich, P., Marder-
Eppstein, E., Muja, M., Eruhimov, V., Foote, T., Hsu, J., Rusu, R.B., Marthi, B., Brad-
ski, G., Konolige, K., Gerkey, B., Berger, E.: Autonomous door opening and plugging
in with a personal robot. In: Proc. IEEE Intl. Conf. Robotics and Automation (ICRA),
Anchorage (2010)

2. van den Berg, J., Miller, S., Goldberg, K., Abbeel, P.: Gravity-based robotic cloth fold-
ing. In: Hsu, D., Isler, V., Latombe, J.-C., Lin, M.C. (eds.) Algorithmic Foundations of
Robotics IX. STAR, vol. 68, pp. 409–424. Springer, Heidelberg (2010)

3. Chen, T.L., Kemp, C.C.: A direct physical interface for navigation and positioning of a
robotic nursing assistant. Advanced Robotics 25, 605–627 (2011)

4. Salisbury, K.: Whole arm manipulation. In: Proc. Intl. Symposium Robotics Research
(ISRR), pp. 183–189 (1987)

5. Yeap, S., Trinkle, J.C.: Dynamic whole-arm dextrous manipulation in the plane. In:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (1995)

6. Song, P., Yashima, M., Kumar, V.: Dynamics and control of whole arm grasps. In: Proc.
IEEE Intl. Conf. on Robotics and Automation (ICRA), Seoul, pp. 2229–2234 (2001)

7. Platt Jr., R., Fagg, A.H., Grupen, R.A.: Extending fingertip grasping to whole body grasp-
ing. In: Proc. of IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 2677–2682
(2003)

8. Hsiao, K., Lozano-Perez, T.: Imitation learning of whole-body grasps. In: Proc.
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Beijing, pp. 5657–5662
(2006)

9. Watson, J., Payne, R., Chamberlain, A., Jones, R., Sellers, W.I.: The kinematics of load
carrying in humans and great apes: Implications for the evolution of human bipedalism.
Folia Primatologica 80(5), 309–328 (2009)

10. Liu, J., Lockhart, T.E., Granata, K.: Effect of load carrying on local dynamic stability. In:
Proc. Human Factors and Ergonomic Society Annual Meeting, vol. 51(5), pp. 909–913
(October 2007)

11. Schaal, S., Atkeson, C.G.: Open loop stable control strategies for robot juggling. In:
Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), Atlanta, vol. 3, pp. 913–
918 (1993)

12. Schaal, S., Atkeson, C.G.: Robot juggling: An implementation of memory-based learn-
ing. Control Systems Magazine 14(1), 15–71 (1994)

13. Schaal, S., Atkeson, C.G.: Assessing the quality of local linear models. In: Cowan, J.D.,
Tesauro, G., Alspector, J. (eds.) Proc. of Advances in Neural Information Processing
Systems, pp. 160–167 (1994)

14. Wolpert, D., Kawato, M.: Multiple paired forward and inverse models for motor control.
Neural Networks 11, 1317–1329 (1998)



Mapping Grasps from the Human Hand to the
DEXMART Hand by Means of Postural
Synergies and Vision�

Fanny Ficuciello, Gianluca Palli, Claudio Melchiorri, and Bruno Siciliano

Abstract. This work aims at defining a suitable postural synergies subspace for
the DEXMART Hand from observation of human hand grasping postures. Previ-
ous works were carried out on a preliminary prototype (the UB Hand IV), without
neither proprioceptive integrated sensors nor external sensors, by means of a joint-
to-joint mapping technique. Using an RGB camera and depth sensor for 3D motion
capture, the human hand palm pose and fingertip positions have been measured for
a reference set of grasping postures. The proposed method for the determination of
the synergies subspace is based on the kinematics mapping from the human hand to
the robotic hand using data from experiments involving five subjects. The subjects’
hand configurations have been mapped to the robotic hand by matching the hand
pose and fingertip positions and applying a closed-loop inverse kinematic algorithm.
Suitable scaling factors have been used to adapt the DEXMART Hand kinematics to
the subjects’ hand dimension. By means of Principal Component Analysis (PCA),
the kinematic patterns of the first three predominant synergies have been computed
and a brief comparison with the previous method and kinematics is reported. Fi-
nally, a synergy-based control strategy has been used for testing the efficiency of
the grasp synthesis method.
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1 Introduction

Recent studies on neuroscience and robotics have shown that imitating human pre-
hension is a promising way to simplify and improve grasp planning and control
issues related to high multiple Degree-of-Freedom (DoF) devices such as anthro-
pomorphic robotic hands. In [22], the authors measure a set of static human hand
postures by recording 15 joint angles and, by means of the PCA, they show that the
first two principal components account for >80% of the hand postures. Thus, the
use of the principal components, also called postural synergies, holds great poten-
tial for robot hands control, implying a substantial reduction of the grasp synthesis
problem dimension. Transferring human hand motion to a robotic hand is a quite
challenging problem due to the complexity and variety of hand kinematics and the
dissimilarity with the robotic hand. Indeed, in order to obtain a thorough human
hand posture estimation, a reliable kinematic hand model and high-accurate motion
tracking instrumentation are required. A synergies mapping from the human hand
to the robotic hand has been addressed in [12]. The proposed mapping strategy be-
tween the synergies of a paradigmatic human hand and a robotic hand is carried out
in the task space and it is based on the use of a virtual sphere. In [11] three syner-
gies have been extracted from data on human grasping experiments and mapped to
a robotic hand. Thus, a neural network with the features of the objects and the co-
efficients of the synergies has been trained and employed to control robot grasping.
Recently, Kinect technology is increasingly used for hand tracking, since it inter-
prets 3D scenes thanks to the depth sensor, consisting of an infrared laser projector,
combined with an RGB camera. In [16] a model-based method for recovering and
tracking the 3D position, the orientation and the full articulation of a human hand
has been proposed from marker-less visual observations. In [10] a heuristic hand
tracker has been developed for the animation of the hand avatar in the virtual reality
and for the implementation of the force rendering in wearable haptics. In this work
we propose a model-based method to map grasps from the human to the DEX-
MART Hand by means of vision. The Kinect sensor is used for 3D human hand
fingertips detection and a closed-loop inverse kinematic algorithm is used for hu-
man grasp mapping. A reference set of grasps have been selected and five subjects
have been involved in the experiments. The inverse kinematic algorithm is based on
the DEXMART Hand kinematics that is linearly scaled according to the subjects’
hand dimensions.

2 Technical Approach and Motivation

According to recent grasp taxonomy literature [21], in [8] and [9] a set of 36 human
hand grasp configurations was selected and adopted for experiments carried out
on a preliminary prototype of the DEXMART Hand [18], the UB Hand IV [2].
The mapping of the human grasps to the robotic hand was obtained by means of a
joint-to-joint mapping technique, i.e. the fingers’ joint position of the DEXMART
Hand prototype were manually adjusted in order to imitate as much as possible
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Fig. 1 Reference set of comprehensive human grasps and open-hand configurations used for
PCA

the human hand desired configuration. Obviously, this method strongly depends on
the interpretation of the reference grasp by the operator and on his/her ability to
reproduce the grasp with the robotic hand.

In this work, the same reference set of 36 human hand grasps, represented in
Fig. 1, has been considered. Notwithstanding, a new method, based on fingertip
mapping from human hand grasps to the robotic hand, has been adopted using mea-
sures in 3D space of the fingertip positions and inverse kinematics. A computer
vision system, able to detect the position in 3D real world coordinates of each point
in the scene, has been adopted in order to make the method independent of the char-
acteristics and skills of the operator. As a matter of fact, the robotic hand grasping
postures used for PCA are obtained from measurements performed directly on the
hand of several subjects while they execute the grasps of the reference set. A com-
mercial low-cost RGB+Depth (RGBD) camera, such as the Kinect from Microsoft
Corp., has been adopted since this device achieves suitable precision (about 1mm)
for space and distance in the range of interest of our measurements (an area of about
0.6×0.6 m at a distance of about 0.5 m). Moreover, a large number of open-source
software for both the use of the Kinect sensor and computer vision applications are
freely available. Therefore, we produced very easily and quickly a customized ap-
plication for the execution of the required measures. Instead, capturing the motion
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Fig. 2 Diagram of the methodological approach

of all the phalanges and the position of the joints during a grasp by means of a single
camera is a very challenging task because of evident occlusion problems. Moreover,
the reconstruction of the human hand joint angular positions implies the knowledge
of its kinematics, not completely consistent in anatomical literature [13, 7], and
may cause problems when the acquired information must be mapped on a different
kinematic structure.

The DEXMART Hand is designed with a human-like kinematics and a total
amount of h = 15 joint angles describes the whole robot hand configuration. There-
fore we directly map the human fingertip position measured in the palm frame to the
robot hand kinematics by means of a suitable scaling of the robot hand dimensions.
The fingertip positions and the palm pose in the Cartesian space, and the fingers
length of the human hand are all the measurements we need to compute the 15 joint
angles of the robotic hand by means of kinematic inversion. An inverse closed-loop
kinematic algorithm has been adopted also to minimize the errors that affect the
measures of the fingertip and palm positions, performed by the Kinect, due to noise
and limited precision. Since significant differences exists in both the size and the
kinematics of the human hands [15], the method has been applied to 5 different sub-
jects. For each of the 36 grasps in the table (Fig.1), mapped from the five subjects
to the robotic hand, the mean value has been computed and utilized for deriving the
postural synergies by means of PCA. Finally, the grasps in the reference set has then
been performed with the DEXMART Hand by controlling the whole motion during
reach to grasp using a linear combination of the selected synergies. A schematic
representation of the whole procedure for postural synergies subspace computation
is represented in Fig. 2.
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3 The DEXMART Hand

The DEXMART Hand [18] is an innovative anthropomorphic hand developed
within the DEXMART project [1]. Based on a previous prototype, the so-called
UB Hand IV (University of Bologna Hand, version IV) [2], the DEXMART Hand
has been designed with an improved thumb kinematics. The new design aims at a
human-like manipulation capabilities and mobility, allowing the opposition of the
thumb with the other four fingers. For this purpose, the thumb kinematics has been
differentiated with respect to the other fingers and provided of different joint limits.
In particular, the adduction/abduction base joint and the first flexion joint have been
inverted in the kinematic chain order. Furthermore, the Denavit-Hartenberg (D-H)
parameters, reported in Tab. 1, are different for all the fingers in order to fit bet-
ter with the human hand kinematics. The DEXMART Hand is also equipped with
a wide set of sensors which comprise joint position sensors, tendon force sensors
[20] and fingertip tactile sensors [6]. Moreover, the twisted string actuation concept
[19] has been adopted for driving this robotic hand. As in the previous version, the
maximum design simplification and reduction of the device’s cost production and
development has been held. To this end, the DEXMART Hand has been conceived
by taking into account the following driving issues:

• The hand mechanics is based on an endoskeletal structure articulated by means
of pin joints integrated into the phalanx body simply consisting in a plastic shaft
which slides on a cylindrical surface [2, 5, 14].

• Remotely located actuators with tendon-based transmissions routed by sliding
paths (sliding tendons) [17] have been adopted for the joints actuation.

• A purposefully designed soft cover mimicking the human skin [4, 3] has been
introduced for improving the grasping capabilities of the hand.

• The mechanical structure of the hand has been manufactured adopting additive
technologies (Fused Deposition Manufacturing).

Taking inspiration from the biological model and in order to reduce the complexity
of the hand control, an internal non-actuated (passive) tendon has been introduced
to couple the movements of the last two joints of each finger, i.e. the medial and the
distal joint. Hence, only three angles are considered for the index, the middle, the
ring and the little finger, i.e. the base (adduction/abduction) angle θ1 f , the proximal
angle θ2 f and the medial angle θ3 f . About the thumb, the angles are progressively:
the base (proximal angle) angle θ1t , the adduction/abduction angle θ2t and the me-
dial angle θ3t . Therefore, a total amount of h = 15 joint angles is needed to describe
the robotic hand configuration. The joint angles ranges for each finger are mechani-
cally constrained by stroke limiters within the intervals:

θ1 f ∈ [−10, 10], θ2 f ∈ [0, 90], θ3 f ∈ [0, 110] [deg] (1)

and for the thumb within the intervals:

θ1t ∈ [0, 90], θ2t ∈ [0, 60], θ3t ∈ [0, 90] [deg]. (2)
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Table 1 Denavit-Hartenberg parameters of the DEXMART Hand fingers

Link (Thumb) d [mm] θ a [mm] α [deg]
1 7.53 θ1 +85 19.64 −110
2 -42.5 θ2−80 18 −90
3 -1.65 θ3 +10.62 24.57 70.32
4 4.89 θ4−3.61 30 0
5 0 θ4 30 0

Link(Index) d [mm] θ a [mm] α [deg] Link (middle) d [mm] θ a [mm] α [deg]
1 40.75 θ1 82 −95 1 14.34 θ1 86 −86
2 -2.91 θ2−20 18 90 2 -4.91 θ2 18 90
3 0 θ3 38 0 3 0 θ3 40 0
4 0 θ4 28 0 4 0 θ4 28 0
5 0 θ4 28.5 0 5 0 θ4 28.5 0

Link (Ring) d [mm] θ a [mm] α [deg] Link (Little) d[mm] θ a [mm] α [deg]
1 -11.16 θ1 82 −80 1 -36.1 θ1 68 −75
2 -1.93 θ2−5 18 90 2 4.24 θ2 +15 18 90
3 0 θ3 38 0 3 0 θ3 35 0
4 0 θ4 28 0 4 0 θ4 28 0
5 0 θ4 28.5 0 5 0 θ4 28.5 0

4 Mapping the Human Hand Grasps

The Kinect RGBD camera has been used to provide the RGB color image and the
corresponding depth image of the hand for 3D fingertip positions and palm pose de-
tection. After the calibration [24], it is possible to reconstruct the 3D real world coor-
dinates (in meters) with respect to the camera frame. This functionality is embedded
in the OpenCV library that has been used for the Kinect image elaboration, whereas
the freenect driver has been used for low-level communication with the RGBD cam-
era. For the purpose of this work, we developed an application that allows collecting
and saving the information coming from the Kinect. The points to be detected are
selected by clicking with the mouse on the RGB image and by matching information
from the RGB data and depth data. To obtain the fingertip positions with respect to
the hand reference frame (the palm frame), the hand position and orientation (the
palm pose) with respect to the RGBD camera has to be known. As a matter of fact,
the measures provided by the sensor are represented in the camera frame, thus, for
inverse kinematic computation, the homogeneous transformation between the cam-
era frame and the palm frame has to be known. This goal is reached by measuring a
set of points fixed to the palm. Since the palm can be hidden by the grasped object, a
rigid panel with five reference points has been attached to the opisthenar (the back of
the hand). Thus, before starting the mapping procedure, each subject was instructed
first in wearing the rigid support and then in assuming an open hand posture corre-
sponding to the DEXMART Hand configuration of zero joint angles. The distance
of the fingertips from the palm base in the open hand configuration was measured
with the aim of defining suitable scaling factors between the subject hand and the
robot hand size. The finger lengths of the 5 subjects are reported in Table 2.
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Fig. 3 Open Hand Configuration corresponding to the DEXMART Hand joint angles set to
zero

Table 2 Finger lengths (in mm) of the five subjects and of the DEXMART Hand

Finger Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 DEXMART Hand
Thumb 115 120 130 125 140 126
Index 165 170 173 180 190 217

Middle 170 175 180 185 200 216
Ring 160 165 173 175 185 210
Little 140 140 155 150 165 198

As shown in Fig. 3, ten points have been detected in the open configuration:
the fingertips and the five points on the support. The obtained fingertip positions,
expressed in the camera frame, have been then matched with the ones of scaled
version of the robot hand kinematics expressed in the robot hand reference frame
(the palm frame), obtaining in this way the affine transformation Ti between the
camera and the hand reference frame for the i-th subject. The position of the panel
reference points pi, jref

, j = 1, . . . ,5 with respect to the hand frame has been then
computed on the basis of the transformation Ti.

Once Ti and pi, jref have been determined, each subject has been asked to achieve
each of the 36 reference postures using the right hand and following the approach
depicted in Fig.1. The fingertip position and the position of the panel reference
points have been acquired as shown in Fig. 4. By matching the position of the panel
reference points measured by the Kinect with pi, jref

the new affine transformation
Ti,k, k = 1, . . . ,36 between the camera and the hand reference frame during the ex-
ecution of each grasp can be computed together with the position of the subject
fingertips pi, j expressed in the hand frame.

The mapping from the human hand fingertip positions pi, j and the robotic hand
joint positions is then performed by scaling the robot hand link dimensions to fit with
the human subject and by inverting the robot hand kinematics through a closed-loop
algorithm. For each subject, the DEXMART Hand kinematics is differently scaled
for each finger by multiplying the linear D-H parameters (Tab. 1) for the ratio be-
tween the human finger length and the corresponding robotic finger length (Tab. 2).
A closed-loop inverse kinematic (CLIK) algorithm [23], based on the transpose of
the DEXMART Hand Jacobian matrix, has then been implemented in order to map
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Fig. 4 RGB and depth image from Kinect

the subject fingertip position to the robotic hand joint configuration. For each grasp
of the reference set (Fig. 1), the average of the five robotic hand configurations
ci ∈ R

15 mapped from the five subjects performance has been computed and stored
in a configuration matrix C. Once the mapping procedure has been completed, the
PCA analysis has been computed on the obtained DEXMART Hand configuration
matrix.

5 Postural Synergies Subspace of the DEXMART Hand

The procedure reported in [9] has been adopted for deriving the postural synergies
of the DEXMART Hand on the basis of the data obtained by mapping human hand
grasps to the robot hand kinematics, as reported in the previous section. Once the
matrix C = {ci | i = 1, . . . ,36} of the DEXMART Hand configurations has been
built, the vector c̄ representing the mean hand position in the grasp configurations
space (the zero-offset position) and the matrix F = {ci− c̄ | i = 1, . . . ,36} of the
grasp offsets with respect to the mean configuration have been computed. The PCA
has then been performed on the matrix F and a base matrix E = {e1 e2 e3} of the
postural synergies subspace has been found selecting the three predominant compo-
nents form the PCA. In the following, the three synergies are described, with further
considerations about the differences with respect to the previous results obtained
with the previous prototype reported in [9], especially for the motion of the thumb.

5.1 Kinematics Assessment and Comparison

We refer to the minimum and maximum configuration of each synergy as the robot
hand configurations spanned by e1, e2 and e3 by means of, respectively, the min-
imum and maximum value of the corresponding synergy weights without violat-
ing the joint limits reported in (2) and (1). When the weights of the synergies are
zero, the hand posture corresponds to the zero-offset position (mean position) c̄,
see Fig. 5 where a frontal and a lateral view of the robot hand mean position are
shown. In Figs. 7, 8 and 9 the minimum and maximum configurations in frontal
and lateral views of the three postural synergies are represented. The vectors of the
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Table 3 First three eigenpostures and zero offset (data in degrees) vectors of the DEXMART
Hand postural synergies subspace

e1 e2 e3 c̄ [deg]
adduction/abduction 0.1270 0.1078 -0.3166 18.7185

Thumb proximal -0.0224 -0.1410 0.4633 35.2796
medial 0.0363 0.0086 0.6401 38.4707

adduction/abduction -0.0190 -0.0037 -0.1267 -1.1206
Index proximal 0.1610 -0.0471 0.1775 20.6411

medial 0.2960 0.2785 0.3858 45.6014
adduction/abduction 0.0428 0.0272 -0.0714 -1.9326

Middle proximal 0.5254 -0.1617 -0.0477 49.3695
medial 0.1751 0.4205 0.1212 29.1440

adduction/abduction 0.0599 0.0283 -0.0978 -1.4200
Ring proximal 0.5674 -0.2750 -0.1368 56.5125

medial 0.1724 0.5216 -0.0366 26.2536
adduction/abduction 0.0345 -0.0105 -0.0794 -3.8122

Little proximal 0.3789 -0.3453 0.0410 44.4781
medial 0.2440 0.4659 -0.1390 31.0406

Fig. 5 Mean position of the DEXMART Hand configuration

three synergies and the zero-offset vector are reported in Tab. 3. The synergies sub-
space derived in [9] on the basis the previous robot hand prototype by means of the
joint-to-joint mapping is now compared with the results obtained with the DEX-
MART Hand kinematics and the mapping method reported in this paper by means
of appropriate graphical tools. The circular graphs in Fig. 6 are a graphical repre-
sentation of the postural synergy vectors e1, e2 and e3 reported in Tab. 3 and identify
the joints whose rotations are more involved in each synergy. From left to right, the
joint position variation is represented for the first, the second and the third synergy
respectively. On the top of the figures, the graphs corresponding to the DEXMART
Hand are reported, whereas on the bottom the ones corresponding to the UB Hand
IV prototype are shown for comparison. The three fundamental synergies derived
for the DEXMART Hand are here briefly described.

First Synergy

With reference to the first postural synergy (column e1 in Tab. 3, Fig. 7), in the min-
imum configuration the proximal and medial flexion joint angles of all the fingers
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Fig. 6 Graphical representation of the postural synergy vectors e1, e2 and e3. The adduc-
tion/abduction, proximal and medial flexion joints are indicated from 1 to 3 for the thumb,
from 4 to 6 for the index finger, from 7 to 9 for the middle finger, from 10 to 12 for the ring
finger and finally from 13 to 15 for the little finger. On the top of the figure the graphs are
referred to the DEXMART Hand, on the bottom to the UB Hand IV prototype.

are all almost zero and increase their value during the motion toward the maximum
configuration. The adduction/abduction movements of the four fingers are not very
involved in this synergy.

Second Synergy

The second postural synergy (column e2 in Tab. 3, Fig. 8) is characterized by a
movement in opposite directions of the proximal and medial flexion joints. The
adduction/abduction movements of the four fingers are not very involved also in
this synergy.

Third Synergy

In the third postural synergy (column e3 in Tab. 3, Fig. 9) the movement involves
especially the index and the thumb. The movement of adduction/abduction of the
thumb and of the index increases with respect to the first two synergies. This char-
acteristic is important for correct index/thumb opposition that allows increasing the
grasp accuracy, and thus achieving more stable grasps.

By observing the circular graphs it emerges that the basic characteristics of the
three synergies are quite similar for both the kinematics and methods. Nevertheless,



Mapping Grasps from the Human Hand to the DEXMART Hand 525

Fig. 7 From left to right, front and lateral view of the first postural synergy in the minimum
and the maximum configuration

Fig. 8 From left to right, front and lateral view of the second postural synergy in the mini-
mum and the maximum configuration

Fig. 9 From left to right, front and lateral view of the third postural synergy in the minimum
and the maximum configuration

with reference to the kinematics of the DEXMART Hand, even if the excursion of
the thumb motion is greater in the third synergy, the differences with the previous
two synergies are less evident if compared to the results on the previous robot hand
prototype. Since the three predominant postural synergies derived for the DEX-
MART Hand account for>86% of the hand postures, i.e. the percentage of the total
variance of the data described by the first 3 principal components of the F covariance
matrix, it is expected that a control strategy that uses these synergies for robot hand
motion allows obtaining very good grasping performance in a configuration space
of highly reduced dimensions with respect to the DoFs of the robot hand itself.

5.2 Control with Postural Synergies

As in our previous work [9], the first three postural synergies have been used to
control the hand in order to perform selected grasps from the reference set. Each
hand grasp posture ci can be approximated, by a suitable selection of the postural
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synergy weights [α1 α2 α3]
T ∈ R

3, as the projection ĉi on the postural synergies
subspace

ĉi = c̄+E

⎡
⎣α1,i

α2,i

α3,i

⎤
⎦ . (3)

Thus, the value of the three eigenpostures weights [α1 α2 α3]
T are computed from

the desired grasp posture as ⎡
⎣α1,i

α2,i

α3,i

⎤
⎦= E† (ci− c̄) (4)

where E† is the Moore-Penrose pseudo-inverse of the base matrix E. The temporal
value of the weights α1, α2, α3 during grasp operations has to be chosen in such a
way that, starting from the zero-offset position c̄ (i.e. α1 = α2 = α3 = 0), the hand
opens during the reach in preparation for object grasp, and then closes reaching a
suitable shape determined from (4) and depending on the original grasp configura-
tion ci. In the open-hand configuration, namely c0, all the flexion joint angles are
close to zero, and the corresponding values of α1, α2 and α3 can be determined
from (4) by posing ci = c0.

The intermediate values of the synergy weights have been determined by assum-
ing a suitable time interval for the grasp operation (six seconds for the whole reach
to grasp phase, three seconds for both the opening and closing phases) and by lin-
ear interpolation of the α1, α2 and α3 values in the three reference configurations
{c̄, ĉ0, ĉi}.

6 Experimental Evaluation of the Synergy-Based Grasp
Control

In the experiments, starting from the zero-offset position, the hand moves contin-
uously in the synergies configuration subspace and goes in an open-hand configu-
ration. Then, it closes reaching a configuration that depends on the particular grasp
to be performed. During the closing phase, the weights of the three postural syner-
gies are obtained by linear interpolation from those corresponding to the open-hand

Fig. 10 Reproduced power grasps from the reference set of postures using the first three
synergies
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Fig. 11 Reproduced precision grasps from the reference set of postures using the first three
synergies

Fig. 12 Reproduced intermediate side grasps from the reference set of postures using the
first three synergies

Table 4 Synergy weights of the grasps from the reference set of postures

Conf. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
α1 6.853 46.23 49.31 59.63 25.91 -22.48 23.33 46.92 -15.63 29.30 40.92 53.38
α2 -38.23 -9.027 -27.78 -16.81 89.32 94.38 -38.39 34.18 -31.73 -3.989 -21.40 -22.79
α3 9.587 13.77 13.45 -13.61 -1.344 38.53 21.57 -18.98 13.45 -23.41 -26.13 -12.12

Conf. C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24
α1 0.379 23.39 -63.11 63.99 23.05 51.46 64.84 10.45 24.91 37.85 -0.793 -71.15
α2 -13.23 11.83 1.973 26.72 -0.912 10.02 29.73 -3.443 -5.238 6.500 -3.208 9.748
α3 6.449 -2.747 23.69 -5.729 -26.83 -3.781 -14.49 10.40 3.79 -4.464 9.452 11.09

Conf. C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36
α1 0.552 -31.042 12.68 -2.231 -37.17 6.858 49.08 106.4 -102.5 -94.19 -100.9 -103.6
α2 -30.58 -3.642 -1.075 -7.637 8.701 -50.77 8.869 -5.661 3.314 10.97 -2.110 -8.587
α3 -6.857 18.39 4.446 8.478 25.41 12.38 -6.857 -32.20 -33.54 -32.88 2.810 1.624

configuration to those suitable values unique for each object and computed using
(4). The linear combination of the three synergies allows a power grasp of both
cylinders and spheres of different dimensions by means of suitable opposition of
the thumb, see Fig. 10.
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In Fig. 11, the performance corresponding to precise grasp operations are re-
ported considering both prismatic and circular objects and grasps involving from
two to five fingers.

The reproduced intermediate side grasps from the reference set of postures is
depicted in Fig. 12. Table 4 reports the first three synergy weights computed by
projection of the reference set of postures in the synergies subspace, and indicates
the contribution rate of each synergy to achieve the final configuration.

7 Conclusion

In this work, a model-based method for mapping grasps from the human hand to
the DEXMART Hand has been presented. The method comprises fingertips detec-
tion, using a commercial low-cost RGB+Depth (RGBD) camera such as the Kinect
sensor, and a closed-loop inverse kinematics algorithm, that is based on the DEX-
MART Hand kinematics. The robotic hand kinematics is linearly scaled according
to the hands dimension of five subjects involved in the experiments. The kinematic
patterns of the first three postural synergies of the DEXMART Hand are computed.
A comparison with the synergies corresponding to the UB Hand IV prototype, ob-
tained using a joint-to-joint mapping, reveals that the basic characteristics of the
three synergies are quite similar for both the kinematics and methods. Experimen-
tal evaluation of the computed synergies subspace has been performed testing the
synergy-based control during reach to grasp. The results of the experiments reveals
that hand succeeded on grasping various objects throughout a complete taxonomy.
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Manipulation with Multiple Action Types�

Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás Lozano-Pérez

Abstract. We present DARRT, a sampling-based algorithm for planning with mul-
tiple types of manipulation. Given a robot, a set of movable objects, and a set of
actions for manipulating the objects, DARRT returns a sequence of manipulation
actions that move the robot and objects from an initial configuration to a final con-
figuration. The manipulation actions may be non-prehensile, meaning that the object
is not rigidly attached to the robot, such as push, tilt, or pull. We describe a simple
extension to the RRT algorithm to search the combined space of robot and objects
and present an implementation of DARRT on the Willow Garage PR2 robot.

1 Introduction

Consider a robot trying to move a plate that is lying flat on a cluttered table to
another table. The robot cannot grasp the plate while the plate lies flat on the table,
so it has to first maneuver the plate to the edge of the table and then grasp the plate in
a way that enables it to later place the plate. This task requires at least three different
types of manipulation: push, pick and place.

The classic “pick and place” tasks use only two types of manipulation: transit, in
which the robot moves alone, and rigid-transfer, in which the robot moves a rigidly
attached object. These two types of manipulation are usually planned separately,
connected only by the grasp. Human manipulation, however, is not limited to pick-
ing and placing but instead combines many different types of manipulation: pushing,
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pulling, flipping, etc. To extend robotic manipulation capabilities towards those of
humans we must be able to plan for and control sequences of diverse actions.

In this paper we outline an algorithm for planning with multiple types of manip-
ulation. The algorithm has the structure of a rapidly exploring random tree (RRT)
searching the combined configuration space of the robot and objects. The RRT al-
gorithm attempts to directly connect points in configuration space and, if that fails,
samples possible intermediate points and connects those. In many spaces this “con-
nection” is straightforward, usually just a straight line in Euclidean space. Because
objects cannot move by themselves, however, such a connection is not viable in the
combined space of the robot and objects. Instead, we must use a path that reflects
the underlying dynamics of the system. Because of the necessary interactions of
the robot and objects during manipulation, this requires modifications to both the
extension phase and the sampling phase of the RRT algorithm. We discuss these
modifications and describe and analyze experiments run on the PR2 robot.

2 Related Work

There is a large body of work on manipulation actions for us to draw upon. Ma-
son [13] discusses the mechanics of pushing an object, while Brost [2] and Dogar
and Srinivasa [5] propose to combine pushing and grasping in a push-grasp, and
Huang and Mason investigate striking or tapping objects [9]. However, these papers
focus on describing and simulating the dynamics and control of a specific action.
When they address planning, they emphasize working with a particular type of ma-
nipulation rather than combining it with other types. We take a different view; we
assume that by building on this work, we can simulate the forward motion of the
object and focus on planning given a diverse set of these actions.

There has also been work on problems that require the robot to manipulate multi-
ple objects. Much of this work assumes only rigid grasping [1, 14, 17, 18, 19] or that
each object moves only once [14, 17, 18, 19]. van den Berg et al. [1] relax this sec-
ond assumption, but their approach relies on describing connected components of a
robot’s configuration space, which is intractable for high-dimensional configuration
spaces. Cosgun et al. [3] discuss trying to place an object on a cluttered surface.
They assume only the object to be placed is grasped, but that this object can push
other objects out of the way. Multiple objects can be moved at once, but this still
incorporates only a single manipulation action. Dogar and Srinivasa [6] consider the
problem of trying to move an object in clutter and have a library of manipulation
actions, including non-prehensile actions, but assume each object or piece of clutter
is moved only once using a single manipulation action. In contrast, we are interested
in using multiple types of manipulation to manipulate a single object.

The re-grasping problem [12, 16], especially as framed by Siméon et al., is
an example of planning with two manipulation actions. Siméon et al. [16] take a
hierarchical approach to the problem, first finding a high-level sequence of tran-
sits (motions for the robot alone) and rigid-transfers (motions in which the robot
rigidly grasps an object) and then planning each in the robot’s configuration space.
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Unfortunately, their method relies on the grasped object being able to move instan-
taneously in any direction, which does not hold for non-prehensile manipulation.

The problem of manipulation with multiple actions is a multi-modal planning
problem. Hauser [7] defines a multi-modal planning problem as one in which the
system moves among configurations and also among a set of modes. The mode
space is part of the problem description and each mode describes a set of con-
figurations that all satisfy certain mode-specific constraints. For example, a mode
might be the set of configurations in which the robot and object are in a specific
grasp. In his initial work Hauser focused on problems with discrete mode spaces, but
low-dimensional mode transitions. He showed how to create a two-level roadmap
of modes and configurations using interspersed mode and configuration sampling.
Later Hauser [8] extended this work to domains like manipulation where the mode
space is continuous and used interleaved intra-mode and inter-mode planning to find
paths for a walking robot pushing an object on a table. However, that work required
the implementation of complicated mode samplers and a number of heuristics, some
of which took substantial pre-processing time. Here we show how to solve the prob-
lem of manipulation with multiple actions as an RRT with no pre-processing.

3 Problem Definition

We address problems in which we have a robot, a set of movable objects, and a set of
diverse, possibly non-prehensile manipulation actions. The input is the configuration
space (c-space) of the robot and movable objects, a set of fixed obstacles, a set of
manipulation primitives, a starting configuration, and a set of goal configurations.
The goal set may be infinite in size. For example, in manipulation, goal positions
are often specified only for objects. The goal set is then any configuration in the
combined space in which the objects are in their goal positions.

A manipulation primitive is a function that takes an initial configuration of the
robot and objects and a displacement of the robot’s configuration and returns a final
configuration of the robot and objects. A primitive instance is an instantiation of
the primitive with a specific initial configuration and displacement. A solution is a
sequence of primitive instances that takes the initial configuration into the goal set.

Any type of manipulation can be represented as a manipulation primitive pro-
vided it is possible to describe the effect of the primitive on any given configuration
of the robot and objects. For complicated primitives it is possible that this would
require computational integration of equations of motion, but we use simpler prim-
itives. Throughout this paper we use the following primitives as examples:

• Transit: The robot moves alone whenever there is no collision between the robot
and the objects or any obstacles in the world.

• Rigid-transfer: The robot moves an attached object whenever there is no collision
between the robot or object and any obstacles or other objects in the world.

• Pick: The robot rigidly grasps an object and lifts that object from a support sur-
face when the robot and object are in a feasible grasp configuration.
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Fig. 1 When the gripper and plate are in two-point contact, the robot can push the plate along
the ray connecting its gripper to the plate’s center

• Push: The robot pushes an object when it has two-point contact between its grip-
per and the object. The push can only be along the ray connecting the center of
the contact points with the center of mass of the object, as shown in Figure 1.

Given a DR degree-of-freedom robot and n objects each with Di degrees of freedom,
we have a problem with DR +∑n

i=1 Di degrees of freedom. In Section 4, we discuss
our approach to solving this problem.

4 DARRT Algorithm

In Algorithm 1, we present the Diverse Action Rapidly Exploring Random Tree
(DARRT) algorithm, a sampling-based algorithm for motion planning problems
with diverse, non-prehensile manipulation actions. DARRT has the structure of a
rapidly exploring random tree (RRT) with controls [11], but the indirect control
of the objects, the high-level manipulation primitives, and the necessity of switch-
ing between primitives all require modifications to the classic state sampling, ac-
tion sampling, and distance metrics. We describe DARRT’s EXTENDTOWARDS and
SAMPLE methods in detail and discuss its distance metric approximation.

4.1 Extension

We first describe the method for extending from a configuration c1 towards a con-
figuration c2. Note that the canonical method of using a short straight line extension
in Euclidean space is not applicable here. The Euclidean extension moves c1 a small
amount towards c2 in each dimension. This moves the robot a short distance from
its configuration in c1 to its configuration in c2, but also moves each object a short
distance from its configuration in c1 towards its configuration in c2. Because objects
cannot move by themselves, it is not possible to actually execute this extension. We
need an extension method that reflects the actual dynamics of the system.

However, this is not just a case of planning in a non-holonomic system because
manipulation usually requires specific relative configurations of the robot and ob-
jects. Thus, the subspaces in which primitives can be executed are usually lower-
dimensional than the full configuration space. For example, in Pick, the robot must
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Algorithm 1
Input: M: c-space of movable components, robot R and objects {o1, ...,on}, B: fixed
obstacles, A: manipulation primitives, cI : initial configuration, G: goal set
Output: Graph with a configuration in G.

DARRT(M,B,A,cI ,G)

1 V ← {cI}
2 while no configuration in V is in G
3 s← SAMPLE(M)
4 t← argminv∈V Distance(v,s,M,A)
5 {c1, ...,cl}← EXTENDTOWARDS(t,s,M,B,A)
6 V ←V ∪{c1, ...,cl}
7 return V

SAMPLE(M)

1 {m1, ...,m j}← randomSubset({R,o1, ...,on})
2 r← random configuration for each mi
3 return r

EXTENDTOWARDS(c1,c2,M,B,A)

1 e← PATH(c1,c2,M,A)
2 {e1, ...,el}←Discretize(e)
3 for ei, if collision(ei,M,B), return {e1, ...,ei−1}
4 return {e1, ...,el}

PATH(c1,c2,M,A)

1 if c1 = c2 or no useful primitives, return {}
2 p← randomUsefulPrimitive(c1,c2,M,A)
3 P← propagate(p,c1,c2,M)
4 c← state after applying P to c1
5 return P∪PATH(c,c2,M,A)

be holding the object in a feasible grasp; for Push, the robot’s gripper must be in
two-point contact with the object. Both of these primitives require configurations
that have zero probability of being sampled at random from the full configuration
space. Moreover, non-prehensile manipulation constrains the space in which the
object can move. For example, an object that is being pushed can only be moved
along a single ray as shown in Figure 1. Thus, even if c1 is a configuration in which
the gripper and object are in two-point contact, the ray along which the object can
move must also be “towards” c2. Therefore, we not only need to pass through con-
figurations in the subspace in which the primitive is executable, we must be in the
particular part of that subspace in which the object can be moved towards c2.
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Sampled
plate position Sampled

robot position

Transit
Transfer
Push
Pick

Fig. 2 An extension from the state shown in the photograph towards the sample shown with
the white dashed lines. This sequence first transits the robot to a pushing configuration (blue),
pushes the plate towards the edge of the table (yellow), transits the robot to a grasp (blue),
picks up the plate (green), transfers it to its sampled position (magenta), and finally transits
the robot to its sampled position (blue).

The classic method for extending an RRT with actions is to use a single, short
application of some action to move a short distance from c1 towards c2. However,
it is difficult to ensure that such short applications can reach and then remain in the
subspaces that must be traversed to reach c2. Therefore, rather than extend a short
way towards c2, we try to find a sequence of actions that moves all the way from
c1 to c2. Attempting to extend all the way towards the sampled configuration is the
version of the RRT described in Lavalle Chapter 5 (2006).

The problem of manipulation with multiple actions is particularly difficult be-
cause the presence of obstacles may require complex paths that use a large num-
ber of primitives. Without obstacles, finding a path between two configurations is
usually easy. There are a number of ways to implement a search for such a path.
In our implementation, we required that a primitive p implement useful and
propagate functions. Propagating c1 towards c2 returns a sequence of primitives
that applied to c1 result in a state nearer to c2 than c1 is in the subspace in which the
primitive operates. A primitive is useful if propagating c1 towards c2 will result in
a state closer to c2 than c1 is. For example, propagating c1 towards c2 using Transit
results in a state in which the objects are in their positions in c1 and the robot is in
its position in c2. Therefore Transit is useful if all objects are in the same position in
c1 and c2 but the robot is not. Push is useful when an object is on a support surface
in c1 and in a different position in c2. Propagating c1 towards c2 using Push returns
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(a)

Transit
Push

(b)

Fig. 3 A robot arm pushes a plate on a table. (a) If there are obstacles between the robot and
the plate, every direct path (solid colored) will be truncated at the obstacle regardless of the
sampled pose of the plate (dashed colored). The colors of the paths added to the tree in this
figure correspond to the colors of the sample; i.e. if the plate is sampled in the position shown
by the red dashed line, the small red arrow is all that is added to the tree. (b) By sampling robot
and object configurations separately, we will eventually sample a configuration for the robot
(dashed) that allows a direct path to the plate. A subsequent sample for the plate (dash-dot)
results in a much longer extension.

two primitives: Transit to the pushing configuration and Push from the object’s posi-
tion in c1 to the object’s position in c2 or the point on the edge of the support surface
nearest the object’s position in c2. Pseudo-code is shown in the PATH function in
Algorithm 1. Figure 2 shows an example of a path. Note that the path not only in-
cludes configurations for executing pushing and grasping, but also ensures that the
configuration used for the non-prehensile Push primitive is one that can move the
plate towards its sampled position.

Therefore we extend c1 towards c2 by finding a sequence of primitive instances
that, in the absence of obstacles, takes c1 to c2. We check this path for collisions,
truncating it to the first collision, and then add the truncated path to the tree.

4.2 Sampling the Space

Although extending with a sequence of actions rather than a single action as de-
scribed in Section 4.1 finds configurations that lie in lower dimensional subspaces,
it creates another problem because we have subspaces with different controllability.
We are able to fully control the robot, but can only move objects when the robot
can immediately manipulate them. Thus, the robot’s first action along an extension
will always be to move directly towards a position from which it can manipulate
an object. Sampling random configurations from the space does not in fact sample
random movements for the robot.

To illustrate, consider a simple world in which a robot arm is pushing a plate on
a table as shown in Figure 3. If we simply sample configurations in this world, there
is zero probability that we will sample a configuration with the plate in its initial
position. Since the plate cannot move on its own, the robot must first move the plate
into its new position. A valid pushing path requires that the gripper be in two-point
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contact with the plate so the first part of the extension will always be a direct robot
transit into two-point contact with the plate. If all such direct movements intersect
an obstacle, as shown in Figure 3(a), the planning will fail.

To alleviate this problem, rather than sample an entire configuration, we first
sample a (possibly proper) subset of the movable components (objects and robot)
O = {m1, ...,m j}. We then generate a partially specified sample s in which only
the configurations of those components in O are specified. The distance from a fully
specified configuration c to s is the distance to the nearest configuration to c such that
each of the components in O are in the configurations specified in s. An extension
from c to s is any path that results in the components in O being in the configurations
specified in s. By using partially specified sample configurations, we allow the robot
and objects to take up new positions relative to each other as shown in Figure 3(b).

Sampling partially specified configurations is all that is necessary to reposition
the robot and subsets of objects. However, in experimentation, we found that sam-
pling configurations for the robot and objects together tended to be unhelpful be-
cause the path is usually truncated before the segment in which the robot moves to
its position. Therefore, we either generate a sample that specifies only configura-
tions of objects or one that specifies only a configuration of the robot.

As is common practice when implementing an RRT, some fixed fraction of sam-
ples are from the goal set. When sampling from the goal set, we do not explic-
itly split the sample into robot and object subspaces but we can take advantage of
goals for which that split is natural. In many manipulation problems the goal only
specifies positions for the objects, in which case a goal sample fits well into this
framework.

4.3 Distance Metric

We must also define the distance between two configurations, c1 and c2. Because the
configuration space contains subspaces that are not directly controllable, the sum of
Euclidean distances in each subspace is a significant underestimate of the actual
distance between configurations. The correct distance from c1 to c2 is the length of
the shortest path traveled by the robot that moves each movable component from its
position in c1 to its position in c2.

Evaluating the correct distance function is, of course, intractable. Thus, we first
simplify it by ignoring any obstacles in the world; however, the remaining problem
is still hard. The robot must “visit” the action of moving each object exactly once,
so this is a version of the Traveling Salesman Problem. In our implementation, we
used a greedy algorithm to find the Cartesian distance from c1 to c2 by finding a
path from c1 to c2 in which the robot always moves the closest object first.

5 Results

We implemented DARRT on the Willow Garage PR2 robot and ran experiments in
several domains with a variety of manipulation primitives.
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5.1 Implementation

We planned for one of the PR2’s seven degree-of-freedom arms, its base, and a
single rigid object, for a total of sixteen dimensions in the state space. The imple-
mentation is built on top of the Open Motion Planning Library (OMPL) [4], which
allows the user to define a custom state space, control space, distance metric, sam-
pling algorithm, and extension algorithm for an RRT.

Because we have much finer control over the arms of the robot than we do over
the base, we implemented separate transit and rigid-transfer primitives for the arm
and the base. At present the planner does not reason about the precision of the prim-
itives, but we hope to add that capability in future work. In total, we implemented
eight primitives for the PR2:

• Arm-Transit: The arm moves towards a joint goal in a straight line in joint space.
• Straight-Line-Arm-Transit: The arm moves the gripper in a straight line in Carte-

sian space. This was used for approaching and retreating from objects.
• Arm-Rigid-Transfer: The arm moves an attached object towards a goal pose using

a straight line in joint space.
• Base-Transit: The base moves towards a goal pose.
• Base-Rigid-Transfer: The base moves an attached object towards a goal pose.
• Pick: When the gripper is in a valid grasp pose, the object is attached to the

robot’s gripper and lifted in a straight line in Cartesian space.
• Place: The object attached to the gripper is set down on a support surface in a

straight line in Cartesian space and detached from the gripper.
• Push: When the gripper contacts the perimeter of a round object on a support

surface, the object is pushed along the ray connecting the gripper’s center to the
object’s center. This primitive is shown in Figure 1.

We detected objects at the start of planning using a point cloud from a Microsoft
Kinect by segmenting the cloud above the plane of the table. We did not re-detect
the objects at any time during execution. We used a three-dimensional map of the
environment for collision checking, as shown in Figures 5 and 6. During execution,
we used Monte Carlo localization to localize the base of the robot.

5.2 Domains and Problems

We ran experiments on four problems in two different domains, shown in
Figures 4-6: Plate1, Plate2, Plate3, and Bowl. In the Plate domain, we had the robot
manipulate a flat plate that it could not grasp while the plate was sitting on a table.
In the Bowl domain, we demonstrated that the planner works with a bowl that can
be directly picked up from a flat surface. In all problems the goal allowed any ori-
entation around the object’s z axis, because our objects were symmetric around this
axis. To illustrate the difference in execution successes between pushing and rigidly
grasping, we did not include the Push primitive in the Bowl domain.

We used two metrics in our experiments. We looked at planner performance on
the problems by evaluating the time it took to plan paths for each problem. We also
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Bowl Goal

Plate Goal

Fig. 4 The world in which we ran DARRT. For each plate problem, the plate started on the
central table and the goal was the corner of the side table. The bowl started on the shelf and
the goal was on the central table.

Table 1 Performance of the unoptimized planner and execution performance on the PR2 for
each of the four problems. The Execution Successes are the fraction of the trials in which the
robot was able to successfully execute the plan in the real world. We also show planning time
for a version of Plate3 in which the goal does not involve a place (Plate 3 (No Place)) and a
simple world in which there are no obstacles on the table (Simple Plate). The restart time is
the amount of time the planner was given before restarting from the initial state. Times were
averaged over 10 trials.

Problem Name Planning Time (s) Restart Time (s) Execution Successes on PR2 Robot
Plate1 257 60 2/5
Plate2 461 200 4/5
Plate3 480 200 3/5
Bowl 66 30 5/5

Plate3 (No Place) 82 60 –
Simple Plate 19 30 –

measured the ability of a real robot to execute the plans returned by our planner.
An execution was considered a “success” if the object (plate or bowl) was placed
in the goal position without disturbing the rest of the environment (i.e. knocking
anything off the table). The robot executed these plans “open-loop” in that it sensed
the object’s position once before planning and never again during execution.

The planner was able to find solutions for all four problems. Running times and
execution success fractions are given in Table 1. In this table we also give results
for a problem identical to Plate3 except that the goal was in the center of the envi-
ronment rather than on a table. This problem is included to emphasize how difficult
it is to plan to place a plate. For comparison’s sake, we also include planning time
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Fig. 5 The plate domain problems. The 3D map of the obstacles present in every domain
(walls and tables) is shown as a colored grid while obstacles that we added and removed
from the environment (bowls, cups, etc) are shown as blue boxes. For each problem, we
show the starting state of the robot and obstacles, possible trajectories for pushing the plate
to the edge of the table (white arrows), and the planned trajectory for the plate color-coded
by primitive. Videos are on our website1.

for a problem in which the goal is in the center of the environment and there are no
obstacles placed on the table around the plate. Videos of the trajectories executed
by the PR2 in each of the domains are on our website1.

1 http://people.csail.mit.edu/jbarry/pr2/darrt

http://people.csail.mit.edu/jbarry/pr2/darrt
http://people.csail.mit.edu/jbarry/pr2/darrt
http://people.csail.mit.edu/jbarry/pr2/darrt
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Fig. 6 The Bowl domain. Videos are on our website1.

6 Performance Analysis

The running times given in Table 1 are for an unoptimized version of the planner.
Optimizing the planner will significantly decrease these times. However, we include
them because they give a good metric of the relative difficulty of different problems.

6.1 Problem Difficulty

It is clear from the running times in Table 1 that some problems are easier for the
planner than others. In the Plate1 problem (Figure 5(a)), for instance, the plate can
be moved to the edge of the table in a straight line parallel to the robot’s torso. This
is an easy manipulation for the robot and requires only three primitive instances
(Arm-Transit, Straight-Line-Arm-Transit, and Push), making it relatively easy to
find a plan in this domain. Similarly, the Bowl domain (Figure 6) is an easy domain
with no pushing at all. We included this domain to show that the algorithm can work
easily with other types of objects.

The Plate2 and Plate3 problems, however, require longer plans. In the Plate2
problem (Figure 5(b)), it is possible to move the plate to the edge of the table by
pushing the plate back towards the robot using a single push or to the left edge of
the table using a minimum of two pushes to move the plate around the small bowl.
However, it is not possible to find an arm trajectory that can push the plate towards
the robot without first moving the robot’s base. In the Plate3 problem (Figure 5(c))
we removed all possible straight line paths to the edge of the table, forcing the
planner to plan at least two pushes. This problem shows that the algorithm can find
plans requiring multiple instances of a non-prehensile primitive.

6.2 Planning Time Analysis

We also analyzed our experiments to find the bottlenecks in planning. As with most
sampling-based algorithms, the majority of the planning time is spent finding paths
around obstacles. This is a problem common to almost all RRT implementations

http://people.csail.mit.edu/jbarry/pr2/darrt
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(a)

Contact

(b)

Fig. 7 For most RRT based algorithms the majority of the time is spent finding paths around
obstacles. (a) An example in the two dimensional case with a single obstacle (black rectan-
gle). The initial state is shown in blue, a sample in orange, and the nearest point to the sample
in red. (b) A similar example in our domain. When the plate is at the edge of the table the
robot can grasp it. However, in trying to move from the pushing configuration (left) to the
approach to the grasp (right), the gripper usually contacts the plate.

because the algorithm is greedy in its choice for the nearest state in the tree. For
example, as shown in Figure 7(a), we usually quickly grow an RRT all the way to-
wards an obstacle. Subsequent samples beyond the obstacle (shown in orange in the
figure) find the point near the obstacle (shown in red in the figure) as the “nearest”
point in the tree, but this point cannot be extended towards the sample. It takes a
large number of samples to find a path around the obstacle. In our experiments, this
problem was most evident in two situations: transitioning from pushing to grasping
and placing on the table. We describe these scenarios in detail below.

When the plate is at the edge of the table, the robot can grasp it. However, in mov-
ing the plate to the edge of the table, the robot must have used the push primitive,
which puts its gripper on the far side of the plate from the table edge, as shown in
Figure 7(b). During the transition to the grasp, the robot retreats upwards from the
push and then moves in a straight line in joint space to the approach to the grasp. In
many cases, there is a collision between the plate and the robot’s gripper along this
line. Subsequent samples for the plate will almost all be nearest to this state because
both the plate and the robot are close to a state in which the robot can approach a
grasp for the plate. However, the state in the tree cannot be extended directly to-
wards the approach to the grasp because of the gripper-plate collision. In order to
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move around the plate, the gripper must first move off the direct line to the approach
to the grasp, around the plate, and then to the approach to grasp configuration. This
requires a large number of samples in the robot’s subspace.

The table on which we placed the plate is approximately one meter tall, which
makes it too high for the robot to manipulate upon easily, especially as the gripper
must be angled when placing flat plates. In addition, this table is about 25 centime-
ters higher than the table from which we picked the plate, which means that if the
robot does a base transfer directly from the pick to the place, the plate will hit the
side of the table as the robot moves it towards the place position. This creates a state
in which the plate is near the place position but cannot be moved directly there.

To understand the relative difficulty of placing versus transitioning from pushing
to grasping, we also considered a problem in which the robot had to push the plate
off of the table and transfer it to a specific position in the environment but not place
it. One might expect pushing to be harder than placing, because the relative con-
figurations of the robot and object are more constrained. However, because of the
particulars of our test environment, the placements are more constrained. In partic-
ular, the central table where the pickup happens is one under which the robot can
move its base whereas the table for the place has a solid base. Without placing, the
planning time was not much over one minute.

7 Future Work: Accounting for Uncertainty

The planner does not take into account uncertainty in the world. Moreover, the ex-
ecution is open-loop in that we sense the plate’s position once at the beginning of
the planning and never again throughout execution. This gives us two main sources
of uncertainty: uncertainty in the initial detection and uncertainty in the robot’s mo-
tion. Slightly incorrect gripper positions originating from one of these tended to
compound so that domains requiring more pushes (Plate3) or domains requiring
long pushes (Plate1) tended to have execution failures2 more often.

We are considering several approaches to dealing with uncertainty. For un-
certainty created by the robot’s motion, we can use a re-planning strategy [10],
detecting when we have deviated from our planned path and updating the path
accordingly. For perception error in the initial detection, we can use closed-loop
control, checking the pressure sensor on the robot’s fingertips for contact with the
plate and adjusting. With more sensor input during the execution, we can also use
strategies that plan in belief space [15] to try to bias the planner towards actions that
also gain information about the environment.

Another method for minimizing uncertainty in execution is to choose primitives
to reduce the uncertainty as much as possible. For example, we use two point push-
ing rather than single-point pushing. By using two point pushing, placing one side
of the gripper on each of the center of friction, the robot is able to control the plate
much more effectively [13]. We also implemented base and arm movement sepa-
rately because the uncertainty models for the PR2 arms and base are very different,

2 http://people.csail.mit.edu/jbarry/pr2/darrt#failure_modes

http://people.csail.mit.edu/jbarry/pr2/darrt/#failure_modes
http://people.csail.mit.edu/jbarry/pr2/darrt#failure_modes
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making it difficult to accurately execute synchronous trajectories. In general, sepa-
rating primitives with different uncertainty models will also allow us to re-plan after
executing primitives we know are likely to result in an uncertain state.

We have shown that the DARRT algorithm can solve problems requiring the use
of many types of manipulation in a sixteen degree-of-freedom space. However, we
also found that the trajectories returned by the planner could be successfully exe-
cuted only about sixty percent of the time. We have given both an analysis of the
planner and directions for future work in reducing and planning for uncertainty.
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A Constraint-Aware Motion Planning Algorithm
for Robotic Folding of Clothes

Karthik Lakshmanan, Apoorva Sachdev, Ziang Xie, Dmitry Berenson,
Ken Goldberg, and Pieter Abbeel

Abstract. Motion planning for robotic manipulation of clothing is a challenging
problem as clothing articles have high-dimensional configuration spaces and are
computationally expensive to simulate. We present an algorithm for robotic cloth
folding that, given a sequence of desired folds, outputs a motion plan consisting of
a sequence of primitives for a robot to fold the cloth. Previous work on cloth folding
does not take into account the constraints of the robot, and thus produces plans
which are often infeasible given the kinematics of robots like the Willow Garage
PR2. In this paper we introduce a class of motion primitives that start and end in
a subset of the cloth’s state space. To find a sequence of primitives that achieves
all required folds, the algorithm takes advantage of the partial ordering inherent in
folding, and produces a time-optimal motion plan (given the set of primitives) for the
robot if one exists. We describe experiments with a general purpose mobile robotic
platform, the PR2, folding articles that require dragging and base motion in addition
to folding. Our experiments show that (1) many articles of clothing conform well
enough to the assumptions made in our model and (2) this approach allows our robot
to perform a wide variety of folds on articles of various sizes and shapes.

1 Introduction

Robotic manipulation of 2D deformable objects is a difficult problem largely be-
cause such objects typically have infinite-dimensional configuration spaces and are
too computationally expensive to simulate in the inner-loop of a motion planner.

The problem we address is as follows: Given a robot model, the shape of a piece
of cloth in a spread-out configuration on a horizontal table, and a final folded con-
figuration specified by a sequence of g-folds, output a sequence of robot motions
that achieves the final folded configuration or report that none exists.
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The state-of-the-art approach is g-folding [24]. At the core of this approach is
the definition of a cloth model that allows reasoning about the geometry rather than
the physics of the cloth in relevant parts of the state space. Given the geometry of
the cloth, their algorithm computes how many grippers are needed and prescribes
motions for these grippers to achieve the final configuration, specified as a sequence
of g-folds—folds that can be achieved while staying in the subset of the state space
to which their geometric model applies. G-folding, however, has severe practical
limitations: due to robot and environmental constraints, the gripper motions pro-
duced by g-folding are often infeasible. When that happens, the top-down approach
followed by g-folding fails.

This paper presents a motion planning approach that plans directly at the level of
robotic primitives rather than the gripper motions used in [24]. Given a sequence of
g-folds that take the cloth from the initial to the final configuration, our approach de-
termines whether a sequence of motion primitives exists that results in the success-
ful execution of all specified g-folds. If so, the algorithm outputs the robot motion
which brings the cloth to the final configuration.

To restrict the (otherwise unmanageably large) search space we restrict our search
to a class of motion primitives, called g-primitives. This class of primitives consists
of all motions that begin and end with the cloth in a g-state — a configuration
of the cloth where all parts of the cloth are either horizontal or vertical. This is a
broader class of motion than was allowed in [24] because the intermediate states of
the cloth during execution of primitives are unrestricted. The primitives used in our
experiments are of three types: performing a g-fold (including folds that allow the
article to hang from the table), dragging the article along the table, and robot base
motion.

To find a plan to fold a given article using a given set of g-folds, we associate
a cost with each g-primitive and search for an optimal solution, returning failure
if no solution exists. Our algorithm for searching over primitives consists of (1)
generating a graph that captures dependencies between the folds specifed in a g-fold
sequence and (2) using A* to search for a sequence of primitives that accomplishes
all folds in the graph.

In our experiments the cost we associated with each g-primitive is the time it
takes to execute. Hence not only does our approach allow us to find solutions in
cases where g-folding would simply fail, it also enables finding better (i.e., time-
optimal) solutions. Our experiments show that (1) many articles of clothing conform
well enough to the assumptions made in our model and (2) this approach allows our
robot to perform a wide variety of folds on articles of various sizes and shapes.

2 Related Work

Our work builds on g-folding [24], but does account for kinematic restrictions posed
by real robots. Our work also draws from the work of Bell and Balkcom [4, 5],
which deals with computing the grasp points needed to immobilize a polygonal non-
stretchable piece of cloth. Relevant work in cloth folding includes dynamic towel
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folding [1], cloth perception [21], and strategies to bring the cloth into a spread-out
configuration where folds can be applied [20, 10, 6].

Our work is also related to methods in motion planning that search over primi-
tives to construct robot trajectories [13, 7, 17, 23, 9, 22, 15]. Similar search-based
approaches have also been developed in the graphics literature [19, 18]. However,
to our knowledge no previous work has applied a search over motion primitives to
the cloth folding problem.

Other relevant work has been done in physical simulation of cloth [3, 8, 12],
origami folding [2], carton folding [16, 12], and metal bending [14], which use
similar material models to the one presented here.

3 Problem Statement

The problem we address is as follows: Given a robot model, the shape of a piece of
cloth in a spread-out configuration on a horizontal table, and a final folded config-
uration specified by a sequence of g-folds, output a sequence of robot motions that
achieve the final folded configuration or report that none exists.

We assume a coordinate frame in which gravity acts in the downward vertical
(−z) direction and a rectangular table in the horizontal (xy) plane. We assume the
article of clothing can be fully described by a 2D polygon (convex or non-convex)
with n vertices, initially lying on the horizontal surface in a fully spread-out, known
configuration. Except for the table surface, there are no obstacles in the environment.

We define S as the state space of the system (i.e. the robot and cloth). A state
s ∈ S consists of a robot state and a cloth state.

We are also given a robot model, which specifies the number and width of grip-
pers and the inverse kinematics for each gripper. It is assumed that the grippers are
not capable of distinguishing between layers of cloth and will grasp all layers of
the stack at each grip location. For example, the Willow-Garage PR2 we use in our
experiments has 2 grippers.

In this paper we focus on robots with a mobile base and two manipulators (like
the PR2), though our framework is not limited to this type of robot. Focusing on
this robot model, a robot configuration q consists of the (x,y,θ ) of the base, a set of
joint angles for each arm {α1, . . . ,α2N} (where each arm has N joints), and booleans
qL

grip,q
R
grip indicating whether each gripper is open or closed. The configuration of

the cloth is represented as a set of polygons.
Since we are building on the g-folding work in [24], we inherit the assumptions

of the g-folding model:

1. The cloth has infinite flexibility. There is no energy contribution from bending.
2. The cloth is non-stretchable. No geodesic path lengths can be increased.
3. The cloth has infinite friction with itself.
4. The cloth has zero thickness.
5. The cloth is subject to gravity.
6. The cloth has no dynamics, i.e. it is moved quasi-statically.
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7. If the cloth is held by a number of grippers, and one or more grippers release the
cloth, no point of the cloth will move upwards as a result of gravity and internal
forces within the cloth. (The downward tendency assumption from [24], which
works well for most everyday articles of clothing. However, it does not hold for
a family of objects known as pinwheels, as shown in [4].)

We extend the model used in g-folding to allow the robot to perform more types of
motions (such as dragging and letting parts of articles hang off the table). We add
the following assumptions:

8. The weight and density of the cloth are known.
9. There is a known uniform coefficient of static friction μ between the cloth and

the surface on which it lies. The robot can exert enough force on the cloth to
overcome this friction. (Note that this assumption is different from [24], which
assumes that this friction is infinite.)

10. If a part of the cloth on a horizontal surface is gripped at one or more points, and
all such points are moved horizontally at the same velocity, then the distance of
any point of the cloth from a gripper, measured in the xy plane, will not decrease.
Intuitively, this means that when a cloth is dragged across a surface, no point of
the cloth will move towards a gripper due to internal forces.

4 g-States

The key to our search strategy is to restrict the movements of the robot to start and
end in a g-state. A state s ∈ S is a g-state if and only if a part (possibly empty)
of the cloth is horizontal and a part (possibly empty) is vertical, and the cloth is
not in motion and will not move independently. We define a baseline as a line that
separates a horizontal part of the cloth from a vertical part.

Given the problem description above, there are two ways for parts of the cloth to
be vertical if the cloth is in a g-state: 1) The cloth is held up by robot grippers and/or
2) the cloth is hanging off the edge of the table. In the first case, the cloth will not
move as long as Theorem 1 from [24] (restated below for convenience) holds:

Theorem 1. In our material model, a vertically hanging cloth polygon is immobi-
lized when every convex vertex of the cloth at which the negative gravity vector does
not point into the cloth polygon is fixed (i.e. be held by a gripper or be part of the
baseline).

In the second case, as long as the net horizontal force on the part of the cloth lying
on the table surface can be countered by friction, points lying on the table surface
(including those on the baseline) will not move. This is because such points cannot
move in the plane due to friction, and they will not move upward per the downward-
tendency assumption. Thus to determine if the cloth will slip over the edge, we
check the following two conditions:
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Fig. 1 Examples of parts of cloth hanging off the table in various configurations. The dotted
line is the table edge (baseline). In order for the cloth to be hung, all convex vertices not at
the baseline should have the negative gravity vector (small arrows) point into the cloth. These
vertices are indicated by dots. In the configurations shown on the right, there are convex
vertices where the negative gravity vector does not point into the cloth and which are not on
the baseline, hence the cloth is not immobilized.

1. The friction between the table surface and the part of the cloth on the table must
be sufficient to counter the force exerted by gravity on the vertically hanging
parts of the cloth.

2. All convex vertices of the hanging part at which the negative gravity vector does
not point into the cloth are part of the table edge (which is also the baseline),
from which the part of the cloth hangs. This prevents the vertical part of the cloth
from moving, according to Theorem 1. Examples are shown in Figure 1.

A convex vertex is defined as a vertex of the cloth polygon that is also a vertex of its
convex hull.

5 Algorithm Formulation

We use a search-based procedure to find a sequence of folding primitives that results
in the successful completion of all the requested g-folds, if possible. Our planning
algorithm is comprised of two components: (1) The creation of a Fold-DAG. (2) A
search over motion primitives.

5.1 Fold-DAG

The user inputs a desired sequence of g-folds. However, it may not be necessary
to execute the folds in the same order as given, as some folds may be performed
independent of the previous folds in the sequence. For example, consider the g-fold
sequence shown in Figure 2. If the robot were to perform the folds in the same
order, it might have to, for example, complete fold 1, then move around to complete
fold 2 before moving back to complete fold 3. However, we can see that either
the g-fold in part 1 or the one in part 2 can be performed first. The g-fold in part
3 only needs part 1 to be completed, and the g-fold in part 4 only needs part 2.
Capturing the dependencies between the requested g-folds can potentially lead to
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Fig. 2 The Fold-DAG generated from a set of user defined g-folds. Left: A user defined
sequence of g-folds for a T-shirt. Right: The sequence when it has been transformed into a
Fold-DAG. The corresponding T-shirt configurations are also shown for clarity.

quicker solutions. For example, the robot can choose to complete 1 and 3 before
moving around to complete 2 and 4.

We use a directed acyclic graph (DAG), which we call the Fold-DAG, to capture
dependencies between the folds specifed in a folding sequence, i.e. which g-folds
need to be completed before a particular g-fold can be performed. The nodes V of
this graph G = (V,E) are the specified folds and the edges E specify dependencies.
E is produced in two steps: First, we add an edge from node va ∈V to node vb ∈V ,
e(va,vb) if the folded part of the cloth specified in node vb overlaps the folded part
of the cloth specified in va for all pairs of nodes in the graph. We then remove
redundant dependencies by eliminating any e(va,vb) if there is a path from va to
vb that consists of more than one edge. For example, Fig 2 shows an input g-fold
sequence and its Fold-DAG.

When executing a sequence of folds, we are implicitly traversing the Fold-DAG.
We can determine a list of available g-folds for each cloth configuration depending
on the g-folds that have been performed previously. A node v is available if all nodes
in Vi = {vi ∈V |e(vi,v) ∈ E} have been executed, i.e. if all nodes pointing to v have
already been performed.

5.2 Motion Primitives

The goal of the search process is to produce a series of motion primitives that
achieves the given sequence of g-folds. If we disregard the kinematic constraints
of the robot, this process is trivial since all g-folds can be performed directly. How-
ever, taking into account the constraints, a given g-fold may not be possible due
to, for instance, the grip locations being too far from the robot. The search process
searches over a given set of motion primitives, attempting to achieve the given g-
fold sequence. The search algorithm uses the Fold-DAG to guide the search to the
goal configuration (where all requested g-folds have been performed).

In order to make the search process computationally feasible, we must ensure
that the search space we consider is not unmanagably large. Allowing any arbitrary
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Fig. 3 The set of states S and the subset of g-states. The black path represents the sequence
of states traversed by an example g-primitive.

motion to be considered would cover S, but it would also produce an unmanagable
search space and would require simulations of the cloth dynamics (which are com-
putationally expensive and sometimes inaccurate). We thus restrict the search to a
class of motion primitives we call g-primitives.

Intuitively, a g-primitive is any motion primitive that both starts and ends with
the system in a g-state. Formally, a motion primitive is a function f : S−→ T , where
T is the set of all robot trajectories.

Definition 1. A g-primitive is a motion primitive whose domain and range are re-
stricted: f : S′ −→ T ′, where S′ ⊆ S is the set of all g-states and T ′ ⊆ T is the set of
all trajectories that end with the system in a g-state.

Using g-primitives allows us to search over a managable subspace of S while also
allowing us to perform practical tasks with the cloth. It is important to note that there
are no restrictions on the intermediate states of the robot and cloth when performing
a g-primitive (i.e. the cloth and robot can move arbitrarily) as long as the start and
end conditions are met (see Figure 3). g-primitives are also a broader class of motion
than was allowed in [24], where all intermediate states of a fold were required to be
g-states.

The g-primitives used in this paper are described in Section 6, however these are
only examples of what possible primitives could be used, and by no means constitute
the entirity of the class of g-primitives.

5.3 Search over Primitives Using A*

Given vertices of the cloth, the robot model, and the Fold-DAG we can compute
a time-optimal motion sequence of primitives for the robot to execute in order to
reach the desired final configuration. We define a time-optimal sequence as one
which takes the least time to execute on the robot.

We used the A* search algorithm to find a sequence of g-primitives, which is a
heuristic-guided search that guarantees solutions of lowest cost. To apply A*, we
require functions that compute whether a state is a goal, the successors of a state,
the cost of reaching a state, and a heuristic estimate of the cost to reach the goal
from a given state.

We define a goal state as a state which has no g-folds remaining in the DAG.
For a given state, we generate the successors by applying all the primitives in our
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set of primitives. If a given primitive is infeasible (due to, for instance, reachability
contraints), it does not generate a successor. Since we want the search algorithm to
return the plan of least execution time, the sum of costs along the path starting at the
starting state is a measure of the time taken by the robot to perform all primitives
that constitute the path. The primitive-specific cost functions are given in Section 7.

Our A* heuristic uses a relaxation of the problem which ignores robot constraints
and approximates the time taken for the robot to perform all remaining folds in the
DAG at the given state. Since robot constraints are ignored, only gripper trajectories
are considered and the method of computation is identical to that used to find the
time taken to move the grippers in the cost calculation. This also ensures that the
heuristic is admissible.

6 Primitives for Robotic Cloth Manipulation

Any primitive that starts and ends in a g-state is allowed. We provide three exam-
ples of primitives; g-fold, g-drag, and base motion, including the motivation for and
a formal description of each.

g-Fold

As defined in [24], a g-fold is specified by a directed line segment in the plane whose
endpoints lie on the boundary of the cloth polygon. The segment partitions the poly-
gon into two parts, one to be folded over another. A g-fold is successfully achieved
when the part of the polygon to the left of the directed line segment is folded across
the line segment and placed horizontally on top of the other part, while maintaining
the following property:

At all times during a folding procedure, every part of the cloth is either horizontal
or vertical, and each vertical part of the cloth is held either by grippers or by the
edge of the table such that it is immobilized. (See Figure 2 in [24].)

The definitions of “blue” and “red” g-folds from [24] remain unchanged—a blue g-
fold is specified by a line segment partitioning the polygon formed by the silhouette
of the stacked geometry into two parts, and is successfully achieved by folding the
(entire) geometry left of the line segment. A red g-fold is similarly specified, but
only applies to the (potentially stacked) geometry that was folded in the previous
g-fold.

The g-fold primitive is the execution of a user specified g-fold (“red” or “blue”).
g-folds involving parts of the cloth that are not hanging are performed in the same
way as described in section 4 of [24]. A fold for parts of the cloth that are hanging
can be performed when the following conditions hold true:

1. Theorem 1 must hold true, and for this the robot must have a sufficient number of
grippers, which must be able to reach and grip the necessary vertices throughout
the motion required to complete the fold.
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NOT a g-foldg-fold

G

Fig. 4 Left: A valid g-fold performed on the hanging part. The dotted line shows the table
edge. The hanging part is highlighted in light gray. The cloth does not move in the resulting
configuration due to friction between the cloth and table. Right: A fold on the hanging part
of the cloth which is not a g-fold because the cloth will move after it is released.

2. A g-fold parallel to the table edge along which the cloth hangs is permitted only
if the resulting cloth configuration is a g-state (see Fig 4 for an example where
this condition is violated).

g-Drag

Kinematic restrictions on the robot arms may yield points on the cloth that need to
be gripped in order to perform a g-fold unreachable from the robot’s current pose.
This motivates the action of dragging the article across the table, in order to make
such points reachable. The g-drag primitive is defined as the translation of the part
of the article on the xy plane of the table. A g-drag is determined by the direction
of dragging and distance through which the article is dragged. See Figure 5 for
examples of g-drags.

(a) (b)

Fig. 5 (a) Two example g-drags of a long sleeve shirt in two directions. For translation with-
out deformation of the article all convex vertices on the table surface at which the negative
friction vector (small arrows) does not point into the cloth must be grasped. Grasp locations
are indicated by the dots. (b) A drag of a long sleeve shirt which is not a g-drag. Red convex
vertices are not gripped, which results in deformation of the left sleeve (shown on the right).

In order to ensure that the part of the cloth on the surface of the table is translated
without any deformation, the following theorem must hold true:

Theorem 2. In our material model, a cloth polygon resting on a horizontal surface
can be translated without deformation if (1) every convex vertex of the cloth at which
the negative vector of friction (between the table and the cloth) does not point into
the cloth polygon is held by a gripper, and (2) all such vertices move at the same
velocity.
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Proof. Our proof is based on the proof of Theorem 1 in [24], where van den Berg
et al. prove that a vertically hanging cloth polygon can be immobilized by fixing
every convex vertex of the cloth at which the negative gravity vector does not point
into the cloth. Consider a cloth polygon being dragged across a horizontal surface
with uniform friction. The motion does not induce deformation of the cloth if at any
time during the drag, all points of the polygon have the same velocity as the gripped
points. Let us pick one of these gripped points, and, without loss of generality, con-
sider a frame of reference whose origin is at this point, such that the table surface is
the xy plane, and the positive x axis is the direction along which the cloth is dragged.
The origin moves with the gripped point as the cloth is dragged. Uniform friction
then acts along the negative x axis. Using assumption 10, we know that no point of
the cloth will move in the positive x direction due to internal forces.

Let us define a leading string of the polygon as a maximal sequence of edges of
which the extreme vertices are convex vertices of the polygon, and no part of the
polygon has a greater x-coordinate than these edges. A given polygon P can have
multiple leading strings, but has at least one.

The proof now proceeds in a similar fashion to the proof in [24], which presents
a recursive proof where at every step in the recursion, all upper strings of a polygon
P are proven immobilized, and thereby every point of P that can be connected to
an upper string by a vertical line segment that is fully contained within P is proven
immobilized. The notion of “upward” in their case is analogous to the +x direction
in our case, and the “downward” force of gravity can be replaced by friction in the
−x direction. Leading strings take the place of “upper strings.” Then, in a similar
fashion, we can prove that all leading strings are immobilized. The proof in [24]
uses the downward tendency assumption to show that 1) non-convex vertices of a
gripped upper string will not move upward, 2) every point of P that can be connected
to an upper string by a vertical line segment that is fully contained within P cannot
move upward. Assumption 10 serves the same purpose in our case, ensuring that the
corresponding points do not move in the +x direction. The rest of the proof follows
accordingly. ��
The possible distances an article can be dragged form a continuous space, but we
discretize them to meet the requirements of our search algorithm. More details are
given in the experiment description.

Move

The robot is allowed to move around the table, which makes different portions of
the article reachable. The space of robot base poses is continuous and we manually
select a set of base poses from this space that provides good coverage of the table
surface for the arms. The allowed poses for our robot’s base are shown in Figure 7a.
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7 Costs for the Primitives

The cost we associated with each g-primitive is the time it takes to execute. Our
motion primitives can be decomposed into sequences of base motion and arm move-
ment, and the cost is computed by summing the execution time for each motion.

A g-fold consists of moving the arm(s) to the grip configuration, performing the
fold, and releasing the cloth (if blue fold), while moving the base backward and
forward as necessary to reach the computed gripper locations.

A g-drag consists of moving from the initial configuration to the grip configura-
tion, moving the base along the direction of the g-drag, and releasing the cloth (if
the next fold is not a red fold).

For the above two primitives it is sometimes necessary for the robot to back
away from the table in order to make the target grippoints reachable (this is due to
the PR2’s limited reachability for points close to its body). Thus if the grip points
are too close to the robot, we include a backward base motion in the primitive’s
sequence of motions as well.

The move primitive moves the base between pre-specified positions by turning in
place, driving to the target position, and turning in place again to reach the desired
rotation.

The costs for the above primitives are computed by summing the execution time
necessary to complete each component of the primitive (i.e. reaching and base
movement). Details about setting the execution time for the arms is discussed in
Section 8. The time necessary to execute base motions is computed assuming con-
stant linear and angular speed.

8 Planning and Simulation Experiments

We used a Willow Garage PR2 robotic platform [15] and performed experiments
both in simulation and on the physical robot. For the Move primitive, our robot
could move between 5 predefined positions around the table as shown in Figure 7a.
For the Fold primitive, the computed grip-points were often too close to the robot’s
body for it to reach them without moving its base. To overcome this, the robot
was allowed to move its base backward until the points could be reached, thereby
enhancing the robot’s reachability along the x-axis, (as defined for each position in
Figure 7a). For the Drag primitive, we only allowed the robot to drag the article
towards itself. The drag distance was discretized, and drags in increments of 10 cm
(up to the length of the article) were considered. Grip points were computed by
first computing grip locations as prescribed by the primitives while assuming point
grippers. Then, following [24], we accounted for gripper width (and some cloth
stiffness) to find a reduced number of required grip-points.

We used 3 seconds for the input execution time for all arm motions on the PR2.
We found that going below this time decreases the path-following accuracy of the
physical robot, thus resulting in imperfect folds.



558 K. Lakshmanan et al.

Fig. 6 Solution for the T-shirt using the g-folds of Figure 2 as input

Table 1 Simulation Results. L is the number of primitives in the solution path, C is the cost
of the path in seconds. N expand/explore is the number of nodes expanded/explored. T is the
total search time of algorithm.

Article # Folds L C(s) N Expand N Explore T(s) IK time(s) IK Queries Overhead(s)

T-shirt 5 7 48.12 16 84 6.29 1.14 3512 0.007
Jeans 2 3 35.01 13 116 4.07 1.44 776 0.008
Shirt 7 9 76.94 84 491 28.29 3.96 5911 0.040
Tie 3 4 27.90 24 256 6.06 1.59 593 0.013
Scarf 2 3 18.90 14 177 4.94 1.37 593 0.011
Vest 2 2 24.62 8 61 1.91 0.41 383 0.004
Skirt 3 4 29.63 60 535 15.37 5.42 10087 0.026
Big Towel 3 4 27.91 22 232 8.47 3.01 6675 0.013
Hand Towel 3 3 27.35 18 161 5.04 1.90 400 0.007

We experimented with nine common clothing articles listed in Table 1 in simu-
lation. The folding sequence is given as input to the algorithm. An example of the
solution sequence for a T-shirt is shown in Figure 6.

We used the ikfastmodule provided by OpenRAVE [11] in order to determine
if the robot can reach a given point. This can be a time consuming operation because
it involves collision-checking and searching over the free joint of the 7 DOF manip-
ulator, and IK queries are made often by the search algorithm. In order to decrease
the number of times ikfast is called, we created a fast approximation to IK that
we query before calling ikfast: offline, we define two bounding boxes for each
robot arm such that any point within the inner box is reachable by that arm’s wrist
and any point outside the larger outer box is unreachable from the current robot
base position. For each arm, the inner box is pre-computed by making IK queries



A Constraint-Aware Motion Planning Algorithm for Robotic Folding of Clothes 559

(a) (b)

Fig. 7 (a) Allowed robot base positions around the table for the Move primitive. (b) Bounding
boxes used to decrease the number of IK queries on the PR2.

on a grid of 3D points around the robot with a 1cm discretization. We then check
if the wrist can reach each point in the grid. We only consider points that are above
the table and less than 1m above the floor, as this region encompasses most of the
points whose reachability the planner needs to check. See Figure 7b. The shape of
reachable 3D points is not cuboidal, but we inscribe a cuboid in this region to create
the inner box for ease of checking during the search. The outer box is constructed
based on the fact that the PR2 cannot reach any point that is further away than the
length of its arm at full stretch. For our experiments, any point farther than 0.75m
from the center of the base in any direction lies outside the outer box. Whenever the
planner makes an IK query, we first check if the translation component of the query
is within the inner box for the relevant arm. If so, we immediately return that the
point is reachable. If the point is outside the outer box, we immediately declare that
it is unreachable. If the point is contained in the outer box but is not in the inner box,
we query ikfast. This enabled us to reduce the time spent on IK queries by about
50%, on average.

In order to make the generated plans robust to robot execution error (for exam-
ple, dragging by less than the desired amount), we introduce the concept of “IK

Table 2 Simulation Results with IK comfort radius of 3 cm. See symbol definitions in
Table 1.

Article # Folds L C(s) N Expand N Explore T(s) IK time(s) IK Queries Overhead(s)

T-shirt 5 7 48.12 40 319 55.08 39.77 9950 0.010
Jeans 2 3 35.01 13 60 1.64 1.25 272 0.006
Shirt 7 9 76.94 134 920 121.70 85.99 26867 0.034
Tie 3 4 27.90 26 329 20.75 11.89 4387 0.007
Scarf 2 3 18.90 16 197 18.71 14.01 4950 0.004
Vest 2 2 24.62 14 101 9.24 6.82 2073 0.007
Skirt 3 4 29.63 22 201 19.61 14.87 4432 0.006
Big Towel 3 4 27.91 24 284 35.63 26.23 6921 0.016
Hand Towel 3 3 27.35 17 175 20.80 15.25 4214 0.004



560 K. Lakshmanan et al.

comfort.” We only declare a point reachable if both the point and four points on the
circumference of a circle of a set radius, centered at the given point are reachable.
Also, if the gripper fails to grab the cloth at the target point during execution on
the robot, it tries to grab other points that lie within the comfort radius of the target
before failing. For our trials, we found that an IK comfort radius of 3 cm resulted in
robust execution.

9 Physical Experiments

We used a rectangular table with a soft working surface, so that the relatively thick
grippers can easily get underneath the cloth. At the beginning, the robot can always
see the entire clothing article in a known, fully spread-out configuration. The robot
detects the green table surface using hue segmentation. The cloth polygon is then
detected as described in [21]. We used the PR2 2D Navigation package in ROS to
move the robot between the 5 base positions. The robot performed Drags by moving
the base backward, and then correcting for any undershoot in base motion by using
its grippers to drag the cloth further.

For several of the articles, we executed the generated plans multiple times on
the robot. Table 3 shows the results of our runs. Several snapshots from folding a
T-shirt, towel, and skirt are shown in Figure 8. Videos of the executions are posted
at http://rll.berkeley.edu/iser2012-folding.

Table 3 Success rates and timing results of physical robot executions. Vision Time includes
time for initial detection as well as for visual feedback during execution. The times are aver-
aged over all successful runs.

Clothing item Success Rate Av. Execution Time Av. Vision Time Av. Total Time
T-shirt 3/3 218s 60s 278s
Large towel 2/3 78s 20s 98s
Skirt 3/3 91s 20s 111s
Jeans 3/4 150s 55s 205s

Fig. 8 T-shirt, towel and skirt folding sequences executed by PR2

http://rll.berkeley.edu/iser2012-folding
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The PR2 uses visual feedback to correct for execution errors. The position of
the current cloth model is updated after every g-drag or Move primitive, by fitting
the model to the observed contour of the cloth on the table surface, assuming that
the cloth only undergoes translation and not deformation. The expected translation
of the cloth is used to initialize the position of the model, following which the op-
timization proceeds as described in [21]. After each g-fold, the performed fold is
detected and the model is updated as described in [21].

As illustrated by our success rates on the various clothing articles, our method
shows high reliability on real cloth, even if it does not perfectly conform to our
assumptions. For example, jeans and towels clearly violate the zero thickness as-
sumption and the pleats of the skirt are not taken into consideration by our cloth
model. Regardless we are able to achieve high success rates on these articles.

Our failures typically arise from errors in robot execution, particularly base mo-
tion. If the base does not move by the desired amount, a grip point might become
unreachable. The introduction of IK comfort along with making the arms correct for
base motion undershoot during a drag greatly reduces the number of such failures.

Our experiments show that the planned execution times typically underestimate
the real execution times observed with the PR2. This is because the costs for each
primitive used in the planning phase are highly idealized. A large part of this dis-
crepancy can be attributed to the Move primitive. The 2D navigation package causes
the robot to stop multiple times during the move. The planner also ignores certain
other behaviors of robot execution. For example, the PR2 sometimes fails to grab the
cloth on the first attempt, and would need to move the gripper to regrasp the cloth.
Additionally, the planner assumes a constant velocity for base movement, while the
robot actually spends more time accelerating and decelerating than at its full speed.

We are currently investigating ways to overcome these limitations. If the PR2
fails to grasp the article on its first attempt, it will try to grab up to 8 other points
within the IK comfort radius until it grasps the cloth. The discrepancy in the com-
puted cost of Moves and the real times may be reduced by eliminating the constant
velocity assumption and averaging the actual times taken to move from one base
position to another over multiple runs.

10 Conclusion

In conclusion, we described a motion planning algorithm for robotic cloth folding,
enabling us to avoid computationally expensive physics simulations while taking
into account kinematic constraints. We presented examples of cloth manipulation
primitives that allow the robot to perform a set of user defined g-folds using our sim-
plified cloth model. Our search algorithm allowed the robot to choose a sequence of
primitives to perform all given folds in the shortest possible time (given the available
primitives). At the core of our method is the consideration of real robot limitations.
Our experiments show that (1) many articles of clothing conform well enough to the
assumptions made in our model and (2) this approach allows our robot to perform a
wide variety of folds on articles of various sizes and shapes.
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Part IX: ISER Session Summary  
on “Applications to the Life Sciences” 

Jaydev P. Desai 

University of Maryland, College Park 

Session Summary  

The session on “Applications to the Life Sciences” consisted of papers from 
several different areas ranging from biological microrobots to robotic system for 
breast biopsy under continuous magnetic resonance imaging (MRI). There were a 
total of five papers presented in this session after Robert D. Howe provided the 
introduction to this session. Yang et al. in the paper titled: “Towards the 
Development of a Master-Slave Surgical System for Breast Biopsy under 
Continuous MRI”, describe their initial work on the development of a teleoperated 
master-slave surgical system under MRI guidance. MRI compatibility results of 
the slave robot are also presented in this paper and the slave robot has been shown 
to be MRI compatible. Kesner and Howe’s paper on “Motion Compensated 
Catheter Ablation of the Beating Heart Using Image Guidance and Force Control” 
discusses the implementation of a robotic catheter system, which uses force 
control and 3D ultrasound for image guidance for interventional procedures. They 
show that the robotic catheter with the ablation electrode was able to apply the 
force more consistently on the target compared to a manual catheter.  Shojaei-
Baghini and Sun in the paper on “Robotic Micropipette Aspiration of Biological 
Cells”, present their work on mechanical characterization of single cells through 
micropipette aspiration. The micropipette aspiration process is automated using 
visual servoing techniques and they show that the system is efficient and 
independent of the operator expertise. The paper on “Quantitative Analysis of 
Locomotive Behavior of Human Sperm Head and Tail”, by Liu et al., discusses an 
algorithm to track multiple sperms, including their head and tail, instead of just the 
sperm head. They found that there was a relationship between the sperm head 
velocity and the sperm tail beating amplitude and that the sperms with higher 
velocity generally did bind to hyaluronic acid. Finally, in the paper by Khalil et 
al., on “Characterization and Control of Biological Microrobots”, characterization 
and control of magnetotactic bacterium (MTB) is presented. They show that they 
are able to achieve position tracking of MTB. 



Towards the Development of a Master-Slave
Surgical System for Breast Biopsy under
Continuous MRI

Bo Yang, U-Xuan Tan, Alan McMillan, Rao Gullapalli, and Jaydev P. Desai

Abstract. Magnetic Resonance Imaging (MRI) provides superior soft-tissue con-
trast. But the strong magnetic field inside the MRI bore and the limited scanner bore
size restricts direct means of breast biopsy under real-time imaging. Current blind
targeting approach based on MR images obtained a priori sometimes requires mul-
tiple needle insertions if the tool tip position is compromised. A MRI-compatible
robot that can be teleoperated is thus desired to take advantage of the real-time MR
imaging and avoid multiple needle insertions. In this paper, we present our initial
work on the development of a master-slave surgical system. The MRI-compatible
slave robot is actuated with five pneumatic cylinders and one piezo motor and op-
erates inside the MRI bore. The master robot provides an intuitive manipulation
platform for the physician. The MRI experiment shows that the slave robot does not
induce visually-detectable distortion in the MR images and can be safely operated
inside the MRI.

1 Introduction

1.1 Motivation and Related Works

Nearly one in eight American women will be diagnosed with breast cancer dur-
ing their lifetime and that accounts for nearly one in three cancers diagnosed in
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American women, excluding cancers of the skin [1]. Breast biopsy is the gold stan-
dard to confirm if the suspicious tissue is cancerous or not; however, it requires
a reliable and accurate means of guidance so that the tissue sampled is actually
from the suspicious region. Magnetic Resonance Imaging (MRI) provides superior
soft-tissue contrast to identify the tumor boundary while avoiding harmful ionizing
radiation of Computed Tomography (CT) or the poor image quality of Ultrasound.
Studies have shown that MRI is able to detect cancer in the contralateral breast that
is otherwise missed by mammography and clinical examination [2] and it can im-
prove the ability to diagnose Ductal Carcinoma in situ (DCIS) with high nuclear
grade [3]. Hence, MRI has become a popular diagnostic tool for breast cancer and
is a competitive imaging candidate for use in image-guided interventions.

Though MRI provides superior soft-tissue contrast compared to other imaging
modalities, it severely restricts the instruments allowable in the MRI scanner due to
the high magnetic field it employs. Furthermore, the limited MRI bore size (gener-
ally 70cm in diameter) prohibits the physician from performing biopsy procedures
while the patient is being scanned inside the MRI bore. Current breast biopsy proce-
dures using MRI guidance require a needle to be inserted outside the MRI scanner
bore based on MR images acquired a priori to place the guiding insulating sheath
for the biopsy needle/gun [4]. Once the needle insertion is completed, the patient
is scanned again to check if the needle has been inserted to the correct location
for biopsy. Such blind targeting approach can induce needle tip positioning error
thereby requiring repeated needle insertion. This is one of the primary drawbacks
of the current MR-guided breast biopsy procedures. Hence, it is desired to develop
a teleoperated master-slave surgical system that can perform needle insertion un-
der continuous MRI guidance to improve needle positioning accuracy and thereby
reducing sampling errors.

With similar motivation, MRI-compatible robots for other cancer treatments have
also been developed and some of them have focused heavily on prostate therapy [5,
6, 7, 8, 9, 10]. MRI-compatible robotic systems for other applications have also
been reported such as for brain tumor removal developed by Ho et al [11]. For breast
cancer treatment, only a few attempts have been made to help perform breast biopsy.
A 6 degree-of-freedom (DOF) robotic system has been developed in [12] that can
carry out breast biopsy under MRI though its needle approach direction is limited.
Larson et al have implemented a MRI-compatible robotic device for interventions in
the breast that is remotely controlled by ultrasonic motors but suffers from excessive
backlash error [13]. Kokes et al [14] have proposed a teleoperated needle driver
robot with haptic feedback for radiofrequency ablation of breast tumors with only 1
DOF. All these works are mainly on the development of the MRI-compatible slave
robot, instead of implementing a complete master-slave surgical system.

1.2 Technical Approach

To perform needle insertion for breast biopsy under continuous MRI guidance, a
teleoperated master-slave surgical system is to be developed. The slave robot should
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be MRI-compatible to operate inside the MRI bore, which is ensured by employing
non-magnetic materials and MRI-compatible actuation techniques. Non-metallic
materials such as plastic and ceramic are more preferable for applications inside the
MRI, and non-magnetic metal such as brass, aluminum, and titanium can also be
used for parts that require higher stiffness and strength, as long as they are of small
volume and placed distant away from the scanning center to minimize interference
from the induced eddy current during MR imaging. Various MRI-compatible ac-
tuation techniques have been reviewed in [15], and pneumatics stands out since it
is cleaner and easier to maintain compared to hydraulics and leads to negligible
MR image signal-to-noise ratio (SNR) loss compared to the piezo motor. The slave
robot implemented employs hard plastic (Delrin R©) as the primary constructing ma-
terial and brass (Alloy 360) and aluminum (Alloy 3601) for certain structural parts.
Pneumatic cylinders are used as the primary actuators and one small piezo motor is
adopted to provide rotary actuation with a small footprint. The piezo motor is placed
at a distance from the scanning center to minimize the SNR loss due to the electrical
noise introduced by its electronic driver.

The slave robot consists of a three-link parallel mechanism, an X-Y stage, and a
needle driver to achieve the desired arbitrary needle orientation and position config-
uration under the space of the breast coil. Fig. 1 shows the needle (which is a sub-
stitute for a biopsy needle) attached to the fiber-optic force sensor [16]. The parallel
mechanism uses three pneumatic cylinders as both structural components and actu-
ators and provides two needle rotational DOFs and one translational DOF. The X-Y
stage uses two pneumatic cable cylinders and allows two orthogonal translational
DOFs, thereby enabling the placement of the needle in 3D. These five pneumatic
cylinders are actuated through long transmission lines (up to 9m), so that the non
MRI-compatible valves and electronics can be placed inside the control room. The
needle driver uses the small piezo motor to implement the needle insertion DOF.

The master robot has a similar kinematic structure as the slave robot and pro-
vides to the physician an intuitive manipulation platform for the needle driver and
the parallel mechanism of the slave robot. The needle driver of the master is fully
actuated and provides needle tissue interaction force feedback. The parallel mecha-
nism provides an intuitive way of needle orientation adjustment and can be locked
in place to help the physician maintain a stable needle orientation while performing
needle insertion. The X-Y stage of the slave robot mounting the parallel mechanism
is intuitive to operate and is directly controlled with a keyboard. The master robot
communicates with the slave robot through the control PCs using a local dedicated
router. With similar kinematic structures, actuator level one-to-one map can be estab-
lished and the configuration information of each robot can be exchanged directly to
create virtual connections, which establishes the teleoperated master-slave system.

Continuing on the prior work that demonstrated the 4-DOF slave robot [4], this
paper presents the master-slave surgical system, with a 6-DOF MRI-compatible
slave robot that can be operated under continuous MRI guidance. The paper is orga-
nized as follows. In Sect. 2, the current design of the slave robot as well as its control
is presented, and the design of the master robot is covered in Sect. 3. Section 4 de-
scribes the system integration and control scheme of the master-slave system. The
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results of teleoperation and the slave robot MRI-compatibility evaluation are pre-
sented in Sect. 5 and concluding remarks are made in Sect. 6.

2 Design and Implementation of the MRI-Compatible Slave
Robot

The MRI-compatible slave robot is shown in Fig. 1. It can operate inside the MRI
bore and is built with brass (Alloy 360), aluminum (Alloy 3601), and Delrin R©.
Other parts including cylinders and bearings that have to be purchased are carefully
chosen to be as non-magnetic as possible. The detailed design of its needle driver,
parallel mechanism, and X-Y stage is described in the following subsections.

