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Preface
Maths for Chemists Second
Edition

This revised edition of the Maths for Chemists introductory text
provides a foundation in the key mathematical topics required for
most degree level chemistry courses. While it is aimed primarily at
students with limited backgrounds in mathematics, the text should
prove accessible and useful to all chemistry undergraduates. We have
chosen from the outset to place the mathematics in a chemical
context, a challenging approach because the context can often make
the problem appear more difficult than it actually is. However, it is
equally important to convince students of the relevance of mathe-
matics in all branches of chemistry. Our approach links mathematical
principles with the chemical context, by introducing the basic
concepts first and then demonstrates how they translate into a
chemical setting.
Historically, physical chemistry has been the target for much of the

undergraduate level mathematical support. However, in all branches
of chemistry – be they the more traditional areas of inorganic, organic
and physical, or the rapidly developing areas of biochemistry,
materials, analytical and environmental chemistry – mathematical
tools are required to build models of varying degrees of complexity, in
order to develop a language for providing insight and understanding
together with, ideally, some predictive capability.
Since the target student readership possesses a wide range of

mathematical experience, we have created a course of study in which
selected key topics are treated without going too far into the finer
mathematical details. The first two chapters focus on numbers,
algebra and functions in some detail, as these topics form an
important foundation for further mathematical developments in
calculus and for working with quantitative models in chemistry. There
then follow chapters on limits, differential calculus, differentials and
integral calculus. Later chapters go on to cover power series, complex
numbers, and the properties and applications of determinants,
matrices and vectors. A final chapter on simple statistics and error
analysis is a new addition to this second edition of the book, and
covers the key principles required for a successful appraisal and
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treatment of experimental errors – an area increasingly neglected in
formal undergraduate teaching, but which remains a vital component
in all areas of experimental chemistry.
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1
Numbers and Algebra

Numbers of one kind or another permeate all branches of chemistry
(and science generally), simply because any measuring device we use
to record a characteristic of a system can only yield a number as
output. For example, we might measure or determine the:

N Weight of a sample.
N Intensity or frequency of light absorption of a solution.
N Vibration frequency for the HCl molecule.
N Relative molecular mass of a carbohydrate molecule.

Or we might:

N Confirm the identity of an organic species by measuring its boiling
point.

N Measure, or deduce, the equilibrium constant of a reversible
reaction.

N Wish to count the number of isomeric hydrocarbon species with the
formula C4H10.

In some of these examples, we also need to:

N Specify units.
N Estimate the error in the measured property.

Clearly then, the manner in which we interact with the world around us
leads us quite naturally to use numbers to interpret our experiences.
In many situations, we routinely handle very large and very small

numbers, so disparate in size that it is difficult to have an intuitive feel
for order of magnitude. For example:

N The number of coulombs (the basic unit of electrical charge)
associated with a single electron is approximately 0.000 000 000 000
000 000 160 2177.

N The equilibrium constant for the electrochemical process

Au3z aqð Þ z Al sð Þ KI Au sð ÞzAl3z aqð Þ

is of the order of 1 followed by 4343 zeros.1 In chemical terms, we have
no problem with this answer, as it indicates that the equilibrium is

Decimal numbers are commonly

written with a space between

every group of three digits after

the decimal point (sometimes

omitted if there are only four such

digits).
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totally towards the right side (which means that the aluminium elec-
trode will be completely consumed and the gold electrode untouched).
These two widely different examples, of a type commonly

experienced in chemistry, illustrate why it is so important to feel at
ease using numbers of all types and sizes. A familiarity and confidence
with numbers is of such fundamental importance in solving
quantitative chemical problems that we devote the first two chapters
of this book to underpinning these foundations. Our main objective
is to supply the necessary tools for constructing models to help in
interpreting numerical data, as well as in achieving an understanding
of the significance of such data.

Aims:

In this introductory chapter, we provide the necessary tools for
working with numbers and algebraic symbols, as a necessary
prelude to understanding functions and their properties – a key
topic of mathematics that impinges directly on all areas of
chemistry. By the end of the chapter you should be able to:

N Understand the different types of numbers and the rules for
their combination.

N Work with the scientific notation for dealing with very large
and very small numbers.

N Work with numerical and algebraic expressions.
N Simplify algebraic expressions by eliminating common

factors.
N Combine rational expressions by using a common denominator.
N Treat units as algebraic entities.

1.1 Real Numbers

1.1.1 Integers

One of the earliest skills we learn from childhood is the concept of
counting: at first we learn to deal with natural numbers (positive,
whole numbers), including zero, but we tend to ignore the concept of
negative numbers, because they are not generally used to count
objects. However, we soon run into difficulties when we have to
subtract two numbers, as this process sometimes yields a negative
result. The concept of a negative counting number applied to an
object can lead us into all sorts of trouble, although it does allow us to

Counting numbers have been in

use for a very long time, but the

recognition of zero as a numeral

originated in India over two mil-

lennia ago, and only became

widely accepted in the West with

the advent of the printed book in

the 13th century.
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account for the notion of debt (you owe me 2 apples is the equivalent
of saying ‘‘I own –2 apples’’). We therefore extend natural numbers
to a wider category of number called integers, which consist of all
positive and negative whole numbers, as well as zero:

. . . , {3, {2, {1, 0, 1, 2, 3, . . .

We use integers in chemistry to specify:

N The atomic number, Z, defined as the number of protons in the
nucleus: Z is a positive integer, less than or equal to 112.

N The number of atoms of a given type (positive) in the formula of a
chemical species.

N The number of electrons (a positive integer) involved in a redox
reaction occurring in an electrochemical cell.

N The quantum numbers required in the mathematical specification
of individual atomic orbitals. These can take positive or negative
integer values or zero depending on the choice of orbital.

1.1.2 Rational Numbers

When we divide one integer by another, we sometimes obtain another
integer; for example, 6={3~{2. At other times, however, we obtain
a fraction, or rational number, of the form a=b, where the integers a
and b are known as the numerator and denominator, respectively; for
example, 2=3. The denominator, b, cannot take the value zero because
a=0 is of indeterminate value.
Rational numbers occur in chemistry:

N In defining the spin quantum number of an electron (s~1=2), and
the nuclear spin quantum number, I, of an atomic nucleus; for
example, 45Sc has I~7=2.

N In specifying the coordinates (0,0,0) and
a

2
,
a

2
,
a

2

� �
, which define the

locations of two of the nuclei that generate a body-centred unit cell

of side a.

1.1.3 Irrational Numbers

Rational numbers can always be expressed as ratios of integers,
but sometimes we encounter numbers which cannot be written
in this form. These numbers are known as irrational numbers and
include:

At the time of writing, the heaviest

(named) element to have been

isolated is the highly radioactive

element copernicium (Z 5 112).

In June 2011, elements 114 and

116 officially joined the periodic

table. Element 116 was made

by bombarding targets made

of the radioactive element curium

(Z 5 96) with calcium nuclei

(Z 5 20). The nuclei of element

116 lasted only a few millise-

conds before decaying into ele-

ment 114, which itself lasted less

than half a second before decay-

ing to copernicium. The heaviest

naturally occurring element is

uranium, Z 5 92.
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N Surds, of the form
ffiffiffi
2

p
,
ffiffiffi
23

p
, which are obtained from the solution of

a quadratic or higher order equation.
N Transcendental numbers, which, in contrast to surds, do not derive

from the solution to algebraic equations. Examples include p,
which we know as the ratio of the circumference to diameter of a
circle, and e, which is the base of natural logarithms.

1.1.4 Decimal Numbers

Decimal numbers occur in:

N Measuring chemical properties, and interpreting chemical data.
N Defining relative atomic masses.
N Specifying the values of fundamental constants.

Decimal numbers consist of two parts separated by a decimal point:

N Digits to the left of the decimal point give the integral part of the
number in units, tens, hundreds, thousands, etc.

N A series of digits to the right of the decimal point specify the
fractional (or decimal) part of the number (tenths, hundredths,
thousandths, etc.).

We can now more easily discuss the distinction between rational and
irrational numbers by considering how they are represented using
decimal numbers.
Rational numbers, expressed in decimal form, may have either of

the following representations:

N A finite number of digits after the decimal point: for example, 3=8
becomes 0.375.

N A never-ending number of digits after the decimal point, but with a
repeating pattern: for example, 70=33 becomes 2.121 212…, with
an infinite repeat pattern of ‘12’.

Irrational numbers, expressed in decimal form have a never-ending
number of decimal places in which there is no repeat pattern: for
example, p is expressed as 3.141 592 653… and e as 2.718 281 82… .
As irrational numbers like p and e cannot be represented exactly by a
finite number of digits, there will always be an error associated with
their decimal representation, no matter how many decimal places we
include. For example, the important irrational number e, which is the
base for natural logarithms (not to be confused with the electron
charge), appears widely in chemistry. This number is defined by the
infinite sum of terms:

ffiffiffi
2

p
is obtained as a solution of

the equation x22250; likewise,ffiffiffi
2

3
p

is obtained as a solution of

x32250.

Decimal numbers are so-called

because they use base 10 for

counting.
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e~1z
1

1!
z

1

2!
z

1

3!
z

1

4!
z � � �z 1

n!
z � � � ð1:1Þ

where n! is the factorial (pronounced ‘n factorial’) of the number n,

defined as n!516263646…6n: for example, 4!51626364. The
form of eqn (1.1) indicates that the value for e keeps getting larger
(but by increasingly smaller amounts), as we include progressively
more and more terms in the sum; a feature clearly seen in Table 1.1, in
which the value for e has been truncated to 18 decimal places.

Although the value of e has converged to 18 decimal places, it is still
not exact; the addition of more terms causes the calculated value to
change beyond the 18th decimal place. Likewise, attempts to calculate p
are all based on the use of formulae with an infinite number of terms:

N Perhaps the most astonishing method uses only the number 2 and
surds involving sums of 2:

p~2|
2ffiffiffi
2

p |
2ffiffiffiffiffiffiffiffiffiffi
2z2

p |
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2z2z2
p | � � �

N Another method involves an infinite sum of terms:

p

2
~

1

1
z

1|1

1|3
z

1|1|2

1|3|5
z

1|1|2|3

1|3|5|7
z � � � ,

N A particularly elegant method uses a formula that relates the
square of p to the sum of the inverses of the squares of all positive
whole numbers:

p2

6
~1z

1

22
z

1

32
z

1

42
z

1

52
� � �

However, this requires an enormous number of terms to achieve a
satisfactory level of precision (see Chapter 8 for more information
regarding infinite series and convergence).

Table 1.1. An illustration of the effect of successive truncations to the estimated

value of e derived from the infinite sum of terms given in eqn (1.1).

n Successive estimated values for e

1 2.000 000 000 000 000 000

5 2.716 666 666 666 666 666

10 2.718 281 801 146 384 797

15 2.718 281 828 458 994 464

20 2.718 281 828 459 045 235

25 2.718 281 828 459 045 235

30 2.718 281 828 459 045 235

We can represent a sum of terms

using a shorthand notation invol-

ving the summation symbol S: for

example, the sum of terms

e~1z 1
1!
z 1

2!
z 1

3!
z 1

4!
z � � �z 1

n!

z � � � may be written as
P?
r~0

1
r!,

where the counting index, which

we have arbitrarily named r, runs

from 0 to ‘. A sum of terms which

extends indefinitely, is known as

an infinite series, whereas one

which extends to a finite number

of terms is known as a finite

series. We shall discuss series in

more detail in Chapter 8.
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1.1.4.1 Working with Decimal Numbers

As we have seen above, numbers in decimal form may have a finite or
infinite number of digits after the decimal point: thus, for example, we
say that the number 1.4623 has 4 decimal places. However, since the
decimal representations of irrational numbers, such as p or the surdffiffiffi
2

p
, all have an infinite number of digits, it is necessary, when working

with such decimal numbers, to reduce the number of digits to those
that are significant (often indicated by the shorthand ‘sig. fig.’). In
specifying the number of significant figures of a number displayed in
decimal form, all zeros to the left of the first non-zero digit are taken
as not significant and are therefore ignored. Thus, for example, both
0.1456 and 0.000 097 44 have 4 significant figures.
There are basically two approaches for reducing the number of

digits to those deemed significant:

N Truncation of the decimal part of the number to an appropriate
number of decimal places or significant digits: for example, we
could truncate p, 3.141 592 653… to 7 significant figures (6 decimal
places), by dropping all digits after the 2, to yield 3.141 592. For
future reference, we refer to the sequence of digits removed as the
‘tail’ which, in this example, is 653…

N Rounding up or rounding down the decimal part of a number to a
given number of decimal places is achieved by some generally
accepted rules. The number is first truncated to the required
number of decimal places in the manner described above; attention
is then focused on the tail (see above).

(i) If the leading digit of the tail is greater than 5, then the last
digit of the truncated decimal number is increased by unity
(rounded up), e.g. rounding p to 6 decimal places (d.p.) yields
3.141 593;

(ii) If the leading digit of the tail is less than 5, then the last digit of
the truncated decimal number is left unchanged (the number is
rounded down); e.g. rounding p to 5 d.p. yields 3.141 59;

(iii) If the leading digit of the tail is 5, then:

(a) If this is the only digit, or there are also trailing zeros, e.g.
3.7500, then the last digit of the truncated decimal number
is rounded up if it is odd or down if it is even. Thus 3.75 is
rounded up to 3.8 because the last digit of the truncated
number is 7 and therefore odd, but 3.45 is rounded down
to 3.4 because the last digit of the truncated number is 4
and therefore even. This somewhat complicated rule
ensures that there is no bias in rounding up or down in
cases where the leading digit of the tail is 5;

6 Maths for Chemists



(b) If any other non-zero digits appear in the tail, then the last
digit of the truncated decimal number is rounded up, e.g.
3.751 is rounded up to 3.8.

Worked Problem 1.1

Q. Compare the results obtained by sequentially rounding 7.455
to an integer with the result obtained using a single act of
rounding.
A. On applying the rules for rounding, the numbers produced in
sequence are 7.46, 7.5, 8. Rounding directly from 7.455, we
obtain 7.

Problem 1.1

Give the values of (a) 2.554 455, (b) 1.723 205 08, (c) p and (d) e
to:

(i) 5, 4 and 3 decimal places, by a single act of rounding in
each case,

(ii) 3 significant figures,

using p 5 3.141 592 653 and e 5 2.718 281 828.

1.1.4.2 Observations on Rounding

Worked Problem 1.1 illustrates that different answers may be
produced if the rules are not applied in the accepted way. In
particular, sequential rounding is not acceptable, as potential errors
may be introduced because more than one rounding is carried out. In
general, it is accepted practice to present the result of a chemical
calculation by rounding the result to the number of significant figures
that are known to be reliable (zeros to the left of the first non-zero
digit are not included). Thus, although p is given as 3.142 to 4
significant figures (3 decimal places), p/1000 is given to 4 significant
figures (and 6 decimal places) as 0.003142.

1.1.4.3 Rounding Errors

It should always be born in mind that, in rounding a number up or
down, we are introducing an error: the number thus represented is
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merely an approximation of the actual number. The conventions
discussed above for truncating and rounding a number imply that a
number obtained by rounding actually represents a range of numbers
spanned by the implied error bound. Thus, p expressed to 4 decimal
places, 3.1416, represents all numbers between 3.14155 and 3.14165, a
feature that we can indicate by writing this rounded form of p as
3.14160 ¡ 0.00005. Whenever we use rounded numbers, it is prudent
to aim to minimise the rounding error by expressing the number to a
sufficient number of decimal places. However, we must also be aware
that if we subsequently combine our number with other rounded
numbers through addition, subtraction, multiplication and division,
the errors associated with each number also combine, propagate and,
generally, grow in size through the calculation.

Problem 1.2

(a) Specify whether each of the following numbers are rational
or irrational and, where appropriate, give their values to 4
significant figures. You should assume that any repeat
pattern will manifest itself within the given number of
decimal places:

ið Þ 1:378 423 7842; iið Þ 1:378 423 7842 . . . ; iiið Þ 1

70
;

(iv)
p

4
; vð Þ 0:005068; við Þ e

10
:

Note: The number e expressed to 9 decimal places, 2.718 281
828, appears to have a repeating pattern, which might wrongly
suggest it is a rational number; however, if we extend it to a
further 2 decimal places, 2.718 281 828 46, we see that there is
no repeating pattern and the number is irrational.

(b) In a titration experiment, the volume delivered by a burette
is recorded as 23.3 cm3. Give the number of significant
figures; the number of decimal places; and estimates for the
maximum and minimum titres.

1.1.5 Combining Numbers

Numbers may be combined using the arithmetic operations of addition
(+), subtraction (2), multiplication (6) and division (/ or 4). The
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type of number (integer, rational or irrational) is not necessarily
maintained under combination; thus, for example, addition of the
fractions J and L yields an integer, but division of 3 by 4 (both
integers) yields the rational number (fraction)L. When a number (for
example, 8) is multiplied by a fraction (for example, L), we say in
words that we want the number which is three quarters of 8, which, in
this case, is 6.
For addition and multiplication the order of operation is

unimportant, regardless of how many numbers are being combined.
Thus,

2 z 3 ~ 3 z 2

and

2 | 3 ~ 3 | 2

and we say both addition and multiplication are commutative.
However, for subtraction and division, the order of operation is

important, and we say that both are non-commutative:

2 { 3 = 3 { 2

and

2

3
=

3

2
:

One consequence of combining operations in an arithmetic
expression is that ambiguity may arise in expressing the outcome.
In such cases, it is imperative to include brackets (in the generic
sense), where appropriate, to indicate which arithmetic operations
should be evaluated first. The order in which arithmetic operations
may be combined is described, by convention, by the BODMAS rules
of precedence. These state that the order of preference is as follows:

Brackets
Of (multiplication by a fraction)
Division
Multiplication
Addition/Subtraction

For example:

N If we wish to evaluate 2 6 3 + 5, the result depends upon whether
we perform the addition prior to multiplication or vice versa. The
BODMAS rules tell us that multiplication takes precedence over
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addition and so the result should be 6 + 55 11 and not 26 85 16.
Using parentheses ( ) in this case removes any ambiguity, as we
would then write the expression as (2 6 3) + 5.

N If we wish to divide the sum of 15 and 21 by 3, then the expression
15 + 21 / 3 yields the unintended result 15 + 7 5 22, instead of 12,
as division takes precedence over addition. Thus, in order to
obtain the intended result, we introduce parentheses to ensure that
summation of 15 and 21 takes place before division:

15 z 21ð Þ = 3 ~ 36 = 3 ~ 12:

Alternatively, this ambiguity is avoided by expressing the quotient in
the form:

15z12

3

However, as the solidus sign, /, for division is in widespread use, it is
important to be aware of possible ambiguity.

1.1.5.1 Powers or Indices

When a number is repeatedly multiplied by itself, in an arithmetic

expression, such as 3 6 3 6 3, or
3

2
|

3

2
|

3

2
|

3

2
, the power or index

notation (also often called the exponent) is used to write such products

in the forms 33 and
3

2

� �4

, respectively. Both numbers are in the

general form an, where n is the index. If the index, n, is a positive
integer, we define the number an as a raised to the nth power.
We can define a number of laws for combining numbers written in

this form simply by inspecting expressions such as those given above:
For example, we can rewrite the expression:

3

2
|

3

2
|

3

2
|

3

2
~

3

2

� �4

as

3

2
|

3

2
|

3

2
|

3

2
~

3

2

� �3
3

2

� �1

~
3

2

� �4

and we see that the result is obtained simply by adding the indices of the
numbers being combined. This rule is expressed in a general form as:
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anam ~ anzm ð1:2Þ

For rational numbers, of the form
a

b
, raised to a power n, we can

rewrite the number as a product of the numerator with a positive
index and the denominator with a negative index:

a

b

� �n
~

an

bn
~an|b{n~anb{n ð1:3Þ

which, in the case of the above example, yields:

3

2

� �4

~
34

24
~34|2{4:

On the other hand, if b5a, and their respective powers are different,
then the rule gives:

an

am
~ana{m~an{m: ð1:4Þ

The same rules apply for rational indices, as is seen in the following
example:

3

2

� �3=2

~
33=2

23=2
~33=2|2{3=2:

1.1.5.2 Rational Powers

Numbers raised to powers 1
2
, 1
3
, 1
4
,…., 1

n
define the square root, cube

root, fourth root,…, nth root, respectively. Numbers raised to the
power m/n are interpreted either as the mth power of the nth root or as
the nth root of the mth power: for example, 3m/n 5 (31/n)m 5 (3m)1/n.
Numbers raised to a rational power may either simplify to an integer,
for example (27)1/3 5 3, or may yield an irrational number; for
example (27)1/2 5 3 6 31/2 5 33/2.

1.1.5.3 Further Properties of Indices

Consider the simplification of the expression (326103)2:

32 | 103
� �2

~ 32 |103 | 32 | 103 ~ 34 |106:

The above example illustrates the further property of indices that
(an)m 5 an6m. Thus, we can summarise the rules for handling indices
in eqn (1.5).
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an|am ~ anzm;
1

an
~a{n;

an

am
~an{m;

anð Þm~an|m~anm; a0 ~ 1

ð1:5Þ

Note that, when multiplying symbols representing numbers, the
multiplication sign (6) may be dropped. For example, in the
penultimate expression in eqn (1.5), an6m becomes anm. In these
kinds of expression, n and m can be integer or rational. Finally, if the
product of two different numbers is raised to the power n, then the
result is given by:

abð Þn ~ anbn ð1:6Þ

Problem 1.3

Simplify the following expressions:

að Þ 102|10{4

106
; bð Þ 9|24|3{2

42
; cð Þ 10

32z42z52

� �{1=2

; dð Þ
24
� �3
44

:

Worked Problem 1.2 and Problem 1.4 further illustrate how the
(BODMAS) rules of precedence operate.

Worked Problem 1.2

Q. Simplify the following expressions.

(a)
1

2
| 5{2ð Þz3{12=4z3|22

(b)
1

25
3|102
� �2

z3200=4{6|120:

A: að Þ 1

2
| 5{2ð Þz3{

12

4
z3|22~

3

2
z3{3z12

~
3

2
z12~

3

2
z

24

2
~

27

2
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The penultimate step involves creating fractions with a common
denominator, to make the addition easier.

bð Þ 1

25
3|102
� �2

z3200=4{6|120

~
1

25
| 300|300ð Þz800{720~3600z80~3680

In both parts, the rules of precedence are used to evaluate each
bracket, and the results are combined using further applications
of the rules.

Problem 1.4

Evaluate the following expressions, without using a calculator:

að Þ 2:5|102{0:5|102
� �2

=4|104, bð Þ 2

2|4

� �1=3

{4|
1

16
:

1.1.6 Scientific Notation

As has been noted earlier, many numbers occurring in chemical
calculations are either extremely small or extremely large. Clearly, it
becomes increasingly inconvenient to express such numbers using
decimal notation as the order of magnitude becomes increasingly
large or small. For example, as seen in the introduction to this
chapter, the charge on an electron (in coulombs), expressed as a
decimal number, is given by:

0:000 000 000 000 000 000 160 2177

To get around this problem we can use scientific notation to write such
numbers as a signed decimal number, usually with magnitude greater
than or equal to 1 and less than 10, multiplied by an appropriate
power of 10. Thus, we write the fundamental unit of charge to 9
significant figures as:

1:602 177 33|10{19 C:

Likewise, for very large numbers, such as the speed of light, we
write c 5 299 792 458 ms21 which, in scientific notation, becomes
2.997 924 58 6 108 ms21 (9 sig. fig.). Often we use c 5 36108 ms21,
using only 1 sig. fig., if we are carrying out a rough calculation.

The conventional representation

of numbers using scientific nota-

tion is not always followed. For

example, we might represent a

bond length as 0.1461029 m

rather than 1.4610210 m, if we

were referencing it to another

measurement of length given in

integer unit multiples of 1029 m.
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Sometimes, an alternative notation is used for expressing a number
in scientific form: instead of specifying a power of 10 explicitly, it is
common practice (particularly in computer programming) to give
expressions for the speed of light and the fundamental unit of charge
as 2.998e8 ms21 and 1.6e–19 C, respectively. In this notation,
the number after the e is the power of 10 multiplying the decimal
number prefix.

1.1.6.1 Combining Numbers Given in Scientific Form

Consider the two numbers 4.261028 and 3.561026; their product
and quotient are given respectively by:

4:2 |10{8 | 3:5 |10{6 ~ 14:7 |10{14 ~ 1:47 | 10{13

and

4:2|10{8

3:5|10{6
~1:2|10{2:

However, in order to calculate the sum of the two numbers (by hand!),
it may be necessary to adjust one of the powers of ten to ensure
equality of powers of 10 in the two numbers. Thus, for example:

4:2 |10{8 z 3:5 | 10{6 ~ 0:042 |10{6 z 3:5 | 10{6

~ 3:542 |10{6

1.1.6.2 Names and Abbreviations for Powers of Ten

As we have seen in some of the examples described above, an added
complication in performing chemical calculations often involves the
presence of units. More often than not, these numbers may be
expressed in scientific form and so, in order to rationalise and simplify
their specification, it is conventional to use the names and
abbreviations given in Table 1.2, adjusting the decimal number given
as prefix as appropriate.

Table 1.2 Names and abbreviations used to specify the order of magnitude of numbers expressed in scientific notation.

1015 1012 109 106 103 1021 1022 1023 1026 1029 10212 10215 10218

peta tera giga mega kilo deci centi milli micro nano pico femto atto

P T G M k d c m m n p f a

The negative of the fundamental

unit of charge is the charge

carried by an electron.
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Thus, for example:

N The charge on the electron is given as 0.16 aC, to 2 significant
figures.

N The binding energy of the electron in the hydrogen atom is given by
2.179 6 10218 J, which is specified as 2.179 aJ.

N the bond vibration frequency for HF is 1.240461014 s21, which is
given as 124.04 Ts21 or 0.12404 Ps21.

Some of these data are used in the Problem 1.5.

Problem 1.5

(a) Given that 1 eV of energy is equivalent to 0.1602 aJ, use the
information given above to calculate the ionisation energy
of the hydrogen atom to 3 sig. fig. in electron volts (a
common macroscopic energy unit).

(b) Given that the Planck constant, h, has the value
6.626610234 Js, and that vibrational energy, evib, is related
to vibration frequency, v, according to evib 5 hv, calculate
the value of evib for HF to 3 sig. fig.

The results you obtain for Problem 1.5 should show that, since the
joule (J) is a macroscopic base unit of energy, property values on the
microscopic scale have extremely small magnitudes. We now explore
this idea further in Worked Problem 1.3 and in Problem 1.6 to give
more practice in manipulating numbers in scientific form; but, more
importantly, to provide further insight into size differences in the
microscopic and macroscopic worlds.

Worked Problem 1.3

Q. Calculate the whole number of football pitches that would be
covered by 1 mol of benzene, spread out in a molecular
monolayer, assuming that:

(a) a benzene molecule can be considered as a disc of radius
r 5 300 pm, and

(b) The area of a soccer pitch is 6900 m2.
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A. The number of molecules in 1 mol of benzene is equal to
6.022 6 1023 (to 4 sig. fig.). If we assume that a reasonable
estimate for the area, A, covered can be calculated by
multiplying the effective area of each molecule, a, by the
number of molecules in 1 mol, then;

A ~ 6:022 |1023 | p | 300 | 10{12 m
� �2

~ 1:703|105 m2,

where a 5 p 6 r2 for the area of a disc of radius r. Thus, if we
now divide A by the area of a football pitch, FP, we obtain an
estimate for the area covered in terms of the number of football
pitches, n, covered by 1 mol of benzene:

n ~
A

FP
~

1:703|105

6900
~24:7,

where the units m2 in the numerator and denominator cancel.
There is evidently enough benzene to cover 25 football pitches.

Problem 1.6

Given that the density, r, of benzene is 879 kg m–3 at 298 K,
show that 1 cm3 of benzene contains 0.0113 mol (assume a
molar mass for benzene of 0.078 kg mol21).

Problem 1.7

Assuming that the earth’s radius is 6378 km, and that a
molecule of benzene may be treated as a disc of radius 300 pm,
calculate the mass of benzene needed to create a chain of
molecules around the equator of the earth.

Worked Problem 1.4

Q. Gold crystallises in a cubic close packed structure, based
on a cube with side a. Given that the density of metallic gold is
19.3 6 103 kg m–3 (density is mass divided by volume) and that
a 5 4.08610210 m, find the number of Au atoms per unit cell

16 Maths for Chemists



using the molar mass of 197Au (100%)5 197 g mol21. Give your
answer to 3 sig. fig.

A. The mass, m, of the unit cell is given by volume times density;
thus:

m ~ 4:08 |10{10 m
� �3

| 19:3 | 103 kg m{3

~ 1:31 |10{24 kg ~ 1:31 | 10{21 g:

If M(Au) 5 197 g mol21, then the mass of one Au atom is:

197 g mol{1

6:02|1023 mol{1
~3:27|10{22 g:

Thus, the number of atoms per unit cell is:

n~
1:31|10{21 g

3:27|10{22 g
~4:01:

Cubic close packing implies 4 atoms per unit cell so this result
would seem to conform to our expectation in this case. The
deviation from the theoretically correct result of 4 derives simply
from the precision with which we specify the density, the value for
a, the molar mass of Au and the Avogadro’s constant. If we had
chosen to specify some or all of these quantities to 4 or 5
significant figures rather than 3, then we might reasonably expect
to achieve a better match. It is worth remarking that in carrying
out this type of calculation, we need also consider whether the
metal in question is isotopically pure or not. For example, metallic
copper, which also crystallises in a cubic close-packed structure,
is made up of a mixture of 63Cu and 65Cu. In this case, the
calculated number of Cu atoms per unit cell will be affected by the
difference in isotopic masses in the sample because we assume that
each unit cell has the same isotopic composition (since the
definition of a unit cell describes it as the basic repeating unit).

Problem 1.8

Calculate the number of Au atoms per unit cell to 3 d.p., given
that the molar mass of 197Au (100%) 5 196.97 g mol21,
the density of metallic gold is 19.321 6 103 kg m–3, that
a 5 4.0783 6 10210 m and given Avogadro’s constant 5

6.0221 6 1023 mol21.
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1.1.7 Relationships Between Numbers

Frequently in chemistry we find ourselves considering the significance
of a numerical quantity, associated with some property of a system, in
terms of its relationship to some accepted standard. For example, we
might measure a rate constant which tells us whether a particular
reaction is fast or slow but we can only draw a conclusion in this
respect by comparing it to some standard which we know to imply
one extreme or the other or somewhere in between. Of course, this
activity is important in all areas of life, and highlights the value of
being able to assess how numbers relate to one another. Historically,
this relationship has been made easier by associating numbers with
patterns, as shown in Figure 1.1.
These so-called figurate numbers (in this case, triangular numbers)

are more easily presented in order of increasing magnitude, simply
because it is easy to see that there are more dots to the right than to the
left. By following this convention, it is then straightforward to deduce
the next number in the sequence (here 21, by constructing a triangle
with a row of six dots at the base. Intuitively, we can see that 6 is of
greater (.) magnitude than 3, and of lesser (,) magnitude than 15
simply by counting dots. The mathematical notation for describing
these two relations is 6.3 and 6,15. Such relations are termed
inequalities. Note that it is equally true that 3,6 and 15.6. We can also
combine these two relations into one: either 3,6,15 or 15.6.3.

Problem 1.9

Use the inequality symbols (, and .) to express two relation-
ships between the following pairs of numbers:

(a) 2, 6;
(b) 1.467, 1.469;
(c) p, e.

The association of numbers with

patterns was common in ancient

Greece. The so-called figurate

numbers 3, 6, 10 and 15 given in

the text are examples of triangu-

lar numbers; other examples

include square (1, 4, 9, 16, 25…)

and pentagonal (1, 5, 12, 22,

35…) numbers.

Figure 1.1 Expressing the

relationship between numbers is

made easier by associating them

with patterns. Their relative

magnitude is easily seen by the

increasing number of dots used to

represent them.
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1.1.7.1 Negative Numbers

The question of negative numbers must now be addressed. All negative
numbers are less than zero, and hence we can say immediately that 26
, 3. Furthermore, as 6 . 23, we can obtain the latter inequality from
the former simply by changing the sign of the two numbers
(multiplying through by 21) and reversing the inequality sign.

Problem 1.10

(a) Use inequalities to express the fact that a number given as
2.456 lies between 2.4555 and 2.4565.

(b) Express each of the following inequalities in alternative
ways:

25.35 , 25.34, 25.35 , 5.34.

1.1.7.2 Very Large and Very Small Numbers

The numerical value of the Avogadro’s constant is 6.022 6 1023;
a very large number. An expression of the disparity in the size
between this number and unity may be expressed in the form
6.02261023 & 1; likewise, for the magnitude of the charge on the
electron, we can express its smallness with respect to unity as 1.602 6
10219 % 1.

1.1.7.3 Infinity

The concept of an unquantifiably enormous number is of consider-
able importance to us in many contexts, but probably is most familiar
to us when we think about the size of the universe or the concept of
time as never ending. For example, the sums of the first 100, 1000 and
1000 000 positive integers are 5050, 500 500 and 500 000 500 000,
respectively. If the upper limit is extended to 1000 000 000 and so on,
we see that the total sum increases without limit. Such summations of
numbers – be they integers, rationals or decimal numbers – which
display this behaviour, are said to tend to infinity. The use of the
symbol ? to designate infinity should not be taken to suggest that
infinity is a number: it is not! The symbol ? simply represents the
concept of indefinable, un-ending enormity. It also arises in situations
where a constant is divided by an increasing small number. Thus, the
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sequence of values 1
10{6 ,

1
10{20 ,

1
10{1000 , � � � (that is 106, 1020, 101000)

clearly tends to infinity, whilst the same sequence of negative
terms tends to 2?. Once again, there is no limiting value for the
growing negative number { 1

10{n as the value of n increases (the
denominator decreases towards zero). Although it is tempting to write
1
0
~?, this statement is devoid of mathematical meaning because we

could then just as easily write 2
0
~?, which would imply that 152,

which is clearly not the case. We shall see in Chapter 3 how to
evaluate limiting values of expressions in which the denominator
approaches zero.

1.1.7.4 The Magnitude

The magnitude of a number is always positive, and is obtained by
removing any sign: thus, the magnitude of 24.2 is given using the
modulus notation as |24.2| 5 4.2.

Problem 1.11

(a) Give the values of |429|, |2326| and |924|.
(b) Give the limiting values of the numbers 102m, 10m, 2102m

and 210m, as m tends to infinity.

1.2 Algebra

Much of the preceding discussion has concerned numbers and some
of the laws of arithmetic used for their manipulation. In practice,
however, we do not generally undertake arithmetic operations on
numbers obtained from some experimental measurement at the outset
– we need a set of instructions telling us how to process the number(s)
to obtain some useful property of the system. This set of instructions
takes the form of a formula involving constants, of fixed value, and
variables represented by a symbol or letter: the symbols designate
quantities that, at some future stage, we might give specific numerical
values determined by measurements on the system. Formulae of all
kinds are important, and their construction and use are based on the
rules of algebra. The quantity associated with the symbol is usually
called a variable because it can take its value from some given set of
values: these variables may be continuous variables if they can take any
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value from within some interval of numbers (for example, tempera-
ture or concentration), or they may be discrete variables if their value
is restricted to a discrete set of values, such as a subset of positive
integers (for example, atomic number). One further complicating issue
is that, in processing a number associated with some physical property
of the system, we also have to consider the units associated with that
property. In practice the units are also processed by the formula, but
some care is needed in how to present units within a formula – an
issue discussed later on in Chapter 2. However, the most important
point is that algebra provides us with a tool for advancing from single
one-off calculations to a general formula which provides us with the
means to understand the chemistry. Without formulae, mathematics
and theory, we are in the dark!

1.2.1 Generating a Formula for the Sum of the First n Positive
Integers

Consider first the simple problem of summing the integers 1, 2, 3, 4
and 5. The result by arithmetic (mental or otherwise) is 15. However,
what if we want to sum the integers from 1 to 20? We can accomplish
this easily enough by typing the numbers into a calculator or adding
them in our head, to obtain the result 210, but the process becomes
somewhat more tedious. Now, if we want to sum the sequence of
integers from 1 to some, as yet unspecified, upper limit, denoted by
the letter n, we need a formula that allows us to evaluate this sum,
without actually having to add each of the numbers individually. We
can accomplish this as follows:

N Write down the sum of the first five integers, 1 to 5, from highest to
lowest, and introduce the symbol Ss to represent this sum:

S5 ~ 5 z 4 z 3 z 2 z 1

N Repeat the exercise by summing the same five integers from lowest
to highest:

S5 ~ 1 z 2 z 3 z 4 z 5

N Add the two expressions to obtain:

2S5 ~ 6 z 6 z 6 z6 z 6 ~ 5 | 6 ~ 30 ) S5 ~ 15,

where the symbol ) means ‘implies’.

Symbols used to represent vari-

ables or constants in a

formula may additionally have

subscripts and/or superscripts

attached. For example, x1, k2 and

A12.
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If we repeat this procedure for the first six integers, rather than the
first five, we obtain:

2S6 ~ 7 z 7 z 7 z 7 z 7 z 7 ~ 6|7 ~ 42 ) S6 ~ 21:

We can see that in each case, the respective sum is obtained by
multiplying the number of integers, n, in the sum by the same number
incremented by 1, and dividing the result by 2: that is:

S5~
5|6

2
~15

S6~
6|7

2
~21:

Problem 1.12

Use the result given above to deduce expressions that yield the
sum of the first:

(a) 100 positive integers;
(b) 68 negative integers.

The pattern should now be apparent, and we can generalise the
expression for the sum of the first n positive integers by multiplying n
by n+1, and dividing the result by 2:

Sn~
n| nz1ð Þ

2

It is usual practice, when symbols are involved, to drop explicit use
of the multiplication sign 6, thus enabling the formula for Sn to be
given in the form:

Sn~
n nz1ð Þ

2
ð1:7Þ

We can test our new formula, by using it to determine the sum of
the positive integers from 1 to 20:

S20~
20|21

2
~210
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1.2.2 Algebraic Manipulation

The rules for manipulating algebraic symbols are the same as those
for numbers: thus we can formally add, subtract, multiply and divide
combinations of symbols, just as if they were numbers. In the example
given above, we have used parentheses to avoid ambiguity in how to
evaluate the sum. The general rules for expanding expressions in
parentheses ( ), brackets [ ] or braces { } take the following forms:

a b z cð Þ ~ ab z ac ~ b z cð Þa ð1:8Þ

and

b z cð Þ=d ~ b = d z c = d: ð1:9Þ

When we want to multiply two expressions in parentheses together,
the first rule is simply applied twice. Thus, if we are given the
expression(a + b)(c + d), we can expand by letting X 5 (a + b), and
then:

a z bð Þ c z dð Þ ~ X c z dð Þ ~ Xc z Xd

~ a z bð Þc z a z bð Þd

~ ac z bc z ad z bd: ð1:10Þ

We can use these rules to expand our expression for the sum of n
integers above to obtain either

Sn ~ n2 = 2 z n = 2 or Sn ~ n = 2 z n2 = 2:

However, it would be usual in this case to stick to our original
expression because it is more compact and aesthetically pleasing.

Worked Problem 1.5

A Formula of Chemical Importance

The spin of a proton has two orientations with respect to the
direction of a homogeneous magnetic field: either ‘spin up’ or
‘spin down’, often represented by the arrows q or Q,
respectively. In an NMR experiment, the two orientations have
different energies. Let us now consider how many possible spin
combinations there are for two and for three equivalent
protons, and then derive the result for n equivalent protons.
For two equivalent protons, the first proton can have one of

two possible spin states, spin up or spin down. Each of these can

The ordering of symbols repre-

senting numerical quantities in

product and summation forms is

of no consequence – the symbols

commute under both addition

and multiplication.
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combine with either one of the spin states possible for the second
proton. Thus the total number of two-spin state combinations is
2 6 2 5 22 (a result which is more useful than the arithmetic
result, 4). The four two-spin states are as follows:

First spin state ‘up’: qq qQ
First spin state ‘down’: Qq QQ

If we now include a third equivalent proton, as would be appro-
priate for the methyl group, each parent two-spin state gives rise to
two three-spin states – thus doubling the overall number of spin
states to yield a total of 2 6 22 5 23 which is, of course 8:

First two-spin state: qqq qqQ
Second two-spin state: qQq qQQ
Third two-spin state: Qqq QqQ
Fourth two-spin state: QQq QQQ

It should now be apparent that, for each additional equivalent
proton, the number of spin states is doubled: thus, for 4 pro-
tons, there are 24 spin states and hence, for n equivalent protons,
there are 2n spin states.

Problem 1.13

The nuclear spin of the deuteron, which has a spin quantum
number I of 1, can have three orientations, represented
symbolically by q, R, Q. The expression derived above for
two-spin state systems can readily be extended to any number of
spin states – thus for n equivalent nuclei having m possible spin
orientations, the number of possible spin states is given by mn.

(a) Deduce the number of three-spin states for the CD2 radical
(where D is the chemical symbol for deuterium). Now do
the same for a fully deuterated methyl radical.

(b) Given that there are 2I + 1 spin states for a nuclear spin
quantum number, I, give the number of spin states
associated with n equivalent nuclei with spin I.

(c) State the number of nuclear spin states for a single atom of
51V, which has a nuclear spin quantum number of 7=2 (this
is useful for understanding the electronic characteristics of
complexes of vanadium).

The deuteron is the name given

to the nucleus of deuterium which

contains one proton and one

neutron.
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1.2.2.1 Dealing with Negative and Positive Signs

In the algebraic expressions considered so far, all the constituent
terms carried a positive sign. In general, however, we have to work
with expressions involving terms carrying positive or negative signs.
Dealing with signed terms is straightforward when we appreciate that
a negative or positive sign associated with a number or symbol simply
implies the operation, multiply by –1 or +1, respectively. For example,
the operation:

{að Þ | {bð Þ

is equivalent to writing

{1 | a | {1 | b ~ {1 | {1ð Þ | a | b ~ ab:

A simple set of rules can be constructed, using this reasoning, to help
us to carry out multiplication and division of signed numbers or
symbols:

These rules are valid if a, b are numbers, symbols, or algebraic
expressions.

Worked Problem 1.6

Q.Given that x5 6, y523 and z5 2, find the value of each of
the following algebraic expressions.

(a) xyz2y{3z=y,

(b) xz2zð Þ z{yð Þ:
A.

(a) xyz2y{3z=y~{18{6z6=3~{22;

(b) xz2zð Þ z{yð Þ~10|5~50

Multiplication: Division:

[(+a) 6 (+b)] 5 ab [(+a) / (+b)] 5 a / b

[(+a) 6 (2b)] 5 2ab [(+a) / (2b)] 5 2a / b

[(2a) 6 (+b)] 5 2ab [(2a) / (+b)] 5 2a / b

[(2a) 6 (2b)] 5 ab [(2a) / (2b)]5a / b
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Problem 1.14

Given that u 5 (x + y) and v 5 (x 2 y), find an expression for:

(a) u2 z v2
� �

= v { uð Þ:
(b) uv = 2u { vð Þ
(c) 10uzv = 10u{v

Problem 1.15

Simplify the following expressions:

ðaÞ ið Þ 4p { q { (2q z 3p); iið Þ 3p2 { p 4p { 7ð Þ;
ðbÞ ið Þ 1 z xð Þ2 { 1 { xð Þ2; iið Þ x 2x z 1ð Þ { 1 z x { x2

� �
:

1.2.2.2 Working with Rational Expressions

A rational expression (often called a quotient) takes the form
a

b
, where

a and b may be simple or complicated expressions. In many instances,
it is necessary to simplify the appearance of such expressions by
searching for common factors (symbols or numbers common to each
term) and, if necessary, by deleting such factors in both the numerator
and denominator. For example, in:

3x2{12xy

3
,

the numerator has 3 and x as common factors, whereas the
denominator has 3. Since the denominator and numerator both have
the common factor 3, this may be cancelled from each term to give:

x2{4xy

1
~x2{4xy,

which simplifies further to x(x 2 4y), once the common factor x has
been removed from each term. In this case, the rational expression
reduces to a simple expression. We should also be aware that,
whenever we are faced with a rational expression involving symbols, it
is necessary to specify that any symbol appearing as a common factor,
in both numerator and denominator, cannot take the value zero,
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because otherwise the resulting expression would become
0

0
, which is

indeterminate (i.e. meaningless!).

Problem 1.16

Simplify the following expressions, and indicate any restrictions
on the symbol values.

að Þ p4q2

p2q3
; bð Þ p8q{3

p{5q2
; cð Þ 4x

6x2{2x
; dð Þ 3x2{12xy

3
:

1.2.3 Polynomials

A polynomial is represented by a sum of symbols raised to different
powers, each with a different coefficient; for example, 3x3 2 2x + 1
involves a sum of x raised to the third, first and zeroth powers
(remember that x0 5 1) with coefficients 3,22 and 1, respectively. The
highest power indicates the degree of the polynomial and so, for this
example, the expression is a polynomial of the third degree.

1.2.3.1 Factorising a Polynomial

Since x does not appear in all three terms in the polynomial 3x32 2x + 1,
it cannot be common factor. However, if we can find a number a, such
that 3a3 2 2a + 15 0, then x2 a is a common factor of the polynomial.
Thus, in order to factorise the example given, we need first to solve the
expression:

3a3 { 2a z 1 ~ 0:

Trial and error shows that a521 is a solution of this equation, which
means that x 2 (21) 5 x + 1 is a factor of 3x3 2 2x + 1. It is
now possible to express 3x3 2 2x + 1 in the form (x + 1)(3x2 2 3x2 1).
Note that the second degree polynomial in parentheses does, in fact,
factorise further, but the resulting expression is not very simple in
appearance.
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Problem 1.17

Express the following polynomials in factored form, indicating
any limitations on the values of x.

(a) ið Þ x2 { 3x z 2; iið Þ x3 { 7x z 6;

(b) ið Þ x3{7xz6

x{2
; iið Þ x2{1

x{1
:

1.2.3.2 Forming a Common Denominator

An expression of the form
x

a
z

y

b
may be written as one rational

expression with a common denominator ab as follows:

x

a
z

y

b
~

xbzya

ab
ð1:11Þ

If there are three terms to combine, we reduce the first two terms to a
rational expression, and then repeat the process with the new and the
third terms.

Problem 1.18

Express the following in common denominator form, in which
there are no common factors in numerator and denominator:

(a) ið Þ 3x

4
{

x

2
; iið Þ 2

x
{

1

x2
; iiið Þ 1{ 1

x
z

2

x2

(b) ið Þ 1

1zx
{

1

1{x
; iið Þ 2x

x2z1
{

2

x
:

1.2.4 Coping with Units

In chemistry, we work with algebraic expressions involving symbols
representing particular properties or quantities, such as temperature,
concentration, wavelength and so on. Any physical quantity is
described in terms, not only of its magnitude but also of its dimensions;
the latter giving rise to units, the natures of which are determined by
the chosen system of units. In chemistry, we use the S.I. system of
units: for example, if we specify a temperature of 273 K, then the
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dimension is temperature, usually given the symbol T, the magnitude
is 273 and the base unit of temperature is Kelvin, with name K.
Similarly, a distance between nuclei of 150 pm in a molecule has
dimensions of length, given the symbol l, a magnitude of 150 and a
unit of pm (10212 m). All such physical quantities must be thought of
as the product of the magnitude, given by a number, and the
appropriate unit(s), specified by one or more names. Since each
symbol representing a physical quantity is understood to involve a
number and appropriate units (unless we are dealing with a pure
number such as percentage absorbance in spectroscopy), we treat the
property symbols and unit names as algebraic quantities. All the usual
rules apply and, for example, in the case of:

N The molar energy property, E, we may wish to use the rules of
indices to write E 5 200 kJ/mol as 200 kJ mol–1.

N Concentration, c, we are concerned with amount of substance
(name is n, unit is mol) per unit volume (name is V, unit is m3).

If necessary, as seen earlier, we can manipulate the various prefixes for
the S.I. base units as required. Further practice is given in the
following problem.

Problem 1.19

(a) The expression
RT

F
occurs widely in electrochemistry. The

gas constant, R, has units J K–1 mol–1 ; the Faraday
constant, F, has units C mol21, and temperature, T, is
measured in K. Given that 1 coulomb volt (CV) is
equivalent to 1 joule (J), find the units of the given
expression.

(b) The Rydberg constant, R?~
mee

4

8h3ce02
, occurs in models used

for interpreting atomic spectral data; me is the mass of the
electron (kg), e is the elementary charge (C), c is the speed
of light (m s–1), e0 is the vacuum permitivity ( J–1 C2 m–1 ),
and h the Planck constant (J s). Given that 1 J is equivalent
to 1 kg m2 s22, find the units of R‘.

Numbers and Algebra 29



Summary of Key Points

This chapter has revisited the elementary but important
mathematical concepts of numbers and algebra as a foundation
to the following chapter on functions and equations. The key
points discussed include:

1. The different types of number: integers, rational, irrational
and decimal.

2. The rules for rounding decimal numbers.
3. The rules for combining numbers: powers and indices.
4. Scientific notation for very large and very small numbers.
5. The relationships between numbers: how we reference

numbers with respect to magnitude and sign.
6. The principles of algebra: generating a formula and

algebraic manipulation.
7. Working with polynomials.
8. An introduction to units.
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2
Functions and Equations:
Their Form and Use

As we saw in Chapter 1, the importance of numbers in chemistry
derives from the fact that experimental measurement of a particular
chemical or physical property will always yield a numerical value to
which we attach some significance. This might involve direct
measurement of an intrinsic property of an atom or molecule, such
as ionisation energy or conductivity, but, more frequently, we find it
necessary to use theory to relate the measured property to other
properties of the system. For example, the rotational constant, B,
for the diatomic molecule CO can be obtained directly from a
measurement of the separation of adjacent rotational lines in the
infrared spectrum. Theory provides the link between the measured
rotational constant and the moment of inertia, I, of the molecule by
the formula:

B~
h

8p2Ic
,

where h is Planck’s constant and c is the speed of light. The moment
of inertia itself is related to the square of the bond length of the
molecule by:

I ~ mr2,

where m is the reduced mass. The relationship between B and r was
originally derived, in part, from the application of quantum
mechanics to the problem of the rigid rotor. In general, relationships
between one chemical or physical property of a system and another
are described by mathematical functions. Such functions are
especially important for building the mathematical models we need
to predict changes in given property values that result from changes in
the parameters defining the system – if we can predict such changes
then we are well on the way to understanding our system better!
However, before we can explore these applications further, we have to
define function in its mathematical sense. This is a necessary step

For a diatomic molecule, AB, the

reduced mass is given by

m~
mAmB

mAzmB
where mA and mB

are the masses of A and B,

respectively.
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because, in chemistry, the all-pervasive presence of units complicates
the issue.

Aims

This chapter aims to demonstrate the importance of mathema-
tical functions and equations in a chemical context. By the end
of the chapter you should be able to:

N Work with functions in the form of a table, formula or
prescription and, for each type, specify the independent and
dependent variables, an appropriate domain, and construct a
suitable graphical plot using Cartesian coordinates.

N Recognise periodic, symmetric or antisymmetric character in
a function.

N Find the factors and roots of simple polynomial equations
using either algebraic or graphical procedures.

N Use the laws of algebra to simplify expressions of all kinds.
N Work with units using algebra.
N Use the formulae for the logarithm of a product or quotient

of expressions.
N Understand the difference between degrees and radians for

measurement of angles.
N Be familiar with the use of trigonometric identities and

addition formulae.

2.1 Defining Functions

Our aim in this section is to show what features need to be understood
in order to define a function properly as a mathematical object. First
of all, let us consider the association between an arbitrary number, x,
and the number 2x + 1. We can thus associate the number 6 with 13, p
with 2p + 1, 1.414 with 3.828, and so on. It is conventional practice to
express this association as a formula, or equation:

y ~ 2x z 1,

where the unspecified number, x, is the input number for the formula,
and y the output number. Before we can say that this association
expresses y as a function of x, we need to:
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N Specify the set of numbers for which the formula applies (the domain)
N Check that each value of x is associated with only one value of y.

In the present example, we could specify the domain as either the
collection of all real numbers (conventionally described as the set R),
or the set of all integers, I, or a subset of either or both, thereby
satisfying the first requirement.
We can also see in this case that any number chosen as input

generates a single number, y, as output and so the second requirement
is also satisfied. It is very important to keep in mind that the function
is defined not only by the formula but also by the domain:
consequently, if we specify that the formula y 5 2x + 1 applies to
any real number as input, x, then we can define the function y 5 f(x)
where f(x) 5 2x + 1 with domain R. In this case f is the name of the
function that describes both the formula and the permitted values of
x. If we had specified that the same formula y 5 2x + 1 is used with
the domain consisting of all integers, I, then we would be dealing with
a different function, which we might wish to call y 5 g(x). For both
functions, y is the number produced by the formula for a given x

defined within the specified domain of the function. The association
between x and y defines different functions for different subsets of
numbers – although the formula of association is the same. Where a
function is defined by a formula, and the domain is not explicitly
stated, then it is assumed that the domain consists of all real numbers
for which the function has a real value. This is called the natural
domain of the function.

Worked Problem 2.1

Q. Define two possible domains of the function

f (x)~
1

x{4ð Þ xz3ð Þ .

A. The value of f(x) is indeterminate for x 5 4 and x 5 23
because division by zero yields an indeterminate result. For all
other values of x, the function is defined, and consequently the
domain of f(x) could be either all real numbers, excluding x 5 4
and x 5 23, or all integers excluding x 5 4 and x 5 23. We
could write this explicitly as either:

f (x)~
1

x{4ð Þ xz3ð Þ , x[ R, x=4, x={3,

A subset of R or I, consists of a

selection of real numbers or

integers, respectively. It follows

that I itself is by definition a

subset of R.
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or f (x)~
1

x{4ð Þ xz3ð Þ , x[ I, x=4, x={3:

It is often not necessary to specify the domain explicitly, as
any restrictions are evident from the formula: this is especially
true in the chemical context.

The symbols x and y, used in the function formulae, are con-
ventionally termed the independent variable and dependent variable,
respectively. This terminology conveys the idea that we are free to
assign values to the independent variable but that, once we have done
so, a unique value for the dependent variable results. A function may
have more than one independent variable, in which case a domain
needs to be specified for each variable. For example, the formula:

y ~ pq = r

expresses an association between the three independent variables p,
q and r and the dependent variable y. The domain is defined by
specifying the permitted values associated with each of the
independent variables. Having checked that only one value of the
dependent variable results for a given set of values of p, q and r, we
may then define the function:

y ~ f p, q, rð Þ ~ pq = r: ð2:1Þ

In practice, although many functions that we meet in a chemical
context have more than one independent variable, the function may
be reduced to a single variable by specifying that one or more of the
other variables remain constant.
Frequently, we specify functions by formulae that do not explicitly

involve a dependent variable, but express the function simply in terms
of the formula and the label used to denote the function. For example,
the formula f(x) 5 2x + 1 defines the function f that associates the
number 2x + 1 with the number x. Thus, f(25) 5 29 implies that f
associates –9 with –5, while f(3) 5 7 implies that f associates 7 with 3.
Although this way of presenting the function does not involve a
dependent variable, we can introduce one by letting y 5 f(x), and
rewriting the function as y 5 2x + 1. The most frequently encountered
labels used for the independent and dependent variables are x and y,
respectively, but these labels are entirely arbitrary. We might just
as easily use the labels p and r or w and r; similarly, when

The symbol s means ‘‘is an

element of’’ or alternatively

‘‘belongs to’’. Thus x s R means

that ‘‘x is an element of the set of

real numbers’’.
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labelling the function, instead of f we might use g, h, F or y, or indeed
any label which we think appropriate: for example, if we wanted to
collectively label the group of 1s, 2s, 3s,… atomic orbital functions,
we might use the name w and then distinguish each function using a
numbered suffix, say, w1, w2 and w3. Our choice here is entirely
arbitrary, but is designed to allow us, in this case, to group similar
types of functions under a common name. You could rightly argue
that the labels w1, w2 and w3 provide little that the labels 1s, 2s, 3s,…
do not: the point here is that either will do, and it is really just a
matter of taste, context, convenience or convention that dictates what
labels and names we use. It is very important that we do not allow
unfamiliar labels to give the impression that an otherwise straightfor-
ward association or function is more complicated than it actually is!

Worked Problem 2.2

Q. The energies of the electron orbits in Bohr’s model of the
hydrogen atom take discrete values according to the expression,

En~
{mee

4

8e02h2n2
, where me and e are the mass and charge of the

electron, respectively, h is Planck’s constant, e0 is the vacuum
permittivity and n is the principal quantum number. Write
down an equivalent expression using the labels x and y for the
independent and dependent variables, respectively, and any
labels you feel appropriate for the constants.

A. The formula for En has exactly the same mathematical form
as the formula y 5 2ax22. The energy En is the dependent
variable, equivalent to y in the second formula and carries units
of J. The principal quantum number, n, is the independent
variable, equivalent to x, and can take only integer values
greater than or equal to 1. The constants me, e, h and e0, can be
collected together into a single constant, equivalent to a in the
second formula. The domain of the original formula is restricted
to all positive integers. However, this restriction may not
necessarily apply to the second formula, which might have as
domain all real numbers, for example. Consequently, although
the formulae are identical in form, we define two distinct
functions, which are distinguished from each other by their
domains.
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The requirement that a function be single-valued, for a given input
value for the independent variable, will hold for the majority of
associations between one number and another. However, the
association between any real number and its square root always
yields both a positive and a negative result. For example, the two
square roots of 9 are ¡3, and so we say that 9 is associated with both
–3 and 3. Thus, if we write this association as y5 x1/2, then we cannot
define the function y 5 f(x) 5 x1/2. However, if we explicitly limit the
values of y to the positive (or negative) roots only, then we can
redefine the association as a single-valued function. Alternatively, if
we square both sides to yield y2 5 x, we can take the association
between x now as dependent variable and y as independent variable
and define the function x 5 g(x) 5 y2 for which there is only one
value of x for any value of y.
An everyday example might be the association between price

and item in a supermarket. As there are in all likelihood many items
that have the same price, we cannot describe this association as a
function; however, the association of item with price does define a
function, as each article has only one price. In this latter case, the
domain of the function is simply a list of all items for sale in the
supermarket.

Problem 2.1

State whether each of the following associations defines a
function; if so, give its domain.

(a) The set of car registration numbers and registered keepers.
(b) The set of registered keepers and car registration numbers.
(c) Periodic Table Group number and element name.
(d) Element name and Periodic Table Group number.

2.1.1 Functions in a Chemical Context

As we have seen in the previous section, functions involve associations
between numbers. However, when we work with functions in a
chemical context, we have to recognise that any association involving
chemical properties necessarily involves units. Consider, for example,
the relation between atomic number, Z, and atomic first ionisation
energy, IE. While there are clearly no units associated with atomic
number, the ionisation energy, IE, has units of kJ mol–1 (although we

The nth root of a number x may

be written using the radical nota-

tion
ffiffiffi
xn

p
, where n is the index, and

the
ffip
sign is known as the

radical. The square root of x is

thus given by
ffiffiffi
x2

p
but more

commonly this index is omitted

and we simply write
ffiffiffi
x

p
. By

convention, use of the radical

sign implies the principal or posi-

tive root. If we wish to specify

explicitly the negative root then

we must write {
ffiffiffi
x

p
. However,

we may alternatively write x1/2

which represents both positive

and negative roots.
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could just as easily have chosen any other unit of energy such as eV,
cm-1, J, kcal mol-1 and so on). In this example, there is clearly a
relation between the subset of the positive integers (1, 2, 3, 4, … 116),
corresponding to Z, and the subset of the 116 decimal numbers
corresponding to the values of IE / kJ mol–1. Note that the association
remains between two numbers devoid of units because, in the case of
the ionisation energy, we have divided IE by the units of energy
chosen. For example, in the case of atomic nitrogen, where Z5 7, and
IE / kJ mol–1 5 1402.3, there is a relation between the positive integer
7, and the decimal number 1402.3. This relation has physical meaning
only for positive integers greater than or equal to 1 and less than or
equal to 116 (alternatively written as 1 ¡ Z ¡ 116), since each value
of IE / kJ mol21 is associated with only one positive integer in the
subset of integers already identified. Hence, in mathematical terms,
we say that the relation, or association, just described defines a
function, as we have specified both the domain for which the
association is valid, and also checked that each number, Z, of the
domain has an association with only one decimal number.
In most chemical problems we usually deal with functions that are

defined in terms of a formula, in which the permitted values for the
variables appearing in the formula (given by symbols) are determined
by physical considerations. For example, in the case of temperature
on the absolute (Kelvin) scale, negative values have no physical basis
in reality.
In the next section, we explore in more detail the role that units play

in the relation of formula and function.

2.1.1.1 Understanding the Role of Units – The Mathematically Correct
Approach

Consider the ideal gas law, expressed in terms of the simple formula:

P ~ nRT = V ð2:2Þ

where the symbols have the following roles: P is the pressure, n is the
amount of gas, V is the volume, T is the temperature and R is the gas
constant. Each of the properties listed has associated units, and the
units on both sides of eqn (2.2) must be equivalent, or equal. In the
S.I. convention, the following choices of units are common, with
the equivalent combinations of base S.I. units also given, where
appropriate: P in Pa (pascal), atm, or bar, which are names defining
appropriate multiples of the base units kg m21 s22; n in mol; V in m3;
T in K; R 5 8.314 J K21 mol21, equivalent to kg m2 s22 K21 mol21.
Thus, on the left-hand side of the formula the units are kg m21 s22,
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and on the right side, we have mol kg m2 s22 K21 mol21 K / m3 5 kg
m21 s22, as required.
The ideal gas equation is the outcome of a model devised for

understanding the properties of a gas, in which there is no interaction
between the atoms or molecules occupying the volume, V. In
mathematical terms, however, this ideal gas equation remains a
formula until we know how to use it as a function, a key aspect of
which is developed next.

2.1.1.2 Creating a Function from a Formula

As already noted, the ideal gas formula involves symbols that are
associated with a value and its associated units. As we know that the
units on the left- and right-hand sides of the formula are the same and
therefore cancel, we can express each symbol as a value multiplied by
appropriate units, leaving us with a relation involving new symbols
that stand for numerical values in the ordinary sense of algebra. In
particular, if we make the following substitutions:

P ~ p Pa; n ~ �n mol; R ~ r J K{1 mol{1; V ~ v m3; T ~ t K,

then the formula:

P~
nRT

V
ð2:3Þ

takes the form:

p Pa~
�n mol r J K{1mol{1t K

v m3
ð2:4Þ

which, on cancelling the units, becomes:

p~
�nrt

v
ð2:5Þ

where p, n̄, r, t, v are positive numbers, with t also permitted to take
the value zero. In this case, we see that p is a function of the three
variables, n̄, t and v (r is a constant). However, if the amount of
gas and either temperature or volume is held constant, then there is
only one independent variable and, in these circumstances, we say
that p is proportional to t or that p is inversely proportional to v,
respectively:

p ! t or p ! 1=v:

The constants of proportionality are given by n̄r / v or by n̄rt,
respectively. In each case, we can collect our constants together and
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re-label them as a single constant, expressed using a new symbol.
Thus, we can express the ideal gas law as:

p ~ bt or p ~ c = v,

where b 5 n̄r /v and c 5 n̄rt.

2.1.1.3 Understanding the Role of Units – The Pragmatic Approach

In the discussion above, we have seen how a formula involving
chemical properties may be converted into a function, essentially by
removing the units. This procedure works because the units must
balance on each side of the equality (5) defining the formula or
association. It is very easy to become confused by the distinction
between formula and function and the role that units play in defining
this distinction. The approach detailed above describes how to treat
units in a mathematically correct fashion, but in practice the more
pragmatic approach is to simply ignore the units and treat a formula
describing some physical relationship as a function (for which the
domain is the physically meaningful range of values for the
independent variable). Consequently, we find that in most chemistry
texts there is an understandable degree of mathematical looseness,
which skates over this distinction between formula and function in a
chemical context, and frequently results in the units being ignored.
For example, it is often stated that the ideal gas law indicates that P is
a function of T and V, in which P 3 T and P 3 1 / V. The latter two
statements are, of course, true, so long as it is understood that the
proportionality constants carry the units of pressure divided by
temperature and pressure multiplied by volume, respectively. It is not
our intention here to add unnecessary levels of complexity, but it is
nevertheless important to be aware of the role that units play and of
the distinction between formula and function in the chemical context.
We shall return to this problem of units in the next section, where we
consider methods used for representing functions.

Worked Problem 2.3

The conventional wisdom in theories of molecular structure
presented in organic chemistry is that the strength of a bond
between identical atoms increases with increasing bond order
and decreasing bond length. Thus, for example, the bond
energy, BE / J mol21, of a C;C triple bond is greater than a
C5C double bond, which in turn is greater than a C2C single
bond. As the bond length is inversely proportional to bond
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order, we can make a rough approximation that the bond
energy, BE / J mol21 is inversely proportional to bond length.

Thus:

BE = J mol{1 !
1

L=m
:

Q. Give the units of the constant of proportionality in terms of
the base S.I. units.

A. Writing the formula in terms of base units, we have:

BE

kg m2 s{2 mol{1
!

m

L

Dividing through by m on both sides gives:

BE

kg m3 s{2mol{1
!

1

L

and so we see that in order for the units to balance on both
sides, the constant of proportionality must have units equivalent
to the those appearing in the denominator on the left-hand side,
i.e. kg m3 s22 mol21.
A less rigorous, and somewhat more transparent, approach

involves writing down the relationship between binding energy
and bond length:

BE!
1

L
:

If we replace each of the symbols BE and L by their appropriate
units we have:

kg m2 s{2 mol{1!
1

m

and so in order to replace the proportionality symbol (3) by the
equality symbol (5) we introduce the constant of proportion-
ality which must have units of:

kg m2 s{2 mol{1 |m ~ kg m3 s{2 mol{1:
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Problem 2.2

The movement of ions with charge ze (where z is a small positive
or negative integer, and e is the fundamental unit of charge)
through a solution, subject to an external electric field, E, is

determined by the balance between the force arising from the
electric field and the viscosity, g, of the solution. The parameter,
s, termed the drift speed, gives a measure of the conductivity,
and is evaluated using the formula:

s~
e z E

6pga
,

where a is the effective radius of the ion. Given that the units of
e, E, g and a are C, V m21, m21 kg s21 and m, respectively, give
the units of s (remember that C V 5 J, and J 5 kg m2 s22).

2.2 Representation of Functions

Functions of a single variable, involving a relation between two sets
of numbers, may be expressed in terms of a table (expressing an
association), formula, prescription or graphical plot. For functions of
two independent variables (see below), the preferred representations
are formula, prescription or graphical plot; for three or more varia-
bles, a formula or prescription are the only realistic representations.

