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Preface

This supplement is a summary of new X-ray structure determina-
tions published during the past four years. As such it follows strictly the
form used in Part II of the second edition of “The Structure of Crystals”
and aims to include all new studies that lead at least to cell dimensions.
In order to facilitatec comparison, the figure numbers and paragraph desig-
nations are continuations of those in the book. As before, reference num-
bers, with the year in bold-face, apply to the appended bibliography. The
grouping of compounds is identical with that previously used except that
in the chapter covering the type RX; a separate table has been created
for crystals of the composition R,(MXs),.

The writer is indebted to R. B. Corey and K. Pestrecov for much help
in making the illustrations and to A. A. Murtland for assistance in pre-
paring the bibliography.

Rockefeller Institute for Medical Research
New York, N. Y.
February, 1935






Table of Contents

The chapters in this supplement are all lettered A and correspond in
content to the similarly numbered chapters in Part II of the book—

second edition.

CHAPTER XA. STRUCTURES OF THE ELEMENTS .
CuarTER XIA. STRUCTURES OF THE TyYPE RX
Cuaprrer XITA. SrtrUCTURES OF THE TYPE RX,
CuaprreEr XIITA. StrRUCTURES OF THE TYPE R.X;

Cuarter XIVA. StrRUCTURES OF THE TYPE RX;, oF HicHER Com-
POUNDS R X, AND oF NEW CoMpouNnDs oF THE TypE R, (MX,),

CuarreEr XVA. StrUCTURES OF THE TyPE R.(MXj),
CuaprEr XVIA. StrUcTURES OF THE TyPE R.(MX,),
CuarTer XVIIA. StrRUcTURES OF THE TyPE R,(MXj), .

CuHAPTER XVIIIA. STRUCTURES OF HYDRATES AND AMMONIATES
AND OF MiISCELLANEOUS INORGANIC COMPOUNDS

CHAPTER XIXA. STRUCTURES OF THE SILICATES
CurAPTER XXA. StTRUCTURES OF ORGANIC COMPOUNDS

ArprEnDIX. A BiBLioOGRAPHY OF CRYSTAL STRUCTURE DATA .

15
23
34

37
52
63
77

81
106
130
165






Chapter XA. Structures of the Elements

Most of the new data of Table I are accurate determinations of the
cell dimensions of the metallic elements. For some metals which can
easily be prepared in a state of great chemical purity the edge lengths of
the units are now known with an accuracy of 0.0002 to 0.0003 A. The
error for most elements is, however, about ten times greater. Spacings
to the fourth decimal place have real significance only if the purity is
precisely known, if the sample is sufficiently outgassed and otherwise pre-
pared for measurement and if the temperature is determined. It is not
always possible to be sure from the published data that all these condi-
tions have been properly met; the accuracy limits stated in Table I are
therefore for the most part those set by the investigators themselves.

New information about the atomic arrangements in elements are re-
corded in the paragraphs that follow.

(v) In place of the previously described tetragonal structure for gallium
there has recently been given an orthorhombic (pseudo-tetragonal) ar-
rangement based on V}’ and having its eight atoms in the special positions:

(f) }uv; %: u, %—-V; %s u+%r v, i: 11+%, %—V;
%ﬁv; %: a, V"'”‘%: %: %""u} v, is %_‘u; V+’}

wath u=0.159, v=0.080. As is evident from Figure 275 (drawn for
comparison with Figure 168) this arrangement is very different from the
earlier one.

l I —l Fia. 275¢ —(left) The unit cell of the new ortho-

rhombic arrangement found for metallic gal-
¢ lium as projected on its b-face.

O,
€O,

Fra. 275b.—(right) A packing drawing of the
gallium atoms shown in a.

(3)
(8)
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(w) The rhombohedral structure of mercury has recently been confirmed
by single crystal measurements at —50° C. At the same time it is shown
that the diffraction data upon which a false hexagonal arrangement was

based (1922, 1) apparently were a mixture of the lines of mercury and of
solid CO,.

(z) Three recent determinationsagree with the original in giving indium
a face-centered tetragonal arrangement with atoms at 000; 310; 10%; 013.

(y) The X-ray patterns from the g-form of nitrogen are thought to in-
dicate that it is a close-packed assemblage of spherical (rotating) N

molecules. The parameter chosen for the center of gravity of these mol-
ecules is 0.22.

(2) Hexagonal nickel prepared by a glow discharge in N, has the dimen-
sions stated in the table; prepared in H, its unit is larger: a,=2.66 A,
c,=4.29 A. It reverts to cubic nickel if heated to 300° C.

(aa) This modification of tungsten, said to be obtained by electrolyses
under various conditions, is thought to have 8 atoms in its unit. The
atoms have been placed at (2a) and (6g) (of 1930, 352) though no in-
tensity data are given in support of this assignment.

(ab) The recorded unit cube of a-rhodium is considered to contain 48
atoms. This modification is produced by the reduction of rhodium salts.
mixed with the usual form it is also said to result from electrolytic reduction;

(ac) Plastic sulfur is rubber-like in that it erystallizes on stretching.
The monoclinic unit recorded in the table contains 112 atoms; its space
group is given as C,. As monoclinic sulfur (cither stretched or not) ages,
the diffraction lines of the orthorhombic form gradually appear.

(ad) The monoclinic cell of a-Se contains 32 atoms; its space group is
reported to be C3,. Crystals of a solid solution of selenium and sulfur
(5.2 wt. 9 Se), which presumably are isomorphous with a second modi-
fication of monoclinic Se, have becn assigned a unit different from that
of the B-Se reported in the table. The unit of this mixed crystal has a, =
848 A, b,=13.34 A, ¢,=8.33 A, f=67°30".

(ae) The two uranium atoms in the centered unit having the dimen-
sions of the table are said to be at 000; 03%. Another determination has
made uranium body-centered cubic with a_,=3.43 A (1930, 424).

(af) A second form of beryllium is reported to be present to the extent
of about 109, in samples which have been heated for some time in vacuo
at 600°—800° C. It is described as hexagonal with a,=7.1 A, ¢,=10.8 A
and with ca 60 atoms in this unit cell (1933, 224).

(ag) Electrodeposition at high pg yields g-cobalt, at low pg a mixture
of B and « forms (1932, 262). The B-cobalt becomes cubic above 450° C
without change in crystal boundaries; it reverts only on cold rolling or
through high temperature annealing (1932, 463).



Element

Ag

Silver

Al
Aluminum
As
Arscnie
Au

Gold

Be
Berylhum
Bi+¢
Bismuth
Os
Graphite

B-Ca (>450° C)

Calcium

Cb
Columbium
Cd
Cadmium
a-Ce
Cerium
B-Co
Cobalt
a-Cr
Chromium
Cu

Copper
a-Fe

Iron

1 At 600° C, a,=4.1276 A (1934, 199).

TasLE 1.
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Crystal
system

Cubic
Cubic
Hexagonal
Cubie
Hexagonal
Hexagonal
Ilexagonal
Hexagonal
Cubic
Hexagonal

Cubic

Cubic
Cubic

Cubie?

Type of
structure
F.c. (a)
F.c. (a)?
As (e)
F.c. (a)
C.p. (b),
(af)

As (e)
(h)

(ah)

B.c. (¢)
C.p. ()
F.e. (a)

(ag)
B.c. (¢)

F.c. (a)

B.c. (¢)

a, c,ora

4.0772+
0.00021
4.0406+
0.0002

4.0699+
0.0003 3
2 26804+
00002

3 5942+
0.0003

3.98 6.52
3.204+
0.001 ¢
2.9736+
0.0005

5.143+
0.004

5.6068+
0.00057

2.8787

3.6077+
0.00028
2.8607+
0.0002
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References

1932, 348; 1933, 342;
1934, 199.
1931, 8; 1932, 336,
348; 1933, 342, 420.
1034, 205.

1932, 348; 1933, 342,
343; 1934, 124, 357.

1932, 329; 1933, 224,
319.

1930, 369, 434; 1931,
420; 1932, 162.

1931, 208.

1933, 121, 156; 1934,
93.

1931, 323, 324; 1932,
371; 1934, 43.

1931, 238; 1932, 428a.
1032, 372.
1932, 262.

1931, 367a;1932, 369;
1034, 125,

1932, 348; 1933, 328,
342; 1934, 357.

1930, 439; 1931, 16;
1932, 62, 336, 369;
1933, 128, 342; 1934,
124, 137.

2 There is no allotropic change up to 600° C (1931, 8; 1933, 420).

3 At 475° C, 8,=4.1010 A.

4The thermal expansion from room temperature to the melting point has been
carefully measured by X-ray means (1931, 127; 1932, 163; 1934, 120, 121a).
¢ Photographs of incandescent electrodes show that expansion is all normal to the

basal plane.

¢ From a very ductile preparation of Cb made by thermal decomposition of CbhCls

in vacuo. Other a.’s are ca 0.01 A larger.

?The other precision measurement (1931, 238) gives lower values: a =2.9724,

co =5.6042.

8 At 475° C, a,=3.6514 A.

? Measurements have been made up to 1100° C (1930, 439; 1933, 128; 1934, 137).



B-La?
Lanthanum
Mg
Magnesium
Mn (a, 8, v)
Mangancse
Mo
Molybdenum
I.'I-Ns (<35° K)
Nitrogen

B-Ni (>35° K)
Nitrogen

Nd
Neodymium
a-Ni

Nickel

B8-Ni
Nickel
0,
Oxygen
Os
Osmium
Pb
Lead

Pd
Palladium
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Crystal
system

Ortho-
rhombiec
Hexagonal
Tetragonal
Cubic
Cubic?
Hexagonal

Cubic

Hexagonal

Cubie
Cubic
Hexagonal

Hexagonal

Cubic

Hexagonal
Ortho-
rhombic

Hexagonal

Cubic

Cubic

Type of
slructure

(4), (@)

(k), (w)
(m), (z)
F.c. (a)
F.c. (a)
C.p. (b)
F.c. (a)

C.p. (0)

B.c. (c)

(0)

)

C.p. (b)
F.c. (a)

C.p. (),
(2)

C.p. (b)

F.c. (a)

F.c. (a)

a, ¢, Ora

4,506 4.506
b,=7.642

2.999 70°32’
at —46° C

4.583 4,936

3.8312+

0.0005

5.69 at 88° K

3.75 6.06

5.296

3.2022+ 5.1991+

0.0002 0.0004

3.140+

0.001

b.67

4,039 6.670

3.65; 5.88

3.5175¢

2.60 4,15

2.716 4.331

4.9396+

0.0003

3.8823,

1 There is no X-ray evidence for a structural transition.
* This form appears as a surface layer on the a-material after vacuum annealing at
350° for several days.

3 Another determination, on 99.889, Ni, gives a,=3.56143 A.

References

1032, 282; 1933, 281.
1929, 218; 1932, 209;

1933, 321.
1032, 134; 1933, 429,

527.

1032, 348; 1933, 342.
1930, 428; 1932, 392.
1930, 425; 1932, 372.
1933, 528; 1934, 233.
1932, 428a.

1031, 411.

1932, 348.

1932, 391.

1932, 391, 456; 1934,
272.

1932, 372.

1031, 60; 1932, 62,
348; 1934, 122, 125,
198.

1931, 60.

1932, 316, 391.

1932, 434.

1931, 420; 1932, 120,
348; 1033, 327, 342;

1934, 192.

1931, 427; 1932, 348;
1933, 342, 343.



1 At 600° C, a,=3.9383 A.
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Element Crystal
system

Pr Hexagonal
Praseodymium
Pt Cubic?
Platinum
Re Hexagonal
Rhbenium
a-Rh Cubie
Rhodium
B-Rh Cubice
Rhodium
S Monoclinic
Sulfur (Plastic form stretched)
Sb Hexagonal
Antimony
Se (a-form) Monoclinie
Selenium
Se (B-form) Monoclinic
Selenium
Sn (white) Tetragonal
Tin
Ta Cubie
Tantalum
Tl (d, ﬁ)
Thallium
U Monoclhime
Uranium
W Cubic
Tungsten
W (second form) Cubic
Tungsten
X Cubic
Xenon
Y Hexagonal
Yttrium
Znt Hexagonal
Zinc
Zr Cubie
Zirconium

Type of
structure
C.p. (b)
F.c. (a)
Cop. ()
(ab)

B.c. (¢)
(ac)
As (e)?

(ad)

(ad)

()

B.c. (¢)

(ae)
B.c. (¢)
(aa)
F.c. (a)
C.p. (b)

C.p. (b)

B.c. (¢)

a, C, OT &
3.657 5.924
3.91614
0.0003
2.7553+  4.44934+
0.0004 0.0003
9.211
3.7955,

26.4 12.32
bo=9.26, 8=79°15"
8.992 11.52
b,=8.973, p=91°3¢4'
12.74 9.25
b,=8.04, §=93°4"
58194+ 3.1763%
0.0003 0.0009
3.296 3
2.829 3.308
b,=4.887, §=63°26"
3.1589
5.038
6.24 at 88° K
3.66; 5.81,
2.6589 4.9349
3.61 near 862° C

11

References

1932, 93, 390.

1033, 342, 343; 1934,
199.

1931, 3, 4, 305; 1932,
428a.
1931, 225, 226.

1931, 225; 1932, 348;
1933, 342, 343.

1930, 119a; 1931, 448;
1932, 447; 1934, 175.

1932, 263.

1931, 152, 153; 1934,
136.

1034, 136.

1932, 428a; 1933, 429.
1932, 348, 371; 1934,
43

1931, 411.

1930, 424; 1933, 507.
1932, 348; 1933, 318;
1934, 187.

1933, 318.

1930, 220a; 1932, 392.
1932, 370.

1932, 52, 428a; 1933,
337, 339, 493; 1934,
199.

1932, 84, 85.

* “Explosive” Sb is amorphous; it becomes crystalline on exploding.
3 This measurement was made upon a very ductile sample prepared by the thermal
dissociation of TaCl; in vacuo. Results on other material are higher (3.311 A in 1932,

348).

¢ At 415° C, a, = 2.6792 A, c, = 5.0481 A. There is no structural change up to

the melting point.
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(ah) The evidence concerning the structure of g-calcium (stable above
450° C) was at first contradictory. It is now known that if the metal is
pure it is hexagonal close-packed (b); if impure it may be either hexagonal
or body-centered cubic (¢) with a,=ca 4.33 A.

Alloys

A bibliography of new papers describing X-ray measurements on alloy
systems is contained in Table II. The structures that occur in metallic
systems are of three kinds: (1) solid solutions of one metal in the lattice
of another, (2) definite chemical compounds with atoms combined together
in stoichiometric proportions, (3) phases with atoms in fixed geometric
array but with compositions that can vary over wide limits. Many ex-
amples of the second type are described in succeceding chapters but no
attempt has been made to summarize the data about structures (1) and (3).

A few non-metallic compounds such as pyrrhotite (FeS) can contain
an excess of one or the other of their atomic components; similar com-
pounds, which we often erroneously, from a structural standpoint, describe
as being capable of taking one or both of their constituents into solid
solution, are common amongst intermetallic compounds. Within recent
years another kind of intermetallic compound, the so-called superlattice
compound, has become familiar. A superlattice is a relatively complicated
atomic arrangement which arises, as an equilibrium state, through the
prolonged annealing of an alloy of stoichiometric atomic composition.
Such alloys before annealing are usually solid solutions having their atoms
in haphazard distribution. Especially simple superlattices are illustrated
by the compounds AuCu and AuCus; SbyTl; is a more complicated example.

TaBLE II. BIBLIOGRAPHY OF ALLOY SYSTEMS

Alloy Alloy

system References system References

Ag-Al 1032, 364; 1933, 2,29;1934,1, Ag-Sn 1931, 326.
139. Ag-Zn 1932, 426, 465; 1933, 341.

Ag-As 1031, 66. Al-Au 1031, 244.

Ag-Au 1933, 116, 283, 502. Al-Co 1931, 105.

Ag-Bi 1931, 66. Al-Cu 1031, 334, 365; 1933, 328, 357,

Ag-Cd 1031, 436; 1032, 430; 1933, 358, 436, 447, 546; 1934, 211,
450. 282,

Ag-Cu 1930, 3a; 1931, 96, 418; 1932,  Al-Fe 1932, 63, 64; 1933, 334; 1034,
306, 477; 1933, 414, 505. 313, 313a.

Ag-Hg 1931, 313, 367; 1933, 494, Al-Li 1931, 348.

Ag-Li 1931, 348. Al-Mg 1931, 396; 1932, 407; 1933,

Ag-Pd 1031, 427; 1933, 275. 414; 1934, 238a, 340.

Ag-Rh 1933, 118. Al-Mn 1931, 52.

Ag-Sb 1931, 66. Al-Ti 1931, 114.



Alloy
system

Al-Zn

As-Cu
As-Sn

Au-Cd
Au-Cu

Au-Fe
Au-Mn
Au-Pd
Au-Pt
Au-Rh
Au-Sb
Au-Sn

‘B-Co
B-Fe
B-Ni
Be-Cu
Bi-Pb
Bi-Sh
Bi-Se
Bi-Sn
Bi-TI

C-Cr

C-Fe

C-Ni
Cd-Cu
Cd-Hg
Cd-Li
Cd-Mg
Cd-Ni
Cd-Pt
Cd-Sb
Cd-Sn
Cd-Zn
CB-HQ
Co-Mn
Co-W
Co-Zn

Cr-Fe
Cr-Ni

Cu-Fe
Cu-Li
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References

1932, 148, 313, 409, 415; 1934,
197, 351.

1929, 205a, 205b.

1934, 295.

1032, 442.

1931, 366, 386; 1932, 178;
1933, 419; 1934, 85a, 357.
1934, 124.

1934, 40,

1031, 427; 1034, 181.

1931, 428.

1933, 118.
1031, 326; 1932, 58.

1931, 426; 1932, 58.

1933, 47.

1033, 47.

1933, 47.

1933, 464.

1931, 420; 1932, 246; 1934, 82.
1032, 59; 1934, 76.

1930, 434.

1931, 420; 1932, 246.

1031, 411; 1934, 193.

1030, 455; 1931, 468; 1932,
197; 1933, 401.

1931, 339, 340, 341, 414; 1932,
225, 281, 474; 1933, 128, 325;
1934, 44, 97, 98, 259, 354.
1931, 509; 1933, 415.
1931, 51; 1933, 338.

1932, 438.

1933, 27; 1934, 11, 310.

1930, 72a.

1931, 105.

1931, 371.

1930, 379; 1932, 1; 1933, 167.
1931, 295.

1932, 52.

1934, 233.

1934, 137.

1032, 4; 1933, 459.

1930, 454; 1931, 105; 1932,
353.

1931, 16, 367a; 1932, 369;
1933, 196.

1930, 376; 1034, 125.

1932, 95.

1930, 247a.

Alloy
system
Cu-Mg
Cu-Mn
Cu-Ni
Cu-Pd
Cu-Si
Cu-Sn

Cu-Zn

Fe-Hg
Fe-Hg
Fe-Mn

Fe-N
Fe-Ni

Fe-Si
Fe-Sn
Fe-V
Fe-W
Fe-Zn

Hg—La-
H.-Pd
Hy-Ta
H,-Ti
H,-V
IIz-Zl‘
Hg-Ni
Hg-Sn

Ir-Os
Li-Sn

Mg-Mn
Mg-Zn

Mn-N
Mn-Si
Mn-Zn

Mo-Ni

References
1934, 242.
1931, 411.
1931, 474; 1934, 198,
1932, 292.
1931, 19, 389.
1927, 313; 1932, 94, 229, 422,
426; 1933, 253, 268; 1934, 39,
118.
1930, 370; 1931, 51; 1932, 264,
268, 349, 350, 432, 465; 1933,
141, 168, 339, 340; 1934, 2,
335, 349.

1033, 501.

1032, 77.

1930, 388; 1931, 125, 342, 406;
1933, 486.