2.1 Needle Driver

The needle driver mechanism drives the needle by converting the rotary motion of
the piezo motor (PiezoMotors, LEGS-R01NM-10) into translational motion with a
screw structure. A CAD illustration of the design is shown in Fig. 2(a) and the actual
mechanism is shown in Fig. 2(b). The rotational power generated by the distal piezo
motor is transmitted via a flexible Teflon R© rod to the outer threaded needle base
to achieve translational motion. Two ceramic bearings (VXB, Kit8707) are press-
fitted into the needle base and hold the needle adapter to isolate the rotation of the
screw motion at the needle base. The needle adaptor holds the customized needle
(or needles of other dimensions) with screw threads. The friction force between the
needle and the tissue during needle insertion is sufficient to prevent the needle from
rotating and this leads to pure translational motion of the needle. To further ensure
needle rotation elimination, the plastic fixing tube is attached to the outside of the
fixture, into which the fixing pin is press-fitted and it mates with the customized
groove on the needle.

Fig. 1 Photo of the actual MRI-compatible slave robot
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(a) The CAD drawing of the needle driver (b) The actual photo of the needle driver

Fig. 2 The needle driver that can advance the needle without rotation

The needle driver attaches to the parallel mechanism at its fixture through a previ-
ously developed MRI-compatible fiber-optic force sensor [16] that is used to sense
the needle insertion force. This force sensor is mounted on the mobile platform of
the parallel mechanism, as shown in Fig. 1.

2.2 Parallel Mechanism

The parallel mechanism consists mainly of three 76.2mm (3”) stroke pneumatic
cylinders connecting the base platform with pin joints and the mobile platform with
kinematically equivalent ball joints (serial connection of a universal joint and a roller
bearing), since a small MRI-compatible ball joint was not available. The cylinders
are primarily made of brass (Allenair, C-7/8x3-BU-L-SZ); and the base and the mo-
bile platforms (See Fig. 1) are made of plastic instead of metal to avoid the interfer-
ence of the induced eddy current, which can be generated inside these bulky parts
when the slave robot is in motion or during scanning inside the MRI bore. These
three cylinders are spaced evenly in 120◦ increments along circles on the two plat-
forms with identical radius. By changing the cylinder lengths one translational and
two rotational DOFs are achieved with coupled motion [17, 18, 4]. Using the world
coordinate frame shown in Fig. 1 and the ZYZ Euler angle definition of the needle
orientation, the x and y coordinates to the center point of the three universal joint
centers and the needle rotation angle γ can be computed if the needle orientation
angles, α and β , are known. They are related by the expression [4]:

xo =− r
2
(1− cβ)c2α , yo =

r
2
(1− cβ)s2α , γ =−α (1)

where r is the radius of the circles along which the three cylinders are spaced. The z
coordinate of the center point of the three universal joint centers, zo, can be specified
independently. With the spatial coordinate of that center point, the coordinates of the
universal joint centers can be computed and hence the lengths of the cylinders. The
motion of the cylinder rod is controlled by mass flow rate valves inside the control
room through long pneumatic transmission lines. Detailed information on the design
of the parallel mechanism can be found in [4].



570 B. Yang et al.

2.3 X-Y Stage

The X-Y stage holds the aforementioned parallel mechanism (Fig. 1) at its base
platform and provides in the horizontal (x) and vertical (y) directions larger motion
range compared to a traditional parallel mechanism. It can help position the needle
at the appropriate location prior to engaging the parallel mechanism and the needle
driver mechanism, and offset according to (1) the translational motion of the mo-
bile platform while adjusting the needle orientation. To achieve the desired planar
motion, two linear guide systems from igus R© (DryLin R© WK-10-80-20-01-450 and
WK-10-80-10-01-250) have been adopted and are actuated with one 228.6mm (9”)
stroke and one 101.6mm (4”) stroke cable cylinder (Tolomatic, 10760032 SK9 and
10760032 SK4, nonmagnetic version of CC07 series), respectively, which provide
larger stroke in the limited space of the MRI bore. Position information for both di-
rections is measured by the sensing membranes (spectrasymbol, TSP-L-0150-103-
1%-RH and TSP-L-0300-103-1%-RH) as are used in the parallel mechanism.

With the X-Y stage and the parallel mechanism, the needle can be positioned at
any location and oriented in any direction within the workspace, after which the
needle can be inserted into the tissue.

2.4 Pneumatic Control of the Slave Robot

The pneumatic cylinders of the slave robot are actuated with long transmission
lines, which is a challenging task and our prior work has demonstrated position
control with good positioning accuracy using pressure valves [19] or mass flow rate
valve [4]. The cylinders in the current system are all actuated with 9m transmission
lines (1.5875mm (1/16”) inner diameter) by 3/5 mass flow rate proportional valves
(Festo, MPYE-5-1/4-010-B) that are placed inside the control room to avoid any
electromagnetic interference with the magnetic field.

The control law implemented is PD control and Coulomb friction compensation
has been introduced to reduce the static position error. The compensated friction
force is intentionally set to be smaller than that observed in the experiment to avoid
instability due to the slow pressure transient caused by the long transmission lines.

3 Design and Implementation of the Master Robot

Fig. 3 shows the master device which has a similar kinematic structure as the slave
robot and is an intuitive and passive platform for the physician to adjust the nee-
dle orientation and perform needle insertion. It consists of a needle driver using a
rack and pinion structure and a parallel mechanism similar to that of the slave de-
vice. The needle driver is actuated with an electrical motor and the needle position
and interaction forces are measured by an encoder and a force sensor, respectively.
Two control modes have been implemented based on proportional control: 1) po-
sition control with a proportional force feed-forward term that locks the needle in
place while its orientation is being adjusted and, 2) force control that provides force
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feedback to the physician based on the needle and soft-tissue interaction force. To
enable the physician to comfortably hold the handle to manipulate the master de-
vice a larger diameter hole cut-out is present and hence the three brass cylinders
are placed on a larger circle radius as shown in Fig. 3. Through appropriate model-
ing actuator level one-to-one map can be achieved. The parallel mechanism can be
locked as needed to facilitate the physician for performing the needle insertion task
by avoiding involuntary needle orientation change during needle insertion using a
combination of six piloted check valves to close the cylinder chambers and a pair of
pressure valves to adjust the chamber pressures.

Fig. 3 Photo of the actual master robot

4 Integration and Control of the Master-Slave System

The slave and the master robot have a dedicated control PC each with data acqui-
sition cards (Sensoray, Model 626) installed. With similar kinematic structures that
give actuator level one-to-one map, a master-slave system can be achieved by com-
municating the two control PCs and exchanging the configuration information of
each pair of actuators directly, as shown in Fig. 4. The physician/operator manipu-
lates the master robot to adjust the needle orientation and perform the needle inser-
tion, while the X-Y stage of the slave robot can be controlled using the keyboard of
the master robot control PC. Bilateral control is implemented for the needle driver
to help the physician perform the needle insertion task with force feedback, and
unilateral control is applied to the other five DOFs.

The communication is implemented with Ethernet communication. With two
control PCs equipped with Intel R© Core

TM
i5 3.1 GHz CPU, 4 GB memory, and

Intel R© Gigabit Network Adaptors connected to a dedicated local router, the time de-
lay was measured to be 0.219±0.121ms under TCP protocol and 0.204±0.120ms
under UDP protocol, which is very small compared to the 500Hz sampling rate. It
is hence neglected in the control system. TCP protocol has been chosen due to its
implementation simplicity and reliability.
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Fig. 4 The control scheme of the master-slave system. The dashed lines indicate virtual con-
nections established through the Ethernet communication.

5 Experimental Results

Experiments have been conducted to verify the pneumatic actuation of the slave
robot, the teleoperation capability of the master-slave system, as well as the MRI-
compatibility of the slave robot.

5.1 Pneumatic Actuation of the Slave Robot

Fig. 5 shows the actual response of the cable cylinder that actuates the slave robot
in the y direction. It carried the 4kg parallel mechanism and was provided a step
input from 30mm to 100mm at t = 2s. Smooth response curve was achieved with a
position accuracy of 1mm and long reaction time was observed due to the process
in the long pneumatic transmission lines to build the pressures needed to overcome
the friction force. All other cylinders showed similar response.
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Fig. 5 Experimental step response of the y-direction cable cylinder controlled with a mass
flow rate valve through long transmission lines

5.2 Teleoperation of the Master-Slave System

A test was also conducted on the integrated master-slave system to verify its func-
tionality by manipulating the master arbitrarily and collecting the response curves
of both robots for orientation manipulation and needle insertion as shown in Fig. 6
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and Fig. 7, respectively. The commands for the X-Y stage cable cylinders were set
by keyboard and sent to the slave robot with negligible time delay; hence, their
responses were similar to that when directly actuated and were omitted. Fig. 6(a)
through Fig. 6(c) show the slave response curves in response to the master com-
manding signal. As can be seen from the plots, the slave robot is able to follow the
master robot’s configuration. A needle insertion task was also performed on a piece
of foam and the resultant curves are shown in Fig. 7(a) and Fig. 7(b). The slave in-
sertion depth was scaled down by 4 since precise insertion depth is desired while the
feedback force was scaled up by 4 to enhance the force feel during needle insertion.
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Fig. 6 Experimental results of the master-slave system under free manipulation for needle
orientation adjustment

5.3 MRI-Compatibility Test of the Slave Robot

Two MRI tests were conducted on the slave robot to verify its MRI-compatibility.
The first test studied the MRI-compatibility of the robot when it was stationary and
the influence of the pneumatic actuation on the MR image quality, while the sec-
ond test studied the MR image quality variation due to piezo motor actuation. Test-
ing was performed using a 3T Tim Trio MR scanner (Siemens Medical Solutions;
Malvern, PA) with a head coil. In the first test, a standard cylindrical bottle phantom
was imaged using a gradient echo acquisition with TE/TR = 1.63/354.24ms, flip
angle= 20◦, bandwidth= 870Hz/pixel, FoV= 160×160mm, matrix= 128×128.
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Fig. 7 Experimental results of the master-slave system under free manipulation for needle
insertion

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 8 MR images of the two MRI tests. (a)–(e) are the images for the first test: (a) was taken
without the robot as ground truth; (b) was taken with the robot unactuated; (c)–(e) were taken
when the x, y cylinders, and the parallel mechanism were actuated, respectively. (f)–(h) are
the images for the second test: (f) was taken with the robot unactuated; (g) was taken when
the piezo motor was actuated and the needle was approaching to the phantom; (h) was taken
when the piezo motor was actuated and the needle was inserted into the phantom.

The second test used a homemade phantom consisting of a mixture of 200ml boil-
ing water with 7g gelatin powder (Knox gelatin, Kraft Foods Global Inc.) and
2ml Omniscan

TM
(gadodiamide – 287mg/ml) (GE Healthcare; Waukesha, WI) to

increase the T1-weighted signal intensity. The imaging sequence used was a gra-
dient echo acquisition with identical parameters as the first test except TE/TR =
1.81/388.8ms and FoV = 120× 120mm. The dynamic MR images are shown in
Fig. 8.

First Test: Fig. 8(a) shows the image of the standard cylindrical bottle phantom
while the slave robot was outside the MRI bore as the ground truth. Then the slave
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robot was put into the MRI bore without any actuation to obtain Fig. 8(b). Fig. 8(c)–
(e) were taken when the slave robot was actuated with the x, y cylinders and with
the three brass cylinders of the parallel mechanism, respectively.

Second Test: Fig. 8(f) shows the image of the gelatin phantom when the robot was
put inside the MRI bore but without any actuation. Fig. 8(g) was taken when the
piezo motor was actuated to advance the needle towards the phantom and the black
point in the center indicates the needle tip. Fig. 8(h) was taken when the piezo motor
was actuated and the needle was inserted into the phantom. All images can be clearly
depicted with no visually-detectable distortion.

To quantify the effect of the robot on the MR image quality, the SNR, defined
as the ratio of the mean pixel value of signal to the standard deviation of the pixel
value of background noise, was calculated. The regions of interest (ROIs) used for
this calculation are shown in Fig. 8 and the calculated SNRs are summarized in
Table 1. It is worth noting that the SNRs for the two tests are not comparable due
mainly to differences in the T1 of the bottle and gelatin phantoms. The SNR values
show that when the robot was placed inside the MRI bore a small SNR loss was
observed. When the slave robot was actuated pneumatically, the SNR value varied
by a very small amount. This is likely due to the false signal generated by the metal
parts. In the second test when the robot was actuated with piezo motor, a slight SNR
increase was also observed. The significant SNR increase of Fig. 8(h) compared to
Fig. 8(f) and 8(g) is largely due to its imaging plane residing inside the phantom,
while the other two images were taken at the edge of the phantom to monitor the
contact of the needle with the phantom, where the 3mm thick imaging plane slice
resided partially outside of the phantom.

Table 1 SNRs of the MR images shown in Fig. 8, in which the ROIs used are marked

Test 1 (a) (b) (c) (d) (e)

SNR 78.58 73.91 76.03 77.00 74.65

Test 2 (f) (g) (h)

SNR 75.97 77.48 104.10

The acquired MR images and the SNR analysis show that the slave robot does
not induce image distortion which cause significant degradation in the image quality
and can be safely operated inside the scanner with only minimal losses in SNR.

6 Conclusions

This paper presents the design and implementation of a teleoperated master-slave
surgical system that can potentially be used to perform breast biopsy under contin-
uous MRI. The slave robot is built with MRI-compatible materials and actuators,
and MRI tests showed that it could operate under continuous MR imaging with
no visually-detectable distortion and minimal losses in SNR. The master robot is
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designed with a similar kinematic structure as the slave to help the physician op-
erate the system intuitively. The evaluation of the integrated system shows that the
slave robot can follow the configuration of the master robot with satisfactory perfor-
mance and force feedback can be provided on the master robot reliably. This shows
the functionality of the developed teleoperation system and its potential to allow the
physician to correct any needle insertion error during the procedures under continu-
ous MRI guidance. Future work will focus on graphical user interface development
and further refinement of the performance of the entire system.

Acknowledgements. This work is funded by NIH grant 1R01EB008713.

References

1. American Cancer Society: Breast cancer facts & figures 2011–2012. American Cancer
Society, Inc., Atlanta, Georgia (2011)

2. Lehman, C.D., Gatsonis, C., Kuhl, C.K., Hendrick, R.E., Pisano, E.D., Hanna, L., Pea-
cock, S., Smazal, S.F., Maki, D.D., Julian, T.B., DePeri, E.R., Bluemke, D.A., Schnall,
M.D.: MRI evaluation of the contralateral breast in women with recently diagnosed
breast cancer. The New England Journal of Medicine 356(13), 1295–1303 (2007)

3. Kuhl, C.K., Schrading, S., Bieling, H.B., Wardelmann, E., Leutner, C.C., Koenig, R.,
Kuhn, W., Schild, H.H.: MRI for diagnosis of pure ductal carcinoma in situ: a prospective
observational study. The Lancet 370(9586), 485–492 (2007)

4. Yang, B., Tan, U.X., McMillan, A., Gullapalli, R., Desai, J.P.: Design and implementa-
tion of a pneumatically-actuated robot for breast biopsy under continuous MRI. In: IEEE
International Conference on Robotics and Automation, Shanghai, China, pp. 674–679
(May 2011)

5. Elhawary, H., Zivanovic, A., Rea, M., Davies, B., Besant, C., McRobbie, D., de Souza,
N., Young, I., Lampérth, M.: The feasibility of MR-image guided prostate biopsy using
piezoceramic motors inside or near to the magnet isocentre. In: Larsen, R., Nielsen, M.,
Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 519–526. Springer, Heidelberg
(2006)

6. Stoianovici, D., Song, D., Petrisor, D., Ursu, D., Mazilu, D., Mutener, M., Schar, M.,
Patriciu, A.: “MRI Stealth” robot for prostate interventions. Minimally Invasive Ther-
apy 16(4), 241–248 (2007)

7. Goldenberg, A.A., Trachtenberg, J., Kucharczyk, W., Yi, Y., Haider, M., Ma, L.,
Weersink, R., Raoufi, C.: Robotic system for closed-bore MRI-guided prostatic inter-
ventions. IEEE/ASME Transactions on Mechatronics 13(3), 374–379 (2008)

8. Fischer, G.S., Iordachita, I., Csoma, C., Tokuda, J., DiMaio, S.P., Tempany, C.M., Hata,
N., Fichtinger, G.: MRI-compatible pneumatic robot for transperineal prostate needle
placement. IEEE/ASME Transactions on Mechatronics 13(3), 295–305 (2008)

9. Krieger, A., Iordachita, I., Song, S.E., Cho, N.B., Guion, P., Fichtinger, G., Whitcomb,
L.L.: Development and preliminary evaluation of an actuated MRI-compatible robotic
device for MRI-guided prostate intervention. In: IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, USA, pp. 1066–1073 (May 2010)

10. Su, H., Zervas, M., Cole, G.A., Furlong, C., Fischer, G.S.: Real-time MRI-guided needle
placement robot with integrated fiber optic force sensing. In: IEEE International Confer-
ence on Robotics and Automation, Shanghai, China, pp. 1583–1588 (May 2011)



MRI-Compatible Master-Slave Surgical System for Breast Biopsy 577

11. Ho, M., Koltz, M., Simard, J.M., Gullapalli, R., Desai, J.P.: Towards a MR image-guided
SMA-actuated neurosurgical robot. In: IEEE International Conference on Robotics and
Automation, Shanghai, China, pp. 1153–1158 (May 2011)

12. Kaiser, W.A., Fischer, H., Vagner, J., Selig, M.: Robotic system for biopsy and therapy
of breast lesions in a high-field whole-body magnetic resonance tomography unit. Inves-
tigative Radiology 35(8), 513–519 (2000)

13. Larson, B.T., Erdman, A.G., Tsekos, N.V., Yacoub, E., Tsekos, P.V., Koutlas, I.G.: De-
sign of an MRI-compatible robotic stereotactic device for minimally invasive interven-
tions in the breast. Journal of Biomechanical Engineering 126(4), 458–465 (2004)

14. Kokes, R., Lister, K., Gullapalli, R., Zhang, B., McMillan, A., Richard, H., Desai, J.P.:
Towards a teleoperated needle driver robot with haptic feedback for RFA of breast tumors
under continuous MRI. Medical Image Analysis 13(3), 445–455 (2009)

15. Elhawary, H., Zivanovic, A., Davies, B., Lampérth, M.: A review of magnetic resonance
imaging compatible manipulators in surgery. Proceedings of the Institution of Mechani-
cal Engineers. Part H, Journal of Engineering in Medicine 220(3), 413–424 (2006)

16. Tan, U.X., Yang, B., Gullapalli, R., Desai, J.P.: Triaxial MRI-compatible fiber-optic force
sensor. IEEE Transactions on Robotics 27(1), 65–74 (2011)

17. Lee, K.M., Shah, D.K.: Kinematic analysis of a three-degrees-of-freedom in-parallel ac-
tuated manipulator. IEEE Journal of Robotics and Automation 4(3), 354–360 (1988)

18. Pfreundschuh, G.H., Sugar, T.G., Kumar, V.: Design and control of a three-degrees-of-
freedom, in-parallel, actuated manipulator. Journal of Robotic Systems 11(2), 103–115
(1994)

19. Yang, B., Tan, U.X., McMillan, A., Gullapalli, R., Desai, J.P.: Design and control of
a 1-DOF MRI compatible pneumatically actuated robot with long transmission lines.
IEEE/ASME Transactions on Mechatronics 16(6), 1040–1048 (2011)



J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 579–590. 
DOI: 10.1007/978-3-319-00065-7_39    © Springer International Publishing Switzerland 2013 

Motion Compensated Catheter Ablation  
of the Beating Heart Using Image  
Guidance and Force Control 

Samuel B. Kesner and Robert D. Howe* 

Abstract. Cardiac catheters allow physicians to access the inside of the heart and 
perform therapeutic interventions without stopping the heart or opening the chest.  
However, conventional manual and actuated cardiac catheters are currently unable 
to precisely track and manipulate the intracardiac tissue structures because of the 
fast tissue motion and potential for applying damaging forces. This paper ad-
dresses these challenges by proposing and implementing a robotic catheter system 
that use 3D ultrasound image guidance and force control to enable constant con-
tact with a moving target surface in order to perform an interventional procedure, 
in this case tissue ablation.   The robotic catheter system, consisting of a catheter 
module, ablation and force sensing end effector, drive system, and image-
guidance and control system, was commanded to apply a constant force against a 
moving target using a position-modulated force control method.  As compared to a 
manual catheter system, the robotic catheter was able to apply a more consistent 
force on the target while maintaining ablation electrode contact with 97% less 
RMS contact resistance variation.  These results demonstrate that the 3D ultra-
sound guidance and force control allow the robotic system to maintain better con-
tact with a moving tissue structure, thus allowing for more accurate and repeatable 
tissue ablation procedures.  

1 Introduction 

Advances in cardiac catheter technology allow physicians to treat a range of con-
ditions inside the beating heart while avoiding both the invasiveness of opening 
the chest and the cognitive impairment risks associated with cardiopulmonary  
bypass [1-3]. However, the majority of catheters currently used for cardiac  
interventions only allow for slow manual motions of the catheter tip and are  
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unable to control the forces applied to the tissue surfaces.  Commercially available 
robotic catheter systems, such as the Artisan Control Catheter (Hansen Medical, 
Mountain View CA, USA) or the CorPath Vascular Robotic System (Corindus 
Vascular Robotics, Natick MA, USA), achieve manual catheter manipulation 
speeds while allowing the operator to utilize robotic teleoperation to reduce radia-
tion exposure [4, 5].   However, neither the manual nor the commercial robotic ca-
theter systems are able to compensate for the fast cardiac motion or regulate the 
forces applied to the tissue surface.   

The goal of our work is to enable a robotic catheter to track the fast motions of 
the heart while controlling the forces applied by the catheter end effector to the 
tissue in order to improve the safety and efficacy of medical procedures.  This ob-
jective is achieved through the use of 3D ultrasound (3DUS) guidance, active  
motion compensation, and catheter tip force control.  The medical application  
selected for this project is the radiofrequency (RF) ablation of cardiac tissue.  Ab-
lation is used by interventional cardiologists and cardiac surgeons to destroy  
cardiac conduction pathways that contribute to arrhythmias, or heart beat abnor-
malities [6].  The outcome success of this procedure is dependent on the electrode 
contact with the tissue and force application, and therefore can benefit from the 
robotic system proposed here [7-10]. 

In previous work, we have demonstrated in vivo the ability of the robotic cathe-
ter system to compensate for the fast motion of the heart [11].  A custom catheter 
tip force sensor was developed to enable the catheter to maintain a constant force 
relative to a target.  However, the force control system has to date only been eva-
luated on the bench top using noise-free simulated position signals without actual 
ultrasound image-derived signals [12, 13]. Other work in cardiac motion compen-
sation has focused primarily on interacting with the exterior of the beating heart 
[14-16].  In addition, the previous work in robotic catheters has primarily focused 
on teleoperation and position control [4, 5].  To the authors’ knowledge, the work 
presented here represents the first time 3DUS image guidance and force control 
has been used to enable a robotic catheter to accurately interact with a moving tar-
get.  Furthermore, this paper presents the first application of the 3DUS-guided and 
motion compensated catheter system to a clinical procedure, improving the thera-
peutic efficacy of ablation on the beating heart.  

The following paper presents the robotic catheter system, the force sensing and 
ablation end effector, and the force control method.  Next, the paper presents the 
system evaluation method, the experimental results, and finally concludes with a 
discussion of the implications and limitations of the results.  This work demon-
strates the potential benefits of integrating motion-compensation and force control 
with cardiac intervention catheters.  

2 Technical Approach 

The goal of the robotic catheter system is to use real-time 3DUS to measure the 
target tissue motion and then drive a robotic catheter to synchronize with the mo-
tion and apply a constant force to the tissue with a RF ablation end effector.  The 
system (Fig. 1) is composed of three main modules: the drive system that actuates 
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Fig. 1 The robotic system servos the catheter using 3DUS guidance and force feedback 

the catheter, the catheter module that is inserted through the vasculature into the 
heart, and the 3D ultrasound visual servoing system that tracks the tissue and 
commands the catheter to follow the motion.   The drive system contains a linear 
voice coil actuator and a position sensor that are able to rapidly adjust the catheter 
position.  The catheter module is composed of a stainless steel coil guidewire in-
side of a nylon sheath.  The sheath is positioned inside of the vasculature to guide 
the actuated catheter into the heart and the guidewired is servoed by the drive sys-
tem to compensate for the heart motion.  Finally, the visual servoing system utiliz-
es a 3DUS machine (Fig. 2, SONOS 7500 with X4 Ultrasound Transducer, Philips 
Healthcare, Andover, MA, USA) and a tissue tracking and motion prediction sys-
tem to determine the real-time motion of the cardiac tissue and control the catheter 
[17-20].  A more detailed description of the mechanical design of the robotic ca-
theter system is provided in [11]. 

A novel integrated force sensing and ablation end effector is presented here for 
the first time (Fig. 3).   The design goal of the ablation tool design is to enable the 
catheter system to apply RF energy to the fast-moving tissue inside the heart while 
applying a constant normal force.  The functional requirements of the ablation end 
effector are to sense forces, to ablate tissue using a clinical RF generator with the 
same efficacy as conventional ablation catheters, and to be robust enough to  
operate in the intracardiac environment.  The device consists of a force sensor  
described in [12], a stainless steel electrode, and a fine wire that runs though the 
catheter to the RF current generator.  The current prototype is approximately 
5 mm in diameter and is created using rapid prototyping 3D printing technology.  
The size of the end effector can be further reduced with improved fabrication such 
as laser micromachining and metal laser sintering.  See [12] for a more detail de-
scription of the 3D printed force sensor technology.  Fig. 3b presents examples of  
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Fig. 2 Ultrasound image showing the catheter, mitral valve annulus, and mitral valve leaflets 

the RF ablation lesions created with this tool on porcine skeletal muscle tissue (RF 
generator: Stockert 70, Biosense Webster, Diamond Bar, California, USA).  

The objective of the control system is to apply a desired force on a fast moving 
target with the robotic catheter end effector.  A standard error-based force control 
approach will not work for the robotic catheter system because of the limitations 
identified in [11], including backlash and friction in the catheter transmission sys-
tem [21, 22].   These limitations prevent a standard force regulator from correctly 
responding to the force tracking error in a stable manner because the internal  
dynamics of the catheter obstruct the controller action from being accurately 
transmitted from drive system to the catheter tip.  To overcome these issues, we 
propose a method that uses the force error term to modulate the commanded posi-
tion trajectory of the catheter.  This approach is similar to the inner position loop 
force control approaches used to implement force control on high-friction indus-
trial manipulators [23].   In addition to improved system stability, the use of an in-
ner position loop also allows the controller to directly compensate for the catheter 
friction and backlash as these limitations are position and velocity dependent [11]. 
See Fig. 4 for a block diagram of the control system.  

In this force control approach, the drive system is commanded to follow a de-
sired position, xd, that is the sum of the position of the moving target, xe and the 
position offset required to maintain the desired force, xf    

fed xxx +=
 

(1) 

The force modulation term is  

 −+−= dtFFKFFKx edfiedff )()(
 

(2) 

where Fd is desired force, Fe is the force applied to the environment, and Kf, and 
Kfi are controller gains.  This control law is similar to the method presented by 
Villani et al in [24].    
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Fig. 3 a) Ablation end effector solid model and prototype. b) Tissue sample (porcine skelet-
al muscle) ablated with the RF ablation end effector. Lesions are approximately 4 mm in 
diameter.  

 

Fig. 4 The force control system block diagram. The blue lines indicate force values and the 
purple lines indicate position values. 

3 Experimental Evaluation 

The robotic ablation catheter system was evaluated in a water tank experiment to 
examine the ability of the system to maintain good RF ablation electrode contact 
against a moving surface while applying a constant force.  A number of studies 
have demonstrated that cardiac ablation efficacy is directly related to the forces 
applied by the catheter tip and the quality of the electrode-tissue contact [7-10].  
Manually operated catheters do not adequately ablate tissue if they are bouncing 
or sliding on the tissue surface, in poor contact due to low forces, or creating tis-
sue perforations due to large contact forces [9, 10].  The objective of this evalua-
tion was to demonstrate that the robotic catheter system can improve ablation 
quality by maintaining good contact while accurately controlling the force. 
 

    a                                           b
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The system was evaluated by commanding the catheter to maintain a constant 
contact force against a moving target. The target was composed of a conductive 
pad used as the current return path electrode in clinical ablation and electrocautery 
procedures (REM Polyhesive II Patient Return Electrode, Tyco Healthcare, Gos-
port, UK) backed with compliant foam  (thickness: 25 mm, approximate stiffness: 
0.1 N/mm).  The target was translated with a 12 mm amplitude at a frequency of 
approximately 1 Hz (60 beats per minute).  Two motion patterns were tested: a si-
nusoidal trajectory and a human mitral annulus trajectory [25].  The ablation 
quality was evaluated by measuring the electrical resistance between the catheter 
tip electrode and the return electrode pad using an instrumented voltage divider 
(Fig. 5).  The water tank environment was used to allow the 3DUS guidance sys-
tem to visualize the catheter and target. 

The evaluation experiment was conducted using both the robotic catheter and a 
commercial manual ablation catheter (RF Marinr MCXL, Medtronic, Minneapo-
lis, Minnesota, USA) for comparison.  A manual catheter was select for compari-
son to demonstrate the limitations of the current technology due to a lack of  
motion compensation and force control.  For the manual catheter, a load cell was 
also added to the target to record the forces applied by the catheter tip (LCFD-
1KG, Omega Engineering, Stamford, CT, USA; range: 10 N, accuracy: +/-0.015 
N).  The robotic catheter was instrumented with the force-sensing ablation end ef-
fector and was operated under force control with 3DUS guidance.  Both catheters 
were rigidly braced 100 mm from the ablation tip at orientations perpendicular to 
the plane of the moving target.  The manual catheter was positioned so its ablation 
electrode was able to remain in contact during the entire target trajectory (Fig. 6).  

 

Fig. 5 The catheter ablation experimental setup. The moving target was connected to a 5 V 
DC signal and the catheters were instrumented with a voltage divider to measure the abla-
tion resistance.  Resistance measurements were used to evaluate tip contact quality for both 
a manual catheter and the robotic catheter system.  
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Manual Catheter 

 
 

Robotic Catheter 

 

Fig. 6 The water tank setup for the manual catheter (top) and the robotic catheter (bottom).  
Both images show the catheters, the white 3DUS imaging probe, and the blue motion  
target. 

4 Results 

Fig. 7 presents the position trajectories of the 3DUS tracking system, robotic ca-
theter, and motion simulator during the experiments.  Fig. 8 presents typical re-
sults of the ablation experiment on the sinusoidal motion target.  Both the manual 
and robotic catheters were in contact with the moving target for over 5 s during 
each trial, sufficient time to perform ablation.  The manual catheter was not able to 
apply a constant force or maintain a constant resistance.   

The reason for the manual catheter’s poor performance was because the motion 
of the target caused the manual catheter ablation tip to slide and tilt relative to the 
target surface as the motion simulator pushed on the catheter and caused it to 
buckle.  Compliance is a desirable feature in manual catheters because it prevents 
them from applying large forces and perforating cardiac tissue.  However, this 
bending compliance makes it challenging to achieve reliable ablation perfor-
mance.  As shown in Fig. 8, the manual catheter generated peak-to-peak resistance 
variations of over 20 kOhm and peak-to-peak force variations of 0.4 N.   

US Probe 

Catheter 

Target 

US Probe 

Catheter 

Target 
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Fig. 7 The position trajectories during the robotic catheter experiment: (top) The 3DUS 
tracking system; (middle) The robotic catheter position commanded by the force control 
system; (bottom) The actual target trajectory. 

The robotic catheter, in contrast to the manual catheter, achieved almost  
constant resistance values while maintaining a desired force of 1 N with a force 
tracking error of 0.11 N RMS.  The RMS variation of the resistance value for the 
robotic catheter was 0.25 kOhms, 97% less than the RMS variation of 9.88 kOhm 
for the manual catheter system.  The robotic catheter was able to achieve this level 
of performance because the 3DUS-guided motion compensation system and the 
force control algorithm enabled the ablation tip to maintain consistent contact with 
the target despite the fast motion (Fig. 8).  Similar force tracking results were ob-
tained using the human mitral valve trajectory. 

5 Discussion 

These results demonstrate that image-guided motion compensation and force con-
trol can improve key parameters that determine ablation quality.  This confirms 
that our robotic approach has the potential to increase clinical efficacy of intracar-
diac procedures.  The system was able to apply a constant force while maintaining 
a constant ablation resistance with the ablation end effector on a moving target.   
In contrast, the force and electrical contact provided by the manual catheter  
in the same experimental setup varied greatly.  This variation can primarily  
be attributed to the buckling, sliding, and tilting behavior of the manual catheter 
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  Manual                                        Robotic 

 

Fig. 8 A comparison of the electrical resistance and interaction forces between a conductive 
target and a manual catheter (left) and the robotic catheter system (right).  The manual ca-
theter applies a force and resistance that vary with the motion of the target.  In contrast, the 
robotic catheter achieved consistent contact with the moving target while applying a con-
stant force.   

tip due to the target motion.  The 3DUS motion tracking enabled the robotic cathe-
ter to compensate for the target motion and maintain good ablation electrode con-
tact without the buckling behavior of the manual catheter. 

One insight from this work is that multiple forms of sensor information are re-
quired to command a catheter to safely and effectively interact with the moving 
target.  Force sensing alone is not sufficient for the catheter to track the target mo-
tion, as described in [13].  This is due to the fact that the catheter performance li-
mitations of backlash and friction prevent the system from responding fast enough 
to the quick tissue motion using only force feedback.  Motion tracking must also 
be used to overcome these limitations and maintain system stability [13].  The im-
age guidance provides the desired position trajectory for the tip of the catheter and 
the force feedback allows for minor adjustments in the tip position to regulate and 
maintain the tool-tissue interactions forces.  Without either 3DUS guidance or 
force sensing, the catheter would be unable to maintain the consistent ablation 
electrode contact and could either penetrate or retract from the target surface. 

Although the experimental results demonstrate that the robotic catheter system 
is able to apply a constant force while maintaining a consistent ablation contact, 
there are a number of limitations in this initial validation study due to the chal-
lenges of accurately simulating in vivo cardiac ablation in a laboratory setting.  
First, measuring the DC resistance of the contact does not consider the electrical 
frequency response of the cardiac tissue at the 500 kHz frequency used by the RF 
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energy generator.  In addition, the system was tested in water instead of electrical-
ly-conductive blood or saline, which alters the electrode conduction properties.  
Finally, the experimental setup did not accurately approximate the exact mechan-
ics of intracardiac ablation, including the compliance of the vessels in the heart 
and the tool orientation relative to the moving tissue structures.  The manual ca-
theter performance depends on its orientation with respect to the moving tissue 
target, although similar fluctuations in force and resistance would have resulted 
for other orientations.  We anticipate that these issues will not impair the demon-
strated advantages of the robotic system because of the known properties of the 
ablation process and the success of previous in vivo tests of the image guidance 
systems [11, 26, 27]. 

6 Conclusions 

This paper presents the experimental evaluation of the robotic catheter system for 
cardiac ablation.  The system uses motion compensation and force feedback to 
maintain a constant force and ablation resistance on a moving target.  The experi-
mental results presented here demonstrated that the robotic system is able to main-
tain consistent ablation electrode contact with a translating motion simulator with 
a 97% reduction in RMS resistance variation over a manual catheter.  The result 
can be explained by the fact that a compliant manual catheter slides and buckles 
while in contact with a quickly moving structure, such as the actively contracting 
heart wall. 

Future work in this project will focus on the demonstration and evaluation of 
the technology in an in vivo setting.  While the motion compensation and robotic 
catheter system has been demonstrated previously in vivo [11, 26], the force con-
trol ablation system has not yet been tested inside a beating heart.  One possible 
challenge the system will encounter in vivo is how to respond when the tissue 
stiffness changes over the course of the heart cycle.  In addition, safety issues such 
as system stability and preventing tissue collisions will need to be further investi-
gated.  The project objective is to enable a range of beating heart surgical proce-
dures with a catheter, and the ablation procedure presented here is a first step  
toward this ultimate goal. 
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Robotic Micropipette Aspiration
of Biological Cells

Ehsan Shojaei-Baghini and Yu Sun

Abstract. This paper presents a system for mechanically characterizing single cells
using automated micropipette aspiration. Using vision-based control and position
control, the system controls a micromanipulator, a motorized translation stage, and
a custom-built pressure system to position a micropipette (4 μm opening) to ap-
proach a cell, form a seal, and aspirate the cell into the micropipette for quantifying
the cell’s elastic and viscoelastic parameters as well as viscosity. Image process-
ing algorithms were developed to provide controllers with real-time visual feed-
back and to accurately measure cell deformation behavior on line. Experiments on
both solid-like and liquid-like cells demonstrated that the system is capable of ef-
ficiently performing single-cell micropipette aspiration and has low operator skill
requirements.

1 Introduction

The study of living cell mechanics can help gain insight in cell structures and func-
tions [1]. It has been demonstrated that single-cell mechanical characterization can
also be useful for investigating disease mechanisms and progression [2, 3], since
the biomechanical properties of the pathological cells can differ from healthy ones.
Mechanical characterization of cells from the pleural fluids of patients revealed that
the Young’s modulus of cancer cells is considerably less than in benign cells [3].

Population-based cell experiments do not permit a thorough examination of
the stochastic processes involved in regulating cellular function at the single cell
level [4]. The need of investigating biomechanics at cellular level calls for single
cell manipulation techniques for studying the complex and dynamic behavior of
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(b) Digital
Pressure
System

(a) Micromanipulator

(d) Microscope (c) Pressure Transducer

Fig. 1 System for automated single-cell micropipette aspiration. (a) Micromanipulator with
encoder feedback. (b) Custom-built computer-controlled pressure system. (c) Differential
pressure transducer measuring the pressure difference between the delta and reference tanks.
(d) Inverted microscope with motorized focus.

individual cells. Over the years, many methods have been developed to study me-
chanical properties of single cells. In Atomic Force Microscopy (AFM), mechanical
deformation is induced using the tip of a cantilever. The deflection of the cantilever
is used to calculate the applied force. Using this technique, a map of cell stiffness
across the cell surface can be generated [1, 5–7]. In Magnetic Twisting Cytometry
(MTC), magnetic beads are attached to the cell surface. Twisting moment induced
by the application of a magnetic field causes the cell to deform. Both elastic and
viscoelastic properties of cells can be measure using this technique [6, 8–10]. In
optical tweezers, laser beams trap high-refractive-index dielectric beads attached to
cells and hence, exert forces to the cells [1, 2, 5, 6, 11]. The applied force in optical
tweezers is typically limited to few hundred of pN. More experimental single-cell
mechanical characterization techniques were reviewed in [1].

This paper focuses on the micropipette aspiration technique. Micropipette as-
piration uses a fine hollow needle to aspirate a portion of a cell with vacuum
pressure. Geometric changes in cell shape are measured to determine the elas-
tic and viscoelastic properties, and flow resistance of the cell [1, 5, 12–17]. Con-
ventionally, micropipette aspiration requires well-trained operators to look into the
eyepieces of a microscope, skillfully operate multiple devices to micromanipulate
single cells, control vacuum at proper timings to form a seal between the cell and
micropipette opening, synchronized pressure and video recording, and accurately
measure recorded images to extract cell deformation parameters. After cell exper-
iments, the operator determines cell deformations by performing manual measure-
ments on a high number of recorded images.

Micropipette aspiration is a powerful technique and has low infrastructure
requirement. However, the high skill requirements and the efforts required for
tedious, time-consuming post processing of data make the technique difficult and
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Table 1 Valve states in the digital pressure system

State Description V1 V2 V3 V4

1 Sense Pressure C O O O
2 Sense and apply pressure O C O O
3 Route high pressure to micropipette only O O C C
4 Route high pressure to Delta tank only C O O C

Note: O and C represent Open and Close, respectively.

less appealing to use. In contrast, AFM over the past decade has been largely au-
tomated. The automated operation of AFM (‘point-and-click’) is part of the reason
why AFM has become a more widely used research tool in cell mechanics.

This study aims to prove the feasibility of achieving ‘point-and-click’ operation
in micropipette aspiration through the use of automation techniques. In [18] and our
previous work [19], image processing algorithms were developed to measure cell
deformation behavior. This paper reports on an automated system that performs the
complete micropipette aspiration procedure via computer mouse clicking. The sys-
tem controls motion control devices based on visual servoing and position control
and processes images in real time for tracking features and measuring cell shape
changes.

2 System and Control

The system (Fig. 1) consists of an inverted microscope (Olympus IX81) with a
CMOS camera (Basler A601F), a motorized micromanipulator (Siskiyou, 7600 se-
ries) with encoder feedback for positioning the micropipette, an XY translation stage
(Prior Scientific ProScan II) for positioning cell samples, and a custom-developed
pressure system for generating computer-controlled vacuum levels using a differen-
tial pressure transducer (Omega PX409-10WDWU5V ) to obtain pressure feedback.
The host computer runs LabVIEW (National Instruments) programs to control the
hardware and to process pressure and image data.

The suction pressure (ΔP = ρgΔh) is generated by creating a height difference
between the reference and delta tanks (Fig. 2). Solenoid valves (Fig. 2(a)) are used to
route the fluid for various functions. For instance, when the operator mounts a new
micropipette using the back filling method [18], the trapped air could be forced out
by routing the high-pressure pump (Fig. 2(b)) to the micropipette tip without dam-
aging the transducer (Fig. 2(e)) or affecting the water levels in reservoirs. Table 1
describes four functions of valves used in this system. The positions of the two water
tanks are controlled by a standard proportional integral derivative (PID) controller
(± 2 Pa error) with pressure feedback from the differential pressure transducer as
illustrated in Fig. 3(a).

The micromanipulator is controlled via an image-based look-and-move visual
servoing algorithm [20]. The internal closed-loop controller uses encoders as input
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Fig. 2 Digital pressure pump. (a) Solenoid valves are used in routing fluid, (b) High pressure
air pump is used to remove trapped air from a newly mounted micropipette, (c) Delta Tank
moves vertically to generate pressure. (d) Reference Tank moves vertically to balance the
pressure in Delta Tank. (e) Differential pressure transducer outputs the pressure difference
between Delta and Reference Tanks in Volts.

with a sampling rate of 1 kHz, whereas the visual servoing controller has a low sam-
pling rate of 30 Hz (Fig. 3(b)). Two sets of PID gains for position errors larger than 3
μm and within the proximity of the cell are used [21] to control the micromanipula-
tor in order to produce smooth motion and minimize micropipette vibrations. Cells
in a standard Petri dish are placed on the motorized XY translation stage that is also
controlled via image-based look-and-move visual servoing, as shown in Fig. 3(c).
The PID controller sends velocity commands to the stage amplifier.

3 Micropipette Tracking

The micropipette tip is visually tracked using an optimized rotation-invariant nor-
malized cross-correlation (NCC) method. The basic NCC algorithm was described
in [22]. A template of the micropipette tip (Fig. 4(a)) is cross-correlated with the cur-
rent frame of image to locate the best match within a search area. The selection of a
template is required only when a new micropipette is mounted on the micromanip-
ulator in the beginning of an experiment. Once the template is selected, the search
area is limited to the proximity of the last known location of the micropipette from
the previous frame. This method reduces the search time. The normalized cross-
correlation algorithm determines the location and the angle of the matched template
(x,y,α), as shown in Fig. 4(c).
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Fig. 3 System control architecture. (a) PID position controller for controlling the pressure
system. (b) Image-based look-and-move visual servoing controller for controlling the micro-
manipulator. (c) PID position controller for controlling the motorized XY translation stage.
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Fig. 4 Micropipette tracking. (a) Search with the normalized cross-correlation algorithm
within the search area. (b) User selects a template containing the micropipette tip. (c) Matched
template location and angle (x,y,α).

4 Cell Tracking

There are typically several cells present within a field of view. Thus, the cell tracking
algorithm requires the user to indicate which cell is the target for characterization
via one computer mouse click anywhere on top of the target cell (see green cross
in Fig. 5(a)). The cell tracking algorithm uses binary morphology techniques [23]
to determine the position of the cell. The system then forms a region of interest
(ROI) that is binarized with the Otsu adaptive thresholding method (Fig. 5(b)). Close
binary operation is used to create a smooth object on the outside (Fig. 5(c). Convex
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(f) Circle fitting(b) Threshold(a) ROI (c) Close (d) Convex (e) Filtered
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Fig. 5 Cell tracking. (a) ROI formed around user’s click (green cross). (b) Binarized image
with the Otsu adaptive thresholding method. (c) Morphological close operation creates a
smooth object. (d) Morphological convex operation fills the holes and create an envelope of
the cell. (e) Noise removal based on object area. (f) Least square fitting to obtain a circle
(x,y,Rc).

hull is used to obtain the cell’s envelope (Fig. 5(d)), and objects with small areas
are removed (Fig. 5(e)). The system determines the position and radius of the cell,
(x,y,Rc) (Fig. 5(f)) using least squares fitting.

5 Aspiration Length Tracking

When a cell is aspirated into the micropipette, an ROI is formed to include the inside
of the micropipette, as shown in Fig. 6(a). The extracted ROI is then convolved with
a standard 5× 5 West Sobel kernel to eliminate the vertical edges and enhance the
horizontal contours (Fig. 6(b). The result of the gradient filter is binarized using
the Otsu method, as shown in Fig. 6(c). After binary morphology close, the objects
found in the image are filtered according to two criteria: (1) object is removed if
the area is smaller than a threshold value; and (2) object is removed if the center of
mass is not in the ‘safe’ zone (within the micropipette), as shown in Fig. 6(c). The
first criterion filters out noises and small background debris. The second criterion
ensures that the attached debris to the wall of the micropipette is not recognized
as cell contour. The left most object is recognized as the protruded cell contour
(see green line in Fig. 6(c)).

(c) Binary

safe
zone10 um

(b) Sobel Filter(a) Extracted ROI
4 μm

Fig. 6 Cell aspiration length tracking. (a) ROI containing the inside of the micropipette. (b)
Sobel filter is used to enhance the edges and remove vertical edges. (c) The tracked aspiration
length is highlighted in green, and the area between the dashed red lines is termed ‘safe zone’.

6 Experimental Results

The porcine aortic valve interstitial cells (PAVICs) used in the experiments were
harvested from aortic valve leaflets from porcine. The PAVICs were resuspended
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Fig. 7 Automated micropipette aspiration flow chart. (a) Task 1 finds and park the mi-
cropipette in home position. (b) Task 2 selects a target cell. (c) Task 3 creates a seal between
the mouth of the micropipette and the cell. (d) Task 4 generates a specific pressure profile
based on the experiment type. (e) Task 5 performs data analysis and calculates biomechani-
cal properties of the tested cell.

in standard tissue culture medium (DMEM supplemented with 10% FBS and
1% antibiotics). When the cultured cells were confluent, the cells were resus-
pended in standard DMEM using trypsinization method. The human promyelocytic
leukemia cells (HL-60) used in the experiments were purchased from ATCC (CCL-
240), which were obtained by leukopheresis from a 36-year-old female with acute
promyelocytic leukemia. The cells were subcultured by replacement of medium (as
recommended by ATCC) every two days.
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The system performs cell aspiration according to the following protocol consist-
ing of five steps (Fig. 7): (1) find and home micropipette based on a pre-defined
micropipette template; (2) center a user-selected cell in the field of view; (3) create
a seal between cell and micropipette tip based on a pre-defined pressure, Pseal; (4)
perform aspiration; and (5) process data. There are three types of experiments that
a user can choose to conduct: (a) characterization of elastic properties of solid-like
cells; (b) characterization of viscoelastic properties for solid-like cells; (c) viscous
properties of liquid-like cells.

In our experiments, the system was used to measure the elastic and viscoelastic
properties of PAVICs. It has been shown that the mechanical properties of aortic
valves play an important role in the heart’s functionality [24, 25]. The regulatory
valve function is also affected by the valve cells. For testing liquid-like cells, HL-60
cells were used for viscosity characterization. Leukocytes are known to play a sig-
nificant role in blood flow and oxygen delivery in micro-capillaries. Less deformable
cells induce impairment to the circulation to the eye and the central nervous system
causing damage to such organs [26]. The PAVIC and HL-60 cells were also chosen
for evaluating our automated micropipette aspiration system’s performance because
the characterization results of these cells using manual micropipette aspiration are
available in the literature.

6.1 Elastic Characterization

In order to measure the Young’s modulus of the cells, the system applied a series of
small pressure steps (4 steps of -100 Pa) to the cell with an interval of 100 seconds
via the digital pressure system with an initial seal pressure of -70 Pa. The aspiration
length (L) and step pressure (ΔP) are related by the half space model [14]

L
Rp

=
3ΔP
2πE

Φp(η) (1)

where E is the Young’s modulus, Φp for our used micropipette is approximately
2.1, and η is the wall parameter. The aspiration length, L and suction pressure, ΔP
(Fig. 8(a)) at the end of each 100-second interval were used for linear regression to
obtain the Young’s modulus from the slope of the fitted line. A robust linear regres-
sion was used to eliminate the effect of outliers. The determined Young’s modulus
value for the tested PAVICs is 358.7± 192 Pa (n=30). This result is in agreement
with our previous results (354.8±142 Pa) from manual testing [19] and agrees well
with the results reported in [25].

6.2 Viscoelastic Characterization

We also used the system for quantifying viscoelastic properties of the PAVICs. In
viscoelastic characterization, the system applied to the cell a large step pressure
(-400 Pa) for 150 seconds. In this period, the system on-line measured the cell aspira-
tion length, L(t), which is related to step pressure input (h) by the Kelvin model [15]
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(a) Elastic response (b) Viscoelastic response

Fig. 8 Elastic and viscoelastic responses of PAVICs. L is the aspiration length and Rp is
the radius of the micropipette. (a) Elastic response of a PAVIC, where (i)-(iv) are equilib-
rium points at the end of 100-second intervals. (b) Viscoelastic response of a PAVIC. A step
pressure of −400 Pa was applied for 150 seconds.

L(t) = Ls

[
1− k2

k1 + k2
exp

(−t
τ

)]
h(t) (2)

where Ls is the aspiration length at the end of the interval. Using least-squares
nonlinear fitting, L(t) was fitted to the recorded data to determine k1, k2, and τ
(Fig. 8(b)), where k1 and k2 are the elastic constants of a standard linear body, and
τ is the time constant. The results are summarized in Table 2 together with the pre-
viously reported values from manual testing [15].

Table 2 Determined viscoelastic parameters of PAVIC cells

Viscoelastic Parameters k1 k2 τ

Curve fitting results (n = 25) 189.6±71.3 270.4±68.6 40.0±34.2
Literature reported values [15] 153.8±59.9 310±70.4 45.30±11.6

6.3 Viscosity Characterization

To quantify viscosity of liquid-like cells, the automated micropipette aspiration sys-
tem applied step pressures ranging from −700 Pa to −220 Pa for 150 seconds to
HL-60 cells. In this period, the system automatically measured aspiration lengths,
L(t), as shown in Fig. 9. Using a power-law fluid model [26, 27], the shear rate
dependence of cytoplasmic viscosity is
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(b) Cytoplasmic viscosity

Fig. 9 Viscous properties of HL-60 cells. (a) Viscous response of an HL-60 cell to a step
pressure of −270 Pa. (i)-(iv) show the cell at various time instances. L is the aspiration length
and Rp is the radius of the micropipette. (b) Cytoplasmic viscosity as a function of mean
shear rate γm. Step pressure varied from −700 Pa to −220 Pa (n = 30).

μ = μc (γm/γc)
−b (3)

where μ is the cytoplasmic viscosity, γm is the mean shear rate during cell entry into
the micropipette, μc is the the characteristic viscosity at the characteristic shear rate
γc, and b is a material coefficient. In this study, γc was set to 1 s−1. Characterization
results are μc = 171.35±13.04 Pa.s, and b = 0.78±0.08 for HL-60 cells (n = 30).
These values are in agreement of the previously reported value [26].

7 Discussion

For comparison purposes, manual micropipette aspiration was also performed by a
proficient operator. In manual operation, the user looked into the eyepieces of the
microscope and controlled the micropipette positions using a joystick. Comparing
the speed of locating and homing the micropipette, the system was at least two
times faster than the proficient operator (19 vs. 60 seconds). The system was also at
least twice as fast in forming a seal between a cell and the micropipette (23 vs. 52
seconds). The time taken in the cell aspiration step was comparable since sufficient
waiting time was required for cells to respond; however, we believe that the pressure
profile was generated more accurately by the closed-loop controlled pressure pump
in the automated system. It was observed that the cells experience a consistent seal
forming experience due to use of accurately controlled pressure profile.

It would take much longer for less trained users in these steps in manual op-
eration, while the automated system’s performance and operation speed are user
independent. In image processing, the system determined cell deformation param-
eters during cell aspiration in real time without the need for tedious, lengthy post
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processing. In comparison, it took the proficient user averagely 2 minutes per cell
to manually make measurements in recorded images for elastic measurements and
approximately 2 hours for viscoelastic characterization due to the high number of
images captured.

8 Conclusion

This paper presented an automated micropipette aspiration system. The system
performance was evaluated by characterizing elastic and viscoelastic properties of
PAVICs and HL-60 cells representing solid and liquid-like cell models. Experiments
demonstrate that the system enables single-cell micropipette aspiration with a higher
efficiency and higher accuracy. System performance is operator skill independent
and is achieved by ‘point-and-click’. Currently the system tests a single cell per
user intervention (click). However the user can select several cells initially after
which the system sequentially tests the selected cells without need of further user
input. Automated cell type recognition will add value by allowing unsupervised in-
vestigation of a large number of cells in an area of interest. Currently the system
assumes that the motion of the micropipette does not affect the location of the target
cell. This assumption holds true in a clean sample in which only cells are suspended
in the medium. However, when other particles present in the medium, new control
algorithms should be developed for micropipette positioning.
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Quantitative Analysis of Locomotive Behavior
of Human Sperm Head and Tail

Jun Liu, Zhe Lu, Clement Leung, and Yu Sun

Abstract. Sperm selection plays a significant role in in vitro fertilization (IVF).
Approaches for assessing sperm quality include non-invasive techniques based on
sperm morphology and motility as well as invasive techniques for checking DNA
integrity. In 2006, a new device using hyaluronic acid (HA) coated dish for sperm
selection was cleared by the Food and Drug Administration (FDA) and entered IVF
clinics. In this technique, only sperms with DNA integrity bind to the HA droplet,
after which these bound sperm stop revealing head motion and their tail movement
becomes more vigorous. However, selecting a single sperm cell from among HA-
bound sperms is ad hoc in IVF clinics. Different from existing sperm tracking algo-
rithms that are largely limited to tracking sperm head only and are only able to track
one sperm at a time, this paper presents a multi-sperm tracking algorithm that tracks
both sperm heads and low-contrast sperm tails. The tracking results confirm a signif-
icant correlation between sperm head velocity and tail beating amplitude; demon-
strate that sperms bound to HA generally have a higher velocity (before binding)
than those sperms that are not able to bind to HA microdots; and quantitatively re-
veal that HA-bound sperms’ tail beating amplitudes are different among HA-bound
sperms.

1 Introduction

The mechanisms of natural sperm selection are not well understood. It is accepted,
however, that the sperm selection mechanisms play a great significant role for the
inheritance of superior health traits such as disease resistance, offspring survival and
fecundity [1] [2]. In natural human conception, sperm selection occurs as a healthy
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sperm actively seeks out and fertilizes an egg. However, for couples having infertil-
ity issues, assisted reproduction technologies are required to address their reproduc-
tive needs. For instance, in intracytoplasmic sperm injection (ICSI), an embryologist
selects a single sperm and injects it into an oocyte (i.e., egg cell) to overcome issues
such as male infertility [3]. This IVF procedure bypasses the physiologic and bio-
logic barriers for sperm selection and demands the operator to select high-quality
sperms.

The criteria for sperm assessment provided by the World Health Organization
are vitality, morphology, and motility [4]. In IVF, sperm selection is commonly
based on sperms’ motility and morphology attributes. A widely used method for
sperm selection is motile sperm organelle morphology examination [5] [6]. Sperm
motility is also a widely accepted criterion for sperm quality assessment. The past
few decades have witnessed the development of computer-assisted sperm analysis
(CASA) methods for measuring both sperm morphology and motility [7].

Recently, an emerging methodology was introduced for selecting viable sperms
with a high level of DNA integrity. In order to non-invasively select a healthy sperm,
Huszar’s group proposed the use of a hyaluronic acid (HA) assay [8]. HA is a linear
polysaccharide in the extracellular matrix of cumulus oophorus around the oocyte
and plays an important role in natural human fertilization [9]. A series of studies
on HA-based sperm selection confirmed that the HA assay is able to select healthy
sperms with no DNA damage [10] [11], and has received FDA approval. In the HA
assay, sperms that bind to HA microdots are proven to have a higher level of DNA
integrity compared to those unbound sperms. When a sperm binds its head to an
HA microdot, the sperm loses its progressive movement and the tail beating motion
becomes more vigorous. The sperm tail beating amplitude becomes the only param-
eter to differentiate the HA bound sperms from each other, calling for techniques to
quantify HA-bound sperms’ tail beating motion.

Several algorithms have been developed to track sperm trajectories, measure
sperm velocities, and evaluate sperm energetics [12]-[14]. Shi et al. reported a
single-sperm tracking algorithm based on a four-class thresholding method to
extract a single sperm in a small region of interest [15]. The method is limited
to tracking a single sperm and is incapable of multi-sperm tracking. Nafisi et al.
demonstrated a template matching algorithm for sperm tracking. The algorithm is
insensitive to image acquisition conditions [16]. However, this algorithm relies on
user input to obtain the sperm’s initial position and cannot track multiple sperms.
Existing algorithms for sperm tracking are largely limited to sperm head tracking.
The small size (≤ 1μm in thickness) and low contrast of sperm tails under opti-
cal microscopy make sperm tail tracking challenging. In our previous study [17],
a maximum intensity region algorithm was developed for sperm tail tracking. The
tracking algorithm, without proper filtering, can be susceptible to disturbances, such
as overlapping of the target sperm with other sperms or debris and changes in light-
ing conditions.

In this paper, we report an approach for tracking both sperm head and tail. We
use a motion template method to detect and track multiple moving sperms, and inte-
grate a Kalman filter to the maximum intensity region algorithm to locate the sperm
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tail’s position. With the positions of the sperm head and tail detected, the sperm’s
velocity and tail beating amplitude were measured. Experimental results demon-
strate that there is a significant correlation between the sperm velocity and its tail
beating amplitude. We also analyzed sperm motility and the tail beating movement
on HA coated dishes. We found sperms with a higher level of motility are more
likely to bind to the HA microdots, and the sperm tail beating amplitude signifi-
cantly increases after a sperm binds to the HA microdots. Quantitative analysis of
sperm tail’s beating amplitude can provide useful information for sperm selection.

2 Experiment Setup and Design

2.1 Experiment Setup

Human sperm samples were tested under a standard inverted microscope (bright
field imaging, Nikon TE2000-S). A 20× objective with a numerical aperture of
0.45 was used (CFI Plan Fluor ELWD, Nikon). A CMOS camera (601f, Basler;
resolution: 640×480) was connected to the microscope to capture images at a frame
rate of 30 frame/second.

2.2 Experiment Design

We first investigated the correlation between sperm velocity and sperm tail beating
amplitude. In this experiment, human sperms were placed in a Petri dish containing
a standard medium (SpermCatch, NidaCon International). Mineral oil was used to
cover the medium to prevent evaporation. Fig. 1(a) and 1(b) show a sperm changed
its position between the two image frames. Sperms that had linearly progressive
movement for at least two seconds were taken into consideration. To evaluate the
linearity of the sperm motion, sperm’s average curvilinear velocity and straight line
velocity were calculated by measuring the sperm’s head position in each frame.

Fig. 1 Experiment design.
(a)(b) Experiment 1: a sperm
changed its position be-
tween two frames. (c)(d)
Experiment 2: a sperm was
moving towards an HA mi-
crodot and then bound to the
HA microdot.

(a) (b)

(c) (d)
20μm

HA microdot edge
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Additionally, the sperm tail beating amplitude was measured using the sperm tail
tracking algorithm.

The second experiment was designed to investigate the difference of sperm veloc-
ity and tail beating amplitude between HA bound sperms and those unbound ones.
Human sperms were analyzed in a PICSI dish (MidAtlantic diagnostic, Mount Lau-
rel, NJ, USA) with HA microdots coated on the dish bottom. The microdots were
first hydrated by placing 10 μ l droplets of Human Tubal Fluid, and were added with
10 μ l SpermCatch. Human sperm was then placed on the HA microdots, which were
covered with mineral oil to prevent the culture medium from evaporation. The ex-
periment was conducted at room temperature. Some sperms were observed to bind
to the microdots after 5 minutes. Fig. 1(c) shows a sperm was moving towards an
HA microdot, and Fig. 1(d) shows the same sperm bound to the HA microdot. When
a sperm bound to the HA microdot, its head motion stopped and its tail beat vigor-
ously. In contrast, sperms that might have DNA defects, swam freely on top of the
HA microdots without binding. In this experiment, the head velocity of HA bound
sperms before binding and the head velocity of unbound sperms were measured and
compared. The increase of sperm tail beating amplitude after a sperm binds to an
HA microdot was also measured.

3 Sperm Tracking

3.1 Overview

In both experiments described in the above section, the sperm velocity and tail beat-
ing amplitude are calculated in every frame of image. The algorithm consists of
three steps. The first step tracks the sperm head and uses its position to calculate the
sperm curvilinear velocity (VCL), straight line velocity (VSL), and linearity of the
sperm’s moving path. In the second step, the sperm tail region of interest (STROI) is
extracted. STROI extraction is an extrapolation process that calculates the region in
which the sperm tail is located by using information from the first step. The STROI
is used to capture the tail tip region of the sperm. Once the STROI is found, the
maximum intensity region (MIR) algorithm is used to locate a point on the sperm
tail within the STROI. Finally, a Kalman filter is used to improve the accuracy of
the located point on the sperm tail.

3.2 Sperm Head Tracking

There are typically multiple sperms moving randomly within a field of view. In or-
der to detect the sperm heads simultaneously, a multi-target tracking algorithm was
developed. For a specific single sperm, a silhouette image of this sperm is obtained
by subtracting two consecutive frames. The silhouette image is then binarized by ap-
plying a threshold to suppress the background noise. When this sperm cell moves,
new silhouettes are captured and overlaid to the old silhouette. The sequentially fad-
ing silhouettes record the motion history of this sperm. Using this method, a motion
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Fig. 2 Multi-sperm head
tracking. (a) Sperm head
tracking results. (b) Cor-
responding motion history
image.

(a)
20μm

(b)
20μm

Sperm without 

movement

history image (MHI) of all the moving objects in the same field of view is obtained,
as shown in Fig. 2(b). The position of each moving object is calculated from its
central moment in the MHI. Among these moving objects, there are some objects
with very little motion caused by those sperms with extremely low motility or by
Brownian motions of debris. These objects are excluded by applying morphological
transformations (i.e., erosion and dilation) to the MHI. Fig. 2(a) shows the detected
moving sperms.

To track multiple sperms, the position history of each sperm is recorded and
managed in the multiple sperm tracking algorithm, as summarized in Table 1. When
J sperms are detected at frame i, Pi j represents position of j-th sperm at frame
i. When a sperm moves close to the edge of the image and its moving direction
is towards the boundary, it is considered swimming out of the field of view. The
algorithm then terminates the corresponding data column for this sperm. As shown
in Table 1, the second column disappears after frame i+1, which means the second
sperm has moved out the field of view. On the other hand, when a sperm newly
moves into the field of view, it is added into the data column. For instance, a new
sperm moves into the field of view at frame i+ 3. Correspondingly, a new column
is added (see last column in Table 1).

To track an individual sperm, the direction vector of the sperm is used as a unique
identifier to distinguish it from other sperms. By denoting the position of the j-th
sperm at i+ 1 frame as Pi+1, j, the sperm’s direction vector is Di j = Pi+1, j− Pi,o,
where o ∈ [1,J]. We found experimentally that the maximum moving distance of
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Table 1 Dynamic representation of sperm positions in the multi-sperm tracking algorithm

Frame

Position Sperm
1 2 ... J J+1

i Pi1 Pi2 ... PiJ

i+1 Pi+1,1 Pi+1,2 ... Pi+1,J

i+2 Pi+2,1 ... Pi+2,J

i+3 Pi+3,1 ... Pi+3,J Pi+3,J+1

...
...

...
...

...

fast sperms between two consecutive frames is approximate 3.86 μm (i.e., 8 pixels).
Therefore, if the distance between the j-th sperm’s position at frame i+1 and the o-
th sperm’s position at frame i is less than 8 pixels (i.e., ‖Di j‖< 8), these two sperms
are recognized as the same sperm (i.e., o = j). There may be instances in which two
or more sperms at frame i+1 have a distance less than 8 pixels to the j-th sperm in
frame i. The average movement direction in previous 30 frames, D j, is then used as
a unique identifier to determine which sperm is the correct j-th sperm.

D j =
1
30

30

∑
k=1

Di−k, j (1)

The candidate sperm s that produces the minimum Euclidean distance value is con-
sidered the same j-th sperm in the previous frame i.

s = min
m∈[1,M]

‖Dm−D j‖ (2)

where M is in frame i+ 1 the total number of sperms close to the j-th sperm (i.e.,
‖Di j‖< 8); and Dm is the distance vector between the candidate sperm and the j-th
sperm.

Assume the j-th sperm enters the field of view at frame i and swims out of the
field of view at frame i+N. With the sperm position detected in each frame, the
travel distance of the j-th sperm between two consecutive frames can be determined
from its direction vector, Di j. The curvilinear velocity (VCL), which is the average
velocity of the sperm head along its actual curvilinear path, is

VCLj =
1
N

N−1

∑
k=0

Di+k, j (3)

The straight line velocity (VSL), which is the average velocity of the sperm head
along the straight line between its first and last detected position, is
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VSLj =
Pi+N, j−Pi j

N
(4)

The linearity (LIN) of the sperm’s curvilinear path is

LIN =
VSL
VCL

(5)

where LIN is the linearity measure (0 ≤ LIN ≤ 1). A higher LIN value means that
the sperm’s moving path is more linear. Healthy energetic sperms with progres-
sive/linear movement are desired (vs. those traveling in circles for instance) in sperm
selection. In our experiments, only those sperms having a LIN value greater than 0.9
were considered for further analysis.

3.3 Sperm Tail Tracking

After the sperm head position is detected, the sperm tail tracking algorithm ex-
tracts a sperm tail region of interest (STROI). As shown in Fig. 3(b), the STROI
is determined using the sperm head position and the average direction vector of its
movement. The average direction vector, D j is used instead of the direction vector
Di j because the sperm may exhibit abrupt changes in movement direction between
two consecutive frames. By averaging the direction vectors of the sperm across a
number of frames (e.g., 30 frames), the effect of abrupt changes in the sperm mov-
ing direction between frames are mitigated and the extraction of STROI becomes
more robust.

The STROI’s center position in the i frame, Ti j, is determined by subtracting a
scaled value of the direction vector from the sperm head’s centroid

Ti j = Pi j− a · D j

‖D j‖
(6)

where a is a scalar value determined by the human sperm length. Under the 20×
magnification, the average length of human sperms is approximately 90 pixels (i.e.
a = 90). After the center position is found, a 25×25 region of interest is taken as the
STROI. The size of 25×25 provides a sufficient tail search area that takes into con-
sideration a range of sperm tail length variations and sperm tail beating amplitudes.

After finding the STROI, the algorithm verifies that a tail is present in the STROI.
The fundamental feature of flicker is extracted by taking the absolute difference
between six consecutive inverted grayscale image frames.

f (i) =
5

∑
k=0

|I(i− k)− I(i− k− 1)| (7)

where f (i) is the flicker image extracted at frame i, and I represents the grayscale
images containing the sperm of interest in frame i to frame i− 5. Each pixel in the
flicker image is squared to enhance the pixel values of areas in which the tail is
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Fig. 3 Sperm tail tracking.
(a) Sperm head position is
found. (b) STROI (sperm
tail region of interest) is
determined. (c) 5×5 win-
dows are scanned to locate
the section with the highest
intensity sum in the flicker
image. The center point
(blue dot in figure) of the
section is considered the tail
location.(d) Based on the
blue dot position found in
(c), Kalman filter is applied
to improve the accuracy of
located sperm tail position.

Point found by 

Kalman Filter

(a)

(b) (c) (d)

20μm

present. The sum of pixel value in the STROI of the f (i) image is used as a mea-
sure to determine the presence of a sperm tail. If the pixel sum is above a specified
threshold value, a tail is considered present. The threshold value was found experi-
mentally by comparing the pixel sum values of STROI images in which a tail exists
against cases where no tail exists. An example flicker image is shown in Fig. 3(c).
If the pixel sum is below a threshold value, no tail is found inside the STROI. This
situation can occur when the sperm of interest moves out of focus, resulting in the
disappearance of the sperm tail.

Once the sperm tail is determined to exist within the STROI, the MIR algorithm
uses the flicker image to locate a point on the sperm tail. By extracting the flicker
feature of the sperm tail, as shown in Fig. 3(c), the position of the sperm tail can be
detected. This approach overcomes the challenges that arise from the low-contrast
image of the sperm tail in a single frame. The algorithm first finds the location
of maximum intensity within the 25×25 STROI of the flicker image. This is ac-
complished by evaluating the sum of the intensity values inside a 5×5 window at a
spatial sampling interval of 5 pixels in both the x and the y coordinates of the STROI
flicker image. The center position of the 5×5 window with the highest intensity is
considered the tail location (i.e., a point on the sperm tail).

The located point on the sperm tail is often inaccurate because the flicker image
contains noises caused by some dark debris or by other sperms entering the STROI.
Therefore, a Kalman filter is applied to correct the measured point on the sperm tail.
In order to model the sperm tail motion, the sperm tail’s location and velocity in the
image coordinate are chosen as state variables (i.e., X = [ x y Δx Δy ]T ). The model
of the sperm tail motion is

Xk = AXk−1 +wk (8)
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where A =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, wk is noises affecting the actual state of the sperm and is

assumed to have a Gaussian distribution, (N(0,Qk)).
The sperm tail’s position is calculated according to

Zk = HXk + vk (9)

where H =

[
1 0 0 0
0 1 0 0

]
; and vk is the measurement noise, which is also assumed to

have a Gaussian distribution (N(0,Rk)). Rk is chosen based on the estimate of how
accurately the sperm tails positions are detected using the MIR algorithm.

Based on the dynamic model, a priori estimate of the state is computed (Xk|k−1 =
AXk−1|k−1 +wk). The error covariance is denoted as Pk|k−1. The priori estimate for
this covariance at time k is then determined by

Pk|k−1 = APk−1|k−1AT +Qk (10)

With the priori estimate of the state Xk|k−1 and the measurement Zk (i.e., detected
results using the MIR algorithm), the real state of sperm tail is optimized by

Xk|k = Xk|k−1 +K(Zk−HXk|k−1) (11)

where K is the Kalman gain and is given by

K =
Pk|k−1HT

HPk|k−1HT +Rk
(12)

After the optimized sperm tail’s position is found, the sperm tail beating amplitude
inside the STROI is computed. The relative position inside the STROI in frame i is
denoted by PTi. The sperm tail beating amplitude, A is

A =
1
N

N

∑
i=1

‖PTi−PT‖ (13)

where PT is the sperm tail’s average position inside the STROI, and N is the number
of frames until when the sperm tail is successfully detected.

4 Experimental Results and Discussion

The multi-sperm head tracking algorithm was evaluated by comparing the number
of successfully tracked sperms to the actual number of swimming sperms in a 96-
second long video clip captured under 20× magnification. The actual number of
moving sperms in the video was carefully counted manually for verification. The
experimental results show that the algorithm was able to successfully detect and
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track all the 63 moving sperms before they swam out of focus. Sometimes a sperm
returned to focus, then it was recognized as a new sperm.

The sperm tail tracking algorithm was evaluated by measuring the Euclidean dis-
tance error between the detected tail point and the actual sperm tail position. The
actual position was carefully identified/input by a user for each frame via computer
mouse clicking. Table 2 summarizes the average Euclidean distance error for five
additional videos. The overall average Euclidean distance error for the MIR algo-
rithm integrated with Kalman filtering is 1.43 pixels (0.69 μm), while the error for
the MIR algorithm without Kalman filtering is 1.95 pixels (0.95 μm). This result
indicates that Kalman filtering is effective in improving the sperm tail tracking ac-
curacies of the MIR algorithm. When the MIR algorithm failed to track the sperm
tail due to the overlap with other sperms or occlusion by debris, Kalman filtering
was able to estimate the sperm tail’s position based on the motion model.

To investigate the correlation between the sperm head velocity and the tail beating
amplitude, we chose 30 sperms showing good progressive movements (LIN > 0.9).
The tracking algorithms described in Section III(B)(C) were used to measure their
head velocity and the tail beating amplitude. We processed the measured data using
a linear regression model. As shown in Fig. 4, there is a statistically significant
correlation between the head velocity and sperm tail beating amplitude. Bivariate
association between sperm velocity and sperm tail beating amplitude was evaluated
by Pearson’s correlation coefficient. Tracking data captured on the 30 sperms show
that Pearson’s correlation coefficient was 0.7225 and the p-value was lower than
0.0001. This result quantitatively demonstrates that the sperm’s head velocity is
proportional to its tail beating amplitude.

In the HA binding experiment, the heads of the HA bound sperms became station-
ary, and their tail movements became more vigorous. The process of sperm binding
to the HA microdots was recorded at 30 frames/second. Fig. 5(a)(b) show sperms
binding to the HA microdot at 5 minutes and 30 minutes. If a moving sperm was
detected to stop in the region of HA microdots, this sperm was considered success-
fully binding to HA. In contrast, if a moving sperm passed the HA microdot and
disappeared out of the image boundary, it was considered an HA-unbound sperm.
During the process of sperm binding to the HA microdots, the head velocity of
the HA-bound sperms before binding was measured. The HA-bound sperms were

Table 2 Average Error of Sperm Tail Tracking

Video V1 V2 V3 V4 V5 Average

Duration (sec) 3.83 6.67 3.83 4.60 3.87 4.56

MIR (pixels) 1.16 2.73 1.83 2.02 1.98 1.95

Kalman
Optimized (pixels)

0.97 2.53 1.05 1.39 1.25 1.43
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Fig. 4 Correlation between
sperm velocity and tail
beating amplitude. Pear-
son’s correlation coefficient
r = 0.7225.
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compared to those unbound ones in terms of their head speed. As in the first ex-
periment, only those sperms that exhibited linearly progressive movement were
analyzed. The result, as shown in Fig 6, demonstrates that the HA-bound sperms
tended to have a higher head velocity than those unbound sperms. The HA-bound
sperms had an average head velocity of 76.28 μm/sec with a standard deviation of
21.25 μm/sec, while the average head velocity of those unbound sperms was 50.45
μm/sec with a standard deviation of 15.52 μm/sec.

We also observed in the HA binding experiment that after the sperms bound to
the HA microdots, their tails beat more vigorously. The tail beating amplitude was

Fig. 5 Sperms on PICSI
dish with HA microdots. (a)
Sperms binding after five
minutes. (b) Sperms binding
after 30 minutes.

(a)

(b)

50μm

50μm
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Fig. 6 Velocity compari-
son between the HA-bound
sperms (n1 = 30) and un-
bound sperms (n2 = 30)
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Fig. 7 Tail beating amplitude of the same sperms before and after binding to HA microdots

measured on the same sperms before and after they bound to the HA microdots.
Fig. 7 shows sperm tail beating amplitude before and after binding to the HA mi-
crodots. The average amplitude produced by these 30 HA-bound sperms was 5.31
μm (before binding) and 6.93 μm (after binding). These results, for the first time,
quantitatively reveal increase in sperm tail beating amplitude before and after a
sperm binds to an HA microdot. The results also quantifies differences in sperm tail
beating amplitude across HA-bound sperms. The measurement of sperm tail beating
amplitude can possibly be used as an additional criterion for sperm selection among
HA-bound sperms.

5 Conclusion

This paper presented visual tracking algorithms for tracking both the head and tail
of motile human sperms. The sperm head tracking algorithm is capable of tracking
multiple moving sperms with a high success rate. Based on the sperm head’s po-
sition and its motion direction vector, the sperm tail region of interest is located.
In this region of interest, the MIR algorithm together with Kalman filtering deter-
mines the sperm tail position. The sperm head and tail tracking algorithms enabled
a number of new findings. A significant correlation between sperm head veloc-
ity and tail beating amplitude was found, suggesting that stronger tail propelling
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produces a higher velocity. The results also reveal that sperms bound to HA gener-
ally have a higher velocity (before binding) than those sperms that are not able to
bind to HA microdots. This discovery ‘unifies’ the conventional sperm assessment
criterion based on sperm velocity/motility and the most recent HA assay technique.
Among the sperms bound to HA microdots, their tails produce different beating am-
plitudes. Measuring such amplitude differences quantitatively can possibly be used
as a new, useful sperm selection criterion among HA bound sperms.
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Abstract. This work addresses the characterization and control of Magnetotactic
Bacterium (MTB) which can be considered as a biological microrobot. Magnetic
dipole moment of the MTB and response to a field-with-alternating-direction are
characterized. First, the magnetic dipole moment is characterized using four tech-
niques, i.e., Transmission Electron Microscopy images, flip-time, rotating-field and
u-turn techniques. This characterization results in an average magnetic dipole mo-
ment of 3.32×10−16 A.m2 and 3.72×10−16 A.m2 for non-motile and motile MTB,
respectively. Second, the frequency response analysis of MTB shows that its ve-
locity decreases by 38% for a field-with-alternating-direction of 30 rad/s. Based
on the characterized magnetic dipole moment, the magnetic force produced by our
magnetic system is five orders-of-magnitude less than the propulsion force gener-
ated by the flagellum of the MTB. Therefore, point-to-point positioning of MTB
cannot be achieved by exerting a magnetic force. A closed-loop control strategy is
devised based on calculating the position tracking error, and capitalizes on the fre-
quency response analysis of the MTB. Point-to-point closed-loop control of MTB
is achieved for a reference set-point of 60 μm with average velocity of 20 μm/s.
The closed-loop control system positions the MTB within a region-of-convergence
of 10 μm diameter.
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1 Introduction

Recently, considerable progress has been made in the area of medical microrobots,
with dimensions in the range of 100 μm or less [1]. These microrobots have the
potential to perform targeted drug delivery and actuation of micro-objects [2, 3].
Two strategies are being proposed for propulsion: extracting energy from an ex-
ternal magnetic field [4], or extracting energy from the surrounding liquid and
using the external magnetic field for steering only [5]. In the latter case, control
of the microrobot is a challenge and to study this control issue, we benefit from
Magnetotactic Bacterium (MTB), which uses the earth’s magnetic field to orient
itself [6, 7]. MTB contains magnetic nano-crystals enveloped by an organic mem-
brane as shown in Fig. 1. These nano-crystals are arranged as a chain along the
longitudinal axis of the MTB and provide a magnetic dipole moment which enables
the MTB to passively orient itself along the magnetic field lines [8]. Often MTB,
which can be considered as a biological microrobot, possesses flagella at its ends
which provide self-propulsion along the field lines. Therefore, MTB or a swarm of
magnetotactic bacteria can be utilized to transport and steer micro-objects using the
forces generated by the flagella and the torque exerted on the magnetic nano-crystal
chain, respectively [9]. However, due to limitations on generating relatively large
field gradients, velocity of the MTB cannot be controlled and its closed-loop con-
trol cannot be achieved by pulling the MTB using field gradients [10]. Therefore,
a frequency response-based closed-loop control strategy is presented to control the
MTB without relatively large field gradients.

(a) Magnetotactic Bacterium (b) Magnetite nano-crystals

Fig. 1 Scanning/Transmission Electron Microscopy (SEM/TEM) images of the Magnetotac-
tic Bacterium (MTB), i.e., Magnetospirillum magnetotacticum (MS-1). (a) SEM image of
the MTB. MTB propels itself by rotating its helical flagella. The flagella are illustrated by
the inset taken by a SEM. (b) TEM image of a chain of magnetite nano-crystals. The nano-
crystal chain is enveloped by an organic membrane and the interaction between the magnetic
dipole moment and the external field allows the MTB to be oriented along the field lines. The
nano-crystals have a cuboctahedral morphology and an edge length of ∼ 36 nm.



Characterization and Control of Biological Microrobots 619

In this work, we characterize the magnetic dipole moment and the frequency
response of MTB. First, magnetic dipole moment of MTB is characterized using
its TEM images. The flip-time of non-motile MTB during field reversal is used to
characterize its magnetic dipole moment. In addition, based on motion analysis,
the magnetic dipole moment of motile MTB is estimated by analyzing its behavior
under the influence of rotating fields and field reversals [11,12]. Second, response of
the MTB to a field-with-alternating-direction is investigated and provides a strategy
to perturb the vibrational and rotational modes of its flagella, hence decreasing its
velocity. The estimated magnetic dipole moment is used in the realization of the
magnetic torque-current map, which is necessary for the open-loop control system.
Furthermore, the force-current map is utilized along with the frequency response of
the MTB to realize the closed-loop control system.

The remainder of this paper is organized as follows: In Section 2 we shall dis-
cuss the theoretical background pertaining to the general characterization of the
magnetic dipole moment of MTB using non-motile techniques (TEM images and
flip-time) and motile techniques which depends on motion analysis (rotating-field
and u-turn). In addition, frequency response of MTB is characterized. Open- and
closed-loop control strategies of MTB are analyzed in Section 3. Discussion about
the presented control strategies, characterization techniques, directions for future
work and conclusions are provided in Section 4.

2 Characterization of Magnetotactic Bacterium

Under the influence of a magnetic field, the magnetic torque
(
T(P) ∈ R

3×1
)

and
force

(
F(P) ∈R

3×1
)

experienced by an MTB located at position
(
P ∈ R

3×1
)

are
given by

T(P) = m×B(P) and F(P) = (m ·∇)B(P), (1)

where m ∈ R
3×1 and B(P) ∈ R

3×1 are the magnetic dipole moment of the MTB
and the induced magnetic field, respectively. The flagellum of the MTB is modeled
as a helical propeller with length, thickness, diameter (of the MTB) and pitch of
12 μm, 20 nm, 0.5 μm and 2 μm, respectively. The propulsion force generated
by this helical propeller is calculated by a model provided in [13], and results in
2×10−12 N at linear velocity of 20 μm/s. In order to determine the magnetic torque
and force, we have to estimate the magnetic dipole moment of the MTB.

2.1 Magnetic Dipole Moment Characterization

TEM images can be used to determine the magnetic dipole moment of motile and
non-motile MTB. The flip-time technique allows for calculating the magnetic dipole
moment of non-motile MTB, whereas the rotating-field and the u-turn techniques
provide magnetic dipole moment of motile MTB based on its motion analysis.
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2.1.1 Transmission Electron Microscopy Images

The TEM image of the MTB indicates that a nano-crystal chain is fixed in its or-
ganic membrane as shown in Fig. 1(b). These nano-crystals have a cuboctahedral
morphology. Using the number of nano-crystals and the cuboctahedron edge length
(∼ 36 nm), the magnetic dipole moment has an upper limit given by

|m |=
k

∑
i=1

MsVi, (2)

where Ms is the saturation magnetization of magnetite (4.3× 105 A.m−1). Further,
k and Vi are the number and volume of the ith magnetite nano-crystal, respectively.

2.1.2 Flip-Time Technique

Non-motile MTB undergoes flip-turn when the magnetic field is reversed. The
elapsed-time of the flip-turn (τ), i.e., flip-time, is given by

τ =
α

|m || B(P) | ln
(

2 |m || B(P) |
kT

)
, (3)

where k and T are the Boltzmann constant and the temperature of the medium in
which MTB navigates, respectively [11]. Further, α is the rotational drag coefficient
given by

α =
πηL3

3

[
ln

(
L
d

)
+ 0.92

(
d
L

)
− 0.662

]−1

, (4)

where η is the medium dynamic viscosity. Further, L and d are the length and diam-
eter of the MTB, respectively [14]. The flip-time can be determined experimentally,
then the magnetic dipole moment can be calculated by solving (3).

2.1.3 Rotating-Field Technique

Under the influence of a rotating magnetic field [17], the relation between the mag-
netic torque and the angular velocity of the MTB (ω) is

|m || B(P) | sinβ +αω = 0, (5)

where β is the angle between the induced magnetization field and the magnetic
dipole moment. Characterization of the magnetic dipole moment requires determi-
nation of its boundary frequency (ωb). This frequency can be determined by gradu-
ally increasing the frequency of the rotating field and observing the frequency after
which MTB can no longer follow the field, i.e., ω = ωb, when sin β = 1. Therefore,
(5) can be written as
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Fig. 2 Magnetic system developed for characterization and control of Magnetotactic Bac-
terium (MTB) by the magnetic fields generated at each of the electromagnets. The system
consists of a microscope equipped with a vision system mounted on the top of an array of
electromagnets surrounding a flat capillary tube which incubates a culture of magnetotactic
bacteria [15]. The capillary tube has an inner thickness, an inner width and length of 0.2 mm,
2 mm and 50 mm, respectively (VitroTubes 3520-050, VitroCom, Mountain Lakes, USA).
The insets show a closed-loop controlled MTB (tracked and marked by the large blue cir-
cle) moving towards a reference set-point by the magnetic fields and its self-propulsion. The
electromagnets are labeled with the letters A, B, C and D.

|m || B(P) |+αωb = 0. (6)

The boundary frequency can be determined experimentally and used in (6) to cal-
culate the magnetic dipole moment.

2.1.4 U-Turn Technique

Under magnetic field reversals, MTB undergoes u-turn trajectories [11]. The u-turn
diameter (D) is given by

D =
απν

|m || B(P) | , (7)

where ν is the linear velocity of the MTB. The u-turn diameter can be determined
experimentally and used in (7) to calculate the magnetic dipole moment. It is worth
noting that (3) represents the u-turn elapsed-time for motile MTB. The elapsed-time
can be determined and used in (3) to calculate the magnetic dipole moment.

2.2 Frequency Response Characterization

Velocity of the MTB depends on the rotational and vibrational modes of its flagella.
Our MTB, i.e., Magnetospirillum magnetotacticum (MS-1), provides propulsion by
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Fig. 3 Non-motile Magnetotactic Bacterium (MTB) undergoing counter-clockwise flip-turn
when it is subjected to magnetic field reversal. The red arrow indicates the flipping MTB,
whereas the black arrows indicate non-flipping and non-motile magnetotactic bacteria in its
vicinity. The curved red arrow indicates the direction of rotation. The blue mark indicates one
end of the MTB. The MTB changes the curvature of its membrane while its rotating, as shown
in the second and third frames. The magnetic dipole moment is calculated for 15 magneto-
tactic bacteria, and results in an average of 3.32×10−17 A.m2 for magnetic field and average
flip-time of 7.9 mT and 5.8 s, respectively. Magnetic dipole moment is calculated using (3).

rotating its helical flagella at∼628.3 rad/s [14]. Alternating the direction of the field
lines could perturb the desirable modes of the MTB, and hence decreases its veloc-
ity. This allows for devising a closed-loop control strategy which is partially based
on alternating the direction of the field to decrease the velocity of the MTB.

2.3 Characterization Results

Characterization of the magnetic dipole moment is conducted on a magnetic system
with four orthogonal metal-core electromagnets. The system is capable of providing
magnetic fields and field gradients of 15 mT and 60 mT/m, respectively [15]. The
electromagnets array surrounds a capillary tube as shown in Fig. 2. The capillary
tube incubates a culture of magnetotactic bacteria in 0.02 ml of growth medium.
The bacterial density ranges from 106/ml to 107/ml. The Magnetospirillum magne-
totacticum (MS-1) cultures utilized in our work are grown according to the protocol
provided in Bertani et al. [16].

First, the TEM images of 15 magnetotactic bacteria are used to determine the
number and volume of the magnetite nano-crystals illustrated in Fig. 1(b). The cal-
culated magnetic dipole moment using (2), has an average of 3.0×10−16 A.m2.

MTB undergoes flip-turns during field reversals, The flip-time is determined ex-
perimentally and used in (3) to calculate the magnetic dipole moment. An electro-
magnet (electromagnet D in Fig. 2) is utilized to generate uniform magnetic field of
7.9 mT. The flip-time is calculated from the initiation time of the field reversal until
MTB completes a 180 degrees turn. The field reversal is initiated in the first frame of
Fig. 3, and the non-motile MTB completes a 180 degrees turn in 5 s. The flip-time is
used in (3) to calculate the magnetic dipole moment for 15 magnetotactic bacteria,
and results in an average of 3.32×10−16 A.m2.

In order to determine the magnetic dipole moment of motile MTB using the
rotating-field technique, two orthogonal electromagnets (electromagnets A and D)



Characterization and Control of Biological Microrobots 623

Fig. 4 Motion of the Magnetotactic Bacterium (MTB) under the influence of a rotating mag-
netic field with gradually increasing frequency from 1 rad/s to 10 rad/s. The black-dashed
circle illustrates the path and direction of the MTB. The red arrow indicates the MTB. The
images are processed to detect the edges of the MTB. As we gradually increase the rotating
field frequency, the MTB can no longer follow the fields, as shown in the last frame of the top
row at, t = 7.3 s and field frequency of 9.5 rad/s. The estimated magnetic dipole moment using
the rotating-field technique is 4.34×10−16 A.m2 at magnetic field of 7.9 mT and boundary
frequency of 9.5 rad/s. Magnetic dipole moment is calculated using (6).

are used to generate rotating fields at 7.9 mT. The MTB follows the rotating fields
up to a specific frequency (the boundary frequency) after which it can no longer fol-
low the fields, and deviates from its circular trajectory. The frequency of the applied
rotating field is increased gradually from 1 rad/s to 10 rad/s. We observed from the
off-line motion analysis that MTB has boundary frequency of 9.5 rad/s as shown
in the last frame of the top row of Fig. 4. The length and diameter of the MTB are
determined by the TEM image of Fig. 1(a), and used along with the boundary fre-
quency (ωb) to calculate the magnetic dipole moment using (4) and (6). The average
magnetic dipole moment is 4.34×10−16 A.m2 for 15 magnetotactic bacteria.

Magnetic dipole moment of motile MTB is determined using the u-turn tech-
nique. An electromagnet (electromagnet A) is used to generate magnetic field of

Table 1 Characterized magnetic dipole moment by the Transmission Electron Microscopy
(TEM) images, flip-time, rotating-field and u-turn techniques. The average magnetic dipole
moment represents the culture which includes both non-motile and motile magnetotactic bac-
teria. The average is calculated for 15 magnetotactic bacteria and from 15 TEM images.

Applied field magnitude 7.9 mT

Average magnetic dipole moment calculated from the TEM images 3.00×10−16 A.m2

Average magnetic dipole moment - flip-time technique 3.32×10−16 A.m2

Average magnetic dipole moment - rotating-field technique 4.34×10−16 A.m2

Average magnetic dipole moment - u-turn technique 3.11×10−16 A.m2
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Fig. 5 Motion of the Magnetotactic Bacterium (MTB) during magnetic field reversal. The
MTB (length ∼5 μm) performs a u-turn trajectory marked with the black dashed line, during
the field reversal. The red arrow indicates the MTB. The u-turn diameter (∼15 μm) is used
to estimate the MTB magnetic dipole moment. The elapsed-time can be determined start-
ing from the field reversal initiation time until the MTB aligns itself along the field lines.
The average magnetic dipole moment for 15 magnetotactic bacteria is 3.11×10−16 A.m2 at
magnetic field of 7.9 mT. Magnetic dipole moment is calculated using (7).

7.9 mT. The MTB undergoes u-turn trajectory when the field is reversed as shown in
Fig. 5. The u-turn diameter is determined from the off-line motion analysis of the u-
turn trajectory. Using (7), the average magnetic dipole moment is 3.11×10−16 A.m2

for 15 magnetotactic bacteria. Results of the magnetic dipole moment characteriza-
tion are summarized in Table 1.

A magnetic field-with-alternating-direction is applied to investigate the effect of
the field frequency on the velocity of the MTB. The frequency of the applied field
is gradually increased from 1 rad/s to 30 rad/s, then the velocity is measured at each
frequency for 15 magnetotactic bacteria. The frequency response experiment is con-
ducted using two metal-core electromagnets (electromagnets B and D). Sinusoidal
current inputs are simultaneously supplied at each of the electromagnets. Linearity
of the current-field map ensures that the generated magnetic fields have the same
frequency of the applied currents as shown in Fig. 6(a). Increasing the field fre-
quency affects the velocity of the MTB as shown in Fig. 6(b). The average velocity
of the MTB is decreased by 38% at field frequency of 30 rad/s.

3 Control of Magnetotactic Bacterium

MTB can be oriented towards a desired trajectory using the following torque-current
or field-current maps:

T(P) = m̂B̃(P)I and B(P) = B̃(P)I, (8)
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Fig. 6 Frequency response analysis of Magnetotactic Bacterium (MTB). (a) Experimental
validation of the current-magnetic field linearity and hysteresis. Magnetic field components
at a representative point (10 mm along the centerline and from the side of electromagnet A)
within the system’s workspace (50 mm × 2 mm × 0.2 mm) are plotted versus the increas-
ing (denoted by ◦) and decreasing (denoted by +) currents. The red, blue and black colors
represent the magnetic field components (Bx, By and Bz) along x-, y- and z-axis, respectively.
The fields are measured by a calibrated three-axis Hall magnetometer (Sentron AG, Digital
Teslameter 3MS1-A2D3-2-2T, Switzerland). (b) Velocity of MTB versus the field frequency.
The velocity is measured for 15 magnetotactic bacteria at each field frequency. The black
circles represent the average velocity of the MTB, whereas the red bars represent the velocity
error. Magnetic field-with-alternating-direction of frequency ranging from 1 rad/s to 30 rad/s
is generated (represented by the blue solid and dashed arrows in the inset) by two metal-core
electromagnets (B and D) at a magnetic field of 4 mT.

where I ∈ R
n×1 is a vector of the current inputs at each of the n-electromagnets.

Further, .̂ is the cross-product operator (3× 3 skew-symmetric matrix). The input
current vector is mapped onto magnetic field by the matrix (B̃(P) ∈ R

3×n). The
magnetic force can be represented by

F(P) =
[

∂B(P)
∂x

∂B(P)
∂y

∂B(P)
∂ z

]T

m =

[
∂ B̃(P)I

∂x
∂ B̃(P)I

∂y
∂ B̃(P)I

∂ z

]T

m. (9)

Using (8), MTB will perform flagellated swim along the field lines, this is sufficient
to realize the open-loop control system. However, to realize the closed-loop control
system, we calculate the position and velocity tracking errors along x- and y-axis,

e = Pre f −P and ė = Ṗre f − Ṗ, (10)

where e and ė are the position and velocity tracking errors, respectively. Further,
Pre f is a reference set-point. The desired force (Fdes (P)) can be calculated by

Fdes(P) = K1e+K2ė, (11)
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Fig. 7 Experimental open-loop control result of the Magnetotactic Bacterium (MTB). The
red arrow indicates the position of the controlled MTB. The square trajectory illustrated with
dashed black lines represents the reference trajectory (length ∼60 μm). The black arrow
shows a non-motile MTB. The average velocity of the MTB during this trajectory is 32 μm/s.

where K1 and K2 are the controller positive definite gain matrices. The desired
force (Fdes (P)) is provided by solving (9) for the current (I) for each of the elec-
tromagnets [2]. The control law (11) will locate the MTB within the vicinity of the
reference set-point, i.e., region-of-convergence.