2.2.1 Tabular Representations of Functions of a Single Variable

The function y 5 g(x), where g(x) 5 2x + 1, with the domain
consisting of the integers from –5 to 5, can most easily be expressed in
tabular form (see Table 2.1). For each value of x there exists one
value of y.
It is clear that there are 11 numbers (elements) in the domain.

However, it is not possible to present the function f(x) 5 2x + 1,
with the domain of all real numbers from –5 to 5, in tabular form, as
there is an infinite number of elements in the domain. The formula

Table 2.1 The function g(x) 5 2x + 1, with the domain consisting of the integers from –5 to 5 expressed in tabular form.

x 25 24 23 22 21 0 1 2 3 4 5

g(x) 29 27 25 23 21 1 3 5 7 9 11
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f(x) 5 2x + 1 is the most effective non-graphical way of specifying this
function, with the domain as specified above.

2.2.2 Graphical Representations of Functions of a Single Variable

For the function y 5 f(x), each ordered pair of numbers, (x, y), can be
used to define the co-ordinates of a point in a plane, and thus can be
represented by a graphical plot, in which the origin, O, with
coordinates (0, 0), lies at the intersection of two perpendicular axes.
A number on the horizontal x-axis is known as the abscissa, and
defines the x-coordinate of a point in the plane; likewise, a number
on the (vertical) y-axis is known as the ordinate, and defines the y-
coordinate of the point. Thus, an arbitrary point (x, y) in the plane
lies at a perpendicular distance |x| from on the y-axis and |y| from the
x-axis. If x . 0, the point lies to the right of the y-axis and if x , 0, it
lies to the left. Similarly, if y. 0, the point lies above the x-axis, and if
y , 0, it lies below (see Figure 2.1).
For functions such as y 5 g(x), where g(x) 5 2x + 1, the most

appropriate type of plot is a point plot if the domain is limited to
integers lying within some range. Figure 2.2 displays such a plot for
this function, which is defined only at the eleven values of x in its
domain (indicated by open circles).
Strictly speaking, it is not appropriate to connect the points with a

line, as this would imply that the function is defined at points other

Figure 2.1 The Cartesian

coordinate system used to

represent the points (3, 3) and

(23, 23) in the plane defined in

terms of coordinates referenced

to the origin (0, 0).
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than at the integers from –5 to +5. However, in some instances, as we
shall see below, it may be appropriate to connect the data points with
straight line segments in order to guide the eye, but this has no
mathematical significance. In contrast, the line plot of the function
y 5 f(x) 5 2x + 1 is created by taking a sufficient number of points in
its domain to enable a smooth curve to be drawn (Figure 2.3). In this
case, it would be similarly misleading to represent this plot as a series
of discrete points, no matter how small the gap between adjacent
points. The only correct way of representing this function is by a
smoothly varying line plot, but, of course, in practice, we recognise
that the logistics of generating a graphical line plot involve arbitrarily
selecting discrete points within the domain and then joining the
points. This applies equally whether we are drawing the plot by hand
or using a computer plotting program.

2.2.2.1 A Chemical Example of a Point Plot

Consider the association between atomic first ionisation energy, IE,
and atomic number Z (a positive integer). It is convenient to use the
electron-volt unit, eV, where 1eV 5 96.485 kJ mol21. As there is no
formula to express this association, we present the function first in the
form of a table and then as a point plot; and in both representations,
we take as domain the Z values for the first eighteen elements. Since

Figure 2.2 A point plot

illustrating the values of the

function y 5 g(x) 5 2x + 1 in its

domain [–5, 5].
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units have to be removed in order to define a function, we consider in
Table 2.2 the association of Z with IE / eV:
The data in the table are now displayed in graphical form as a point

plot (or scatter plot) in Figure 2.4, with points defined by the number
pairs ( Z, IE / eV). In this procedure, Z is specified as abscissa (x-axis)
and IE / eV as ordinate (y-axis).
For every value of Z there is clearly only one value for the

ionisation energy, which establishes a function with domain given by
the set of the first eighteen positive integers, a subset of the atomic
numbers of the 116 elements in the Periodic Table. In this example,
the fact that the data points are connected by dashed straight line
segments has no mathematical significance; it simply acts as a visual
aid to improve the display of the trends in IE / eV values.
There are many situations where we are unable to provide a

formula that relates one chemical property with another, although,
intuitively, one may be expected. Thus, in the example given above, it

Figure 2.3 Line plot of the

function y 5 f(x)5 2x + 1.

Table 2.2 Atomic number and ionisation for the first eighteen elements.

Z 1 2 3 4 5 6 7 8 9

IE/eV 13.6 24.6 5.4 9.3 8.3 11.3 14.5 13.6 17.4

Z 10 11 12 13 14 15 16 17 18

IE/eV 21.6 5.1 12.8 6.0 8.2 10.5 10.4 13.0 15.8
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is not possible to construct a model, based on a formula, that relates
Z to IE / eV for atoms containing more than one electron (although a
simple relationship does exist for one-electron species, if we ignore
relativistic effects). However, regardless of whether a particular
problem is as intractable as this one, we can only enhance our
understanding of chemistry by using the mathematical tools at our
disposal to develop new models to crack particular chemical ‘nuts’! As
an example of this kind of model development, we now consider some
pressure/volume data for a real gas in order to test the ideal gas law,
derived from the Boyle model, and to see how we can refine the law to
find a better ‘fit’ to our data.
In Section 2.1.1, we saw that, for an ideal gas, the numerical values

of the pressure, p, and volume, v, are related according to p3 1 / v, or
p5 c / v, where c5 n̄rt (a constant). We can now explore how well the
ideal gas law works for a real gas by considering experimental data1

for 1 mol of CO2 at T 5 313K. The ideal gas law suggests that
pressure is inversely proportional to the volume and so in the first two
rows of Table 2.3, we present the variation of p with 1 / v for the
experimental data (note that the working units for the pressure and
volume in this case are atm and dm3, respectively). In the third row,
we show values for 1 / vB, obtained using the ideal gas equation,
where, in this case, the constant of proportionality c5 25.6838 at T5

313 K. The data in the fourth and fifth rows derive from a refinement
to the model, discussed below.
It should be quite obvious that, although the model provided in the

form of the ideal gas law does a reasonable job at lower pressures, it

Figure 2.4 A point plot

displaying atomic number vs

ionisation energy in eV.

Functions and Equations: Their Form and Use 45



rapidly deviates as the pressure increases and the volume decreases.
We can see this more clearly in Figure 2.5, in which we compare the
real data with that derived from the ideal gas law in a scatter plot of p
vs 1 / v. We can see from our plot that the experimental data, shown as
solid circles, are modelled reasonably well by a linear (straight line)
function, but only for pressures less than 50 atm. The Boyle model is
clearly of limited applicability in this case.

2.2.2.2 Improving on the Boyle Model

An example of a model equation for a real gas is provided by the van
der Waals equation:

P~
RT

V{b
{

a

V2
, ð2:6Þ

Table 2.3 A comparison of experimental p vs 1 / v data for 1 mol of CO2 at 313K with values for 1 / v generated: from the

ideal gas law; from a fit to the van der Waals equation; and from the van der Waals equation but using the book values2 for

the constants, a and b (see the text for details).

p5P / atm 1 10 50 100 200 500

1 / v 5 1 /(V / dm3) 0.0392 0.4083 2.6316 14.300 19.048 22.727

1/vB 0.0389 0.3893 1.9467 3.8934 7.7867 19.467

1/vVDW, FIT 0.0391 0.4010 2.3294 7.402 19.175 22.730

1/vVDW, BOOK 0.0391 0.4048 2.5189 11.249 14.184 16.835

Figure 2.5 Plot of p vs 1 / v,

assuming the Boyle model (open

box symbols). Experimental data

for CO2 at 313 K are shown as

solid circles.
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in which some account of non-ideality is included through the two
parameters a and b. Values of a and b for CO2 can be obtained by
fitting the experimental data to this model expression. For the
experimental data set given in Table 2.3, we obtain values for a and b
of 2.645 atm dm6 mol–2 and 3.025 6 10–2 dm3 mol–1, respectively.
The book values for a and b are 3.592 atm dm6 mol–2 and 4.267 6
10–2 dm3 mol–1, respectively.2 The differences arise from the limited
number of data points available to us, but we can see that in spite of
this our fitted values for a and b are of the same order of magnitude as
the book values. If we now compare a scatter plot of p vs 1 / vVDW,FIT,
using our fitted values for a and b (Figure 2.6), we see that, although
the fit to our experimental data is really quite good in both the low
and high pressure regions, it is quite poor in the region of the critical
point where we have a point of inflection on our plot (see Chapter 4).
Using the book values for the van der Waals constants gives a
reasonable fit below 50 atm but increasingly poorer fits to higher
pressures; however, the fit in the critical region is much better than
that achieved from our fitted values for a and b. While we have not
been able to construct a model that fits the experimental data
perfectly, it is a considerable improvement on the Boyle model and
allows some insight into what factors might be causing the deviation
from ideal gas behaviour. Furthermore, our model provides a starting
point for further refinements, which might focus, for example, on
improving the model for different regions of the domain (such as in
the critical region) or even taking a different approach altogether,

Figure 2.6 Van der Waals

(circle symbols) and experimental

data (box symbols), used in a

pressure vs volume plot for CO2.

The point at which the phase

boundary between liquid and gas

phases disappears is known as

the critical point.
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such as looking for a polynomial function in 1 / v that has a more
extended validity (see Chapter 8).

2.2.3 Representing a Function in Terms of a Prescription

The simplest function defined in terms of a prescription (such
functions are sometimes termed piecewise functions) is the modulus
function, f(x) 5 |x| defined as follows:

f xð Þ~
x,x§0

{x,xv0

�
ð2:7Þ

a plot of which is given in Figure 2.7.
The modulus function in eqn (2.7) is an example of a function

displaying a ‘kink’ at the origin. In this case it is necessary to split the
domain into two subintervals, in each of which the formula takes a
different form. Further examples of this type of behaviour are
described in Chapter 3.

Problem 2.3

(a) Give the prescription for the function f(x) 5 |x21|, and
sketch its form.

(b) Sketch the unit pulse function with the prescription

g(x)~

0,xv1

1,1ƒxv2

0,x§2

8<
: .

Note: The unit pulse function is used for modelling NMR spectra.

Figure 2.7 The modulus

function y5|x|.
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2.2.3.1 Prescription Functions in Chemistry

Functions, specified in the form of a prescription are required when
describing properties of chemical systems that undergo phase
changes. For example:

N The function describing the change in entropy, as a function of
temperature, involves the use of a prescription that contains a
formula specific to a particular phase. At each phase transition
temperature, the function suffers a finite jump in value because of
the sudden change in thermodynamic properties. For example, at
the boiling point Tb, the sudden change in entropy is due to the
latent heat of evaporation (see Figure 2.8).

N The function describing the change in equilibrium concentration of
a given species following a sudden rise in temperature (in a so-
called temperature jump experiment), has two parts, corresponding
to times before and after the temperature jump (see Figure 2.9).

2.3 Some Special Mathematical Functions

There are many different kinds of function in mathematics, but in this
chapter, we shall restrict the discussion to those transcendental
functions, such as exponential, logarithm and trigonometric functions,
that have widespread use in chemistry.

2.3.1 Exponential Functions

In Chapter 1, we saw that there are 2n spin states for n equivalent
protons, where the physics of such systems requires that n ¢ 1. If we
now change the name of the independent variable from n to x, we can

Figure 2.8 A plot of the function

describing the change in absolute

entropy as a function of

temperature. The discontinuities

occur at phase changes.

Transcendental functions are

mathematical functions which

cannot be specified in terms of a

simple algebraic expression

involving a finite number of ele-

mentary operations (+, –, 4, 6).

By definition, functions which are

not transcendental are called

algebraic functions.
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define the function y 5 f(x) 5 2x with a domain, for example, initially
restricted to the integer values –4 to +4. We have displayed this
function as a scatter plot in Figure 2.10. If we now extend the
domain to any real value for x, we can define the exponential function
y 5 g(x) 5 2x, with base equal to 2, part of which is displayed in
Figure 2.10 as the full line plot.

Figure 2.9 The exponential

relaxation of the equilibrium

concentration to a new

equilibrium concentration

following a sudden temperature

jump from T1 to T2.

Figure 2.10 Scatter and line

plots of the functions y5f(x)52x,

domain x524,23,22,21,0,1, 2,

3, 4 (open circles) and

y5g(x)52x, domain R, (full line).
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In chemistry, apart from base 2, which we meet rather infrequently,
we also encounter exponential functions with base 10 in, for example
relating pH to the activity, a, of hydronium ions in aqueous solutions,
using the formula a 5 102pH. However, the base most commonly
encountered is provided by the unexpectedly strange, irrational
number e, which has the value 2.718 281 828… This base arises when
describing growth and decay processes in chemistry, e.g. in kinetics, in
which changes in concentration with respect to time are the focus of
attention, and in quantum chemistry, in which we are interested in the
changes in the probability density function for finding an electron at
a particular point in space. In a mathematical context, however, e
defines the base of the natural logarithm function (see below), and
also has a major role in calculus (Chapter 4).
In comparing exponential functions with different bases, the larger

the base, the more rapidly the value of the function increases with
increasingly large positive values of x, and decreases with increasingly
negative values of x. The value of y at x 5 0 is unity, irrespective of
the choice of base. Regardless of the choice of base, exponential
functions display a horizontal asymptote at y 5 0: as x takes on
increasingly large negative values, the curve approaches the line y 5 0
but never crosses it. We explore the limiting behaviour of functions in
more detail in Chapter 3.

2.3.1.1 Two Chemical Examples

N In modelling the vibrational ‘‘umbrella’’ mode for ammonia, the
potential energy function V~ 1

2
kx2zbe{cx2 is commonly used,

where k, b and c are constants (see Figure 2.11).
N The number of molecular species, ni, occupying a given energy

state, ei, is estimated using the Boltzmann distribution function:

ni~n0e
{ ei{e0ð Þ=kT , ð2:8Þ

where n0 is the number of species in the lowest energy state; k is the
Boltzmann constant, T the temperature, and the suffix i takes values
0, 1, 2, 3,… Since this function has the domain of positive integers, it
can only be visualised graphically using a point plot (see Figure 2.12).
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Problem 2.4

If the vibrations of carbon dioxide are assumed to be harmonic,

then the energy states are equi-spaced with ei~ iz
1

2

� �
hn,

where n is one of the four vibration frequencies.

(a) Use the Boltzmann distribution function to show that
ni

n0
~e{ihn=kT .

(b) Tabulate the values of
ni

n0
to four significant figures for the

Raman active vibration with v 5 0.4032 6 1014 s21, taking
i 5 1,2,3,4,5, T 5 300 K, k 5 1.381610223 J K21 and h 5

6.626610234 J s.

Figure 2.11 A plot of the

potential energy function,

V~ 1
2
kx2zbe{cx2 , using

appropriate values of k, b and c,

to describe the umbrella motion in

ammonia.

Figure 2.12 A scatter plot of the

Boltzmann distribution showing

the fractional population of

energy levels at a given

temperature, T.
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2.3.2 Logarithm Functions

Logarithm functions appear widely in a chemical context. For
example, in studying:

N The thermodynamic properties of an ensemble of atoms or
molecules.

N The model equations for first and second order kinetics.
N The temperature dependence of equilibrium constants.

2.3.2.1 Defining the Logarithm Function

If y5 ax (a is the base), then we define the logarithm to the base a of y
to be x, i.e.

loga y ~ x ð2:9Þ

It follows that:

alogay~ax~y ð2:10Þ

2.3.2.2 Properties of Logarithms

Given two numbers y1, y2, such that y1 5 ax1 and y2 5 ax2, we have
from the definition:

loga y1y2ð Þ~loga ax1zx2ð Þ~x1zx2 ð2:11Þ

However, again from the definition, we have loga y1 5 x1 and
loga y2 5 x2, and hence:

loga y1y2ð Þ~loga y1zlogay2: ð2:12Þ

By a simple extension of this argument, we find that:

loga ynð Þ~n loga y: ð2:13Þ

Note that this applies equally if the index is negative; thus:

loga y{nð Þ~{n loga y: ð2:14Þ

Similarly, by using the laws of indices and the defining relations for
logarithms above, we have:

loga
y1

y2

� �
~loga

ax1

ax2

� �
~loga ax1{x2ð Þ~x1{x2~logay1{logay2: ð2:15Þ
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Finally, to convert the logarithm from base a into base b, we can use
the initial equality:

y~ax1~bx2 , ð2:16Þ

to give:

logby~logb ax1ð Þ~x1logba, and x1~logay, ð2:17Þ

and hence:

logby~logay logba: ð2:18Þ

Logarithm functions with the bases e and 10 are usually designated by
ln and log, respectively.

Worked Problem 2.4

Q.Using appropriate properties of logarithms listed above, and,
without the aid of a calculator, evaluate log1 – log100.

A. log 1{ log 100~ log
1

100
~ log 100{1~{1| log 100~{2:

Problem 2.5

(a) Express the following in terms of log 2:

ið Þ log 4; iið Þ log 8; iiið Þ log 6{ log 3; ivð Þ ln 8; vð Þ ln 1
2
:

Hint: For part (iv), you will need to convert from base e logs
into base 10 logs using eqn (2.18).

(b) Simplify the following expressions:

ið Þ log 2z log 3; iið Þ ln 3{ ln 6:
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Problem 2.6

(a) Given that pH 5 2log aH, where aH is the activity of hydro-
nium ions, derive an expression for pH in terms of ln aH.

(b) In electrochemistry, the standard electromotive force, E–o,
of a cell is related to the equilibrium constant, K, for the cell
reaction according to the formula:

E o{~{
RT

nF
ln K ,

where n is the number of electrons involved and F is the Fara-
day constant. Find an equivalent expression in terms of log K.

(c) The strength of a weak monobasic acid HA, with dissocia-
tive equilibrium constant, K, is measured in terms of a value
of pK, where pK 5 2log K. Find the value of K to 4
significant figures, for ethanoic acid, given that pK 5 4.756.

2.3.3 Trigonometric Functions

Consider the right-angled triangle shown in Figure 2.13:
The basic trigonometric functions sine and cosine, given the names

sin and cos, respectively, are defined using the ratios of the side-
lengths of a right-angled triangle as:

sin h~
BC

AB
ð2:19Þ

and:

cosh~
BC

AB
ð2:20Þ

Figure 2.13 A right-angled

triangle, with angle BAC specified

as h.
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The sides of a right-angled triangle are referred to as the adjacent or
base (AC), opposite or perpendicular (BC) and hypotenuse (AB),
opposite the right-angle. The tangent of the angle h is given by the
quotient of sin h and cos h:

tan h~
sin h

cos h
~

BC

AC
: ð2:21Þ

2.3.3.1 The Question of Angle

Figure 2.13 shows a circle of radius r and an arc (a portion of the
circumference) of length s, subtended by the angle h. There are two
basic measures of the angle h. The first, and probably more familiar,
is the degree. The angle, h, has the value of one degree if the arc-length
s is equal to one 360th of the circumference of the circle; and so a
complete revolution corresponds to 360 degrees, with half a
revolution corresponding to 180 degrees, and a quarter to 90 degrees
(a right angle) (see Figure 2.14). The second measure of angle is the
radian; one radian is the angle made when the arc length is equal to
the radius of the circle; in other words, it is defined in terms of the
ratio of arc length to radius, i.e. h 5 s / r. As the circumference of the
circle is equal to 2pr, it follows that there must be 2p radians in one
complete revolution, p radians in half a revolution, and p/2 in a
quarter revolution. Since p radians is equivalent to 180 degrees, we
can see that one radian must equal 180/p 5 57.296 degrees (to 5
significant figures).

Figure 2.14 A circle of radius r

and an arc of length s, subtended

by the angle h.
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2.3.3.2 Angle Measure in S.I. Units

Since radians are defined in terms of the ratio of two lengths, the
values associated with an angle carry no units and are said to be
dimensionless. Similarly, the degree measure of angle is also
dimensionless. We can reinforce this by remembering that the sine or
cosine of an angle, whether measured in degrees or radians, is defined
as the ratio of the lengths of two sides of a triangle. However, in order
to indicate which form of angle measure is in use, it is common practice
to attach the S.I. symbol ‘rad’ (as a quasi unit), or to place a small circle
as a superscript to indicate degrees (u). For example, we have h 5p / 2
rad or h 5 90u or, equivalently, h / rad 5p/2 or h/u 5 90.

2.3.3.3 Sign Conventions for Angles and Trigonometric Functions

The geometric definition given above for the trigonometric functions
in terms of the ratio of the sides of a right-angled triangle, restricts the
angles to values in the range 0u to 90u or, alternatively, to:

0ƒhƒ
p

2
rad:

The definition of angle may be broadened, however, by considering
the location of a point (x, y) on the circumference of a circle, with
centre at the origin of a Cartesian xy-coordinate system (sometimes
referred to as a rectangular coordinate system) (see Figure 2.15). The

Figure 2.15 The angle h

represented in terms of a circle

placed on a Cartesian coordinate

system.
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line joining the point on the circle to the origin is of length r, and
equal to the radius of the circle.
A zero value for the angle corresponds to the point lying on the

positive x-axis. The angle increases in a positive sense as the point
circulates in an anti-clockwise direction; circulation in a clockwise
sense is indicated by a negative value of h. Thus, for example,
h~{p=4 is equivalent to h~7p=4 (see Figure 2.16).
We can now redefine the trigonometric functions in terms of the

radius r, and the co-ordinates x and y, of a point on the circle:

sin h~
y

r
, cos h~

x

r
, and tan h~

y

x
ð2:22Þ

These definitions are not in conflict with those given earlier, but now
allow for all angles; for example, angles lying in the range 90u , h ,

180u correspond to negative values for x and positive values for y,
whereas those in the range 270u , h , 360u correspond to positive
values for x and negative values for y. We can also see how the signs
of the values of the trigonometric functions depend upon which of the
four quadrants of the circle the point lies in (see Figure 2.15 and
Table 2.4). For example, in quadrant II, where 90u , h , 180u, and

Figure 2.16 Positive values for

angle are generated by rotation in

an anti-clockwise sense, whereas

negative values imply clockwise

rotation.

Table 2.4 The signs of the trigonometric functions, sin, cos and tan in each of the four

quadrants shown in Figure 2.15.

Function

Quadrant sin cos tan

I + + +
II + 2 2

III 2 2 +
IV 2 + 2
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where x is negative and y positive (and remembering that r is always
positive):

sin hw0, cos hv0 and tan hv0:

2.3.3.4 Special Values for Trigonometric Functions

There are only a few special cases where trigonometric functions have
exact values, all of which are obtained easily without reference to
tables or resorting to the use of a calculator. For example, sin(p/4) is
calculated from the definition of the sine function and use of
Pythagoras’ Theorem. An angle of h 5 p / 4 (or h 5 45u), requires the
magnitudes of x and y to be equal, which implies the length of the
hypotenuse (given by r) to be a factor of

ffiffiffi
2

p
larger than either x or y.

Thus, if sin h5 y / r, then sin p=4ð Þ~1=
ffiffiffi
2

p
. Table 2.5 lists some of the

special values for the sine, cosine and tangent functions.

Problem 2.7

(a) Given that the PH2 radical has a ‘V’ shape, with an HP̂H
angle of 123u, and a P–H bond length of 140 pm in its ground
state, calculate the H–H distance.
(b) Given that the bond angle and P–H bond length change to
107u and 102 pm, respectively, in the first electronic excited
state, calculate the change in the H–H distance.

Hint: you may find it helpful to draw an isosceles triangle, and
drop a perpendicular from the P atom to the line joining the two
hydrogen atoms.

Pythagoras’ Theorem states that

for a right-angled triangle, the

square of the length of the hypo-

tenuse is equal to the sum of the

squares of the lengths of the

remaining two sides. Using

Figure 2.13 for reference, we can

write this more succinctly as

AB25AC2+BC2.

An isosceles triangle is a triangle

with at least two sides of equal

length and with two equal angles.

The name derives from the Greek

iso (same) and skelos (leg). A

triangle having all sides of equal

length is called an equilateral

triangle, but because it has two

sides of equal length is also a

special case of an isosceles

triangle. A triangle with no equal

length sides is called a scalene

triangle.

Table 2.5 Some special values for the sin, cos and tan functions.

h50 p/6 p/4 p/3 p/2 p 3p/2 2p

sin h 0
1

2

1ffiffiffi
2

p
ffiffiffi
3

p

2
1 0 21 0

cos h 1

ffiffiffi
3

p

2

1ffiffiffi
2

p 1

2
0 21 0 1

tan h 0
1ffiffiffi
3

p 1
ffiffiffi
3

p
‘ 0 2 ‘ 0
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2.3.3.5 Reciprocal Trigonometric Functions

Three further trigonometric functions, cosecant, secant and cotangent,
are provided by the reciprocals of the basic functions:

cossec h~
1

sin h
, sec h~

1

cos h
, cot h~

1

tan h
~

cos h

sin h
ð2:23Þ

2.3.3.6 Domains and Periodic Nature of Trigonometric Functions

Thus far we have considered angles ranging from 0 to 2p (0 to 360u),
but we can further extend this range by allowing additional complete
rotations about the origin. Each additional rotation, anti-clockwise or
clockwise, adds or subtracts 2p to or from the angle, with the value of
the sine and cosine trigonometric functions simply repeating with
each full rotation. The tangent function repeats every half rotation.
Thus, for the angles h ¡ 2np, where n 5 0, 1, 2, 3, ….

sin h+2npð Þ~ sin h and cos h+2npð Þ~ cos h ð2:24Þ

and for the angles h ¡ np:

tan h+npð Þ~ tan h: ð2:25Þ

Plots of the three trigonometric functions are shown in Figure 2.17.
Functions having a property f(x ¡ a) 5 f(x) are known as periodic

functions with a period a, and are said to be many-to-one functions. In
the examples given above, the period for the sine and cosine functions
is 2p, whereas that for the tangent function is p.
We can see from Table 2.5 and Figure 2.17 that the sine and cosine

functions both have as domain the set of real numbers. The domains
of the tangent and reciprocal trigonometric functions are different,
however, because we must exclude values of h for which the
denominator of the defining formula is zero. Thus, for example,
since cos h 5 0 for h 5 (2n 2 1)p / 2, where n is any integer (including
zero), the domains for the secant (sec) and tangent (tan) functions
consist of the set of real numbers, with the exclusion of h5 (2n2 1)p / 2
with n defined as above. For the tan and sec functions, the lines
at h 5 (2n 2 1)p / 2 are known as vertical asymptotes because the
curves of the respective functions approach these lines without ever
crossing them (see Figure 2.17). In some situations it is necessary
to limit the domains so that the functions are so called 1:1 functions
(as opposed to many-to-one). The principal branches for the sine, cosine

Many-to-one functions are those

for which more than one value of

x is associated with one value of

f(x): thus, for f(x)5x2, the num-

bers ¡2 are both associated with

the number 4, and so this function

is 2:1.
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and tangent functions, chosen by convention to define them as 1:1
functions, are

sin h : {
p

2
ƒhƒ

p

2
ð2:26Þ

cos h : 0ƒhƒp ð2:27Þ

tan h : {
p

2
ƒhƒ

p

2
ð2:28Þ

Problem 2.8

Give the domains of the cotangent (cot) and cosecant (cosec)
functions.

2.3.3.7 Important Identities Involving Trigonometric Functions

The addition formulae
Expressions for the sine and cosine of the sum or difference of two

angles are given by the following formulae:

sin A+Bð Þ~ sinA cosB+ sinB cosA ð2:29Þ

cos A+Bð Þ~ cosA cosB+ sinA sinB: ð2:30Þ

Figure 2.17 Plots of the

trigonometric functions sin h

(?2?2), cos h (––), and tan h (- - - -)

for22p¡h¡2p. The principal

branch of each function is shown

by the thick lines. The dotted

vertical lines at odd multiples of

p/2 indicate the points of

discontinuity in the tangent

function at these values of h.
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Thus, for example, in the discussion of periodicity above, and with the
use of Table 2.5, we see that:

sin hz2pð Þ~ sin h cos 2pz sin 2p cos h~ sin h; ð2:31Þ

cos hz2pð Þ~ cos h cos 2p{ sin h sin 2p~ cos h: ð2:32Þ

Useful identities

cos2Az sin2A~1 ð2:33Þ

cos 2A~ cos2A{ sin2 A ð2:34Þ
sin 2A~2 cosA sinA ð2:35Þ

where the expressions cos2A and sin2A mean (cosA)2 and (sinA)2,
respectively. All the other identities that we may need follow from
these three identities and the addition formulae. For example:

cos 3A~ cos 2AzAð Þ~ cos 2A cosA{ sin 2A sinA

~ cos3A{ sin2 A cosA{2 sin2 A cosA

~ cos3 A{3 sin2A cosA

ð2:36Þ

but since sin2A 5 1 2 cos2A, we can rewrite this as:

cos 3A~4 cos3A{3 cosA: ð2:37Þ

2.3.3.8 Further Important Properties of Trigonometric Functions

Since negative angles arise when using trigonometric functions, it is
important to establish how, for example, sin(2h) is related to sinh.
The periodicity of the sine function yields the equality:

sin {hð Þ~ sin 2p{hð Þ ð2:38Þ

and so using the sine addition rule, we obtain:

sin {hð Þ~ sin 2p cos h{ sin h cos 2p~{ sin h: ð2:39Þ

Problem 2.9

Repeat the above example for cos(2h) and tan(2h), remember-
ing the definition of tanh.
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2.3.4 Exponential Functions with Base e Revisited

The hyperbolic sine and cosine functions sinh and cosh are defined in
terms of the sum and difference of the exponential functions ex and
e2x respectively:

sinhx~
1

2
ex{e{xð Þ ð2:40Þ

coshx~
1

2
exze{xð Þ ð2:41Þ

and have the graphical forms depicted in Figure 2.18.

Figure 2.18 Plots of the

hyperbolic functions (a) y 5 sinhx

and (b) y 5 coshx compared with

the exponential functions y5Kex,

y 5 Ke2x and y 5 2Ke2x.
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The other hyperbolic functions, tanh, cosech, sech, and coth, defined
in terms sinh and cosh, are the hyperbolic analogues of the functions
tan, cosec, sec, and cotan, and are defined as follows:

tanhx~
sinhx

coshx
, cosechx~

1

sinhx
, sech x~

1

coshx
,

cothx~
coshx

sinhx
:

ð2:42Þ

The coth and tanh functions play an important role in the modelling
of the magnetic behaviour of transition metal complexes.

Problem 2.10

Use the definitions for sinh x and cosh x to show that:

(a) ið Þ sinhxz coshx~ex, iið Þ sinhx{ cosh x~{e{x:

(b) ið Þ cosh2 x{ sinh2 x~1, iið Þ cosh2 xz sinh2 x~ cosh 2x,

iiið Þ sinh 2x~2 sinh x cosh x:

2.3.4.1 Symmetric and Antisymmetric Functions

Functions having the property f(2x) 5 f(x) are called symmetric, or
even, functions, whereas those having the property f(2x) 5 2f(x) are
called antisymmetric or odd functions. In our discussion of trigono-
metric and hyperbolic functions, we have encountered a number of
examples of functions that fall into one or other of these categories, as
well as some that fall into neither. Symmetric and antisymmetric
functions are so called because they are symmetric or antisymmetric
with respect to reflection in the y-axis. If we look closely at
Figure 2.17 we see that, since cosh 5 cos(2h), and sinh 5 2sin(2h),
the cos and sin functions are symmetric and antisymmetric,
respectively. Likewise, we can classify the cosh and sinh functions
as symmetric and antisymmetric, respectively (see Figure 2.18). The
exponential functions displayed in Figure 2.18 above are neither
symmetric nor antisymmetric. In Chapter 6 we shall meet these ideas
again, when we consider the integration of functions having well-
defined symmetry: a feature that has important applications in
quantum mechanics, where we consider the physical significance of
whether certain integrals involving wave functions of atoms and
molecules are zero or non-zero.

64 Maths for Chemists



2.3.4.2 The Product Function x2e2x

The function y5x2e2x is a product of two functions, x2 and e2x; the
former increases rapidly with increasing x, but the latter decreases
even more rapidly with increasing x. The result is that the value of the
product function, which is initially dominated by the quadratic term,
will quite rapidly be overcome by the exponential term as x increases.
In fact this is true regardless of the degree of the power term: it does
not matter whether we consider the function y 5 x2e2x or y 5 x20e2x

or y 5 x200e2x. Eventually, and for surprisingly small values of x, the
exponential term will always dominate. In fact even in the last
example, the function starts to become overwhelmed by the
exponential term around x 5 200. However, for increasingly negative
values of x, both terms in the product function are positive and
increasing, thus ensuring that the product function increases more
rapidly than either of its component terms. All of these features are
apparent in Figure 2.19.

2.3.4.3 Product of a Polynomial or Trigonometric Function with an
Exponential Function

The most common types of expression of this kind found in chemistry
typically have one of the following forms:

N Pn(x)e
2x, where Pn(x) is a polynomial function of degree n,

N sin(nx)e2x.

Figure 2.19 Plots of the

functions y5x2, y5e2x, and the

product y5x2e2x.
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Polynomial functions have the general form:

Pn xð Þ~c0zc1xzc2x
2zc3x

3z . . .zcnx
n ð2:43Þ

where c0, c1, …, cn, are constants and n is a positive integer, the largest
value of which defines the degree of the polynomial. Polynomial
functions of degree 3 or higher may display finite regions of
oscillation (see Figure 2.20); in contrast, trigonometric functions sin
and cos oscillate indefinitely (see Figure 2.17).
When we form a product of either a polynomial or a trigonometric

function with the exponential function y 5 e2x, the rapid decline in
value of the exponential function as x increases from zero results in a
rapid damping of the oscillation (see Figure 2.21):
In the case of polynomials of higher degree, a finite number of

oscillations occur before they become overwhelmed by the exponen-
tial function, whereas for the product of sine or cosine with an
exponential function, the number of oscillations is infinite, with their
amplitude decreasing with increasing positive x. For negative values
of x the opposite occurs, with the amplitude of the oscillations
increasing with increasingly negative values of x.

2.3.4.4 A Chemical Example: The 3s Atomic Radial Wave Function for
the Hydrogen Atom

The radial part of the 3s atomic orbital function for the hydrogen
atom provides a good chemical example of a product of a polynomial
with an exponential function, and takes the form:

R3s~P2
r

a0

� �
e
{ r

3a0~N 27{
18r

a0
z2

r2

a02

� 	
e
{ r

3a0 ð2:44Þ

Figure 2.20 Plots of the

polynomial functions (a)

y53x2+4x+1 (degree 2) (b)

y5x327x2+x+6 (degree 3) and (c)

y~ 1
2
x5{7x3{xz6 (degree 5):

the latter two display finite regions

of oscillation.
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where N is a constant, having the form
1

81a03=2
ffiffiffiffiffiffi
3p

p . This may look

rather complicated but it is in fact relatively straightforward in its
form, comprising a second degree polynomial function and an
exponential function, both of which are expressed as a function of the
independent variable, r (the distance of the electron from the nucleus).
In fact, wherever r appears in both parts of the product, it is divided
by a0, the Bohr radius, and we say in the case of the polynomial

function that it is second degree in
r

a0
(the independent variable). A

plot of R3sa0
3=2 versus

r

a0
is given in Figure 2.22. If we compare the

plot with the function displayed in Figure 2.19, it should be clear that
they both have essentially the same form. The main difference in the
case of the radial wave function is that we consider only values of r¢ 0,

Figure 2.21 The product of (a)

a polynomial or (b) a

trigonometric function with the

exponential function y5e2x,

results in a rapid damping of the

oscillation as x increases.
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simply because negative values for the radial distance have no
physical meaning.

2.3.5 Explicit and Implicit Functions

Up to this point, we have met functions of the form y5f(x) in which
the independent variable appears on the right side and the dependent
variable appears on the left. In such cases, the association between
a given value of the independent variable and the value of the
dependent variable is explicit. For example, the function:

y~ex

is an example of one in which y is an explicit function of x. However,
we can always express such functions in the form f(x, y) 5 0 in which
y is an implicit function of x. For example, the function y 5 ex may be
presented in an implicit form as:

ln y{x~0:

In this example, the implicit form of the function may be rearranged
into a form in which either variable is an explicit function of the other.
However, sometimes we meet functions which are impossible to
arrange into an explicit form. The function:

yzey~x5

is an example of an implicit function for which there is one unique
value of y associated with each value of x but which cannot be
expressed in the form of an explicit relationship between y and x. It is
nevertheless possible in this case to compute each value of y

Figure 2.22 A plot of the radial

function for a 3s hydrogen atomic

orbital.
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associated with a particular value of x using numerical methods. An
example from chemistry is the van der Waals eqn (2.6) in which both
P and T can be expressed as an explicit function of the other;

P~
RT

Vm{b
{

a

V2
m

; T~
Vm{bð Þ

R
Pz

a

V2
m

� �

However, it is most convenient to consider the molar volume Vm as an
implicit function of P and T [see eqn (2.53)].

2.4 Equations

Consider the plots of the quadratic polynomial functions y5 x22 4x + 3,
y 5 x2 2 4x + 4, and y 5 x2 2 4x + 6 in Figure 2.23. Curve (a) cuts the
x-axis (y 5 0) at x 5 3 and x 5 1, values which correspond to the
two solutions (or roots) of the quadratic equation x2 2 4x + 3 5 0.
In this example, we can more easily obtain the two roots by factorising
the polynomial equation, rather than by plotting the function. Thus
x2 2 4x + 3 can be expressed as the product of two linear factors:

x2{4xz3~ x{3ð Þ x{1ð Þ,

and we can see that this will equal zero when either of the two linear
factors equals zero;

i:e: when x{3~0 [ x~3

or when x{1~0 [ x~1:

In cases where factorisation proves difficult, it is always possible to use
the formula for the roots of a quadratic equation, ax2 + bx + c 5 0:

Figure 2.23 Plots of quadratic

polynomial functions (a)

y5x224x+3, (b) y5x224x+4 and

(c) y5x224x+6.
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x~
{b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2{4ac

p

2a
: ð2:45Þ

In this example, the coefficients a, b and c have values equal to 1, –4 and
3 and substituting these into our formula gives:

x~
4+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16{ 4|3ð Þ

p
2

~2+

ffiffiffi
4

p

2
~2+1:

The quantity b2 2 4ac is known as the discriminant, and its value can
be positive, zero or negative. In cases where it is positive, the equa-
tion has two real and different roots; if it is zero then the equation will
have two, identical roots, and, if it is negative, then there are no real
roots, as the formula involves the square root of a negative number, for
which there is no real result. A way around this latter difficulty is
described in Chapter 9, where complex numbers are introduced.
The value of the discriminant for the equation x2 2 4x + 3 5 0 is

positive, and we see that there are clearly two different roots, as
indicated in plot (a) (Figure 2.23), which shows the curve cutting the
x-axis at x 5 1 and x 5 3. The curve of the function y 5 x2 2 4x + 4,
shown in plot (b), touches the x-axis at x 5 2. In this case, the
discriminant is zero, and we have two equal roots, given by

x~
4

2
+

ffiffiffi
0

p
~2+0. Note that although the curve only touches the x-

axis in one place, the equation x2 2 4x + 4 5 0 still has two roots –
they just happen to be identical. Finally, in the case of curve (c), there
are no values of x corresponding to y 5 0, indicating that there are
no real roots of the quadratic equation x2 2 4x + 6 5 0, as the
discriminant is equal to –8.

Problem 2.11

(a) Use eqn (2.45) to determine the number of real roots of the
quadratic equations, f(x) 5 0, where f(x) is given by:

(i) x2 z x { 6;
(ii) x2 { 1;

(iii) x2{2
ffiffiffi
2

p
xz2;

(b) Give the factored form of each polynomial function f(x).

In general, a quadratic equation has either two or zero real roots.
However, a cubic equation may have one or three real roots, as seen in
Worked Problem 2.5.
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Worked Problem 2.5

Q. Use a graphical method to find the number of roots of the
polynomial equations:

(a) x3 { 7x z 6 ~ 0; bð Þ x 3{ 4x2 { 2x { 3 ~ 0:

A. (a) 3; (b) 1. See Figure 2.24

2.4.1 An Algebraic Method for Finding Roots of Polynomial
Equations

For a given polynomial function y 5 f(x), one (or more) roots of the
polynomial equation f(x) 5 0 can often be found by an algebraic
method. Suppose the polynomial f(x) is of degree n. If x 5 l is a root
of the polynomial equation, then f(l) 5 0, and (x 2 l) is a factor of
the polynomial:

f xð Þ ~ x { lð Þ c1x
n{1 z c2x

n{2 z . . . z cn
� �

ð2:46Þ

The truth of the previous statement follows by substituting x 5 l into
the above equation, where we see that, irrespective of the value of the
second expression in parentheses, which is a polynomial of degree n2 1,
the first term in parentheses is zero, thus implying that f(l) 5 0. If there
is a root with integer value, then it can sometimes be found by trial and
error, using l 5 ¡1, ¡2, … and the polynomial of degree n 2 1 can
then be treated in the same way. If no further roots can be found
algebraically at any stage in the iterative procedure, then the current
polynomial can be plotted to exhibit the existence, or otherwise, of
remaining roots. The key requirement is that, at each step, the

Figure 2.24 Plots of the

polynomial functions

(a) y 5 x327x+6 and

(b) y 5 x324x222x23.
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coefficients ci are found, in order to facilitate the recovery of another
root. Once the polynomial of degree two is reached, it is easiest to use
the formula given in eqn (2.45) to test for the existence of a further two
or zero roots.

Worked Problem 2.6

Q. (a) Use the algebraic method to find the roots of the
polynomial equation f(x) 5 0, where
f(x) 5 2x3 + 11x2 + 17x + 6.

(b) Give the factored form of f(x).
(c) Sketch a graph of the function y 5 f(x).

A. (a) Simple trial and error shows that x5 –2 is a root of f(x),
since f(22) 5 0. The polynomial equation may now be
written in the form:

x z 2ð Þ c1x
2 z c2x z c3

� �
~ 0:

On multiplying out the brackets, and collecting terms, we
have:

c1x
3 z c2 z 2c1ð Þx2 z c3 z2c2ð Þx z 2c3 ~ 0

Comparing coefficients of the powers of x with the original
polynomial equation, we find:

c1 ~ 2, ð2:47Þ
c2 z 2c1 ~ 11, ð2:48Þ
c3 z 2c2 ~ 17, ð2:49Þ

2c3 ~ 6 ð2:50Þ

Eqns (2.47) and (2.50) give the values c1 5 2 and c3 5 3,
respectively. It then follows, by substituting the value of c1 in
(2.48) that c2 5 7, and we then have:

x z 2ð Þ 2x2 z 7x z 3
� �

~ 0:

(b) The solutions of (2x2 + 7x + 3) 5 0 are then found using
eqn (2.45):

x~{
7

4
+

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49{24

p
~{

7

4
+

5

4
~{3 or {

1

2

Thus, f xð Þ~ xz2ð Þ xz 1
2

� �
xz3ð Þ:

72 Maths for Chemists



(c) From (b) we know that the curve crosses the x-axis at
x 5 22, 23, { 1

2
; in addition, for xw{ 1

2
, all three

brackets are positive and increase in value as x increases.
Likewise, for x , 23, all brackets have increasing negative
values, and therefore f(x) is negative for these values. For
23 , x , 22, (x + 3) is positive, and (x + 2), xz 1

2

� �
are

both negative, and hence f(x) . 0. A similar argument
shows that f(x),0 for {2vxv{ 1

2
, and it is then an easy

matter to sketch the form of the cubic polynomial function
(Figure 2.25):

2.4.2 Solving Polynomial Equations in a Chemical Context

In practice, the solution of polynomial equations is problematic if no
simple roots are found by trial and error. In such circumstances the
graphical method may be used or, in the case of a quadratic or cubic
equation, there exist algebraic formulae for determining the roots.
Alternatively, computer algebra software (such as Maple or
Mathematica, for example) can be used to solve such equations
explicitly. In Worked Problem 2.7, we show how the calculation of the
pH of 1026 mol dm23 HCl (aq) requires the solution of a quadratic
equation.

Figure 2.25 Plot of the function

f(x)52x3+11x2+17x+6.
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Worked Problem 2.7

Q. Calculate the pH of 1026 mol dm23 HCl (aq), taking into
account the hydronium (H3O

+) ions from:

(a) HCl alone;
(b) HCl and the dissociation of water (equilibrium

constant, Kw 5 10214).

A. (a) The simple formula pH 5 2log([H3O
+] / mol dm23),

leads to a value for the pH of 6, since [H3O
+]5 1026 mol

dm23.
(b) As the concentration of HCl is so small, it is appropriate

to take account of the dissociation of water in our
calculation of the pH, and so we need to consider the
concentration of hydronium ions produced from two
sources, described by the following processes:

HCl z H2O ? H3O
z z Cl{ ;

2H2O '
Kw

H3O
zzOH{

Thus, if [H3O
+] / mol dm–3 5 h, [Cl2] / mol dm–3 5 c, and

[OH2] / mol dm–3 5 b, then charge conservation requires:

h ~ c z b [ b ~ h { c:

where c 5 10–6. The equilibrium constant for the dissociation of
water is given by Kw 5 hb, which we can now rewrite as:

Kw ~ hb ~ h h { cð Þ ~ h2 { ch [ h2 { ch { Kw ~ 0 ð2:51Þ

Eqn (2.51) is a quadratic equation in h, and the two roots may
be found using eqn (2.45). Thus:

h~
c

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2z4Kw

p

2

and, on substituting for c and Kw, we find h 5 1.099 6 1026 or
h 5 29.902 6 1029. The first solution yields pH 5 5.996; the
second solution, although mathematically required, does not
correspond to an acceptable physical result, as the logarithm of
a negative number is not defined as a real number and thus has
no physical significance.

Charge conservation requires

that there is the same number of

cations as anions in the solution.

Thus the sum of the concentra-

tions of the OH– and Cl– ions

must be the same as the hydro-

nium ion concentration and so

h 5 c + b.

The logarithm of a negative

number is a so-called complex

number which we discuss in

some detail in Chapter 8.
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Problem 2.12

The radial function of the 3s atomic orbital for the hydrogen
atom has the form given in eqn (2.44).
(a) Calculate the value of R3s at r 5 0 and as r tends to infinity.

Note that the exponential term will always dominate the
term in parentheses (see Section 2.3.4), and so its limiting
behaviour alone will determine the behaviour of the
function as r tends to infinity (see also Chapter 3 for a
more detailed discussion of limits).

(b) Calculate the values of r / a0, and hence of r, for which
R3s 5 0, by solving the quadratic polynomial equation

27{18
r

a0

� �
z2

r

a0

� �2
( )

50.

(c) Sketch the form of R3s for 0ƒ
r

a0
ƒ12, and then compare

your result with that displayed in Figure 2.22.

2.4.2.1 Polynomial Equations of Higher Degree in Chemistry

Polynomial equations of degree three (cubic equations) arise in a
number of areas of classical physical chemistry; Higher degree
equation arise in the modelling of:

N Electronic structures, through the determination of molecular
orbitals, constructed as linear combinations of atomic orbitals
(LCAO); thus, for example, the determination of the simplest s-
type molecular orbitals for HCN, in its linear configuration (as in
the ground state), involves the use of the seven s atomic orbitals
1sH, 1sC, 1sN, 2sC, 2sN, 2psC and 2psN, and leads to the solution of
a polynomial equation of degree seven for the molecular orbital
energies.

N Characteristic frequencies of molecular vibrations: in the case of
HCN, for example, there are four vibrational frequencies that may
be calculated from a polynomial equation of degree four, by
making appropriate assumptions about the stiffness of bond
stretching and bond angle deformation.
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Problem 2.13

Give the degree of the polynomial equation that arises in
calculating the molecular orbitals for the following species in
their ground states (s or p bonding, as indicated):

(a) Carbon dioxide (s only);
(b) Benzene (p bonds only).

2.4.2.2 Examples of Cubic Polynomial Equations in Physical
Chemistry

The van der Waals Equation Revisited

Consider the relationship between pressure, temperature and volume
provided by the van der Waals equation used to model the physical
properties of a real, rather than an ideal, gas:

P~
RT

Vm{b
{

a

V2
m

: ð2:52Þ

Here, a and b are parameters for a specific gas, and Vm is the molar
volume. If we now multiply both sides of this equation by V2

m Vm{bð Þ
and rearrange the terms, the following cubic equation results:

V3
m{V2

m bz
RT

P

� �
zVm

a

P
{

ab

P
~0: ð2:53Þ

We can use this third degree polynomial to find the molar volume of a
gas at a given temperature, T, and pressure, P. For example,3 we can
estimate the molar volume of CO2 at 500 K and 100 atm using the
literature values2 for a 5 3.592 atm dm6 mol–1 and b 5 0.04267 dm6

mol–1 and taking R 5 0.082058 atm dm6 K–1 mol–1. The solution to
eqn (2.53) yields only one real root (the other two roots are complex),
and we obtain a value Vm 5 0.3663 dm3 (found using Maple, the
computer algebra software). The plot of the function (Figure 2.26)
confirms this finding.

The 4s Radial Wave Function for the Hydrogen Atom

In order to locate the nodes in the radial part of the hydrogen 4s
atomic orbital:

R4s~N 24{18
r

a0

� �
z3

r

a0

� �2

{
1

8

r

a0

� �3
( )

: ð2:54Þ

A node is a point where the

wavefunction passes through

zero

76 Maths for Chemists



We need to solve a cubic polynomial equation for the three values
of r=a0, and hence r, as a multiple of a0. Unlike the simple expressions
for the solutions of a quadratic equation given in eqn (2.45), and the
cubic equation in Worked Problem 2.6, a more involved algebraic
procedure is required to solve the cubic equation given in eqn (2.54).
However, we know that a hydrogen 4s atomic orbital has 3 radial
nodes (n 2 l 2 1), and since there are three roots to the third order
polynomial equation Rnl(r) 5 0, we conclude that all three roots are
real. In this case, therefore, the graphical method will give good
estimates for the location of the roots, which can then be improved by
trial and error; alternatively, computer algebra software can be used
to determine the roots to any sensible number of decimal places.

Problem 2.144

When 1.00 mol of sodium ethanoate (NaAc) is dissolved in 1.00
dm3 of water, Na+ ions are liberated and some of the Ac2species
combine with H3O

+ to form ethanoic acid (HAc). The following
equilibria are set up:

AcOHzH2O'
K
H3O

zzAcO{ and 2H2O'
Kw

H3O
zzOH{

where:

K~
aH3O

zaAcO{

aAcOH

ð2:55Þ

and:

Kw~aH3O
zaOH{ ð2:56Þ

Figure 2.26 Plot of the van der

Waals polynomial function for

CO2 using P5100 atm and

T5500 K.
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If the activities aAcOH, aH3O
z , aOH{ and aAcO{ are designated

by the four unknowns e, h, b and c, then four equations need
specifying in order to solve for the unknowns.

(a) Use eqns (2.55) and (2.56) to give the defining relations
for K and Kw in terms of e, h, b and c.

(b) Confirm that the conservation requirements for AcO2

and charge (concentrations of cations and anions are
equal) yield eqns (2.57) and (2.58).

c z e ~1 ð2:57Þ
c z b ~ 1 z h ð2:58Þ

(c) Rearrange eqn (2.57) to find an expression for e.
(d) Obtain an expression for c in terms of K and h, by

substituting for e in eqn (2.55).
(e) Substitute the expression for c into eqn (2.58), and show

that b~1zh{
K

Kzh
.

(f) Substitute for b in eqn (2.56), and show that Kw~

hzh2{
Kh

Kzh
.

(g) Multiply the first two terms on the right side of the

result in (f) by
Kzh

Kzh
, and rearrange the expression in

(f) to show that the following cubic equation is obtained
for determining h:

h3 z h2 1 z Kð Þ { Kwh { KwK ~ 0 ð2:59Þ

(h) Substitute the values K 5 1.8 6 1025 and Kw 5 10214,
into eqn (2.59) to obtain a cubic equation with
numerical coefficients.

(i) Given that eqn (2.59) has h 5 4.243 6 1029 as its only
physically meaningful root (the other two roots are
negative and therefore meaningless), find the values for
e, b and c, and hence of aAcOH, aOH{ and aAcO{ to 3
significant figures.

The exact definition of the equili-

brium constant given by IUPAC

requires it to be defined in terms

of fugacity coefficients or activity

coefficients in which case it car-

ries no units. This convention is

widely used in popular physical

chemistry texts, but it is also

common to find the equilibrium

constant specified in terms of

molar concentrations, pressure or

molality in which cases the equi-

librium constant will carry appro-

priate units.
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Summary of Key Points

This chapter revolves around the important concepts of
function, equation and formula. The key points discussed
include:

1. Function as an association between one number and
another; the domain as a set which specifies the numbers
for which the association applies.

2. The independent and dependent variables in an association
and their identification with particular, yet arbitrary,
symbols in a formula.

3. The role of units in working with functions in a chemical
context; creating a function from a formula.

4. Representing functions in tabular, formula, prescription or
graphical forms; how the choice of domain affects the
appearance of a plot.

5. The definition of the domain for a chemical function as
opposed to an abstract function;

6. Testing a chemical formula by comparison of real experi-
mental data with that generated from a model.

7. Special mathematical functions: exponential, logarithm
(base 10 and base e), trigonometric, reciprocal trigono-
metric and hyperbolic trigonometric.

8. Working with the properties of logarithms and trigono-
metric identities.

9. Measurement of angles: degrees and radians.
10. Symmetric, antisymmetric and periodic functions; product

functions; the product of a polynomial function or a
trigonometric function with an exponential function.

11. Equations; solving quadratic and higher order equations;
finding the factors and roots of simple polynomial
equations using either algebraic or graphical procedures.
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3
Limits

The concept of the limit is a fairly broad one, commonly used for
probing the behaviour of mathematical functions as the independent
variable approaches a particular value. This is particularly useful in
exploring errant or unexpected behaviour in a function as well as in
examining the behaviour of a function as the independent variable takes
on increasingly large or small positive or negative values. More import-
antly, limits are central to our understanding of differential calculus, as is
seen in the work of Fermat who, in the early 17th century, used the con-
cept of the limit for finding the slope of the tangent at a point on a curve
(a topic discussed in Chapter 4). Likewise, in Chapter 6, we shall see how
the concept of the limit provides a foundation for integral calculus.

Aims:

By the end of the chapter you should be able to:

N Understand the principles involved in defining the limit.
N Understand the notions of continuity and discontinuity.
N Use limits to examine the point behaviour of functions which

might display unexpected characteristics.
N Investigate asymptotic behaviour of functions as the inde-

pendent variable takes on increasingly large positive or
negative values.

N Use limits to improve your understanding of how physical
processes may change as experimental conditions change
from one extreme to another.

3.1 Mathematical and Chemical Examples

3.1.1 Point Discontinuities

The function shown in Figure 3.1 shows a break at x 5 3, where the
value of y is 0=0, and is therefore indeterminate. In this situation, the
function is said to exhibit a discontinuity at x 5 3, which means that it

81



is impossible to sketch the plot of the function by hand without taking
the pencil off the paper.
A chemical example is shown schematically in Figure 2.8, where

discontinuities are seen in the entropy function at the melting and
boiling points, Tm and Tb respectively, as well as at a temperature Ts

where a change in crystal structure occurs in the solid state. Although
the entropy function is undefined at these three transition tempera-
tures, the discontinuities are finite in nature, as the corresponding
changes in S are finite in size. We can see from this example that S is
continuous only over sub-intervals of the domain; furthermore at
each of the transition temperatures, Tm, Tb and Ts, the value of S is
ambiguous. This situation arises because two values of S result
depending on whether we approach a transition temperature from
higher or lower values of T.

Figure 3.1 A plot of the function

y5(x229)/(x23) over the sub-

interval 0¡x¡5.

Figure 3.2 A plot of the function

y51/(12x).
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Sometimes we meet functions displaying an infinite discontinuity.
For example, the function y 5 f(x) 5 1 / (12 x), shown in Figure 3.2,
displays such a discontinuity at x 5 1 because, as we approach x51
from higher and lower values of x, the value of f(x) tends towards
infinitely large values in negative and positive senses, respectively.
In this example, the line x 5 1 is known as a vertical asymptote
(see Sections 2.3.1 and 2.3.3 for further discussion of asymptotic
behaviour).
The tangent function, tan x 5 sin x / cos x, as shown in Figure 3.3,

is interesting because it exhibits infinite discontinuities whenever x

passes through an odd multiple of
p

2
.

3.1.2 Limiting Behaviour for Increasingly Large Positive or Negative
Values of the Independent Variable

We now turn to examining the limiting behaviour of functions as the
independent variable takes on increasingly large positive or negative
values. As an illustration, consider the function shown in Figure 3.2.
We see from the form of f(x) that the value of y approaches zero as x
becomes increasingly large in both positive and negative senses: the
line y50 is an asymptote. In the former case, the values of y are
increasingly small negative numbers and in the latter, they are
increasingly small positive numbers. The limiting values of f(x)
are therefore zero in both cases.
Periodic functions such as sin x or cos x have no asymptotes (no

single limiting value), because their values oscillate between two limits
as the independent variable increases in a positive or negative sense:

Figure 3.3 A plot of the function

y5tan x.
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for example, the value of the function f(x) 5 cos(2x), oscillates
between +1 and 21 as xA? (see Figure 3.4).

Problem 3.1

Find the limiting values for (a) x2e2x and (b) cos(2x)e2x as
xA?.

3.1.3 Limiting Behaviour for Increasingly Small Values of the
Independent Variable

Frequently, the context of a particular problem requires us to
consider the limiting behaviour of a function as the value of the
independent variable approaches zero. For example, consider the
physical measurement of heat capacity at absolute zero. Since it is
impossible to achieve absolute zero in the laboratory, a natural way to
approach the problem would be to obtain measurements of the
property at increasingly lower temperatures. If, as the temperature is
reduced, the corresponding measurements approach some value m,
then it may be assumed that the measurement of the property (in this
case, heat capacity) at absolute zero is also m, so long as the specific
heat function is continuous in the region of study. We say in this case
that the limiting value of the heat capacity, as the temperature
approaches absolute zero, is m. As we shall see in Section 3.2, the
notation we use to describe this behaviour is:

lim
T?0

CV Tð Þ~m ð3:1Þ

Figure 3.4 A plot of the function

y 5 cos(2x).
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where, in this case, m50, because the limiting value of the heat
capacity as T A 0 K is zero. It is also important to note that it is only
possible to approach absolute zero from positive values of T; thus, in
this situation, the ‘right’ limit, usually written as lim

T?0z
CV Tð Þ~m, is

the only one of physical significance.

Problem 3.2

Find the limiting values for (a) x2e2x and (b) cos(2x)e2x as
xA0.

3.2 Defining the Limiting Process

For a function of a single variable x, symbolised, as usual, by y5 f(x),
we are interested in the value of f(x) as x approaches a particular
value, a, but never takes the value a. Points where the function is not
defined, as seen, for example at x5 1 in Figure 3.2, are excluded from
the domain of the function; at other points, the function is
continuous.
Limits play an important role in probing the behaviour of a

function at any point in its domain, and the notation we use to
describe this process is:

lim
x?a

f xð Þ~m ð3:2Þ

Note: in this symbolism, the suffix to the symbol lim indicates that,
although x approaches a, it never actually takes the value a. For the
limit to exist, the same (finite) result must be obtained whether we
approach a from smaller or larger values of x. Furthermore, if m 5

f(a), then the function is said to be continuous at x 5 a.

3.2.1 Finding the Limit Intuitively

Consider the plot of the function:

y~f xð Þ, where f xð Þ~x2{9

x{3
ð3:3Þ

shown in Figure 3.1. It is evident that f(x) is continuous (unbroken)
for all values of x except x5 3. Since the denominator and numerator
of the function are both zero at x 5 3, we see that the function is
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indeterminate at this value of x; however, as seen in Table 3.1, the
ratio of the numerator and denominator seems to be approaching the
value y 5 6 as x A 3 from smaller or larger values.

Taking even smaller increments either side of 3, say x 5 3 ¡

0.0001, we find that f(3.0001) 5 6.0001 and f(2.9999) 5 5.9999. These
results suggest that for smaller and smaller increments in x, either side
of x 5 3, the values of the function become closer and closer to 6.
Thus we say that, in the limit x A 3, m takes the value 6:

lim
x?3

x2{9

x{3
~6 ð3:4Þ

3.2.2 An Algebraic Method for Evaluating Limits

In practice, it is often easiest when evaluating limits to write x 5 a ¡

d, and consider what happens as d A 0, but never takes the value zero.
This procedure allows us to let x become as close as we like to the
value a, without it taking the value x 5 a.

Worked Problem 3.1

Q: Evaluate lim
x?3

f xð Þ, where f xð Þ~ x2{9

x{3
.

A: By substituting x 5 3 + d in the expression for f(x), and
expanding the square term in the numerator, we obtain:

Table 3.1 Values of f(x)5(x229)/(x23) in the vicinity of x53.

x x229 x23

x2{9

x{3

4 7 1 7

3.5 3.25 0.5 6.5

3.1 0.61 0.1 6.1

3.01 0.0601 0.01 6.01

3 0 0 Indeterminate

2.99 20.0599 20.01 5.99

2.9 20.59 20.1 5.9

2.5 22.75 20.5 5.5

2 25 21 5
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lim
x?3

x2{9

x{3
~ lim

d?0

3zdð Þ2{9

3zd{3

~ lim
d?0

9z6dzd2{9

d
~ lim

d?0

6dzd2

d

~
6{d

1
~6,

where, in the last step, d can be cancelled in every term of the
numerator and denominator as its value is never zero. Thus we
obtain the expected result that f(x) approaches the limiting
value of 6 as x tends to the value 3, irrespective of the sign of d.
In this situation, m in the definition of the limit has the value 6.

Problem 3.3

For each of the following functions, f(x), identify any points of
discontinuity (those values of x where the function is of
indeterminate value) and use the method described in Worked
Problem 3.1, where appropriate, to find the limiting values of
the functions at your suggested points of discontinuity.

(a) f xð Þ~ 2x

x{4

(b) f xð Þ~x2{4

x{2

(c) f xð Þ~ x{1

x2{1

(d) f xð Þ~3x2{
2

x
{1

3.2.3 Evaluating Limits for Functions Whose Values Become
Indeterminate

Whenever the value of a function becomes indeterminate for
particular limiting values in the independent variable (for example,
division by zero or expressions such as ? / ? or ? 2 ?), we need to
adopt alternative strategies in determining the limiting behaviour.
Such situations arise quite commonly in chemistry, especially when we
are interested in evaluating some quantity as the independent variable
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takes on increasingly large or small values. Good examples occur in
dealing with mathematical expressions arising in:

N Manipulating the solutions of rate equations in kinetics.
N Determining high or low temperature limits of thermodynamic

properties.

Worked Problem 3.2

Q: Find lim
x??

2x2z4

x2{xz1
:

A: Both the numerator and denominator tend to infinity as xA
?, but their ratio remains finite. There are two ways of
handling this situation:
First, we note that as x becomes very large, 2x2 + 4 is

increasingly well approximated by 2x2, and x2 2 x + 1 by x2 as,
in both expressions, the highest power of x dominates as x
becomes indefinitely large. Thus, as x increases without limit,
we find:

lim
x??

2x2z4

x2{xz1
~ lim

x??

2x2

x2
~ lim

x??
2~2:

Second, we could divide the numerator and denominator by
the highest power of x, before taking the limit:

lim
x??

2x2z4

x2{xz1
~ lim

x??

2z4=x2

1{1=xz1=x2
~2,

and, again we see that as x increases without limit, the ratio of
numerator to denominator tends to 2.

Problem 3.4

Evaluate the following limits:

(a) lim
x??

5

xz1
;

(b) lim
x??

3x

x{4
;
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(c) lim
x??

x2

xz1
;

(d) lim
x??

xz1

xz2
:

The limiting behaviour of functions for increasingly small values of
the independent variable can be found in a similar way by applying
exactly the same principles, except that, now, the lowest power of x
provides the largest term in both numerator and denominator.

Worked Problem 3.3

Q: Find lim
x?0

x2zx

x3{1
:

A: This time, for increasingly small values of x, the numerator
and denominator are dominated by x and 21, respectively.
Consequently, the ratio of the numerator to denominator tends

to
x

{1
, which leads to a limiting value of zero: lim

x?0

x

{1
5 0.

Problem 3.5

Evaluate the limit lim
x?0

ln x{ ln 2xð Þ.
Hint: Remember that ln a{ ln b~ ln

a

b
(see Chapter 2).

Problem 3.6

The Einstein model for the molar heat capacity of a solid at
constant volume, CV, yields the formula:

CV~3R axð Þ2 e
ax
2

eax{1

( )2

:

where a~
hv

k
and x~

1

T
. Find the limiting value of CV as

TA0 K, remembering that x~
1

T
.
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Note: We shall revisit this problem in Chapter 8 in which we
explore the limiting behaviour for high values of T (Problem
8.10).

Problem 3.7

The radial function for the 3s atomic orbital of the hydrogen
atom has the form:

R3s~N
r

a0

� �2

e{r=a0 ,

where N is a constant. Find the values of R3s as:

(a) rA0,
(b) rA?.

Hint: See your answers to Problems 3.1(a) and 3.2(a).

3.2.4 The Limiting Form of Functions of More Than One Variable

Sometimes, we are interested in how the form of a function might
change for limiting values in one or more variables. For example,
consider the catalytic conversion of sucrose into fructose and glucose
by the enzyme invertase (b-fructo-furanidase). The rate of formation
of product P for this reaction varies in a rather complicated way with
the sucrose concentration [S]. At low [S], the reaction is first order in
[S], and at high [S], it is zero order. The behaviour observed in
Figure 3.5 is established by investigating the form of the function
describing the rate of reaction for the two limiting cases where [S]

Figure 3.5 The variation in rate

of enzymolysis for low and high

sucrose concentration, [S], where

the reaction is first and zero

order, respectively.
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approaches either very large or very small values, rather than the
absolute value of the function as in the examples discussed above.
This is a consequence in this case of the rate equation being a function
of more than one variable.

Worked Problem 3.4

Q. The rate of formation of the product P in the catalytic
conversion of sucrose into fructose and glucose by the enzyme
invertase (b-fructo-furanidase) is given by:

d P½ �
dt

~
k2 E½ �0 S½ �
KMz S½ � ,

where k2 is a rate constant, KM is known as the Michaelis
constant, [E]0 the initial enzyme concentration and [S] the
sucrose concentration. Find the order of reaction with respect to
[S] when (a) [S] & KM and (b) [S] % KM.