1931, 69; 1933, 324, 510; 1934,
44,

1031, 358; 1932, 234; 1933,
76; 1934, 67.

1933, 516.

1933, 125.

1930, 456; 1934, 148.

1031, 343; 1932, 435.

1931, 105.

1934, 233.

1033, 274, 384.
1031, 144; 1934, 212.
1031, 144.

1031, 144.

1931, 144.

1932, 77.

1933, 439.

1932, 434.
1932, 20.

1931, 397.

1932, 407; 1933, 238a, 414,
465.

1933, 411.
1933, 58; 1934, 337.

1930, 435; 1031, 346; 1932,
353.

1934, 137.
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Alloy Alloy

system References system References

Na-Pb 1933, 451. Al-C-Fe 1934, 341.

Na-Tl 1032, 500. Al-Cr-Fe 1932, 399.

Ni-Zn 1030, 454; 1931, 105; 1932, Al-Cu-Mn 1933, 192, 193; 1934, 26, 107.
200; 1933, 85; 1934, 258. Al-Fe-N 1934, 190.

Au-H-Pd 1934, 181.
Pb-Sb 1933, 327.
Pb-Sn 1933, 327. Bi-S-Te 1933, 142.
Pb-TI 1931, 411; 1934, 192.

Pd-Zn 1931, 105.
Pt-Zn 1931, 105. C-Co-Fe 1932, 451.

C-Cr-Fe 1931, 468; 1932, 475.
C-Cr-Ni 1934, 248.

C-Fe-Mn 1932, 15; 1934, 65.
C-Fe-W 1931, 343.

Rh-Zn 1931, 105.

Shdn 1931, 40,334 1933, 425. Co-Fe-Mn 1933, 263; 1934, 137.
Sb-T1 1031, 411; 1934, 180,

Sb-Zn 1933, 167. _

Sn-Tl 1031, 411; 1933, 215. Fe-Ni-V 1934, 148.

Fe-P-Si 1933, 401.

Ag-Cu-Ni 1934, 210,
Ag-H;-Pd 1930, 237a; 1933, 275. Al-C-Cr-Mo 1932, 230.



Chapter XIA. Structures of the Type RX

(ac) For some time there was debate as to whether the rhombohedral
unit of AgCN contains one or two molecules and whether the correct space
group is C}, or C3,. A recent recalculation proves that the cell of Table I
is monomolecular with C3, as space group and that the atoms are all on
trigonal axes with the coordinates (a) uuu. Parameters have not been
determined.

. AgBr and AgCN form cubic solid solutions; by extrapolation from meas-
urements on them, it can be concluded that cubic AgCN would have
a,=5.69 A if it were stable.

(ad) The low temperature modification of AuCd, stable at room tem-
perature, has been assigned a distorted CsCl structure based on the
orthorhombic space group Vi. The two molecules in its unit have atoms
in the positions:

Cd: (e) Ou}; 06} with u=ca % [or 000; 03]
Au: (f) #vi; §7§ with v=ca 1} [or $30; 333].

(ae) The data on CdLi are contradictory. One determination gives it
the cubic body-centered CsCl structure (a) with a,=3.32 A; the other
assigns to it the NaTl superstructure [(a0), below] with a, = 6.687 A.

(af) No diffraction lines have been found to give CsCN a unit larger
than the one-molecule cell. The available experimental data thus indi-
cate that in this cyanide, as in the other alkali cyanides, the CN group
functions geometrically as a single atom.

(ag) It has recently been concluded that the triclinic symmetry pre-
viously assigned to CuO is unnecessarily low. The proposed arrangement,
developed from C3,, has atoms in the following positions:

Cu: (¢) %10; 3i3; 110; 133
O: (e) Oui; 00i; %, u+i, ;4 3—vu, § with u=0.08.

(ah) A new structure, based on photographic data, has been proposed
for covellite, CuS. It differs from the earlier one (¢) mainly in transfer-
ring the two sulfur atoms, which were in (a), to the codrdinates (c) 31%;

15
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References

1933, 317; 1934, 288.
1931, 46; 1934, 141.

1931, 46; 1934, 141.

1031, 46; 1934, 257.
1030, 247; 1931, 348;
1933, 523.

1931, 348.

1934, 255.

1932, 341.

1932, 341.
1031, 426; 1932, 58;
1933, 223.

1934, 103.

1933, 80.

1934, 272.

1933, 137; 1934, 103.
1933, 523.
1933, 27, 523.

1931, 272; 1933, 158.
1930, 379; 1932, 1.

1932, 90.
1931, 319.

1934, 286.
1033, 485; 1934, 286.

1934, 287.
1933, 122.
1933, 479.

1930, 371; 1932, 342.
1933, 517.

1933, 234, 235; 1934,
77.

1932, 253; 1933, 162,
165; 1934, 176.

1930, 340a.

TasrLe I. TaE CrystaL StrucTUunReEs orF THE Comrounps RX
Substance Symmelry  Structure a, ¢, OF o
type
AgCN Hexagonal (k), (ac) 388 101°11’
Agl Hexagonal ZnO (d)! 4.580 7.494
Agl (low) Cubic? ZnS (¢)  6.473
Agl (high) Cubic (aw) 5.034
AgLi Cubic CsCl (a) 3.168
AlLi Cubic 3.23
AINd Cubic CsCl (a) 3.73
AuCd (low) Ortho- (ad) 3.144 4745
rhombic b,=4.851
AuCd (high) Cubic CsCl (a) 3.34 at 400° C
AuSn Hexagonal NiAs (e) 4.314 5.512
BaNH Cubic NaCl (b)) 5.84
BaO Cubic NaCl (b) 5.523
g-CO Hexagonal (af) 4,11 6.79
CaNH Cubic NaCl () 5.006
CaTl Cubic CsCl (a) 3.847
CdLi Cubic (ae) [6.687]
Cdo Cubie NaCl (b) 4.689
CdSb Ortho- CdSb (n)?
rhombic

CoS Hexagonal NiAs (e) 3.38 5.20
CsCN Cubie CsCl (a), 4.25

(af)
CsCl (low) Cubic CsCl (@) 4.20 at ca 450° C
CsCl (high, Cubic NaCl (b) 7.10
>456° C)
CsHS Cubie CsCl (@) 4.29
CuF Cubie ZnS (c)  4.25
CuO Monoclinic (o), (ag) 466 5.09
(Tenorite) b,=3.40, §=99°30"
CuS Hexagonal (q), (ash) 3.76 16.26
(Covellite)
(Cu, Fe, Mo, Sn)4(S, As, Te)s~« ZnS (¢) 5.304
(Colusite) Cubic
FeO Cubic NaCl (b), 4.33;

(at), (ax)
FeS Hexagonal NiAs (e),

(af)
FeSi Cubie )

1y = 0.371.

* Precipitates with excess of Ag ions.
3 According to one analysis there are two forms of CdSb, both hexagonal with

identical unit cells (1930, 379).



Substance

GeS

IIBr (low)

HBr (high)
HCI (low)

HCI (high)
HI

HgF

HgLi
KCN

KHS (low)
KHS (high,

above ca 170° C)

LiGa
LiH
Liln
LiOH

LiTI
LiZn
MgPr

MgTl
MgZn
MnO

MnS (red
precipitate)
MnS (green
precipitate)
MnS (red
precipitate)
MoC
v-NH,Br

(at —100° C)

NHHS

NaBi
NaCN
NaHS (low)

STRUCTURES OF THE TYPE RX

Symmetry  Structure a, C, Or
type
Ortho- (ak) 4.29 3.64
rhombic b,=10.42
Ortho- (al) 5.555 6.063
rhombic (pseudo-cubic) b,=5.64
Cubic HCl (k) 5.76 at —170° C
Ortho- (al) 5.03 5.71
rhombic b,=5.35
Cubie HCI (h) 5.46
Tetragonal (am) 6.19 6.68
at 125° K
Tetragonal Hg,Cl, 3.66 10.9
(9)
Cubic CsCl (e) 3.287
Cubie NaCl (b), 6.51
(an)
Hexagonal NaHS (az) 4.374 68°51’
Cubie NaCl (b) 6.60
Cubic NaTl (ao) 6.195
Cubic NaCl (b)
Cubie NaTl (ao) 6.786
Tetragonal PbO (f), 3.546 4.334
(ap)
Cubic CsCl (a) 3.424
Cubie NaTl (a0) 6.209
Cubic CsCl (a), 3.88
(?)
Cubie CsCl (a) 3.628
ITexagonal (aq) 5.33 17.16
Cubie NaCl (b),
(az)
Cubic ZnS (¢)  5.600%
0.002
Cubic NaCl (b), 5.212+
(azx) 0.002
Hexagonal ZnO (d) 3.976+ 6.432+
0.002 0.004
Hexagonal (ar) 2.901 2.786
Tetragonal (ap) 6.007 4.035
Tetragonal PbO (f), 6.01 4,01
(ap)
Tetragonal * 3.46 4.80
Cubic NaCl (b) 5.83
Hexagonal NaHS (az) 3.986 68°5’

17

References

1932, 489.

1931, 316, 317; 1932,
392; 1933, 315.
1931, 316, 317; 1933,
315.
1931, 316, 317; 1933,
315.
1931, 316, 317; 1933,
315.
1931, 316, 317; 1932,
392.

1933, 122.

1933, 523.
1931, 319.

1934, 287.
1934, 287.

1933, 523.
1932, 48

1933, 523.
1932, 144; 1933, 127.

1933, 523.
1933, 523.
1933, 387.
1933, 523.
1933, 465.
1934, 77.

1032, 411; 1933, 417.
1933, 417; 1934, 77.
1932, 411; 1933, 417,

1932, 450.
1934, 132.

1934, 287.
1932, 499.

1931, 319.
1934, 287.

* Said to contain one molecule and probably to be body-centered.
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Substance Symmetry  Structure a, ¢, Or a References
type

NaHS (high, Cubic NaCl (b) 6.05 1934, 287.

above ca 90° C)

Naln Cubic NaTl (a0) 7.297 1033, 526.

NaTl Cubic NaTl (ao) 7.473 1932, 500.

NiAs Hexagonal* NiAs (e) 3.602 5.009 1933, 130.

NiO Cubic NaCl (b) 4.1684+ 1931, 37, 272; 1933,
0.0001 87.

NiS Hexagonal 1931, 264.

PbO (red) Tetragonal PbO (f) 3.968 5.011 1932, 120.

PbO (yellow) Ortho- (z) 5.459 5.859 1932, 120.

rhombic b, =4.723

PtS (Cooperite) Tetragonal (av) 3.47 6.10 1932, 17.

(Pt, Pd, Ni)S Tetragonal (as) 6.37 6.58 1932, 17.

(Braggite)

PtSn Hexagonal NiAs (e) 4.103 5.428 1932, 236; 1933, 223.

RbCN Cubic NaCl (b) 6.82 1931, 319.

RbHS (low) Hexagonal NaHS (az) 4.525 69°20’ 1934, 287.

RbHS (high) Cubic NaCl (b) 6.93 at ca 200° C 1934, 287.

SbZn Ortho- CdSb (n) 6.17 3.94 1933, 167.

rhombic b,=8.27
SiC (11) Hexagonal (y), (aw) 3.076  15.07 1932, 205; 1933, 59.
SnAs Cubic NaCl (b), 5.681 1934, 295.
(ay)

SnO Tetragonal PbO (f) 1032, 469.

SrNH Cubic NaCl (b) 5.45 1934, 103.

SrO Cubic NaCl (b) 5.144 1933, 80.

SrTl Cubie CsCl (a) 4.024 1933, 523.

TaC Cubie NaCl (b) 4.4460x 1933, 424; 1934, 42.
0.0005

TiC Cubic NaCl (b) 4.320 1931, 59; 1932, 414;

1034, 42.

TICN Cubic CsCl (a) 3.82 1934, 256a.

TICI Cubic CsCl (@) The value a,=3.380 in 1933, 302 is un-
doubtedly a misprint.

VO Cubie NaCl (b)) 4.08 1932, 302.

wC Hexagonal 2.910 2.838 1031, 343.

Zn0O Hexagonalt ZnO (d) 3.248 5.203 1933, 218.

ZrC Cubic NaCl (b) 4.687 1934, 42.

* There is no change in structure below 600° C.
t No change in structure between 110° and 1300° C.

2%2. The other atoms are similarly placed in both structures. The new
copper parameter u=0.107 in (f) 33u; etc. is nearly the same as the old;
the sulfur parameter v=0.062 in (e) 00v; etc. is considerably different.
This new structure has the atomic separations characteristic of neutral
atoms (Cu-S=2.20-2.35 A, S-S=2.05 A).
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(az) The values of a, for specimens of FeO, which invariably are de-
ficient in iron, increase with the amount of iron present. For an oxide
containing 76.089, Fe, a,=4.2816 A; for a sample with 76.729, Fe, a_ =
4.3010 A. By extrapolation pure FeO (77.73%, Fe) would have a,=4.332 A.

(aj) Pyrrhotite has the composition Fe;Sgiyy not by reason of the
presence of an excess of sulfur but because some of the iron atoms are
missing from their structural positions. It is said that pure FeS gives
evidence of a superlattice containing 12 molecules; the a, of this lattice
is the diagonal of a, for the simple cell, its ¢, is twice as great: a,=5.946
A, c,=11.720 A.

Ordinary pyrrhotite (a,=3.41 A, ¢,=5.72 A) becomes ferromagnetic
if heated above 200° C; this form, giving a,=3.47 A, c,=5.84 A at room
temperature, reverts to the non-magnetic form if hecated above 450° C
(1934, 176).

(ak) From photographic data it has been concluded that the four mol-
ecules of GeS are in special positions (c) of the space group Vy:

Ge: (¢) uv0; 4, 3—v, §; u+%, 9, §; 3—u, v+3, 0
with u=0.167, v=-0.125
S:  (¢) u'v'0; ete. with u’=v'=0.111.

The axes X'Y’Z’ of 1930, 352 bear the following relation to the axes abe
of this description: a=Z%Z’, b=Y’, e=X’. The kind of packing that prevails
is illustrated by Figurc 276a and b.

F16. 276a.—The unit cell of the structure of GeS
prl(}jeetcd on an a-face. The large circles are
sulfur.

Fra. 276b.—A packing drawing of @ with Ge and
S atoms given their ionic sizes. In making
these packing drawings it is sometimes better
to show an atom at a height 1+x instead of
the equivalent atom of height x. Thus in this
figure the central sulfur atom is at 1-0.11=
0.89 (and not at —0.11). Similarly its neigh-
boring Ge is at 0.83 instead of —0.17, as m a.
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(al) Earlier work described the low temperature modifications of HCIl
and HBr as tetragonal. The more recent experiments, however, make
them orthorhombic pseudo-cubic with four molecules in the unit. The
space group of low HBr is thought to be either V7 or V.

(am) Cubic HI is not cubic, as first stated, but tetragonal. It is said
that its transitions do not involve atomic rearrangements.

(an) A reexamination of KCN has failed to supply data indicating a
unit larger than that of the four-molecule NaCl-like grouping.

(a0) The NaTl superlattice, found for a number of alloys, contains
eight molecules with atoms in the following special positions of O}:

. L 11n. 1Nn1. 1,111, 133. 313, 3¢
TI: (8f) 000; 330; 303; 033; 11%; 333; 313; 3¢

‘ 111. ONl- O10- .333,311.131.113
Na- (Sg) 222> 005: OQ'O: %00: 444 444 %%t: Ii’?

(ap) Three additional crystals have been found to have the PbO ()
type of structure but with paramecters and cells so different that other
atomic relationships are produced.

Of these substances LiOH is most like PbO. Lithium atoms are in
(a) 000; 330, OH groups are at (c¢) O3u; 300 with u said to be 0.20. If
u is really so small there is a surprisingly large separation (ca 3.5 A) be-
tween the OH ions of adjacent layers.

The other two crystals with this grouping, NH,HS and the y-form of
NH_Br, photographed at —100° (!, have identical units. Since in most
compounds the HS ion has practically the same size as the bromide ion,
it might be expected that the parameters defining them would be little
different. In view of this fact it will be interesting to learn from future
work whether the unlike parameters found for the bromide and hydro-
sulfide are both right. Ixpressing the atomic positions in the coordinates
used for Li1OH (above) and for PbO, u(HS)=0.66 for NH,HS; for v-NII,Br,
u(Br)=0.53. A drawing of the bromide is reproduced in Tigure 277a
and b for comparison with the PbO packing illustrated in Figure 176.

46

B ® O

Ia. 277a.—(left) The vanant of the tetragonal PhO (f) arrangement provided by the
vy-form of NHBr. Small arcles are N1, groups; the onigin 1s in the NII; 1on at A.

Fia. 277b.—(right) A packing drawing of y-NH,Br with the NH; group shown as
the smaller sphere. It is evident that good packing results if, as in this drawing,
the atoms are given their usual ionic sizes.
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(ag) It is said that the structure of MgZn resembles that of MgZn,
[see Chapter X1I, (ab)] with two magnesium atoms in place of zinc atoms
and with ¢, doubled in length.

(ar) The molybdenum atom of the single MoC molecule in the unit
is at the origin (000); the carbon atom is thought to be at 3 323.

(as) The cell of braggite is reported to contain eight molecules and to
have an arrangement based on D%. The sample that was studied con-
tained 209, Pd and 59, Ni.

(at) The B-form of CO, stable above 61.5° K, has the same structure
as B-nitrogen. If the arrangement found for 8-N; is correct, this modifica-
tion of CO, too, has rotating molecules in close-packed array.

(au) A Fourier analysis has been made of the basal reflections from
an unspecified type of SiC (1932, 205).

(av) The tetragonal cell of the mineral cooperite, PtS, has been de-
scribed as containing two molecules. Its atoms are thought to be in the
following speeial positions of Dj,: Pt: (¢) 030; 20%, S: (e) 00%; 003.

(aw) The unit cube of the modification of Agl stable above 146° C
is supposed to contain two molecules. Iodine atoms are reported to be
at 000; 333; silver is described as occupying two of the 30 largest holes
resulting from this iodine packing. Such an unusual structure needs fur-

ther confirmation.

(ax) Mcasurcments of a, for cubic MnO at low temperatures show
that there is no change in structure around 160° K where an anomalous
heat change occurs. At this point there is, however, a minimum in the
cubic edge length. Magnctite, I'e;04, behaves similarly. MnS and FeO
likewise do not have different crystal structures above and below the
temperatures at which they show thermal anomalies. Neither do they
have a region in which they contract on warming; instead they show two
different rates of thermal expansion. The data for these conclusions arc
given in Table II.

TasLe II. VALUES oF a, AT SEVERAL TEMPERATURES

Temperature a, for Compound

MnO F 8304 MnS FeO
209° K 4.436 8.363 5.210 4.290
200 -— — - 4.286
186 —— - — 4.284
160 4.409 8 357 5.204 4.283
143 — = 5.204 —
138 — — 5.197 _
130 —_ — 5.192 —
114 4.416 8.363 — =

104 4.419 8.363 — —
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(ay) The compound SnAs is especially interesting in being an example
of the NaCl grouping which is capable of “dissolving” both components,
the As-rich limit being at 499, As, the Sn limit at 34.59, As. The pure
compound has the lowest value of a.

(az) The one-molecule rhombohedron of the form of the alkali hydro-
sulfides stable at room temperatures is very different in shape from that
found for AgCN. Atomic parameters are not known for any of these
crystals.



Chapter XIIA. Structures of the Type RX,

(as) The monoclinic unit of Ag,Te has been said to contain three mol-
ecules; this is improbable. A sample heated to 250° C and cooled in
nitrogen showed no change in pattern.

(at) The diffraction lines of BeF,, which were not very sharp, are
reported to be those of a tetragonal high cristobalite-like (ae, bd) struc-
ture containing eight molecules.