Open-loop control is achieved experimentally by controlling the fields using (8),
while closed-loop control is achieved by using (9), (10) and (11). In order to ex-
amine the effect of the field-with-alternating-direction on the velocity of the con-
trolled MTB, closed-loop control experiments are conducted in the presence and
absence of this field. In each case, velocity of the MTB and the size of the region-
of-convergence are evaluated.

3.1 Open-Loop Control

In order to examine the open-loop control of MTB, we devised five trajectories,
namely square, rectangular, u-turn, circular and figure-eight trajectories. Experi-
mental result of the square trajectory is illustrated in Fig. 7, where MTB tracks a
square trajectory of 60 μm length. In this experiment, the field lines are oriented
towards the square trajectory coordinates. As soon as one or more magnetotactic
bacteria approach the square coordinates, uniform fields are generated parallel to
the trajectory by a single electromagnet at a time. The average velocity of the MTB
is 32 μm/s. It is important to note that the field strength does not have any effect
on the velocity of the MTB. Similarly, an MTB is controlled to follow a rectangular
trajectory of 40 μm width and 50 μm length as shown in Fig. 8(a), at average ve-
locity of 36 μm/s. Experimental result of the u-turn trajectory of 30 μm length and
8 μm diameter is illustrated in Fig. 8(b), at average velocity of 17 μm/s. Fig. 8(c)
illustrates the experimental result of tracking figure-eight trajectory of 25 μm length
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Fig. 8 Open-loop control of the Magnetotactic Bacterium (MTB) under the influence of mag-
netic fields. The black line represents the actual trajectory taken by the MTB, whereas the red
arrows represent its direction. The red circle indicates the starting position and time of the
trajectory. The insets indicate the active electromagnets (darker shade) that are synchronized
by the open-loop control system to generate the necessary fields. (a) MTB follows a rectan-
gular trajectory of 40 μm width and 50 μm length at average velocity of 36 μm/s. (b) MTB
follows u-turn trajectory of 30 μm length and 8 μm diameter at average velocity of 17 μm/s.
(c) MTB follows figure-eight trajectory of 25 μm length at average velocity of 23 μm/s.
(d) MTB follows a circular trajectory of 12 μm diameter at average velocity of
28 μm/s. Electromagnets A and D provide sinusoidal fields illustrated with the black arrows.

at average velocity of 23 μm/s. Similarly, Fig. 8(d) illustrates the tracking result of
a circular trajectory of 12 μm diameter at average velocity of 28 μm/s. The insets
included in Fig. 8 indicate the active (darker shade) electromagnets of the system.

3.2 Closed-Loop Control

In order to examine the frequency response-based closed-loop control strategy, we
investigate the point-to-point positioning of motile MTB in the presence and ab-
sence of a field-with-alternating-direction. Position and velocity tracking errors
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Fig. 9 Closed-loop control of the Magnetotactic Bacterium (MTB) under the influence of the
magnetic fields in the presence of field-with-alternating-direction at frequency of 30 rad/s.
The black line represents the actual trajectory taken by the MTB, whereas the red arrows
represent its direction. The red and blue circles indicate the starting position and the reference
set-point, respectively. The entries of the diagonal controller gain matrices (K1) and (K2) are
15.0 and 15.5, respectively. (a) Motion of the MTB towards a reference set-point (indicated
by the black arrow). (b) The inset indicates the effect of the closed-loop control on the motion
of the MTB at the reference set-point. The average velocity of the MTB is 20 μm/s. The red
dashed circle represents a region-of-convergence for the MTB of 10 μm diameter.

along x- and y-axis are calculated using (10). These errors are used to direct the
fields towards the reference set-point using (9) and (11). First, (Fdes (P)) is calcu-
lated based on the tracking error (10), then used in (9) along with the characterized
magnetic dipole moment (4.34× 10−16 A.m2) to solve for the currents for each of
the electromagnets. Field-with-alternating-direction at frequency of 30 rad/s is ap-
plied along with the fields generated using (11). The closed-loop control enforces
the MTB to stay within the vicinity of the reference set-point. The trajectory taken
by the MTB towards a reference set-point is shown in Fig. 9(a). The inset in Fig. 9(b)
shows the response of the MTB within the vicinity of the reference set-point. The
closed-loop control system enforces the MTB to stay within the vicinity of the refer-
ence set-point. The average velocity of the MTB during this experiment is 20 μm/s
and the region-of-convergence has 10 μm diameter.

Closed-loop control is performed in the absence of the field-with-alternating-
direction. Multiple reference set-points are tracked as shown in Figs. 10(a) and (b),
with average velocity of 29 μm/s. This result indicates the effect of the field-with-
alternating-direction on the velocity of the MTB. The two insets in Fig. 10(b) il-
lustrate the effect of the closed-loop control on the behavior of the MTB. Due to
self-propulsion, closed-loop control can locate the MTB within the vicinity of the
reference set-point but cannot achieve asymptotic convergence of the tracking error.
As shown in Fig. 10(b), the region-of-convergence for the first and second set-points
has diameter of 20 μm and 26 μm, respectively.
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Fig. 10 Closed-loop control of the Magnetotactic Bacterium (MTB) under the influence of
the magnetic fields in the absence of a field-with-alternating-direction. The black line repre-
sents the actual trajectory taken by the MTB, whereas the red arrows represent its direction.
The red and blue circles indicate the initial position and the reference set-points, respectively.
The entries of the diagonal controller gain matrices (K1) and (K2) are 15.0 and 15.5, respec-
tively. (a) Motion of the MTB towards reference set-points (indicated by the black arrows).
(b) The insets indicate the effect of the closed-loop control on the motion of the MTB at the
first and second reference set-points. The closed-loop control action locates the MTB within
the vicinity of the given reference set-points. The average velocity of the MTB is 29 μm/s.
The red dashed circles represent circular regions-of-convergence for the MTB around the first
and second reference set-points with diameter of 20 μm and 26 μm, respectively.

4 Discussion

In view of the practical limitations on the generation of magnetic field gradients,
controlling the velocity of the MTB by exerting a pulling magnetic force cannot be
achieved. This force (2.6 ×10−17 N for characterized magnetic dipole moment and
field gradient of 4.34×10−16 A.m2 and 60 mT/m, respectively) is five orders-of-
magnitude less than the force generated by the MTB flagellum (2×10−12 N). Fre-
quency response of MTB shows that its average velocity decreases by 38% at field
frequency of 30 rad/s. This observation allows for devising a strategy to decrease
the velocity of the MTB, by alternating the direction of the field lines at this fre-
quency. In addition, characterization of the magnetic dipole moment and frequency
response are used in the realization of the closed-loop control strategy. This strategy
requires inducing a field-with-alternating-direction along with the fields generated
by the closed-loop control laws (9), (10) and (11). The closed-loop control system
allows for positioning the MTB within the vicinity of a reference set-point along
with decreasing its velocity. The closed-loop control system is further evaluated in
the presence and absence of the field-with-alternating-direction. The closed-loop
control system decreases the region-of-convergence and the velocity of the MTB in
the presence of the field-with-alternating-direction as opposed to the same controller
without this field.
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4.1 Future Work

Future work should include accurate characterization of the MTB frequency re-
sponse over a wider frequency range. A three-dimensional magnetic system with
auto-focusing is essential in studying and controlling the MTB since it escapes into
the third-dimension frequently. Therefore, our magnetic system will be redesigned
to allow for visual tracking and control of the MTB in three-dimensional space. In
addition, closed-loop control of a swarm of magnetotactic bacteria will be achieved.

4.2 Conclusions

A closed-loop control strategy for MTB is demonstrated experimentally. This
strategy is based on characterizing the magnetic dipole moment and the frequency
response of MTB. The characterized magnetic dipole moment using non-motile
technique (flip-time) and motile techniques (rotating-field and u-turn) agrees with
the result of the TEM images. Response of the MTB to a field-with-alternating-
direction at different frequencies shows that its velocity decreases by 38 % at field
frequency of 30 rad/s. These characterization results allow for devising a closed-
loop control strategy based on generating two superimposed fields. The first is gen-
erated based on the position and velocity tracking errors of the MTB, whereas
the second is a field-with-alternating-direction at frequency of 30 rad/s. These
fields are superimposed and achieve position control of the MTB with a region-
of-convergence of 10 μm diameter and an average velocity of 20 μm/s.
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on “Planning and Control” 
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University of Maryland, College Park 

Session Summary 

In this session, five talks on various facets of planning and control were presented. 
The first paper by A. Lecours and C. Gosselin titled, “Computed-torque control of 
a four-degree-of-freedom admittance controlled intelligent assist device,” studies 
interaction control for cooperative human robot interaction. Admittance control is 
proposed under system constraints such as saturation, and the authors compare the 
computed torque and the PID controller in their experimental results. The second 
paper by O. Chuy et al. titled, “Sampling-Based Direct Trajectory Generation 
Using the Minimum Time Cost Function,” focuses on feedback motion planning 
under system and performance constraints. The proposed algorithm is 
experimentally studied on a one DOF robot under heavy load. The third paper 
titled, “Antagonistic Control of Multi-DOF Joint,” by K. Koganezawa studies 
rotary actuators with nonlinear elasticity. The author demonstrates using  
theory and experiments that the joint angle and stiffness can be independently 
controlled using the proposed approach. The fourth paper by P. Tallapragada  
and N. Chopra titled, “Lyapunov Sampling for Adaptive Tracking Control in  
Robot Manipulators: An Experimental Comparison,” studies adaptive sampling 
for tracking control in robotic manipulators.  The authors present experimental 
comparison of two different tracking algorithms by using their feedback sampling 
algorithm. The last paper of the session by N. Dantam et al. titled, “Linguistic 
Composition of Semantic Maps and Hybrid Controllers,” formulates robot policies 
by exploiting the common underlying structure in semantic mapping and discrete 
event controllers.  Experiments conducted in indoor environments using a mobile 
robot demonstrate the efficacy of the approach. 



Computed-Torque Control of a
Four-Degree-of-Freedom Admittance
Controlled Intelligent Assist Device

Alexandre Lecours and Clément Gosselin

Abstract. Robots are used in different applications to enhance human per-
formance and in the future, these interactions will become more frequent. In
order to achieve this human augmentation, the cooperation must be very intu-
itive to the human operator. This paper proposes a computed-torque control
scheme for pHRI using admittance control. The admittance model is first
introduced. Then, the robot identification, the computed-torque approach
and the saturation considerations are addressed. The intelligent assist device
used for the experiments is then presented. Finally, experimental results that
demonstrate the performance of the algorithm are provided.

1 Introduction

The main challenge for human augmentation systems is to perceive their
environment and the human intentions and to respond to them adequately,
intuitively and safely [1]. To this end, it is desired to enhance the control per-
formances of such systems. On the other hand, computed-torque schemes are
widely used in robotics for reference trajectory following since they decouple
and linearize highly non-linear dynamical systems, thereby leading to better
performances than simple PID control [2–8]. Such techniques are also used in
haptics to improve impedance control performance and virtual environment
rendering [9–11]. Computed-torque schemes were also very briefly introduced
for admittance control in [12]. Admittance control is typically used for appli-
cations involving physical human-robot interactions (pHRI) with large pay-
loads. When admittance control is used, a handle or a force/torque sensor is
normally used to detect human intentions [13, 14].
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Fig. 1 Four-dof intelligent assist device prototype used in the experiments

With reference trajectory following, it is possible to design a smooth ref-
erence trajectory in order to avoid discontinuous acceleration or jerk profiles.
However, obtaining smooth reference trajectories is less straightforward in
human-robot collaboration since the trajectory is directed by the human op-
erator. This paper presents a methodology to overcome these issues, along
with experimental examples and results. Although the robot used in the ex-
periments is decoupled and linear, it is shown that the computed-torque con-
trol leads to better performance. It is then possible to implement the control
algorithms on a nonlinear robot where the performance improvement over
PID control should be even greater.

This paper proposes a computed-torque control scheme for pHRI. The pa-
per is structured as follows. The admittance model is first introduced. Then,
the robot identification, the computed-torque approach and the saturation
considerations are addressed. The intelligent assist device used for the exper-
iments is then presented. Finally, experimental results that demonstrate the
performance of the algorithm are provided.

2 Admittance Model

Two main classes of control schemes are used in haptic applications and pHRI,
namely, impedance and admittance control. Because of the large inertia and
significant friction of the intelligent assist device (IAD) used in this work, it
would obviously be too hard for a human operator to impart a movement
to the IAD, which makes impedance controllers not well adapted for the
situation, even if a force sensor is used. An admittance controller is thus used
as detailed in [15].

The one-dimensional admittance equation is written as:

fH = mẍ+ cẋ. (1)
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where fH is the interaction force, i.e., the force applied by the human oper-
ator, m the virtual mass, c the virtual damping and x, ẋ, ẍ are respectively
the position, velocity and acceleration.

The trajectory to be followed by the robot can be prescribed as a position
xd or as a desired velocity ẋd. For velocity control, the desired velocity can
be written, in the Laplace domain, as:

Ẋd(s) =
FH(s)

ms+ c
=
FH(s)/c
m
c s+ 1

= FH(s)H(s). (2)

where Ẋd(s) is the Laplace transform of ẋd, FH(s) is the Laplace transform
of fh and s is the Laplace variable. Velocity control is used here, similarly to
what was done in [15–17].

3 Model Identification

In order to use computed-torque control, a dynamic model of the robot is
needed and is obtained using model identification techniques. In an identi-
fication scheme, a given variable is used as the dependent variable and the
others as independent. The coefficients applied to the latter are the parame-
ters to be identified.

3.1 Model

The dynamic model of the robot is:

τ = M(q)q̈+C(q, q̇)q̇+ g(q) + τf (3)

where q is the vector of joint displacements, M(q) is the generalized inertia
matrix, C(q, q̇)q̇ is the vector or centripetal and Coriolis effects, g(q) is the
vector of gravitational effects and τf is the vector of joint friction.

Because the system used in the experiments is decoupled, each dof is iden-
tified separately for simplicity and only the X and Y axes are used in the
experiments. The discrete-time equations are:

u(k) = mI ẍ(k) + τvI(k) + τcI(k) (4)

where u is the command, expressed as a current with units of A, at time step
k, mI is the inertial term expressed at the motor in As2/m, τvI and τcI are
respectively the viscous and Coulomb friction and are simply modeled here
as:

τcI = fcIsign(ẋ)

τvI = fvI ẋ (5)
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where fcI is the Coulomb friction coefficient, expressed in A, and fvI is the
viscous friction coefficient, in As/m. Although a more complex friction model
could be used such as in [18–22], the chosen model is sufficient here as it will
be shown in Section 4.3.

Defining:

y(k) = u(k)

φt = [ẍ(k), ẋ(k),−sign(ẋ)]T
θt = [mI , fvI , fcI ]

T (6)

the model is written as:

yt(k) = φt
Tθt + ey(k) (7)

where ey stands for the error. Friction parameters could also be identified
separately, as in [21, 22].

To solve this problem, simple least squares [21, 4, 23], recursive least
squares [23] and recursive least squares with approximate maximum-likelihood
[23] can be used. The latter technique was used in the experiments and since
the parameters are identified off-line, the data is filtered with a non-causal
FIR filter to obtain better convergence properties without creating phase
shift. The velocity and acceleration are obtained from the position with a
two-point Lagrangian derivative centred on the current point. The data is
also normalized to obtain better numerical stability.

3.2 Results

The results obtained from the identification are first compared with the mea-
sured values and presented in Tab. 1. The mass was measured by summing
all the component masses and by adding the motor inertia, transferred at the
end effector. The Coulomb friction was measured by manually pushing the
device with a dynamometer at a very low velocity. It should be noted that
the comparison is an approximation aiming at providing ballpark figures.

Fig. 2 presents the comparison between the command signal used for the
identification and the reconstructed command obtained with the identified
parameters. The velocity and acceleration are filtered with a non-causal FIR
filter to remove high-frequency noise in order for the comparison to be possi-
ble. The estimated torques do not match exactly the applied torques since the
model is a simplification of reality but they are nevertheless fairly accurate.

Figure 3 shows an open-loop response to a human input, obtained by
simply feeding the inverse dynamics to the four-dof assist device as:

τ = M(q)q̈d +C(q, q̇)q̇ + g(q) + τf (8)
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Table 1 Identification results

Mx τvx τcx My τvy τcy
(kg) (Ns/m) (N) (kg) (Ns/m) (N)

Measured 507 N/A 88 328 N/A 51

Identification 507 369 92 356 32 71

or in this simple case:

u(k) = mI ẍd + τvI ẋd + τcI . (9)

More details on the implementation of this control are given in Section 4
(Subsections 4.3 and 4.4) for the friction compensation part. Even in an
open-loop mode, it is easy for the operator to cooperate with the robot. The
condition number (ratio between the maximal and minimal singular values)
of the regressor matrix is 4.2 for the X axis and 4.1 for the Y axis. It is desired
for this number to be close to 1 (and it should be below 100 [24]), for the
regressor matrix to be well-conditioned and the estimation of the parameters
to be reliable [21, 24].
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Fig. 3 Open-loop reference velocity trac-
king in human-robot collaboration mode

4 Velocity Controller

In this section, the PID and computed-torque control used for the low-level
velocity controller are explained. Even if the dynamics of the robot used for
the experiments are linear, it will be shown that the computed-torque con-
trol leads to better results than the PID control. Additionally, it is possible
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to implement the control algorithms with a nonlinear device, in which case
the performance improvements over PID control should be greater. Friction
compensation is also discussed.

4.1 PID Control

First, PID control is considered for the velocity controller. The output com-
mand is:

τ = KP e+KDė+KI

∫
e (10)

where e = q̇d−q̇, KP , KD and KI are respectively the proportional, deriva-
tive and integral gain matrices, q̇d is the desired joint velocity vector and q̇
is the measured joint velocity vector. This controller is applied to all joints
independently. As pointed out in [15], it is not recommended to use a deriva-
tive gain since the signal is noisy [25] (acceleration signal) and no integral
gain is used since the behaviour to an operator input would then depend on
the error history. This introduces additional limitations and leads to a lack
of flexibility of the PID controller.

4.2 Computed-Torque Control

Computed-torque control is widely used in robotics. Its main advantage is
to transform a complex nonlinear multi-input multi-output (MIMO) system
into a very simple decoupled MIMO linear system [6, 2–5, 7, 8].

Numerous different approaches exist for the implementation of computed-
torque control. A very popular approach [2, 3, 5] is written as

τ = M(q)[q̈d +KP q̃+KV
˙̃q] +C(q, q̇)q̇+ g(q) (11)

where q̃ = qd − q.
The PD+ approach [3, 5] is written as

τ = M(q)[q̈d] +C(q, q̇)q̇d + g(q) +KP q̃+KV
˙̃q (12)

while the non-adaptive version of the Slotine and Li controller [7, 6] is written
as

τ = M(q)[q̈d +Λ ˙̃q] +C(q, q̇)[q̇+Λq̃] + g(q) (13)

+KP q̃+KV
˙̃q

where Λ = KV
−1KP .

These approaches were widely applied for trajectory tracking. However,
velocity control is considered here. Eqn. (11) is then modified accordingly,
similarly to what was done in [26]. This leads to
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τ = M(q)[q̈d +KP
˙̃q] +C(q, q̇)q̇d + g(q) (14)

where there is no derivative nor integral gains for the reasons explained in
the description of the PID controller.

The dynamics can also be only partially compensated for. The advantage
of a partial compensation is to benefit from the advantages of the computed-
torque technique while not relying too much on a model. It is also pointed
out that the model part of the control is low-pass filtered in order to avoid
high frequency command input.

4.3 Friction Compensation

Friction compensation can be included in the controller as follows:

τ = M(q)[q̈d +KP
˙̃q] +C(q, q̇)q̇d + g(q) + τc + τv (15)

where τc and τv are respectively the Coulomb and viscous friction vectors
whose their ith components are written as:

τ ic = f ic · sign(ẋid) · (1− e−α
i|ẋi

d|) (16)

τ iv = f ivẋ
i
d.

The exponential term along with the α parameter is used to reduce the chat-
tering induced by friction compensation when the velocity is near zero. The
desired velocity is used for viscous friction compensation in order to reduce
the command noise and contribute to the command based on the human
intention. A more complex model could have been used [18–20], including
stiction for example, but as it will be shown, the simple friction compensa-
tion from eqn. (16) is sufficient in practice for the device used here.

4.4 Desired Velocity and Acceleration

Computed-torque is well adapted to classical position control trajectory fol-
lowing since the desired trajectory is known and can be designed to be
smooth.

With admittance control, the trajectory is known (see eqn. (2)) and
computed-torque control can then be used by inputting the desired velocity
and acceleration in eqn. (15). However, the trajectory relies on the opera-
tor’s intentions, which may not lead to smooth signals. The smoothness can
however be controlled by a proper choice of admittance parameters (virtual
damping and mass) and from force input signal pre-processing. Saturation
must also be considered, as detailed in the next section.
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With impedance control, desired velocity and acceleration cannot be used
for computed-torque since they are unknown. Measured signals can be used
but this requires very good position, velocity or acceleration sensors and
signal processing.

5 Saturation Consideration

For safety reasons, the desired velocity and acceleration should be limited.
However, such limitations can lead to abrupt variations in the acceleration
or jerk profiles, which is undesirable since such variations result in abrupt
variations in the command. The problem is amplified with computed-torque
control since the command is directly related to the desired acceleration and
velocity. Applying such commands to the robot can excite unmodelled dy-
namics and lead to vibrations.

5.1 Velocity Limits

If a simple velocity saturation is used, the acceleration at a saturation point
will go from a given value to zero within one time step, leading to an abrupt
acceleration profile. If the desired velocity is filtered, the desired acceleration
will be smoother but at the expense of time delays. In order to alleviate
this problem, the desired velocity is gradually limited as it approaches the
saturation limit, using a third or fifth order polynomial as shown in Fig. 4.
The third order polynomial is obtained by setting the output velocity equal
to the input velocity for input velocities of (vsat−δ/

√
2) and (vsat+δ) (where

δ is a tuning parameter) and by setting the first derivative for these same
input velocities to one and zero respectively. For the fifth order polynomial,
the second derivative is also set to zero for the same input velocities.

Fig. 5 presents the desired velocity, acceleration and jerk response to a
human input sine force. Only the results obtained with the third order poly-
nomial are shown for simplicity. It is shown that the desired acceleration is
smoother with the third order polynomial than with basic saturation. This
is verified with the desired jerk which is approximately 270 m/s3 for basic
saturation and approximately 40 m/s3 with the third order polynomial. The
saturation transition smoothness can be varied by changing the value of pa-
rameter δ. In this example, the velocity limit is 0.7 m/s and δ is in the order
of 0.23.

5.2 Acceleration Limits

A common situation in which the acceleration can vary rapidly (other than
a highly dynamic human force input) arises when the maximum allowed ac-
celeration is not the same as the maximum allowed deceleration. However,
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human input sine force

Fig. 6 Desired velocity, acceleration and
jerk with acceleration saturation for a hu-
man input sine force

this situation is desirable for safety considerations: it must not be allowed
to increase speed very rapidly but one should be able to stop rapidly. Then,
when the device goes from a deceleration phase to an acceleration phase,
the desired acceleration changes abruptly from the maximum allowed decel-
eration to the maximum allowed acceleration. Filtering could help but at
the expense of time delays, which is not desirable. Similarly to what is done
for velocity saturation, the desired acceleration is gradually limited using an
exponential function with the desired velocity as a parameter. Indeed, the
transition occurs at a desired velocity of zero and the desired acceleration
is then gradually varied as a function of the desired velocity. The desired
acceleration transition is then represented by
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am =
ẍ+m + ẍ−m

2
sign(ẍd)− −ẍ

+
m + ẍ−m
2

sign(ẋd)
(
1− e−|γẋd|

)
(17)

where γ is a smoothness parameter, am is the current maximum allowed
acceleration/deceleration, ẍ+m is the maximum allowed acceleration and ẍ−m
is the maximum allowed deceleration. Parameter γ should be high enough to
obtain smoothness but not too high since it affects the maximal acceleration
limit when the velocity is near zero.

Fig. 6 presents the results with a human input sine force. It is shown that
with the gradually changing acceleration saturation, the transition is much
smoother. This is verified with the desired jerk which is approximately equal
to 500 m/s3for basic saturation while it is reduced to 30 m/s3 with the
proposed transition from eqn. (17). A jerk limiter could also be implemented
if the force signal is not too noisy.

5.3 Virtual limits

A very intuitive means of implementing virtual limits is to make the desired
velocity zero if the position is greater than a given limit and the velocity
is directed toward the limit. To avoid very large required acceleration, an
acceleration limiter can be implemented although the acceleration and jerk
profile would remain abrupt. The proposed solution is to set the force to zero,
with a rate limiter and with high and well chosen admittance parameters. The
admittance parameters can also be increased according to the position and a
stiffness term can also be added.

6 Prototype of a 4-DOF Intelligent Assist Device

The robot used for the experiments reported in this paper is a prototype of
a 4-dof intelligent assist device (IAD), shown in Fig. 1, allowing translations
in all directions (XY Z) and a rotation (θ) about the vertical axis. In this
prototype, the total moving mass is approximately 500kg in the direction
of the X axis and 325kg along the Y axis. Additionally, the payload may
vary between 0 and 113kg. The horizontal workspace is 3.3m× 2.15m while
the vertical range of motion is 0.52m. The range of rotation about the ver-
tical axis is 120◦. Three different control modes are possible: autonomous
motion, unpowered manual motion and interactive motion (cooperation). In
this paper, only the latter is addressed. The controller is implemented on a
real-time QNX computer with a sampling period of 2ms. The algorithms are
programmed using Simulink/RT-LAB software.
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7 Experimentation

In order to demonstrate the effectiveness of the proposed control algorithms,
three experiments were performed. The first one consisted in simply moving
the assist device to compare the PID and computed-torque velocity con-
trollers. The second experiment is a drawing task and the third one consisted
in asking the operator to trace imaginary circles in mid air.

7.1 Error and Noise Reduction

This experiment consisted in moving the intelligent assist device (see Fig. 1)
back and forth to compare the magnitude of the error and the command noise
between the PID and computed-torque velocity controllers. The parameters
used in the PID controller are KPx = 0.05, KPy = 0.06, and KIx, KIy,
KDx and KDy are zero as previously explained. The closed-loop gains used
in the computed-torque controller are mIxKPx = 0.04 and mIyKPy = 0.04
while the inertial and friction terms were taken to be 90% of the identified
parameters (Tab. 1). With the PID control, it is not possible to increase the
gains significantly since vibrations or instability occur. With the computed-
torque control, it is possible to adjust the inertial and friction compensation
while it is also possible to adjust the closed-loop gains. By increasing these
gains, the error can be reduced, at the expense of command noise.

With the selected parameters, the error reduction from the PID controller
to the computed-torque controller is about 50% for the X axis and 32% for
the Y axis. The noise amplitude was approximately reduced by 20% for the
X axis and by 33% for the Y axis. These results are shown in Figs. 7 and 8.

Fig. 9 compares both control laws for low velocity reference. It is clear
that the results are much better with the computed-torque controller and
this is clearly apparent to the human user as described in the subsequent
experiments.

7.2 Drawing Task

The drawing task consisted in asking the operator to trace a simple maze,
fixed to the ground, (shown in Fig. 11) with a pen mounted on the IAD at 1.4
metre from the operator. The instructions were to minimize the completion
time and the overshoots in the maze. Experiments were performed with the
PID and computed-torque controllers. The admittance parameters were fixed
(c = 60Ns/m and m = 36kg).

The experiment was performed by 6 subjects whose age ranged between 25
and 41. Task completion time, maze overshoots and subject comments were
recorded. The subjects were allowed some practice before performing the task.
Subjects were not told which control was set and the order was varied between
subjects. Fig. 10 shows the task completion time along with the distance of
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overshoots (the total length of the curve outside the maze). The completion
time is similar while the overshoot distance is about 32% lower with the
computed-torque control. Subjects reported it was easier to perform high
acceleration or deceleration, that it was easier to change direction and that
the feeling was better at low velocities with the computed-torque control. The
difference should be even more noticeable when the algorithms developed in
this paper are applied to a more typical nonlinear robotic system for which the
performance obtained with the computed-torque technique is usually much
better than with PID control.
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7.3 Circles

The last task consisted in asking the operator to trace imaginary circles in
mid air. The average eccentricity (ratio of the short axis over the long axis)
of the circles was measured from the position data. The results are shown
in Fig. 12. In average, the eccentricity was 0.78 with PID control and 0.89
with computed-torque control, a 14% improvement. The subjects generally
reported that it was easier to perform great circles with computed-torque
control. Indeed, it is easier to change direction, especially because of friction
compensation.

8 Conclusion

This paper presents computed-torque control adapted to admittance con-
trol. The admittance model, the robot identification, the computed-torque
approach and the saturation considerations are presented. Finally, experi-
mental results demonstrate the performance of the algorithm on a full-scale
intelligent assist device prototype.
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Abstract. This paper presents a methodology for computationally efficient, direct
trajectory generation using sampling with the minimum time cost function, where
only the initial and final positions and velocities of the trajectory are specified. The
approach is based on a randomized A∗ algorithm called Sampling-Based Model Pre-
dictive Optimization (SBMPO) that exclusively samples in the input space and inte-
grates a dynamic model of the system. The paper introduces an extended kinematic
model, consisting of the standard kinematic model preceded by two integrators. This
model is mathematically a dynamic model and enables SBMPO to sample the accel-
eration and provide the acceleration, velocity, and position as functions of time that
are needed by a typical trajectory tracking controller. A primary contribution of this
paper is the development of an appropriate “optimistic A∗ heuristic” (i.e, a rigorous
lower bound on the chosen cost) based on the solution of a minimum time control
problem for the system q̈ = u; this heuristic is a key enabler to fast computation of
trajectories that end in zero velocity. Another contribution of this paper is the use of
the extended kinematic model to develop a trajectory generation methodology that
takes into account torque constraints associated with the regular dynamic model
without having to integrate this more complex model as has been done previously.
This development uses the known form of the trajectory following control law. The
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1 Introduction

The traditional approach to trajectory generation for robots is described by four
steps [8]: 1) compute a collision free path, 2) smooth the path to produce a path
that the robot can actually follow, 3) reparameterize the smoothed path to create a
trajectory, and 4) design a feedback controller to track the trajectory. As discussed
in [8], this paradigm can lead to problems since a later step might not succeed due
to a choice made in an earlier step. Even when it does succeed it can lead to in-
efficient solutions. These problems have motivated recent research to consider the
direct generation of trajectories such that steps 1 through 3 are integrated [5, 7, 11].
This paper uses sampling and A∗ optimization to directly generate trajectories that
minimize a total time cost function, take into account the torque constraints of the
system, and avoids direct integration of the regular dynamic model of the system.
The approach is based on a randomized A∗ algorithm, called Sampling-Based Model
Predictive Optimization (SBMPO) [4, 5]. In addition, the approach is based on the
use of an extended kinematic model, consisting of the standard kinematic model
preceded by two integrators. This model is mathematically a dynamic model and
enables SBMPO to sample the acceleration and provide the acceleration, velocity,
and position as functions of time that are needed by a typical trajectory tracking
controller. A primary contribution of this paper is the development of an appropri-
ate “optimistic A∗ heuristic” (i.e, a rigorous lower bound on the chosen cost) based
on the solution of a minimum time control problem for the system q̈= u; this heuris-
tic is a key enabler to efficient computation of trajectories that end in zero velocity.
Another important contribution of this paper is the use of the extended kinematic
model to develop a trajectory generation methodology that takes into account torque
constraints associated with the regular dynamic model without having to integrate
this more complex model as has been done previously.

The RRT approach of [9] is a sampling based algorithm for kinodynamic mo-
tion planning. However, unlike the randomized A∗ approaches [3, 4], this approach
is not based on optimization. RRT-based motion planners that do utilize optimiza-
tion are discussed in [7, 6]. However, they do not use A∗ optimization and do not
appear to be able to take advantage of the efficiency obtained by using the pre-
diction associated with the optimistic heuristic. The extended kinematic model and
the methodology that uses it to take into account torque constraints while avoid-
ing direct integration of the regular dynamic model can likely be extended to many
of the kinodynamic planning algorithms. The optimistic A∗ heuristic developed in
this paper for a minimum time cost function should be applicable to the alternative
randomized A∗ algorithms.

In [5] the trajectory generation methodology was based on directly planning
using the closed-loop model, i.e., the dynamic model that includes the tracking
controller. This approach is based on a philosophy that differs from the standard
approach described above and in [8] since the controller is designed prior to the de-
velopment of the trajectory. The use of the closed-loop model is effective but can be
computationally expensive. Hence, as mentioned previously, this research pursues
an approach to the problem based on the use of an extended kinematic model that
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is more computationally efficient, albeit more conservative since it must conserva-
tively estimate the contribution of the feedback controller to the system torques and
forces.

The results are illustrated in actual experimentation using a 1 degree of freedom
(DOF) robot, in particular a 1 DOF manipulator, and subsequent simulation results
are for a 2 DOF manipulator. It is assumed that the manipulator may have a load
that is so heavy that it cannot be lifted quasistatically to the desired goal due to
the torque limitations of the actuators. Hence, this problem requires that the trajec-
tory have sufficient momentum to overcome the torque constraints. The problem of
heavy lifting for manipulators has been considered in prior research [14]. However,
the previous approach, which uses gradient based optimization, does not consider
minimum time problems. In addition, the final time of the trajectory needs to be
specified for [14] to work and this leads to multiple swings, even when they are not
needed. In contrast, the approach presented in this paper will naturally develop the
final time and number of swings. It is conjectured that even when applied to high
DOF systems, the approach developed here has the potential to be computation-
ally faster. This latter issue will be resolved after this approach is applied to more
complex problems.

Previous studies in trajectory generation and minimum time control of robotic
manipulator have been presented in [1, 12]. These studies consider the problem
of determining manipulator control commands to move a manipulator in minimum
time along a specified path subject to torque/force constraints. A major difference
between [1, 12] and this study is that the approach presented in this paper does not
need a path to create a trajectory. In fact, given the initial and final positions and
velocities, the trajectory is directly generated subject to torque/force constraints as
a result of the planning process. However, sampling, which is used for fast com-
putations, always leads to suboptimality; hence the trajectories developed by the
methodology presented in this paper are never truly optimal, although some of the
trajectories are nearly optimal.

2 Description of Sampling-Based Model Predictive
Optimization (SBMPO)

SBMPO is a sampling-based algorithm for motion planning with kinematic and
dynamic models. It can plan using a variety of cost functions, including the standard
sum of the squared error cost function used in Model Predictive Control (MPC) [10].
SBMPO was motivated by a desire to employ sampling and A∗-type optimization
in place of the nonlinear programming that is commonly employed for optimization
in MPC.

Fig. 1 shows the block diagram of a trajectory planning strategy that uses
SBMPO. The model, cost evaluation, and heuristic are supplied by the user. It should
be noted that in the SBMPO algorithm, a graph is created from start to goal and each
vertex on the graph keeps track of the states of the system, the control input, and the
cost associated with the state. The following are the main steps of SBMPO [4]:
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Fig. 1 Trajectory planning using Sampling-Based Model Predictive Optimization (SBMPO)

1. Select the vertex with highest priority in the queue
2. Sample the input space
3. Add a new vertex to the graph
4. Evaluate the new vertex cost
5. Repeat 2-4 for B number of successors
6. Repeat 1-5 until one of the stopping criteria is true

3 Trajectory Planning Using an Extended Kinematic Model

This section will discuss how the trajectory components (i.e., position,velocity, and
acceleration) are generated. First, it is assumed that the robot is operating with-
out saturating the control actuators. This is ensured in manipulator applications if
the load is light enough to be lifted quasi-statically from its initial position to the
final position. In this case the kinematic model can be used to develop a manipu-
lator trajectory. The question is how do we use the kinematic model to develop the
desired acceleration, velocity, and position (i.e., q̈d , q̇d ,and qd) needed by the trajec-
tory tracking controller? This can be accomplished letting the model in the trajec-
tory planning approach described in Fig. 1 be the “extended kinematic model,” of
Fig. 2, where qd ∈ Rn, x ∈ Rm, and In is the n× n identity matrix. In Fig. 1 and
below T denotes the sample period for trajectory generation. It follows from the
integration operations of Fig. 2 that

q̇d(kT ) = q̇d(kT −T)+Tq̈d(kT ), (1)

qd(kT ) = qd(kT −T)+Tq̇d(kT ). (2)

Since q̈d is the input to the extended kinematic model and SBMPO samples the in-
put, SBMPO is able to generate q̈d by sampling and q̇d , and qd by model integration.
Note that SBMPO must assume some bounds on q̈d , which are given by
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Fig. 2 Extended kinematic model

−ai ≤ q̈d,i ≤ bi, i = 1, ..,n, (3)

where ai > 0 and bi > 0.
The heuristic in Fig. 1 is optimistic if it is chosen to be zero and the termination

criteria may be chosen such that SBMPO only stops when it reaches the goal at a
desired velocity. However, in this case SBMPO becomes very computationally in-
efficient. As is well known, A∗-type algorithms become efficient when a fairly non-
conservative, optimistic heuristic is used. What is needed is an appropriate heuristic
corresponding to the minimum time cost.

3.1 Development of a “Good” Minimum Time Heuristic

Motivated by (3), consider a system described by

q̈ = u; q(0) = q0, q̇(0) = ω0, (4)

where q and u are scalars and u is bounded by −a≤ u≤ b. The state space descrip-
tion of (4) is given by

q̇1 = q2, q̇2 = u; q1(0) = q0
Δ
= q1,0, q2(0) = ω0

Δ
= q2,0, (5)

where q1 = q and q2 = q̇. It is desired to find the minimum time needed to transfer

the system from the original state (q1,0,q2,0) to the final state (q1, f ,0), where q1, f
Δ
=

q f . Since the solution for transferring the system from (q1,0,q2,0) to the origin (0,0)
is easily extended to the more general case by a simple change of variable, for ease
of exposition we assume that q1, f = 0.

The minimum time control problem described above can be solved by forming
the Hamiltonian and applying the “Minimum Principle” (often referred to as “Pon-
tryagin’s Maximum Principle”) as described in [2]. In fact, the above problem is
solved in [2] for the case when the parameters a and b are given by a = b = 1.
Generalizing these results yields that the minimum time is the solution t f of

t2f − 2q2,0
a t f =

q2
2,0+2(a+b)q1,0

ab , if q1,0 +
q2,0|q2,0|

2b < 0,

t2f +
2q2,0

b t f =
q2

2,0−2(a+b)q1,0

ab , if q1,0 +
q2,0|q2,0|

2a > 0.

(6)
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Fig. 3 Illustration of bang-bang minimum time optimal control which yields the minimum
time solution t f of (6)

The minimum time t f computed using (6) corresponds to the “bang-bang” optimal
controller illustrated by Fig. 3, which shows switching curves that take the system
to the origin using either the minimum or maximum control input (i.e., u = −a or
u = b). Depending on the initial conditions, the system uses either the minimum
or maximum control input to take the system to the appropriate switching curve.
For example, if (q1,0,q2,0) corresponds to point p1 in Fig. 3, then the control input
should be u = −a until the system reaches point p2 on the switching curve corre-
sponding to u = b. At this point the control is switched to u = b, which will take the
system to the origin.

4 Trajectory Planning Using a Physics-Based Dynamic Model

Consider a dynamic model of a robot system given by

M(q)q̈+C(q̇,q)+G(q) = τ, (7)

where q̈, q̇, and q ∈ Rn are respectively the angular acceleration, velocity, and posi-
tion, M ∈ Rn×n is the inertia, C(q̇,q) ∈ Rn is the friction term, and G(q) ∈ Rn is the
gravity term, and τ ∈ Rn.

Fig. 4 Computed torque tracking controller
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(a) (b)

Fig. 5 Manipulators used in the experiments (a) 1DOF manipulator (b) 2DOF manipulator

Using a computed torque tracking controller [13] as shown in Fig. 4, the inputs
to the controller are the desired acceleration, velocity, and position (i.e., q̈d , q̇d , and
qd) and the desired torque τd is calculated as

τd = M(q)[q̈d +Kv(q̇d− q̇)+Kp(qd− q)]

+C(q̇,q)+G(q), (8)

where M(q)q̈d is the feedforward term, C(q̇,q)+G(q) are respectively the friction
and gravity compensation terms, M(q)[Kv(q̇d − q̇) +Kp(qd − q)] is the feedback
term, and Kv ∈ Rn×n and Kp ∈ Rn×n are the feedback gains.

The most direct method of taking into account the actuator limitations in planning
is to simply choose the closed loop model as the SBMPO model [5]. The problem
with this basic approach is that the controller is updated at a fast rate, e.g., 1 kHz,
which must be the update rate for the closed-loop model. This leads to long planning
times.

One alternative approach does not explicitly consider the tracking controller. In-
stead, it is assumed that the tracking controller is such that q(t)≈ qd , q̇(t)≈ q̇d(t),
and results in to the feedback terms in (8) being small compared to the remaining
terms. In this case, the feedback torque computed by the tracking controller, given
by (8), is dominated by the feedforward and friction and gravity compensation por-
tions of the controller such that it is assumed that

τd(t) = M(q)q̈d(t)+C(q̇d(t),qd(t))+G(qd(t)), (9)

where in the experiments of Section 5, C(q̇d(t),qd(t)) was set to zero. (Note that
the q(t) and q̇(t) in the C(·) and G(·) terms of (8) have been replaced by qd(t)
and q̇d(t) in (9).) Although (9) will sometimes underpredict the magnitude of τd(t)
and hence introduces the need for conservatism in the trajectory planning, it has
the possibility of leading to fast computations. This new approach uses the extended
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kinematic model, as in the previous section, but modifies the sampled (commanded
acceleration) inputs to avoid saturation of the actuator torque.

Below we assume that t ∈ [NT,NT +T ), where N is some positive integer. During
this interval q̈d(t) is held constant at its sampled value q̈d(NT ), i.e.,

q̈d(t) = q̈d(NT ), t ∈ [NT,NT +T ). (10)

It follows that for t ∈ [NT,NT +T)

q̇d(t) = q̇d(NT )+ q̈d(t), (11)

qd(t) = qd(NT )+ q̇d(NT )t +
1
2

q̈dt2. (12)

Ideally, one should check whether the torque τd(t) given by (9) violated its sat-
uration constraints (−τmax,i < τd,i(t) < τmax,i, i = 1, ..,n), in the entire interval
t ∈ [NT,NT +T ). However, the torque will only be evaluated at the initial instant
t = NT , which introduces potential analysis error since the torque can violate the
saturation constraints later in the interval. To account for this error and that asso-
ciated with neglecting the feedback terms in (9), the assumed saturation range is
reduced such that for some τ̄i < τmax,i it is determined whether

−τ̄i < τd,i(NT )< τ̄i, i = 1, ..,n. (13)

For each i ∈ {1, . . . ,n} if τd,i(NT ) > τ̄i, then τd,i ← τ̄i or if τd(NT ) < −τ̄ , then
τd,i ← −τ̄i. If torque saturation was detected in the above tests, then to choose a
desired acceleration that does not violate the torque constraints, it follows from (9)
that one can let

q̈d(NT )←M(q)−1[τd−C(q̇d(NT ),qd(NT ))−G(qd(NT ))] (14)
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Fig. 6 Trajectory components generated based on the extended kinematic model of 1 DOF
manipulator: (a) Angular acceleration command generated by SBMPO, (b) Angular velocity
command from integration of the acceleration, (c) Angular position command from integra-
tion of the velocity
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Fig. 7 Manipulator trajectory tracking results for no load case with trajectory generated us-
ing the extended kinematic model: (a) Desired and actual angular positions, (b) Desired and
actual angular velocities without interpolation, (c) Desired and actual angular velocities with
interpolation

5 Experiments and Results Using the Extended Kinematic
and Dynamic Models

This section discusses the experiments and results of the study where one and two
degrees of freedom manipulators were used to evaluate the trajectories generated
by SBMPO. A Core 2 Duo 2.93 GHz processor was used for the computations and
SBMPO was implemented using C/C++. SBMPO was used to plan a trajectory with
a 25 Hz sampling rate, i.e., T = 0.04 sec for planning using the extended kine-
matic model and the physics-based dynamic model. Fig. 5(a) and Fig. 5(b) show
respectively the schematic of the 1 DOF and 2 DOF manipulators used in this study.
Fig. 5(a) displays the controllable region for a heavy load; this region is symmetric
with respect to both the x-axis and the y-axis and is completely characterized by
angle φ . Table 1 shows the dynamic parameters of the 1 DOF manipulator.

Table 1 Key Parameters of 1 DOF Manipulator System with 2.27 kg. and 4.54 kg. Load

Parameter Load 2.27 kg. Load 4.54 kg.
arm mass m 0.81 kg. 0.81 kg.
total length � 0.56 m 0.56 m
maximum torque τmax 11.3 Nm 11.3 Nm
inertia M 0.92 kg-m2 1.6 kg-m2

center of mass �cm 0.49 m 0.45 m
controllable region angle φ 45◦ 23 ◦

The 1 DOF manipulator is driven by a Maxon motor RE40 150 W coupled with a
Maxon GP52 gearing system with a gear ratio of 66:1. Its angular position is sensed
by an encoder, with 500 pulse per motor revolution, which is directly attached to
the motor. The motor driver used in this study is configured in torque/current mode
and has the ability to output the actual current of the system. The torque calcu-
lation, tracking controller implementation, angular position sensing, and velocity
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calculation from the joint position are implemented using a PIII 900 MHz computer
running the QNX realtime system with a 1 kHz sampling rate.

5.1 Planning and Experimental Results Using Extended
Kinematic Model

In this experiment the 1 DOF manipulator is used and is unloaded. Referring to Fig.
5(a), the task is to move the manipulator from rest at a starting position (0m,-0.56m),
where the end effector is vertically down, to rest at a goal position (0m,0.56m),
where the end effector is vertically up. Preliminary experiments with the manipula-
tor revealed that trajectories in which the angular acceleration is constrained to be
within±1 rad/sec2 do not lead to saturation of the motor torque. This constraint does
introduce a degree of conservatism to the trajectory planner, but is necessary since
the torque constraints are not explicitly taken into account in the planning process.
This is a general limitation of relying on only the kinematic model in planning.

The computational time was 0.020 sec, which is quite fast. It should be noted that
when alternative optimistic heuristics were used the algorithm failed to converge due
to memory limitations, indicating that the optimistic heuristic defined by (6) is vital.
Fig. 6(a) shows the resulting desired acceleration (obtained by sampling), which
is fairly close to the optimal bang-bang control law, and Figs. 6(b) and 6(c) show
the corresponding velocity and position obtained via integration of the extended
kinematic model. These three figures define the desired trajectory. Figs. 6(b) and
6(c) show that the desired velocity and position are smooth, which is a very desirable
property.
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Fig. 8 Manipulator trajectory tracking results for a 2.27 kg. load with trajectory generated
using the extended kinematic model: (a) Desired and actual angular velocities, (b) Desired
and actual angular positions, (c) Applied torque

The trajectory components shown in Figs. 6(a), 6(b), and 6(c) were fed to the
tracking controller of Fig. 4. Fig. 7(a) compares the desired and actual (experimen-
tal) angular position and it is seen that accurate tracking is achieved. The maximum
absolute error norm between the desired and actual angular position is 0.27◦. De-
spite this accurate position tracking, Fig. 7(b) reveals that accurate velocity tracking
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Fig. 9 Manipulator generation and trajectory tracking results for 2.27 kg. load using the dy-
namic model and kinematic model: (a) Angular acceleration command generated by SBMPO,
(b) Desired and actual angular velocities, (c) Desired and actual angular positions

is not achieved since the experimental velocity displays high frequency oscillations
about the desired velocity. The undesired vibrations are due to the step changes in
the accelerations that occur at each sample period; these steps serve as inputs to
the manipulator system that excite unmodelled dynamics such as flexible modes or
backlash in the gears, the latter of which are the unmodelled dynamics in the current
experiment. The vibrations can be reduced by reducing the amplitudes of these step
changes. This can be achieved by decreasing the trajectory sampling period T from
0.04 sec to 0.001 sec, the sample period of the tracking controller. However, this
will greatly increase the planning time. An alternative and much less computation-
ally costly solution is to linearly interpolate the desired commands in between time
steps as discussed in [13]. Fig. 7(c) compares the resulting experimental velocity
with the desired velocity. As expected, there is a very significant reduction in the
vibrations such that this velocity much more closely matches the desired velocity.

In the next experiment a 2.27 kg. heavy load is added to the manipulator. The
SBMPO trajectory developed using the extended kinematic model (essentially the
trajectory of Figs. 6(a), 6(b), and 6(c), modified slightly by the linear interpolation
described above) was again fed to the tracking controller of Fig. 4. Fig. 8(a) and Fig.
8(b) respectively compare the desired and actual velocity and position. The system
clearly fails to track the desired trajectory due to inadequate momentum when the
motor torque saturates as shown in Fig. 8(c), illustrating the limitations of planning
with only a kinematic model. Since the dynamic model includes a representation of
the torque saturation, it is used in the planning of the next section.

5.2 Planning and Experimental Results Using Dynamic Model

In this experiment, the manipulator is loaded with a 2.27 kg. weight and the dynamic
parameters are shown in Table 1 under the 2.27 kg. load. Referring to Fig. 5(a), the
task is again to move the manipulator from rest at a starting position (0m,-0.56m) to
rest at a goal position (0m,0.56m). The angular accelerations that are used to calcu-
late the heuristic are set to± 10 rad/sec2, such that in (4) a = b = 10 rad/sec2. These
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Fig. 10 Manipulator trajectory tracking results for 4.54 kg. load using the dynamic model
and kinematic model: (a) Angular acceleration command generated by SBMPO, (b) Desired
and actual angular velocities, (c) Desired and actual angular positions
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Fig. 11 Torque applied to the 1 DOF manipulator in (a) experiment with 2.27 kg. load (b)
experiment with 4.54 kg. load

bounds were determined by simulating the behavior of the robot when maximum
torques were applied.

SBMPO computed a trajectory in 0.141 sec with a 25 Hz trajectory update rate
(i.e., T = 0.04 sec). Fig. 9(a) shows the resulting acceleration commands, which
are far from the bang-bang commands produced by using the extended kinematic
model, while Figs. 9(b) and 9(c) respectively compare the desired and actual veloc-
ities and the desired and actual positions and Fig. 11(a) shows the applied torque.
Figs. 9(b) and 9(c) show that the SBMPO trajectory reaches the desired position
at zero velocity and is stabilized about this position by the trajectory tracking con-
troller. This controller is able to track the trajectory despite the torque saturation
observed in Fig. 11(a) due to the momentum associated with the trajectory. Notice
from Figs. 9(b) and 9(c) that the manipulator moves in the opposite direction of
the final swing to obtain the required momentum needed to pass the uncontrollable
region as it swings to the vertical position.

Motion planning is next performed for the manipulator with a larger load of 4.54
kg. The corresponding dynamic parameters are shown in Table 1. SBMPO com-
puted the trajectory in 0.110 sec and the results are shown in Figs. 10 and Fig. 11(b).
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Figs. 10 (b) and (c) show that the manipulator needs to swing twice to gain enough
momentum and reach the goal. The trajectory tracking is degraded due to the torque
saturation seen in Fig. 11(b). This degradation can be reduced by decreasing the
value of τ̄ in (13).
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Fig. 12 Manipulator trajectory planning results in the presence of obstacle (a) joint angular
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Fig. 13 Trajectory components generated based on the extended kinematic model of 2 DOF
manipulator: (a) joint angular accelerations generated by SBMPO, (b) joint angular velocities
from integration of the acceleration, (c) joint angular positions from integration of the velocity
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5.3 Planning Using Dynamic Model in the Presence of Obstacles

The next planning tasks demonstrated SBMPO’s ability to generate trajectories in
the presence of obstacles. The same task was again given to the 1 DOF manipulator
with the 2.27 kg. load and an obstacle was placed at (0.25m,0), which limited the
maximum joint angle to be +90◦. SBMPO computed a trajectory in 0.150 sec and
Fig. 12 (a) shows the result. The generated trajectory avoided the obstacle in contrast
to the trajectory shown in Fig. 9(c). The task was also repeated for 4.54 kg. load and
the obstacle was placed at (-0.25m,0.25m), which limited the minimum joint angle
to be -135◦. SBMPO computed a trajectory in 0.123 sec and Fig. 12 (b) shows the
result. Again, it can be noticed that the generated trajectory avoided the obstacle
in contrast to the result shown in Fig. 10. The results clearly show the ability of
SBMPO to generate trajectories in the presence of obstacles.

5.4 Planning Using Extended Kinematic Model for 2 DOF
Manipulator

This section discusses the trajectory planning for a 2 DOF manipulator using the
extended kinematic model. The joint accelerations were sampled and the extended
kinematic models were employed to generate trajectory components for each joint.
The computation of the time-to-goal (t f ) is slightly modified to fit the 2 DOF ma-
nipulator. Although, sampling is done in the input space, SBMPO has the ability
to use a cost metric computed based on the output space. The position and veloc-
ity in each of the x and y axes on the task space (see Fig. 5(b)) were used as the
basis to compute t f . Ideally, the time-to-goal (i.e., the heuristic) can be computed
as t f = max(t fx , t fy), where t fx and t fy are the heuristics associated respectively with
x and y movements of the end effector. However, the initial results showed that
the approach leads to long planning times since there are several states that have
same cost1. As an ad hoc approach, in the current implementation, time-to-goal is
implemented as t f = t fx + t fy . This approach gives nice results, however, it is not
rigorous and not as fast as desired. A modification of SBMPO is currently being
performed in which the heuristic is t f = max(t fx , t fy) and an auxiliary time-to-goal
t fa = min(t fx , t fy) is used as a tie breaker if there are states with the same cost. This
appears to be the proper approach for using minimum time cost functions and will
be detailed in a later paper.

In planning with the 2 DOF manipulator, a task is given to move the manipulator
from rest at a starting position (0m,-0.5m), where the end effector is vertically down,
to rest at a goal position (0m,0.4m). SMBPO computed a trajectory for both joints
in 0.251 sec and Fig. 13 shows the result. Note that in Fig. 13(b), the joint angular
velocities end at zero as desired.

1 Development of heuristics for minimum time cost functions can lead to a loss of informa-
tion that does not occur when developing heuristics for minimum distance cost functions.
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6 Conclusions

This paper presented a methodology for computationally efficient, direct trajectory
generation using sampling with the minimum time cost function, where only the
initial and final positions and velocities of the trajectory are specified. It was shown
that an extended kinematic model can be used to generate trajectories in applica-
tions where there is no danger of violating the actuator limitations. However, when
actuator saturation is a serious concern, a physics-based dynamic model should also
be used. This study also presented the construction of an optimistic “A∗ heuristic”
based on the solution of a simple minimum time control problem. This heuristic is a
key enabler to fast computation of trajectories that end in zero velocity. The experi-
mental results using a simple manipulator showed that for heavy manipulator loads,
planning based only on kinematic models can lead to failure. This problem was
solved by incorporating torque information from a physics-based dynamic model.
These results apply in general to planning that requires the trajectories to satisfy
certain momentum requirements. Although optimization with the minimum time
cost function is used, the resulting trajectories are suboptimal; this is inherent to
sampling, which permits a tradeoff between fast computations and optimality.

Ongoing work is focused on the implementation of the proposed approach on
higher degree of freedom systems such as 6 DOF manipulators and autonomous
space vehicles.
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Antagonistic Control of Multi-DOF Joint 

Koichi Koganezawa* 

Abstract. This paper presents a mechanical system that fundamentally mimics a 
human musculo-skeletal system aiming for using it in anthropomorphic robots or 
artificial limbs for disabled persons. At first, it introduces a mechanical module 
called ANLES (Actuator with Non-Linear Elasticity System).  A new type of 
ANLES; rotary-type ANLES is introduced first in this paper, in addition to the 
formerly developed ANLES; linear type ANLES. They can be used like a volunta-
ry muscle in a musculo-skeletal structure. Next it derives dual equations to inde-
pendently control joint angle and joint stiffness, in which antagonistic alignment 
of the ANLESes similar to a musclo-skeletal system is premised. It follows to 
show an application of the two types of ANLES into a three DOF artificial joint 
arranged to use as a wrist joint of an anthropomorphic robot. The experimental 
results of the joint stiffness and joint angle control elucidates that the developed 
mechanism effectively mimics the human musculo-skeletal system. 

Keywords: musculo-skeletal system, non-linear elasticity, antagonistic alignment, 
stiffness control. 

1   Introduction 

It is easily found that some dexterous motions of human articulations are due to 
the capability of regulating the stiffness in accordance with a task that he/she is 
about to do. The musculo-skeletal system of human articulations is able to regu-
late its stiffness mechanically rather than by efferent command from the 
CNS(central nervous system)  using exteroceptive force feedback. The key me-
chanism for regulating the stiffness is antagonistic structure of the musculo-
skeletal system; one agonist and its antagonist muscles counteractively drive one 
articulation. Simultaneous stretching of both muscles provides high stiffness of the 
articulation and both relaxing gives us the low stiffness. It is notified that the non-
linear elasticity of the muscles is prerequisite for the agonist-antagonist alignment 
for regulating the stiffness. Some amount of displacement of joint angle requires a 
                                                           
Koichi Koganezawa 
Dept. of Mechanical Engineering, Tokai University 
4-1-1 Kitakaname Hiratsuka, Kanagawa 259-1292, Japan 
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small torque at the joint under the equilibrium state of low stretching of both mus-
cles. On the other hand the equilibrium state under high stretching requires a re-
spectively large torque to provide the same amount of angle displacement. So the 
stiffness is regulated according to magnitude of stretching of both muscles. It is 
obvious that linear elasticity does not provide such a stiffness change. A vast 
amount of physiological studies have elucidated skeletal muscles have such a non-
linear elasticity [1][2][3][4].  

Some studies for investigating the stiffness of human arms elucidate that the 
stiffness ellipsoid of the arm’s endpoint is adjustable in its volume by stretching 
muscles[5], but its shape is roughly determined by the arm’s posture [6]. 

Some studies in the field of robotics deal with the antagonistic control of joints 
[7][8][9][10][11][12] and pointed out the importance of the non-linear characteristics 
of the elastic elements to control the stiffness of the joint [9][10][11], but there have 
been few papers that propose effective method of stiffness control, although some 
theoretical approach for stiffness control provides valuable insights [11][13][14].  

This study assumes an artificial joint that is controlled by at least two actuator 
units having a elastic characteristic similar to human voluntary muscles. It is 
called the antagonistically driven joints (ADJ). 

There have been some approaches to comprise the ADJ using linear actuators 
that works like muscle. The most successful approach developed so far will be 
those of using the McKibben type pneumatic actuator [15][16]. Although the 
pneumatic rubber actuator inherently has non-linear elasticity, it has some  
drawbacks such as, the difficulty of designing the non-linear elasticity, the heat 
sensitivity, large volume for external air-compressor, etc. There are some recent 
another approaches to develop the non-linear elastic module used to control the 
stiffness of ADJ [17][18][19], which presented ingenious mechanical devices to 
design the non-linear elasticity.  

Recent ardency for developing ADJ introduced above suggests its importance 
and potentiality of its nearly future application. Because a forthcoming “Personal 
Care Robot” will be anticipated to be inherently safe when it comes to interact 
with external objects, especially with human body [20] It requires mechanical 
resiliency and adaptability rather than those of virtually fabricated with a lot of 
sensory feedback loops. Our study is on the line of research tendency shown 
above to compose ADJ. 

Recently various types of mechanisms classified in the variable stiffness actuator 
(VSA) have been proposed [21] [22][23][24], of which pioneering work will be the 
MIA (mechanical impedance adjuster) developed by Morita and Sugano[25]. The 
VSA approach aims to endow robots with an intrinsically safe property for using 
them in a human-robot interactive environment.  The VSA is an actuator unit that 
has adjustable elastic element between a rotary joint and a rotary actuator. There-
fore it does not aim to constitute an ADJ like a musclo-skeletal system.  

This paper proposes the alternative mechanism used as an artificial muscle for 
an ADJ. It is on the same line of [18][19] in the sense of composing the non-linear 
elasticity through converting the force generated by a normal linear spring on the 
process of its transmission[26][27][28]. It aims to develop an intrinsically safe 
device as same as the VSA approach. 

In the following section, two types of ANLES (actuator with non-linear elastici-
ty system); the linear type ANLES (l-ANLES) and the rotary type ANLES  
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(r-ANLES) that is recently developed are briefly introduced. Both ANLESes are 
used as voluntary muscles to control an ADJ like a musculo-skeletal system. Next 
it derives dual equations to independently control joint angle and joint stiffness, in 
which antagonistic alignment of the ANLESes similar to a musclo-skeletal system 
is premised. The fourth section shows an application of both types of ANLES into a 
three DOF artificial joint arranged to use as a wrist joint for an anthropomorphic 
robot. It has three axes, each of which is controlled by a pair of ANLESes (four l-
ANLESes for dorsi/plantar flexion and radial/ulnar flexion and two r-ANLESes for 
pronation/supination) to individually adjust the stiffness of three rotary axes.  The 
fourth section shows the experimental results of the joint stiffness and the joint 
angle control. It clearly elucidates that the joint stiffness and the joint angle can be 
separately controlled. The last section is devoted to some conclusive remarks. 

2   Actuator with Non-linear Elasticity System 

ANLES has been developed for controlling the ADJ in our studies [26][27][28]. It 
works like a voluntary muscle in a musculo-skeletal system of human articulation. 
Therefore a pair of ANLES is used to control one rotary axis. There are two types 
of mechanical configuration in the ANLES; the linear-type ANLES (l-ANLES) 
and the recently developed rotary-type ANLES (r-ANLES) as individually  
explained below.   

2.1   Structure and 
Design of the  
l-ANLES 

Fig.1 shows the structural 
parts and their assembled 
appearance of l-ANLES. It 
consists of a super long-lead 
ball screw, guide-shaft, 
torsion-spring and transmis-
sion cylinder (pulley). The 
torque generated by a DC-
motor rotates the ball screw 
rod that brings about the 
rotation or translation of the 
guide shaft that embeds the 
ball screw nut. The rotation 
of the guide-shaft induces 
the twisting of the torsion-
spring. The diameter of the 
guide shaft smoothly thins 
down along the rotation axis 
so that the torsion-spring 
twists around the guide 
shaft from the edge part of Fig. 1 Parts and the assembled appearance of l-ANLES  

universal joint universal joint

super long lead ball screw 

   

To DC motor To upper Board 

torsion spring

guide shaft transmission cylinder 
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the wide diameter, which yields non-linear elasticity as described below. This 
mechanism needs a transmitter to transform the rotation to the translation, and also 
vice versa with minimum transmission loss. We therefore employ the super long 
lead ball screw ( 6φ diameter rod with 6 mm lead) as shown in Fig.1. 

2.2   Structure and Design of the r-ANLES 

A pair of guide-shaft and torsion spring is allocated counteractively along the 
main shaft as shown in Fig.2. The torsion springs are coiled by the individual DC 
motors via the gear and wrap around the guide shaft (Fig.3). Therefore this type of 
ANLES is identical to the l-ANLES but lacking the rotate/translate conversion. 

2.3   Design of Non-linear Elasticity 

The non-linear elasticity of l-ANLES and r-ANLES can be rigorously designed by 
designing the shape of the guide shaft. Now let us assume the torsion spring is 
wrapped on the guide shaft by the axial position x from the left edge as shown in 
Fig.4. In this state coiling the spring furthermore by an infinitesimal torsion angle 

φΔ  requires additional torque, 

( )( ) / ( ) .g rT x EI l x φΔ = Δ                       (1) 

where ( )rl x  is the expansion length of the spring wire  (the expansion of the 
axial portion of L x L− + Δ in Fig.4) that actually works as a spring at location x . 

DC motor 

Guide shaft

Torsion spring

(a) Low stiffness state  (b) High stiffness state 

Fig. 2 Outline of the stiffness change of 
the rod axis  

DC motor

spring cover 

main shaft 
 

guide shaft 

lower plate 

 
torsion spring 

gear 

gear 

Fig. 3 Appearance of the r-ANLES devel-
oped for the wrist joint 
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E is the modulus of longitudinal 
elasticity and I  is the second 
moment of area of the torsion 
spring wire. (1) leads the spring 
coefficient as a function of x , 

( )
( )

( )
g

r

T x EI
K x

l xφ
Δ

= =
Δ        (2) 

We can obtain the relation between 
the torsion angle ( )xφ and the 
torque ( )gT x . Hence the ( )gT x and 

also ( )K x may be denoted by ( )gT φ  and ( )K φ  respectively in lieu of using the 

intermediate parameter x . Now we have a free-hand to obtain the function ( )gT φ  
through designing ( )r x ; the radius function along the axis. We propose some con-
figuration parameters for designing the guide-shaft as shown in Fig.4 in which 

( )r x  consists of two 
curvatures having ra-
dius rk1 and rk2 that are 
smoothly connected at 
the location lk2.  

In Table 1 the design 
parameters of the 
guide shaft for l-
ANLES are listed and 
its outcome of the non-
linear elasticity of the 
l-ANLES is illustrated 
in Fig.6 accompanied 
by the measured data 
of torque-torsion angle 
relation. The error bar 
indicates the variation 

 

Table 1 Designed parameters of the guide shaft 
 of the l-ANLES shown in Fig.1 

lk1 Position of the center of the first 
curvature along axis 

-5 mm 

lk2 Changing position of curvatures 25.2 mm 
rk1 Radius of the first curvature 450 mm 
rk2 Radius of the second curvature 400 mm 
d Diameter of the spring wire 0.8 mm 
p Pitch of the spring 1.0 mm 
n Winding number of the spring 28   
R0 Onset radius of the spring 8.0 mm 
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of the data of 10 trials. The non-linear elasticity shown in Fig.6 is arranged ac-
cording to the expected stiffness variation of the wrist joint described below.  

3   Basic Formula for Controlling Joint Stiffness and Joint 
Angle  

In this section we derive dual equations to calculate torsion angles of ANLESes 
that determine the joint angles and 
the joint stiffness of ADJ. 

3.1   Kinetics of a Multiple 
DOF Joint System 
Driven by Multiple 
Tendons 

Let us consider the joint having 
three rotation axes (roll, yaw, pitch) 
that are driven by m tendons as 
shown in Fig.7. Each tendon is 
stretched by the individual ANLES. 
The tension force vector for jth tendon is denoted by 

jξ , of which modulus is 

assumed to be a non-linear function with respect to torsion angle of ANLES jφ , 

                             (3) 
 

It is also assumed to be a centered mass located out of the joint. Denoting jkr  for 

the moment arm vector from the k th joint axis to the j th tendon and 
gkr  for the k 

th joint axis to the gravitation force vector, we can derive a statically equilibrium 
state equation in terms of torque, 

3

1 1

( ) 1,2,3
m

ji j gi k
i j

M k
= =

   × + × ⋅ = =  
   

  r r g e 0ξ             (4) 

where, , 1,2,3k ke =  represents the unit vector about the kth joint axis. Let us 

consider that infinitesimal torque { }1,2,3p pτΔ = Δ =τ is loaded at the joint and 

gives rise to infinitesimal rotation of joints ( 1,2,3)p pθΔ = . The relation between 

them can be derived by differentiating (4) with respect to the joint angles, 
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3 3

1 1 1

( ) ,

1,2,3

m
j ji gi

ji j p k
p i j p p p

M

k

θ
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=
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r ξ g eτ
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Fig. 7 Model of the three D.O.F. joints driven 
by m tendons
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/j pθ∂ ∂ξ  is rewritten by using the length of jth tendon 
jl , 

j
jp

j p j

j j j

p

l

l l
γ

θθ
∂

= =
∂

∂ ∂ ∂
∂ ∂ ∂
ξ ξ ξ

                       (6) 

where, /jp j plγ θº¶ ¶  is a moment radius of the jth tendon with respect to the pth 

rotary axis. /j jl¶ ¶ξ is also be rewritten as follows,  

1j j j

j j j j j

j

ll

φ
φ φ δ

∂ ∂ ∂
= =

∂ ∂ ∂
∂
∂

ξ ξξ
                          (7)  

with /j j jlδ φº ¶ ¶  being a change rate  of the tendon length with respect to the 

torsion angle of the ANLES. The tension force vector 
jξ is expressed with its unit 

vector jη , 

j j j=ξ ξ η                             (8) 

Using the notations of (6) ,(7) and (8), (5) is rewritten as, 

where,
1 2 3[ ]Tθ θ θΔ = Δ Δ Δθ and 3 3{ | ( , 1,2,3)}ijs i j ×= = ∈ℜS  are identified as a stiff-

ness matrix with respect to the rotation. It is practically difficult to manipulate all 
elements of the stiffness matrix (6 independent elements). For doing so, it requires 
more than 9 tendons ,see [11]. The authors consider it is not practical and not  
necessary to control all of them. Some experiments in the field of the motion 
physiology [5] show the fact that human can regulate the stiffness-ellipsoid at the 
end-point of the arm merely in its volume rather than in its shape. So let us con-
sider to manipulate only the diagonal three elements of the stiffness matrix. For 
the general consideration dealt with off-diagonal elements of the stiffness matrix, 
please refer the paper [26].  

The stiffness vector consisting of the diagonal elements of the stiffness matrix 
is calculated by the following equation, 
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Let us consider the infinitesimal rotation of ANLES that give rise to the infini-
tesimal variation of the stiffness vector under holding a constant joint angle. We 
derive the following equation from (10), 

3

1 1

( ) 1, 2,3
m

ji j ji j gi k
i j

M k
= =

   × Δ + Δ × + Δ × ⋅ = =   
   

  r ξ r ξ r g e 0       (11) 

Eq. (11) suggests that the second-order derivatives of tensions with respect to the 
torsion angle of ANLES play an important role for regulating the stiffness, which 
implies to require the non-linear elasticity (this fact is also suggested by Yi, 
et.al.[29][30]). Next, let us consider the infinitesimal variation of the tension vec-
tor iξ  due to the variation of iφ  that give rise to the infinitesimal rotation of the 

joints. We have the following equation from (4),  
 

22
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1 22 2

1 1

, , , ,m m

m m

diag diag
φ φ φ φ

Δ = Δ
    ∂ ∂∂ ∂   + ≡ Δ    ∂ ∂ ∂ ∂       

 s φ
ξ ξξ ξ

λ λ Λ φ  

 

This can be rewritten by using (6)(7) and (8), 

Δ = − ΔΓ θ Σ φ                            (12) 

where, [ ]T

mφ φΔ = Δ Δ1φ , 

3
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The general solution of (10) with respect to Δφ  is 

† ( )⊥Δ = − Δ − ΔΣ Γ θ P Σ ζφ                      (13)  

where, † 3m×∈ℜΣ represents the generalized inverse of Σ  and 
3 3( )P Σ^ ´ÎÂ represents the null projection operator that projects arbitrarily speci-

fied vector mζD ÎÂ on the complementary space of Σ . 
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3.2   The Formulation for the ANLES to Vary the Joint Stiffness 
under Constant Joint Angle 

Let us first consider to regulate stiffness of the joint without rotating the joint. 
This must be carried out by varying the torsion angle vector Δφ  while holding 
Δ = 0θ  in (13), 

( )⊥Δ = − ΔP Σ ζφ                          (14) 

Substitution of (14) into (11) provides, 

( )⊥Δ = − Δs ΛP Σ ζ                          (15) 

Solving (15) with respect to Δζ  we have, 

( )†
( )⊥Δ = − Δζ ΛP Σ s                      (16) 

Substitution of it into (14) gives us,  

 ( )†
( ) ( )s

⊥ ⊥Δ = ΔP Σ ΛP Σ sφ                        (17) 

where, sΔφ  is the infinitesimal variation of the ANLES torsion angle vector to 

provide the stiffness variation Δs  with no giving rise to the rotation of the joint 
angles.  

3.3   The Formulation for the ANLES to Vary the Joint Angles 
under Constant Joint Stiffness 

Next it is capable to derive the formula for regulating angles of joints without 
bringing about the variation of the stiffness of the end-point. The general solution 
of (11) with respect to Δφ  will be, 

† ( )⊥Δ = Δ + ΔΛ s P Λ ψφ                   (18) 

where mΔ ∈ℜψ  is a vector that is arbitrarily assignable. Since we aim to keep the 

stiffness being constant, Δs  in (18) should be zero, 

( )⊥Δ = ΔP Λ ψφ                 (19) 

Substituting it into (12), we have 

   ( )⊥Δ = − ΔΓ θ ΣP Λ ψ .               (20) 

Solving it with respect to Δψ and substituting into (19), we have,  

( )†
( ) ( )a

⊥ ⊥Δ = − ΔP Λ ΣP Λ Γ θφ .             (21) 

where aΔφ  is the infinitesimal variation of the ANLES torsion angle vector to 

give rise to the joint rotation with no interference with the joint stiffness. sΔφ  in 

(17) is simplified by making use of the nilpotent property of a projection operator, 
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( )
( ) ( )( )

( )

†

1

1

( ) ( )

( ( ) ( ) ( )

( ) ( ) .

s

T T

T T

⊥ ⊥

−
⊥ ⊥ ⊥ ⊥

−⊥ ⊥

Δ = Δ

= Δ

= Δ

P Σ ΛP Σ s

P Σ) ΛP ΛP Σ ΛP Σ s

P Σ Λ ΛP Λ s

φ

Σ

Σ

          (22) 

Similar procedure can be applied to (21) as follows, 

   ( )
( )

†

1

( ) ( )

( ) ( )

a

T T

⊥ ⊥

−⊥ ⊥

Δ = − Δ

= − Δ

P Λ ΣP Λ Γ θ

P Λ ΣP Λ Σ Γ θ .

φ

Σ
                     (23) 

(22) is an equation to calculate the torsion angle of ANLESes for manipulating the 
joint stiffness without giving rise to a joint angle variation. (23) is a dual equation 
of (22) to handle joint angle without giving rise to a stiffness variation. However 
please notice that the independent control of the stiffness and joint angles by using 
(22) and (23) may not be perfectly accomplished. It depends on the number of 
tendons that are individually controlled by ANLES and how they cover three di-
mensional stiffness space determined by their alignment. Please see [24] for the 
similar case studies. 

4   Three DOF Wrist Joint 

The previous model was under-actuated in the sense that only 5 motors (4 for l-
ANLESes and 1 for rotating the main shaft) are used to control 6 variables (3 joint  
 

 

linear  
potentiometer 

to linear 
potentiometer linear bush 

central universal 
joint dice prismatic 

probes 

 

Fig. 8 Three DOF wrist joint controlled by 
four l-ANLESes and two r-ANLESes 

Fig. 9 The measuring device of two 
angles: dorsi/plantar flexion and radi-
al/ulnar flexion
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angles and 3 joint stiffness) (see [28]). We approached to develop a fully actuated 
second model (Fig.8) by introducing 2 r-ANLESes for controlling the prona-
tion/spination  (Z-axis in Fig.8) in addition to the 4 l-ANLESes that control X and 
Y axes (dorsi/plantar flexion and radial/ulnar flexion), which is the same as the 
previous model. The assembled view of the two r-ANLESes can be seen in Fig.3. 
Four motors for l-ANLESes are allocated under the lower plate. The overall weight 
is about 1.8 [kg]. The rotation angles of the ext./flex. and radial flex./ulnar flex. are 
measured by the originally 
developed central universal 
joint as shown in Fig.9. The 
dice of the central universal 
joint transforms the two axes 
of rotation into the linear dis-
placements that are measured 
by linear potentiometers or 
differential transformers. 

5   Joint Angle and 
Stiffness Control 

5.1   Joint Stiffness 
Control under 
Constant Joint 
Angle 

Fig.10 shows the experimen-
tal result of measuring the 
joint stiffness. The experiment 
was carried out as follows. 

1. All of the ANLESes (l-
ANLES for X and Y-axes, 
r-ANLESes for Z-axis in 
Fig.7) are twisted the same 
amount of torsion angle ac-
cording to the Eq. (22). 

2. A torque is loaded about an 
axis by pulling the endpoint 
with the wire to yield five 
degree rotation of the joint 
about each axis. The stiff-
ness is measured according 
to the loaded torque. 

3. 10 trials of the same proce-
dure are carried out to see 
the measurement variation 
that is shown as the error 
bars in Fig.10. 
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Fig. 10 Theoretical curve and the experimental 
results of stiffness about 3 DOF wrist joint 
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The results shown in Fig.10 clearly show the validity of the theory and the confi-
dence of the stiffness regulation, although it shows some variation of the data, 
especially under the high stiffness state, which will be due to the friction torque 
that arises between the spring and the guide-shaft. 

5.2   Joint Angle Control under Constant Joint Stiffness 

Fig.11 shows the results of joint angle control while sustaining a constant joint 
stiffness ; 0.40 Nm/deg about X-axis and ; 0.52 Nm/deg about Y-axis. The ex-
perimental procedure is as follows. 
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(d)  Specified torsion angle of ANLES 
to rotate the Y-axis joint 

(e)  Y-axis joint angle as the result of 
twisting ANLES  
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Fig. 11 Experimental results of wrist joint angle control under constant joint stiffness 
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1. The l-ANLESes are twisted by the theoretically obtained torsion angles accord-
ing to the Eq.(23) to make the joint rotate about the specified axis under the 
specified joint stiffness. Two l-ANLESes of the flexion side are twisted by the 
same torsion angle and another two l-ANLESes of the extension side are 
twisted by the other same angle as shown in Fig.11 (a)(d). 

2. It is verified that the joint rotation angle yielded by the twisting of the  
l-ANLESes is almost coincident with the theoretically predicted one (Fig.11 
(b)(e)). Fig.11 (b)(e) also depict error bars but they are very small. 

3. The same procedures to measure the stiffness described in the former section 
are carried out. (Fig.11 (c)(f)) 

4. 10 trials of the same procedure are carried out to see the data variation that is 
shown as error bars in Fig.11(b)(e)(c)(f). 

The results of Fig.11 clearly demonstrate that the joint stiffness and the joint angle 
can be separately controlled. . However Fig.10 and 11 also show some no negligi-
ble error bars of the stiffness data. It is mainly due to the rough clearances existing 
in some universal joints and some ball bearings, and also somewhat due to the 
friction existing between the torsion springs and the transmission-cylinders (see 
Fig.1). We are now refining these mechanical defects. 

6   Conclusions 

In this paper the wrist joint that has a musculo-skeletal structure is introduced, in 
which ANLES has a role of voluntary muscles. Technical advance of the second 
machine from the first machine resides in its mechanism that provides fully  
actuated 3 DOF joint in terms of controlling 3 angles and 3 joint stiffness by  
employing 6 ANLESes, in which newly proposed architecture of ANLES, the 
rotary-type ANLES (r-ANLES), is introduced. Some remarkable advantages will 
be pointed out in the proposed mechanism:  

1. Stiffness variation of the joint can be easily and rigorously designed. 
2. It can be applied for controlling a joint that has multiple DOF like a wrist joint 

because the l-ANLES is able to be used as a linear actuator like muscles. 
3. The r-ANLES will expand the applicable range of ANLES in anthropomorphic 

robots that imitate human musclo-skeletal architecture. 
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Lyapunov Based Sampling for
Adaptive Tracking Control in Robot
Manipulators: An Experimental
Comparison
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Abstract. In digital computer based controllers, efficient sampling mecha-
nisms for sensors as well as controllers is of great importance. In this paper, we
are interested in designing controllers that result in low average frequency of
control updates while simultaneously ensuring stability of the robotic system.
We experimentally investigate a non-periodic state-triggered control sampling
scheme (designed through Lyapunov like analysis) for adaptive tracking con-
trollers in robot manipulators. We implement this scheme on two well known
continuous-time adaptive controllers for tracking in robot manipulators and
compare their performance heuristically based on the results of experiments
performed on a two link planar manipulator.

1 Introduction

Motivation. The controllers in robotic systems are predominantly digital
computer based. These systems inherently involve sampling, which creates a
trade-off between sampling/communication cost and achieving the required
task at hand, such as stabilization. These issues assume additional signifi-
cance when the control signal is communicated over a network or when the
controller is implemented on an embedded processor with low computational
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capabilities. In certain cases, the task of sensing (for example, visual feed-
back) may itself impose constraints on the update frequency of the control.
Thus, there is a clear need to design efficient sampling mechanisms for con-
trollers. In this paper we investigate a state based sampling technique for
reducing the average frequency of control updates while ensuring stability of
trajectory tracking in robot manipulators.

Related Work. Traditional computer based control systems in robotics rely
on periodic sampling of the sensors and computation/execution of the con-
trol [1–5]. The reason for the popularity of this paradigm is a well developed
theory and the ease of analysis of such systems. However, such control algo-
rithms may need to employ high sampling rates. Recently, there has been a
growing interest among the control community in what are known as event
based control systems [6–9]. In these control systems, timing of control exe-
cution is not necessarily periodic and can be state dependent. By encoding
the nature of the task (for example stabilization) into an even-triggering con-
dition, it is possible to systematically design sampled-data controllers that
make better use of computational and communication resources.

Predominantly, event-triggered controllers in the literature are essentially
sampled data versions of continuous time controllers, with the sampling in-
stants determined by state based triggering conditions. Additionally, many
of these controllers may be called Lyapunov based controllers. This is due
to the fact that the task of the controller, whether it is set point or trajec-
tory tracking, can be cast as a stabilization problem and the event-triggering
condition can be determined through a Lyapunov like analysis.

While Lyapunov based event-triggered controllers implicitly guarantee sta-
bility, they have a major drawback. These controllers rely critically on the
knowledge of an accurate model of the system. For example, the results in [6,9]
are general enough to hold for robotic manipulators when perfect knowledge
of the system is available. However, building a model of high accuracy is
a time consuming process and in many cases, it may not even be possible.
Therefore, it is important to extend the design of implicitly verified event
based controllers to cases where only a poor model of the system is available.
This is specially important in the field of robotics, where adaptive and robust
controllers are often used.

Problem Statement. Motivated by this practical necessity, we have devel-
oped [10] an event based adaptive control technique for trajectory tracking
that can be used even when the robot system dynamics are unknown. In this
paper, this state based Lyapunov sampling/triggering scheme is utilized to
realize digital computer implementations of two well known adaptive track-
ing controllers for robot manipulators - [11] and [12], respectively, and their
performance is compared through some experiments on a two-link planar
manipulator.
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1.1 Technical Approach – Lyapunov Based Sampling

The basic idea of time-triggered control and state-triggered control (event-
triggered control) is illustrated in Figure 1. The difference between the two
is in the manner of determining the sampling instants. While in the time-
triggered case the sampling instants are determined by an external clock, in
the event-triggered case they are determined implicitly by a state dependent
event-triggering condition.

(a) Time-Triggered-Control: The
sensor data is required by the
controller at predetermined time
instances

(b) Event-Triggered Control: The sen-
sor data is required by the controller at
time instants determined by a trigger-
ing function

Fig. 1 Time-triggered and event-triggered approaches to sampled data control

Figure 2a illustrates a simple time-triggered (periodic sampling) and state-
triggered (threshold-triggered) sampling. As can be seen, sampling based on
threshold crossings is dependent on the signal, unlike the time-triggered sam-
pling. Thus, the event-triggered approach may be said to sample the signal
only when ‘necessary’. This idea of sampling only when necessary can be
made more systematic by encoding the control objective in an event-trigger.

The sampling mechanism utilized in this paper may be called a Lyapunov
based sampler as the state based event-triggering condition that determines
the sampling instants is designed by a Lyapunov like analysis. This approach
implicitly guarantees stability of the tracking error. The basic idea behind the
Lyapunov based sampling approach is shown in Figure 2b. Ideally, if the con-
trol signal is held constant and updated only as the derivative of a Lyapunov
function approaches zero from below, the average frequency of sampling may
be reduced. Moreover, because this approach ensures that the derivative of a
Lyapunov function, V̇ , is strictly negative at all time, it implicitly guarantees
stability.

There are two main caveats in this description of the design. The first is
that continuously checking the zero-crossing of V̇ is computationally ineffi-
cient. In addition, when only inexact information about the robot parameters
is available, V̇ cannot be computed precisely. However, it is possible to de-
sign an easy to check function (event-triggering condition) that always upper
bounds V̇ (even if its precise value is unknown at any given time).
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Fig. 2 (a) Time and Threshold based sampling. (b) Lyapunov based sampling - the
control signal is sampled/updated only when the derivative of a Lyapunov function
reaches zero.

In the next section, we present a Lyapunov based event-triggered imple-
mentation of two well known adaptive controllers for trajectory tracking.

2 Event Based Adaptive Control

In this section we present a Lyapunov based event-triggered implementation
of two well known adaptive controllers for trajectory tracking in robotic ma-
nipulators. In this paper, only the essential steps in the design process are
described. Detailed procedure of the design may be found in our previous
works. The work in [9] is useful for general nonlinear systems under the per-
fect knowledge of system. On the other hand, in [10] the design procedure for
a specific adaptive tracking controller for robotic manipulators is described.

Now consider a standard n-degree of freedom rigid robot model of the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = u, q ∈ R
n, u ∈ R

n

where M : Rn −→ R
n×n, C : Rn × R

n −→ R
n×n and G : Rn −→ R

n. The
matrix C(q, q̇) is defined using the Christoffel symbols. Let xd � [qd; q̇d] ∈
R
n × R

n be the state of the desired trajectory that the robot has to track.
Here the notation [a1; a2] denotes the column vector formed by concatenating
the vectors a1 and a2. This notation is used in this paper to refer to various
concatenated vectors. Let q̃ � q − qd, then the tracking error is defined as
x̃ � [q̃; ˙̃q]. Let u = γ(ξ) ∈ R

m be a known continuous-time control law for
trajectory tracking, where ξ is the data that the controller depends on.

Let us introduce the following notation to denote the sampled data versions
of different signals in the system. The sampled data version of any signal X
(which can be a scalar, a vector or a matrix) is denoted by Xs. In particular,
the data sampled by the controller is denoted by ξs, and is defined as

ξs(t) = ξ(ti), for all t ∈ [ti, ti+1), for each i
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where ti are the sampling instants. All the other sampled data signals are
similarly defined. In time-triggered or periodic control systems, ti+1− ti = Ts
for all i ∈ {0, 1, 2, . . .}, where Ts > 0 is a constant sampling time. On the
other hand, in an event-triggered controller the time instants ti are defined
implicitly by a triggering condition. The sampled nature of the signals can be
alternatively viewed as time-continuous signals, albeit with an error in their
measurement. Thus, we define the measurement error as

e � ξs − ξ = ξ(ti)− ξ, for t ∈ [ti, ti+1), i ∈ {0, 1, 2, ...}

Note that e is discontinuous at t = ti, for each i, because e(ti) = ξ(ti)−ξ(ti) =
0 while e(t−i ) � lim

t↑ti
e(t) = lim

t↑ti
(ξ(ti−1)− ξ(t)). The sampled data controller is

then given as

us = γ(ξs) = γ(ξ) +
(
γ(ξs)− γ(ξ)

)
The second relation is useful in expressing the sampled data control as a
perturbation of the continuous-time control law.

It is a well-known fact that the Lagrangian robot dynamics are linearly
parametrizable [13]. Specifically, the following is true.

M(q)a+ C(q, w)v +G(q) = Y (q, w, v, a)θ

where θ is the vector of parameters, w, v and a are arbitrary real vectors of
appropriate size. The specific forms of w, v and a depend on the context.

Now we give the essential elements of the event-triggered implementations
of two well known adaptive controllers for tracking in robot manipulators,
proposed in [11] and [12], respectively. Detailed design of the event-triggered
implementation for the first one can be found in our previous work [10]. The
design procedure for the latter case is similar.

Important Note: The arguments of matrix Y differ in the two cases we
discuss. This has to be kept in mind because after the initial definitions, the
arguments are generally avoided to keep the notation compact.

2.1 Case I: Event-Triggered Implementation
of Beghuis et al. [11]

In this case the controller is an event-triggered sampled-data implementation
of the adaptive controller proposed in [11]. The complete system description
is then as follows (description of some of the variables is given after the
equations).
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M(q)q̈ + C(q, q̇)q̇ +G(q) = us, q ∈ R
n (1)

u = γ(ξ) = M̂(q)q̈d + Ĉ(q, ρ)q̇d + Ĝ(q)−Kd
˙̃q −Kpq̃

= Y (q, ρ, q̇d, q̈d)θ̂ −Kd
˙̃q −Kpq̃

us = γ(ξs) = Ysθ̂s −Kd
˙̃qs −Kpq̃s (2)

ξs(t) = ξ(ti), for all t ∈ [ti, ti+1), for each i

t0 = 0

ti+1 = min{t ≥ ti : β(x̃)LT |ξ(ti)− ξ(t)| ≥ σα(x̃)}, 0 < σ < 1 (3)

˙̂
θ = −Γ−1Y Ts ψ (4)

where the variables with the subscript s are sampled versions of the corre-
sponding signals, the variables with aˆ on top of them are current estimates
of the corresponding variables. The desired trajectory is [qd; q̇d], the tracking
error is x̃ � [q̃; ˙̃q] � [q − qd; q̇ − q̇d], ρ � q̇ − λq̃ and ψ � ˙̃q + λq̃, where

λ =
λ0

1 + ‖q̃‖ , λ0 > 0

where ‖.‖ denotes the Euclidean norm. The other gains are Kd = KT
d > 0,

Kp = KT
p > 0, Γ = Γ T > 0 and σ is a design parameter. The functions α

and β are given by

α(x̃) = k1

∣∣∣∣
∣∣∣∣ ˙̃q + λ

2
q̃

∣∣∣∣
∣∣∣∣
2

+ k2

∣∣∣∣
∣∣∣∣λ2 q̃

∣∣∣∣
∣∣∣∣
2

, β(x̃) = ‖ψ‖ = ‖ ˙̃q + λq̃‖

where k1 and k2 are given by

k1 = Kd,m − 3λ0MM − 2λ0CM

k2 = 4λ−10 Kp,m −Kd,M − 2λ0MM − 2λ0CM (5)

The constants in (5), which depend on the robot dynamics and the gains of
the controller are assumed to satisfy the following assumption.

(A1) Assume that the controller gains are chosen such that

λ0 < min

{
Kd,m

3MM + 2CM
,

4Kp,m

Kd,M +Kd,m

}

whereKd,m ≡ σm(Kd),Kd,M ≡ σM (Kd),Kp,m ≡ σm(Kp), with σm(.),
σM (.) the minimum and maximum eigenvalues respectively. The con-
stants Mm, MM and CM satisfy

0 < Mm ≤ ‖M(q)‖ ≤MM , ‖C(q, w)‖ ≤ CM‖w‖, for all w (6)

where w denotes an arbitrary vector.
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The other assumptions we make are

(A2) The norm of the desired trajectory [qd; q̇d], and that of its first two
derivatives are uniformly bounded by known constants. That is, qd, q̇d,
q̈d and

...
q d exist for all time, and their norms are uniformly bounded

by known constants d0, d1, d2 and d3, respectively.
(A3) The matrices M(.), C(., .) and G(.) are globally Lipschitz.

Finally, the vector L is a quantity that depends on the sampled data ξs. The
precise form depends on the specific robot. The purpose of this vector is to
bound certain quantities resulting from the perturbation due to the sampled
data nature of the controller. The vector L satisfies the essential property
described in Lemma 1, which is taken from [10] (and modified to use a more
compact notation). In the sequel, the notation |.| denotes the component-
wise absolute value of a vector or matrix and a Lipschitz vector is similar to
a Lipschitz constant. More specifically, it is a vector of non-negative elements
other than the zero vector.

Lemma 1. Suppose that assumptions (A2),(A3) and conditions (6) hold.
Also assume that Kp > 0 and Kd > 0. Then, there exists a Lipschitz vector
L that depends only on the sampled data, and the uniform bound on q̇d such
that

‖(Ys − Y )θ‖ + ‖Ys(θ̂s − θ̂)‖+ ‖Kd( ˙̃qs − ˙̃q) +Kp(q̃s − q̃)‖ ≤ LT |e|

Equations (2)-(3) provide a complete description of the event-triggered con-
troller. The condition that implicitly defines the sampling instants, (3), is the
triggering condition. Finally, (4) is the adaptation law for estimating the dy-
namic uncertainty in the system. The following result, taken from [10], says
that with the event-triggered controller, the tracking error in the closed loop
system globally converges to zero.

Theorem 1. Under assumptions (A1)-(A3) and dynamics (1)-(4), the track-
ing error, x̃ = [q̃; ˙̃q] globally asymptotically converges to zero.

The proof of this result relies on a Lyapunov like analysis with the candidate
Lyapunov function

V (q̃, ˙̃q) =
1

2
ψTM(q)ψ +

1

2
q̃TKpq̃ +

1

2
θ̃TΓ θ̃

where θ̃ � θ̂− θ. Note that, due to uncertain dynamics of the robot, M(q), θ̃
and thus V (q̃, ˙̃q) are not known precisely. However, it can be shown that the
derivative of the Lyapunov function along the flow of the closed loop system
(1)-(4) satisfies

V̇ ≤ −α(x̃) + ψT
[
(Ys − Y )θ + Ys(θ̂s − θ̂)−Kd( ˙̃qs − ˙̃q)−Kp(q̃s − q̃)

]
= −α(x̃) + β(x̃)LT |e| ≤ −(1− σ)α(x̃)
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which involves only the known quantities. The triggering condition (3) is
derived from the second last relation.

2.2 Case II: Event-Triggered Implementation
of Slotine-Li [12]

In this case, we present an event-triggered sampled-data implementation of
the adaptive controller from [12]. This implementation has a structure similar
to CASE I, with only minor differences.

M(q)q̈ + C(q, q̇)q̇ +G(q) = us, q ∈ R
n (7)

u = γ(ξ) = M̂(q)a+ Ĉ(q, q̇)v + Ĝ(q)−Kr = Y (q, q̇, v, a)θ̂ −Kr (8)

us = γ(ξs) = Ysθ̂s −Krs (9)

ξs(t) = ξ(ti), for all t ∈ [ti, ti+1), for each i

t0 = 0

ti+1 = min{t ≥ ti : β(x̃)LT |ξ(ti)− ξ(t)| ≥ σα(x̃)}, 0 < σ < 1 (10)

˙̂
θ = −Γ−1Y Ts r (11)

where r � ˙̃q + λq̃, v � q̇d − λq̃, a � q̈d − λ ˙̃q, λ > 0, K > 0, Γ = Γ T > 0 are
constant gains and σ is a design parameter. Note that, unlike in CASE I, α
and β are positive constants, which are given by

α(x̃) = min(K,Kλ2)‖x̃‖2, β(x̃) =
√
(λ2 + 1)‖x̃‖

The Lipschitz vector satisfies a similar property as in CASE I, which is sum-
marized in the following Lemma.