A. að Þ For S½ �&KM, KMz S½ �& S½ � and so

d P½ �
dt

~
k2 E½ �0 S½ �
KMz S½ �&

k2 E½ �0 S½ �
S½ � ~k2 E½ �0 { zeroth order in S½ �:

bð Þ For S½ �%KM, KMz S½ �&KM and

d P½ �
dt

~
k2 E½ �0 S½ �
KMz S½ �&

k2 E½ �0 S½ �
KM

{ first order in S½ �:

Problem 3.8

A rate law derived from a steady-state analysis of a reaction
mechanism proposed for the reaction of H2 with NO is given by:

d N2½ �
dt

~
k1k2 H2½ � NO½ �2

k{1zk2 H2½ � :

Find the limiting form of the rate law when (a) k21 & k2[H2]
and (b) k21 % k2[H2].
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Summary of Key Points

This chapter introduces the concept of the limit, with a view, not
only to probing limiting behaviour of functions but also as a
foundation to the development of differential and integral
calculus in the following chapters. The key points discussed
include:

1. The principles involved and notation used in defining a
limit.

2. Point discontinuities; infinite discontinuities and asymptotic
behaviour.

3. Finding a limit intuitively and algebraically.
4. Investigating the limiting value of functions for increasingly

large and small values of the independent variable.
5. Finding the limiting forms of functions of more than one

variable.
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4
Differentiation

A great deal of chemistry is concerned with processes in which
properties change as a function of some variable. Good examples are
found in the field of chemical kinetics, which is concerned with
measuring and interpreting changes in concentrations of reactants or
products with time, and in quantum mechanics, which describes how
wavefunctions associated with electronic, vibrational and rotational
degrees of freedom of an atom or molecule change as a function of
distance, length, angle or time.

Aims:

Calculus is of fundamental importance in chemistry because it
underpins so many key chemical concepts. In this chapter, we
discuss the foundations and applications of differential calculus;
by the end of the chapter you should be able to:

N Describe processes involving change in one independent
variable.

N Define the average rate of change of the dependent variable.
N Use the concepts of limits to define the instantaneous rate of

change.
N Differentiate most of the standard mathematical functions by

rule.
N Differentiate a sum, product or quotient of functions.
N Apply the chain rule to non-standard functions.
N Understand the significance of higher order derivatives and

identify maxima, minima and points of inflection.
N Understand the concept of the differential operator.
N Understand the basis of the eigenvalue problem and identify

eigenfunctions, eigenvalues and operators.
N Differentiate functions of more than one variable.
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4.1 The Average Rate of Change

Consider the plot of the function y 5 f(x), in which x is the
independent variable, shown in Figure 4.1.
The average rate of change of f (x) over the increment Dx in x is

given by:

QR

PR
~

f x0zDxð Þ{f x0ð Þ
Dx

~
Dy

Dx
, ð4:1Þ

where f(x0) and f(x0 + Dx) are the values of f(x) at the points x0 and
x0 + Dx, and Dy is the change in y, that results in the change Dx in x.
This average rate of change corresponds to the slope of the chord

PQ; that is, the slope of the straight line (sometimes termed the
secant) joining P and Q. In chemical kinetics, we can draw a direct
analogy by equating the concentration of a species A at time t, often
designated by [A], to the dependent variable (designated as y in
Figure 4.1), and the time after initiation of the reaction, t, to the
independent variable (designated by x in Figure 4.1). Consequently, if
we measure the concentration of a reaction product at two intervals of
time, say 1 minute apart, we might conclude that over that interval,
the concentration of the product had changed by 1.00 mol dm23. In
this case, we could state that the average rate of reaction in this
interval is 1.00 mol dm23 per min. The problem here is that we know
nothing about how the reaction rate changes in detail during that
interval of 1 minute, and it is this detail that so crucial to our
understanding of the kinetics of the reaction. Consequently, what we
need, in general, is to be able to quantify the rate of change of the
dependent variable at a particular value of the independent variable,
rather than simply the average rate of change over some increment in

Figure 4.1 Defining the average

rate of change of f(x) as x is

incremented from x0 to x0+Dx.
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the independent variable. This equates in our chemical analogy, to
being able to measure the instantaneous reaction rate at a given
instant in time (and consequently for a given concentration of
reactant or product), rather than the average rate of reaction over
some extended period of time. However, before we can determine
these instantaneous chemical rates, we must first establish some
mathematical principles.

4.2 The Instantaneous Rate of Change

4.2.1 Differentiation from First Principles

If we now reconsider the general situation shown in Figure 4.1, we
can determine the instantaneous rate of change by examining the
limiting behaviour of the ratio, QR / PR, the change in y divided by
the change in x, as Dx tends to zero:

lim
Dx?0

QR

PR

� 	
~ lim

Dx?0

Dy

Dx

� 	
~ lim

Dx?0

f x0zDxð Þ{f x0ð Þ
Dx

� 	
ð4:2Þ

The limiting value defined in eqn (4.2) exists if:

N The function does not undergo any abrupt changes at x0 (it is
continuous at the point x0).

N It is independent of the direction in which the point x0 is
approached.

If the limit in eqn (4.2) exists, it is called the derivative of the
function y 5 f(x) at the point x0. The value of the derivative varies
with the choice of x0, and we define it in general terms as:

dy

dx

� �

x~x0

~ lim
Dx?0

f x0zDxð Þ{f x0ð Þ
Dx

� 	
, ð4:3Þ

where
dy

dx

� �

x~x0

is the name given to the value of the derivative at the

point x0. The derivative of the function y 5 f(x) at x 5 x0 in
Figure 4.1 corresponds geometrically to the slope of the tangent to
the curve y 5 f(x) at the point P (known as the gradient).

The basic formula in eqn (4.3) for the derivative is often given in the
form:

dy

dx
~ lim

Dx?0

f xzDxð Þ{f xð Þ
Dx

� 	
, ð4:4Þ

for an arbitrary value of x.
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We should also note that:

N dy

dx
is the name of the derivative function, commonly also

represented as f9(x).
N The domain of the derivative function is not necessarily the same as

that of y 5 f(x) (see Table 4.1).

The requirement that, for the limit in eqn (4.2) to exist, the function
does not undergo any abrupt changes is sometimes overlooked, yet it
is an important one. An example of a function falling into this
category is the modulus function, y 5 |x|, defined by:

y~f xð Þ~ xj j~
x if x¢0

{x if xv0

�
:

This function is continuous for all values of x [Figure 4.2 (a)], but
there is no unique slope at the point x 5 0 as the derivative is
undefined at this point [Figure 4.2(b)].
Chemical examples showing this type of behaviour include pro-

cesses associated with sudden changes in concentration, phase, crystal
structure, temperature, etc. For example, Figure 2.9 shows how the
equilibrium concentration of a chemical species changes suddenly

Figure 4.2 (a) The modulus

function y5f(x)5|x|; (b) the

derivative of the modulus

function.
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when a temperature jump is applied at time t0. Although there are no
discontinuities in this function, its derivative is undefined at time t0.

Worked Problem 4.1

Q. Differentiate y 5 f(x) 5 x2, using the definition of the
derivative given in eqn (4.4).

A:
dy

dx
~ lim

Dx?0

f xzDxð Þ{f xð Þ
Dx

� 	
~ lim

Dx?0

xzDxð Þ2{x2

Dx

( )

~ lim
Dx?0

x2z2xDxz Dxð Þ2{x2

Dx

( )
~ lim

Dx?0

2xDxz Dxð Þ2

Dx

( )

Since Dx tends to zero, but never takes the value zero,
cancellation of Dx from all terms in the in the numerator and
denominator yields:

dy

dx
~ lim

Dx?0
2xzDxf g~2x

Problem 4.1

Differentiate the function y 5 f(x), where f(x) 5 3 using the
definition of the derivative given in eqn (4.3).
Hint: The function y 5 f(x) 5 3 requires that y 5 3 for all values
of x – thus if f(x) 5 3, then f(x + Dx) must also equal 3.

Problem 4.2

Use eqn (4.4) to find the derivative of the function y 5 f(x),
where:

(a) f(x)53x2

(b) f(x)51/x2

Hint: In your answer to (b), you will need to remember how to
subtract fractions, i.e.:

1

a
{

1

b
~

b{a

ab
:
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4.2.2 Differentiation by Rule

4.2.2.1 Some Standard Derivatives

The derivatives of all functions can be found using the limit method
described in Section 4.2.1. Some of the more common functions, and
their derivatives, are listed in Table 4.1. Unless otherwise indicated,
the respective domains (Dom) are ‘all values of x’.

However, as we have seen above, and in Table 4.1, we do meet
functions for which the derivative f 9(x) does not exist at selected
values of x. The functions y5 f(x)5 ln x at x5 0 and y5 f(x)5 tan x

at x 5 (2n + 1)p / 2, both listed in Table 4.1, fall into this category.
Naturally, since the derivative does not exist in these cases at selective
values of x, the domain of the derivatives of these functions will not
be the same as the original functions. The restrictions on the
respective domains are best seen in sample plots of these functions
shown in Figure 4.3.

4.2.2.2 An Introduction to the Concept of the Operator

The notation
dy

dx
(or sometimes dy / dx) for the derivative is just one

of a number of different notations in widespread use, all of which are

equivalent:

dy

dx
, dy=dx, f ’ xð Þ, f 1ð Þ xð Þ, D̂f xð Þ

The more commonly used notations are
dy

dx
and f 9(x), but expressing

the derivative in the form D̂f xð Þ provides a useful reminder that the

Table 4.1 Derivatives of some common functions and their respective domains.

f(x) f9(x) Dom(f(x)) Dom(f9(x)) Notes

c 0 1

xn nxn21(n?0) x?0 for n,0 x?0 for n,1 2

sin ax a cos ax 3

cos ax 2a sin ax 4

tan ax a sec2 ax x?(2n+1)p/2 x?(2n+1)p/2 5

sec ax a sec ax tan ax x?(2n+1)p/2 x?(2n+1)p/2 6

ln ax 1 / x x.0 x?0 7

eax aeax

Notes:(1) The constant function, c; (2) n50 corresponds to the constant

function; (3) a?0 ; for a 1:1 function, Dom (f(x)) 5[2p/2, p/2]; (4) a?0 ; for a 1:1

function, Dom (f(x))5[0, p]; (5-7) a?0.

98 Maths for Chemists



derivative function is obtained from the function y 5 f(x) by the
operation ‘‘differentiate with respect to x’’. Thus, we express this
instruction in symbols as:

D̂f xð Þ: d

dx
f xð Þ~ d

dx
y~

dy

dx
ð4:5Þ

It is worth emphasising that the symbol
dy

dx
does not mean dy

divided by dx in this context, but represents the limiting value of the

quotient
Dy

Dx
as Dx A 0.

In general, an operator, Â, is represented by a symbol with a caret
(‘hat’) denoting an instruction to undertake an appropriate action on

the object to its right [here f(x)]. In eqn (4.5), we consider
dy

dx
to be the

differentiation operator
d

dx
acting on the function f(x), which we have

labelled y, to give a new function, say g(x):

Âf xð Þ~g xð Þ: ð4:6Þ

Figure 4.3 The functions (a)

y5f(x)5ln x and (b) y5f(x)5tan x

are both examples of functions for

which the derivative does not

exist at certain values in the

independent variable (see

Table 4.1).
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Worked Problem 4.2

Q: For the function f xð Þ~x2, find Â f xð Þð Þ whereÂ~ d

dx
:

A: For f xð Þ ~ x2,
d

dx
f xð Þð Þ~2x:

Problem 4.3

For each of the following functions, f(x), use the information in

Table 4.1 to find Â(f(x)) where Â~
d

dx
að Þ x3=4, bð Þ e{3x, cð Þ 1=x and dð Þ a cos ax:

Problem 4.4

Use the information in Table 4.1 to demonstrate that, when the

operator Â~
d

dx
z2 acts on f(x) 5 e22x, the function is

annihilated [i.e. the null function, g(x) 5 0 results].
We will come to appreciate the full significance of the concept

of the operator in Section 4.3.1, when we consider the eigenvalue
problem.

4.2.3 Basic Rules for Differentiation

Although all functions can be differentiated from first principles using
eqn (4.4), this can be a rather long-winded process in practice. In this
chapter, we deal with the differentiation of more complicated
functions with the aid of a set of rules, all of which may be derived
from the defining relation (4.4). In many cases, however, we simply
need to learn what the derivative of a particular function is, or how to
go about differentiating a certain class of function. For example, we
learn that the derivative of y 5 f(x) 5 sin x is cos x, but that the
derivative of y 5 f(x) 5 cos x is 2sin x. Similarly we can differentiate
any function of the type y 5 f(x) 5 xn by remembering the rule that
we reduce the index of x by 1, and multiply the result by n; that is

d

dx
xn~nxn{1 n=0ð Þ: ð4:7Þ
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For functions involving a combination of other elementary
functions, we follow another set of rules: if u and v represent
functions f(x) and g(x), respectively, then the rules for differentiating
a sum, product, or quotient can be expressed as:

d

dx
uzvð Þ~ du

dx
z

dv

dx
ð4:8Þ

d

dx
uvð Þ~v

du

dx
zu

dv

dx
ð4:9Þ

d

dx

u

v

� �
~

v
du

dx
{u

dv

dx
v2

ð4:10Þ

Problem 4.5

Differentiate the following, using the appropriate rules:

að Þ x{1ð Þ x2z4
� �

; bð Þ x

xz1ð Þ ; cð Þ sin2 x; dð Þx ln x; eð Þex sin x:

4.2.4 Chain Rule

Quite frequently we are faced with the problem of differentiating
functions of functions, such as y5 ln(x2 + x +1). The derivative of this
function is not immediately obvious, and so we use a strategy known
as the chain rule to reduce the problem to a more manageable form.
We can proceed as follows:

N Introduce a new variable u 5 x2 + x + 1 to transform the function
y 5 ln(x2 + x + 1) into the simpler form y 5 ln u.

N Determine the derivative of y with respect to u:

dy

du
~

1

u
:

N Determine the derivative of u with respect to x:

du

dx
~2xz1:

N Combine the two derivatives using:

dy

dx
~

dy

du
: du

dx
~

1

u
: 2xz1ð Þ:
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N Eliminate the variable u:

dy

dx
~

2xz1

x2zxz1
:

Problem 4.6

Apply the chain rule to find the derivative of y 5 ex sin x, using
the substitution u 5 x sin x.

Problem 4.7

Use the chain rule to find the derivative of the following
functions:

að Þ y~ln 2zx2
� �

, bð Þ y~2sin x2{1
� �

:

4.3 Higher Order Derivatives

In general, when we differentiate a function y5 f (x) another function
of x is obtained:

dy

dx
~f ’ xð Þ

If this derivative function is specified, say, by the relation
h 5 f 9(x) 5 g(x), then, so long as g(x) is not zero, h may be
differentiated again to yield the second derivative of f (x):

dh

dx
~

d

dx
h~

d

dx

dy

dx
~

d2y

dx2
:f ’’ xð Þ or f 2ð Þ xð Þ ð4:11Þ

This process may usually be repeated to determine higher order
derivatives, if they exist. Thus, for example, if f(x) 5 x3 2x + 1, then:

dy

dx
~3x2{1;

d2y

dx2
~6x;

d3y

dx3
~6, and

dny

dxn
~0 for nw 3:

When we write h5f 9(x)5g(x), we

are simply labelling the function

g(x) that results from differentia-

tion of f(x) arbitrarily with the letter

h in the same way that we

labelled f(x) with y.
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Worked Problem 4.3

Q. Given y~f xð Þ~ 1zxð Þ4 find
d2y

dx2
: Deduce for what value

of n,
dny

dxn
~0:

A. Let u5 (1 + x) to transform the function into a simpler form,

y 5 u4, and use the chain rule to find
dy

dx
:

N dy

dx
~

dy

du
: du

dx
~4u3:1~4u3~4 1zxð Þ3

N Let h~
dy

dx
~4 1zxð Þ3 and use the chain rule again:

d2y

dx2
~

dh

dx
~

dh

du
: du

dx
~12u2:1~12 1zxð Þ2:

In this example, we can see that each act of differentiation
decreases the index of (1 + x) by one and so it follows that the
fifth derivative will be zero.

We can gain some useful insight into what exactly the first and second
derivatives of a function tell us by looking at the form of the three
functions f(x), f 9(x) and f 0(x), as shown in Figure 4.4.

Figure 4.4 Plots of the function

f(x)5(1+x)4 and its first two

derivatives.
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The original function y 5 f(x) 5 (1 + x)4 must be positive for all
values of x and has a minimum value of zero at x 5 21. The first
derivative f 9(x) 5 4(1 + x)3 gives us the rate of change (slope of the
tangent) of the function f(x) for any value of x. For x , 21, the value
of f 9(x) 5 4(1 + x)3 is negative, which means the slope of the original
function is also negative (which we can see for ourselves by inspection
of the plot). For x . 21, the first derivative is positive and so the
slope of the original function is also positive. The fact that the value
of f 9(x) 5 4(1 + x)3 is zero at x 5 21 indicates that the slope of the
function is zero at this point. Such a point is identified as a stationary
point, which, in this case, corresponds to a minimum (as we can see
from the plot). We shall see later in Section 4.4 how to prove whether
a stationary point is a maximum or minimum (or point of inflection)
without needing to plot the function. Similarly, the form of the second
derivative, f 0(x) 5 12(1 + x)2, gives us the slope, or rate of change, of
the first derivative and by extension the slope of the slope of the
original function f(x). The form of the second derivative provides us
with the means to characterise the nature of any stationary points in
the original function, whereas that of the first derivative tells us if and
where the stationary points exist (see Section 4.4).

Problem 4.8

Find the second and third derivatives of:

að Þ y~1=x and bð Þ y~N sin ax N, a are constantsð Þ:

4.3.1 Operators Revisited: An Introduction to the Eigenvalue Problem

In Section 4.2.2 we defined the act of differentiation as an operation

in which the operator D̂~
d

dx
acts on some function f(x). Similarly,

we can express the act of differentiating twice in terms of the operator

D̂2~
d2

dx2
.

Worked Problem 4.4

Q: For the function f xð Þ~cos kx, f ind Â f xð Þð Þ, where Â~ d2

dx2
:
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A: For f xð Þ~ cos kx,
d

dx
f xð Þð Þ~{k sin kx and

d2

dx2
f xð Þð Þ~{k2 cos kx and so Â cos kx~{k2 cos kx:

4.3.1.1 The Eigenvalue Problem

A problem common to many areas in physical chemistry is the
following: given an operator, Â, find a function w(x), and a constant
a, such that Â acting on w(x) yields a constant multiplied by w(x). In
other words, the result of operating on the function w(x) by Â is
simply to return w(x), multiplied by a constant factor, a. This type of
problem is known as an eigenvalue problem, and the key features may
be described schematically as follows:

The eigenfunction of the operator Â

Âw xð Þ~aw xð Þ

The eigenvalue of the operator Â

The solution to Worked Problem 4.4 is an example of an eigenvalue
problem.

Worked Problem 4.4 revisited

For f(x) 5 cos kx and Â~
d2

dx2
:

Â cos kx~{k2 cos kx

In this example, we see that by differentiating the function
f(x) 5 cos kx twice, we regenerate our original function
multiplied by a constant which, in this case, is 2k2. Hence, cos
kx is an eigenfunction of Â, and its eigenvalue is 2k2.

The key eigenvalue equation in

chemistry is the Schrödinger

equation, Ĥy5Ey. The solution

of this equation for a particular

system (such as an electron

bound by the field of a nucleus)

yields so-called wavefunctions, y,

that completely describe the sys-

tem of interest and from which

any property of the system can be

extracted.
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Problem 4.9

Perform the following operations:

að Þ For f xð Þ~x3 find Â f xð Þð Þ where Â~ d2

dx2
:

bð Þ For f xð Þ~sin kx, find Â f xð Þð Þ where Â~ d2

dx2
:

cð Þ For f xð Þ~sin kxzcos kx, find Â f xð Þð Þ where Â~ d2

dx2
:

dð Þ For f xð Þ~eax, find Â f xð Þð Þ where Â~ d

dx
:

Which of (a)–(d) would be classified as eigenvalue problems?
What is the eigenfunction and what is the eigenvalue in each
case?

Problem 4.10

Show that y 5 f(x) 5 emx is an eigenfunction of the operator

Â~
d2

dx2
{2

d

dx
{3, and give its eigenvalue. For what values of m

does Â annihilate f(x)?

Problem 4.11

The lowest energy solution of the Schrödinger equation for a
particle (mass, m) moving in a constant potential (V) and in a
one-dimensional box of length (L) takes the form:

y~

ffiffiffiffi
2

L

r
sin

px

L
:

If we take V as the zero of energy, then y satisfies the
Schrödinger equation:

{
h2

8p2m

d2y

dx2
~E y,

Find an expression for the total energy E in terms of L and the
constants p, m and h.

Annihilation of a function implies

that the null function is produced

after application of an operator.
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Hint: You may have noticed that the expression above is an
example of an eigenvalue problem where the eigenfunction is

y~

ffiffiffiffi
2

L

r
sin

px

L
and the eigenvalue is E. In this case, the total

energy E is determined by operating on the function y using the

operator {
h2

8p2m

d2

dx2
.

4.4 Maxima, Minima and Points of Inflection

We often encounter situations in the physical sciences where we need
to establish at which value(s) of an independent variable a maximum
or minimum value in the function occurs. For example:

N The probability of finding the electron in the ground state of the
hydrogen atom between radii r and r + dr is given by D(r)dr, where
D(r) is the radial probability density function shown in Figure 4.5.

The most probable distance of the electron from the nucleus is
found by locating the maximum D(r) (see Problem 4.12 below). It
should come as no surprise to discover that this maximum occurs at
the value r 5 a0, the Bohr radius.

N When we attempt to fit a theoretical curve to a set of experimental
data points, we typically apply a least squares fitting technique
which seeks to minimise the deviation of the fit from the
experimental data. In this case, differential calculus is used to find
the minimum in the function that describes the deviation between
fit and experiment (see Chapter 13) .

Figure 4.5 The radial

probability density function for the

1s atomic orbital of the hydrogen

atom.

In quantum mechanics, the

operator{
h2

8p2m

d2

dx2
is called the

Hamiltonian and is given the

symbol Ĥ.
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4.4.1 Finding and Defining Stationary Points

Consider the function y 5 f (x) in Figure 4.6. As we saw in our
discussion of Worked Problem 4.3, values of x for which f 9(x) 5 0 are
called stationary points. A stationary point may be:

N A maximum (point E, a turning point) or a minimum (point C, also
a turning point). The value of dy/dx changes sign on passing
through these points.

N A point of inflection: the tangent cuts the curve at this point (points
A, B and D).

4.4.1.1 Turning Points (Maxima and Minima)

E and C are called turning points because, in passing through E and C,
the value of dy=dx changes sign. The existence and nature of
stationary points, which are also turning points, may be identified
through the first and second derivatives of the function. If we consider
point C, we see that as we pass through this point the gradient
becomes less negative as we approach C, passes through zero at point
C, and then becomes positive. Clearly the rate of change of the
gradient is positive at point C (because the gradient changes from
negative to positive), which suggests that the function has a minimum
at this point:

A minimum exists if f 9(x) 5 0 and f (2)(x) . 0.

Similarly, on passing through point E, the gradient becomes less
positive, passes through zero at E and then becomes negative. In this

Figure 4.6 A plot of the function

y 5 f (x). Points A, C and E are all

stationary points, for which f 9(x)

5 0, while points C and E are also

turning points (minimum and

maximum, respectively). Points

A, B and D are all points of

inflection, but B and D are neither

stationary points nor turning

points. Note that at the points

of inflection, the tangents

(2 2 2 2) cut the curve.
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case, the rate of change in the gradient is negative and we can identify
point E as a maximum:

A maximum exists if f 9(x) 5 0 and f (2)(x) , 0.

In general y 5 f (x) will display a number of turning points within the
domain of the function.
Turning points corresponding to maxima and minima may be

classified as either:

N A global maximum or minimum which has a value greater or
smaller than all other points within the domain of the function.

N A local maximum or minimum which has a value greater or smaller
than all neighbouring points.

4.4.1.2 Points of Inflection

At a point of inflection (A, B or D), which may or may not be a
stationary point:

N The tangent cuts the curve.
N The slope of the tangent does not change sign.

Note that A is both a point of inflection and a stationary point, but
while B and D are both points of inflection, they are not stationary
points because f 9(x) ? 0.
Points of inflection occur when the gradient is a maximum

or minimum. This requires that f (2)(x) 5 0 but this in itself is not
sufficient to characterise a point of inflection. We achieve this through
the first non-zero higher derivative.
If f 9(x) 5 0, f (2)(x) 5 0 but f (3)(x) ? 0, then we have a point of

inflection which is also a stationary point (such as point A). However,
if f 9(x) ? 0, f (2)(x) 5 0 and f (3)(x) ? 0, then we have a point of
inflection which is not a stationary point (B or D). The rules for
identifying the location and nature of stationary points, turning
points and points of inflection are summarised in Table 4.2.
Interestingly, in the last row of Table 4.2 we see that a turning point

may exist for which f (2)(x) 5 0. In such cases, f (3)(x) 5 0 and the
nature of the turning point is determined by the sign of the fourth
derivative. An example of a function for which this latter condition
applies is y5 f(x)5 (x21)4. If there is any doubt over the nature of a
stationary point, especially if the second derivative vanishes, it is
always helpful to sketch the function!
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Worked Problem 4.5

Q. Consider the function y 5 f(x), where f(x) 5 x2 2 x3/9.

(a) Plot the function for selected values of x in the interval
23.5 ¡ x ¡ 10.

(b) Identify possible values of x corresponding to turning
points and points of inflection.

(c) Derive expressions for the first and second derivatives of
the function.

(d) Identify the nature of the turning points (e.g. maximum,
minimum, global or local).

(e) Verify that there is a point of inflection where f 9(x) ? 0,
f (2)(x) 5 0 and f (3)(x) ? 0.

A. (a)

Table 4.2 The location and nature of turning points, stationary points and points of

inflection are given by the first, second and, where appropriate, third and fourth

derivatives.

f 9(x) f (2)(x) f (3)(x) f (4)(x)

Minimum 0 .0 - -

Maximum 0 ,0 - -

Inflection point

(stationary)

0 0 ?0 -

Inflection point

(not stationary)

?0 0 ?0 -

Turning points where

f (2)(x) 5 0

0 0 0 ?0

Figure 4.7 A plot of the function

y5f(x)5x22x3/9 for23.5¡x¡10.
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(b) By inspection, we can identify turning points at x5 0 and
in the vicinity of x 5 6; there is no turning point
corresponding to a point of inflection.

cð Þ f ’ xð Þ~2x{x2=3; f 2ð Þ xð Þ~2{2x=3:

dð Þ f 0 xð Þ~x 2{
x

3

� �
~0 at x~0 local minimum; f 2ð Þ xð Þw0

h i

and at x~6 local maximum; f 2ð Þ xð Þv0
h i

:

eð Þ f 2ð Þ xð Þ~2{2x=3~0 when x~3

f 0 xð Þ~2x{x2


3=0 when x~3

f 3ð Þ xð Þ~{2=3=0 when x~3

corresponding to a point of inflection.

Problem 4.12

The radial probability density function for the electron in the
ground state of the hydrogen atom takes the form:

D rð Þ~Nr2e{2r=a0 ,

where N is a constant.

(a) Use the product rule to show that:

dD rð Þ
dr

~2Ne{2r=a0 r{
r2

a0

� �
:

(b) Identify the non-zero value of r at which D displays a
turning point, and give the value of D at this point.

(c) Demonstrate, by examining the sign of the second
derivative of D, that the turning point corresponds to a
maximum.

(d) Show that points of inflection, which are not stationary

points, occur at r~ 1+

ffiffiffi
2

p

2

 !
a0.
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4.5 The Differentiation of Functions of Two or More
Variables

In chemistry we frequently meet functions of two or more variables.
For example:

N The pressure (P) of an ideal gas depends upon the two independent
variables, temperature (T) and volume (V):

P~
nRT

V

N The electron probability density function, r(x, y, z) for a molecule
depends upon three spatial coordinates (x, y, z) to specify its value
at a chosen position.

N The entropy, S, for a system containing three species A, B and AB at a
given temperature and pressure depends upon five variables: NA, NB,
NAB, T and P, where NX is the number of moles of A, B or AB.

Figure 4.8 The ideal gas

equation P~
nRT

V
shows that (a)

P varies linearly with T at

constant volume but (b) in a

non-linear way with V at constant

temperature.
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When we explore the nature and form of these and other multi-
variable functions, we need to know how to locate specific features, such
as maximum or minimum values. Clearly, functions of two variables,
such as in the ideal gas equation above, require plots in three
dimensions to display all their features (such plots appear as surfaces).
Derivatives of such functions with respect to one of these (independent)
variables are easily found by treating all the other variables as constants
and finding the partial derivative with respect to the single variable of
interest. For example, we can see from the ideal gas equation:

P~
nRT

V

that P varies linearly with T but in a non-linear way with V, as shown in
Figure 4.8.
If we were to differentiate this expression with respect to T and V,

we would be able to evaluate precisely the rate at which P varied
with respect to T (constant), or, with respect to V (variable) (see
Problem 4.13).

Worked Problem 4.6

Q. For the function z 5 xy + y2 find:

(a) The partial derivative of z with respect to x.
(b) The partial derivative of z with respect to y.

A. (a) The partial derivative of z with respect x is found by
treating y as a constant. In order to make it clear that
several variables are present, we sometimes use the
following notation:

Lz
Lx

� �

y

which means differentiation with respect to x, keeping y

constant. We often drop the y suffix and the brackets
because there is usually no problem in recognising which
variables are held constant. In this case, the y2 term is a
constant and will vanish and so the derivative is given by:

Lz
Lx

~y:
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(b) Similarly, the partial derivative with respect to y, keeping
x constant, is:

Lz
Ly

~xz2y:

Problem 4.13

For n mol of an ideal gas P~
nRT

V
, where P is a function of

the two variables T and V (R and n are constants). Write down
hP / hT and hP / hV.

Summary of Key Points

Differential calculus is inextricably linked to the notion of rates
of change. This is especially important to our understanding of
chemical kinetics and other areas of chemistry, such as
thermodynamics, quantum mechanics and spectroscopy. This
chapter concerns the application of differential calculus to
problems involving rates of change of one property with respect
to another. The key points discussed include:

1. A comparison of average and instantaneous rates of
change.

2. The use of limits to define the instantaneous rate of change
as the derivative of a function.

3. Differentiation from first principles and by rule.
4. Differentiation of a sum, product or quotient of functions
5. Discussion of operators, the eigenvalue problem and

associated eigenfunctions.
6. The use of the chain rule for differentiating functions of

functions.
7. Higher order derivatives to locate and identify maxima,

minima and points of inflection.
8. Differentiation of functions of more than one variable.
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5
Differentials

In many areas of chemistry (e.g. error analysis; thermodynamics, etc.)
we are concerned with the consequences of small (and, sometimes, not
so small) changes in a number of variables and their overall effect
upon a property depending on these variables. For example, in
thermodynamics, the temperature dependence of the equilibrium
constant, K, is usually expressed in the form:

K~e{DGo{=RT ,

where the change in Gibbs energy, DG o{~DH o{{TDS o{, itself depends
upon temperature, both explicitly through the presence of T, and
implicitly, as the changes in DH o{ and DS o{ are, in general, both
temperature-dependent. However, if we assume that DH o{ and DS o{

are, to a good approximation, independent of temperature, then for
small changes in temperature, we obtain the explicit formula relating K
and T:

K~e{ DHo{�TDSo{ð Þ=RT~e{ DHo{=T{DSo{ð Þ=R ð5:1Þ

Quite frequently, we are interested in the effect of small changes

in the temperature on the equilibrium constant. We could, of course,
use eqn (5.1) to calculate K at two different temperatures for any
reaction which satisfies the requirements given above and determine
the change in K by subtraction. However, in practice, a much more
convenient route makes use of the properties of differentials.
This Chapter is concerned with exploring what effect small changes
in one or more independent variables have on the dependent
variable in expressions such as eqn (5.1). We shall see that this is
particularly useful in determining how errors propagate through
expressions relating one property to another. However, before
discussing further the importance of differentials in a chemical
context, we need to discuss some of the background to the method of
differentials.
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Aims:

By the end of this chapter you should be able to:

N Understand the definition of change defined by the differ-
ential and the concept of infinitesimal change.

N Understand the difference between the differential dy
representing an approximate change in the dependent
variable resulting from a small change in the independent
variable, and the actual change in the dependent variable, Dy.

N Calculate the differentials and the errors in approximating
the differential to the actual change in a dependent variable.

N Define the differential of a function of more than one
variable.

N Use differentials to calculate relative and percentage errors in
one property deriving from those in other properties.

5.1 The Effects of Incremental Change

We recall from Chapter 4 (Figure 4.1) that if Dy is the change in y that
accompanies an incremental change Dx in x, then:

Dy~f xzDxð Þ{f xð Þ ð5:2Þ

For example, if we consider the function y 5 f(x) 5 x3, the
incremental change in y that accompanies a change in Dx in x is given
as:

Dy~ xzDxð Þ3{x3

which, on expanding, yields:

Dy~3x2Dxz3x Dxð Þ2z Dxð Þ3:

For sufficiently small values of Dx, the power terms in Dx decrease
very rapidly in magnitude. Thus, for example, if Dx 5 1022, then
Dx2 5 1024 and Dx3 5 1026. This may be expressed algebraically as:

Dxð Þ3% Dxð Þ2%Dx,

and, if we neglect Dx raised to power 2 or higher, we can approximate
the expression for Dy by:
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Dy&3x2Dx

The appearance of 3x2 in this expression is no accident. If we rewrite
the expression for Dy as:

Dy~
f xzDxð Þ{f xð Þ

Dx

� �
|Dx, ð5:3Þ

then it is clear that, for a very small Dx, the term in parentheses is an
approximation for the derivative of f(x), which, for the present choice
of function, is 3x2. We can therefore rewrite the general result in the
form Dy # f 9(x)Dx.

5.1.1 The Concept of Infinitesimal Change

An infinitesimal change in x, known as the differential dx, gives rise to
a corresponding change in y that is well represented by the differential
dy:

dy~f ’ xð Þdx: ð5:4Þ

We can see from the defining eqn (5.4), and from Figure 5.1, that
f 9(x) is the slope of the tangent to the curve y 5 f(x) at the point P.
We can also see that dy represents the change in the dependent
variable y that results from a change, Dx, in x, as we move along the
tangent to the curve at point P. It is important to stress that, although
dy is not the same as Dy, for small enough changes in x it is reasonable
to assume that the two are equivalent. Consequently, the difference
between Dy and dy is simply the error in approximating Dy to dy.

However, the same is not true of the differential dx, because at all
times, Dx 5 dx.

5.1.1.1 The Origins of the Infinitesimal

The concept of the infinitesimal first arose in 1630 in Fermat’s
‘Method of Finding Maxima & Minima’. This work marks the
beginning of differential calculus. The ideas introduced by Fermat
lead to speculation about how we can evaluate ‘just’ before or ‘just’
after. In the 17th century, the infinitesimal was known as the
‘disappearing’ and tangents as ‘touchings’. Leibniz thought infinite-
simals ‘‘well-founded fictions’’, whereas the philosopher Berkeley
attacked differentials as ‘‘neither finite quantities, not quantities

infinitely small, not yet nothing. May we not call them the ghosts of
departed quantities?’’. Newton described them as ‘‘quantities which

The concept of an infinitesimal

change is not soundly based

mathematically: we interpret such

changes as being very very small

(non-zero) increments in the

specified variable.
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diminish not to the point where they have disappeared, nor to the point
before, but to the point where they are disappearing’’. Today, Borowski
and Borwein in their Dictionary of Mathematics1 regard an
infinitesimal as ‘‘a paradoxical conception … largely abandoned in
favour of the EPSILON-DELTA treatment of limits, … but made their

reappearance in the formulation of hyper-real numbers’’. Whether
or not you believe in their existence, they are clearly capable of
producing extraordinary results!

5.1.2 Differentials in Action

The use of the differential is important in the physical sciences
because fundamental theorems are sometimes expressed in differential
form. In chemistry, the laws of thermodynamics are nearly always
expressed in terms of differentials. For example, it is common to work
with the following formula as a means of expressing how the molar
specific heat capacity at constant pressure, CP, of a substance varies,

Figure 5.1 (a) The differential

dy, for a change Dx in x, for the

function y 5 f (x). The actual

change in y is given by Dy 5 dy +
e, where e is the difference

between Dy and dy. (b) As DxA0,

the error e gets proportionately

smaller and Dy becomes

increasingly well approximated by

dy.
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with temperature, T:

CP~g Tð Þ, where g Tð Þ~azbTzcT2: ð5:5Þ

The optimum values of the parameters a, b and c are found by fitting
measured values of CP over a range of temperatures to eqn (5.5).
Thus, if we know the value of CP at one temperature we can evaluate
it at another temperature, and thereby determine the effect of that
incremental (or decremental) change in temperature, DT, upon CP,
given by DCP. Alternatively, we can use the properties of differentials
given in eqn (5.4) to evaluate the differential of CP, dCP, in terms of
the differential dT as:

dCP~g’ Tð ÞdT~ bz2cTð Þ|dT ð5:6Þ

For small enough changes in T, it is reasonable to make the
approximation that the differential dCP is equivalent to the actual
change DCP, and we can use the expression above as a simple one-step
route to evaluating the effect of small changes in T upon CP.

Worked Problem 5.1

Q. (a) Find dy and Dy for the function y5 f(x), where f(x)5 x3,
given that x 5 4, and Dx 5 20.1.

(b) Give the actual and approximate values of y at the point
x 5 3.9.

(c) Calculate the percentage error in your approximate value
from (b).

A. (a) f 9(x) 5 3x2 ) f 9(4) 5 48. It follows that dy 5 f 9(4)Dx 5

48620.1 5 24.8. The actual change in y is given by
Dy 5 f(3.9) 2 f(4) 5 24.681;

(b) The actual and approximate values of y at x 5 3.9 are
59.319 and 59.2, respectively.

(c) The percentage error is given by
59:319{59:2

59:319
|100~

0:201%.

Sometimes, Dy will be smaller than dy, as in Worked Problem 5.1,
but sometimes it can be larger: examples include functions whose
slope decreases with increasing values of the independent variable,
such as y 5 f(x) 5 ln x and y~

ffiffiffi
xn

p
where n . 1.

The parameters in an expression

such as eqn (5.5) allow the

expression to be tailored to fit

experiment to some reasonable

accuracy.
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Problem 5.1

For the function y 5 x1/3, find the values of the differential, dy,
and the actual change, Dy, when the value of x is increased:

(a) from 27 to 30, and
(b) from 27 to 27.1.

Give the percentage error in each case in approximating Dy
by dy.

Problem 5.22

The variation of the molar heat capacity at constant pressure
for CH4 (g) is described by eqn (5.5), with a 5 14.143 J
K21mol21, b 5 75.49561023 J K22 mol21, c 5 2179.646
1027 J K23mol21.

(a) Use eqn (5.5) to calculate the value of CP at T 5 500 K and
at T 5 650 K.

(b) Use eqn (5.6) to evaluate dCP for an incremental change in
T, dT, of 150 K at T5 500 K. Hence, estimate the value of
CP at T 5 650 K.

(c) Compare the value for CP obtained in (b) with the value
calculated directly from eqn (5.5).

5.2 The Differential of a Function of Two or More
Variables

We have seen in eqn (5.4) that the differentials dy and dx are related
through the derivative dy 5 f 9(x)dx which we can rewrite as:

dy~
dy

dx
dx: ð5:7Þ

We can now extend this principle to define differentials for functions
of two or more variables. If z 5 f (x, t) is a general function of two
independent variables x and t, then there are two contributions to the
differential dz: one from the change in x and the other from the
change in t:
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dz~
Lz
Lx

dxz
Lz
Lt

dt ð5:8Þ

This result extends readily to functions of n independent variables
x1, x2, x3, …, xn. Thus, if z 5 f(x1, x2 x3, … xn), the differential of z is
built up from contributions associated with each independent
variable, as a straightforward generalisation of the result for two
independent variables:

dz~
Lz
Lx1

dx1z
Lz
Lx2

dx2z � � �z Lz
Lxn

dxn~
Xn

i~1

Lz
Lxi

dxi: ð5:9Þ

Examples of functions of two or more variables expressed in
differential form are common in thermodynamics: for example, the
equation:

dG~dH{TdS

relates the consequence of very small changes in the enthalpy, H, and
entropy, S, on the Gibbs energy, G (here G is the dependent variable,
andH and S are the independent variables). As we shall see below, the
use of differentials helps us to study such effects, if the changes are
small. However, for large changes in the defining variables, we have to
evaluate the overall change in the property with the aid of integral
calculus, which we meet in Chapters 6 and 7.

Worked Problem 5.2

Q. Given the function z 5 x2y + y2x 2 2x + 3, express dz in
terms of dx and dy.

A. dz~
Lz
Lx

dxz
Lz
Ly

dy~ 2xyzy2{2
� �

dxz x2z2xy
� �

dy.

Problem 5.3

If z 5 xy / w, express dz in terms of the differentials of the three
independent variables.
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Problem 5.4

(a) For a non-reacting system, the internal energy, U 5 f(V, T)
is a function of both V and T. By analogy with eqn (5.8),
write down an expression for the differential dU in terms of
the differentials dV and dT.

(b) In thermodynamics, the expression derived in part (a) is
commonly written as:3

dU~pTdVzCVdT ,

(c) where pT and CV are the internal pressure and specific heat
capacity at constant volume.

(i) Use your answer to part (a) to find expressions for pT
and CV.

(ii) Assuming that DU # dU, calculate the change in U
that results when a sample of ammonia is heated from
300 K to 302 K and compressed through 100 cm3, given
that CV 5 27.32 J K21 and pT 5 840 J m23 at 300 K.
Comment on the relative magnitudes of the two
contributions to dU.

5.3 The Propagation of Errors

In many chemical situations we deduce a value for a property of interest
by placing experimentally measured values in the right-hand side of an
appropriate formula. For example, if we use the ideal gas equation:

P~n
RT

V
ð5:10Þ

to calculate the pressure, P, from a knowledge of volume, temperature,
amount of substance, and the gas constant, R, we might wish to know
how the errors in the measured property values (n, T and V) propagate
through to errors in the calculation of the pressure, P. If, for simplicity,
we assume that n and R are fixed (given) constants, how can we estimate
the error, dP, in P that results from errors, dT and dV, in the
measurement of T and V, respectively? The answer lies in adapting
eqn (5.8) to obtain dP in terms of dV and dT:

dP~
Lp
LT

dTz
Lp
LV

dV ð5:11Þ
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If dV and dT are the estimated errors in the measured values of V and
T, then we need to know the two partial derivatives, so that we can
estimate the error dP in P. However, in this and other instances, the
differentials themselves do not provide realistic measure of the errors.
For example, an absolute error of 10 cm in a measured length is
insignificant if we are talking about the shortest distance from Berlin to
Moscow, but highly significant if a furniture van driver has enough
clearance to pass under a low bridge in a country lane. For this reason,
the relative error, or the closely related percentage error, give much more
useful measures of error than absolute errors. Thus, in the context of the
ideal gas example, the two kinds of error are defined as follows:

N The relative error in P is given by
dP

P
.

N The percentage error in P is given by
dP

P
|100.

Propagation of errors will be explored in more detail in Chapter 13.
In particular, we will see that the approach described above, in which
the relationship involves more than one independent variable,
actually provides an upper limit to the absolute and relative errors.
This method is really best used where the errors in the different
independent variables are correlated: i.e. all contribute in the same
direction in a positive or negative sense.

Worked Problem 5.3

Q. For a right-angled triangle with adjacent sides a, b and
hypotenuse c , we have the relation:

c~ a2zb2
� �1

2:

Find the relative and percentage errors in c when a 5 3 cm,
b 5 4 cm, da 5 0.1 cm and db 5 0.1 cm.

A. Using the chain rule, with the substitution u 5 a2 + b2, we
initially define the partial derivatives of u with respect to a and
b, respectively:

Lu
La

~2a;
Lu
Lb

~2b:

Differentiating c with respect to the single variable, u gives:

dc

du
~

1

2
u{1=2:
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Finally, we use the chain rule to obtain the partial derivatives of
c with respect to a and b:

Lc
La

~
Lu
La

|
dc

du
~2a|

1

2
u{1=2~2a|

1

2
a2zb2
� �{1=2

~a a2zb2
� �{1=2

:

Lc
Lb

~
Lu
Lb

|
dc

du
~2b|

1

2
u{1=2~2b|

1

2
a2zb2
� �{1=2

~b a2zb2
� �{1=2

:

The differential dc is then given by:

dc~
Lc
La

daz
Lc
Lb

db~a a2zb2
� �{1=2

dazb a2zb2
� �{1=2

db

and so:

dc~3 9z16ð Þ{1=2
|0:1z4 9z16ð Þ{1=2

|0:1~0:06z0:08~0:14 cm:

Thus the relative error
dc

c
~

0:14

5
~0:028 and the percentage

error
dc

c
|100~2:8%.

Problem 5.5

The volume, V, of an orthorhombic unit cell with edges of
length a, b and c, and all internal angles between vertices of 90u,
is given by V 5 abc.

(a) Find the approximate change in volume, dV, when a, b and
c, change by da, db and dc, respectively.

(b) Give an expression for the percentage error in V in terms of
the percentage errors in a, b and c.

Problem 5.6

Calcium carbonate crystallises in several different forms. In
aragonite,4 there are four formula units in an orthorhombic
primitive unit cell with dimensions a 5 4.94 6 10210 m, b 5

7.94610210, and c 5 5.72610210 m.

(a) Calculate the mass,M, of a unit cell in kg using molar atomic
masses as follows: Ca, 40.08 g mol21; C, 12.01 g mol21; O,
16.00 g mol21; (NA 5 6.022 6 1023 mol21).

Note that we have taken the

product of the partial derivatives,
Lu
La and Lu

Lb with the derivative dc
du.

This is perfectly legitimate

because dc
du:

Lc
Lu in the context of

the original expression involving

two independent variables.
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(b) Calculate the volume, V, of the unit cell, using the values of
a, b and c above, and hence determine the density, r, of
aragonite, using the formula r 5 M / V.

(c) Since the values of the unit cell parameters have been given
to two decimal places, the error in their values is
¡0.005610210 m. Ignoring the effects of the analogous
errors associated with the masses of the atoms, give the
relative and percentage errors in the volume of the unit cell.

(d) Find the greatest and smallest estimated unit cell volumes,
and give the corresponding greatest and smallest estimates
of the density (again ignoring errors associated with the
relative atomic masses). Using the value of the density
calculated in part (b), find the percentage errors and
compare your answers to part (c).

Summary of Key Points

Differentials provide a means to quantify the effect of small
changes in one or more variables upon a property that depends
on those variables. The key points discussed include:

1. An illustration of the use of differentials in the mathema-
tical and chemical context; in particular, many of the
fundamental laws of thermodynamics are expressed in
terms of differentials.

2. A review of the concept of infinitesimal change and its
relevance in chemistry, in view of the links to the concept of
reversibility in thermodynamics.

3. The distinction between approximate and exact changes in
the dependent variable, resulting from changes in one or
more independent variables.

4. The use of differentials in assessing how errors in one or
more properties of a system propagate through to errors in
a related property.

5. How differentials associated with each variable in a
function of two or more variables contribute to the
differential associated with the dependent variable.
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6
Integration

In the earlier chapters on arithmetic, algebra and functions, we saw
examples of actions for which there was another action available to
reverse the first action; such a reversing action is called an inverse.
Some examples of mathematical actions and their inverses are listed in
Table 6.1:

The final example listed above proposes that the inverse to the
operation of differentiation is known as integration. The field of
mathematics which deals with integration is known as integral
calculus and, in common with differential calculus, plays a vital role
in underpinning many key areas of chemistry.

Aims:

In this chapter we define and discuss integration from two
perspectives: one in which integration acts as the inverse, or
reverse, of differentiation and the other in which integration
provides a means to finding the area under a curve. By the end
of the chapter, you should be able to:

N Understand the concept of integration as the reverse of
differentiation.

N Find the indefinite integral of a number of simple functions
from first principles.

N Integrate standard functions by rule.

A differentiation/integration cycle

involving a chosen initial function

will lead to the appearance of an

unspecified constant, C (as we

shall see later on).

Table 6.1 A selection of mathematical actions and their inverses.

Start A Action A Result A Inverse action A Result

2 Add 3 5 Subtract 3 2

x2 Subtract 2x x222x Add 2x x2

(x21) Multiply by x3 (x21)x3 Divide by x3 { (x21)

x Logarithm ln(x) Exponential exp(ln(x)) x

x32x2+1 Differentiate

3x222x Integrate x32x2+C

{division by x3 requires that x ? 0
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N Understand why the results of integration are not unique,
unless constraints are placed on the integrated function.

N Apply the integration by parts and substitution methods to
integrate more complicated functions.

N Understand the concept of the definite integral and be able
evaluate a wide range of definite integrals using the methods
discussed above.

6.1 Reversing the Effects of Differentiation

Integration is used frequently in kinetics, thermodynamics, quantum
mechanics and other areas of chemistry, in which we work with models
that deal with changing quantities. Thus, if we know the rate of change
of a property, y (the dependent variable), with respect to x (the
independent variable), in the form of dy=dx, then integral calculus
provides us with the tools for obtaining the form of y as a function of x.
We see that integration reverses the effects of differentiation.
Consider, for example, a car undergoing a journey with an initial

speed, u, and moving with a constant acceleration, a. The distance, s,
travelled after time t is given by:

s~utz
1

2
at2: ð6:1Þ

Differentiating eqn. 6.1 gives the rate of change of distance with time,
or speed, v, at time, t:

ds

dt
~uzat~v: ð6:2Þ

However, the reverse process, in going from speed to distance involves
integration of the rate equation (eqn 6.2). In chemistry, the concept of
rate is central to an understanding of chemical kinetics, in which we
have to deal with analogous rate equations which typically involve the
rate of change of concentration, rather than the rate of change of
distance. For example, in a first order chemical reaction, in which the
rate of loss of the reactant is proportional to the concentration of the
reactant, the rate equation takes the form:

{
d A½ �
dt

~k A½ �, ð6:3Þ

where k, the constant of proportionality, is defined as the rate
constant. The concentration of the reactant at a given time is found by
integrating the rate eqn (6.3), and the relationship between the
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differentiated and integrated forms of the rate equation is given
schematically by:

{
d A½ �
dt

~k A½ �

differentiate : ; integrate

A½ �~ A½ �0e{kt

where [A]0 is the initial concentration of reactant A. We will discuss
the integration methods required to obtain the solution of this type of
problem in some detail when we discuss differential equations in
Chapter 7.

6.2 The Definite Integral

6.2.1 Finding the Area Under a Curve - The Origin of Integral Calculus

The concept of integration emerges when we attempt to determine the
area bounded by a plot of a function f(x) [where f(x) . 0] and the x

axis, within an interval x 5 a to x 5 b (written alternatively as [a, b]).
Clearly, if the plot gives a straight line, such as for the functions y 5 4
or y 5 2x + 3, as shown in Figure 6.1, then measuring the area is
straightforward, as the two areas are rectangular and trapezoidal in
shape, respectively. However, for areas bounded by a curve and three
straight lines, the problem is more difficult. The three situations are
shown in Figure 6.1.
The solution to the general problem of determining the area under

a curve arises directly from differential calculus, the concept of limits,
and the infinitesimal. Seventeenth century mathematicians began to
think of the area, not as a whole, but as made up of a series of
rectangles, of width Dx, placed side by side, and which together cover
the interval [a, b] (see Figure 6.2).
With this construction, there are two ways of estimating the area

under the curve: first, the interval [a, b] is divided into n sub-intervals
of width Dx 5 (b 2 a) / n. The area of each rectangle is obtained by
multiplying its width, Dx , by its height on the left-hand vertical side,
as shown in Figure 6.3(a).
In this case, the total area is given by:

AL nð Þ~f að ÞDxzf azDxð ÞDxzf az2Dxð ÞDxz � � �

� � �zf az n{1½ �Dxð ÞDx~
Xn{1

k~0

f azkDxð ÞDx
ð6:4Þ

The area of a trapezium is given

by half the sum of the parallel

sides, multiplied by the distance

between them.
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Figure 6.1 Plots of the three

functions (a) y 5 4, (b) y 5 2x + 3

and (c) y 5 16xe22x/3. Evaluating

the area bound by the straight line

functions and the x-axis in the

interval x5 a to x5b in (a) and (b)

is straightforward but, in (c),

where the plot is a curve, we need

to make use of the definite

integral.

Figure 6.2 Approximating the

area under a curve by a

contiguous sequence of

rectangles of width Dx.
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Alternatively, we might have used the height of the right-hand
vertical side in computing the total area [Figure 6.3(b)], in which case
the total area is given by:

AR nð Þ~f azDxð ÞDxzf az2Dxð ÞDxzf az3Dxð ÞDxz � � �

� � �zf az n{1½ �Dxð ÞDx~
Xn

k~1

f azkDxð ÞDx
ð6:5Þ

The two estimates we obtain for the area will be different, but if we
decrease the sub-interval width, thereby increasing the number, n, of
sub-intervals, then in the limit n A ?, AL(n) and AR(n) converge to
the same limiting value, A, which is the area under the curve:

A~ lim
n??

AL nð Þ~ lim
n??

AR nð Þ: ð6:6Þ

From the definition of AR(n), and with an analogous expression
involving the limit of AL(n), we can now write:

A~ lim
n??

Xn

k~1

f xkð ÞDx, ð6:7Þ

where f(xk) 5 f(a + kDx).
In order to symbolise this sum, Leibniz introduced an elongated S

which gives the familiar integral sign
Ð
. Thus we can rewrite our

equation as:

A~

ðb
a

f xð Þdx~ lim
n??

Xn

r~1

f xrð ÞDxr ð6:8Þ

where x takes all values between the lower and upper limits a and b,
respectively. This integral is known as the definite integral because we

Figure 6.3 Choice of rectangles

for estimating the area under the

curve: (a) using the left-hand side

and (b) using right-hand side.

If AL(n) and AR(n) do not con-

verge to the same value, A, then

the integral is said to diverge, i.e.

it is not defined.

Note that the area, A, under the

curve is the sum of an infinite

number of rectangles of infinite-

simally narrow width, an addition

involving not a finite number of

finite values, but an infinity of

infinitesimal values, yielding a

finite value!
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have restricted x to the interval [a, b] and, as seen in Figure 6.3, we
can use the concept of area under the curve of y 5 f(x) to give a
visualisation of the value of the integral.

6.2.1.1 Negative ‘Areas’

Attractive though the concept of area is when f(x) ¢ 0, for x

restricted to [a, b], we do need to be careful if f(x) also takes negative
values in [a, b]. It turns out that, for those regions where the curve lies
below the x axis, the contribution from f(x) to the definite integral is
negative. If it transpires that A 5 0, this is perfectly acceptable, as the
definite integral has equal positive and negative contributions (see
Figure 6.4); likewise, if the curve lies below the x axis, the definite
integral will have a negative value.

6.2.2 A Chemical Example: Where is the Electron in the Hydrogen
Atom?

Consider the radial probability density function, D(r) for the ground
state of the hydrogen atom. This function describes the probability
per unit length of finding an electron at a radial distance between r

and r + dr (see Figure 6.5).
The probability of finding the electron between r and r + dr is

D(r)dr, and corresponds to the area under the curve between r and r +
dr. Thus the area under the curve between r 5 0 and infinity simply
gives us the probability of finding the electron somewhere in the
interval 0 to ‘, which we know intuitively must be unity.
Before we discuss the definite integral any further, we first explore

integration as the inverse operation to differentiation. This will
prepare us for a most important result that enables us to evaluate the
definite integral of f(x), without first plotting the function as a prelude
to computing the area under the curve.

Figure 6.4 In this plot of the

function f(x)5cos x, the definite

integral has a positive value over

the interval 0,
p

2

h i
; a negative

value over the interval
p

2
,p

h i
, and

a net zero value over [0, p].

The radial probability density

function is sometimes called the

radial distribution function.
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6.3 The Indefinite Integral

The indefinite integral of a function y 5 f(x) is usually written as:

ð
f xð Þdx~F xð ÞzC, ð6:9Þ

where:

N f(x) is known as the integrand
N C is an arbitrary constant called the constant of integration
N F(x) + C is known as the indefinite integral.

The new function, y 5 F(x) + C, which we obtain after integration,
must be such that its derivative is equal to f(x) to ensure that the
definition conforms with the requirement that integration is the
reverse (or inverse) of differentiation. Thus, we must have:

d

dx
F xð ÞzCð Þ~F ’ xð Þ~f xð Þ: ð6:10Þ

The relation between the indefinite integral of f(x) and f(x) itself is
shown schematically in Figure 6.6 for the functions f(x) 5 18x2 and
F(x) 5 6x3.
So, to summarise: the indefinite integral is determined by finding a

suitable function, F(x), which, on differentiation, yields the function we
are trying to integrate, and to which we then add a constant. In
common with the strategies described in Chapter 4 for finding the
derivative of a given function, an analogous set of strategies can be
constructed for finding the indefinite integral of a function. For simple

Figure 6.5 A plot of the radial

probability density, D rð Þ~
Nr2e{2r=a0 , for the 1s orbital of the

hydrogen atom, where a0 is the

Bohr radius (units, m) and N has

units m23.
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functions, a set of standard indefinite integrals can be constructed
without too much difficulty, some of which are listed in Table 6.2:

Worked Problem 6.1

Q. (a) Show that:
d

dx
ln 1{2xð Þ~{

2

1{2x
:

(b) Deduce that:ð
1

1{2x
dx~{

1

2
ln 1{2xð ÞzC:

A. (a) Since the first step involves establishing that the derivative

of y5 ln(12 2x) is{
2

1{2x
, it is simplest to use the chain

rule (see Section 4.2.4). If u 5 1 2 2x, then:

dy

dx
~

d

dx
ln 1{2xð Þ~ dy

du

du

dx
~

1

u
:{2~{

2

1{2x

(b) Reversing the procedure by integration yields the following
result, where B is the constant of integration:

{

ð
2

1{2x
dx~ ln 1{2xð ÞzB

Y
ð

1

1{2x
dx~{

1

2
ln 1{2xð ÞzC whereC~{B=2ð Þ:

Figure 6.6 Integration of the

function f (x) 5 18x2 (right-hand

side) yields a family of functions

given by the indefinite integral

F(x) 5 6x3 + C (left-hand side)

where C can take any value.

Differentiation of F(x) yields the

original function, f(x).
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Problem 6.1

(a) Evaluate
d

dx
e2x and hence deduce that

ð
e2xdx~

1

2
e2xzC.

(b) Show that
d

dx

1

1zex

� �
~{

ex

1zexð Þ2
and hence findð

ex

1zexð Þ2
dx.

6.4 General Strategies for Solving More Complicated
Integrals

Integrals involving complicated forms for f(x) require strategies for
reducing the integral to one or more integrals of simpler (standard)
form, thus making it possible to find F(x). If all else fails, or we do not
have an explicit form for f(x), then numerical integration must be
carried out using methods described elsewhere.1

Some of the strategies involved in simplifying the form of an
integral are quite straightforward; for example:

N If f (x) is in the form of a linear combination of simpler functions, e.g.

ð
3x2z2xz1
� �

dx ð6:11Þ

then we may be able to rewrite such an integral as a sum of
standard integrals that are immediately recognisable:

Table 6.2 A selection of functions, f(x), and their indefinite integrals, F(x)+C.

f(x) �?
integrate

F(x)+C

xa(a?21)
xaz1

az1
zC

1

x
lnx+C

1

xza
ln (x+a)+C

cos(ax)
1

a
sin(ax)+C

sin(ax) {
1

a
cos(ax)+C

eax
1

a
eax+C

sec2(x) tax x+C

f(x) /�differentiate F(x)+C

A chemical example of a function

which does not have an explicit

form can be found in thermody-

namics, where the entropy is

determined by integrating CP/T,

which may be known only at

selected temperatures.
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ð
3x2z2xz1
� �

dx~

ð
3x2dxz

ð
2xdxz

ð
1dx ð6:12Þ

N Integrals can be simplified by placing constant terms outside the
integral, e.g.

ð
3x2z2xz1
� �

dx~3

ð
x2dxz2

ð
xdxz

ð
1dx ð6:13Þ

Problem 6.2

Integrate the function y~f xð Þ~9x2z2e2xz
1

x
.

In practice, we may find ourselves faced with more complicated func-
tions, the solutions to which require us to use methods involving
adaptation of some of the rules for differentiation. The choice of
method more often than not involves some guesswork, but coming up
with the correct guesses is all part of the fun! In addition, it may be
necessary to use a combination of several methods. In the following two
sections, we discuss integration by parts and the substitution method.

6.4.1 Integration by Parts

The integration by parts method is appropriate for integrands of
product form. The method starts from the familiar product rule, used
in differential calculus [eqn (4.9)]:

d

dx
uvð Þ~v

du

dx
zu

dv

dx

Integration over x yields:

ð
d

dx
uvð Þdx~

ð
v
du

dx
dxz

ð
u
dv

dx
dx ð6:14Þ

and, on using the properties of differentials, the left side

ð
d

dx
uvð Þdx

becomes
Ð
d(uv) 5 uv. It follows that re-arrangement of the above

expression yields:
ð
u
dv

dx
dx~uv{

ð
v
du

dx
dx: ð6:15Þ
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Eqn (6.15) shows that the integral on the left-hand side, which is the
one sought, is replaced by two terms, one of which is another integral
which we hope is more tractable than the initial integral. The success

of the method relies on making the right choices for u and
dv

dx
. The

term identified as u is differentiated to form part of the integrand on
the right-hand side of eqn (6.15); the other part of the integrand is

formed by integrating the term identified as
dv

dx
.

Worked Problem 6.2

Q. Given the integrand f(x)5 xcosx, find the indefinite integral.

A. The integrand is the product of x and cos x, and in this case

we identify x with u and
dv

dx
with cos x in eqn (6.15):

u~x and
dv

dx
~ cos x:

Thus,
du

dx
~1 and v5sin x, and so eqn (6.15) becomes:ð

x cosxdx~x sinx{

ð
sinxdx:

The final step simply requires us to evaluate
Ð
sinxdx which we

know by reference to Table 6.2 to be 2cos x + C. Thus:ð
x cos xdx~x sin xz cos xzD

where D 5 2C. If, on the other hand, we had identified u and
dv

dx
the other way round, we end up with a more complicated

integral to evaluate:ð
x cos xdx~x2 cos xz

ð
x2

2
sin xdx

Clearly, some practice is required in identifying u and
dv

dx
for use in

eqn (6.15), when it seems that integration by parts is appropriate.
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Problem 6.3

Use the method of integration by parts to evaluate
Ð
xe2xdx

assuming:

(a) u 5 x and
dv

dx
~e{x;

(b) u 5 e2x and
dv

dx
~x.

Comment on which choice you think is the most appropriate for
this integral.

6.4.2 Integration Using the Substitution Method

The second integration technique, known as the substitution method,
derives from the inversion of the chain rule for differentiation
described in Chapter 4. The objective here, once again, is to transform
the integrand into a simpler or, preferably, a standard form. However,
similar to the integration by parts method, there is usually a choice of
substitutions and, although in some cases, different substitutions yield
different answers, these answers must only differ by a constant
(remember that, for an indefinite integral, the answer is determined by
inclusion of a constant). The substitution method is best illustrated
using a worked problem:

Worked Problem 6.3

Q. Evaluate
Ð
xeax

2

dx.

A. Here f xð Þ~xeax
2

. Let us try the substitution u 5 ax2 in order
to transform the integral over x to an integral over u. From the
properties of differentials we know that:

du~
du

dx
dx~2axdx

This result enables us to express dx in terms of du, according to

dx~
1

2ax
du, thus transforming the integral into:

ð
xeu

du

2ax
~

1

2a

ð
eudu~

1

2a
euzC

We now express the result in terms of the original variable, x, by
substituting back for u:
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ð
xeax

2

dx~
1

2a
eax

2

zC:

At this point, it is good practice to check the result by

differentiating the function F xð Þ~ 1

2a
eax

2

, to ensure that the

original integrand f(x) is regenerated [see eqn (6.10)]:

F ’ xð Þ~ d

dx

1

2a
eax

2

� �
~

2ax

2a
eax

2

~xeax
2

,

as required.

Problem 6.4

Repeat Worked Problem 6.3, using the substitution u 5 x2.

Worked Problem 6.4

Q. Evaluate

ð
x

1{xð Þ1=2
dx.

A. A possible substitution is given by u 5 (12 x)1/2, from which
it follows that:

u2~1{x)x~1{u2

Differentiating the last equation with respect to u gives:

dx

du
~{2u)dx~{2udu

Hence,
ð

x

1{xð Þ1=2
dx~

ð
1{u2

u
:{2udu

~{2

ð
1{u2
� �

du~{2uz
2

3
u3

)
ð

x

1{xð Þ1=2
dx~{

2

3
1{xð Þ1=2 2zxð ÞzC:
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Problem 6.5

Evaluate the indefinite integral

ð
x

1{xð Þ1=2
dx, using the

substitution u 5 1 2 x2.

Problem 6.6

Find:

(a)
Ð
x(x2 + 4)1/2 dx, using the substitution u 5 x2 + 4.

(b) Show that

ð
1

x ln x
dx~ ln ln xð ÞzC, using the substitution

u 5 ln x,

6.4.2.1 Use of Trigonometrical Substitutions

The integrand in Problem 6.5 is of a form which suggests that a
trigonometrical substitution might be appropriate. Bearing in mind
the key identity cos2 u + sin2 u 5 1, the appearance of a factor such as
(12x2)1/2 in the integrand suggests the substitutions x 5 cos u or x 5

sin u. Thus, for the substitution x 5 cos u, the factor (1 2 x2)1/2

becomes (1 2 cos2 u)1/25 sin u.

Problem 6.7

(a) Repeat Problem 6.5, using the trigonometrical substitution
x 5 cos u.

Hint: You will need to remember that sin2 u 5 12 cos2 u and
consequently that sin u 5 (1 2 cos2 u)1/2 for the final step of
your integration. You should have obtained the same result as
your answer to Problem 6.5.

(b) Show that

ð
cos x

sin x
dx~ ln sin xð ÞzC using the substitution

u 5 sin x.
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6.4.2.2 General Comment

The choice of method for evaluating indefinite integrals relies on
experience to a large extent. Sometimes, integration by parts and the
substitution methods are equally applicable, but in many cases they
are not. For example, the integration by parts method is much more
suited to finding the integral of the function f(x) 5 x cos x described
in Worked Problem 6.2, than the substitution method (which would
prove frustrating and fruitless in this case). It may also be necessary to
use several applications of one or both methods before the answer is
accessible. However, whichever method is used, the answer may
always be checked by verifying that F9(x) 5 f(x).