(au) The atomic arrangement assigned to COS on the basis of low
temperature powder photographs is developed from C;,. The atoms in
its single molecule rhombohedron are on three-fold axes with the coordi-
nates uuu. For C, u=0; for S, u’=0.33s; for O, u;=—0.18;. The result-
ing interatomic distances within the molecule are C-0=1.10 A, C-S=1.96
A ; between different molecules 0-5S=2.78 A.

(av) The astonishingly large unit assigned to Cu,S would contain 160
molecules.

(aw) Marcasite (FeS;) and lollingite (FeAs?) have been given smaller
unit cells. These cells contain two molecules with atoms arranged ac-
cording to V}>. Iron atoms are in (a) 000; 333, sulfur (or arsenic) atoms
in (g) Ouv; 0GV; %, 3—u, v+3; 3, u+3, 1—v. The axes, abe, of this
description and X'Y’Z’ of 1930, 352 are connected by the relation a=7’,
b=X’, e=Y’. For FeS,;, u=0.203, v=0.375; for FeAs,, u'=0.175, v'=
0.361; for the more recently studied phosphide FeP,, u’’=0.16, v''=0.37.
The grouping of marcasite, as typical of this structure, is illustrated in
Figure 278a and b. It consists of open meshworks of iron atoms and

O

O -~ O Fra. 278a.—(left) The new
Q“ atomic arrangement deduced
for marcasite, FeS;, as pro-

O jected upon the a-face of its
) orthorhombic cell. The small

@ O circles are Fe atoms. )
Fia. 278b.—(right) A packlng
drawing of FeS, if Fe and
A

.

are shown with the radii of

— C their neutral atoms. The line-
O shaded atoms are Fe.
%

ey

@
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THE STRUCTURE OF CRYSTALS

Tasre I. TeE CrysTAL STrRUCTURES OF THE CompounDs RX:

Substance, symmelry and siructure type
Ag:S (Acanthite) Ortho-

Ag:S (Argentite)
Ag:Te

AJ:AU
AlCuMg
Au: Pb
Aquz

BaFg
Be,C
Be,Cu
BeF,
Be:l'e
CO,

COs

CﬂFg
CaIg

CdBI‘e
CdCI(0OH)
CdlI,
CoCl,
CUFg
Cu,Mg
Cllgo
Cu,S
FeAs,

FezB
FeOCl

FEPz
FeS,
FeS,

GeO;

* For CoCl, u

(&)
rhombie
Cubic Cu:0 (7),
above 180° C (bf)
Monoclinic (as)
Cubic CalF; (a)
Hexagonal MgZn; (ab)
Cubic MgCu; (q)
Cubic FeS, (f)
Cubie CaF; (a)
Cubie CaF; (a)
Cubic MgCu; (q)
Tetragonal (at)
IHcxagonal MgZn, (ab)
Cubie CO; (g),

(bg)
Hexagonal (au)
Cubic CaF, (a)
Hexagonal CdI, (c),

(b7)
Hexagonal (bn)
Hexagonal (bh)

(), (b2)
Hexagonal* CdCl; (e)
Cubie Cal'; (a)
Cubic (Q), (bS}
Cubic Cu,0 (7)
Ortho- (av)
rhombic
Ortho- FeAs; (2),
rhombie (aw)
Tetragonal (), (bp)
Ortho- (V)
rhombic
Ortho- FecAs, (aw)
rhombic
Cubic FeS; (f),

(bk)
Ortho- TeAs; (2),
rhombic (aw)

Tetragonalt SnO; (b)
(*“Insoluble’” form)

=0 25.

1 Parameter u=0.3.

a, C, O a

4.77 6.88
b,=6.92

4.90

5.98 5.56

b,=6.31, 8=75°2"
6.00

5.09 8.35
7.91
6.647
6.187
4.33
5.94
6.60 6.74
4.22 6 83
5.575 at —190° C
4.08 08°58’
at liquid air temp.
5.451
4.48 6.96
3.66 10.27
6.16 33°26’
5.406
4.252
11.8 22.7
b, =272
2.85 5.92
b,=5.25
3.75 3.3
b,=7.95
2.725 5.657
b,=4.975
5.405
3.37 5.39
b,=4.44
4.390 2.895

References
1931, 124, 345.

1931, 124, 345.
1932, 444.

1032, 292.
1934, 339.

1934, 209a.

1031, 326; 1932, 58;
1933, 223.

1033, 422.

1031, 425; 1934, 354b.
1934, 339.

1932, 70.

1034, 339.

1031, 458, 459; 1934,
130, 130a.

1931, 457.

1033, 422.
1933, 52.

1933, 43.

1934, 110.
1032, 8; 1933, 174.
1034, 95.

1033, 122.

1034, 242,

1931, 321, 322; 1932,
483.

1930, 371.

1932, 83.

1930, 116a; 1931, 146.
1934, 84.

1934, 173.
1932, 352.
1931, 71.

1932, 164.
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Substance, symmeltry and structure type

11,0

H,S
H,Se
HgBr,

HgCl,

HgFg
HgIg

KBi;
K,0
IGS
IKSe
K, Te
Li,O
IJixS
Li,Se
L1, Te
MgaGe
Mglg

MgNi,
MgN1Zn
Mgsz
M ggSn
MgZn,
MI.IS:
(Hauerite)
MOzC
N.O
NO,
Na,S
Na,Se
Na,Te
NdGC,
NiBl‘s

Nil,
Ni(OH),
0OsS,
PbBr;

Pb¥Br
PbCl,

PbFCI

*u=0.4012,

Hexagonal

Cubic
Cubic
Ortho-
rhombie
Ortho-
rhombie
Cubie
Ortho-
rhombie
Cubic
Cubie
Cubie
Cubie
Cubie
Cubie
Cubic
Cubic
Cubie
Cubie
Hexagonal

Hexagonal
Cubic
Cubic
Cubic
Hexagonal
Cubic

Ilexagonal
Cubic
Cubie
Cubic
Cubic
Cubic
Tetragonal
Hexagonal

Hexagonal
Hexagonal
Cubic

Ortho-
rhombie
Tetragonal
Ortho-
rhombie
Tetragonal

(z), (b)

(al), (az)
(al), (az)
(ay)

(), (bm)

Culy (a)
HgBr; (ay)

Cu:Mg (g)
CaF; (a)
CakF, (a)
Can (a)
Cal; (a)
Cqu (a)
Cal; (a)
CaF; (a)
CaF; (a)
Cal®; (a)
CdlI; (¢),
(b)
MgZn; (ab)
MgCu; (q)
CaF3; (a)
CaF; (a)
(ab)

FeS; (f)

(az)

CO; (g9)
(an), (ba)
Cal®; (a)
Caly (a)
Cal; (a)
CaC; (k)
CdCl; (e),
(bn)
CdCl; (e)
Cdl; (¢)
FeS, (f)

PbBr; (y),
(hb)
PbIDBr (be)
(), (bb)

(be)

do C, 0" a

4508  7.338
at —66° C

6.85 1245
b,=4.67

5963  4.324
b,=12.735

5.54

732  13.76
b, =4.674

9.501

6.436

7.391

7.676

8.152

4.619

5.708

6.005

6.504

6.378

414 6588

4.81 7.95

6.96

6.836

6.765

6.097*

2.004  4.722

5.656

6.526

6.809

7.314

3.81 6.36

6.46  33°20'

6.92  32°40'

3.114 4,617

5.6075+

0.0006

418  7.59

4525  9.030
b, =7.608

409 721

References

25

1933, 257; 1934, 16.

1931, 315, 456.
1931, 315, 456.

1931, 461; 1932, 66.

1932, 332; 1934, 316.

1933, 122.
1934, 85.

1932, 501.
1934, 309.
1934, 287, 309.
1934, 309.
1934, 309.
1934, 309.
1934, 309.
1934, 287, 309.
1934, 287, 309.
1933, 525.
1933, 52.

1934, 339.
1934, 339.
1933, 525.
1933, 525.
1934, 260.

1932, 346, 411; 1933,
417; 1934, 204, 346.

1932, 450.
1931, 458, 459.

1031, 170, 454, 455.

1934, 309.
1934, 309.
1934, 309.
1931, 425.
1934, 134.

1934, 134.
1933, 87.

1934, 174.
1932, 332.

1932, 331.

1931, 302; 1932, 69.

1932, 330; 1933, 323;

1934, 9.
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Substance, symmetry and structure type a, C, 0T a References

a-PbF, Ortho- (), (bb) 3.80 7.61 1932, 269; 1933, 422.

rhombic b, =6.41
B-PbF, Cubic* CaF; (a) 5.942+ 1933, 422,

0.002
PbO, Tetragonal SnO; (b) 4.931 3.367 1932, 120.
PdF, Tetragonal SnO; (b) 4.93 3.38 1931, 100.
PrC, Tetragonal CaC; (k) 3.85 6.41 1931, 425.
PtAs, Cubic FeS, (f), 1932, 17.
(Sperrylite) (br)
RuS; (Laurite) Cubic FeS; (), 5.59 1932, 17.
(br)

SaC, Tetragonal CaC, (k) 3.75 6.28 1931, 425.
SiO; (a-Quartz, Hexagonal (I) 49029 5.3933 1930, 375; 1933, 62,
low) 232, 277; 1934, 121a.
Si10; (a-Cris- Ortho- (bq) 7.00 7.00 1932, 25.
tobalite, low) rhombic b,=7.00
Si0; (B-Cris- Cubic (ae), (bd) 1932, 24.
tobalite, high)
SrCs Tetragonal CaC, (k)  4.111  6.68 1930, 299.
SrF, Cubie CaF; (a) 5.784 1933, 422.
Ta,C Hexagonal (az) 3.091 4.93 1934, 42,
YC, Hexagonal  (bo) 3.79 6.58 1931, 425.
Zn(OH), Hexagonal CdI, (¢), 3.14 cab.12 1932, 146a.

(7 (be)
Zn(OH), Ortho- (az), (be) 8.53 492 1933, 104.

rhombic b,=5.16
ZrW, Cubie Cu;Mg () 7.61 1933, 95.

* Transition between 220°-280° C,
ta,=5.81 A as given in book, p. 239, applies to a larger diagonal cell.

sulfur pairs layered normal to the a-axes. The atomic contacts are per-
fect if iron and sulfur are given their radii as neutral atoms.

(ax) The patterns of H,S and H,Se indicate that the sulfur and

selenium atoms are in face-centered array; nothing can of course be told
about the hydrogen positions.

(ay) The four molecules in the unit of HgBr, are arranged according
to the space group C;>. All atoms are in special positions (a) uOv; @, 0,
v+3; u+3, 3, v; 3—u, 4, v+3, with the parameters: for Hg, u=0.33,,
v=0; for Br’/, u’=0.05s v'=0.13;, for Br”, u’’=0.38;, v/'=0.36;. As Fig-
ure 279 shows, this arrangement is a typical layer-like structure, contact
between the layers being maintained through bromine atoms. If the
atoms are given their usual ionic sizes, as in the packing drawing, excellent
contacts result.
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Yellow mercuric iodide apparently has this HgBr, grouping.

(az) The two molybdenum atoms in the unit cell of Mo,C are said to
be at $3%; 21%; it is thought that the carbon atom may be at the origin
000. A tantalum carbide, Ta.C, has the same hexagonal close-packing
of its metal atoms; like W,C it has a second modification.

Fia. 279a.—(left) The
layer structure of HgBr,
projected on the b-face
of 1ts orthorhombic unit.
The lurge circles are Br.

Fia. 279b.—(right) A
%acking drawing of
gBr, with the atoms
having their ionic sizes.

(e

=——G—

FUNY, J—

(ba) The unit cube of solid NO, contains 12 molecules. Two con-
flicting structure types have been proposed using the same data (1931,
454). In one of these, based on T%, the nitrogen atoms are in (12¢) u03;
etc. with u=0.40;, the oxygen atoms in general positions xyz; etc. with
x=0.17s, y=0.25, z=0.40;. This gives NO, molecules with an N-O separa-
tion of 1.38 A. The other discussion proceeds on the assumption that
the solid ought to show N,O, molecules. It is pointed out (1931, 170)
that this can result if the space group is T® with oxygen atoms in general
positions and nitrogen atoms in (12a) or (12b). The atomic positions
have not been determined for such an arrangement but it is considered
that the evidence favors planar molecules.

(bb) In the structures found for PbBr, and PbCl, all the atoms are in
special positions (¢) of Vy: Ouv; 3, 3—u, v; 0, u+3, 3—v; %, G, v+3.
In PbBrs;, u(Pb)=0.01;, v(Pb)=0.08;; for Br/, u’=0.61, v'=0.07;, for
Br”, u”=0.23, v’=-0.17. The different parameters given to the atoms
in PbCl; are to be attributed to the choice of another origin. These
parameters are: for Pb, u=0.25,, v=0.095; for Cl’, u’=0.65, v'=0.07, for
Cl”, u"”=0.55, v’=0.67. The extreme layer-like nature of the structure
possessed by both salts is illustrated by Figure 280; in b the atoms have
been drawn with their customary ionic sizes. The packing is far less
perfect than that found for HgBr, (Figure 279); but very possibly more
accurate intensity data upon these lead salts would alter the chosen
parameters enough to give them better ionic contacts.
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Fig. 280a.—(left) An a-face projection of the PbBry arrangement. The small circles
are the Pb atoms. All atoms are in layers normal to the a-axis.

F1a. 280b.—(right) A packing drawing of PbBr; with the atoms given their ionic sizes.

(bc) Photographic data have been used to show that the atoms in the
two-molecule units of PbFBr and PbFCI are in the following special posi-
tions of DI, :

Pb: (¢) 0ju; 30d, Br(or Cl): (¢) 0iv; 10v, TI': (a) 110; 000.

For PbFBr, u=0.19;, v=0.65; for PbIFC], u’=0.20, v'=0.65 (Figure 281).
The mineral matlockite is not Pb,Cl,O but PbFCIl with the structure
described above.

F1a. 281a.—(left) The unit cell of the
PbFCI arrangement projected upon
one of its tetragonal a-faces. The
atom at the origin is F. The largest
circles represent Cl atoms, the small-
est Pb atoms.

F1a. 281b.—(right) A packing drawing
of PbFCI if the atoms have their
ionic sizes. The line-shaded spheres
are Pb ions.

(bd) It is said that certain faint lines occur in the pattern of high
cristobalite, SiO,, which are not predicted by the holohedral structure (ae).
A tetartohedral variant of this arrangement has accordingly been proposed
in which the silicon atoms are in two sets of special positions (4f) of T*:
uuu; u+3%, -y, 4; 4, u+3, 3—u; $—u, G, u+3 with u=0.25; and u’=—0.00s.
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The oxygen atoms arc in another set of (4f) with u’’=0.12; and in gen-
eral positions xyz; etc. (see p. 267 of book) with x=y=0.66, z=0.06. The
difference between this grouping and (ae) may be seen by comparing
Figurc 282 with Figure 194a. If the observed faint lines really are due
to high cristobalite then this distortion of (ae), or a similar one, is neces-
sary, but the proposed parameters do not provide better agreement with
the strong lines than that given by (ae) itself. It is clear that more quan-
titative experimental data arc required for an accurate placing of the atoms.

To om D
®® ®
Fra. 282.—The structure recently pro- = o @
pord for el ) senbie @ € 7
cles are fgl atoms. @ @ @

(be) The dimensions previously determined (1927, 104) do not refer to
the orthorhombic form of Zn(OH), that has recently been analyzed using
quantitative spectrometric data. The unit of the table, in which the a
and b-axes of the original crystallographic description have been inter-
changed, contains four molecules. All its atoms are in general positions
of V4: xyz; x+3%, 43—y, %; X, y+3, 3—2; 3—X, ¥, z+3%, with the parameters
of Table II. In this structure (Figure 283) each zinc atom is at the center

Fia. 283a.—(left) The structure
of orthorhombic Zn(OH), pro-
i'ected upon its c-face. The
arge circles are OH groups.

F1a. 283b.—(right) The packing
of the OH~ (large) and Zn++
1ons 1n orthorhombie Zn(OH);.

TaBrLe 1I. PARAMETERS oF THE AToMs IN Zn(OH):

Atom T Y z
Zn 0.125 0.100 0.175
o) .025 .430 .085

0(2) 325 125 .370
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of a distorted tetrahedron of (OH) groups; each hydroxyl belongs to two
such Zn(OH), sphenoids. The result is a tetrahedral network somewhat
resembling those found for the various forms of silica.

A hexagonal modification of Zn(OH); has been said to exist with a
CdI; (c¢) structure (1932, 146a). The available experimental evidence is
not, however, satisfactory.

(bf) Above 180° C Ag,S is cubic with the Cu,O (j) structure; below
this temperature the observed pattern is variously described as ortho-
rhombic, like acanthite (1931, 124) and as a mixture of the acanthite and
cubic patterns (1931, 345). Four molecules are contained in the acanthite
unit described in Table 1.

(bg) A reinvestigation of solid CO, leads, as before, to the pyrite-like
arrangement (f) with u=0.11. This gives a C-O distance of 1.13 A.
Recent measurements of a, between 20° and 114° K can be expressed by
the equation a,=5.540+(4.679x10%)T=.

(bh) The two-molecule cell of CAC1(OH) has an atomic arrangement
based on (j,. Cadmium and chlorine are in special positions (b) 3%u;
%, 3, u+3 with u (Cd)=0 and u’(Cl)=0.337. Hydroxyl groups are in
(a) 00v; 0, 0, v+3% with v=0.100. This gives rise to the interionic con-
tacts pictured in Figure 284a, b and c.

Fia. 284a.—(left) A basal projection of the Cd(OH)CI arrangement. Cd, (OH) and
Cl are represented by circles of increasing size. Letters refer to correspondmg atoms
in Figures 284b and 284c.

F1a. 284b.—(center) A diagonal (11-0) face projection of Cd(OH)CI.

Fia. 284c.—(right) A packing drawing of b with the atoms of Cd(OH)Cl having their
ionic sizes.

(bz) Lines have been found on powder and rotation photographs of
CdI, which indicate that the c-axis of the one-molecule cell should be
doubled. It has been concluded that the atoms in this two-molecule cell
are in the positions: Cd: 000; 23, I: 32u; 214;0, 0, u+3; %, 3, 3—u. It
would seem to be proved that under certain circumstances Cdl; can erystal-
lize with this larger unit, but it is not clear whether it always has such a
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complicated structure and the existing data are insufficient to establish
the new atomic arrangement. Additional work is especially needed since
the original one-molecule structure (¢) has been found to satisfy the dif-
fraction data from a large number of different compounds. The additional
lines calling for a larger unit have not been recorded from these other
CdI;-like crystals: some should show them clearly, others would not be
expected to do so because of the relative scattering powers of their atoms.

(bj) It has been proposed that the atoms in the two-molecule unit of
FeOCl are arranged according to the demands of the space group Vy.
Oxygen and chlorine are placed in (a) Ou0Q; 3% [interchange of Y and Z
from 1930, 352] and iron in (b) Ov}; 3v0 with u (0)=-0.083, u(Cl)=
0.305, v=0.097. So many crystals have in the past been incorrectly as-
signed to V3 that data far more complete and convincing than those yet
published for FeOCl are highly desirable. It is also probable that the
true atomic arrangement will be found to provide interatomic distances
that differ somewhat from those of the structure outlined above.

(bk) A Fourier analysis has been made of quantitative intensity data
from crystals of pyrite (FeS;). This leads to a parameter u(S)=0.386.
The resulting atomic separations are S-S=2.14 A, S-Fe=2.26 A.

(bl) Within the limits of experimental error (ca=0.004) the dimensions
of ice composed of heavy hydrogen are identical with those of ordinary
ice. Structures have been proposed for ice which assign positions to its
hydrogen atoms (see 1933, 257); the results of X-ray determinations of
course have nothing to say about such speculations.