Lemma 2. Suppose that assumptions (A2),(A3) and conditions (6) hold.
Also assume that Kp > 0 and Kd > 0. Then, there exists a Lipschitz vector
L that depends only on the sampled data, and the uniform bound on q̇d such
that

‖(Ys − Y )θ‖ + ‖Ys(θ̂s − θ̂)‖ + ‖K(rs − r)‖ ≤ LT |e|

Again, it can be shown that with the event-triggered controller the tracking
error in the closed loop system globally converges to zero, which is captured
in the following result.

Theorem 2. Under assumptions (A2)-(A3) and dynamics (7)-(11), the
tracking error, x̃ = [q̃; ˙̃q] globally asymptotically converges to zero.

The proof of this result is again based on a Lyapunov like analysis with the
candidate Lyapunov function
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V (q̃, ˙̃q) =
1

2
rTM(q)r + λKq̃T q̃ +

1

2
θ̃TΓ θ̃ (12)

where θ̃ � θ̂− θ. Note that, due to uncertain dynamics of the robot, M(q), θ̃
and thus V (q̃, ˙̃q) are not known precisely. However, it can be shown that the
derivative of the Lyapunov function along the flow of the closed loop system
(7)-(11) satisfies

V̇ ≤ −α(x̃) + rT
[
(Ys − Y )θ + Ys(θ̂s − θ̂)−K(rs − r)

]
= −α(x̃) + β(x̃)LT |e| ≤ −(1− σ)α‖x̃‖2

In the next section, we present the dynamic model of a two link planar
manipulator and the corresponding L vectors.

3 Two Link Planar Manipulator

In this section we describe the dynamic model of a planar two-link revolute
joint arm, with both the joints driven by motors mounted at the base. We
choose this model because of a similar driving mechanism in PHANToM
Omni. A schematic of the arm is shown along with the generalized coordinates
in Figure 3. The M(q), C(q, ρ) and G(q) matrices can be easily derived from
the Euler-Lagrange equations or can be found in books on robot modeling
(for example, see pages 262-264 [13] ). The regressor matrix, Y (q, w, v, a), is
given as

Y =

[
a1 a2 cos(q2 − q1)− v2 sin(q2 − q1)w2 0 cos(q1) 0
0 a1 cos(q2 − q1) + v1 sin(q2 − q1)w1 a2 0 cos(q2)

]

and the column vector of parameters is given as

θ =
[
θ1; m2l1lc2 ; m2l

2
c2 + I2; (m1lc1 +m2l1)g; m2lc2g

]
(13)

θ1 = m1l
2
c1 +m2l

2
1 + I1

Now, the vector L is presented for the two cases that we considered in
Section 2.

Fig. 3 A schematic of a two link planar revolute manipulator with the second link
remotely driven from base of Link 1
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CASE I

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̄2(φs,1 + d1φs,2) + θ̄4
θ̄2(φs,1 + d1φs,2) + θ̄5

θ̄2d1
θ̄2d1

θ̄2φs,1 + θ̄4
θ̄2φs,1 + θ̄5

θ̄2(|ρs,1|+ d1)
θ̄2(|ρs,2|+ d1)

θ̄1 + θ̄2
θ̄3 + θ̄2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+N +D

φs,1 = |ρs,1q̇d,s,1|+ |ρs,2q̇d,s,2|+ |q̈d,s,1|+ |q̈d,s,2|
φs,2 = λs(1 + 2|q̃s,1|+ 2|q̃s,2|)

where θ̄i is a known upper bound on the parameter θi, ρsk = q̇s,k − λsq̃s,k,
for k = 1, 2, d1 is the uniform bound on |q̇d,1| and |q̇d,2|. The notation 0
denotes a vector of zeros of appropriate dimension. The vectors N and D are
given as N = [0T , Column-wise sum of |Ys| ]T and D = [Kp;Kp;Kd;Kd;0],
respectively. Notice that most of the elements in these vectors are constants
or easily computable functions of the sampled data.

CASE II

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̄2(φs + λ(μ+ d1)) + θ̄4
θ̄2(φs + λ(μ+ d1)) + θ̄5
θ̄2(λ + |vs,1|) + θ̄1λ
θ̄2(λ + |vs,2|) + θ̄3λ

θ̄2φs + θ̄4
θ̄2φs + θ̄5

θ̄2(μ+ d1 + |vs,1|)
θ̄2(μ+ d1 + |vs,2|)

θ̄1 + θ̄2
θ̄3 + θ̄2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+N +D

φs = |vs,1q̇s,1|+ |vs,2q̇s,2|+ |as,1|+ |as,2|, μ =

√
Vest
α1

where θ̄i is a known upper bound on the parameter θi, ρsk = q̇s,k − λsq̃s,k,
for k = 1, 2, d1 is the uniform bound on |q̇d,1| and |q̇d,2|. The notation 0
denotes a vector of zeros of appropriate dimension. The vectors N and D are
given as N = [0T , Column-wise sum of |Ys| ]T and D = [λK;λK;K;K;0],
respectively. The quantity Vest is an upper bound on the value of the Lya-
punov function (12) at the sampling instant. Even though the precise value
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of the Lyapunov function cannot be known, it can still be bounded by known
quantities.

α1‖x̃s‖2 ≤ V (q̃s, ˙̃qs) ≤ α2‖x̃s‖2 + 1

2
HTΓH = Vest

where α1 and α2 are positive constants. These constants can be found from
either the lower and upper bounds on ‖M(q)‖, Mm and MM , respectively or
from the individual bounds on the parameters, θ̄i. H is a vector such that
Hi ≥ |θ̃s,i| for each i. This vector can be estimated as

Hi =

{
θ̄i − θ̂s,i, if θ̂s,i < θ̄i

θ̂s,i, if θ̂s,i ≥ θ̄i
Notice that computation of the L vector is more involved than in CASE I.
This is mainly because in CASE I, the arguments ρ, q̇d and q̈d in the Y
matrix are all uniformly bounded by known constants and do not have to be
estimated at each sampling instant.

4 Experiments

In the experimental results presented here, the position variables of the de-
sired trajectory were chosen as

qd,1 = −0.4(cos(0.8t)− 1.1), qd,2 = −0.4(cos(0.3πt)− 1)− (π/2)

The signals q̇d, q̈d and
...
q d were defined simply as the corresponding derivatives

of qd. The control gains and the parameters were heuristically chosen as

θ̄ = [0.0035, 0.0035, 0.002, 0.2, 0.1]T

d1 = 0.5, hl = 10−8, σ ∈ {0.95, 0.6, 0.2}
CASE I: λ0 = 0.7, Kd = 0.03, Kp = 0.7

Γ = diag([30, 40, 50, 10, 10]T)

CASE II: λ = 1.5, K = 0.03, Γ = diag([250, 350, 400, 0.8, 0.9]T)

where d1 is the uniform upper bound on |q̇d,1| and |q̇d,2| and hl is a lower
bound on (θ1θ3− θ22), which can be easily shown to be positive for a two link
manipulator. Using these quantities, MM , Mm and CM can be estimated as

MM =
θ̄1 + θ̄3 +

√(
θ̄1 + θ̄3

)2 − 4hl

2

Mm =
θ̄1 + θ̄3 −

√(
θ̄1 + θ̄3

)2 − 4hl

2
, CM = θ̄2
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which are useful to compute α1 and α2 in CASE II. Finally, the initial con-
ditions of the system were chosen as

[q1, q2, q̇1, q̇2]
T (0) = [0,−π/2, 0, 0]T

θ̂(0) = [0.0001, 0.0001, 0.0001, 0.01, 0.001]T

The choice of such low initial values for θ̂ is motivated by the fact that initial
torques will be lower in the absence of knowledge of the system parame-
ters. Notice from (13) that the first three parameters of the robot involve
quadratic terms in the length, while the last two involve only linear terms
in the length and also involve acceleration due to gravity, g. Thus, for the
PHANToM Omni, which is a desktop robot with small link lengths and small
link masses, the last two parameters are larger than the others by some orders
of magnitude. Thus intuitively, the adaptation gain, Γ−1, has to be chosen
such that θ̂4 and θ̂5 evolve at a faster rate. The other control gains were also
chosen by heuristic means. For example, Kd in CASE I and K in CASE II
multiply velocity terms. Since the joint velocity measurements obtained from
the device were very noisy, we have chosen relatively smaller values for these
gains to limit buzzing, or high frequency and high magnitude torques.

Experiments were performed on a two-link planar manipulator. PHAN-
ToM Omni was used as a test bed. For the experiments presented here, only
the second and third joint were kept active, to keep the calculations simple.
The first joint was never actuated and the remaining joints were either re-
moved or constrained to a fixed position. The OpenHaptics 3.0 [14] was used
to program the PHANToM Omni for performing tasks such as reading the
sensors and controlling the joint torques. The OpenHaptics 3.0 API does not
provide the capability to arbitrarily choose the sampling and control update
instants. The sensors are sampled and control torques are updated with a
roughly constant period (1ms for the results presented here). Hence, in the
experiments the event-triggering condition was checked roughly every 1ms.

Some experimental results for Case I are presented in Figure 4, while the
results for Case II are presented in Figure 5. These figures show the desired
joint positions and the actual joint positions as the robot is tracking. Notice
that for smaller values of σ the tracking performance increases - this is spe-
cially clear in joint 2 data of Figure 5. On the other hand, there is a greater
overshoot for σ = 0.2 in the same figure. The improvement in tracking with
decrease in the design parameter σ value is to be expected because it has a
clear inverse relationship with the average sampling frequency.

From these figures it appears that the tracking error convergence rate and
tracking performance are better in Case I than in Case II, particularly with
respect to Joint 2. It must be pointed out that there is considerable friction
in the joints, which has not been included in the system model. This friction
accounts for some of the persisting tracking error. Similarly, to avoid ‘buzzing’
some of the gains had to be limited to smaller values as the joint velocity
measurements are noisy. Another possible factor influencing the bad tracking
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Fig. 4 The desired joint positions and the actual positions of the robot in Case I.
(a), (b) σ = 0.2, (c), (d) σ = 0.95.

of Joint 2 in CASE II is the quadratic dependence on joint velocity in the
control law (8).

The observed minimum inter-update times and average frequency in ex-
periments are reported in Table 1. In the Phantom Omni system, the control
inter-update period is inherently fixed at 1ms, which thus limits the mini-
mum inter-update time of the control value. Figure 6 shows the cumulative
frequency distribution of the control inter-update times for different values
of σ and for each of the cases. Finally, the irregular state based sampling and
control updates is illustrated in Figure 7.

Table 1 The observed minimum inter-update times and average frequency in
experiments

Case I Case II

σ Observed min. Observed avg. Observed min. Observed avg.
inter-update time (s) Frequency (Hz) inter-update time (s) Frequency (Hz)

0.2 4.7× 10−4 164 7× 10−4 298

0.6 7.4× 10−4 64 9.7× 10−4 106

0.95 9.9× 10−4 40 9.9× 10−4 63
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Fig. 5 The desired joint positions and the actual positions of the robot in Case II.
(a), (b) σ = 0.2, (c), (d) σ = 0.95.
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Fig. 6 The cumulative frequency distribution of the control inter-update times in
the experiments for different values of σ



Lyapunov Based Sampling for Adaptive Tracking Control 697

11 11.2 11.4 11.6 11.8 12
−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

t (seconds)

ra
di

an
s

q2
qs,2

(a)

10 11 12 13 14
−50

0

50

100

150

200

t (seconds)

m
N

m

us,1
us,2

(b)

Fig. 7 Irregular state based sampling and control updates

5 Discussion and Conclusions

In this paper, a non-periodic state based control sampling technique was
experimentally investigated for two well known controllers for tracking in
robot manipulators. The experimental results demonstrate the promise that
event based algorithms hold in robotic applications.

In the experiments, the parameters and control gains were not optimized.
They were chosen by trial-and-error and some heuristic insights to give ‘good’
performance, in terms of low average sampling rates and minimizing tracking
error. Similarly, the results presented here are for a single desired trajec-
tory. Yet, these results provide valuable insights about the numerous factors
affecting the performance.

The experimental results presented here suggest that the controller in
CASE I is better suited for Lyapunov based sampling. It must be pointed
out that in CASE II, joint 1 is tracked very well. However, joint 2 tracking
is not good. No significant improvement was observed by changing the con-
trol gains. By changing the adaptation gains, there was some improvement
in tracking performance, though at the cost of increased average sampling
frequency. Another possible cause of bad tracking performance and higher
average sampling rates in CASE II, is the highly noisy joint velocity data.
These factors will be investigated more systematically in future studies.

References

[1] Khosla, P.K.: Choosing sampling rates for robot control. In: IEEE Interna-
tional Conference on Robotics and Automation, vol. 4, pp. 169–174 (1987)

[2] Tarn, T.J., Ganguly, S., Ramadorai, A.K., Marth, G.T., Bejczy, A.K.: Ex-
perimental evaluation of the nonlinear feedback robot controller. In: IEEE
International Conference on Robotics and Automation, pp. 1638–1644 (1991)



698 P. Tallapragada and N. Chopra

[3] Simon, D., Castillo Castaneda, E., Freedman, P.: Design and analysis of syn-
chronization for real-time closed-loop control in robotics. IEEE Transactions
on Control Systems Technology 6(4), 445–461 (1998)

[4] Leahy Jr., M.B.: Industrial manipulator control with feedforward dynamic
compensation. In: IEEE Conference on Decision and Control, pp. 598–603
(1988)

[5] Alici, G., Daniel, R.W.: Experimental comparison of model-based robot posi-
tion control strategies. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 1, pp. 76–83 (1993)

[6] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks.
IEEE Transactions on Automatic Control 52(9), 1680–1685 (2007)

[7] Heemels, W.P.M.H., Sandee, J.H., Van Den Bosch, P.P.J.: Analysis of event-
driven controllers for linear systems. International Journal of Control 81(4),
571–590 (2008)

[8] Wang, X., Lemmon, M.D.: Self-triggered feedback control systems with finite-
gain L2 stability. IEEE Transactions on Automatic Control 54, 452–467 (2009)

[9] Tallapragada, P., Chopra, N.: On event triggered trajectory tracking for control
affine nonlinear systems. In: IEEE Conference on Decision and Control and
European Control Conference, pp. 5377–5382 (2011)

[10] Tallapragada, P., Chopra, N.: Lyapunov based sampling for adaptive tracking
control in robot manipulators. IEEE Transactions on Robotics (Submitted)

[11] Berghuis, H., Ortega, R., Nijmeijer, H.: A robust adaptive controller for robot
manipulators. In: IEEE International Conference on Robotics and Automation,
pp. 1876–1881 (1992)

[12] Slotine, J., Weiping, L.: Adaptive manipulator control: A case study. IEEE
Transactions on Automatic Control 33(11), 995–1003 (1988)

[13] Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control.
John Wiley & Sons, Inc., New York (2006)

[14] SensAble Technologies OpenHaptics Toolkit 3.0 (January 2009),
http://www.sensable.com/products-openhaptics-toolkit.htm

http://www.sensable.com/products-openhaptics-toolkit.htm


Linguistic Composition of
Semantic Maps and Hybrid Controllers�

Neil Dantam, Carlos Nieto-Granda, Henrik I. Christensen, and Mike Stilman

Abstract. This work combines semantic maps with hybrid control models, gener-
ating a direct link between action and environment models to produce a control
policy for mobile manipulation in unstructured environments. First, we generate a
semantic map for our environment and design a base model of robot action. Then,
we combine this map and action model using the Motion Grammar Calculus to pro-
duce a combined robot-environment model. Using this combined model, we apply
supervisory control to produce a policy for the manipulation task. We demonstrate
this approach on a Segway RMP-200 mobile platform.

1 Introduction

This paper provides an approach to generate robot policies by automatically
combining Semantic Mapping and Hybrid Control. Semantic mapping and hybrid
control are both effective approach within robotics. Semantic mapping produces
detailed models of unstructured environments [19, 26, 24, 20, 27]; however, this
approach provides no direct link to robot action. Hybrid models combine continu-
ous and discrete robot dynamics to efficiently and verifiably represent robot action
[8, 6, 7, 2, 11, 4]; however, there is no automatic method to produce control models
for large, complicated systems. While superficially, it appears that semantic mapping
and hybrid control are fundamentally different approaches, they are actually closely
related. The topological graph of a semantic map and the discrete event system of
a hybrid control model are both instances of formal language. Thus, we propose

Neil Dantam · Carlos Nieto-Granda · Henrik I. Christensen ·Mike Stilman
Center for Robotics and Intelligent Machines, Georgia Institute of Technology,
Atlanta, GA 30332, USA
e-mail: {ntd,carlos.nieto}@gatech.edu,

{hic,mstilman}@cc.gatech.edu
� This work supported by NSF grants CNS1146352 and CNS1059362 and by grants from

the ARL by the MAST CTA and Boeing Corporation.

J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 699–714.
DOI: 10.1007/978-3-319-00065-7_47 c© Springer International Publishing Switzerland 2013



700 N. Dantam et al.

to combine the linguistic representations of semantic maps and robot action mod-
els to produce an efficient and verifiable control policy for mobile manipulation in
unstructured environments.

This work focuses on the application domain of service robots in human en-
vironments. Previously, we developed new techniques for mapping using Seman-
tic SLAM [19, 26] and for hybrid systems using our Motion Grammar [8, 6, 7].
Here, we integrate these approaches to produce a combined robot-environment ac-
tion model. Then, we apply established methods in supervisory control [5] to derive
a robot control policy for a mobile manipulation task. This control design approach
formally guarantees that the resultant policy satisfies the task specification. Finally,
we demonstrate of this approach on a Segway RMP-200 mobile robot.

2 Related Work

Simultaneous Localization and Mapping (SLAM) is the concurrent pose estimation
of both the robot and objects in its environment. This is a well studied area with
many useful results. Smith and Cheeseman [23] proposed one of the first solutions
to the SLAM problem using the Extended Kalman Filter (EKF) to jointly repre-
sent the landmark positions along with the robot pose. Folkesson and Christensen
developed GraphSLAM [9], an efficient solution to the SLAM problem which pre-
serves landmark independence and is able to find loop closures through nonlinear
optimization. Semantic SLAM augments a map with semantically relevant object
labels. In this work, we utilize the Semantic SLAM method of Trevor and Nieto
[26, 27, 19] to compose a map and hybrid controller.

Hybrid Control is an ongoing research area describing systems with both dis-
crete, event-driven, dynamics and continuous, time-driven, dynamics. Ramadge and
Wonham [21] first applied Language and Automata Theory [13] to Discrete Event
Systems (DES). Hybrid Automata generally associate differential equations with
each state of a Finite Automaton (FA). This method is well studied in control
[5, 14, 18, 11, 2]. In this paper, we model hybrid systems using the Motion Gram-
mar which represents continuous dynamics with differential equations and discrete
dynamics using a Context-Free Grammar (CFG) [8], and we extend the hybrid ap-
proach by automating system modeling using semantic maps. Supervisory control
restricts the operation of a DES based on a linguistic specification. This is applied to
mobile robot motion planning with FA and Linear Temporal Logic (LTL) by [4, 17].
In our approach, we apply supervisory control to CFGs. Composition of multiple
robot behaviors as FA is described in [16]. In this work, we compose a robot model
with an automatically generated map while preserving a system representation as a
CFG to maintain verifiability and efficiency of execution.

Model checking is the practice of verifying system behavior by modeling the
system and verifying that it satisfies a desired specification [3]. This approach is
applied to computer software [12] and motion planning for mobile robots [17]. [6]
summarizes the classes of models and specifications for which model checking of
robotic systems is decidable.
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There are several related techniques and alternative approaches for the service
robotics domain. Topp and Christensen, [25, 24], provide a separation of regions
relating to a user’s view on the environment and detection of transitions between
them. O’Callaghan [20] developed a new statistical modeling technique for build-
ing occupancy maps by providing both a continuous representation of the robot’s
surroundings and an associated predictive variance employing a Gaussian process
and Bayesian learning. In this work we focus on integrating robot mapping with
hybrid control methods. The notion of affordances originated in Psychology [10]
to describe interaction between agents and environments and has previously pro-
vided inspiration for robotics research [22]. We rather focus our approach on direct
symbol manipulation techniques with clear algorithmic implementation.

3 Background

The method of this paper produces a robot control policy for unstructured environ-
ments by combining Simultaneous Localization and Mapping (SLAM) with Hybrid
Control. We combine these two approaches through Formal Language. First, we
produce a basic grammar for the robot’s actions and generate the map of the envi-
ronment via SLAM. Then we compose the action grammar and environment map
using the Motion Grammar Calculus. Finally, we apply a supervisory controller to
generate the policy for the robot.

We now explain some background on formal language, define our hybrid systems
model, the Motion Grammar, and summarize the SLAM technique.

3.1 Formal Language

Formal language is the underlying representation we use to combine mapping and
hybrid control. Language and automata theory provide a rigorous method for rea-
soning about the discrete dynamics of a robotic system. A formal language is a set
of strings. Strings are sequences of atomic symbols which we can use to describe
discrete events, predicates, locations, or actions within our system. A grammar de-
fines a formal language. We first briefly review some relevant points of language
theory. For a thorough coverage of formal language and its applicability to robotic
systems, please see [13, 5, 6].

Definition 1 (Context-Free Grammar, CFG).G = (Z, V, P, S) where Z is a finite
alphabet of symbols called tokens, V is a finite set of symbols called nonterminals,
P is a finite set of mappings V �→ (Z ∪ V )∗ called productions, and S ∈ V is the
start symbol.

The productions of a CFG are conventionally written in Backus-Naur form. This
follows the form A → X1X2 . . . Xn, where A is some nonterminal and X1 . . . Xn

is a sequence of tokens and nonterminals. This indicates that A may expand to all
strings represented by the right-hand side of the productions. The symbol ε is used
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to denote an empty string. For additional clarity, nonterminals may be represented
between angle brackets 〈〉 and tokens between square brackets [].

Grammars have equivalent representations as automata which recognize the
language of the grammar. This automata form provides a more convenient repre-
sentation for some tasks, such as defining languages for maps in Sect. 4.1. The
equivalence of grammars and automata means that we can freely choose whichever
representation is most convenient. In the case of a Regular Grammar – where all
productions are of the form 〈A〉 → [a] 〈B〉, 〈A〉 → [a], or 〈A〉 → ε – the equivalent
automaton is a Finite Automaton (FA), similar to a Transition System with finite
state. A CFG is equivalent to a Pushdown Automaton, which is an FA augmented
with a stack; the addition of a stack provides the automaton with memory and can
be intuitively understood as allowing it to count.

Definition 2 (Finite Automata, FA). M = (Q,Z, δ, q0, F ), where Q is a finite set
of states, Z is a finite alphabet of tokens, δ : Q×Z �→ Q is the transition function,
q0 ∈ Q is the start state, F ∈ Q is the set of accept states.

Definition 3 (Acceptance and Recognition). An automatonM accepts some string
σ if M is in an accept state after reading the final element of σ. The set of all strings
that M accepts is the language of M , LM , and M is said to recognize LM .

Regular Expressions [13] and Linear Temporal Logic (LTL) [3] are two alternative
notations for finite state languages. These representations are convenient forms for
defining supervisory controllers as in Sect. 4.3. The basic Regular Expression opera-
tors are concatenationαβ, union α|β, and Kleene-closureα∗. Some additional com-
mon Regular Expression notation includes ¬α which is the complement of α, the
dot (.) which matches any token, and α? which is equivalent to α|ε. Regular Expres-
sions are equivalent to Finite Automata and Regular Grammars. LTL extends propo-
sitional logic with the binary operator until ∪ and unary prefix operators eventually
♦ and always �. LTL formula are equivalent to Büchi automata, which represent
infinite length strings, termed ω-Regular languages. We can also write ω-Regular
Expressions by extending classical Regular expressions with infinite repetition for
some α given as αω . These additional notations are convenient representations for
finite state supervisors.

3.2 The Motion Grammar

Next, we model robot action using the Motion Grammar (MG), giving an initial set
of hybrid control actions the robot can perform. MG represents the operation of a
robotic system as a Context-Free language, augmenting a Context-Free Grammar
with additional variables to handle the continuous dynamics. We use this combined
representation to describe the operation of the full robotic system [8, 6].

Definition 4. The Motion Grammar is a tuple
GM = (Z, V, P, S,X ,Z,U , η,K) where,
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Z set of events, or tokens
V set of nonterminals
P ⊂ V × (Z ∪ V ∪K)∗ set of productions
S ∈ V start symbol
X ⊆ 
m continuous state space
Z ⊆ 
n continuous observation space
U ⊆ 
p continuous input space
η : Z × P × N× �→ Z tokenizing function
K ⊂ X × U × Z �→ X × U × Z semantic rules

The Motion Grammar describes the language of the robotic system. The terminal
symbols of this language are robot events and predicates, representing a discrete
abstraction of the system path.

We use two properties to ensure the validity of a system modeled as a Motion
Grammar: completness and correctness. Completeness ensures that our model G is
a faithful representation of the physical system F . We define this property using
the simulation relation, that all paths in F are also paths in G. Correctness ensures
that our model G satisfies some desired property S. We define correctness using the
subset relation.

Definition 5. Given GM and system F then complete {G} ≡ F � GM
Definition 6. A Motion Grammar G is correct with respect to some specification S
when all strings in the language of G are also in S: correct {G, S} ≡ L(G) ⊆ L(S).

3.3 Semantic Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the concurrent execution of
both Localization and Mapping on a robot. Localization means determining the cur-
rent position of the robot based on observations. Mapping means determining the
positions of objects in the environment based on observations. Typical SLAM im-
plementations combine odometry and other geometric measurements such as point
clouds or camera features to simultaneously produce an estimate of the position
of both the robot and objects. Using this technique, the robot models unstructured
environments.

Our mapping system identifies surfaces and connected free spaces in the world
[26, 27]. We use the surfaces, such as walls and tables, to localize the robot based
on its relative position to these object. We represent free spaces as Gaussian regions
in 
3 with mean at the center of the free space and standard deviation indicating the
dimensions of the free space [19]. Topological connections between these Gaussian
regions indicate connected free spaces in the environment. For example, a door or
hallway between two rooms would connect the Gaussian regions for those rooms.

We then extend the metric and topological information of the map surfaces and
connected Gaussians with additional semantic information by labeling each of the
Gaussian regions. These Semantic Maps provide useful information for navigation
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and localization of the robot. In addition, the semantic content of the map per-
mits higher-level reasoning about the spatial regions of the environment. We exploit
this semantic information in our composition of the map with a grammar for robot
action.

4 Composing Maps and Grammars

Policy G′Supervisor G ∩ SSystemG

Spec. S

MGCG0 � G

MapM

ActionG0

Fig. 1 Sequence of operations to generate policy

We produce the control policy for the robot by composing a semantic map and a base
action grammar, following Fig. 1. We will explain this approach using the example
map for the Georgia Tech Aware home, Fig. 2(a), and the base grammar for mobile
manipulation, Fig. 2(b). First, we convert the map graph into a grammar for the map
language. Then, we compose the map grammar and the action grammar using the
Motion Grammar Calculus (MGC) to model the robotic system operating within the
mapped environment. Finally, we produce a task policy by applying a supervisory
controller to this system model.

HALLKITCHEN

BEDROOM

GARAGE

LIVING ROOM

BATHROOM

(a) Semantic Map M

�

�

�

�

〈S〉 → [room] 〈S〉
| [object] [pick] 〈S′〉

〈S′〉 → [room] 〈S′〉
| [place] 〈S〉

(b) Base Grammar G0

Fig. 2 Example of Semantic Map M and base manipulation grammar G0. This map repre-
sents the Georgia Tech Aware Home.

4.1 Map Languages

To better analyze the semantic map, we first represent this map using formal lan-
guage. The Gaussian free space regions of the map are arranged in a graph, indicat-
ing connectivity between these regions. The graph for the Aware Home is Fig. 2(a).
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This graph is equivalent to a Regular Language representing the set of all traces
through the map.

Definition 7. Let Map M = (N, V ), where N is a finite set of location symbols,
and V ⊂ N ×N is the set of adjacent symbols ni → nj .

We can transform any MapM into a regular grammar. We note that when analyzing
Finite Automata, the language symbols are typically given along transitions [13, 1]
wheres in a map, location symbols mark a state. For regular languages, these two
conventions – terminal language symbols on states and terminal language symbols
on edges – are equivalent. Algorithm 1 transforms the state terminal map to an
edge terminal automaton. Then, we can directly convert this automaton to a Regular
Grammar.

We demonstrate the conversion for the map in Fig. 2(a). First, we apply Algo-
rithm 1 to produce a FSM from the map graph. Since the output of this algorithm is
a Nondeterminisic Finite Automaton with more than the minimum necessary num-
ber of states, we convert the NFA to a DFA [1, p152] and minimize the number of
DFA states with Hopcroft’s Algorithm [1, p180]. This result is Fig. 3(a). Note that
in this example, we save two states over the original map in Fig. 2(a). Finally, we
convert the FSM to the Regular grammar in Fig. 3(b).

Algorithm 1. State to Edge Symbols

Input: Q ; // Initial States
Input: E : Q×Q ; // Initial Edges
Output: Q′ ; // Final States
Output: Z′ ; // Edge Symbols
Output: E′ : Q′ × Z′ ×Q′ ; // Final Edges
Z′ = Q;1

Q′ = E ;2

E′ = ∅;3

forall q ∈ Q do4

forall (ei = Q→ q) ∈ E do5

forall (ej = q → Q) ∈ E do6

E′ = E′ ∪ ei
q−→ ej7

4.2 Composition Using the Motion Grammar Calculus

In order to semantically merge the robot and environment models, we apply our
Motion Grammar Calculus (MGC). MGC is a set of rewrite rules for hybrid systems
modeled in the Motion Grammar [7]. According to these rules, we extend our action
grammar with each map symbol while maintaining only those transitions allowed
by the map. While supervisory control can only operate to restrict system G using
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BATHROOM
BEDROOM

GARAGE

KITCHEN
HALL LIVING ROOM

LIVING ROOM

HALL

10 32start

(a) Map Automaton

�

�

�

	

〈0〉 → [hall] 〈1〉
〈1〉 → [bathroom] 〈0〉

| [bedroom] 〈0〉
| [garage] 〈0〉
| [livingroom] 〈2〉

〈2〉 → [hall] 〈1〉
| [kitchen] 〈3〉

〈3〉 → [livingroom] 〈2〉
(b) Map Grammar

Fig. 3 Representing maps with formal language

existing symbols, the MGC crucially describes how to introduce new symbols into
G. There are two relevant rewrite rules from the MGC that we use here.

Transform 1 (Symbol Splitting). Given some ζ0 = [x ∈ R0] ∈ Z , create to-
kens ζ1 = [x ∈ R1] and ζ2 = [x ∈ R2] such that R1 ∪ R2 = R0 ∧ R1 ∩
R2 = ∅ and update token set Z ′ = Z − ζ0 ∪ {ζ1, ζ2}. The new nonterminal
set is V ′ = V ∪ {A0, A1, A2, A3, A4}. The new production set is P ′ = P −
{(A→ α1ζ0κα2) ∈ P}∪{(A→ α1A0) , (A0 → A1|A2) : (A→ α1ζ0κα2) ∈ P}
∪ {(A1 → ζ1κA3) , (A2 → ζ2κA4) : (A→ α1ζ0κα2) ∈ P}
∪ {(A3 → A2|α2) , (A4 → A1|α2) : (A→ α1ζ0κα2) ∈ P}.
Transform 2 (Adjacency Pruning). For p1 = A → rAκAB, B → β1| . . . |βn,
if rA is not adjacent to R0(βn) WLOG, then P ′ = P − p1 ∪ {A→ rAκAB

′} ∪
{B′ → β1| . . . |βn−1}
By applying these transforms, we can introduce the map symbols into the action
grammar while preserving the validity of the model. Each derivation step maintains
the completeness of the model according to the path of the hybrid system. By as-
suming that the initial model is complete, this ensures that all derived models are
also complete. For the remainder of the MGC and proofs of its correctness, please
see [7].

In addition to these two transforms, we also use the first() and follow() sets [1]
to define initial and adjacent symbols. The first() set defines all terminals which
may begin some derivation of a grammar symbol. The follow() set defines all termi-
nals which may appear immediately to the right of some symbol in a grammatical
derivation [1][p221].

Definition 8 (First Set). Define first(X) for some grammar symbol X to be the set
of terminals which may begin strings derived from X .

Definition 9 (Follow Set). Define follow(X) for grammar symbolX to be the set of
terminals a that can appear immediately to the right of X in some sentential form.

Note that for map grammars such as Fig. 3(b), the follow set for each terminal
symbol is equivalent to the adjacent nodes in the map graph Fig. 2(a).
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Proposition 1. Given a grammar G representing some map M , follow(z) of some
terminal symbol z of G represents the set of all map locations adjacent to z.

Algorithm 2 describes how we apply these transforms to compose the Map and
Action grammars. First, we introduce all map symbols into the action grammar by
repeatedly splitting the initial terminal symbol of the action grammar by direct ap-
plication of Transform 1. Next, we prune out productions indicating transitions be-
tween non-adjacent map locations. To prune these productions, we apply Transform
2 by intersecting the grammar with sets of allowable transitions. The disallowed
transitions are indicated by the regular expression L = (.∗z1ZA∗z2.∗) in line 2 of
Algorithm 2. The complement of this regular expression defines all paths which
do not move directly from z1 to z2. Since z1 and z2 are non-adjacent, intersecting
with L will preserve only paths which do not contain the disallowed transition. The
result is a grammar which contains the original action model and all permissible
transitions from the semantic map.

Algorithm 2. Composing Map and Action Grammars

Input: (ZM , VM , PM , SM ) ; // Map Grammar
Input: (ZA, VA, PA, SA) ; // Action Grammar
Output: (Z, V, P, S) ; // Combined Grammar
(Z, V, P, S)← (ZA, VA, PA, SA) ;1

/* Add map symbols by splitting first(SA) */
z0 = first(SA);2

forall z ∈ ZM do3

(Z, V, P, S)← Transform 1 to split z0 into z and z04

/* Prune non-adjacent map symbols */
forall z1 ∈ ZM do5

forall z2 ∈ ZM do6

if z2 	∈ follow(z1) then7

(Z, V, P, S)← (Z, V, P, S) ∩ L {.∗z1ZA
∗z2.∗} ;8

We apply Algorithm 2 to combine the map grammar, Fig. 3(b), with the base
grammar for mobile manipulation, Fig. 2(b). In this process, the initial nonterminal
of the base grammar, [room], is repeatedly split into all the symbols of the semantic
map. Then all transitions between non-adjacent map symbols are pruned away. This
produces the combined grammar of Fig. 4(a).

4.3 Supervisory Control

Finally, we use supervisory control to produce the policyG′ from our system model
G and task specification S, [5, p133]. This application of supervisory control will
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permit only those transitions of the model G which are also contained in specifica-
tion S. We represent this as the intersection,

G′ = G ∩ S (1)

Given that G is Context-Free and S is Regular, we use the algorithm defined in
[13, p135] to produce Context-Free G′, ensuring that we can efficiently execute
the policy given by G′. This algorithm operates on a Context-Free language model
for system G and a Regular language specification for correct operation S with the
assumption that we can block any undesirable transitions inG. The corrected system
language, then, is G′ = G ∩ S, where G′ is also Context-Free. We note in addition
that to prune non-adjacent regions permitted by Transform 2 in Algorithm 2, we
apply this same language intersection operation.

We use supervisory control of the grammar in Fig. 4(a) to perform the desired
mobile manipulation task. To instruct the robot to bring an object from the kitchen
to the human in the bedroom, we construct our supervisor according to the regular
expressions in Fig. 4(b). Thus, our controlled system is,

G′ = G ∩
4⋂
i=0

Si = [h] [l] [k] [object] [pick] [l] [h] [b] [place] [h] (2)

�

�

�

	

〈S0〉 → [h] 〈H〉
〈H〉 → [r] 〈R〉 | [b] 〈B〉 | [o] 〈O〉

| [d] 〈D〉 | [l] 〈L〉 | [object] [pick] 〈H′〉
〈B〉 → [h] 〈H〉 | [object] [pick] 〈B′〉
〈O〉 → [h] 〈H〉 | [object] [pick] 〈O′〉
〈R〉 → [h] 〈H〉 | [object] [pick] 〈R′〉
〈D〉 → [h] 〈H〉 | [object] [pick] 〈D′〉
〈L〉 → [h] 〈H〉 | [k] 〈K〉 | [object] [pick] 〈L′〉
〈K〉 → [l] 〈L〉 | [object] [pick] 〈K′〉
〈H′〉 → [r] 〈R′〉 | [b] 〈B′〉 | [o] 〈O′〉

| [d] 〈D′〉 | [l] 〈L′〉 | [place] 〈H〉
〈B′〉 → [h] 〈H′〉 | [place] 〈B〉
〈O〉 → [h] 〈H′〉 | [place] 〈O〉
〈R〉 → [h] 〈H′〉 | [place] 〈R〉
〈D〉 → [h] 〈H′〉 | [place] 〈D〉
〈L′〉 → [h] 〈H′〉 | [k] 〈K′〉 | [place] 〈L〉
〈K′〉 → [l] 〈L′〉 | [place] 〈K′〉

(a) Uncontrolled: G

– Let R = {[h] , [r] , [o] , [d] , [l]}
– Pick object in kitchen:

S0 = .∗ [k] (¬R)∗ [pick] .∗

– Place object in bedroom:
S1 = .∗ [b] [place] .∗

– Move the object only once:
S2 = (¬ [place])∗ [place]¬([pick])∗

– Let X = (¬ [x])∗ [x] (¬ [x])∗

– Don’t revisit rooms:
S3 =

⋂
[x]∈R X (([pick] | [place]) X )∗

– End in the hallway: S4 = .∗ [h] $

(b) Supervisor: S
�

�

�

	

〈S0〉 → [h] 〈H〉
〈H〉 → [l] 〈L〉
〈L〉 → [k] 〈K〉
〈K〉 → [object] [pick] 〈K′〉
〈K′〉 → [l] 〈L′〉
〈L′〉 → [h] 〈H′〉
〈H′〉 → [b] 〈B′〉
〈B′〉 → [place] 〈B′′〉
〈B′′〉 → [h]

(c) Controlled: G′

Fig. 4 Grammars for the Uncontrolled and Controlled mobile manipulator in the Aware
Home
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5 Experiments

We implemented this approach on a Segway RMP-200 mobile platform as shown in
Fig. 5. This platform is equipped with an ASUS Xtion PRO LIVE camera, providing
RGBD information for plane and surface extraction and with a UTM-30LX Hokuyo
laser used to label the spatial regions as Gaussian models. It includes a Schunk
parallel jaw gripper to manipulate objects. We conducted the experiments in the
Georgia Tech Aware Home [15] and RIM center.

(a) Aware Home (b) RIM Center (c) Picking

Fig. 5 Segway RMP-200 mobile platform in the Georgia Tech Aware, the RIM Center, and
picking a soda can

For both of the home and office environments, we first drove the robot through
each area collecting 3D point clouds, laser, and odometry. Our mapper extracts
planes and surfaces in the environment, building the map and localizing the robot.
During the navigation, the robot partitions the environment into Gaussian regions.
This produces the Gaussian map in Fig. 6. Then, we annotate the Gaussian regions
of the map with semantic labels. The result is a graph, shown previously for the
Aware Home in Fig. 2(a) and also for the RIM center in Fig. 7. This resulting map
is suitable for both human interpretation and automatic symbol manipulation.

Next, we apply the method described in Sect. 4 to generate the symbolic model
for the robot in each of the environments. For the Aware home, this model is given
in Fig. 4(a), and for the RIM center in Fig. 7. For the Aware Home, we asked the
robot to peform the following task, Collect a soda from the kitchen and bring it to
the bedroom, expressed as the specification in Fig. 4(b). For the RIM Center, we
apply a similar supervisor in Fig. 8(b) to collect a soda from kitchen and bring it to
library.

The policy for the task in the RIM environment, Fig. 8(c), is more complicated
than for the Aware Home, Fig. 4(c). This is because the RIM map contains multiple
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Fig. 6 Generated Semantic Maps for the Aware Home. In the map, black shows 3D robot
model, gray shows point clouds, yellow shows connected Gaussian regions (blue edges), and
red shows the surfaces.

(a) RIM Map

OFFICE

FOYER

STUDENT HALL

KITCHEN

LIBRARY
FRONT HALL

(b) RIM Graph

LIBRARY

STUDENT HALL

KITCHEN

OFFICE

FOYER
FRONT HALL

FOYERFRONT HALL

KITCHEN

OFFICE

STUDENT HALL

LIBRARY

STUDENT HALL

start 10

3
2

5

4

(c) RIM FSM

Fig. 7 Generated Semantic map of Georgia Tech RIM Center and the equivalent graph and
Finite Automata forms
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�

�

�

	

〈S0〉 → [s] 〈S〉
〈S〉 → [r] 〈R〉 | [o] 〈O〉 | [k] 〈K〉 | [pick] 〈S′〉
〈O〉 → [s] 〈S〉 | [f] 〈F〉 | [pick] 〈O′〉
〈K〉 → [s] 〈S〉 | [f] 〈F〉 | [pick] 〈K′〉
〈F〉 → [o] 〈O〉 | [k] 〈K〉 | [l] 〈L〉 | [pick] 〈F′〉
〈L〉 → [f] 〈F〉 | [r] 〈R〉 | [pick] 〈L′〉
〈R〉 → [l] 〈L〉 | [s] 〈S〉 | [pick] 〈R′〉
〈S′〉 → [r] 〈R′〉 | [o] 〈O′〉 | [k] 〈K′〉

| [place] 〈S〉
〈O′〉 → [s] 〈S′〉 | [f] 〈F′〉 | [place] 〈O〉
〈K′〉 → [s] 〈S′〉 | [f] 〈F′〉 | [place] 〈K〉
〈F′〉 → [o] 〈O′〉 | [k] 〈K′〉 | [l] 〈L′〉

| [place] 〈F〉
〈L′〉 → [f] 〈F′〉 | [r] 〈R′〉 | [place] 〈L〉
〈R′〉 → [l] 〈L′〉 | [s] 〈S′〉 | [place] 〈R〉

(a) Uncontrolled: G

– Let R = {[s] , [k] , [o] , [f] , [l] , [r]}
– Pick object in kitchen:

S0 = .∗ [k] (¬R)∗ [pick] .∗

– Place object in library:
S1 = .∗ [l] [place] $

– Move the object only once:
S2 = (¬ [place])∗ [place]¬([pick])∗

– Let X = (¬ [x])∗ [x] (¬ [x])∗

– Don’t revisit rooms:
S3 =

⋂
[x]∈R X (([pick] | [place]) X )∗

(b) Supervisor: S
�

�

�

	

〈S0〉 → [s] 〈S〉
〈S〉 → [k] 〈K〉 | [r] 〈R〉 | [o] 〈OL〉
〈K〉 → [pick] 〈K′〉
〈R〉 → [l] 〈OL〉
〈OL〉 → [f] 〈F〉
〈F〉 → [k] 〈K〉
〈K′〉 → [f] 〈F′〉 | [s] 〈S′〉
〈F′〉 → [l] 〈L′〉 | [o] [O′]

〈S′〉 → [r] 〈R′〉
〈O′〉 → [s] 〈S′〉
〈R′〉 → [l] 〈L′〉
〈L′〉 → [place]

(c) Controlled: G′

Fig. 8 Grammars for the Uncontrolled and Controlled mobile manipulator in the RIM Center.
Notice how the policy captures all possible paths through the environment that satisfy the
specification.

Living Room

Kitchen

Hall
Bedroom

[h]

START

[l]

[k][object][pick]

[l] [h]

[b][place]

[h]

HALT

Fig. 9 Path of the robot following controller in Fig. 4(c) and (2), shown as robot enters the
living (green oval). Solid blue lines show the map connections between rooms, and dotted
red lines show the robot path.



712 N. Dantam et al.

paths between all rooms. Thus, all these possible paths are captured in the control
policy grammar. The result is the nine strings represented by the following regular
expression,

G′ = (k|rlfk|olfk) [pick] (fl|fosrl|srl) [place] (3)

These generated policies direct the robot along the path to complete the specified
task. For the Aware Home, the robot fetches the object from the kitchen and delivers
it to the bedroom, illustrated in Fig. 9. This figure shows the path of the robot, both
as a trajectory though the map and as the sequence of language symbols.

6 Discussion

In this approach, we combine a Semantic Map and a Motion Grammar using the Mo-
tion Grammar Calculus (MGC). This ensures the validity of our final system model
because each transform of the MGC preserves completeness of the model. Then,
applying a supervisory controller guarantees that the final policy is correct with re-
gard to the specification. Thus, the overall approach is correct-by-construction in the
sense that the final system model is guaranteed by the MGC to simulate our initial
system, and the resultant policy satisfies the supervisory control specification.

The defining characteristic of this method is the uniform representation of the set
of all robot paths as a language with an explicit grammar. This representation allows
iterative development of the grammatical control policy by the progressive applica-
tion of MGC transformations and supervisory control specifications. At each step of
this derivation, the mechanical application of the MGC transforms and supervisory
control ensures that we maintain a valid model of the system. Furthermore, because
the policy for each task is itself a grammar, we can compose multiple individual
task policies to produce a system to perform each of those tasks, all within the same
grammatical framework. We expect these capabilities for incremental design and
policy composition to be useful as we extend our work to multiple tasks and more
complicated systems with larger grammars.

While search-based motion planning could perform some of the tasks in this pa-
per, there are certain advantages given by our linguistic formulation and use of su-
pervisory control for policy generation. Random-sampling planners such as RRTs
and PRMs assume a continuous search space, while our application domain includes
discrete features for detecting and manipulating objects. General search based plan-
ning assumes an explicit goal state and produces a plan to reach that state. In con-
trast, the linguistic approach considers the set of acceptable paths and produces a
policy to stay within that set of paths.

7 Conclusions and Future Work

In this work, we address two significant challenges faced by robot mapping and
hybrid controls. Robot mapping produces precise models of the environment, but
gives no direct link to robot action. Formal hybrid control models are precise,
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verifiable, and efficient representations of robot action, but developing these mod-
els for large and complicated systems is a tedious task. The linguistic composition
demonstrated in this paper eases the challenges posed by each of these separate ap-
proaches. Through the automatic, symbolic composition of a map and base hybrid
model, we produce a verifiable and executable model of the whole robotic system.

We will continue this work with in several ways. First, we will extend our imple-
mentation of this method to a variety of mobile manipulation tasks. Next, to provide
a natural human interface for the mobile manipulation, we will compose multiple
task policies with a grammar for simple human utterances. Finally, to increase the
flexibility of this approach, we will extend the offline composition of maps and
grammars to online composition as the semantic map is acquired.
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Part XI: ISER Session Summary  
on “Field Robotics” 

Stephen Nuske 

Carnegie Mellon University 

Session Summary  

Piecing together a common thread between the papers in the field robotics session 
lead to one conclusion: information gathering. Four out of the five papers were 
focused specifically on collecting information with outdoor mobile sensors and the 
fifth paper was to do with using an underused information source: acoustic 
sensors. It goes without saying that there is immense value in gathering 
information and in field robotics domains the value is magnified because of the 
difficulty, expense and potential danger of collecting information manually. 

Patrick Plonski et al. first up showed a mobile robot collecting information on 
the spatial distribution of solar energy in an environment for the purpose of 
planning efficient routes for solar-powered robots. Routes may be longer in 
distance but more optimal for an overall energy budget because they lead through 
direct sunlight. 

Aravindhan Krishnan et al. then presented work processing vast aerial datasets 
of tectonic fault lines for detecting and understanding activity resulting from 
earthquakes. 

Qi Wang et al. demonstrated how to collect harvest yield predictions in apple 
orchards. Yield measurements that are accurate and dense collected in advance of 
harvest give rise to intelligent, efficient and precise orchard management. 

Young-Ho Kim et al. then focused on the general problem of information 
gathering and studied the use of Gaussian processes with different approaches to 
measure the variance demonstrated more accuracy whilst maintaining consistency.  

Tews and Dunbabin in the final paper of the session showed that acoustic 
information has great utility in certain situations. Here, an approach is shown to 
conceal movement of a robot by waiting for periods where ambient noise exceeds 
a level to conceal the robot’s own motion. 

 
 
 



Energy-Efficient Path Planning
for Solar-Powered Mobile Robots

Patrick A. Plonski, Pratap Tokekar, and Volkan Isler

Abstract. We explore the problem of energy-efficient, time-constrained path plan-
ning of a solar powered robot embedded in a terrestrial environment. Because of
the effects of changing weather conditions, as well as sensing concerns in complex
environments, a new method for solar power prediction is desired. We present a
method that uses Gaussian Process regression to build a solar map in a data-driven
fashion. With this map, we perform energy-optimal path planning using a dynamic
programming algorithm. We validate our map construction and path planning al-
gorithms with outdoor experiments, and perform simulations on our solar maps to
determine under which conditions the weight of added solar panels is worthwhile
for a mobile robot.

1 Introduction

Mobile robots have the potential to perform many critical outdoor tasks but their
potential for long-term deployment is limited due to energy concerns. A possible
method to increase the battery life of robots is by harvesting energy from the en-
vironment, e.g. with photovoltaic solar panels. Solar harvesting has proven to be
useful in marine and extra-terrestrial robotics applications [11, 1] which take place
in open space. However, in applications where the robot must operate in complex
environments, such as urban search and environmental monitoring, the utility of so-
lar harvesting is not obvious. In this work we focus on extending the battery life of
mobile robots using solar panels in such settings.

We study techniques for energy-minimizing path planning for a mobile robot
with a photovoltaic panel that uses recent measurements of solar intensity as its
only source of information about future solar power. This is an interesting problem
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DOI: 10.1007/978-3-319-00065-7_48 c© Springer International Publishing Switzerland 2013
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because there are many applications where mobile robots do not necessarily have the
sensors or computing power to estimate solar maps using sophisticated techniques
such as raytracing on 3d models of the environment. However, energy-efficient paths
are still desired. Intuitively, it seems feasible for a good solar map of the environment
to be built if the robot is in the field long enough. We provide experimental evidence
to support this intuition.

To accomplish energy-efficient path planning, we first build a map of how much
solar power the robot is likely to get in its operating environment (Section 2). Next
we show how the robot’s energy consumption can be modeled and how we can
compute energy efficient paths given a solar map (Section 3). We present results
from experiments that demonstrate the utility of our techniques (Section 4). We also
present simulation results on our solar maps to demonstrate the utility of added solar
panels on a robotic platform (Section 5).

1.1 Related Work

Energy efficient planning for mobile robots has received increased attention re-
cently. Mei [8] studied the problem of modeling the power consumption of motion,
sensing, communication and embedded hardware for commercially available robots.
These power models are then used to compare various strategies for high-level tasks
such as coverage, exploration and networking between robots, and increase the life-
time of the system.

Motion is a major source of power consumption for typical robots. Tokekar et
al. [15], Wang et al. [17], and Kim and Kim [6] have studied the problem of mini-
mizing the energy consumption by optimizing the velocity profiles for a given path.
Sun and Reif [13] studied the problem of finding energy optimal paths between two
points on terrains where the cost depends on friction and gravity and is thus direc-
tion dependent. They present an approximation algorithm for finding the minimum
energy path, but do not optimize the velocity profile along the path. Liu and Sun [7]
recently studied the problem of computing energy-efficient paths and trajectory pro-
files by optimizing the parameters of Bezier curves using an energy-based heuristic.
However, the presented method is not guaranteed to minimize energy and the gen-
eral problem of simultaneously optimizing the path and velocity for given start and
goal pose remains unsolved.

Energy efficient motion planning in the context of applications such as coverage
and data muling is a subject of recent study. Derenick et al. [2] studied the problem
of maintaining persistent coverage using a network of robots by deriving control
laws that allow robots with depleted batteries to reach corresponding access points.
Similarly, Jensen et al. [5] presented strategies for reconfiguring robot formations
for patrolling application.

Sugihara and Gupta [12] presented path planning algorithms for a data muling
system for optimizing the trade-off between the energy consumption of the sensors
and latency of the data carried by the robot. Tekdas et al. [14] studied the problem
of finding time-efficient trajectories for a mobile robot downloading data from a set
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of wireless nodes, and by setting the parameters proportional to energy cost their
approximation algorithm can minimize energy instead of time. In these works, the
energy consumption of the robot is not considered. Here we present energy harvest-
ing and path planning techniques that can potentially be useful for such applications.

The aforementioned works have not considered energy harvesting from the
environment, and solar-aware path planning has received limited attention. In ex-
traterrestrial applications and some environments on earth (e.g. in Antarctica [10])
collected solar energy can be treated as mostly independent of the path chosen. The
TEMPEST mission-level path planner [16] uses ephemeris software to determine
the position of the sun and then performs raytracing on known nearby terrain to
build a solar map that is used to estimate the energy cost of paths. This is feasible
when nearby terrain is known or when it can be accurately detected, but many other-
wise feasible platforms for long-term environmental monitoring lack the necessary
sensors to do this. In this paper we focus on predicting solar power in complex en-
vironments using only the robot’s previously recorded position estimates and solar
power measurements.

1.2 Problem Statement

Our problem statement is as follows: Suppose we have a mobile solar-powered robot
that has been performing a task while also logging the power received from an on-
board solar array. Each solar measurement is associated with an estimated robot
position. Suppose the robot is required to perform a new task that requires it to
reach a goal position within some time limit. How can the robot plan the path that
minimizes its net energy consumption?

2 Solar Modeling

In this section we introduce the method we use to predict how much solar power the
robot will receive at a given position. Before we present the details of our Gaussian
Process (GP) regression, we first cover the basics of predicting electrical output
from a photovoltaic panel.

2.1 Basics of Solar Power Prediction

The amount of current I a solar cell will output when it is fixed to a particular voltage
V is the solution to the equation

I = IL− Is(e
(V+IRs)/VT − 1)− V + IRs

RSH

where Is is the reverse saturation current of the diode and VT = k∗T
q which is known

as the thermal voltage. IL is proportional to the number of photons that impact the
solar cell, and therefore so is I. I decreases with higher voltage, but the effect isn’t
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pronounced until the diode knee voltage is reached at around 0.5 volts for a sili-
con cell. The knee voltage increases with decreased temperature, but in general the
voltage limit varies much less than the current.

Because the voltage of an individual cell is low, cells are usually connected in
one or more strings such that each string is electrically in series. These strings have
the property that the amount of current output is limited by the weakest cell in the
string (ignoring the effect of bypass diodes). The weakest cell could be the cell with
the smallest dot product between its normal vector and the sun angle vector, or it
could be a cell which happens to be in a shadow. This response to partial shading of
the array causes the correct solar map to have sharp edges between sun and shade.

Sunlight reaches a solar panel in three different ways[4]: If it comes directly
from exactly the part of the sky that contains the sun, it is called direct insolation.
If it comes from any other part of the sky, it is called diffuse insolation. Finally,
if it comes from anywhere else (i.e. from terrain or objects), it is called reflected
insolation. Reflected insolation is most relevant when a solar panel is tilted towards
a reflective surface (such as snow), or near a reflective building. On a sunny day
direct insolation is high and diffuse insolation is low whereas on a cloudy day direct
insolation is low and diffuse insolation is high (and total insolation is much lower
than on a sunny day). If a cell has no line of sight to the sun it is in a shadow,
and direct insolation drops to zero. However, for diffuse insolation to drop to zero
the entire sky must be blocked. Therefore we can expect shadows and therefore the
correct solar map to be much sharper on a sunny day than on a cloudy day.

It is challenging to detect the environment and perform raytracing for these three
types of insolation so we sidestep and instead construct our solar map using regres-
sion from prior measurements of solar power associated with positions.

2.2 Gaussian Process Regression

A Gaussian Process (GP) is defined as a set of random variables such that any subset
of the random variables has a joint Gaussian distribution [9]. GP regression is a
general regression technique used to predict the most likely value of a function
at any point given measured values of the function at some other points, without
assuming an explicit parametric model for the function. GP regression, however,
requires a suitable covariance function to model the joint Gaussian distribution for
points. For more details on GP regression in general see [9].

In our application we associate each measurement of solar power with a position
and use GP regression to predict the distribution of solar power at any desired po-
sition. When all of the solar cells are horizontal, or if they are otherwise suitably
symmetric, the rotation of the robot can be ignored in these position measurements.
This makes the solar map easier to learn by eliminating a dimension along which
solar power can vary. In this paper we neglect the solar map’s time dependence
from the changing position of the sun. This is justified when the robot stays in the
same environment each day, and can therefore build a separate solar map for various
discrete time segments.



Energy-Efficient Path Planning for Solar-Powered Mobile Robots 721

In Section 4.4 we present more details of our particular implementation of GP
regression, and we empirically compare the performance of different covariance
functions.

3 Path Planning

In this section we show how we use a solar map to plan the path that will reach the
goal within the time limit while consuming the least amount of energy overall.

Our robot is differential-driven, so it can turn in place, and turning is a relatively
expensive operation. We empirically determine in Section 4.3 that for our robot
the energy consumption of a path with a certain top speed is well represented as
a short initial spike during acceleration, and then a steady cost per meter traveled.
the planned path as time-stamped waypoints with straight line segments connect-
ing them, each line segment traversed at a constant speed with instantaneous speed
changes between line segments. We model the energy sent to the motors as the fol-
lowing: At any particular speed, there is a constant cost per meter traveled Cs, a
constant cost per radian rotated Cr, and an initial acceleration cost Ca. When tran-
sitioning from a non-zero speed, the acceleration cost is the Ca for the new speed
minus the Ca for the old speed, but with a minimum cost of 0. This makes sense if
we assume that acceleration cost is proportional to kinetic energy. We can mathe-
matically state the cost of traversing line segment li:

costi =Cs(speedi)|li|+Cr(speedi)|θi−θi−1|+max(Ca(speedi)−Ca(speedi−1),0)

The cost constants as functions of speed are specific to the robot and the terrain. The
terrain where our experiments were conducted was flat and uniform, so in this work
we do not consider changes in elevation, friction, or rolling resistance.

The total cost of a path is given by the sum over the path ∑n−1
i=0 costi minus the

expected amount of solar energy collected while traversing the path. An idle power
draw (constant) can be subtracted from the solar power; we do not consider idle
power draw because our focus is on path planning and idle power does not affect
the optimal path to reach the target in the time scales we consider.

The Algorithm
The expected value for any particular point in our solar map can be determined in
closed form, however there is no convenient closed form model for the entire map
as a whole; that is, there is no general geometric model we can use to represent our
environment. Therefore some amount of discretization of the solar map is necessary
for us to do planning. It is possible in this domain to plan on a set of sampled actions
or path shapes (e.g. with an sampling based planner) but since the state space is
relatively small we use a complete grid. We then perform dynamic programming to
compute the optimal solution for a given resolution. We discretize both space and
time, and we also have a dimension in the dynamic programming table for heading
and a dimension for whether the robot is moving or the robot is waiting, to account
for the cost to rotate and the cost for initial acceleration. In this way we ensure that
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the output path is always optimal in its resolution, according to our power to drive
model. The trajectories generated by our algorithm move at a constant speed when
they are on Manhattan edges and a faster constant speed when they are on diagonal
edges; traversing to any neighboring state takes the same amount of time.

We observe from the output of this algorithm that optimal trajectories consist of
either continuous movement, continuous movement with a wait at the beginning or
the end, or continuous movement broken up by a wait in the middle. As more time
is allowed the optimal path transitions between those three types: at first there is no
time to wait anywhere, then there is time to wait but not enough to compensate for
the energy loss from having to re-accelerate, and then finally there is enough time to
wait somewhere in the middle for long enough to recoup the extra acceleration cost
and possibly enough time to allow deviation from a shortest path. See Figure 3a for
examples of planned paths output by our algorithm.

4 Field Experiments

We performed three sets of experiments in the environment shown in Figure 1b: we
calibrated our power to drive parameters, we measured solar panel current along
paths and used this to construct solar maps using different covariance functions, and
we executed energy-minimal paths that were planned on these maps.

4.1 System Description

The chassis of our system was a Husky A100, built by Clearpath Robotics1. The
A100 is a six wheel, two motor, differential drive machine. The datasheet mass is
35 kg, the maximum payload is 40 kg, and the dimensions are 0.860 meters long by
0.605 meters wide by 0.350 meters tall. In its experimental configuration the A100
was powered by a single lead-acid battery that was nominally 12v and 21 amp hours.
See Figure 1a for a photo of the A100 during one of our experiments.

The solar panels used by our system were two SPM020Ps from Solartech Power2.
The SPM020P supplies 20w at the optimal voltage of 17.2v under standard test
conditions of 1000 w/m2 insolation and a temperature of 25oC. The panel is wired
as a single series string with 36 cells in it. The dimensions are 560x360x18(mm),
and each panel nominally weighs 2.5kg.

We placed the panels horizontally on the robot for ease of mounting, for quality
in overcast conditions, and to eliminate the dimension of panel rotation in the solar
map built. Both panels were connected in parallel with the battery; therefore solar
panel current was proportional to solar power. Battery voltage and motor current
measurements were provided by the A100, and current from the panel to the battery
was measured with a hall-effect current sensor.

1 http://www.clearpathrobotics.com/
2 http://www.solartechpower.com/

http://www.clearpathrobotics.com/
http://www.solartechpower.com/
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(a) Clearpath Husky A100 (b) Test Site

(c) Sunny Solar Map (d) Cloudy Solar Map

Fig. 1 Our configuration of the A100 (a), top-down view of the test site (b), solar map con-
structed for 13:42 on November 18, 2011 (c) (this was a sunny day), and solar map con-
structed for 11:22 on September 16, 2011 (d) (this was a cloudy day). Both solar maps are
overlayed with their source paths. The cloudy map was built by sampling with only a single
solar panel.

Localization of the robot was achieved by using an EKF to fuse GPS measure-
ments with wheel-encoder propagation.

4.2 Terrain Description

We performed our experiments in the field next to the McNamara Alumni Center,
on the Minneapolis campus of the University of Minnesota (see Figure 1b). The
field is roughly 40 meters by 30 meters and it is relatively flat, with uniform short
grass. Other than a few poles the only objects that occlude the sun are scattered
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trees. While our calculated power to drive parameters and solar map parameters are
likely to change in other environments, the methodology we present here to obtain
those parameters remains the same.

We performed our experiments on dry days when there was no snow on the
ground. We would expect power to drive to significantly change in wet weather
or if there is accumulated snow. All solar parameters except the chosen covariance
function were re-learned for each new solar map; this was necessary to account for
short term changes from the varying position of the sun, medium term changes from
varying weather, and long term changes. One of these long term changes was a sea-
sonal change in solar power that occurred as the leaves fell off the trees as summer
turned to winter.

4.3 Power to Drive Experiments

We controlled the forward movement of the A100 by directly setting the motor
voltage. We found that this method required less energy than using a closed loop
PID speed controller. For a particular motor voltage and on particular terrain, the
A100 travels at a particular steady-state speed and consumes a steady amount of
energy per unit distance traveled, after a brief acceleration period. To characterize
the steady-state cost and acceleration cost we drove straight at a variety of com-
manded motor voltages and fit a line to the plot of cumulative cost vs. distance for
each voltage. The slope of the line determined the steady state cost and the inter-
cept determined the acceleration cost. Then we performed linear regression on the
steady state costs as functions of speed and quadratic regression on the acceleration
costs as functions of top speed, and ended up with the following equations for our
parameters Cs and Ca (see Figure 2):

Cs = (−17.6624 ∗ speed+ 139.4576) Joules per meter
Ca = (321.0671 ∗ speed2− 285.3912 ∗ speed+ 154.9553) Joules to accelerate

Then to characterize turning cost we commanded a tight left turn and tight right
turn, and examined the steady state energy per radian.

Cr = 406.5963 Joules per radian

4.4 Solar Map Construction

The input for the solar map is a long path with noisy measurements of solar cur-
rent taken at 20 Hz, each measurement associated with a position on the path. This
accumulates to a very large number of measurements if the robot is embedded in
the environment for a long time. As GP regression relies on matrix multiplication
of all training points, using all measurements as individual training points becomes
infeasible. Fortunately, since we only care about associating solar current to x− y
position we can discard information about rotation and time and combine measure-
ments with similar x− y position. In this way the number of measurements consid-
ered by the GP regression is bounded by the size of the environment rather than the
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Fig. 2 Power To Drive Test Results

length of time the robot is collecting data. Also it is valuable for optimizing the GP
hyperparameters for measured positions to be weighted equally instead of weighted
in proportion to the amount of time the robot has spent there.

In our implementation we placed in a bucket all measurements that were within
0.3 meters of the first measurement and then removed them from the list, and re-
peated this process until every measurement was in a bucket. The bucket’s position
was set as the centroid of the positions of the measurements in it, and its value was
set as the mean of the values of the measurements in it. We calculated the variance
of each bucket from the variance of the measurements in the bucket, treating the
bucket solar current as an average of uncorrelated random variables. Then for the
regression we treated the noise variance as equal to the average of the variances of
the buckets. This was again to induce balanced weighting of different areas; if the
robot had waited 20 minutes at the same position we did not want the bucket con-
taining that position to be significantly more valuable than nearby buckets because
still only a small portion of the possible points that could go into that bucket would
have been explored. The prior mean and prior variance were computed from the
mean and variance of the set of buckets.

To perform GP regression we need a covariance function. For this we considered
different versions of the Matérn covariance function (detailed in [9]). The Matérn
class of covariance functions is given by:

k(r) =
21−v

Γ(v)

(√
2vr
�

)v

Kv

(√
2vr
�

)

where v is a positive parameter that affects the smoothness of the process, � is the
positive length parameter, and Kv is a modified Bessel function. If v is 1/2 the
function becomes the exponential covariance function, and as v→ ∞ the function
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becomes the squared exponential covariance function. Other than the exponential
and the squared exponential, the most commonly used Matérn covariance functions
are where v = 3/2 and v = 5/2, so those are the covariance functions we tested in
addition to the exponential and squared exponential.

To optimize the Matérn function’s length hyperparameter we performed numer-
ical gradient-descent searches maximizing the likelihood of the observed values
given the covariance function. We compared the likelihoods of the different Matérn
functions on various data sets we collected and we found that v = 1/2 was the most
likely on two out of three of the cloudy days tested, and five out of eleven of the
sunny days tested, with v = 3/2 the most likely on the other days. However, even
on the days where it was the most likely, the solar maps constructed using v = 3/2
had overshooting at the sharp boundaries between sun and shade. This overshoot-
ing made it so that the positions with the most predicted solar power were close
to boundaries, and therefore planned energy-minimal paths were pulled towards
boundaries. As a real system always has some localization error, a better strategy
is to stay away from shadows if possible. This is the behavior that results when we
use v = 1/2 in our regression, so that is what we did even though it was often less
likely given the data and our GP assumption.

Holding v = 1/2, the most likely length varied between 2.05 meters and 12.65
meters on sunny days, and between 3.68 meters and 18.67 meters on cloudy days.
This difference is because diffuse insolation dominates over direct insolation on
cloudy days, and diffuse insolation varies slower than direct with changing position.

4.5 Path Planning and Execution

At 13:10 on February 18, 2012 we drove the A100 around the field in Figure 1b,
optimized the length hyperparameter for that dataset with an exponential covariance
function, used GP regression to build a solar map, planned paths with our planner
detailed in Section 3, and then executed the paths. The A100 had some localization
error even when GPS worked well, so a fairly low spatial resolution of 5m was used.
Temporal resolution was set to 8 seconds. To calculate the expected solar current in
a grid square the expected solar current was calculated on a higher resolution 1m
grid and then downsampled. In addition to the planned solar-aware paths the A100
also executed shortest paths after we removed the solar panels (slightly decreasing
the power to drive due to decreased weight) from the same start position to the same
end position. These paths provide a comparison, allowing us to directly demonstrate
the utility of the added panels. See Table 1 for summaries of the executed paths.

Table 1 Path Execution Results

Solar Trial Duration Expected Solar Actual Solar Expected Cost Actual Cost Control Trial Duration Cost
A 401 s 7,025.5 J 6,974.1 J 577.16 J 744.6 J F 45 s 6,295.4 J
B 400 s 6,606.6 J 6,828.6 J −3,265.9 J −3,256.7 J

G 19.1 s 2,888.1 J
C 104 s 1,148.3 J 611.26 J 879.99 J 2,253,4 J
D 104 s 1,600.9 J 1,297.6 J 2,907.3 J 3,480.3 J

H 30.4 s 3,530.4 J
E 104 s 1,600.9 J 1,156.2 J 2,907.3 J 2,822.5 J
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(a) Solar map at 13:10 on February 18, 2012, with planned
paths in red and executed paths in blue
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(b) Trial C Power
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(c) Trial C Solar
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(d) Trial D Power

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

P
ow

er
 (

w
at

ts
)

Time (seconds)

 

 

2−sigma bounds

predicted solar power

actual solar power

(e) Trial D Solar

Fig. 3 Planned solar-aware paths and example trials. Note that in trial D the planner chose to
wait at the beginning given the information it had but it turned out the position at the end of
the path received more solar power.
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5 Power Comparison

To further investigate the benefits gained from solar panels, we ran simulated com-
parisons between our solar powered robot using our path planner and our robot,
stripped of its panels, driving straight towards the destination. We picked a start po-
sition and end position, planned the optimal solar-aware path for a range of time
limits, and compared the cost to drive straight without a panel with the distribution
of likely solar robot costs. For these simulations we did not consider localization
errors, so we increased the resolution of our planning grid to 2 meters per square, 3
seconds per square. We intentionally chose start and end positions in the shade, to
see how the system would perform under somewhat adverse conditions.

First we considered a robot traveling from the southwest part of the trees to
the northeast part of the trees, at 13:10 on February 18 (the same day as our path

(a) Start and end positions
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Fig. 4 Simulations for 13:10 on 02-18-2012 (a and b) and 13:42 on 11-28-2011 (c and d).
When not much time is allowed the weight of the solar panels ensures that the cost of carrying
them is greater than the benefit of solar power, however when the robot is allowed to wait a
while in the sun the benefit of panels can be large.
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execution trials). For details of this simulation see Figures 4a and 4b. The start po-
sition was (188,−109) and the end position was (208,−89). At a speed of 1 m/s
we expect the baseline path to consume 3,065.0 Joules. For the solar robot to be
on average more energy efficient than the baseline it requires at least 42 seconds to
execute its path. This is an overall speed of 0.6734 m/s. For the solar robot to be
more energy efficient with 95% confidence, it requires at least 57 seconds which is
an overall speed of 0.4962 m/s.

Second we considered a robot traveling south through the shade of the west line
of trees, at 13:42 on November 28. For details of this simulation see Figures 4c and
4d. The start position was (195,−80) and the end position was (195,−100). At a
speed of 1 m/s we expect the baseline path to consume 2,211.9 J. For the solar robot
to be on average more efficient than the baseline it requires at least 63 seconds which
is an overall speed of 0.3175 m/s. For the solar robot to be more efficient with 95%
confidence it requires at least 78 seconds which is an overall speed of 0.2667 m/s.

6 Experimental Insights and Concluding Remarks

In our experiments, we observed that true solar energy collected during a trial was
close to the expected solar energy obtained from GP regression. However, the pre-
dicted probability distributions did not necessarily resemble the true distributions.
This is because the probability distribution of sunlight at a point is poorly modeled
by a Gaussian distribution: on a sunny day the correct probability distribution of
expected solar power at any given point is bimodal, with separate peaks of expected
power for the case where the panel is in the sun and the case where it is in the shade.
Since Gaussian models cannot capture this behavior well, it may not be best to op-
timize the covariance function hyperparameters for maximum likelihood. This is an
issue we plan to investigate further.

On February 18 the system did not lose much accuracy by neglecting to consider
the sun’s movement, though the solar map was constructed for 13:10 and the last
solar trial (trial E) began at 14:19. The impact of moving shadows may have been
mitigated by the fact that shadows were sparse due to bare branches on the trees.

Our power to drive model was reasonably accurate. It tended to underestimate
power to drive but not by much: on average it missed by 396.5 J, which was on av-
erage 11.2% off from the true value. It underestimated four times and overestimated
once. This indicates that our learned parameters were correct and that the A100
waypoint navigation software was not performing too many corrective turns. To get
the waypoint navigation software to this state we disallowed backtracking and in-
stead counted the waypoint as reached whenever the plane perpendicular to the path
was crossed. This had the effect of slightly decreasing solar prediction accuracy, but
also significantly decreasing average power to drive for a trial.

Our path planner worked well at its resolution. If we move to higher resolution
there is a danger of the following: the path planner chooses to wait in a position that
has sun but due to localization error the A100 ends up waiting in the shade, and an
expected good path becomes very bad. With our path planning there was very high
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cost to deviate from a straight path: the cost of four 45o turns and at least 10 meters
increased distance. Therefore if there is not much time the optimal path will choose
to wait at the sunniest spot on the shortest path instead of deviating to a sunnier spot
that is slightly off the path. It might be feasible to use something such as Field D*
[3] to plan smoother paths that vary only slightly from the shortest path.

Our simulation results show that with our platform and in the environment we
tested, the addition of heavy commercial solar panels decreases cost on sunny days
in November and February only if the average speed is not required to be greater
than 0.6734 m/s for the trial in February or greater than 0.3175 m/s for the trial in
November. These were both sunny days, but they were particularly challenging for
sunny days: it was the dark part of the year, and the trials both started and ended in
the shade. We would therefore expect the addition of solar panels to be feasible in
many situations requiring higher average speeds.

In our future work, we will investigate the effect of the varying sun angle on
our solar maps, as well as methods to use the known sun angle to improve our
predictions. We also plan to further investigate methods of optimizing the hyperpa-
rameters, and methods to plan smoother paths on our solar map.

Acknowledgements. This material is based upon work supported by the National Science
Foundation under grant numbers 1111638, 0916209, 0936710, and 0934327.
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Change Detection Using Airborne
LiDAR: Applications to Earthquakes

Aravindhan K. Krishnan, Edwin Nissen, Srikanth Saripalli,
Ramon Arrowsmith, and Alejandro Hinojosa-Corona

Abstract. We present a method for determining 3-dimensional, local ground
displacements caused by an earthquake. The technique requires pre- and post-
earthquake point cloud datasets, such as those collected using airborne Light
Detection and Ranging (Lidar). This problem is formulated as a point cloud
registration problem in which the full point cloud is divided into smaller win-
dows, for which the local displacement that best restores the post-earthquake
point cloud onto its pre-earthquake equivalent must be found. We investigate
how to identify the size of window to be considered for registration. We then
present an information theoretic approach that classifies whether a region
contains an earthquake fault. These methods are first validated on simulated
earthquake datasets, for which the input displacement field is known, and
then tested on a real earthquake. We show results and error analyses for a
variety of different window sizes, as well as results for our fault detection
algorithm.

Keywords: Change detection, Airborne systems, Registration, ICP.

1 Introduction

Continental earthquakes occur within wide networks of faults which pose a
serious hazard to local populations, yet most of these faults remain unmapped
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or poorly documented [4]. To better understand the tectonics of these regions
and to help constrain the likely timing and magnitude of future seismicity,
it is crucial to map earthquake-related surface deformation, and from this,
calculate the distribution and sense of slip on the causative faulting. Satellite
radar interferometry (InSAR) has proved a powerful method for measuring
far-field earthquake displacements, but the technique often breaks down close
to the fault rupture (due to ground disruption) and is insensitive to North-
South motions (because of its viewing geometry). Sub-pixel correlation of
optical images helps solve these problems, but can only determine lateral
displacements, leaving the important vertical component unresolved.

Sub-meter resolution topographic data derived from airborne Lidar offer
huge potential for complementing these existing techniques by providing 3-
dimensional, near-fault surface displacements and fault slip. Such datasets
are rapidly becoming widespread; in California, for instance, Lidar data have
been collected along most of the key active faults over the past decade, in-
cluding the full length of the onshore San Andreas Fault [2, 7]. Were a future
earthquake to occur on one of these faults, a repeat Lidar scan of the fault
would enable differential analysis of dense, pre- and post-earthquake topo-
graphic data. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in
northern Mexico is currently the only earthquake rupture with both pre- and
post-event Lidar coverage. A simple differencing of gridded Digital Elevation
Models (DEMs) generated from these point clouds revealed spectacular im-
ages of surface faulting and complex off-fault deformation [6]. However, these
maps do not account for lateral displacements and so cannot be directly
equated to any single component of the 3-D displacement field.

Computing the full 3-D surface displacements following an earthquake
could potentially revolutionize our understanding of rupturing processes and
would greatly aid research on faulting and tectonics in earthquake-prone re-
gions. The objectives of this work are to devise a method to compute full 3-D
displacements from pre- and post-earthquake Lidar datasets, and in doing so
identify the causative faulting and its sense and magnitude of slip.

2 Problem Statement

The problem can be formulated as follows. Given pre- and post-earthquake
Lidar point clouds (each containing a scattered distribution of points), find
the 3-dimensional displacement (with rotation and translation components)
that has best shifted the post-earthquake point cloud from its pre-earthquake
equivalent. These shifts will vary spatially, depending on the distance to the
fault, the sense and magnitude of slip and secondary effects such as lands-
liding. For this reason, the area must be divided into separate windows and
the best local transformation identified for each one. To complicate matters,
post-event windows which contain surface faulting will not be related by a
rigid body transformation to their pre-event equivalents.
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A few things must be considered in this problem statement. Firstly, how do
we decide upon an appropriate window size for splitting the data? Secondly,
without any prior knowledge, how do we identify whether a particular window
contains the fault, or lies away from the fault and has been shifted?

3 Data Description

We began our experiments usign a synthetic earthquake dataset, before
moving on to real earthquake displacements. The synthetic post-earthquake
dataset was generated by adding displacements of known magnitude and
sense to a real point cloud (the ‘target cloud’), to be tested against an-
other, unaltered point cloud representing the pre-earthquake ground surface
(the ‘source cloud’). This way, we were able to identify an approach which
best reproduced the known input displacements. We used publicly available
“B4” Lidar data [2] covering a ∼2 × 2 km section of the San Andreas Fault
(SAF) near Coachella, CA, collected on five separate, parallel flight lines
with ∼50% overlap between adjacent swaths. In the realistic case, pre- and
post-earthquake datasets would utilize different Lidar scan lines, so we split
the original dataset by flight line, using the 1st, 3rd and 5th swaths for the
source cloud and adding synthetic earthquake displacements to the 2nd and
4th flight lines for the target cloud. Both datasets have average point cloud
densities of ∼2 points/m2. Our synthetic fault strikes North-West through
the center of the target cloud, close to the real surface trace of the SAF. To
simulate a vertical, right-lateral rupture, we displaced points North-East of
the fault 2 m towards the South-East, and displaced points South-West of the
fault 2 m towards the North-West. To evaluate our ability to detect vertical
motions, we also raised points on the North-East of the fault by 1 m. After
investigating the synthetic case, we go on to test the method using real pre-
and post-earthquake data from part of El Mayor-Cucapah earthquake rup-
ture in Mexico [6]. Here, the pre- and post-earthquake point cloud densities
are on average 0.013 points/m2 and ∼9 points/m2, respectively.

4 Algorithm

We use the Iterative Closest Point (ICP) algorithm [1] with a point to plane
metric [8] for point cloud alignment. ICP operates by finding the correspond-
ing point qi in the target cloud for every point pi in the source cloud, and
determines the rigid body transformation that minimizes the distances be-
tween these points. It is an iterative process where the correspondences and
the errors are computed at every iteration and the rigid body transforma-
tion is applied to the source cloud repeatedly until it aligns with the target
cloud. With the point to plane error metric, the objective is to minimize the
distance between the source point (pi) and the tangent plane at the corre-
sponding target point (qi). The error metric can be written as follows
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E =
∑
i

‖ (φpi − qi) · ni) ‖2 (1)

where φ is the rigid body transformation that minimizes the error metric and
ni is the normal to the tangent plane at qi. The transformation matrix consists
of a translation component and a rotation component. φ = T (tx, ty, tz) ·
R(α, β, γ). A linear approximation [5] can be made to the rotation matrix
where θ ≈ 0 and the new transformation matrix is of the form below.

φ =

⎛
⎜⎜⎝

1 −γ β tx
γ 1 −α ty
−β α 1 tz
0 0 0 1

⎞
⎟⎟⎠ (2)

We explain how the computed transformation is validated in section 6.

5 Approach

We began by choosing an arbitrary window size in the source cloud (e.g.
200 m × 200 m). For each of these windows, the corresponding window in
the target data is identified based on x and y coordinates. This target window
is then enlarged (e.g. by 10%) such that the displacements that we are trying
to quantify are fully accommodated. Next, we computed the rigid body trans-
formation between the source and target windows using the ICP algorithm.
This window is split into four smaller windows of equal size and the rigid
body transformation is computed on every child window. The transforma-
tion is validated after each split (explained in section 6) and the associated
error computed. Based on the differences in error after consecutive splits,
we decide whether further splitting is necessary. We verified experimentally
that we cannot have small errors for very small window sizes (∼10 m) given
the point cloud densities and input displacements. An analysis of this error
indicates when to stop splitting.

After running ICP using a good window size, each window is then con-
sidered for a fault analysis. The curvature of the local surface is computed
at every point in the transformed source windows (obtained by applying the
computed transformation on the source window i.e. φpi) and target windows
(qi) and the curvature distribution is estimated by assigning the curvature
computed at each point to different bins of an histogram (ranging from max-
curvature to min-curvature) and then computing the probability mass func-
tion from this histogram. If there is no rigid body transformation (in case of
windows containing the fault) the source and target curvature distributions
will not be the same. An information theoretic measure is used to detect this
inconsistency in the curvature distributions. The information gain between
the transformed source cloud (X) and the target cloud (Y ) is given by
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I(X ;Y ) = H(X) +H(Y )−H(X,Y ) (3)

where H is the entropy of the curvature distribution. H(X,Y ) is computed
on the curvature distribution of the merged clouds X and Y . When the right
window size is used on regions related by a rigid body transformation, the
information gain should be maximum. If the estimated transformation is sub-
optimal (i.e. if ICP converges to a local minima) or if the considered region is
not related by a rigid body transformation (in the case of windows containing
faulting) the information gain should be minimal. Hence thresholding based
on information gain highlights which windows contain the fault, along with a
few false positives where ICP results may be different from the ground truth.
It is important to choose the right window size. If a window containing the
fault is too large, then points lying away from the fault will dominate the
curvature distribution and the fault detection mechanism will be affected.

Various non-rigid body transformation methods are available in medical
imaging literature [3] and can be considered for this problem. Our goal is not
only to get the best alignment possible, but also to identify regions containing
the fault. A rigid body transformation estimation followed by a transforma-
tion validation achieves both the objectives, whereas the second objective is
not met by non-rigid body transformation estimation methods.
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Fig. 1 (a) Height difference map of the Mexico earthquake, before global ICP, with
x and y coordinates in meters. Height changes across the fault are clear. (b) Height
difference map after global ICP, with height differences reduced.
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6 Transformation Validation

We validate the transformations by randomly choosing N points per iteration
in the transformed source window (φpi) and finding the closest point in the
target window (qi). The error for the kth iteration is computed as Ek =∑

i ‖ φpi − qi ‖2 and the standard deviation of this error is calculated over k
iterations. For a good alignment the standard deviation should be minimal.
Figure 7 shows the standard deviation of errors for different window sizes. It
can be seen that the standard deviation increases gradually as the windows
become smaller (part a of the figure shows plots for window sizes of 75 m,
50 m and 25 m). However, at a particular point (for our data, a window
size of 10 m) the standard deviation jumps markedly, as shown in part b
(note the difference in y-axis scales between a and b). If this happens, it is
because the computed transformation for that window is wrong. To discard
these invalid transformations, we use a thresholding based on the change in
standard deviation as a stopping criteria for window splitting (whereby the
standard deviation should not exceed 1/m times that of the previous step).

(a) Top view of data split into
multiple windows, the thick line
shows the line along which the
fault was defined

(b) Top view of windows contain-
ing the fault, there a few false
positives - these are places where
ICP converges to a locally opti-
mal solution

Fig. 2 Window split and fault detection

7 Results

Figure 1a shows a simple height differencing of the raw Mexico earthquake
data, with clear positive height changes West of the fault and negative
changes East of the fault. After a global registration, these height differ-
ences are reduced with similar height changes on both sides, as seen by the
red shading in Figure 1b. This is because ICP has minimized the least square
error over the entire point cloud, including both those regions that contain
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Fig. 3 Displacement vectors for different window sizes. The approximate length
of the displacement vectors is 2 m. Notice the change in vector directions on both
sides of the fault. x and y values are in meters.

Fig. 4 Our Autonomous Helicopter platform

the fault and those that are displaced. The alignment occurring as a result
of this least square minimization is not sensitive to the local displacements
that we are trying to quantify, and hence a global registration is not suitable
for this problem.

Figure 2(a) shows the data split up into multiple, randomly coloured win-
dows with the thick black line showing the synthetic fault line, either side of
which artificial displacements were added (as described in section 3).

Figures 3(a) and 3(b) show the displacement vectors (∼2m in length) ob-
tained for different window sizes for the synthetic earthquake dataset. The
change in the direction of the displacement vectors either side of the fault
(shown by the red line) are obvious. However, the displacement vectors for
windows along the fault are inconsistent. These are windows that are not
related by a rigid body transformation and ICP finds the transformation
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Fig. 5 3D model of Las Cruces test site (400 x 100 m) generated from UAV flights
at approximately 50m AGL

Fig. 6 3D model of Las Cruces test site with UAV position and attitude inferred
from photogrammetric process

that minimizes the least squares error. Reducing window sizes beyond this
point did not satisfy our transformation validation criteria and hence further
splitting of windows was stopped.

Figure 2(b) shows the results of our fault detection method, which filters
out windows based on information gain as described in section 5. Compared to
figure 2(a), only those windows which fall below the information gain thresh-
old are now shown, including a North-West trending sequence of windows
along the fault. In addition, there are a few false positives, mostly along the
edges where window splitting has left few data points in one of the datasets.
We hypothesise that ICP converges to a local minima in these windows.

Figure 7 shows the standard deviation plots discussed in the previous
section. Figure 8 shows the displacements calculated for the synthetic earth-
quake overlaid on the actual topography (we used a DEM derived from pub-
licly available “B4” Lidar data). Black arrows are horizontal displacements
and coloured circles denote vertical displacements. The differences in these
displacements are clear on either side of the fault. Finally results on a real
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Fig. 7 Standard deviations by window number, for different window sizes. (a)
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the window size is reduced from 25 m to 10 m, suggesting that window splitting
should be stopped at 25 m.
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Fig. 8 Results for the simulated earthquake. Horizontal displacements (black ar-
rows) and vertical displacements (coloured circles) can clearly be seen to change
markedly either side of the fault. x and y axes show UTM Zone 11 coordinates, in
meters.

earthquake dataset (for the 2010 Mexico earthquake) can be seen in Figure
9. Again, differences in the horizontal and vertical displacements on opposing
sides of the fault are clear.
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Fig. 9 Results for the real earthquake. The thin lines show the earthquake surface
faulting, as observed by geologists, with E-facing scarps in green and W-facing
scarps in blue. Again, the horizontal and vertical displacements clearly change
markedly across the fault. x and y axes show UTM Zone 11 coordinates, in meters.

8 Conclusions and Future Work

We have demonstrated a technique for determining local displacements
caused by an earthquake. Our technique uses a windowing approach to de-
termine the correct displacements and an information theoretic approach for
determining the regions where these local displacements are present. We have
demonstrated the efficacy and accuracy of our technique on datasets collected
using airborne lidar. We are able to discern displacements of 1.4 m over an
area of 2×2 km in our synthethic earthquake experiments and around 1 m
over 2×2 km in the real earthquake experiment. Currently our technique de-
pends on the pre and post LIDAR data obtained using expensive airborne
LIDAR. We plan on using the pre data obtained from airborne LIDAR but
post data obtained using Structure from Motion techniques. We propose to
use an autonomous helicopter equipped with a downward looking Canon
5D as our platform for obtaining these post point clouds. Our autonomous
helicopter is shown in Figure 4. This platform has been outfitted with a vi-
bration isolating camera mount to which the main SFM camera (a Canon
5D) is attached. Figure 5 shows a typical 3D terrain model obtained from
our UAV. Figure 6 shows the attitude and position of the UAV calculated
using SFM, as the images were taken. This was generated in Las Cruces,
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New Mexico, for an area approximately 400 x 100 m. The model has a res-
olution of 10cm/pixel and an accuracy of 20 cm. This has been determined
using pre-surveyed points using a Total Station. In the future we plan on
using such dense 3D models created from SFM techniques as our post point
clouds. Using such models combined with registration techniques will enable
us to determine local displacements accurately. We plan on demonstrating
this in the near future.
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Automated Crop Yield Estimation for Apple Orchards 

Qi Wang, Stephen Nuske, Marcel Bergerman, and Sanjiv Singh* 

Abstract. Crop yield estimation is an important task in apple orchard manage-
ment. The current manual sampling-based yield estimation is time-consuming,  
labor-intensive and inaccurate. To deal with this challenge, we developed a com-
puter vision-based system for automated, rapid and accurate yield estimation. The 
system uses a two-camera stereo rig for image acquisition. It works at nighttime 
with controlled artificial lighting to reduce the variance of natural illumination. An 
autonomous orchard vehicle is used as the support platform for automated data 
collection. The system scans both sides of each tree row in orchards. A computer 
vision algorithm detects and registers apples from acquired sequential images, and 
then generates apple counts as crop yield estimation. We deployed the yield esti-
mation system in Washington state in September, 2011.  The results show that the 
system works well with both red and green apples in the tall-spindle planting sys-
tem. The crop yield estimation errors are -3.2% for a red apple block with about 
480 trees, and 1.2% for a green apple block with about 670 trees. 

1   Introduction 

Crop yield estimation is an important task in apple orchard management. Accurate 
yield prediction helps growers improve fruit quality and reduce operating cost by 
making better decisions on intensity of fruit thinning and size of the harvest labor 
force. It benefits the packing industry as well, because managers can use estima-
tion results to optimize packing and storage capacity. Typical yield estimation is 
performed based on historical data, weather conditions, and workers manually 
counting apples in multiple sampling locations. This process is time-consuming 
and labor-intensive, and the limited sample size is usually not enough to reflect the 
yield distribution across the orchard, especially in those with high spatial variabili-
ty. Therefore, the current yield estimation practice is inaccurate and inefficient, 
and improving it would be a significant result to the industry. 

Apple growers desire an automated system to conduct accurate crop yield esti-
mation; however, there are no off-the-shelf tools serving this need. Researchers 
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have been working on the development of related technologies for a few decades 
[1].  A wildly adopted solution to automated fruit yield estimation is to use com-
puter vision to detect and count fruit on trees. Swanson et al. [2] and Nuske et al. 
[3] developed computer vision systems to estimate the crop yield of citrus and 
grape, respectively. However, there is no reported research leading to satisfactory 
yield estimation for apples. 

Current efforts on apple yield estimation using computer vision can be classi-
fied in two categories: (1) estimation by counting apples and (2) estimation by de-
tecting flower density. A few researchers have worked on the first category using 
color images [4-6], hyperspectral images [7], and thermal images [8]. Their com-
mon point is that they only deal with apple detection from a single or multiple 
orchard scenes; however, no further research is reported about yield estimation, 
which requires continuous detection and counting.  Aggelopoulou et al. [9] 
worked on the second category. They sampled images of blooming trees from an 
apple orchard, and found a correlation between flower density and crop yield. 
However, this flower density-based method is not accurate because multiple un-
predictable factors (such as weather conditions) during the long period between 
bloom and harvest could make the correlation vary year by year.  

When conducting the apple counting-based yield estimation, computer vision 
systems face three challenges due to the characteristics of orchard environments: 

• Challenge 1: variance in natural illumination. It prevents from developing a re-
liable vision-based method to detect apples from an orchard scene.  

• Challenge 2: fruit occlusion caused by foliage, branches, and other fruit.  
• Challenge 3: multiple detections of same apple in sequential images. Unsuc-

cessful registration of these detections will cause miscounting. 

Our overall research goal is to design, develop, and deploy an automated system 
for rapid and accurate apple yield estimation. The system reduces labor intensity, 
and increases work efficiency by applying computer vision-based, fast data acqui-
sition. Meanwhile, it improves prediction accuracy by relying on a large-scale data 
acquisition.  At this stage of the research, we focus on two specific objectives: (1) 
develop system hardware and major algorithm modules for data acquisition and 
yield estimation; (2) conduct preliminary performance tests in an orchard. 

2   System Overview 

The hardware of the yield estimation system consists of three major parts (Fig. 1): 

1. A stereo rig composed of two high-resolution monocular Nikon D300s cameras 
(Nikon Inc., Melville, NY, USA) with wide-angle lenses (focal length: 11 mm). 
The D300s is a consumer product with a low cost comparing to industrial or scien-
tific imaging systems. The two cameras are mounted on an aluminum bar with a 
distance of about 0.28 m to form a stereo pair. The two cameras are triggered  
synchronously at 1 Hz. 
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Fig. 1 The crop yield estimation system hardware and coordinate frames: camera {C}, ve-
hicle {V}, and ground {G}. {C} originates at the focal point of the lower camera; {V} ori-
ginates at the projection of the central point of the rear axle of the vehicle on the ground; 
{G} is a combination of the Universal Transverse Mercator coordinate system and eleva-
tion. The geometric relationship between {C} and {V} is calibrated. The geometric rela-
tionship between {V} and {G} is determined by the on-board positioning system. 

2. Controlled illumination. The system is designed for night use to avoid interfe-
rence from unpredictable natural illumination, thus addressing the Challenge 1 in 
Section 1. Ring flashes (model: AlienBees ABR800, manufactured by Paul C. 
Buff, Inc. Nashville, TN, USA) around the two lenses are used as active lighting 
during image acquisition. The energy release of each flash is set at 20 Ws. The 
two cameras are both set with aperture f/6.3, shutter speed 1/250 s, and ISO 400 
for an optimal exposure of apple trees (about 2 m away from the cameras) under 
this controlled illumination. 

3. A support vehicle. An autonomous orchard vehicle [10] developed at Carnegie 
Mellon University is used as the carrying platform for automated data acquisition. 
The platform is able to travel through orchard aisles at a preset constant speed by 
following fruit tree rows. The speed is set at 0.25 m/s for our data acquisition. The 
stereo rig is attached to a frame at the rear of the vehicle (Fig. 1). Each tree row is 
scanned from both sides. The acquired sequential images provide multiple views 
of every tree from different perspectives to reduce fruit occlusion, which addresses 
the Challenge 2 in Section 1. The on-board high-precision positioning system, 
POS LV manufactured by Applanix (Richmond Hill, Ontario, Canada), provides 
the geographic coordinates of the vehicle. The position and pose of the vehicle is 
used by the system software to calculate the geographic position of every detected 
apple. We use the global coordinates of apples to register the multiple  
detections of same apple to reduce over counting and address the Challenge 3 in 
Section 1. 