6.5 The Connection Between the Definite and Indefinite
Integral

As we saw in Section 6.2.1, the concept of integration emerged from
attempts to determine the area bounded by a plot of a function f(x),
and the x-axis, within some interval [a, b]. This area is given by the
definite integral, the definition of which derives from numerical
methods involving limits (see Section 6.2.1). Such numerical methods
can be tedious to apply in practice (although instructive) but,
fortunately, there is a direct link between the indefinite integral, F(x)
+ C, of a function, f(x), and the definite integral, in which x is con-
strained to the interval [a, b]. The relationship between the two forms of
integration is provided by the fundamental theorem of calculus:

ðb
a

f xð Þdx~ F bð ÞzCð Þ{ F að ÞzCð Þ

~F bð Þ{F að Þ
ð6:16Þ

where F(a) is the value of F(x) at x 5 a and F(b) is the value of F(x) at
x 5 b. In other words, the definite integral over the interval [a, b] is
obtained by subtracting the indefinite integral at the point x 5 a from
that at x 5 b. Furthermore, we see that the constant of integration,
which appears in the indefinite integral, does not appear in the final
result [see eqn (6.16)].
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Worked Problem 6.5

Q. Evaluate

ð1
0

x

1zx
dx.

A. The first step requires us to find the indefinite integralð
x

1zx
dx. Using the substitution u 5 1 + x, the integral

becomes:ð
u{1

u
du~

ð
1{

1

u

� �
du~u{ ln uzC~ 1zxð Þ{ ln 1zxð ÞzC:

Thus identifying F(x) with (1 + x) 2 ln(1 + x), the definite
integral can be evaluated from:

ð1
0

x

1zx
dx~F 1ð Þ{F 0ð Þ~2{ ln 2{1{0~1{ ln 2

Problem 6.8

(a) Evaluate (i)

ð2
1

1

x3
dx and (ii)

ð2
0

x x2z4
� �1=2

dx [see Problem
6.6(a)].

(b) Show that

ð2
0

x

x2z4ð Þ dx~
1

2
ln 2, using an appropriate

substitution.

Problem 6.9

For the expansion of a perfect gas at constant temperature, the
reversible work is given by the expression:

W~

ðVb

Va

PdV

where P 5 nRT / V and Va and Vb are the initial and final
volumes, respectively. Derive an expression for the work done
by evaluating the integral between the limits Va and Vb.
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Problem 6.10

Let K be the equilibrium constant for the formation of CO2 and
H2 from CO and H2O at a given temperature T. From
thermodynamics, we know that:

d

dT
ln K~DHo{=RT2 ð6:17Þ

(a) Assuming that DH o{ is independent of temperature,
integrate eqn (6.17) to find how ln K varies with T.

(b) Given DH o{5 42.3 kJ mol21, find the change in ln K as the
temperature is raised from 500 K to 600 K.

Summary of Key Points

This chapter provides an introduction to integral calculus,
together with examples set in a chemical context. As we shall see
in the following chapter, we also need integral calculus to solve
the differential equations which appear in chemical kinetics,
quantum mechanics, spectroscopy and other areas of chemistry.
The key points discussed in this chapter include:

1. The definition of integration as the inverse of differentia-
tion, yielding the indefinite integral.

2. The definition of integration as a means of evaluating the
area bounded by a plot of a function over a given interval,
and the x-axis 2 yielding the definite integral.

3. The use of integration by parts method for integrating
products of functions.

4. The use of the substitution method for reducing more
complicated functions to a simpler or standard form.

5. The use of trigonometric substitutions in the substitution
method.

References

1. See for example: M.J. Englefield, Mathematical Methods for
Engineering and Science Students, Arnold, London 1987,
ch. 15.
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7
Differential Equations

In Chapter 2 we explored some of the methods used for finding the
roots of algebraic equations in the form y 5 f(x). In all of the
examples given, we were seeking to determine the value of an
unknown (typically the value of the independent variable, x) that
resulted in a particular value for y, the dependent variable. In general,
the methods discussed can be used to solve algebraic equations where
the dependent variable takes a value other than zero, because the
equation can always be rearranged into a form in which y 5 0. For
example, if we seek the solution to the equation:

4~x2{5

then we can rearrange it to:

0~x2{9

by subtracting 4 from both sides. The problem now boils down to one
in which we search for the two roots of the equation which, in this
case, are x 5 ¡3.
In this chapter, we are concerned with equations containing

derivatives of functions. Such equations are termed differential
equations, and arise in the derivation of model equations describing
processes involving rates of change, as in, for example:

N Chemical kinetics (concentrations changing with time).
N Quantum chemical descriptions of bonding (probability density

changing with position).
N Vibrational spectroscopy (atomic positional coordinates changing

with time).

In these three, as well as in other examples, we are trying to
determine how the chosen property (such as concentration, prob-
ability density or atomic position) varies with respect to time,
position, or some other variable. This is a problem which requires the
solution of one or more differential equations in a procedure that is
made possible by using the tools of differentiation and integration
discussed in Chapters 4 and 6, respectively.
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Aims:

This chapter builds on the content of earlier chapters to develop
techniques for solving equations associated with processes
involving rates of change. By the end of this chapter you
should be able to:

N Identify a differential equation and classify it according to
its order.

N Use simple examples to demonstrate the origin and nature
of differential equations.

N Identify the key areas of chemistry where differential
equations most often appear.

N Use the separation of variables method to find the general
solutions to first order differential equations of the form
dy

dx
~f xð Þg yð Þ.

N Use the integrating factor method to find the general
solutions to first order differential equations linear in y.

N Find the general solutions to linear second order differential
equations with constant coefficients by substitution of trial
functions.

N Apply constraints (boundary conditions) to the solution(s)
of differential equations.

7.1 Using the Derivative of a Function to Create a
Differential Equation

Consider the function:

y~Be{2x, ð7:1Þ

where B is a constant. The first derivative of this function takes the
form:

dy

dx
~{2Be{2x ð7:2Þ

If we now substitute for y, using eqn (7.1), we obtain the first order
differential equation:

dy

dx
~{2y, ð7:3Þ

A first order differential equation

is so-called because the highest

order derivative is 1.
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which must be solved for y as a function of x. In other words, the
solution to this problem will provide us with an equation which shows
quantitatively how y varies as a function of x. The solution is, of
course, provided by the original eqn (7.1) but the purpose here is to
explore the means by which we find that out for ourselves!
If we now differentiate eqn (7.2) with respect to x, and substitute

for
dy

dx
using eqn (7.3), we obtain the second order differential

equation (7.4):

d2y

dx2
~4y ð7:4Þ

This differential equation is of second order, simply because the
highest order derivative is two.

Problem 7.1

(a) Express the first and second derivatives of the function,
y 5 1 / x, in the form of differential equations, and give
their orders.

(b) Express the second derivative of the function y 5cos ax in
the form of a differential equation.

(c) Show that the function y 5 Ae4x is a solution of the

differential equations
dy

dx
{4y~0 and

d2y

dx2
{5

dy

dx
z4y~0.

The last part of Problem 7.1 demonstrates that a given function does
not necessarily correspond to the solution of only one differential
equation. In later sections we shall address the question of how to
determine the number of different functions (where each function
differs from another by more than simply multiplication by a
constant) that are solutions of a given differential equation.

7.2 Some Examples of Differential Equations Arising in
Classical and Chemical Contexts

One of the principal motivations for the development of calculus by
Newton and Leibniz in the 18th Century came from the need to solve
physical problems. Examples of such problems include:

If the function y5Ae4x is a solu-

tion to Problem 7.1(c), then so is

ky, where k is a constant.
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N The description of a body falling under the influence of the force
of gravity:

d2h

dt2
~{g; ð7:5Þ

N The motion of a pendulum, which is an example of simple
harmonic motion, described by the equation:

d2x

dt2
~{v2x: ð7:6Þ

If we extend this last example to the modelling of molecular
vibrations, we need to include additional terms in the differential
equation to account for non-harmonic (anharmonic) forces.
In these last two example equations of motion, the objective is to

determine functions of the form h 5 f(t) or x 5 g(t), respectively,
which satisfy the appropriate differential equation. For example, the
solution of the classical harmonic motion equation is an oscillatory
function, x5 g(t), where g(t)5 cos vt, and v defines the frequency of
oscillation. This function is represented schematically in Figure 7.1
(See also Worked Problem 4.4).
In chemistry, we are mostly concerned with changing quantities.

For example:

N In kinetics, the concentration of a species A may change with time
in a manner described by the solution of the differential equation:

Figure 7.1 A plot of the

function, g(t)5cos vt, describing

simple harmonic motion.

If a body is falling in a viscous

medium, then the body is under

the influence of both gravity and

the drag forces exerted by the

medium.
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{
d A½ �
dt

~k A½ � ð7:7Þ

N In quantum mechanics, the value of a wave function, y, changes
with position. For a single particle system, y, is obtained as the
solution of the Schrödinger equation:

{
B2

2m

d2y

dx2
zV xð Þy~Ey, ð7:8Þ

where the Hamiltonian operator, Ĥ, given by {
B2

2m

d2

dx2
zV xð Þ, is

associated with the total energy, E, and V(x) is the potential

energy of the particle, m is the mass of the particle and B is the
Planck constant divided by 2p.

N In spectroscopy, the response of a molecule to an oscillating
electromagnetic field leads to absorption of energy, the details of
which are revealed after solving an equation of the form:

iB
dy

dt
~ ĤzĤ ’ tð Þ
� �

y ð7:9Þ

N In vibrational spectroscopy, where the treatment of molecular
vibrations is based on the differential equation for an harmonic
oscillator:

{B2

2m

d2y

dx2
z

1

2
kx2y~Ey: ð7:10Þ

In all of the examples given above, we are faced with having to deal
with the relationship between some property and its rate of change.
The differential equations that describe such relationships contain
first, second or even higher order derivatives. Most examples of this
type of equation that we meet in chemistry are either of the first or
second order, and so this is where we shall concentrate our efforts.

7.3 First Order Differential Equations

As already indicated, a first order differential equation involves the
first derivative of a function, and takes the general form:

dy

dx
~F x,yð Þ ð7:11Þ

i is the imaginary number
ffiffiffiffiffiffiffiffi
{1

p

(see Chapter 9)
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where y is a function of x, and F(x, y) is, in general, a function of both
x and y. The method used to solve eqn (7.11) depends upon the form
of F(x, y).

7.3.1 F(x, y) is Independent of y

In this simplest example, where F(x, y) 5 f(x), the general solution is
found by a simple one-step integration:

dy

dx
~f xð Þ ) y~

ð
f xð Þdx~F xð ÞzC, ð7:12Þ

where F(x) + C is the indefinite integral and C is the constant of
integration (see Chapter 6), which can, in principle, take any value. It
is important to note that the solution to a first order equation
involves:

N one step of integration
N one constant of integration.

The solution of an nth-order differential equation involves n steps of
integration and yields n constants of integration.

Worked Problem 7.1

Q. Solve
dy

dx
~x2z1.

A. Simple integration yields the general solution:

y~
x3

3
zxzC,

which can be described in terms of a family of cubic functions,
each with a different value of C (see Figure 7.2). In this example

F xð Þ~ x3

3
zx.

7.3.2 Boundary Conditions

In the case of a first order differential equation, the constant of
integration is usually determined by a boundary condition, or
constraint on the solution. For example, if y is known at x 5 0,
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then this boundary condition is sufficient to determine the constant of
integration, C. Thus, out of the family of possible solutions, only one
solution is acceptable and this is the one satisfying the boundary
condition.
For example, if the boundary condition for the solution of the

differential equation in Worked Problem 7.1, is such that y5 3 at x5

0, then the solution is constrained to take the form:

y~F xð Þz3~
x3

3
zxz3

since F(0) 5 0 ) C 5 3 (see the dashed-line solution in Figure 7.2).

It should be noted that, in most chemical situations, we rarely need
the general solution of a differential equation associated with a
particular property, because one (or more) boundary conditions will
almost invariably be defined by the problem at hand and must be
obeyed; for example:

N In a first order reaction, concentration of the reacting species is
specified at one particular time (usually at the start of the
reaction).

N The value of the radial part of an atomic orbital wavefunction
must tend to zero at very large distances from the nucleus.

As the number of boundary conditions is usually the same as the
order of the differential equation for a particular chemical problem,
there will be no undetermined constants of integration associated with
the solution.

Figure 7.2 The family of

solutions, y~
x3

3
zxzC (for

C5…,3, 1.5, 0,21.5, 23,…) to

the differential equation

dy

dx
~x2z1. Note that

F xð Þ~ x3

3
zx. The dashed line is

the solution satisfying the

boundary condition y50,x53.

150 Maths for Chemists



7.3.3 F(x, y) is in the Form f (x)g(y)

7.3.3.1 Separation of Variables Method

Suppose we are required to solve a differential equation of the form

eqn (7.11), in which
dy

dx
is equal to the product of two functions, each

of which depends only on one of the variables:

dy

dx
~f xð Þg yð Þ: ð7:13Þ

This equation is solved by first rewriting it in the form:

1

g yð Þ
: dy

dx
~f xð Þ, ð7:14Þ

which, on integration with respect to x , yields:ð
1

g yð Þ
: dy

dx
dx~

ð
f xð Þdx: ð7:15Þ

Since the differentials dx and dy are linked by the expression

dy~
dy

dx
dx, the integration over x in the integral on the left-hand side

of the equation can be transformed into an integration over y:ð
1

g yð Þ dy~
ð
f xð Þdx ð7:16Þ

It now just remains to carry out separate integrations over y and x in
order to obtain the required solution in the form of an expression of
the general form

G yð ÞzA~F xð ÞzB: ð7:17Þ

Notice, that, although each integral yields one constant of
integration, the two constants of integration can be combined into
a single constant, C, by taking A over to the right-hand side of
eqn (7.17).
The procedure just described is known as the separation of variables

method. In some instances, it is possible to re-write eqn (7.17) in the
form y 5 P(x), to give an explicit relation between y and x [where B is
contained within P(x)]. In other cases, the solution may have to be left
in a form of an implicit relation between y and x (see Section 2.3.5).
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Worked Problem 7.2

Q. Find the solution of the differential equation:

dy

dx
~3x2y:

A. This equation may be solved by the separation of variables
method, as the right-hand side is in the form f(x)g(y), where
f(x) 5 3x2 and g(y) 5 y. Thus:ð

1

y
dx~

ð
3x2dx ) ln y~x3zC:

This expression gives y as an implicit function of x. However,
from the properties of the exponential function (the inverse
function of the logarithm function), we can specify y as an
explicit function of x:

y~e x3zCð Þ~eC:ex
3 ) y~Aex

3

,

where the constant eC has been rewritten as A (which implies
C 5 ln A), to simplify the appearance of the solution.

Problem 7.2

Solve the differential equation:

dy

dx
~{6y2,

subject to the initial condition y 5 1, x 5 0.
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Problem 7.3

Solve the differential equation
dy

dx
~{ly, given that y 5 N at

x 5 0. Give both implicit and explicit solutions.

Hint: You may find it helpful to remember that ln A{ ln B~

ln
A

B
[see eqn (2.15)] and that elnA 5 A [see eqn (2.10)].

7.3.4 Separable First Order Differential Equations in Chemical
Kinetics

Consider a first order rate process, with rate constant k:

A?
k

B: ð7:18Þ

The rate of loss of the reactant A is proportional to its concentration,
and is expressed in the form of the differential equation:

{
d A½ �
dt

~k A½ �, ð7:19Þ

where [A] is the concentration of the reactant at time t. Notice here
that [A] is the dependent variable, and t the independent variable.
We are interested in solving eqn (7.19) to obtain an expression

which describes how the concentration of A varies with time, subject
to the boundary condition that the concentration of the reactant at
time t5 0 is [A]0 (note that the differential rate law above tells us only
how the rate depends on [A]). Thus, using the separation of variables
method, eqn (7.19) is first rearranged to:

{
d A½ �
A½ � ~k:dt, ð7:20Þ

and then integrated, recognising that k is a constant:

{

ð
d A½ �
A½ � ~

ð
k:dt~k

ð
dt: ð7:21Þ

;

{ ln A½ �~ktzC: ð7:22Þ

)
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If we now impose the boundary condition above, we find that
C 5 2ln [A]0, and the integrated rate eqn (7.22) becomes:

{ ln A½ �~kt{ ln A½ �0, ð7:23Þ

which may be expressed in the alternative forms:

ln A½ �~{ktz ln A½ �0, ð7:23aÞ

or

ln
A½ �
A½ �0

� �
~{kt: ð7:23bÞ

Note that in eqn (7.23a), [A] is an implicit function of t;
furthermore, there is a linear relation between ln [A] and t. Thus, a
plot of ln [A] against t will give a straight line of slope 2k and
intercept ln [A]. Alternately, we can rearrange eqn (7.23b) by taking
the exponential of each side, to generate an explicit function which
shows the exponential decay of [A] as a function of time (see
Figure 7.3 and Chapter 2):

A½ �
A½ �0

~e{kt ð7:24Þ

which rearranges to:

A½ �~ A½ �0e{kt: ð7:25Þ

Figure 7.3 demonstrates clearly how the value of k determines the rate
of loss of A.

Figure 7.3 A plot of
A½ �
A½ �0

against t / min for (a) k51 min21

and (b) k52 min21.
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An important feature of such first order reactions is the half-life,
t1/2, which is the time taken for [A] to reduce to half of its initial value.
Thus, for t 5 t1/2, we have:

A½ �0
2

~ A½ �0e{kt1=2 ð7:26Þ

which simplifies to:

1

2
~e{kt1=2 : ð7:27Þ

Taking natural logarithms, we have:

ln
1

2
~{kt1=2: ð7:28Þ

Using the property of logarithms that ln
1

a
~{ ln a, we can rewrite

(7.28) as:

ln 2~kt1=2 ð7:29Þ

and it follows that the half-life is expressed in terms of the rate
constant, k, according to:

t1=2~
ln 2

k
: ð7:30Þ

7.3.5 First Order Differential Equations Linear in y

A first-order linear differential equation has the general form:

dy

dx
zyP xð Þ~Q xð Þ, ð7:31Þ

in which the dependent variable (here y) appears on the left-hand side
with index unity. Equations of this form cannot be solved using the
separation of variables method unless Q(x) 5 0.
The general solution of a first-order linear differential equation, in

the form of eqn (7.31), is:

y~
1

R xð Þ

ð
R xð ÞQ xð Þdx ð7:32Þ

where R(x), known as the integrating factor, is defined in terms of
P(x) as follows:

R xð Þ~e

Ð
P xð Þdx: ð7:33Þ

Remember that

ln
a

b

� �
~ln að Þ{ln bð Þ.

Differential Equations 155



There are thus two integrations to perform, one to determine the
integrating factor, and the other, which involves the product R(x)Q(x)
as the integrand. Since we are dealing with a first order differential
equation, we expect only one constant of integration but, from the
above discussion, it appears that two such constants may arise. We
now describe why there is, in fact, only one undetermined constant of
integration.

7.3.5.1 The Constant of Integration

In determining the integrating factor, the complete expression
becomes:

R xð Þ~eg xð ÞzC~Aeg xð Þ, ð7:34Þ

where g(x) + C is the indefinite integral of the function P(x) and A 5

eC. Thus, if we now substitute eqn (7.34) into eqn (7.32), we obtain:

y~
1

Aeg xð Þ
:A

ð
eg xð ÞQ xð Þdx: ð7:35Þ

Since the constant A appears in both the numerator and denominator
in the right side of eqn (7.35), it can be cancelled to yield the general
solution of eqn (7.31):

y~e{g xð Þ
ð
eg xð ÞQ xð Þdx: ð7:36Þ

Only one constant of integration will be produced from the indefinite
integral

Ð
eg(x)Q(x)dx and, since the constant arising from the

determination of R(x) can be discarded, we see that a single constant
of integration arises from the solution to a first order differential
equation, as expected.

Worked Problem 7.3

Q. Solve the differential equation:

dy

dx
z2y~ex

A. This is a first order linear differential equation, in
which P(x) 5 2 and Q(x) 5 ex . The integrating factor

R xð Þ~ e

Ð
P xð Þdx

~e

Ð
2dx

~e2xzC . Here g(x) 5 2x, and so the
general solution given by eqn (7.36) is:
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y~e{2x

ð
e2xexdx ~ e{2x

ð
e3xdx ~e{2x e3x

3
zC

� �

) y~
1

3
exzCe{2x:

Problem 7.4

(a) Check that the solution to Worked Problem 7.3 satisfies the
original differential equation.

(b) Solve the differential equation
dy

dx
z

y

x
~x2, subject to the

boundary condition y 5 0, x 5 1.

7.3.6 First Order Differential Equations in Radioactive Decay
Processes

Consider the following radioactive b2 decay processes, involving two
sequential first order steps, in which l1 and l2 are decay constants
(analogous to rate constants in a chemical kinetic process) associated
with the emission of energetic electrons:

239
92U?

l1 239
93 Np?

l2 239
94 Pu: ð7:37Þ

The amounts of 239
92U, 239

93Np, and 239
94Pu (units mol) at any given time

are denoted by N1, N2, N3, respectively, and we specify that, initially,

N151 mol. The change in the amount of 239
93Np with time has two

contributions: one from the decay of 239
92U and the other from the

decay of 239
93Np itself. Thus, on the basis that these processes are first

order in nature, the net rate of increase of 239
93Np is given by:

dN2

dt
~l1N1{l2N2 ð7:38Þ

By analogy with the first order chemical reaction [eqn (7.25)] we know

that N1~ N1ð Þ0e{l1t, where (N1)0 is the initial amount of 239
92U. Thus

239U is produced when 238U, the

most common isotope of ura-

nium, absorbs a neutron. The

subsequent sequential decay

process produces 239Pu, a fis-

sionable material that can be

used as a fuel in nuclear reactors

or as the core material of a

nuclear bomb. 1 mol of
239

92U

equates to 239 g by mass, which

is approximately one twentieth of

the amount needed to make a

nuclear device.
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dN2

dt
~l1 N1ð Þ0e{l1t{l2N2 ) dN2

dt
zl2N2~l1 N1ð Þ0e{l1t: ð7:39Þ

If we identify t with x and N2 with y, then we can see that eqn (7.39)
is of the form of eqn (7.31), where P(x) ; l2 and Q xð Þ:l1 N1ð Þ0e{l1t.
After determining the integrating factor, the solution is obtained
using eqn (7.36). The derivation of the solution forms the basis of the
next Problem.

Problem 7.5

For the radioactive two-step decay process described above:

(a) Show that the integrating factor takes the form R(t) 5

Aeg(t) where g(t) 5 l2t.
(b) Use eqn (7.36) to show that the general solution is given by:

N2~
l1 N1ð Þ0
l2{l1

e{l1tzCe{l2t:

(c) Given the initial condition, N2 5 0 at t 5 0, determine an
expression for C, and show that:

N2~
l1 N1ð Þ0
l2{l1

e{l1t{e{l2t
� �

: ð7:40Þ

(d) Given that the rate of loss of 239
92U, by first order decay, is

expressed in the form of the differential equation
dN1

dt
~{l1N1, deduce the solution of this differential

equation from the solution to Problem 7.3, by appropriate
changes of names of the independent and dependent
variables.

(e) Write down the expressions for N1 and N2 determined in
parts (d) and (c) above, and hence, from the conservation of
matter (i.e. that at all times N1 + N2 + N3 5 1 mol), deduce
the expression for N3 in terms of time, t.

(f) Given that the half-lives for 239
92U, 239

93Np, are 23.5 min and
2.3 days, respectively, use eqn (7.30), with the rate constant
k replaced by the appropriate decay constants, to calculate
the values of the decay constants l1 and l2.

(g) Use the expression for N2 derived in part (c) to determine
the time at which N2 reaches its maximum value, and give
the corresponding amount of N2 reached at this time.
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In Problem 7.5, the large disparity in the decay constants leads to a
situation in which the number of 239

93Np species builds up rapidly to its
maximum value, and then decreases slowly (see Figure 7.4).

7.3.7 First Order Differential Equations in Chemical Kinetics
Processes

Consider the following kinetic process, involving two sequential first
order steps:

A?
k1

B?
k2

C,

This is the same model process that we described above for
radioactive decay of 239

92U and, if we substitute decay constants by
rate constants, and amount of substance by concentration, and
assume that [A]0 5 1 mol dm23, we can adapt eqn (7.40) derived in
Problem 7.5(c) to describe how [B] varies with time:

B½ �~ k1

k2{k1
e{k1t{e{k2t
� �

A½ �0 ð7:41Þ

If we consider initially the limiting case, in which the rate constant
k2 (governing the second step) is very much smaller than k1 (e.g. k1 5
2 s21, k2 5 0.01 s21), we obtain a plot of [B] over the time interval 0 to
30 s shown in Figure 7.5.
We can see in Figure 7.5 that, at the start of the reaction, the

concentration of the intermediate, B, initially rises quite rapidly to a
maximum, and thereafter declines slowly. The level to which the

Figure 7.4 A plot of the

variation in the amount of 239
93Np,

given by N2, as a function of time

in the radioactive decay of 239
92U.
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concentration of B builds up will depend on the rate constants
governing the two steps. For reactions where the rate constant k2 is
very much larger than for k1, the concentration of B never has the
opportunity to build up and remains essentially constant throughout
most of the reaction. Under such conditions it is said to have reached
a steady state.

Problem 7.6

(a) Use eqn (7.41) to plot [B] / mol dm23 against t / s (see hint
below), using first k1 5 2 s21, k2 5 3 s21 and second k1 5
2 s21, k2 5 10 s21.

(b) Comment on the maximum values of [B] obtained in
Figure 7.5, and in your plots generated in part (a).

Hint: If possible, you should use a computing plotting program
to generate your plots. If you do not have access to such a
program, a plotter is available on the Internet at http://
www.ucl.ac.uk/mathematics/geomath/plot.html. In order to
use such a plotter, you will need to enter the model expression
for [B] / [A]0 into a function descriptor box. Thus, in order to
generate the plot shown in Figure 7.5, we would enter an
expression such as:

2= 0:01{2ð Þð Þ� exp {2�xð Þ{ exp {0:01�xð Þð Þ,

where x is the appropriate name given to the independent
variable in the plotter, and * is interpreted as ‘multiplication’.

Figure 7.5 A plot of the

variation in the concentration of

the reaction intermediate, [B],

with time in a two sequential first

order reaction mechanism.
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7.4 Second Order Differential Equations

In Section 7.1, we saw how differential equations of second order can
be generated from a particular function. Thus, for example, if we
differentiate the function y5e2x twice, we obtain:

dy

dx
~2y ð7:42Þ

from the first differentiation and then:

d2y

dx2
~4y, ð7:43Þ

from the second. Eqn (7.43) is an example of a second order
differential equation. If we now reverse this process, we need two acts
of integration to yield an expression for y. However, as each
integration step leads to a constant of integration, the resulting
expression for y, which now contains two undetermined constants,
represents the general solution of the second order differential
eqn (7.43).
In general, a second order differential equation will take the form:

d2y

dx2
~G

dy

dx
,y,x

� �
ð7:44Þ

where G
dy

dx
,y,x

� �
can, in principle, represent any function of

dy

dx
, y

and x. In the example above, eqn (7.43) is not, in fact, a function of
dy

dx
or x, and so we can write instead that eqn (7.43) has the form

d2y

dx2
~G yð Þ:

Most of the problems involving second order differential equations
which we encounter in chemistry, are second order linear differential
equations which take the general form:

d2y

dx2
zP xð Þ dy

dx
zS xð Þy~Q xð Þ ð7:45Þ

Unfortunately, unlike the general linear first order differential
equation (7.31), there is no simple template which provides the
solution, and we need therefore to apply different methods to suit the
equation we meet in the chemical context. Equations of the general
form given in eqn (7.45) crop up in all branches of the physical
sciences in which a system is under the influence of an oscillatory or
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periodic change. In chemistry, some of the most important examples
can be found in modelling:

N Vibrational motions of molecules.
N The interaction of molecules with electromagnetic radiation

(light).
N The radial motion of the electron in a hydrogen-like species.

As a first example, we will consider the differential equation
describing the dynamics of simple harmonic motion, and demonstrate
how the general solution is found.

7.4.1 Simple Harmonic Motion

The special case of eqn (7.45) with P(x) 5 Q(x) 5 0 and S(x) equal to
a positive constant, n2 (the choice of n2 as the constant ensures that it
is positive quantity for any real value for n), gives rise to eqn (7.46) for
simple harmonic motion, the solution of which can be used to model
nuclear motion in molecules:

d2y

dx2
~{n2y ð7:46Þ

Thus, for example, if we apply eqn (7.46) to describe the periodic
vibrational motion in a diatomic molecule, x represents time, and
positive and negative values for y correspond to bond extension and
compression, respectively. Finally, we can see that eqn (7.46) is an
eigenvalue equation in which y is the eigenfunction and 2n2 the
eigenvalue (see Section 4.3.1).

Worked Problem 7.4

Q. The form of eqn (7.46) implies that y is such that its second
derivative is a negative multiple of itself (since n2 is positive real
number).

(a) Which of the following functions are solutions of eqn
(7.46)?

ið Þ y~ sin nx; iið Þ y~ cos nx; iiið Þ y~enx; ivð Þ y~e{nx:

(b) Explain why none of these functions corresponds to the
general solution of eqn (7.46).

(c) Give the form of the general solution to eqn (7.46).
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(d) Find the solution to eqn (7.46), given the boundary
condition y 5 0 when x 5 0.

(e) If we additionally impose the boundary condition y 5 0

when x 5 L, show that the solution becomes y~A sin
npx

L
,

where A is a constant.

A. (a) (i)
dy

dx
~n cos nx ) d2y

dx2
~{n2 sin nx~{n2y;

(ii)
dy

dx
~{n sin nx ) d2y

dx2
~{n2 cos nx~{n2y;

(iii)
dy

dx
~nenx ) d2y

dx2
~n2enx~n2y;

(iv)
dy

dx
~{ne{nx ) d2y

dx2
~n2e{nx~n2y.

(b) Functions (i) and (ii) are both solutions of the
differential eqn (7.46), but neither of them forms the
general solution, which must contain two, as yet
undetermined, constants of integration. Neither of
functions (iii) nor (iv) are solutions because they lead
to the constant n2 rather than 2n2.

(c) We can obtain the general solution from the sum of
constant multiples of the two solutions obtained in (a)
(i) and (ii) above to give y5 A cos nx + B sin nx. We can
cross-check our answer by substituting the function and
its second derivative into eqn (7.46):

dy

dx
~{nA sin nxznB cos nx

) d2y

dx2
~{n2 A cos nxzB sin nxð Þ~{n2y

(d) On substituting the boundary condition values y 5 0,
x 5 0 into the general solution, we find that 0 5 A, and
hence the solution becomes y 5 B sin nx.

(e) We can further refine our solution by applying the
second of our two boundary conditions. If y 5 0 when
x 5 L, then:

B sin nL~0

which is satisfied when nL5 mp (where m is an integer).

Thus, n~
mp

L
and the required solution is:

Neither of equations (iii) and (iv)

are solutions to eqn (7.46).

However, if n was such that n2

was negative, then both functions

would be solutions to the equa-

tion. This would require us to

define the square root of a nega-

tive number, which is at odds with

our understanding of what con-

stitutes a real number. In Chapter

9, we extend the concept of the

number to include so called ima-

ginary and complex numbers

which embrace the idea that the

square root of a negative number

can be defined.
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y~B sin
mp

L
x

� �
:

Note: This same solution with m 5 1 arose in the context of the
particle in the box problem in Problem 4.11.

Problem 7.7

(a) Use the results from (a) of Worked Problem 7.4 to express

the general solution of the differential equation
d2y

dx2
~n2y

in terms of exponential functions.
(b) Use the definitions for the hyperbolic functions, cosh x and

sinh x, defined in Section 2.3.4, to show that the general
solution obtained in (a) can be rewritten as:

y~ AzBð Þcosh nxz A{Bð Þ sinh nx:

(c) Give the form of this solution when constrained by the
boundary condition y 5 0 when x 5 0.

7.4.2 Second Order Differential Equations with Constant Coefficients

Linear second order differential equations of the general form given in
eqn (7.45) are quite tricky to solve but, fortunately, we are usually
interested in situations where P(x) and S(x) are both constant
functions, say c1 and c2:

d2y

dx2
zc1

dy

dx
zc2y~Q xð Þ ð7:47Þ

A number of possible variants of this equation can result from the
different choices for c1 and c2:

(a) c1 5 0 and c2 5 0:

This simple case results in the differential equation:

d2y

dx2
~Q xð Þ ð7:48Þ

which simply requires two steps of integration to yield an expression
for y.
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Worked Problem 7.5

Q. Solve the second order differential equation
d2y

dx2
~2x.

A. The equation is solved by integrating once to give:

dy

dx
~x2zC,

and a second time to give:

y~
x3

3
zCxzD:

(b) c1 5 0, Q(x) 5 0 (the null function), c2 positive.

The differential equation now adopts the form of an eigenvalue
problem [see eqn (7.46)]:

d2y

dx2
~{c2y, ð7:49Þ

which is solved using the procedure described in Worked Problem 7.4.
For c2 , 0, the solution is obtained using the same procedure.

(c) c1 and c2 are both positive and Q(x) 5 0.

Eqn (7.47) now becomes a homogeneous linear second order
differential equation having the form:

d2y

dx2
zc1

dy

dx
~{c2y: ð7:50Þ

Eqn (7.50) is also an example of an eigenvalue problem (see
Section 4.3.1), of the type commonly encountered in chemistry when
modelling electronic and nuclear motions.

7.4.3 How is an Eigenvalue Problem Recognised?

The simplest way of thinking about an eigenvalue problem is to
consider the result of some operator, Â, acting on a suitable function,
f(x), to yield a constant, l, multiplied by the original function, f(x):
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Âf xð Þ~lf xð Þ: ð7:51Þ

The objective in this type of problem is to find the eigenfunctions,
f(x), and associated eigenvalues, l, for a given operator, Â. The
solution will generally yield a number of different eigenfunctions, and
associated eigenvalues, all of which emerge from a single general
solution.
The procedure used to solve second order differential equations of

the form of eqn (7.50) is essentially the same as that described in
Worked Problem 7.4 and involves the construction of trial
eigenfunctions from some of the functions introduced in Chapter 2.

7.4.3.1 The Search for Eigenfunctions

We first re-write eqn (7.49), using differentiation operators D̂2~
d2

dx2

and D̂~
d

dx
to give:

D̂2yzc1D̂y~{c2y: ð7:52Þ

Factorising yields:

D̂2zc1D̂
� �

y~{c2y, ð7:53Þ

which is of the form of an eigenvalue equation:

Ây~{c2y,

where:

Â~D̂2zc1D̂ ð7:54Þ

is the operator; y is the eigenfunction, and 2c2 the eigenvalue. The
form of the operator Â is such that its eigenfunctions must be
functions whose first and second derivatives differ only by a constant.

The choice of f(x) to label a

function is entirely arbitrary – in

principle, any label will do. We

could just as easily have labelled

it y(x), G(x), w, c or y. Later on we

do use the label y to represent the

eigenfunction of a given operator,

but y is also routinely used to

name the value of the dependent

variable for some given function,

and as a result it can be confus-

ing sometimes to distinguish

between the label applied to the

function itself and the label

applied to the value of the func-

tion for a particular choice of

independent variable.
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Worked Problem 7.6

Q. Which of the following functions:

y~ cos nx, y~ sin nx, y~enx, y~e{nx,

are eigenfunctions of:

að Þ D̂, bð Þ D̂2, cð Þ D̂2zD̂?

For each eigenfunction, give the associated eigenvalue.

A. (a) D̂ cos nx~{n sin nx; D̂ sin nx~n cos nx; D̂enx~nenx,
D̂e{nx~ne{nx. Only the two exponential functions
are eigenfunctions of D̂, with associated eigenvalues n
and 2n, respectively.

(b) D̂2 cos nx~{n2 cos nx; D̂2 sin nx~{n2 sin nx;
D̂2enx~n2enx, D̂2e{nx~n2e{nx. All four functions are
eigenfunctions of D̂2, with respective eigenvalues of
2n2, 2n2, n2 and n2.

(c) D̂2zD̂
� �

cos nx~{n2 cos nx{n sin nx;

D̂2zD̂
� �

sin nx~{n2 sin nx{n cos nx;

D̂2zD̂
� �

enx~n2enxznenx~ n2zn
� �

enx;

D̂2zD̂
� �

e{nx~n2e{nx{ne{nx~ n2{n
� �

e{nx. Only the
two exponential functions are eigenfunctions of both
operators, with eigenfunctions n2 + n and n2 2 n,
respectively.

The key feature emerging from Worked Problem 7.6 is that if two
functions, f1 and f2, are eigenfunctions of an operator Â, and have the
same eigenvalues, l, then an arbitrary linear combination of the two
functions is also an eigenfunction of Â with eigenvalue, l. In this
example, the two functions y 5 cos nx and y 5 sin nx are both
eigenfunctions of the D̂2 operator with eigenvalue2n2. Consequently,
it follows that an arbitrary linear combination of the two functions is
also an eigenfunction of this operator with eigenvalue 2n2. This
concept is expressed formally in the following expression:

Â bf1zcf2ð Þ~blf1zclf2~l bf1zcf2ð Þ ð7:55Þ
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Problem 7.8

Show that the function y5Acosnx+Bsinnx is an eigenfunction
of the D̂2 operator with eigenvalue 2n2.

Worked Problem 7.7

Q. The differential equation
d2y

dx2
{3

dy

dx
z2y~0 has the same

form as eqn (7.50) and, as such, can be written as an eigenvalue

equation, Ây5ly.

(a) Give the form of the operator Â, expressed in terms of the
D̂2 and D̂ operators and the value of l, the eigenvalue.
(b) Find the eigenfunctions of Â, and hence deduce the general
solution.
(c) Give the form of the solution for the boundary conditions

y 5 0 when x 5 0 and y 5 e when x 5 1.

A. (a) The operator Â~D̂2{3D̂ and has the same form as that
given in eqn (7.54) with c1523. The eigenvalue l522.

(b) We have seen already in Worked Problem 7.6 that enx is
an eigenfunction of the operators D̂2 and D̂. It follows
that enx is also an eigenfunction of the operator D̂2+c1D̂
and hence of Â~D̂2{3D̂. We can now tailor this
function by finding the appropriate values of n that are
consistent with this operator, and an eigenvalue l 5 22.
Thus, since:

D̂2enx~n2enx and {3D̂enx~{3nenx,

it follows that:

Âenx~ n2{3n
� �

enx~{2enx,

and, on cancelling the enx terms, we obtain (n2 2 3n) 5
22, which may be written as:

n2{3nz2~0: ð7:56Þ
The two roots of the quadratic eqn (7.56) are n 5 2 and
n 5 1, and it follows that e2x and ex are two solutions of
the differential equation which we may use to build the
general solution in the form, y 5 Be2x + Cex.
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(c) If we now apply the two boundary conditions, y 5 0,
x 5 0 and y 5 e, x 5 1, we obtain the two equations,
B + C5 0, and Be2 + Ce5 e. Solving for A and B yields:

C~
1

1{e
, and B~{

1

1{e

and the final solution then takes the form:

y~{
1

e{1
e2xz

1

e{1
ex:

) y~
1

e{1
ex{e2x
� �

:

Problem 7.9

Solve the differential equation
d2y

dx2
{5

dy

dx
z6y~0, subject to

the boundary conditions y5 0 when x5 0 and dy / dx5 1 when
x 5 0.

Summary of Key Points

This chapter has been concerned with bringing differential and
integral calculus together, in order to solve a number of
differential equations that are used widely in chemistry. The key
points discussed in this chapter include:

1. The order of a differential equation.
2. Creating a differential equation using the first or second

derivative of a function.
3. Examples of differential equations in a chemical context.
4. The solution to first order differential equations of the form

dy

dx
~f xð Þg yð Þ using the separation of variables method.

5. The application of boundary conditions to determine the
value of constant(s) of integration.
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6. Finding general solutions to linear first order differential
equations using the integrating factor method.

7. Finding general solutions to linear second order differential
equations by substitution of trial functions.

8. A revision of the eigenvalue problem and the construction
of trial functions to provide a solution of second order
differential equations with constant coefficients.
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8
Power Series

In Chapter 2, we saw that a polynomial function, P(x), of degree n in
the independent variable, x, is a finite sum of the form:

P xð Þ~c0zc1xzc2x
2z . . .zcnx

n: ð8:1Þ

Such polynomial functions have as a domain the set of all real
(finite) numbers; in other words they yield a finite result for any real
value of the independent variable x. For example, the polynomial
function:

P xð Þ~1zxzx2zx3 ð8:2Þ

will have a finite value for any real number x because each term in the
polynomial will also have a finite value.
An infinite series is very similar in form to a polynomial, except that

it does not terminate at a particular power of x and, as a result, is an
example of a power series:

p xð Þ~c0zc1xzc2x
2z . . .zcnx

nz . . . ð8:3Þ

One important consequence of this lack of termination is that we
need to specify a domain which includes only those real numbers, x,
for which p(x) is finite. For example, the power series:

p xð Þ~1zxzx2zx3z . . . ð8:4Þ

does not yield a finite result for x . 1, or for x , 21, because in the
former case, the summation of terms increases without limit and, in
the latter, it oscillates between increasingly large positive and negative
numbers as more and more terms are included. Try this for yourself
by substituting the numbers x5 2 and x522 into eqn (8.4) and then
x 5 0.5 and x 5 20.5 and observe what happens to the sum as more
and more terms are included.

Power series are useful in chemistry (as well as in physics,
engineering and mathematics) for a number of reasons.
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N Firstly, they provide a means to formulate alternative representa-
tions of transcendental functions such as the exponential,
logarithm and trigonometric functions introduced in Chapter 2.

N Secondly, as a direct result of the above, they also allow us to
investigate how an equation describing some physical property
behaves for small (or large) values for one of the independent
variables.

For example, the radial part of the 3s atomic orbital for hydrogen
has the same form as the expression:

R xð Þ~N 2x2{18xz27
� �

e{x=3: ð8:5Þ

If we replace the exponential part of the function, e2x/3, with the
first two terms of its power series expansion (12 x/3), we obtain a
polynomial approximation to the radial function given by:

R xð Þ~N 2x2{18xz27
� �

1{x=3ð Þ

&N 8x2{2x3


3{27xz27

� �
:

ð8:6Þ

We can see how well eqn (8.6) approximates eqn (8.5), by
comparing plots of the two functions in the range 0 ¡ x ¡ 20, as
shown in Figure 8.1. In this example, the polynomial approxima-
tion to the form of the radial wave function gives an excellent fit
for small values of x (i.e. close to the nucleus), but it fails to
reproduce even one radial node [a value of x for which R(x) 5 0].

N Thirdly, power series are used when we do not know the formula
of association between one property and another. It is usual in
such situations to use a power series to describe the formula of

Figure 8.1 A comparison of (a)

the 3s radial function, R(x), of the

hydrogen atom with (b) an

approximation obtained by

substituting a two term expansion

of the exponential part of the

function.
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association, and to fit the series to known experimental data
by varying the appropriate coefficients in an iterative manner.
For example, the parameters, a, b and c, in the polynomial
expression:

CP~g Tð Þ, where g Tð Þ~azbTzcT2,

describing the temperature dependence of the specific heat
capacity of a substance at constant pressure, CP, may be found
by fitting measured values of CP over a range of temperatures to
this equation.

Much of this chapter is concerned with a discussion of power series
but, before we go into detail, we consider the general concepts of
sequences and series, both finite and infinite.

Aims:

By the end of this chapter, you should be comfortable with
the idea that functions can be represented in series form and be
able to:

N Understand the distinction between Maclaurin and Taylor
series expansions and appreciate when one or the other is
the more appropriate.

N Understand what factors influence the accuracy of a given
power series expansion;

N Determine the values of x for which the power series is
useful (the interval of convergence).

N Understand why the interval of convergence may differ
from the domain of the original function.

N Manipulate power series to obtain series for new functions.
N Apply some of the ideas explored in this chapter to probe

the limiting behaviour of functions for increasingly large or
small values of the independent variable.

8.1 Sequences

A sequence is simply a list of terms:

u1, u2, u3, . . . ð8:7Þ
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each of which is defined by a formula or prescription. The sequence
may be finite or infinite, depending on whether it terminates at un, or
continues indefinitely. Furthermore, the sequence u1, u2, u3, …
represents a function, with a domain specified either as a subset of the
positive integers or all positive integers.

8.1.1 Finite Sequences

8.1.1.1 The Geometric Progression

The numbers:

1, 2, 4, 8, . . . , 256

form a finite sequence generated by the general term:

ur~2r, where r~0, 1, 2, 3, . . . , 8: ð8:8Þ

Here, the formula is only 2 raised to a power, the value of which is
defined by each element of the domain. Notice that the use of r as a
counting index is arbitrary: any other appropriate letter (with the
exception of u which we have used already) would do. A counting
index such as r is often termed a dummy index. An alternative way of
generating this sequence is accomplished using a recurrence relation as
the prescription, where each successive term is obtained from the
previous term. For example, the sequence given in eqn (8.8) can
alternatively be expressed as:

ur~
1, r~0

2ur{1, r~1, 2, 3, . . . , 8

�
ð8:9Þ

which simply means that, starting from 1 as the first term, each
successive term is obtained by multiplying the previous term by 2.

The finite sequence in eqn (8.8) is an example of a geometric
progression, having the general form:

a, ax, ax2, ax3, . . . , ax8 ð8:10Þ

In the case of the geometric progression defined by eqn (8.8), a 5 1,
x 5 2 and ur 5 axr for r 5 0, 1, 2, …

8.1.1.2 Arithmetic Progression

Consider the sequence of odd positive numbers 1, 3, 5, 7, …, 31,
which can be expressed either in terms of the general term:
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ur~2r{1, r~1, 2, 3, . . . , 16 ð8:11Þ

or as a recurrence relation expressed in prescription form:

ur~
1, r~1

ur{1z2, r~2, 3, . . . , 8

�
ð8:12Þ

This finite sequence is an example of an arithmetic progression,
because each successive term is given by a sum having the general
form:

a, azd, az2d, az3d, . . . , aznd ð8:13Þ

where, in this example, a 5 1, d 5 2.

8.1.2 Sequences of Indefinite Length

In the sequence given in eqn (8.13), the magnitudes of successive terms
progressively increase. Some sequences, however, have the property
that as the number of terms increases, the values of successive terms
appear to be approaching a limiting value. For example, the terms in
the harmonic sequence:

1,
1

2
,
1

3
,
1

4
, . . . ,

1

n
, . . . , ð8:14Þ

where ur 5 1 / r, r 5 1, 2, 3,…, decrease in magnitude as r increases,
and approach zero as r tends to infinity. Thus, we can define the limit
of the sequence as:

lim
r??

urð Þ~ lim
r??

1

r
~0: ð8:15Þ

If the limit of a sequence is a single finite value, say, m, then:

lim
r??

urð Þ~m ð8:16Þ

and the sequence is said to converge to the limit m. However, if this is
not the case, then the sequence is said to diverge. Thus, for the
arithmetic progression defined in eqn (8.13), the magnitudes of
successive values in the sequence increase without limit and the
sequence diverges. In contrast, the geometric progression in eqn (8.10)
will converge to a limiting value of zero if 21 , x , 1.

Power Series 175



Problem 8.1

Test each of the following sequences for convergence. Where
convergence occurs, give the limiting value.

(a) ur~
1

2r
, r 5 0, 1, 2, …;

(b) un~
n{1

2n
, n~1, 2, . . . ;

(c) ur 5 cosrp, r 5 0, 1, 2, …

8.1.3 Functions Revisited

In our discussion of algebraic manipulation in Chapter 1, we used the
three-spin model for counting the various permitted orientations of
three spin-K nuclei. If we focus on the number of arrangements where
r nuclei are in the spin-up state, then we see that there is only one
arrangement where none of the nuclei has spin up; three where one
nucleus has spin up; three where two nuclei have spin up; and
one where all three nuclei have spin up. Thus, we can define the
sequence 1, 3, 3, 1, where the general term is given by ur~3!= 3{rð Þ!r!,
(r 5 0, 1, 2, 3). In general, the number of ways of selecting r specified
objects from n objects is given by the expression nCr~n!= n{rð Þ!r!.
In this example, there are three nuclei and so n 5 3, and there are
3Cr(r 5 0, 1, 2, 3) ways in which 0, 1, 2 and 3 nuclei have spin up.

Problem 8.2

Find the sequence that represents the number of arrangements
of six spin-K nuclei, with r spin–up arrangements, where r now
runs from 0 to 6.

8.2 Finite Series

For any sequence of terms u1, u2, u3, … we can form a finite series by
summing the terms in the sequence up to and including the nth term:

Sn~u1zu2zu3z � � �zun~
Xn
r~1

ur ð8:17Þ
We first met the summation

notation S in Chapter 1. In this

example, the counting index, r,

takes values from 1 to n.
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For example, the sum of the first n terms in the series obtained from
the sequence defined by eqn (8.8) is given by:

Sn~1z2z22z . . .z2n{1: ð8:18Þ

Evaluating this sum for n 5 1, 2, 3, 4, 5 yields the sequence of partial
sums:

S1~1, S2~3, S3~7, S4~15 and S5~31: ð8:19Þ

If we now look closely at this new sequence of partial sums, we may be
able to deduce that the sum of the first n terms is Sn 5 2n 2 1.
In general, for a geometric series obtained by summing the members
of the geometric progression, defined by eqn (8.10), the sum of the
first n terms is given by:

Sn~azaxzax2z � � � axn{1

~a
1{xn

1{x

� � ð8:20Þ

Problem 8.3

For the geometric series obtained by summing the first n terms
of the geometric progression in eqn (8.8), use eqn (8.20) and
appropriate values of a and x given in eqn (8.10) to confirm that
the sum of the first n terms is 2n 2 1.

8.3 Infinite Series

We can also form an infinite series from a sequence by extending the
range of the dummy index to an infinite number of terms:

S~u1zu2zu3z � � �~
X?
r~1

ur: ð8:21Þ

The summation of a finite series will always yield a finite result, but
the summation of an infinite series needs careful examination to
confirm that the addition of successive terms leads to a finite result,
i.e. the series converges. It is important not to confuse the notion of
convergence as applied to a series with that applied to a sequence. For
example, the harmonic sequence given by eqn (8.14) converges to the
limit zero. However, somewhat surprisingly, the harmonic series:
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S~
X?

r~1

1

r
~1z

1

2
z

1

3
z

1

4
z � � � ð8:22Þ

does not yield a finite sum, S, and consequently does not converge. In
other words the sum of the series increases without limit as the
number of terms in the series increases, even though the values of
successive terms converge to zero. We can see more easily how this is
true by breaking down the series into a sum of partial sums:

S~1z
1

2
z

1

3
z

1

4

� �
z

1

5
z

1

6
z

1

7
z

1

8

� �
z � � � ð8:23Þ

Here, each successive sum of terms in parentheses will always be
greater than K; for example,

1

3
z

1

4

� �
w

1

4
z

1

4

� �
and

1

5
z

1

6
z

1

7
z

1

8

� �
w

1

8
z

1

8
z

1

8
z

1

8

� �
, ð8:24Þ

and, because this is an infinite series, it follows that the sum increases
without limit

Sw1z
1

2
z

1

2
z

1

2
z � � � ð8:25Þ

8.3.1 p Revisited – The Rate of Convergence of an Infinite Series

In Chapter 1 we saw that the irrational number, p, can be calculated
from the sum of an infinite series. One example given involved the
sum of the inverses of the squares of all positive integers:

p2

6
~
X?

r~1

1

r2
~1z

1

22
z

1

32
z

1

42
z

1

52
z � � �z 1

n2
z � � � ð8:26Þ

This series converges extremely slowly, requiring well over 600 terms
to provide precision to the second decimal place. In order to achieve
100 decimal places for p, we would need more than 1050 terms!
However, the alternative series:

p

2
~

1

1
z

1:1

1:3
z

1:1:2

1:3:5
z

1:1:2:3

1:3:5:7
z � � � ð8:27Þ

converges more rapidly, achieving a precision to the second decimal
place in a relatively brisk 10 terms.
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8.3.2 Testing a Series for Convergence

The non-convergence of the harmonic series, discussed above,
highlights the importance of testing whether a particular series is
convergent or divergent. For a series given by:

X?
r~1

ur~u1zu2zu3z � � � ð8:28Þ

the first, and necessary, condition needed to ensure convergence is
that lim

r??
ur~0. If this condition is satisfied (as it is in the series above

for determining p), we can then proceed to test the series further for
convergence. It should be emphasised, however, that satisfying this
first condition does not necessarily imply that the series converges (i.e.
we say that the first condition is not sufficient). For example, as we
have seen, the harmonic sequence is an example of one for which ur
tends to zero as r A ?, but the corresponding harmonic series is not
convergent.

8.3.2.1 The Ratio Test

A number of tests are available for confirming the convergence, or
otherwise, of a given series. The test for absolute convergence is the
simplest, and is carried out using the ratio test.
For successive terms in a series, ur and ur+1, the series:

. converges if lim
r??

urz1

ur










v1; ð8:29Þ

. diverges if lim
r??

urz1

ur










w1: ð8:30Þ

If, however, lim
r??

urz1

ur










~1, then the series may either converge or

diverge, and further tests are necessary.

8.3.2.2 The Infinite Geometric Series

The form of the geometric series in eqn (8.20) generalises to the form
of eqn (8.21) where, now:

Sn~azaxzax2z � � �~
X?
r~1

axr{1,
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and ur 5 axr21. On using the ratio test in eqn (8.29), we find that:

lim
r??

axr

axr{1










v1:

but only when |x| , 1. This constraint on the permitted values of x,
for which the series converges, defines the interval of convergence.
In general, it may not be possible to specify the value of the sum, S,

in terms of x: instead, we chose a value of x, and compute the sum to
a given number of significant figures or decimal places.

Worked Problem 8.1

Q. (a) Give the forms of ur+1 and ur for the geometric series
1+x+x2+x3+…

(b) Use the ratio test to establish that the series converges
and find the interval of convergence.

(c) Given x 5 0.27 calculate the sum of the series to two
decimal places.

A. (a) Since the first term in the series is a constant, we
define the rth term as ur 5 xr21 and the (r + 1)th term as
ur+1 5 xr.

(b) The ratio test yields:

lim
r??

urz1

ur










~ lim

r??

xr

xr{1










~ xj j,

and so the series converges if |x| , 1 and diverges if |x| .
1. If x 5 ¡1, then, as we saw earlier, further tests are
required to establish whether the series converges or
diverges at these end points. However, in this case, we
can see by inspection that for x 5 +1 the sum of the first
r terms will be r and thus increases without limit as
r A ?. For x 5 21, the sum oscillates between 0 and 1,
depending on whether r is even or odd. In both cases, a
finite sum is not obtained as r A ?, and we can say that
the series fails to converge for x 5 ¡1. Consequently,
the series converges if x takes the values 21 , x , 1; an
inequality that defines the interval of convergence.

(c) Let Sn designate the sum of the first n terms of the
geometric series. Table 8.1 summarises the values of Sn,
and the incremental changes for n 5 1, 2, …, 8, using
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x 5 0.27. We can see from the Table that in order to
specify the sum to a given number of decimal places, we
have to compute its value to one more decimal place
than required, in case rounding up is necessary. In this
case, convergence to two decimal places yields a sum of
1.370 at n 5 6.

Problem 8.4

For each of the following infinite series, use the ratio test to
establish the interval of convergence.

(a) S 5 1 + 2x + 3x2 + 4x3 + …

(b) S~1{xz
x2

2!
{

x3

3!
z

x4

4!
{ � � �z {1ð Þr{1 xr{1

r{1ð Þ!z � � �

(c) S~1z
x2

2
{

x4

4
z � � �z {1ð Þr{1x

2r{2

2r{2
:

Hint: For part (a), you will need to find the general term first.

8.4 Power Series as Representations of Functions

We have seen above that, for a geometric progression of the type
given in eqn (8.10), the sum of the first n terms is given by eqn (8.20).
Furthermore, for a 5 1, we can see that:

1{xn

1{x
~1zxzx2z � � �zxn{1: ð8:31Þ

This is an important expression because it allows us to see how a

function such as
1{xn

1{x
can be represented by a polynomial of degree

n 2 1. However, if we now extend the progression indefinitely to form

Table 8.1 Numerical summation of the geometric series
Pn
r~1

xr{1.

n 1 2 3 4 5 6 7 8

Sn 1.0 1.27 1.3429 1.3626 1.3679 1.3693 1.3697 1.3698

DSn - 0.27 0.0729 0.0197 0.0053 0.0014 0.0004 0.0001
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the infinite geometric series 1+x+x2+…+xn21+…, we obtain an

expansion of a function lim
n??

1{xn

1{x
which converges only for values

of x in the range 21 , x , 1 (see Worked Problem 8.1). If we now
evaluate the limit as n A ?, for any x in the interval of convergence
21 , x , 1, we obtain:

lim
n??

1{xn

1{x
~

1{0

1{x
~

1

1{x
: ð8:32Þ

Note that in the limit n A ?, the term xn A 0 because we are
restricting the values of x to the interval of convergence 21 , x , 1.

We now see that the function f xð Þ~ 1

1{x
can be represented by the

infinite series expansion 1+x+x2+…+xn21+…, which converges for
21 , x , 1. For all other values of x the expansion diverges.
The infinite geometric series is an example of a power series because

it contains a sum of terms involving a systematic pattern of change in
the power of x. In general, the simplest form of a power series is given
by:

f xð Þ~c0zc1xzc2x
2zc3x

3z � � �zcnx
nz . . . ð8:33Þ

where c0, c1, c2, … are coefficients and successive terms involve an
increasing power of the independent variable, x. Such series involving
simple powers of x are termed Maclaurin series. The more general
Taylor series are similar in form, but involve powers of (x 2 a):

f xð Þ~c0zc1 x{að Þzc2 x{að Þ2zc3 x{að Þ3

z � � �zcn x{að Þnz . . .
ð8:34Þ

where a is any number other than 0 (in which case, we revert to a
Maclaurin series). The significance of the value of a is that it
represents the point about which the function is expanded. Thus the
Taylor series are expanded about the point x 5 a, whereas the
Maclaurin series are simply expanded about the point x 5 0.
Maclaurin and Taylor series are used most frequently to provide
alternative ways of representing many types of function. In addition,
such series in truncated polynomial form provide an excellent tool for
fitting experimental data when there is no model formula available.
There are two important features associated with the generation of

power series representations of functions: first, a value of x lying in
the domain of the function must be chosen for the expansion point, a;
second, the function must be infinitely differentiable at the chosen
point in its domain: in other words, differentiation of the function

Power series are so-called,

because they are sums of powers

of x with specified coefficients.
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must never yield a constant function because subsequent derivatives
will be zero, and the series will be truncated to a polynomial of finite
degree. The question as to whether the power series representation of
a function has the same domain as the function itself is discussed in a
later subsection. The next subsection is concerned with determining
the coefficients, ci, for the two kinds of power series used to represent
some of the functions introduced in Chapter 2.

8.4.1 The Maclaurin Series: Expansion about the Point x 5 0

Let us start by using eqn (8.33) as a model expression to generate a
power series expansion for a function f(x), assuming that the
requirements given in the paragraph above are satisfied. In order to
obtain the explicit form of the series, we need to find values for the
coefficients c0, c1, c2, …. This is achieved in the following series of
steps:
The original function, and its first, second and third derivatives are:

f xð Þ~c0zc1xzc2x
2zc3x

3zc4x
4z � � �zcnx

nz � � � ð8:35Þ

f 1ð Þ xð Þ~c1z2c2xz3c3x
2z4c4x

3z � � �zncnx
n{1z � � � ð8:36Þ

f 2ð Þ xð Þ~2c2z2:3c3xz3:4c4x
2 � � �zn n{1ð Þcnxn{2z � � � ð8:37Þ

f 3ð Þ xð Þ~2:3c3z2:3:4c4x � � �zn n{1ð Þ n{2ð Þcnxn{3z � � � ð8:38Þ

If we now substitute the expansion point, x 5 0, into each of the
above equations we obtain:

f 0ð Þ~c0 ð8:39Þ

f 1ð Þ 0ð Þ~c1 ð8:40Þ

f 2ð Þ 0ð Þ~2c2~2!c2 ð8:41Þ

f 3ð Þ 0ð Þ~2:3c3~3!c3 ð8:42Þ

and, by inspection, the nth derivative has the form:

f nð Þ 0ð Þ~n!cn: ð8:43Þ

If we now substitute the coefficients obtained from each of the
expressions (8.39) to (8.43) into (8.35) we obtain the Maclaurin series
for f(x):

For clarity, we use a superscript

containing a counting number in

parentheses to denote a particu-

lar order of derivative.
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f xð Þ~f 0ð Þzf 1ð Þ 0ð Þxz f 2ð Þ 0ð Þ
2!

x2z

f 3ð Þ 0ð Þ
3!

x3z � � �z f nð Þ 0ð Þ
n!

xnz � � �
ð8:44Þ

This series, which is generated by evaluating the function and its
derivatives at the point x50, is valid only when the function and its
derivatives exist at the point x50 and, furthermore, for functions that
are infinitely differentiable.

8.4.1.1 The Maclaurin Series Expansion for ex

The exponential function f(x) 5 ex is unique insofar as the function
and all its derivatives are the same. Thus, since f (n)(x) 5 ex, for all n,
we have:

f 0ð Þ~f 1ð Þ 0ð Þ~f 2ð Þ 0ð Þ~f 3ð Þ 0ð Þ~ � � � f nð Þ 0ð Þ~e0~1 ð8:45Þ

and, using eqn (8.44), we obtain:

f xð Þ~ex~1zxz
x2

2!
z

x3

3!
z � � �z xn{1

n{1ð Þ!z � � � , ð8:46Þ

in which the nth term is given explicitly.

8.4.1.2 Truncating the Exponential Power Series

For any power series expansion, the accuracy of a polynomial
truncation depends upon the number of terms included in the
expansion. Since it is impractical to include an infinite number of
terms (at which point the precision is perfect), a compromise has to be
made in choosing a sufficient number of terms to achieve the desired
accuracy. However, in truncating a Maclaurin series, the chosen
degree of polynomial is always going to best represent the function
close to x 5 0. The further away from x 5 0, the worse the
approximation becomes, and more terms are needed to compensate; a
feature which is demonstrated nicely in Figure 8.2 and Table 8.2.
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8.4.1.3 The Maclaurin Expansions of Trigonometric Functions

The trigonometric functions sin x, cos x, tan x have derivatives which
exist at x 5 0, and so can be represented by Maclaurin series.

Worked Problem 8.2

Q. (a) Find the first three non-zero terms of the Maclaurin
series expansion of the sine function.

(b) Deduce the form of the general term, and give the
interval of convergence for the series.

A. (a) Proceeding in the same manner used for the exponential
function:

Table 8.2 The accuracy of first, second and third degree polynomial approximations

to the function f(x)5ex.

x 1+x 1zxz x2

2!
1zxz x2

2!
z x3

3!
ex

0 1 1 1 1

0.0001 1.0001 1.000100005 1.000100005 1.000100005

0.001 1.001 1.0010005 1.0010005 1.0010005

0.01 1.01 1.01005 1.01005017 1.01005017

0.1 1.1 1.105 1.105167 1.1051709

0.2 1.2 1.22 1.22133 1.221403

1.0 2 2.5 2.6667 2.718282

Figure 8.2 A comparison of

the accuracy of polynomial

approximations to the function

y 5 ex (x¢0), using polynomials

of degrees two to ten.

f(x)5 sin x f (1)(x)5 cos x f (2)(x)52sin x f (3)(x)52cos x f (4)(x)5 sin x f (5)(x)5 cos x

f(0) 5 0 f (1)(0)5 1 f (2)(0)5 0 f (3)(0)521 f (4)(0)5 0 f (5)(0)5 1
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As every other derivative is zero at x 5 0, we need to
go as far as the 5th derivative in order to obtain the first
three non-zero terms. Thus, using eqn (8.44) we have:

f xð Þ~sin x~x{
1

3!
x3z

1

5!
x5{ � � �

(b) Finding the general term requires some trial and error.
In this case:

N The coefficients of even powers of x are zero.
N The denominators in the coefficients of the odd

powers of x are odd numbers (formed by adding or
subtracting 1 to or from an even number, 2n).

N As the signs of the coefficients for c1,c3,c5,…
alternate, starting with a positive value for c1, the
factor (21)n21 takes care of the sign alternation.

N Only odd powers of x appear, suggesting that the
index can be generated by subtracting 1 from an
even number; thus the power of x in the nth term can
be written as x2n21. (Check that this generates the
terms x, x3 and x5 by substituting n 5 1, 2 and 3,
respectively). Thus, the general term in this case is

given by:
{1ð Þn{1

2n{1ð Þ! x
2n{1z � � � , where n51, 2, 3,…

Problem 8.5

Use eqn (8.44) to find the first four non-zero terms, as well as
the general term, in the Maclaurin series expansions of each of
the following functions:

(a) e2x; (b) cos x; (c) (12x)21.

8.4.1.4 The Problem with Guessing the General Term: A Chemical
Counter Example

In our discussion of the geometric series and the Maclaurin series for
sinx, we made the assumption, from the pattern emerging from the
first few terms, that we could predict how the series will continue ad

infinitum. In most cases, this confidence is justified, but sometimes we
encounter problems where finding the general term requires a
knowledge of the physical context of the problem. An example of
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such a problem in chemistry involves the computation of the ion–ion
interaction energy in an ionic solid, such as NaCl. If we compute the
interaction energy arising from the interaction between one ion
(positive or negative) and all the other ions in the NaCl lattice
structure, then we obtain the Madelung energy in the form:

V~{
e2

4pe0R

6ffiffiffi
1

p {
12ffiffiffi
2

p z
8ffiffiffi
3

p {
6ffiffiffi
4

p z
24ffiffiffi
5

p {
24ffiffiffi
6

p z � � �
� 	

~{
e2A

4pe0R
:

ð8:47Þ

Here A is the Madelung constant for the NaCl structure, and R is the
distance between any adjacent Na+ and Cl2 ions. If we inspect the terms
in the series, we can see not only that the sign alternatives but also what
appears to be a pattern in the square root values given in the
denominators of successive terms. However, in contrast, it is very
difficult to see any pattern to the values of the numerators; the reason
being that there is none: we can only determine their values from
knowledge of the NaCl structure. In this example, the first term arises
from the interaction between a Na+ ion and the six nearest neighbour
Cl2 anions at a distance

ffiffiffi
1

p
R; the second term arises from the

interaction of nearest neighbour ions of the same charge, which in this
case involves an Na+ ion and 12 second nearest neighbour Na+ ions at a
distance

ffiffiffi
2

p
R; the third term is then the interaction between an Na+ and

eight Cl2 at a distance
ffiffiffi
3

p
R, and so on. The general term in this case

is
m

R
ffiffiffi
n

p , where m is the number of nth neighbours at a distance of R
ffiffiffi
n

p
.