(bm) From photographic data HgCl, has recently been given a struc-
ture which is considered to be essentially molecular. Like PbBr, and
PbCl, (bb), all atoms are in special positions (¢) of V;': Ouv; 3, 3—u, ¥;
0, u+3, 3—v; %, G, v+3. The parameters found for them are u(Hg)=
0.376, v=0.053; u’(Cl')=0.517, v'=0.375; u”’(Cl"")=0.742, v''=0.778. The

2 Fia. 284d.—(left) The
structure found for
HgCl; projected upon
an a-face. Large circles
are Cl atoms.

b Fia. 284e.—(right) The
S type of packing that
prevails in the HgCl,
arrangement if atoms
are given their ionic
radii. In this drawing
the atomic layer at } in
¥ d is on top.
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type of packing provided by this arrangement if the atoms have their
usual ionic sizes is illustrated in Figure 284d and e. The nearest approach
of Hg and Cl atoms is 2.25 A; CI-Cl is 3.4 A.

(bn) NiBr; obtained by sublimation has the CdCl, arrangement (e)
with u(Br)=0.255. The compound made by dehydration, by driving NH,
from the hexammoniate or by recrystallization from alcohol is 8 “ Wechsel-
struktur.” The pattern for this gives a,=2.11 A, ¢,=6.08 A, s hexagonal
cell which would contain only a third of a molecule. It has been proposed
that these results can be interpreted in terms of an intimate twinning of
CdCl; and CdI, structures—a few layers of each together. CdBr, has
been found to give a similar ‘“Wechselstruktur” with a_,=2.30 A, C,=
6.23 A; Nil; on the other hand seems always to have the CdCl, arrange-
ment.

(bo) The structure of YC, is different from that of the other carbides
studied. It is supposed to be hexagonal with a two-molecule cell.

(bp) A new structure has been proposed for Fe,B which differs from
the previous one (f) in the parameters assigned to the e atoms at (i)
of V' and in the positions thought probable for the boron atoms. Borons
are placed at (c) 300; 033; 030; 305 instead of (a) and (b), and for Fe,
u=¢ and v=1% instead of  (Figure 285). If v=1 is exactly correct the
structure is identical with the one found for CuAl, (n), with a change of
origin to 030.

@& @ |
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Fia. 285a.—(left) A basal projection of the new arrangement proposed for Fe;B. The
large circles are the Fe atoms.

F1a. 285b.—(right) A packing drawing of a if the Fe atoms are assumed to be ncutral
and if the (line-shadcd) boron 1s given a size probable for its neutral atoms.

(bg) It is suggested that the unit cell of the room temperature (low)
modification of cristobalite contains eight molecules and that the atomic
arrangement, based on V4, is a distortion of that of high cristobalite (com-
pare Figure 286 with Figures 282 and 194a). All atoms are in general
positions: xyz; x+3%, -y, Z; X, y+3, $—2; $—x, ¥, 2+%. Parameters which
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are considered approximately correct are listed in Table III. As in the
case of B-cristobalite, more quantitative data are needed to fix these
atomic positions with any certainty.

O—C 125
®
°m @@
Fra. 286.—A c-face projection of the (@ 0
structure assigned to low tempera- ) ® Q
ture () cristobalite, S10;, The small

circles are Si atoms, @
@ @ ® @L

a,
TasBLE III. PARAMETERS GIVEN TOo THE AToMS IN Low CRISTOBALITE

Atom z Y z

o) 0.67 0.65 0.14
0(2) .06 .64 .08
0(3) .625 .06 .625
0@4) 125 21 .125
Si(1) .25 .33 25
Si(2) .08 .00 .00

(br) The mineral laurite has been shown to be RuS, with the same
pyrite structure (f) previously established for the synthetic compound.
The sulfur parameter is 0.39 <u <0.395.

A further study of speryllite, also isomorphous with pyrite, has shown
that 0.385 <u <0.390.

(bs) The compound Cu,Mg has only a narrow range of homogecneity.
On the a-side a, varies from 7.0087 A to 7.0185 A with annealing tempera-
tures between 600° C and 400° C; two samples in the S+ region annealed
at 500° C and 380° C gave a,=7.0518 A and a,=7.0343 A.
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(m) A complex arrangement which includes a place for one sodium
atom per cell has been proposed for -Al,0;. Based on DY, it has atoms
in the following positions:

1 Na+1 Al: (a) 000; 003

4 Al: (f) 33u; %, 3, u+3; 3305 4, %, $—u with u=0.022

3 Al: { of positions of (f) with u’=0.178, 3 Al: same with u”’=—0.178
12 Al: (k) uiiv; ete. (see 1930, 352, p. 169) with u=3, v=—0.106
12 O: (k) u;i,v,; ete. with u;= i];", v1=0.05
12 O: (k) usliavs; ete. with up=3, v,=0.144

4 O: (f) 43u;; ete. with us=—0.05

4 O: (e) 00w; 00w; 0, 0, 3—w; 0, 0, w+3 with w=0.144

% O: 1% of two equivalent positions (c) 32}; 233,

7 O:same for (d) 4%3; 31, .

This distribution of atoms among the equivalent positions of the space
group is so bizarre that a confirmation of the structure is much to be
desired.

(n) The atomic arrangement in y-Al,O; has not yet been satisfactorily
established.

TABLE I. PARAMETERS ASSIGNED TO THE AToMS IN Sb,S;

Atom u v

Sh(1) 0.328 0.031
Sbh(2) —-.039 —.149
S(1) .883 .047
S(2) —.439 —.125
S(3) 194 .208

(0) Spectral photographs of stibnite indicate that the four Sb,S; mol-
ecules in its orthorhombic unit are arranged according to Vi’. All atoms
are said to be in special positions (¢) uvi; avd; 3—u, v+3, 1; u+3, i—v,
1 with the parameters of Table I. If abc are the axes of this description
and X'Y'Z’ are those of 1930, 352: a=Z/, b=Y’, ¢=X’, the origin being
moved to a center of symmetry. Within the limit of experimental error
the Bi parameters in Bi,S; are the same as those of Sb.

34
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This structure consists of chains of the composition (Sb;S;).. If the
atoms have their uncharged radii, there is good contact within these chains
(Figure 287). Whether the atoms are charged or neutral the atoms in
adjacent chains are unexpectedly far apart. In view of this fact it will
be important to see whether future work confirms this arrangement.

F1a. 287a.—(left) The arrangement proposed for stibnite, SbyS; projected on its
c-face. The large circles are Sb atoms.

Fia. 287b.—(right) A packing drawing of a if Sb and S are given their neutral radii.
The small spheres thus are the sulfur atoms. Packing is not improved by assuming
that the atoms are charged.

(p) A reexamination of Mg;P, shows that its correct structure is iden-
tical with that of T1;0; (b). The sclected parameters are the same as
those found for bixbyite, (Fe, Mn);0;. This atomic arrangement also
prevails for Be;P;, Be;Ng, Mg;N,; and a-Ca;N,.

It is said that Zn;P,;, Cd3;P; and Zn;As,, though likewise possessed of
16-molecule cubic units, have different structures.

The earlier choice of a 12-molecule cube for Mg;N, was due to a faulty
estimate of its density.

Probably the small unit previously determined for Cd;As; is equally
wrong.

(¢) The monoclinic unit assigned to Cd;Sb, contains four molecules.

(r) The structure first suggested for the magnetic y-Fe,O; was the
same as that of magnetite [(k) of Chapter XVI] with four oxygen atoms
added. It has recently been shown that if these additional atoms are
put in either of the two sets of positions originally proposed, the observed
intensities cannot be explained. Better intensity agreement can be ob-
tained by placing these atoms in (4g) uuu; etc. with u=%. The smallest
0-O separations in this structure are greater than those existing in the
previous arrangements; nevertheless they still have the improbably small
value 2.14 A.

(s) Eight molecules of Fe;W, are contained in the large cell found for
the e-phase of the Fe-W system.
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TaBLE II. TuE CrysTAL STRUCTURES OF THE CoMpouNnDps R,X;
Substance, symmelry and structure type a, c, Or References
AL Mg, Cubic (t) 10.54 1934, 340.
a-Al;O; Hexagonal Fe;0, (a) 5.13 55°6' 1930, 246b.
B-Al04 Hexagonal  (f), (m) 5.56 22.55 1931, 56.
v-Al,0; Cubic (n) 7.90 1032, 18, 75.
As,0, Cubic As,0, (e) 11.0457 4 1932, 290.
0.0002
Be;N, Cubic TLO; (b), 8.134 1033, 443.
(»)
Be, Py Cubic TLOs (b), 10.15 1933, 443.
(»)
Bi,S; Ortho- Sh.S; (k), 11.13 3.97 1933, 207.
(Bismuthinite) rhombic (0) b,=11.27
a-CayN, Cubic T1,0; (b), 11.40 1933, 137, 443.
(p)
Cd,As, Cubic (p) 12.58 (?)
Cd;P, Cubic (») 12.26 1933, 443.
Cd;Sb, Monoclinic (g) 7.20 6.16 1933, 167.
b,=13.51, =100°14’
Cr,C, Ortho- (9) 1931, 468.
rhombic
Cr,0, Hexagonal Fe,0; (a) 5.38 54°50" 1930, 246b.
Fe,0, Ilexagonal Fe,0; (a) 54135 55°17" 1930, 246b; 1932, 75;
(Hematite) 1033, 247; 1034, 34.
Fe, 04 Cubic (h), (r) 1931, 117, 445.
(Magnetic)
Fe;W; (e-phase) Hexagonal (s) 4,738  25.726 1931, 343.
Mg;As, Cubic TLOs (b), 12.33 1933, 443, 524.
(n)
Mg;Bi, Hexagonal La,0; (¢) 4.666 7.401 1033, 521.
Mg;N. Cubie TLOs (b), 9.95 1032, 185; 1933, 443.
(1), (p)
Mg,P, Cubic TLO, (b), 12.03 1933, 443, 524.
(»
Mg,Sb, Hexagonal* La,0O; (c) 4.573 7.229 1933, 524.
Sb.S; (Stibnite) Ortho- SbaS; (k), 11.20 3.83 1933, 207.
rhombic (0) b,=11.28
ZingAss Cubic () 11.74 1933, 443.
Zn; P Cubic (p) 11.42 1933, 443.

* The parameters are the same as those of La;O;.

(f) The intermetallic phase Al,Mg, gives the cubic pattern of «-Mn.

It is therefore concluded that the true composition is Mgi7Al;s with two
molecules per cell. In such a structure Mg atoms presumably are in (2a),
(8a) and (24g) (book, p. 270) with u=0.356, v=0.012; the Al atoms, also
in (24g), have u’=0.089, v'=0.278.



Chapter XIVA. Structures of the Type RX;, of
Higher Compounds R.X, and of New
Compounds of the Type R,(MX,),

The Compounds R X,

(al) AlF; was earlier described as hexagonal with a unit containing
three molecules. An atomic arrangement more recently found for it is
rhombohedral with two molecules in the unit (corresponding to a six-
molecule hexagonal cell). The structure, based on Dj, has atoms in the
special positions:

Al: (¢) uuu; Gada with u=0.237
F: (d) u;i;0; 4,0u;; Ou,ii; with u;=0.430
F: (e) u't’}; a’3u’; 2u’d’ with u’=0.070.

(am) Arsine, AsHj;, and phosphine, PH;, when solidified give patterns
corresponding to four-molecule cubic cells. They are said to be face-
centered but a further study of them is desirable to be sure that they do
not have structures like ammonia (f).

(an) A previous determination has given Asly, SbI; and Bils hexagonal
unit cells containing six molecules. Atomic positions, said to be developed
from Cj, were stated for Bil; [seec (b)]. More recent work on Asl; has
shown that its space group really is C},. The atoms in the two-molecule
rhombohedron that is its true unit have the coordinates:

As: (¢) #(uuu) with u=3
I: (f) =(xyz); +(zxy); £ (yzx) with x=0.42, y=0.08, z=0.75.

If, as is presumably the case, Sbl; and Bil; are isomorphous with Asl;
then their two-molecule rhombohedral units will have the dimensions of
Table 1.

Though the space groups and the unit cell suggested for CrBr; are
hexagonal, it is reported to be isomorphous with Bil;. Its true unit is
thus without doubt rhombohedral, the dimensions being those stated in
Table I.

37
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TasrLe I. TBE CrysTAL STRUCTURES OF THE CoMPOUNDS RanXa
Substance, symmelry and structure type a, C, O a References
Compounds RX;,
AlFy Hexagonal (2), (al) 5.029 58°31" 1931, 256; 1933, 255.
Al;Fe Ortho- (bs) 11.87 (?) 15.80 19033, 334; 1934, 313,
rhombic b,=8.09 313a.
AsH; Cubic (am) 6.40 at —170° C 1930, 429.
Asl, Hexagonal Asl; (b), 8.256 51°20" 1931, 205, 206.
(an)
Bil,; Hexagonal Asl; (b), 8.13 54°50’
(an)
CaPbs Cubic AuCus (e), 4.891 1933, 529.
(a0)
CaSn, Cubic AuCu; (e), 4.732 1933, 529.
(a0)
CaTl, Cubic AuCu; (e), 4.794 1933, 529.
(a0)
(Ce, La, . . .)F; Hexagonal (ap) 1931, 335.
(Tysonite)
CeMpg; Cubic LaMg, (be) 7.373 1934, 234.
CePb; Cubic AuCus (e), 4.864 1933, 529.
(a0)
CeSn, Cubic AuCus (e), 4.711 1933, 529.
(a0)
CoF, Hexagonal (aq) 3.664 87°20’ 1931, 100.
CrBr; Hexagonal Asl; (b), 7.05 52°36° 1932, 68.
(an)
CrO, Ortho- (as) 8.50 572 1931, 53, 487.
rhombic (?) b,=4.73
Fe,C Ortho- (0), ()  4.626  6.633 1031, 343; 1932, 474.
rhombie b,=5.107
FeCl, Hexagonal AlFy (?) 6.69 52°30' 1932, 481.
(al)
FeF, Hexagonal (agq) 3.75s 88°14’ 1931, 100, 256; 1933,
511.
KCNS Ortho- (aw) 6.66 6.635 1933, 261; 1934, 38.
rhombic b,=7.58
LaMg; Cubic LaMg; (be) 7.478 1034, 234.
LaPb, Cubic AuCu; (e), 4.893 1933, 386.
(a0)
LaSn Cubic AuCuy (), 4.772 1933, 386.
(ao)
LiCd, (at) 1933, 27; 1934, 310.
MoO, Ortho- (azx) 3.964 3.694 1931, 53, 484, 485.
rhombic b,=13.825
NH, Cubic (t) 5.08 at —170° C 1930, 429.
NaCNO Hexagonal CsCLI (d) 545 38°16/ 1934, 287.
NaN;, Hexagonal CsCLI (d), b5.45 38°48" 1934, 287.

(ar)



NaP b;

PH,
Pl,
PdF;
PI'M 441
RbN;
ReOy

RhF;
Sbl,

SI‘Pba
TiAls
TICNS

WOs

CL
CI‘{C
Fe (CO )4

HIF,

LaAl
SiF,
Sily
TiBr,
Til,
sz.|

MgZng

B&Ba

B.C (?)
CaB,

CeB.
ErB,

GdBs
LEBQ
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Substance, symmeiry and structure type

Cubie

Cubic
Hexagonal
Hexagonal
Cubic
Tetragonal
Cubic

Hexagonal
Hexagonal

Tetragonal
Tetragonal
Ortho-
rhombie
Triclinic

Cubie
Cubie
Monoclinic

Monoclinic

Tetragonal
Cubie
Cubic
Cubie
Cubic
Monoclinie

Hexagonal

Cubie

Hexagonal
Cubic

Cubice
Cubie

Cubic
Cubic

* All angles close to 90°.

a, Co or a
AuCuy (¢), 4.873
(a0)
(am) 6.31 at —170° C
(ay) 7.11 7.42
(ag) 3.75s 84°29/
LaMg; (be) 7.373
KN; (¢)
(az) 3.734
(aq) 3.62 84°48’
Ash, (b)), 8.8 54°14’
(an)
(ba) 4.955 5.025
(au) 5424  8.574
(aw) 6.80 6.78
b,=7.52
(bb) 7.28 3.82
b, =7.48*
Compounds RX,
(bd) 9.14
(z)
(be) 13.00 11.41
b,=11.41, p=85°35"
(bt) 9.45 7.62
b,=9.84, §=94°29’
(bf) 13.2 10.2
(bg)
Snly (aa) 11.986
Snl, (a@) 11.250
Snl; (eaa) 12.002
(bt) 9.46 7.64
b,=9.87, 8=94°30'
Compounds RX;
(bh) 9.92 1648
Compounds RXj
ThB¢ (ac), 4.28
(b7)
(bu) 5.62 12.12
ThBe (bj) 4.145
ThBs (bj)  4.129
ThB, (bj)  4.102
ThBs (bj) 4.12
ThB, (bj)  4.145

References
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Substance, symmelry and structure type a, C, Or « References
NdB, Cubic ThB, (bj) 4.118 1932, 6, 428.
PrB, . Cubiec ThBe (bj) 4.121 1032, 428.
SrB, Cubic ThBs (bj) 4.19 1931, 425; 1932, 6,

428.
Te(OH), Cubie (ab), (b2) 1934, 88.
Te(OH), Monoclinic  (bi) 5.54 9.74 1934, 88.
(second form) b,=9 30, 8=104°30’
ThB, Cubie ThBs (b)) 4.15 1932, 6.
YBg Cubic ThBa (bj) 4.07 1932, 6.
YtBs Cubie ThB¢ (bj) 4.13 1932, 6.
Higher Compounds RX,
CsCq Hexagonal KCjs (bk) 4.94 23.76 1932, 405.
KC; Hexagonal KC; (bk) 4.94 21.34 1932, 405.
RbCsg Ilexagonal KC; (bk) 4.94 22.73 1932, 405.
CsCis Hexagonal KCie (b))  4.94 18.51 1932, 405.
KCis Hexagonal XC;g (bl) 4.94 17.45 1932, 405.
RbCy Hexagonal KC,e (bI)  4.94 17.95 1932, 405.
Miscellaneous Compounds R X,
Ag.Hg, Cubic (bn) 10.09 1033, 494.
ALC, Hexagonal (bv) 8.53 22°28’ 1934, 354c.
BicHi Ortho- (bo) 14.46 5.69 1931, 304.
rhombie b,=20.85
CodSs Cubic 9.91 1932, 90.
Cr;Cs Hexagonal (af) 13.98 4.52 1931, 468.
CuCd,g Cubie CusZng (ad) 1931, 51.
CuySiy Cubic (bq) 9.694 1934, 179.
CusZny Cubic CusZng (ad) 1931, 51.
Nas Pbg Cubic (bp) 13.27 1033, 451.
Sb.Tl; Cubic (bm) 11.59 1934, 180.
WOy, Tetragonal (br) 7.56 3.735 1934, 74.

TaBLe II. NEw Crysrar StrRucTUrEs OF THE Comprounps R.(MXo),

Substance, symmetry and structure type a, C, OF & References

AgClO, Pseudo- (ca) 12.17 6.69 1931, 282.
tetragonal

AgSbS; Monochinic  (cb) 13.17 12.82 1032, 219.

(Miargyrite) b,=4.39, B=98°37%'

(Ag, Cu),Sh,S;  Ortho- (cc) 7.50 11.95 1934, 89.

(Polybasite) rhombie (?) b,=12.99

CaB,0, Ortho- (cd) 6.19 4.28 1931, 494; 1932, 494.
rhombie b,=11.60

Ca(ClO,); Pseudo- (ce) 5.80 1931, 282.
cubie

CuBiS, Ortho- (¢f) 6.12  14.51 1932, 219; 1933, 206.