The software of the crop yield estimation system has two major parts: (1) online 
processing, and (2) post-processing. The online processing controls the  
start and the stop of data acquisition. It is written in Python (Python Software  
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Foundation). The software processes the acquired data off-line for apple detection, 
apple registration, and final apple count. Matlab 2010a (The MathWorks, Inc., Na-
tick, MA, USA) is the programming language for post processing.  

3   Apple Detection 

The algorithm uses the following procedure to detect apples from an image. 
Firstly, it reads a color image (1072 × 712 pixels) acquired by the system and re-
moves distortion. Then, it uses visual cues to detect regions of red or green apples 
in the image. Finally, it uses morphological methods to covert apple regions into 
apple counts in the image. 

3.1   Detection of Red Apple Pixels 

Under the controlled illumination, the red color of apples can be distinguished 
from the colors of other objects in the orchard, such as the ground, wires, trunks, 
branches, and foliage (Fig. 2a). The algorithm uses hue, saturation, and value in 
the HSV color space as visual cues for red apple detection. The hue values of red 
apple pixels are mainly in the ranges from 0° to 9° and from 349° to 360°.  The 
hue values of other objects are out of the two ranges. It is necessary to exclude the 
background pixels during hue segmentation of red apple pixels because hue is un-
defined for pixels without any color saturation (white, grey, black colors), and for 
dark pixels close to black the saturation is low and the hue channel is unreliable. 
Therefore, the procedure for red apple segmentation is:  (1) segment pixels with 0° 
≤ hue ≤ 9° or 349° ≤ hue ≤ 360°; (2) remove (background) pixels with saturation ≤ 
0.1 or value ≤ 0.1. After the processing, the regions of red apple are segmented 
from the image (Fig. 2b).  

3.2   Detection of Green Apple Pixels 

We use three visual cues: hue, saturation, and intensity profile to detect green ap-
ple pixels from an image. Analysis of 10 sample images shows that the hues of 
green apples and foliage are mainly in the range from 49° to 75°. We use this hue 
range to segment green apples and foliage from an image. The dark background 
and most non-green objects are removed after the hue segmentation (Fig. 3b). Al-
though apples and foliage are both green, the apple pixels have a stronger green 
color which can be separated from leaves using the saturation channel. The algo-
rithm uses a saturation threshold (≥ 0.8) to segment green apple pixels. Most fo-
liage pixels are removed after the saturation segmentation (Fig. 3c); however, the 
central parts of most apples are removed as well because the camera flashes gen-
erate specular reflections at the central part of a green apple. In HSV color space, 
specular reflection has high brightness and low saturation. They cannot be  
detected as apple pixels by the saturation segmentation.  
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(a) RGB image (b) Result of red apple 
segmentation  

Fig. 2 Red apple segmentation using hue, saturation and value (brightness) as visual cues 

(a) RGB image (b) Hue segmentation (c) Saturation 
segmentation

(d) Detection of 
specular reflection

(e) Combination of the 
results from (c) and (d)  

Fig. 3 (a) An image acquired by the crop yield estimation system in a green apple orchard. 
(b) The result of hue segmentation for green colors. (c) The result of saturation segmenta-
tion for the green color of apples. (d) The result of specular reflection detection (marked by 
circles). (e) The result of apple region detection using color and specular reflection. 

The next step is to detect the apple regions with specular reflections. The rec-
tangular area marked by dash lines in Fig. 4a is the minimum bounding rectangle 
of the apple area detected by the hue and saturation thresholding procedure, and 
extended by 25% to guarantee some apple pixels undetected by the saturation 
segmentation are included in the region. Fig. 4b is the light intensity (grayscale 
value) map of the rectangular region in Fig. 4a. The two apples have conical shape 
in their intensity profiles, which represents gradually descending light intensity 
from the peak to different directions. Compared to the apple regions, the foliage 
regions have more irregular intensity profiles. Based on these features, we use the 
shape of intensity profile to detect specular reflections. 

The algorithm detects specular reflections by searching for local maxima in the 
grayscale map (Fig. 4b). During the search, the size of the support neighborhood 
for the local maxima is 30% of the length of the short side of the rectangular re-
gion (Fig. 5a). The result of local maxima detection (Fig. 5a) includes the points 
with specular reflections, and also some points without specular reflections. To 
distinguish them, the algorithm checks the intensity profiles on four lines passing  
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through each local maximum. As shown in Fig. 6, four lines go through a local 
maximum with slopes of 0°, 45°, 90°, and 135°, respectively. Each line is 21  
pixels in length. The intensity profiles around the specular reflection of an apple 
descend gradually from the local maximum to different directions (Fig. 6a). How-
ever, the intensity profiles around a local maximum, which is not a specular ref-
lection, have irregular changes of grayscale values. Based on this difference, the 
algorithm uses the following procedure to decide whether a local maximum is a 
specular reflection. (1) It calculates the gradients of grayscale values between 
every two adjacent pixels on the four line segments. (2) It splits each line segment 
into two parts in the middle (at the local maximum). (3) It calculates a roundness 
score (Ri) by checking the signs of gradient in the eight parts. If the gradients in 
one part have the same sign, the roundness score of the part is one; otherwise, it is 

zero. (4) It calculates the total roundness score: 
=

=
8

1i
iRR . If R ≥ 4, the local max-

imum is a specular reflection; otherwise, it is a false positive. The reason for using 
four rather than eight as a threshold is to make sure that the specular reflections on 
some partially-occluded apples can also be recognized. (5) It keeps specular ref-
lection and removes false positives from the search region (Fig. 5b). 

The algorithm overlies the results of saturation segmentation (Fig. 3c) with the 
pixels of specular reflection (Fig. 3d) and their surrounding neighborhoods (18 × 
18 pixels). This combination yields a more complete detection of apple pixels in 
the image (Fig. 3e). 
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Fig. 4 (a) An example of specular reflection on the surface of apples. The rectangular re-
gion is transformed to grayscale image.  (b) The mesh plot of the grayscale values of the 
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Fig. 5 (a) Local maxima (marked by circles) in a search region. (b) The results of detecting 
and removing local maxima that are not specular reflections. 
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Fig. 6 (a) The intensity profiles around a local maximum, which is the specular reflection of 
an apple, in four directions. (b) The intensity profiles around a local maximum, which is not 
a specular reflection, in four directions. 

3.3   Segmenting Individual Apples  

The previous sections described how to detect the apple pixels in an image for 
both red and green apples. Here we describe morphological operations to convert 
these pixel regions into distinct individual apples.  

Firstly, the software loads a binary image of apple regions. To realize apple 
counting, the software needs to determine the average diameter ( D ) of apples in 
the loaded image. It calculates the eccentricity (E) of each apple region, and uses a 
threshold 0 < E < 0.6 to find regions that are relatively round. These relatively 
round regions are usually the apples that have less occlusion and do not touch oth-
er apples, which is convenient for determining apple diameter. A few small round 
regions are also detected. They are the visible parts of some partially occluded  
apples and happen to be round in shape. Usually, they only account for a small 
portion of all the relatively round regions. To remove the noise, the software cal-
culates the area (S) of the relatively round regions and their average area ( S ). It 
uses a threshold SS >  to remove the noise with small area. Then, it calculates 
the length (in pixel) of the minor axis of the ellipse that has the same normalized 
second central moments as a remaining round apple region. The mean of the mi-
nor axis length of all the remaining regions is used as the average diameter of ap-
ples in the image. 

Some apple regions contain two or more touching apples. The algorithm is able 
to detect them and split them into two apples. It calculates the length (Lmajor, in 
pixel) of the major axis of the ellipse that has the same normalized second central 
moments as an apple region. Any region with DLmajor 2> is treated as a region 
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with touching apples. It splits the major axis into two segments in the middle (at 
Point A in Fig. 7), and then uses the central points of each segment (Points B and 
C in Fig. 7) as the center of the two apples. It should be mentioned that the current 
version of software is designed to split this kind of region into only two apples. 
The design is based on the fact that apple clusters are usually thinned down to two 
apples in commercial orchards to keep the quality of individual apples in clusters. 
For orchards with larger clusters of apples we need to make improvements to deal 
with more apples per cluster. 

Some apples are partially occluded by foliage or branches, and may be detected 
as multiple apple regions. The software calculates the distance between the centers 
(with the same definition as Point A in Fig. 7) of any two apple regions. Any pair 
with a distance less than D is treated as one apple. The midpoint of the two origi-
nal centers is the new center of the apple. 

In the end, the software records the locations of the centers of the remaining 
apple regions as the final detection of apples in the image. 

4   Apple Registration from Multiple Images 

Apple registration is required to merge apples that are detected multiple times. 
One apple can be seen up to seven times from one side of a tree row in the sequen-
tial images taken by the system. Some apples can be seen from both sides of a  
tree row. 

During continuous counting, the software detects apples in every frame of the 
image sequences taken by the two cameras of the stereo rig. The software applies 
the following procedure to calculate the global locations of detected apples, and 
use the locations to register apples.  

Firstly, the software uses block matching to triangulate the 3D positions (in 
{C}) of all apples detected in the image sequences. The block matching is con-
ducted in both directions between one pair of images taken by the binocular stereo 
rig. When an apple detected in the lower image and an apple detected in the upper 
image are matches reciprocally, the software triangulates and records the 3D posi-
tion (in {C}) of the apple center (in 2D image coordinates); otherwise, it discards 
the detection. 

The software transforms apple locations from {C} to {G}. The transformation 
provides the global coordinates for every detected apple. 

The software merges the apples that are detected multiple times from one side 
of a tree row. It calculates the distance between every two apples in {G}, and then 
merges the apples with a distance less than 0.05 m from each other. The new loca-
tion of the merged apple is obtained by averaging the locations of the multiple ap-
pearances of this apple. The software discards two kinds of detected apples as 
noise from the results: (1) apples that are detected only once in the sequential im-
ages; and, (2) dropped apples on the ground.  Since the height of an apple on a tree 
is usually more than 0.3 m above the ground, apples with a height less than 0.3 m 
are treated as dropped apples. 
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Fig. 8 (a) The apple detection results of three trees from two 
opposite sides of a row. (b) The results of registering apples de-
tected from both sides.  

The software uses global coordinates to register apples detected from both sides 
of a tree row, which requires precise positioning. However, we have noticed two 
issues in our apple positioning approach. First, when the vehicle returns on the 
opposite side of the row, the GPS system has noticeably drifted in its reported 
height above ground. We have also noticed a bias in the stereo triangulation algo-
rithm causing the apple location to be estimated closer to the camera. To solve 
these positioning problems, we calculate the GPS drift and stereo triangulation bi-
as by locating objects on the orchard infrastructure, triangulating their position in 
world coordinates and repeating from the other side of the row. The error between 
the two reported locations of an object from each side of the row gives us a posi-
tion correction term that we apply to the apple locations. The landmarks can be 
any stationary location such as the ends of posts, stakes, and wires. We used flag-
ging tape that was placed every three trees and at present we manually record  
the landmark positions in the images, however this will be replaced in future itera-
tions of the system by an algorithm that can automatically detect the orchard  
infrastructure.  

After correcting the apple locations, we merge the apples detected from both 
sides of the row. Fig. 8a shows an example in which some apples (marked by ov-
als) can be detected from both east and west sides of a row. To avoid double 
counting, the software calculates the distances between apples detected from one 
side and those detected from the other side. It merges apples within a distance of 
0.16 m from each other. We use such a large threshold (0.16 m, about twice the 
average apple diameter) to tolerate errors in stereo triangulation. After this opera-
tion, the apples detected from both sides of a row are registered (Fig. 8b), and the 
software obtains a final apple count for the orchard. 

5   Experiments and Results 

The crop yield estimation system was deployed at the Sunrise Orchard of Wash-
ington State University, Rock Island, WA in September, 2011. The goals of the 
deployment are: (1) to evaluate the estimation accuracy of the current system, and 
(2) to discover issues that need to be improved for future practical applications. 
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5.1   Experimental Design 

The experimental design includes four critical issues: apple variety, orchard plant-
ing system, the area of orchard for data collection, and ground truth.  

We selected two blocks of typical apple trees – Red Delicious (red color) and 
Granny Smith (green color). These two popular commercial products are typical 
varieties in either red or green apples. Based on the suggestions of horticulturists, 
we selected the “tall spindle” planting system (as shown in Fig. 1) for the field 
tests.  This system features high tree density, a thin canopy, and well-aligned, 
straight tree rows. It maximizes profitability through early yield, improved fruit 
quality, reduced spraying, pruning, and training costs. “Tall spindle” is being 
adopted by more and more apple growers, and is believed to be one of the major 
planting systems of apple orchard in the future, because of its ability to rapidly 
turn over apple varieties from those less profitable to those more profitable. 

The area of each block is about half acre. Specifically, there are 15 rows of red 
apple trees and 14 rows of green apple trees. Each row has about 48 trees. The 
ground truth of yield estimation is the human count conducted by professional 
orchard workers. Every tree row is split into 16 sections with three trees per sec-
tion. The sections are marked by flagging tape that is used by the workers to count 
the number of apples in each section and likewise we force our algorithm to report 
the count for each section by manually marking the flags in the images. 

5.2   Results 

The software processes the sequential images obtained from the two blocks, and 
generates apple counts for every section (three trees). The results and analysis are 
presented as follows. 

Fig. 9 shows the crop yield estimation and ground truth of the red apple block. 
In rows 1-10 that received regular fruit thinning, the computer count is close to the 
ground truth. The estimation errors of each row have a mean of -2.9% with a  
standard deviation of 7.1%. If we treat the 10 rows together, the estimation error is 
-3.2%. The numbers show that the crop estimation from the system is fairly accu-
rate and consistent for rows 1-10. However, we undercount rows 11-15 by 41.3% 
because these trees were not fruit thinned (which would normally be conducted in 
most commercial orchards) leaving large clusters of apples. The larger clusters of 
apples cause two problems: (1) some apples are invisible and cannot be detected 
due to the occlusion caused by other apples nearby; (2) some fruit clusters consist 
of more than two apples, and the current version of software can only split a clus-
ter into two apples. Although the estimations per row are significantly below the 
ground truth, the standard deviation is small at 3.2%, which shows that the system 
performs consistently. Therefore, it is possible to calibrate the system, which will 
be discussed later.  
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Fig. 9 Crop yield estimation and ground truth of the red apple block 

Similarly, the errors of the raw counts from the green apple block rows have a 
mean of -29.8% with a standard deviation of 8.1%. The trees in the green apple 
block have more foliage than those in the red apple block. The occlusion caused 
by foliage is thought to be the main reason for the undercount of green apples.  
Despite the large level of undercounting, the error is relatively consistent, making 
calibration for the raw counts possible. We perform calibration by selecting 10 
random sections from the 224 sections in the green apple block, and conduct linear 
regression (with intercept = 0) between the computer count and the ground truth 
(as shown in Fig. 10). The slope of the linear equation is the calibration factor. We 
run the method for 100 times, the average calibration factor is 1.4 with a standard 
deviation of 0.1. The small standard deviation shows that the sample size of 10 
sections is big enough to obtain a steady calibration. Using 1.4 as a calibration fac-
tor to correct the yield estimation in the green apple block, the average yield  
estimation error at row level falls to 1.8% with a standard deviation of 11.7%  
(Fig. 11).  The compensated yield estimation error for the whole green apple block 
is 1.2%.  We apply the same method to rows 11-15 in the red apple block, and find 
a calibration factor of 1.7.  After the compensation, the average estimation error at 
row level falls to 0.4% with a standard deviation of 5.5%. 
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Fig. 10 A linear regression between computer counts for ten random green apple sections 
and the ground truth 

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
p

p
le

 C
o

u
n

t

Row

Ground Truth

Computer Count

 
Fig. 11 Calibrated crop yield estimation and ground truth of the green apple block 
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6   Discussion 

The accuracy of the crop yield estimation system is subject to two major aspects: 
(1) how accurately it detects visible apples; (2) how accurately it estimates invisi-
ble apples. They are discussed in this section. 

6.1   Detection Error of Visible Apples 

In certain situations, the current software makes errors in detecting visible apples. 
For example, in our data set, the images of a few green apples are overexposed 
because these apples are much closer to the fleshes than the majority of the apples. 
As shown in Fig. 12a, a green apple in an overexposed image loses its original 
color. A small amount of green apples have sunburn (red blemish) on their skins 
(Fig. 12b). Green apples in an overexposed image or with sunburn cannot pass the 
(green) hue segmentation, and are undetectable in the image processing. New  
visual cues other than color should be considered in the future to deal with this 
problem. As mentioned earlier, the software has a limitation in dealing with fruit 
clusters comprised of more than two apples (Fig. 12c) and should be corrected in 
future iterations. False positive detections happen infrequently, but do occur in 
some situations as seen in Fig. 13. Future version of the software will look to re-
duce these false detections with a more strict set of image processing filters. 

 

(a) (b) (c)  

Fig. 12 Examples of visible apples that are 
not detected by the software. (a) An overex-
posed image of a green apple. (b) A green 
apple with sunburn. (c) Apples missed in a 
large fruit cluster. 

(a) (b) (c)  

Fig. 13 Examples of false positive detec-
tions. (a) An apple with a short distance 
from the cameras. (b) Some new leaves with 
a color similar to green apples. (c) Weed 
with a color similar to green apples. 

6.2   Calibration for Occluded Apples 

The computer vision-based system cannot detect invisible apples that are occluded 
by foliage or other apples. As mentioned earlier, our solution is to calculate a cali-
bration factor based on human sampling, and use the factor to predict the crop 
yield including invisible apples. The results show that the calibration method 
works well. In future work we will study the calibration procedure and evaluate 
accuracy versus sample size on larger orchard blocks. Too much sampling in-
creases the cost of yield estimation; while, too less may harm the accuracy of es-
timation. We also will study if calibration factors can be used from prior years or 
from other orchards of similar varieties, similar ages and grown in similar styles. 
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6.3   Yield Maps 

In addition to providing the grower with the total number of apples in an orchard, 
the system is also able to generate a yield map (Fig. 14) that provides information 
of the spatial distribution of the apples across the orchard. A yield map could be 
used for precision orchard management, enabling the grower to plan distribution 
of fertilizer and irrigation, to perform variable crop thinning, and to improve oper-
ations by increasing efficiency, reducing inputs and increasing yield over time in 
underperforming sections. 

  

Fig. 14 High-resolution yield map representing spatial distribution of apples across the Red 
Delicious block. Color-coded legend uses the units of apples per tree. Left: Apple counts 
generated by our automated algorithm. Right: Ground truth apple counts. Our system pro-
vides a map that is a very close resemblance to the true state of the orchard.  

7   Conclusions 

Field tests show that the system performs crop yield estimation in an apple orc-
hard with relatively high accuracy. In a red apple block with good fruit visibility, 
the crop yield estimation error is -3.2% for about 480 trees. In a green apple block 
with significant fruit occlusion caused by foliage, we calibrate the system using  
a small sample of hand measurements and achieve an error of 1.2% for about  
670 trees. 

In future work we will improve the system to deal with orchards with larger 
clusters of apples, which will require more precise and advanced methods to seg-
ment the apple regions within the images. We will also improve the registration 
and counting algorithm to better merge apples detected from two sides of  
a row.  
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Spatial Interpolation for Robotic Sampling:
Uncertainty with Two Models of Variance

Young-Ho Kim, Dylan A. Shell, Colin Ho, and Srikanth Saripalli

Abstract. Several important forms of robotic environmental monitoring involve
estimating a spatial field from comparatively few measurements. A number of re-
searchers use linear least squares estimation techniques, frequently either the geo-
statistical Kriging framework or a Gaussian Process regression formulation, that
provide estimates of quantities of interest at unmeasured locations. These methods
enable selection of sample locations (e.g., for adaptive sampling) by quantifying un-
certainty across the scalar field. This paper assesses the role of pose uncertainty and
measurement error on variance of the estimated spatial field. We do this through a
systematic empirical comparison of scalar fields reconstructed from measurements
taken with our robot using multiple imperfect sensors and actively estimating its
pose. We implement and compare two models of variance: Kriging Variance (KV)
and Interpolation Variance (IV), illustrating that the latter —which has not been used
in a robotics context before— has several advantages when used for online planning
of sampling tasks. Using two separate experimental scenarios, we assess the es-
timated variance in scalar fields constructed from measurements taken by robots.
Physical robots sampling within our office building suggest that using IV to select
sampling sites gathers more data for a given time window (45% more than KV),
travels a shorter distance to collect the same number of samples (25% less than
KV), and has a promising speed-up with multiple robots. Water quality data from
an Autonomous Underwater Vehicle survey of Lake Pleasant, AZ. also show that
IV produces better qualities for given a distance and time.
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1 Introduction

Large-scale environmental monitoring is a particularly promising application for
robots [8]. Robots have already begun to collect oceanographic data sets of unprece-
dented scale and resolution (e.g., [4]). The underlying challenge addressed by such
systems stems from the fact that the measured data are sparse compared to the large
spatial areas/volumes of interest. Mobility makes adaptive strategies for in situ sam-
pling possible but leads naturally to the question: “given the data already captured,
where should the robots go in order to sample further?” This is an important basic
problem in robotic monitoring and data collection, and is one for which a variety of
solutions have been proposed e.g., [7, 5, 14].

Linear least-squares estimation methods have been among the most successfully
used in robotics for spatial interpolation and region sampling. By way of example,
we include the recent work of Kemppainen et al. [7] in the Gaussian Process regres-
sion framework, and Elston et al. [5] via Kriging interpolation. Both employ equiv-
alent minimum error-variance estimation techniques [11] that permit measured data
to be interpolated in a way that takes into account a statistical description of spatial
covariance [3]. Along with an estimate of values of interest at particular locations in
the field, these methods also associate a measure of estimate uncertainty. Within the
Kriging framework, the standard error measure is called the Kriging Variance (KV)
or Kriging Error. It plays an important role for robotic adaptive sampling due to the
fact that researchers (including, but not limited to [7] and [5]) have used it to select
future sampling locations and to plan informative paths.

This paper assesses the role of pose uncertainty and measurement error on
variance of such an estimated spatial field. We conducted a systematic empirical
comparison of scalar fields reconstructed from measurements taken by robots using
imperfect sensors.

1.1 Problem Statement

Two complementary aspects are investigated experimentally in this work:

Issue 1: Pose and measurement uncertainty — Classical formulations for spatial
field estimation involve idealizations that may be ill-suited for robotic sampling.
Specifically, standard formulations lack explicit consideration of measurement noise
and position uncertainty, flying in the face of practical experience with real sensors.
This paper includes a formulation which addresses these two aspects. Because sig-
nificant prior robotic work employs formulations without modeling these forms of
uncertainty explicitly (cf. [7, 5, 14]), we conducted an empirical evaluation of how
estimates of the spatial field differ depending on whether the method employed con-
siders these sources of uncertainty or not. Scale and severity of the uncertainty are
important considerations too.

Issue 2: An alternative to KV — Yamamoto [12] argued that the traditional KV mea-
sure fails to measure local data dispersion appropriately because it is computed from
a global description of spatial variance (the variogram) averaged over the whole
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(a) Uncertainty ignored (b) Pose & measurement
error

Fig. 1 Richer treatment of site
uncertainty is justified. The
standard model (a) underesti-
mates field variance compared
to explicit treatment of uncer-
tainty (b). Note also Inter-
polation Variance (IV) shown
in (b).

estimate. To address this shortcoming he introduced a new measure called the Inter-
polation Variance (IV). It is computed as the weighted average of the squared dif-
ferences between measured data and the interpolation estimate, which is intuitively
analogous to the traditional expression for statistical variance. Several geostatisti-
cal papers have evaluated IV and compared it to KV [10, 13], but IV appears to be
unknown in the robotics literature.

Figure 1 illustrates the difference in estimated field uncertainty when sample po-
sition uncertainty and measurement noise are factored into estimates of field un-
certainty measured with KV. Without considering these aspects, field variance is
underestimated. The figure on the right also shows the IV measure for comparison;
IV offers a distinct and in some ways more informed estimate of the interpolation
uncertainty.

The following are the paper’s contributions:
• A unified Ordinary Kriging (OK) formulation with both pose uncertainty and

measurement noise which explicitly separates sensing error from the variogram.

• A particle filter realization and implementation of the formulation.

• An empirical investigation of the impact of sample site uncertainty with respect to
KV and IV. Most importantly, IV is an informative measure for selection of future
measurement sites, which suggest a new set of adaptive sampling approaches.

• The demonstration of autonomous sampling site selection with single and multi-
ple robots and a comparison KV and IV in terms of resulting performance.

Notation: Since no single definitive formalism has yet emerged for robotic sam-
pling, we have elected to describe the results with terminology from the Kriging
framework. The following motivated this choice:
1. Interpolation Variance has only been proposed within the Kriging framework.

2. Our work requires that we communicate our findings, including measured and
estimated data, with geostatisticians.

3. Our applications involve robots estimating two or three dimensional fields. The
family of variogram models have been informed by experience with the underly-
ing physical processes (cf. covariance models in [9]).

Equivalency implies that the results hold for the Gaussian processes model as well.
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1.2 Related Work

Measurement error is a common problem in robotics and it is widely recognized
that most sensors are imperfect. In contrast, Cressie’s classic geostatistics text [2]
mentions that measurement error is usually implicitly included the nugget variance
and that the practitioner often ignores the measurement error because it is typically
considered smaller than the spatial variogram. When neither identified nor directly
treated, micro-level variation of the spatial process is conflated with error introduced
by imperfect sensing. The distinction is particular important when the variogram is
intended to describe the intrinsic spatial variability of the statistical process, rather
than its observation through a particular sensor. This is significant when multiple
sensors are available for a particular phenomenon and when sensor noise character-
istics are estimated online.

Also, perfect robot pose information is not normally available. Chilés [1] was
the first to consider position uncertainty in the Ordinary Kriging (OK) interpolator.
He assumed a probability distribution over poses as the only form of error, nam-
ing this “attribute position error.” Cressie and Kornak [3] take both position and
measurement uncertainty into account in their Universal Kriging (UK) model. The
UK variant is more general than the OK model, since it includes parameters to es-
timate strong trend in the underlying spatial process. The UK’s generality comes
at a price, however: interpolation error is not (numerically) simple to estimate. In
fact, most existing robotics experiments employ OK [7, 14] over UK for this rea-
son. Additionally, evidence presented in by Zimmerman et al. [15] shows that OK
actually outperforms UK for realistic data since the latter is prone to over-fit. The
OK formulation presented here is suited for robotics as it incorporates both pose
uncertainty and measurement noise, is tractable when realized with a particle filter,
and explicitly represents the sensor noise model.

In robotics, Kemppainen et al. [7] used Kriging without treatment of pose or
measurement uncertainty in considering well-localized robots in an experimental
environment. Zhu et al. [14] applied OK to find a optimal sampling strategy based
on KV. Elston et al. [5] evaluated trajectory quality on the basis of a variogram
model; the simulation did not consider measurement error.

As a measurement of interpolation error, KV does not depend on data values but
only on the semi-variogram model and data sample sites. Yamamoto [12] suggested
that the Interpolation Variance (IV) would be well-founded because it measures the
reliability of estimates by considering both the Kriging weights and data values,
i.e., it is a heteroscedastic measure. We are not aware of any evaluation of IV that
considers measurement or position uncertainty.

2 Technical Approach

The purpose of Kriging is to estimate the values of a spatial random variable, Z, from
sparse sample data. Ordinary Kriging, the most common type of Kriging in practice,
assumes that the spatial statistical process that generates the random values can be
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characterized by an unknown mean [11]. An estimate Z∗(x0) is obtained from λi and
samples Z(xi) via (1):

Z∗(x0) =
n

∑
i=1

λiZ(xi),
n

∑
i=1

λi = 1. (1)

The coefficients λi, called Kriging weights, show that the interpolated points are
obtained from a distance weighted average of nearby measured points. The weights
are computed in matrix form via a pseudo-inverse of (2):

A =

⎛
⎜⎜⎜⎝

γ(x1,x1) · · · γ(x1,xn) 1
...

. . .
...

...
γ(xn,x1) · · · γ(xn,xn) 1

1 · · · 1 0

⎞
⎟⎟⎟⎠ , (2)

b =

⎛
⎜⎜⎜⎝

γ(x1,x0)
...

γ(xn,x0)
1

⎞
⎟⎟⎟⎠ , Aλ = b. (3)

The value depends on the semi-variogram function γ which represents the strength
of spatial relationships in the random field. It is defined as the square of the expected
difference between values at different locations, i.e., γ(x,y) = [E(Z(x))−E(Z(y))]2.

KV is given by σ2(x0) = ∑n
i=1 λiγ(xi,xo)+ψ(xo). Taken together, these yield the

optimal OK prediction of unobserved values of the process when neither measure-
ment noise nor position uncertainty are included.

2.1 Measurement Error

Kriging Variance: The traditional Kriging approach usually treats the measure-
ment noise as zero, i.e., that the measured data represent true values. It is common
for geostatistical texts (e.g., [2, 11]) to add that if there is reason for a practitioner
to suspect measurement error (described with variance, cm) then the remedy is to
subtract this value from the field Kriging variance, as so

σ2
m(xo) =

n

∑
i=1

λ i
mγm(xi,xo)+ψ(xo)− cm, (4)

where γm is the variogram and ψ is a Lagrange multiplier. This is both counter-
intuitive and incorrect for imperfect measurement as typically considered in the
robotic sampling context. Understanding why depends on two observations. Firstly,
despite moving from idealized to noisy sensing, it has tacitly been assumed that the
variogram is constructed using the same noisy sensor as employed for the sam-
pling itself. Thus, the variogram no longer merely encodes the intrinsic spatial
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dependency of the underlying statistical process. The result is that γm is a variogram
that includes measurement error and has been shifted by cm automatically. Secondly,
applying (4) removes the implicitly captured sensing variation in order to describe
only the interpolation variance. It does not, therefore, yield a variance that estimates
what would result if you were to place the sensor at the given location.

Instead, we define γm to be γtruth + cm, where γtruth is calculated using a high-
fidelity sensor or from a theoretical understanding of the spatial process. The resul-
tant expression for the variance is

σ2
ε (xo) =

n

∑
i=1

λ i
truthγtruth(xi,xo)+ψ(xo)+ cm. (5)

One is now no longer subtracting the measurement error from the prediction, which
decreases the variance so it no longer matches measured data, but instead increasing
the degree of uncertainty, as one might expect.

Interpolation Variance

In contrast, interpolation variance estimates are affected by the variogram only indi-
rectly. The IV computation is analogous to a form of variance where the probability
density is replaced by OK weight λ . The choice of γm alters the computed λ , but the
sensitivity to measurement noise is dominated by the local data variation. Clearly
this latter effect has no impact on KV. Equation (6) shows IV in terms of λ and the
variance of the input consistent with the other notation:

s2
o =

n

∑
i=1

λi[z(xi)− z∗(xo)]
2. (6)

2.2 Position Uncertainty

To take position uncertainty into account within the Kriging framework, Chilés [1]
proposed the following model. The measurement believed to be made at a point
xα is actually performed at another position xα +uα , where uα is a random vector
which contributes to the position error. Given probability density p(uα) and also
the joint density p(uα ,uβ ) for any pair of points, one may extend the OK equations
(2)–(3) by randomizing vectors uα over poses. This produces equations (7)–(8):

x̃α = xα +uα ,

Ãαβ =

∫∫
γm(x̃α , x̃β )p(uα ,uβ )duα duβ .

(7)

b̃oα =

∫
γm(x̃α , x̃o)p(uα)duα . (8)
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The expressions for Ãαβ and b̃oα can be directly applied in (2)–(3) in place of A and
b. Employing this strategy propagates pose uncertainty (position variation) through
to the field estimate and produces an increase in the interpolation variance. It is im-
portant to note that even if the distributions are unimodal and isotropic, the observed
values may differ from the interpolator predictions at the associated maximum
likelihood positions.

In practice, incorporating pose uncertainty in Kriging for real systems involves
application of (7)–(8) in a representation which ensures the operations involved can
be carried out tractably. We describe an efficient realization of Kriging via a par-
ticle filter. Additionally, this has the advantage of already being a practical repre-
sentation of pose uncertainty, e.g., see [6]. Particle filters approximate a probability
density through a set of weighted samples, ω(n), drawn from the distribution being
represented.

The following equations illustrate a Kriging computation, analogous to that de-
scribed above, using the particle filter. Essentially, integrals have been replaced with
summations, and appropriate weights used:

Ãαβ =
n

∑
i=0

m

∑
j=0

γm(xi,x j)ωi ω j, (9)

b̃oα =
n

∑
i=0

γm(xi,xo)ωi, (10)

where n and m correspond to the number of samples drawn from the distribution.
Similar to the equations described above, once the relevant matrices are computed
in this way, interpolation proceeds as before.

Our particular robots localize themselves using a particle filter based approach,
so this treatment is particularly straightforward: Kriging inputs are computed via
(9)–(10) on the localization particles and, once the relevant matrices are computed
in this way, interpolation proceeds directly.

3 Experiments

3.1 Equipment and Experimental Scenarios

Two separate experimental scenarios were used. Both assess the estimated variance
in scalar fields constructed from measurements taken by robots:

1. Sound and light, indoors: An iRobot Create robot, equipped with a Hokuyo
URG-04LX-UG01 laser sensor and an Asus Eee PC 1005HA netbook, was given
a map of our building; it moved around the environment using an adaptive parti-
cle filter to localize itself. The localized robot was given several target measure-
ment positions along a linear corridor. A total of 44 measurement positions, each
approximately 50cm apart, were provided as navigation goals. After the robot ar-
rived at each goal position, it saved its current localization estimates by writing the
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Fig. 2 Environment in which measurements were recorded: the robot navigates along the
corridor from R to G, taking denote measurements. The two S symbols denote the positions
of sound sources.

particles representing the pose probability distribution to disk. The robot remained
in place for 2 seconds, collecting data from three sensors: (1.) ambient sound volume
in decibels via the onboard microphone on the netbook; (2.) light intensity measured
in lux with a Phidgets “Precision Light Sensor” and (3.) ambient temperature via a
Phidgets “Precision Temperature Sensor”. We did not report values from the third
sensor, as the building climate control made them uninteresting.

Figure 2 shows the second floor of our building. For simplicity the measurements
we analyze further all come from a single corridor about 17m in length. Two sound
sources emit the same continuous beeping sound at locations shown in the figure
(the sound itself is a flute C7 note at 2000Hz.) The measurements were recorded at
night so that the florescent lights in the ceiling were the sole light source.

The light and sound fields represent opposite extremes. Light intensity was essen-
tially constant, except with a spatial period representing light spacing, the light sen-
sor showed low variation, and the empirical variogram shows a short range spatial
covariance. On the other hand, the measured sound volume had large fluctuations
and a variogram illustrating longer range spatial structure.

The sensor noise variance cm was estimated for each sensor, by computing the
mean of variances computed from 200 values taken over 2 seconds at the same
position. Variogram models were fitted passing through the origin from samples
averaged over the 200 values in order to minimize sensor noise. We adopted the
spherical variogram model (11), where n is the height of the jump of the semivari-
ogram at the origin (known as the nugget), s∗ is the limit of the variogram at infinite
lag (the sill), and r is the distance at which this is first reached (range). Light within
our environment is characterized as follows: r = 2m, s∗ = 580lux, and the sensor
has variance cm = 5. Similarly sound has r = 5m,
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s∗ = 80 decibels, and the sensor variance cm = 30.

γsph(x1,x2) = s∗·
[

3‖x1− x2‖
2r

− ‖x1− x2‖3

2r3

]
+ n. (11)

2. Interpolated H2O quality indicators, from Lake Pleasant: An AUV equipped
with a YSI 6600vs Sonde (see Fig. 3) took dense measurements within a 70m×
100m window. These readings along with GPS positions were used as “ground
truth” data on which we simulated sampling experiments as follows: readings at
any point were generated from an OK interpolation with Gaussian noise added (σ2

selected per YSI’s listed measurement accuracy per quality indicator).

(a) Ocean Server Iver2 AUV. (b) Sampling pattern.

Fig. 3 Real world data were
collected in Lake Pleas-
ant, AZ. (−33◦ 51’55.66”N,

112◦ 17’45.01”W) by directing a
AUV in (a) to trace the 3215m
long “lawnmower” pattern
in (b). Measurements of five
different quality indicators
were taken 3448 times at 0.5Hz
over the 1hr 55min traversal.

Samples, collected in the way described above, were then processed four different
ways in order to consider the different treatments of sample site uncertainty:

1. The single best pose hypothesis with field measurement assumed to be error free
(PBMB).

2. The single best pose hypothesis with field measurement treated as noisy (PBMU).

3. The full pose distribution with measurement assumed to be error free (PUMB).

4. The full pose distribution with measurement treated as noisy (PUMU).

Instances involving PB used the single sample from the particle filter with maxi-
mum weight. The PU instances employed the whole distribution in order to pass the
uncertainty onto the spatial field representation. The measurement treatment was
analogous: variance of the sensor only being considered in MU cases.

3.2 Planners: Greedy KV- and IV-Based Selection

In the data reported in Section 4, we provide the distance travelled as a robot at-
tempts to reduce field uncertainty. In these cases, we considered a naı̈ve planner in
which the robot selects new sample locations by greedily picking the position in the
field estimate with greatest uncertainty, sampling there, incoporating the data, and
repeating the process. This uncertainty is measured using either KV or IV, as will
be indicated.
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4 Results

4.1 Comparison of KV and IV: Density Dependence

Figure 4 illustrates that KV depends on sample position but is independent of the
observed data.1 KV has the same shape between measurement sites no matter what
the measured data actually are. However, IV considers different local data values
and exhibits some degree of anisotropy in shape.
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(a) Light, 4 samples
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(b) Light, 8 samples
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(c) Sound 4 samples
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(d) Sound 8 samples

Fig. 4 The two variance estimates have different behavior with regard to sample density

Figure 4 also shows that KV and IV have different characteristics and that these
depend on the two different sensors. As the number of measured data increases, KV
decreases smoothly. In contrast, IV can increase due to an implicit dependency on
data variation. Thus, IV has the smaller value of the two estimates for sparse data,
but with the increasing density, the tendency of both measures causes them to cross
at a certain point. Figure 5 quantifies this effect for the sensors we considered: the
light sensor results in an intersection for between 3 and 5 samples. For the sound
sensor this occurs between 7 to 8 samples. Moreover, the data variance decreases
as additional measurements are added. The evaluation of KV and IV for the two
sensors in subsequent sections uses 4 inputs for light and 8 inputs for sound.

Fig. 5 Differing behavior as
a function of data density.
Analysis of variance (mea-
sured and estimated) as a func-
tion of sample density. (KV in
red, IV in blue.) 1 2 3 4 5 6 7 8 9 10 11
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(a) Light sensor: Variances.
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4.2 Measurement Error

As the reported cm values illustrate, the light sensor is considerably more sensitive
than the sound sensor. To make clear the impact of measurement error on variance
estimates, we show only the sound case.

1 Since the variogram is isotropic, the KV inherits this property too.
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(c) PBMB Sound
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Fig. 6 Comparison of the measurement error at 8 points

Figure 6 illustrates several properties: IV equals zero at the measured points,
while KV is increased by cm at the measured points. Moving beyond the measured
points, both increase approximately linearly with increasing noise. Figure 6 shows
clearly how IV underestimates at measured points. The rate that IV increases reflects
unexpected uncertain data unlike the KV which merely considers distance between
measurements.

Although IV vanishes at measurement points, it compensates when multiple
sensed values are close to one another since the sensor noise inherently limits the
quality of prediction from the local neighborhood. The measurement error is im-
plicitly represented by IV, which relies on the increasing numbers of measurements,
to truly reflect the data spread. We suggest that IV will capture cm when multiple
measurements are taken from the same location. However, IV must be taken as the
envelope computed from all measurements and one should not compute IV from the
mean.

4.3 Position Uncertainty

Figure 7 shows the effect of position uncertainty for each of the sensed fields. Nei-
ther, KV nor IV are zero at the measured points but both increase linearly with
IV increasing more than KV. Severe position uncertainty degrades interpolation be-
cause Ãαβ represents a convolution weight. It is worth observing that KV increases
most near measurements. On the other hand, IV increases variance everywhere else.
Unlike the previous case, the interpolated Kriging may no longer be a punctual in-
terpolator, i.e., the estimate may not coincide with the measurement.

4.4 Effects of Both Forms of Sample Uncertainty

It is worth considering both measurement error and position uncertainty together,
as it best reflects the reality of most robotic sampling scenarios. Figure 8(a) shows
the PBMB case (no uncertainty modelled) for the light sensor. The KV, however,
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(a) PBMB Light.
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(b) PUMB Light.
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(c) PBMB Sound.
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(d) PUMB Sound.

Fig. 7 Position uncertainty: light with 4 inputs, sound with 8 inputs

−12 −10 −8 −6 −4 −2 0 2 4
50

100

150

200

250

300

distance(m)

lu
x

 

 
Truth
Measured−In
Prediction
std(KV)
std(IV)

(a) PBMB Light.
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(b) PUMU Light.
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(c) PBMB Sound.
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(d) PUMU Sound.

Fig. 8 Both variance measures for 8 light and sound readings

underestimates the variance in some locations, partly because the light sensor has
a small variance. Figure 8(c) shows the underestimation of variance (observable by
comparison to the ground-truth data). By considering uncertainty, Figure 8(b) shows
that KV does not fully resolve the underestimation problem, while IV appears to be
a better estimate. However, it may overestimate in cases with small scale sensor
variance like the light sensor. In Figure 8(d), the KV does not show the variation of
sensor values. However, IV shows good estimates for the noisy sound sensor, and
the PUMU IV case shows the uncertainty near the measurements.

In many cases, the absolute variance estimate is used to select navigation goals.
While both forms of variance can be used, it is important to note that the sensor
variance can influence the appropriate choice of goal.

4.5 Planner Effectiveness of for Adaptive Sampling

Greedy planners based on KV and IV can both be effectively used for autonomous
sampling since either decreases (both) measures of variance. Fig. 9 summarizes the
experiments conducted with a single robot indoors for estimating the light intensity
field. Selecting targets with KV results in an approximately even spacing between
samples, as shown in inter-sample distance histogram inset in Fig. 9(a). In contrast,
the insets in Fig. 9(b) show how the heteroscedastic property causes different spac-
ing. The right inset of Fig. 9(b) also illustrates the importance of employing the
envelope scheme when there are multiple measurements at a particular site or even
very nearby sample sites.
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(a) KV-based planner (first 600 seconds). (b) IV-based planner (first 600 seconds).

Fig. 9 Autonomous sampling drives variance measures down. The sample position se-
lected as either (a) maximal KV, or (b) maximum IV position. The vertical axis represents
the mean KV and IV, the horizontal axis denotes time. The inset histogram shows the distri-
bution of inter-sample distances. The right inset is the resultant light field (in lux) along with
variance estimates.

Figure 10 shows data from multi-robot tests with KV or IV for sample site plan-
ning. The plots show that the two robots are able to sample with efficiency that is
almost twice that of the individual robots, if we consider the rate of decrease in total
field variance.

4.6 Data-Dependence on Planner Performance

While KV is widely known and a frequently used measure, IV has complementary
aspects as a candidate for robotic sampling applications. Fig. 11 shows that this is
observation is true in both scenarios. For light indoors, the robot covers a distance
±25% shorter to collect the same number of samples as a KV planning robot. In a
given time interval, the IV method collects±45% more samples than KV. The table
below shows Lake Pleasant data.

Table 1 Application of IV and KV planner in Lake Pleasant, AZ. The results compare 10
cross-validation trials, showing the mean and standard deviation values. The estimated field
uses 30 samples at point A in Fig. 11(b).

IV planner KV planner
B/G Algae (3467.7,37104) (3186.8,26543)
Chlorophyll (0.4117,0.0015) (0.4321,0.0013)
pH (0.1509,0.0008) (0.1687,0.0004)
Temperature (0.1939,0.0001) (0.2071,0.0002)

(Left) Reported statistics are (μ,σ)
of MSE between estimated field and
ground-truth values, for n = 10 inde-
pendent trials.
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Table 2 Application of IV and KV planner in Lake Pleasant, AZ. The results are mean and
standard deviation of MSE measured cross-validation between estimated field and ground-
truth values for 10 trials. The estimated field are for samples drawn within the first 600m in
B of Fig. 11(b).

(Right) Cross-validation
analogous to Table 1, but
with an upper bound on
distance traversed rather than
a fixed number of samples.
The s value denotes number
of samples used.

IV planner KV planner
B/G Algae (3467.7,37104) s = 30 (3236.7,29308) s = 9
Chlorophyll (0.4084,0.0014)s = 25 (0.5212,0.0048)s = 8
pH (0.1786,0.0024)s = 18 (0.1796,0.0008)s = 8
Temperature (0.1939,0.0001)s = 30 (0.2007,0.0003)s = 5

(a) KV for selecting sample sites. (b) IV for selecting sample sites.

Fig. 10 A multi-robot demonstration of KV and IV for sampling. Two robots sample light
and temperature concurrently.
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Fig. 11 Minimizing IV
collects more data for
a given duration than
KV, and travels shorter
distances to collect the
same number of sam-
ples. Data are means and
variances from ten sepa-
rate trials of each greedy
planner.

5 Conclusion

In robotics, Kriging spatial interpolation is generally used without considering mea-
surement error and position uncertainty. However, our data demonstrate that doing
so may result in underestimation of interpolation error. This paper shows how both
of these forms of uncertainty can be easily incorporated into the standard OK in-
terpolator, allowing the uncertainty to reflect itself as an increase in variance of the
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underlying field. Our physical robot data show that measurement error and posi-
tion uncertainty do affect the error estimates for both KV and IV. Our empirical
assessment resulted in several observations about the models variance and their re-
lationship. For example, data density affects both KV and IV, but in opposite ways;
we first postulated and then determined that a cross-over point exists. Secondly, even
though IV equals zero at measured points, employing the envelope of the variance
function is natural near multiply measured points. Finally, sample site uncertainty
not only changes the variance, but can also result in a non-punctual interpolator.

While KV is widely known and frequently used traditional measure, IV is a new
candidate for robotic sampling applications which has several aspects that are com-
plementary to KV. We have shown the feasibility of IV as a measure of uncertainty
by incorporating it in a demonstration of an autonomous robot system which adap-
tively samples light and temperature in our building. When compared to KV, select-
ing points to greedily minimize IV collects more data for a given duration and travels
shorter distances to collect the same number of samples. Additionally, IV appears
no less suited to multi-robot applications than KV in terms of potential sampling
speed-up.
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Acoustic Masking of a Stealthy Outdoor Robot
Tracking a Dynamic Target

Ashley Tews and Matthew Dunbabin

Abstract. This work is motivated by the desire to covertly track mobile targets,
either animal or human, in previously unmapped outdoor natural environments us-
ing off-road robotic platforms with a non-negligible acoustic signature. The use of
robots for stealthy surveillance is not new. Many studies exist but only consider the
navigation problem to maintain visual covertness. However, robotic systems also
have a significant acoustic footprint from the onboard sensors, motors, computers
and cooling systems, and also from the wheels interacting with the terrain during
motion. All these can jepordise any visual covertness. In this work, we experimen-
tally explore the concepts of opportunistically utilizing naturally occurring sounds
within outdoor environments to mask the motion of a robot, and being visually
covert whilst maintaining constant observation of the target. Our experiments in a
constrained outdoor built environment demonstrate the effectiveness of the concept
by showing a reduced acoustic signature as perceived by a mobile target allowing
the robot to covertly navigate to opportunistic vantage points for observation.

Keywords: acoustic, covert, stealth, robot, tracking.

1 Problem Statement

Our research problem is focused towards addressing the question: can you maintain
constant observation of a moving natural object of interest whilst being visually
and acoustically covert? A solution is achieved by addressing covert movements
to pseudo-optimal monitoring locations, and on reducing the conspicuousness of
the robot’s acoustics. In the first case, the robot examines its surroundings whilst
monitoring the target object and identifies potential locations that offer a substantial
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opportunity for camouflage and observation. In the acoustic case, the robot monitors
the periodicy of noise sources of significant amplitude and determines those that
offer a high probability of covering any ego-noise, and are cyclic enough to be
predictable.

Examples of significant distracting sounds for: built environments includes fork-
lifts, trucks, compressors, and machinery; urban environments include cars, mobile
phones and dogs; natural environments include birds, insects and wind. The pre-
diction of upcoming noise events can act as a trigger to allow the robot to move
to its next monitoring location. This concept significantly extends current state-of-
the-art by considering; (1) maintaining stealth in an outdoor environment, (2) a dy-
namic target, (3) variable background and distractive sounds, and (4) the tracker
must maintain constant visual observation of the target. In this paper, we present
our preliminary research into visual and acoustic covertness as a step towards a
fully predictive system.

2 Related Work

Stealthy navigation for robots has been typically focused towards minimizing the
risk of exposure of the robot to known or unknown observers using either poten-
tial fields or cost functions. In unknown outdoor environments, Birgersson [1] and
Tews [8] have used either approach for navigating a robot around detected objects in
the presence of a known observer location. Marzouqui [6] has demonstrated a simi-
lar approach using a cost function to plan a path through an unknown environment
that may contain sentries. The function chooses a path that offers the least exposure
to open areas where the possibility of sentries was higher. In known environments,
Masoud [7] has demonstrated a potential field approach for evasion in the presence
of multiple pursuers.

The goal of these approaches was to reduce visibility to one or more target ob-
jects (typically referred to as “observers”). Our approach requires constant obser-
vation of a mobile target object. Cook [3] have developed a method to evaluate the
information gain of strategic observation locations versus the cost of being detected.
Their domain was more directed towards the scenario of military scouting from long
ranges but has similarities to ours. Our approach is more dynamic, shorter range and
considers the acoustic profile of the tracker and its surroundings.

There is a paucity of literature relating to the acoustic masking of a robot for
stealthy navigation. The most significant work to date has been by Martinson [5],
who describes an approach to use known noise sources within the environment to
determine the locations where a robot’s own acoustic signature is minimized to a
potential “listener” (known in this paper as the observer or target). Whilst the ap-
proach takes into account the listener’s audio direction sensitivity, the small scale
of the experiment and constant noise source limits its practicality in the natural and
built environments, particularly when the noise sources are non-constant and the lis-
tener is moving along an unknown trajectory. This paper significantly extends these
concepts for allowing operation in previously unmapped large-scale natural or built
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environments. Principally, the approach considers the combined visual and acoustic
covertness of the robot, whilst maintaining constant observation of the target. The
acoustic covertness is achieved by opportunistically utilizing natural sounds from
within the environment as distractions for masking its own acoustic signature to
manoeuvre between goal locations. These sounds are characterized to determine the
level of masking in both time and space. Sound characterization can be performed
in a number of ways such as matching point features [2] or Markov model based
clustering [4] for example. The temporal duration of masking of a particular sound
can be estimated by studying the soundscape and developing a likelihood table.
This soundscape characterization is beyond the scope of this paper and it assumed
in this experimental campaign that the masking distractions have known minimum
duration, although can occur randomly.

3 Technical Approach

Our system consists of two major parts; stealthy navigation and acoustic masking
in an unknown outdoor environment. The key assumptions in this analysis are; (1)
the robot knows its own location relative to a reference frame, (2) the robot knows
the location of the target/s relative to its own coordinate system, (3) the robot is self
aware of its acoustic output (not necessarily constant), and (4) the robot has sensing
capabilities to measure the local sound field and directional components.

Stealthy Navigation: The navigation part of the system is motivated by the require-
ment that the tracking robot needs to be able to monitor the target at all times, whilst
remaining as inconspicuous as possible. It is reasonable to consider that a naive tar-
get en route to a goal location will not be distracted by moving objects it cannot see
or hear. In our system where the environment is not know a priori, the tracking robot
will determine opportunistic observation locations in response to the environment
state. Visible detection of the robot occurs through it being conspicuous against its
background by movement and appearance. For this preliminary study, we assume
the robot is camouflaged against background objects when stationary. Any move-
ment should be masked acoustically and undertaken when the robot is not in visible
angular range of the target. Hence, if the target is moving forward, the robot is clear
to move behind it, but should not undertake in prolonged continuous movements
which increase its chances of being detected acoustically and visibly. It should ef-
fectively “hop” between vantage locations as appropriate to maintain continuous
observation and acoustic cloaking.

The vantage locations are determined using an occupancy grid and assigning a
cost to each occupied cell that is visible to the target. All other cells are ignored
since only locations between an occupied cell (object) and the target are considered
as viable candidates. Cells within 4m of the target are also excluded as these are
deemed too close to allow stealthy traverses. The cost function is based on the grid
location of the cell being evaluated and those containing the target and the tracker:
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costxy = 0.5 ∗ |cellxy− trackerxy|+ |α−|cellxy− targetxy|| (1)

where α is set to 6m.
The distance from the cell to the tracker is used to bias locations close to the

tracker to reduce distant goals being selected. In future iterations of the equation,
target heading and time-to-goal will be included. The bias of 6m to the target in
the second part of the equation is selected as the ideal viewing range for the sensor
monitoring the target.

The resulting cost grid is analysed and the lowest valued cell chosen as the can-
didate goal location. A small amount of hysteresis is used so if the goal is within
3m of the previous, it will not change. This is to prevent the robot from thrashing
between goals and creating more visual and acoustic disturbance.

Once a new goal location is selected, the robot waits for the signal that it is
acoustically masked (described next) before it moves. For the current instantiation
of the research, the robot will continue onto the goal irrespective of any decrease in
masking noise level.

Acoustic Masking: The approach for determining when the robot should move is
to predict the expected sound pressure level (SPL) increase at the target. We assume
the background SPL is reverberant and locally the same at both the robot and target,
and adopt a spherical spreading model to estimate the direct sound of the tracker
to the target. Using these sound field approximations, two estimation steps are con-
ducted onboard the robot either offline or when the robot is not in tracking mode; (1)
adaptive estimation of the background SPL, and (2) estimation of the robot’s own
ego-motion noise.

Although we assume the background SPL is reverberant and the same at the
target and tracker, it can vary temporally to account for time of day and general
background noise sources. The background SPL estimate (L̂BG) is determined whilst
the tracker is stationary by the recursive moving average approximation:

L̂BGk = min

{
Lk +(n− 1)L̂BGk−1

n
, Lk

}
(2)

where Lk is the instantaneous measured SPL at time-step k and n is the number of
time-steps for the average. As any intermittent high-level distractions can bias the
background estimate, we force L̂BG to the lower of the estimate and actual level.

The second estimation is conducted whilst the tracker is moving within the envi-
ronment. Here we assume that the local sound field only consists of the background
and that produced by the tracker. Therefore, we map the tracker’s own SPL as a
function of its velocity (v) and turn rate (ψ̇) such that:

L̂R(v, ψ̇) = 10log
(

10LP/10− 10L̂BG/10
)

(3)
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where LP is the peak sound pressure recorded during (t1 ≤ k ≤ t2) given by:

LP = max [L(k)]k=t2
k=t1

(4)

The second phase of the acoustic tracking is prediction of the tracker’s contribution
to the target’s observed SPL. For this analysis, we assume we know the approxi-
mate relative direction of the distraction sound from the robot to the target (θ ). The
estimated total SPL at the target is then the logarithmic sum of the direct and re-
verberant SPL’s. Therefore, the estimate of the robot’s SPL at the target is given
by:

L̂R/T = 10log
(

10(L̂R(v,ψ̇)−20 log(r/ro)) + 10L̂BG/10
)

(5)

where r is the range from the robot to the target, and ro is the reference distance
from the robot’s sound source to its onboard sound pressure level meter.

In this study, we consider the masking provided by the observed increase in SPL
above background at the target. To be a valid distraction, we need to estimate its
increase in the target’s SPL. The robot observes the instantaneous increase in SPL
and determines the strength of the distraction at the robot to be:

LD/R = 10log
(

10Lk/10− 10L̂BG/10
)

(6)

We assume a disturbance is a temporally distinct point source and is modelled via
spherical spreading model. We also assume that it originates beyond the target (i.e.
not between the tracker and target). Therefore, the estimate of the distraction SPL
at the target is:

L̂D/T =

⎧⎨
⎩

10log
(

10(LD/R+20 log(r/ro)) + 10L̂BG/10
)

, i f cos(θ )> 0

10log
(

10(LD/R−20 log(r/ro)) + 10L̂BG/10
)

, otherwise
(7)

In practice, the robot does not move unless cos(θ ) > 0, as the directionality of the
distraction and robot sound could direct attention towards the tracker/robot.

The final step is to predict when the robot considers itself to have sufficient mask-
ing to avoid acoustic detection. If the expected SPL of the robot at the tracker includ-
ing background level is less than 1 dB less than the expected total SPL of the robot,
background and distraction at the target, then we assume the robot will be acousti-
cally masked and flags the robot’s controller that waypoint navigation is possible.
The expected duration of acoustic masking is dependent on the type of distraction,
its persistence and can be pre-specified or predicted. In this preliminary experimen-
tal evaluation, we consider a weighted temporal difference of

(
L̂D/T − L̂R/T

)
. This

simplification assigns the maximum expected level and duration of distraction. This
is a gross assumption and it is a current topic of research to predict the distraction
parameters more accurately based on the frequency content and likelihood from
learnt soundscape parameters.
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4 Experiments

To demonstrate the effectiveness of acoustic masking for a mobile tracking robot,
we conducted experiments with a human target moving across a built environment
with a robot tracker. In this preliminary approach, the human walks between and
near objects around an open area, as shown by the black path in Figure 1. The robot
will pursue the human by going to goal locations near objects as they are detected
and offer substantial vantage points for observation. Fig. 1 shows the 30x30 m
experimental area showing the human target’s path from Start to End, and potential
objects (labeled A-F) for the robot to use whilst tracking the person.

Fig. 1 The outdoor experimental scenario. The target roughly follows the black path around
obstacles A-F.

Fig. 2 The robot used in the experimental campaign showing the sound pressure level meter,
Hokuyo laser scanner and computing hardware
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The robotic platform used was a Jaguar 4x4 developed by Dr Robot (www. dr-
robot.com) fitted with a top-mounted Hokuyo 30LX laser, Microstrain 3DMG GX3
IMU and externally mounted laptop running the software for sensing and control
(Figure 2). Two sound recording devices were installed on the robot at different
phases of the experimental campaign. The first was a calibrated Sound Pressure
Level Meter with an analog output proportional to the measured SPL in dBA. The
second was a MP3 recorder used to measure and record the sound level, and was
carried at a constant orientation by the target. As this is not a calibrated sound level
meter, the results shown in Figures 4 and 7 are relative to an arbitrarily chosen
reference. The MP3 player was adopted to allow frequency content analysis of the
soundscape for characterisation and prediction of distraction sounds (not considered
in this paper). A series of day and night-time experiments with and without acous-
tic distractions were conducted in the area shown in Figure 1. During the day, the
area has a large number of sound source distractions from vehicles, compressors,
and personnel in the vicinity. It is in a semi rural location and there are also many
sources of significant environmental noises such as wind, birds, insects and frogs,
particularly at night after the domestic noises have reduced.

Due to the acoustic variability of the experimental environment and the fact
we used a non-standard audio recording device, we conducted a number of track-
ing experiments at night with low background noise levels and no distractions.
This allowed the robot’s acoustic signature to be estimated at different velocities,
orientations and wheel slip conditions.

5 Results

A number of experiments were conducted to acoustically characterise the robot and
validate the modelling assumptions. Figure 3 shows the measured SPL at 1m around
the robot (held off the ground with motors running). As seen, the robot’s SPL is
relatively consistent with direction.

Figure 4 shows the estimated SPL at 1m from the robot with varying velocities.
For estimating the expected SPL at the target, a conservative acoustic signature of
the robot was adopted as shown by the black line.

To validate the modelling assumptions, the robot was commanded to undertake
turns and linear velocity runs at set distances from the target, with the SPL level
recorded at the robot and target in a built environment. Figure 5 shows the results of
the SPL recorded at the target and that predicted by the robot.

As seen in Figure 5, the robot predicts the SPL at the target reasonably well for
both the turning and linear velocity cases. The main error results from the differ-
ences in background SPLs at the robot and target showing that in more cluttered
environments, the less predictable the local sound fields.

Figure 6 shows the results of one of the daytime experiments with the
robot tracking a moving target. The paths of the target and tracker are similar
between the objects in the environment. The blue vantage points were generated



782 A. Tews and M. Dunbabin

Fig. 3 Measured SPL at 1m around the robot platform with motors running (no ground
contact)

Fig. 4 Variability of estimated robot SPL at 1m with robot speed, taken from the night time
experiments. The black line shows the assumed conservative acoustic SPL model adopted in
this experimental campaign.

opportunistically as the robot uncovered new information about the environment
whilst tracking the target. Each was generated behind the target’s location.

To evaluate the acoustic masking of the robot, a distracting sound source was
introduced into the environment from object D’s location in Figure 1 for random
lengths of time. When this sound is detected, the robot moves to the next vantage
point. The acoustic covertness of a daytime scenario shown in Figure 6 is illus-
trated in Figure 7. The top trace shows the measured total SPL (background, robot
and distraction) at the target (with a 2 second running average), the second trace
shows the range from the target to the tracker, the third trace shows the robot’s
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(a) Straight

(b) Turning

Fig. 5 Measured and predicted sound pressure levels at the target from the robot turning
and moving linearly. Also shown is the background SPL estimate measured at the robot and
target.

speed indicating a manoeuvre between waypoints, with the lower trace showing the
acoustic difference from the maximum expected masking potential. An expected
masking potential greater than -1 dB is the threshold that indicates that the robot is
acoustically masked at the target.

From three daytime experiments, it was determined that the distractions were
effective at conservatively masking the robot from the target a minimum of 97% of
the time whilst moving between goal points. Further night time experiments show
that without acoustic distractions, the robot is 100% detectable (0% masked) even
at distances up to 30 m from the target. Even with a moderate level of acoustic
distraction (a whistling target) with the same scenario as above, the robot was only
masked for 56% of the time whilst moving.
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Fig. 6 A map generated from the tracking robot with paths and locations overlaid. The tar-
get’s path is shown in red and went from Start to End. The tracking robot’s path is shown
in blue. The blue circles represent the vantage points generated during the traverse and the
letters correlate to the objects’ locations shown in Fig. 1.
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Fig. 7 Experimentally evaluated acoustic covertness from the experimental scenario. (Upper)
the measured SPL at the target, (second) the range from the tracker to the target, (third) the
robot’s speed, and (lower) the acoustic difference for masking of the robot at the target.
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6 Discussion

This experimental evaluation of visual and acoustic covertness in a built environ-
ment has demonstrated that it is possible to navigate and track a naive mobile tar-
get of interest whilst being undetected. Furthermore, opportunistically utilizing the
acoustic soundscape, however random, can greatly enhance the ability of a robot to
stealthily navigate, as illustrated by the experimental results. The reactive cost func-
tion and its associated algorithm provide rational vantange points for tracking and
monitoring the target. During all experiments, the selected opportunistic locations
were in locations out of view of the target’s gaze, but close enough to provide a
strategic monitoring location for the next phase of target observation.

During the experimental campaign, it became evident that in order to accurately
predict the expected SPL of the robot at the target, it was necessary to (1) reason-
ably understand the robot’s acoustic signature as a function of speed and terrain,
and (2) monitor the background SPL and variability in real time. Fortunately, the
background level can be established whilst the robot is stationary, waiting for the
next opportunity to go to the next vantage location. Secondly, although not consid-
ered in this paper, it is important to be able to predict the location of the distracting
sound, as well as model the expected “attention focus” of the target to this sound.
This is important in situations where the robot is required to traverse large distances
between waypoints whilst being potentially visible to the target. Additionally, we
believe higher level heuristics are required to modify the stealthy navigation cost
function based on the time of day, weather conditions, and dynamic soundscapes.

Anecdotally, the performance of the acoustic and visual stealthy behavior pre-
sented was very effective. The targets noted that if they were not watching the robot,
they could not tell when it had moved to a new location and hence was tracking
them. We have made several assumptions regarding the target and environment to
undertake this preliminary research. In particular, experiments were only conducted
in one environment, and the target had a relatively simple trajectory with a fixed
gaze. Different environments, different targets, gaze detection and prediction are
elements of future work.
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Part XII: ISER Session Summary  
on “Marine Robotics” 

Daniela Rus 

Massachusetts Institute of Technology 

Session Summary 

The Marine session introduced five state-of-the-art results in underwater robotics, 
with a focused emphasis on adaptation and learning to enable improved operation 
of robots under challenging situations.  

This first paper, "Autonomous Adaptive Underwater Exploration using Online 
Topic Modeling", describes an autonomous robotic system that can be used to 
assist in exploring dangerous underwater environments. The key contribution is an 
online spatio-temporal approach to topic modeling which captures the presence of 
high-level patterns in the scene to capture the objects commonly found in the sea. 
Given a fixed trajectory, the robot traversed it with a non-uniform speed, stopping 
at locations containing surprising observations, and moving at high speeds over 
seemingly boring or previously observed regions. Experiments show that the 
resulting summaries capture the visual diversity of the underwater environment.    

The second paper, "Active and Adaptive Dive Planning for Autonomous 
Seafloor Reconstruction", examines how to plan dives for an Autonomous 
Underwater Vehicle (AUV) to generate a dense bathymetric map using sidescan 
sonar, where the main goals are (1) proper modeling of the local uncertainty of the 
3D reconstruction, (2) efficient dive planning to reduce this uncertainty, and (3) 
determination of when to re-plan adaptively based on new information. The 
proposed solution uses non-parametric Bayesian regression to model the expected 
accuracy of the map, which provides principled cost functions for planning 
subsequent dives.  Experiments on the propeller-driven YSI EcoMapper AUV 
equipped with a sidescan sonar in an inland lake demonstrate that efficient dive 
planning has significant performance gain over standard lawn-mower patterns.   

The third paper, "Exploring Space-Time Tradeoffs in Autonomous Sampling 
for Marine Robotics", aims to quantify the idea that following a drifting device in 
the real ocean and using a pseudo-Lagrangian context for field reconstruction may 
improve the quality of location estimation. The hypothesis is that a field which 
was initially not separable in space and time could be made approximately 
separable by a complete or partial transformation into drifter-relative coordinates. 
Simulation studies under idealized conditions support this idea. However, the 
results from field experiments in coastal waters, were less clear and point to 
several hypothesis for further investigation.   

The fourth paper, "Autonomous, Localization-Free Underwater Data Muling 
using Acoustic and Optical Communication", describes a novel apparatus and 
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scheme for data muling between a robot and a sensor node whose underwater 
location is fixed. Acoustic communication is used by the robot to approximately 
locate the sensor note. Optical communication is used to precisely locate the note 
and establish a wireless communication link capable of high data rates. The 
algorithms have been demonstrated in practice in a wide range of natural  
environments.   

The fifth paper, "Local-Search Strategy for Multi-Modal, Multi-Target, Active 
Localization of Invasive Fish" considers the localization of radio-tagged fish 
aggregations with robots. The paper proposed a local search-based method to 
estimate the location of a single target based on observations from field 
experiments, followed by extensions to multiple targets. Precisely localizing a 
radio-tagged target given an initial estimate is challenging to limited and unknown 
range, large measurement time, and ambiguity in bearing measurements. The 
solution uses an intermediate initialization phase to transition from search to 
localization. The resulting algorithm was validated during field experiments where 
a robot successfully detects, initializes and then localizes nearby targets.     

These five papers enable increased perception, planning, control, and 
communication capabilities for underwater robots. The controllers involve novel 
theory validated by hardware. The results are exciting and bring us closer to the 
dream of autonomous underwater observatories. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Autonomous Adaptive Underwater Exploration
using Online Topic Modeling

Yogesh Girdhar, Philippe Giguère, and Gregory Dudek

1 Introduction

Exploration of underwater environments, such as coral reefs and ship wrecks, is
a difficult and potentially dangerous tasks for humans, which naturally makes the
use of an autonomous robotic system very appealing. This paper presents such an
autonomous system, and shows its use in a series of experiments to collect im-
age data in an underwater marine environment. We presents novel contributions on
three fronts. First, we present an online topic-modeling based technique to describe
what is being observed using a low dimensional semantic descriptor. This descrip-
tor attempts to be invariant to observations of different corals belonging to the same
species, or observations of similar types rocks observed from different viewpoints.
Second, we use the topic descriptor to compute the surprise score of the current
observation. This is done by maintaining an online summary of observations thus
far, and then computing the surprise score as the distance of the current observation
to the summary, in the topic space. Finally, we present a novel control strategy for
an underwater robot thats allows for intelligent traversal; hovering over surprising
observations, and swimming quickly over previously seen corals and rocks.

Exploration, in the context of robotics, has been studied before. Work has been
done on autonomous mapping of challenging environments [19], [12], frontier ex-
pansion [22], minimizing uncertainty [21], and utility based exploration[8]. Our fo-
cus is instead on traversing an environment similar to how a tourist might do so in
a new city; stopping and recording any surprising sights, while moving fast when
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1065, Avenue de la Médecine, Quebec, QC, Canada, G1V 0A6.
e-mail: philippe.giguere@ift.ulaval.ca

J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 789–802.
DOI: 10.1007/978-3-319-00065-7_53 c© Springer International Publishing Switzerland 2013



790 Y. Girdhar, P. Giguère, and G. Dudek

nothing new is in sight. This is similar to the vacation snapshot problem described
in [2].

We used an untethered amphibious robot (Aqua[15]) with an in-house designed
autopilot to carry the exploration task. Images were taken with a downward-looking
camera, with all computations performed onboard. Its propulsion is based on six
flippers that can provide motion in five degrees of freedom. By using a novel com-
bination of gaits, the robot was able to move at various speeds while maintaining its
orientation, despite external disturbances. This was necessary in order to complete
this exploration task.

2 Approach

The abstract task of controlling the motion of a robot, based on surprise, can be bro-
ken down into three sub-problems: computing surprise of a new observation, having
a meaningful descriptor for observations over which surprise could be computed,
and finally, controlling the robot given the surprise score of the current observation.
We describe these sub-problems in the following sections.

2.1 Summaries and Surprises

Summarizing observations made by a robot has recently gained popularity in
robotics[13, 6]. Our goal, however, is to compute a summary which assists in eval-
uating the novelty of a new observation. We do this by maintaing a summary that
is representative of all of observations made thus far, and then compute the surprise
score as the distance to the this summary.

Let Mt = {M1, . . . ,Mt} be the set of all observations till time t. We maintain a
subset of k observations as the summary S = {S1, . . . ,Sk}, S ⊆Mt , such that the
maximum distance of an observation to its closest summary sample is minimized.
The cost function is thus defined as:

Cost(S|Mt) = max
i

min
j

d(Mi,S j), (1)

where d is the distance function, which measures distance as the symmetric KL di-
vergence between the corresponding topic distributions, which we describe in Sec
2.2. Such a summary is sometimes called as an Extremum Summary [6], because
minimizing the above cost function is essentially minimizing the distance of the
worst outlier to the summary. This is different from a more typical a k-medoids
clustering based summary, which tries to minimize the mean distance of an obser-
vation to the closest summary.

The novelty or surprise of a new observation ξ (Zt |S) can then defined as its
Hausdorff distance to the summary [5].

ξ (Mt |S) = min
j

d(Mt ,S j). (2)
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Fig. 1 Extremum vs k-Medoids Summaries. The dataset consists of 200 points generated
randomly around a circle in R

2. The summaries generated by the two algorithms are shown
in the first row. Since there are no outliers in the dataset, the summaries seem similar. In the
second row, we add 8 extra samples from a different distribution, which are all outliers in the
context of the other points. Adding these outliers highlights the differences between the two
strategies. We see that extremum summary favors picking the outliers, whereas the k-medoids
summary ignores these outliers completely. In the last row, we reduce the summary size and
see the differences exaggerated even more. The extremum summary is almost entirely made
up of the outliers, whereas the k-medoids summary is only representative of the mean.

If the distance function obeys the triangle inequality, which is true in our case, then
not only is this problem NP-hard, but Huse and Nemhauser [11] showed that any
α-approximation of this problem is also NP-hard for α < 2. Gonzalez [7] proved
that the simple greedy solution of recursively picking the farthest samples, has an
approximation ratio of 2, which is likely the best we can do unless P=NP.

In the online case, Charikar et al. [4] have proposed a simple strategy where after
each pick, the picking threshold is doubled. This leads to a summary which is guar-
anteed to have a cost less than 8×‘optimal’. However, since the topic assignment of
samples in the summary are continuously being refined, we instead set the threshold
dynamically to 2×‘minimum inter-sample distance in S’, as illustrated in Fig. 2.

To control the summary size, we simply use the greedy offline summarization
algorithm on the summary to keep the summary of desired size. In our prior work[6],
we have studied the rate of growth of the summary, when threshold is set to the mean
distance of a summary sample, to the remaining summary. This is useful in the case
when we want the summary size to grow with the data.

Figure 1 highlights the characteristic difference in summaries generated by
the extremum summary algorithm, and the k-Medoids algorithm. The summaries
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Fig. 2 (a) Given a summary, represented here by the ‘+’ sign, we define the threshold score
for updating the summary as twice the smallest inter-sample distance H. When a new ob-
servation M arrives, we compute its surprise: the distance to the closest summary sample.
If the surprise exceeds the threshold 2H, then the summary is updated to include the new
observation. The updated summary and the threshold are shown in (b).

generated by the two algorithms are shown in the first row. Since there are no out-
liers in the dataset, the summaries seem similar. In the second row of Figure 1, we
add 8 extra samples from a different distribution, which are all outliers in the context
of the other points. Adding these outliers highlights the differences between the two
strategies. We see that extremum summary favors picking the outliers, whereas the
k-medoids summary ignores these outliers completely. In the last row of Figure 1,
we reduce the summary size and see the differences exaggerated even more. The ex-
tremum summary is almost entirely made up of the outliers, whereas the k-medoids
summary is still only representative of the mean.

Although a k-medoids summary might be useful when we want to model the
mean properties of an environment, if however we are interested in identifying
the range of what was observed, then an extremum summary is more useful, since
its objective function ensures that each observations is close to at least one of the
summary samples.

2.2 Online Spatiotemporal Topics

To have meaningful summaries, and thus a meaningful surprise score, we must use
an image descriptor that is sensitive to thematic changes in the scene, while being
immune to low level image changes. We do this via the use of a topic modeling
framework, using which we describe an incoming observation with a low dimen-
sional distribution over topics.

2.2.1 Topics

Topic modeling methods were originally developed for text analysis. Hoffman [10]
introduced the idea of probabilistic Latent Semantic Analysis(pLSA) for text docu-
ments, which modeled the probability of observing a word wi in a given document
m as:
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Fig. 3 Spatiotemporal Topics: As a robot observes the world, we would like its observations
to be expressed as a mixture of topics with perceptual meaning. We model the topic distribu-
tion of all possible overlapping spatiotemporal regions or neighborhoods in the environment,
and place a Dirichlet prior on their topic distribution. The topic distribution of the current
observation can then be inferred given the topic labels for the neighborhoods in the view.
Modeling neighborhoods allows us to use the context in which the current observation is
being made to learn its topic labels. To guarantee realtime performance, we only refine a con-
stant number of neighborhoods in each time step, giving higher priority to recently observed
neighborhoods.

P(wi|m) =
K

∑
k=1

P(wi|zi = k)P(zi = k|m). (3)

The central idea being the introduction of a latent variable z, which models the un-
derlying topic, or the context responsible for generating the word. The topic variable
z takes a value from 1 · · ·K, where K is a small number compared to the size of the
vocabulary. The distribution of these topics in a document gives us a low dimen-
sional semantic description of the document. The words in our context corresponds
to visual words[17], and documents correspond to observed images. Latent Dirich-
let Allocations[1] improve upon pLSA by setting Dirichlet priors on the distribution
of words in a topic, and the distribution of topics in a document.
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(a) (b)

(c) (d)

Fig. 4 Example of topics learned on images of the ocean floor taken by the Aqua robot, for
a single trajectory. Each visual word is marked by a circle, the size of which corresponds to
the size of the visual feature. Histograms depicting the content of each color-coded topic are
shown below.

2.2.2 Spatiotemporal Topics

In this work, we use a novel online spatiotemporal LDA for computing topic labels,
which not only is able to efficiently converge the topic labels for a new observation,
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but also update topic labels for previous observations in the light on new incom-
ing data. Moreover, we take into account the location of the observed visual words
during the refinement, using them to compute topic priors which are sensitive to
changes in time and location of the robot. Our algorithm’s iteration runs in constant
time, and hence is suitable for realtime use on autonomous vehicles with limited
computing capabilities. Figure 4 shows examples of topics which were learnt by
running the above topic model on an underwater image sequence containing 2000
images.

Each observation is a tuple (wi,xi, ti) consisting of an observed visual word
wi = 1 . . .V from a fixed vocabulary of size V , associated coordinates xi, and times-
tamp ti. In the presence of location information, xi is the location of the word wi in
world coordinates. In absence of location information, we can simply use the pixel
coordinates of the visual words. The neighborhood of an observation at (x, t), de-
noted by G(x, t), is the set of observations in its spatiotemporal neighborhood. This
could either be defined using k nearest neighbors, or using a radius search. Instead
of computing topic distributions over documents in a traditional LDA [1], or image
windows in Spatial-LDA [20], we compute topic distributions over these spatiotem-
poral neighborhoods(Figure 3). Modeling topic distribution over neighborhoods al-
lows us to use spatiotemporal context in which an observation is being made, which
in turn results in much faster convergence as is shown later in our results.

Given a location and time (xi, ti), we use the following generative model for the
corresponding observed word wi:

1. Word distribution for each topic k: φk ∼ Dirichlet(β ),
2. Neighborhood for an observation at (xi, ti) : G(x, t)∼ uniformly from all neigh-

borhoods which contain (xi, ti),
3. Topic distribution the neighborhood G(x, t) : θG(x,t) ∼ Dirichlet(α),
4. Topic label for location (xi, ti): zi ∼ Discrete(θG(x,t)),
5. Word observed at location (xi, ti): wi ∼ Discrete(φzi),

where x∼ Y implies that random variable x is sampled from distribution Y .

2.2.3 Gibbs Sampling

Similar to the Gibbs sampler proposed by Griffiths et al.[9], we can define the pos-
terior topic distribution of a neighborhood G(x, t):

P(zi = k|z−i,wi = w,w−i,G(x, t)) ∝
nw

k,−i +β

∑V
w=1(n

w
k,−i +β )

·
nk

G(x,t),−i +α

∑K
k=1(n

k
G(x,t),−i +α)

, (4)

where nw
k,−i counts the number of words of type w in topic k, excluding the current

word wi, and nk
G(x,t),−i is the number of words with topic label k in neighborhood

G(x, t), excluding the current word wi.
Several different strategies exist in the literature to do online refinement of the

topic assignment in a given streaming dataset [18, 3]. The general idea is to initialize
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the topic label of the current observation with random labels, and then do a batch
refinement of the entire dataset. This allows for previous topic assignments to be
updated in the light of new observed data. Convergence is guaranteed because in the
limit of time going to infinity, the algorithm behaves like a batch Gibbs sampler.

Since the number of neighborhoods is extremely large, we cannot refine word
labels individually. In offline mode, sampling a neighborhood uniformly from all
neighborhoods, computing its topic distribution, and refining all the word labels
(using Eq 4) in it will approximate the proposed generative model. Online, we can
do the same, however, in a robotics context, the number of refinements between two
observation needs to be constant. We propose to sample the neighborhoods from
a Beta(a,1) distribution, with a > 1, giving higher picking probability to recently
observed regions. This ensures that new observations quickly converge, while older
observations are less likely to change their labels. In this work, we set a = 2 for
all experiments, however, increasing the value of a with time might lead to better
results for long experiments. Algorithm 1 shows an iteration of the topic refinement
strategy.

while no new observation do
W ← |w| (* total number of observed words *)
Randomly sample r ∼ Beta(a,1)
i←�W ∗ r� (* index of the observation in the center of the neighborhood *)
foreach j in G(xi, ti) do

(*update the topic label for each observation in the neighborhood *)
z j ∼ P(z j = k|z− j,wj = w,w− j,G(xi, ti))

end
end

Algorithm 1. REFINETOPICS (z,X,w, t). Refine topic labels, given the current assignment of
topics (z) for the set of all observed words(w), their locations(X), and observation times(t).

2.3 Robot Control

Let q(t)= ξ (Mt |S)/2H be the normalized surprise score of an incoming observation
at time t. We then set the speed(v) of the robot by mapping the surprise score through
a sigmoid function:

v(t) =
1

1+ e−γ(q(t)−0.5)
, (5)

where γ controls the responsiveness of the robot. A higher γ made the scheduling
of the forward velocity v more aggressive. We calculated γ empirically, and found
γ = 10 to perform well during our sea trials.



Autonomous Adaptive Underwater Exploration using Online Topic Modeling 797

The attitude (pitch, roll and heading) of the vehicle were kept stable during the
experiments via simple PD controllers. In order to maintain depth, two different
strategies were employed. Previously [14], we employed pitch corrections to main-
tain constant depths. This strategy was viable at high forward constant velocities.
For the experiments in this paper however, the robot had to be able to control its
depth, even when the speed v was 0. Early trials confirmed that at lower speeds
(v < 0.2), controlling depth by changing the pitch angle was not possible. This is
due to the fact that depth change via pitching is only possible for significant forward
velocity v. Otherwise, the robot simply pitches up. Consequently, a heaving motion
from a previously developed hovering gait [16] was used to maintain depth at lower
speeds, or when the robot was standing nearly still over ’interesting’ areas.

3 Results

We tested the proposed underwater system above a coral reef, in open waters. This
demonstrated the applicability of our system to a real-life scenario that included un-
predicted water currents, image noise due to floating particles (sediment and plank-
ton) as well as illumination changes due to sunlight variations.

3.1 Spatiotemporal Topics Based Surprise

We set both summary size and topic size to 6 for our experiments. The hyper-
parameters for the LDA were determined empirically. A video demonstration of
the robot as it traverses a path and reacts to surprising observations is available on-
line1. There we can see the robot stopping over different, previously unobserved
visual features, and then moving on at higher speeds when there is nothing of sur-
prise. Some examples of the learned topic labels are shown in Fig 4. We see that
the topics are representative of underlying physical phenomenon, and do well in de-
scribing scenes where a mixture of these exist. Red and blue topics are being used
to represent rocks in the dataset, yellow for the sand-rock boundary, and cyan for
the fire coral and the white rope.

Fig. 5(a) shows an example of the final summary generated by our online topics
based summarizer from a sample trajectory. The corresponding histograms show
the distribution of topics in the image. Fig. 5(b) shows uniformly sampled images
over the same trajectory, presented here for comparison. We see that the proposed
algorithm is able to recognize different species of corals (images 2 and 3), and the
accidental inclusion of a diver’s hand with a rope (image 6). When these images
were observed, the robot evaluated them as surprising and as a result slowed down
to a halt. Once these images are added to the summary, the surprise score falls
instantly, and the robot continues forward in search for new surprises.

1 http://cim.mcgill.ca/˜yogesh/iser2012

http://cim.mcgill.ca/~yogesh/iser2012
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(a) Topics

(b) Uniform

Fig. 5 (a) A summary of six images generated online by the system. The histogram shows
the distribution of visual topics in the image, each color corresponding to a different topic.
(b) For comparison we show images sampled uniformly over the robot trajectory.

3.2 Hovering Autopilot

Fig. 6 shows the flipper placement configurations employed in the hovering gait
and used to maintain attitude and depth, at different forward speeds v. As men-
tioned earlier, we employed two different strategies to maintain depth. At higher
forward velocities (v > 0.2), depth was maintained via pitch angle changes, as
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(a) (b) (c)

Fig. 6 Pictures showing the flippers’ angle due to the action of the autopilot system, during
one of the sea trials. (a) the robot is performing a heave-up maneuver to maintain depth and
attitude at zero forward speed. (b) the robot is executing a combined heave up, pitch up and
slow forward speed maneuver. (c) the robot is performing a pitch-up maneuver at high speed.

depicted in Fig. 6 (c). By pitching up or down, the forward travel of the robot
induced a change in depth, thus allowing depth control. When the robot had no
forward velocity (v = 0), maintaining depth required the use of a heaving motion.
This motion is accomplished by having the 6 flippers pointing upward or downward,
as illustrated in Fig. 6 (a). This way, the net thrust produced by the oscillating flip-
pers does not induce forward motion. Attitude stabilization is still possible with this
leg configuration, by means of a forward/aft differential thrust for pitch corrections
and left/right differential thrust for roll corrections. For low velocities (v < 0.2),
the robot flippers were placed so as to generate both heaving and forward motion
(Fig. 6 (b)). All of these pictures were taken from a single trial, demonstrating the
need to adapt the locomotion strategy in order to satisfy motion requirements.

During the trials, we noted a decreased performance of depth and attitude control
at lower velocities. This is a common phenomenon, as controllability of a vehicle
operating in a fluid decreases with its velocity, due to the reduced lift forces on the
control surfaces (flippers). This reduction in controllability can be seen for depth in
Fig. 7 d). At commanded speed v > 0.5 (corresponding roughly to forward veloci-
ties above 20 cm/s), the depth error is reduced. For example, at t = 63s where the
speed command v is above 0.5, the depth static error is less than 0.1 m. At low ve-
locities v, this static error in depth increased and was generally positive (i.e., deeper
than commanded), due to the fact that the robot was negatively buoyant, i.e., had a
tendency to sink when standing still.

One issue plaguing the autopilot was unwanted roll oscillations of ±10o at low
velocities v. These oscillations had never been observed with the autopilot system
before, when the robot was operated at medium to high velocities (above 20 cm/s).
We suspect that these were caused by an unforeseen change in the hydrodynamic
behavior of the vehicle and its flippers at low velocity. As a consequence, controller
improvements at low velocities are under investigation.
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Fig. 7 Performance of the autopilot system in hovering mode, with robot attitude a)-c) and
depth d) over time, during one of the sea trials. The dotted lines in a)-d) correspond to the
target values sent to the autopilot system. The open-loop speed command v in e) provided by
the surprise module is unit-less: a value of 1.0 corresponded to maximum forward velocity of
the vehicle.

4 Conclusion

We have demonstrated a novel autonomous robotic system that can be used to assist
in exploring dangerous underwater environments. Our use of an online spatiotem-
poral topic modeling was an attempt to model semantic surprise, which is sensitive
to presence of high-level patterns in the scene, such as different coral species, rocks,
and sand. Given a fixed trajectory, the robot traversed it with a non-uniform speed,
stopping at locations containing surprising observations, and moving at high speeds
over seemingly boring or previously observed regions. From a locomotion point of
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view, these experiments helped validate the use of heaving motion for depth con-
trol at low velocities, as well as highlighted certain deficiencies of our roll control
system in that regime. The resulting summaries produced by our system is able to
capture the visual diversity of the underwater environment. Our ongoing future work
is focused on developing better realtime online topic modeling techniques, such as
the use of nonparametric hierarchical Dirichlet processes, and their use in control of
different robotic platforms for exploration tasks.
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Active and Adaptive Dive Planning for Dense
Bathymetric Mapping�

Geoffrey A. Hollinger, Urbashi Mitra, and Gaurav S. Sukhatme

Abstract. We examine the problem of planning dives for an Autonomous Under-
water Vehicle (AUV) to generate a dense bathymetric map using sidescan sonar.
The three key challenges in this scenario are (1) proper modeling of the local uncer-
tainty of the 3D reconstruction, (2) efficient dive planning to reduce this uncertainty,
and (3) determination of when to re-plan adaptively based on new information. To
address these challenges, we propose using non-parametric Bayesian regression to
model the expected accuracy of the map, which provides principled cost functions
for planning subsequent dives. In addition, we propose an efficient greedy method
to reduce this uncertainty, and we show that it achieves theoretically bounded per-
formance given assumptions on the sensor model and the form of the uncertainty
function. We present experiments on the propeller-driven YSI EcoMapper AUV
equipped with a sidescan sonar in an inland lake. The experiments demonstrate the
benefit of efficient dive planning, with our results providing performance gains of
up to 83% versus standard lawnmower patterns.

1 Introduction

The increasing capabilities of Autonomous Underwater Vehicles (AUVs) have en-
abled their deployment in oceans, coastal environments, and inland waterways.
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Fig. 1 YSI EcoMapper propeller-driven AUV used to perform bathymetric mapping exper-
iments in Puddingstone Lake. The vehicle is equipped with an Imaginex Sportscan sidescan
sonar for underwater imaging as well as a Doppler Velocity Log (DVL) for navigation.

There are a number of potential applications for such vehicles, including ecological
monitoring [26], mine sweeping [20, 34], inspection of submerged structures [15],
and underwater habitat mapping [24, 27]. In such scenarios, deployment time for
the AUV represents a considerable resource cost, and there is significant motivation
to improve the efficiency of the deployment relative to the desired mission goal. The
problem of planning the AUV’s mission to improve the quality of the sensor data
fits into the broad framework of active perception that dates back to early seminal
research in robotics and computer vision [3]. The key idea behind active percep-
tion is that we can plan the path and sensor views of robotic vehicles to maximize
information gained while minimizing time and/or energy consumption.

In addition to actively planning the vehicle’s dives, we also explore the benefit of
adaptive dive planning for AUVs. When calculating efficient dive patterns, it may be
beneficial to adaptively re-plan as new information is acquired. In our recent work,
we have begun to quantify the potential benefit of adaptivity in underwater inspec-
tion scenarios [15, 16], which moves towards planning algorithms that selectively
adapt to new information when it is most beneficial. In the current paper, we explore
these ideas experimentally on an AUV performing underwater mapping tasks.

Our experiments validate the principles of active and adaptive perception in the
domain of underwater bathymetric mapping using an AUV. The two hypotheses
to be experimentally tested are (1) active dive planning improves the efficiency of
bathymetric mapping and (2) selective use of adaptivity further improves this effi-
ciency. These hypotheses are suggested by our earlier theoretical analysis [16] and
by experiments in related underwater inspection domains [15]. The experiments
presented here serve to advance our understanding of the principles behind these
related active sensing problems.

The remainder of this paper is organized as follows. We first discuss related
work in active perception and underwater mapping (Section 2). We then describe
the active dive planning problem in more detail and propose solutions for mea-
suring the uncertainty of the reconstruction and planning informative dives (Sec-
tion 3). Next, we discuss experimental results from the AUV performing active and
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adaptive strategies for dense bathymetric mapping (Section 4). Finally, we conclude
and discuss avenues for future work (Section 5).

2 Related Work

The study of general active perception problems dates back to early work in active
vision [1, 3] and next-best view planning [9]. Early techniques were often concerned
with the “next-best” action to maximize information with relatively less focus on
long-term planning methods. While this early work made limited use of information
theoretic methods, later work in this area has increasingly focused on incorporating
information theory and probabilistic techniques into active perception systems [25].
Two recent surveys describe the breadth of work in active perception and its devel-
opment over the past two decades [7, 22]. Our experiments are complementary to
this prior work, in that we provide experimental validation of the benefit of active
dive planning in the underwater mapping domain. In addition, our work examines
the use of long-term planning and the benefit of adaptivity, which are often over-
looked in prior work.

Our formulation connects the active perception problem with sequential hypoth-
esis testing, another classical problem where an observer must select a sequence of
noisy experiments to determine the nature of an unknown [30]. Hypothesis testing
has applications in information theory, machine learning, and wireless communica-
tions. Of particular interest is the connection between sequential hypothesis testing
and feature selection in Bayesian learning, which has been applied to sensor place-
ment problems in the context of identifying objects in 2D images [6]. This early
work in robotic perception provides formal justification for the formulation of ac-
tive perception as a Bayesian learning problem.

Many active perception problems can also be seen as instances of submodular
orienteering and informative path planning [23], where the goal is to optimize the
path of a robot to gain the maximal amount of information. Many of these prob-
lems allow for efficient algorithms with performance guarantees due to the property
of submodularity, a formal characterization of the property of diminishing returns.
Recent advances in submodular optimization have extended informative sensor
placement problems to domains that require adaptive re-planning [14]. In comple-
mentary work, the stochastic optimization community has begun examining the po-
tential benefit of adaptive re-planning for such problems as stochastic covering and
stochastic knapsack [11]. To our knowledge, these ideas have not previously been
applied to underwater robotics applications.

Acoustic range sensing, essential in the inspection of turbid-water environments,
has been used to produce 3D point clouds throughout various underwater domains.
Early work in 3D underwater mapping dates back more than a decade to the use
of diver-held sonar devices that utilized an inertial measurement unit to help align
subsequent images [2]. Such techniques inevitably suffer from drift over time,
which can be mitigated through Simultaneous Localization and Mapping (SLAM)
techniques [12]. It is also possible to generate underwater maps without motion
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estimation through sophisticated techniques for accurate registration [5]. In the large
body of prior work in underwater mapping, the vehicle is remotely controlled by a
human operator, and the potential for autonomous operation is not explored.

The underwater robotics community has recently begun examining problems of
AUV dive planning for such applications as mine sweeping [33] and seabed clas-
sification [32]. These works focus on the dive planning problem, but they do not
integrate methods for measuring 3D reconstruction accuracy. One early approach
for measuring uncertainty in 3D reconstructions uses a linear approximation of the
surface, where the resulting covariance provides a measure of accuracy [31]. Our
approach using Gaussian Processes provides a more general uncertainty measure
that utilizes both data sparsity and surface complexity when estimating uncertainty.
Similar non-parametric regression approaches have been used to define reconstruc-
tion accuracy metrics for 2.5D surface estimation [29]; though these techniques do
not actively plan to reduce uncertainty. In addition, our approach utilizes the aug-
mented input vector method [28] to provide non-stationary kernels that improve the
richness of the uncertainty representation.

3 Algorithm Design

The goal is to plan the dives of the autonomous underwater vehicle to provide an ac-
curate reconstruction of the bottom of a body of water. The first step in solving this
problem is to define a reconstruction accuracy metric that is computable across the
area of interest. To do so, we propose using non-parametric Bayesian Regression in
the form of Gaussian Processes (GPs) [21].1 If we view the 3D reconstruction as a
function approximation of surface height over a 2D bottom plane, the GP represen-
tation has the advantage of providing a principled measure of variance, which we
use as a measure of uncertainty, as well as a mean value at each point. The result-
ing uncertainty measure can then be used in a greedy planning framework to plan
subsequent dives that we expect to by highly informative for generating a dense and
accurate mapping.

3.1 Gaussian Process Modeling

A GP models a noisy process zi = f (xi)+ε , where zi ∈R, xi ∈Rd , and ε is Gaussian
noise. We are given some data of the form D = [(x1,z1),(x2,z2), . . . ,(xn,zn)]. For
2.5D surfaces that do not loop on themselves, as is typically the case for bathymetric
mapping, xi is a point in the 2D plane (d = 2), and zi represents the height at that
point.2

1 We note that Gaussian Process regression is closely related to Kriging interpolation as
described in the geostatistics literature [4].