The next term in the series is, somewhat unexpectedly, z
12ffiffiffi
8

p because

the number of 7th nearest neighbours at a distance R
ffiffiffi
7

p
is zero!

8.4.2 The Taylor Series: Expansion about Points Other Than Zero

In many situations, we need to find the power series expansion of a
function in terms of the values of the function and its derivatives at some
point other than x5 0. For example, in the case of a vibrating diatomic
molecule, the natural choice of origin for describing the energy of the
molecule is the equilibrium internuclear separation, Re, and not R 5 0
(where the nuclei have fused). We can determine the expansion of a func-
tion f(x) about an origin x 5 a (where a is now, by definition, generally
not zero) using the Taylor series which is given by the expression:

f xð Þ~f að Þzf 1ð Þ að Þ x{að Þz f 2ð Þ að Þ
2!

x{að Þ2z � � �z

f nð Þ að Þ
n!

x{að Þnz � � � :
ð8:48Þ
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Here, f (n)(a) is the value of the nth derivative of f(x) at the point
x 5 a. The special case where a 5 0, as discussed above, generates
the Maclaurin series.

Worked Problem 8.3

Q. Find the Taylor series expansion for the function f(x) 5 ex

about the point x5 1.
A. Since all the derivatives of ex at x 5 1 have the value e, the
Taylor series takes the form:

ex~e 1z x{1ð Þz x{1ð Þ2

2!
z

x{1ð Þ3

3!
z � � �

(

z
x{1ð Þn{1

n{1ð Þ! z � � �
)
:

ð8:49Þ

where the last term in the brackets is the nth term. We can see
from a plot of the Taylor series expansion of the exponential
function shown in Figure 8.3, that far fewer terms are necessary
to achieve a good degree of accuracy in the region around x 5 1
than is the case with the MacLaurin series. However, we also see
that the further away we are from the point x 5 1, the poorer
the approximation and the more terms we will need to achieve a
given accuracy. Although it is not obvious from Figure 8.3, the
Maclaurin series will be better than this Taylor series expansion
for values of x close to x 5 0.

Figure 8.3 An illustration of the

improved accuracy achieved with

the Taylor series expansion of

f(x)5ex about x 5 1, compared

with the Maclaurin series

(expanded about x 5 0).
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Problem 8.6

Find the first four non-zero terms in the Taylor series
expansions of the following functions, expanded about the
given point, and deduce the form of the general term for each
series:
(a) (1 2 x)21, at x 5 21; (b) sin x, at x 5 p / 2; (c) ln x, at

x 5 1.

Worked Problem 8.4

The variation of potential energy, E(R), with internuclear
separation, R, for a diatomic molecule can be approximated by

the Morse potential E Rð Þ~De 1{e{a R{Reð Þ
n o2

, shown schema-

tically in Figure 8.4. The dissociation energy, De and a are both
constants for a given molecule.

However, one of the limitations of the Morse potential energy
is that, in contrast to the ‘‘experimental’’ curve, the value of the
energy at R 5 0 (corresponding to nuclear fusion) is finite,
rather than infinite. The minimum in the Morse potential energy
curve occurs at R 5 Re , which represents the equilibrium bond
length.

Q. Find the first three terms in the Taylor series expansion for
the Morse function about the point R 5 Re.

Figure 8.4 Schematic plot the

Morse potential energy function

(continuous line). The minimum

energy is at R5Re. The harmonic

approximation (see text) is shown

as a dashed line.
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A. The general expression for the Taylor series expanded about
an arbitrary point x 5 a is

f xð Þ~f að Þzf 1ð Þ að Þ x{að Þz f 2ð Þ að Þ
2!

x{að Þ2z � � �z

f nð Þ að Þ
n!

x{að Þnz � � �

Step 1: Identify R with x; Re with a, and E(R) with f(x). We can
then see that the three terms f(a), f (1)(a), and f (2)(a) are
equivalent to E(Re), E

(1)(Re) and E(2)(Re), which enables us to
re-express the Taylor series in the form:

E Rð Þ~E Reð Þze 1ð Þ Reð Þ R{Reð Þ

z
e 2ð Þ Reð Þ

2!
R{Reð Þ2z � � �

ð1:50Þ

Thus, we need to evaluate each of the terms E(Re), E
(1)(Re) and

E (2)(Re), corresponding to the energy and its first two
derivatives, evaluated at the point R 5 Re.

Step 2: Evaluate E(Re) using the substitution R 5 Re in the
energy expression:

E Reð Þ~De 1{e{a Re{Reð Þ
n o2

~De 1{1f g2~0,

since e0 5 1.

Step 3: Evaluate the first and second derivatives, E (1)(Re) and
E (2)(Re), by applying the chain rule (the detailed working forms
part of the next Problem). Thus:

e 1ð Þ Rð Þ~2De 1{e{a R{Reð Þ
n o

|ae{a R{Reð Þ

e 2ð Þ Rð Þ~2a2De 2e{2a R{Reð Þ{e{a R{Reð Þ
n o

Substituting R 5 Re into the above equations gives:

E (1)(Re) 5 2De{1 2 1} 6 a 5 0

E (2)(Re) 5 2a2De{2 2 1} 5 2a2De
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Step 4: Substitute the expressions for E(Re), E (1)(Re) and
E (2)(Re), into the Taylor expansion [eqn (8.50)] yields:

E Rð Þ~0z0| R{Reð Þz 2a2De

2!
R{Reð Þ2z � � �

)E Rð Þ~a2De R{Reð Þ2z � � �
ð8:51Þ

This is the total energy, E(R), to second order in R, and is
commonly known as the harmonic approximation. The expres-
sion for E(R) gives a good approximation to the potential
energy for small displacements of the nuclei, but a somewhat
poorer one as the displacements from the equilibrium bond
length increase, or decrease, as is seen in Figure 8.4.

Problem 8.7

(a) Use the chain rule (see Section 4.2.4) to find (i) the first and
(ii) the second derivative of the Morse function E Rð Þ~

De 1{e{a R{Reð Þ
n o2

, checking your answers with those

given in Worked Problem 8.4.
(b) Verify, by checking the values of E (1)(Re) and E (2)(Re), that

E(Re) corresponds to a minimum energy.
(c) Given that the force acting between the nuclei of the

molecule is given by:

F~{
dE

dR
,

use eqn (8.51) to find an expression for F (for small
displacements of the nuclei).

(d) The restoring force acting on a simple harmonic oscillator
is given by the expression F 5 2kx. Comment on any
similarity between the form of this expression and the one
obtained in (c), assuming that the displacement x is
equivalent to (R 2 Re). What conclusions do you draw
about applicability of the harmonic approximation for
diatomic molecules?
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8.4.3 Manipulating Power Series

8.4.3.1 Combining Power Series

If two functions are combined by some operation (for example
addition, multiplication, differentiation or integration) then we can
find the power series expansion of the resulting function by applying
the appropriate operation to the reference series. However, the
outcome will be valid only within a domain common to both power
series. So, for example, if the Maclaurin series for ex (interval of
convergence: all x in R) is multiplied by that for ln(1 + x) (interval of
convergence: 21 , x ¡ 1), the resulting series only converges in the
common interval of convergence 21 , x ¡ 1.

Worked Problem 8.5

Q. Given that the hyperbolic cosine function cosh x is defined by:

cosh x~
1

2
exze{xf g,

use the Maclaurin series for ex and e2x to obtain a power series
expansion for the cosh x function. Give the form of the general
term.

A. If we substitute the Maclaurin series for ex and e2x in the
defining equation for cosh x, we obtain:

cosh x~
1

2
1zxz

x2

2!
z

x3

3!
z � � �z xn{1

n{1ð Þ!

�

z � � �z1{xz
x2

2!
{

x3

3!
z

x4

4!

{ � � � {1ð Þn{1 xn{1

n{1ð Þ!z � � �
	

) cosh x~1z
x2

2!
z

x4

4!
z � � �z x2 r{1ð Þ

2 r{1ð Þ½ �!

z � � � r~1,2,3, . . .

ð8:52Þ

Since both ex and e2x converge for all x, the above series for
cosh x will also converge for all x.
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Problem 8.8

(a) Give the form of the Maclaurin series for the function sinh

x, where sinh x~
1

2
ex{e{xð Þ.

(b) Deduce the first three terms of the Maclaurin series for the

function f xð Þ~ e{x

1{xð Þ using the series for e2x and
1

1{xð Þ
taken from your answers to Problem 8.5. Give the interval
of convergence for f(x).

8.4.3.2 A Shortcut for Generating Maclaurin Series

Sometimes we can generate Maclaurin series for a given function by a
simple substitution. For example, the Maclaurin series for the
function e2x can be found as in Problem 8.5. However, an alternative,
and much less labour intensive, approach involves writing X 5 2x

and then using the existing series for ex, with X replacing x.

Worked Problem 8.6

Q. Use the substitution X 5 2x for the Maclaurin series for eX,
to find the related series for e2x. How is the interval of
convergence for e2x related to that for ex?
A. The Maclaurin expansion for the exponential function eX is:

eX~1zXz
X 2

2!
z

X 3

3!
z

X 4

4!
z � � � Xn{1

n{1ð Þ!z � � �

where X is the independent variable. If we now write X 5 2 x

we obtain the series for e2x as required:

e{x~1{xz
x2

2!
{

x3

3!
z

x4

4!
{ � � � {1ð Þn{1 xn{1

n{1ð Þ!z � � � ð8:53Þ

The test for absolute convergence shows that the interval of
convergence is the same as for ex.
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Problem 8.9

(a) Use the substitution X 5 ax and the Maclaurin series for eX

to find the series for eax.
(b) (i) Use the equality sin 2x 5 2 sin x cos x, and Maclaurin

series for sin x and cos x, to find the first three terms in
the related series for sin 2x.

(ii) Use the substitution X 5 2x and the Maclaurin series for
sin X, to find the first three terms in the related series for
sin 2x. Compare your answer to (b)(i) above.

8.4.4 The Relationship Between Domain and Interval of Convergence

We saw earlier that the Maclaurin series expansion of the function
f(x) 5 (1 2 x)21 takes the form 1+x+x2+…. Although the domain of
f(x) includes all x values, with the exclusion of x 5 1, where the
function is undefined, the domain of the Maclaurin series, determined
by applying the ratio test, is restricted to21, x, 1. The point x5 1
is excluded from the domains of both the function, and the series.
However, although the point x521 is clearly included in the domain
of the function, since f {1ð Þ~1=2, it is excluded from the domain of
the series. We can further illustrate this by comparing a plot of the
function y 5 f(x) 5 (1 2 x)21 with the MacLaurin series expansion of
this function up to the third, fourth, fifth and sixth terms (see
Figure 8.5). Clearly the three plots match quite well for 21 , x , 1
but differ dramatically for all other values of x. We also see at x521
that the series representation oscillates between zero and +1 as each
new term is added to the series, thus indicating divergence at this
point.

8.4.5 Limits Revisited: Limiting Forms of Exponential and
Trigonometric Functions

In Chapter 3 we discussed the behaviour of a function close to some
limiting value of the independent variable. Some of the examples
concern finite limiting values, but more often we are interested in how
functions behave for increasingly small or large values in the
independent variable. It is usually straightforward to evaluate the
limit of simple functions for increasingly large or small values of x
but, for some of the transcendental functions, we need to use power
series expansions to probe their asymptotic behaviour.
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8.4.5.1 Exponential Functions

The behaviour of the function eax, as x tends to large or small values,
depends upon the signs and magnitudes of x and a. Thus:

N for x 5 0, eax 5 1, irrespective of the value of a;
N for large positive x, eax increases without limit as x increases for

a . 0, but eax becomes increasingly small as x increases for a , 0;
N regardless of the signs of x or a, eax approaches 1, for increasingly

small values of x, according to the MacLaurin power series
expansion [as seen in Problem 8.9(a)]:

eax~1zaxz
axð Þ2

2!
z

axð Þ3

3!
z

axð Þ4

4!
z � � � axð Þn{1

n{1ð Þ! z � � � ð8:54Þ

Figure 8.5 A plot of

f xð Þ~ 1{xð Þ{1
(continous line),

compared with plots of the

polynomial truncations of the

Maclaurin series expansion

1+x+x2+…+xn21+ for n 5 3 to 6.

Power Series 195



Worked Problem 8.7

Q. For the radial function of a 3d hydrogen atomic orbital,
R rð Þ~Nr2e{r=3a0 (N is a normalising constant, and a0 is the Bohr
radius), find:

(a) the form of R(r) at small r, using the expansion of the
exponential function given above;

(b) lim
r?0

R rð Þ;
(c) lim

r??
R rð Þ.

A. (a) R rð Þ&Nr2 1{
r

3a0
z . . .

� �
~Nr2 for small r.

(b) Using the approximation from (a), we see that
lim
r?0

R rð Þ~0.

(c) For large r we see that the limiting value of the function
will be determined by the outcome of the competition
between the Nr2 term and the e{r=3a0 term. As we saw in
Section 2.3.4, the exponential term will always overcome
the power term, and so lim

r??
R rð Þ~0.

Problem 8.10

The Einstein model for the molar heat capacity at constant
volume, CV, of a solid yields the formula:

CV~3R
hv

kT

� �2
e

hv
2kT

e
hv
kT{1

( )2

:

Show that at high values of T, when we can justifiably substitute
the exponential terms by their two-term series approximations,
CV tends to the limit 3R.

8.4.5.2 Trigonometric Functions

In an analogous way, the series expansions for the sine and cosine
functions have the forms:

cos ax~1{
axð Þ2

2!
z � � � ; sin ax~ax{

axð Þ3

3!
z � � � , ð8:55Þ
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as x A 0. For very small values of x, cos ax and sin ax may be
approximated by 1 and ax, respectively. However, as x increases
without limit, in both positive and negative senses, the values of the
sine or cosine functions oscillate between ¡ 1.

Problem 8.11

Consider a particle confined to move in a constant potential
between the points x 5 0 and x 5 L at which the potential is
infinite. The associated wavefunction has the form:

y~

ffiffiffiffi
2

L

r
sin

npx

L
,

where n is the quantum number defining the state of the particle,
and has values 1, 2, 3, …

Find the expression for y:

(a) at x 5 0;
(b) at x 5 L;
(c) when x is very small.

Summary of Key Points

The key points discussed in this chapter include:

1. The definition of finite sequences with examples including
the geometric and arithmetic progressions.

2. The definition of indefinite sequences and the concepts of
convergence and divergence of a sequence of numbers.

3. The distinction between a finite series having a finite sum
and an infinite series where a finite sum exists only if the
series converges.

4. Testing an infinite series for convergence: the ratio test for
absolute convergence and the interval of convergence.

5. Power series: the Maclaurin and Taylor series.
6. Power series expansions of functions and the appropriate

choice of expansion point.
7. Truncation of power series.
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8. Determining the general term in a power series.
9. The Taylor series expansion of the Morse potential leading

to the harmonic approximation.
10. Manipulating power series.
11. Using power series expansions of functions to probe

limiting behaviour for increasingly large or small values
of the independent variable.
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9
Numbers Revisited: Complex
Numbers

In Chapter 2, we saw that the solution of a quadratic equation of the
form:

ax2zbxzc~0 ð9:1Þ

can yield up to two real roots depending on the values of the
coefficients, a, b and c. The general solution to quadratic equations of
this form is given by the formula:

x~
{b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2{4ac

p

2a
, ð9:2Þ

where the quantity b2 2 4ac is known as the discriminant (see Section
2.4). If the discriminant is positive, then the equation has two real and
different roots; if it is zero then the equation will have two identical
roots, and if it is negative, there are no real roots, as the formula
involves the square root of a negative number. For example, the
equation:

x2{4xz3~0

yields two real roots, x 5 3 and x 5 1, according to:

x~
4+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16{ 4|3ð Þ

p
2

~2+

ffiffiffi
4

p

2
~2+1~3, 1:

We can represent this solution graphically (see Figure 9.1) in terms of
where the function y 5 x2 2 4x + 3 cuts the x-axis (where y 5 0).
However, if we use eqn (9.2) to find the roots of the quadratic

equation:

x2{4xz6~0

we find that the solution yields:

x~
4+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16{ 4|6ð Þ

p
2

~2+

ffiffiffiffiffiffiffiffi
{8

p

2
, ð9:3Þ

199



which requires us to find the square root of28. Graphically, we see in
Figure 9.1 that a plot of the function y 5 x2 2 4x + 6 does not cut the
x-axis at all. Logic would seem to dictate that any solution to the
second of these two equations is non-sensical, and that the result
cannot possibly be real – especially when we view the plot of the
function, which clearly does not cut the x-axis. However, there is a
way of circumventing this problem by simply extending the number

system to include so-called complex numbers, which incorporate
ffiffiffiffiffiffiffiffi
{1

p

as a legitimate number. This concept can naturally seem somewhat
bemusing but, once we get over the shock, we find that the treatment
of complex numbers is really quite straightforward and, more
importantly, we find that they allow us to tackle real problems in
chemistry in a way that would otherwise be impossible.

Aims:

This chapter extends the familiar number system to include
complex numbers containing the imaginary number i. By the
end of this chapter, you should be able to:

N Recognise the real and imaginary parts of a complex
number expressed in either Cartesian or plane polar
coordinates.

N Determine the modulus and argument of a complex
number, and denote its location on an Argand diagram.

Figure 9.1 Plots of the two

functions y 5 x2 2 4x + 3 and

y 5 x2 2 4x + 6, showing the

presence of two and zero real

roots of the respective equations

x2 2 4x + 3 5 0 and

x2 2 4x + 6 5 0.

200 Maths for Chemists



N Perform arithmetical operations on complex numbers.
N Use the Euler formula and the De Moivre theorem to

evaluate powers of complex numbers, to determine nth roots
of a complex number, and to identify real and imaginary
parts of functions of a complex variable.

9.1 The Imaginary Number i

As we saw above, the solutions to algebraic equations do not always
yield real numbers. The solution of the equation x2 + 1 5 0 yields the
apparently meaningless result

x~+
ffiffiffiffiffiffiffiffi
{1

p
, ð9:4Þ

because the square root of a negative number is not defined in terms
of a real number. However, if we now define the imaginary number

i~
ffiffiffiffiffiffiffiffi
{1

p
, then the two roots may be specified as x 5 ¡i. In general,

an imaginary number is defined as any real number multiplied by i.

Thus, for example, the number
ffiffiffiffiffiffiffiffi
{8

p
, which emerged from the

solution to eqn (9.3) above, can be written as
ffiffiffi
8

p ffiffiffiffiffiffiffiffi
{1

p
~

ffiffiffi
8

p
i.

Worked Problem 9.1

Q. Solve the quadratic equation x2 + 2x + 5 5 0.
A. The formula given in eqn (2.2) for the roots of a quadratic
equation yields:

x~{1+

ffiffiffiffiffiffiffiffiffiffiffiffi
4{20

p

2
~{1+

ffiffiffiffiffiffiffiffiffiffi
{16

p

2

~{1+
4

2

ffiffiffiffiffiffiffiffi
{1

p
~{1+2i:

Problem 9.1

(a) Draw plots of the following functions:
(i) y 5 x2 2 2x 2 3 and (ii) y 5 x2 2 2x + 2.
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In each case, comment on whether the plot cuts the x-axis
and, if so, where.

(b) Use eqn (9.2) to find the roots of each of the quadratic
equations x2 2 2x 2 3 5 0 and x2 2 2x + 2 5 0. Comment
on your answers with respect to your plots from part (a).

9.2 The General Form of Complex Numbers

In the answer to Worked Problem 9.1, we obtained the required roots
of the quadratic equation in the form of a sum of a real number (21)
and an imaginary number (2i or 22i). Such numbers are termed
complex numbers, and have the general form:

z~xziy ð9:5Þ

where x and y are real numbers, termed the real and imaginary parts
of z, respectively. Clearly, if x 5 0, y ? 0, then z is an imaginary
number (because the real part vanishes); likewise, if x ? 0, y 5 0, then
z is a real number (because the imaginary part vanishes).

9.3 Manipulation of Complex Numbers

The algebraic manipulation of pairs of complex numbers is really
quite straightforward, so long as we remember that, since i~

ffiffiffiffiffiffiffiffi
{1

p
, it

follows that i2 5 21.

Problem 9.2

Evaluate (a) i3 , (b) i4 and (c) i5.

9.3.1 Addition, Subtraction and Multiplication

For addition or subtraction of complex numbers, the appropriate
operation is carried out separately on the real and imaginary parts of
the two numbers.
Multiplication of a complex number by a scalar (real number),

is achieved by simply multiplying the real and imaginary parts of
the complex number by the scalar quantity. Multiplication of
two complex numbers is performed by expanding the expression

The real and imaginary parts of a

complex number, z, are often

expressed as Re z, and Im z,

respectively.
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(a + ib)(c + id) as a sum of terms, and then collecting the real and
imaginary parts to yield a new complex number.

Worked Problem 9.2

Q. If z1 5 1 + 2i and z2 522 + i, write down (a) z1 + z2, (b) z1z2,
(c) z1 2 z2 and (d) 2(z1 2 z2).
A. (a) z1 + z2 5 (1 + 2i) + (22 + i) 5 1 + 2i 2 2 + i 5 21 + 3i;

(b) z1z2 5 (1 + 2i)(22 + i) 5 22 + i 2 4i 2 2 5 24 2 3i;
(c) z1 2 z2 5 (1 + 2i) 2 (22 + i) 5 3 + i;
(d) 2(z1 2 z2) 5 2(3 + i) 5 6 + 2i.

Note that all of the answers are in the form x + iy.

Problem 9.3

If z1 5 2 + 3i, z2 5 21 + i, z3 5 3 2 2i, give expressions for:

(a) z1 + z2 2 2z3;
(b) z1z2 + z23.

9.3.2 The Complex Conjugate

The complex conjugate, z*, of the complex number z 5 x + iy,
is obtained by changing the sign of the imaginary part of z to yield
z* 5 x 2 iy. Thus, for example, the complex conjugate of the number
z2 5 21 + i, given in Problem 9.3, is z2* 5 21 2 i.
The two numbers z and z* have the properties that their sum and

product are both real, but their difference is imaginary:

zzz�~2x, ð9:6Þ

zz�~ xziyð Þ x{iyð Þ~x2zy2, ð9:7Þ

z{z�~2iy: ð9:8Þ
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Problem 9.4

Express the following in the form x + iy, and write down the
complex conjugate in each case.

(a) (21 2 2i) + (2 + 7i),
(b) (3 2 i) 2 (4 2 2i),
(c) i(1 + 3i),
(d) (1 + 3i)(3 + 2i).

9.3.3 Division of Complex Numbers

As we have seen, addition, subtraction and multiplication of complex
numbers is generally quite straightforward, requiring little more than
the application of elementary algebra. However, the division of one
complex number by another requires that a quotient such as
z1

z2
~

x1ziy1

x2ziy2
, be transformed into a complex number in the form of

eqn (9.5). The solution to this conundrum is not immediately obvious,
until we remember that the product of a complex number with its own
complex conjugate zz* is a real number [see eqn (9.7)]. This suggests
that we could achieve the required form for the quotient by
multiplying both numerator and denominator by z�2:

z1z
�
2

z2z
�
2

~
x1ziy1

x2ziy2
|

x2{iy2

x2{iy2
ð9:9Þ

This has the same effect as multiplying by unity since z�2


z�2~1, but it

allows us to express the quotient in the required form. Thus,
multiplying out the numerator and denominator on the right side of
eqn (9.9), and collecting terms, gives:

z1

z2
~

x1x2zy1y2

x22zy22
zi

y1x2{x1y2

x22zy22
: ð9:10Þ

The net result is that the original quotient is transformed into the
form of a complex number with the real and imaginary parts

x1x2zy1y2

x22zy22
and

y1x2{x1y2

x22zy22
, respectively.
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Worked Problem 9.3

Q. Using z1 and z2 as defined in Worked Problem 9.2, express
z1 / z2 in the form x + iy.

A.
z1

z2
~

1z2i

{2zi
~

1z2i

{2zi
|

{2{i

{2{i
~

{2{i{4iz2

4z2i{2iz1
~

{5i

5
~{i:

In this example, the answer is an imaginary number, since
x 5 0 and y 5 21.

Problem 9.5

Express the following in the form x + iy:

að Þ 1

i
, bð Þ 1{i

2{i
and cð Þ i 2zið Þ

1{2ið Þ 2{ið Þ :

9.4 The Argand Diagram

Since a complex number is defined in terms of two real numbers, it is
convenient to use a graphical representation in which the real and
imaginary parts define a point (x, y) in a plane. Such a representation
is provided by an Argand diagram, as seen in Figure 9.2.

Problem 9.6

Plot your answers to Problem 9.3 as points in an Argand
diagram.

The location of z in the Argand diagram can be specified by using
either Cartesian coordinates (x, y), where x 5 Re z, y 5 Im z, or polar
coordinates (r, h) where, r ¢ 0 and 2p , h ¡ p. The reason for
choosing this range of h values, rather than 0 , h ¡ 2p, derives from
the convention that h should be positive in the first two quadrants
(above the x-axis), moving in an anticlockwise sense from the Re z
axis, and negative in the third and fourth quadrants (below the
x-axis), moving in a clockwise sense. The quadrant numbering runs
from 1 to 4, in an anticlockwise direction, as indicated in Figure 9.2.
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9.4.1 The Modulus and Argument of z

The polar coordinates r and h, define the modulus (alternatively
known as the absolute value and sometimes denoted by |z|) and
argument, respectively, of z. From Pythagoras’ Theorem, and simple
trigonometry, the modulus and argument of z are defined as follows
(see Figure 9.2):

r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
, r¢0 ð9:11Þ

tan h~
y

x
) h~tan{1 y=xð Þ ð9:12Þ

Great care is required in determining h, because it is easy to make a
mistake in specifying the correct quadrant. For example, although the
complex numbers z 5 1 2 i and z 5 21 + i both have tan h 5 21,
they lie in the fourth and second quadrants, respectively, as seen in
Figure 9.3.
If we evaluate tan21 (21), using the tan21 function on an electronic

calculator, to determine h, we obtain20.7854 rad, which is equivalent
to 20.7854 6 180 / p 5 245u. This places z in the fourth quadrant,
which is correct for z5 12 i but incorrect for z521 + i. In the latter
case, we need to look at the values of x 5 Re z and y 5 Im z, and
choose the more appropriate value for h, recognising that tan(p + h)
and tan h have the same value. The use radians or degrees when
evaluating the argument of a complex number is largely a matter of

Figure 9.2 An Argand diagram

displaying the complex number

z 5 1 + i, in terms of the

Cartesian coordinates (1, 1) or,

alternatively, in terms of the polar

coordinates, (r~
ffiffiffi
2

p
, h 5 p/4).
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taste or context. However, you may find it more convenient to work
with degrees when referring to an Argand diagram because it is easier
to associate a complex number with a given quadrant in this case.

Worked Problem 9.4

Q. (a) Given that tan h~
sin h

cos h
, use the addition formulae

for sine and cosine to show that tan(p + h) 5 tan h.
(b) Find the modulus and argument of the complex

numbers 1 2 2i and 21 + 2i
A: (a) Since sin h 5 0 and cos p 5 21, the addition formulae

for sin(p + h) and cos(p + h) give:
sin(p + h) 5 sin p cos h + cos p sin h 5 2sin h
cos(p + h) 5 cos p cos h 2 sin p sin h 5 2cos h,
and so:

tan pzhð Þ~ sin pzhð Þ
cos pzhð Þ~

{sin h

{cos h
~tan h:

(b) For z 5 1 2 2i, we can identify x and y with 1 and 22,
respectively. Thus the modulus, r, is

ffiffiffi
5

p
. The argument,

expressed in degrees (for convenience), is found by
solving tan21(22) 5 h: i.e. h5 263.43u or 116.17u (h5
21.107 rad or 2.034 rad). In this case, an Argand

Figure 9.3 An Argand diagram

showing the complex numbers

z1 5 21 + i and z2 5 1 2 i with

modulus
ffiffiffi
2

p
and arguments 3p/4

and 2p/4, respectively.
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diagram shows that h is in the fourth quadrant, and
so h 5 263.43u is the correct value for the argument.
For z 5 21 + 2i, it follows again that r~

ffiffiffi
5

p
and

h 5 263.43u or 116.17u; however, the correct argument
this time is 116.17u, because z lies in the second
quadrant.

Problem 9.7

Find the modulus and argument (in degrees) of the complex
numbers (a) 21 2 2i and (b) 2i.

Hint: You will need to exercise a little care in determining the
argument for the second of the two complex numbers.

9.5 The Polar Form for Complex Numbers

So far we have assumed that a complex number takes the form
z 5 x + iy, where x and y are the values of Re z and Im z, respectively.
However, from trigonometry (see Figure 2.2) we see that:

x~r cos h and y~r sin h:

Consequently, z may be expressed in terms of r, h as:

z~r cos hzi sin hð Þ: ð9:13Þ

Eqn (9.13) is not yet in a form that is fundamentally different from
the Cartesian form expressed in eqn (9.5). However, we can obtain an
alternative, more compact, and far more powerful way of writing the
polar form of a complex number by re-visiting the Maclaurin series
for the sinh, cosh and exponential functions. The Maclaurin series for
cosine and sine are:

cos h~1{
h2

2!
z

h4

4!
z � � �z {1ð Þn{1

2n{2ð Þ! h
2n{2z � � � ð9:14Þ

sin h~h{
h3

3!
z

h5

5!
z � � �z {1ð Þn{1

2n{1ð Þ! h
2n{1z � � � ð9:15Þ
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If we substitute each of these into eqn (9.13) we obtain:

z~r cos hzi sin hð Þ~r 1zih{
h2

2!
{

ih3

3!
z

h4

4!
z

ih5

5!
z � � �

( )
, ð9:16Þ

and on re-writing the right-hand side in terms of powers of ih using
i2 5 21, i3 5 2i, i4 5 1, etc., we obtain:

z~r 1zihz
ihð Þ2

2!
z

ihð Þ3

3!
z

ihð Þ4

4!
z

ihð Þ5

5!
z � � �

( )
: ð9:17Þ

The braces in eqn (9.17) contain the Maclaurin series for eih, and so
we can rewrite the polar form for z more compactly as:

z~reih: ð9:18Þ

Problem 9.8

Use the result that i2 5 21, i3 5 2i, i4 5 1 and i5 5 i to
evaluate:

(a) (ih)2; (b) (ih)3; (c) (ih)4; (d) (ih)5,

and hence show that eqn (9.17) is equivalent to eqn (9.16).

9.5.1 Euler’s Formula

If we equate eqn (9.18) with eqn (9.13) we obtain:

z~reih~r cos hzi sin hð Þ ð9:19Þ

which on cancelling r yields:

eih~cos hzi sin h: ð9:20Þ

This important result is known as Euler’s formula.

Worked Problem 9.5

Q. Express the complex conjugate of z 5 r(cos h + i sin h) in
polar form.
A. The complex conjugate of z can be written in terms of r, h as
above, using the Maclaurin series for cos h and sin h, as:
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z�~r cos h{i sin hð Þ

~r 1{ih{
h2

2!
z

ih3

3!
z

h4

4!
{

ih5

5!
z � � �

( )

which can be rewritten as:

z�~r 1{ihz
ihð Þ2

2!
{

ihð Þ3

3!
z

ihð Þ4

4!
{

ihð Þ5

5!
z � � �

( )
:

The part in parentheses is the Maclaurin series for e2ih and so
we can now express z* as

z�~re{ih: ð9:21Þ

9.5.1.1 The Number eip

Using Euler’s formula to evaluate eip we see that:

eip~cos pzi sinp: ð9:22Þ

However, as cos p5 21 and sin p 5 0, we obtain the extraordinary
and elegant result that:

eip~{1, ð9:23Þ

which rearranges to a single relationship:

eipz1~0, ð9:24Þ

containing the irrational numbers e and p, the imaginary number, i, as
well as the numbers zero and unity.

9.5.2 Powers of Complex Numbers

The advantage of using the polar form for z is that it makes certain
manipulations much easier. Thus, for example, we can obtain:

N The modulus of z directly from the product of z and z*, using eqns
(9.18) and (9.21):

zz�~r2eihe{ih~r2)r~
ffiffiffiffiffiffiffi
zz�

p
ð9:25Þ
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N Positive and negative powers of z:

zn~ reih
� �n

~rneinh n~+1, +2, +3, +4 � � �ð Þ ð9:26Þ

where, for a given value of n, zn is seen to be a complex number,
with modulus rn and argument nh.

N Rational powers of z, where n 5 p / q (q ? 0):

z p=q~r p=qei p=qð Þh ð9:27Þ

Worked Problem 9.6

Q. If z 5 cos h + i sin h, show that 1 / z is the complex conjugate
of z.
A. As z has a unit modulus (r 5 1), z 5 eih, and 1=z~

1

eih
~e{ih,

which is the complex conjugate of z [see eqn (9.21)].

Problem 9.9

For the two complex numbers z1~r1e
ih1 and z2~r2e

ih2 , give
expressions for the modulus and argument of:

að Þ z1z2, bð Þ z1=z2 and cð Þ z21


z42:

Problem 9.10

Express z5212i in polar form, and thus determine the
modulus and argument (in radians) of z2 and z24.

9.5.3 The De Moivre Theorem

We have seen from eqn (9.26) that the nth power of a complex number
can be expressed as:

zn~rneinh, ð9:28Þ
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with the modulus and argument rn and nh, respectively. Using Euler’s
formula, eqn (9.28) becomes:

zn~rneinh~rn cos nhzi sin nhð Þ~rn cos hzi sin hð Þn: ð9:29Þ

After cancelling the rn factors in eqn (9.29), we obtain the De Moivre
theorem:

cos hzi sin hð Þn~cos nhzi sin nh: ð9:30Þ

Problem 9.11

að Þ Show that
1

cos hzi sin hð Þ~cos h{i sin h:

(b) Give an expression for (cos h + i sin h)1/2.
(c) Use eqn (9.29) to give expressions for the real and

imaginary parts of zn.
(d) Find the real and imaginary parts of z3 and z22, where

z5 21 2 i.

9.5.4 Complex Functions

So far we have been concerned largely with the concept of the
complex number, but we can see from our discussion of Euler’s
formula that the general form of a complex number actually
represents a complex mathematical function, say f(h), where:

f hð Þ~cos hzi sin h: ð9:31Þ

This function comprises a real part and an imaginary part, and so, in
general, we can define a complex function in the form:

f xð Þ~g xð Þzih xð Þ ð9:32Þ

where the complex conjugate of the function is given by:

f xð Þ�~g xð Þ{ih xð Þ ð9:33Þ

Thus f(x)f(x)* is a real function of the form:

f xð Þf xð Þ�~g xð Þ2zh xð Þ2 ð9:34Þ

The property of complex functions given in eqn (9.34) plays a very
important role in quantum mechanics, where the wave function of an
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electron, y, which may be complex in form, is related to the physically
meaningful probability density through the product yy*. If y is a
complex function, then, from eqn (9.34), yy* is a real function.

9.5.4.1 The Periodicity of the Exponential Function

It may seem odd to think of the exponential function, ex, as periodic
because it is clearly not so when the exponent, x, is real. However,
replacing x with the imaginary number ih yields the complex number
z 5 eih whose modulus and argument are 1 and h, respectively. If we
represent the values of the function on an Argand diagram, we see
that they lie on a circle of radius, r 5 1, in the complex plane (see
Figure 9.4). Different values of h then define the location of complex
numbers of modulus unity on the circumference of the circle. We can
also see that the function is periodic, with period 2p:

ei hz2mpð Þ~eih:ei2mp~eih: ð9:35Þ

Problem 9.12

Use Euler’s formula to show that ei2p 5 1, and hence prove that
ei(h+2mp) 5 eih, for m 5 1, 2, ….

Figure 9.4 The function z 5 eih

is periodic in the complex plane,

with period 2p.
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Problem 9.13

(a) Use De Moivre’s theorem to show that

e2ih 5 cos h 2 i sin h.

(b) Use Euler’s formula, and the result given in part (a), to
show that:

ið Þ cos h~
1

2
eihze{ih
� �

iið Þ sin h~ 1

2i
eih{e{ih
� �

:

Problem 9.14

The solution of the differential equation describing the simple
harmonic oscillator problem [see Worked Problem 7.4(c)] is:

y~A cos ktzB sin kt:

Derive an alternative form for the solution, using the function
eikt, and its complex conjugate, e2ikt.

Hint: Use the results given in Problem 9.13(b).

9.5.4.2 The Eigenvalue Problem Revisited

The three 2p orbitals resulting from the solution of the Schrödinger
equation for the hydrogen atom can be written as:

y1~N1e
{r=2a0r sin heiw; y0~N2e

{r=2a0r cos h;

y{1~N1e
{r=2a0r sin he{iw,

where N1 and N2 are constants, a0 is the Bohr radius, r is the distance
of the electron from the nucleus, and the suffix attached to each y
indicates the value of the orientation quantum number ml. The
Schrödinger equation, Ĥy 5 Ey, is an example of an eigenvalue
problem (see Sections 4.3.1 and 7.4.3) where, in this case, Ĥ is an
operator known as the Hamiltonian, E is the eigenvalue (correspond-
ing to the energy of the system), and y is the eigenfunction (or
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wavefunction). As we saw in the earlier chapters, if two functions are
both solutions to an eigenvalue problem, associated with the same
eigenvalue, then a linear combination of the functions will also be a
solution. We can use this property to construct real orbital functions
that we can visualise more easily. We explore this idea a little further
in the next problem.

Problem 9.15

(a) Find the real and imaginary parts of each of the three 2p
orbitals given above.

(b) Use the results given in Problem 9.13(b) to show that the
following linear combinations yield real functions:

ið Þ 1ffiffiffi
2

p y1zy{1ð Þ~
ffiffiffi
2

p
N1e

{r=2a0r sin h cosw

iið Þ { iffiffiffi
2

p y1{y{1ð Þ~
ffiffiffi
2

p
N1e

{r=2a0r sin h sinw

(c) Given that x5 r sin h cos w, y5 r sin h sin w and z5 r cos h,
rewrite the three real atomic orbital functions, y0,
1ffiffiffi
2

p y1zy{1ð Þ and {
iffiffiffi
2

p y1{y{1ð Þ, in terms of the

independent variables x, y and z, and hence propose new
labels for the three wavefunctions.

9.5.4.3 Structure Factors in Crystallography

The intensity of the scattered beam of X-rays from the (hkl) plane of a
crystal is proportional to FF*, where F, the structure factor is given
by:

F hklð Þ~
Xcell
j

fje
2pi hxjzkyjzlzj½ �: ð9:36Þ

The summation runs over the appropriate number of atoms in
the unit cell with (fractional) coordinates (xj, yj, zj) and scattering
factor, fj.
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Problem 9.16

Metallic sodium has a body-centred cubic structure with two
atoms per unit cell located at (0, 0, 0) and (K,K,K),
respectively.

(a) Use eqn (9.36) to show that F(hkl) 5 fNa + fNae
pi(h+k+l) and,

with the aid of Euler’s formula, determine its real and
imaginary parts.

(b) Show that reflections occur [i.e. F(hkl) ? 0] only if h + k + l

is even.

9.5.5 Roots of Complex Numbers

The polar form of a complex number, z, raised to the power n, is given
in eqn (9.28) as:

zn~ reih
� �n

~rneinh ð9:37Þ

De Moivre’s theorem allows us to express zn in the form:

zn~rn cos nhzi sin nhð Þ: ð9:38Þ

It follows that one square root of a complex number (where n~ 1
2
) is

given by:

z
1
2~r

1
2 cos

h

2
zi sin

h

2

� �
: ð9:39Þ

The method used to retrieve the second square root is now described
in Worked Problem 9.7.

Worked Problem 9.7

Q.Use eqn (9.37) and the periodicity of eih (see Problem 9.12) to
find the two square roots of 21.
A. Substituting eqn (9.35) for eih into eqn (9.37) yields:

zn~ rei hz2mpð Þ
� �n

~rnei hz2mpð Þn, m~1, 2, 3, . . .
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Now, the number (21) has r 5 1 and h 5 p; hence:

{1ð Þ1=2~ei pz2mpð Þ|1=2, m~1, 2, 3, . . .

~ei p=2zmpð Þ, m~1, 2, 3, . . .

~cos
p

2
zmp

� �
zi sin

p

2
zmp

h i
, m~1, 2, 3, . . .

Thus for m 5 1:

z1=2~cos
3p

2
zi sin

3p

2
~{i;

for m 5 2:

z1=2~cos
5p

2
zi sin

5p

2
~i;

for m 5 3:

z1=2~cos
7p

2
zi sin

7p

2
~{i;

for m 5 4:

z1=2~cos
9p

2
zi sin

9p

2
~i

and so on. We see that taking m ¢ 3 merely replicates the roots
already found, and so the two square roots of 1 are ¡i.
This method can be extended to find the n nth roots of any

number.

Problem 9.17

Show that the three cube roots of i (given by i1/3) are

{

ffiffiffi
3

p

2
z

1

2
i, 2i and

ffiffiffi
3

p

2
z

1

2
i.
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Summary of Key Points

This chapter introduces imaginary and complex numbers as a
legitimate extension of the number system. The key points
discussed in this chapter include:

1. An introduction of the imaginary number i~
ffiffiffiffiffiffiffiffi
{1

p
as a

means to finding all roots of polynomial equations.
2. A definition of the general form of a complex number,

z 5 x + iy, comprising real and imaginary parts.
3. The algebra of complex numbers: addition, subtraction and

multiplication.
4. The complex conjugate and division of complex numbers.
5. The graphical representation of the complex number

through the Argand diagram.
6. The definition of modulus and argument of a complex

number.
7. The polar form of complex numbers, z 5 reih.
8. Euler’s formula, eih 5 cos h + i sin h.
9. Powers of complex numbers and de Moivre’s theorem,

einh 5 cos nh + i sin nh.
10. Complex functions.
11. The periodicity of the exponential function, eih, and the

modelling of wave phenomena.
12. The real and complex forms of atomic orbitals.
13. Finding the roots of positive, negative and complex

numbers.
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10
Working with Arrays I:
Determinants

In all areas of the physical sciences, we encounter problems that
require the solution of sets of simultaneous linear equations. These
range from seemingly mundane everyday problems to highly complex
problems in quantum mechanics or spectroscopy requiring the
solution of hundreds of simultaneous linear equations. For small
numbers of such equations, the solutions may be most straightfor-
wardly obtained using the methods of elementary algebra; but, as the
number of equations increases, their alegbraic solution becomes
cumbersome and ultimately intractable. In this chapter we introduce
the concept of the determinant to provide one of the tools used to
solve problems involving large numbers of simultaneous equations.
The other tools required for solving systems of linear equations
are provided by matrix algebra, which we discuss in detail in
Chapter 11.

Aims:

This chapter introduces the determinant as a mathematical
object which we can use to tackle problems involving large
numbers of simultaneous linear equations. By the end of this
chapter, you should be able to:

N Appreciate that a determinant expands to yield an expres-
sion or value.

N Recognise how determinants can be used to solve simulta-
neous linear equations.

N Expand determinants of second and third order about a
given row or column.

N Use the properties of determinants to introduce as many
zeros as possible to the right (or left) of the leading diagonal.

N Define and evaluate the first order cofactors of a determi-
nant.
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10.1 Origins – The Solution of Simultaneous Linear
Equations

We begin our discussion of linear systems by introducing the
determinant as a tool for solving sets of simultaneous linear equations
in which the indices of the unknown variables are all unity. Consider
the pair of equations:

a11xza12y~b1 ð10:1Þ
a21xza22y~b2 ð10:2Þ

where a11, a12, a21, a22, b1 and b2 are constant coefficients, and x and y
are the ‘unknowns’. We can determine the unknowns using
elementary algebra as follows:

N Multiply eqn (10.1) by a22 and eqn (10.2) by a12 to give:

a11a22xza12a22y~b1a22 ð10:3Þ
a12a21xza12a22y~b2a12 ð10:4Þ

N Subtract eqn (10.4) from eqn (10.3) to yield:

a11a22{a12a21ð Þx~b1a22{b2a12,

which we can rearrange to give an expression for x in terms of the
constant coefficients:

x~
b1a22{b2a12

a11a22{a12a21
ð10:5Þ

N Now, multiply eqn (10.1) by a21 and eqn (10.2) by a11, and
subtract the resulting equations to give an analogous expression
for y

y~
b2a11{b1a21

a11a22{a12a21
ð10:6Þ

The denominators in eqns (10.5) and (10.6) are the same, and can be
written alternatively as:

a11 a12

a21 a22










~a11a22{a12a21 ð10:7Þ

The symbol on the left side of eqn (10.7) defines a determinant of
order 2, the value of which is given on the right. We can similarly
express the numerators as determinants of order 2, and we see that the
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value of the two unknowns is then given by the ratio of two
determinants:

x~

b1 b2

a12 a22












a11 a12

a21 a22











and y~

b2 b1

a21 a11












a11 a12

a21 a22












ð10:8Þ

The purpose of introducing this notation is that it readily extends to
n linear algebraic equations in n unknowns. The problem then reduces
to one of evaluating the respective determinants of order n.

Problem 10.1

Solve the following simultaneous equations for x and y, by eva-
luating the appropriate determinants according to eqn (10.8).

2xzy~5 ð10:9Þ
1
2
xz8y~9 ð10:10Þ

Hint: You will need to associate each of the coefficients a11, a12,
a21, a22, b1 and b2 in eqns (10.1) and (10.2) with those in eqns
(10.9) and (10.10).

This type of problem arises in a chemical context quite frequently. For
example, the activation energy of a chemical reaction can be
determined by measuring the rate constant for a particular reaction
at two different temperatures. The relationship between rate constant
and temperature is given by the Arrhenius equation:

k~Ae{Ea=RT ð10:11Þ

where Ea is the activation energy for the reaction, and A is the so-
called pre-exponential factor. We can convert the Arrhenius equation
to linear form by taking logs of both sides:

ln k~lnA{
Ea

RT
: ð10:12Þ

If we now measure the rate constant at two different temperatures,
T1 and T2, we obtain a pair of simultaneous linear equations, which
we can solve for the two unknowns, Ea and lnA:
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ln k1~lnA{
Ea

RT1
ð10:13Þ

ln k2~lnA{
Ea

RT2
ð10:14Þ

Problem 10.2

(a) By analogy with eqns (10.1) and (10.2), identify which terms
in eqns (10.13) and (10.14) correlate with the constant
coefficients a11, a12, a21, a22, b1 and b2, and which terms
correlate with the unknowns, x and y.

(b) If the temperatures on the Farenheit and Centigrade scales
are T and t, respectively, we can express the relationship
between the two as T 5 at + b, where a and b are unknowns.
By analogy with eqns (10.1) and (10.2), use the method of
determinants to obtain the values of a and b by using the
boiling and freezing points of water on the two temperature
scales. Hence find the formula relating T to t.

Hint: The boiling and freezing points of water on the Farenheit
scale are Tb 5 212 uF and Tf 5 32 uF .

10.2 Expanding Determinants

In general, a determinant of order n is defined as a square array of n2

elements arranged in n rows and n columns:

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
.

P
..
.

an1 an2 � � � ann
























ð10:15Þ

The elements of this determinant are denoted by aij or bij, where i
denotes the row and j the column number. Note that the letter used
commonly derives from the label applied to a related square matrix –
a consequence of the common definition of a determinant as an
operation on a square matrix (see Section 11.1). We have seen above
in eqn (10.7) that a determinant of order 2 is evaluated in terms of the
elements aij which lie at the intersection of the ith row with the jth

column of the determinant.
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A determinant of order 3, which might result from a problem
involving three simultaneous equations in three unknowns, is
evaluated by expanding as follows:

a11 a12 a13

a21 a22 a23

a31 a32 a33




















~a11

a22 a23

a32 a33













{a12
a21 a23

a31 a33















za13
a21 a22

a31 a32















ð10:16Þ

This expansion proceeds by taking the elements of the first row in
turn, and multiplying each one by the determinant of what remains on
crossing out the row and column containing the chosen element, and
then attaching the sign (21)i+j. The signed determinants of order 2
in eqn (10.16) are known as the first order cofactors A11, A12 and A13

of the three elements a11, a12 and a13, respectively.
In general, the n2 cofactors of any determinant of order n are

obtained by deleting one row and one column to form a determinant of
order n21, the value of which is multiplied by an odd or even power of
21, depending upon the choice of row index and column index. Thus, if
the ith row and jth column of a determinant of order n are both deleted,
then the ijth cofactor, Aij, is formed from the value of the resulting
determinant of order n21, multiplied by (21)i+j. For example, the
cofactor A12 of the determinant of order 3 in eqn (10.16) is obtained by
deleting the first row and the second column of the determinant, and
multiplying the resulting determinant of order 2 by (21)1+2:

A12~ {1ð Þ1z2 a21 a23

a31 a33










~{

a21 a23

a31 a33










 ð10:17Þ

Rewriting eqn (10.16) in terms of the three cofactors:

A11~
a22 a23

a32 a33













, A12~{
a21 a23

a31 a33













 and

A13~
a21 a22

a31 a32















ð10:18Þ

yields:

a11 a12 a13

a21 a22 a23

a31 a32 a33


















~a11A11za12A12za13A13: ð10:19Þ
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If we now expand each of the cofactors (all determinants of order 2)
according to eqn (10.7), we obtain the full expansion of the
determinant, given in eqn (10.20), expressed as a sum of three
positive and three negative terms:

a11 a12 a13

a21 a22 a23

a31 a32 a33




















~a11a22a33{a11a23a32{a12a21a33

za12a23a31za13a21a32{a13a22a31

ð10:20Þ

In this example, the determinant is initially expanded from the first
row but, in fact, we could just as easily expand from any row or
column. Thus, for example, expanding from column two gives the
alternative expansion:

a11 a12 a13

a21 a22 a23

a31 a32 a33


















~a12A12za22A22za32A32 ð10:21Þ

which, upon expanding the cofactors, yields:

a11 a12 a13

a21 a22 a23

a31 a32 a33




















~{a12

a21 a23

a31 a33













za22
a11 a13

a31 a33















{a32
a11 a13

a21 a23













:

ð10:22Þ

Expanding each of the determinants of order 2 in eqn (10.22) yields
eqn (10.20), but with the six terms on the right in a different order.
A slightly quicker route to ensuring the correct signs in the sum of

the cofactor values is obtained by remembering the general rule for
expansion from any row or column in pictoral form:

z { z { z

{ z { z {

z { z { � � �
{ z { � � � � � �
z { � � � � � � � � �





























ð10:23Þ

We shall discuss cofactors again when we meet matrix inverses in
Chapter 11.
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Worked Problem 10.1

Q. Expand the following determinants from the given row or
column, as indicated:

að Þ 0 1

1 0










;

bð Þ
cos h {sin h 0

sin h cos h 0
0 0 1
















, from column3:

A. From the definition given for the expansion of a determinant
of order two, we have:

að Þ 0 1
1 0










~0{1|1~{1;

bð Þ
cos h {sin h 0

sin h cos h 0

0 0 1


















~0z0z1|

cos h {sin h

sin h cos h












~cos2 hzsin2 h~1:

Problem 10.3

Expand

1 {1 2

0 3 0

2 {2 {2


















from að Þ column 2 and bð Þ row 2:

Problem 10.4

(a) Evaluate the cofactors A33, A22, A32 and A23 of
1 0 {2

2 8 4

3 2 2
















.

(b) Evaluate the cofactors A12 and A21 of

cos h {sin h 0

sin h cos h 0

0 0 1
















.
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10.3 Properties of Determinants

(1) A determinant is unaltered in value if all rows and columns are
interchanged:

e:g:
1 2

3 4










~

1 3

2 4










~{2 ð10:24Þ

(2) A determinant changes sign if two rows or columns are
interchanged:

1 2

3 4










~{

2 1

4 3










~{2 ð10:25Þ

(3) A factor can be removed from each element of one row (or
column) to give a new determinant, the value of which when
multiplied by the factor gives the original value of the
determinant. For example:

1 2

3 4










~2

1 1

3 2










~{2 ð10:26Þ

Here, the factor 2 has been removed from column 2. Conversely,
when a determinant is multiplied by a constant, the constant can
be absorbed into the determinant by multiplying the elements of
one row (or column) by that constant.

(4) The value of a determinant is unaltered if a constant multiple of
one row or column is added to or subtracted from another row
or column, respectively: for example, if we subtract twice column
1 from column 2, we obtain:

1 2

3 4










~

1 0

3 {2










~{2: ð10:27Þ

10.4 Strategies for Expanding Determinants Where n . 3

We can take a number of different approaches for evaluating
determinants of higher order:

(a) For determinants of order 3 or lower, it is easiest to expand in
full from the row or column containing the greatest number of
zeros (for example, see Problem 10.3).

A determinant can only have

a value if the elements are

numbers.
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(b) For determinants of order 4 to about 6, it is best to introduce as
many zeros as possible to the right (or left) of the leading
diagonal using properties (1) – (4) (Section 10.3). If all the
elements to the right or left of the leading diagonal are zero,
then:

a11 0 0 � � � 0

a21 a22 0 � � � 0

a31 a32 a33 � � � 0

..

. ..
. ..

.
P

..

.

an1 an2 an3 � � � ann





























~a11a22a33 � � � ann, ð10:28Þ

and the expansion of the determinant is given by the product of
the elements lying on the leading diagonal.

(c) When expanding determinants of high order (n . 5), it is much
more convenient to use one of the widely available computer
algebra systems (Maple, Mathematica, etc.) or a numerical
computer algorithm. There are many chemical situations in
which we have to expand determinants of large order. For
example, in computing the vibrational frequencies of ethene, it is
necessary to expand a determinant of order 12 (for a non-linear
molecule containing N nuclei, the order will be 3N – 6).

Problem 10.5

Expand each of the following determinants:

að Þ
1 2 3

0 8 2

{2 4 2


















; bð Þ

1 0 {2

2 8 4

3 2 2


















(i) from row 2;
(ii) using row/column operations to transform the first row

to 1 0 0 before expansion from row 1;
(iii) using row/column operations to transform all the

elements to the right of the leading diagonal to zero,
before expanding from row 1.
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Problem 10.6

In using the Hückel model for calculating the molecular orbital
energies, e, for electrons in the p shell of the allyl system, it is
necessary to solve the following equation:

a{e b 0

b a{e b

0 b a{e


















~0, ð10:29Þ

where the symbols a and b are parameters (both negative in
value) of the model.

(a) Use property (3) of determinants to remove a factor of b
from each row (or column) of the determinant shown in
eqn (10.29).

Hint:Division of each element in one row or column by b results
in a new determinant, the value of which is multiplied by b.
Thus division of every element in the determinant results in a
new determinant, the value of which is multiplied by b3.

(b) Show that, on making the substitution x 5 (a 2 e) / b, the
expansion of the determinant yields x3 2 2x 5 0.

(c) Find the three roots of this equation.
(d) Deduce the three orbital energies.

Summary of Key Points

This chapter develops the concept of the determinant as a
precursor to a more complete treatment of matrix algebra in
Chapter 4. The key points discussed include:

1. The use of determinants to solve sets of simultaneous linear
equations.

2. The expansion of determinants of low order in full.
3. Cofactors of determinants.
4. Properties of determinants and their use to simplify the

evaluation of determinants of high order.
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11
Working with Arrays II:
Matrices and Matrix Algebra

In the previous chapter, we saw how determinants are used to tackle
problems involving the solution of systems of linear equations. In
general, the branch of mathematics which deals with linear systems is
known as linear algebra, in which matrices and vectors play a
dominant role. In this chapter we shall explore how matrices and
matrix algebra are used to address problems involving coordinate
transformations, as well as revisiting the solution of sets of
simultaneous linear equations. Vectors are explored in Chapter 12.
Matrices are two-dimensional arrays (or tables) with specific shapes

and properties:

2 {1

0 3

� �
,

x1

x2

x3

0
B@

1
CA, 1 2 3ð Þ:

Their key property is that they give us a formalism for system-
atically handling sets of objects – called elements – which, for
example, can be numbers, chemical property values, algebraic
quantities or integrals. Superficially, matrices resemble determinants,
insofar as they are constructed from arrays of elements. However, as
we shall see, they are really quite distinct from one another. The most
important difference is that while a determinant expands to yield an
expression (and a value, when its elements are numbers), a matrix
does not.

Aims:

In this chapter we develop matrix algebra from two key
perspectives: one makes use of matrices to facilitate the handling
of coordinate transformations, in preparation for a develop-
ment of symmetry theory; the other revisits determinants, and
through the definition of the matrix inverse, provides a means
for solving sets of linear equations.
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By the end of this chapter, you should:

N Recognise the difference between a matrix and a determi-
nant.

N Recognise how matrices can be used to handle large linear
systems in a compact way.

N Be comfortable working with basic operations of matrix
algebra (addition, subtraction, multiplication).

N Recognise specific kinds of matrix.
N Use the special properties of a square matrix to evaluate its

determinant and inverse.
N Understand the basic principles of group theory.

11.1 Introduction: Some Definitions

A matrix is an array of elements, comprising n rows and m columns,
enclosed in parentheses (round brackets). By convention, matrices are
named using bold typeface letters of upper or lower case, such as A or
b, so we could, for example, label the matrices above as:

B~
2 {1

0 3

� �
, c~

x1

x2

x3

0
B@

1
CA, d~ 1 2 3ð Þ:

The elements of the matrix are usually denoted aij or bij (depending
on the letter used to label the matrix itself), where i denotes the row
and j the column number. Thus, for example, the matrix B above has
two rows and two columns, and is said to be a 262 matrix; however,
as the matrix is square, it is commonly named a square matrix of order
two, with elements assigned as follows:

b11~2, b12~{1, b21~0, b22~3:

Sometimes, it is more convenient to use the notation (B)ij to
indicate the ijth element of matrix B. Similarly, the 361 matrix c is
called a column matrix, and the 163 matrix d is called a row matrix.
The general matrix, A, having order (n6m) is called a rectangular
matrix with elements:

A~

a11 a12 � � � a1m

a21 a22 � � � a2m

..

. ..
. ..

. ..
.

an1 an2 � � � anm

0
BBBB@

1
CCCCA
: ð11:1Þ
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Two matrices A and B are equal if, and only if, aij 5 bij for all i,j.
This also implies that the two matrices have the same order.

Problem 11.1

For each of the matrices b~
1 1 1

2 {2 2

� �
, c~

3 {1

1 {3

� �
,

d~
1

0

� �
and e~ 0{i 1 ið Þ:

(a) Name their shapes.
(b) List their elements.
(c) Give their order.

11.2 Rules for Combining Matrices

In this section, we explore the matrix analogues of addition,
subtraction and multiplication of numbers. The analogue for division
(the inverse operation of multiplication) has no direct counterpart for
matrices.

11.2.1 Multiplication of a Matrix by a Constant

The multiplication of a matrix, A, by a constant c (a real, imaginary
or complex number), is achieved by simply multiplying each element
by the constant, resulting in the elements changing from aij to c aij, for
all i, j.

Problem 11.2

Multiply the following matrices by 2:

að Þ B ~

4 5

1 6

{4 3

0
B@

1
CA; bð Þ C ~

2 5
2

1
2

3

{2 3
2

0
B@

1
CA:

Working with Arrays II: Matrices and Matrix Algebra 231



11.2.2 Addition and Subtraction of Matrices

If two matrices have the same order, then addition and subtraction
are defined as:

C~A+B, with aij+bij, for all i, j: ð11:2Þ

Neither addition nor subtraction is defined for combining matrices of
different orders.

Worked Problem 11.1

Q.Given the following matrices (notice that A has real, complex
and imaginary elements):

A~

2 2i {3

1 2 8

5 {4zi 1

0
BB@

1
CCA, B~

4 5

1 6

{4 3

0
BB@

1
CCA,

C~

3

1

2

0
BB@

1
CCA, D~

1 1

4 1

5 1

0
BB@

1
CCA, F~

2

1

4

0
BB@

1
CCA,

evaluate:

(a) G 5 2B + D,
(b) M 5 C 2 2F,
(c) H 5 iA

A: að Þ G ~

8 10

2 12

{8 6

0
B@

1
CAz

1 1

4 1

5 1

0
B@

1
CA~

9 11

6 13

{3 7

0
B@

1
CA

bð Þ M ~

3

1

2

0
B@

1
CA{2

2

1

4

0
B@

1
CA~

3{4

1{2

2{8

0
B@

1
CA~

{1

{1

{6

0
B@

1
CA
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cð Þ H ~ i

2 2i {3

1 2 8

5 {4zi 1

0
B@

1
CA~

2i {2 {3i

i 2i 8i

5i {4i{1 i

0
B@

1
CA

Problem 11.3

If A ~
1 i

{i 1

 !
, B ~

1 {i

i 1

 !
,

R ~
cos h sin h

{sin h cos h

 !
, S ~

cos h {sin h

sin h cos h

 !
,

express (a) A + B, (b) A2 B, (c) R + S and (d) R2 S in terms of

C~
0 1

{1 0

� �
and D~

1 0

0 1

� �
.

11.2.3 Matrix Multiplication

Given an n6mmatrix, A, and anm6pmatrix, B, then the ijth element,
cij, of the resulting n6p product matrix C 5 AB, is found by selecting
the i, j values and then for each choice, summing the products of the
elements in row i of A with those in column j of B (Figure 11.1):

C ~ A B

n|pð Þ n|mð Þ m|pð Þ
ð11:3Þ

A number of features relating to matrix multiplication are worthy
of note.

N If the number of columns in A is not equal to the number of rows
in B, then multiplication is undefined.

N In general, even if AB is defined, then BA may not be defined.
N If AB and BA are both defined, their orders may differ.
N Even if AB and BA have the same order, the two product matrices

may not be equal. In these circumstances, matrix multiplication is
non-commutative, i.e. AB ? BA.
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Worked Problem 11.2

Q. Where defined, determine the products (a) AB and (b) BA of
the following matrices:

A~
1 3

3 1

 !
B~

1 1 2

1 2 1

 !

A. (a) Matrix A is 262 and B is 263; thus the product AB is
defined, as the number of columns in A is same as the
number of rows in B. The product matrix will have order
(263) (the number of rows in A and the number of
columns in B):

AB~
1 3

3 1

 !
1 1 2

1 2 1

 !

~
1|1ð Þz 3|1ð Þ 1|1ð Þz 3|2ð Þ 1|2ð Þz 3|1ð Þ

3|1ð Þz 1|1ð Þ 3|1ð Þz 1|2ð Þ 3|2ð Þz 1|1ð Þ

 !

~
4 7 5

4 5 7

 !
:

(b) BA is undefined because the number of columns in B is
not same as the number of rows in A.

Figure 11.1 The product of an

n 6 m matrix, A, and an m 6 p

matrix, B is an n 6 p matrix C,

whose ijth element, cij, is found by

summing the products of the

elements in row i of A with those

in column j of B.
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Problem 11.4

For the matrices:

A~
1 2

2 1

 !
, B~

1 {1

{1 2

 !
,

C~
{1 1

{1 1

 !
, D~ 1 2ð Þ, E~

3

{1

 !
,

find each product matrix specified below, where defined, and
give its order, as appropriate:

AB, BA, AC, BC, DE, ED, DA, AD, EA, AE,

AB{BA, ABð ÞC, A BCð Þ, A BzCð Þ, ABzAC

11.2.3.1 Properties of Matrix Multiplication

You may have observed from your answers to Problem 11.4 that
multiplication of matrices follows similar rules to that of numbers,
insofar as it is:

N Associative :

ABð ÞC~A BCð Þ ð11:4Þ

N Distributive :

A BzCð Þ~ABzAC: ð11:5Þ

One exception is the commutative law. In general, matrix multi-
plication is:

N Non-Commutative :

AB=BA except in certain special situationsð Þ: ð11:6Þ

As we suggested earlier, there is no general way of defining matrix
division. However, for some square matrices, we can define an
operation that looks superficially like division, but is really only
multiplication (see Section 11.6).

Working with Arrays II: Matrices and Matrix Algebra 235



11.3 Origins of Matrices

11.3.1 Coordinate Transformations

Matrices have their origin in coordinate transformations, where, in two
dimensions, for example, a chosen point, with coordinates (x, y), is
transformed to a new location with coordinates (x9, y9). For example,
consider an anticlockwise rotation of the point P in the xy-plane,
about the z-axis, through an angle h, as shown in Figure 11.2.
We can use simple trigonometry to relate the coordinates of Q to

those of P by expressing the Cartesian coordinates in terms of polar
coordinates. Thus the (x, y) coordinates of point P become:

x~r cos a and y~r sin a, ð11:7Þ

and those of point Q become:

x’~r cos hzað Þ and y’~r sin hzað Þ: ð11:8Þ

If we now use the addition theorems for cosine and sine (see Section
2.3.3), we obtain the expansions:

x’~r cos hzað Þ

~r cos h cos a{r sin h sin a

~x cos h{y sin h;

ð11:9Þ

Figure 11.2. Rotation about the

z-axis of the point P(x, y) through

an angle h to Q (x’, y’). a is the

angle between OP and the x-axis.
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y’~r sin hzað Þ

~r sin h cos azr cos h sin a

~x sin hzy cos h:

ð11:10Þ

which allows us to express the coordinates of Q (x9, y9) in terms of
those of P (x, y).

x’~x cos h{y sin h

y’~x sin hzy cos h

	
ð11:11Þ

Eqn (11.11) describes the transformation of coordinates under an
anticlockwise rotation by an angle, h. This coordinate transformation
is completely characterised by a square matrix, A, with elements cos h
and ¡sin h, and the column matrices, r, and r9, involving the initial
and final coordinates, respectively:

A~
cos h {sin h

sin h cos h

� �
, r’~

x’

y’

� �
, r~

x

y

� �
: ð11:12Þ

We can now use matrix notation to replace the two eqns (11.11) by the
single matrix eqn (11.13):

x’

y’

� �
~

cos h {sin h

sin h cos h

� �
x

y

� �

r’ ~ A r

ð11:13Þ

We can confirm that eqn (11.13) correctly represents the coordinate
transformation by evaluating the product matrix Ar on the right side:

x’

y’

� �
~

x cos h{y sin h

x sin hzy cos h

� �

r’ ~ A r

: ð11:14Þ

Since r9 and Ar are both 261 matrices, we can equate the elements in
r9 with those in Ar, to restore the original equations, which confirms
eqn (11.13) as the correct matrix representation of eqns (11.11).