(Emplectite) rhombie b,=3.89
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Substance, symmelry and structure type a, ¢, 0r a References
CuyIeO, Hexagonal 6.06 2.82 1934, 281.
CuFeS; Tetragonal [XI, (aa)], 5.24 10.30 1932, 359.
(Chalcopyrite) (cg)

CuSbS; Ortho- (¢f) 6.01 14.46 1932, 219; 1933, 206.

(Wolfsbergite)  rhombic b,=3.78

KAg(CN), Hexagonal (ch) 7.384 17.55 1933, 199.

K,TI'e,0, Cubic (et) 7.958 1933, 197.

KFecS, Hexagonal (¢j) 13.03 5.40 1933, 329.

L1,1%e,Oy4 Cubic (ck) 4.141 1931, 362.

NH,CIO, Tetragonal (cl) 6.30 3.73 1931, 282.

NH,HF,; Ortho- (cm) 8.33 3.68 1932, 196; 1933, 349.
rhombic b,=8.14

NHH,PO, Ortho- (er) 3.98 11.47 1934, 307.
rhombic b,=7.57

Na,Fe;,0, Hexagonal — (en) 5.59 35°20’ 1933, 149.

NaNO, Ortho- (co) 3.55 5.37 1931, 504.
rhombic b,=5.56

Pb(ClO;), Pseudo- (ep) 4.14 6.25 1931, 282.
tetragonal

PbFe;0, Cubic 7.81 1933, 197.

TIAsS, Monoclinic  (cq) 15.02 6.10 1932, 219.

(Lorandite) b,=11.31, B=127°45'

(a0) Several intermetallic compounds, of which NaPb; is typical, have
been found to have the simple cubic arrangement (e¢) which occurs as a
superlattice in alloys of copper with gold, platinum and palladium. For
NaPb; the atomic coordinates are: Na: (1a) 000, Pb: (3a) 03%; 330; 303
(Figure 288a and b).

I'ra. 288a.—(left) A cube face
projection of the simple NaPbs
grouping. Na atoms are at
the origin.

Fia. 288b.—(right) A packing
drawimng of a with the atoms
having the (neutral) radii
found in the metals them-
selves. Na atoms are line-
shaded.

(ap) A new structure has been suggested for tysonite (Ce, La, . . .)F;=
R'F;. It has atoms of its six-molecule unit in the following special posi-
tions of D§y:

R: (g) uu0; ete. (1930, 352, p. 168) with u=ca 0.34
F: (a) 000; 00%, at (c) 3%0; %33; 330; 333 and at (k) u'u’v; ete.
with u’=ca % and v=ca 0.175.

This arrangement is not definitely established by the existing data.
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(aq) The data on FeF; are conflicting. According to 1931, 256 it is
hexagonal with a three-molecule unit. The analysis of 1931, 100 gives it
a one-molecule rhombohedron having the dimensions recorded in Table I.
A recent discussion suggests that neither of these is correct but that the
arrangement really resembles that of WO; (bb). Whatever structure may
ultimately be established for FeF3, it probably is possessed by CoFs,
RhF; and PdF; as well. The one-molecule rhombohedral units, or pseudo-
units, of these substances are listed in Table I.

(ar) The cell dimensions of NaN; have been determined at 200° C
as well as at room temperature. At the higher temperature the edge
length is unchanged, a,=5.45 A; the rhombohedral angle, however, has
become slightly less acute, a=39°14’. The parameter u for nitrogen has
not been established for any of the sodium compounds showing this ar-
rangement; for CsClL,I it was 0.31.

(as) The unit cell of CrO; contains four molecules. A structure based
on V} has been suggested but not proved.

(at) The data on LiCd; are conflicting. According to one investigator
it is cubic with a cell apparently holding 6 molecules; others state that
the arrangement is hexagonal close-packed.

(au) The tetragonal unit of TiAl; contains four molecules. An atomic
arrangement has been described which, based on V&, has atoms in the
following special positions:

Ti:  (a) 000; 30%;
3.
4

0;04F  Al(1): (b) 33}; 030; 003; 300
AIQ): (o) 3tk 14 13 i 3;

11
22 2
Y e s Al@3): (d) §3%; &i%; 440 4t

(av) It has been found that the agreement between observed and cal-
culated intensities from Fe;C can be improved by altering very slightly
the parameters of the iron atoms and by placing the carbon atoms in
positions different from those previously suggested. As before, the iron
atoms are in the following special positions of V}':

’

Fe: (¢) uvy; ete. (see p. 266 of book) with u=0.833, v=0.04
Fe: (d) xyz; ete. with x=0.333, y=0.175, z=0.065.

Fr1a. 289a.—(left) The improved
175,325 structure for Fe;C projected

on the b-face of its ortho- |
- & hombie cell. The large ci
G00 S| dmnsl e
% Fra. 289.—(right) A packin

%‘rawmg of lf‘o;(, lfhthe (ls.rger1
4 e atoms have theiwr neutra
@ (metallic) radii and the C
atoms have the radius sug-
gested by the diamond.

* q
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Instead of being in symmetry centers the carbon atoms are in another
set, of (c) u'v'i with u’=0.43, v'=0.87. The resulting interatomic dis-
tances give iron the radius found in the metal, 1.25 A; the radius of car-
bon, 0.76 A, is that which occurs in the diamond (Figure 289a and b).

(aw) The orthorhombic unit of KCNS contains four molecules. A
structure which gives fairly good agreement between calculated and photo-
graphically observed intensities is obtained by putting atoms in the fol-
lowing special positions of V}':

K: (¢) u’Oi,ﬁ’%i, '0%; u'i2 with v’ 0212
N, C, S: (d) ulv;udv; 4, 1, v+3; u, 2, }—v with
u(S)=0.400, v(S)=0.095.

The suggested parameters for nitrogen are u(N)=0.080, v(N)=0.400; for
carbon u(C)=0.205, v(C)=0.280. To derive the axes of this description
(abe) from those of 1930, 352 (X'Y’7Z’) the transformations a=7', b=X’,
c¢=7Y’ are nccessary. The kind of packing provided by this arrangement
is illustrated by Figure 290.

-O0—0
O @-0®
ONENORE

AR
—— |
Fia. 290a.—(left) The structure assigned to KCNS as prui‘?cted upon the c-face of

its orthorhombic unit. The largest circles are K atoms; the others, in order of de-
creasing size, are S, N, and C.

F1a. 290b.—(right) A packing drawing of a. In this figure K atoms have their ionic
sxielz balg,u for lack of better knowledge the other atoms have been assigned their neu-
r

The thallium salt, TICNS, probably has the same atomic grouping as
KCNS. In fact one of the two studies (1934, 38) of TICNS makes it
orthorhombie with a similarly shaped unit and the same space group Vy'.
Another determination, which presumably is wrong, found it to be tet-
ragonal with a unimolecular cell.

(ax) The orthorhombic unit of MoO; contains four molecules. Two
determinations a,gree in placing the molybdenum atoms in special posi-
tions (¢) of Vi': uvi; ete. (see p. 266 of book). The parameters found for



44 THE STRUCTURE OF CRYSTALS

these atoms are practically identical: u=0.086 (0.088), v=0.099 (0.101).
According to one study (1931, 484, 485) the oxygen atoms likewise are
in three sets of these special positions (¢) with u,=0.086, v,=0.25, u,=
0.586, v=0.099, u;=0.086, v;=0.070.

(ay) The unit cell of PI; contains two molecules. It is said that the
space group is (3 with a structure similar to that of iodoform, CHI,
[see p. 372 (2) of book]. The parameters chosen for the iodine atoms are
x=0.30, y=0.35; z presumably being zero.

(az) No cvidence has been obtained that the unit cube of ReQj; is
larger than the one-molecule cell of the table. The Re atom is at the
origin 000; it is thought that the threc oxygen atoms are at (3b) 00%;
030; 100. This arrangement is said to resemble that of WO; which ac-
cording to (bb) is triclinic.

(ba) The structure assigned to SrPbj is a slight distortion of the NaPbs
grouping (@0). The tetragonal unit contains onc molecule with atoms in
the following special positions: Sr: 000, Pb: 330; 303; 031,

(bb) The cell of WO; listed in the table contains four molecules. The
following atomic arrangement, based on C}, has been reported for its
atoms:

W: (1) xyz; X§Z with x'=§, y'=3%, 2=, and x""=1, y"=1], 2'=—%
O: (a) 000, (d) 300, (c) 030, (e) 330,
(1) XYz, XyZz with X1='}, yl—"zﬁg?’ Z:=0; X2=':';, yﬂ:“"itf: Zz=0;'Xa= i"
Y3=13%, 23=1%; X4=1, Y4=13, 24=1T5.

A more thorough study of WO; is obviously necded; whether this arrange-
ment is correct or not, the unit described above is undoubtedly not the
simplest one possible.

(bc) The cubic arrangement found for LaMg; and several intermetallic
compounds like it has four molecules in the special positions:

La: (4b) 000; 330; 303; 033
Mg: (4¢) 33%; 003; 030; 300
Mg: (4d) 1i1; 341 1% 3

Mg: (4e) 1i1; i1t 115 1t

(bd) A new study of CI; found diffraction lines incompatible with an
Snl,-like grouping. It is said that this new pattern corresponds to a four-
molecule unit cube but no structure has been deduced.

(be) The large monoclinic cell of Fe(CO), described in the table is
said to be built upon C3, and to contain 12 molecules. Making the doubt-
ful assumption that this is the true unit it is concluded that the molecule
of iron carbonyl is [Fe(CO)4Js.

(bf) The tetragonal cell of LaAly is thought to contain 16 molecules.
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(bg) An analysis which is undoubtedly wrong makes SiF,, solidified at
—170° C, cubic with a two-molecule unit bhaving a =5.41 A. Taulty
interatomic distances prevail in the suggested arrangement.

(bh) The unit chosen for MgZng is said to contain 16 molecules. A
structure derived from that given to MgZn has been discussed.

(b2) A recent study of telluric acid, Te(OH),, contains evidence which
is thought to show that the unit of its cubic modification is not the large
32-molecule cell previously found. This new cube contains four molecules
and has half the edge length, a =7.83 A.

Four molecules are also to be found in the monoclinic unit of the second
form of Te(OII)s; the space group is reported to be C§,.

(bj) The unit cube of the ThBg4 arrangement contains a single molecule
and is based on O}. Placing the metal atom at the origin 000, the boron
atoms form an octahedron with the coordinates (Figure 291a):

B: (6d) 33u; Zuj; uiy; 330; 30i; 033
In CaBs, which has been studied more fully than the other compounds of
this type, u=0.207 giving a B-B separation of 1.716 A. In Figure 291b

where the origin has been translated to a Bs center at 333, the structure

appears as a body-centered CsCl packing of metal atoms and boron
octahedra.

C\ /> Fia. 291a.—(left) The unit of
,/ \ the CaB, grouping projected
on a cube face. Small circles

arc B atoms.

@ Frc. 291b.—(right) A packing

drawing of CaBs giving the
atoms their neutral radii. The

calcium atom at the origin of
00 a has been translated to the
i cube center of this drawing.
< q‘ —

(bk) The brown alkali graphites have been given the composition RCs.
Their four-molecule hexagonal cells have a,=4.94 A, twice that of graphite.
The alkali atoms are between the graphite layers in positions which have
not been exactly fixed.

(bl) The black alkali graphites are said to be RCys. Their units con-
taining two molecules also have bases with twice the edge length and four
times the area of graphite. It is considered that they are derived from
the brown graphites by allowing alternate layers of alkali atoms to distill
away.

(bm) Crystals of the intermetallic compound Sb,Tl, provide an ex-
ample of a body-centered cubic superlattice. Atomic positions in the
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four-molecule cube, as determined from photographic data, are the fol-
lowing special positions of O} (1930, 352, p. 148):

12 Sb: (12a) £(u00); +(0u0); +(00u) and 6 similar points about 333},
with u=0.29
2 Tl: (2a) 000; 333
16 Tl: (16d) == (u'u’u’);==(u’d’'d’);+=('u’d’); +(G'i'u’) and 8 similar points
about 13} with u’=0.16;
24 Tl (24]) :l:(u1l110),’ =+ (u;1i,0); :E:(O\][ll;); =+ (Ou;i,); :t(ul()ul); :l:(thUj)
and 12 similar points about 333 with u;=0.35.

(bn) The atomic arrangement given to Ag,Hg, has a four-molecule
unit cube with atoms in the following special positions of Oj:

Ag: (12h) 30%; 30%; 330; 230; 013; 022 and 6 similar coordinates about 3%
Hg: (16d) uuu; uiiii; Gui; didu; Gad; Guu; uiu; uuid and 8 similar coordi-
nates about 332 with u=0.192.

(bo) The orthorhombic unit assigned to B;oH;4 would contain eight
molecules; its space group is said to be Vi.

(bp) The so-called Na,Pb phase of the Na-Pb system has been said to
be actually Nas, Pbs with a cubie structure like that of CusiSng (ad).

(bg) The complete structure found for the cubic intermetallic com-
pound Cu,sSi, is developed from T8. Silicon atoms in its four-molecule
cell are in (1930, 352, p. 131):

(16f) uuu;u, @, z7—u; 3—u, u, 4; &, 37—, u; u+, ut+i, u+i;
1 1 8 . 1 1 . 3 1 1
i—u, ll+:;, i—u, u+'{J %—U, —u; —4u, 31—, ll-l-';

and similar points about £33, with u=0.208. Copper atoms are in:
(12k) 30%; 30%; $30; 330; 01%; 021 and similar points about 333
and in

(e) xyz; X, §, 4—2; }—x, ¥, %; X, 3—V, 2;
2Xy; §—2, X, ¥; %, }-X, ¥; 2, X, }~Y;
yzx;y! %—-Z, JY’Z’2 xrz y,z,x,
y+i: X+£—, Z+4,4 Y, x+4: 44— :Y+4r %‘—X, i_z;%_Y: -}—X, z+4ll
x+4,z+4,y+4,x+4,4 ?a% y}-i x:4 7!Y+Ir& xiz+?1i: %_y;
z+i‘:Y+isx+4:4 z)el Y, x‘i’i;{ z, Y'I"-h?[_x Z+I:4 Y, %—X

and similar points about 33} with x=0.12, y=0.16, z=—0.04.

(br) A tetragonal tungsten oxide, of the apparent composition WO,,,
has been found to have a unit of almost the same size and shape as the
triclinic unit assigned to WO;. One W,0O,; molecule is contained in this
cell and it is thought that its atomic arrangement is practically the same
as that of WO; with one oxygen atom per cell removed.
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(bs) The unit prism of Al;Fe (Table I) is said to contain 24 molecules.
A recent study makes a, four times as big (47.43 A) with V} as space
group. Such a cell is reported to have in it 400 atoms.

(bt) The large cells of HfF4 and ZrF, of Table I would enclose 12 mol-
ecules. The space group is C3,.

(bu) If boron carbide is B¢C, calculation would give it 2.19 molecules
per cell. Its composition is therefore considered to be in doubt. The
space group is D3,.

(bv) A rhombohedral unit containing one molecule has been found for
aluminum carbide, Al,C;. It is said that the Al atoms are in two sets of
special positions: (¢) 4 (uuu) of DSy with u;=0.293 and u,=0.128. Two
of the three C atoms are in another set with u’=0.217; the third is at the
origin (a) 000.

New Structures of the Type R,(MX,),

(ca) The pscudo-tetragonal unit assigned to AgClO, is supposed to
include 16 molecules.

(cb) The cell described for the monoclinic sulfide miargyrite, AgSbS,,
contains eight molecules. The space group is reported to be C3;.

(cc) The possibly orthorhombic mineral polybasite (Ag, Cu),Sb,S,, has
been given an eight-molecule cell. A space group assignment is V}..

(ed) The orthorhombic unit of CaB,0, contains four molecules. An
atomic arrangement found from photographic data places atoms in the
following positions of V}':

Ca: (¢) 10u; 300; 1, 3, u+3; %, 4, 2—u with u=0.26

B: (d) xyz; x+3, 35—y, 3—2; %, y+3, 3—2; §—%, 7, 2; 89Z; 1—X%, y+4, 2+3%;
X, 3=V, z+3; x+3, y, Z with x=0.12, y=0.20, z=0.88

0;: (d) x1y:121; ete. with x;=0.125, y,=0.21, z,=0.19

0’: (d) x'y'z’; ete. with x'=0.11, y'=0.09, z'=0.75.

The axes of this description are the same as those of 1930, 352; the origin

is in a symmetry center at 10%. The linked B-O tetrahedra which make

up the framework of this crystal can be seen from Figure 292a and b.

COMNOTOEYG
CED DB B

6
= r

(/]
Fia. 292a.—(left) Atoms in the unit prism of CaB,O, projccted on the a-face. The
largest circles are O atoms; intermediate oncs are Ca.
Fra. 292b.—(right) A packing drawing of a with Ca and O atoms having their ionic
radii. The way the BO, tetrahedra are linked together by sharing oxygen atoms is
clearly seen.
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(ce) The pseudo-cube ascribed to Ca(ClO,), is bimolecular.

(¢f) The orthorhombic unit of emplectite, CuBiS,, contains four mol-
ecules; its space group is Vi’. The corresponding antimony compound
wolfsbergite, CuSbS,, is structurally isomorphous.

(cg) A redetermination of the structurc of chalcopyrite, CuFeS,, has

led to a somewhat more complicated arrangement. The unit prism, with
the same base, has twice the previous height and contains four molecules.
Atoms, in special positions of VY, are at:
Cu: (a) 000; 30%; 33%; 031, Fe: (b) 003; 30%; 330; 03
S: (d) dub; uif; o i Lu+h Bty L B 1 3w 85 -y, 4
with u=0.27. The resulting atomic separations, Cu-5=2.32 A, Fe-S=2.20
A, are those to be expected from neutral atoms (Figurc 293a and b).

1
4
3
8

Fr1a. 293a.—(lefl) The new arrange-
ment found for chalcopyrite, CuFeS,,
as projected upon an a-face. Cu
atoms are at the origin; intermediate
circles are the Fe and the smallest
circles the S atoms.

F1c. 293b.—(right) A packing drawing
of CuFeS; giving the atoms their
neutral radii. The line-shaded
spheres are Cu.

F1a. 294a.—(left) A basal projection of the atoms in the hexagonal unit of the struc-
ture found for KAg(CN).. The largest circles are K atoms, the small heavy ones
are C; of the intermediate circles the smaller represent the Ag atoms.

Fia. 294h.—(right) A packing drawing showing half the contents of the unit prism of
KAg(CN),. Corresponding atoms in @ and b are designated by the same letters.
Potassium and silver (line-shaded) atoms have their ionic radii but the sizes of C
and N are probably without real significance.

(ch) The six-molecule unit found for KAg(CN), has an arrangement
based on Dj;. Its atomic positions have been given as (Figure 294):
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K: (b) OO}: OO% L3 (f) %3“1 3311 %1 %J% —u; '3" 31 u+§" with u=0.260

Ag: (h) ui0; 24, G, 0; u, 2u, 0; Gu}; 2u, u, 3; 4, 2i, 3 with u=0.167

C: (1) Xyz; y—X, X, z; §, X-Y, Z; X, X—Y, Z; yXZ; y—X, Yy, Z; X, Y, %—Z;
=Y, X %—Z; Y, Y—X, %—Z; X, y—X, Z+%; Y, X, Z+%, =Yy, ¥, Z+%

with x=0.295, y= 3, z=0.109
N: (i) x'y'z’; ete. with x'=0.365, y'=1, 2’=0.167.

In all other cyanides it has not been possible to establish the separate
positions of carbon and nitrogen. Instead the cyanide radical seems to
have the spatial characteristics of a sphere with a radius substantially
that of the bromide ion. For this reason it is not clear how much sig-
nificance is to be attached to the C and N parameters stated above and
to the short K-N separation (2.56 A) that results.

(cf) The unit cube assigned to K,Fe,O, is reported to contain four
molecules.

(¢j) Eight molecules are associated with the hexagonal prism of KFeS,.