2 For more complex mapping tasks with arbitrary 3D geometry, the parametric Gaussian
Process Implicit Surface extension can be used [15].
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We refer to the d× n matrix of xi vectors as X and the vector of zi values as z.
To define a GP, it is necessary to choose a covariance function that relates points in
X. We employ the commonly used squared exponential, which produces a smooth
kernel that drops off with distance:

k(xi,x j) = σ2
f exp

(
−

d

∑
k=1

wk(xik− x jk)
2

)
. (1)

The hyperparameter σ f represents the process noise, and each hyperparameter wk

represents a weighting for the dimension k. Once the kernel has been defined, com-
bining the covariance values for all points into an n× n matrix K and adding a
Gaussian observation noise hyperparameter σn yields Kz = K+σ2

n I. We can now
estimate the kernel hyperparameters θ = (σ f ,σn,w1:d) using the standard method
of maximizing the likelihood of the measurements given the data and the hyperpa-
rameters [21]:

log p(z|X,θ ) =−1
2

zT K−1
z z− 1

2
log |Kz|− n

2
log2π . (2)

This likelihood is maximized using conjugate gradient optimization. We note that
for larger data sets, downsampling or block learning approaches may be required to
make hyperparameter learning tractable.

We now wish to predict the mean function value (height) f̄∗ and variance V[ f∗]
at a selected point x∗ given the measured data:

f̄∗ = kT
∗ (K+σ2

n I)−1z, (3)

V[ f∗] = k(x∗,x∗)−kT
∗ (K+σ2

n I)−1k∗, (4)

where k∗ is the covariance vector between the selected point x∗ and the training
inputs X. This model provides a mean height and variance at all points of interest in
R

2. In this model, the variance gives a measure of uncertainty based on the sparsity
of the data and the hyperparameters. It should be noted that this variance is not
modeled as a random variable, and it is only dependent on data density. Thus, we
can estimate the variance exactly before we have taken measurements assuming that
we know exactly which points we will observe. We note that this assumption may
not hold, and we provide a more detailed discussion of this issue later.

The formulation above determines correlation between points solely based on
their proximity in space. Another important consideration when determining uncer-
tainty is the amount of variability in an area. For instance, an underwater ridge would
require a large number of points to reconstruct efficiently. To model uncertainty
caused by surface variability, we utilize the augmented input vector approach [28].
The idea is to modify the input vector by adding additional terms that affect the cor-
relations between the data. We propose using an initial estimate of surface height
(found by running the GP with a standard kernel or another interpolation method) to
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modify the input vector to be x′ = (x,y,z), where z is the initial estimate of the sur-
face height at that point. The weighting hyperparameters can be adjusted to modify
the effect of spatial correlation versus surface height correlation.

To address the problem of scalability, we utilize a local approximation method
using KD-trees [29]. Since correlated points will typically be near each other, we
can pre-calculate a KD-tree and then retrieve the k closest points when calculating
the estimate and variance at a given point. Since the retrieval from the KD-tree is on
average O(logn), the resulting local approximation of the GP requires O(k3 logn)
computation for each point, or O(nk3 logn) total. Comparing this to O(n3) com-
putation of a typical GP, we see that if k� n, this approximation provides a sig-
nificant reduction in computation. The value of k can be selected based on the
necessary computing power, which allows the approximation to improve in
accuracy with increasing computation.

3.2 Variance Reduction Algorithm

For a given GP representation, we define a total variance by integrating over the
space of interest X . The goal of the dive planning is to generate a dive pattern that
maximally reduces this variance. More formally, we define a policy π that executes
a given dive based on a given uncertainty representation. We can now define the
following metric for dive planning:

Jvar(π) =
∫

X
V0(x)−Vπ(x) dx, (5)

where V0(x) is the initial variance at point x, and Vπ(x) is the variance at point x
after executing policy π .

For a policy π , we set the measure of information quality to Jvar(π), and we
define c(π) as the cost of executing the policy. In the application of interest, this
cost will be determined by the number of planned dives and their length. We will
choose dives that optimize the following maximization problem:

π∗ = argmax
π

Jvar(π) s.t. c(π)≤ B, (6)

where B is a budget constraint on time or energy.3 Setting the cost as a budget
constraint is natural in underwater applications where the battery life or deployment
time are limiting factors. For this paper, we define the budget as a pre-specified
number of dives multiplied by a fixed dive length (i.e., we only consider dives of
equal length). The extension of this algorithm to dive patterns with dives of unequal
length is a topic for future work.

To provide informative dive planning, we propose greedily selecting dives that
maximize variance reduction until the budget is reached and then running a gradient

3 We note that we can alternatively maximize the weighted sum αJ(π)−βc(π) with appro-
priate weighting constants using a Lagrangian relaxation [13].
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optimization that perturbs each dive and locks the pattern into a local optimum. The
gradient optimization is not strictly necessary, though we expect it will provide some
limited improvement over the greedy policy. We note that even with the gradient
optimization, we do not expect the algorithm to yield the optimal dive pattern in
all cases due to local maxima. A summary of the proposed algorithm is given in
Algorithm 1.

The summary in Algorithm 1 does not specify how we calculate the expected
variance reduction for a given dive d. Since we do not know which observations we
will receive before making them, and re-running the GP is computationally expen-
sive, the calculation of this quantity is not trivial. We provide an approximation to
the variance reduction by first calculating the sum of variance in the area viewed by
the dive. For overlapping dive patterns, we approximate the reduction in variance
caused by each subsequent view using an exponential drop off. The resulting vari-
ance at a point x is found by Vn(x) = V0(x)exp(−n/α), where V0(x) is the initial
variance at the point, n is the number of times the point has been viewed in the dive
plan, and α is a length scale parameter. The length scale parameter was set to α = 1
based on fitting to test runs where the exact reduction was calculated.

A more computationally intensive way of calculating the variance reduction
would be to simulate a dive by generating a point cloud of the expected dive result.
The GP could then be re-run with the updated point cloud. This approach would
require running the GP once for each candidate dive during each planning iteration.
We found that the exponential drop off assumption provided sufficient accuracy
while remaining computationally tractable.

3.3 Guarantees and Need for Adaptivity

It has been shown in prior work that greedy placement of static sensors to reduce
variance in Gaussian Processes provides a constant-factor performance guarantee
relative to optimal of 1− 1/e≈ 63% [18]. Thus, even in the worst-case, the greedy
deployment will still achieve 63% of the variance reduction as the optimal policy
and can be expected to performance significantly better in practice [17, 23]. When
the dives are of equal length, a pre-planned series of greedily planned dives pro-
vides the same bounded approximation of the optimal dive pattern if the following
assumptions hold:

1. The variance reduction objective function is monotone and submodular. Mono-
tonicity implies that additional measurements always improve the objective. Sub-
modularity implies that the objective follows the law of diminishing returns (i.e.,
the more measurements observed, the less incremental benefit of receiving a new
measurement). This assumption holds in many cases for variance reduction in
Gaussian Processes with fixed hyperparameters [10, 18].

2. The 2D locations where measurements will be received are known in advance
(i.e., we can predict exactly which points in 2D we will receive data from before
executing a dive). We note that for realistic sensor models, this assumption may
not be valid.
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Algorithm 1. Active Dive Planning Algorithm
1: Input: Uncertainty map V0 and dive length budget B
2: Select a set of possible dives N of equal length L
3: Initialize remaining budget Br ← B, uncertainty map Vr ← V0, set of selected dives

M ← /0
4: while Br ≥ L do
5: for each dive d ∈N do
6: Calculate expected uncertainty reduction J(d)← Vr−Vd
7: end for
8: Select dive d∗ = argmaxd J(d)
9: Update selected dives M ←M ∪d∗, uncertainty map Vr← Vd , budget Br← Br−L

10: end while
11: while not converged and planning time remains do
12: for each dive d ∈M do
13: for selected directions a do
14: Perturb dive by ε in direction a to get dp

15: Calculate new uncertainty J(dp)← Vr−Vdp

16: if J(dp)> 0 then
17: Update dive pattern M ← dp ∪M \d and uncertainty Vr← Vdp

18: end if
19: end for
20: end for
21: end while
22: Sort dives in M to minimize execution time
23: Execute dive pattern M

3. The hyperparameters do not change during the dive planning. For the case of
augmented input vectors (see above), this implies that the surface height does
not change significantly (i.e., the surface heights act as implicit hyperparame-
ters). This assumption will be violated whenever significant changes occur in the
reconstruction.

Since the last two assumptions can be violated in real-world scenarios, there is mo-
tivation to re-plan subsequent dives based on new information. However, it is not
obvious how much they will be violated, which depends both on the rate of change
of the 3D reconstruction and the sensor model of the sidescan sonar. Thus, we ex-
amine the benefit of adaptivity in active dive planning through experimental trials.

4 Experiments and Results

We now explore the benefit of active and adaptive planning for 3D reconstruction
by mapping a portion of the bottom of Puddingstone Lake in Southern California
(Lat. 34.088854◦, Lon. -117.810667◦). The region of interest is approximately 10 m
deep and covers an area of 100 m × 50 m of lakebed. We utilize a YSI EcoMapper
propeller-driven AUV (shown in Figure 1) capable of moving at speeds of 5 knots
and diving down to 100 m. A downward-looking Sportscan Imaginex sidescan sonar
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is mounted on the vehicle. The vehicle is also equipped with a Doppler Velocity
Log (DVL) and GPS unit, which provide navigation capabilities. A photograph of
the vehicle is shown in Figure 1.

4.1 3D Reconstruction from Sidescan Sonar

The Imaginex sidescan sonar returns 2D intensity images that do not include 3D
depth information. Example images are shown in Figure 2. It is important to note
that the AUV has a significant “blind spot” directly under it, which necessitates
overlap in images to provide a complete reconstruction. In order to generate a 3D
reconstruction from a 2D sidescan image, we use standard shape-from-shading tech-
niques that have been successfully applied in prior work [8]. The central idea is to
make assumptions on the reflectance properties of the sonar and then use the geom-
etry of the sidescan position to develop a fully 3D reconstruction from a collection
of 2D images.

The sensor provides an intensity return from each point viewed on the 2D bottom
plane. We use the traditional Lambertian model [19], which relates intensity to the
angle of reflection. This model assumes that the scattering is diffuse and that the
returned intensity is not dependent on the angle of observation or the frequency of
the sonar pulse. For a viewed point p, the intensity can be computed as:

I(p) = KΦ(p)R(p)cos(θ (p)), (7)

where Φ denotes the intensity of the illuminated sonar pulse, R denotes the reflec-
tivity of the seabed, θ is the angel of incidence, and K is a constant. Values for Φ ,
R, and K were determined empirically in this work based on accepted values from
prior work [8, 19]. Improving the estimates of these values would serve to improve
the 3D reconstruction, and our active planning techniques can easily be applied to
such improved reconstructions.

From the above equation, we can determine an angle of incidence for each viewed
point from known quantities. Given the angles of incidence, we reconstruct a 3D
representation of the bottom through numerical integration. More detail on shape-
from-shading approaches can be found in prior work [8]. Since the focus of this
paper is on validating the benefit of active dive planning, we do not implement
post-processing of the reconstruction through constrained optimization, though we
expect such techniques would improve the quality of the 3D reconstruction.

4.2 Active Dive Planning

We now test the benefit of active planning for informative dives to improve the 3D
reconstruction. Planning and learning was performed on a desktop machine with a
3.2 GHz Intel i7 processor and 9 GB of RAM. A variance map could be calculated in
approximately 30 seconds using a discrete grid approximation with 1 m resolution
and a KD-tree local approximation of the GP using 100 points. Once a variance
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Fig. 2 Example sidescan sonar images providing bathymetry information in Puddingstone
Lake. Variations in the lakebed topography are apparent as bright returns in the images. A full
3D reconstruction can be found using shape-from-shading methods that make assumptions
on the reflectance properties of the sonar.

Seen once
Seen twice

Seen once
Seen twice

Fig. 3 Dive patterns optimized to maximize coverage overlap (left) and uncertainty reduction
(right). The region of interest is the 100 m× 50 m area (Lat. 34.088854◦ , Lon. -117.810667◦)
surrounded by the rectangular sensor footprint and highlighted in blue and red. Points of
interest covered once by the sidescan sonar are labeled blue (darker), and areas of interest
covered twice are labeled red (lighter).

map was available, the dive patterns were calculated in less than a second using the
exponential drop off approximation (see Section 3). The plan was then transmitted
to the vehicle on the surface using a standard wireless network.

The experiment progresses as follows: (1) The AUV executes three evenly spaced
dives to generate an initial 3D reconstruction of the area of interest, (2) the initial
reconstruction is used to plan a subsequent three dive pattern using Algorithm 1,
and (3) the vehicle executes the resulting dive pattern. The final uncertainty after
six dives is then compared to an alternative dive pattern that maximizes overlap in
the sidescan images without using the uncertainty representation. The difference
between the uncertainties represents the benefit of active planning in this domain.
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Figure 4 shows a comparison of 3D reconstructions for the two dive patterns
described above: one maximizing coverage and one optimizing variance reduction
as in Algorithm 1. The reconstruction resulting from the minimum variance dive
pattern does not contain the clearly erroneous valleys that occur in the maximum
coverage dive pattern. Figure 5 shows a quantitive comparison of the total uncer-
tainty of the two dive patterns, as well as total uncertainty after the initial 3 dives
and after an exhaustive 9 dive pattern. The variance dive pattern using 6 dives pro-
vides nearly the same uncertainty as the 9 dive pattern. The 9 dive pattern represents
a target uncertainty at which sensor noise and errors from the shape from shading
make further reduction difficult.

Comparing the reduction in uncertainty of the variance dive pattern and the cov-
erage dive pattern, we see that the variance dive pattern improves the uncertainty
reduction by 83%, showing a significant benefit from using active planning. In ad-
dition, the 6 dive pattern that reduces variance achieves a smaller percent error for
the reconstruction when the percent error is computed relative to the 9 dive pattern.
However, we note that the reconstruction from the 9 dive pattern does not provide
perfect ground truth.

4.3 Benefit of Adaptivity

The experiment described above utilizes adaptive behavior only when re-planning
the last three dives (i.e., it learns the uncertainty model and chooses the resulting
dives). Alternatively, the uncertainty model could be re-learned more often during
the mission. We next examine the benefit of such re-planning by running additional
AUV data collections. Figure 6 shows a long 20 dive run that took approximately
two hours to execute. The 20 dives were pre-run, which allowed us to test different
selection methods that choose a subset of the dives. We note that the gradient op-
timization step (see Algorithm 1) was not used in this experiment since there are a
limited number of dives to select at pre-set locations.

Figure 6 shows the quantitative results with a different number of re-planning cy-
cles. The first additional re-planning cycle provides approximately an 8% reduction
in uncertainty, and the second re-planning cycle does not provide any improvement.
We note that the benefit from the first re-planning cycle is significant; however,
the pre-planned path still provides an accurate 3D reconstruction. Thus, adaptivity
is beneficial in this scenario, but the essential component of the algorithm is pre-
planning to reduce the uncertainty of the reconstruction. Based on these results, it is
clear that we can predict the returns that we will receive from the sidescan sonar to
some extent, which motivates the use of long-term planning in this scenario.

5 Discussion and Conclusions

Our experiments have examined the benefit of active dive planning in the real-world
application domain of 3D bathymetric mapping. We have shown that planning a
dive pattern that greedily maximizes variance reduction provides a significant
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Fig. 4 3D bathymetric reconstructions found using sidescan sonar (top) and accompanying
variance maps (bottom). Left: reconstruction resulting from dive patterns that maximize over-
lap in sensor coverage. Right: reconstruction from dive patterns that minimize the expected
variance in a Gaussian Process representation of the reconstruction. The right image does not
suffer from erroneous valleys that result from data sparsity, and the variance map matches
this qualitative observation.

quantitative and qualitative improvement over standard lawnmower approaches. In
addition, we have shown that adaptive planning that re-plans provides some ad-
ditional improvement. We note that the re-planning occurs once the vehicle has
surfaced, which allows for the necessary computation to be placed offboard and
communicated to the vehicle. In addition, the planned paths can be checked by a
human operator before execution to ensure safety. These experimental findings pro-
vide a baseline for future research in active mapping and inspection. In addition,
our experiments provide insight into the validation of recent theoretical advances in
submodular optimization and active sensing.

In underwater applications, perhaps more so than in other robotics domains, there
is significant interest in simplifying the behaviors that occur underwater. Complex
behaviors, such as adaptive planning, can potentially lead to safety concerns and in-
crease the necessary computation carried by the AUV. Our experiments have helped
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Fig. 5 Comparison of the resulting bathymetric reconstructions for different dive patterns.
The initial dive pattern uses 3 evenly spaced dives. The coverage dive pattern adds an addi-
tional 3 dives (total of 6 dives) that maximize coverage overlap. The variance dive pattern
instead uses the additional three dives (total of 6 dives) to maximize reduction of uncertainty
in the map. The variance dive pattern provides improved uncertainty reduction, nearly that of
an exhaustive dive pattern that uses 9 dives. The graph shows both total uncertainty remain-
ing (dark blue) and average reconstruction error computed relative to the 9 dive pattern (light
red).
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Fig. 6 Crisscross pattern used to test the benefit of adaptive dive planning (left) and the un-
certainty remaining in the 40 m× 40 m area after 6 dives for different numbers of re-planning
cycles (right). The vehicle may choose to execute any 6 of 20 dives (10 North/South and 10
East/West) to maximize the accuracy of the 3D bathymetric reconstruction. The dives are
pre-run, which allowed post-processing the data to determine the benefit of different dive se-
lection methods. Re-planning consists of re-calculating the uncertainty representation before
determining the next dive. The first additional re-planning cycle provides approximately an
8% reduction in uncertainty versus a pre-planned dive pattern, but the second re-planning cy-
cle does not provide any improvement. Note that there is less remaining uncertainty in these
results than those in Figure 5 due to the smaller area being surveyed.

determine the level of adaptivity necessary to provide high performance bathymet-
ric mapping as well as the granularity with which this adaptivity must be made. Our
results demonstrate that there is limited benefit to adaptive planning, which avoids
some of the necessity for onboard computation on the AUV. The ability to provide
good 3D reconstructions without in situ adaptation significantly reduces the com-
putational burden on the vehicle and also simplifies the testing requirements. As a
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result, our algorithm can easily be applied to any propeller-driven AUV capable of
executing a series of waypoints.

Future work includes analysis of alternative uncertainty representations that uti-
lize the specifics of the shape-from-shading method to provide better predictions of
areas that need further inspection. For instance, alternative kernels in the GP may
allow for more accurate uncertainty modeling. Additional experimental validation
includes testing of the proposed method on 3D reconstructions generated from other
sensors (e.g., monocular vision, stereo, and infrared imaging). The techniques pro-
posed here and the experimental methods employed are applicable throughout un-
derwater inspection domains as well as on ground vehicles and aerial platforms.
Ultimately, the experimental validation of active and adaptive planning moves
towards more efficient use of robotic perception for autonomous vehicles.

Acknowledgements. The authors gratefully acknowledge Jonathan Binney, Jnaneshwar
Das, Arvind Pereira, and Hordur Heidarsson at the University of Southern California for
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Exploring Space-Time Tradeoffs in Autonomous
Sampling for Marine Robotics

Rishi Graham, Frédéric Py, Jnaneshwar Das, Drew Lucas,
Thom Maughan, and Kanna Rajan

1 Introduction

In the coastal ocean, biological and physical dynamics vary on spatiotemporal scales
spanning many orders of magnitude. At large spatial (O(100km)) and temporal
(O(weeks to months)) scales, traditional shipboard and moored measurements are
very effective at quantifying mean and varying oceanic properties. At scales smaller
than the internal Rossby radius (O(10km) for typical coastal stratification at mid-
latitude), horizontal, vertical and temporal inhomogeneity is the rule rather than the
exception. The in-situ measurement of such submesoscale variability has proven dif-
ficult using traditional techniques. However, numerical modeling and limited field
studies have shown the importance of submesoscale dynamics to physical processes
such as front formation [1], momentum transfer between the atmosphere and the
ocean [2], and turbulence, mixing, and upwelling [3]. Furthermore, there is good
evidence for the importance of submesoscale dynamics to biological primary pro-
ductivity [4, 5, 6], carbon sequestration [7], and patch formation in phytoplank-
ton [8]. The development of techniques to test in situ the prediction of numerical
models is a vital step towards a fundamental understanding of coastal physical and
biological processes. A combination of Lagrangian profiling (capable of diagnos-
ing vertical variability on the scale of centimeters and temporal variability on the
scale of minutes) and directed Eulerian sampling (capable of diagnosing horizontal
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variability on the order of tens of meters) is an especially appealing approach as it
maximizes the strengths of available platforms.

Robotic methods in sampling are cost-effective and allow for fine targeting, while
traditional methods tend to be hit-or-miss, leading to substantial under sampling of
the coastal ocean. It is for this reason that we are engaged in a long-term inter-
disciplinary science program of observing biological lifecycles at MBARI using
underwater and surface-based robotic platforms as part of CANON [9]. Our initial
focus, in this context, has been in tracking oceanographic features using powered
Autonomous Underwater Vehicles (AUVs). One such experiment is described in
this paper.

Methodologically this drives a requirement that an AUV “stay” with an identified
advecting patch of water while continuously monitoring key variables (e.g., temper-
ature, salinity, nitrate, chlorophyll among others) in the upper water-column using
onboard sensors. An adaptive software controller (the Teleo-Reactive EXecutive or
T-REX ) which dynamically synthesizes temporal plans in-situ and is responsive
to environmental change, controls the vehicle as it performs repeated surveys within
the identified patch [10, 11, 12, 13, 14]. Scientists identify the relevant patch using
in-situ sensors from moorings and manned ships in addition to remote sensing data
when available, and tag this patch with a passive drifter which flows with the water
mass.

Consider a single AUV trying to map a dynamic water feature under uncertain
conditions. If the vehicle moves slower than the advecting field, then it cannot make
use of spatial correlations and the problem becomes one of time series analysis with
field reconstruction further afield becoming challenging. If the AUV moves substan-
tially faster, then it could capture spatial snapshots of the field and the reconstruction
problem can be treated spatially and the spatial response evolved over time, in which
case sophisticated dynamical models may be employed. The problem we consider
in this paper lies somewhere in the middle. The vehicle is fast enough to discover
and make use of some of the spatial structure, but not so fast as to capture the full
spatial field at any time. Fig. 1 shows a simplified two dimensional depiction of this
scenario.

(a) (b) (c)

Fig. 1 Simplified 2D depiction of an AUV mapping a “feature” which might be defined by a
contour of the scalar field being measured. As the AUV progresses, the feature changes shape
and to some degree size, and also shows an overall northward movement. The dotted lines
show the AUV track lines.
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There are multiple ways to reconstruct a dynamic field from sparse measure-
ments, all of which require some degree of statistical inference. We consider a
simple form of optimal interpolation known as kriging (see, e.g. [15]) and leave
the examination of more sophisticated models to future work. Fig. 1 illustrates a
common difficulty among all space-time reconstruction methods, which is the dis-
tinction between overall drift and local dynamics. This is analogous in spatial statis-
tics to the distinction between changes in the mean field and local variation. The
more accurately one can represent the mean value, usually as a function of spatial
location, the more accurate the reconstruction and smaller the predictive variance.

Our earlier work [16, 17] focused on the experimental methodology of follow-
ing such a moving water mass with an AUV moving around the drifter centroid.
This method was selected in order to provide the environmental context of the water
mass and to map the interior of the volume to understand the biological dynamics
occurring within the patch. In addition to providing an appropriate reference frame
of observation, the work provides an upper bound on tracking water mass speed
that a powered robotic platform can follow within an enclosure criterion [17]. More
recently we have focused on using an AUV to follow a sensing device mounted on
a drifter [18, 19] which have provided a unique opportunity to compare space-time
estimates from the AUV data against ground truth provided by the drifting sensor. In
these experiments, we use a combination of Eulerian and Lagrangian frames of ref-
erence to improve the the mean squared error of such predictions by parameterizing
the assumption that the surrounding water mass moves with the drifting platform.

Drifters approximate some sense of “Lagrangian” dynamics. Usually they follow
the current at a particular depth, subject to some wind forcing at the surface, and
are equipped with minimal instrumentation to convey current location. We examine
the use of a drifter as a proxy for the overall drift of the random field within some
neighborhood. In particular, we consider correlations between samples as a func-
tion of both the traditional space-time locations and relative locations in a pseudo-
Lagrangian frame of reference1 centered around the drifter. The example in Fig. 1
is depicted in the pseudo-Lagrangian framework in Fig. 2, in which the AUV stays
with the feature by tracking the drifter.

Sampling the Real ocean is substantially more complex; the drifter for instance, is
an imperfect mechanism which only approximates the current at a single fixed depth
and it is often impacted by wind. Further, there is no guarantee of continuity of the
water mass in the neighborhood of the drifter. In this paper, we examine data from a
number of missions involving AUV’s and drifting assets with particular emphasis on
comparing the quality of drifter data as a proxy for mean transport. This is done by
comparing estimated values at specific space-time locations against “ground truth”
data gathered at those locations by other vehicles.

The structure of this paper is as follows. Section 2 places this work in the context
in ocean sciences and engineering. Section 3 is the core of the paper where we

1 We call this a “pseudo-Lagrangian” frame of reference for two reasons: first, the drifter is
restricted to horizontal motion and does not capture the full three-dimensional dynamics of
the coastal ocean; second, the frame of reference does not rotate depending on the direction
of motion of the drifter, as a truly Lagrangian frame of reference would.
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(a) (b) (c)

Fig. 2 Example of the feature from Fig. 1 being tracked with the use of a drifter. Our corre-
lation function uses a combination of fixed space-time coordinates and a pseudo-Lagrangian
coordinate system centered on the drifter.

describe the family of Gaussian Process models used to estimate the value of the
measured field at unmeasured locations and the methods used to compare the results.
Section 4 presents some illustrative results when the theory is applied to an idealized
simulated field. In Section 5 we outline a series of at-sea experiments focusing in
particular on an experiment in which the drifter is equipped with a suite of sensors
which we then use to provide ground truth for model comparison. This is followed
with analysis of the at-sea experimental data in Section 6, with conclusions and
future work in Section 7.

2 Related Work

Drifters have traditionally been used for Lagrangian studies for measurement of
biological processes in-situ at appropriate temporal scales with ship-support [20]
as well as for physical oceanographic measurements of current flow and turbulence
related to ocean modeling [21, 22]. The end result is often to make measurements
of dynamic ocean fields for field reconstruction.

Our work extends these applications by using the drifter to provide a pseudo-
Lagrangian frame of reference in which overall advection can be considered negligi-
ble. We use the word “Lagrangian” approximately, referring to a coordinate system
which is centered, at any given time, at the current location of the drifter but follows
the definition in [23]. Further, we use a robotic AUV platform with in-situ plan syn-
thesis to provide overall environmental context of the water mass around the drifter
[17]. Our technique is novel and provides a substantially more accurate rendering of
the drifting field; traditional ship-based drifter methods cannot be qualified as truly
Lagrangian.

[24] focuses on using Empirical Orthogonal Functions (EOFs) to determine the
structure of dynamic random fields. Such spectral methods are common practice in
the oceanographic and atmospheric communities [25], as well as the statistical mod-
eling literature [26], and are especially useful due to their compact representation.
Spectral methods, however, suffer from two major limiting features when it comes
to tracking a moving water mass with an AUV. First, they are generally predicated
on an assumption that overall advection is negligible. We on the other hand are
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explicitly interested in cases where this may not be true. Second, they do not easily
handle sparse data points in a continuous domain. Methods for estimating corre-
lation spectra generally require data on a regular grid. One counter-example is the
mingled spectrum principle of [27], which involves first approximating the spectral
components of the signal purely as a function of distance along the AUV path and
then determining to what extent the underlying space-time coordinate axes can be
separated within that signal.

We chose a hierarchical Bayesian approach to Gaussian Process (GP) model-
ing [28, 29, 30] because GPs lend themselves to sparse data points in a continuous
domain and illustrate a clear and direct connection between measurements and pre-
dictions. Outside the ocean sciences, related work has been mostly in the context
of using spatial statistics for terrestrial measurements. [31] uses fixed monitoring
cites to derive an estimate of advection for rainfall measurement; our efforts come
closest to this work. They define a Lagrangian coordinate system in which the tem-
poral distance from a sample to a predictive location is based on the lag from the
start of rainfall at that particular monitor. They use kriging to produce estimates of
the field in both Eulerian and Lagrangian frameworks and compare using an ad-
justed mean squared error criterion. [32, 33] talk about advection modeling also
in the domain of rainfall forecasting. They too deal with multiscale and Lagrangian
modeling where “advection” is gleaned from sequential radar snapshots, thereby en-
suring commingling of space/time effects is at a minimum. Interestingly [34] uses
a method for registration brain scan images while comparing pixels in one image to
pixels in another. We on the other hand deal with continuous space and effectively
look for spatio-temporal change of that single “pixel” from each survey to measure
water-column change.

A common assumption in space-time statistics is one of separability (e.g. [35]), in
which the covariance between two points in space-time can be written as the prod-
uct of spatial and temporal covariance functions. Separability breaks down when
the field in question is under the influence of a dominant advection term, which is
what we face in water-column measurements. We conjecture, however, that if the
field reconstruction were done in a coordinate system centered on a drifting ele-
ment, the resulting correlation structure would be approximately separable, at least
within the neighborhood of the drifter. This notion (that there is an overall advection
component which may be removed and the remaining field exhibits separability) has
been put forth in a more general form as Taylor’s Hypothesis [36]; [35] has a good
description of Taylor’s hypothesis as pertains to functional correlation estimation.

Several recent efforts have focused on determining whether or not a random field
is separable [37, 38, 39, 40], however these, and all others that we are aware of
have assumed a network of fixed monitoring stations with repeated measurements
in time in order to formally separate space and time in the correlation structure. One
promising avenue of inquiry is introduced in [41] and further expanded in [35], in
which the authors use a functional covariance built as a parameterized mixture of a
separable space-time covariance and a purely spatial one in the Lagrangian frame
of reference. While the authors use this method on data sets generated by networks
of fixed monitoring stations, there is nothing about the method which precludes a
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single moving agent sampling a dynamic field. We employ a version of this model
in this paper.

3 Space-Time Model

We consider a hierarchical Bayesian approach to GP estimation inspired by space-
time Kriging [35] (also Optimal Interpolation, Best Linear Unbiased Estimation,
and Objective Analysis, to name a few variants of the same basic concept). One of
the advantages of such an approach is the propagation of uncertainty from prior to
posterior. Here, we are primarily interested in the posterior mean, and how it com-
pares against two measures of ground truth (measurements taken from another vehi-
cle, and leave-one-out self comparison). As such, we use a fully Bayesian approach
to estimate the parameters of the covariance, but only consider the conditional dis-
tribution given point estimates of the parameters for validation. While this falls short
of a full posterior or marginal analysis in terms of uncertainty quantification, it al-
lows for simpler results and shorter computation times.

Specification of the covariance is important in this approach to stochastic
modeling. For simplicity and computational efficiency, spatial reconstructions often
include assumptions of stationarity and/or isotropy [42]. In the coastal ocean, the
interplay between large scale and small scale dynamics, as well as external factors
such as biological entities, may make such assumptions unrealistic. For example, an
upwelling front is a boundary region where two dramatically different water types
intersect [43]. Along this frontal region, spatial correlation scales dramatically differ
from those within the two large scale features, making a small scale spatial recon-
struction of the boundary region difficult. We however, will use these simplifying
assumptions of stationarity and isotropy for three reasons. First, stationary models
form the basis of many more realistic models, so this is a logical first step in the
process. Second, we approach the problem as one of approximation. We know that
we are not modeling the process exactly and we have ground truth for comparison,
we compare one approximation against another in terms of a fit to the ground truth.
Finally, we are more concerned here with the interplay between space and time than
with accuracy of the spatial model. Integrating more complex spatial models into
the Lagrangian framework is a topic for future work.

Specification of covariance is challenging when trying to reconstruct dynamic
fields from sparse measurements. How does one estimate space-time covariance
structure? Previous methods of space-time inference and dynamic field reconstruc-
tion have generally fallen into one (or both) of two categories. Either the measure-
ments are assumed to be taken on a space-time grid (meaning that for any spatial
location, a time series of values is available), or the grid assumption is relaxed and
replaced with an assumption that overall advection of the field is negligible. In [41]
and [35], the authors assume that the field satisfies Taylor’s hypothesis in the sense
that the covariance between two points can be written as a linear combination of a
separable covariance in space-time coordinates and a purely spatial covariance in a
moving, pseudo-Lagrangian coordinate system. The resulting hierarchical Bayesian



Exploring Space-Time Tradeoffs in Autonomous Sampling for Marine Robotics 825

model is then fitted using Markov Chain MonteCarlo (MCMC) simulation. We take
a similar approach, but consider a family of hierarchical correlation models which
differ in separability and in the coordinate systems for distance calculations.

3.1 Basic Setup

Assume that a moving vehicle has taken n ∈ N point measurements of a dynamic
scalar process Z over a region of interest D ⊂ R

2. The domain is of arbitrary di-
mension, but we will deal in R

2 for simplicity. Associated with the ith measurement
taken at a spatial location, si at time ti. We will denote by zi, the value of the ith
measurement, with z = (z1, . . . , zn)

T , and by z(s, t) the value of Z at an arbitrary
location, s ∈ D and time t ∈ R. Now assume that we would like to reconstruct
the evolution of Z over the unsampled locations of D within some time interval.
Assume that the joint distribution of the samples is given by:

z ∼ Nn(μ,Σ(θ)),

an n − variate normal distribution with constant mean, μ, and covariance matrix
Σ(θ), which depends on a vector of unknown parameters, θ. The covariance is mod-
eled as a scalar variance term, a functional kernel, and a small diagonal measurement
error:

Σ = σ2(K+ τ2I),

where τ2 is a known constant, and σ2 is inferred from the data. We use a family
of functional correlation forms for the kernel matrix K, described in more detail
below. In general, for a given θ, we will write the correlation between Z(s, t) and
Z(s′, t′) as:

Cor[Z(s, t), Z(s′, t′)|θ] = C(s, t, s′, t′; θ).

Where the dependence on θ is not important we will suppress the explicit notation.
A prediction at arbitrary space-time location (sp, tp) may be formulated from the
conditional expectation,

E(Z(sp, tp)|θ, z) = μ+CT (K+ τ2I)−1z, (1)

where C = C(θ) is the vector of covariances between samples and predictive loca-
tion, i.e., [C]i = C(si, ti, sp, tp).

For the purpose of pseudo-Lagrangian distance calculations, we introduce the
notion of a drifter, which identifies a frame of reference that moves along with the
water mass. Let Li ∈ D denote the location of the drifter at time ti. Any space-time
location, (si, ti) then has a corresponding location in the pseudo-Lagrangian drifter-
relative space which we denote by sL:i = si − Li. Fig. 3 illustrates a sequence of
measurements made in Eulerian (i.e., geospatial) coordinates, and the corresponding
locations in pseudo-Lagrangian coordinates.
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Fig. 3 Chlorophyl Fluorescence data collected by the AUV at a depth of 6m during a part of
the WireWalker following experiment. In 3(a) we see the trajectory in geospatial (Eule-
rian) coordinates. The colored circles around the square trajectory are measurements made by
the AUV, with arrows showing the path of the AUV. Select points in the WireWalker path
(Li) have been plotted to show the advection component. For each Li there is an associated
time ti, and the location of the AUV at time ti is marked with si. In 3(b) the same AUV
trajectory in the WireWalker -relative (Lagrangian) coordinates, sL:i = si−Li is shown.
The WireWalker measurements are not depicted here since they all occur at (0, 0) in this
coordinate system (marked with circle-x).

3.2 Correlation Models

We now describe the specific correlation models used in this work. The idea is to ex-
plore the utility of defining correlation in Eulerian coordinates, pseudo-Lagrangian
coordinates, or a combination of the two, particularly with an eye towards separa-
bility. As such, we consider a family of correlation functions built from a common
basic kernel and compare the results of using one versus another. We use as our basic
correlation building block the common powered exponential kernel, in the spatial,
temporal, and space-time domains:

CS(si, sj ; ν) = e−(‖si−sj‖)
ν

,

CT (ti, tj ; ν) = e−(|ti−tj |)
ν

,

CST (si, ti, sj, tj ; ν) = e−
(√
‖si−sj‖2+(ti−tj)2

)ν

.

ν ∈ (0, 2] is a smoothness parameter (with ν = 2, the function and thereby the
process [42] is infinitely differentiable). In order to simplify notation in the sequel,
we introduce the vector of all possible parameters:

θ = (σ2, λ, νes, νet, νest, νls, νlt, νlst, res, ret, rls, rlt),

where σ2 is the scalar variance term described above, λ is a mixing coefficient for
Eulerian and Lagrangian components, ν∗ are smoothness parameters, and r∗ are
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coordinate specific range parameters designed to allow for geometric anisotropy
between space and time. Simple correlation kernels in the Eulerian and Lagrangian
spatial coordinates may be written as:

CESP(si, sj , θ) = CS(
si
res

,
sj
res

; νes),

CLSP(si, sj , θ) = CS(
sL:i

rls
,
sL:j

rls
; νls).

Extending this to the space-time domain, we consider first the non-separable ver-
sions:

CENSEP(si, ti, sj , tj ; θ) = CST (
si
res

,
ti
ret
,
sj
res

,
tj
ret

; νest),

CLNSEP(si, ti, sj , tj ; θ) = CST (
sL:i

rls
,
ti
rlt
,
sL:j

rls
,
tj
rlt

; νlst),

then the separable versions:

CESEP(si, ti, sj , tj ; θ) = CS(
si
res

,
sj
res

; νes)CT (
ti
ret
,
tj
ret

; νet), and

CLSEP(si, ti, sj , tj ; θ) = CS(
sL:i

rls
,
sL:j

rls
; νls)CT (

ti
rlt
,
tj
rlt

; νlt).

Following [41], we next consider a correlation function which combines a separable
kernel in the Eulerian space with a purely spatial kernel in the Lagrangian:

CESEPLSP(si, ti, sj , tj ; θ) = (1− λ)CESEP(si, ti, sj , tj ; θ) + λCLSP(si, sj ; θ).

Table 1 summarizes the correlation functions introduced here. We consider simu-
lated and sea-going experiments in which some element of advection can be identi-
fied, and in which predictions can be compared against ground truth. In each case,
we compare the models in terms of how well they predict the ground truth as well
as using a leave-one-out error metric to ensure measurement fidelity. For each of the
correlation functions, we complete the following steps:

1. Run MCMC to estimate the range, smoothness, and mixing parameters of the
correlation model.

2. Calculate the predictions at unsampled locations and examine the distribution of
errors.

3. For each measurement, calculate the hypothetical prediction at that (space-time)
location using only the other measurements, then examine the distribution of
these “leave-one-out” errors.

We then compare the performance of the different correlation functions on the two
error metrics for various slices of data. In the following section, we describe a set of
idealized simulated data designed to illustrate the extreme Lagrangian case.
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Table 1 Summary of correlation kernels

Name Description
CESP Spatial only correlation in Eulerian space
CLSP Spatial only correlation in Lagrangian space
CENSEP Non-separable correlation in Eulerian space
CLNSEP Non-separable correlation in Lagrangian space
CESEP Separable correlation in Eulerian space
CLSEP Separable correlation in Lagrangian space

CESEPLSP Linear combination of CESEP and CLSP

4 Simulated Field

Using simulated data, we generate an idealized example for illustrative purposes.
Consider the extreme case in which an unchanging scalar field, Z , advects through
a region of interest D with constant, uniform velocity over 50 time steps. For sim-
plicity, advection occurs strictly from east to west. This allows us a very simple
representation of the Eulerian and Lagrangian frames of reference: in the Eulerian
frame of reference, D is static, and Z moves westward with constant speed; in the
Lagrangian frame of reference, Z is static and D moves eastward with constant
speed. Fig. 4 depicts the evolution of such a simulated “ground truth” field, in the
Eulerian (fixed) frame of reference.

At the same time a simulated vehicle is executing a fixed “lawnmower” pattern
overD, taking one sample each time step. The resulting vector of measurements, z,
are simply taken from the simulated ground truth, with no measurement error. We
are interested in reconstructing the field over D mid-way thru the mission at time
T = 25. Since we want to get as much information as possible out of the space-time
measurements, we consider the hind-casting case, where all measurements are taken
into account post-facto. Fig. 5 shows the lawnmower pattern in both Eulerian and
Lagrangian frames of reference.

Since the simulated data are defined on a grid, we use those grid locations as our
ground truth. Let sp denote the vector of grid locations overD in the Eulerian frame

(a) (b) (c)

Fig. 4 The simulated field over D at time 1 in 4(a), time 25 in 4(b), and time 50 in 4(c)
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Fig. 5 In the fixed, Eulerian frame of reference, the AUV executes a lawnmower from top
right to bottom left 5(a), and then back again 5(b). In 5(c) we see the trajectory of the AUV
in the Lagrangian frame of reference, which moves with the simulated current. Here the
black window shows the region D at time T = 25 (compare against figure 4(b)). Because of
the special nature of these simulated data, in this frame of reference we can see the values
measured by the AUV in a purely spatial context.
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Fig. 6 Comparison of predictive error distributions based on the different correlation models.
In 6(a) we compare predictions against ground truth from the simulated values over D at
time T = 25. In 6(b) the leave-one-out errors are generated by estimating the value of the
ith measurement based on all other measurements and repeating for all measurements. In
each case, the box height shows the mean of the absolute errors, while the error bars show
one standard deviation. The Eulerian kernels are on the left, Lagrangian on the right, strictly
spatial to the outside with more freedom in the space-time interactions as we move inwards
on each side.

of reference, and let zp denote the values of the simulated ground truth at spatial lo-
cations sp and time T = 25. As described in Section 3, for each correlation function
in Table 1, we first ran MCMC to make draws from the posterior distributions of
the pertinent parameters in θ. For each such parameter, an estimate is formed based
on the mean value of the random draws (after appropriate burn in). We will call the
estimated parameter set θ̂.
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Next, Equation (1) is used to find an estimate, Ẑ(sp, tp; z, θ̂), at each predictive
location (sp, tp). For simplicity, we restrict our estimation region to D at time T =
25. Those values are then compared against the simulated ground truth by examining
the mean and variance of the absolute error values (|Ẑ − zp|).

For the leave-one-out analysis, we compute a vector of predictions,
Ẑ(si, ti; z−i, θ̂), where z−i denotes the vector z with the ith element removed.
These predictions are compared against the measurements, using the first two mo-
ments of the absolute errors, |Ẑ − z|. Fig. 6 depicts the distributions of absolute
errors for each correlation function while Fig. 7 shows the effects of correlation
kernel on the shape of the reconstructed field. In this carefully constructed simula-
tion, the benefits of the Lagrangian frame of reference are clear. We next examine
results from a multi-asset experiment in the coastal waters of Monterey Bay, where
the situation is more challenging.
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Fig. 7 Examples of the field reconstruction over D at time 25. In 7(a) we see the ground
truth for this predictive region. The reconstructed fields follow for correlation kernel CESEP

in Fig. 7(b), CESEPLSP in Fig. 7(c), and CLSP in Fig. 7(d). In each case, we have depicted the
simulated trajectory of the AUV up to step 25 in the Eulerian coordinates. The two omitted
Eulerian kernels are moderately well represented by CESEP here, and the Lagrangian ones by
CLSP. Note that because of the advection, the samples taken early in the mission (at the north
edge of the figures) bear little relation to the ground truth and predictions at those spatial
locations at the current time.

5 Experiments

In CANON, we have focused on using our Dorado AUV shown in Fig. 8(a) in our
experiments at sea in Monterey Bay, California. In tracking patches, typically one
or more GPS equipped drifters have been used. Position updates from the drifter are
used to evaluate surface current displacement which can then be sent to our AUV.
T-REX onboard the AUV uses this information to compute a path in-situ, around
this moving body which can be either directly translated in the Eulerian frame –
resulting in a direct transposition of the waypoints around the drifter’s last position
– or distorted to be projected in the Lagrangian frame [44, 45].

The WireWalker profiling system, developed at Scripps Institution of Oceanog-
raphy, utilizes surface wind-waves to power a profiling vehicle vertically through
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(a) (b)

Fig. 8 MBARI’s Dorado AUV platform in 8(a). The WireWalker is shown in 8(b) on the
deck of the Scripps research vessel R/V Roger Revelle with its buoy, used in the September
2011 experiments. Fig. 8(b) image courtesy: Tony Aja, Scripps Institute of Oceanography

the water column [18, 19]. The design is purely mechanical, lending itself to robust
performance, and is equally functional in moored and Lagrangian modes.
WireWalker deployments have been conducted in open ocean and coastal set-
tings and have proven their utility in measuring biological and physical dynamics
on vertical scales of centimeters and temporal scales of minutes. For example, a
canonical month long deployment on a 50m wire will produce as many as 25, 000
individual, full water column profiles, with vertical resolution < 5cm [46, 47].

In a September 2011 experiment, a WireWalker profiler was deployed on a
22m wire (total profiling distance of ∼ 20m). The WireWalker was equipped
with a Seabird 49 conductivity, temperature, and depth (CTD) sensor and a Turner
designs Cyclops 7 analogue chlorophyll-a fluorometer. Data was recorded onboard
the WireWalker at 16Hz. Nominal upcast speed was 0.3m/s with a profile com-
pleted on average once every∼ 3 minutes. The WireWalker was deployed with a
75cm diameter surface buoy, tracked using an Iridium satellite uplink with GPS po-
sitioning. The WireWalker is expected to follow a pseudo-Lagrangian path, inte-
grating across the sampled portion of the water column. Fig. 9 shows data collected
over the night of September 19th. Over the span of 20 hours the AUV performed 12
survey boxes of 1km×1km around the WireWalker without Lagrangian distor-
tion2 centered by the latest WireWalker position updates received from shore.
At the end of each survey T-REX on the vehicle requested the next position up-
date. Both the WireWalker and the AUV shared similar CTD sensors calibrated
a priori, which made data analysis tractable.

In addition to temperature, we compare chlorophyll fluorescence measurements
across the two devices. However, with different fluorometers and the significant
influence of pitch angle and speed (neither of which was constant across plat-
forms) some work was required to reconcile the data sets from the AUV and the
WireWalker. For our purposes, which is to compare space-time models rather

2 This choice was made to be able to predict AUV waypoints and ensure its safety as the
mission was relatively close to shore.
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(a) Temperature (b) Chlorophyl Fluorescence (c) Nitrate

Fig. 9 Interpolated results from September 2011 T-REX AUV mission in Monterey Bay
with the WireWalker deployed over a 20 hour overnight mission

than precise chlorophyll measurement, it suffices to transform one of the data sets
to approximately match the distribution of the other. Chlorophyll fluorescence is
known to be generally lognormally distributed, so we take the log of both data
sources and transform the result from the AUV such that the first two moments
of the resulting data vector match those of the log transformed measurements from
the WireWalker.

6 Analysis of Experimental Results

We next use the methods discussed in Sections 3 and 4 to examine some of the
results from the drifter following experiment with the WireWalker. To simplify
computation and presentation, we restrict analysis to horizontal slices of the water
column at a series of fixed depths. We will focus on an 8.5 hour mission segment
starting at 11am on September 20, 2011, and consider reconstructions of tempera-
ture, salinity and chlorophyll fluorescence.

Fig. 10 depicts examples of the Chlorophyll Fluorescence field reconstruction at
6 meters, based on three of the correlation kernels. For chlorophyll fluorescence,
the posterior spatial ranges stayed between 100 and 2000 meters, depending on the
other parameters and the depth slice. Temporal correlation ranges were between
.05 and .56 days. The spatial to temporal mixing coefficient, λ, was strictly within
(.5, .65) for all MCMC runs with theCESEPLSP kernel. Thus, at least for chlorophyll,
both coordinate systems contributed evenly to that kernel. In Fig. 11, we show the
results of comparison against ground truth and the leave-one-out validation.

By these metrics, it would appear that the differences between separable and
non-separable (and mixed) kernels are relatively small, and that all do a far better
job than the purely spatial analysis. It can also be seen that the leave-one-out errors
are moderately better than the comparisons against WireWalker data, both in
terms of the mean error as well as the variance of errors, although perhaps not so
much as one might expect.

Fig. 12 depicts examples of the salinity field reconstruction over the same depth
slice. The posterior spatial ranges for salinity were between 30 and 500 meters, the
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Fig. 10 Examples of Chlorophyll Fluorescence field reconstruction at a fixed prediction time,
tp. The figures correspond to reconstructions with correlation kernel CESEP in Fig. 10(a),
CESEPLSP in Fig. 10(b), and CLSP in Fig. 10(c). In each case, only a short piece of the AUV
trajectory is depicted, leading up to tp. Many more samples before and after are used in
the statistical reconstruction. The square in the center marks ground truth measured by the
WireWalker at tp. As opposed to the simulated data, the difference between Eulerian and
Lagrangian reconstructions is less distinct, but there is a much stronger difference between
the space-time kernels and the purely spatial ones. The non-separable reconstructions appear
similar to the result from CESEPLSP.
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Fig. 11 Comparison of predictive error distributions of Chlorophyll Fluorescence based on
the different correlation models over 5 depth slices (grouped along the x axis). In 11(a) we
compare predictions against ground truth from the WireWalker. In 11(b) the leave-one-out
errors are generated by estimating the value of the ith measurement based on all other mea-
surements and repeating for all measurements. Box heights depict the mean of the absolute
errors, error bars show one standard deviation.

temporal correlation ranges between .03 and .14 days, and λ, was within (.1, .35).
This seems to suggest that the measurements are more coherent in the Eulerian
frame of reference, but the ground truth comparisons in Fig. 13 do not lend much
support to this theory. For the leave-one-out comparison, there does not seem to be
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Fig. 12 Examples of the Salinity field reconstruction at prediction time tp. The figures cor-
respond to reconstructions with correlation kernel CESEP in Fig. 12(a), CESEPLSP in Fig. 12(b),
and CLSP in Fig. 12(c). In each case, only a short piece of the AUV trajectory is depicted, lead-
ing up to tp. Many more samples before and after are used in the statistical reconstruction.
The ground truth provided by the WireWalker at tp is shown with the square.
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Fig. 13 Comparison of predictive error distributions of Salinity based on the different corre-
lation models over 5 depth slices (grouped along the x axis). In 13(a) we compare predictions
against ground truth from the WireWalker. In 13(b) the leave-one-out errors are generated
by estimating zi from z−i for all i. The box heights show the mean of the absolute errors,
while the error bars show one standard deviation.

much difference between the various space-time kernels, however the distinction
between leave-one-out and WireWalker comparison is dramatic. This is to be
expected from the fact that the minimum distance from WireWalker to AUV is
approximately 500 meters which is the upper limit of the spatial correlation range.
The fact that the spatial kernels do better than the space-time ones when compared
against the WireWalker but worse in the case of the leave-one-out compari-
son suggests that there may be a certain amount of over fitting on the part of the
space-time kernels.
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Fig. 14 Examples of the water Temperature field reconstruction at prediction time tp. The
figures correspond to reconstructions with correlation kernel CESEP in Fig. 14(a), CESEPLSP

in Fig. 14(b), and CLSP in Fig. 14(c). In each case, only a short piece of the AUV trajectory
is depicted, leading up to tp. Many more samples before and after are used in the statistical
reconstruction. The WireWalker ground truth at tp is depicted by the square.

Fig. 14 depicts examples of the Temperature field reconstruction over the same
depth slice. For temperature, the posterior spatial ranges were also between 30 and
500 meters, the temporal correlation ranges between .02 and .15 days, and λ was
within (0, .15). Again, this might suggest that the Eulerian kernels will perform
significantly better than the Lagrangian counterparts, but this is not clearly evident
in the comparison results shown in Fig. 15. Here the striking thing is that in most
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Fig. 15 Comparison of predictive error distributions of water Temperature based on the dif-
ferent correlation models over 5 depth slices (grouped along the x axis). In 15(a) we compare
predictions against ground truth from the WireWalker. In 15(b) the leave-one-out errors
are generated by estimating the value of the ith measurement based on all other measure-
ments and repeating for all measurements. Box heights show the mean absolute error, error
bars one standard deviation.
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of the cases the WireWalker comparisons are better (both in terms of mean and
variation) than the leave-one-out comparisons.

To sum up these results, it is not clear that the space-time separability of these
three variables (for this particular mission) is significantly impacted by whether the
correlation kernels are defined in Lagrangian or Eulerian space, or a linear combina-
tion of the two. There is clearly a significant benefit (in most cases) to incorporating
temporal correlation, but there does not appear to be sufficient evidence, using the
methods in this paper, to suggest that the space-time fields studied are distinctly non
separable.

7 Conclusions and Future Work

We set out to quantify the notion that following a drifting device in the real ocean
and using a pseudo-Lagrangian context for field reconstruction may improve the
quality of estimation. The hypothesis is that a field which was initially not separable
in space and time could be made approximately separable by a complete or par-
tial transformation into drifter-relative coordinates. In an idealized simulation, the
results are clear. When the Lagrangian context completely removes temporal vari-
ation, significant improvements in error distributions were found. The removal of
advection and subsequent treatment in a purely spatial frame of reference is clearly
preferable to any space-time treatment for this simplified case.

When the method was extended to a real world experiment in coastal waters, the
results were less clear. We found little difference in terms of these error metrics be-
tween separable and non-separable treatments. This could be the result of a number
of factors. A simple answer is that the fields in question are actually separable in
Eulerian space, or are no more separable in the pseudo-Lagrangian frame of ref-
erence. This could result from the WireWalker being a poor proxy for overall
advection in this study, since it is driven by some average current over its depth
range. It could be that the turbulent dynamics of the coastal ocean are too complex
to get any benefit out of a simple horizontal approximation. It is also possible that
a more comprehensive space-time model (e.g., one which incorporated mean field
estimation, horizontal anisotropy, or the full three dimensional measurement space)
would yield a more conclusive result. An altogether different possibility is that the
density of samples in the space-time domain is insufficient to make the distinctions
we are trying to make.

Future work will address these deficiencies. We will take into account the full
three spatial dimensions, and consider more complete models for the mean field.
We also plan to compare model uncertainty in a fully Bayesian setting against
the comparison metrics used here. Further experiments will be run to determine if
there are circumstances such as smaller survey patterns or stronger current which
make the distinction between separable and non-separable reconstructions more
pronounced. Yet another idea for future work is to carefully target the survey pattern
such that results may be considered approximately gridded in either Eulerian or La-
grangian space. In this case, methods such as that proposed in [37] may be used to
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approximate separability, or even to determine how “close” the field is to separable
(in terms of a matrix distance metric).
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Autonomous, Localization-Free Underwater
Data Muling Using Acoustic and Optical
Communication

Marek Doniec, Iulian Topor, Mandar Chitre, and Daniela Rus

Abstract. We present a fully autonomous data muling system consisting of hard-
ware and algorithms. The system allows a robot to autonomously find a sensor node
and use high bandwidth, short range optical communication to download 1.2 MB
of data from the sensor node and then transport the data back to a base station. The
hardware of the system consists of an autonomous underwater vehicle (AUV) paired
with an underwater sensor node. The robot and the sensor node use two modes of
communication - acoustic for long-range communication and optical for high band-
width communication. No positioning system is required. Acoustic ranging is used
between the sensor node and the AUV. The AUV uses the ranging information to
find the sensor node by means of either stochastic gradient descent, or a particle
filter. Once it comes close enough to the sensor node where it can use the optical
channel it switches to position keeping by means of stochastic gradient descent on
the signal quality of the optical link. During this time the optical link is used to
download data. Fountain codes are used for data transfer to maximize throughput
while minimizing protocol requirements. The system is evaluated in three separate
experiments using our Autonomous Modular Optical Underwater Robot (AMOUR),
a PANDA sensor node, the UNET acoustic modem, and the AquaOptical modem.
In the first experiment AMOUR uses acoustic gradient descent to find the PANDA
node starting from a distance of at least 25 m and then switches to optical posi-
tion keeping during which it downloads a 1.2 MB large file. This experiment is
completed 10 times successfully. In the second experiment AMOUR is manually
steered above the PANDA node and then autonomously maintains position using
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the quality of the optical link as a measurement. This experiment is performed two
times for 10 minutes. The final experiment does not make use of the optical modems
and evaluate the performance of the particle filter in finding the PANDA node. This
experiment is performed 5 times successfully.

1 Introduction

Our goal is to develop technologies that enable users to interact with ocean observa-
tories. In an ocean observatory robots and in-situ sensors collect information about
the underwater environment and deliver this information to remote users, much like
a web-cam delivers remote data to users on the ground. In this paper we focus on de-
veloping effective technologies for wireless data transmission underwater. When the
amount of data from an ocean observatory is large (e.g. in the case of image feeds),
low-bandwidth acoustic communication is not adequate. We instead propose using
optical data muling with a robot equipped with an optical modem that can retrieve
data fast from underwater nodes with line-of-site connection to the robot. An impor-
tant problem is locating the underwater sensor node. When distances between the
robot and the nodes are large, and their locations are unknown, positioning the data
muling robot within optical communication range is challenging. In this paper we
present a solution to autonomous data muling underwater, where the node’s location
is unknown. The algorithm has three phases. In the first phase, acoustic communi-
cation is used to bring the data muling robot within some close range of the desired
sensor where it can detect the optical signal. In the second phase, the robot does a
local search using the optical signal strength to precisely locate the sensor and po-
sition itself within communication range. In the third phase the robot uses optical
communication to collect the data from the sensor. In practice, phase two and three
overlap once the signal strength becomes strong enough to transmit data.

Previous work has looked at the theoretical performance of data muling [10] and
the optimization of the path taken between nodes [7]. In both cases the locations of
the nodes are assumed to be known. Data muling with an underwater robot has been
previously shown in [5]. The nodes were found using a spiral search that looked
for a valid optical signal. A method for homing to a single beacon using acoustic
ranging based on an Extended Kalman Filter with a fixed robot maneuver for initial-
ization is presented and evaluated in simulation in [13]. In [9] the authors present
an Extended Kalman Filter approach to localizing a moving vehicle using range-
only measurements to a group of beacons. They use particle filters to initialize the
beacons location. In [1] a high-frequency acoustic network is suggested, that offers
range and bandwidth performance between conventional acoustic and optical rates.

We implemented and experimentally evaluated the data muling system described
in this paper. This work uses a new version of the Pop-up Ambient Noise Data
Acquisition sensor node called UNET-PANDA, which is presented, along with the
acoustic modem used, in [2]. For simplicity UNET-PANDA is referred to as PANDA
in the remainder of the paper. The optical modem has been described in [3]. The
Autonomous Modular Optical Underwater Robot (AMOUR) was presented in [4].
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Algorithm 1. Acoustic Stochastic Gra-
dient Descent
1: YAWrobot ⇐ π ∗Random(−1.0...1.0)
2: SPEEDrobot ⇐ 0.25 Knots forward
3: RANGEth⇐ inf
4: while No optical link available do
5: Receive RANGEm

6: if RANGEm � RANGEth +1m then
7: YAWrobot ⇐ YAWrobot + π + π ∗

Random(−0.5...0.5)
8: RANGEth⇐ RANGEm

9: end if
10: if RANGEm < RANGEth then
11: RANGEth⇐ RANGEm

12: end if
13: end while
14: Begin Optical Gradient Descent

Algorithm 2. Optical Stochastic Gradient
Descent
1: Retain YAWrobot from Algorithm I.
2: Retain SPEEDrobot from Algorithm I.
3: SSIth⇐ 0
4: while Optical Link Established do
5: Wait 0.25 Seconds. Measure SSIm

6: if SSIm � 0.9∗SSIth then
7: YAWrobot ⇐ YAWrobot + π + π ∗

Random(−0.5...0.5)
8: SSIth⇐ SSIm

9: end if
10: if SSIm > SSIth then
11: SSIth⇐ SSIm

12: end if
13: end while
14: Switch back to Acoustic Gradient Descent

Our implementation of the data muling system was repeatedly able to acoustically
locate the sensor node from distances of 25 m and 100 m and to download a 1.2 MB
data file optically once the node was found.

2 Problem Statement

We consider a sensor node that is deployed at a fixed location on the seafloor. We
assume that the sensor node is equipped with an acoustic modem and an optical
modem. We use the acoustic modem for low data rate (≤ 1 Kbps) and long-range (≥
100 m) communications. We use the optical modem for high data rate (≥ 1 Mbps)
and short-range (≤ 100 m) communications. We do not require a precise external
positioning system but we assume that a coarse location estimate of the node exists.
By coarse we mean that the margin of error for this position estimate is within the
acoustic communication range. This is usually on the order of hundreds of meters
to a few kilometers, though acoustic communication ranges of over 100 km are
possible [11]. Examples in which such a situation can arise are (1) when a node is
deployed in deep waters from a boat and drifts before it finally reaches the ocean
floor; (2) when a node is deployed by an autonomous underwater vehicle using
dead reckoning the placement can have a large error; (3) when a node is not rigidly
moored and its position changes with time because of water currents.

Further, we assume that an autonomous hovering underwater vehicle (AUV) is
equipped with identical acoustic and optical modems and capable of communicating
through these with the sensor node when in range. Hovering enables the vehicle
to hold its attitude and depth statically and to execute surge (forward / backward)
velocity commands.
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Our problem statement concerns the case in which the sensor node is collecting
data at a faster rate than can be transmitted using the long distance acoustic channel.
Kilfoyle et al. show empirically that the product of acoustic communication rate and
bandwidth rarely exceeds 40 km-Kbps for state of the art acoustic modems [6]. For a
single sensor separated by 5 km from the user this would result in a communication
rate of 8 Kbps. If we consider an application that collects ambient acoustic signals
or video our data stream will far exceed the available acoustic channel capacity.

3 Technical Approach

We developed a combined acousto-optical communication network capable of large
scale data recovery that does not require precise localization of the robot nor the
sensor node. The robot uses acoustic communication and ranging to come close to
the sensor node. High bandwidth optical channel allows the robot to download the
payload data. More specifically, our approach to data muling is as follows:

1. We use acoustic ranging between the robot and the PANDA sensor node. The
acoustic modem on the PANDA transmits a ranging beacon every 6 s that is
received by the acoustic modem on the robot and provides it with a range mea-
surement. The robot uses the stochastic gradient descent algorithm shown in Al-
gorithm 1 to travel close to the PANDA.

2. At all times the PANDA is streaming the payload data using the optical mo-
dem and random linear rateless erasure codes known as Luby transform (LT)
codes [8]. The payload data is a random file consisting of 2048 blocks of 576
bytes. The LT-Codes require on average an overhead of 3 %, so about 2109 pack-
ets have to be received by the robot to decode the entire file. Because of the nature
of the LT-Codes it does not matter which packets are received.

3. Once the robot is close enough to the sensor node to receive an error-free packet it
switches from acoustic gradient descent to maintaining position using the optical
gradient descent algorithm described in Algorithm 2. If the optical connection
breaks at any point in time we return to step 1.

4. While AMOUR is in optical communication range every packet is used to (a)
measure the signal strength and (b) decode the payload data if the CRC matches.

5. The experiment is considered to have completed successfully once the entire
1.2 MB file has been received and decoded by the robot. In a real world scenario
the robot would now continue on the approximate location of the next sensor
node to begin acoustic gradient descent there.

4 Performance Improvement with a Particle Filter

The stochastic gradient descent approach described in Section 3 has no memory
of previous decisions. The only state variables are the current heading and a range
threshold used to make the decision whether to keep going straight or to turn. When
the algorithm encounters an increasing range it changes the direction of the robot
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in a random direction at least 90 degrees different from the current direction of
travel. This new choice of direction takes into account only the most recent few
measurements as reflected in the threshold stored. Because so little information is
taken into account, bad choices are made frequently. Further, even when the robot
is moving in the right direction a single spurious measurement caused by noise can
make it veer of the correct course. The algorithm will recover from this mistake with
high probability as the ranges will keep increasing from here on, but this comes at
the cost of time and energy. It also causes a large variance in the time that it takes to
find the target sensor node.

A more effective algorithm should keep a belief of where the robot is relative
to the sensor node and update this belief with every measurement. An Extended
Kalman Filter (EKF) delivers such a behavior. It represents the current belief of the
robot’s location as a mean and covariance. Because of this it needs to be initialized,
for example by performing a circular maneuver such as in [13]. Further, because
we are representing the robot’s state with a multidimensional Gaussian, we cannot
represent multimodal distributions, for example when we have a baseline ambiguity
because our vehicle has been traveling straight.

In order to represent multimodal distributions we implement a particle filter al-
gorithm, as shown in Algorithm 3. The filter represents the current belief using N

Algorithm 3. Acoustic Particle Filter
1: YAWrobot ⇐ π ∗Random(−1.0...1.0), SPEEDrobot ⇐ 0.25 Knots forward
2: Receive first measurement RANGEm

3: for k = 1 . . .N do

4:

[
Xk
Yk

]
= RANGEm ·

[
cos(αk)
sin(αk)

]
, where αk = Random(−π . . .π)

5: end for
6: while No optical link available do
7: for k = 1 . . .N do
8: Independently draw ex and ey from N (0.0,σrobot)

9:

[
Xk
Yk

]
=

[
Xk
Yk

]
+SPEEDrobot ·

[
cos(YAWrobot)
sin(YAWrobot )

]
+

[
ex

ey

]
10: end for
11: if Received new measurement RANGEm then
12: for k = 1 . . .N do
13: Wk =

1√
2·π ·σrange

· exp( −D2
k

2·σrange
), where Dk = RANGEm−

√
X2

k +Y 2
k

14: end for
15: RESAMPLE particles using weights Wk,k ∈ {1 . . .N}.
16: end if

17:

[
Z̄X
Z̄Y

]
= 1

N ∑N
n=1

[−Xk
−Yk

]
, μθ = atan(Z̄Y , Z̄X), σθ =

√
ln(1/‖Z̄‖)

18: YAWrobot = μθ +σθ/4
19: end while
20: Begin Optical Gradient Descent
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(b) Effective latencies over distance.

Fig. 1 The left graph shows effective data rates for given distances between the sensor node
and the user. The x-axis shows the distance in km and the y-axis the data rate. Black shows
data rates for acoustic communication. The colored lines show data rates for data muling with
different times spent hovering above the sensor to download the data. The right graph shows
effective latencies for the same cases as in the left figure. The x-axis shows the distance in km
and the y-axis the resulting latency in seconds. The latencies are reported as the entire round
trip time (worst-case latency).

particles. The sensor node position is assumed to be fixed at the origin. The filter
localizes the robot relative to the sensor node. Each particle stores one guess [Xk Yk]
of the robot’s location. The algorithm initializes the particles when the first range
measurement Rm is received by randomly placing all of the particles on a circle of
radius Rm around the origin (lines 3 to 5). Once the particles have been initialized,
we perform a prediction step every 100ms, taking into account robot movement
noise with a standard deviation σrobot (lines 7 to 10). When a new range measure-
ment is received we compute the probability of observing such a range for every
particle taking into account the measurement noise σrange. The particles are then
re-weighted according to the algorithm presented in Thrun et al. [12]. At the end of
every iteration we compute a new heading for the robot. This is done by computing
the heading required for every particle to travel towards the node. We assume these
headings form a wrapped normal distribution and we compute its mean and standard
deviation (line 17). Setting the robot heading to the mean would result in the parti-
cles traveling directly towards the node and can create a baseline ambiguity. Thus,
we chose to set the new headings as the mean plus the standard deviation divided by
a factor of 4. The more uncertain the particle filter is, the more the robot will deviate
from the straight path, and this in turn helps resolve the baseline ambiguity.

5 Theoretical Performance

Figure 1(a) shows the upper bounds of achievable data rates for our approach plot-
ted against the travel distance for the AUV (one way). The black line shows the
achievable data rates using the acoustic channel computed as
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Racoustic(d) =
40,000 m-Kbps

d
.

according to Kilfoyle et al. [6]. In color are shown the upper bounds for different
time intervals that the AUV spends above the sensor nodes. We compute the upper
bounds of the effective data rates for data muling as follows. We assume the AUV
travels on a direct path (best possible case) to the sensor node at a speed of vAUV =
1 m/s. This is the speed at which AMOUR can travel. We assume the optical data
rate to be rOPT = 4 Mbps. This is the data rate of AquaOptical as used during the
experiments. We call d the distance of the sensor from the user (one way trip in
meters) and thover the time that the robot hovers above the sensor node to download
the data. Under these assumptions the total travel time of the robot from the user to
the node and back, including the time spent hovering above the sensor node, is

ttravel(d) = thover +
2 ·d
vAUV

This results in an effective data rate of

rOPT,thover (d) =
thover · rOPT

ttravel(d)
.

Figure 1(b) shows the resulting latencies under the same assumptions. For the acous-
tic communication we compute the latency as travel time of sound in water, i.e.

Lacoustic(d) =
d

1,500 m/s

The optical latency is equivalent to ttravel(d). Figure 1(a) shows that the achievable
data rate when using data muling far exceeds the currently available acoustic data
rates. This effect can even be amplified by using multiple AUVs that can travel in
parallel to either a single or multiple sensor nodes. Using acoustic communication
neighboring nodes often have to share the medium reducing the effective data rate
per node. The disadvantage of data muling is its higher latency as seen in Fig. 1(b).

6 Simulations

We evaluated both the acoustic stochastic gradient descent algorithm (Algorithm 1),
and the acoustic particle filter algorithm (Algorithm 3) in simulation. In each simu-
lation the robot state was represented as [Xrobot Yrobot YAWrobot ]. The robot was sim-
ulated with a constant speed of SPEEDrobot = 1 m/s. Independent white Gaussian
noise with a standard deviation σrobot in meters was added to the robot’s position ev-
ery second to simulate movement errors. Thus, every second the new robot position
was computed as[

Xrobot(t + 1)
Yrobot(t + 1)

]
=

[
Xrobot(t)
Yrobot(t)

]
+ SPEEDrobot ·

[
cos(YAWrobot)
sin(YAWrobot)

]
+

[
ex

ey

]
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Fig. 2 Sample simulation results of 10 stochastic gradient descents and 10 particle filter node
localizations using acoustic ranging in both cases. All simulations were performed with a
robot speed of 1 m/s, measurement noise σrange = 1 m and robot motion noise σrobot = 0.1 m.
Range measurements occurred every 1 s. Plots (a) and (b) show the resulting robot paths. The
x and y-axes show displacement in meters. The sensor node is located at the origin (green
circle) and the robot starts at location (0 m, 50 m) (red diamond). Each continuous blue line
denotes one simulation run. Plots (c) and (d) show the corresponding distances of the robot
from the sensor node in m on the y-axis over time in seconds on the x-axis.

where ex and ey are independently drawn from N (0.0,σrobot). Measurements were
simulated every second with added Gaussian noise with a standard deviation σrange.
Each new measurement RANGEm is computed as

RANGEm =
√

X2
robot +Y 2

robot + er

where er is drawn from N (0.0,σrange).
Figure 2 shows two sets of 10 simulated paths taken by the robot using stochastic

gradient descent (Fig. 2(a)) and a particle filter (Fig. 2(b)). The simulations were
performed using Algorithm 1 and 3. The parameters for these simulations were
σrange = 1 m and σrobot = 0.1 m. These plots visualize the characteristic difference
in paths generated by the stochastic gradient descent and the particle filter. When the
stochastic gradient descent encounters an increasing range, it picks a new direction
almost entirely at random. The particle filter, on the other hand, continuously merges
all gathered information about the sensor node location and continuously updates
the robot’s heading resulting in a more direct path. Plotted in Figures 2(c) and 2(d)
are the corresponding distances of the robot to the sensor node over time.

Finally we conducted six sets of simulation runs with parameters chosen as
(σrange,σrobot) ∈ {0.1 m,1.0 m}× {0.01 m,0.1 m,1.0 m}. For each set we simu-
lated 1000 runs using the stochastic gradient descent algorithm and 1000 runs using
the particle filter. Figure 3 shows the results for all these runs grouped in six plots
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according to parameter choices. Each plot shows the mean distance over time (solid
line) with 1σ boundaries (dashed lines). The stochastic gradient descent results are
plotted in red and the particle filter results are plotted in blue. In all six cases the
particle filter outperforms the stochastic gradient descent. When the noise is low
(Figures 3(a) and 3(c)), the particle filter takes on average 104 s for the robot to
come to within 5 m of the sensor node. This is only 10 % more then the theoretical
minimum, which is 95 s since the robot starts 95 m away and travels at 1 m/s.

7 Hardware

We used our in-house developed hardware for the experiments presented in this
paper. The Acoustic Research Lab at National University Singapore developed
the UNET2 Acoustic Modems. The UNET2 modems use a carrier frequency of
27 kHz with a transmission bandwidth of 18 kHz. The maximum power level for
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(a) σrange = 0.1 m, σrobot = 0.01 m
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(b) σrange = 1.0 m, σrobot = 0.01 m
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(c) σrange = 0.1 m, σrobot = 0.1 m
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(d) σrange = 1.0 m, σrobot = 0.1 m
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(e) σrange = 0.1 m, σrobot = 0.5 m
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(f) σrange = 1.0 m, σrobot = 0.5 m

Fig. 3 Simulation results. Each plot corresponds to one of six different choices for
(σrange,σrobot), the measurement noise and robot motion noise used in the simulation. All
simulations were performed with a robot speed of 1 m/s and range measurements occurred
every 1 s. The x-axis corresponds to time in seconds and the y-axis corresponds to the dis-
tance in meters of the simulated robot to the sensor node. Plotted in red are the results of
stochastic gradient descent and in blue the results of the particle filter. For each algorithm and
choice of (σrange,σrobot) 1000 simulations were performed for a total of 12000 simulations.
The solid lines correspond to the mean, the dotted lines represent the 1σ boundaries.
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(a) Picture of AMOUR 6 [4].

(b) Picture of experimental site.

(c) Picture of PANDA with Optical
Modem.

Fig. 4 (a) AMOUR 6 in the water with
acoustic and optical modems attached.
(b) Experimental site. The PANDA
was deployed in the center of the
basin shown between the two docks.
(c) PANDA node (white cylinder on
tripod) with Optical Modem attached
on the left.

transmissions is 180 dB measured at 1 m. We use Orthogonal Frequency Division
Multiplexing with 256 carriers per symbol. For the inner code we chose a 1/3-rate
convolution code and for the outer code we chose a 12/23 Golay code. The acous-
tic modem on the PANDA transmits an 18 byte long ranging beacon every 6 s
that is received by the acoustic modem on the robot and provides it with a range
measurement.

The Distributed Robotics Lab at MIT developed the AquaOptical modem and
the Autonomous Modular Optical Underwater Robot (AMOUR) used during the
experiments. The AquaOptical modem communicates using visible blue light with
a wavelength of 470nm. The signal is amplitude modulated using on-off shift keying
(OOK). Packets are delimited with a 13-bit Barker code and data is encoded using
Manchester code. Each optical packet transmitted contained 576 bytes payload data
plus 32 bytes of configuration data (i.e. source and destination address, packet size,
32-bit CRC checksum, degree and seed used for the LT-Codes). The robot consists
of a set of thrusters that can be attached in arbitrary locations to the robot’s main
body, which contains computation, power electronics, and a battery.

During the experiments two different hardware configurations were used. In the
first configuration one acoustic and one optical modem were attached to the robot
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(a) Panoramic picture of experimental site at Pandan Reservoir.

(b) Picture of AMOUR 6 and floating Wifi. (c) Picture of PANDA.

Fig. 5 (a) Experimental site at Pandan Reservoir in Singapore. (b) AMOUR 6 with acoustic
modem attached with the WiFi bouy next to the robot. (c) PANDA node with floats and
weight.

and it was configured with 5 thrusters allowing it to maintain attitude while trav-
eling at a forward speed of 0.25 m/s. This configuration is shown in the water in
Figure 4(a). One optical modem was attached to the PANDA node as shown in
Figure 4(c). In the second configuration no optical modems were used. The robot
carried one acoustic modem and had 6 thrusters attached. This allowed the robot
to travel at a forward speed of 0.5 m/s. The robot and the PANDA can be seen in
Figures 5(b) and 5(c).

8 Experiments

We conducted two sets of experiments to demonstrate the system’s ability to localize
a sensor node using a robot and recover data from it. A third set of experiments was
conducted to evaluate the performance of the particle filter. In this work we did not
focus on the return of the robot to the base station.

The first two sets of experiments were conducted from a dock at the Republic
of Singapore Yacht Club (Figure 4(b)). The water depth was about 7 m and we
estimated visibility at about 2 m. The PANDA with the optical modem was mounted
on a tripod to guarantee that they should be pointing upright after being lowered to
the ground. This setup can be seen in Figure 4(c). Our vehicle AMOUR carrying



852 M. Doniec et al.

the acoustic and optical modems can be seen in Figure 4(a). It was tethered for
data collection and security, but operated autonomously during the experiments. The
robot speed was set at about 0.25 m/s to ensure safe operation and to keep distance
changes at a reasonable rate between updates. Generating the LT-Codes as described
in Section 3 requires substantial computation. Because of this we needed to reduce
the number of packets transmitted from the optical modem on the PANDA to 392
packets a second. Including overhead this corresponds to a bit rate of 1.84 MBit/s.
The remainder of the optical channel (2.16 MBit/s) was not utilized.

The first set of experiments consisted of manually placing the robot close to the
PANDA node and using optical gradient descent to maintain a position close to the
PANDA node. This experiment was conducted two times, one time with the robot at
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Fig. 6 Results of two optical gradient descent experiment runs. The first run is plotted in (a),
the robot operated at the water surface. The second run is plotted in (b), the robot operated
at a depth of 1.5 m. At the beginning of each experiment the robot was manually steered
close to the PANDA to establish an optical link. The optical gradient descent algorithm then
controlled the robot to stay close to the PANDA. In all plots the x-axis indicates the time in
seconds since the beginning of the experiment. The top graph for each experiment (black)
shows the heading of the robot as computed by the optical gradient descent algorithm. The
middle graph (red) shows the measured signal strength. The bottom graph shows the amount
of data received in MB (green) and the amount of data received error-free in MB (black).
Packet size was 576 bytes with a 4 byte CRC.
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Fig. 7 Results of data muling experiments. Each graph (a)-(j) shows one experiment. The
x-axis shows time in seconds since beginning of the experiment. The red curve (left y-axis)
shows the distance between AMOUR and the PANDA node. Each red square corresponds to
one range measurement received by AMOUR. The blue curve (right y-axis) shows the optical
signal strength between PANDA and AMOUR. A link was established whenever there is non-
zero signal strength. Two horizontal black lines mark the receipt of the first error free packet
(left line) and the receipt of the final error free packet needed to decode the 1.2 MB test file
(right line).
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the water surface and the second time with the robot keeping a depth of 1.5 m under
the water surface. Given a water depth of about 7 m, a height of the PANDA of about
1 m, and a robot height of slightly below 1 m, the first and second experiment had a
minimum distance of 5 m between the optical modems and 3.5 m, respectively.

In the second set of experiments we manually positioned the robot at a distance of
about 25 m away from the PANDA, dove it to 2 m depth where we started the acous-
tic gradient descent algorithm. This experiment was conducted 12 times, of which
two were aborted because the robot’s tether got entangled with obstacles in the har-
bor (the robot would dive under the docks sometimes due to the random nature of
stochastic gradient descent). We used the other 10 experiments for evaluation.

The third set of experiments to measure the performance of the particle filter was
conducted at the Pandan Reservoir in Singapore (Figure 5(a)). The reservoir covers
an area of over 1 km2 and has a depth of about 4 m close to the shore. During this
set of experiments we used a floating buoy that carried a long-range WiFi. The buoy
was tethered to the robot with a 5 m long Ethernet cable and additionally secured
with a rope. This allowed for remote operation of the robot while it was able to move
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Fig. 8 Results of acoustic particle filter experiments. Each graph (a)-(e) shows one experi-
ment. The x-axis shows time in seconds since beginning of the experiment. The red curve
(left y-axis) shows the distance between AMOUR and the PANDA node. Each red square
corresponds to one range measurement received by AMOUR. The black curve (right y-axis)
shows the confidence of the particle filter (square root of the determinant of the covariance of
all particle positions, lower is better). The spike visible at second 420 of plot (e) was caused
by a spurious range measurement.
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freely through the water without having a long tether that could get entangled in the
many buoys that are present at the reservoir. To prepare the experiments the robot
was used to transport the PANDA about 40 m off shore and drop it there. A weight
attached to the bottom of the PANDA together with floats attached at the top ensured
that it would sink to the bottom of the reservoir but remain upright (Figure 5(c)). A
rope was permanently attached to the PANDA that allowed us to recover it manually
after the experiments. During each experiment the robot was manually positioned
at a distance of at least 100 m away from the PANDA and the node localization
algorithm based on a particle filter was started. At all times the robot traveled with
a speed of 0.5 m/s at a depth of 1 m. At distances greater than 20 m the acoustic
beacons were often corrupted by the noise of the robot’s thrusters. To alleviate this
problem we chose to send beacons every 3 s during this experiment instead of every
6 s as in the previous experiments. Further, if the robot did not receive a valid beacon
for more than 20 s it stopped it’s thrusters significantly reducing the acoustic noise
levels. This ensured that even at distances beyond 20m we would receive ranging
beacons no less than twice per minute. The experiment was conducted 5 times, all
of which were used for evaluation.

9 Results

The results of the optical gradient descent experiments can be seen in Figure 6. In the
first run the robot maintained position for over 6 min before it lost track of the optical
signal. During this time the optical modem on the PANDA transmitted 52.6 MB of
payload data and on AMOUR received 37.5 MB of which 23.87 MB were error-free
packets (one packet was 576 bytes large). In the second run it maintained position
successfully for 11 min after which we stopped the experiment. During this time the
PANDA transmitted 93.4 MB of payload data and AMOUR received 69.1 MB of
which 55.6 MB were error-free packets. The rate of error-free packets was higher
in the second run because the robot was operating at a lower depth closer to the
transmitter, which resulted in higher signal strength at the receiver.

The results of the second set of experiments can be seen in Figure 7. In all 10
experiments the robot successfully found the PANDA within 2.5 to 8 min and pro-
ceeded to download the 1.2 MB file within an additional 10 to 35 s.

Figure 8 shows the results of the third set of experiments in which a particle filter
was used. In all 5 experiments the robot successfully found the PANDA within 4.2
to 9 min. This is a significant improvement over stochastic gradient descent when
considering that the robot was coming from a distance 4 times larger than in the
second set of experiments.

10 Main Experimental Insights

The proposed data muling system using bi-modal acousto-optical communication
allows for large scale data recovery and eliminates the need for precise localization
of the node and robot. It allows quick in-situ deployment of nodes and successive
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autonomous data recovery. In all gradient descent experiments the robot success-
fully found the underwater sensor node within a few minutes using acoustic gradi-
ent descent and proceeded to download a 1.2 MB file within 10 to 35 s using the
optical link. Further we demonstrated that we can use the optical signal strength to
maintain the robot’s position close to the position of the sensor node. We also exper-
imentally evaluated the use of a particle filter to locate the node using only acoustic
ranging. Both in simulation and experimentally the particle filter performed better
than stochastic gradient descent.

If the PANDA had been able to generate LT-Codes at the full rate of 4 MBit/sec
then our throughput would have been 3.2 times higher than measured. It should be
noted that this was purely a limitation on the computational side and not a limitation
of the optical or acoustic modem itself. Also, since we do not use error coding
and correction, all packets with a single bit error were discarded. This amounted to
13.6 MB of 37.5 MB and 13.5 MB of 69.1 MB in payload data lost. With the expense
of more computational resources this bandwidth can be almost entirely utilized.

Future improvements of the system include the usage of the acoustic link to turn
on and off both the optical modem and the acoustic beacons (or at least reducing
their frequency) to save battery life while the robot is not in range. We also plan
to extend the presented data muling system to three dimensions, which will allow
for the nodes to be deployed at greater depths. The particle filter algorithm can
be extended to utilize optical signal strength measurements in order to improve the
robot’s position keeping above the node. Further, we plan to extend experiments into
the open ocean where the algorithm can be tested at distances of multiple kilometers.
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Local-Search Strategy for Active Localization
of Multiple Invasive Fish

Joshua Vander Hook, Pratap Tokekar, Elliot Branson, Przemyslaw G. Bajer,
Peter W. Sorensen, and Volkan Isler

Abstract. In this paper, we study a problem encountered during our ongoing efforts
to locate radio-tagged fish aggregations with robots. The problem lies at the intersec-
tion of search-based methods whose objective is to detect a target, and active target
localization methods whose objective is to precisely localize a target given its initial
estimate. Real-world sensing constraints such as limited and unknown range, large
measurement time, and ambiguity in bearing measurements make it imperative to
have an intermediate initialization phase to transition from search to localization. We
present a local search strategy aimed at reliably initializing an estimate for a single
target based on observations from field experiments. We then extend this strategy to
initialize multiple targets, exploiting the proximity of nearby aggregated tagged fish
to decrease the cost of initialization per target. We evaluate the performance of our
algorithm through simulations and demonstrate its utility through a field experiment
where the robot successfully detects, initializes and then localizes nearby targets.

1 Introduction

We are developing a robotic system (Figure 1) and algorithms [10, 11] to enable
a mobile sensor network to monitor the common carp (Cyprinus carpio), an in-
vasive fish. The common carp is an ecologically damaging freshwater fish found in
many regions around the world [14]. Biologists are interested in developing efficient
methods for controlling carp populations. To this end, they catch a small sample of
the population and implant each fish with radio transmitters (tags). These tagged
fish are reintroduced to the lakes and periodically tracked using radio receivers over
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Fig. 1 Our robotic system consists of radio tags, a radio antenna and receiver mounted on
autonomous boat in summer and wheeled rover in winter (to operate on frozen lakes)

the course of a year. When multiple tagged fish seem to aggregate, it is assumed a
larger population is nearby. When these large aggregations of carp are found, typ-
ically during the winter, they can be removed by netting. This provides a safe and
environmentally-friendly method for controlling the population of carp.

The radio tags (Figure 1) are small, low duty-cycle transmitters which are im-
planted under the skin of the fish. Each tag emits a pulsed signal on a dedicated
frequency approximately once per second. A human operator carries a loop an-
tenna and a receiver which converts the signal to a received signal strength indicator
(RSSI). By monitoring the RSSI and rotating a directionally sensitive antenna, the
operator can discern a bearing to the radio tag. Typically a human operator will take
2-3 bearing measurements to estimate the location of one tag. However, this man-
ual tracking approach is tedious, time consuming and possibly inaccurate at times.
Therefore, we believe that this problem is a good application for robotics.

Our overall objective in this application is as follows: Given a list of N fre-
quencies (one per tagged fish), each of which can be detected by the robot at a
unique range ri, localize each target to a desired accuracy in bounded time. In Sec-
tion 3.1, we discuss our previous work where we partition this problem in two sep-
arate phases: (i) Search phase where the objective is to find a location for the robot
within the sensing range of each target, and (ii) Localization phase where the robot
uses bearing measurements to reduce the uncertainty in the target’s estimate.

During field tests of this system, we found that the localization routine was sen-
sitive to the accuracy of the initial estimate. Constructing a consistent, reasonably
certain prior estimate in limited time has proven to be a difficult task. The problem
becomes further challenging because the sensing ranges of individual tags can vary
based on the depth of the fish, the age of the tag, and other environmental factors.
For example, Figure 2 shows a field trial where the robot could not complete the
triangulation due to an incorrect initialization. The target was initialized with a 2D
Gaussian distribution centered at the location where the robot first moved into the
sensing range of the tag, with a variance based on empirical estimates of the sensing
range. However, the variance was set too low and as such the initial estimate was not
consistent. During triangulation, the robot moved to a location which fell outside the
sensing range of the target, and the final estimate was wrong. The robot successfully
triangulated the same tag in another run where the initial estimate (not shown for
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clarity) was consistent. This indicates the importance of starting with a good initial
estimate. Therefore, we present a local search strategy which, after detecting a target
during the search phase,

1. Initializes a consistent estimate of the target location,
2. Maps a region from which bearing measurements are likely to succeed,
3. Exploits clustering behavior of the fish to locate nearby targets efficiently.

After presenting the details of the search strategy and its analysis in Section 4, we
evaluate the strategy through simulations (Section 5), and present results from a field
experiment (Section 6). The field trial demonstrates that our proposed initialization
strategy is effective, and promising for large-scale future experiments. We believe
our proposed approach of search, initialization, and localization should be appli-
cable for other applications where one or more robots are tasked with accurately
locating one or more targets in bounded time.

Failed triangulation
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m
)

Out of range

160 180 200 220 240 260
-300

-280

-260

-240
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-200

-180

Failed trial
Successful trial
Bearingmeasurement
Initial targetestimate
Final targetestimate

Fig. 2 Failed triangulation due to incorrect initialization for trials conducted on Lake Staring,
MN. The initial estimate for the first trial was inconsistent and resulted in the localization to
diverge and move the robot out of the tag’s sensing range. During a second trial, with a
consistent initial estimate, the target was successfully localized.

2 Previous Work

Recently, there has been significant interest in developing algorithms for locating
transmitting radio sources using mobile robots. Song et al. [8] considered the prob-
lem of localizing an unknown number of transient radio sources using a mobile
robot. They used an occupancy grid in a Bayesian framework to update the proba-
bility of a radio source being located in a given grid cell. They further proposed a
path-planning algorithm for the robot to improve the convergence time for locating
all sources. In [6], Kim et al. presented a centralized multi-robot search algorithm
for the same problem setting, where the robots are controlled in pairs to allow de-
tection of unknown transmission powers from the radio sources.
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In [9], Tekdas et al. consider the problem of finding a point of high signal strength
inside the sensing disc of transmitting sources. They assume a prior estimate of
the source’s location is given but sensing range is unknown. Here, we consider the
problem of finding a good point to begin triangulation, while estimating sensing
range and target location simultaneously.

Fink and Kumar [3] presented methods to build a radio signal strength map in an
unknown indoor environment and presented control laws for mobile robots to seek
the transmitting radio source. Recently, Twigg et al. [12] addressed the problem of
exploration while seeking a radio source. The algorithm builds a gradient of the
RSSI by collecting samples locally. Their work involves indoor environments and
areas with significant multi-path effects, and so is not directly applicable to our
work. In addition, the directional sensitivity of our antenna makes it difficult to
determine and follow a gradient.

The problem of simultaneously localizing a robot and multiple transmitting
sources was considered in [4]. It was assumed that range could be explicitly re-
covered from the transmissions, and an arbitrary robot path was reconstructed while
simultaneously estimating the position of each radio. An iterative, offline algorithm
was proposed and evaluated. This problem is fundamentally different because we
cannot recover range directly, and must solve the problem online, i.e., as measure-
ments become available. Furthermore, we have direct control over the robot’s path.
In fact, defining the robot’s path to aid the estimation problem is the what we address
in the following sections.

3 Motivation

In this section, we present the details of our system and then discuss some intuitive
methods for addressing the problem under consideration.

3.1 System

Our system consists of a wheeled rover to traverse frozen lakes and locate fish ag-
gregations. We deploy a similar system during the summer using robotic boats. Our
mobile rover is the A100 Husky by Clearpath Robotics, and our robotic boat is an
OceanScience QBoat. Both chassis are fitted with a loop antenna, a servo motor to
rotate the antenna, a radio receiver, and a laptop computer. The robots estimate their
own pose and navigate using an Extended Kalman Filter (EKF) combining informa-
tion from a Global Positioning System unit and a digital compass (on the boat) or
encoders (on the wheeled rover).

The radio tags are shown in Figure 1 (Left). Each tag is programmed with a
specific frequency in the 48-50MHz range and emits 30-50 signals per minute. We
operate on lakes which have 10-20 tagged fish and the list of frequencies present
in each lake is known a priori. Signals from the tags attenuate as a function of the
humidity, salinity of the water, ice or snow thickness, and the depth of the fish it is
attached to. These factors cause variations in the range at which tags can be detected.
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Therefore we do not use the absolute signal strength to estimate range, and instead
use the directional nature of the antenna to estimate bearing.

The radio antenna and receiver are pictured in Figure 1 (middle and right), atop
both robots. The sensitivity of the antenna varies with the relative angle with the
tag. We rotate the antenna using a servo motor in 15 degree steps over 180 degrees.
We sample the signal strength at each step and fit a smooth function to the data to
estimate the direction with maximum RSSI. This direction is treated as the bearing
towards the target. Because of the low signal rate, obtaining a bearing measurement
takes about 1-2 minutes. Empirically we have found the bearing measurements to
follow an approximately Gaussian distribution around the true target bearing (σ ≈
15◦). However, bearing measurements constructed in this way are ambiguous, or
π-periodic. For any estimated bearing z, z+π is also a valid bearing measurement
(see Figure 3(b)).

(a) A typical search path. (b) Ambiguous measurements

Fig. 3 Examples of search patterns (Figure 3(a)) and ambiguous bearing measurements (Fig-
ure 3(b)). High sensor noise, ambiguity and unknown sensing range makes it difficult to
transition from search to localization.

In our previous trials we observed that the tags’ radio signal is undetectable unless
we are within 100-200 meters. This provides a natural task partitioning: Search and
Localization [11]. The goal of the search phase is to cover the regions of the lake
that are likely to contain tagged fish and move the robot to within sensing range of
each tag. We then switch to Localization where the goal is to obtain multiple bearing
measurements to localize the tag to a desired precision. Once a target is localized,
the robot can resume its search for other tags. During the search phase, we simply
wait for a detection of a non-zero RSSI value, which takes significantly less time
than obtaining a full bearing measurement.

Our current localization algorithm uses an EKF to estimate the position of the
tag [13]. The localization subroutine takes time proportional to the area of initial
uncertainty and the distance between the initial estimate and the robot. In simulation
and experiments this method performs well, but only if the initial estimate of the
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target is consistent and not significantly uncertain. Obtaining an initial estimate of
the target location with bounded uncertainty is challenging, as we discuss next.

3.2 The Initialization Problem

Before the localization algorithm can be deployed to precisely estimate tag loca-
tions, we must initialize a prior estimate as input. We briefly present some intuitive
methods we have tried and discuss why they fail.

Measurement-Based. As often recommended in bearing-only tracking literature, a
small number of bearing measurements can be collected and processed in a batch.
Given a set of k measurements Z = {z1, · · · zk}, we maximize the likelihood, p(Z|x)
over target locations x. In practice, limited sensing range and long measurement
time make this strategy infeasible. Also, consider Figure 3(b). The two dark regions
show areas which are likely to contain the true target and we cannot easily determine
which hypothesis is the origin of the measurements (x̂ or x̂′). A third measurement,
taken from a large baseline could disambiguate the two. However, a large baseline
is likely to move the robot outside the sensing range of the target, producing no
information while paying the full cost of a bearing measurement. Another solution
could be to take a fixed number of measurements around the initial detection point.
Again, the long bearing measurement time makes this an expensive strategy which
must be repeated for each nearby tag. Further, it is not clear how these additional
measurement locations should be chosen to guarantee a good estimate of the target.