Worked Problem 11.3

Consider the coordinate transformation involving reflection in
the y-axis (Figure 11.3). We can see that this transformation
simply involves a change in sign of x, with the value of y

remaining unchanged. Thus the transformed point, Q, will have
coordinates (x9, y9) 5 (2x, y).
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We can represent this transformation in terms of a matrix
equation r9 5 Cr, where C is a 262 matrix characterising
reflection in the y-axis, and r and r9 are the column matrices
containing the initial and final coordinates, respectively.
Q. Show that the matrix C characterising reflection in the y-axis

is C~
{1 0

0 1

� �
.

A. The coordinate transformation written as a matrix equation is:

x’

y’

� �
~

{x

y

� �
~

c11 c12

c21 c22

� �
x

y

� �

r’ ~ C r

where c11, c12, c21 and c22 are the elements of the matrix C which
characterise reflection in the y-axis. Multiplying out the right side,
we have:

c11xzc12y~{x and c21xzc22y~y

Thus, if we compare the x and y coefficients on each side of
these equations, we obtain:

c11~{1, c12~0, c21~0 and c22~1 and so C~
{1 0

0 1

� �
:

Figure 11.3 Reflection of the

point P(x, y) in the y-axis to obtain

the point Q(2x, y).

238 Maths for Chemists



11.3.1.1 Sequential Coordinate Transformations

The effect of applying two sequential coordinate transformations on a
point, r, can be represented by the product of the two matrices, each
one of which represents the respective transformation. We need to take
care, however, that the matrices are multiplied in the correct order
because, as we saw above, matrix multiplication is often non-
commutative. For example, in order to find the matrix representing
an anticlockwise rotation by h, followed by a reflection in the y-axis, we
need to find the product CA (and not AC as we might initially assume).

Problem 11.5

(a) Find the matrix, D, describing the coordinate transforma-
tion resulting from reflection in the line y 5 x.

(i) Find the matrix, E, describing the coordinate trans-
formation resulting from a reflection in the line y5 x,
followed by a reflection in the y-axis (see Worked Problem
11.3).
(ii) Find the matrix, F, describing the coordinate trans-
formation that results from a reflection in the y-axis
followed by a reflection in the line y 5 x.

In each case check your answer graphically, by using the
matrices E and F to transform the coordinates (1, 2) to their new
location (x0, y0).

11.3.2 Coordinate Transformations in Three Dimensions: A Chemical
Example

In preparation for the discussion of group theory in Section 11.9, let
us consider how we might use matrix representations of coordinate
transformations to characterise the shape of a molecule – something
of vital importance, for example, in describing the vibrational
motions in a molecule. In order to accomplish this objective, we
need to consider only those linear transformations in three dimen-
sions that interchange equivalent points in a molecule. One example
of such a transformation involves the interchange of coordinates
defining the positions of two fluorine nuclei in the planar molecule
BF3. We can achieve this result by extending the rotation and

(b)
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reflection coordinate transformations in Figures 11.2 and 11.3 to
three dimensions. For BF3, there are four mirror planes but, for the
moment, let us focus only on the yz mirror plane, which is
perpendicular to the plane of the molecule, and contains the boron
and the fluorine nucleus F1 (Figure 11.4).
The matrix C, defined in Worked Problem 11.3, describes reflection

in the y-axis of a point defined by the two coordinates (x, y). We can
rewrite matrix C in terms of all three coordinates as follows:

x’

y’

z’

0
B@

1
CA ~

{1 0 0

0 1 0

0 0 1

0
B@

1
CA

x

y

z

0
B@

1
CA

r’ ~ C r

, ð11:15Þ

where we note that the z-coordinate is unchanged by the coordinate
transformation. Thus, a reflection in the yz-plane interchanges points
located at the nuclei F2 and F3.
If we now rotate an arbitrary point (x, y, z) about the z-axis, the x

and y coordinates are transformed according to matrix A, defined in
eqn (11.12), but the z coordinate is unchanged: thus:

Figure 11.4 The nuclear

configuration for BF3 in the

xy-plane. The z-axis is

perpendicular to the paper, and

passes through B. Three of the

mirror planes are perpendicular to

the paper, and contain the boron

and one of the fluorine nuclei,

respectively. The fourth mirror

plane lies in the plane of the

molecule and contains all of the

nuclei.
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x’

y’

z’

0
B@

1
CA ~

cos h {sin h 0

sin h cos h 0

0 0 1

0
B@

1
CA

x

y

z

0
B@

1
CA

r’ ~ B r

ð11:16Þ

An anticlockwise rotation of h5 2p/3 (equivalent to 120u) about the
z-axis described in eqn (11.16) transforms a point located at either F1 ,
F2 or F3 to an equivalent point located at F2 , F3 or F1, respectively.
The important point here is that if the coordinates of points are

represented in matrix form, then the geometrical actions involved in
carrying out a rotation or reflection may also be represented by
matrices, which enables us to mimic problems in geometry using
matrix algebra; that is, geometrical operations on points can be
replaced by matrix representations acting on column matrices
containing the coordinates of points. We shall re-visit these ideas in
Section 11.9, where we develop a brief introduction to the principles
of symmetry theory.

11.4 Operations on Matrices

11.4.1 The Transpose of a Matrix

Given an n6m matrix B, we can construct its transpose, BT, by
interchanging the rows and columns. Thus the ijth element of B
becomes the jith element of BT according to:

Bð Þij~ BT
� �

ji
ð11:17Þ

Worked Problem 11.4

Q. Find the transpose of:

að Þ B~
1 1

3 2

4 1

0
B@

1
CA, bð Þ C~ 0 {1 1ð Þ:

A: að Þ BT~
1 3 4

1 2 1

� �
, bð Þ CT~

0

{1

1

0
B@

1
CA:
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Problem 11.6

Find the transpose of each of the following matrices:

að Þ A~
cos h {sin h

sin h cos h

 !
, bð Þ C~

{1 1

{1 1

 !
,

cð Þ D~
1 3 4

1 2 1

 !
:

Problem 11.7

If X is an n6m matrix:

(a) Give the order of XXT and XTX;
(b) Use the matrix B from Worked Problem 11.2 to find BBT

and BTB.

11.4.2 The Complex Conjugate Matrix

Taking the complex conjugate of every element of a matrix, A, yields
the complex conjugate matrix, A*: that is, (A*)ij 5 (A)ij*. If all the
elements of A are real, then A* 5 A.

11.4.3 The Complex Conjugate Transposed Matrix

The transpose of the complex conjugate matrix (sometimes termed the
adjoint matrix), is written as A{ and defined such that:

A{~ A1ð ÞT: AT
� �

1) A{� �
ij
~ A1ð Þji: ð11:18Þ

If A* 5 A (a real matrix) then A{ 5 AT.

Problem 11.8

If A~
1zi i

{i 1

� �
, give the forms of A* and A{.
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Problem 11.9

Showthat forthematricesA~
1 1{i

1zi {1

� �
,B~

1 1zi

1zi 0

� �
:

að Þ ABð Þ�~A�B�, bð Þ ABð Þ{~B{A{

Note: These results are valid for any matrices A and B, for which
multiplication is defined.

11.4.4 The Trace of a Square Matrix

The trace of a square matrix, A, of order n, denoted by trA, is defined
as the sum of its diagonal elements:

tr A~
Xn
i~1

Að Þii ð11:19Þ

For example, the matrixA~

1 {1 0

2 {3 1
1 {2 0

0
@

1
A, has trA5 12 3 + 0522.

Since the transpose of a square matrix leaves the diagonal unchanged,
we see that trA 5 trAT.

Problem 11.10

For the matrices:

A~
1 {1

0 3

 !
, B~

0 1

1 {2

 !
,

C~
{1 1

1 0

 !
, D~

1 {1 0

1 {2 0

 !
,

show that:

(a) tr(AB) 5 tr(BA), (b) tr(ABC) 5 tr(CAB) 5 tr(BCA),
(c) tr(DTD) 5 tr(DDT).
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11.4.5 The Matrix of Cofactors

The cofactor of a determinant, which we first defined in Section 10.2,
is characterised by a row and column index, in much the same way as
we characterise the elements in a matrix. Thus, we can form the
matrix of cofactors by accommodating each cofactor in its appro-
priate position. For example, the determinant:

det A~
a11 a12

a21 a22










 ð11:20Þ

gives rise to the four cofactors A11, A12, A21 and A22, which may be
collected together in the matrix of cofactors, B:

B~
A11 A12

A21 A22

� �
~

a22 {a21

{a12 a11

� �
ð11:21Þ

11.5 The Determinant of a Product of Square Matrices

For two square matrices, A and B of order n, the determinant of the
product matrix AB is given by the product of the two determinants:

det ABð Þ~det BAð Þ~detA detB ð11:22Þ

We now return to a further discussion of some special matrices that
arise in a chemical context.

11.6 Special Matrices

So far, we have met matrices of different orders, but we have not been
concerned with the properties of their constituent elements. In this
section, we introduce the null and unit matrices, and then present a
catalogue of important kinds of matrix that are common in
developing mathematical models used, for example, in the calculation
of vibrational frequencies of molecules, distributions of electron
density and other observable properties of molecules.

11.6.1 The Null Matrix

The general null matrix is an n by m matrix, all of whose elements are
zero. If the matrix is:

N Rectangular, it is named as Onm.
N Square (n 5 m) it is named as On
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N A column matrix, it is named On1 or more commonly and simply
as O.

Given an m6n matrix X,

OnmXmn~On, XmnOnm~Om: ð11:23Þ

11.6.2 The Unit Matrix

The unit matrix is a square matrix of order n, denoted here by En

whose leading diagonal elements are all unity (i.e. have value 1), and
whose off-diagonal elements are zero. Thus, for example:

E2~
1 0

0 1

� �
, E3~

1 0 0

0 1 0

0 0 1

0
B@

1
CA: ð11:24Þ

The elements of En may be denoted eij but, in practice, they are usually
specified using the Kronecker delta, which is written as:

eij~dij~
1, for i~j

0, for i=j

�
ð11:25Þ

where i 5 j designates a diagonal position and i ? j a non-diagonal
position.
As En is an n6n matrix, EnA (pre-multiplication of A by En) is

equal to A if A has order (n6p); likewise AEn (post-multiplication of
A by En) yields A if A has order (p6n).

Problem 11.11

For each of the following matrix products:

að Þ O23

1 3

2 2

0 1

0
BB@

1
CCA; bð Þ

1 2 3

4 5 6

 !
O23;

cð Þ E3

1 3

2 2

0 1

0
BB@

1
CCA; dð Þ

1 2 3

4 5 6

 !
E3; eð Þ

1 3

2 2

0 1

0
BB@

1
CCAE3,

give the resultant matrix, where the product is defined.
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Problem 11.12

If A~
cos h {sin h

sin h cos h

� �
, and G~

0 {1 1

2 {1 2

1 1 1

0
B@

1
CA

(a)

(i) Find detA, and the matrix of cofactors, B;
(ii) Show that BTA 5 E2detA.

(b) Show that HTG 5 E3detG, where H is the matrix of
cofactors of detG.

11.7 Matrices with Special Properties

11.7.1 Symmetric Matrices

A square matrix, A, is said to be symmetric if it has the property
(A)ij 5 (A)ji: that is,

A~AT: ð11:26Þ

For example, the following matrix is symmetric:

A~

2 1 3

1 4 3

3 3 0

0
B@

1
CA

as reflection in the leading diagonal leaves the array of elements
unchanged in appearance.
For any n by m matrix X, both XTX and XXT are symmetric

matrices.

11.7.2 Orthogonal Matrices

An orthogonal matrix, A, is a square matrix of order n with the
property

ATA~AAT~En: ð11:27Þ

It follows from Property (1) of determinants (see Section 10.3), that
detA 5 detAT, since the value of a determinant is unchanged if all
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columns and rows are interchanged. It also follows from eqn (11.22)
that det(AAT) 5 det A 6 det A 5 (det A)2 and from the property of
an orthogonal matrix given in eqn (11.27) that (det A)2 5 detEn 5 1.
Consequently, since (detA)2 5 1, it follows that, for an orthogonal
matrix, detA 5 ¡1. However, it does not necessarily follow that an
arbitrary matrix satisfying this criterion is orthogonal, since it must
also satisfy eqn (11.27).

Problem 11.13

(a) Find the value(s) of k for which the matrix

A~

1ffiffi
2

p k

1ffiffi
2

p {1ffiffi
2

p

 !

is orthogonal. Check your answer by verifying that ATA 5

AAT 5 En.

(b) Find the value(s) of h for which R~

cos h sin h 0

sin h cos h 0
0 0 1

0
@

1
A is

orthogonal.
Hint: cos 2h 5 cos2h 2 sin2h.

(c) Find the value(s) of k for which the matrix A~
1 k

{1 1

� �
,

satisfies the condition detA 5 ¡1. Check your answer
against eqn (11.27) and comment on whether the matrix A
is orthogonal or not.

As we shall see in later Sections, orthogonal matrices play an
important role in defining the coordinate transformations that are
used in characterising the symmetry properties of molecules.

11.7.3 Singular Matrices

A square matrix, A, for which detA 5 0, is said to be singular. Such
matrices usually arise when the number of variables (or degrees of
freedom) is over-specified for the chosen model, as would occur, for
example, in:

N Using the same atomic orbital twice in constructing molecular
orbitals in the linear combination of atomic orbitals (LCAO) model,

N Solving an inconsistent set of equations.

Superficially, using the same

atomic orbital twice in construct-

ing molecular orbitals using the

LCAO method may seem mis-

guided. However, there are cases

when the second occurrence of

the atomic orbital is disguised.
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11.7.4 Hermitian Matrices

A complex square matrix, that is equal to the transpose of its complex
conjugate, is called an Hermitian matrix, which is:

A~A{: ð11:28Þ

Problem 11.14

(a) Verify that the matrix A~
0 3zi

3{i 1

� �
is Hermitian.

(b) If x is the 2 by 1 column matrix
1

i

� �
, and A is the

Hermitian matrix in part (a), show that x{Ax 5 21.

11.7.5 Unitary Matrices

A square matrix U, of order n, is said to be unitary if :

U{U~UU{~En ð11:29Þ

It follows from the definition of a unitary matrix that detU 5¡1.
As for orthogonal matrices, an arbitrary matrix having the property
detU 5 ¡1, is unitary only if the requirements of eqn (11.29) are
satisfied.
Hermitian and unitary matrices play the same role for matrices with

complex elements that symmetric and orthogonal matrices do for
matrices with real elements. These features are summarised in Table 11.1:

Table 11.1 A summary of special square matrices.

Matrices with real elements Matrices with complex elements

Transpose, AT

2 5

3 4

� �
) 2 3

5 4

� � Complex conjugate transpose, A{

2 3zi

{i 4

� �
) 2 i

3{i 4

� �

Symmetric A 5 AT

2 5

5 3

� � Hermitian A 5 A{

2 3zi

3{i 1

� �

Orthogonal ATA 5 AAT 5 En

cos h {sin h
sin h cos h

� �
cos h sin h
{sin h cos h

� �
~E2

Unitary U{U 5 UU{ 5 En

1ffiffi
2

p {iffiffi
2

p

iffiffi
2

p {1ffiffi
2

p

 !
1ffiffi
2

p {iffiffi
2

p

iffiffi
2

p {1ffiffi
2

p

 !
~E2

A consequence of the above is that det A 5 ¡1 A consequence of the above is that detU 5 ¡1
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Symmetric, Hermitian, orthogonal and unitary matrices all arise in
the quantum mechanical models used to probe aspects of molecular
structure.

Problem 11.15

Classify each of the following matrices according to whether
they are symmetric, Hermitian, orthogonal or unitary:

að Þ A~
1 i

{i 0

 !
; bð Þ B~ 1ffiffiffi

2
p

1 i

{i {1

 !
;

cð Þ C~
0 {1

1 0

 !
; dð Þ D~

1 {1

{1 0

 !
:

We now proceed to identify the last of the special matrices that are
important to us.

11.7.6 The Inverse Matrix

The inverse of a square matrix A, of order n is written A21, has the
property:

AA
{1

~A{1A~En: ð11:30Þ

and exists only if detA ? 0. If detA 5 0 then A is singular and A21

does not exist. We saw in Problem 11.12(a) that the transposed matrix
of cofactors, BT is related to A and detA – irrespective of the order of
A – according to the formula:

BTA~En detA: ð11:31Þ

Rearranging eqn (11.31) gives:

1

detA
BT~

En

A
ð11:32Þ

but we know from eqn (11.30) that A{1~
En

A
, and so:

A{1~
1

detA
BT ð11:33Þ

Working with Arrays II: Matrices and Matrix Algebra 249



which provides us with a formula for obtaining A21 from BT and
detA. It should be remembered, however, that A21 exists only if A is
non-singular.

Worked Problem 11.5

Q. Find the inverse of the matrix A~
1 {1

1 1

� �
.

A. First, detA 5 1 + 1 5 2;
The matrix of cofactors of A is

B~
A11 A12

A21 A22

� �
~

1 {1

1 1

� �
)BT~

1 1

{1 1

� �
:

Thus the inverse of matrix A is given by:

A{1~ 1
2

1 1

{1 1

� �
~

1
2

1
2

{ 1
2

1
2

 !

Check: Use the definition of the matrix inverse to confirm that
AA21 5 A21A 5 En

1 {1

1 1

� � 1
2

1
2

{ 1
2

1
2

 !
~

1 0

0 1

� �
~E2 3

Problem 11.16

Find the inverse of the matrix A~

1 {1 1

{1 {1 1

1 1 1

0
@

1
A, and

demonstrate that AA21 5 A21A 5 E3.

The inverse matrix has many uses, but of particular relevance to us as
chemists is the role they play in:

N The solution of sets of simultaneous linear equations.
N Developing the concept of a group which, in turn, underpins the

basis of symmetry theory.
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11.8 Solving Sets of Linear Equations

Suppose we have a set of three equations, each of which is linear in the
unknowns x1, x2, x3:

a11x1za12x2za13x3~b1

a21x1za22x2za23x3~b2

a31x1za32x2za33x3~b3

ð11:34Þ

where the aij and bi (i, j 5 1, 2, 3) are constant coefficients. If all the bi
are zero, then the equations are called homogeneous but, if one or
more of the bi are non-zero, then the equations are called
inhomogeneous.
We can write the three linear eqns (11.34) as a single matrix

equation:

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
B@

1
CA

x1

x2

x3

0
B@

1
CA~

b1

b2

b3

0
B@

1
CA ð11:35Þ

and then check that eqns (11.35) and (11.34) are equivalent, by
evaluating the matrix product in the left side of eqn (11.35) to give:

a11x1za12x2za13x3

a21x1za22x2za23x3

a31x1za32x2za33x3

0
B@

1
CA~

b1

b2

b3

0
B@

1
CA: ð11:36Þ

We now have two 361 matrices, which are equal to one another and,
because this implies equality of the elements, we regenerate the
original linear equations given in eqn (11.34). If we now rewrite eqn
(11.35) in a more compact form as:

Ax~b ð11:37Þ
and pre-multiply by A21, the matrix inverse of A, we obtain:

A{1Ax~A{1b: ð11:38Þ
Since A21A 5 En and Enx 5 x, it follows that the unique solution is
given by:

x~A{1b ð11:39Þ

However, this solution is meaningful only if detA is non-singular. If A
is singular, the equations are inconsistent, in which case, no solution is
forthcoming.
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Worked Problem 11.6

Q. (a) Confirm that the following equations have a single,
unique solution.

x1{x2zx3~1

{x1{x2zx3~2

x1zx2zx3~{1

ð11:40Þ

(b) Find the solution.

A. (a) Rewriting eqn (11.40) in matrix form gives:

1 {1 1

{1 {1 1

1 1 1

0
B@

1
CA

x1

x2

x3

0
B@

1
CA ~

1

2

{1

0
B@

1
CA

A x b

:

The set of equations has a unique solution as detA 5 2 4 (see
Problem 11.16) indicating that the equations are consistent.

(b) Following the procedure in Worked Problem 11.5, and
with reference to the answer to Problem 11.16, we find

A{1~

1
2

{ 1
2

0

{ 1
2

0 1
2

0 1
2

1
2

0
B@

1
CA. Thus, the solution, according to eqn

(11.39), is given by:

x1

x2

x3

0
B@

1
CA~

1
2

{ 1
2

0

{ 1
2

0 1
2

0 1
2

1
2

0
B@

1
CA

1

2

{1

0
B@

1
CA~

{ 1
2

{1
1
2

0
B@

1
CA,

from which we see that x1~{ 1
2
, x2~{1, x3~

1
2
.
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Problem 11.17

Find the values of x, y, z that satisfy the equations:

xz2yz3z~1

8yz2z~1

{2xz4yz2z~2

So far we have considered only the solutions to sets of inhomoge-
neous linear equations where at least one of the bi is non-zero. If,
however, we have a set of homogeneous equations, where all of the bi
are zero, then we may define two further possible limiting cases:

N If detA ? 0, and b 5 0 (all bi are zero), then this approach will
only ever yield the solution, x 5 0, i.e. x1 5 x2 5 x3 5 0 since x 5

A210 5 0.
N If detA 5 0, and b 5 0, then, again, A21 will be undefined.

However, although the solution may yield the so-called trivial
result x 5 0, other solutions may also exist.

11.8.1 Solution of Linear Equations: A Chemical Example

In Problem 10.6, we saw how the molecular orbital energies for the
allyl system are determined from the solution of a determinantal
equation. At this point, we are now in the position to understand the
origin of this equation.
In the Hückel model, the result of minimising the energy of the

appropriately occupied p molecular orbitals results in the following
set of linear equations in the unknown atomic orbital coefficients, cr,
together with the molecular orbital energy, e:

c1 a{eð Þzc2b~0

c1bzc2 a{eð Þzc3b~0

c2bzc3 a{eð Þ~0

ð11:41Þ

Eqns (11.41) may be more succinctly expressed as a single matrix
equation:

a{eð Þ b 0

b a{eð Þ b

0 b a{eð Þ

0
B@

1
CA

c1

c2

c3

0
B@

1
CA~0, ð11:42Þ
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or in more compact form as Ac 5 0, where 0 is a null column matrix.
Eqns (11.41) provide an example of a set of homogeneous equations,
because the right side constant coefficients, equivalent to bi in eqn
(11.34), are all zero [and hence the appearance of the null column
matrix 0 in the equivalent matrix eqn (11.42)]. The trivial solution to
eqn (11.42), where c1 5 c2 5 c3 5 0 (c 5 0) is of no physical
significance, as the molecular orbitals do not then exist – another
example of how important it is to use physical intuition to interpret
the significance of a mathematical result! A more detailed study of the
mathematics indicates that eqn (11.42) has a non-trivial solution if
detA 5 0, the solution of which yields the orbital energies,

e~a,+
ffiffiffi
2

p
b, as seen in Problem 10.6.

Problem 11.18

The three molecular orbitals for the allyl system are obtained by
solving the set of simultaneous eqns (11.41) for each value of e,
in turn, to obtain the atomic orbital coefficients, ci.
(a) For e 5 a, show that c3 5 2c1 and that c2 5 0.
(b) For e~az

ffiffiffi
2

p
b, show that c2~

ffiffiffi
2

p
c1 and c3 5 c1.

(c) For e~a{
ffiffiffi
2

p
b, show that c2~{

ffiffiffi
2

p
c1 and c3 5 c1.

(d) For each of the three orbital energies, construct the
column matrix, ci, where each element is expressed in
terms of, c1.

11.9 Molecular Symmetry and Group Theory

One of the key applications of matrices in chemistry is in the
characterisation of molecular symmetry. In Section 11.3, we saw how
it was possible to represent the coordinate transformations associated
with rotation and reflection in terms of matrices. These notions are
now explored in the next Section, where we develop some of the basic
ideas of group theory.

11.9.1 An Introduction to Group Theory

A group consists of a set of elements (e.g. numbers or square
matrices), for which there is a specified mode of combination (for
example, addition, subtraction or multiplication), subject to the four
following requirements:
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(a) For any R, S in the set, the combination RS is a member of the
set (closure);

(b) For any R, S and T in the set, the mode of combination must be
associative: that is:

(b) R(ST) 5 (RS)T;
(c) There is an identity element E such that, for any element, R, in

the set, RE 5 ER 5 R;
(d) for each R, there is an inverse element R21 such that:

N RR 21 5 R 21R 5 E.
The number of elements in the group is termed its order, which may be
finite or infinite.

Worked Problem 11.7

Q. Investigate whether the set of integers forms a group under
each of the following modes of combination: (a) addition, (b)
subtraction and (c) multiplication.

A.

(a) Addition: the sum of any two integers is an integer (closure
satisfied); addition of integers is associative; the identity
element is zero (e.g. 2 + 0 5 0 + 2 5 2); the inverse of any
integer n is2n [e.g. 2 + (22)5 0, the identity element], and2n

is an integer which is in the set. Since all four criteria are
satisfied, the set of integers forms a group of infinite order
under addition.

(b) Subtraction: the difference of any two integers is an integer
(closure satisfied); subtraction of integers is not associative,
e.g. (3 2 4) 2 2 5 23, while 3 2 (4 2 2) 5 1, and so the set
of integers does not form a group under subtraction.

(c) Multiplication: the product of any two integers is an integer
(closure satisfied); multiplication is associative; the inverse
of any non-zero integer n is the rational number 1 / n which
is not an integer and so the set of integers does not form a
group under multiplication.

Problem 11.19

Demonstrate that the set of numbers G1 5 {1, 21, i, 2i} forms
a group of order 4 under multiplication.

The elements of a group should

not to be confused with the

elements of a matrix or

determinant.
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11.9.2 Groups of Matrices

Groups of non-singular (square) matrices are of special interest in
chemistry, because they are used to characterise molecular and solid
state structures according to their symmetry properties. This is vital
when determining:

N Whether spectroscopic transitions of all kinds are forbidden or
allowed.

N The most likely mechanisms of some classes of organic reaction,
where symmetry controls the outcome.

N The arrangement of species in the unit cell of solid state structures.

When deciding whether a given set of matrices of order n forms a
group under multiplication, we can disregard associativity as one of
the criteria because multiplication of matrices is always necessarily
associative – and so we only need to check for closure, the presence of
En and identify all inverses.

Worked Problem 11.8

Let us consider, as an example, the set, G3, of the following
three matrices of order 2 to see whether they form a group
under multiplication:

G3~ A~
1 0

0 1

� �
, B~

{ 1
2

{
ffiffi
3

p

2ffiffi
3

p

2
{ 1

2

 !
, C~

{ 1
2

ffiffi
3

p

2

{
ffiffi
3

p

2
{ 1

2

 !( )
,

The best way of checking the group requirements is to
construct the multiplication table as shown in Table 11.2:

We can see that this set of matrices forms a group, as:

1. The set is closed under multiplication;
2. B is the inverse of C, and vice versa;
3. A is the identity element, which is its own inverse.

Table 11.2 Multiplication table for the set of matrices G3

A First Operation

A B C

Second Operation Q A A B C

B B C A

C C A B
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Problem 11.20

Construct a multiplication table for each of the following sets of
matrices to confirm that the sets constitute groups of order 4
under matrix multiplication.

að Þ G4~ A~
1 0

0 1

 !
, B~

{1 0

0 {1

 !
,

(

C~
0 1

{1 0

 !
, D~

0 {1

1 0

 !)

bð Þ S4~ A~
1 0

0 1

 !
, B~

{1 0

0 {1

 !
,

(

C~
0 i

{i 0

 !
, D~

0 {i

i 0

 !)

List the inverse of each element in groups G4 and S4.

11.9.3 Group Theory in Chemistry

Molecules are classified in terms of their symmetry properties by
constructing groups of matrices that describe coordinate transforma-
tions, resulting in the interchange of chemically equivalent points. For
any given molecule, these coordinate transformations form the
elements of a particular point group that describes its symmetry
properties.
For example, the water molecule is bent in its ground state, with a

bond angle of approximately 105u (see Figure 11.5). If we rotate an
initial point lying above the plane of the molecule, directly over one of
the hydrogen nuclei through 180u about the principal axis passing
through the oxygen nucleus in the molecular plane (the z-axis in
Figure 11.5), the transformed point will lie below the other hydrogen
nucleus. Likewise, reflection in the plane perpendicular to the
molecular plane, and containing the principal axis of rotation (the
xz-plane), transforms the initial point to an equivalent point lying
above the other hydrogen nucleus. However, reflection in the plane of
the molecule (the yz-plane) transforms the initial point to one lying
directly below the original hydrogen nucleus. Clearly, the identity

Point groups are so called

because there is always one point

that is unmoved under every

symmetry operation. This is not

the case in space groups that

are used to characterise the

symmetry properties of crystals.
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operation leaves the initial point unmoved. These three symmetry
operations are known as the C2 , sv and sv9, respectively, and together
with the identity element, E, constitute the four elements of the C2v

point group to which water belongs.
If the location of one of the nuclei is taken as the initial point, then we

see that each symmetry operation just exchanges (or leaves unmoved)
the coordinates of chemically equivalent nuclei. It transpires that if we
follow the procedure of physically moving the nuclei, rather than a
representative point in space, then each matrix generated is the inverse
of the one associated with the appropriate coordinate transformation
although the traces of the respective matrices are the same. This is
helpful because in most applications of group theory, we work with the
traces rather than the elements of the transformation matrices.

Problem 11.21

How many symmetry operations can you list that interchange
chemically equivalent nuclei in the planar molecule, BF3 (see
Section 11.3.2)?
Hint: How many mirror planes and axes of rotation are there?

Figure 11.5 The nuclear

configuration for H2O in the yz-

plane. The x-axis is perpendicular

to the paper, and passes through

O. One of the two mirror planes

lies in the plane of the paper,

whilst the second is perpendicular

to the paper and contains the O

atom. The principal axis of

rotation is the z-axis.

In the context of group theory the

trace of a matrix is usually

referred to as the character.
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Summary of Key Points

In this chapter we have introduced the matrix as a means of
handling sets of objects and discussed the key aspects of matrix
algebra. A great deal of the chapter has involved a cataloguing of
the properties and types of matrices but we have also tried to
emphasise the chemical importance of matrices, in particular in the
vital role they play in the classification of molecular symmetry and
the development of group theory. The key points discussed include:

1. An introduction to matrix notation.
2. Rules for combining matrices through addition, subtraction

and multiplication.
3. Howmatrices areused to represent coordinate transformations,

andhence to characterise the symmetryproperties ofmolecules.
4. Operations on matrices containing real and complex elements.
5. Special matrices, including the unit matrix and the null matrix.
6. Matrices with special properties.
7. Thematrix of cofactors and the definition of the inversematrix.
8. Theapplicationofmatrixalgebra for solving setsof simultaneous

linear equations: homogeneous and inhomogeneous equations.
9. An introduction to molecular symmetry and group theory.
10. Elucidating the characteristic electronic structures asso-

ciated with molecules.
11. Introducing some of the concepts necessary in the study and

use of vectors.
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12
Vectors

Many of the physical quantities which we deal with from day to day,
such as mass, temperature or concentration, require only a single
number (with appropriate units) to specify their value. Such quantities
are called scalar quantities, specified exclusively in terms of their
value. However, we frequently encounter other quantities, called
vectors, which require us to specify a magnitude (a positive value), and
a direction. Velocity is an example of a vector quantity, whereas speed
is a scalar quantity (in fact speed defines the magnitude of velocity).
This is why we say that an object travelling on a circular path, with
constant speed (such as an electron orbiting a nucleus in the Bohr
model of the atom) is accelerating: its velocity changes with time
because its direction is constantly changing, in spite of the fact that
the speed is constant (see Figure 12.1).
In the example shown in Figure 12.1, we define both the position

and velocity in terms of vectors: The position of the electron at any
given time is given by a position vector, referenced to an origin O. So,
when the electron is at point P, its location is defined by the vector a,
whereas when it has moved to point Q, the position is defined by a
different position vector, b. We can also represent the velocity at
points P and Q by the two vectors va and vb, both of which have the
same magnitude (length) but whose direction is different.
In chemistry, we meet many physical quantities and properties that

require us to specify both magnitude and direction. These include:

Figure 12.1 The velocity and

position vectors of an electron at

two points P and Q in a circular

Bohr orbit.
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N The magnetic and electrical properties of atoms, molecules and
solids.

N Forces between molecules.
N Velocity of a molecule in the gas phase.
N Angular momentum associated with molecular rotational motion

and with the orbital and spin motions of electrons.

In order to qualify properly as a vector, a quantity must obey the
rules of vector algebra (scalar quantities obey the rules of arithmetic).
Consequently, we need to describe and define these rules before we
can solve problems in chemistry involving vector quantities. Linear
algebra is the field of mathematics that provides us with the notation
and rules required to work with directional quantities.

Aims:

In this chapter, we discuss the concept of the vector from a
number of perspectives, ranging from the graphical description,
to a presentation of vector algebra and on to examples of how
we can apply vector algebra to specific chemical problems
involving directional properties. By the end of the chapter, you
should understand how:

N Vectors are defined geometrically in terms of direction and
magnitude.

N Vectors are defined algebraically, using base vectors.
N Vectors are combined using addition or subtraction.
N The scalar and vector products are defined and used.
N The triple scalar product is defined and used for calculating

the volume of a parallelepiped.
N Matrix representatives of vectors are formulated and used.

12.1 The Geometric Construction of Vectors

A vector is represented mathematically by a directed line segment, the
length of which corresponds to the magnitude of the vector, whilst its
orientation, taken together with an attached arrow, indicates its
direction. To simplify matters, we first consider vectors in two
dimensions (2-D space), and then extend the concepts to dealing with
vectors in three or more dimensions.
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12.1.1 Vectors in Two Dimensions

Consider the three directed line segments representing the vectors
shown in Figure 12.2: all three have initial and final points, which
may or may not be labelled, whereas the arrow indicates the direction.
In each case the position of the initial point is of no significance. The
magnitudes (lengths) of the left-most and right-most vectors are the
same, but their directions are opposite; the middle vector has the same
direction as the left vector, but twice its magnitude.

12.1.2 Conventions

1. Vectors are represented by symbols such as a, b, ... and their
respective magnitudes are given by |a|, |b|, ..., or just a, b, .... An
alternative notation, OP

�!
, is sometimes used when we wish to

describe a displacement in space between two points (in this case,
points O and P).

2. The vectors a and b are said to be equal if their magnitudes and
directions are the same – irrespective of the locations of their
initial points. Hence, any directed line segment with the same
length and direction as a is represented by a.

3. A unit vector is a vector having unit magnitude (or length). Unit
vectors are symbolised by â, b̂,…, and correspond to the vectors
a, b,… divided by their own magnitude. For example:

â~
a

aj j : ð12:1Þ

4. A null vector, 0, has zero magnitude and consequently no
direction is defined.

12.2 Addition and Subtraction of Vectors

12.2.1 Vector Addition

Consider the two vectors a and b shown in Figure 12.3.

The arrow indicating direction is

placed at any appropriate point

on the line segment. We have

chosen for the most part to place

the arrow at the mid point.

Figure 12.2 Representations of

the vectors a, 2a and 2a as

directed line segments.
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The sum of a and b is given by the vector c, which is found in the
following series of steps:

(a) Translate the vector b until its initial point coincides with that
of a:

(b) Construct a parallelogram as indicated in Figure 12.4.

The directed line segment OQ
��!

represents the vector c, defined as the
sum of a and b. Furthermore, as OQ

��!
~OP
�!

zPQ
�!

~OR
��!

zRQ
��!

, it
follows that c 5 a + b 5 b + a, from which we see that addition is
commutative; in other words, a displacement OR

��!
followed by RQ

��!
clearly leads to the same final point as a displacement OP

�!
followed by

PQ
�!

.
Since OR

��!
and PQ

�!
are equivalent, and represent the same vector b,

we can use a triangle to summarise the relationship between a, b and
the resultant vector c (see Figure 12.5). For this reason, the equality c
5 a + b is often known as the triangle rule.

12.2.2 Vector Subtraction

The subtraction of two vectors can be thought of as the addition of
two vectors that differ in their sign. If we think of this in terms of

Figure 12.3 Vectors a and b

with initial points O and S,

respectively.

Figure 12.5 The triangle rule, in

which c 5 a + b.

Figure 12.4 The parallelogram

formed by the addition of the two

vectors a and b.
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displacements in space, then the first vector corresponds to a
displacement from point P to point Q, for example, whereas a second
identical vector with opposite sign will direct us back to point P from
point Q.

The net result is the null vector – we end up where we started.

az{a~a{a~0 ð12:2Þ

It follows that subtraction of two vectors, a and b, is equivalent to
adding the vectors a and 2b, and so we can define vector subtraction
in a general sense as:

d~az {bð Þ~a{b, ð12:3Þ

which can be expressed in terms of a variant of the triangle rule, as
seen in Figure 12.6.

It also follows from Figure 12.6, that if a + b 5 c then c 2 a 5 b,
which we represent graphically in two ways in Figure 12.7:

Note that both representations are equivalent, in spite of the fact
that the initial and final points of vector b are located at different
points in space in the two representations. Thus, since the vector is
fully defined simply by its direction and magnitude, the locations of
the initial and final points are unimportant – unless we define them to
act in specific locations.

Figure 12.7 Two alternative

representations of the subtraction

of two vectors.

Figure 12.6 Vector subtraction

represented in terms of the

triangle rule.
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Problem 12.1

Use the vectors a and b in Figure 12.5 to construct parallelo-
grams, defined by the vectors: (a) c 5 a + 2b and (b) d 5 2a 2 b.

12.3 Base Vectors

Any kind of operation on a vector, including addition and
subtraction, can be somewhat laborious when working with its
graphical representation. However, by referring the vectors to a
common set of unit vectors, termed base vectors, we can reduce the
manipulations of vectors to algebraic operations.
In three dimensional space, a convenient set of three unit vectors is

provided by î, ĵ, k̂, which are directed along the x-, y-, and z-Cartesian
axes, respectively (Figure 12.8).
In this system of coordinates, if a point P has the coordinates (x, y,

z), then the directed line segment OP
�!

, extending from the origin O to
point P, corresponds to the vector r. If we apply the triangle rule
twice, we obtain:

r~OQ
��!

zQP
�! ð12:4Þ

~OR
��!

zRQ
��!

zQP
�! ð12:5Þ

) r~x̂izŷjz�zk̂ ð12:6Þ

Eqn (12.6) expresses r as a sum of the vectors x̂i, ŷj and zk̂, which
are called the projections of r in the direction of the x-, y- and z-axes.
The magnitudes of each projection are given by the x-, y- and z-
values, respectively, defining the location of P; however, in the context

Figure 12.8 Base vectors in

three dimensions for the

Cartesian coordinate system.
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of vectors, these values (coordinates) are known as the components of
r; if the components are all zero, then this defines the null vector. Note
that for problems in two dimensions, only two base vectors are
required, such as, for example î and ĵ.

12.3.1 The Magnitude of a Vector in Three-Dimensional Space

If we apply the Pythagoras’ Theorem, first to triangle ORQ in
Figure 12.8, and then to triangle OQP, we obtain an expression for
the magnitude of r in terms of its components:

rj j~ x2zy2zz2
� �1=2 ð12:7Þ

12.3.2 Vector Addition, Subtraction and Scalar Multiplication using
Algebra

The algebraic approach to vector addition and subtraction simply
involves adding or subtracting the respective projections, x̂i, ŷj and
zk̂, of the two (or more) vectors. Scalar multiplication requires each
projection to be multiplied by the scalar quantity.

Worked Problem 12.1

Q. If u~îzĵz2k̂ and v~{2̂i{ĵzk̂, find:
(a) 2v, (b) u22v and (c) |u22v|.

A. að Þ 2v~{4̂i{2̂jz2k̂
bð Þ u{2v~ îzĵz2k̂

� �
{ {4̂i{2̂jz2k̂
� �

~ 5̂iz3̂j
� �

cð Þ u{2vj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52z32

p
~

ffiffiffiffiffi
34

p
:

Problem 12.2

If a~îzĵ{2k̂, b~îzk̂, c~îzĵzk̂ and d~î{2k̂, f ind :

(a) 3a 2 2b, (b) 22a 2 b, (c) a + b 2 c 2 d, (d) |a 2 d|,
(e) (a + c) / |a + c|, (f) the magnitude of the vector in (e),
(g) |a| 2 |c|.
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Problem 12.3

Consider the planar complex ion Co CNð Þ2{4 , shown schemati-
cally in Figure 12.9. The central Co lies at the origin, and the
four CN2 ligands lie on either the x- or y-axis; R is the Co–C
interatomic distance.

(a) Identify the unit vectors directed toward each of the four
CN2 ligands.

(b) Give the forms of the four vectors, directed from Co to
each C atom.

(c) Find the vectors specifying one of the shortest and one of
the longest C2C distances, and hence determine these
distances in terms of R.

Hint: The representation of vector subtraction shown in
Figure 12.7(a) may be helpful.

12.4 Multiplication of Vectors

In algebra, as we saw in Chapter 2, the act of multiplication is an
unambiguous and well-defined operation indicated by the sign 6. In
the algebra of vectors, however, multiplication and division have no
obvious conventional meaning. Despite this drawback, the two kinds
of multiplication operation on pairs of vectors in widespread use are
defined in the following subsections.

12.4.1 Scalar Product of Two Vectors

Consider the vectors a and b in Figure 12.10, in which the angle
between the two vectors is h:

R

x

Co

y

Figure 12.9 The planar

complex ion Co CNð Þ2{4 , where

the carbon atoms are

represented by $ and the

nitrogen atoms by $.

The 6 symbol used in the

multiplication of numbers and

symbols is commonly

suppressed: thus, 6xy is

shorthand for the product

Objects formed by placing

vectors in juxtaposition, such as

ab, are called dyadics and have a

role in theoretical aspects of

Raman spectroscopy, for

example.

Vectors 267



The scalar product is defined as:

a:b~b:a~ aj j bj j cosh: ð12:8Þ

The right-hand side of eqn (12.8) indicates that the result is a scalar
(number), and not another vector, because it involves the product of
the magnitudes of the two vectors, with the cosine of the angle
between them (a positive or negative number, depending on the
angle). Thus, since |a| and |b| are, by definition positive numbers, the
sign of the scalar product is determined by the value of the angle h. In
particular, the scalar product is:

N Positive, for an acute angle (h , 90u).
N Zero for h 5 90u.
N Negative for an obtuse angle (90u , h ¡ 180u).

By convention, the h angle is restricted to the range 0 ¡ h ¡ 180u.
If h 5 90u, then a?b 5 0, and a and b are said to be orthogonal. On the
other hand, the scalar product of a vector with itself (h 5 0u; cos h 5

1), yields the square of its magnitude:

a:a~ aj j2, implying that aj j~
ffiffiffiffiffiffiffi
a:a

p
: ð12:9Þ

Furthermore, if a is of unit magnitude, then a?a5 1, and a is then said
to be normalised.

12.4.1.1 Specifying the Angle h

In some situations, it is important to be aware of how the sense of
direction of the two vectors a and b affects the choice for the value of
the angle between them. For example, the angle h between the vectors
in Figure 12.10 constitutes the correct choice, because the two vectors
are directed away from the common point of origin. However, if
vector a (or vector b) is directed in the opposite sense (the dashed
directed line segment in Figure 12.11), then we determine the angle
between a and b by realigning the two vectors to ensure once again
that they are directed away from the common origin point. The angle
is then defined as 180u 2 h (Figure 12.11).

Figure 12.10 Two vectors a

and b, inclined with respect to

one another at an angle, h.
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12.4.1.2 The Scalar Product in the Chemical Context

Scalar products arise in a number of important areas in chemistry.
For example, they are involved in:

N Determining the energy, W, of a molecular electric or magnetic
dipole interacting with an electric or magnetic field , W 5 2me?E,
or W 5 2mm?H, respectively.

N Evaluating the consequences of the intermolecular dipole–dipole
interactions in crystalline substances.

N Crystallography where the scalar triple product (see Section 12.5.3)
is used to evaluate the volume of a crystallographic unit cell.

12.4.1.3 Scalar Products of Vectors Expressed in Terms of Base
Vectors

The scalar product of two vectors a and b, expressed in terms of
base vectors, is obtained by taking the sum of the scalar products
of each base vector pair, together with the appropriate product of
components.

Worked Problem 12.2

Q. Find the scalar product of the vectors a~îzĵ{2k̂ and
b~îzk̂.

A. We find the scalar product of a and b using the respective
components (1,1,22) and (1,0,1). Thus, expanding the brackets
yields:

a:b~ îzĵ{2k̂
� �

: îzk̂
� �

~î:̂izî:k̂zĵ:̂izĵ:k̂{2k̂:̂i{2k̂:k̂

ð12:10Þ

We now use eqn (12.8) to evaluate each scalar product of base
vectors, to obtain:

î :̂i~ĵ :̂j~k̂:k̂~1 h~0ð Þ ð12:11Þ

Figure 12.11 The relationship

between vector direction and

angle.
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î:̂j~î:k̂~k̂:̂j~0 h~900ð Þ ð12:12Þ

which, on substitution into eqn (12.10), gives:

a:b~1z0z0z0{0{2

~{1:

Problem 12.4

If a~2̂iz3k̂, b~îzĵzk̂ and c~î{2̂jzk̂, find:
(a) a?c, (b) a?(b 2 2c), (c) a?(b + a) and (d) b?c

12.4.1.4 Finding the Angle Between Two Vectors

In the previous section we saw that, in spite of appearances, we do not
need to know the angle between two vectors in order to evaluate the
scalar product according to eqn (12.8): we simply exploit the
properties of the orthonormal base vectors to evaluate the result
algebraically. However, we can approach from a different perspective,
and use the right-hand side of eqn (12.8) to find the angle between two
vectors, having evaluated the scalar product using the approach
detailed above. The next Worked Problem details how this is
accomplished.

Worked Problem 12.3

Q. Use eqn (12.8) to find the angle between the vectors
a~îzĵ{2k̂ and b~îzk̂.

A. As the scalar product of these two vectors is negative, and
has the value 21 (Worked Problem 12.2), we know that the
angle h is obtuse. The next step involves substituting the vector
magnitudes |a|~

ffiffiffi
6

p
and |b|~

ffiffiffi
2

p
into eqn (12.8), in order to

determine the value of cos h:

{1~
ffiffiffi
6

p
|

ffiffiffi
2

p
|cosh ) cosh~{

1ffiffiffi
2

p ffiffiffi
6

p ~{
1

2
ffiffiffi
3

p :

Vectors which are orthogonal to

one another, as well as being

normalised, are said to be

orthonormal.

270 Maths for Chemists



Since cos h is negative (an obtuse angle), and h is restricted to
0 ¡ h ¡ 180u, we obtain the result h 5 106.7o.

Problem 12.5

(a) Using the definition of the vectors a, b and c in Problem
12.4, find the angle between (i) a and (b22c) and (ii) b and
c.

(b) Find a value of l for which the two vectors d~3̂i{2̂j{k̂
and e~îzl̂jz2k̂ are orthogonal.

12.4.1.5 Simple Application of the Scalar Product: the Cosine Law for
a Triangle

If the sides of the triangle OPQ in Figure 12.5, formed from the
vectors a, b and c have magnitudes a, b and c, respectively, and B is
the angle opposite b, then we can use eqns (12.8) and (12.9) to find a
useful relationship between a, b, c and B.
The triangle rule c 5 a + b may be rewritten as b 5 c 2 a, from

which we form the scalar product b?b:

b:b~ c{að Þ: c{að Þ:~a:azc:c{2a:c ð12:13Þ
However, since we know that the scalar product of a vector with itself
yields the square of its magnitude [eqn (12.9)], and that the angle
between a and c is B (and not 180u 2 B), it follows that:

b:b~b2~a2zc2{2ac cos B: ð12:14Þ
This can be extended to construct analogous expressions involving the
angles A and C, opposite vectors a and c, respectively.

Problem 12.6

Use the triangle rule in the form c 5 a + b to derive the form of
the cosine formula, involving the angle C.

Hint: Find an expression for c?c and decide, using Figure 12.11,
whether the angle h (in degrees) between the vectors a and b is
the same as angle C or the angle 180u 2 C. Remember: the
cosine formula given above always has the same form,
regardless of our choice of a, b and c or angles A, B and C.
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Problem 12.7

The complex ion CoCl2{4 adopts a tetrahedral shape, in which
the Co lies at the centre of a cube of side 2a, and the Cl2species
are located on alternate cube vertices; the Co–Cl interatomic
distance is taken as R. The coordinate axes are chosen to pass
through the centres of opposite pairs of cube faces, with the Co
lying at the origin, as shown in Figure 12.12:

(a) Given that the coordinates of the four Cl2ligands are
(a, 2a, 2a), (2a, a, 2a), (a, a, a) and (2a, 2a, a), write
down the algebraic form of the four vectors, r1, r2, r3 and r4,
directed from the central Co (0, 0, 0) to the four ligands.

(b) Find the magnitude of any one of the Co–Cl vectors, and
hence express a in terms of R.

(c) Use the triangle rule shown in Figure 12.7(a) to find a
vector associated with the inter-ligand distance, and hence
find its magnitude in terms of R.

z

Co

r4

r3

r2

r1

x

y

Figure 12.12 The complex ion

CoCl2{4 , where $ represents a

Cl2 species.
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12.4.2 Vector Product of Two Vectors

In the previous section, we defined the scalar product as a vector
operation resembling the act of multiplication, which results in a
scalar (or number, with or without units). We can now define a
second type of vector multiplication known as the vector product,
which results in another vector rather than a number. The vector
product is defined as:

a|b~{b|a~ aj j bj j sin h:n̂, ð12:15Þ

where n̂ is the unit vector orthogonal (perpendicular in 2-D or 3-D
space) to the plane containing a and b. Since there are two possible
choices for n̂ (up or down), the convention for selecting the
appropriate direction for n̂ requires the vectors a, b and n̂ to form a
right-handed system of axes as shown in Figure 12.13:

If we imagine the action of a right-hand corkscrew, in which a is
rotated towards b, in an anti-clockwise sense when viewed from
above, the corkscrew moves in the direction of n̂; it follows that the
analogous corkscrew motion taking b to a (clockwise) yields a
movement in the direction of 2n̂. Consequently, the vector products
involving the base vectors ĵ and k̂, or, by suitable changes, any other
pair of base vectors, are determined by forming a right-hand
clockwise system as seen in Figure 12.14.

Figure 12.13 The axis

convention for determining the

sign of the unit vector n̂ directed

perpendicular to the plane

containing the vectors a and b.

Figure 12.14 Formation of the

vector product (a) k̂|ĵ~{î, and

(b) ĵ|k̂~î determined by looking

down the x-axis and imagining

the action of a right-handed

corkscrew motion (see the text for

details).
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Although analogous results can be derived for other pairs of base
vectors, the simplest aid for obtaining the appropriate result is to use
the diagram shown in Figure 12.15. The vector product î 6 ĵ for
example, is verified by moving in a clockwise manner from î to ĵ to the
next base vector k̂. However, ĵ 6 î yields 2k̂ because anticlockwise
circulation introduces a negative sign.

In forming the vector product of two vectors a and b, we should
remember that:

N The order of operation is very important – the operation is not
commutative [eqn (5.15)].

N The resulting vector is orthogonal to both a and b, implying that:

a: a|bð Þ~0 and b: a|bð Þ~0

N The operation is not generally associative:

a|bð Þ|c=a| b|cð Þ

12.4.2.1 Vector Products in a Chemical Context

Vector products arise when:

N Working with the angular momentum, , (a vector property),
associated with the circular motion of a particle of mass, m,
moving under a constant potential about a fixed point with
velocity and position described by the vectors,

v~

vx

vy

vz

0
B@

1
CA; x~

x

y

z

0
B@

1
CA

In this instance, the angular momentum ,5r6mv5r6p, where

p~

mvx

mvy

mvz

0
B@

1
CA

Although the vector product is not

generally associative, there are

examples where this rule is

violated – one being the three

vectors given in Problem 12.11.

Figure 12.15 The vector

product of any two base vectors,

moving in a clockwise or

anticlockwise direction, yields

resultant vectors of positive or

negative signs, respectively.
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is the linear momentum. Such model systems have particular
relevance when considering the orbital motion of an electron about
a nucleus in an atom or about the internuclear axis in a linear
molecule.

N Evaluating the volume of a crystallographic unit cell through the
scalar triple product (see Section 12.5.3).

Worked Problem 12.4

Q. (a) Use eqn (12.15) to express the vector products î 6 î, ĵ 6 ĵ
and k̂ 6 k̂, in terms of the base vectors î, ĵ and k̂;
(b) With the aid of Figure 12.15, find the vector products î
6 ĵ, î 6 k̂ and ĵ 6 k̂.

A. að Þ î|î ~ î







 î







sin h:n̂ ~ 1|1:sin 0:n̂~0, since sin 0 ~ 0:

The outcome is the same for ĵ 6 ĵ and k̂ 6 k̂, and so:

î|î~ĵ|ĵ~k̂|k̂~0

It is important not to confuse this result with the analogous
scalar products.

bð Þ î|ĵ~k̂, î|k̂~{ĵ and ĵ|k̂~î:

Problem 12.8

Use the definitions of a and c in Problem 12.4, and the results of
Worked Problem 12.4, to find:

að Þ a|c, bð Þ c|a, cð Þ c|aj j, dð Þ î|ĵ
� �

|ĵ and eð Þ î| ĵ|ĵ
� �

:

12.4.3 Area of a Parallelogram

The vector product of a and b provides a route for calculating the
area of a parallelogram. We explore this method in Worked Problem
12.5.
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Worked Problem 12.5

Consider the parallelogram OPQR in shown in Figure 12.16. If
we extend OR to point T and drop perpendicular lines from P to
S and from Q to T, we construct a rectangle with the same area
as the original parallelogram: a result achieved by chopping off
the triangle OPS from the left side of the parallelogram and
reattaching it at the right side.

Q. (a) Explain why the areas of the triangles OPS and RQT are
equal.

(b) If the directed line segments OR
��!

and OP
�!

, are represented
by the vectors a and b, show that the area of the
parallelogram is given by |a|h.

(c) Deduce that the area, A, of the parallelogram is given by
|a6b|.

A. (a) The areas of the triangles OPS and RQT are equal
because the lengths of the sides OP and RQ are the same,
as are the angles PÔS and QR̂T.

(b)Given the equivalency of the two triangles OPS and RQT,
the area of the rectangle SPQT must be the same as that
of the parallelogram OPQR. Consequently the area of
the parallelogram must be equal to the magnitude of ST

�!
multiplied by the height of the rectangle, h. Since ST

�!
has

the same magnitude as OR
��!

, and OR
��!

is represented by the
vector a, it follows that the magnitude of ST

�!
is equal to

the magnitude of a. Thus, the area A 5 |a|h.
(c) As triangle OPS is right-angled, it follows that h 5 |b|sin h,

and

A~ aj j bj jsin h~ a|bj j, where a|b~ aj j bj jsin h:n̂:

Figure 12.16 The area of the

parallelogram OPQR is given by

|a6b|, where the vectors a and b

represent the directed line

segments OR
�!

and OP
�!

,

respectively.
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Problem 12.9

For a~a1 îza2 ĵza3k̂, b~b1 îzb2 ĵzb3k̂, c~c1 îzc2 ĵzc3k̂,

show that :

(a) a?b 5 a1b1 + a2b2 + a3b3;

bð Þ b|c~ b2c3{b3c2ð Þ̂i{ b1c3{b3c1ð Þ̂jz b1c2{b2c1ð Þk̂:

12.5 Matrices and Determinants Revisited: Alternative
Routes to Evaluating Scalar and Vector Products

12.5.1 The Scalar Product

If the components of the vectors a and b in Problem 12.9 form the

elements of the column matrices v1~
a1
a2
a3

0
@

1
A and v2~

b1
b2
b3

0
@

1
A, then the

scalar product a?b takes the form:

vT1 v2~ a1 a2 a3ð Þ
b1

b2

b3

0
B@

1
CA~a1b1za2b2za3b3,

giving the same result as in Problem 12.9(a).

12.5.2 The Vector Product

If we compare the form of the vector product, given in the answer to
Problem 12.9(b), with the expansion of a determinant of order three,
given in eqn (10.20), we see that, if the correspondences:

a11~î, a12~ĵ, a13~k̂;

a21~b1, a22~b2, a23~b3;

a31~c1, a32~c2, a33~c3;

are made, then:
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b|c~

î ĵ k̂

b1 b2 b3

c1 c2 c3


















: ð12:16Þ

Using the properties of determinants, we see that exchanging rows
two and three results in a change of sign of the determinant. Such a
change corresponds to the vector product c6 b and is consistent with
eqn (12.15) and b 6 c 5 2c 6 b.

Problem 12.10

If a~îzĵzk̂ and b~î{ĵzk̂ :

(a) Use eqn (12.16) to find the vector a6b;
(b) Find |a 6 b|, and specify a unit vector in the direction of

a 6 b.

12.5.3 The Scalar Triple Product

If we define three vectors a, b and c, as in Problem 12.9, the expression
a?(b 6 c), known as the scalar triple product, yields a scalar quantity,
the magnitude of which provides the formula for the volume, V, of a
parallelepiped with adjacent edges defined by vectors a, b and c (an
example in chemistry being a crystalline unit cell). If the determi-
nantal representation of b6c is used, then, on expanding the
determinant from the first row, and evaluating the three scalar
products, we obtain:

a: b|cð Þ~a:

î ĵ k̂

b1 b2 b3

c1 c2 c3





















~a: î b2c3{b3c2ð Þ{ĵ b1c3{b3c1ð Þzk̂ b1c2{b2c1ð Þ
n o

ð12:17Þ

~a1 b2c3{b3c2ð Þ{a2 b1c3{b3c1ð Þza3 b1c2{b2c1ð Þ ð12:18Þ

which, in turn, may be converted back into the determinantal form:
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a: b|cð Þ~
a1 a2 a3

b1 b2 b3

c1 c2 c3


















: ð12:19Þ

Thus, the volume (a positive quantity), V, of the parallelepiped
formed from a, b and c has the formula:

V~ a: b|cð Þj j: ð12:20Þ

We explore the application of the scalar triple product for
evaluating the volume of a crystallographic unit cell in the final two
problems of this chapter.

Problem 12.11

If a~a2 ĵza3k̂, b~b1 î, c~c2 ĵ, use eqn (12.19) to find an
expression for a?(b 6 c).

Problem 12.12

Crystalline naphthalene has a monoclinic unit cell, defined by
the vectors in Problem 12.11, where |a| 5 0.824 nm, |b| 5 0.600
nm and |c| 5 0.866 nm, and the angles between a and b, a and c,
and b and c are a 5 90u, b 5 122.9u and c 5 90u, respectively.

(a) Give the values of b1 and c2.
(b) Use eqn (12.8) for the scalar product a?c and your answer

to Problem 12.11 to show that a2 6 0.866 nm 5 0.824 6
0.8666cos b nm2, and hence find the value of a2.

(c) Use eqn (12.9) to show that aj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22za23

q
, and hence find

the two possible values for a3.
(d) Use eqn (12.19) to calculate the volume of the unit cell for

naphthalene, using the positive value for a3 obtained in (c).

Note: Repeating the calculation of the volume of the unit cell
using the negative value for a3 yields an identical result for the
volume of the unit cell. The negative value for a3 arises as a
legitimate mathematical solution, but has little physical
relevance other than to reflect the unit cell in the xy-plane.

Since a?(b 6 c) may be negative,

we take the modulus to ensure a

positive result.
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Summary of Key Points

This chapter provides a description of some of the mathematical
tools required to understand the properties of chemical and
physical quantities that are defined not only by magnitude but
also by direction. The key points discussed include:

1. The graphical definition of a vector.
2. A geometrical method for the addition and subtraction of

vectors.
3. The properties of Cartesian base vectors.
4. An algebraic method for the addition and subtraction of

vectors.
5. The scalar and vector products of two vectors.
6. The scalar triple products, involving three vectors.
7. Working with vectors using matrix and determinantal

notation.
8. A selection of mathematical and chemically based exam-

ples, to illustrate practical applications of vectors.
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13
Simple Statistics and Error
Analysis

In this 13th and final chapter we start by addressing a question that
might interest the more superstitious reader in particular, but which
also makes an important point about the significance of sample size in
experimental measurement. The number 13 is noteworthy in
mathematics for a number of reasons but most obviously because it
is a prime number. It also has many associations in folk law, and in
many cultures is considered to be an unlucky number. So just how
unlucky is it? How might we determine, for example, whether or not
Friday 13th is a day to stay home or to venture out? A study published
in the British Medical Journal concluded that ‘The risk of hospital
admission as a result of a transport accident [on a Friday 13th] may be
increased by as much as 52%’.1 This conclusion resulted from a
statistical analysis of the number of hospital admissions due to traffic
accidents on six different Friday 13th’s over a four year period
compared to the previous Friday the 6th in each of the months
sampled. The sampling over six sets of data is of course an important
component of the analysis but, at the outset of our discussion, it may
not be obvious whether the sample is large enough to eliminate doubt
about the significance of the findings. However, what should be clear
is that comparison of a single Friday 6th with a single Friday 13th

would be meaningless: in order to draw any meaningful conclusion
about such an observation, we have to demonstrate reproducibility.
In the case of their study, the authors will also have had to normalise
the data set against other factors such as the volume of traffic on the
road on each pair of days and take account of whether or not a
particular Friday the 13th or Friday 6th falls on a bank holiday. They
would also need to be sure that each hospital admission entry is
definitely associated with an accident occurring on the day in
question, with any resulting uncertainties accounted for in their
conclusions. Such principles of sampling, statistical significance, the
presentation and analysis of data and the assessment of its reliability
lie at heart of scientific observation and of course of experimental
chemistry.
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The conclusions we draw about the significance of our experimental
measurements depend critically on how carefully we design our
experiment, our choice of method and how well we assess errors
associated with our experiments. Sometimes we are making a simple
measurement of some physical quantity, the eventual recorded value
of which derives from repeated measurements using a tried and tested
experimental approach. However, sometimes we might measure a
quantity under a range of different experimental conditions in order
to determine some other quantity that is related to the measured one
through a mathematical relationship.
In this final chapter, we will look first of all at the types of errors

associated with a measurement before going on to look in closer detail
at statistical distributions of measurements and how we can extract a
best estimate of a true value from a distribution as well as a measure
of the uncertainty associated with that value. We then take a look at
linear regression analysis, a topic that is immensely important when
measurements take the form of a determination of a value of a
dependent variable, such as a rate of reaction, for each of several
values of an independent variable, such as concentration of a
reactant. We close the chapter by looking at how errors propagate
(discussed briefly in the context of differentials in Section 5.3) when
the value of a physical quantity is not measured directly from an
experiment but derives from a functional relationship with another
measured quantity.

Aims:

The aim of this chapter is to develop an appreciation of how
simple statistics can be used to understand the nature of
repeated experimental measurement, how it can help us process
and interpret experimental results and, importantly, how it
enables us to make meaningful and useful assessments of errors
arising from common experimental situations. By the end of the
chapter, you should be able to:

N Recognise the sources and nature of different types of error
in an experiment.

N Understand the difference between systematic and random
errors.

N Understand the key features of the Gaussian or normal
distribution and to be able to define the terms: mean,
variance, standard deviation and standard error.
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N Calculate a sample mean, sample standard deviation and
standard error of the sample mean of a set of data and
deduce the 95% confidence interval.

N Perform a least-squares analysis of a data set, deducing the
best values of the parameters appearing in the linear
relationship and the uncertainties associated with them.

N Determine how errors propagate through functions of single
and multiple variables

N Understand the distinction between absolute and relative
errors.

13.1 Errors

The uncertainty in a measurement is commonly also called the error
but we have to exercise a little care in how we use this term. Errors are
often associated with mistakes or with something that is definitely
wrong but scientists tend to think of them as either:

1) The discrepancy between a measured value and some generally
accepted true value – generally referred to as the accuracy of the
measurement, or

2) The degree to which repeated measurement of a particular
quantity gives the same result – generally referred to as the
precision of the measurement.

An experimental method may be accurate but not especially precise
if it suffers from random errors, but equally it may yield inaccurate
results with high precision if it is subject to systematic errors (see
Figure 13.1). In an experiment free from serious systematic errors, we
can improve the precision considerably by increasing the sample size.

Figure 13.1 Arrows striking a

target close to the bull’s eye

achieve high accuracy but do so

not necessarily with high

precision (centre). Conversely, a

closely clustered group of shots

off to one side demonstrate high

precision but low accuracy (left).

Both high precision and high

accuracy is only achieved

through a tight clustering of shots

close to the bull’s eye (right).
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13.1.1 Systematic Errors

A laboratory measurement of the boiling point (b.p.) of isoamyl
acetate, produced in an undergraduate experiment to synthesize
banana oil, yields a temperature of 123 uC, a value the student notes
to be 19 uC below the known reference value of 142 uC. What can the
student conclude about this observation? Perhaps they made the
wrong product, or perhaps their technique was somehow at fault.
Repeating the measurement with the same thermometer but on a
sample produced by a different student yields a boiling point of
124 uC, a result close enough to the first measurement to suggest that
the method or apparatus may be at fault. A demonstrator suggests
trying a different type of alcohol thermometer and this time the
measured boiling point is 130 uC. A third measurement with a
mercury thermometer that had been calibrated against a known
standard yields a value of 141 uC. We now have four data points and
are significantly closer towards being able to draw a meaningful
conclusion about the reason for the low initial value of the measured
boiling point. Repetition of this process using twenty different
thermometers then builds up a data set describing a statistical
distribution of thermometer performance at temperatures above
115 uC (shown in Figure 13.2), but perhaps is not terribly helpful in
providing us with the definitive boiling point measurement of the
ester. This type of error, resulting from some deficiency in the
apparatus, is known as a systematic error and is not revealed by
repeated measurement using the same apparatus and technique. We

Figure 13.2 The frequency

distribution of twenty boiling point

measurements of an ester made

with twenty different

thermometers is shown in a

frequency histogram. In this case,

the data reveal a systematic error

between the values recorded and

the reference value of 142 uC.
The systematic error derives in

this case from deficiencies in the

types of thermometer used to

make the measurements.
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only discover its existence having considered the apparatus used and
perhaps the process too. The true value of the boiling point of the
ester will be that which has been determined by the most reliable and
accurate method, with that having been established by benchmarking
or calibration against some sort of standard.
Systematic errors always affect the accuracy of the result and will

tend to do so in the same direction – i.e. the answer will always tend to
be too high or too low rather than fluctuating about some central
value following successive measurements. As a consequence of the
fact that they derive from deficiencies of one sort or another in the
experimental apparatus, they cannot be quantified by a statistical
analysis of repeated observations.