(ck) Lithium ferrite, Li,Fe,0,, is anisotropic if prepared below ca 600°
C; above this temperature a cubic modification is produced which does
not invert on cooling. The curious fact has been observed that its powder
lincs correspond to a unit containing onc molecule. The intensities of
these lines are explicable in terms of an NaCl arrangement [XI, (b)] of O
atoms in (4c) 333; 00%; 030; 300 and of Fe and Li atoms irregularly dis-
tributed among the positions (4b) 000; 330; 30%; 033

(cl) Crystals of NH,CIO, are said to have a tetragonal unit holding
two molecules. The proposed atomic arrangement places atoms in the
following special positions of C3,:

NH;: (a) 00u; $3u with u=0
Cl: (b) 03u/; g{)u’ with u’=%
0O: (¢) uy, 3—uy, v; uy+3, uy, v; @y, +3, v; 3—uy, 4y, v with v=3.

A more detailed study of this structure would be instructive.

(em) The original investigation of NHHF, (1932, 196) gave it the
symmetry of V3 but failed to find an atomic arrangement. Recently the
same data have been shown to be consistent with the following structure
developed from V}:

N (g) 4iu; “ﬁ 334; %}u with u=0.560
: (e) u’00; @00; 3—u’, %, 0; u'+3, 3, 0 with u’=0.142
: (h) %u;v $0,v; 0, 3—uy, v; 0, u;+3%, ¥V with u;=0.132, v=0.135.

These axes, abe, and X'Y’Z’ of 1930, 352 are connected by the relations
a=X’, b=2', e=Y’. The pairs of fluorine atoms belonging to an HF,
ion are, as should be expected, especially close together with F-F=2.37 A
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(Figure 295a and b). It is customary to assume that the hydrogen atom
in these acid fluorides lies midway between the two fluorine atoms on a
line joining their centers; such an assumption cannot of course be proved
by means of X-rays.

F16. 295a.—(left) The structure found for NILHF, projected upon the e-face of its
orthorhombic unit. The larger cireles are the NH; groups.

F1a. 205b.—(right) A packing drawing of the NH; and HF, 10ns in NH,HF,.

(cn) Sodium ferrite is rhombohedral with the CsCl,I structure (d).
Atoms of the single NaFcO; molecule in the unit rhombohedron have the
coordinates: Na at 000; Fe at £31; O at uuu; Giiit with u=0.22.

(co) From photographic data it has been concluded that the atoms in
the two-molecule orthorhombic unit of NaNO, arc in the following special
positions of C3:

Na: (a) 0u0; %, u+3, ¥ with u=0.583
N: (a) 0u'0; %, u'+3, 3 with u’=0.083
O: (d) Ouyv; Ous¥; 3, ui+3, v+3; 3, wit+3, 3—v with u;=0 and v=0.191.

The coordinates of this description can be derived from those of 1930, 352,
p. 56 by an interchange of Y’ and Z’. The simple structure outlined above
is illustrated in Figure 296a and b. The N-O separation in its non-lincar
NO; ion is 1.13 A; the Na-O distance, ca 2.48 A, is substantially that
found in NaNO;.

(cp) The supposed pseudo-tetragonal unit of Pb(Cl0,), is reported to
contain one molecule.

(cg) A monoclinic cell for T1AsS, with the dimensions of the table would
enclose eight molecules. The space group has been given as either Cj,
or Ci,.

(cr) Photographic observations have been used to assign an atomic
arrangement to crystals of ammonium hypophosphite, NH,H,PO,. Ac-
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F1a. 296a.—(left) The orthorhombic grouping found for NaNO, projected on its a-face.
Atoms of the non-linear NO, groups are joined by light lincs; imtermediate circles
designate the Na atoms.

F1a. 296b.—(right) A packing drawing of a.

h__c *

[-]
F1a. 297a.—(left) The structure chosen for NH,H,PO; projected on the a-face of its
orthorhombic cell. K, O and P atoms are shown as large, intermediate and small

crcles. Proposed positions for the hydrogen atoms are indicated by the dashed
circles.

A

Fra. 297b.—(right) A packing drawing of a showing the positions of the NH, and
PO, groups.

cording to this structure (Figure 297) which places four molecules in the
orthorhombic unit, atoms are in the following special positions of Yo

NH,: (a) £(0£0); +(033) P: (g) £(u0}); =(nji

0: (m) £W'0v'); £W'3¥); £, 0, 3—v); £, 3, v'+3).
The axes of this description (abc) arise from those of 1930, 352, p. 67
(X"Y'Z") by transferring the origin to a center of symmetry and using
the transformation a=%/, b=X’, c=Y".

The chosen parameters u(P)=0.541, u'(0)=0.347, v'=0.136 give an
NH,-O separation (2.81 A) which is unusually short. This has been con-
sidered to show that the NH, groups are not rotating; such an interpreta-
tion could be convincing only if the correctness of the selected parameters
were supported by more quantitative evidence than is now available.

Suggested hydrogen positions, which would bind each atom to two
NH, groups and one phosphorus atom are (m) u,0v;; ete. with u;=0.805,
v1=0.142; they cannot of course be checked by X-ray observations.



Chapter XVA. Structures of the Type R,(MXj),

(ab) The parameters of Table I have been assigned to the atoms in
divalent nitrates having the structurc (s) characteristic of Ba(NQO;);. It
has been suggested (1931, 265) that at ordinary temperatures the nitrate
groups in Ca(NQ;). are rotating but data in support of this idea have not
been published.

TasLeE I. PARAMETERS FOR CRYSTALS OF THE ALKALINE
EArTH NITRATES

Crystal u(N) z(0) (0) 2(0)
Ba(NO;)s 0.150 0.220 0.204 0.026
Ca(NOs)z 161 .247 207 .033
Pbh(NOy), 156 234 209 033
Sr(NOs)2 159 236 .209 .032

(ac) The unit prism of bromlite (alstonite), BaCa(COj;),, contains two
molecules. It is similar in shape to the orthorhombic cells of barite and
aragonitec with dimensions lying between them. Nevertheless this min-
eral is thought to be a compound rather than a solid solution.

(ad) The monoclinic barytocalcite, also BaCa(COj;),, has been assigned
a two-molecule unit. The space group is reported as C.

(ae) The threc hexagonal carbonates synchisite, CaCO;-RFCOj, par-
isite, CaCO;-2RFCO;, and cordylite, BaCO;-2RFCO; (R is a mixture
of trivalent rare earth atoms, Ce, La, etc.) have unit prisms with bases
of about equal size but with very different heights. Closely related atomic
arrangements, which however need further confirmation, have been pro-
posed for these minerals. The following atomic coordinates are necessary
for their desecription:

(a) 00w; 0, 0, w+3% (b) 00v; 00¥;0, 0, v+%;0,0, §—v
(c) 33u; 330; %, H,utd; &, &, 4—u (d) #3t; %, %, t+4.

Oxygen atoms have not been located; the other atomic positions together

with the corresponding parameters (in parentheses) are listed in Table II.
62
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TasrLe II. Atomic PosiTioNs AND PARAMETERS (GIVEN TO THE
Aroms IN SyNcHISITE, PARISITE AND CORDYLITE

Substance 2Ca(orBa) 2F 2R 2CO0; 4R 4LF 4 CO,

Synchisite 8 d a — — — c
CaCO,-RFCO, (w=0) H @ — — — (-0.117)
Parisite a —_ - d b c c
CaCO;-2RFCO; (0) —_ — €)) (0.163) (0.163) (-0.076)
Cordylite a — — d c b ¢
BaCO;:2RFCO; 0) —_ - (%) ) @) (-0.07)

(af) A new structure has been proposed for bastnasite, (Ce, La, . . .)
FCO;, based on Dj, instead of D},. Its atoms have been put in the posi-
tions:

6 R: (g) uul; ete. of 1930, 352, p. 159, with u=%

2 F: (a) 000; 00% 4 F: (f) %%u; etc. with u=ca 0.
12 O: (i) xyz; etc. with x=y=ca }, z=ca %

6 O: (h) uvi; etc. with u and v undetermined

6 C: (h) u'v'y; ete. with u’ and v’ undetermined.

(ag) Parameters have been determined for the atoms in KNO; and
PbCO;. As Table III indicates they are almost identical with one another
and with those previously found for aragonite (b) (see p. 272 of book).

Tasre III. ParAMETERS OF THE AtoMs IN KNO,;, PbCO; AND ARAGONITE

Atom KNO; PbCO; CaCO;s
z Yy Z x y 4 z Y z
K, Pb, Ca 0 0416 0 0 0417 O 0 0417 0
N, C, C 0 75 % 0 764 0.153 0 75
0(1) 0 883 % 0 908 153 0 917 %
0(2) 0194 .68 3 0205 692 .153 023 .67 3}

(ah) A structure based on photographic data has been deduced for
the iodine and oxygen atoms in LiIO;. These atoms in the two-molecule
unit are placed in the following special positions of Dj:

I: (¢) 33%; 332 O: (g) uu0; 0a0; G00; Gh; Oud; u03 with u=43.

If the lithium atoms are in (b) 00%; 00% a reasonable Li-O separation,
2.23 A, is obtained. It should be noticed (Figure 298) that this arrange-

F1a. 298.—A basal projection of the arrange-
ment proposed for LilOQ;. The Li atoms
are represented by the smallest, the I by
the largest circles. The absence of 10; ions
in this grouping is evident.
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TasLe 1V. TeE CrysTAL STRUCTURES OF THE CoMPOUNDS Rx(MXj)y

Substance, symmetry and structure type a, C, Or References
AgFO, Tetragonal (?) 5.33 6.08 1933, 117,
BaCO, Ortho- KNO; (b) 5.2556 6.5400 19031, 89.

rhombic b,=8.8345

BaCa(CO0;),; Ortho- (ac) 8.77 6.11 1930, 111h.

(Bromlite) rhombic b,=4.99

BaCa(CO,), Monoclinic  (ad) 8.15 6.58 1930, 111c.

(Barytocalcite) b,=5.22, §=83°52'

BaCO;-2RFCO; Hexagonal — (ae) 4.35 22.8 1931, 337.

(Cordylite)

BaCeO; Cubie CaTiO; (d) 4.377 1934, 112.

Ba(NO;); Cubic Ba(NO;), 1931, 460.

(s), (ab)

BaThO, Cubic CaTiO; (d) 4.480 1934, 112.

BaZrQ; Cubie CaTiO; (d) 4,176 1934, 112.

CaCO; (Calcite) Hexagonal (ap) 1931, 34, 35,
1934, 283.

CaCO;-RFCO; Hexagonal (ae) 4.094 18.20 1931, 337.

(Synchisite)

CaCO;-2RFCO; Ilcxagonal (ae) 4094 27.93 1931, 337.

(Parisite)

CaMg(CO;), Hexagonal  (v) 6.050+ 46°54’ 1930, 398.

(Dolomute) 0.004

Ca(NO;). Cubic Ba(NOsy),; 1931, 265, 460.

(s), (ab)
CaSn(BOy), Hexagonal (v) 6.24 45°44’ 1934, 219.

(Nordenskioldite)

CdT10; (low Hexagonal FeTiO; (ex) 5.82 53°36’ 1934, 216.
temp. form)

(Ce, La...). Hexagonal (af) 7.094 9.718 1931, 336.

FCO; (Bastnasite)

CoCOQ, Hexagonal NaNO; (a) 1932, 14.

CoTi0s Hexagonal FeTiO; (az) 5.49 54°42" 1934, 216.

CsNO; Hexagonal (aw) 10.74 7.68 1934, 273.

Cs:8,06 Hexagonal (au) 6.326 11.535 1932, 187.

FeCOs* Hexagonal NaNO, (¢) 5.754 47°25' 1932, 167.

(Siderite)

FeTiO, Ilexagonal FeTiO; (az) 5.52 54°50" 1934, 14, 216.

(IImenite)

H;BO, Triclinic (ay) 7.04 6561 1934, 304.

b,=7.04

InBO; Hexagonal NaNO; (a) 5.841  48°10° 1932, 167.

KCbO, Cubic (?) CaTiO; (d) 4.005 1932, 371.

KNO; Ortho- KNO; (b), 5.43 6.45 1931, 102.
rhombic (ag) b,=9.17

* 92,59, FeCOs, 6.1% MnCOs.
t For H;BO;, @=92°30’, =101°10’, y=120°.

122;
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Substance, symmetry and structure type a, ¢, O & References
K5S,06 Hexagonal — (av) 9.756 6.274 1931, 30, 220; 1932,
186, 201; 1933, 210,
211.
KTaO, Cubie (?) CaTiO; (d) 3.981 1932, 371.
LaBO, Ortho- KNO; (b) 5.10 5.83 1932, 167.
rhombic b,=8.22
Li10; Hexagonal (ah) 5.469 5.155 1931, 499,
MgTi0; Hexagonal FeTiO; (az) 5.54 54°39' 1934, 216.
Mn;As:04 Hexagonal — (ar) 13.44 8.72 1933, 5.
(Armangite)
MnTiO; Hexagonal ¥eTiO; (ax) 5.62 54°16" 1934, 216.
NH,I0; Cubic CaTiO; (d) 4.5 1932, 158.
NILNO; (I) Cubie (aj) 4.40 1931, 265; 1932, 204,
(169.5° to 125.2° C range)
NHNO; (1I) Tetragonal (ak) 5.75 5.00 1931, 265; 1932, 204.
(125.2° to 84 2° C range)
NHNO; (I11)  Ortho- (al) 7.06 5.80 1932, 204.
(84.2° to 32.3° C rhombic b,=7.66
runge)
NIL,NO; (IV) Ortho- (am) 5.75 4.96 1932, 204, 470.
(32 3° to —18° C rhombie b,=5.45
range)
NH.NO; (V) Hexagonal  (an) 5.75 15.9 1932, 204.
(helow —18° C)
NaChOy, Cubic (?) CaTiO; (d) 3.889 1932, 371.
NaHCO;, Monochnic  (ao) 7.51 3.53 1933, 518.
b,=9.70, =93°19’
NaNO, Hexagonal NaNO; (a), 1931, 266, 1932, 49;
(ap) 1033, 492; 1934, 235.
Na.SO, Hexagonal — (agq) 5.441 6133 1931, 500.
NasSbO;-4BeOQ  Ilexagonal  (y), (as) 1933, 3.
(Swedenborgite)
NaTaO; Cubie (?) CaTiO; (d)  3.881 1932, 371.
NaWO, Cubie CaTiO; (d), 3.83 1932, 250.
(Cubie Na-W Bronze) (ar)
Na,(W03)5(?) Tetragonal (ar) 17.5 3.80 1932, 251.
(Blue Na-W Bronze)
(Na, Ce, Ca). Cubie (?) CaTiO, (d) 3.854 1930, 391.
('T1, Cb)0O; (Lopante)
NITiO; Hexagonal FeTiOg (az) 5.45 55°8’ 1934, 216.
PLCO; Ortho- KNO; (b), 5.166 6.146 1933, 101.
(Cerussite) rhombic (ag) b,=8.468
Pb(NOy), Cubie Ba(NOjs), 1931, 460.
(s), (ab)
RbNO; Ortho- (at) 18.08 7.38 1933, 351.
rhombic b,=10.45
Rb,S,06 Hexagonal  XK.S8,06 (av) 10.144 6.409 1931, 220; 1932, 186.
ScBO; Hexagonal NaNO; (a) 6.782  48°28’ 1932, 167.
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Substance, symmetry and structure type a, C, Or @ References
SrH{O, Cubic CaTiOs (d) 4.069 1933, 204.
Sr(NO;)s Cubic B&(NO;): 1931, 4060.

(s), (ab)
SrZrO, Cubic CaTiO; (d) 4.089 1933, 204.
YBO; Hexagonal NaNO; (@) 6.44 46°17" 1932, 167.
ZnCOy Hexagonal NaNO; (a) 5.669  48°26' 1932, 167.

ment does not provide either simple or complex iodate ions such as would
be expected on chemical grounds; instead each iodine atom is made equi-
distant from six oxygen atoms (I-0=2.23 A=Li-O). For this reason a
further study of LilO; must sometime be made.

(az) The hexagonal unit of armangite, Mn;As,0q, recorded in Table IV
would contain nine molecules. It is thought that the true unit is probably
rhombohedral, with a space group that is C35,, Dj or D3,.

(aj) The highest temperature modification of NH.NO; seems to give
the simple diffraction pattern required by a one-molecule cube in which
N atoms and NO; groups have a body-centered ('sCl grouping [XI, (a)].
Individual crystals of this modification grow so fast that good intensity
data could not be obtained but the single molecule unit has been taken
as evidence for a rotating NO; group.

(ak) The unit of the second, tetragonal, form of NH.NO; contains
two molecules. Even at 100° C these crystals grew too fast to yield good
diffraction data and no z parameters could be established. The x and y
parameters are said to be the following:

NH,: 00?; 337 N: 037; 10? 0: 03?; 30?
O: xy?; xy?; yx?; yx? with x=0.14, y=0.36.

(al) The third modification of NH,NO; has a four-molecule ortho-
rhombic prism and a structure based on V}’. Choosing the same axial
orientation that was used for cementite [XIV, (0)] atoms have been found
to be in the positions:

NH,: (¢) uvi; ete. (book, p. 266) with u=0.30, v=0.52
N: (c) u'v'%; ete. with u’=-0.09, v'=-0.19

O: (e¢) uyvii; ete. with uy;=-0.19, v;=—-0.05

O: (d) xyz; ete. with x=—0.07, y=-0.27, z=0.06.

This arrangement is illustrated in Figure 299a and b.

(am) Two separate determinations have shown that the two molecules
in the orthorhombic unit of NH,NO; which is stable at ordinary tem-
peratures are arranged according to the unusual space group Vi’. With
axes chosen as in Table IV they agree in placing atoms in the following
special positions:
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a

[-]
Fia. 299a.—(leff) The atoms of the third modificution of NH(NO; projected on the
b-face of its orthorhombic unit. Atoms of the NOs groups are joined by light lines.

Fia. 299b.—(right) A packing drawing of a.

NH,: (b) 0fu; 30d N: (a) O0u’; 330’

O: (a) 00uy; 330, O: (f) wOv; wOv; 3—w, 3, V; w+3, 3, .
The origin used in 1932, 470 is displaced one half along the c-axis; there-
fore though the parameters as listed in Table V are different, the atomic
arrangements found in these two investigations are nearly identical. This
can be seen from Figure 300a, wherein the unit of 1932, 201 is outlined
by heavy lines, that of 1932, 470 using dotted lines.

TasrLe V. PArRAMETERS or ToE Aroms IN NH(NO,

(Room Temperature Form 1V)

Determinaizon u(NH,) u'(N) u(0) w v
1932, 204 0.57 0.03 0.28 0.19 —0.095
1932, 470 097 .500 75 183 375

Fia. 300a.—(left) The structure of the fourth, room temperature, form of NILNO;
rojected on its b-face. The unit cells of the two determinations are indicated by
ull and by dotted lines. The largest circles are NH, ions, the smallest are N atoms.

F1a. 300b.—(right) A packing drawing of a.
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(an) The fifth modification of NH,NO; (stable below —18° C) has
been given a hexagonal, or pseudo-hexagonal, unit containing six mol-
ecules. No X-ray evidence was found which indicated the gradual transi-
tion at —60° C.

(a0) The monoclinic unit chosen for NaHCO; contains four molccules.
Using photographic spectral data it has been given an atomic arrange-
ment with all atoms in general positions of C3, (Figure 301): (e) = (xyz);
+(x+3%, =Y, 2+3). The selected parameters are listed in Table VI. In
this structure the distance between oxygen atoms in adjacent CO; groups
is 2.55 A. Such a close approach has been thought to mean that these
atoms are bound by an intermediate hydrogen atom which then would
be at x=0.319, y=0.250, z=0.064. The atomic parameters of Table VI
and with them this evidence for the existence of a hydrogen bond should
be confirmed by more quantitative intensity data.