Initial Hypothesis. In contrast to the above, we can initialize a hypothesis by taking
two measurements as shown in Figure 3(b). By drawing a wedge surrounding each
measurement to represent its uncertainty, we can obtain an intersection represent-
ing the target hypothesis. We can fit a Gaussian distribution to this intersection area
and use as an initial estimate. This is not robust in practice, since the intersection
can be unbounded. Additionally, we have two intersection areas leading to two ini-
tial hypothesis. As such, this method provides no guarantees about initial estimate
uncertainty or range.

Signal-Strength Based. We can attempt to use the signal strength to resolve the
ambiguity of each measurement. The robot could travel toward one hypothesis and
measure the signal strength. We expect the signal strength to increase if the robot
travels towards the correct hypothesis. In practice, we found this strategy to be sen-
sitive to sensor noise from the unknown and possibly complex spatial signal strength
patterns. We found that for small movements near the edge of the sensing range this
method was unreliable.

Each of these initialization methods fails to provide a guarantee of time cost, un-
certainty, or consistency of the estimate. In the next section, we describe our solution
to this problem which relies on a local search strategy.
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Fig. 4 (a) While on its coverage path (curved arrow), the robot, at O, detects a non-zero signal
for some frequency X . (b) The initialization strategy determines the sensing circle for X by
moving along search paths as shown until X is not detectable again. Shown is a case where
three search paths fail to uniquely identify the sensing circle. (c) An example of a Four-path
search.

4 Local Search

The goal of the local search is two-fold: (1) determine whether an aggregation exists
nearby and which targets are contained within the aggregation, and (2) form good
initial estimates (mean and covariance) for each target in the aggregation. The ini-
tialization phase begins as soon as the robot first detects a non-zero RSSI from a
radio tag while on the search path (Figure 4(a)). We assume that the detected tag X
is at the center of a sensing circle CX of radius r. Our objective is to establish an ini-
tial estimate of X and r. In this section, we first present our local search initialization
strategy for a single target (i.e. X). We bound the worst-case and average-case time
required for this strategy. We then extend this strategy for the case of an aggregation
of multiple tagged fish.

4.1 Single-Target Local Search

Note that both X (the origin of Cx) and r are unknown. By finding three points on
the perimeter of CX we can solve for X and r. To find these points, the local search
proceeds as follows:

1. From the point of first detection (O), the robot moves in a fixed direction with
respect to the global frame (e.g., North or angle α).

2. When the robot can no longer detect the target X (position A in Figure 5) it
reverses direction and returns to O.

The line segment traversed in these two steps is called as a search path. To analyze
the time cost of this strategy, we establish the minimum number of search paths
needed to find at least three points on the boundary of CX . We can see that at least
four equally spaced search paths are necessary and sufficient from Figure 4(b).
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Fig. 5 The robot continues along an arbitrary but fixed direction until it cannot detect the
signal from X (at position A). The robot then returns to O and repeats the same strategy along
a perpendicular line (B). In general, the O can lie in the interior of the sensing circle, hence
the robot also searches along C and D.

We now establish the cost of using four search paths to find X and r. The analysis
follows Figure 5. Let angle OAX be θ . By design, the angle AOB is π

2 . The distance
|AB| is 2r and segment OA has length 2r cosθ while OB has length 2r sinθ . Assume
the robot moves with velocity v. Each of these lines must be traversed twice, for a
total required time of,

Tsingle =
4r
v

cosθ +
4r
v

sinθ + 4 · ε (1)

where ε is the time taken to recognize the robot has left CX , turn around, and re-enter
CX . Note that θ is unknown and can take any value between 0 and 2π , depending on
the relative orientation of the target position with respect to the first search direction.
To obtain the worst-case cost, we maximize the cost function with respect to θ . A
straightforward derivation shows the cost is maximum when θ = 45 degrees for a
maximum cost of,

max
θ

Tsingle = 2
5
2

r
v
+ 4 · ε (2)

The expected search time, assuming θ is uniform in the range [0,2π ] is E[Tsingle] =
2 r

v + 4ε .

4.2 Multi-target Local Search

To extend the local search strategy to multiple targets, we need a model for fish
aggregations. While common carp are relatively broadly dispersed during summers,
they tend to form tight aggregations under ice-covered lakes in winters [1, 2, 5, 7].
For example, while average distances between radio-tagged carp during summers
are 300-500 meters, in winters, these distances decrease to 50-100 meters [1]. In
some cases, entire populations of carp, usually several thousands of fish, have been
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Fig. 6 (a) The single target search fails to intersect all the sensing circles in the case of an
aggregation. (b) An example of searching for an aggregation using two separate search steps.
The robot first finds the boundary of CX (dashed), centered at O′. Then, after moving to O′,
searches along four paths to identify the boundaries of each sensing circle.

shown to aggregate in areas that are only 100×100 meters in size [1]. We formalize
the notion of an aggregation using the following definition.

Definition 1. Let L = {X1, · · · ,Xi, · · · ,XN} be a set of tagged fish, ri be the sensing
radius of Xi, and r� = mini ri. L is called an aggregation if, ∀i, j, ||Xi−Xj||2 < r�

Under this definition, we cannot directly use the local search strategy for a single
target for multiple targets. Figure 6(a) illustrates an example case where the four
search paths do not intersect the sensing circle of Y present in the aggregation.

We propose the following strategy: By Definition 1, for any target x, the distance
to all other targets to x is less than r�. Returning to the case of one target shown in
Figure 5, we see that four search paths can provide an estimate of a target location as
the center of the estimated sensing disk. In general, since we don’t know which fish
are contained in the aggregation, it might be necessary to search for all frequencies.
As a practical step, we make the assumption that the true location of the first fish
X is close to the center O′ of the estimated sensing circle. This allows us to move
to O′ and determine which fish are nearby. We can then perform another multi-path
search to map the boundaries of all nearby frequencies (see Figure 6(b)). We call
the resulting algorithm Four-Path.

Assuming we begin a search from the target location X , we can show that four
paths are sufficient to detect the boundaries of each sensing circle in the aggregation.
Consider Figure 7, which illustrates the possible configurations of the rest of the
targets with respect to the first. We have three cases:

• The target Y is aligned with the search path starting at O′, and we detect two
points of CY . This case has a unique solution: Y is at 1

2 |XA′| along XA′.
• O′ is on the boundary of CY . In this case we detect three points O′, A′, and B′. We

can solve CY directly.
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Fig. 7 In general, the starting location of local search can lie anywhere on the boundary or
interior of the sensing circle. In each case, we obtain a different number of points as shown.
For all cases, we can determine the sensing circle uniquely.

• O′ is inside the circle CY . We can detect four points at A′, . . . ,D′, and solve the
sensing circle CY using least-squares fitting.

Each search path begins at O′ ≈X . The robot moves until it cannot detect any nearby
tags. By Definition 1, this can be a maximum of 2r in any direction (traveled twice)
for a total cost of 16 r

v +4 ·ε . A total of five targets are required to achieve the worst-
case cost. Adding this to the worst-case cost of the initial search, plus the maximum
displacement between the points O and O′ gives,

Tmulti = 17
r
v
+ 2

5
2

r
v
+ 4 · ε. (3)

4.3 Discussion

The cost shown by Equation (3) may seem large. For example, given our system,
v is approximately 2 meters per second and, for comparison, assume r is near 100
meters. Thus the total cost is approximately 19 minutes for the worst-case 5 targets.
While we are not concerned with the aggregation displacing in this time, this may
cause unnecessary drain on the limited operational life of the robot. To put this in
context, compare this to the cost of taking two bearing measurements to initialize
each target individually. Recall from Section 3.1 that a bearing measurement takes
approximately 1-2 minutes. At least two measurements are required, resulting in
10-20 minutes for 5 targets, not counting the time to displace between measurement
locations. By amortizing the cost of a local search on a per-target basis, it is clear
the search-based strategy will incur a lower cost to initialize larger aggregations.

To see the relative advantage of a two-phase search, consider the work required
by a single-phase search. That is, upon detecting a non-zero signal strength, we
could search along K > 4 search paths and attempt to intersect each nearby sensing
circle. The necessary number of search paths can be found as follows. Refer to
Figure 8. In this example two targets, X and Y are arranged along the x axis with
respect to the starting location O. Assume the first search path moves along the x
axis and the next search path is offset by an angle α . Then, to intersect the circle
CY we require 2r sinα = r. Solving, we get α = 30 degrees, i.e., K ≥ 12 search
paths over 360 degrees. We call the resulting algorithm Twelve-Path. Note, unlike
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XO
r r

r

Fig. 8 To extend the single target local search strategy, we need at least twelve search paths
(separated by less than π

6 ) to intersect each sensing circle at least thrice

the Four-Path strategy, we must sample the entire list of frequencies in the lake over
each of the twelve paths because we do not know until we are finished which tags
belong to the aggregation. Hence the time taken to sample a frequency, and the total
number of targets in the lake affect the cost of this strategy.

Because the distribution of the targets both in and between aggregations plays a
large role in the expected search time, we compare these strategies in simulations.

5 Simulations

In the analysis presented in the previous section we assumed the time required to
sample a frequency (t) was negligible. In practice, we may periodically stop the
robot while sampling the frequencies to avoid radio interference from the electric
drives, which takes some time. Second, we assumed the same sensing range r for all
tags, when in practice it can be different for each tag. Finally, we evaluated the cost
to initialize the targets in a single aggregation. In general, there can be more than one
aggregation in the lake, each possibly containing different numbers of tagged fish.
In this section, we investigate the role of the time spent in sampling the frequencies,
the effect of multiple aggregations on total cost, and the effect of different sensing
ranges on the time to initialize all targets.

We conducted simulations as follows. To evaluate a varying sensing range, r is
drawn uniformly at random between [50,100]m for each tag. We vary the number
of aggregations from 1− 10 (with at least one fish each). The remaining fish are
assigned randomly. The direction in which the robot enters the detection disk of the
first target for each aggregation is also drawn uniformly at random between 0 and
2π radians. The velocity of the robot is given as v and is assumed fixed.

We compare Twelve-Path and Four-Path strategies presented in the previous sec-
tion. Recall that the Twelve-Path (Figure 8) strategy moves along twelve search
paths from the point of first detection, while sampling on the entire list of frequen-
cies present in the lake. The Four-Path strategy (see Figure 6(b)) estimates the sens-
ing circle for first tag detected, moves to the center of this estimated circle, samples
all frequencies once to detect the list of frequencies present in the aggregation, and
then moves along four search paths to estimate the sensing disks for only the subset
of tags detected in the aggregation. Both produce an estimate of the sensing range
and position of each nearby tag.
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Fig. 9 Simulation comparing the time taken to initialize all 10 fish in the lake, as the number
of aggregations varies. The Four-Path strategy performs better than the Twelve-Path. The
bars indicate the minimum and maximum times, and the trend line plots the mean time of 50
instances.
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Fig. 10 Mean, minimum and maximum time taken as the number of fish increases in one
aggregation for the Four-Path strategy. For lower sampling time, the time to travel dominates
and thus scales well for larger aggregations.

In Figure 9, we compare the mean, min and max time taken for executing both
strategies for 50 iterations, as a function of the aggregation size M with total number
of fish, N = 10. The sampling time per frequency is t = 0.03 sec (we obtain similar
results for other choices of sampling time). We observe that the Four-Path strategy
takes less time, as compared to the Twelve-Path strategy.

Figure 10 shows the time taken by the Four-Path strategy when size of one ag-
gregation is increased (as opposed to the number of aggregations in Figure 9). For
lower sampling time, we observe that the time to travel over the search paths domi-
nates the time to sample for various frequencies. Since the distance traveled by the
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robot doesn’t change significantly with increasing number of fish in the aggregation
(by Definition 1), we see that the time taken scales well.

6 Experiments

We implemented our initialization strategy on the mobile chassis shown in Fig-
ure 1. Three tags were deployed on Lake Gervais, MN, and their true locations
were recorded for comparison (see Figure 11). The robot first detected the tag with
frequency 48341 at the location marked START in Figure 11(a). The robot then exe-
cuted the Four-Path strategy. After completing the first phase of the Four-Path strat-
egy, we fit a circle to the points where we stopped detecting the signal for 48341
as shown. This circle was used as the 3-σ uncertainty ellipse of a 2D Gaussian
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Fig. 11 A successful experiment demonstrating the local search strategy and localization
steps
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distribution with the center of the circle used as the mean for initializing the esti-
mate for this tag. The robot then traveled to the center of this circle and sampled the
list of frequencies to detect nearby tags. The robot detected signals for frequencies
48931 and 48999 (48999 was due to radio interference and not an actual tag–the
Localization strategy received no valid measurements and discarded this estimate).

The robot then executed the second phase of the Four-Path strategy, where it
searched for frequencies detected at the center of the initial circle as shown in Fig-
ure 11(b). The corresponding hypothesis for all tags are shown relative to the true
locations. Using this initial hypothesis, the robot then executed the active localiza-
tion algorithm described in [13]. Figure 11(c) shows the execution of this localiza-
tion algorithm, the measurement locations selected for each tag (triangles), and the
bearing measured (black lines).

The final estimates for the two actual tags in the aggregation after five measure-
ments (48341 and 48931) are shown using the 3-σ uncertainty ellipse. Figure 11(d)
shows the GPS location of the tags along with the initial and final estimates. The
final covariance for 48341 had eigenvalues 56m2 and 168m2 (corresponding to an
error ellipse with radii 7m and 12m), starting from an initial covariance with
eigenvalues 1380m2. The final covariance for 48931 had eigenvalues 49m2 and
127m2 (radii 7m and 11m), starting from an initial covariance with eigenvalues
1758m2. The final error for 48341 and 48931 were 27m and 23m respectively.

7 Conclusions

We are working toward the goal of localizing multiple targets in a known envi-
ronment in bounded time. The complicated interplay of target distribution, sensing
range, measurement noise, and ambiguous measurement model makes each phase
independently interesting. Here we presented a strategy to initialize consistent hy-
potheses for multiple targets in an aggregation. In our future work, we plan to extend
the our system to multiple robots and incorporate fish mobility models. To extend
this algorithm to multiple robots, we must account for communication constraints
between the robots and develop allocation algorithms which guarantee the work is
distributed evenly. For mobile targets, we must both develop motion models for fish
and develop new search and localization algorithms based on these models. One
possible approach is to model the fish as adversarial–part of our ongoing work.
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Session Summary  

Recent years have seen the sensing and navigation field move to consolidate past 
accomplishments into robust and persistent navigation systems that are able to 
leverage continually evolving sensor technology.  While interest now lies beyond 
sensing the world as obstacles or free space and instead centers on constructing 
continuous models of the environment that are robust to environmental changes, 
challenges such as automatic sensor calibration remain pervasive.  The sensing 
and navigation session of ISER 2012 contained 4 papers spanning the full 
spectrum of the field; from sensor calibration through to navigation systems.  The 
first speaker, Liz Murphy from QUT, presented a comparison of visual odometry 
techniques that experimentally evaluated the strengths and weaknesses of two 
different algorithmic approaches to odometry in indoor environments and 
demonstrated the possibility of achieving more robust VO through combining 
these approaches.  The paper highlighted that issues such as poor illumination and 
restricted fields of view still pose problems for visual odometry systems.  The 
second speaker, Steve Martin from QUT, outlined a method for constructing 
traversability maps for robotic vehicles online.  In this work,  traversability was 
measured onboard the vehicle using metrics such as power consumption, slip and 
vehicle orientation.  Maps were constructed from sparse measurements using 
Gaussian Process techniques.  Experiments were conducted to verify the 
usefulness of both the traversability metrics as predictors of terrain type and of the 
traversability maps' utility for planning.  The third paper, presented by Jessie 
Levinson of Stanford, demonstrated the automatic calibration of coupled 2D 
camera and 3D laser systems in arbitrary scenes with no known features.  The 
technique estimates the six dimensional transform between the two sensors – 
assumed to have overlapping fields of view and synchronized data capture – using 
the assumption that depth discontinuities in the laser scan should map to edges in 
the camera image.  Vastly more accurate and faster calibrations than comparable 
manual techniques were reported.  The final paper, presented by Jan Elseberg 
from Jacobs University in Bremen, discussed the simultaneous automatic 
calibration of all sensors – such as 3D laser, IMU and odometry, on a mobile 
scanning platform.  This was achieved by optimizing a quality measure on the 
constructed point clouds, and was accomplished without the need for additional 
hardware or modifications to the environment. The system was validated on two 
different robotic platforms, in both cases finding more accurate calibration 
parameters than manual techniques. 



Experimental Comparison of Odometry
Approaches

Liz Murphy, Timothy Morris, Ugo Fabrizi, Michael Warren, Michael Milford,
Ben Upcroft, Michael Bosse, and Peter Corke

Abstract. Odometry is an important input to robot navigation systems, and we
are interested in the performance of vision-only techniques. In this paper we ex-
perimentally evaluate and compare the performance of wheel odometry, monocular
feature-based visual odometry, monocular patch-based visual odometry, and a tech-
nique that fuses wheel odometry and visual odometry, on a mobile robot operating
in a typical indoor environment.

1 Motivation and Problem Statement

Fig. 1 The Adept Guiabot robot used in
this paper

Today most research robots, the proto-
types of future commercial systems, use
laser rangefinders (LRFs) as the sensor
that informs the essential parts of a nav-
igation system: odometry, place recogni-
tion and mapping. LRFs are self-contained,
reliable and provide metric information
about the world, but since they are based
on mature electro/optical/mechanical tech-
nologies will always be more expensive
than cameras. They also only capture just
a slice through the scene whereas a cam-
era can instantaneously capture a view of
a whole area which is important for fast
moving robots. Imaging 3D sensors such as
flash LIDAR (eg. Swiss Ranger) or Kinect
technology are entirely solid-state but func-
tion poorly in the presence of daylight.
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Theoretically vision is able to perform the tasks of odometry and place recog-
nition, and the sensors are in principle cheaper and smaller than LRFs. Vision has
other advantages: it is a passive sensor and thus immune from the interference prob-
lems that will occur when multiple robots emitting infra-red light are operating in
close proximity; it provides rich scene information such as color and texture which
can assist semantic tagging; and when combined with motion it can generate 3D
scene structure. However vision is rarely reported for indoor navigation and this
paper details early results from a larger project aimed at developing a purely vision-
based large-scale and long-term mobile robot navigation system that can work both
indoors and outdoors.

This paper is concerned specifically with maximizing the accuracy of odometry;
we view odometry as an essential part of any navigation system and recognize that
external mechanisms to “close-the-loop” can improve odometry performance sig-
nificantly, but the focus here is on maximizing odometry performance in isolation.
We compare the performance of several odometry approaches: raw wheel odom-
etry, patch based monocular visual odometry (VO), state-of-the-art feature-based
monocular VO, a method of fusing wheel odometry and VO using confidence met-
rics generated from the VO, and laser scan matching which we refer to as ground
truth. The performance of these odometry techniques is evaluated in two distinct
indoor environments that present a number of different challenges.

2 Related Work

Visual data is rich in information, and in recent years visual navigation systems have
been able to create accurate large-scale maps whilst maintaining precise position and
orientation estimates for indoor and outdoor mobile robots [1, 2, 3]. While these use
loop closure detection to correct drift in the visual odometry estimates, we focus on
visual odometry alone in this paper.

There have been a number of different groups that have presented successful ap-
proaches for VO. Some initial efforts were focused on the use of single uncalibrated
moving cameras [4]. Issues such as projective drift in addition to the very difficult
task of practical auto-calibration, led subsequent authors towards a focus on cali-
brated methods for visual motion estimation [5, 6].

In [7] both single camera and stereo-rig approaches to the task of VO are pre-
sented. The conclusions of [7] indicate that the single camera method is less reli-
able due to inherent ambiguities in calculating the essential matrix between pairs
of images to initialise the structure and motion [8]. Despite these conclusions, two
successful monocular systems, MonoSLAM [9] and Parallel Tracking and Mapping
(PTAM) [10], have been demonstrated since. Stereo VO indoors has recently been
demonstrated to very good effect with minimal features [11, 12]. Although, stereo
cameras constrain the solution, we analyse a monocular setup, and in addition, fuse
wheel odometry to correct some of these problems.

The majority of visual SLAM and visual odometry techniques today rely on some
form of feature detection, whether that be SIFT [13], SURF [14], or some other
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feature detector. To obtain accurate visual odometry, features in an image must
be detected reliably and accurately over a short period of time to generate feature
tracks.

However, recent biological-based systems such as RatSLAM have shown good
performance over a wide range of environments and robotic platforms using very
low resolution, poor quality visual input. RatSLAM typically takes as input 1000
pixel images or simple image intensity profiles, and performs monocular patch-
based VO using template matching, yet is able to successfully map changing indoor
environments over long periods of time [15].

3 Technical Approach

In this section we describe the vision-based odometry algorithms that we are eval-
uating: two monocular VO systems (patch-based VO and VO using Structure from
Motion) and an odometry fusion technique. For ground truth we use the well known
laser-scan matching algorithm (GMapping [16]).

3.1 Patch-Based Visual Odometry

The patch-based visual odometry system detailed in this paper is a modified version
of the system deployed on a quad rotor in [15]. Compared to a quad rotor, using a
ground-based robot means that camera-scene geometry can be assumed known and
constant so the patch-based visual odometry system produces correctly scaled ve-
locity information. The approach assumes a non-holonomic platform with a camera
mounted at a constant height above the ground surface. Histogram equalization is
applied to full resolution images before down sampling (in order to minimize loss of
detail when reducing the image size) to a resolution of 320×240 pixels (see Figure
2). Then the movement of a single 64× 64 image patch is tracked over consecutive

Fig. 2 Patch-based visual odometry tracks the motion of a single small patch over consecu-
tive histogram equalized, resolution reduced images. Horizontal motion is scaled to produced
a measure of yaw, while vertical motion is scaled to produce a measure of translational speed.
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frames, by calculating the Sum of Absolute Differences (SAD) measure between
the current patch and the corresponding patch in the previous image, over a range
of horizontal and vertical offsets:

f
(

Δx,Δy, I j , Ik
)
=

1
r2

∣∣∣p j
x+Δx,y+Δy− pk

xy

∣∣∣ (1)

where I j and Ik are the past and current patches, r is the square patch side length
in pixels, p is the pixel intensity, and δx and δy are the patch offsets. The actual
motion of the patch is calculated by minimizing f ():

(Δxm,Δym) = argmin
Δx,Δy∈[−ρ ,ρ ]

f
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)
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where ρ is the range of patch offsets, set to 10 pixels for these experiments de-
scribed here. Vertical displacements of the patch are multiplied by a translational
gain constant to provide the translational speed, while horizontal displacements of
the patch are multiplied by a yaw gain constant to provide yaw rate information. The
translational gain can be calibrated either through knowledge of the camera’s height
above the ground plane and its pose or experimentally — in this paper the gain was
calibrated using a traverse of a known length straight corridor. An estimate of the
yaw gain was calculated using the image resolution and camera’s field of view, and
refined using a sequence of robot rotations that were known to result in zero net
angular change.

3.2 Structure from Motion VO

The tracking process for the Structure from Motion (SfM) VO is the monocular
version of the VO described in [2]. The VO algorithm starts by detecting SURF [14]
features in the images at each time-point (Fig. 3). A GPU-based feature matching
scheme is then used to match features from the base camera (P(base,i)) to those at
the previous time-point (P(base,i−1)). Successful matches are those where the ratio
of the Euclidean distances between the best and second best descriptor candidates
exceeds 0.6 [13].

Given that a set of features has been tracked successfully from the previous set of
frames, it is now possible to estimate the new location of the camera rig. The most
common method [7, 17, 18] is to determine the camera’s pose from the existing
scene structure [19]. This has the advantage of using the well conditioned scene
structure from previous time-points, without having to rely as heavily on the new
track data being introduced. The particular algorithm used in this case is from [20]
and is combined with a MLESAC [21] hypothesis and test paradigm in order to
account for incorrect feature tracks and erroneous scene structure.

Within the MLESAC routine, further speed ups are achieved by using a novel
modification of the Td,d test [22] to allow for early detection of poor pose estimates.
This greatly reduces the need to calculate all the reprojection errors for unlikely pose
hypotheses. The modification replaces the chi-squared test from [22] with a test that
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Fig. 3 Typical set of SURF features detected in an indoor image. Note the lack of suitable
features due to minimal texture in this environment.

the average (Huber) truncated cost of the reprojection error for the d tested points
does not exceed the average reprojection error of the best solution found so far. This
modification attempts to enforce that only improved estimates for the camera’s pose
be tested in full.

3.3 Wheel and Visual Odometry Fusion

Relying on Visual Odometry alone can result in either catastrophic failures or large
deviations from the true pose when the number of tracked features is small, such as
occurs when turning at the end of a corridor. To minimise these types of failures, we
investigated the fusion of wheel odometry with VO.

The fusion was based on a weighted average of the wheel and visual odometry,
where the weighting was determined by the estimated error computed by the visual
odometry technique. As the estimated VO error increased, the wheel odometry was
weighted more highly. The estimated error was mapped to a value in the range [0,1]
using the arctan of the error to give a confidence or weight α for the weighted
average computation:

X̂ = αXVO +(1−α)Xwheel (3)

where X̂ is the estimated pose of the robot.
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The confidence measure of the patch-based VO,

S =
1− dmin

d̄
(4)

is based on the best SAD matching score, where dmin is the minimum Sum of Ab-
solute Differences (SAD) score and d̄ is the average SAD score calculated over all
offsets.

The SfM VO confidence level is based on the number of structure points added
for a new camera position which are consistent with previous cameras and associ-
ated structure. Bundle Adjustment over the last 20 camera positions is used to com-
pute the number of inlier points. A sharp drop in the number of new structure points
has proven to be a good indicator of failure in the SfM VO. However, sharp drops
can also be attributed to quick turns where very little structure from the previous
camera positions are observed.

Both monocular VO estimates are rescaled at each camera frame using the wheel
odometry at the same time step. To ensure accurate rescaling and fusion, both visual
and wheel odometry data streams had to be well synchronised. This was achieved
by computing the correlation between two subsets of each of the data streams
(Fig. 4).

Fig. 4 Correlation between the wheel and visual odometry data streams

A parabola was fitted to the peak with the maximum indicating the time offset
between the two data streams (Fig. 5).
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(a) Parabolic best fit to peak (b) Magnified view of parabolic best fit

Fig. 5 Magnified view of the peak in the correlation and the parabolic best fit to the peak

4 Experiments

All data was collected on a MobileRobots’ Research Guiabot shown in Figure 1.
The Guiabot has a SICK LMS200 laser scanner which was used for ground truth
acquisition indoors. A Point Grey Grasshopper 1.4M pixel monochrome firewire
camera with a 2/3” CCD was used for image acquisition at 12.5 frames per second.
The robot has two onboard computers, both running ROS, and both vision and laser
data were logged continuously during operation. Wheel odometry is computed by
the Guiabot which fuses wheel encoders and heading gyroscope estimates. All data
processing was done offline. Camera exposure time and gain settings were con-
trolled by an algorithm that optimized exposure by ignoring bright image regions
(such as windows) while keeping an upper bound on exposure time to eliminate
motion blur.

The experiments took place on two separate floors of a building. The first, Level
7, represents an open plan, feature-rich environment that the robot can navigate
without making sharp turns. By contrast, Level 11 features narrow corridors with
long sections of plain white walls and navigating this environment required the robot
to make sharp 180◦ turns (Fig. 6).

Ground truth was calculated using the logged transform and laser data in con-
junction with GMapping [16] to make a map of the area covered in the experimen-
tal traverse. The resulting map was then provided to AMCL [23] to recover the path
taken by the robot.

Analysis of the performance of the two VO algorithms (SFM and Patch-based)
was performed using a windowing technique similar to that of Johnson [24]. The
windowing technique works to remove the effect of global drift from the analysis.
For each point on the VO trajectory, the corresponding point (gtstart , reached at
time tstart ) on the ground truth trajectory is found by interpolating linearly in time.
The ground truth is traversed some window distance (in our case 20 metres) and
the time tend , and location gtend is noted. We then apply the transforms contained in
the original VO trajectory between times tstart and tend to the equivalent ground truth
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Fig. 6 A typical image from our dataset. These types of images proved very difficult for the
feature-based SfM VO.

point gtstart , to produce our drift-free VO position VOend . The windowing error is
the difference between VOend and gtend . Note that we found the window size had
little effect on the normalized window-relative errors.

This process is repeated for every point in the VO trajectory for which we could
reliably interpolate ground truth.

5 Results

The performance of the odometry techniques was evaluated using the metric de-
tailed in Section 4. Figures 7-10 show the results of the analysis and underpin our
comparison of the techniques. Analysis of Figure 7 reveals that the wheel odometry
gathered on both level’s 7 & 11 (WO7 & WO11) performs extremely well. Intu-
itively, there is no benefit to be gained from fusing sensors unless there is significant
overlap in the performance of individual sensors. The results in Figure 8 show no
areas of the trajectory where Structure from Motion and Patch-Based VO (SFM11,
SFM7, PTCH11, PTCH7) exhibit good performance while wheel odometry (W11,
W07) is performing poorly. As such we have introduced artificial wheel odometry
failure at points within the level 11 dataset (see Figures 8(b) and 8(d) CWO11, and
Figure 10) which are subsequently analysed with the proposed fusion with results
in Figures 8(b), 8(d) and 8(f).
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(a) Position Error

(b) Angular Error

Fig. 7 The two box plots compare the position errors and angular errors across odometry
techniques. From the top, we compare Fused (with artificially corrupted Wheel Odometry)
Structure from Motion VO on the more-challenging 11th floor (FSFM11), similarly Fused
Patch-Based VO on Level 11 (FP11), the corrupted Wheel Odometry on Level 11 (CWO11),
the raw Wheel Odometry on Levels 11 and 7 (WO11,WO7), raw Structure from Motion VO
on both floors (SFM11,SFM7) and raw Patch-based VO (PTCH11,PTCH7). The circled cross
denotes the median value of the absolute error and the box denotes the region where 25% to
75% of the error data points lie. Red dots to the right of the whiskers denote the spread of
outliers.
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(a) Level 7-Position Errors

Patch VO
SFM VO
Wheel Odom
Corrupted WO
Fused Patch
Fused SFM

(b) Level 11 - Position Errors

(c) Level 7 - Angular Errors (d) Level 11- Angular Errors

(e) Level 7- Confidence (f) Level 11- Confidence

Fig. 8 (a)-(d) show how the window-error varies over the trajectory taken by the robot. Points
of extreme error on the Patch VO and SfM VO curves tend to correspond to turns of greater
than 90◦. Note the scale of the error for the Level 7 dataset is much smaller, and there are no
gross failures (see Figure 9) so the results of the fusion technique add little improvement and
are not shown on results for this Level. In (b) and (d) it is obvious that the fusion technique
greatly improves the performance of the SfM VO. Figures (e) and (f) show that drops in the
confidence factor coincide with large errors in the VO, but they are not closely correlated. At
t=700s in (d) note how the error in the fused SfM is high as a result of low confidence in the
SfM VO result coinciding with a point error in the corrupted wheel odometry.
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Fig. 9 Overlay of level 7 odometry sources used in experiments. Analysis of this level iden-
tified only global drift and no significant point failures to which a fusion approach could
recover.

Fig. 10 A geometric view of the VO fusion method operating on the Level 11 environment.
Here, corrupted Wheel Odometry is fused with Patch-based VO. The inset images highlight
the difficult areas of the Level 11 environment - both VO techniques struggled with tight
cornering in narrow corridors. The top inset shows the nature of the featureless images that
the robot sees when turning in close proximity to white walls at the corridor ends - these may
continue for tens of frames. The bottom inset shows the result of a window-error calculation
at one of these failure points - note the large drift in positional error shown.
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Figure 7 illustrates that Patch-based VO exhibits low positional error compared
with SfM VO, but that SfM VO outperforms it in terms of angular error — the fu-
sion of these two odometry sources to create a more accurate source is therefore a
viable future option. Figures 8(b) and 8(d) illustrate a flaw in our fusion technique
— basing the confidence purely on metrics derived from VO means that when both
VO confidence is low and wheel odometry encounters a point of failure, the result-
ing system error is high. Future work will need to incorporate some form of Wheel
Odometry sourced confidence measure to ensure good results, or express low confi-
dence in the result — should both odometry sources happen to fail simultaneously.

6 Main Experimental Insights

The high level insights are that we find patch and feature-based VO are comple-
mentary, wheel based odometry is surprisingly good, and that there are pathological
situations that severely challenge a visual odometry only approach. Patch-based VO
outperforms SfM VO for position error but not angular error, and that SfM VO
failed to produce a contiguous result for Level 11 so an overall metric could not be
computed.

A significant surprise was the good performance of wheel odometry; perhaps
aided by the significant weight of this robot, the carpeted floors on which it op-
erated, and inbuilt gyroscopic fusion. Another important insight gained during the
experiments was the challenge of obtaining images of sufficient quality for the vi-
sual odometry algorithms. Indoor environments are poorly illuminated compared
to outdoors and the light gathering ability of the camera is important. The trend to
high-resolution sensors means that pixel size and hence light gathering ability is low.
We used a camera with the largest pixels we could buy — a 2/3” format with pixel
size of 6.45× 6.45μm which have more than four times the area of the 3× 3μm
pixels in a typical 1/2” sensor. Larger pixels means that exposure time can be kept
smaller which reduces image blur. Blur reduces reduces high-frequency scene con-
tent and the number of detected features. Similarly, maximizing the field of view of
the camera is important in indoor environments, to avoid the feature-poor imagery
such as that shown in Figure 10 which is a challenge to any VO system. We also
found that the camera’s inbuilt exposure control strategies were unsuitable — it re-
sponded to image highlights by reducing exposure making large areas of interest
too dark. We implemented our own exposure controller as a separate ROS process
that periodically samples the image stream and adjusts the exposure according to a
median statistic and placed an upper bound on exposure time.

Acknowledgement. This research was supported under Australian Research Council’s Dis-
covery Projects funding scheme (project number DP110103006).
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Building Large Scale Traversability Maps Using
Vehicle Experience

Steven Martin, Liz Murphy, and Peter Corke

Abstract. Traversability maps are a global spatial representation of the relative dif-
ficulty in driving through a local region. These maps support simple optimisation
of robot paths and have been very popular in path planning techniques. Despite
the popularity of these maps, the methods for generating global traversability maps
have been limited to using a-priori information. This paper explores the construction
of large scale traversability maps for a vehicle performing a repeated activity in a
bounded working environment, such as a repeated delivery task. We evaluate the use
of vehicle power consumption, longitudinal slip, lateral slip and vehicle orientation
to classify the traversability and incorporate this into a map generated from sparse
information.

1 Introduction

When deploying long-term outdoor robots it is important that they operate safely
and efficiently in order to maximise their life span and performance. In the con-
text of mobile robots this means optimising paths to minimise energy, time and the
risk of failure. In path planning the minimum cost route is often computed from
traversability, a continuous scalar metric representing the cost to traverse a region.

Typically traversability is calculated from maps or sensors (such as satellite im-
agery, onboard cameras and LIDAR) which examine the terrain prior to traversal
thus allowing potential obstacles and difficult regions to be avoided at runtime. The
main focus of current traversability metrics has been on optimising a single traver-
sal through the environment but for many long term deployments it is likely that a
robot will be performing repeated tasks within a region which opens the possibility
of learning from experience and improving performance.

Current traversability metrics do not incorporate information about the
vehicle’s prior experience yet this can provide valuable information to build or
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reinforce the estimated traversability map. In this paper we describe algorithms to
create traversability maps at run time from various sensor data streams and present
traversability maps built from robot experience.

Unlike other learning or classification systems maps based on vehicle experience
do not rely on expert knowledge or training and have a continuous signal over all
terrain independent of terrain type. We argue that this approach provides a more
accurate reflection of the actual cost since the metric is based on actual robot expe-
rience of the terrain and does not have a bias toward any terrain type.

Most outdoor robots are equipped with sensors such as GPS, accelerometers,
gyroscopes, odometry and motor power which can be used to estimate traversability.
We use these onboard sensors to compute four traversability metrics from which we
estimate costmaps using a Gaussian process regression and demonstrate how these
are refined over multiple traversals. We then combine the individual metrics into a
weighted traversability function. The weights are trained on a dataset in a structured
classified region and applied to the exploration of an unknown environment.

Section 2 presents an overview of prior work on traversability and its estimation
using a-priori data and proprioceptive sensors. Section 3 describes the traversabil-
ity metrics used and provides some background on the Gaussian regression process
for interpolation and Section 4 details the platform and experimental areas. Sec-
tion 5 presents the experimental results, analysis and discussion, and in Section 6
we present conclusions and future work.

2 Related Work

Traversability is a measure of the difficulty of driving through a local region and
is used by mobile robot path planners to avoid obstacles or hazards and optimise
paths. Traversability is usually determined by calculating a metric directly from the
sensor data or by making a classification of the type of terrain the vehicle is driving
over.

2.1 Direct Traversability Metrics

The most common method of calculating traversability directly is to use the 3D
structure of the surface. This can be gathered locally using nodding or spinning
LIDAR, stereo, structured light cameras or globally from aerial LIDAR.

A simple surface roughness-based traversability metric was used by [4] to adapt
the speed of mobile robot based to the terrain immediately in front of it. In [10] three
traversability metrics were developed which use roughness of the field to determine
the robot’s ability to cover the area and cross regions. Roughness has also been
used by rover style robots, for example [14] used stereo vision to determine local
roughness as well as terrain slope in order to plan paths which avoided rocky and
sloped areas.

Another method using the 3D structure to determine the traversability is to ex-
amine the configuration of the robot on the surface. This approach was employed
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by [6] and [7] which assessed the vehicle’s stability or tractive force at a point and
this was equated to traversability. This is also useful for reconfigurable robots which
can adapt their suspension or geometry to optimise the traversability in different re-
gions [6].

Another approach to calculating traversability directly is based on terrain colour
analysis [17]. However this makes strong assumptions about the association
between colour and terrain and hence traversability. Learning techniques can be
applied but the use of imagery usually requires some form of pixel-based terrain
classification.

2.2 Classification

A more popular approach has been to classify terrain. Robots often work in struc-
tured environments, the most ubiquitous being road networks, where the surface
types are know. This allows classifications of terrain types to be made and used
in planning. The primary sensor modality for classification has been imagery. At-
tempts have also been made to link a priori information from satellite images with
local classifications to improve long distance traversability estimates.

Classification is often simplified to a binary problem of whether terrain is lo-
cally traversable or untraversable. This type of traversability assessment has been
demonstrated by [8] using a neural-network-based approach and similar classifiers
have been described by [12] and [16]. A binary classification is valuable for hazard
avoidance but does not provide any additional information about the cost of regions.

Classification from satellite and aerial LIDAR into ground structure such as
buildings, road and vegetation and then a global traversability has been shown
by [15] and demonstrated on the Crusher platform [13]. An alternative to image-
based classification is to use proprioceptive sensors. In [5] the use of a tactile sensor
was demonstrated to classify the terrain type according to sensed vibration.

A purely classification-based assessment has the disadvantage of relying com-
pletely on training data and expert knowledge of the traversability cost of each
terrain type, and ignoring intra-class variation. The classification approach can be
augmented to use proprioceptive sensors such as the wheel slip, vibration, energy
consumption to infer whether or not the classification is successful and possibly to
update the cost of the terrain class.

2.3 Self-supervised Classification

A novel approach to self supervised classification was demonstrated by [1] which
used onboard stereo imagery to determine a local traversability map and incorpo-
rated vehicle slip to supervise learning of the terrain classification. The work of [2]
extends [13] to include map online learning that learns the association between a lo-
cal traversability from onboard sensors and the classification of terrain from satellite
imagery. A similar approach was applied to a lunar rover platform by [3].
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The focus of much prior work has been on the situation of a vehicle perform-
ing a single traverse through a region. Based on this assumption the proprioceptive
sensors are much more desirable as they allow hazordous areas to be avoided. The
issues with training and misclassification of regions has been improved by incorpo-
rating proprioceptive sensors and also providing a better grounding of the classified
terrains cost.

3 Technical Approach

Typical robots are equipped with a variety of sensors, many of which can be used to
assess traversability of the terrain they are driving over. For example GPS, accelero-
moters, gyroscopes, odometry and motor current sensors provide rich information
about the vehicle’s motion with respect to the plan, terrain induced vibration, and
the work required.

In this paper we compute four traversability metrics to describe the vehicle’s
performance along the path: power consumption, longitudinal slip, lateral slip and
vehicle orientation. These metrics are designed to capture the properties of the ter-
rain as seen by the vehicle. The power consumption provides a direct energy cost
for traversing each region. The slip metrics provide an indication of the amount of
tractive force the vehicle can exert, while the orientation shows the stability or risk
of rollover of the vehicle. Each of these metrics is described below.

3.1 Traversability Metrics

The power metric is calculated from the vehicle’s electrical power consumption to
give a measure of energy used per meter travelled

TP =
VI
|v| [J/m] (1)

where V is the battery voltage, I is the current to the drive motor, and v is the vehicle
velocity estimated from GPS. The velocity is estimated within the GPS receiver
based on the Doppler shift of the GPS signals which provides a much more accurate
measurement than the position derivative [11].

The longitudinal slip metric is

Tl =
ωRu −|v|

ωRu
(2)

which is non-dimensional and where ω is the angular velocity of the drive wheels
and Ru is the radius of the wheel.
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The angular slip metric is

Tθ̇ =

tan(θ)
Wb

v− θ̇z

tan(θ)
Wb

v
(3)

which is non-dimensional and where θ is the steering angle, θ̇z is the rotational
velocity about the vehicle frame z-axis in the and Wb is the wheel base length.

The local slope of the terrain impacts mobility and reduces the normal force on
the wheels, resulting in lower tractive force and an increased risk of rollover. As
the IMU is fixed in the vehicle frame it can be used to calculated the normal force
directly. The orientation traversability metric is

To = 1− |az − g|
g

(4)

which is non-dimensional and where az is the vertical acceleration in the vehi-
cle frame and g is gravity. This metric does account for acceleration of the vehi-
cle, however acceleration which changes the normal force is expected to affect the
traversability.

3.2 Interpolation

The data points which are captured from robot experience are sparsely distributed
in the region over which the robot operates, and noisy due to variation in terrain
and vehicle motion. To make these measurements into a continuous spatial func-
tion, useful for path planning, it is necessary to smooth and interpolate the raw data.
Gaussian processes (GP) with a squared exponential kernel have been popular in ap-
plications such as reconstructing terrain geometry [18] where they interpolate and
reconstruct the underlying non-linear characteristics of the surface. In prior work
heteroscedastic and homescedastic Gaussian processes have been used to generalise
probabilistic traversability costmaps from sparse measurement data. Based on these
results we choose a squared exponential kernel with hyperparameters estimated us-
ing cross-validation and Geisser’s Predictive Probability criteria for optimisation.

The GP model is used to learn the relationship between an input vector of the
robots position and the measurement of traversability. The traversability is nor-
malised from 0 to 1 where 1 is the most favourable traversability measurement for
each metric during the exploration phase and 0 is the least favourable measurement.
The GP model is trained on the traversability from the exploration dataset and then
used to predict the traversability and variance on a 1m grid for the region.

4 Experimental Setup

The rOscar platform, a small scale car-like vehicle shown in figure 1, was used to
map the traversability in two parkland areas. The vehicle was used to perform a
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Fig. 1 The rOscar platform is a 1/8th scale
RC car platform. It is equipped with a
Hokoyu UTM-30LX laser scanner, a Micros-
train 3DM-GX2 IMU, odometry and current
sensors. The onboard processor is a Gumstix
Overo running ROS and running drivers as
published in the cyphy ROS repository. See
[9] for more details.

Fig. 2 Graceville: The terrain traversability samples are shown in the test area (black) on
three terrain regions. These were manually identified as concrete (red), short manicured grass
(blue) and long unkept grass terrain.

random exploration strategy (using GPS waypoints) with a superimposed high fre-
quency sinusoidal steering demand to excite slip dynamics. The vehicle was driven
at an approximate speed of 5m/s (18 km/h, 11 mph) and the traversability metrics
are calculated at 1Hz.

The Graceville data set spans an area of 230×96 meters. It contains three distinct
areas consisting of concrete netball courts, short grass netball courts and a long grass
untended field. A total of 287 slip measurements were taken on the field. The differ-
ent regions are shown and highlighted in Figure 2. We expected that the concrete,
short and long grass areas would provide a good environment for demonstrating the
slip and energy traversability metrics. This data set was used to evaluate the four
proposed traversability metrics and costmap regression techniques.

The Everton Park data covers 208× 134 meters. It is a suburban park consist-
ing of mainly grass and shrubbery. A total of 567 slip measurements were taken in
the park over a period of approximately 2 hours. This unstructured park area pro-
vided a more interesting experimental environment for testing the metrics. After the
exploration phase was conducted 8 paths were then traversed to randomly selected
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Fig. 3 Everton Park : The
terrain traversability sam-
ples are shown in the test
area (black) on three terrain
regions

waypoints with a modified excitation to asses the correlation between the generated
traversability maps and the vehicle’s experience along the specific paths.

The exploration strategy consisted of selecting random waypoints within an ex-
ploration area and then preforming a sinusoidal path directed towards these loca-
tions. The traversability metrics were calculated when the vehicle was deemed to
be in an approximate steady state with sufficient angular velocity to excite the slip
dynamics. Whether the vehicle was in steady state was determined by its deviation
from the commanded velocity. When performing test paths through the environ-
ment the frequency of the oscillation was increased to allow the vehicle to drive an
approximately straight path and the traversability recorded at the peaks when com-
manded angular velocity was at a maximum. For the tested paths the vehicle was
always assumed to be in an approximate steady state at the peaks.

5 Results

5.1 Metrics

The Graveville dataset was used to asses how well the traversability metrics reflected
the actual terrain. As the terrain had been pre-classified onsite, GPS locations were
used to partition the traversability measurements according to terrain type.

We expected the known regions of concrete, manicured grass and long grass to
have quite different levels of traversability. Our goal was not to classify terrain
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Table 1 Summary of the mean and standard deviation for classified surfaces

Concrete Short Grass Long Grass
Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev

TP 0.9591 0.0231 0.9223 0.0289 0.8111 0.1221
Tθ̇ 0.4560 0.1618 0.4094 0.0919 0.2252 0.1247
Tl 0.4907 0.1454 0.4014 0.0811 0.2341 0.1054
To 0.9356 0.1211 0.9155 0.0979 0.9121 0.0737

but to observe an expected ranking for each terrain type and the variation of the
metrics over these regions. The concrete surface was expected to have the high-
est traversability followed by the short grass and then the long grass. Similarly the
variation or noise was expected to be smallest for concrete and largest for the long
grass.

The statistics for the sample points on terrain types is summarised in Table 1. His-
tograms showing the Tl measure for different terrain types is shown in Figure 4. Fig-
ure 5 uses box-whisker plots to summarise and compares the different traversability
metrics for each of the known terrain types. The metrics are normalised from 0 to 1
where 1 indicates the most traversable region.

Fig. 4 Histogram of the distribution of samples of Tl on terrain types

The expected rankings can be seen in table 1 and the box and whisker plot in fig-
ure 5 — both show the expected traversability ranking across terrain types although
there is a significant number of outliers and overlap in the measurement intervals.
The histograms of Tl , figure 4, also shows the distribution is unimodal and Gaussian
and similar results were found for other metrics.
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Fig. 5 Box plots of traversability metrics grouped by metric and and showing terrains in the
order concrete (C), short grass (S) and long grass (L)

For To the calculated metrics all appear to approach the upper bound of one, this
is likely due to the experimental area being approximately flat. The wider range of
values and lower average could be attributed to the local roughness in the grass areas
which was expected due to the small scale of the vehicle relative to terrain variation.

5.2 Interpolation

Gaussian processes are used to identify the underlying signal from sparse and noisy
data. Figure 6 shows the traversability maps for the Graceville test region after re-
gression.

From observations the TP metric provides the best distinction between the ter-
rain types. It has the lowest standard deviation on the two homogeneous terrains
and the traversability map resembles the manually classified terrain in figure 2. The
slip metrics, Tθ̇ & Tl , also show some distinction between the terrain types however
the similarity of the signals and the variation within the terrain groups perhaps indi-
cates some dependence on the path driven. The orientation metric is largely constant
across the explored region, which is expected since the test region was flat.

As expected the variance of the metrics increases with distance from the sampled
data, as shown in figures 6 & 7, however it can also be seen that in the absence of
information the traversability tends to zero or one and may contribute to under or
over estimation of the traversability in unexplored regions.

The correlation of the costmaps was calculated by

C =
∑
m

∑
n

(
Amn − Ā

)
(Bmn − B̄)√(

∑
m

∑
n

(
Amn − Ā

)2
)(

∑
m

∑
n
(Bmn − B̄)2

) (5)
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Table 2 2D Correlation coefficient of the interpolated costmaps for Graceville, left, and Ev-
erton Park Right

TP Tθ̇ Tl To

TP 1.0 - - -
Tθ̇ 0.69 1.0 - -
Tl 0.66 0.82 1.0 -
To 0.41 0.71 0.46 1.0

TP Tθ̇ Tl To

TP 1.0 - - -
Tθ̇ 0.051 1.0 - -
Tl 0.12 0.92 1.0 -
To 0.21 0.65 0.76 1.0

where A and B are the predicted mean matrices of traversability, and detailed in
table 2. There is a strong correlation between the TP and Tl metrics in the Graceville
dataset. In the Everton Park dataset there is also a strong correlation between the Tθ̇
and Tl metrics, but a reduced correlation between TP and Tθ̇ , Tl and To. We believe
that this is due to the Everton Park area being non-flat and power metric being
dependant on the mode of traversal.

Traversability Variance

TP

Tθ̇

Tl

To

Fig. 6 Traversability and variance of the traversability metrics for the Graceville dataset
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Traversability Variance

TP

Tθ̇

Tl

To

Fig. 7 Traversability and variance of the traversability metrics for the Everton Park dataset
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5.3 Testing Paths

The Everton Park dataset was gathered to test the application of the metrics to nat-
ural terrain. In natural terrain it is difficult to classify which areas are likely to be
costly, as the colours can often be ambiguous and the qualities of preferable terrain
may not be known prior to operation.

To test the cost map the vehicle was drive to 8 randomly chosen waypoints within
the explored region, as shown in 8. The frequency of the sinusoidal path was in-
creased to give allow detection of the traversability metrics while travelling in an
approximate straight line. Figure 9 shows the predicted and actual traversability
over the path.

While the measured values are mostly within the 95% confidence interval, the
noise on the signal is much more significant than any local variation within the
metric. It could be argued that the as the overall costmap utilises a large number of
samples it is likely to resemble the true traversability of the terrain but at the scale
the vehicle is operating the variation in global traversability is largely insignificant
compared to variation locally.

Fig. 8 Everton Park : The
traversed path is shown in
black and the goal way-
points indicated by the
markers
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TP Tθ̇

Tl To

Fig. 9 The estimated traversability (blue) with 95% confidence interval (grey) compared with
measured traversability (red)

6 Conclusions and Future Work

In this paper we have investigated the online computation of terrain traversability
metrics and their efficacy for path planning. We evaluated four different metrics
that are readily computed from common mobile robot sensors with data collected in
from different areas that the robot randomly explored.

The first experiment investigated whether the online metrics were indicative of
known surface types. While there was some correlation and the power measure was
the most discriminative the data shows a significant amount of variation which we
believe is due to the small scale of the vehicle with respect to the terrain — a tussock
of grass is of similar scale to the vehicle.

The second experiment investigated whether the metrics could be used to identify
regions which were preferable in natural terrain which would be difficult for current
classification techniques. The region could be mapped and the data used to predict
which areas would be more traversable but it was difficult to verify this as the noise
on the signal overshadowed the variation globally.
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The small scale vehicle was chosen for this work as it was expected that variation
in the terrain would have a larger impact on the vehicles performance and therefore
be easier to detect. While this was shown in the Graveville data set it is also evident
that the variation in the terrain at this scale is a problem. Future work plans to ex-
amine the use of larger vehicles in natural terrain and also evaluate the performance
against classification from satellite imagery.

The use angular and longitudinal slip measurements were also very closely cor-
related for both data sets indicating that one of these metrics gives all necessary
information about the terrain. For future work the longitudinal slip metric is prefer-
able as the vehicle does not need to introduce curvature to its path to provide exci-
tation for angular slip. The inclusion of additional sensor inputs for learning locally
measured traversability is also of interest and future work plans to includes using
satellite imagery and local imagery for classification.

Acknowledgements. The authors would like to acknowledge the CSIRO: Autonomous Sys-
tems Lab for supporting this work.
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Mapping, navigation, and learning for off-road traversal. Journal of Field Robotics 26(1),
88–113 (2009)

9. Martin, S., Corke, P.: Path planning using surface shape and ground properties. In: Drum-
mond, T. (ed.) Australasian Conference on Robotics and Automation (ACRA 2011), pp.
1–7. ARAA, Monash University (2011),
http://eprints.qut.edu.au/47115/

10. Molino, V., Madhavan, R., Messina, E., Downs, T., Jacoff, A., Balakirsky, S.:
Traversability Metrics for Urban Search and Rescue Robots On Rough Terrain. In: Pro-
ceedings of the Performance Metrics for Intelligent Systems (2006)

11. Serrano, L., Kim, D., Langley, R., Itani, K., Ueno, M.: A gps velocity sensor: how accu-
rate can it be?–a first look. In: ION NTM, pp. 875–885 (2004)

http://eprints.qut.edu.au/47115/


Building Large Scale Traversability Maps Using Vehicle Experience 905

12. Shneier, M., Shackleford, W., Hong, T., Chang, T.: Performance evaluation of a terrain
traversability learning algorithm in the DARPA LAGR program. Tech. rep., National
Inst. of Standards and Technology Gaithersburg Md (2009)

13. Silver, D., Sofman, B., Vandapel, N., Bagnell, J., Stentz, A.: Experimental analysis of
overhead data processing to support long range navigation, pp. 2443–2450 (2006)

14. Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., Schwehr, K.: Recent
progress in local and global traversability for planetary rovers. In: Proceedings of the
IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp.
1194–1200 (2000), doi:10.1109/ROBOT.2000.844761

15. Sofman, B., Bagnell, J., Stentz, A., Vandapel, N.: Terrain classification from aerial data
to support ground vehicle navigation. Tech. rep., Robotics Institute, Carnegie Mellon
University (2005)

16. Talukder, A., Manduchi, R., Castano, R., Owens, K., Matthies, L., Castano, A., Hogg, R.:
Autonomous terrain characterisation and modelling for dynamic control of unmanned
vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 1, pp. 708–713. IEEE (2002)

17. Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocular color
vision. In: Proceedings of the National Conference on Artificial Intelligence, pp. 866–
871. AAAI Press, MIT Press, Menlo Park, Cambridge (1999, 2000)

18. Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H.: Large-scale terrain model-
ing from multiple sensors with dependent gaussian processes. In: 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1215–1221 (2010),
doi:10.1109/IROS.2010.5650769



Automatic and Full Calibration of Mobile Laser
Scanning Systems

Jan Elseberg, Dorit Borrmann, and Andreas Nüchter

Abstract. Mobile scanning, i.e., the practice of mounting laser scanners on mov-
ing platforms is an efficient way to acquire accurate and dense 3D point clouds of
outdoor environments for urban and regional planning and architecture. The mobile
scenario puts high requirements on the accuracy of the calibration of the measure-
ment system, as small calibration inaccuracies lead to large errors in the resulting
point cloud. We propose a novel algorithm for the calibration of a mobile scanning
system that estimates the calibration parameters for all sensor components simulta-
neously without relying on additional hardware. We evaluate the calibration algo-
rithm on several real world data sets where ground truth is available via an accurate
geodetic model.

1 Introduction

Laser range scanning provides an efficient way to actively acquire accurate and
dense 3D point clouds of object surfaces or environments. Mobile scanning, i.e., the
practice of mounting the range sensors on a moving platform or robot is the state
of the art method for modeling in architecture and for urban and regional planning.
The mobile scenario puts high requirements on the accuracy of the calibration of
the measurement system, as small calibration inaccuracies lead to large errors in
the resulting point cloud. Modern systems like the Riegl VMX-450 and the Lynx
Mobile Mapper as produced by Optech work along the same basic principal. They
combine a high precision GPS, a highly accurate Inertial Measurement Unit (IMU)
and the odometry of the vehicle to compute the fully timestamped trajectory. Us-
ing a process called motion compensation this trajectory is then used to “unwind”
the laser range In this paper we propose a novel algorithm for the calibration of a
mobile scanning system that estimates the calibration parameters for all sensor com-
ponents simultaneously without relying on additional hardware. We have developed
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a general framework for calibrating mobile platforms that estimates all configura-
tion parameters including that of the odometry in a unified fashion. We evaluate
our algorithm data sets acquired by our own mobile platforms Irma3D and Lars3D
as seen in Fig. 1. The main sensor of each robot is a Riegl VZ-400 laser scanner.
Instead of a 2D laser scanner common in a mobile scanning system, this is a 3D
laser scanner. This design retains the high degree of automation and speed of com-
mon mobile laser scanning systems. Furthermore, only a single laser range sensor
is required to produce models with minimal data shadowing.

2 State of the Art

In order for the mobile laser scanner to acquire high quality range measurement
data the position and orientation of every individual sensors must be known. This
paper is concerned with algorithmic calibration of these systems, i.e. algorithms to
establish the parameters that best describe sensor displacements based on the sensor
data itself. This process takes place after a calibration with external instruments was
performed to finetune the roughly measured parameters.

The most basic sensor of the vehicle is its odometry, which estimates the vehicle’s
pose by measuring and extrapolating the wheel rotations. Martinelli et al. presented
a method to calibrate the odometry readings using an augmented Kalman filter [4].
The algorithm estimates the odometry parameters on the basis of pose information
acquired by the SLAM system. This relies on the strong assumption that calibra-
tion errors of the odometry do not influence the accuracy of the other sensors. This
does not hold for mobile scanners where errors in the odometry lead to errors in
the reconstructed 3D model and thereby to inaccuracies of the SLAM system. As
odometry is the least reliable estimator of a vehicles pose, mobile laser scanners are
usually also equipped with more precise positioning sensors, e.g., an IMU or a GPS
device. Traditionally, these are calibrated against other positioning devices whose
pose in relation to the vehicle is already known [2]. Nebot and Durrant-Whyte pre-
sented a method for calibrating a low cost six degrees-of-freedom IMU on a land
vehicle [6]. Initially the vehicle and the IMU are at rest to remove gravitational
bias from the IMU measurements. Then the redundancies in the measurement are
exploited to estimate the calibration parameters of the IMU during a test drive.

The final sensor to calibrate is the laser measurement device. Classically, this is
done using a process called boresight alignment. Boresight calibration is the tech-
nique of finding the rotational parameters of the range sensor with respect to the al-
ready calibrated IMU/GPS unit. Skaloud and Schaer describe a calibration method
where an airplane equipped with a laser scanner makes several flights over a res-
idential area [11]. Planes are extracted from the roofs in every flyover. Then, the
planes are matched against each other to minimize the calibration error. A simi-
lar method was developed by Rieger et al. for kinematic laser scanning [9]. Here
the vehicle drives past the same house several times. Again the planar surface of
the building is exploited to estimate the calibration parameters of the laser scanner.
The laser scanners calibration parameters can also be estimated when the vehicle
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itself is stationary. Talaya et al. presented a calibration method for estimating the
boresight parameters of a laser scanner by registering several scans of the environ-
ment at different positions [12]. The position and orientation of the vehicle is known
at any one point and the scans are registered using landmarks. Recently Underwood
et al. presented an approach for calibrating several range scanners to each other
with no information about the pose of the vehicle [13]. The vehicle scans a previ-
ously known environment from several positions. The range data is then manually
labeled, so that the ground truth for each data point is known and an error metric
can be constructed. Minimizing the error then yields optimal calibration parameters
for the range sensors.

Our calibration system is similar in that multiple sensors are calibrated using a
quality metric on the constructed point cloud. However, we require no manual se-
lection of points or any special environment for the calibration. Instead, we employ
a quality metric that is similar to the one used by Sheehan et al. [10]. They calibrate
a laser scanner of their own design by computing the minimum of the quality metric
with respect to the internal calibration parameters. We apply it in our own calibra-
tion framework and also improve upon the metric by reducing the time complexity
that is involved in its evaluation. Furthermore, we estimate all calibration parame-
ters for all sensors simultaneously. This allows us to forego a separate calibration
process for every subsystem.

Aside from sensor misalignment a second source of errors are timing related
issues. On a mobile platform the several subsystems need to be synchronized to
a common time frame. This can be achieved with pure hardware via triggering or
with mixes of hard and software like pulse per second (PPS) or the network time
protocol [5]. Good online synchronization is not always available for all sensors.
Olson [7] has developed a solution for the synchronization of clocks that can be
applied after the fact.

3 Technical Approach

Calibration is the process of estimating the parameters of a sensor system. The closer
these values are to the true physical quantities, the more accurate the final measure-
ments of the sensor system will be. In the context of mobile laser scanners, there are
several types of parameters of note. First, the geometrical alignment of each subsys-
tem with respect to the vehicle. There are many frames of references on a mobile
platform. The challenge of establishing the transformation between the vehicle and
the global reference system is referred to as the simultaneous localization and map-
ping (SLAM) problem. The localization is subject to the accuracy of the positioning
systems themselves and is not discussed in this paper. For proper data acquisition,
the full 6 degrees of freedom (DOF) pose Vs = (tx,s, ty,s, tz,s,θx,s,θy,s,θz,s) of each
sensor s with respect to the vehicle frame is essential. Incorrect geometrical calibra-
tion leads to incorrect trajectory estimation and systematic errors in the final point
cloud.
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Aside from the general alignment parameters, there are internal parameters that
are specific to certain sensors. These quantities influence only the measurement
accuracy of the sensor they are related to and could in principle be calibrated in-
dependently of the rest of the system. The laser measurements are dependant on
the internal alignment of the emitter and the mirror geometry of the laser scanner
whereas the odometry is dependant on wheel circumference w and axis length a of
the car. In practice, for many sensors the modification of the calibration parameters
is unnecessary or infeasible, as the internal calibration is often performed by the
manufacturers themselves. The odometry parameters are therefore the only internal
parameters that we are concerned with in this paper.

Finally, systematic timing errors due to latencies can be counteracted by offset
parameters os. We assume all sensor measurements are timestamped. Time frames
are synchronized by an offset that represents the minimal inherent delay between
a measurement and its reception in the system. While our proposed algorithm is
capable of adjusting any parameter, systematical synchronization errors are minor
for mobile laser scanning systems and do not contribute to the quality of the final
point cloud in a significant way.

The principal behind our approach is to find the calibration parameters that
produce the most accurate point cloud possible. The parameters for all sensors s
are concatenated to construct the calibration vector C = (a,w,W0,o0, . . . ,Wn,on).
Then the process of extracting the point cloud P = {p0, . . . ,pm} with pi = (xi,yi,zi)
from the entirety of measurements M of each sensor can be said to be a function
f (M,C) = P. In the case of a mobile scanner this function includes extrapolating
measurements from available positioning systems to create the trajectory of the ve-
hicle. SLAM algorithms may also be used to arrive at the final point cloud.

To find the optimal calibration we must define an appropriate quality measure on
P. We employ a general quality measure that is somewhat similar to the one used by
Sheehan et al. [10]. We model the points pi as drawn from a probability distribution
function (pdf ) d(l) which represent the probability that a specific location l has been
measured. The pdf can be approximated as

d(l) =
1
m

m

∑
j

G(l−p j,σ2I) (1)

where G(μ ,σ2I) is a Gaussian with mean μ and covariance σ2I Calibration errors
lead to surfaces appearing at multiple positions. The entropy of d(l) increases with
these errors and decreases the more compact the point cloud is. Thus, an entropy
measure on d(l) is also a quality measure for P. Sheehan et al. derive the following
simplified entropy measure, which depends on only the pairwise distance of the
sample points:

E2(P) =−
m

∑
i

m

∑
j

G(pi−p j,2σ2I) (2)
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In Sheehan et al.’s calibration, the Jacobian of E2 with respect to the calibration pa-
rameters of their system is used to apply Newton’s method for optimization. This is
not possible in our case for several reasons. First, our calibration is supposed to be
general, i.e., no definitive system to calibrate for is given. Second, the inclusion of
parameters for the positioning systems make the derivation of the Jacobian infeasi-
ble. This is due to the fact that in order to compute a global measurement pi at time
ti the pose estimate of the vehicle at that time must be known. However, to compute
Wi all sensor measurements prior to ti may be taken into account. Furthermore, the
presence of multiple positioning sensors requires sensor fusion, thereby increasing
the non-linearity and complexity of the entropy measure even more. In addition, we
acquire a large number of sample points, usually in the order of several millions for
properly calibrating an entire mobile platform. Thus, the quality measure E2(P) is
infeasible for the calibration using large point clouds. One way of dealing with this
problem is to reduce the number of points. We propose to uniformly subsample the
entire point cloud. This is achieved by first binning the point cloud in a regular 3d
grid and then randomly selecting a number of points in each voxel. Both the number
of points and the side length of a voxel can vary to allow for many possible point
densities. An additional advantage of the uniformity of the subsampling is that sur-
faces closer to the scanner do not unfairly contribute more to the quality measure
than surfaces that are farther away. Furthermore, we propose to simplify the mea-
sure by not using every possible pair of points. For every point pi that remains from
the initial sub sampling we determine its closest point qi ∈ P such that

∣∣ti− t j
∣∣> δ .

Here, δ is the minimal amount of time that must have elapsed for the laser scanner to
have measured the same point on the surface again. Temporally close measurements
are usually spatially close as well, so they must be excluded to prevent them from
dominating the quality measure. By selecting only closest point pairs we filter out a
very large number of pairs of points which do not correspond to the same feature in
the environment. Thus, the geometry of the environment should have less effect on
the quality metric. This also helps to prevents other negative effects like the collapse
of points from two or more seperate obects in the scene onto the same space to lead
to a higher quality according to the metric. We seek to find

Ĉ = argmin
C

E( f (M,C)) (3)

where

E( f (M,C)) =−
m

∑
i

G(pi−qi,2σ2I). (4)

Standard minimization algorithms require the computation of the derivative of the
error function with respect to the calibration parameters. This is infeasible for the
function E( f (M,C)) as it involves complex algorithms for filtering data and fusing
multiple modalities of measurements. We employ Powell’s method for optimizing
E as it does not require E ′ [8]. Instead, we must merely provide an initial estimate
of C, which is readily obtainable by manual estimation.
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4 Experiments

Experimental data was acquired by the mobile robots seen in Fig. 1. The main sensor
of each robot is the Riegl VZ-400 laser scanner. The scanner is the large cylinder
mounted on the top of platforms. Irma3D is built of a Volksbot RT-3 chassis whereas
Lars3D is based on a custom-built Volksbot chassis. Both mobile scanners utilize
Olson’s time synchronization algorithm [7] to reduce latency errors.

Fig. 1 Left: The robots we used in our calibration experiments. From left to right: Achim3D,
Lars3D and Irma3D. The red/silver cylinder on top of the robots is the Riegl VZ-400 laser
scanner. Right: The geodetically measured model of the basement (colored by reflectance).
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Fig. 2 Topview on 2 point clouds acquired by our robots. The robots were calibrated with
the proposed calibration algorithm. Although the scan quality is good, some non-calibration
errors remain due to slipping wheels and erroneous position estimation.

Several data sets using both robots were acquired in an empty basement room (see
Fig. 1). All data sets were acquired in continuous mode, i.e., the laser scanner rotates
around its vertical axis while the robot moves simultaneously. The robots moved in
“serpentine” trajectories, i.e., taking left and right turns as well as segments where
the heading remains unchanged. In this paper we present 4 data sets, 2 for each robot
with 3 to 7 million points each. For these data sets, the robot drove in a a relatively
slow manner, to ensure minimal wheel slippage.

For each configuration a manual estimation of the calibration parameters has been
performed in advance of the experiments. We applied our automatic calibration tech-
nique to each data set. To evaluate the quality of the resulting point clouds we com-
pare them with a high precision model of the room as acquired by the Riegl VZ-400
laser scanner. The accuracy of the scanner and thus the model is 5mm. We compare
the acquired point clouds with the model in the following fashion. After calibra-
tion, the point cloud is matched to the model using ICP [3] from the 3D Toolkit
(3DTK [1]). Then we compute point to plane distances on each of the 4 walls as
well as the ceiling and floor of the room.

The point clouds obtained with our automatically determined calibration param-
eters are shown in Fig. 2. The results of the direct comparison between the point
clouds after automatic and manual calibration and the model of the room are shown
in Fig. 3-6.

The deviations between model and point cloud are plotted in color coded images,
i.e., green for absolute errors less than 1 cm, yellow to red for large positive errors
and cyan to blue for large negative errors. White areas indicate that no point was
measured at the corresponding location. The full color scale is also given in Fig.3.

On the whole, the quality of the scans improves remarkably with the automat-
ically determined parameters when compared to the manual estimation. Absolute
errors are generally within 1 cm. Occasionally the deviations exceed that boundary.
Very rarely they are above 3 cm. These large scale errors are explained by uncer-
tainties in the odometry measurements leading to erroneous estimations of the robot
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Table 1 Deviations in cm per cm2

Robot Data Set manual automatic
1 0.8517 0.8121

Irma3D 2 0.9176 0.8744
average 0.8920 0.8502

1 1.1161 0.9084
Lars3D 2 1.1843 0.7878

average 1.1730 0.8290
average 1.0346 0.8383

−4  0  4

Fig. 3 Comparison of the acquired laser scans with the model using the manual (left) and
the automatic calibration (right) for representative excerpts of the first Irma3D data set. De-
viations in cm are color coded as indicated on the bottom. Best viewed in color.

pose along the trajectory of the robot. Slipping wheels and shaking of the robot base
are not detectable by any of the on-board sensors. Thus errors in the pose estimation
carry over to erroneous point clouds and are not related to erroneous calibration pa-
rameters. The average deviations per cm2 are collected in Table 1. For each data set
the automatic calibration could succesfully reduce the scan quality. The final error
with the automatic calibration for both data sets and both robots are similar sug-
gesting reliability. The combined mean error for all data sets was reduced by about
2 mm from 10.3 mm to 8.3 mm.
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Fig. 4 Comparison of the acquired laser scans with the model using the manual (left) and
the automatic calibration (right) for representative excerpts of the second Irma3D data set.
Deviations are color coded as indicated in Fig. 3.

Fig. 5 Comparison of the acquired laser scans with the model using the manual (left) and
the automatic calibration (right) for representative excerpts of the first Lars3D data set. Devi-
ations are color coded as indicated in Fig. 3.
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Fig. 6 Comparison of the acquired laser scans with the model using the manual (top) and
the automatic calibration (right) for representative excerpts of the second Lars3D data set.
Deviations are color coded as indicated in Fig. 3.

5 Conclusions

The fully automatic calibration algorithm for mobile laser scanners as presented in
this paper has proven to increase point cloud quality. It is capable of finding cali-
bration parameters more precisely than manual estimation. The algorithm is robust
against non-systematic errors that are necessarily present in any mobile laser scan-
ning system, such as laser scanner noise and erroneous pose estimations due to slip-
ping wheels. A minor issue of the algorithm is the dependency on the environment.
In our experiments the robot primarily moved on a level surface. This means some
calibration parameters, i.e., the upwards translation of the laser scanner in relation
to the vehicle frame is less constrained by the quality measure as other parameters.
In the future we plan to design an experiment with non-planar motion to estimate
all calibration parameters more precisely.
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Part XIV: ISER Session Summary  
on “Human Robot Interaction” 

Alonzo Kelly 

Carnegie Mellon University 

Session Summary  

This session concentrated mostly on topics related to the problem of facilitating 
more effective communication between robots and humans. 

“Hallucinating Humans for Learning Robotic Placement of Objects” by Yun 
Jiang, and Ashutosh Saxena considers the problem of how robots can be more 
adaptive to the needs of humans. By imagining likely poses for humans and using 
knowledge of how humans interact with specific objects like telephones 
(manipulate) and television (we look at them), reasonable placements for objects 
can be inferred.  A robot so-endowed might be able to tidy up a room or put away 
the dishes, for example. 

“Hand Shape Classification with a Wrist Contour Sensor” by Rui Fukui, 
Masahiko Watanabe, Masamichi Shimosaka, and Tomomasa Sato considers a 
unique sensor, a special wrist band, that can infer the configuration of the hand by 
exploiting the fact that tendons for each finger in the wrist change diameter as the 
fingers flex. A machine learning approach is used and the classic challenges of 
user independence and classification accuracy are addressed. 

“Experimental Validation of Operator Aids for High Speed Vehicle 
Teleoperation.” by Alonzo Kelly, Nicholas Chan, Herman, Herman, Randy 
Warner considers the problem of teleoperating small (1 meter scale) mobile robots 
at relatively high speeds. Various operator aiding technologies are proposed and 
evaluated in a user study. 

“Intention-Aware Pedestrian Avoidance” by Tirthankar Bandyopadhyay, 
Zhuang Jie Chong , David Hsu, Marcelo Ang, Daniela Rus, and Emilio Frazzoli 
addresses the need for cognitive models in order to predict the actions of 
pedestrians effectively in situations like traffic where pedestrians must be 
relatively close (i.e on the sidewalk) to fast vehicles. Intentions (e.g. intended 
destinations) are an effective way to do this. An efficient factored Markov 
decision process formulation is shown to be an efficient approach. 

“The UBC Visual Robot Survey: A benchmark for robot category recognition” 
by David Meger, James Little proposes a collection of data sets containing both 
depth and appearance information. The data set is specialized for certain computer 
vision tasks that are relevant to human-inhabited environments and it supports a 
particular form of “simulation using data” that is can be very effective. 
 

 



Hallucinating Humans for Learning Robotic
Placement of Objects

Yun Jiang and Ashutosh Saxena

Abstract. While a significant body of work has been done on grasping objects,
there is little prior work on placing and arranging objects in the environment. In
this work, we consider placing multiple objects in complex placing areas, where
neither the object nor the placing area may have been seen by the robot before.
Specifically, the placements should not only be stable, but should also follow human
usage preferences. We present learning and inference algorithms that consider these
aspects in placing. In detail, given a set of 3D scenes containing objects, our method,
based on Dirichlet process mixture models, samples human poses in each scene
and learns how objects relate to those human poses. Then given a new room, our
algorithm is able to select meaningful human poses and use them to determine where
to place new objects. We evaluate our approach on a variety of scenes in simulation,
as well as on robotic experiments.

1 Introduction

“Tidy my room.” “Put the dishes away.” — While these tasks would have been
easy for Rosie robot from The Jetsons TV show, they are quite challenging for our
robots to perform. Not only would they need to have the basic manipulation skills
of picking up and placing objects, but they would also have to perform them in a
way that respects human preferences, such as not placing a laptop in a dish-rack or
placing the dishes under the bed.

Over the last few decades, there has been a significant body of work on robotic
grasping of objects (e.g., [1–10]). However, there is little previous work on teaching
robots where and how to place the objects after picking them up. Placing an object
is challenging for a robot because of the following reasons:
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– Stability. An object needs to be placed in a correct orientation for it to be stable.
For example, while a martini glass could be placed upright on a flat surface, it is
stable when hanging upside down in a wine glass rack.

– Novel objects and placing areas. An unstructured human environment comprises
a large number of objects and placing areas, both of which may have complex
geometry and may not have been seen by the robot before. Inferring stable place-
ments in such situation requires robust algorithms that generalize well.

– Human preferences. The objects should be placed in meaningful locations and
orientations that follow human preferences. For example, a laptop should be fac-
ing the chair when placed on a table.

In our recent work [11, 12], we proposed a learning algorithm for placing objects
stably and in their preferred orientations in a given placing area (see Fig. 1b). Our
approach was based on supervised learning that used a graphical model to learn a
functional mapping from features extracted from 3D point-clouds to a placement’s
quality score. When multiple objects and placing areas were present, the inference
was formulated as an integer linear program that maximized the total placement
quality score. Our formulation also allowed linear stacking of objects. This enabled
our robot to place objects (even the ones that were not seen previously by the robot)
in areas such as dish-racks, a stemware-holder and a fridge, etc. While our model
in [12] captured certain semantic preferences, it did not consider human usage pref-
erences and therefore placements were often not meaningful. For example, placing
food up in a fridge that is hard to reach (see Fig. 1b), or placing a mouse and key-
board far away from each other making them impossible to be used together.

In this work, our goal is to learn meaningful object placements that follow human
preferences, such as the arrangement in Fig. 1c. The key idea that makes a placement
meaningful is how it will be used by humans: Every object is meant to be used by a
human in a certain way, at a certain location and for a certain activity. For example,
in an office, a keyboard is placed on a table below a monitor because a person
typically uses the keyboard while sitting in the chair and watching the monitor. Such
usage preferences are sometimes also called object “affordances” [13]. One naı̈ve
way to encode them would be looking up a dataset that shows examples of humans
using each object. Unfortunately, no such dataset exists and the effort to construct a
comprehensive one would be prohibitive.

Instead of relying on a dataset of real humans manipulating objects in 3D envi-
ronments, we work with a dataset that only has arrangements of objects in different
scenes.1 Then, in order to learn the human usage preferences, we would ‘hallu-
cinate’ human poses in the 3D scene, and learn the object affordances using an
unsupervised learning algorithm.

A hallucination is a fact, not an error; what is erroneous is a judgment
based upon it. Bertrand Russell.

What would be the key here is to learn which human poses are more likely than
others and how they interact with the objects. To do this, we first define a potential

1 Such datasets are readily available on the Internet, e.g., Google 3D warehouse.
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(a) random arrangement (b) object-context arrange-
ment

(c) human-context arrange-
ment

(d) arranging the real scene

Fig. 1 An example of arranging three objects in a room. (a) A random arrangement may lead
to unstable placement (such as the laptop tilted on the fridge) and stable but unreasonable
placement (such as shoes on the table and food on the ground). (b) Therefore, we adopt
supervised learning based on a variety of appearance and shape features for finding stable
orientations and meaningful locations for placing the objects. However, the placed objects
are still hard for human to access, such as the fruit stored high up on the fridge and the laptop
towards the wall. (c) We thus further improve the arrangement by considering the relationship
between the objects and humans (such as a sitting pose in the chair and a reaching pose in
front of the fridge). (d) Our approach does not require human poses at present but samples
them based on Dirichlet processes and learned potential functions. The last arrangement not
only places the objects appropriately but is also ready for human to use.

function giving a score for an object and a human pose, based on their spatial fea-
tures. We consider the human poses as latent variables, and model them as mixture
components in a Dirichlet process (DP) mixture model and consider arranging the
objects as a generative process: a room first generates several human poses; then
each object chooses a human pose and is drawn from the potential function param-
eterized by this human pose. This model allows different objects to be used by the
same human pose (e.g., using a monitor, keyboard and mouse at the same time),
while a room can have as many human poses as needed (one of the DP mixture



924 Y. Jiang and A. Saxena

model’s property) [13]. Given the most likely placements, our robot then uses path
planning algorithms to compute specific placing trajectories and execute them.

Our algorithm thus learns the preferred object arrangements from the 3D scenes
collected from the Internet. We first evaluate our algorithm on such datasets con-
sisting of 20 different rooms and compare the inferred arrangements to the ground
truth. We also test on five scenes using real point-clouds. Finally, we perform our
algorithms on our robot on actual placements in three real scenarios.

2 Related Work

There is little work in robotic placing and arrangement of objects and most existing
methods are restricted to placing (or moving) objects on flat horizontal surfaces.
Edsinger and Kemp [14] and Schuster et al. [15] focused on finding flat clutter-free
areas where an object could be placed. Our work considers arranging objects in the
whole room with significantly more complex placing areas in terms of geometry.

Placing objects also requires planning and high-level reasoning about the se-
quence of actions to be performed. Lozano-Perez [16] proposed a task-level (in con-
trast with motion-level) planning system for picking and placing objects on a table.
Sugie et al. [17] used rule-based planning in order to push objects on a table surface.
There are some recent works using symbolic reasoning engines to plan complex ma-
nipulations for human activities, such as setting a dinner table (e.g. [18–20]). How-
ever, these works focus on generating parameterized actions and task-level plans
instead of finding specific placements, and hence are complementary to ours.

In our own recent work [11, 12], we employed 3D stability and geometric features
to find stable and preferred placements. However, without taking human context
into consideration, the generated strategy was often not good enough. In this paper,
we discuss a method for combining the stability with human usage preference, and
compare our approach to one that does not consider the human usage preferences in
Section 4.

In this paper, learning the human usage preference, i.e., the relationship between
the objects and the humans is the key. In a way, this could be called ‘human context.’
In other fields, such as computer vision, the idea of ‘context’ has helped quite a bit
in improving tasks such as object recognition. For example, using estimated 3D
geometric properties from images can be useful for object detection [21–26]. In
[27–29], contextual information was employed to estimate semantic labels in 3D
point-clouds of indoor environments. Fisher et. al. [30, 31] designed a context-based
search engine using geometric cues and spatial relationships to find the proper object
for a given scene. Unlike our work, their goal was only to retrieve the object but not
to place it afterwards. These works are different from ours not only because they
address different problems, but also because none of these works used the ‘human
context.’

We use sampling techniques to sample the human poses, which are never ob-
served. In general, sampling techniques are quite common in the area of path plan-
ning [32, 33], where it is the robot pose that is sampled for constructing a path.
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Often modeling and sampling of human poses is also done in the area of computer
graphics and animation [34], and solving the kinematics and dynamics issues of
robots operating in presence of humans [35], and analyzing human body poses and
actions [36–38]. However, to the best of our knowledge, our work is the first one
that samples such human poses for capturing context among objects.

3 Object and Human Context

An object when placed in an environment depends both on its interaction with the
placing area and its interaction with the humans. In the following sections, we first
briefly review our potential function that captures the object context—relationship
between the object and placing areas [11, 12]. Then we discuss how to encode hu-
man context (such as human usage preferences and access effort) in our algorithm.

Specifically, we formulate a general placing problem as follows: There are n ob-
jectsO = {O1, . . . , On} to be placed in m placing areas E = {E1, . . . , Em}, all of
which are represented as point-clouds. A placement of Oi is specified by its loca-
tion �i and orientation/configuration ci. Moreover, a placement is often associated
with certain human pose for certain purpose. Let H = {H1, . . .} to denote all the
possible human poses. Our goal is to, for each object Oi, find 1) a placing area Ej
to place it at and the specific placement (�i, ci), and 2) a relevant human pose Hk

that explains the placement well.

3.1 Object Context

By object context, we mean the relationship/interaction between the object and the
placing area that determines whether the placing area can hold the object stably and,
more importantly, meaningfully. For instance, books should be placed on a shelf or a
table, plates are better inserted in a dish-rack, and shoes should be put on the ground
instead of on a table or in a dishrack.

We capture this object-environment relationship (or object-object relationship
when the objects are stacked on top of each other) using a supervised learning algo-
rithm that learns a functional mapping, Ψobject(Oi, Ej , �i, ci), from a set of features
representing the placement to a placing quality score. A larger value of Ψobject(·)
indicates a better placement. (Our goal then becomes to maximize the value of this
function during learning and inference.)

We decompose the function into two terms:

Ψobject(Oi, Ej , �i, ci) = Ψstability(Oi, Ej , �i, ci)Ψsemantics(Oi, Ej). (1)

We develop a variety of appearance and shape features to capture the stability and
semantic preferences respectively [12].

As we observed in a series of experiments in [12], using this algorithm can help
us to predict preferred placements for various objects and different scenes. However,
because we model each object independently of others, certain connections among
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the objects are lost in this approach, making the arrangement often disorganized
and pointless. For example, a keyboard and mouse are placed far away from each
other and the desk-light faces towards the wall. The goal of capturing the connection
between different objects making them usable after placing is the key motivation for
introducing the human context.

3.2 Human Context

The arrangements and connections among objects can be naturally explained by
human poses and activities. For example, a monitor on the desk would mean that a
human skeleton may be in front of it in a sitting pose. Then the sitting skeleton could
further suggest to place a mouse and a keyboard close to the hand and therefore at the
edge of the desk. Although the human poses are not present during the arrangement,
hallucinating them would help the robots to place objects in a human-friendly way.

We consider an arrangement as an outcome of the following generative process:
A scene generates a set of possible human poses in the scene based on certain criteria
(such as reachability or usage of existing objects); then use the human poses to
determine where to place the new objects. There are two components required for
this approach: (a) modeling how the objects relate to human poses based on criteria
such as their affordances, ease of use and reachability, and (b) learning a distribution
of human poses in the scene.

We first capture the object’s usage preferences by a potential function that models
how a human pose Hk is related to an object Oi. (Again, a higher value of this
function indicates a better match between an object and the human pose.)

Ψhuman(Oi, Hk, �i, ci) = Ψloc(Oi, Hk, �i)Ψori(Oi, Hk, ci). (2)

Here, Ψloc and Ψori represent the preferences in the relative location and the orien-
tation of the object from a human pose respectively. For example, a TV has a usage
score that is high in the front at a certain distance and falls off as you go to the side
(see the projected heat map in Fig. 2). The potential function also indicates more
meaningful and relevant human poses from the innumerable possible poses in an
environment.

For instance, in a room such as the one shown in Fig. 2, the reaching pose (in
yellow) and the sitting pose on the TV stand are less important because they do not
relate to any object, while a sitting pose on the couch is important because it has
high scores with several objects in the scene—the cushion, laptop, TV, etc.

Note that the human poses in our problem are latent, and therefore we model
them using a mixture model. The model comprises an infinite number of human
poses and each object selects a human pose according to a mixture proportion π.
As a result, an object is affected by multiple human poses. For example, in Fig. 2,
the TV’s location is determined by all the human poses (sitting on the couch or next
to the TV, standing to the coffee table and so on). However, since the one on the
couch is more important than others, its corresponding proportion defined in π will
be higher and thus put more influence upon the TV. After considering all possible
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Fig. 2 While there could be innumerable possible human poses in a room, only a few of them
are meaningful, such as the one on the couch who is related to many objects. We sample
human poses based on the objects’ affordances. For example, the learned potential function
for the TV (shown in the projected heat map) has high values in the front with certain distance
and thus the sitting human pose is sampled with high probability.

human poses (i.e., marginalizing outHk and π in the mixture model), we define the
likelihood of an arrangement,O, of n objects (in human context) as2

p(O) =
∫
π

p(π)

n∏
i=1

∞∑
k=1

(
p(Oi|Hk)P0(Hk)πk

)
dπ, (3)

where P0 is the prior of human poses, and P (Oi|Hk) ∝ Ψhuman(Oi, Hk). We adopt
DP mixture model so that π can have unbounded length and be constructed using
stick-breaking processes [39].

The inference problem is to find O with the maximum likelihood. Although (3)
is intractable to compute, it can be approximated using a sampling scheme. We use
Gibbs sampling with auxiliary parameters [40], where in each round we sample
which human pose to select for each object, the object placements and the human
poses according to their conditional distribution (see [13] for more details).

To differentiate the preference in selecting human poses for different types of
objects, we add type-specific parameters Θ in the potential function and learn them
from the labeled data. During training, given the objects in the scenes, we learn
the parameters using the maximum likelihood estimation based on human poses
sampled from the DP. In detail, we use human poses sampled from a DP, denoted
byH1, . . . , Hs as our observations. The optimalΘ is then computed by solving the
following optimization problem:

Θ∗ = argmax
Θ

∑
scenes

s∑
j=1

n∑
i=1

logΨhuman(Oi, H
j
i ;Θ). (4)

2 We abuse the notation Oi in this section to indicate the object’s placement, including �i
and ci.
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In our previous work [11, 12], we considered only the object context Ψobject(·). In
this current work, we primarily use the human context Ψhuman(·), and only combine
it with some of the object context defined heuristically (see [13]). Jointly learning
both the object and human context is an interesting direction for future work.

Once we have obtained the likelihood of the arrangements p(O), we need to
perform planning to realize the desired placements.

3.3 Planning

After finding the potential object placements that have high scores, the robot still
faces two challenges in realizing the placing: First, high-scored placements may
not be reachable/executable by the robot due to its kinematic constraints; Second,
placing certain objects first may impede placing other objects later. Thus, the order
in which the objects are placed becomes important and we need to find a valid
placing order and target locations efficiently.

Algorithm 1. TryPlace(P , ObjNotPlaced)
if ObjNotPlaced = ∅ then1

Succeed2

for i ∈ ObjNotPlaced do3
forOi ∈ PossiblePlacementsi do4

if IsSuperSetOf(P ∪Oi,F) then5
continue6

if feasible(Oi,P) then7
TryPlace(P ∪ Oi,ObjNotPlaced \Oi)8

F ← F ∪ {P}9

We address the first challenge
by filtering out the placements that
are not physically realizable by
the robot due to its kinematic con-
straints (while considering place-
ment of each object independently
of the others).

For the second challenge, we
adopt the classic backtracking
search for finding a valid plac-
ing sequence. Particularly, in each
search step, given the already-
placed objects P , we need to de-
termine which object to be placed next (indexed by i) and also where to place it
(denoted by Oi). While this search space is enormous, we can cut the redundancy
using the following fact: Any superset of an infeasible plan is also infeasible. We
maintain a set of all infeasible plans encountered so far, denoted by F (see Algo-
rithm 1). Before trying to place a new object Oi, we check that if P ∪ Oi becomes
a superset of any elements in F . Only if not, a path planning algorithm (in our case,
rBiRRT in OpenRAVE [41]) is then used to verify the validity of placing at Oi and
the search continues for other objects.

4 Experiments

We perform three experiments as follows. First, we verify our human-context learn-
ing algorithm in arranging 20 different rooms, represented as 3D models. Second,
we compare the object context and human context in different scenes in real point-
clouds. Third, we perform robotic experiments on our Kodiak (PR2) robot based on
the learned arrangements.
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Fig. 3 Our dataset contains 20 scenes (7 kitchens, 6 living rooms and 7 offices) and 47 objects
from 19 categories that are commonly seen in these scenes [13]

4.1 Arranging Rooms under Human Context

In order to verify that our DP-based learning algorithm can generate reasonable
human poses as well as object placements, we evaluated it on a dataset containing 20
scenes from three categories (living room, kitchen and office) and of 47 daily objects
from 19 types (listed in Fig. 6) such as dish-ware, fruit, computers, desk-lights,
etc. [13]. Fig. 3 shows a snapshot of our dataset. Some example good arrangements
of each room were labeled by three to five subjects (not associated with the project).

We conduct 5-fold cross validation on 20 rooms so that the test rooms have never
been seen by the algorithm. We consider two placing scenarios: placing objects in
filled rooms and empty rooms. In the first case, the task is to place one type of
objects while other types are given (placed). In the second case, no object is in the
test rooms at all.

Figure 4 shows an example of our algorithm inferring meaningful human poses
and object placements. Given an office such as Fig. 4(a), if we randomly sample
human poses regardless the existing objects, then many unreasonable human poses
appear. For example, in Fig. 4(b), we have standing poses (in blue) oriented ran-
domly and some sitting poses (in red) at absurd locations such as on top of the table
and book shelf and reaching poses (in yellow) on the table as well. However, if we
sample human poses based on the learned potential function (2), then we obtain hu-
man poses in meaningful places such as sitting in the chair or standing close to the
object (see Fig. 4c). Note that now the distribution of both location and orientation
of human poses has changed due to the Ψloc and Ψori terms in the potential function.

We then sample the monitor’s location according to these human poses. Figure
4d shows that the distribution is biased towards the inner side of the L-desk, espe-
cially concentrated in front of the chair. This is because that sitting poses are more
related to monitors. Moreover, the preference of monitor placed on the table (as
compared with being placed on the ground) is naturally learned through our human
access effort rather than hand-script rules. Another interesting observation is that
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(a) an office (b) random human poses.

(c) sampled human poses based on exist-
ing objects.

(d) sampled monitors, shown in red

Fig. 4 Sampling results of a test room. Given an office as (a), sampling human poses ran-
domly results in several poses at absurd locations, such as on the top of the shelf in (b). Our
algorithm, on the other hand, samples more relevant human poses in (c) and thus is able to
sample more locations for placing a monitor in front of the chair than other places in (d).

Fig. 5 Predicted arrangement for 17 objects in an empty rooms. Using our method, all the
objects are correctly placed in their preferred areas, such as the trashcan on the ground and
the books on the table. Some object-object relationships are also captured without modeling
them explicitly, such as the monitor being placed close to the keyboard and their relative
orientation to the chair.

most samples are near the keyboard. This shows that the monitor-keyboard rela-
tionship can be linked through human poses naturally, without needing to explicitly
model it.

Fig. 5 shows one sampled arrangements when placing in an empty room. Al-
though the monitor and keyboard are not perfectly aligned, they are still placed
roughly in front of the chair, with correct orientations. All the objects are placed in
the correct placing areas, such as trashcan on the ground and the desk-light on the
table. The trashcan being far from the chair is mainly due to some sampled human
poses around that location.



Hallucinating Humans for Learning Robotic Placement of Objects 931

book clean laptop monitor keyboard mouse pen deco dishware pan cushion tv desklight floorlight utensil food shoe control phone AVG
0

1

2

3

4

5

6
m

distance

 

 open

height

room

obj.

class.

FMM

DP

DP+obj

book clean laptop monitor keyboard mouse pen deco dishware pan cushion tv desklight floorlight utensil food shoe control phone AVG
0

0.2

0.4

0.6

0.8

1

1.2

m

height

 

 open

height

room

obj.

class.

FMM

DP

DP+obj

(a) arranging filled rooms
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(b) arranging empty rooms

Fig. 6 Results of arranging filled rooms (top) and empty rooms (bottom), evaluated by the
difference in location and height in meters. The error bar shows one standard error.

We now give the quantitative results on the whole dataset in Fig. 6. Arrange-
ments are evaluated by two metrics: difference in location and height between the
prediction and the ground-truth. We compare our method with six baselines [13],
including using object context (‘obj’). We additionally present another algorithm
in which we combine the distribution of objects generated through human poses
O ∝ Ψhuman(O,H ;Θ) with a distribution generated through object - object con-
text O ∝ Ψobj(O,G) (G is the set of given objects) using a mixture model:
O ∝ ωΨhuman(·)+ (1−ω)Ψobj(·). We give a comparison of methods of using object
context only, human context only and their combination in our experiments.
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In the task of arranging filled rooms (shown in Fig. 6a), using object context
(‘obj’) benefited from the strong spatial relationships among objects and hence beat
other baseline methods, especially for the laptop, monitor, keyboard and mouse
types. However, our methods based on human context (last three bars) still outper-
formed the object context. They significantly improved placements of the objects
that have weaker connection to others, such as book, TV, decoration and shoes.

The task of arranging objects in an empty room (Fig. 6b) raises many challenges
when placing the first few objects as no object context would be available. Not sur-
prisingly, we found that the object-context method performed poorly, even worse
than using just height as a reference (‘height’). Although our methods also per-
formed worse than the previous scenario, they could still sample human poses based
on the furniture in the scene and thus predicted better locations for objects. Our ex-
periments also showed that the finite mixture model using human context (‘FMM’)
performed better than other baselines, but not as well as the ones our method
using DPs.