13.1.2 Random Errors

The somewhat uncomfortable reality of experimental measurement is
that two measurements of the same physical property with identical
apparatus, using a nominally identical procedure, will almost
invariably yield slightly different results. Repeating the measurement
further will continue to yield slightly different values each time. Such
variations result from random fluctuations in the experimental
conditions from one measurement to the next and from limitations
associated with the precision of the apparatus or the technique of
whoever is conducting the experiment. The statistical nature of these
fluctuations means that the discrepancies with respect to the ‘true’
value are equally likely to be positive or negative. The precision of the
final result can always be improved by performing more and more
measurements until the distribution of the scattered results becomes
better defined, at which point the average value and an uncertainty
associated with it can be established. It is this type of uncertainty or
error that can be best treated using statistical methods.

Problem 13.1

Write down some examples of sources of random errors that
might affect experiments you have performed at school or
college or as part of your degree course. In each case, try to
think of ways in which the impact of each source of error might
be minimised.
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13.2 The Statistics of Repeated Measurement

13.2.1 The Binomial Distribution

In the example given in the introduction to this chapter, the analysis
of hospital admissions following road traffic accidents was based on
six sets of data, five of which showed larger numbers of hospital
admissions on a given Friday 13th compared with the previous Friday
6th, and one of which showed the opposite result. We can get some
idea of the extent to which this data set is large enough by considering
the probabilities associated with the possible outcomes of the tossing
of a coin. For each toss of the coin, there are two equally likely
outcomes with the probability of getting heads, P(H), 1

2, and the
probability of getting tails, P(T), which is also 1

2. For two tosses of the
coin, there are 22 possible outcomes with the probability of each
outcome, HH, HT, TH or TT, being the product of the probability

associated with each toss, i.e. 1
2
| 1

2
~ 1

2

� �2
~ 1

4
. In other words, there is

a one in four chance that any prediction of the outcome of two tosses
will be correct. For three tosses, there are 23 possible outcomes, each
with equal probability, some of which will be associated with the same
nominal outcome but distinguished by the order in which the heads
and tails fall. For example, the probability that we get HHT is the
same as HTH or THH but each outcome counts as a distinguishable
result, contributing as a result to the total probability that we get two
heads and one tails. If we define P(n/N) as the total probability that n
heads results from N tosses of the coin, accounting for the fact that
each result may be achievable in more than one distinguishable way
(with the number of tails being N 2 n), then the total probabilities
associated with 3, 2, 1 and 0 heads following three tosses are:

Three heads

P 3=3ð Þ~P HHHð Þ~ 1

2
|

1

2
|

1

2
~

1

2

� �3

~
1

8

Two heads, one tail

P 2=3ð Þ~P HHTð ÞzP HTHð ÞzP THHð Þ~3|
1

2

� �3

~
3

8
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One head, two tails

P 1=3ð Þ~P TTHð ÞzP THTð ÞzP HTTð Þ~3|
1

2

� �3

~
3

8

No heads, three tails

P 0=3ð Þ~P TTTð Þ~ 1

2

� �3

~
1

8

In this example, the weightings associated with each type of result
(1 3 3 1) are the binomial coefficients associated with the binomial
distribution which applies to any experiment yielding one of two
possible outcomes. Thus the probability of n heads resulting from N

tosses, P(n/N), is

P n=Nð Þ~
N

n

 !
pnqN{n

~
N!

n! N{nð Þ! p
n 1{pð ÞN{n

ð13:1Þ

where p denotes the probability of heads in a single toss (i.e. 1
2
) and

q 5 1 2 p, the probability of tails in a single toss (also 1
2
).

Worked Problem 13.1

Q. Use the binomial distribution in eqn (13.1) to verify that the
probability of getting two heads and one tail from three tosses

of a coin is 3
8
.

A. For N 5 3 and n 5 2:

P 2=3ð Þ~ 3!

2! 3{2ð Þ!
1

2

� �2
1

2

� �1

~3|
1

2

� �3

~
3

8

where p~
1

2
for a heads outcome and q~ 1{

1

2

� �
~

1

2
for tails.
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Problem 13.2

Use the binomial distribution in eqn (13.1) to calculate the
probability of getting five heads and one tail from six tosses of a
coin.

It is instructive at this point to extend Problem 13.2 to encompass all
possible outcomes of six tosses of a coin, and then to compare the
theoretical result with results obtained from two sets of experiments.
Each set of experiments records the number of heads obtained from
six tosses of a coin: in the first experiment the data derive from ten
consecutive sets of six tosses and in the second from twenty sets. The
result of this comparison is shown in Figure 13.3.
We can make two important observations from this comparison:
1) The theoretical probability of tossing five heads is about 1 in 10

(or to be precise, 3 in 32), a value large enough to suggest that
some care is required in drawing conclusions from any one
experiment in which one particular result is obtained five times
out of six (and to wander at what point one might speculate
about whether or not the coin is weighted!). The road traffic
accident data in the example discussed in the introduction is
binary in the sense that we might equate ‘heads’ with ‘more
accidents on Friday 13th’ and ‘tails’ with ‘more accidents on the
preceding Friday 6th’. Thus a batch of data taken from one 4-
year period is just as likely to throw up an odd result as one
particular set of six tosses of a coin.

Figure 13.3 A comparison of

two sets of experimental data,

reporting the results of sets of six

consecutive coin tosses with the

theoretical binomial probability

distribution. It is worth noting that

the absence of experimental bars

against the 0 and the 6 simply

reflects the very low probability of

tossing six heads or six tails from

six consecutive tosses. This

absence of data should not come

as a surprise given the odds (1 in

64) and the sample sizes (10 and

20). It is also worth noting the

absence of a five heads

sequence in the smaller 10 sets

sample for similar reasons.
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2) As the sample size increases from ten to twenty, the differences
between the experimental relative frequencies and the theoretical
probability distribution get smaller – with our faith in the
experimental results increasing as a result.

This last observation serves as a good point to consider in more
detail how we use a distribution deriving from a large sample of data
to derive a reliable estimate of the quantity being measured and an
estimate of the uncertainties associated with that measurement.

13.2.2 The Gaussian Distribution

As we have seen above, the results of an experiment subject to
random uncertainties will tend to cluster about a central most
probable value. In such a distribution, the probability of obtaining a
value different from the most probable value decreases as that
difference increases. For a very large number of measurements, the
distribution will adopt a relatively smooth probability density
function, p(x), typically having the mathematical form:

p xð Þ~ 1

s
ffiffiffiffiffiffi
2p

p e
{

x{mð Þ2

2s2 ð13:2Þ

The physical significance of the symmetrical function p(x) is best

understood from its definite integral

ðb
a

p xð Þdx which gives the

fraction of measurements that fall between x 5 a and x 5 b with
p(x)dx being the probability that any one measurement falls between
x and x + dx. The function p(x) in eqn (13.2) is known as the Gaussian
distribution, or sometimes the normal distribution, and is characterised
by a central mean (average) value, m, and a width parameter, s. A plot
of the function is shown in Figure 13.4 for two different values of s.

13.2.2.1 The Mean, Variance and Standard Deviation

For an experiment in which we take N measurements, xi (i 5 1, 2, …
N), the mean value x̄ is given by:

�x~
1

N

XN
i~1

xi ð13:3Þ

This experimental mean is our best estimate of the ‘true’ mean, m,
something we could only find by making an infinite number of
measurements. The spread of the distribution, parameterised by s,
provides us with a measure of the uncertainty associated with the
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mean. A first step to quantifying this scatter about the mean might be
to calculate the average value of the individual deviations from the
mean, xi2x̄, but, for a symmetrical distribution, any one deviation is
more or less equally likely to be either positive or negative and so an
average deviation would then be close to zero. Consequently, it is
conventional to calculate the square root of the average of the squares
of all the deviations. This is known as the standard deviation and given
the symbol, s. Its square, s2, is called the variance and is defined by:

s2~
1

N

XN

i~1

xi{�xð Þ2 ð13:4Þ

13.2.2.2 The Sample Variance and Sample Standard Deviation

In practice, we do not know the ‘true’ value of the measured quantity,
but only have an estimate of it provided from our sample mean. We
must then reflect this additional uncertainty in our estimate of the
standard deviation from our limited sample by defining our best
estimate of the true variance, s2, as the sample variance, s2, given by:

s2~
1

N{1

XN
i~1

xi{�xð Þ2 ð13:5Þ

The sample standard deviation is then given by:

s~
ffiffiffiffi
s2

p
ð13:6Þ

In going from s2 to s2, we say that the number of degrees of
freedom has been reduced by 1 from N to N 2 1 because we have

Figure 13.4 The normal or

Gaussian distribution is a

continuous probability distribution

used to describe random

measured values clustered

symmetrically about a single

mean value, m. The spread or

width of the distribution is

parameterised by s . Regardless

of the width of the distribution, the

total area will always be unity.
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already used the sample once to calculate the value of x̄ required in
the calculation of s.

13.2.2.3 Confidence Intervals

The probability that a particular value of x lies within a certain
interval, ¡a, of the mean can be determined from the area enclosed
by the Gaussian distribution function between m 2 a and m + a. We
can use the calculation of the integral and hence area to arrive at a
range within which we can expect the values to lie within a particular
probability. For the Gaussian distribution, the probability that x lies
within s of the mean is 0.683; that it lies within 2s is 0.954; and that it
lies within 3s is 0.997. In other words, approximately 68% of the
measured values will lie within one standard deviation of the mean;
approximately 95% will lie within two standard deviations and over
99% will lie within three standard deviations. We can then define the
‘68% confidence interval’ as m ¡ s; the ‘95% confidence interval’ as
m ¡ 2s and the ‘99% confidence interval’ as m ¡ 3s (Figure 13.5).

Figure 13.5 In a Gaussian

distribution, approximately 68%

of the measured values will lie

within one standard deviation of

the mean (upper panel) and 95%

will lie within two standard

deviations (lower panel).
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13.2.2.4 Standard Error of the Mean and Standard Error of the Sample
Mean

One defining feature of the discussion so far is that, if in doubt, make
more measurements! A natural intuitive expectation that follows from
this is that as the number of measurements, N, increases, so should the
precision with which we determine the mean. This is particularly
important because the mean is generally what we are most interested
in finding and what the experiment was designed to measure in the
first place. We can visualise this as the experimental distribution
smoothing out as more measurements are made, with the centre of the
distribution becoming better defined. This happens in spite of the fact
that the spread or width of the distribution remains more or less
constant. A good illustration of this process is shown in Figure 13.3 in
which experimental frequency distributions in the numbers of heads
in samples of six successive coin tosses are compared with the
theoretical binomial distribution. What is clear from the plots is that
the ‘10 sets of tosses’ distribution deviates the most from the binomial
distribution and is skewed to lower values. The average number of
heads from the 10 sets of tosses is 2.7; from 20 sets, 3.05; and, of
course from the perfectly symmetrical binomial distribution, 3. This
difference in the evaluation of the mean happens in spite of the fact
that the widths of all three distributions look about the same. We can
quantify this improvement in precision by defining the standard error
of the mean, sm, which is related to the standard deviation by:

sm~
sffiffiffiffiffi
N

p ð13:7Þ

In terms of sample parameters, we can define the standard error of
the sample mean, sx̄, which is related to the sample standard deviation,
s, by:

s�x~
sffiffiffiffiffi
N

p : ð13:8Þ

Eqn (13.8) provides the important result that the precision of the
mean value improves with the square root of the number of
measurements, N. The standard error of the sample mean, sx̄, is the
quantity most commonly used to represent the uncertainty in a
measured mean resulting from several measurements.
As highlighted above, the key difference between the sample

standard deviation and the standard error of the sample mean is the
factor

ffiffiffiffiffi
N

p
in the denominator of the latter. The standard deviation of

the sample mean, s, provides us with the average uncertainty in the
individual measurement of the xi and consequently will not change
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noticeably as we make more measurements. On the other hand, the
standard error of the sample mean, sx̄, will decrease in value as we
increase the number of measurements. This is in keeping with our
expectation that the reliability of our measured mean improves as the
number of measurements increases. Unfortunately, the square root
means that in order to improve our precision by a factor of ten, we
would need to make a hundred times as many measurements!
In reporting our results, it is conventional, if our best estimate of

our quantity x is the mean value of several measurements to write:

measured value of x~�x+s�x

where sx̄ provides a good measure of its uncertainty. This expression
implies that we expect approximately 68% of any measurements of x,
made using the same method, to fall within the range x̄¡sx̄.
How we choose to express the uncertainty associated with our

measurement depends on how certain we are of our reported value.
The convention described above assigns a confidence level that most
scientists would view as reasonable and useful. However, sometimes
we might want to broaden the limits of our confidence and you will
often see uncertainties reported in terms of 95% confidence limits.

13.2.2.5 Student t Factors and the 95% Confidence Limit

For a Gaussian distribution, there is a 95% probability that the range
�x+1:96s


 ffiffiffiffiffi
N

p
includes the true mean but this is only true for very

large values of N. For smaller sample sizes, the range will be larger

than this and is defined as �x+tv s

 ffiffiffiffiffi

N
p� �

(or more concisely as �x+tvs�x)

where the tv are a set of multiplication factors known as the Student

t-factors that extend from as large as 12.71 for a sample size of 1 to

2.01 for a sample size of 50. An infinitely large sample size would

carry a Student t-factor of 1.96. We can thus define the 95%

Confidence Limit as the range �x+1:96s

 ffiffiffiffiffi

N
p

for an infinitely large

sample size or, for smaller samples, �x+tv s

 ffiffiffiffiffi

N
p� �

.

Problem 13.3

The thermodynamic data in Table 13.1 derive from the same
experiment conducted by 14 separate pairs of students in an
undergraduate practical laboratory. The aim of the experiment
was to find the enthalpy and Gibbs free energy changes
associated with the decomposition of ammonium carbamate.

The ‘Student’ in the Student

t-factor was the pseudonym of

William Sealy Gosset who

published a derivation of the

t-distribution in 1908 while

working for the Guinness Brewery

in Dublin.
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NH4CO2NH2 sð Þ?2NH3 gð ÞzCO2 gð Þ
Each data point in the table was determined by measuring the

equilibrium vapour pressure as a function of temperature.

For each set of DH o{ or DG o{ values, find the following:

(a) The mean.
(b) The sample standard deviation.
(c) The standard error of the sample mean, reporting your

answer in the form �x+s�x.
(d) The 95% confidence limit, assuming a Student t-factor of

2.14.

Hint: Once you have calculated the mean values for the enthalpy

change, DH
o{
, and free energy change, DG

o{
, you may find it

helpful to tabulate DHi
o{{DH

o{
and DGi

o{{DG
o{
.

13.3 Linear Regression Analysis

In many experiments, the measurements involve the determination of
a value of some dependent variable (i.e. the one being measured) for
each of several values of an independent variable (i.e. one that the
experimenter controls or chooses). For example, in the experiment
covered in Problem 13.3, the equilibrium vapour pressure of
ammonium carbamate is measured at a number of different
temperatures. It will often be the case that a linear relationship exists
between the dependent and independent variables, with the measured
values of the dependent variable being distributed about an imagined
straight line describing the perfect linear relationship between the two
variables.

Table 13.1 Enthalpy and Gibbs free energy changes associated with the

decomposition of ammonium carbamate, deriving from 14 separate sets of

experiments.

i

DHi
o{/kJ

mol21

DGi
o{/kJ

mol21 i

DHi
o{/kJ

mol21

DGi
o{/kJ

mol21

1 126.0 21.3 8 155.0 20.7

2 146.0 20.3 9 141.0 20.0

3 142.0 20.1 10 131.0 19.0

4 140.0 20.1 11 145.0 19.9

5 114.0 21.7 12 149.0 20.6

6 150.0 22.1 13 146.0 21.0

7 152.0 20.0 14 153.0 19.6
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Of course many relationships are not linear functions but we can
still often use linear regression analyses in these examples by
linearising the relationship into a form which yields a straight line
plot. In the example of ammonium carbamate, the equilibrium
constant, Kp, varies with temperature according to the relationship:

Kp~e{
DHo{

RT
zDSo{

R ð13:9Þ

This function is clearly not linear in form but can easily be converted
into linear form by taking natural logs each side:

lnKp~{
DH o{

RT
z

DS o{

R
ð13:10Þ

A plot of ln Kp vs. 1 / T will then yield a straight line, with gradient
{DH o{=R and y-intercept at DS o{=R.
The advantage of linear regression analysis is the simplicity of the

concept and of the process (although this latter observation may be
regarded as irrelevant given that most regressions will be performed
on a computer), but the disadvantage is that uncertainties are often
propagated through the linearisation process in a distorted way. This
can result in misleading evaluation of errors if, for example, an
equation is linearised by taking logs, such as in the transformation of
eqn (13.9) into eqn (13.10).

13.3.1 The Least-Squares Method

13.3.1.1 Finding the Best Gradient and y-Intercept

For any experimental data set describing a linear relationship between
two variables, we will have an intuitive sense of what the ‘best’
straight line through a scatter plot of the points should look like, but
it is also possible to define the best fit line quantitatively. Given a data
set of N measurements of a dependent variable, y, labelled y1, y2,
y3, …, yi, …, yN for each corresponding independent variable x1, x2,
x3, …, xi, …, xN with a theoretical linear relationship existing between
the two sets:

y~mxzc ð13:11Þ

a plot of the yi values against the xi values should yield a set of data
similar to that shown in Figure 13.6. Once a line has been drawn
through the data points, we can measure the distance of each point
from the line, with this distance being defined as the vertical distance
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between the data point and a point on the line directly above or below
it. These distances, commonly referred to as residuals, yi 2 yline, will
either be positive or negative, depending on whether the point lies
above or below the line. However the squares of residuals (yi 2 yline)

2

will all be positive. The method of least squares works by choosing the
line with gradient and intercept that makes the sum of these squares
over all the points as small as possible. In other words, we aim to
minimise the sum:

x2~
XN

i~1

yi{ mxizcð Þð Þ2 ð13:12Þ

where mxi + c 5 yline, with respect to the parameters m and c given in
eqn (13.11). We achieve this by finding the partial derivatives of x2

(pronounced chi squared) with respect to m and c, and setting the
result of each derivative to zero (see Section 4.4.1 for discussion on
the finding and defining of stationary points):

Lx2

Lc
~{2

XN

i~1

yi{mxi{cð Þ~0 ð13:13Þ

Lx2

Lm
~{2

XN
i~1

xi yi{mxi{cð Þ~0 ð13:14Þ

These two equations can be rewritten as a pair of simultaneous
equations for m and c:

XN
i~1

yi~m
XN
i~1

xizcN ð13:15Þ

Figure 13.6 In a linear

relationship between dependent

(y) and independent (x) variables,

the measured values of the

dependent variable will be

distributed about an imagined

straight line.
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XN

i~1

xiyi~m
XN

i~1

x2izc
XN

i~1

xi, ð13:16Þ

commonly referred to as normal equations and are straightforwardly
soluble for m and c to yield:

m~

N
PN
i~1

xiyi{
PN
i~1

xi
PN
i~1

yi

N
PN
i~1

x2i{
PN
i~1

xi

� �2
ð13:17Þ

c~

PN
i~1

yi
PN
i~1

x2i{
PN
i~1

xi
PN
i~1

xiyi

N
PN
i~1

x2i{
PN
i~1

xi

� �2
: ð13:18Þ

Consequently, m and c can be calculated by gathering together the
appropriate sums from the experimental data and substituting them
into eqns (13.17) and (13.18), respectively. Of course, we also need to
find the uncertainties associated with the parameters m and c but in
order to do that we need first to establish the uncertainty in our
measurements of the yi.

13.3.1.2 Finding the Uncertainties Associated with the Gradient and
y-Intercept

If we assume that our measurement of each yi is distributed normally
about its true value, yline 5 mxi + c, with a width parameter sy, then
the residuals yi 2 yline will also be normally distributed about the
same central value and with the same width, sy. A sensible approach
at this point might be to suggest that an estimate for sy may be
obtained by using a sum of squares approach:

sy~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i~1

yi{ylineð Þ2
vuut ð13:19Þ

which when substituting mxi + c for yline gives:

sy~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

yi{mxi{cð Þ2
vuut ð13:20Þ
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However, the constants m and c in eqn (13.20) are the true values of
the constants, rather than the best estimates that we arrived at from
eqns (13.17) and (13.18), and so we need to reflect this in our estimate
of sy by reducing the degrees of freedom by 2 (having used up 2 in
computing m and c). Thus eqn (13.20) becomes modified to:

sy~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N{2

XN
i~1

yi{mxi{cð Þ2
vuut ð13:21Þ

We are now in a position to calculate the uncertainties in the constants
m and c through a simple propagation of errors (see Section 13.4) from
the yi to the gradient, m, and intercept, c. These are given below:

sm~sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N
PN
i~1

x2i{
PN
i~1

xi

� �2

vuuuut
ð13:22Þ

and:

sc~sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i~1

x2i

N
PN
i~1

x2i{
PN
i~1

xi

� �2

vuuuuuut
: ð13:23Þ

Worked Problem 13.2

Q. Perform a linear regression analysis on the data in
Table 13.2.

A. We start by evaluating each of the terms that appear in eqns
(13.17) and (13.18) by expanding the Table 13.2 as follows:

Table 13.2 The data set used to generate the plot in Figure 13.6

xi 1 2 3 4 5 6 7

yi 1.375 1.800 3.290 3.400 5.500 5.900 7.200

xi 1 2 3 4 5 6 7
P

xi~28

yi 1.375 1.800 3.290 3.400 5.500 5.900 7.200
P

yi~28:465

x2i 1 4 9 16 25 36 49
P

x2i ~140

xiyi 1.375 3.600 9.870 13.600 27.500 35.400 50.400
P

xiyi~141:745

298 Maths for Chemists



Thus:

N~7,
XN

i~1

xi~28,
XN

i~1

yi~28:465,
XN

i~1

x2i~140,

XN

i~1

xiyi~141:745,
XN

i~1

xi

 !2

~784

Inserting these values into eqn (13.17) yields for the gradient:

m~
7|141:745ð Þ{ 28|28:465ð Þ

7|140ð Þ{784
~

195:195

196
~0:9959

and into eqn (13.18) for the y-intercept

c~
28:465|140ð Þ{ 28|141:745ð Þ

7|140ð Þ{784
~

16:24

196
~0:08286

The uncertainty in the yi is given by eqn (13.21) for which in this
case the term:

XN

i~1

yi{mxi{cð Þ2~0:8934

and so:

sy~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5
|0:8934

r
~0:4227:

We can now use this to find the uncertainties associated with
m and c:

sm~0:4227

ffiffiffiffiffiffiffiffiffiffiffiffiffi
7

196
~

r
0:0799

and:

sc~0:4227

ffiffiffiffiffiffiffiffi
140

196

r
~0:3572:
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Problem 13.4

In a study of the pyrolysis of 1-butene, methane was produced
as a major product, with the following values determined for the
first order rate constant between 766 and 828 K.

Use linear regression to evaluate the Arrhenius parameters,
Ea and A for this reaction.

Hint: The Arrhenius equation describes how the rate constant
depends upon temperature according to k~Ae{Ea=RT . In order
to perform a linear regression, you will first need to convert this
equation into linear form.

Eqns (13.17) and (13.18) assumed that the measurements of the yi
values all have the same uncertainties. However, if they have different,
known uncertainties si, then we can introduce a weighting to reflect
these differences. Eqns (13.17) and (13.18) thus become modified to:

m~

PN
i~1

1
s2
i

PN
i~1

xiyi
s2
i

{
PN
i~1

xi
s2
i

PN
i~1

yi
s2
i

PN
i~1

1
s2
i

PN
i~1

x2
i

s2
i

{
PN
i~1

xi
s2
i

� �2
ð13:24Þ

c~

PN
i~1

yi
s2
i

PN
i~1

x2i
s2
i

{
PN
i~1

xi
s2
i

PN
i~1

xiyi
s2
i

PN
i~1

1
s2
i

PN
i~1

x2
i

s2
i

{
PN
i~1

xi
s2
i

� �2
ð13:25Þ

These equations look horrendous but are actually quite straightfor-
ward to use in practice. As the uncertainty in the measurement in the
yi values given in eqn (13.21) is now accounted for in the weighting,
the uncertainties associated with m and c under these conditions then
become:

T / K 766 782 787 795 814 819 828

k / 1025 s21 8.4 24.1 24.2 38.1 90.2 140.0 172.0
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sm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i~1

1
s2
i

PN
i~1

1
s2
i

PN
i~1

x2
i

s2
i

{
PN
i~1

xi
s2
i

� �2

vuuuuuut
ð13:26Þ

and:

sc~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i~1

x2
i

s2
i

PN
i~1

1
s2
i

PN
i~1

x2
i

s2
i

{
PN
i~1

xi
s2
i

� �2

vuuuuuut
ð13:27Þ

Although this whole process can be time-consuming and even
tedious if performing multiple linear regressions on a set of data by
hand, doing so can provide a degree of insight not available when
running a linear regression analysis on a computer using modern data
plotting software such as Excel or Origin.

13.4 Propagation of Errors

13.4.1 Uncertainty in a Single Variable

It is often the case that the value of a particular physical quantity is
not measured directly in an experiment but instead is calculated from
some other measured quantity. For example, in rotational spectro-
scopy, adjacent pairs of lines in the microwave spectrum of a
heteronuclear diatomic molecule such as 12CO are separated by twice
the rotational constant B (neglecting the effects of centrifugal
distortion) which itself is related to the bond length, r, through the
relationship:

B~
h2

8p2cmr2
cm{1 ð13:28Þ

where m~
mCmO

mCzmO
is the reduced mass and c, the speed of light in cm

s21. In this example, we need to be confident about how the
uncertainties associated with our measurement of B transfer to an
error associated with our subsequent determination of the bond
length, r. The process of transferring error in one quantity to another
quantity is known as the propagation of errors.
Let us imagine we have measured the value of some quantity, x,

and have an estimate of its uncertainty, sx. If x is related to the value
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of another quantity, y, through some functional relationship y 5 f(x)
then the uncertainty in y, sy will be related to the slope of the

function,
d

dx
f and the magnitude of sx (see Figure 13.7)

Assuming sx is small enough that the slope is approximately
constant across the range x ¡ sx we can make the approximation
that:

sy&
d

dx
f










sx ð13:29Þ

or, avoiding the use of the modulus:

s2y&
d

dx
f

� �2

s2x ð13:30Þ

Clearly, eqns (13.29) and (13.30) are equivalent in the sense that
they will yield exactly the same value for sy. However, we shall see
later, in discussing how errors propagate in functions of more than
one independent variable, that the two analogous expressions in that
case do not produce identical values for the error propagated through
to the dependent variable.
The quantities sx and sy are known as the absolute uncertainties in

x and y. The relative uncertainties for particular values of x and y are
obtained by dividing sx and sy by x and y, respectively.

Figure 13.7 For two quantities,

x and y related through a function

y 5 f(x), the uncertainty in y, sy,

will be related to the slope of the

function, d
dx f and the magnitude of

sx.
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Worked Problem 13.3

Q. Two quantities are related through the linear relationship:

y~kx

where the absolute uncertainty associated with measurements of
quantity x is sx. Find the absolute and relative uncertainties in y
and write down the relationship between the relative uncertain-
ties in x and y.

A. The modulus of the derivative is:

dy

dx










~ kj j

and so the absolute uncertainty in y from eqn (13.29) is:

sy~ kj jsx ð13:31Þ

The relative uncertainty in y is:

sy
yj j~

kj jsx
yj j ~

kj jsx
kj j xj j~

sx
xj j ð13:32Þ

For a linear relationship between x and y, the absolute
uncertainty in y is k times the absolute uncertainty in x, whereas
the relative uncertainties in x and y are equal.

Worked Problem 13.4

Q. Two quantities are related through the relationship:

y~xn

with absolute uncertainty in x, sx. Find the absolute and
relative uncertainties in y and write down the relationship
between the relative uncertainties in x and y.

A. The modulus of the derivative is:

dy

dx










~ nxn{1
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and so the absolute uncertainty in y is:

sy~ nxn{1


 

sx ð13:33Þ

with relative uncertainty:

sy
yj j~

nxn{1


 

sx

xnj j ~
nj jsx
xj j ð13:34Þ

This time the relative uncertainty in y is |n| times the relative
uncertainty in x.

Problem 13.5

Bimolecular collision theory provides some insight into the
significance of the Arrhenius parameters appearing Arrhenius
equation k~Ae{Ea=RT . Consider the elementary reaction

CH3zH2?CH4zH

The first step in estimating the pre-exponential factor A for
this reaction involves calculating the collision cross-section s 5

pd2 where d is the sum of the hard-sphere radii d~rCH3
zrH2

of
the reactants CH3 and H2. Given d 5 (6.50 ¡ 0.14) 6 10210 m
use eqn (13.34) to calculate the relative and hence absolute
uncertainties in the collision cross-section s .
Note: Try not to confuse the symbol s used for the collision
cross-section with the s’s used to represent the respective
uncertainties!

Worked Problem 13.5

Q. Two quantities are related through the relationship:

y~ln x

with absolute uncertainty in x, sx. Find the absolute and
relative uncertainties in y and write down the relationship
between the absolute and relative uncertainties in x and y.
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A. The modulus of the derivative is:

dy

dx










~

1

x












and so the absolute uncertainty in y is:

sy~
sx
xj j ð13:35Þ

which yields the unexpected result that the absolute uncertainty
in y is the same as the relative uncertainty in x.

Problem 13.6

Two quantities are related through the relationship:

y~ex

with absolute uncertainty in x, sx. Find the absolute and
relative uncertainties in y and comment on how your result
compares to that in Worked Problem 13.5.

Problem 13.7

The rotational constant, B, for 12CO is measured as 1.923 cm21

with an uncertainty of ¡0.005 cm21. Use eqn (13.28) to
calculate the bond length, r, of 12CO assuming c5 2.9986 1010

cm s21, h 5 6.626 6 10234 J s and mCO 5 1.139 6 10226 kg.
Hence use your answer and the result from Worked Problem
13.4 to find the absolute and relative errors in r.

13.4.2 Combining Uncertainties in More Than One Variable

If we consider a functional relationship y 5 f(u, v, …) in which the
dependent variable y depends on two or more independent variables,
u, v, …, then we need to exercise a little care in deciding which of the
propagation of errors formulae in eqns (13.29) and (13.30) we extend
to include the additional variables when combining their uncertain-
ties. Extending first the modulus expression in eqn (13.29) yields:
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sy~
L
Lu

f










suz

L
Lv

f










svz . . . ð13:36Þ

The problem here is that eqn (13.36) will tend to over-estimate sy
because it assumes that all of the component uncertainties, su, sv, …
will contribute to the total uncertainty to their full extent in the same
direction, i.e. it assumes that they will either all be positive or all be
negative. In practice, if the component uncertainties are independent
and random, there will be a higher probability that some of the
contributing errors will be positive and some negative with the
resulting uncertainty then being smaller than that implied by eqn
(13.36). In order to acknowledge this implicit overestimation of the
total uncertainty, we modify eqn (13.36) to:

sy¡
L
Lu

f










suz

L
Lv

f










svz . . . ð13:37Þ

which describes the error in y as being no larger than the sum of the
terms on the right-hand side. Thus, if you wish to calculate an upper
limit to the uncertainty, eqn (13.37) provides a safe choice.
If instead, we now combine the terms as suggested by extension of

eqn (13.30) by squaring them, adding the squares and then taking the
square root, we end up with an estimate of sy that will always be
smaller than that deriving from simple addition of terms. For
situations in which the errors in u and v are random and independent
(i.e. uncorrelated), a more realistic estimate of sy will then be obtained
by the expression:

s2y&
L
Lu

f

� �2

s2uz
L
Lv

f

� �2

s2vz . . . ð13:38Þ

In the next three Worked Problems, as well as Problem 13.8, we will
see how the relative and absolute uncertainties in dependent and
independent variables are related for functions involving addition and
subtraction, and multiplication and division.

Worked Problem 13.6

Addition and Subtraction
Q. Use eqn (13.38) to find how the absolute uncertainty in y in a
linear combination, y 5 u ¡ v is related to those of u and v.
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A. y~u+v;
Ly
Lu

~1;
Ly
Lv

~1

and so:

s2y~12|s2uz12|s2v~s2uzs2v ð13:39Þ

with:

sy~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2uzs2v

q
: ð13:40Þ

In other words, the absolute uncertainty in y is the root mean
square of the absolute uncertainties in u and v. This result is
independent of whether u and v are added or subtracted in the
initial function.
Working through the same process, but this time starting with

eqn (13.37), yields the upper limit to the uncertainty in y which
results from a simple addition in uncertainties in u and v:

syƒsuzsv ð13:41Þ

Worked Problem 13.7

In Problem 13.5, we used the parameter d, representing the sum
of hard-sphere radii d~rCH3

zrH2
, to calculate the collision

cross-section for the reaction CH3 + H2 A CH4 + H.
Q. Given rCH3

~ 3:6+0:1ð Þ|10{10m and rH2
~ 2:9+0:1ð Þ

|10{10m, use first eqn (13.40) and then eqn (13.41) to calculate
two different estimates for the absolute uncertainty in d.
Comment on the significance of the two outcomes.

A.Using first eqn (13.40), sd~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1|10{10 mð Þz 0:1|10{10 mð Þ

q
~

0:14|10{10 m. If we use instead eqn (13.41), then the
uncertainty in d is now just a simple sum of the two components,
sd ¡ 0.1 6 10210 + 0.1 6 10210 5 0.2 6 10210m. The second,
larger values provides us with an upper limit to the uncertainty,
whereas the first provides us with a more realistic estimate
assuming the errors associated with rCH3

and rH2
are independent

and random.
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Worked Problem 13.8

Multiplication
Q. Use eqn (13.38) to find how the relative uncertainty in y in a
product, y 5 uv is related to those of u and v.

A. y~uv;
Ly
Lu

~v;
Ly
Lv

~u

and so:

s2y~v2|s2uzu2|s2v~v2s2uzu2s2v

We can develop this further by dividing through by y2:

s2y
y2

~
v2s2u
u2v2

z
u2s2v
u2v2

~
s2u
u2

z
s2v
v2

Y

sy
y

� �2

~
su
u

� �2
z

sv
v

� �2

and:

sy
y
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
su
u

� �2
z

sv
v

� �2r
ð13:42Þ

i.e. the relative uncertainty in y is the root mean square of the
relative uncertainties in u and v. This result is also true for
division.

Problem 13.8

Division
Prove that eqn (13.42) also applies for division.
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Problem 13.9

In an experiment, we allow 0.0200 mol of solid CO2 (a little less
than 1 g) to sublime in an evacuated 10 cm3 round-bottomed
flask at room temperature (298 K). Assuming no measurable
uncertainties apply to the volume of the flask, and that the
estimated uncertainty associated with our measurement of the
amount of CO2 is sn 5 ¡0.0002 mol and of the temperature,
sT 5 ¡0.5 K, use the ideal gas law to find the pressure exerted
by the CO2 on the flask and the relative and absolute
uncertainties associated with that value.

Problem 13.10

Use eqn (13.37) to calculate an upper limit to the absolute
uncertainty associated with the calculated pressure of CO2 from
Problem 13.9.

Hint: The approach you take here is equivalent to that described
in Section 5.3 which discussed the use of differentials in the
calculation of propagation of errors. The answer you get should
be larger than the value you determined from Problem 13.9.

Summary of Key Points

This chapter describes how simple statistics can be used in the
interpretation of experimental results and in the treatment of
errors arising from experimental measurement. The chapter is
divided into four sections covering types of error, the statistics
of repeated measurement, linear regression analysis and the
propagation of errors. The key points discussed include:

1. The distinction between the accuracy and precision of an
experimental measurement and between systematic and
random errors.

2. How the binomial distribution can be used to compute the
probabilities associated with experiments yielding one of
two possible outcomes.
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3. The Gaussian (or normal) distribution commonly used to
model the results of repeated experimental measurement.

4. The variance and standard deviation as measures of the
uncertainties associated with the ‘true’ mean value of the
Gaussian distribution.

5. The sample variance and sample standard deviation as
measures of the uncertainties associated with the sample
mean.

6. The significance of 68% and 95% confidence intervals.
7. The definition of the standard error of the mean and

standard error of the sample mean.
8. Student t-factors and the 95% confidence limit.
9. The least-squares method in linear regression analysis
10. The propagation of errors in functions of a single variable
11. The propagation of errors in functions of more than one

variable
12. A selection of mathematical and chemically based examples

and problems to illustrate practical applications of statistics
and error analysis.
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Symbols

. greater than
¢ greater than or equal to
& much greater than
, less than
¡ less than or equal to
% much less than
/ or 4 division
? not equal to
$ or # approximately equal to
) implies
3 proportionality
5 equality
‘ infinity
S summation sign
P product sign
! factorial
{ } braces
[ ] brackets
( ) parentheses
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Appendix

Appendix 1: Worked Answers to Problems

Chapter 1

1:1 ðaÞ ið Þ 2:554 455 ~ 2:554 46 to 5 d:p:

2:554 5 to 4 d:p:

2:554 5 to 3 d:p:

iið Þ 2:554 455 ~ 2:55 to 3 sig: fig:

ðbÞ ið Þ 1:723 205 08 ~ 1:723 21 to 5 d:p:

~ 1:723 2 to 4 d:p:

~ 1:723 to 3 d:p:

iið Þ 1:723 205 08 ~ 1:72 to 3 sig: fig:

ðcÞ ið Þ 3:141 592 653 . . . ~ 3:141 59 to 5 d:p:

~ 3:141 6 to 4 d:p:

~ 3:142 to 3 d:p:

iið Þ 3:141 592 6 . . . ~ 3:14 to 3 sig: fig:

ðdÞ ið Þ 2:718 281 828 . . . ~ 2:718 28 to 5 d:p:

~ 2:718 3 to 4 d:p:

~ 2:718 to 3 d:p:

iið Þ 2:718 281 2 . . . ~ 2:72 to 3 sig :fig:
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1:2 ðaÞ ið Þ 1:378 423 784 2 rational ~ 1:378 to 4 sig: fig:

iið Þ 1:378 423 784 2 . . . irrational ~ 1:378 to 4 sig: fig:

iiið Þ 1=70~0:014 285 714 . . . rational ~ 0:014 29 to 4 sig: fig:

ivð Þ p=4 ~ 0:785 398 163 . . . irrational ~ 0:785 4 to 4 sig: fig:

vð Þ 0:005068 rational ~ 0:005068 to 4 sig: fig:

við Þ e=10 ~ 0:271 828 182 . . . irrational ~ 0:271 8 to 4 sig:fig:

ðbÞ 23:3 cm3 : 3 sig: fig:, 1 d:p:; max : titre, 23:35 cm3;

min: titre, 23:25 cm3:

1:3 að Þ 102|10{4

106
~

10{2

106
~10{8;

bð Þ 9|24|3{2

42
~

24

42
~

24

22ð Þ2
~

24

24
~1

ðcÞ 10

32z42z52

� �{1=2

~
10

9z16z25

� �{1=2

~
10

50

� �{1=2

~
1

5

� �{1=2

~51=2~
ffiffiffi
5

p

ðdÞ
24
� �3
44

~
212

44
~

212

22ð Þ4
~

212

28
~24~16:

1:4 ðaÞ 2:5|102{0:5|102
� �2

=4|104

~ 250{50ð Þ2=4|104~2002=40000~1

ðbÞ 1

2|4

� �1=3

{4|
1

16
~

1

81=3
{

1

4
~

1

2
{

1

4
~

1

4
:

1.5 (a) I:E: ~
2:179 aJ

0:1602 aJ eV{1
~13:6 eV to 3 sig: fig:

ðbÞ evib~6:626|10{34 J s|1:2404|1014 s{1~8:22|10{20 J:
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1.6 16106 cm351 m3: Therefore, r~
879 kg m{1

1|106 cm3 m{1
~ 8:79|

10{4 kg cm{3 and so 1 cm3 of benzene weighs 8.7961024 kg

which is equivalent to:
8:79|10{4 kg

0:078 kg mol{1
~0:0113 mol.

1.7 Benzene diameter 5 600 pm 5 600610212 m;
circumference of the earth 5 2p66.3786106 m;

therefore n~
2p|6:378|106 m

600|10{12 m
~6:679|1016

) 6:679|1016

6:022|1023
~1:109|10{7 moles:

1.10961027 moles of benzene weighs

1:109|10{7|0:078 kg~8:65|10{9 kg~ 8:65|10{6g~8:65 mg

1.8 Volume of cube 5 a356.7832610229 m3, so mass of Au 5

19.3216103 kg m–3 66.7832610229 kg 5 1.3106610224 kg 5

1.3106610221 g.
R.M.M 197Au (100%)5196.97 g mol21 so 1 molecule of Au 5

3.2708610222g and therefore

n~
1:3106|10{21

3:2708|10{22
~4:007.

1.9 (a) 2 v 6; 6 w 2:
(b) 1:467 v 1:469; 1:469 w 1:467:
(c) pwe; evp.

1.10 (a) 2:4555 v 2:456 v 2:4565
(b) {5:34 w {5:35; 5:34 v 5:35

5:34 w {5:35; {5:34 v 5:35

1.11 (a) j4{9j~5; j{3{6j~9; j9{4j~5
(b) 0, ?, 0, {?

1.12 (a) S100~
100|101

2
~5050

(b) S68~
{68|69

2
~{2346:

1.13 (a) 3 spin states, 2 nuclei ) 3259 spin states.
3 spin states, 3 nuclei ) 33527 spin states.

(b) Number of spin states associated with n equivalent nuclei
with spin I 5 (2I+1)n.
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(c) 51V ) I57/2 so for a single atom of 51V, there are
(267/2)+158 spin states.

1.14 (a)
u2zv2
� �
v{uð Þ ~

2 x2zy2
� �
{2y

~
{ x2zy2
� �

y
:

(b)
uv

2u{v
~

x2{y2

xz3y
:

(c)
10uzv

10u{v
~

102x

102y
:

1.15 (a) ið Þ 4p{q{ 2qz3pð Þ~p{3q; iið Þ 3p2{p 4p{7ð Þ~{p2z7p
(b) ið Þ 1zxð Þ2{ 1{xð Þ2~4x; iið Þ x 2xz1ð Þ{ 1zx{x2

� �
~3x2{1:

1:16 (a)
p4q2

p2q3
~

p2

q
; q=0, p=0 (b)

p8q{3

p{5q2
~

p13

q5
; q=0,p=0

(c)
4x

6x2{2x
~

4

6x{2
~

2

3x{1
; x=

1

3
, 0 (d)

3x2{12xy

3
~x2{4xy:

1.17 (a) (i) x223x+25(x21)(x22) since the solutions to a223a+250,
are a51,2.

(ii) x327x+65(x21)(x22)(x+3) since the solutions to
a327a+650 are a51,223.

(b) (i)
x3{7xz6

x{2
~

x{1ð Þ x{2ð Þ xz3ð Þ
x{2

~ x{1ð Þ xz3ð Þ:

(ii)
x2{1

x{1
~

xz1ð Þ x{1ð Þ
x{1

~xz1:

1.18 (a) (i)
3x

4
{

x

2
~

3x{2x

4
~

x

4
; iið Þ 2

x
{

1

x2
~

2x{1

x2
;

(iii) 1{
1

x
z

2

x2
~

x2{xz2

x2
:

(b) (i)
1

1zx
{

1

1{x
~

1{x{1{x

1zxð Þ 1{xð Þ~
{2x

1{x2
~

2x

x2{1
;

(ii)
2x

x2z1
{

2

x
~

2x2{2x2{2

x x2{1ð Þ ~
{2

x x2z1ð Þ :
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1.19 (a)
RT

F
) JK{1mol{1|K

Cmol{1
~JC{1~CVC{1~V:

(b)
mee

4

8h3ce20
) kgC4

J3 s3 ms{1 J{2C4m{2
~

kg

Js2m{1
~kg J{1ms{2

~m{1 since 1 J ~ 1 kg m2s{2:

Chapter 2

2.1 (a) Yes. Domain registration numbers.
(b) No. One keeper may own .1 car.
(c) No. More than one element per group.
(d) Yes. Each element only belongs to one group.

2:2 s~
e z E

6pga
) CVm{1

kg m{1s{1m
~CVm{1kg{1s

~Jm{1kg{1s~kgm2s{2m{1kg{1 s~ms{1:

2:3 (a) f xð Þ~
x{1, x¢1

{xz1, xv1

�
:
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(b)

2:4 (a) ni~n0e
{ ei{e0ð Þ=kT) ni

n0
~e{ iz1

2{
1
2ð Þhn=kT~e{ihn=kT :

(b)

2.5 (a) ið Þ log 4~ log 22~2 log 2; iið Þ log 8~ log 23~3 log 2;

iiið Þ log 6{ log 3~ log
6

3
~ log 2;

ivð Þ ln 8~3 ln 2~3 ln 10 log 2; vð Þ ln 1
2
~ ln 2{1~{ ln 2:

(b) ið Þ log 2z log 3~ log 2|3~ log 6; iið Þ ln 3{ ln 6~ log
3

6
~ log

1

2
:

2.6 (a) Given that pH52log aH and log10 y5loge y log10 e it follows
that log aH5ln aH log e and so
pH52ln aH log e.

(b) E o{~{
RT

nF
lnK and from (a) lnK~

1

log e
logK

so E o{~{2:303
RT

nF
logK :

(c) pK~4:756~{ logK ) K~10{4:756 ~1:754|10{5:

i 1 2 3 4 5

ni/n0 1.58361023 2.50661026 3.96661029 6.278610212 9.938610215
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2:7 (a) rH{H~2|rP{H| sin h=2ð Þ~2|140| sin 61:50~246:1 pm:

(b) rH{Hð Þexcited state~195:1 pm, and so DrH{H~51 pm:

2.8 cot h~
1

tan h
~

cos h

sin h
; domain all real numbers except those values

of h for which sin h50.i.e. h5np, n50, ¡1, ¡2, ¡3…

Similarly, cosech~
1

sin h
, has the same domain as cot h.

2:9 cos {hð Þ~ cos 2p{hð Þ ) cos {hð Þ~cos2p cos hz

sin 2p sin h~ cos h

tan {hð Þ~ sin {hð Þ
cos {hð Þ~

{ sin h

cos h
~{ tan h:

2.10 (a) ið Þ sinhxz coshx~ 1
2
ex{ 1

2
e{xz 1

2
exz 1

2
e{x~ex:

iið Þ sinhx{ coshx~ 1
2
ex{ 1

2
e{x{ 1

2
ex{ 1

2
e{x~{e{x:

(b) ið Þ cosh2 x{ sinh2 x~ 1
4
e2xz 1

4
z 1

4
z 1

4
e{2x{ 1

4
e2xz 1

4
z 1

4

{ 1
4
e{2x~1:

iið Þ cosh2 xz sinh2 x~ 1
4
e2xz 1

4
z 1

4
z 1

4
e{2xz 1

4
e2x{ 1

4

{ 1
4
z 1

4
e{2x~ 1

2
e2xz 1

2
e{2x~ cosh 2x:

iiið Þ sinhx cosh x~ 1
2
ex{ 1

2
e{x

� �
1
2
exz 1

2
e{x

� �
~ 1

4
e2xz 1

4
{ 1

4
{ 1

4
e{2x~ 1

4
e2x{e{2x
� �

~ 1
2
sinh 2x:

) sinh 2x~2 sinh x cosh x:

2:11 að Þ ið Þ x2zx{6~0 ) {1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12{4:1:{6

p

2
~{

1

2
+

ffiffiffiffiffi
25

p

2
~2,{3:

(ii) x2{1~0 ) 0+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02{4:1:{1

p

2
~+

ffiffiffi
4

p

2
~+1:

iiið Þ x2{2
ffiffiffi
2

p
xz2~0 ) 2

ffiffiffi
2

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8{4:1:2

p

2
~

ffiffiffi
2

p
twice:

bð Þ ið Þ x2zx{6~(x{2)(xz3); (ii) x2{1~(xz1)(x{1);

iiið Þ x2{2
ffiffiffi
2

p
xz2~(x{

ffiffiffi
2

p
)(x{

ffiffiffi
2

p
):
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2:12 að Þ If R3s~N 27{
18r

a0
z2

r2

a02

� 	
e
{

r
3a0 , then R3s,r~0~27N:

lim
r??

R3s~N 27{v:largezv:v:largef g|v:v:v:small~0

(b) 27{18
r

a0

� �
z2

r

a0

� �2
( )

~0 when
r

a0
~

18

4
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
182{4:27:2

p

4

~
9

2
+

ffiffiffiffiffiffiffiffi
108

p

4
~

9

2
+

5:196

2

) r

a0
~7:098 and 1:902 or r~7:098a0 and 1:902a0

(c)

2.13 (a) Carbon dioxide (s only) ) 1sC , 1sO(1) , 1sO(2), 2sC , 2sO(1) ,
2sO(2) , 2pC , 2pO(1) , 2pO(2) h 9th degree.

(b) Benzene (p only) ) 662pC(p) h 6th degree.

2.14 (a) K~hc=e

(b) Kw~hb

(c) e~1{c
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(d) K~
hc

e
)K~

hc

1{c
) 1{cð ÞK~hc) 1{c

c

~
h

K
) 1

c
{1~

h

K
) 1

c
~

h

K
z1

and so c~
1

h=Kz1
.

(e)
1

h=Kz1
zb~1zh)b~1zh{

1

h=Kz1
~1zh{

K

hzK
:

(f) Kw~hb~hzh2{
Kh

hzK
:

(g) Kw~h
Kzh

Kzh
zh2

Kzh

Kzh
{

Kh

hzK

~
1

Kzh
hKzh2zh2Kzh3{Kh
� �

)Kw~
1

Kzh
h3zh2 1zKð ÞzhK{hK
� �

~
1

Kzh
h3zh2(1zK)
� �

)KwKzKwh~h3zh2 1zKð Þ

)h3zh2 1zKð Þ{KwK{Kwh~0:

(h) h3z1:000018h2{10{14h{1:8|10{19

(i) h~4:243|10{9; and c~
1

h=Kz1
, so

c~
1

4:243|10{9=1:8|10{5ð Þz1
~0:999764333:

e~1{c~1{0:999764333~2:3567|10{4:

czb~1zh)b~1zh{c~

1z4:243|10{9{0:999764333~2:3567|10{4:
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Chapter 3

3:1 ðaÞ lim
x??

x2e{x~0; the e{x term dominates:

ðbÞ lim
x??

cos 2xð Þe{x~0; again the e{x term dominates:

3.2 (a) lim
x??

x2e{x~0; the x2 term dominates as lim
x?0

e{x~1:

(b) lim
x?0

cos 2xð Þe{x~1; as both cos 2xð Þ and e{x tend to 1 as x?0:

3.3 (a) f xð Þ~ 2x

x{4
is indeterminate at x~4: Thus,

lim
x?4

2x

x{4
: lim

d?0

2 4zdð Þ
4zd{4

~
8

d
~?:

(b) f xð Þ~ x2{4

xz2
is indeterminate at x~{2: Thus,

lim
x?{2

x2{4

xz2
: lim

d?0

{2zdð Þ2{4

{2zdz2
~ lim

d?0

4{4dzd2{4

d

~ lim
d?0

{4zd~{4:

(c) f xð Þ~ x{1

x2{1
is indeterminate at x~1,{1; Thus

lim
x?z1

x{1

x2{1
: lim

d?0

1zd{1

1zdð Þ2{1
~ lim

d?0

d

2d{d2
~ lim

d?0

1

2{d
~

1

2
:

lim
x?{1

x{1

x2{1
: lim

d?0

{1zd{1

{1zdð Þ2{1
~ lim

d?0

{2zd

{2dzd2

~ lim
d?0

{2

{2d
~?:

(d) f xð Þ~3x2{
2

x
{1 is indeterminate at x~0: Thus,

lim
x?0

3x2{
2

x
{1

� �
~{?:

3.4 (a) lim
x??

5

xz1
~0:

(b) lim
x??

3x

x{4
~

3x

x
~3:

(c) lim
x??

x2

xz1
~

x2

x
~x~?:
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(d) lim
x??

xz1

xz2
~

x

x
~1

3.5 lim
x?0

ln x{ ln 2xð Þ~ lim
x?0

ln
x

2x

� �
~ ln

1

2
:

3.6 CV~3R axð Þ2 e
ax
2

eax{1

( )2

lim
x??

3R axð Þ2 e
ax
2

eax{1

( )2

~3R axð Þ2 e{
ax
2

n o2

~3R axð Þ2e{ax~0

since the exponential term will dominate. Therefore CV R 0 as
T R 0 K.

3.7 (a) lim
r?0

R3s~N
r

a0

� �2

|1~0:

(b) lim
r??

R3s~N
r

a0

� �2

|0~0:

3.8 (a) For k{1&k2 H2½ �, k{1zk2 H2½ �&k{1 and so

d N2½ �
dt

~
k1k2 H2½ � NO½ �2

k{1

:

(b) For k{1%k2 H2½ �, k{1zk2 H2½ �&k2 H2½ � and so

d N2½ �
dt

~
k1k2 H2½ � NO½ �2

k2 H2½ � ~k1 NO½ �2:

Chapter 4

4:1
dy

dx
~ lim

Dx?0

f xzDxð Þ{f xð Þ
Dx

� 	
~ lim

Dx?0

3{3

Dx

� 	
~0:

4:2 að Þ dy

dx
~ lim

Dx?0

3 xzDxð Þ2{3x2

Dx

( )

~ lim
Dx?0

3x2z6xDxz3Dx2{3x2

Dx

� 	

~ lim
Dx?0

6xzDx

~6x:

321



bð Þ dy

dx
~ lim

Dx?0

1

xzDxð Þ2
{

1

x2

Dx

8<
:

9=
;

~ lim
Dx?0

x2{ xzDxð Þ2

x2 xzDxð Þ2Dx

( )

~ lim
Dx?0

x2{x2{2xDx{Dx2

x2 xzDxð Þ2Dx

( )

~ lim
Dx?0

{2x{Dx

x2 xzDxð Þ2

( )
~{

2x

x4
{

2

x3
:

4:3 að Þ d

dx
x3=4~

3

4
x{1=4, bð Þ d

dx
e{3x~{3e{3x,

cð Þ d

dx
1=x~{x{2, dð Þ d

dx
a cos ax~{a2 sin ax:

4:4
d

dx
z2

� �
e{2x~

d

dx
e{2xz2e{2x~{2e{2xz2e{2x~0:

4:5 að Þ d

dx
x{1ð Þ x2z4

� �
~3x2{2xz4,

bð Þ d

dx

x

xz1
~

1

xz1ð Þ2
,

cð Þ d

dx
sin2x~2 sinx cos x~sin2x,

dð Þ d

dx
x ln x~1zln x,

eð Þ d

dx
ex sin x~ex cos xzsin xð Þ:

4:6 y~exsinx; u~x sin x ) y~eu

dy

du
~eu;

du

dx
~x cos xzsinx) dy

dx
~

dy

du
|

du

dx
~eu x cos xzsin xð Þ

~exsinx x cos xzsin xð Þ:

4:7 að Þ y~ln 2zx2
� �

; u~2zx2)y~ln u

dy

du
~

1

u
;
du

dx
~2x) dy

dx
~

1

u
|2x~

2x

2zx2
:
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bð Þ y~2sin x2{1
� �

; u~x2{1)y~2sin u

dy

du
~2 cos u;

du

dx
~2x) dy

dx
~2 cos u|2x~4x cos x2{1

� �
:

4:8 að Þ y~1=x;
dy

dx
~{x{2;

d2y

dx2
~2x{3;

d3y

dx3
~{6x{4:

bð Þ y~N sin ax;
dy

dx
~Na cos ax;

d2y

dx2
~{Na2 sin ax;

d3y

dx3
~{Na3 cos ax:

4:9 að Þ d2

dx2
x3~6x; bð Þ d2

dx2
sin kx~{k2 sin kx;

cð Þ d2

dx2
sin kxzcos kxf g~{k2 sin kxzcos kxf g

dð Þ d

dx
eax~aeax:

4:10
d2

dx2
{2

d

dx
{3

� �
emx~m2emx{2memx{3emx

~ m2{2m{3
� �

emx:

Â annihilates f xð Þ, when m2{2m{3~0;

i:e: when mz1ð Þ(m{3)~0 )m~{1,3:

4:11 {
h2

8p2m

d2y

dx2
~E y; y~

ffiffiffiffi
2

L

r
sin

px

L

){
h2

8p2m

d2

dx2

ffiffiffiffi
2

L

r
sin

px

L

 !
~E

ffiffiffiffi
2

L

r
sin

px

L

) h2

8p2m

ffiffiffiffi
2

L

r
p

L

� �2
sin

px

L
~E

ffiffiffiffi
2

L

r
sin

px

L
) h2

8p2m

p

L

� �2
~E

)E~
h2

8mL2
:
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4:12 að Þ D rð Þ~Nr2e{2r=a0 ;

dD rð Þ
dr

~Nr2|
{2

a0
e{2r=a0z2Nr|e{2r=a0

~2Ne{2r=a0 r{
r2

a0

� �
:

bð Þ D rð Þ displays a turning point when

dD rð Þ
dr

~2Ne{2r=a0 r{
r2

a0

� �
~0:

i:e: when r~
r2

a0
)r~a0: When r~a0, D rð Þ~Na0

2e{2:

cð Þ d2D rð Þ
dr2

~{
4

a0
Ne{2r=a0 r{

r2

a0

� �
z2Ne{2r=a0 1{

2r

a0

� �

~2Ne{2r=a0 1{
2r

a0
{

2r

a0
z

2r2

a02

� 	

) d2D rð Þ
dr2

~2Ne{2r=a0 1{
4r

a0
z

2r2

a02

� 	
:

When r ~ a0,
d2D rð Þ
dr2

~2Ne{2 1{4z2f g

~{2Ne{2)maximum:

dð Þ Points of inflection occur when

d2D rð Þ
dr2

~2Ne{2r=a0 1{
4r

a0
z

2r2

a02

� 	
~0;

i:e: when 1{
4r

a0
z

2r2

a02
~0

) r

a0
~

4+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16{4:2:1

p

4
~1+

ffiffiffi
8

p

4
~1+

ffiffiffi
2

p

2
~1+

1ffiffiffi
2

p :

i:e: when r~ 1+
1ffiffiffi
2

p
� �

a0:

4:13 P~
nRT

V
;
LP
LT

~
nR

V
;
LP
LV

~{
nRT

V2
:
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Chapter 5

5:1 y~x1=3;
dy

dx
~

1

3
x{2=3)dy~

1

3
x{2=3dx:

að Þ dy~ 1

3
|27{2=3|3~0:111; Dy~301=3{271=3 ~ 0:107

) dy overestimates Dy by 3:6%:

ðbÞ dy~ 1

3
|27{2=3|0:1~0:0037037; Dy~27:11=3{271=3~0:0036991

) dy overestimates Dy by 0:12%:

5.2 (a) CP5a+bT+cT2

CP,500K514.143 JK21mol21+75.49561023JK22mol216
500K2179.6461027JK23mol2165002K2

) CP,500K547.3995 JK21mol21.
Similarly, CP,650K555.625 JK21mol21

(b) dCP5(b+2cT)6dT5{75.49561023 JK22mol212

(26179.6461027JK23mol21)}6150K
dCP58.62965 JK21mol21

) CP,650K5(47.3995 + 8.62965) JK21mol21556.029 JK21mol21

(c) The estimate is 0.73% larger than the actual value.

5:3 z ~ xy=w; dz~
Lz
Lx

dxz
Lz
Ly

dyz
Lz
Lw

dw~
y

w
dxz

x

w
dy{

xy

w2
dw

5:4 ðaÞ U ~ f V ,Tð Þ; dU~
LU
LV

� �

T

dVz
LU
LT

� �

V

dT :

ðbÞ ðiÞ pT~
LU
LV

� �

T

; CV~
LU
LT

� �

V

:

(ii) dU5pTdV+CVdT

5(840 Jm23621024m3)+(27.32 JK2162K)
554.56J

Contribution from compression is far smaller than that
from the increase in temperature.
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5:5 ðaÞ dV~
LV
La

daz
LV
Lb

dbz
LV
Lc

dc~bc:dazac:dbzab:dc

(b) The relative error in V is
dV

V
and so using the result from (a),

we have

dV

V
~

bc:dazac:dbzab:dc

abc

) dV

V
~

da

a
z

db

b
z

dc

c

And the percentage error in V is:

100|
da

a
z

db

b
z

dc

c

� �

5.6 (a) (CaCO3)645Ca4C4O12

)molar mass54640.08+4612.01+12616.005400.36 g mol21.
50.40036 kg mol21 5 6.648610225 kg.

(b) V5abc54.94610210m67.94610210m6 5.72610210m
52.244610228m3

r5M/V)r~
6:648|10{25kg

2:244|10{28m3
~2:963|103 k gm{3:

(c)
dV

V
~

da

a
z

db

b
z

dc

c
~

0:005|10{10

4:94|10{10
z

0:005|10{10

7:94|10{10
z

0:005|10{10

5:72|10{10

51.01261023+6.2861024+8.746102452.5161023

)0.25% error.

(d) Greatest unit cell volume 5 4.94561021067.9456102106
5.725610210m3 52.249610228 m3

) r52.9566103 kg m23 ) 0.237% error.
Least unit cell volume 5 4.93561021067.9356102106
5.715610210 m3 52.238610228 m3

) r52.9716103 kg m23 ) 0.27% error.
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Chapter 6

6:1 ðaÞ d

dx
e2x~2e2x)

ð
2e2x~2

ð
e2x~e2xzB)

ð
e2x~

1

2
e2xzC:

ðbÞ d

dx

1

1zex
~

d

dx
1zexð Þ{1

; Let u~1zex;
du

dx
~ex

d

dx
1zexð Þ{1

~{ 1zexð Þ{2
|ex~{

ex

1zexð Þ2
:

Thus, it follows that {

ð
ex

1zexð Þ2
dx~

1

1zex
zB

and so

ð
ex

1zexð Þ2
dx~{

1

1zex
zC

6:2

ð
9x2z2e2xz

1

x
dx~

ð
9x2dxz

ð
2e2xdxz

ð
1

x
dx

~3x3ze2xz ln xzC:

6:3 (a)

ð
xe{xdx~uv{

ð
v
du

dx
dx where u~x and

dv

dx
~e{x

)
ð
xe{xdx~{xe{x{

ð
{e{x|1dx~{xe{x{e{x

~{e{x xz1ð ÞzC:

ðbÞ
ð
xe{xdx~uv{

ð
v
du

dx
dx where u~e{x and

dv

dx
~x

)
ð
xe{xdx~e{x|

1

2
x2z

ð
1

2
x2|e{xdx:

This solution requires us to integrate

ð
1

2
x2|e{xdx which is arguably

more complicated than the original integral. Thus, method (a) would

seem the more appropriate.

6:4

ð
xeax

2

dx: For u~x2, du~
du

dx
dx~2xdx)dx~

1

2x
du

)
ð
xeau

du

2x
~

1

2

ð
eaudu~

1

2a
eauzC)

ð
xeax

2

dx~
1

2a
eax

2

zC:
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6:5

ð
x

1{x2ð Þ1=2
dx; For u~1{x2, du~

du

dx
dx~{2xdx

)dx~{
1

2x
du

)
ð
{x

u1=2
1

2x
du{

ð
1

2u1=2
du~{

1

2

ð
u{1=2du

~{
1

2
2u1=2zC~{u1=2zC~{ 1{x2

� �1=2
zC:

6:6 ðaÞ
ð
x x2z4
� �1=2

dx; For u~x2z4, du~
du

dx
dx~2xdx

)dx~
1

2x
du

)
ð
xu1=2

1

2x
du~

1

2

ð
u1=2du~

1

2

2

3
u3=2zC~

1

3
u3=2zC

~
1

3
x2z4
� �3=2

zC:

ðbÞ
ð

1

x ln x
dx; For u~ ln x, du~

du

dx
dx~

1

x
dx)dx~xdu

)
ð
x

xu
du~

ð
1

u
du~ ln uzC~ ln ln xð ÞzC:

6:7 ðaÞ
ð

x

1{x2ð Þ1=2
dx; For x~cos u;

dx

du
~{ sin u)dx~{sinu du

)
ð
{ cos u| sin u

1{ cos2 uð Þ1=2
du~{

ð
cos u| sin u

sin2 u
� �1=2 du

~{

ð
cos u| sin u

sin u
du~{

ð
cos udu~{ sin uzC:

~{ 1{ cos2 u
� �1=2

zC~{ 1{x2
� �1=2

zC:

ðbÞ
ð
cos x

sin x
dx; For u~ sin x,

du

dx
~ cos x)dx~

du

cos x

)
ð
cos x

u

du

cos x
~

ð
du

u
~ ln uzC~ ln sin xð ÞzC:
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6:8 ðaÞ ðiÞ
ð2
1

1

x3
dx~ {

1

2
x{2zC

� �2
1

~{
1

2
2{2z

1

2
1{2~{

1

8
z

1

2
~

3

8
:

ðiiÞ
ð2
0

x x2z4
� �1=2

dx~
1

3
x2z4
� �3=2

zC

� �2
0

~
1

3
83=2{

1

3
43=2

~
1

3
8
ffiffiffi
8

p
{

1

3
4
ffiffiffi
4

p
~

16

3

ffiffiffi
2

p
{

8

3
~4:876:

(b)

ð2
0

x

x2z4ð Þ dx; Let u~x2z4;
du

dx
~2x)dx~

du

2x
ð2
0

x

u

du

2x
~

1

2

ð2
0

du

u
~

1

2
ln x2z4
� �� �2

0
~

1

2
ln 22z4
� �

{ ln 4
� �

~
1

2
ln 8{ ln 4ð Þ~ 1

2
ln
8

4
~

1

2
ln 2:

6:9 W~

ðVb

Va

PdV ; P~nRT=V)

W~

ðVb

Va

nRT

V
dV~nRT

ðVb

Va

dV

V

~nRT ln V½ �Vb

Va
~nRT ln Vb{ ln Vaf g~nRT ln

Vb

Va

:

6:10 ðaÞ d

dT
ln K~

DH o{

RT2
) ln K~

ð
DH o{

RT2
dT~

DH o{

R

ð
1

T2
dT

~
{DH o{

RT
zC:

ðbÞ D ln K~

ð600K
500K

DH o{

RT2
dT~

{DH o{

R|600
{

{DH o{

R|500

~DH o{ 1

R|500
{

1

R|600

� 	
~42:3|103Jmol{1|

1

8:314 JK{1mol{1|500 K
{

1

8:314 JK{1mol{1|600 K

� 	

~1:696:

329



Chapter 7

7:1 (a) y~x{1;
dy

dx
~{x{2~{y2 first order differential equation:

d2y

dx2
~2x{3~2y3; second order:

(b) y~ cos ax;
dy

dx
~{a sin ax;

d2y

dx2
~{a2 cos ax~{a2y:

(c) y~Ae4x;
d

dx
Ae4x{4Ae4x~4Ae4x{4Ae4x~0:

d2

dx2
Ae4x{5

d

dx
Ae4xz4Ae4x~16Ae4x{5|4Ae4xz4Ae4x~0:

7:2
dy

dx
~{6y2) dy

y2
~{6y)

ð
dy

y2
~

ð
{6dx){1

y
~{6xzC

)1~y 6xzDð Þ)y~
1

6xzD
:

y51, x50, so 1~
1

D
)D~1

Therefore y~
1

6xz1
.