The coordinates used in this deseription refer to axes so chosen that
the gliding component is along the diagonal to two of them. In the con-
ventional description it is along one axis.

TanLe VI. PARAMETERS oF THE AToMs 1N NaHCO;

Atom x Yy z

Na 0.278 0.0 0.708
C .069 .236 314
0(1) .069 367 314
0(2) .200 .169 183
0(3) .939 .169 444

Fig. 30la.—(left) Atoms i the proposed structure for NaHCO; projected on the b-
face of its monoclinic unit. The large O and small C atoms of the CO; groups are
joined by light lincs; positions thought probable for the hydrogen atoms are indi-
cated by the dotted circles.

Fia. 301b.—(right) A packing drawing showing the small Na+ and the larger CO;
groups of a.

(ap) X-ray photographs of NaNO; made at various temperatures up
to 280° C have been interpreted as showing that the NOj; group is rotating
at high temperature. At 280° C the unit rhombohedron has the dimen-
sions a,=6.56 A, a=45°35".

Similar measurements of unit cell size at higher temperatures, as well
as Laue photographs up to 600° C, have becn made of calcite (CaCO3).
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(ag) Using data derived from twinned crystals the atoms in the two-
molecule unit of Na,SO; have been placed in the following positions of
Ci; (Figure 302):

Na: (a) 000 (b) 00% (d) 12u; 2iq with u=0.67
S:  (d) 33u/; 214’ with u’=0.17
O: (g) xyz; y—x, X, 2; §, x~Yy, 2; Xy%; Xx—Y, X, 2, Y, y—X, Z

with x=0.14, y=0.40, z=0.25.

Fia. 302a.—(left) A basal projection of atoms in the hexagonal umt of Na;SQ;. The
smallest circles are the S and the largest the O atoms,

Fra. 302b.—(right) A packing drawing of a. One S atom (at z=0.17) is shown lying
above the planc of its three O atoms.

(ar) The analyses of cubic Na-W bronzes run from Na,W,0q to ap-
parently Na;W;0,,. This variation in composition is thought due to the
gradual replaccment of sodium by hydrogen.

Blue Na-W bronzes are made by the weak reduction of NaWO; by
zinc or hydrogen. The composition approaches that stated in Table IV.

(as) The formula previously given to the mineral swedenborgite is
wrong due to the interpretation of its beryllium as aluminum. Its unit
contains two of the new molecules NaSbQ;-4BeO. One or the other of
the following two structures developed fromn C§, has been considered to
be correct:

Na: (a) 00u;; 0, 0, u;+3% with u,=0 or
(b) 130 4, 4, w+} with w'=3
O: (b)or (a)

O: (c) uiiv; 2, 0, v; u, 2u, v; G, u, v+3%; 2u, u, v+3;
i, 20, v+ with u=%, v=0

O: (¢) u"a"v"”; ete. with u’=% and v’=3

: ? 6

Sb: (b) §3ue; 3, &, ueti with up=4.

(at) A reexamination of RbNO; has led to a different structure. The
large orthorhombic unit of Table IV contains 18 molecules. The crystal,
however, is pseudo-hexagonal; if its slight departure from this higher sym-
metry is neglected, the data are those to be expected from a structure with
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a,=10.45, ¢,=7.38, having nine molecules in the unit and C}, as space
group. The previously chosen unit was rhombohedral (or pseudo-rhombo-
hedral) with an arrangement developed from C3, [see (n), p. 279 of book].

(au) The unit prism of Cs,S,04 contains two molecules; the space
group is given as cither D§ or D§,. Cesium and sulfur atoms are assigned
to the special positions:

Cs: (a) 000; 00} Cs: (c) §3%; 333
S: () 33u; 33u; 3, 3, ut+i; 3, 4, 3—u with u=0.70.

No X-ray sclection could be made between the two sets of oxygen posi-
tions that were considered possible.

(av) Four studies have been made of the structure of potassium dithi-
onate, K,S,04. From them it is clear that the hexagonal unit contains
three molecules and that atoms are in the following special positions of D3:

28: (e¢) 00u; 00a 4 Sin 2 sets of: (d) 33u; 330

3 K: (e) uu0; 0u0; a00 3 K: (f) uu}; 0uj; 403

18 O in 3 sets of: (g) xyz; y—x, X, 2; ¥, Xx—Y, 2;

YXZ; X, y—X, Z; X—Y, )7, Z.

This crystal provides an instructive example of two very different arrange-
ments (sece oxygen parameters) that agree with the qualitative data from
a group of spectral photographs. It has been shown that these data are
about equally well explained by the two sets of parameters of Table VII.
The second set (according to 1932, 201) gives so short a K-O separation,
ca 2.2 A, that it cannot be right. The satisfactory K-O distances, of ca
2.80 A, yielded by the parameters of 1933, 210 suggest that they may be
near the true values (Iligure 303a and b).

(aw) The hexagonal unit which has been ascribed to CsNO; contains
nine molecules. No atomic arrangement has been deduced but the curious
observation has been made that its powder pattern is nearly identical with
that of the cubic (or pseudo-cubic) KIO; and very similar to that of the
cubic CsI. No change in pattern occurs on heating CsNO; up to 200° C.

TarLeE VII. ParaMETERS FOrR THE AToMs oF K,S;04

Atom Parameters according to
1933, 210 1932, 201
(z and y interchanged)
z y z z Y z
S(1) 0 0 0.16 0 0 0.16
S(2) 3 2 .59 3 2 .59
S(3) i % 27 3 i .27
K(1) 0.375 0.375 0 0.39 0.39 0
K(2) .69 .69 3 .69 .69 3
0(1) .165 A1 .23 .09 .18 22
0(2) .615 17 .34 48 24 .35

0(3) .505 .21 .80 .58 42 .79
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F16. 303a.—(left) A basal projection of the atoms in the hexagonal unit of K,;S;0s.
The largest circles are O, the smallest are S atoms.

Fic. 303b.—(right) A packing drawing of a. The K ions are indicated by line-shading.

(ax) The mincral ilmenite, FeTiO;, has a rhombohedral structure sim-
ila.r to the Fe,O3 arrangement [XIII, (@)]. lts corresponding space group,
31, is of lower symmetry because of the non-identity of its metal atoms
but the two-molecule rhombohedra are of nearly the same size and shape.
In FeTiO;, atoms have been given the positions:

Fe: (¢) =(uuu) with u=0.358 Ti: (¢) &=(vvv) with v=0.142
O: (f) x(xyz); £(yzx); £(zxy) with x=0.555, y=—0.055, z=0.250.

As might be expected from the close similarity in their cell sizes, it
has been found that ilmenite and Fe,O3 form a continuous series of solid
solutions (1934, 216).

Nickel titanate, NiTiOj;, has the ilmenite structure. The parameters
assigned to its atoms are identical, within the limit of experimental error,
with those of FeTiO;.

Cadmium titanate, CdTiOs, occurs in two forms. The previously de-
seribed structure, isomorphous with CaTiO; (d), is found in material pre-
pared by quenching from above 1000° C. Crystals made below this tem-
perature are like FeTiO;. The parameters given their atoms, u(Cd)=
0.342, v(Ti)=0.156, ¥=0.54, y=—0.03, z=0.26, yield the short Cd-O dis-
tance of 2.24 A but it 15 said that other values would make it shorter still.

(ay) The triclinic cell chosen for crystals of boric acid, H;BO;, in-
cludes four molecules. If the space group is C}, as is undoubtedly the
case, all atoms are in general positions +(xyz). Boron and oxygen atoms
have been assigned parameters (Table VIII) which yield a thoroughly
platy structure. The resulting interatomic distances are B-O=1.36 A
and, between adjacent groups, 0-0=2.71 A. It is stated that this O-O
separation is sufficiently below the normal 2.80 A to show that hydrogen
atoms are situated between them. Inasmuch as the entire determination
of structure, involving many variable parameters, has been based on
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TasLE VIII. PARAMETERS FOR THE AtoMs oF H;BO,

Atom z Y z

B(1) 0.653 0.430 0.25
B(2) .319 764 .25
0O(1) .430 .319 25
0(2) 764 .319 .25
0(3) 764 .653 25
04) .208 542 .25
0(5) .208 875 .25
0(6) .542 875 .25

qualitative visual estimates of photographic intensities, it is hard to attach
much significance to this argument. In several instances unexpectedly
short interatomic distances have been ascribed to hydrogen bonds rather
than to errors or inaccuracies in parameter determinations. It should be
pointed out that, except with ccrtain especially favorable crystals (such
as the alkali acid fluorides), intensity data better than the usual qualita-
tive estimates on simple reflections are nceded to fix parameters with
enough certainty to provide real evidence for such bonds.



Chapter XVIA. Structures of the Type R,(MX,),

(ac) The unimolecular tetragonal cell of g-Ag,Hgl, has atoms in the
following special positions of V} (Figure 304a and b):

Hg: (a) 000 Ag: (f) 033; 303
I: (n) uuv; ua¥; Guv; dav with u=0.27, v=0.225.

The form of Cu,Hgl, stable at room temperature has the same structure
with u=0.255, v=0.275.

(ad) The a-modification of Ag,Hgl,, stable above 50° C, is said to be
truly cubic. The arrangement in the low temperature form (ac) is a dis-
tortion of the ZnS structure; this a-structure is described as an exact ZnS
grouping [XI, (c¢)] with thrce-fourths of the positions (4b) 000; 330; 303;
033 occupied by an irregular distribution of Hg+2 Ag.

The a-form of Cu,Hgl,, stable above 70° C, is like the silver salt.

(ae) Three studies have been made of the structure of anhydrous
sodium sulfate, Na,SO,. They agree in choosing an eight-molecule unit
and in sclecting V}* as corresponding space group. The atomic arrange-

Fia. 304a.—(left) A c-face projection of atoms of the room temperature (8) modifica-

t.m-nI of Ag,Hgl,. Atoms of 1 are represented by the largest, of Hg by the smallest
circles.

F1a. 304b.—(right) A packing drawing of @ with the atoms given their usual ionic sizes.
63
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TasLe I. Ture CrysTAL STrRUCTURES OF THE Compounps Ry(MX,),
Substance, symmelry and structure type a, ¢, OT References
p-Ag.Hgl, Tetragonal Ag.lIigl, (ac) 6.340 6.340 1931, 257.
a-Ag,Hgl, Cubic (ad) 6.383 1934, 133.
(stable above 50° C)
AglO, Tetragonal CaWO, (d) 5368 12.013 1932, 51.
AgReO, Tetragonal CaWO, (d) 5.349 11.916 1933, 81.
AgS0, Ortho- Na;SO; (ae) 5.847 10.251 1931, 179; 1932, 492.
rhombic b, =12.659
AgsSbS Ortho- (af) 7.85 8.58 1932, 394.
(Stephanite) rhombic b,=12.48
Ag,SeOy Ortho- Na;SO, (ae) 6.069 10.211 1931, 179.
rhombic b,=12.815 '
BAsO, Tetragonal BPO; (ag) 4,459 6.796 1933, 421, 1934, 240.
BPO, Tetragonal BPO, (ag)  4.334 6.636 1933, 421; 1934, 240.
BaWoO, Tetragonal CaWO, (d), 5.64 12.70 1931, 344; 1932, 247.
(ah)
BeNaPO, Monoclinic  (ba) 8.13 14.17 1934, 86.
(Beryllonite) b,=7.76, §=90°
CaCrQ, Tetragonal ZrSiO, (f), 7.25 6.34 1930, 381; 1932, 106.
(az)
Ca(F, Cl)Cay(PO.)s (aj) 1930, 426; 1931, 298,
(Apatite) Hexagonal 380; 1932, 203.
CaMg(OII)AsO; Ortho- (ay) 5.88 7.43 1933, 7.
(Adelite) rhombic b,=8.85
CaMg(OH)AsO4 Monoclinic (ay) 5.68 7.57 1933, 7.
(Tilasite) b,=8.63, §=01°28'
CdCr,S Cubic MgAlLO, (k) 10.190 1931, 347.
CdFe,04 Cubic MgALO, (k) 8.45 1931, 116.
CoAlLOq Cubic MgALO, (k), 8.101 1931, 269; 1932, 30.
(ak)
(Co, Ni);S, Cubic MgALO, (k) 9.41 (for several 1931, 318.
(Linneite) mincrals)
CoSO, Ortho- 4.65 8.45 1931, 209.
rhombic* b,=6.71
Co,TiO, Cubic MgALO, (k) 8.420 1930, 246¢; 1931, 212.
Cs0sNO;, Ortho- (al) 8.08 .22 1932, 239, 241.
rhombic b,=8.35
CsReO, Ortho- (am) 5.73 14.26 1933, 222.
rhombie b,=5 98
Cs:8:05 Monoclinic  (bb) 8.13 6.46 1934, 306.
b,=8.33, $=95°19’
CuAl;0, Cubic MgALO, (k) 8.064% 1931, 269; 1932, 223.
CuAsS, Ortho- (an) 6.46 6.18 1933, 463; 1934, 208.
(Enargite) rhombic b,=7.43
CuFe;0, Cubic MgAlLO, (k), 1934, 281.
(quenched) (ak)

* This unit contains four molecules.
1 The other determination (1931, 269) gives a,=8.074 A.



Substance, symmetry and structure type a, C, 0T a
CuFe;0, Tetragonal (ak) 8.28 8.68
(annealed)

Cu,FeSnS, Tetragonal (bd) 5.46 10.725
(Stannite)
B-CuHgl, Tetragonal Ag,Hgl, (ac) 6.08 6.135
a-Cu,Hgl, Cubic (ad) 6.103
(stable above 70° C)
Cu, VS, Cubic (u), (ao) 5.370
(Sulvanite)
FeM:O; C'Ubic MgA.le.i (k) f 8.119‘
(ak)
FeCr,04 Cubic MgALO, (k) 8.344
(Fe, Mg)Cr,0, Cubic MgAlLO; (k),
(Chromite) (ap)
Fe,0, Cubic MgAlLO, (k), 8.374
(Magnetite) (aq)
Fe,TiO, Cubie MgAlL,O, (k), 8.50
(ak)
F0V304 Cubic Mg‘AIzO; (k)
Ga;Zn0, Cubic MgAlLO, (k) 8.323
KBF, Ortho- BaSOs (a) 7.84 7.38
rhombie b,=5.68
KCIlOy (low) Ortho- BaSO, (a), 8.834 7.240
rhombie (ar) b, =5.650
K,CrO, Ortho- K;S0( (m), 5.92 7.61
rhombic (as) b,=10.40
I Mg, (SOy), Cubic (at) 9.96
(Langbeinite)
KMnO, Ortho- BaS0, (a), 9.09 7.41
rhombie (ar) b,=5.72
KOsNO; Tetragonal CaWO, (d), 5.65 13.08
(ah)
Li(Fe, Mn)’O;y Ortho- (au) 4.67 6.00
(Triphylite) rhombic b,=10.34
Li; PO, Ortho- (au) 4.86 6.07
rhombic b,=10.26
Li,SO, Monochnic  (av) 8.25 8.44
b,=4.95, 8=107°54’
MgAl O, Cubic MgALO;, (k), 8.059+ 0004
(Spinel) (ak)
MgCr,0, Cubic MgALO, (k) 8.305
MgFGzO; Cubic MgAl204 UL'-), 8.366
(ak)
MgGa,0, Cubic MgAlLO, (k), 8.279

* In 1931, 269, a,=8.084 A.

(ak)
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Substance, symmelry and structure type a, c, 0" a
Mgln304 Cubic MgA]:O; (k), 8.81
(ak)
MngiOq Cubic MgA.IzO; (k), 8.44
(ak)
MnALO, Cubic MgAlLOy (k), 8.271
(ak)
MnCr0;4 Cubie MgAlLO, (k) 8.436
MnCr,S, Cubic MgAl,Oy (k) 10.045
MnFe,0, Cubie MgALO, (k) 8.457
anTJ.O| CUblC N[gAl;O; (k) 8-67
(NH,);Bel Ortho- K80, (m), 5.8 7.5
rhombie (as) b,=10.2
NH;C]O; Ol'thﬂ- BﬂSOq, (G), 9.202 7.449
(low) rhombie (ar) b,=5.816
(NH;}:CIO; Monoclim'c (aw) 615 7.66
b,=6.27, =115°13’
NH.0sNO; Ortho- (az) 5.53 13.54
rhombic b,=5.86
(NH,)2S:0s Monoclinic  (bb) 7.83 6.13
b,=8.04, 3=95°9"
Na,SO, Ortho- Na,S04 (r), 5.85 0.75
rhombie (ae) b,=12.29
NiALO, Cubie MgAlLO, (k), 8.050
(ak)
NiCr,Oq Cubic MgAlLO, (k) 8.30
PbiCla(AsOy)s  Hexagonal (aj)
(Mimetitc)
PbyClL(PO,)s Hexagonal (aj)
(Pyromorphite)
Pmelg (VO;) 6 Hex&gona,l (ﬂj)
(Vanadinite)
PbCrOy Monoclinic  (z) 7.10 6.80
(Krokoite) b,=7.40, =102°27"
PhZn(OH)VO, Ortho- (az) 6.05 7.56
(Descloizite) rhombic b,=9.39
RbOsNO; Ortho- (az) 5.57 13.64
rhombic b,=5.84
RbReOy Tetragonal CaWO, (d) 5.80 13.17
TIOsNO; Ortho- (ar) 5.42 13.45
rhombic b,=5.68
TIRcO,4 Ortho- (am) 5.63 13.33
rhombic b,=5.80
YVO, Tetragonal  ZrSiOq (f) 7.126 6.197
ZnAl,O, Cubic* MgAlLO, (k), 8.062
(ak)
ZnCr,04 Cubic MgALO, (k) 8.296
ZnCr;8, Cubic MgAlLO, (k) 9.92
ZI’!FE!zOqI Cllbi[}' MgAle; (k) 8.423

THE STRUCTURE OF CRYSTALS

* In 1931, 269 and 1932, 198, a_=8.093 A.
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Substance, symmelry and structure type a, C, 0T References
ZnS0O, Ortho- (be) 8.58 4.76 1934, 237.
rhombic b,=6.73
anSnO¢ Cubie MgAlel (k), 8.61 1932, 30.
(ak)
Zn;TiOy4 Cubic MgALO, (k) 8.410 1930, 246¢c; 1931, 212.

ments proposed in the first two investigations are obviously wrong since
they are chemically unreasonable, give unsatisfactory interatomic dis-
tances and fail to agree with observed intensities of reflection. The most
recent structure (1932, 493), illustrated in Figure 305a and b, meets these
requirements, the data being drawn from spectral photographs. Trans-
ferring the origin of 1930, 352, p. 69 to a center of symmetry at 111
atoms are in the following positions:

8 S: (a) £(353) and 6 similar points about 031, 110 and 020
16 Na: (g) (%3u); (%, %, +—u) and 12 similar points about
12, 330, 101 with u=0.436
32 O: (h) ﬂ:(xyz); :!:(K, %_yl %—Z); :t(i""‘xs Y, %—Z); :!:(%—X,
i—Y, z) and 24 similar points about 0%}, 110, 103}
with x=—0.022, y=0.056, z=0.214.

Silver sulfate, AgsSO4, and the corresponding selenate, Ag,ScQOy, are
isomorphous with Na,SO,. The structure given them from a study of
their photographic refleetions is not like that outlined above and yields
improbable interatomic distances. It has since been shown that these
data are explicable in terms of the Na,SO, structure with the following
slightly different parameters for Ag.S0,: u(Ag)=0.450, x=0.022, y=0.058,
z=0.208.

48) (77 @m@

ooeferede

02) (27 { ;
@~@ | 3 s

F16. 305a.—(left) Atoms in the orthorhombic arrangement found for Na,SO, projeccted
on an a-face. The atoms forming the SO, ions are joined by light lines.