In both tasks, our human-context algorithm successfully predicted object place-
ments within 1.6 meters on average. The average error in height was only 0.1 meters.
By combining human- and object-context, the error was further reduced—indicating
that they provide some complementary context.

Robotic Simulation Experiment. In order to study how the desired placements
are affected by the robot constraints (see Section 3.3), we tested arranging these
synthetic scenes using Kodiak (PR2) in simulation. Table 1 shows that the location
errors increase only slightly for arranging filled rooms as well as empty rooms, but
the errors in height increase significantly. This is mostly because of the kinematic
constraints of the robot. How to incorporate robotic constraints into our current score
function is an interesting direction for future work.

Table 1 Comparison between the predicted placements with and without the robotic con-
straints (verified in simulation). Unit is meters. Note that only those objects that are physically
movable by the robot are considered.
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AVG
arranging filled rooms

location
without constraints 1.63 1.71 1.00 0.72 1.15 2.09 1.90 1.17 1.13 1.73 1.38 1.42
with constraints 1.87 2.26 0.96 0.69 1.63 2.45 2.38 1.03 1.34 2.01 1.24 1.62

height
without constraints 0.14 0.08 0.04 0.03 0.15 0.18 0.14 0.15 0.05 0.01 0.08 0.10
with constraints 0.32 0.52 0.14 0.17 0.27 0.42 0.33 0.31 0.17 0.18 0.22 0.28

arranging empty rooms

location
without constraints 1.65 1.74 1.15 0.82 1.19 2.21 3.17 1.32 1.47 1.38 1.61 1.61
with constraints 1.97 2.31 1.51 1.22 1.89 2.34 3.01 1.89 1.55 1.55 1.72 1.91

height
without constraints 0.14 0.12 0.10 0.05 0.19 0.22 0.14 0.19 0.12 0.00 0.10 0.13
with constraints 0.36 0.59 0.18 0.21 0.39 0.44 0.35 0.33 0.47 0.19 0.26 0.34
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4.2 Arranging Real Scenes

In this experiment, we compare the two algorithms—using object context [12] and
using human context [13]—in arranging real scenes. The dataset [12] contains 3
different offices and 2 different apartments where the placing areas such as tables,
cabinets, floor, and drawers were segmented out. We evaluated the quality of the
final placing layout by asking two human subjects (one male and one female, not
associated with the project) to label placement for each object semantically correct
or not, and also report a qualitative metric score on how good the overall placing
was (0 to 5 scale).

Results are shown in Table 2. Both methods arranged objects more meaningfully
than heuristic rules (not reported here, see [13]), i.e., books were stacked together,
while a keyboard, laptop and mouse were placed close to each other. The human
context, however, performed much better by, for example, placing shoes at the bot-
tom level of a shelf, while food and books are on the middle level or on a table. The
approach of using object context only sometimes put the laptop on a shelf making
it difficult for human to access.

Fig. 7 shows a comparison in arranging office2. Compared to using object con-
text, human context links the mouses and keyboard together as well as lamp and the
laptop. The laptop is now at the edge of the table and thus becomes accessible for
humans. Other objects are all close to the edge, unlike objects scattered uniformly
in the left figure making the bottle and mouse in the center hard to reach.

Table 2 Results on arranging five real point-cloud scenes (3 offices & 2 apartments). The
number of objects for placing are 4, 18, 18, 21 and 18 in each scene respectively. Co: % of
semantically correct placements, Sc: average score (0-5).

office1 office2 office3 apt1 apt2 Average
Co Sc Co Sc Co Sc Co Sc Co Sc Co Sc

obj context [12] 100 4.5 100 4.2 87 3.5 65 3.2 75 3.0 85 3.7
Human context (FMM) 100 3.5 100 2.0 83 3.8 63 3.5 63 3.0 82 3.2
Human context (DP) 100 5.0 100 4.3 91 4.0 74 3.5 88 4.3 90 4.2
Human (DP) + obj context 100 4.8 100 4.5 92 4.5 89 4.1 81 3.5 92 4.3

Fig. 7 Results of placing multiple objects on an office desk, when considering object con-
text [12] (left) and considering human context (right). While objects are scattered in the left
arrangement, the right arrangement prefers placing objects at the edge of the desk for easy
access.
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Fig. 8 Our Kodiak robot arranging several objects in three different scenarios

4.3 Robotic Experiments

We verified our approach on our Kodiak (PR2) robot in three scenarios: 1) placing
five objects (a beer bottle, cup, soda can, hand torch and shoe) in a kitchen with a
fridge and a table; 2) placing six objects (a mouse, a pen, a trashbin and three books)
in an office with a table and a bookshelf; 3) placing five objecs (a cup, tissue box,
book, soda can and throw pillow) in a living room with a couch and a coffee table.

Given the predicted arrangements, the robot uses a pre-determined grasp to
pick up every object, and executes the plan (see Section 3.3) for moving the
object to its designated location. Fig. 8 shows some screenshots of our robot
performing the object arrangements. We found that all the objects were placed
at the locations consistent with the simulation experiments. For the videos, see
http://pr.cs.cornell.edu/placingobjects/.

There were certain failures however caused by the limitation of our learning al-
gorithm. For example, the beer bottle was placed on the couch instead of the table.
This was because the physical properties of the surfaces (e.g., hard vs soft) are not
explicitly modeled. This may potentially be avoided by including semantic informa-
tion or appearance features of the furniture.

5 Discussion and Conclusions

We considered arranging multiple objects in complex placing areas, while following
human usage preferences. Motivated by the fact that objects are often arranged for
certain human activities, we developed an approach based on sampling meaningful
latent human poses and using them to determine objects’ placements. In detail, we
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designed a potential function for capturing the human-object relationship and used
Dirichlet processes to sample human poses and placements jointly. We verified our
approach on a variety of scenes in simulation as well as on a real robot.

In this work, we have focussed on learning the object arrangements from a hu-
man usage perspective. We believe that integrating the object detection, grasping
and placing jointly is a challenging direction for future work. Furthermore, one can
also potentially incorporate control and planning into our model in order to obtain
placements that are easily executed by the robot.
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Hand Shape Classification with
a Wrist Contour Sensor
(Comparison of Feature Types and Observation of
Resemblance among Subjects)

Rui Fukui, Masahiko Watanabe, Masamichi Shimosaka, and Tomomasa Sato

Abstract. Hand gesture can express rich information. However, existing hand shape
recognition methods have several problems. In order to utilize hand gesture in a
home automation, we have focused on ”wrist contour” , and have developed a wrist-
watch-type device that measures wrist contour using photo reflector arrays. In this
paper, we try on two challenges: the first is improvement of the hand shape recog-
nition performance, and the second is making clear the effect of personal difference
and finding a key to overcome the difference. We collect wrist contour data from
28 subjects and conduct two kinds of experiments. As for the first challenge, three
different feature types are compared. The experimental results extract several impor-
tant contour statistics and the classification rate itself is also improved by introduc-
ing multiple subjects’ data for training. As for the second challenge, we compose
a resemblance matrix to evaluate resemblance among subjects. The results indicate
that training data selection is important to improve the classification performance,
especially when we don’t have time to collect enough training data for a new user.

1 Introduction

Gesture recognition is getting more popular for home use. Popular gesture devices
such as Microsoft Kinect(R) use body movement (i.e. arm movements) as an input.
They are specialized in recognition of large body movements, that means they are
not good at monitoring small body movements (e.g. hand motion) because of the
resolution and accuracy limitations. Even though hand shape can express rich in-
formation with small movements, lack of concise hand shape recognition method
prevents us from utilizing the beneficial information[8].
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Therefore, we propose a novel method that realizes hand shape recognition with
only a wrist-watch-type device. Such recognition method enables us to realize
many applications: remote control of home electronics, gaming interface and so on
(Fig. 1).

B

O

Matsuzawa

●●
●
●

Fig. 1 Application images: Hand gesture control of displays and recognition of ball grip in
baseball game

1.1 Hand Shape Recognition Methods

There are three major hand shape recognition methods.

1. Data glove [1][2]: A user attaches a glove-type device with bend sensors at each
finger joint. This method realizes high recognition performance, but the glove
restricts hand movements and attaching a glove is a little troublesome for daily
activities.

2. Camera vision [3][7][6]: This system recognizes hand shapes using image pro-
cessing. If a camera acquires an image from appropriate direction, it exerts high
performance, but it highly depends on the relative position and direction of user’s
hand and the camera.

3. Electromyogram (EMG) [9][11]: With signals from electrode attached to user’s
arm, it detects myoelectric potential and estimates hand movements. EMG sen-
sor can realize a wearable system. Hence, it does not restrict user position and
direction. However, it needs many initial configuration and calibration processes
to realize sufficient performance: a user has to clean up his or her skin, the sensor
is very naive to attached point, and a recognition system needs a lot of calibration
data.

When introducing a hand gesture recognition device into a home, these methods
have three problems: influence on activity, complex initial configuration, and insuf-
ficient recognition performance.

To overcome these problems, we focus on “wrist contour” We designate a wrist
cross-section contour as a wrist contour. The wrist contour has various shapes be-
cause finger movements are induced by activities of tendons and muscles near the
wrist as shown in Fig. 2.

As a similar approach, Rekimoto[10] developed a wrist-watch-type device with
capacitive sensors measuring wrist surface in three points, and recognized two hand
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shapes (grasping and pointing). In our previous work[5], we developed a wrist-
watch-type device (Fig. 3) with two array of 75 photo reflectors, and conducted
hand shape classification experiments. The performance of eight hand shapes’ clas-
sification was 73.2% (training data include subject’s own data), or 47.8% (training
data exclude subject’s own data). The value is not sufficient for practical use, espe-
cially personal difference is the bottom neck of the performance.

Wrist contourWrist cross sectionHand shape

Flexor and 
extensor 
carpi

Flexor and 
extensor 
pollicis

Flexor and 
extensor 
digitorum

0 X

Y Y

X0

Fig. 2 Principle of wrist contour variation with hand
shape

Fig. 3 The wrist-watch-type
device

1.2 Challenges

In this paper, we try on two challenges: the first is improvement of classification
performance, and the second is making clear the effect of personal difference and
finding a key to overcome the difference.

As for the first challenge, the wrist contour data differ slightly in attached con-
ditions even in the same subject. Besides, even if the measuring device is almost
appressed to the wrist, slippage (moving in a radial or circumferential direction)
may occur. Therefore, we need to investigate a robust normalizing procedure that
can extract stable characteristics and need to design more solid feature extraction
process.

Regarding the second challenge, we want to utilize other subjects’ data that is
acquired previously, and this approach can release a new user from collecting nu-
merous training data.

2 Approaches for Efficient Utilization of Wrist Contour Data

In order to measure wrist contour precisely, we developed a wrist contour measur-
ing device. From the data collected with the device, features are extracted for hand
shape classification methods. The key elements for our approach are described in
this section.
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2.1 Wrist Contour Measuring Device

The device consists of two parts: the wrist-watch-type measurement part, and the
battery and control part (Fig. 4). The measurement part has a measurement band; a
flexible band with photo reflectors (infrared-light distance sensors). The band can
measure distances between the band and surface of the wrist using photo reflector
arrays. The band has two arrays and each array has 75 photo reflectors. With a
wireless module mounted in battery and control part, the device communicates with
PC wirelessly.

The basic specifications are as follows. Please refer to our previous work [5] for
the details of the device.

• Measurement area: ∼185mm
• Measurement pitch: 2.5mm
• Distance resolution: 0.1mm (∼3.5mm range)
• Sampling rate: 10Hz

Measurement band

Control board(front,rear)

Battery and control part

Measurement part

Pitch:2.5mm

Photo reflector

Wireless module

Spacer

Micro controller

25
 m

m
12

 m
m

Cross section

Fixing band

Control board

Battery

Fig. 4 Composition of wrist contour measuring device. The measurement part is connected
to the battery and control part by a wire. The Fixing band assists the attachment of the mea-
surement band and reduces slippage.

2.2 Feature Extraction Process

Wrist contour raw data examples are shown in the upper side of Fig. 5. There are
small difference among the raw data of hand classes, therefore feature extraction
process is essential. We prepare two potential feature types.

One feature type is “normalized contour data”. Because each muscle and tendon
is different in thickness, each sensor element has different variation range of dis-
tance. The process samples the maximum and minimum distance for each sensor
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element, and normalizes distance data into 0 to 1 (Fig. 5). With this process, small
variations can be emphasized. On the other hand, the slippage of the band might be
great noise.

Another feature type is “contour statistics”. They are statistics from wrist contour
distance data, such as sum of distances, maximum distance, histograms and so on
(Fig. 6). Each statistics are normalized by calibration data (wrist contour data of
Fist and Open hand). With this approach, we try to overcome slippage or personal
differences.
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Fig. 6 Example of statistics
from wrist contour data

2.3 Classification Method

As classification methods, k-Nearest Neighbor (k-NN) method and AdaBoost
method are used.

In k-NN method, the test data is labeled by votes of k nearest samples. All Eu-
clidean distances between the test sample and training samples in the feature space
are calculated, and nearest k training samples have right to vote.

AdaBoost is a kind of boosting method, which makes some weak learners (in
our implementation, decision stumps) [4]. The test data is labeled by weak learners’
weighted votes. Weights on weak learners are tuned to fit to training data in the
training process.
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2.4 Personal Resemblance

Resemblance among subjects is the main topic to be investigated. That is because
when other subjects’ data are used as training data, the recognition performance
differs drastically according to the combination of test subject and training subjects.
We try to observe the resemblance among subjects by examining the relationships
between classification performance and combination of subjects.

3 Experiments

We collected wrist contour data from 28 subjects. With the data, two kinds of hand
shape classification experiments are conducted: (1) Comparison of two feature types
using three training data groups, and (2) Evaluation of resemblance among subjects.

3.1 Wrist Contour Data Collection

We collected wrist contour data from 28 subjects, male and female of 20’s to 50’s.
The arm posture and wrist pronation is fixed as shown in Fig. 7 because a wrist
contour varies with wrist pronation. Data collecting procedure is as follows:

Step 1. The measurement part is attached on the wrist in rough alignment.
Step 2. A display shows a hand shape illustration to the subject, and the subject

imitates the hand shape, and then wrist contour data is recorded.
Step 3. After recording wrist contour data of all six hand shapes (one set, shown in

Fig. 8), the measuring device is taken off.
Step 4. Repeat Step 1∼3 six times for each subject.

Finally, 1008 wrist contour data were collected; 28 subjects × 6 wrist contour data
sets × 6 hand shapes. Examples of wrist contour raw data are shown in Fig. 9.

Fig. 7 The posture
when collecting wr-
ist data

Fist
(FI)(FI)

One finger
(1F)(1F)

Two fingers
(2F)(2F)

Open hand
(OH)(OH)

Thumbs up
(TU)(TU)

Little finger
(LF)(LF)

Fig. 8 Hand shape im-
ages of six hand classes
(one set)
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Fig. 9 Wrist contour raw data of 28 sub-
jects. (One data per subject. Hand shape:
One finger)



Hand Shape Classification with a Wrist Contour Sensor 945

3.2 Classification Experiment (1) Comparison of Two Feature
Types

In order to examine robustness of the described feature extraction processes, two
types and one derived type of features are compared.

3.2.1 Setup of Classification Experiment (1)

Feature types to be compared are as follows.

A. Normalized contour data 45 dimensions: each contour data are linearly con-
verted to the smallest wrist contour size.

B. Contour statistics 92 dimensions
C. Selected contour statistics 5 dimensions: This feature type is derived from fea-

ture type B. When classifying from contour statistics using k-NN method, useful
features might be hidden by other less useful features. Also, when classifying
using AdaBoost, large number of features might cause over-fitting. Therefore we
conduct another experiment of using only five contour statistics that have large
separation metrics. The separation metrics is calculated as between-class vari-
ance divided by in-class variance.

Two classification methods are used: k-NN method and AdaBoost method. When
using AdaBoost, the system produces six one-versus-the-rest classifiers and an out-
put class is determined by maximum output value in six classifiers.

Therefore, the number of combinations of feature types and classification meth-
ods are 3 × 2 = 6.

As for training data, three groups are prepared.

Group 1 Subject’s own data 5 sets.
Group 2 Subject’s own data 5 sets and other subjects’ 27×6 sets.
Group 3 Other subjects’ 27×6 sets.

The classification performance is evaluated by classification rate (number of cor-
rectly classified samples / number of inputted samples ×100 [%]).

3.2.2 Result of Classification Experiment (1)

Result of classification experiment (1) is shown in Fig. 10. The table explains the
result in each training data groups. As expected, the combination of feature type B
and k-NN method exerts low score in all groups.

In group 1 (the subject’s own data), feature type A exerts higher performance
in classification rate than feature type B and C. Incidentally, results of experiments
using AdaBoost (especially feature type A and B) exert lower performance. This is
because there are not enough training data and that causes over-fitting. In group 2
(the subject’s own data and other subjects’ data), no remarkable difference among
three feature types is observed. In group 3 (other subjects’ data), feature type B and
C exert better performance than feature type A.
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Tbl. 1 shows the confusion matrix of one experiment (B. Statistics + AdaBoost).
Most hand shapes are correctly classified on some level, however, confusions among
some similar classes (e.g. 1F and LF) are observable.
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Fig. 10 Result of classification experiment (1)

Table 1 Confusion matrix
of B. Statistics + AdaBoost
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The insights from the results are as follows. First, useful features are different
according to training data group. For instance, when using subject’s own data as
training data, the combination of feature type A (normalized contour data) and k-
NN classification method exerted relatively high performance of 90.1% classifica-
tion rate. On the other hand, when using other subjects’ data as training data, the
performance is improved using feature type B (contour statistics); classification rate
is 77.9% using AdaBoost. Second, the weights of AdaBoost weak learners indicates
that sum of distances, maximum monotone increasing value and sum of differences
of histogram are useful contour statistics.

As a result, it can be said the performance is improved: with subject’s own data,
90.1% in classification of six hand shapes is thought to be enough for use. However,
the classification rate of 77.9% with other subjects’ data is not enough for practical
use, so we should consider how to use other subjects’ data more efficiently.

3.3 Classification Experiment (2) Evaluation of Resemblance
among Subjects

In order to examine resemblance in wrist contours among subjects, classification
experiment is conducted in one-on-one combinations of training and test data.

3.3.1 Setup of Classification Experiment (2)

Classification rates are used for evaluation of resemblance among subjects. We con-
figure the resemblance evaluation matrix (28 subjects × 28 subjects). To make the
matrix, all combination (28×27) classification experiments are conducted. For each
experiment, training data only include one subject data. An element (S1, S2) of
the resemblance evaluation matrix is classification rate when using S1’s data as test
data, and S2’s data as training data.
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Two feature types (A and C) are used and k-NN method is used as classification
method. This is because when classifying with AdaBoost, learners are over-fitted to
small number of training data.

3.3.2 Result of Classification Experiment (2)

One result of classification experiment (2) is shown in Tbl. 2; the result of the ex-
periment using feature type C (selected contour statistics). The row represents the
test subject and the column represents the training subject. For example, when the
test subject is subject 3 and the training subject is subject 9, the classification rate is
80.6% (the green box).

The average classification rate of all experiments is 59.8%. The rate of more than
80% elements is 11.2% (85/756), and the rate of less than 40% elements is 12.8%
(97/756).

Meanwhile, the result of experiment using feature A is as follows: the average
classification rate of all experiments is 54.3%, the rate of more than 80% elements
is 5.6% (42/756), and the rate of less than 40% elements is 20.2% (153/756). In
addition, each element of the resemblance evaluation matrixes is far different from
the one of the result using feature C.

Table 2 Resemblance evaluation matrix (using feature C)

Each element represents classification rate [%].
Elements more than 80%,            Elements less than 40%.

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 55.6 41.7 36.1 50.0 50.0 52.8 58.3 50.0 50.0 30.6 38.9 55.6 47.2 47.2 50.0 58.3 41.7 44.4 58.3 58.3 55.6 44.4 41.7 41.7 41.7 58.3 50.0
2 38.9 66.7 80.6 83.3 72.2 72.2 38.9 77.8 83.3 72.2 63.9 52.8 66.7 66.7 38.9 80.6 66.7 69.4 58.3 38.9 83.3 72.2 83.3 38.9 58.3 33.3 83.3
3 47.2 66.7 61.1 77.8 72.2 66.7 27.8 80.6 69.4 77.8 61.1 55.6 77.8 63.9 50.0 66.7 69.4 63.9 69.4 30.6 66.7 80.6 77.8 55.6 75.0 30.6 75.0
4 33.3 83.3 77.8 83.3 86.1 77.8 41.7 72.2 80.6 80.6 55.6 58.3 69.4 61.1 58.3 86.1 52.8 88.9 61.1 50.0 86.1 63.9 83.3 44.4 77.8 50.0 80.6
5 33.3 83.3 77.8 88.9 75.0 80.6 52.8 83.3 77.8 80.6 58.3 61.1 72.2 66.7 58.3 77.8 75.0 80.6 66.7 41.7 86.1 75.0 86.1 44.4 83.3 33.3 83.3
6 33.3 75.0 91.7 63.9 83.3 75.0 38.9 80.6 66.7 77.8 55.6 55.6 83.3 63.9 61.1 69.4 66.7 72.2 69.4 36.1 77.8 77.8 83.3 52.8 75.0 33.3 66.7
7 30.6 58.3 69.4 63.9 72.2 72.2 44.4 58.3 75.0 77.8 44.4 58.3 75.0 52.8 44.4 55.6 61.1 80.6 58.3 33.3 88.9 91.7 86.1 66.7 75.0 33.3 83.3
8 75.0 66.7 44.4 50.0 63.9 47.2 63.9 50.0 55.6 44.4 36.1 69.4 61.1 61.1 72.2 58.3 66.7 41.7 55.6 72.2 50.0 36.1 41.7 55.6 55.6 58.3 58.3
9 47.2 80.6 66.7 58.3 80.6 55.6 52.8 41.7 63.9 55.6 47.2 55.6 58.3 61.1 47.2 55.6 63.9 61.1 66.7 44.4 63.9 63.9 61.1 44.4 61.1 36.1 61.1

10 22.2 72.2 63.9 69.4 69.4 77.8 69.4 25.0 58.3 69.4 63.9 38.9 58.3 47.2 22.2 63.9 44.4 52.8 55.6 16.7 75.0 69.4 72.2 30.6 66.7 19.4 83.3
11 38.9 63.9 69.4 52.8 63.9 61.1 69.4 41.7 69.4 50.0 38.9 63.9 63.9 52.8 52.8 44.4 61.1 75.0 47.2 41.7 69.4 72.2 66.7 61.1 69.4 47.2 72.2
12 36.1 80.6 63.9 55.6 69.4 66.7 58.3 27.8 69.4 66.7 72.2 44.4 50.0 63.9 41.7 83.3 55.6 44.4 47.2 36.1 80.6 38.9 66.7 47.2 63.9 30.6 80.6
13 55.6 52.8 61.1 52.8 55.6 55.6 61.1 72.2 66.7 50.0 63.9 38.9 52.8 47.2 77.8 58.3 63.9 63.9 50.0 63.9 63.9 55.6 58.3 63.9 77.8 55.6 77.8
14 36.1 63.9 86.1 55.6 72.2 75.0 69.4 58.3 75.0 58.3 69.4 47.2 75.0 63.9 69.4 55.6 75.0 72.2 66.7 44.4 63.9 75.0 69.4 61.1 66.7 44.4 69.4
15 22.2 50.0 44.4 33.3 36.1 52.8 44.4 16.7 55.6 47.2 36.1 52.8 19.4 38.9 16.7 47.2 33.3 36.1 38.9 16.7 33.3 41.7 36.1 22.2 30.6 16.7 44.4
16 58.3 63.9 61.1 58.3 63.9 75.0 63.9 75.0 72.2 61.1 77.8 30.6 83.3 66.7 50.0 66.7 63.9 77.8 63.9 75.0 69.4 69.4 58.3 63.9 69.4 66.7 66.7
17 36.1 91.7 66.7 91.7 86.1 72.2 66.7 36.1 75.0 83.3 63.9 72.2 50.0 63.9 61.1 50.0 66.7 50.0 72.2 44.4 86.1 69.4 83.3 52.8 69.4 38.9 75.0
18 38.9 61.1 69.4 44.4 86.1 44.4 75.0 61.1 69.4 44.4 58.3 36.1 66.7 77.8 58.3 66.7 50.0 52.8 69.4 50.0 41.7 66.7 58.3 58.3 75.0 36.1 58.3
19 36.1 66.7 63.9 52.8 69.4 61.1 61.1 30.6 63.9 61.1 77.8 41.7 41.7 69.4 50.0 44.4 58.3 58.3 52.8 25.0 72.2 72.2 69.4 55.6 66.7 27.8 75.0
20 47.2 80.6 83.3 61.1 72.2 75.0 63.9 50.0 75.0 69.4 58.3 61.1 66.7 69.4 55.6 75.0 69.4 72.2 61.1 41.7 66.7 72.2 63.9 38.9 69.4 38.9 75.0
21 66.7 52.8 50.0 44.4 55.6 47.2 52.8 77.8 69.4 50.0 41.7 47.2 75.0 52.8 50.0 75.0 50.0 50.0 47.2 50.0 52.8 33.3 61.1 77.8 75.0 72.2 44.4
22 38.9 88.9 75.0 58.3 80.6 80.6 83.3 47.2 72.2 80.6 69.4 47.2 55.6 75.0 61.1 58.3 83.3 66.7 77.8 69.4 33.3 72.2 83.3 58.3 66.7 30.6 66.7
23 36.1 66.7 75.0 66.7 63.9 77.8 86.1 33.3 55.6 69.4 75.0 38.9 58.3 83.3 50.0 66.7 50.0 52.8 83.3 55.6 30.6 77.8 77.8 63.9 75.0 33.3 83.3
24 36.1 72.2 80.6 63.9 83.3 77.8 83.3 19.4 69.4 80.6 88.9 55.6 41.7 80.6 63.9 27.8 77.8 50.0 80.6 58.3 19.4 80.6 83.3 61.1 63.9 19.4 88.9
25 47.2 44.4 61.1 41.7 55.6 44.4 52.8 61.1 50.0 36.1 69.4 38.9 61.1 58.3 50.0 63.9 47.2 61.1 63.9 47.2 66.7 47.2 61.1 58.3 72.2 52.8 58.3
26 50.0 63.9 77.8 58.3 83.3 61.1 66.7 58.3 66.7 47.2 75.0 38.9 72.2 69.4 52.8 66.7 55.6 75.0 72.2 58.3 50.0 58.3 72.2 83.3 55.6 38.9 63.9
27 77.8 50.0 50.0 38.9 50.0 47.2 50.0 66.7 50.0 55.6 33.3 25.0 58.3 50.0 50.0 50.0 50.0 44.4 50.0 33.3 80.6 50.0 47.2 44.4 69.4 47.2 50.0
28 38.9 69.4 83.3 50.0 80.6 58.3 75.0 33.3 66.7 69.4 75.0 52.8 44.4 66.7 58.3 41.7 72.2 66.7 80.6 58.3 30.6 69.4 75.0 80.6 50.0 63.9 38.9
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Several insights can be drawn from the results. First, the fact that the rate of use-
ful combinations (more than 80%) is 11.2% and the rate of useless combinations
(less than 40%) is 12.8% indicates the necessity of a training data selection process.
Second, the resemblance evaluation matrix of feature type C and the one of feature
type A are far different, that means the definition of resemblance deeply depends
on the type of features. Therefore the training data selection processes need to be
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designed respectively to the feature type. Third, when examining each subject, there
are some subjects that exert low classification rate with any combinations, so we
need to collect more data to fill the “lack” of current data.

When applying results of experiment (2) to improve classification performance,
some approaches can be candidate. One approach is making groups of highly re-
semble subjects, and then training data or classifiers are selected according to the
group that new subject belongs to. It is important to determine what model to use
as group, and number of groups, and design of group classifiers. Another candi-
date approach is like a kind of filtering that selects each subject to use as training
data [12].

4 Conclusion and Future Work

We focus on wrist contour for hand shape recognition in order to overcome prob-
lems of existing recognition methods. As a measurement device, we developed a
wrist-watch-type device with photo reflector arrays. Using the device, wrist con-
tour data of six hand shapes are collected from 28 subjects. With the collected data,
we conducted several experiments for comparison of feature types, and evaluated
resemblance among subjects.

Through classification experiment (1), it can be said the performance is improved.
However, the classification rate of 77.9% with other subjects’ data is not enough for
practical use and more efficient usage of other subjects’ data is essential. Through
classification experiment (2), the need of training data selection process are con-
firmed. We should try on some method of grouping or selecting training data.

Our future works are as follows. In terms of design, it is necessary to downsize
the device and integrate all functions to a wrist-watch-type device. Additionally,
we need to tackle the problem of wrist pronation changes by redesigning hardware
and software. In terms of recognition performance, we need to try some approaches
such as finding other new statistics or using another classification methods to im-
prove performance. As mentioned above, an efficient training data selection process
should be designed to utilize other subjects’ data as training data.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
23800012.
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Experimental Validation of Operator Aids
for High Speed Vehicle Teleoperation

Alonzo Kelly, Nicholas Chan, Herman Herman, and Randy Warner

Abstract. Although fully autonomous robots continue to advance in ability, all
points on the spectrum of cooperative interfaces between man and machine con-
tinue to have their place. We have developed a suite of operator assist technologies
for a small (1 cubic meter volume) high speed robot that is intended to improve
both speed and fidelity of control. These aids include fast stability control loops that
run on the robot and graphical user interface enhancements that help the operator
cope with lost peripheral vision, unstable video, and latency. After implementing
the driving aids, we conducted an experiment where we evaluated the relative value
of each from the perspective of their capacity to improve driving performance. Over
a one week period, we tested 10 drivers in each of four driving configurations for
three repetitions of a difficult test course. The results demonstrate that operators
of all skill levels can benefit from the aids and that stabilized video and predictive
displays are among the most valuable of the features we added.

1 Introduction

Teleoperation is a control concept that is as old as robotics — and for fundamen-
tal reasons. When the motivation for the use of a robot is to keep a human out of
harm’s way (e.g. nuclear servicing) or to place a robot where a human could never
go (e.g. inside a blood vessel), the robot and the human are separated by assump-
tion. Given that separation in space, the question of how they can effectively work
together arises naturally. As research in autonomous robots has advanced, teleop-
eration has become merely one of many options, but those advances have neither
rendered teleoperation irrelevant nor solved many of its fundamental challenges.
Nonetheless, a robot which is more autonomous could potentially use its awareness
of its surroundings and its state to conform to the needs and limitations of humans.
Autonomy therefore has the potential to render the man-machine system more ef-
fective. This is hardly a new idea but different applications give rise to different
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realizations of the concept. This paper explores the potential of operator aiding in
the context of small high speed wheeled mobile robots, with a particular emphasis
on experimental validation.

Despite the promise of teleoperation, its history has been characterized by a con-
stant struggle to solve many fundamental and difficult issues. For vehicles, the oper-
ator is removed from the rich sensory experience (visual, audio, olfactory, inertial)
of sitting in the driver seat. The intrinsic limitations of the associated sensing, com-
munication, and display technology then deprive the operator of all stimuli except a
video. Unfortunately, video and associated displays is a poor surrogate for biologi-
cal vision according to almost any chosen basis of comparison.

These technology limitations are responsible for both the reduced situation
awareness of a remotely located driver, and the difficulty of driving competently
at high speed. There is no inexpensive and effective means of remotely conveying
the sensation of all of the acceleration, impact, and vibration associated with sitting
in the driver seat. Likewise, it is well known that latency in the video (or any sens-
ing) makes it very difficult to respond effectively to unpredictable disturbances in a
feedback setting, whether there is a human in the loop or not.

1.1 Problem Statement

Nonetheless, displays can be annotated to include knowledge (available to the robot)
that may not be discernible in the raw video. Some control loops can be closed on the
vehicle where there is far less latency and others can include a predictive component
that allows the operator to remove, in a classical feedforward manner, predictable
errors before they occur.

Therefore, assistive technologies should be able to improve performance in a
measureable way and our goal in this work was not only to implement these tech-
nologies on a challenging platform, but to measure their effectiveness in a controlled
empirical setting.

1.2 Related Work

This work fuses ideas for teleoperation from the earliest days of robot manipulator re-
search with techniques for video stabilization, ideas from modern gaming interfaces,
and elements of electronic stability control (ESC). ESC is now available on most re-
cently manufactured automobiles. We will use predictive displays, gyro-stabilized
video, annotations over live video, and speed governing based on yawrate feedback.
The effort described here was motivated in part by a desire to produce a second ver-
sion of our teleoperation system described in [7]. We wanted this second version to
be less expensive to produce and to be suitable for robots without lidar perception.

Almost three decades ago, the field of telerobotics was a subfield of robotics
pursuing a scientific understanding of the man-machine system. Numerous tech-
niques for supervisory control and teleoperation of manipulators were outlined as
early as the mid 1980s [12]. Virtual displays that are either predictive or used
for preview have often been used to compensate for both delay and limited data
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bandwidth when remotely operating manipulators. The concept of teleprogramming
was an early form of model-based teleoperation [6] that used models to mitigate the
effects of latency. More recently, more intuitive and task-centric interfaces have been
used to operate manipulators over thousands of miles of separation [8].

Latency compensation in space applications has also been accomplished with
motion preview and predictive displays [2]. In some cases, stereo graphics viewed
in a stereoscopic display have been used to improve operator depth perception [9].
While all of the telerobotics work described so far has been applied to stationary
manipulators in a stationary scene, the principles are extendable to moving sensors
in a dynamic scene, if the image processing is efficient. For example, Ricks et al.
used a predictive method that they dubbed quickening to compensate for latency
when teleoperating a mobile indoor robot [11].

The use of gyros to stabilize video was originally driven by the need to stabilize
camcorders [10]. More recently, numerous techniques have been borrowed from
computer vision which use the image data itself in order to estimate the motion of
the camera [3]. Of course, inertial and visual cues can also be used at the same
time [14].

One early use of augmented video like ours is augmented reality — the introduc-
tion of synthetic components into a largely real view. The display used may be head
worn, handheld, or projected on a display surface. Numerous applications have been
explored in medicine, manufacturing, visualization, entertainment and the military
[1]. In our case, the live video is the real part and the graphical and textual anno-
tation is the augmentation. When the augmentations are based on a rich underlying
model, they are said to be knowledge-based [5]. Augmented video is also a favorite
form of display in computer gaming. In that case, the video is also virtual.

Electronic stability control and roll stability control systems have been the subject
of intense development by the automotive industry in the last 20 years. Our approach
to ESC is a governor based on yaw rate error whereas active automotive systems are
based on using braking to generate restoring moments [13]. Our approach to roll
stability control is based on early work from legged mobile robots as realized in the
algorithms in [4].

2 Technical Approach

The work described here investigates a number of techniques that promise to
improve the performance of the man-machine system. These techniques can be
grouped into those related to communications, control, and operator display. Af-
ter describing the hardware and the overall rationale, the more important algorithms
are described below.

2.1 Hardware Design

Our work was conducted on the Forerunner remote-controlled vehicle developed by
RE2 Inc (Figure 1). We chose this vehicle for its size and speed regime (max speed
25 km/hr/). The base platform provides control interfaces and computing to support
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Fig. 1 Forerunner Remote Controlled Vehicle.
All wheels are driven and steered. The vehicle
is easily capable of 25 km./hr. speed so such
ballistic motion is achievable.

line-of-sight remote control. To this,
we added a Core 2 Duo ULV 1.2 GHz
CPU computer, a high dynamic range
driving camera, an automotive obstacle
avoidance radar, an inertial mfeasure-
ment unit, and 802.11-n wifi. The main
computer was used to implement con-
trol algorithms and video compression.

Inertial navigation was performed in
dedicated FPGA hardware. Another re-
mote computer at the operator control
station generated the graphical user in-
terface. Our communications date rate
was limited to a mere 0.75 megabits (not bytes) per second. Our approach for tol-
erating this limit was to use the latest (MPEG-4) video compression and to tune
it for this application. Doing so permitted us to optimize video quality within the
available resources.

2.2 Control Techniques

Several control techniques were used to assist the operator. A stability control sys-
tem was used to help reduce risk of loss of yaw stability and of rollover, and a path
following controller was used to reject associated disturbances at the vehicle level.
The overall rationale for the use of these systems is as follows:

• Feedback Control. One of the most basic techniques is to close control loops
locally on the vehicle where latency is low and reaction time is short. In this way,
the vehicle is able to reject all disturbances that its feedback renders it competent
to reject. The operator then has to deal only with the disturbances that remain,
and these tend to be lower frequency and somewhat discernible from the operator
display. In the case of safety systems like stability governing, the vehicle can be
empowered to take control locally to prevent a mishap that would otherwise occur
before the operator is even aware of the situation.

• Model Predictive Control (MPC). MPC has several uses. The most basic is the
use of predictive models in multi-state control algorithms like path following.
In this case the predictable effects of terrain following and wheel slip can be
modelled to eliminate what would otherwise become error disturbances. Data
bandwidth can be reduced as well. On-vehicle processing can be used to perform
data-intensive predictions and then transmit only the results to the operator. For
example, prediction calculations can include the effects of terrain slope, without
having to transmit the terrain data to the operator.

• Prediction Through Latency. MPC can also be configured to account for pre-
dictable latencies - both uplink (of state) and downlink (of commands). Trajec-
tory predictions performed on the vehicle can be shifted forward in time to reflect
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uplink delay and predictions performed on the operator console can account for
the command downlink delay. The delay itself can be predicted from past expe-
rience and/or from the measured delay of the most recent messages.

2.2.1 Inertial Navigation

We have implemented our own inertial navigation (INS) solution on other programs
so we were able to re-use it for this application. The navigation system was used
to provide position feedback for control purposes, to provide attitude feedback for
video stabilization, and to provide specific force and angular velocity data for stabil-
ity control. Use of our own INS permits us to optimize for GPS-denied performance
and to integrate the solution for navigation and stability control in one package.

Fig. 2 Inertial Navigation System. A 15 state complementary filter configuration is used.

A relatively high performance Honeywell HG-1930 IMU was used. The design
is a classical complementary Kalman filter (Figure 2) with 15 error states (position,
orientation, velocity, accelerometer biases, gyro biases) and it is aided by measure-
ments of the 4 wheel rotation rates and steer angles.

2.2.2 Stability Control

Exactly how a vehicle responds to high horizontal acceleration levels depends on at
least the wheel support polygon, the center of gravity position, slope, terrain shape,
and terrain friction. While the original intention was to implement a rollover pre-
vention system, experimentation revealed that this vehicle is prone to spin out of
control before wheel liftoff occurs. Accordingly, we implemented a yaw stability
governor as well. It compared the commanded yawrate to the actual (as measured
by the gyros in the IMU) and then imposed a computed limit on vehicle speed when
the percent yawrate error exceeded a threshold.
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2.2.3 Path Following

Fig. 3 Path Follower. An MPC algo-
rithm finds the optimal clothoid.

In addition to actuator level controls, and the
operator’s own display-based adjustments, a
model predictive path following controller was
implemented on the vehicle. The operator’s
driving commands, when converted to predicted
response, are interpreted as a path to be fol-
lowed. A clothoid is a path whose curvature
function is of the form κ(s) = a+ bs for initial
curvature a and curvature gradient b. The algo-
rithm (Figure 3) seaches a discretized space of
clothoids for the one which minimized the inte-
grated pose error along the path and then sends
the associated optimal control to the platform
controller.

2.3 Display Techniques

Several display techniques were also important
for assisting the operator. The overall rationale for the use of these systems is as
follows:

• Inputs for Continuous Driving. Of course, a very effective technique for remote
driving with latency is to designate waypoints one at a time and wait until the
vehicle achieves them. However, when driving continuously, the operator does
not have the luxury of waiting for the display to stabilize (after motion stops)
before injecting the next input — it is supposed to be a continuous process. One
way to provide an intuitive input mechanism is to have the operator specify an
instantaneous goal point in body coordinates. This input is static in a vehicle-
fixed display and it can correspond precisely to the control horizon in MPC.

• Predicted Path Display. We furthermore chose to interpret the goal point as the
desired endpoint of a vehicle trajectory. A predictive model of the vehicle is in-
verted as described above to produce the control that corresponds most closely
to the desired path. The lateral position of the endpoint affects curvature and
its distance downrange affects speed. The operator experience is that of literally
steering this predicted endpoint. In this way, the mapping from what the operator
wants to what the platform is commanded is automatic, state and terrain adap-
tive, and well calibrated. The result is a man-in-the-loop MPC system where the
human continually adjusts the controls, optimizing on the fly, in the context of
good predictions. The display discussion below reveals how the predictions are
visually placed in the context of the vehicle surroundings on the screen.

• Video Stabilization. The context of a small vehicle driving fast over uneven
terrain leads to a bumpy ride for the vehicle and a jumpy display for the op-
erator. Accordingly, video stabilization was used to provide the operator with a
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synthetically stable camera view. This feature was complementary to path pre-
diction by providing a smoothly varying image of where the vehicle was headed,
regardless of terrain following attitude changes.

2.3.1 Video Stabilization

Fig. 4 Video Stabilization. A synthetic
locally-level camera view is used so that
terrain features remain fixed between video
frames.

Numerous options exist for the design
of this feature. Our approach was based
on our own prior efforts elsewhere
because the software already existed.
Each video frame was precisely tagged
with the pose of the camera at the in-
stant that the frame was acquired. The
video was then rendered, based on the
associated real camera attitude, onto a
virtual billboard positioned a few me-
ters in front of vehicle. The billboard
was then viewed with a virtual camera
at the true camera position — whose at-
titude was locally level (Figure 4) . The
operator perspective is that the video
frames may move up and down slightly
on the billboard but individual features remain fixed on the display. An added fea-
ture rendered the nose of the vehicle so that its attitude could be viewed in the same
display.

2.3.2 GUI with Video Overlay

Fig. 5 Graphical User interface. A video game
concept is used where annotations are over-
laid with some transparency on the stabilized
video.

The user interface (Figure 5) included
the stabilized video as well as numer-
ous overlays to convey such informa-
tion as wheel slip (detected as yawrate
error), radar-detected obstacles, atti-
tude, speed, and proximity to rollover.
Video overlays provide good use of
screen real estate and convey extra in-
formation while permitting the opera-
tor to focus on the rapidly changing
video. The predicted vehicle path was
also overlaid on the video as shown.
This technique allowed the operator to
position the goal point precisely with
respect to the objects in the scene.
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3 Experiments

It was already anecdotally clear that the assistive technology was valuable, so the
test was designed to try to quantify that value. The principles of the experimental de-
sign included control of as much variables as possible while varying only the aiding
modes that were available to the operator. During the testing, the speed was limited
to 5 m/s and many operators achieved this speed, at times, due to the acceleration
capability of the vehicle. We had damaged (and repaired) the vehicle with higher
limits in earlier tests.

Communications latency was typically low, under 100 millseconds for a round
trip. Path prediction reduced the effects of latency by giving the operator the means
to specify a destination, rather than an immediate velocity command. A destina-
tion in front of the vehicle is still valid even if it is received somewhat late, so the
controller could still attempt to reach it.

Multiple driving modes were tested in random order to remove bias associated
with learning the vehicle response and the test course. Operators were unable to see
the course during the test though all could see it briefly before the test. Each operator
was given the same briefing on the course and the technology before the test. Effects
of cloud cover, precipitation, terrain friction etc. were mitigated by testing operators
in all modes in a short period of time. Effects of vegetation were mitigated by driving
the course often enough to trample the tall grass before any testing.

The test course (Figure 6) was designed to be short, but quite difficult to drive
without the assistive technology. Narrow driving gates were constructed from bright
cardboard boxes to enhance their visibility but they were designed to collapse easily
on collision to avoid damaging the robot. Their precise positions were marked on
the ground to ensure repeatability of course setup, because the gates were often hit
by the vehicle. Half the course was grass and the other half was (old) pavement.
Operators were told to drive as fast as possible without hitting the sides of any

Fig. 6 Test Course - Overhead View. The small squares denote driving gates slightly wider
than the vehicle. It took about 1 minute to drive the course when trying to drive fast. The
course bounding rectangle is 185 ft along its longest dimension.
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gates. None were given an opportunity to learn the feel of the system before the
test began, although two drivers already knew the system well. All other drivers
were robotics engineers with no knowledge of the system and varying experience
in vehicle teleoperation. It was not our intention to evaluate learning curve. Rather,
we concentrated on the effect the technology had on each driver as an individual, in
the hope that it would help — regardless of skill level. Furthermore, the effects of
cloud cover and sun angle, and perhaps other effects, could not be controlled over
the course of the entire test. Therefore, comparisons of drivers to each other are not
entirely free of such effects.

4 Results

Once initial tests determined that video stabilization and predictive display were the
two most useful features, the final tests were designed to investigate these features
more fully in order to produce a manageable number of tests. Ten subjects were
tested and each drove the course three times in each of four configurations of the
driving aids. That is, there were 12 tests performed for each of the 10 people. The
configurations are summarized in Table 1. Video compression and stability control
were on at all times.

Tests were conducted in mid summer at a test site in Hazelwood in Pittsburgh.
We measured four principle observables: the total time to complete the course, the
number of times a gate was hit by the vehicle, the number of times that the driver
missed the gate entirely, and the curviness (integral of squared curvature with dis-
tance) of the path followed. The results averaged over all users are summarized in
Table 2.

Table 1 Test Configurations. These four combinations of assistive features were tested.

Attribute Basic Stabilized Predictive Both

Video Stabilization no yes no yes
Path Prediction no no yes yes
Path Follower no no yes yes

Table 2 Test Results Averaged Over All Users. A clear trend of improved performance is
evident with assistive features enabled, both individually and in combination.

Attribute Basic Stabilized Predictive Both

Time (secs) 49.9 44.6 39.1 36.7
# Hits 1.7 1.4 0.8 0.6
# Missed 0.3 0.2 0.0 0.0
Curviness 0.07 0.06 0.05 0.05
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5 Main Experimental Insights

It is important to recognize that this was a difficult course to drive quickly and the
vehicle could easily be driven beyond the speed threshold of stable control. Without
video stabilization, the gates would jump around significantly in the field of view
and it became less clear where the gate actually was in relation to the vehicle. With-
out prediction and path following, the perception of control fidelity was surprisingly
low - meaning the vehicle appeared not to do what it was told to do. Latency was
large enough to cause inexperienced operators to overcorrect, enter oscillation, and
occasionally lose control entirely. Once the vehicle spun out of control, much time
could be lost if it was already close to a gate and it had to be reversed to go through
it. There was no rear camera for reverse driving. In any case, once the gate left the
field of view due to a violent loss of control, the operator had to turn the vehicle in
order to search the periphery of the camera field of view in order to find the gate
again.

While the two most significant features added value (both individually and in
combination) a fielded system would (based on our results) probably have all of
them turned on, so we will concentrate on interpreting this case. With all features
turned on a) 8 out of 10 users showed > 20% improvement in time, b) 7 of 10 users
showed a 25% improvement in the smoothness of the path driven and c) 8 of 10
users hit fewer obstacles. Whereas 4 users missed gates entirely with all features
off, no users missed gates with all features on.

In considering the assistive features independently, the following results are note-
worthy. Paths were smoother with path prediction only enabled and times were
faster by 5% on average with video stabilization only enabled. Also, the two experi-
enced users showed definite improvements with the use of the assistive technology,
though the improvements were less pronounced in relative terms. It is difficult to
determine to what degree this reflects reduced effectiveness of the technology with
more experienced users or the fact that their unaided scores were already pretty
good, and therefore harder to improve upon. The two users that did not hit fewer
obstacles already hit very few so the relative improvements are less meaningful.

Users were also asked to complete an informal survey to provide their impres-
sions of the usefulness of each control model. Users found that the path prediction
feature made it easier to judge the motion of the vehicle. Times were measured to
be faster with video stabilization turned on and users found that the feature made it
easier to see the gates. In short, the two primary operator aids were found to be both
individually useful and complementary.

6 Conclusion

In this work, we have produced empirical validation of the conjecture that semi-
autonomous teleoperation of (even high speed) mobile robots can produce benefits
both in terms of productivity and of safety. While that is not so surprising, we have
conducted experiments to try to quantify the value of such improvements and we
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have also assessed their value relative to each other. Our application context is that
of a small, high speed, mobile robot, operating on nonflat terrain. Within that con-
text, we have some evidence that all of the features we added were valuable. We left
video compression on at all times because it is an established technique that were
were not particularly interested in studying, though interesting studies have been
done elsewhere. We left stability control on at all times because we felt it was too
dangerous to the vehicle to do otherwise based on our preparations for the experi-
ment. In a sense, both of these features were considered necessities for our context.

The remaining assistive features can be summarized as a control aid (path fol-
lowing and prediction) and a visualization aid (video stabilization). For all of our
operators, regardless of skill level, these features were both individually valuable
when used alone and complementary when used together. It is noteworthy that the
”all features on” configuration can be viewed as a model predictive control system
with a human in the loop. Not only was the path predcted well but it was presented
in the context of live video of the objects in the scene. This made it possible for
the operator to literally line up the robot path with the gap between obstacles, well
in advance, and then refine the path based on a continuously updated, calibrated
prediction of the ”fit” of the robot to the gate. In this way, the problem becomes
reduced to gently adjusting the path endpoint in a stable video rather than guessing
the inputs required to make the obstacle gap appear in the center of the screen, at
just the right time, as the robot drives through it.

After the tests, all operators expressed a preference to use the system with all
features on at all times. While the level of improvement was not not extraordinary,
we also did not try to maximize it. There are many realistic situations where the
enhanced safety, higher speed, and more robust and precise control will all add up
to an improved capacity to get a job done.
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Abstract. A critical component of autonomous driving in urban environ-
ment is the vehicle’s ability to interact safely and intelligently with the hu-
man drivers and on-road pedestrians. This requires identifying the human
intentions in real time based on a limited observation history and reacting
accordingly. In the context of pedestrian avoidance, traditional approaches
like proximity based reactive avoidance, or taking the most likely behavior
of the pedestrian into account, often fail to generate a safe and successful
avoidance strategy. This is mainly because they fail to take into account the
human intention and the inherent uncertainty resulting in identifying such
intentions from direct observations.
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This work formulates the on-road pedestrian avoidance problem as an in-
stance of the Intention-Aware Motion Planning (IAMP) problem, where the
human intention uncertainty is incorporated in a principled manner into the
planning framework. Assuming a set of all possible pedestrian intentions in
the environment, IAMPs generate a Mixed Observable Markov Decision Pro-
cess (MOMDP), (a factored variant of Partially Obervable Markov Decision
Process (POMDP)) with the human intentions being the unobserved vari-
ables. Solving the resulting MOMDP generates a robust pedestrian avoidance
policy. In spite of the criticism of POMDPs to be computationally intractable
in general, we show that with proper state factorization and latest sampling
based approaches the policy can be executed online on a real vehicle on road.
We demonstrate this by running the algorithm on a real pedestrian crossing
in the NUS campus successfully handling the intentions for multiple pedes-
trians, even when they are jaywalking. In this paper, we present results in
simulation to show the improved performance of the proposed approach over
existing methods. Additionally, we present results validating experimentally
the assumptions made in formulating the intention aware pedestrian avoid-
ance problem.

This work presents a preliminary step towards safer and effective au-
tonomous navigation in urban environments by incorporating the intentions
of pedestrians and other drivers on the road.

1 Introduction

With robots venturing more into human spaces, it becomes imperative for
the robots to predict the motion and intentions of people and other agents in
the field for effective operation. A popular example is autonomous vehicles in
urban environments which have to react with pedestrians, cyclists and other
human drivers on the road. Identifying intentions is even more relevant in the
case of autonomous vehicles because in many situations direct communication
between the robots and people is not possible, e.g.between pedestrians and
autonomous vehicles. A popular and simple approach of avoiding pedestrians
is that of running a one step prediction interwoven with avoidance based on

(a) (b) (c)

Fig. 1 Autonomous navigation in a crowded environment requires accounting for
the pedestrian intentions
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either potential fields [11], velocity obstacles [7] or by partial motion planning
[2] etc.at a very high update rate. Due to the reactive approach, the success of
such approaches in a crowded environment depends on the assumption that
the dynamic nature of the environment will prevent the robot from getting
stuck. However this assumption may not hold always. Take the scenario shown
in Fig.1(a) of people standing very close to edge of the pedestrian sidewalk.
While their position is close to the road, the pedestrian’s intentions may not
be to actually step on the road. Decisions purely based on the position and
not the intention of the pedestrians may cause an autonomous vehicle to
get stuck waiting for the pedestrian to cross. Human drivers however make
a judgment over the pedestrian’s intentions based on their activity (here
waiting rather than trying to cross the road) and safely drive on.

Detecting a person’s intentions or predicting his/her trajectory has been
addressed using Hidden Markov Models [10, 17], non-parametric approaches
like Inverse Reinforcement Learning [9], Gaussian Processes [6] and Bayesian
Occupancy Filter [4] just to name a few. In most of these approaches the tools
have been developed to identify a person’s intention as an end goal. Only
after the intention has been resolved sufficiently is the robot able to choose
its action. In reality, the purpose of the robot is to navigate safely and it
should only focus on resolving those pedestrian intentions relevant to the task.
Integrating the intention prediction with motion planning provides a more
effective approach. In many cases there might not be enough information
for the intention to be completely resolved before the robot has to make a
decision. Usually in such cases the robot takes actions against most likely
intention [10]. However, not taking into the account the prediction limitation
can lead to unsafe actions. Take the case of Fig.1(b) where the pedestrian
walking along a sidewalk may move to either G0 or G1 along the marked
trajectory. In essence no amount of sensing can effectively predict which goal
the pedestrian is moving towards until he/she passes P . A false prediction
of G0 due to motion stochasticity or sensing inaccuracy can cause potential
collision or evoke emergency avoidance by the robot. In such scenarios it
is imperative to not only take the prediction but also take the uncertainty
associated with the prediction into the robot’s decision process. This work
formulates the on-road pedestrian avoidance problem as an instance of the
Intention-Aware Motion Planning (IAMP) problem presented in [1], where
the intention uncertainty is incorporated in a principled manner into the
planning framework.

In many cases pedestrian motion models, their desired goals in the envi-
ronment and their interaction with other entities can be learnt from the data
collected by sensors in the environments [6]. We approach the problem assum-
ing that the pedestrian motion models and their possible goals are available.
The robot then has to reason about each sensed pedestrian’s intention given
the short observation history of the pedestrian’s motion in making its deci-
sion. Even though in general exact solutions to POMDPs are intractable [14],
with proper factorization of the observable and unobservable state variables
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as a Mixed Observable MDP (MOMDP [13]) and sampling based approxi-
mate solutions (SARSOP [12]), we show that such an approach can be applied
successfully on a real autonomous vehicle in a crowded environment (Fig.1c).
Let us now state the problem statement formally:

For a known environment W and known set of possible pedestrian goal
locations Θ in W, find an optimal policy Π, to minimize the time taken for
the robot R to reach its goal Rg and avoiding collision in the presence of
multiple pedestrians pi moving towards corresponding goals, gi ∈ Θ where all
gi are unknown to the robot.

2 Technical Approach

The problem of avoiding a single pedestrian pi in the environment W , can
be described by a few variables, the robot’s state: location xr, velocity vr,
and the pedestrian state: location xi, his/her intention gi (here the goal lo-
cation). In general, xr, vr and xi can be estimated from a variety of sensors
following an observation function Z : p(o|xr,vr,xi). However under accept-
able sensing accuracy we assume them to be fully observed. This helps us
reduce the computational complexity of the problem and we show experi-
mentally in Sec.3.2 that this assumption is indeed reasonable. On the other
hand, there is no “intention sensor” for gi and it is treated as unobserv-
able variable. Let x ∈ X represent the observed state variables and gi ∈ Y
denote the unobserved pedestrian’s intention. The robot can pick actions
a ∈ A : {cruise, accelerate, deccelerate}, to control the vehicle. The choice
of using such high level acceleration commands as compared to direct ve-
locity commands mimics human driver behavior who control the brakes and
acceleration rather than reason about the actual velocities. The robot is re-
warded by a function R when it successfully navigates to its desired goal and
is penalized for time delay and collision.

xi

xr

vr

Rg

Gi

Fig. 2 Pedestrian avoidance scenario in the quadrangle environment shows the
relevant variables in the formulation
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We formulate the pedestrian avoidance problem in autonomous navigation
by a discrete MOMDP:Mi : (X ,Y, A,O, Z, TX , TY , R, γ), where O is the set
of all possible observations and γ the discount factor. The transition function
TX(x, gi, a, x

′) : p(x′|x, gi, a) gives the transition of the observed variables
from the current observed state x into the future observed state x′ upon
taking the action a in the state (x, gi). This incorporates the pedestrian and
the robots motion models.

We assume the motion of the pedestrian to follow a trajectory towards its
intended goal in a shortest possible path, a simplified model of social potential
fields [8]. Note that the pedestrian may not follow the exact shortest path due
to personal preferences, distracted walking, avoidance of other pedestrians
and vehicles on the road. These unknown variations are modeled with the
uncertainty distribution over the intended direction.

pi
′ = pi + vpΔtn̂i

where n̂i ∼ N(n(gi), σ) is the heading of the pedestrian sampled from a distri-
bution with the mean direction towards gi and vp ∼ N(Vp, σ2) is the velocity
of the pedestrian sampled from a mean pedestrian velocity Vp calculated from
interactions with the goal, the environment and robot position.

The robot’s own motion model follows from a velocity controller. In this
paper we consider the robot to be constrained along a single lane. This sim-
plifies the analysis without loss of generality in the discussion. vr is the speed
of the robot along the road.

xr
′ = xr + vrΔt+ ε1

vr
′ = vr + v̇r(a)Δt+ ε2

where v̇r(a) denotes that the actual acceleration of the vehicle is influenced
by the action taken in the previous step. The errors (ε1, ε2) are determined
by the vehicle’s controller characteristics.

The transition function TY (x, gi, a, x
′, gi′) : p(gi′|gi), shows the transition

over the pedestrian intentions gi. In general the pedestrian may change the
intentions midway during execution and can be handled by our formulation.
However in our analysis and results in this paper, we assume that during
the course of the problem, pedestrian’s intentions do not change. Interested
readers are referred to [1] for a more general formulation of the problem of
intention aware motion planning.

The focus of this paper is to formulate the problem of pedestrian avoidance
as an intention aware motion planning problem and to show the effectiveness
and feasibility of such an approach to autonomous navigation on the road.
Once the problem is formulated as a MOMDP, any solver can be used to
solve for the policy. In our case we use SARSOP [12], a leading point-based
approximation algorithm, to solve our MOMDP model.
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The corresponding MOMDP belief space is a union of lower dimensional
belief subspaces over the goal set Θ : {gi} at each observed state x.

B =
⋃
x∈X

BΘ(x)

Here the dimensionality of the belief subspace BΘ is equal to the cardinality
of the goal set Θ less 1, clearly reducing the computational complexity of the
problem. The MOMDP value function is represented by a collection of alpha
vector sets {ΓΘ(x) : x ∈ X}.

V (x, bΘ) = max
α∈ΓΘ(x)

{α · bΘ} (1)

The belief is initialized to a uniform distribution over all goals. The online
execution is performed in two steps: action selection and belief update. The
action corresponding to the alpha vector that maximizes Eq.1 is chosen based
on the current belief, bΘ. The robot gathers observations resulting from its
actions and updates the belief value (Eq.2) and the process repeats itself,
until the robot reaches the goal.

b′Θ(gi) = ηTY (x, gi, a, x
′, gi′)bΘ(gi) (2)

η being the normalizing constant.

Handling Multiple Pedestrians

A naive way of adding multiple pedestrians directly into the state space causes
the problem to become intractable quickly. In addition since pedestrians are
detected asynchronously, the time of detection has to be also incorporated
further adding additional dimensions to the problem space. To avoid this we
address each pedestrian independently. Once a pedestrian is detected, a new
MOMDP problem is generated with uniform beliefs on the possible goals.
This requires maintaining belief of each pedestrians according to Eq.2. Using
the same policy, Π , different actions are chosen based on the unique belief
state for each pedestrian. In general there can be many ways of combining
these actions, we choose a simple conservative approach to pick the safest
action based on a safety metric S : X ×A→ �+.

LetMi denote the problem generated due to pi and ai denote the current
action chosen forMi.

a = argmax
i
{S(ai)} (3)

In general the safety metric can be defined on relative velocity or conserva-
tive lane changing or safety distance. In our campus environment the robot
is constrained to move along a fixed lane, the only variability being control-
ling the speed. The safety metric we use is inversely mapped to the braking
distance for the vehicle at the expected speed resulting from the decision and
the speed controller.
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3 Experiments and Results

We present the result of our intention aware pedestrian avoidance approach
on the autonomous vehicle. Our autonomous system is a Yamaha golf-cart
with drive by wire capability. Two onboard computers running ROS [16] on
intel i5 processors with 8Gb RAM execute various perception, planning and
control algorithms. The vehicle is programmed to run at a maximum speed
of 2m/s autonomously in a section of the NUS campus and can seat upto 2
people (Fig.3a). The vehicle is equipped with 3 LIDARs and a webcam. The
LIDARs are used for localization while the combination of LIDAR and camera
data is processed to identify pedestrians. More details about the system and
its architecture is presented in [3].

(a) Autonomous vehicle (b) Quadrangle environment

Fig. 3 Experimental Environments

3.1 Qualitative Comparison

Fig.3b shows the quadrangle in the engineering faculty of NUS where the
students enter through (C & D). (A & B) are entrances to a shaded study
area. Let us analyze the policy generated for this environment. Fig.4 plots
the decision executed by the robot at R moving forward with velocity 1m/s
for various positions of the pedestrians for a particular belief value over goals
(displayed on the goal regions). The ‘+’ sign represents the decision to ac-
celerate when a pedestrian is present at that particular location, a ‘-’ sign
deceleration and ‘.’ represents a decision to cruise accordingly. Fig.4(a & b)
compares the spatial distribution of decision when the belief value over goals
changes from uniform to being higher on left (goals, A & D). As the robot
becomes more confident about the pedestrian’s intention, it’s decisions are
no longer overly conservative as shown by an increase in ‘+’, helping it to
navigate a more crowded environment. Note however that at locations where
pedestrians stepping into the robot’s path would require the robot to execute
emergency avoidance, (marked by red box in Fig.4b) the robot’s decisions
are more cautious maintaining speed (‘.’) rather than accelerating (‘+’). Note
however that the lowest decision in the marked area is to accelerate. A quick



970 T. Bandyopadhyay et al.

(a) MOMDP: uniform belief (b) MOMDP: strong belief on left

(c) Fixed belief: Bayes-ML (d) Fixed belief: MOMDP

Fig. 4 Comparison

calculation of the location and relative speed shows that by accelerating, the
robot can overtake the pedestrian in case it tries to move towards B and
hence is a safe decision.

Algorithm Time (s): Accident
Mean (S.D) (4500 runs)

Bayes-ML 9.4 (6.4) 4.4 %
IA-MOMDP 9.6 (6.5) 3.4 %

Fig. 5 Performance comparison in simulation
runs in quadrangle environment

We next compare the re-
sult of a simple maximum
likelihood (Bayes-ML) ap-
proach where the robot first
picks the most likely goal and
subsequently chooses an ac-
tion based on the MDP pol-
icy learnt for that particular
goal. We first look at a case
in Fig.4c where the prediction

on goals A and B are both high A being marginally higher. Since Bayes-ML
does not take B into consideration, it ignores, as shown by ‘.’ decision, the
pedestrians at positions marked by red box. However, there is a significant
chance of pedestrian at this location to go towards B. The MOMDP policy
taking into account this possibility leads to a more conservative decision for
the region under the same belief. To test how effectively does such a pol-
icy fare against Bayes-ML, we ran around 4500 simulations for pedestrians
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starting from random locations assigned to random goals. The results are
shown in Table.5. We see that for similar time taken by the robot the
MOMDP policy encounters significantly lower simulated collision states.

3.2 Perception Accuracy

Pedestrians are detected using a single webcam calibrated and mounted on
top of a SickLMS 200 in front of the autonomous vehicle. The range data
from the laser is clustered based on spatial proximity and a HoG person
classifier [5] is run through the corresponding sub-image to label the cluster as
a pedestrian or non-pedestrian [3]. Once sufficient confidence is reached that
a cluster belongs to a pedestrian, a proximity based nearest neighbor data
association is applied to track the pedestrian. The laser system runs around
50Hz while the vision runs at 15Hz. We performed controlled experiments
where a person stood at known locations and the pedestrian detector was
initiated and the data recorded. The false negative rate from the vision system
was 20% over the number of frames computed. However this only affects the
initialization phase of pedestrian detection since, once detected the range
based data association is able to reliably track the pedestrian. On average
it took around 0.46s to reliably detect the pedestrian. The mean distance
error in detection is plotted in Fig.6a for various control positions of the
pedestrian in order of increasing distance (5m to 25m at different angles)
from the sensor. The error in distance estimate is under 30cm. The data
point 5 was close a background wall ( 2m) which created a larger variation
in the estimate error. Fig.6b shows the localization estimate of the vehicle

0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1
Pedestrian detection noise

0 2 4 6 8
−2

−1

0

1

2

3
Vehicle localization noise

Fig. 6 Perception noise: the vertical axis shows error rate in meters, while horizon-
tal axis marks the data point entries. The plots show that the noise is acceptable
in assuming the pedestrian and vehicle positions as observed variables.
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following a simple curb based localization approach [15]. The error is under
1m which is quite acceptable to a vehicle of footprint 3m x 1.5m. Note also
that the pedestrian is detected relative to the vehicle in the map. Thus the
localization error only affects the uncertainty of the pedestrian’s goal estimate
and not the proximity estimate of the pedestrian w.r.t. the robot which is
crucial for the pedestrian safety.

The results clearly validate the assumption of the MOMDP formulation
where the only unobservable variable is the pedestrian’s intentions, while the
position of pedestrians and robot are sensed within acceptable accuracy.

3.3 Stationary Vehicle: Belief Tracking Experiment

In order to test the results of the MOMDP policy on a real system, we first
kept the robot stationary at R in the quadrangle environment (Fig.3b), look
at the decisions being made.

The snapshots in Fig.7(a & b), display the belief and the decision gener-
ated. A bar graph is plotted associated for each pedestrian, the left being the
belief that the pedestrian is going to a goal to the left of the robot’s heading
and the right correspondingly for the goals to the right. The red/green hori-
zontal bar on the top denotes the decision made by the robot to STOP/GO
w.r.t. the pedestrian.

The series of snapshots in Fig.7a, shows a couple of pedestrians (non-
actors) walking in the quad. Each pedestrian is assigned a uniform belief
upon detection. As more information is received the belief gets updated and
the robot takes decisions accordingly. Note that the belief at snapshot (3-a)
is higher over the goals (A & D) due to the stochasticity of the trajectory
being followed. However, there is still a chance for him to move towards C.
Taking this uncertainty into account, the decision of the robot is to STOP,
which proves to be the right decision eventually.

While we formulate the problem for a single pedestrian, clearly a group of
pedestrians moving cohesively generates exactly the same avoidance problem.
Our cluster based approach tracks the belief over the group of pedestrians as
would on a single pedestrian thereby avoiding the explosion of the problem
space with additional pedestrians. The ability to quickly detect and generate
a MOMDP avoidance problem makes the approach robust to splitting and
merging over the clusters. Snapshots in Fig.7b show a group of pedestrians
splitting to move to different goals. At snapshot (4-b) we see that the split is
detected and a new problem generated and resolved for the left pedestrian.

The videos of all the runs and more experimental results are available at
( http://web.mit.edu/tirtha/Public ). We see that the pedestrian tracker is
able to keep detect, instantiate and maintain the beliefs and decisions over
various pedestrians. This is even robust to temporary occlusion, merging and
splitting of people in the crowd.
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(a) belief tracking: cross (b) belief tracking: split

1

2

3

4

5

6

Fig. 7 Experimental Results (Best viewed in color). The videos of all the runs and
more experiments are available at ( http://web.mit.edu/tirtha/Public ).
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(a) A busy pedestrian crossing scene in the NUS campus
that the vehicle has to navigate

(b) Avoidance for a single pedestrian (on-board camera
picture merged at different times to show the evolution
of the belief)

(c) Avoiding multiple pedestrians. (goals reordered and
labeled differently than (b)). Each pedestrian generates
a avoidance MOMDP and the beliefs are shown based
on asynchronous set of observation history for each
pedestrian.

Fig. 8 Pedestrian crossing experiment
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3.4 Moving Vehicle: Pedestrian Crossing Experiment

We tested the algorithm on a real pedestrian crossing shown in Figure 8(a).
The robot not only needs to detect the pedestrians and their intentions on
the pedestrian crossing but also deal with jay walkers, a common phenomena
in a campus environment. Figure 8(b) shows the robot interacting with such
a pedestrian. The analysis is presented for a single pedestrian for clarity.
The windows in clockwise direction from top left show the onboard camera
view, the simplified environment representation used for solving the policy
(the orange trajectory shows the pedestrian track in this environment and
the green box shows the robot’s position), the speed controller command
velocity generated and the belief plots showing the evolution of the belief
over pedestrian’s goal as the pedestrian moves towards its intended goal. In
the belief plot the color of the graph encodes the goal id.

Snapshots of the pedestrian at different times are merged into one camera
window to show the development of the the belief. Notice that when the
pedestrian is detected, the initial belief over the goals are equal. Due to high
initial uncertainty the robot comes to a stop to wait for the pedestrian and
collect more information about its intention. As the pedestrian starts moving
across the road, the belief values over G2 and G1 increase while that of G0
and G3 drop as it is more likely that the pedestrian wants to move towards the
other side. However there is a chance that the pedestrian will turn back and
so the vehicle remains stationary. Slowly the belief over G1 grows stronger
and that on G2 drops as the pedestrian starts moving diagonally. As soon
as the belief over G1 is sufficiently large and the pedestrian is sufficiently
out of the vehicle’s path the vehicle starts moving. Figure 8(c) shows the
vehicle responding to multiple pedestrians. Note that the goals are ordered
and labeled differently however the environment setup and analysis is the
same.

4 Conclusion

The paper presented an approach to avoid pedestrians on the road by identi-
fying their intentions based on their actions on the road. We show in Sec.3.1,
that trying to analyze the pedestrian’s intentions helps in a better response
to pedestrians than a naive distance based reactive approach (Fig.4(a&b)).
Also maintaining the uncertainty over pedestrians goals gives a more conser-
vative avoidance policy (Fig.4(c&d)) which leads to a lower simulated collision
rates (Table.5). We also show that with proper factorization of the problem
in terms of observed and unobserved variables, we reduce the computational
complexity making it feasible to run the policy online on a realistic scenario.
We demonstrated this on a vehicle interacting with multiple pedestrians in a
real pedestrian crossing.
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The main assumption in this work is the availability of pedestrian motion
models and their finite intention models. An immediate extension of this
work being addressed currently is to try to learn the intention models from
the data collected and integrate it into the planning paradigm.

Even though the approach was presented for pedestrians on the road, such
an approach could also be utilized to identify the intention of other human
drivers on the road and could lead to a principled way of interacting safely
with other drivers on the road.

References

1. Bandyopadhyay, T., Won, K.S., Frazzoli, E., Hsu, D., Lee, W.S., Rus, D.:
Intention-aware motion planning. In: Frazzoli, E., Lozano-Perez, T., Roy, N.,
Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp.
475–491. Springer, Heidelberg (2013)

2. Benenson, R., Petti, S., Fraichard, T., Parent, M.: Integrating perception and
planning for autonomous navigation of urban vehicles. In: Proceedings of the
International Conference on Intelligent Robots and Systems, Beijing, pp. 98–
104. IROS (October 2006)

3. Chong, Z.J., Qin, B., Bandyopadhyay, T., Wongpiromsarn, T., Rankin, E.S.,
Ang Jr., M.H., Frazzoli, E., Rus, D., Hsu, D., Low, B.K.H.: Autonomous per-
sonal vehicle for the first- and last-mile transportation services. In: Proceedings
of the International Conference on Cybernetics and Intelligent Systems and In-
ternational Conference on Robotics, Automation and Mechatronics, Qingdao,
China, September 17-19 (2011)

4. Coue, C., Pradalier, C., Laugier, C., Fraichard, T., Bessiere, P.: Bayesian oc-
cupancy filtering for multitarget tracking: An automotive application. The In-
ternational Journal of Robotics Research 25(1), 19–30 (2006)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR, pp. 886–893 (2005)

6. Ellis, D., Sommerlade, E., Reid, I.: Modelling pedestrian trajectory patterns
with gaussian processes. In: International Conference on Computer Vision
Workshops, pp. 1229–1234 (2009)

7. Gayle, R., Moss, W., Lin, M.C., Manocha, D.: Multi-robot coordination using
generalized social potential fields. In: International Conference on Robotics and
Automation (2009)

8. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian
crowd dynamics and design solutions: Experiments, simulations and design
solutions. Transportation Science 39(1), 1–24 (2005)

9. Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through
crowded environments. In: Proceeding of the International Conference on
Robotics and Automation (2010)

10. Kelley, R., Nicolescu, M., Tavakkoli, A., Nicolescu, M., King, C., Bebis, G.: Un-
derstanding human intentions via hidden markov models in autonomous mobile
robots. In: International Conference on Human Robot Interaction, Amsterdam,
Netherlands, March 12-15. IEEE (2008)

11. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research 5(1), 90–98 (1986)



Intention-Aware Pedestrian Avoidance 977

12. Kurniawati, H., Hsu, D., Lee, W.: Sarsop: Efficient point-based pomdp plan-
ning by approximating optimally reachable belief spaces. In: Proceedings of the
Robotics: Science and Systems (2008)

13. Ong, S., Png, S., Hsu, D., Lee, W.: Planning under uncertainty for robotic tasks
with mixed observability. International Journal of Robotics Research 29(8),
1053–1068 (2010)

14. Papadimitriou, C., Tsisiklis, J.: The complexity of Markov decision processes.
Mathematics of Operations Research 12(3), 441–450 (1987)

15. Qin, B., Chong, Z.J., Bandyopadhyay, T., Ang, M.H., Frazzoli, E., Rus, D.:
Curb-intersection feature based monte carlo localization on urban roads. In:
Proceedings of the International Conference on Robotics and Automation
(2012)

16. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: Ros: an open-source robot operating system. In: Proceed-
ings of the International Conference on Robotics and Automation (2009)

17. Vasquez, D., Fraichard, T., Laugier, C.: Incremental learning of statistical mo-
tion patterns with growing hidden markov models. Transactions on Intelligent
Transportation Systems 10(3), 403–416 (2009)



The UBC Visual Robot Survey: A Benchmark
for Robot Category Recognition

David Meger and James J. Little

Abstract. Recognizing objects is a fundamental capability for robotic systems but
comparing algorithms on similar testing situations remains a challenge. This makes
characterizing the current state-of-the-art difficult and impedes progress on the task.
We describe a recently proposed benchmark for robotic object recognition, named
the UBC Visual Robot Survey, which is a robot-collected dataset of cluttered kitchen
scenes. The dataset contains imagery and range data collected from a dense sam-
pling of viewpoints. Objects have been placed in realistic configurations that result
in clutter and occlusion, similar to common home settings. This data and accom-
panying tools for simulation from real data enable the study of robotic recognition
methods. They specifically allow focus on specific concerns in robotics such as spa-
tial evidence integration and active perception. We describe the method used to pro-
duce the dataset in detail, a suite of testing protocols and the current state-of-the-art
performance on the dataset.

1 Robot Object Category Recognition

The locations and semantic labels of objects in the world are essential for robots dur-
ing many real-world tasks. Estimating this information from a platform’s sensors,
known as robot object category recognition, is a challenging task due to: the wide
variety of objects that share a semantic label; the indirect connections between ob-
ject labels and raw sensory data (typically features are extracted and passed through
a classification function); as well as clutter and occlusion in the world that leads
to missing information. There are several uniquely robotic aspects to the problem,
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including the need to actively move the robot’s sensors in order to obtain informa-
tive viewpoints and the possibility to fuse information across sensing modalities and
spatial locations.

This paper describes a recently-established evaluation benchmark specifically tai-
lored to the robot recognition problem, named the University of British Columbia
Visual Robot Survey (UBC VRS). It has been motivated by the example of object
recognition in Computer Vision, where rapid progress has been made through stan-
dardization around the Pascal Visual Object Classes (VOC) challenge [7], a high
participation, yearly contest of ever-increasing difficulty, and benchmark tasks for
distinguishing large numbers of object categories, such as Caltech 101 [8] and 256
[11]. Several robotics challenges exist, including the Semantic Robot Vision Chal-
lenge (SRVC) [1] and Solutions in Perception Challenge [2], which compare near
real-time systems on robot recognition tasks at a particular venue once per year.
These contests capture the full scope of robot recognition, but the requirement to
travel to the contest location in order to participate limits their accessibility.

Several datasets based on RGB-D data such as that available from the Microsoft
Kinect have recently been released. For example, the Berkeley 3D Object Dataset
[14] is composed of many indoor scenes contributed by the community through
crowd-sourcing and annotated by humans. While there are more images and more
object types in this dataset than the one we present, each scene is captured from
only a single viewpoint, which does not allow exploration of recognition methods
involving robot motion. The Multi-View RGB-D Object Dataset by Lai et al. [15]
includes a large number of scenes containing a single object on a turn-table, cap-
tured with an image-depth sensor from a number of viewpoints, as well as a smaller
number of scenes containing multiple objects captured with hand-held trajectories.
This dataset allows for rapid iteration and direct comparison between methods, but
the single trajectory through each scenes precludes active perception.

The contribution of the UBC VRS evaluation benchmark is to allow the unique
aspects of the robot recognition problem to be explored with statistical significance
and repeatability. These aspects include: the use of 3D and visual sensory data;
the ability to actively control the robot’s path and influence the series of images
obtained; and the challenge of cluttered scenes present in real environments.

2 UBC Visual Robot Survey Benchmark

While performing active perception, a robot moves through its 3D environment,
controlling its own position as well as the orientation of its sensors. We have at-
tempted to capture all information necessary to simulate (with real data) this per-
ceptual experience for recognition systems at both training and test time. To this
end, our database is created by recording the sensory experience of a physical robot
following a trajectory that passes through a dense sampling of poses within a num-
ber of environments. The poses are registered to a consistent coordinate frame using
a visual fiducial target of known geometry. A human manually annotates the loca-
tions of all object instances from several categories, both in the 3D coordinate frame
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Fig. 1 An overview of the information contained in the UBC VRS dataset. Our robot collects
a number of images of a scene. Geometric registration allows 3D object information to be
projected into each image. Accurate 2D bounding box annotations are also provided.

and within each collected image. Figure 1 illustrates the final product of this proce-
dure, which is robot sensor data from a set of viewpoints of each scene, along with
geometric knowledge linking that data into a common frame, and annotations both
in 3D and 2D.

During training and testing of robot recognition algorithms, the recorded data
is provided to recognition algorithms by a simulator that mimics a robot’s sensing
and response to control input. We refer to this procedure as simulation with real
data. Except for small limitations due to sampling discretizations, this perceptual
experience is identical to the one a novel robot would experience in the same envi-
ronments. This allows realistic evaluation of robot object recognition performance.
Details on each stage in the process are provided in the remainder of this Section.

2.1 Robotic Data Collection

The sensor data that comprises the UBC VRS dataset was collected with the Curious
George robot that is described in [16] and is shown in Figure 2(a). During data col-
lection, the robot moves through a dense set of poses covering the space of possible
visual experiences. We achieved this by planning a path consisting of three concen-
tric circles. Along each circle, stop-points were located at an angular spacing of at
most ten degrees (in some cases at a finer resolution). When the robot reached each
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(a) (b) (c)
Sub-set Scenes Views Instances Boxes Mugs Bottles Bowls
Training 19 453 184 4026 56/1405 42/1119 17/378

Validation 11 295 116 2701 33/711 33/839 17/346
Test 30 334 303 3466 85/935 57/589 64/681

UBC VRS 60 1082 603 10193 174/3051 132/2547 98/1405
(d)

Fig. 2 The UBC VRS Dataset. (a) The Curious George robot platform used for data col-
lection. From top to bottom, the sensors include a tilting laser range-finder, digital camera,
stereo camera and fixed laser range-finder. (b) A sample point cloud, and poses from the sur-
vey path followed by the robot. (c) A sample image with 3D wire-frames projected to display
user-annotated ground truth volumes. (d) Summary statistics of the annotations available for
the UBC VRS database. The final 3 columns represent the (unique instances / number of
bounding boxes) that are present for the specified category.

stop point, it turned to face the center of the scene and it collected a single reading
from each of its sensors. Figure 2(b) shows a sample path in one environment.

In the ideal case, this data collection method ensures that real sensor readings are
available from a viewpoint within 5 degrees of any pose requested by a simulator.
However, constraints of our robot and the environments prevented a complete sam-
pling. Factors such as building layout, uneven floors, and furniture obstacles caused
the robot’s navigation routines to skip some of the requested stop-points. Data from
these skipped viewpoints is not available to recognition methods, which is also the
case for real robotic systems exploring an environment. Recognition methods must
therefore be robust to this realistic property of the dataset. Figure 2(d) displays the
final number of images and scenes that were collected.

The Curious George robot has a variety of sensors suitable for object recogni-
tion. Images from the robot’s high-resolution digital camera capable of 10 mega-
pixel imaging are down-sampled to 1600 by 1200 pixel resolution and stored, to
balance overall data size with sufficient resolution to capture objects in detail. A
planar laser range-finder was tilted with a continuous periodic command to capture
an entire 3D sweep of the scene from each viewpoint. The set of scans was then as-
sembled to form a cloud comprised of roughly 500,000 individual points. Each point
is represented with a 3D (X,Y,Z) position as well as an intensity value measured by
the laser. During data collection, the relative positions of the robot’s sensors were
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calibrated as often as possible. This involved estimating the transformation relating
the camera to the laser with the so-called Laser-Camera Calibration Toolbox [21].
However, a moderate degree of calibration error remains a factor, as is the case for
many commodity robotic platforms.

2.2 Geometric Registration

When a physical robot platform explores an environment, it has access to several
forms of sensor feedback that can be used to determine its position. Also, it can ac-
tively control its position by issuing movement commands. In order to replicate this
situation as closely as possible when performing recognition from our pre-recorded
data, all information in the database is registered to a common base frame. First, the
set of camera poses is registered using automatically detected fiducial marker points
that correspond to known 3D target geometry to solve for the camera poses in a
global frame. Then, the pre-calibrated relative sensor transformations (camera to X)
are applied to globally register the remaining set of sensors. Using this common reg-
istration, both path information and robot control can be simulated, in combination
with the real sensor data. This Section will describe the process for registering the
camera poses in detail.

The cube-shaped target displayed in our example images (e.g. Figure 2(c)) is
comprised of ARTag visual fiducial markers [10] and we have manufactured the
cube target with precise 3D geometry. The ARTag library provides a marker de-
tection scheme with virtually zero false positives that simultaneously localizes the
corners of the fiducial patches in the image with sub-pixel accuracy. Each detected
image location provides a 2D to 3D constraint on the extrinsic camera parameters
(pose) using the typical pinhole camera projective equation:

α

⎡
⎣ x

y
1

⎤
⎦ = K[R|t]

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ (1)

where: x and y are the image coordinates of the detected corner pixel; K is the known
intrinsic camera calibration containing the focal length, offsets and skew; R and t
are the unknown rotation and translation which we seek; X , Y , and Z are the 3D co-
ordinates of the corner point using the known layout of the target; and α represents
projective scale. Numerous points are required to uniquely determine the camera
pose, and our target provides between 36 and 108 visible corners, depending on the
viewpoint. This yields a highly over-determined system. We estimate the solution
using an approach similar to camera calibration methods such as [20], which in-
volves making an initial guess using homography constraints (which exploits the
known planarity of the target’s faces), and then by refining the estimate using the
Levenberg – Marquardt algorithm to minimize re-projection error.

We have validated this registration method on a number of test images by pro-
jecting known 3D points (e.g. a cube corner, or another point we have physically
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(a) (b) (c)

Fig. 3 Example results of automated geometric image registration. Each column holds two
views of the same scene. Our system uses the estimated camera positions relative to a global
frame along with previous intrinsic calibration estimates to render a wire-frame of the extents
of the calibration target (shown in red where colour is available) into each view. Accurate
alignment of the wire-frame to image content indicates accurate registration.

measured in 3D) into each of the images and manually observing the error in re-
projection. The registration is typically accurate to within a pixel with the maximum
error on the order of several pixels. Figure 3 illustrates the registration accuracy in a
set of example images. Registration information is stored with the raw sensory data
and both are used during annotation and simulation of robot motion for testing.

2.3 Object Annotation

In order to evaluate the performance of recognition algorithms, a human has an-
notated each scene and image in the dataset. We seek to describe objects both in
3D in the common registration coordinate frame as well as in 2D in each image.
Annotating this information is a time-consuming process, but we have leveraged
the registration information described above to ease the manual burden. We pro-
vide the annotator with a software tool to triangulate a number of 2D object points
to locate the 3D centroid, a set of controls to fine tune the object’s orientation and
scale in 3D, and a mechanism to refine an automatically initialized 2D bounding
box for each object. We continue by providing more detail on both the 2D and 3D
annotation procedure.

As mentioned previously, each image in our dataset has been accurately regis-
tered into a common coordinate frame. This allows projection of 3D information
into each image, and it also permits triangulating a set of image points. The first
step in our annotation process is for a human to mark a central and identifiable fea-
ture on an object in 3 or more images. We then solve for a 3D point that falls closest
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to the rays through each marked pixel. As described in Hartley et al. [12], this in-
volves finding the smallest singular vector of a matrix, A, formed by stacking rows
that express constraints induced by the projection matrix and marked image points:

A≡
[

xP3−P1

yP3−P2

]
(2)

Here P is the three row by four column projection matrix combining extrinsic and
intrinsic parameters: P ≡ K [R|t] and underscore notation indicates selecting a par-
ticular 1-indexed row of the matrix. The result of triangulation is an estimated 3D
center point for the object. Our annotation tool instantiates a 3D object region com-
posed of a 3D centroid initialized to the triangulated point, a 3D scale initialized
to be the mean size of the object category, and an azimuth angle (that is rotation
around the up or Z axis) initialized to zero. The annotator is then able to refine each
dimension, but we have found that, if the image points are specified accurately at
the outset, there is little extra effort required beyond specifying the true object ori-
entation. Upon approving of all properties of the 3D annotation, the annotator saves
the object volume and this is recorded along with the sensor data and registration
information to be available at test time.

Our annotators have also provided 2D annotations of objects in every image in the
dataset. Our 2D annotations share the format used by Pascal and other recognition
challenges. That is the bounding box of the object is drawn, with extents tight to the
image content. The object’s category type is recorded as well as additional meta-
information such as that the instance may be difficult, in that it is an uncommon
representative of the class (e.g. a toy coffee mug in the shape of a cartoon character is
a difficult mug), or that the instance is occluded in the image. The previously created
3D annotations are leveraged to expedite the process of creating 2D annotations.
Volumes are projected into every image in which they are visible, and a bounding
box that encompasses the 3D corners is created. The annotator’s task is then simply
to refine the precise image locations and meta-information values, rather than having
to create each bounding box. This saves significant effort and reduces the probability
that an image region will be missed due to human error.

At this stage, the annotator also often makes small adjustments to the 2D bound-
ing box to ensure that it is pixel-tight to the underlying image content. This hand-
adjustment is needed because we project imprecise shape models (a box-shaped 3D
volume, rather than the object’s true shape), and to account for any small errors in-
troduced by 3D to 2D projection. Once again, when the annotator is satisfied with
the quality of the data, the 2D box and meta-information are saved to the database.

The code and tools of our labeling pipeline can be re-used for any series of mod-
erately well-registered images (such as video sequences, well-calibrated vehicles
possessing accurate inertial positioning and a camera, or sets of highly overlapping
photographs). It has been made open-source to the community and is available on-
line along with the dataset, as described below.
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(a)

(b)

(c)

(d)

Fig. 4 Example annotations produced by a human. The left column shows 3D annotations
projected onto the image (another verification of accurate registration) and the right column
represents annotations that have been made directly on the 2D data, initialized by the pro-
jections. The first pair of rows, (a) and (b), are two views of the same scene, and the second
pair of rows (c) and (d) are a second scene. The colours (where available) represent the object
category with: bowls in green, mugs in red and bottles in blue.

2.4 Evaluation Protocols

Our goal in collecting the UBC VRS dataset has been to facilitate scientific ex-
ploration of the robot recognition problem. That requires researchers to be able to
compare the results of different methods evaluated on the same task. To that end,
we describe a set of protocols that leverage the information provided in the dataset
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to simulate a variety of tasks. In each case, we also outline the performance metric
that is appropriate for benchmarking and comparison, using established guidelines
where applicable. We focus on simulate with real data protocols since we believe
this is crucial to addressing the complicated set of challenges facing a system that
searches for objects in unstructured environments. This Section will describe the
protocols in detail:

• Passive single-view recognition: means that each image is treated independently,
as is common in the Computer Vision field. No registration or path information
is available. In this case algorithms can localize objects with 2D bounding boxes
in images, or by estimating 3D objects from 2D imagery and point clouds. The
widely accepted metric for evaluation of such methods is precision and recall
(PR) curves and the average precision (AP) statistic. Such curves are produced
by varying a confidence threshold for the recognition method, and comparing
which of the hypothesized 2D bounding boxes correctly overlaps an annotated
(ground truth) object region. For each threshold, the ratio of true positives to total
annotated objects is known as recall, while the ratio of true positives to number
of hypothesized objects is precision. Average precision summarizes performance
across all possible thresholds. Perfect performance on the task would give all of
precision, recall, and average precision equal to 1.0.

• Passive multi-view recognition: provides the recognizer with data from a series
of poses with variable length, N, from a path chosen by the simulator at random
in each trial. Position information is provided to the recognizer so that evidence
can be integrated spatially. This task captures the unique ability of a robot to
move through the scene and gather data. Results may be reported as 3D object
poses defined in the global registration frame, or as individual sets of 2D objects
in each image. To standardize comparison, and to utilize the most accurate source
of ground truth in the dataset, the primary evaluation should again be PR curves
and AP statistics based on evaluation of 2D hypotheses. Where methods report
3D object poses, these should be projected to form 2D bounding boxes in each
image. Our toolbox provides this functionality to aid fair evaluation.

• Active multi-view recognition: extends the passive protocol by requiring the
recognition algorithm to provide a control input which simulates the robot’s mo-
tion to a new pose and alters the image sequence accordingly. In general, a robot
could take an unbounded number of steps through an environment before esti-
mating the objects present, but we must standardize on specific path lengths for
comparison with the passive multi-view protocol. Therefore, evaluation should
be done after N steps are chosen by the system and the data is analyzed. All other
evaluation details should remain the same as described in the previous item.

3 Experiments

At the time of submission of this abstract, several researchers have attempted to
perform a subset of the robot recognition tasks possible with the UBC VRS dataset
[17, 13, 18, 19]. This section will describe the results of these previous methods
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Fig. 5 Results of several versions of the the passive multi-view recognition method from [19]
are compared against a state-of-the-art passive single-view method from [9] (labeled DPM)
which has won the Pascal VOC challenge for several years. The summary statistic is Average
Precision.

along with a brief description of the methods achieving the highest performance at
the time of this publication. Further improvements will be recorded on the dataset’s
website.

3.1 Passive Single Viewpoint Recognition

Meger et al. [19] report an average precision of 0.73 for mugs and 0.68 was achieved
across the UBC VRS test set by the method of Felzenszwalb et al. known as the
Deformable-Parts Model DPM. The DPM method is based on learning a latent-
variable Support-Vector Machine (LVSVM) [3] classifier over an image feature
similar to the well-known Histogram of Oriented Gradients (HOG) [4]. The au-
thors attempted to train the DPM model on a variety of training data sets, and found
maximum performance by selecting positive examples from both ImageNet [5] as
well as from the UBC VRS training set, and by including a large number of relevant
negative images from a variety of sources. Single-view recognition is not the focus
of our dataset, but it is informative to observe whether an improvement can be made
by fusing information from multiple viewpoints, and thus this DPM result serves as
a baseline for comparison with other methods.

3.2 Passive Multiple Viewpoint Recognition

The highest passive multiple viewpoint recognition performance reported in previ-
ous work was obtained by [19] and we present the results of that paper here as a
current benchmark. Their solution leveraged strong single-view DPM hypotheses in
each image, and lifted this 2D appearance information to allow explicit per-object
occlusion inference and the use of part-based detectors to improve accuracy on the
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Fig. 6 Results of passive multi-view recognition over various numbers of views per scene,
from [19] are compared against a state-of-the-art passive single-view method from [9] (la-
beled DPM) which has won the Pascal VOC challenge for several years. The summary statis-
tic is Average Precision.

large number of partially occluded object instances found in the dataset. Figures 5
and 6 illustrate the performance of this method on the UBC VRS test set. The first
figure demonstrates results of the method when the simulator randomly provides
images from five viewpoints per scene. By using multiple viewpoints, the method
is able to achieve higher average precision than the single-view baseline provided
by DPM. Also, occlusion reasoning is shown to give an improvement in the perfor-
mance of the method, and additionally including part-based appearance information
leads to the highest performance overall.

Figure 6 expands upon the previous result by examining the performance of the
method as various numbers of viewpoints are made available for each scene. In all
cases, the system achieves more recall in the high-precision region of the curves,
but in some cases, the overall performance of the multi-view method is worse than
the single-view baseline. This was explained by the difficulty in recovering 3D in-
formation from the weak geometric cues available in a small number of views that
are often from a wide-baseline. However, it remains to be seen if future approaches
will be able to achieve better performance from only two or three views of a scene.
In all cases, the clear trend is that the method performs better as more views become
available.

3.3 Active Multiple Viewpoint Recognition

As of the submission of this abstract, only a very preliminary attempt has been made
on the active multi-view recognition task on a small portion of the dataset, by [17].
Active recognition (i.e. explicitly selecting the next best viewpoint at each step) is
easily done with the UBC VRS dataset and is an area for future work.
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4 Experimental Insights

While careful collection and annotation of a dataset with sufficient scale for mean-
ingful evaluation is a large effort, the resulting repeatable evaluation will hopefully
be of value to the robotics community1. Beyond data, a key contribution of our
method is the labeling and evaluation pipelines, and the tools related to these can ex-
tend to a variety of additional data sources. For example, we have already succeeded
in using the same tools to annotate and evaluate our approaches using Kinect data
that was registered without the use of our fiducial marker (i.e. using the software of
Endres et al. [6]) as well as outdoor data collected by an automobile with a highly
accurate inertial measurement unit.

Pascal VOC has encouraged various authors to borrow and improve upon the best
techniques from the winners of the previous years. A number of authors have al-
ready obtained the UBC VRS and are currently beginning to develop new solutions.
Ideally, this will lead to additional performance improvements being published in
coming years by a variety of authors. The data has been collected by a physical
robotic platform along with modern sensors, control, and calibration. So, pursuit of
such improvement is likely to provide direct benefits to the ability of many robots
to perceive objects, in many environments.
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