7:3
dy

dx
~{ly) dy

y
~{ldx )

ð
dy

y
~

ð
{ldx) ln y~{lxzC:

y~N,x~0, so lnN~C ) ln y~{lxz lnN) ln
y

N
~{lx

y

N
~e{lx)y~Ne{lx:

7:4 (a)
d

dx

1

3
exzCe{2x

� �
z2

1

3
exzCe{2x

� �

~
1

3
ex{2Ce{2xz

2

3
exz2Ce{2x~ex:
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(b)
dy

dx
z

y

x
~x2; P xð Þ~ 1

x
; Q xð Þ~x2;

R xð Þ~e

Ð
1
x
dx
~eln xzC~eCeln x~eCx~Ax:

Here g(x)5ln x, therefore, y~
1

x

ð
x|x2dx~

1

x
|

x4

4
zC

� 	
~

x3

4
z

C

x

y 5 0, x 5 1; so 0~
1

4
zC)C~{

1

4

y~
x3

4
{

1

4x
:

7.5 (a) P(x);l2 and Q xð Þ:l1 N1ð Þ0e{l1t.

R tð Þ~e

Ð
l2dt~el2tzC~Ael2t, where l2t5g(t).

(b) N2~e{l2t

ð
el2tl1 N1ð Þ0e{l1tdt ~e{l2t

ð
l1 N1ð Þ0e l2{l1ð Þtdt

~e{l2t
l1 N1ð Þ0
l2{l1

e l2{l1ð ÞtzC

� �

N2~e{l2t
l1 N1ð Þ0
l2{l1

e l2{l1ð ÞtzC

� �
~

l1 N1ð Þ0
l2{l1

e l2{l2{l1ð ÞtzCe{l2t

~
l1 N1ð Þ0
l2{l1

e{l1tzCe{l2t:

(c) If N250 at t50, then 0~
l1 N1ð Þ0
l2{l1

zC)C~
l1 N1ð Þ0
l2{l1

;

Therefore, N2~
l1 N1ð Þ0
l2{l1

e{l1t{
l1 N1ð Þ0
l2{l1

e{l2t~
l1 N1ð Þ0
l2{l1

e{l1t{e{l2t
� �

.

(d)
dN1

dt
~{l1N1 has same form as

dy

dx
~{ly, for which the

solution is y5Ne2lx for y5N,x50.

Thus it follows that the solution to
dN1

dt
~{l1N1, where

N15(N1)0, t50 is given by N1~ N1ð Þ0e{l1t~e{l1t, since
(Nl)051 mol.
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(e) Since N1 + N2 + N3 5 1 mol and N1~e{l1t,

N2~
l1

l2{l1
e{l1t{e{l2t
� �

, it follows that

N3~1{e{l1t{
l1

l2{l1
e{l1t{e{l2t
� �

:

~1{e{l1t{
l1

l2{l1
e{l1tz

l1
l2{l1

e{l2t

~1{
l2{l1
l2{l1

e{l1t{
l1

l2{l1
e{l1tz

l1
l2{l1

e{l2t

~1{
l2{l1
l2{l1

e{l1tz
l1

l2{l1
e{l1t{

l1
l2{l1

e{l2t

� �

~1{
l2{l1zl1ð Þe{l1t{l1e

{l2t

l2{l1

� �

~1{
l2e

{l1t{l1e
{l2t

l2{l1

� �

~1z
l1e

{l2t{l2e
{l1t

l2{l1

� �
:

(f) t1=2~
ln 2

li
;

Thus, l1~
ln 2

t1=2
~

ln 2

23:5
min{152.9561022 min21.

l2~
ln 2

t1=2
~

ln 2

2:3
day{1~

ln 2

3312
min{152.09361024 min21.

(g) N2~
l1

l2{l1
e{l1t{e{l2t
� �

- maximum when
dN2

dt
~0.

dN2

dt
~

l1
l2{l1

{l1e
{l1t{{l2e

{l2t
� �

~
l1

l2{l1
l2e

{l2t{l1e
{l1t

� �
~0

when l2e
{l2t~l1e

{l1t.
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Taking logs, gives

ln l2{l2t~ ln l1{l1t

) ln
l2
l1

~l2t{l1t

)t~
1

l2{l1
ln
l2
l1

~
1

0:0002092{0:0295
ln
0:0002092

0:0295
~168:96 min :

Thus, N2, max 5
0:0295

0:0002092{0:0295
|

e{0:0295|168:96{e{0:0002092|168:96
� �

~0:965mol:

7.6 (a)

(b) As k2 increases relative to k1, so the maximum concentra-
tion of the intermediate decreases.
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7.7 (a)
d2y

dx2
~n2y)y~AenxzBe{nx.

(b) sinh nx~
1

2
enx{e{nxð Þ)enx{e{nx~2 sinh nx;

cosh nx~
1

2
enxze{nxð Þ)enxze{nx~2 cosh nx

)2enx~2 sinh nxz2 cosh nx

)enx~ sinh nxz cosh nx

Similarly 2e{nx~2 cosh nx{2 sinh nx

)e{nx~ cosh nx{ sinhx

y~A sinh nxzA cosh nxzB cosh nx{B sinh nx

y~ A{Bð Þ sinh nxz AzBð Þ cosh nx:

(c) 0~ A{Bð Þ sinh 0z AzBð Þ cosh 0~AzB)B~{A

y~ A{{Að Þ sinh nxz Az{Að Þ cosh nx~2A sinh nx:

7:8 D̂2 A cos nxzB sin nxð Þ~{An2 cos nx{Bn2 sin nx

~{n2 A cos nxzB sin nxð Þ:

7.9
d2y

dx2
{5

dy

dx
z6y~0 has the same form as

d2y

dx2
zc1

dy

dx
~{c2y,

where c1525 and c256.
Factorising yields:

D̂2{5D̂
� �

y~{6y

where the operator Â~D̂2{5D̂ and the eigenvalue, l526. We
know from Worked Problem 7.6 that enx is an eigenfunction of
the operators D̂2 and D̂ and so we need to find the appropriate
values of n, that are consistent with the operator, Â~D̂2{5D̂,
and an eigenvalue l526. Thus:

Âenx~ n2{5n
� �

enx~{6enx

) n2{5n
� �

~{6

) n2{5nz6~0:
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Factorising yields:

(n22)(n23)50, and so n52, 3.

Thus the general solution is y5Be3x+Ce2x. Imposing the
boundary condition, y50, x50 ) 05B+C and dy/dx 5 1 when
x 5 0

) dy

dx
~3Be3xz2Ce2x~1, when x 5 0. Thus:

3B+2C51. But B52C, and so 23C+2C51)C521 and so
B51. Therefore the solution is:

y~e3x{e2x:

Chapter 8

8.1 (a) lim
r??

1

2r
~0; converges;

(b) lim
n??

n{1

2n
~

n

2n
~

1

2
, converges;

(c) lim
r??

cos rp – oscillates between ¡1.

8.2 n56; r50, 1, 2, 3, 4, 5, 6; 6Cr~
6!

6{rð Þ!r!

) 720

720|1
~1;

720

120|1
~6;

720

24|2
~15;

720

6|6
~20;

720

2|24
~15;

720

1|120
~6;

720

1|720
~1;

8.3 Geometric series, 1, 2, 4, 8, …2r, ) a51, ax52, ax254,
) a51, x52

Using eqn (8.20) Sn~a
1{xn

1{x

� �
~

1{2n

1{2
~

1{2n

{1
~2n{1.
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8.4 (a) S51+2x+3x2+4x3+…, ur5rxr21;

urz1

ur
~

rz1ð Þxr
rxr{1

~
rz1

r

� �
x

h lim
r??

urz1

ur










~ lim

r??

rz1

r

� �
x










~ xj j converges if |x|,1; i.e. for

21,x,1.

bð Þ S~1{xz
x2

2!
{

x3

3!
z

x4

4!
{ � � �z {1ð Þr{1 xr{1

r{1ð Þ!z � � �

urz1

ur
~

{1ð Þrxr
r!

{1ð Þr{1 xr{1

r{1ð Þ!
~

{1ð Þ r{1ð Þ!xr
r!xr{1

~
{x

r

lim
r??

urz1

ur










~

{x

r








~0 hconverges for all x.

cð Þ S~1z
x2

2
{

x4

4
z � � �z {1ð Þr{1x

2r{2

2r{2

urz1

ur
~

{1ð Þrx2r
2r

{1ð Þr{1x2r{2

2r{2

~
{x2 2r{2ð Þ

2r
~{ 1{

1

r

� �
x2~

x2

r
{x2

lim
r??

urz1

ur










~

x2

r
{x2










~ {x2


 

 hconverges for |2x2|,1;

i.e. when 21,x,1.

8.5 (a)

f(x)5e2x f (1)(x)52e2x f (2)(x)5e2x f (3)(x)52e2x f (4)(x)5e2x f (5)(x)52e2x

f(0)51 f (1)(0)521 f (2)(0)51 f (3)(0)521 f (4)(0)51 f (5)(0)521

therefore f xð Þ~1{xz
x2

2!
{

x3

3!
z . . . un~

{1ð Þn{1
xn{1

n{1ð Þ! :

(b)

f(x)5cos x f (1)(x)52sinx f (2)(x)52cos x f (3)(x)5sin x f (4)(x)5cos x f (5)(x)52sin x

f(0)51 f (1)(0)50 f (2)(0)521 f (3)(0)50 f (4)(0)51 f (5)(0)50
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f xð Þ~1{
x2

2!
z

x4

4!
{

x6

6!
z . . . un~

{1ð Þn{1
x2n{2

2n{2ð Þ! :

(c)

f(x)5(12x)21 f (1)(x)5(12x)22 f (2)(x)51?2(12x)23 f (3)(x)51?2?3(12x)24

f(0)51 f (1)(0)51 f (2)(0)52 f (3)(0)56

f xð Þ~1zxz
2!x2

2!
z

3!x3

3!
{ . . .

) f(x)51+x+x2+x3+… un5xn21.

8.6 (a)

f(x)5(12x)21 f (1)(x)5(12x)22 f (2)(x)51?2(12x)23 f (3)(x)51?2?3(12x)24

f {1ð Þ~ 1
2 f 1ð Þ {1ð Þ~ 1

4
f 2ð Þ {1ð Þ~ 2

8
f 3ð Þ {1ð Þ~ 6

16

f xð Þ~ 1

2
z

1

4
xz1ð Þz 2 xz1ð Þ2

8|2!
z

6 xz1ð Þ3

16|3!
z . . .

f xð Þ~ 1

2
z

xz1ð Þ
4

z
xz1ð Þ2

8
z

xz1ð Þ3

16
z . . . , un~

xz1ð Þn{1

2n
:

(b)

f(x)5sin x f (1)(x)5cos x f (2)(x)52sin x f (3)(x)52cos x f (4)(x)5sin x f (5)(x)5cos x

f p
2

� �
~1 f 1ð Þ p

2

� �
~0 f 2ð Þ p

2

� �
~{1 f 3ð Þ p

2

� �
~0 f 4ð Þ p

2

� �
~1 f 5ð Þ p

2

� �
~0

f xð Þ~1{
1

2!
x{

p

2

� �2
z

1

4!
x{

p

2

� �4
{

1

6!
x{

p

2

� �6
� � � ,

un~
{1ð Þn{1

2n{2ð Þ! x{
p

2

� �2n{2

:

(c)

f(x)5ln x f (1)(x)51/x f (2)(x)521/x2 f (3)(x)52/x3 f (4)(x)526/x4 f (5)(x)524/x5

f(1)50 f (1)(1)51 f (2)(1)521 f (3)(1)52 f (4)(1)526 f (5)(1)524
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f xð Þ~0z x{1ð Þ{ 1

2!
x{1ð Þ2z 2

3!
x{1ð Þ3{ 6

4!
x{1ð Þ4� � �

f xð Þ~ x{1ð Þ{ x{1ð Þ2

2
z

x{1ð Þ3

3
{

x{1ð Þ4

4
� � � ,

un~ {1ð Þn{1 x{1ð Þn

n
:

8:7 að Þ ið Þ E Rð Þ~De 1{e{a R{Reð Þ
n o2

;

Let u~1{e{a R{Reð Þ

) du

dR
~ae{a R{Reð Þ:

E Rð Þ~Deu
2) dE Rð Þ

du
~2Deu~2De 1{e{a R{Reð Þ

n o

) dE Rð Þ
dR

~
dE Rð Þ
du

|
du

dR

~2De 1{e{a R{Reð Þ
n o

|ae{a R{Reð Þ

~E 1ð Þ Rð Þ:

iið Þ E 1ð Þ Rð Þ~ 2De 1{e{a R{Reð Þ
n o

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u

| ae{a R{Reð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
v

;

using the product rule,

E 2ð Þ Rð Þ~2De {e{a R{Reð Þ
n o

|{a2e{a R{Reð Þzae{a R{Reð Þ

|2aDee
{a R{Reð Þ

~{2a2Dee
{a R{Reð Þz2a2Dee

{2a R{Reð Þz2a2e{2a R{Reð Þ

)E 2ð Þ Rð Þ~4a2Dee
{2a R{Reð Þ{2a2Dee

{a R{Reð Þ

)E 2ð Þ Rð Þ~2a2De 2e{2a R{Reð Þ{e{a R{Reð Þ
n o

:

( b ) E 1ð Þ Reð Þ~2De 1{e{a Re{Reð Þ
n o

|ae{a Re{Reð Þ~2De 1{1f g|a~0 ,

therefore, a maximum or minimum.
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E 2ð Þ Reð Þ~2a2De 2e{2a Re{Reð Þ{e{a Re{Reð Þ
n o

~2a2De 2{1f g~2a2De ;

positive, therefore a minimum.

(c) E(R)5a2De(R2Re)
2 ) Let u5R2Re )

du

dR
~1.

E Rð Þ~a2Deu
2) dE Rð Þ

du
~2a2Deu~2a2De R{Reð Þ:

) dE Rð Þ
dR

~
dE Rð Þ
du

|
du

dR
~2a2De R{Reð Þ|1~2a2De R{Reð Þ:

Thus F~{
dE Rð Þ
dR

~{2a2De R{Reð Þ:

(d) If k52a2De and x5R2Re, then F52kx ) the expression for
F obtained in (c) has the same form as the restoring force
acting on a simple harmonic oscillator.

8:8 að Þ sinh x~
1

2
ex{e{xð Þ

~
1

2
1zxz

x2

2!
z

x3

3!
z � � �z xn{1

n{1ð Þ!z � � �
� �

{

�

1{xz
x2

2!
{

x3

3!
z

x4

4!
{ � � � {1ð Þn{1 xn{1

n{1ð Þ!z � � �
� �	

~
1

2
2xz

2x3

3!
z � � �z 2x2n{1

2n{1ð Þ!z � � �
� 	

~xz
x3

3!
z

x5

5!
z � � �z x2n{1

2n{1ð Þ!z � � �

bð Þ f xð Þ~ e{x

1{xð Þ~e{x|
1

1{xð Þ

~ 1{xz
x2

2!
{

x3

3!
z

x4

4!
{ � � � {1ð Þn{1 xn{1

n{1ð Þ!z � � �
� 	

| 1zxzx2zx3z � � � xn{1z � � �
� �

~1z
x2

2!
z

x3

2!
{

x3

3!

� 	
z

x4

2!
{

x4

3!
z

x4

4!

� 	
z � � �

~1z
x2

2
z

x3

3
z � � �
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Maclaurin power series expansion of e2x converges for all x, and of

1

1{xð Þ converges for 21,x,1, so the interval of convergence of the

Maclaurin series of f xð Þ~ e{x

1{xð Þ is 21,x,1.

8:9 að Þ eX~1zXz
X 2

2!
z

X 3

3!
z

X 4

4!
z � � � Xn{1

n{1ð Þ!z � � � ;

if X~ax, then

eax~1zaxz
axð Þ2

2!
z

axð Þ3

3!
z

axð Þ4

4!
z � � � axð Þn{1

n{1ð Þ! z � � �

bð Þ ið Þ sin 2x~2 sin x cos x~2 x{
x3

3!
z

x5

5!
{ � � �

� 	

| 1{
x2

2!
z

x4

4!
{ � � �

� 	

sin 2x~2x{
8x3

6
z

32x5

120
{ � � �~2x{

8x3

3!
z

32x5

5!
{ � � �

iið Þ sin X~X{
X 3

3!
z

X 5

5!
{ � � � ; If X~2x, then

sin 2x~2x{
2xð Þ3

3!
z

2xð Þ5

5!
{ � � �

)sin 2x~2x{
8x3

3!
z

32x5

5!
{ � � �
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8:10 CV~3R
hv

kT

� �2
e

hv
2kT

e
hv
kT{1

( )2

e
hv
2kT~1z

hv

2k
: 1

T
z

hv
2k

� �2: 1
T2

2!
z � � �&1, for large T :

e
hv
kT{1~1z

hv

k
: 1

T
z

hv
k

� �2: 1
T2

2!
z � � �{1

~
hv

k
: 1

T
z

hv
k

� �2: 1
T2

2!
z � � �

&
hv

k
: 1

T
, for large T :

Therefore, lim
LargeT

CV ~3R
hv

kT

� �2
1
hv
kT

( )2

~3R
hv

kT

� �2
kT

hv

� 	2

~3R:

8:11 að Þ sin npx
L

&
npx

L
for small x:

At x~0, sin
npx

L
~0)y~0:

bð Þ At x~L, y~

ffiffiffiffi
2

L

r
sin np~0,

when n~1,2,3 . . .

cð Þ When x is small, y~

ffiffiffiffi
2

L

r
np

L
x:
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Chapter 9

9.1 (a)

bð Þ ið Þ x2{2x{3~0 )

x~
2+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4{{ 4|1|3ð Þ

p
2

~1+

ffiffiffiffiffi
16

p

2
~1+2~3,{1:

iið Þ x2{2xz2~0 )

x~
2+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4{ 4|1|2ð Þ

p
2

~1+

ffiffiffiffiffiffiffiffi
{4

p

2
~1+

ffiffiffi
4

p ffiffiffiffiffiffiffiffi
{1

p

2
~1+

2i

2
~1+i:

Part (i) has two real roots corresponding to where the curve cuts the
x-axis. For part (ii), there are no real roots and so the curve does not
cut the x-axis.

9.2 (a) i3 5 i 6 i2 5 i 6 21 5 2i
(b) i4 5 i 6 i3 5 i 6 2i 5 1
(c) i5 5 i 6 i4 5 i 6 1 5 i.

9.3 (a) z1 + z2 5 (2 + 3i) + (21 + i) 5 1 + 4i
z1 + z2 2 2z3 5 (1 + 4i) 2 2(3 2 2i) 5 25 + 8i.

(b) z1z2 5 (2 + 3i)(21 + i) 5 22 + 2i 2 3i + 3i2 5 22 2 i 2 3
5 25 2 i.
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z23~ 3{2ið Þ 3{2ið Þ~9{6i{6iz4i2

~9{12i{4~5{12i:

z1z2zz23~ {5{ið Þz 5{12ið Þ~{13i:

9.4 (a) z 5 (21 2 2i) + (2 + 7i) 5 1 + 5i; z* 5 1 2 5i.
(b) z 5 (3 2 i) 2 (4 2 2i) 5 21 + i; z* 5 21 2 i.
(c) z 5 i(1 + 3i) 5 i 2 3 5 23 + i; z* 5 23 2 i.
(d) z 5 (1 + 3i)(3 + 2i) 5 3 + 2i + 9i 2 6 5 23 + 11i;

z* 5 23 2 11i.

9:5 að Þ 1

i
~

1

i
:{i

{i
~

{i

1
~{i:

bð Þ 1{i

2{i
~

1{i

2{i
: 2zi

2zi
~

2zi{2iz1

4z2i{2iz1
~

3{i

5
~

3

5
{

i

5
:

cð Þ i 2zið Þ
1{2ið Þ 2{ið Þ~

{1z2i

2{i{4i{2
~

{1z2i

{5i
~

{1z2i

{5i
: 5i

5i

~
{5i{10

25
~

{2

5
{

i

5
:

9.6
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9.7 (a) z 5 21 2 2i; r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12z22

p
~

ffiffiffi
5

p
; h 5 tan21(22/21) 5 tan21 2

5 63.43u, 2116.56u. z lies in the 3rd quadrant and so h 5

2116.56u.
(b) z 5 2i; r~

ffiffiffiffiffi
22

p
~2; h 5 tan21(2/0) 2 undefined at h 5 90u,

290u.
In this instance, h 5 90u.

9.8 (a) (ih)2 5 2h2

(b) (ih)3 5 2ih3

(c) (ih)4 5 h4

(d) (ih)5 5 ih5

z~r 1zihz
ihð Þ2

2!
z

ihð Þ3

3!
z

ihð Þ4

4!
z

ihð Þ5

5!
z � � �

( )

~r 1zih{
h2

2!
{

ih3

3!
z

h4

4!
z

ih5

5!
z � � �

( )
{ same as eqn 9:16ð Þ:

9.9 (a) z1z2~r1e
ih1 :r2e

ih2~r1r1e
i h1zh2ð Þ; modulus 5 r1r2, argument 5

h1 + h2.

(b)
z1

z2
~

r1e
ih1

r2eih2
~

r1

r2
eih1 :e{ih2~

r1

r2
ei h1{h2ð Þ; modulus 5

r1

r2
,

argument 5 h1 2 h2.

(c)
z21
z42
~

r21e
2ih1

r42e
4ih2

~
r21
r42
e2ih1e{4ih2~

r21
r42
ei 2h1{4h2ð Þ; modulus 5

z21
z42
,

argument 5 2h1 2 4h2.

9.10 z 5 21 2 i, r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12z12

p
~

ffiffiffi
2

p
; h 5 tan21(21/21) 5 tan21 1 5

p/4, 23p/4 but in third quadrant and so h 5 23p/4.
Thus z~

ffiffiffi
2

p
e{

3p
4 i) z2~2e{

6p
4 i~2e{

3p
2 i; modulus52,

argument523p/25p/2. z{4~ 1
4
e3pi; modulus51/4,

argument53p5¡p, but from the definition of the argument h 5

p is the only acceptable result.

9.11 (a) (cos h + i sin h)21 5 cos2h + i sin2h 5 cos h 2 i sin h.
(b) (cos h + i sin h)1/2 5 cos h/2 + i sin h/2.

cð Þ zn~ rn cos nh|fflfflfflfflffl{zfflfflfflfflffl}
real

z irn sin nh|fflfflfflfflffl{zfflfflfflfflffl}
imaginary
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(d) z 5 21 2 i; r~
ffiffiffi
2

p
; h 5 23p/4

)z~
ffiffiffi
2

p
cos 3p=4ð Þ{i sin 3p=4ð Þf g

z3~
ffiffiffi
2

p 3
cos 9p=4ð Þ{i sin 9p=4ð Þf g

~
ffiffiffi
2

p 3 ffiffiffi
2

p {1
{i

ffiffiffi
2

p 3 ffiffiffi
2

p {1
~2{2i:

z{2~
ffiffiffi
2

p {2
cos {3p=2ð Þ{i sin {3p=2ð Þf g

~
1

2
cos 3p=2ð Þzi sin 3p=2ð Þf g~ 1

2
|{i~{

i

2
:

9.12 ei2mp 5 cos 2mp + i sin 2mp 5 1; ei(h + 2mp) 5 eihei2mp 5 eih.

9.13 (a) e2ih 5 cos2h + i sin2h 5 cos h 2 i sin h.
(b) e2ih 5 cos h 2 i sin h and eih 5 cos h + i sin h .
(i) Adding the two expressions yields:
eih + e2ih 5 2 cos h + i sin h 2 i sin h 5 2 cos h

)cos h~
1

2
eihze{ih
� �

:

(ii) Similarly, subtracting the two expressions yields:
eih 2 e2ih 5 cos h 2 cos h + i sin h + i sin h 5 2i sin h

)sin h~
1

2i
eih{e{ih
� �

:

9.14 y 5 A cos kt + B sin kt

y~A|
1

2
eiktze{ikt
� �

zB|
1

2i
eikt{e{ikt
� �

~
A

2
eiktz

A

2
e{iktz

B

2i
eikt{

B

2i
e{ikt

~
A

2
z

B

2i

� �
eiktz

A

2
{

B

2i

� �
e{ikt:
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9:15 að Þ y1~N1e
{r=2a0r sin h|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

real

eiw|{z}
imaginary

,

y0~N2e
{r=2a0r cos h , real; no imaginary part

y{1~N1e
{r=2a0r sin h|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

real

e{iw|{z}
imaginary

:

bð Þ ið Þ y1zy{1~N1e
{r=2a0r sin heiwzN1e

{r=2a0r sin he{iw

~N1e
{r=2a0r sin h eiwze{iw

� �
:

but eiw + e2iw 5 2 cos w and so:

1ffiffiffi
2

p y1zy{1ð Þ~ 2ffiffiffi
2

p N1e
{r=2a0r sin h|cos w

~
ffiffiffi
2

p
N1e

{r=2a0r sin hcos w:

iið Þ y1{y{1~N1e
{r=2a0r sin heiw{N1e

{r=2a0r sin he{iw

~N1e
{r=2a0r sin h eiw{e{iw

� �

but eiw 2 e2iw 5 2i sin w and so:

{iffiffiffi
2

p y1{y{1ð Þ~{iffiffiffi
2

p N1e
{r=2a0r sin h|2isinw

~
ffiffiffi
2

p
N1e

{r=2a0r sin hsin w:

(c) y0~N2e
{r=2a0r cos h; z 5 r cos h ) y0~N2e

{r=2a0z. Thus we
can relabel y0 as yz.

1ffiffiffi
2

p y1zy{1ð Þ~
ffiffiffi
2

p
N1e

{r=2a0r sin h cos w;

x~r sin h cos w)yx~
ffiffiffi
2

p
N1e

{r=2a0x:

{iffiffiffi
2

p y1{y{1ð Þ~
ffiffiffi
2

p
N1e

{r=2a0r sin h sinw;

y~r sin hsin w)yy~
ffiffiffi
2

p
N1e

{r=2a0y:
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9:16 að Þ F hklð Þ~
Xcell
j

fje
2pi hxjzkyjzlzj½ �)

F hklð Þ~fNae
2pi h0zk0zl0½ �zfNae

2pi h12zk12zl12½ �

~fNazfNae
pi hzkzl½ �:

Euler’s formula: eih 5 cos h + i sin h;

)F hklð Þ~fNazfNae
pi hzkzl½ �

~fNazfNa cos hzkzlð Þpzi sin hzkzlð Þpf g:
bð Þ F hklð Þ~fNazfNaf cos hzkzlð Þp|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

~1, when hzkzl, even
~{1 when hzkzl, odd

z i sin hzkzlð Þp|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
~0, for hzkzl, even, odd

g

hF(hkl) 5 2fNa, for n even; 50 for n odd.

9.17 For the complex number i, r 5 1 and h~
p

2
; hence

i1/3 5 ei(p/2 + 2mp) 6 1/3 5ei(p/6 + 2mp/3)

~cos
p

6
z

2mp

3

� �
zi sin

p

6
z

2mp

3

� �

For m 5 1,

~cos
5p

6

� �
zi sin

5p

6

� �
~{

ffiffiffi
3

p

2
z

1

2
i;

For m 5 2,

~cos
3p

2

� �
zi sin

3p

2

� �
~{i;

For m 5 3,

~cos
13p

6

� �
zi sin

13p

6

� �
~

ffiffiffi
3

p

2
z

1

2
i:

For m 5 4,

~cos
17p

6

� �
zi sin

17p

6

� �
~{

ffiffiffi
3

p

2
z

1

2
i,

and so on. We see that taking m ¢ 4 merely repicates the roots

already found, and so the three cube roots of i are {

ffiffiffi
3

p

2
z

1

2
i,

2i and

ffiffiffi
3

p

2
z

1

2
i.
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Chapter 10

10:1 2xzy~5

1
2
xz8y~9

x~

5 9

1 8














2 1

1
2

8















~
40{9

16{ 1
2

~
31

15 1
2

~2;

y~

9 5

1
2

2














2 1

1
2

8















~
18{2 1

2

16{ 1
2

~
15 1

2

15 1
2

~1:

10:2 að Þ a11:1, a12:{
1

RT1
, b1:ln k1; a21:1,

a22:{
1

RT2
, b2:ln k2; x~ln A,y~Ea:

bð Þ a11:100, a12:1, b1:212; a21:0, a22:1, b2:32;

a~

212 32

1 1














100 1

0 1















~
212{32

100
~

180

100
~

9

5
and

b~

32 212

0 100














100 1

0 1















~
3200

100
~32

and so the formula relating T to t is

T~ 9
5
tz32:
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10:3 að Þ

1 {1 2

0 3 0

2 {2 {2




















~1

0 0

2 {2













z3
1 2

2 {2













z2
1 2

0 0















~0z3 {2{4ð Þz0~{18:

bð Þ

1 {1 2

0 3 0

2 {2 {2




















~0

{1 2

{2 {2













z3
1 2

2 {2













z0
1 {1

2 {2















~0z3 {2{4ð Þz0~{18:

10:4 að Þ

1 0 {2

2 8 4

3 2 2





















A33~ {1ð Þ6
1 0

2 8













~8;

A22~ {1ð Þ4
1 {2

3 2













~2{{6~8;

A32~ {1ð Þ5
1 {2

2 4













~{1 4{{4ð Þ~{8;

A23~ {1ð Þ5
1 0

3 2













~{1|2~{2:

bð Þ
cos h {sin h 0

sin h cos h 0

0 0 1



















A12~ {1ð Þ3
sin h 0

0 1













~{sin h;

A21~ {1ð Þ3
{sin h 0

0 1













~{1|{sin h~sin h:
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10.5 (a)

ið Þ

1 2 3

0 8 2

{2 4 2




















~0

2 3

4 2













z8
1 3

{2 2













{2
1 2

{2 4















~0z8 2{{6ð Þ{2 4{{4ð Þ~64{16~48:

iið Þ

1 2 3

0 8 2

{2 4 2




















Subtracting twice col 1 from col 2

~

1 0 3

0 8 2

{2 8 2




















and then 3 times col 1

from col 3~

1 0 0

0 8 2

{2 8 8




















~1

8 2

8 8















~64{16~48:

iiið Þ Starting from

1 0 0

0 8 2

{2 8 8




















,

subtract
1

4
|col 2 from col 3

~

1 0 0

0 8 0

{2 8 6




















~1|8|6~48:

(b)

ið Þ

1 0 {2

2 8 4

3 2 2




















~{2

0 {2

2 2













z8
1 {2

3 2













{4
1 0

3 2















~{2 0{{4ð Þz8 2{{6ð Þ{4 2{0ð Þ

~{8z64{8~48:
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iið Þ

1 0 {2

2 8 4

3 2 2




















Add twice col 1 to col 3

~

1 0 0

2 8 8

3 2 8




















~1

8 8

2 8













~64{16~48:

iiið Þ Starting from

1 0 0

2 8 8

3 2 8




















, subtract col 2 from col 3

~

1 0 0

2 8 0

3 2 6




















~1

8 0

2 6













~1|8|6~48:

10:6

a{e b 0

b a{e b

0 b a{e


















~0

að Þ

a{e

b
1 0

1
a{e

b
1

0 1
a{e

b





























b3~0

)

a{e

b
1 0

1
a{e

b
1

0 1
a{e

b





























~0
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bð Þ

x 1 0

1 x 1

0 1 x




















~x

x 1

1 x













{1
1 1

0 x















~x x2{1
� �

{ x{0ð Þ

~x3{x{x~x3{2x

)

x 1 0

1 x 1

0 1 x




















~x3{2x~0:

cð Þ x3{2x~0)x x2{2
� �

~0, when x~0,+
ffiffiffi
2

p
:

dð Þ x~ a{eð Þ=b) e~a{bx) e~a,a+
ffiffiffi
2

p
b:

Chapter 11

11:1 b~
1 1 1

2 {2 2

 !
, c~

3 {1

1 {3

 !
, d~

1

0

 !
and e~ 0 {i 1 ið Þ

(a) b, rectangular; c, square; d, column; e, row.
(b) b11 5 1, b12 5 1, b13 5 1, b21 5 2, b22 5 22, b23 5 2

c11 5 3, c12 5 21, c21 5 1, c22 5 23.
d11 5 1, d21 5 0.
e11 5 0, e12 5 2i, e13 5 1, e14 5 i.

(c) b, 263; c, 262; d, 261; e, 164.

11:2 að Þ 2B~2

4 5

1 6

{4 3

0
BB@

1
CCA~

8 10

2 12

{8 6

0
BB@

1
CCA

bð Þ 2C~2

2 5
2

1
2

3

{2 3
2

0
BB@

1
CCA~

4 5

1 6

{4 3

0
BB@

1
CCA:
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11:3 að Þ AzB~
1 i

{i 1

� �
z

1 {i

i 1

� �
~

2 0

0 2

� �
~2D:

bð Þ A{B~
1 i

{i 1

� �
{

1 {i

i 1

� �
~

0 2i

{2i 0

� �
~2iC:

cð Þ RzS~
cos h sin h

{sin h cos h

 !
z

cos h {sin h

sin h cos h

 !

~
2cos h 0

0 2cos h

 !
~2cos hD:

dð Þ R{S~
cos h sin h

{sin h cos h

 !
{

cos h {sin h

sin h cos h

 !

~
0 2sin h

{2sin h 0

 !
~2sin hC:

11:4 AB~
1 2

2 1

 !
1 {1

{1 2

 !
~

{1 3

1 0

 !
, 2|2;

BA~
1 {1

{1 2

 !
1 2

2 1

 !
~

{1 1

3 0

 !
, 2|2

AC~
1 2

2 1

 !
{1 1

{1 1

 !
~

{3 3

{3 3

 !
, 2|2;

BC~
1 {1

{1 2

 !
{1 1

{1 1

 !
~

0 0

{1 1

 !
, 2|2:

DE~ 1 2ð Þ
3

{1

 !
~1, 1|1;

ED~
3

{1

 !
1 2ð Þ~

3 6

{1 {2

 !
, 2|2:
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DA~ 1 2ð Þ
1 2

2 1

� �
~ 5 4ð Þ, 1|2; AD not defined:

EA not defined.

AE~
1 2

2 1

� �
3

{1

� �
~

1

5

� �
, 2|1:

) AB{BA~
{1 3

1 0

� �
{

{1 1

3 0

� �
~

0 2

{2 0

� �
, 2|2:

ABð ÞC~
{1 3

1 0

 !
{1 1

{1 1

 !
~

{2 2

{1 1

 !
, 2|2;

A BCð Þ~
1 2

2 1

 !
0 0

{1 1

 !
~

{2 2

{1 1

 !
, 2|2:

A BzCð Þ~
1 2

2 1

� �
0 0

{2 3

� �
~

{4 6

{2 3

� �
, 2|2:

ABzAC~
{1 3

1 0

� �
z

{3 3

{3 3

� �
~

{4 6

{2 3

� �
, 2|2:

11.5 (a) Reflection in the line y~x will result in the x and y values
interchanging. We can represent this coordinate transforma-
tion as:

x’

y’

� �
~

y

x

� �
~

d11 d12

d21 d22

� �
x

y

� �

r’ ~ D r

:

Multiplying out gives:

d11xzd12y~y ) d11~0, d12~1

d21xzd22y~x ) d21~1, d22~0

) D~
0 1

1 0

� �
:
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bð Þ ið Þ E~CD~
{1 0

0 1

� �
0 1

1 0

� �
~

0 {1

1 0

� �
:

iið Þ F~DC~
0 1

1 0

� �
{1 0

0 1

� �
~

0 1

{1 0

� �
:

11:6 að Þ AT~
cos h sin h

{sin h cos h

 !

bð Þ CT~
{1 {1

1 1

 !

cð Þ DT~

1 1

3 2

4 1

0
BB@

1
CCA:

11:7 að Þ XnmXmn
T yields n|n; Xmn

TXnm yields m|m:

bð Þ BBT~
1 1 2

1 2 1

 ! 1 1

1 2

2 1

0
BB@

1
CCA~

6 5

5 6

 !
;

BTB~

1 1

1 2

2 1

0
BB@

1
CCA

1 1 2

1 2 1

 !
~

2 3 3

3 5 4

3 4 5

0
BB@

1
CCA:

11:8 A~
1zi i

{i 1

 !
; A�~

1{i {i

i 1

 !
;

A{~
1{i i

{i 1

 !
:

11:9 að Þ AB~
1 1{i

1zi {1

 !
1 1zi

1zi 0

 !
~

3 1zi

0 2i

 !
;

ABð Þ�~
3 1{i

0 {2i

 !
;
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A�B�~
1 1zi

1{i {1

� �
1 1{i

1{i 0

� �
~

3 1{i

0 {2i

� �
:

bð Þ ABð Þ{~
3 0

1{i {2i

 !
;

B
{
A{~

1 1{i

1{i 0

 !
1 1{i

1zi {1

 !
~

3 0

1{i {2i

 !
:

11:10 að Þ AB~
1 {1

0 3

 !
0 1

1 {2

 !
~

{1 3

3 {6

 !

) tr ABð Þ~{1{6~{7:

BA~
0 1

1 {2

 !
1 {1

0 3

 !
~

0 3

1 {7

 !

) tr BAð Þ~0{7~{7:

bð Þ ABC~
{1 3

3 {6

 !
{1 1

1 0

 !
~

4 {1

{9 3

 !

) tr ABCð Þ~4z3~7:

CAB~
{1 1

1 0

 !
{1 3

3 {6

 !
~

4 {9

{1 3

 !

) tr CABð Þ~4z3~7:

BCA~
0 1

1 {2

 !
{1 4

1 {1

 !
~

1 {1

{3 6

 !

) tr BCAð Þ~1z6~7:

cð Þ DTD~

1 1

{1 {2

0 0

0
BB@

1
CCA

1 {1 0

1 {2 0

 !
~

2 {3 0

{3 5 0

0 0 0

0
BB@

1
CCA

) tr DTD
� �

~2z5z0~7:
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DDT~
1 {1 0

1 {2 0

 ! 1 1

{1 {2

0 0

0
BB@

1
CCA~

2 3

3 5

 !

) tr DD
T

� �
~2z5~7:

11:11 að Þ
0 0 0

0 0 0

� � 1 3

2 2

0 1

0
B@

1
CA~

0 0

0 0

� �
:

bð Þ
1 2 3

4 5 6

� �
0 0 0

0 0 0

� �
is undefined:

cð Þ
1 0 0

0 1 0

0 0 1

0
B@

1
CA

1 3

2 2

0 1

0
B@

1
CA~

1 3

2 2

0 1

0
B@

1
CA:

dð Þ
1 2 3

4 5 6

� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA~

1 2 3

4 5 6

� �
:

eð Þ
1 3

2 2

0 1

0
B@

1
CA

1 0 0

0 1 0

0 0 1

0
B@

1
CA is undefined:

11:12 að Þ ið Þ det A ~
cos h {sin h

sin h cos h










~cos2hzsin2h~1;

B~
cos h {sin h

sin h cos h

� �

iið Þ BTA~
cos h sin h

{sin h cos h

� �
cos h {sin h

sin h cos h

� �
~

1 0

0 1

� �
:

E2 det A ~
1 0

0 1

� �
|1~

1 0

0 1

� �

Thus E2 det A ~B
T

A:
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bð Þ G11~
{1 2

1 1

 !
~{3; G12~{

2 2

1 1

 !
~0;

G13~
2 {1

1 1

 !
~3;

G21~{
{1 1

1 1

 !
~2; G22~

0 1

1 1

 !
~{1;

G23~{
0 {1

1 1

 !
~{1;

G31~
{1 1

{1 2

 !
~{1; G32~{

0 1

2 2

 !
~2;

G33~
0 {1

2 {1

 !
~2;

H~

{3 0 3

2 {1 {1

{1 2 2

0
B@

1
CA:

) HTG~

{3 2 {1

0 {1 2

3 {1 2

0
B@

1
CA

0 {1 1

2 {1 2

1 1 1

0
B@

1
CA~

3 0 0

0 3 0

0 0 3

0
B@

1
CA:

det G ~1
2 2

1 1










z1

2 {1

1 1










~0z3~3;

Therefore, E3 det G ~

1 0 0

0 1 0

0 0 1

0
B@

1
CA|3~

3 0 0

0 3 0

0 0 3

0
B@

1
CA:
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11:13 að Þ A~
1ffiffi
2

p k

1ffiffi
2

p { 1ffiffi
2

p

0
@

1
A;

det A ~ {
1

2
{

kffiffiffi
2

p ~+1:

) {
kffiffiffi
2

p ~+1z
1

2
) kffiffiffi

2
p ~+1{

1

2
~{

3

2
,
1

2

) k~{
3
ffiffiffi
2

p

2
,

ffiffiffi
2

p

2
~{

3ffiffiffi
2

p ,
1ffiffiffi
2

p :

Check : ATA~AAT~En)

ATA~

1ffiffi
2

p 1ffiffi
2

p

k { 1ffiffi
2

p

0
@

1
A

1ffiffi
2

p k

1ffiffi
2

p { 1ffiffi
2

p

0
@

1
A

~
1 kffiffi

2
p { 1

2

kffiffi
2

p { 1
2

k2z 1
2

0
@

1
A

AAT~

1ffiffi
2

p k

1ffiffi
2

p { 1ffiffi
2

p

0
@

1
A

1ffiffi
2

p 1ffiffi
2

p

k { 1ffiffi
2

p

0
@

1
A

~

1
2
zk2 1

2
{ kffiffi

2
p

1
2
{ kffiffi

2
p 1

0
@

1
A

For k~{
3ffiffiffi
2

p , ATA~
1 {2

{2 5

 !
;

AAT~
5 2

2 1

 !
) ATA=AAT

=En

For k~ 1ffiffiffi
2

p , ATA~
1 0

0 1

 !
;

AAT~
1 0

0 1

 !
) ATA~AAT~En:
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The only valid solution is k~ 1ffiffi
2

p .

bð Þ R~

cos h sin h 0

sin h cos h 0

0 0 1

0
BB@

1
CCA;

det R ~ cos2h { sin2h~+1

But cos 2h~cos2h{sin2h and so cos 2h~+1

) 2h~cos{1 +1ð Þ~0,+np

) h~0,+
np

2
, n~1,2,3 . . .

) R~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA, for h ~ 0;

R~

0 1 0

1 0 0

0 0 1

0
BB@

1
CCA, for h ~

p

2
;

R~

{1 0 0

0 {1 0

0 0 1

0
BB@

1
CCA, for h ~ p;

R~

0 {1 0

{1 0 0

0 0 1

0
BB@

1
CCA, for h~

3p

2
,{

p

2
;

In each case RT 5 R
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RRT~RTR~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA

~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA~E3

RRT~RTR~

0 1 0

1 0 0

0 0 1

0
BB@

1
CCA

0 1 0

1 0 0

0 0 1

0
BB@

1
CCA

~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA~E3

RRT~RTR~

{1 0 0

0 {1 0

0 0 1

0
BB@

1
CCA

{1 0 0

0 {1 0

0 0 1

0
BB@

1
CCA

~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA~E3

RRT~RTR~

0 {1 0

{1 0 0

0 0 1

0
BB@

1
CCA

0 {1 0

{1 0 0

0 0 1

0
BB@

1
CCA

~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA~E3

For h ~ 0,+
np

2
, n ~1,2,3 . . . , RTR~RRT~En:
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cð Þ det A ~1zk ) 1zk~+1 ) k~0,{2

For k 5 0,

AAT~
1 0

{1 1

� �
1 {1

0 1

� �
~

1 {1

{1 2

� �

ATA~
1 {1

0 1

� �
1 0

{1 1

� �
~

2 {1

{1 1

� �

For k 5 22

AAT~
1 {2

{1 1

� �
1 {1

{2 1

� �
~

5 {3

{3 2

� �

ATA~
1 {1

{2 1

� �
1 {2

{1 1

� �
~

2 {3

{3 5

� �

h Not orthogonal.

11:14 að Þ A ~
0 3zi

3{i 1

 !
, A{ ~

0 3zi

3{i 1

 !
,

hA~A{:

bð Þ Ax ~
0 3zi

3{i 1

 !
1

i

 !
~

3i{1

3

 !
;

x{Ax~ 1{ið Þ
3i{1

3

 !
~3i{1{3i~{1:

11:15 að Þ A~
1 i

{i 0

� �
; A{~

1 i

{i 0

� �
hHermitian:

AA{~
1 i

{i 0

� �
1 i

{i 0

� �
~

2 i

{i 1

� �
hNot unitary:
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bð Þ B~ 1ffiffiffi
2

p
1 i

{i {1

� �
; B{~

1ffiffiffi
2

p
1 i

{i {1

� �
hHermitian:

BB{~
1

2

1 i

{i {1

 !
1 i

{i {1

 !
~

1

2

2 0

0 2

 !
~

1 0

0 1

 !

hUnitary:

cð Þ C~
0 {1

1 0

� �
; CT~

0 1

{1 0

� �
hNot symmetric:

CCT~
0 {1

1 0

� �
0 1

{1 0

� �
~

1 0

0 1

� �
hOrthogonal:

dð Þ D~
1 {1

{1 0

� �
; DT~

1 {1

{1 0

� �
hSymmetric:

DDT~
1 {1

{1 0

 !
1 {1

{1 0

 !
~

2 {1

{1 1

 !

hNot othogonal:

11:16 det A~

1 {1 1

{1 {1 1

1 1 1




















) Add column colð Þ 2 to col 3

)

1 {1 0

{1 {1 0

1 1 2




















and then add col 1 to col 2:

) det A~

1 0 0

{1 {2 0

1 2 2


















~1

{2 0

2 2










~{4:
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The matrix of cofactors of A is B~

{2 2 0

2 0 {2

0 {2 {2

0
BB@

1
CCA;

BT~

{2 2 0

2 0 {2

0 {2 {2

0
BB@

1
CCA

Therefore A{1~
1

det A
BT~{

1

4

{2 2 0

2 0 {2

0 {2 {2

0
BB@

1
CCA

~

1
2

{ 1
2

0

{ 1
2

0 1
2

0 1
2

1
2

0
BB@

1
CCA:

Check: AA{1~

1 {1 0

{1 {1 1

1 1 1

0
BB@

1
CCA

1
2

{ 1
2

0

{ 1
2

0 1
2

0 1
2

1
2

0
BB@

1
CCA

~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA:

11:17 xz2yz3z~1

8yz2z~1

{2xz4yz2z~2

1 2 3

0 8 2

{2 4 2

0
B@

1
CA

x

y

z

0
B@

1
CA ~

1

1

2

0
B@

1
CA

A x b
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Matrix of cofactors B~

8 {4 16

8 8 {8

{20 {2 8

0
BB@

1
CCA;

BT~

8 8 {20

{4 8 {2

16 {8 8

0
BB@

1
CCA;

det A ~
8 2

4 2










{2

0 2

{2 2










z3

0 8

{2 4










~8{8z48~48;

A{1~
1

det A
BT~

1

48

8 8 {20

{4 8 {2

16 {8 8

0
BB@

1
CCA

~

1
6

1
6

{ 5
12

{ 1
12

1
6

{ 1
24

1
3

{ 1
6

1
6

0
BB@

1
CCA;

x

y

z

0
BB@

1
CCA~

1
6

1
6

{ 5
12

{ 1
12

1
6

{ 1
24

1
3

{ 1
6

1
6

0
BB@

1
CCA

1

1

2

0
BB@

1
CCA~

{ 1
2

0

1
2

0
BB@

1
CCA

) x~{
1

2
, y~0, z~1

2
:

11:18

a{eð Þ b 0

b a{eð Þ b

0 b a{eð Þ

0
B@

1
CA

c1

c2

c3

0
B@

1
CA~0

að Þ For e ~ a,

0 b 0

b 0 b

0 b 0

0
B@

1
CA

c1

c2

c3

0
B@

1
CA~

c2b

c1bzc3b

c2b

0
B@

1
CA~

0

0

0

0
B@

1
CA

) c2b~0; c1bzc3b~0 ) c2~0,c3~{c1
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bð Þ For e ~ az
ffiffiffi
2

p
b,

{
ffiffiffi
2

p
b b 0

b {
ffiffiffi
2

p
b b

0 b {
ffiffiffi
2

p
b

0
BB@

1
CCA

c1

c2

c3

0
BB@

1
CCA

~

{
ffiffiffi
2

p
bc1zc2b

c1b{
ffiffiffi
2

p
bc2zc3b

c2b{
ffiffiffi
2

p
bc3

0
BB@

1
CCA~

0

0

0

0
BB@

1
CCA

) {
ffiffiffi
2

p
bc1zc2b~0; c1b{

ffiffiffi
2

p
bc2zc3b~0; c2b{

ffiffiffi
2

p
bc3~0 )

) c2~
ffiffiffi
2

p
c1, c3~c1:

cð Þ For e~a{
ffiffiffi
2

p
b,

ffiffiffi
2

p
b b 0

b
ffiffiffi
2

p
b b

0 b
ffiffiffi
2

p
b

0
BB@

1
CCA

c1

c2

c3

0
BB@

1
CCA~

ffiffiffi
2

p
bc1zc2b

c1bz
ffiffiffi
2

p
bc2

c2bz
ffiffiffi
2

p
bc3

zc3b

0
BB@

1
CCA~

0

0

0

0
BB@

1
CCA

)
ffiffiffi
2

p
bc1zc2b~0; c1bz

ffiffiffi
2

p
bc2zc3b~0; c2bz

ffiffiffi
2

p
bc3~0 )

) c2~{
ffiffiffi
2

p
c1; c3~c1:

dð Þ For e~a, c~c1

1

0

{1

0
BB@

1
CCA; For e~az

ffiffiffi
2

p
b,

c~c1

1
ffiffiffi
2

p

1

0
BB@

1
CCA; For e~a{

ffiffiffi
2

p
b, c~c1

1

{
ffiffiffi
2

p

1

0
BB@

1
CCA
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11.19 Identity is 1.

{1|{1~1

{1|i~{i

{1|{i~i

i|i~{1

i|{i~1

1|{1~{1

9>>>>>>>>>>>=
>>>>>>>>>>>;

Product of any two yields another member of the group:

Inverse of 1 is 1.
Inverse of 21 is 21.
Inverse of i is 2i.
Inverse of 2i is i.
Multiplication is associative (216i)62i 5 216(i62i) 5 21.
hthe set G1 forms a group.

11.20 (a)

A B C D

A A B C D

B B A D C

C C D B A

D D C A B

(b)

A B C D

A A B C D

B B A D C

C C D A B

D D C B A

11.21 One three-fold axis of rotation, three two-fold axes of rotation,
one mirror plane containing the plane of the molecule and three
mirror planes perpendicular to the plane of the molecule.
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Chapter 12

12.1 (a)

(b)

12:2 að Þ 3a{2b~3 îz ĵ{2k̂
� �

{2 îzk̂
� �

~ îz3 ĵ{8k̂:

bð Þ {2a{b~{2 îzĵ{2k̂
� �

{ îzk̂
� �

~{3 î{2 ĵz3k̂:

cð Þ azb{c{d~ îz ĵ{2k̂
� �

z îzk̂
� �

{ îz ĵzk̂
� �

{ î{2k̂
� �

~0 îz0 ĵz0k̂~0:

dð Þ a{dj j~ îz ĵ{2k̂
� �

{ î{2k̂
� �

 

~ ĵ



 

~1:

eð Þ azc

azcj j~
îzĵ{2k̂
� �

z îz ĵzk̂
� �

îzĵ{2k̂
� �

z îz ĵzk̂
� �

 



~
2 îz2 ĵ{k̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22z22z12

p ~
2 îz2 ĵ{k̂

3

~
2

3
îz

2

3
ĵ{

1

3
k̂:
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fð Þ 2

3
îz

2

3
ĵ{

1

3
k̂










~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

� �2

z
2

3

� �2

z
1

3

� �2
s

~1:

gð Þ aj j{ cj j~ îzĵ{2k̂
� �

 

{ îz ĵzk̂

� �

 



~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z1z4

p
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z1z1

p
~

ffiffiffi
6

p
{

ffiffiffi
3

p
:

12:3 að Þ î, {ĵ, { î, ĵ:

bð Þ R î, {R ĵ, {R î, R ĵ:

cð Þ Shortest : e:g: r~R î{R ĵ;

rj j~ R î{R ĵ


 

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2zR2

p
~

ffiffiffi
2

p
R:

Longest : e:g: p~{R îz{R î~{2R î; pj j~ {2R î


 

~2R:

12:4 að Þ a:c~ 2 îz3k̂
� �

: î{2 ĵzk̂
� �

~2 î: îz3k̂:k̂~5:

bð Þ a: b{2cð Þ~ 2 îz3k̂
� �

: { îz5 ĵ{k̂
� �

~{2 î: î{3k̂:k̂~{5:

cð Þ a: bzað Þ~ 2 îz3k̂
� �

: 3 îz ĵz4k̂
� �

~6 î: îz12k̂:k̂~18:

dð Þ b:c~ îz ĵzk̂
� �

: î{2 ĵzk̂
� �

~ î: î{2 ĵ: ĵzk̂:k̂~0:

12:5 að Þ ið Þ a: b{2cð Þ~{5~ aj j: b{2cð Þj jcosh

aj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22z32

p
~

ffiffiffiffiffi
13

p
:

369



b{2cð Þj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12z52z12

p
~

ffiffiffiffiffi
27

p

) {5ffiffiffiffiffi
13

p ffiffiffiffiffi
27

p ~cosh ) h~105:480:

iið Þ b:c~0~ bj j: cj jcosh ) h~900:

bð Þ d:e~ 3 î{2 ĵ{k̂
� �

: îzl ĵz2k̂
� �

~3 î: î{2l ĵ: ĵ{2k̂:k̂~1{2l:

dj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32z22z12

p
~

ffiffiffiffiffi
14

p
:

ej j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12zl2z22

p
~

ffiffiffiffiffiffiffiffiffiffiffiffi
5zl2

p
:

h1{2l~
ffiffiffiffiffi
14

p ffiffiffiffiffiffiffiffiffiffiffiffi
5zl2

p
cos900~0

)1{2l~0

1~2l

l~
1

2
:

12:6 c~azb ) c:c~ azbð Þ: azbð Þ

~ a:a|{z}
a2

z 2a:b|{z}
2ab cosh

z b:b|{z}
b2

We need to exercise some care here because the quantity a?b will yield
an angle h5180u2C, which in this example is an acute angle, rather
than the obtuse angle required. Consequently, we must substitute
180u2C for h which gives:

hc:c~a2zb2z2ab cos 1800{Cð Þ~a2zb2{2abcosC:

12:7 að Þ r1~a î{a ĵ{ak̂; r2~{a îza ĵ{ak̂;

r3~a îza ĵzak̂; r4~{a î{a ĵzak̂:

bð Þ r3j j~
ffiffiffiffiffiffiffi
3a2

p
~

ffiffiffi
3

p
a ) R~

ffiffiffi
3

p
a ) a~

Rffiffiffi
3

p :
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cð Þ r3{r2~ a îza ĵzak̂
� �

{ {a îza ĵ{ak̂
� �

~2a îz2ak̂;

r3{r2j j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2að Þ2z 2að Þ2

q
~

ffiffiffiffiffiffiffi
8a2

p
~

ffiffiffi
8

p
a~

ffiffiffi
8

p
Rffiffiffi
3

p ~
2
ffiffiffi
2

p
Rffiffiffi
3

p :

12:8 að Þ a|c~ 2 îz3k̂
� �

| î{2 ĵzk̂
� �

~ {4 î| ĵ
� �

z 2 î|k̂
� �

z 3k̂| î
� �

{ 6k̂| ĵ
� �

~{4k̂{2 ĵz3 ĵz6 î~6 îz ĵ{4k̂:

bð Þ c|a~ î{2 ĵzk̂
� �

| 2 îz3k̂
� �

~ 3 î|k̂
� �

z {4 ĵ| î
� �

{ 6 ĵ|k̂
� �

z 2k̂| î
� �

~{3 ĵz4k̂{6 îz2 ĵ~{6 î{ ĵz4k̂:

cð Þ c|aj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36z1z16

p
~

ffiffiffiffiffi
53

p
:

dð Þ î| ĵ
� �

| ĵ~k̂| ĵ~{ î:

eð Þ î| ĵ| ĵ
� �

~ î|0~0:

12:9 að Þ a:b~ a1 îza2 ĵza3 k̂
� �

: b1 îzb2 ĵzb3 k̂
� �

~a1b1 î: îza2b2 ĵ: ĵza3b3 k̂:k̂

~a1b1za2b2za3b3:

bð Þ b|c~ b1 îzb2 ĵzb3 k̂
� �

| c1 îzc2 ĵzc3 k̂
� �

~b1c2 î| ĵzb1c3 î|k̂zb2c1 ĵ| î

zb2c3 ĵ|k̂zb3c1 k̂| îzb3c2 k̂| ĵ

~b1c2 k̂{b1c3 ĵ{b2c1 k̂zb2c3 îzb3c1 ĵ{b3c2 î

~ b2c3{b3c2ð Þ î{ b1c3{b3c1ð Þ ĵz b1c2{b2c1ð Þk̂:
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12:10 að Þ a|b~

î ĵ k̂

1 1 1

1 {1 1





















~ î
1 1

{1 1













{ ĵ
1 1

1 1













zk̂
1 1

1 {1














~2 î{2k̂:

bð Þ a|bj j~ 2 î{2k̂


 

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22z22

p
~

ffiffiffi
8

p
:

hUnit vector~
2ffiffiffi
8

p î{
2ffiffiffi
8

p k̂~
1ffiffiffi
2

p î{
1ffiffiffi
2

p k̂:

12:11 For a~a2 ĵza3 k̂, b~b1 î, c~c2 ĵ;

a: b|cð Þ~
0 a2 a3

b1 0 0

0 c2 0


















~a3

b1 0

0 c2










~a3b1c2:

12:12 að Þ b~b1 î and bj j~0:600 nm; c~c2 ĵ and cj j~0:866 nm

hb1~0:600 nm and c2~0:866 nm:

bð Þ a:c~ a2 ĵza3 k̂
� �

: c2 ĵ
� �

~a2c2~0:824|0:866|cosb nm2

) a2|0:866nm ~ 0:824|0:866|cosb nm2

) a2 ~ 0:824 nm|cos122:90 ~ {0:448 nm:

cð Þ aj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22za23

q
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4482za23

q
~0:824 nm:

) 0:679~0:4482za23

ha23~0:679{0:2003~0:479 nm2:

) a3 ~ +0:692 nm:

(d) Volume of the unit cell is given by:
a?(b6c)5a3b1c250.69260.60060.86650.36nm3.
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Chapter 13

13:2 P 5=6ð Þ~ 6!

5! 6{5ð Þ!
1

2

� �5
1

2

� �1

~6|
1

2

� �6

~
3

32
~0:09375

13.3 For DH o{;
(a) Mean 5 142.1429 kJ mol21.
(b) The sample standard deviation 5 11.4681 kJ mol21.
(c) The standard error of the sample mean 5 3.0650 kJ mol21

and so we report the mean enthalpy change as
DH o{5142.1429 ¡ 3.0650 kJ mol21.

(d) The 95% confidence interval 5 142.1429 ¡ 6.5591 kJ mol21.

For DG o{:
(a) Mean 5 20.4571 kJ mol21.
(b) The sample standard deviation 5 0.8410 kJ mol21.
(c) The standard error of the sample mean 5 0.2248 kJ mol21

and so we report the mean Gibbs free energy as DG�o{5

20.4571 ¡ 0.2248 kJ mol21.
(d) The 95% confidence interval 5 20.4571 ¡ 0.4811 kJ mol21.

13.4 The Arrhenius equation can be rearranged to give a form which
is suitable for linear regression by taking natural logs both sides
to yield

ln k~lnA{
Ea

RT

A plot of ln k against 1/T will then yield a straight line with a
gradient of 2Ea/R and a y-axis intercept at ln A.

1 / T 0.00131 0.00128 0.00127 0.00126 0.00123 0.00122 0.00121

ln k 29.3847 28.3307 28.3266 27.8727 27.0109 26.5713 26.3654
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For the gradient, 2Ea/R, we evaluate each of the terms that appear in
eqn (13.17) where we associate the xi values with 1 / T and the yi
values with ln k.

N~7,
XN
i~1

xi~0:008770,
XN
i~1

yi~{53:8623,

XN
i~1

xiyi~{0:06771,
XN
i~1

x2i~1:0995|10{5,

XN

i~1

xi

 !2

~7:6913|10{5

Inserting these values into eqn (13.17) yields:

{
Ea

R
~

7|{0:06771ð Þ{ 0:008770|{53:8623ð Þ
7|1:0995|10{5ð Þ{7:6913|10{5

~
{1:5974|10{3

5:2|10{8

~{30964:895 K mol

which, when multiplied by the gas constant R, gives a value for Ea of
257 457.9 J mol21 or 257.46 kJ mol21.
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For the intercept, ln A:

ln A


s{1

� �
~

{53:86233|1:0995|10{5
� �

{ 0:00877|{0:06771ð Þ
7|1:0995|10{5ð Þ{7:6913|10{5

~
1:6004|10{6

5:2|10{8
~31:099

which then yields a value for the pre-exponential factor of
3.2161013s21.
The uncertainty in the ln k values is given by eqn (13.21), for
which in this case the term:

XN

i~1

yi{mxi{cð Þ2~
XN

i~1

ln kiz
Ea

R

1

Ti

{lnA

� �2

~0:06681

and so:

sln k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5
|0:06681

r
~0:1156

We can now use this to find the uncertainties associated with
2Ea/R and ln A:

s{Ea=R~0:11556

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

5:2|10{8

r
~1341:27 K{1

and:

slnA~0:11556

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0995|10{5

5:2|10{8

r
~1:681:

13.5 The collision cross-section s 5 pd2 5 p 6 (6.5 6 10210 m)2 5
1.327 6 10218 m2. The relative error in its calculation (from eqn
13.34) is given by:

ss
sj j~

2|sd
dj j ~

2|0:14|10{10 m

6:5|10{10 m
~0:043,

i.e. twice the relative error in the parameter d. Multiplying the
relative error by the calculated value for the cross-section s yields
a value for the absolute uncertainty ss:
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ss~0:043|1:327|10{18~5:707|10{20 m2

We might then record the calculated cross-section as
ss 5 (1.327 ¡ 0.057) 6 10218 m2.

13.6 The modulus of the derivative of y 5 ex is:

dy

dx










~ex

and so the absolute uncertainty in y is sy 5 exsx with relative
uncertainty:

sy

yj j~
exsx
ex

~sx

i.e. the relative uncertainty in y is the same as the absolute
uncertainty in x, the opposite result to that found for y 5 ln x.

13.7 Rearranging eqn (13.28) yields:

r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

8p2mcB

s

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:626|10{34 Js

8p2|1:139|10{26 kg|2:998|1010 cms{1|1:923 cm{1

s

~1:1305|10{10 m

i.e. rCO50.113 nm.

The absolute error in r, sr, can be deduced from the absolute
error in B, sB, by noting that the two are related through the
general functional form r~k|B{1

2 where

k~

ffiffiffiffiffiffiffiffiffiffiffiffi
h

8p2mc

s
.

The derivative of this function is:

dr

dB
~{

1

2
kB{3

2
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but its modulus is:

dr
dB



 

~ 1
2
kB{3

2

and so:

sr~
1
2
kB{3

2sB

The relative errors are then related as follows:

sr
r
~

1
2
kB{3

2

kB{1
2

sB~
1

2

sB
B

which is the result suggested by eqn (13.34). Thus if sB50.005

cm21, then the relative error will be:
sB
B

~
0:005

1:923
~2:6|10{3 or

0.26%. We can now calculate the relative error in r from:

sr
r
~

1

2

sB
B

~
2:6|10{3

2
~1:3|10{3 or 0:13%:

A 0.13% error in the bond length of 1.1305 6 10210 m is 1.4697
6 10213 m and so we can report the bond length as:

r~0:11305+0:00015 nm

13:8 For y~
u

v
,
Ly
Lu

~
1

v
;
Ly
Lv

~
{u

v2

Thus s2y~
1

v2
s2uz

u2

v4
s2v

As with multiplication, dividing through by y2 gives:

s2y
y2

~
v2s2u
u2v2

z
v2u2s2v
u2v4

~
s2u
u2

z
s2v
v2

Y

sy
y

� �2

~
su
u

� �2
z

sv
v

� �2

and:

sy
y
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
su
u

� �2
z

sv
v

� �2r
as required:
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13.9 Assuming the ideal gas law P~
nRT

V
, the total pressure exerted

will be: P~
0:02mol|8:31451 JK{1 mol{1|298K

1|10{5 m3
~4 955 544:8

Pa. With 1 bar 5 100 kPa, the sublimed CO2 will be exerting a
pressure of nearly 50 bar! As the ideal gas law is in the form of a
product with respect to the independent variables, n and T, the
relative uncertainty associated with P will be given by eqn
(13.42):

sp
p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sn
n

� �2
z

sT
T

� �2r

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0002

0:02

� �2

z
0:5

298

� �2
s

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1|10{4z2:82|10{6

p
~0:0101:

Multiplying this by P gives a value for the absolute uncertainty
of: sP 5 0.010164955544.8 5 50249.3 Pa.
Therefore, we might report the pressure as approximately 4955
¡ 50 kPa.

13.10 Applying eqn (13.37) to the ideal gas law equation, P~
nRT

V
,

yields: sP¡
LP
Ln

snz
LP
LT

sT :

Partial differentiation of the ideal gas law equation with respect

to n and T yields:
LP
Ln

~
RT

V
and

LP
LT

~
nR

V
.

Thus:

sP¡
RT

V
snz

nR

V
sT

~
8:31451 JK{1 mol{1|298K

1|10{5 m3
|0:0002mol

z
0:02mol|8:31451 JK{1 mol{1

1|10{5 m3
|0:5K

~49551:4z8314:5~57865:9 Pa

Note that the computed value for sP using this approach is
significantly larger than that determined from Problem 13.9.
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