F1a. 305b.—(right) A packing drawing of the Na*+ and SO, ions in Na,SO,.
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(af) The cell of stephanite, AgsSbS,, contains four molecules; its space
group is said to be V}'.

(ag) The tetragonal cells of BPO, and BAsO, are bimolecular. Ac-
cording to a structure developed from S they have atoms in the following
positions:

B: (¢) 04%; 203 P (or As): (a) 000; 3%
O: (g) xyz; yxZ; Xyz; yXz;
X+%, y+%s Z-{-%, %—y; X+%, %—'Z; %“—-X, %""Y, Z+‘é; Y'Jf'%r %'—X, %-—Z.

For BPO,, x=0.138, y=0.260, z=0.131; for BAsO,, x=0.160, y=0.260,
z=0.140. This arrangement, as a distortion of the high cristobalite group-
ing [XII, (ae), (bd)], consists of linked BO4 and P (or As) O, tetrahedra
(Figure 306a and b).

Fic. 306a.—(left) Atoms of
the structure chosen for
BPO; projected on one of
the a-faces of 1ts tetragonal
cell. The smallest circles
are P, the intermediate cir-
cles B atoms.

I1a. 306b.—(right) A pack-
ing drawing of a. The O
atoms have their ionic ra-

dius; the size of the B atom
is without sigmificance.

(ah) Every study of crystals with the CaWO, (d) arrangement has
resulted in different oxygen parameters. A new set, for BaWO,, is x=0.20,
y=0.46, 7z=0.32.

Potassium osmiamate, KOsNOj, is reported to have this structure with
N and O atoms indistinguishable from onc another. The parameters
chosen for these atoms are x=0.23, y=0.05, z=—0.065.

(az) The positions found for the oxygen atoms in CaCrO, are those
established in other crystals having the zircon grouping (f): u=0.17,
v=0.34.

(aj) X-ray measurements have been made upon a number of sub-
stances with structures like apatite, Ca(F, Cl)Cay(PO,);, (z). The hex-
agonal unit prisms found in this way are recorded in Table II.

In the apatite arrangement (z) fluorine atoms are in (a) 00%; 00%.
Another possible pair of positions, which could not be rigorously excluded
by the observed intensities, would place them in the larger holes (b) 000;
003. It has bcen shown that in the lead compounds, PbiCla(MOy)s,
where M=P or As, packing requires that the chlorine atoms must be in



STRUCTURES OF THE TYPE R.MX,), 69

these alternative positions (b). Parameters chosen to give suitable pack-
ing throughout the structure for these two crystals and for the chlor-X-
apatite of Table II are listed in Table III. The previously found values
for apatite itself are included for comparison.

TaBLE II. UniT CELLS OF APATITE-LIKE SUBSTANCES

Name Formula a, Co
Apatite Cayo(F, Cl)3(POy)s 9.36 6.85
Chlor-X-Apatite Cayo(Cl, X)2(POy)s 9.52 6.85

y .9, i

Pyromorphite PbiCly(POL)s g G5
. . 10.24 7.43
Mimetite PbCl(AsOy) 10.36 752
. 10.31 7.34
Vanadinite PbyoClL(VO,)s 10.47 7.43
Hydroxy-Apatite Cayo(OH)2(POy) s 9.40 6.93
Tricalcium Phosphate Hydrate Cay(IT,0),(PO,) s 9.25 6.88
Oxy-Apatite Cas0(PO,)6 9.38 6.93
Bone (Naptha extracted) .27 6.95

TaBLE III. PARAMETERS IN APATITE AND RELATED CRYSTALS

Apalite Pyromorphite Mumelite Chlor-X - Apatite

Atom x v £ z v z - v z z y z

F, Cl 0 0 1 0 0 0 0 0 1] 0 0 0

Ca, Pb(1) (f) $ i 0 ] i 0 ) 1 0 i i 0

Ca, Pb(2) (h) | 0 i % 0.003 % | 0 i 1 0 i

P, As (h) 0416 0 361 i 0417 369 1 0411 0.392 b 0417 0361 s

0(1) (h) i Y 3 344 480 by 317 458 1 333  .500 3

0(2) (h) 60 466 1 600 464 % 644 503 % 600 467 3}
0(@3) ) 3 0062 .350 .250 0063 .336 .272 0061 .333 .250 0.063

(ak) Unexpected intensities are observed from a number of compounds
which obviously have the spinel, MgAl,O,, structure (k). Two explana-
tions have been offered: one is that the metal atoms are distributed hap-
hazardly among all the metal positions, both (8f) and (16¢); the other
considers that half of the sixteen chemically alike atoms are in (8f) and
that the rest together with the eight chemically alike metal atoms are
irregularly distributed throughout (16¢). The latter has been called an
“equipoint” structure. Qualitative estimates of intensity do not seem
to conflict with the second interpretation but more quantitative observa-
tions and calculations are needed for final confirmation. Accurate param-
eters have been found for the oxygen atoms in several compounds. These
additional data are collected in Table IV.

Cupric ferrite, CuFe,04, when quenched, is cubic with the spinel struc-
ture; if it is slowly cooled or annealed at 350° C for some time its pattern
1s said to be that of the tetragonal cell of Table I.
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TasrLe 1IV. Type AnND ParamereERrR I'OoUND FOR
SEVERAL SPINEL STRUCTURES

Type Parameter
Normal “Equipoint” u
Co Ale( 0.390
FeA.le; .390
FeTiFeO, .390
MgAhO; 390
FeMgFeO, .390
GaM [,’,"G &04 .392
InMglInOy .372
MgTiMgO, .390
MnAlg(h .390
NiALOq .390
ZnAlLO, 390
ZnSnZnO, .390

(al) The unit prism of CsOsNO; contains four molecules. Its Cs and
Os atoms are said to be in the following positions of V2:

Os: (¢) Oui; 062 and (d) iu'}; 16’2 with u=u'=1
4 24 4 8
Cs: (e) xyz; xyz; X, y, 3—2; X, ¥, z+% with x=%, y=§, z=1.

(am) Four molecules are included in the pseudo-tetragonal orthorhom-
bic cells of CsReOy4 and TIReO,. The space group has been given as V.

(an) Two differing determinations have been made of the structure
of enargite, Cu;AsS,. According to one the atoms of its single molecule
cell are all in positions (g) of the orthorhombic space group Vi2. Sulfur
atoms are in one set of these special positions, copper and arsenic atoms,
grouped together, in another.

The unit prism of the other and presumably correct arrangement (sce
Table I) is twice as high in the direction of the b-axis, i.e. b,=7.43 A.
The atoms in the bimolecular unit are distributed according to the fol-
lowing cases of C},:

(@) wOv; G, 3, v+3  (b) xyz; X, 3y, z+3; X, y+3, 2+§; xyz

with the parameters listed in Table V. The axes of this description differ
from those of 1930, 352 by an interchange of X’ and Y’. Like so many

TaABLE V. PARAMETERS OF THE AToMs IN CusAsS,

Atom No. per cell Positions z Y z

As 2 (a) 0.820 0 0

Cu(l) 2 (a) 165 0 0.500
Cu(2) 4 (b) .333 0.245 .990
S(1) 2 () .830 0 .360
S(2) 2 () .140 0 .875
S(3) 4 (b) .330 .255 .367
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other sulfides this grouping is a system of sulfur tetrahedra linked by
sharing corners and having metal atoms at their centers. As Figure 307b
shows, the packing is excellent if the crystal is assumed to be made up
of neutral atoms (As-5=2.21 A, Cu-S=2.31 A).

Fira. 307a.—(left) The orthorhombic unit of enargite, Cu;AsS,, projected on its a-
face. The small circles are S, the largest circles are Cu atoms.

Fia. 307b.—(right) A packing drawing of Cu;AsS; giving the atoms their neutral radii.
Atoms of As are line-shaded.

(a0) A new and simpler structure has been found for sulvanite, Cu;VS,.
With a cube edge half that previously chosen, the unimolecular cell has
atoms in the following positions of T (Figure 308):

V: (1a) 000 Cu: (3b) 300; 030; 003
S: (4a) uuu; uidid; Guid; Gau with u=0.235.

This leads to a V-S separation of 2.18 A; the Cu-S distance is 2.28 A.

O—0O—O0

Fia. 308.—A cube face projection of @ @

the atoms in the new grouping estab- C
lished for sulvamite, Cu;VS, The @ )
smallest circles are V, the largest S

atoms. @ @

(ap) The edge lengths of the unit cube of several chromites, (Fe, Mg).
(Cr, Al);O4, have been measured. These lengths increase with the CryO;
content.

(ag) Powder photographs of magnetite, Fe;O;, made at various tem-
peratures down to ca —170° C prove that the anomalous heat effect found
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at —160° C is not due to a change in structure. Like MnO, Fe; O, is,
however, reported to have a region in which it shrinks on being warmed
(see Table II, Chapter XIA).

(ar) Positions have been assigned to all the atoms in three substances,
KMnO,, KCIO; and NH,CIO,, with the barite, BaSO,, structure (a).
These crystals have units which are almost identical in size and it is prob-
able that their real atomic positions are practically the same. Neverthe-
less the structures proposed for the permanganate and for the perchlorates
show important differences (Figures 309 and 310). The KMnO, deter-
mination rests on photographic spectral data; the observations on KClO,
and NH,ClO, are more quantitative spectrometric measurements. It is,
however, difficult to be sure of the deductions from the latter results.
The published parameters are obviously wrong: they correspond to an
utterly impossible grouping. If the drawing of the perehlorate paper
(1932, 177) is assumed to be correct and the parameters are altered to
fit it, a structure is obtained which yields the interztomic distances stated
in the paper and which thercfore is probably the intended one. These
paramecters, and the values for KMnQq expressed in terms of a unit with

k)

& Fia. 309.—(left) The unit cell of the
orthorhombie structure found for
KMnO; projected on its b-face.
Atoms of the MnO, 10ns are con-
necled by light lines.

@@@%@@®

A

&)
®
615'
3e
N

Fra. 310.—(right) The arrangement

|
]

selected for KCIO, projected upon @) @@{;‘
its b-face. Atoms of the ClO, tetra- Sy oA
hedra are united by light lincs. % R @) @
4
TaBLE V1. PARAMETERsS oF THE AToms 1IN KMnO,, KCIO, ano NH,CIO,
KM n04 K ClO;* N. If 40204*
Atom Positions =z Y z z ¥ 2z z Y z
K or NH; (c) 019 %1 016 0.192 1 0.167 0.197 1 0.172
Mn or Cl (e) 07 3 687 075 1 689 .067 1 .694
0(1) (c) 99 1 49 175 % 550 .169 1 .550
0(2) (c) 2 1 .61 —.078 t 606 —.078 ] .600
0(3) (d) .07 0.03 .80 .083 0.042 .819 .075 0.042 .819

* These valucs are obtained from the parameters of 1932, 177 by adding % to the
z coordinates of Cl, O(1) and O(2), and by changing the sign of x of O(2) and z of O(3).
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the same origin, are listed in Table VI. The necessary coordinates (as
stated on p. 283 of book) are:

(¢) £(uiv); =(u+i, 4, 3—v)
d) =&xyz); £(x, -y, 8); =(x+3}, ¥, 3—2); £ (x+3, iy, 3—2).

It is interesting that in spite of the very different positions of atoms o(1)
and O(2), neither of these arrangements gives unrecasonable atomic separa-
tions and each is supposed to be required by the observed data. Addi-
tional work will undoubtedly provide another demonstration of the fact
that acceptable interatomic distances and qualitative agreement with a
limited number of intensity estimations arc insufficient to establish most
structures with many parameters.

(as) Atomic positions have been found in two crystals isomorphous
with K,S0, (m)—K,CrO4 and (NH,),BeF,. Their parameters (Table VII)
are essentially those previously chosen for the alkali sulfates. The values
recorded for K;(rO, in Table VII have been derived from the conclusions
of 1931, 501 by reversing the signs along ¢ and adding one half.

TasLe VII. PARAMETERs oF THE ArToMs IN K,CrO: anp (NH,),BeF,

FO‘I" KgCT04 F()f’ (N}.h)zBEFQ,

Atom  No. per cell x Y z Atom z Y z

K(1) 4 b 0.417 0.644 NH(1) 1 0.393 0.675
K(2) 4 vy —.305 0 NH,(2) 1 —.325 —.046
Cr 4 i 417 .230 Be i 417 .263
0) 4 % 417 .019 F(Q) % .390 051
02) 4 Y 561 .300 F(2) 1 573 .300
0(3) 8 0.028 .345 .300 F(3) 0.024 353 .350

(at) The unit cube of K,Mg,(SO,); contains four molecules. Its space
group has been found to be T4

(au) The mineral triphylite, Li(Fe,Mn)POy, and the compound Li,PO,
have orthorhombic cells similar in size and shape to the unit of chryso-
beryl, BeAl;O,, (I). It has been inferred that their structures too are
similar.

(av) The monoclinic unit of Li,SO, contains four molecules. An
arrangement, based on spectral photographs, places all its atoms in the
general positions (e) ==(xyz); +=(3—x, y+%, z) of C5,. The chosen param-
eters, recorded in Table VIII, give the grouping illustrated in Figure 311.

(ew) The monoclinic cell of (NH,),CrO, is bimolecular. The space
group is reported to be CL. )

(az) Ammonium osmiamate, NH,OsNO;, like CsReO; (am), has a
four-molecule pseudo-tetragonal orthorhombic unit suggesting the tetrag-
onal CaWO, (d) arrangement. The space group assigned to NH,OsNO;,
V4, is different from that proposed for CsReO,.
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The rubidium and thallium salts, RbOsNQO; and TIOsNOj;, are struc-
turally isomorphous with NH,OsNO;. It is thought that the rubidium
and osmium atoms in the general positions of V4, xyz; x+3, i—y, 7; %,
y+3, —é———z, 3—X, ¥, z+3, have as approxima.te parameters, for Rb: x=0.03,
y=1%, z=%; for Os: x=0.03, y=1%, z=1.

TaBLE VIII. PARAMETERS oF THE AToMs 1N Li.SO,

Atom z Y z

Li(1) 0.205 0.582 0.375
Li(2) 455 582 125
S .319 .061 .250
Oo(1) 492 —.042 .250
0(2) .186 —.042 .099
0(3) .280 ~.042 .401
0(4) .319 367 .250

5?.
% \

F1a. 311a.—(left) The monoclinic structure determined for Li;SO4 projected on its
b-face. The largest circles arc O, the smallest are Li atoms.

Fia. 311b.—(rght) A packing drawing of a showing Li ions and SO, tetrahedra.

(ay) Two minerals, adelite and tilasite, each of which is essentially
CaMg(OH)AsQO,, have units similar in shape and size though the first is
orthorhombie, the latter monoclinic. Both cells contain four molecules.

(az) The space group of descloizite, PbZn(OH)VOx, has been fixed as
Vi®; its cell includes four molecules. The following minerals are said to
be isomorphous, with Cu sometimes replacing some Zn: cuprodescloizite,
mottramite, psittacinite, chileite, eusynchite and dechinite.

(ba) The mineral beryllonite is orthorhombic both in its erystallography
and its X-ray data. The optical anomalies it shows have, however, been
considered to be sufficiently marked to prove its monoclinic symmetry.
For such a crystal the 12-molecule cell of the table is without doubt too
large to be the true unit.
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(bb) The monoclinic cell of ammonium persulfate, (NH,),S,0g, is bi-
molecular. Irom Laue and spectral photographs it has been concluded
that the space group is Cj, with all atoms in the gencral positions (e)
+(xyz); +(x+%, 23—y, z+3)[see p. 58]. The chosen atomic parameters
are listed in Table IX. As can be scen from Figure 312a and b, this de-
termination yiclds an S,0g ion which consists of two SO, tetrahedra joined
through an oxygen-to-oxygen bond (O-O=1.46 A).

The cesium analogue, Cs,S;0s, is isomorphous. Cesium parameters
have been taken as x=0.144, y=0.125, z=0.228; the parameters for the
other atoms have the same valucs as in the ammonium salt.

TaBLE IX. PaAraMETERS oF THE AToMs IN (NH,).S.0s

Alom T Y z

NH, 0.144 0.125 0.250
S .136 .350 708
0(1) 042 .500 611
0(2) .028 194 .680
0(3) .208 417 930
04) .292 347 597

Fia. 312a.—(left) The monoclinic arrangement found for (NH,).S,0; projected on its
};-f}:lxc(le: The largest circles are NH, ions; the atoms of S;03 10ns are connected by
1ight lines.

Fia. 312b.—(right) A packing drawing of a. The NII, ions are line-shaded.

(be) Four molecules are to be found in the unit prism of anhydrous
ZnSO4. Its space group has not yet been established.

(bd) The sulfide mineral stannite, Cu,FeSnS,, has a tetragonal two-
molecule unit. Photographic data have placed its atoms in the following
special positions of V'
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Fe: (a) 000; 3} Sn: (b) 00%; 330
Cu: (d) 30%; 303; 03%; 033 S: (i) uuv;ulv; Gdv; Guv
and four similar positions about 333.
Like most other sulfides this structure for stannite (Figure 312¢ and d)
can be considered as an assemblage of tetrahedra with sulfur at their
centers. The interatomic distances that prevail are Cu-S=2.31 A, Sn-S=

2.13 A, Fe-S5=2.36 A. Of these the iron-sulfur separation is exceptionally
large.

Fia. 312c.—(left) The tetragonal structure found for
stannite, Cu.FeSnS,, projected on an a-face. Atoms of
Sn, Cu, Fe and S are represented by circles of decreas-
ing size.

Fia. 312d.—(right) A packing drawing of ¢ n which atoms
have their neutral radii. Atoms of Fe are linc-shaded.



Chapter XVIIA. Structures of the Type R.(MX,),

() A number of compounds isomorphous with Ba,Ni(NO,)s are re-
ported to be cubic and to have the (NII,)PtCls structure (a). A more
detailed study of one or more of thesc crystals is needed to insure that
the symmetry really is cubic and to establish the positions of the nitrogen
and oxygen atoms. '

(k) Several complex nitrites isomorphous with Cs;Rh(NO,)s are said
to be cubic. Their atomic arrangements are considered to be like that of
(NH,);FeFs (g) with nitrogen in place of fluorine and oxygen in positions
(48f) ui0; ete. (1930, 352, p. 113). For several of these crystals u(N)
has been chosen as 0.26, u’(O) as 0.13. Such a distribution is improbable
since 1t would cause the oxygen atoms to be shared between neighboring
nitrogen atoms instead of forming distinct NO; groups.

(1) The unit cubes of Ca;[Al(OH)g]. and of Sri[AI(OH)el. have been
described as containing eight molecules; their space groups are given as O},

(m) The unit cubes of the alkali fluophosphates isomorphous with
KPF; contain four molecules. Their space group is thought to he T? and
it is asserted that the observed intensities conflict with the idea of PF
radicals. Further work is obviously needed before anything is known
about the structures of these crystals.

(n) The bromine parameter in K,SeBrg has been determined as 0.245;
in (NH,),SeBr, it lies between 0.24 and 0.25. It has been stated that
for all similar compounds listed in Table I, u(Cl) is greater than 0.23
and less than 0.25.

(o) The compound NaK,AlFs has been given a structurc which is a
slight distortion of the (NH,);FeF; arrangement (g). Aluminum atoms
are at (4b) 000; etc., Na at (4c) 31%; etc. The potassium atoms are in
(8h) with a parameter u=0.25 thus making their positions identical with
(8e) 4i%; cte. The fluorine atoms are put in general positions (d) xyz;
ete. of T (see p. 268 of book) with x=0.03, y=0.01, z=0.22. No data
have been published which allow an estimate of the accuracy of this
determination.

(id
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THE CRYsTAL STRUCTURES OF THE ComrouNnps Rx(MXj)y

TasrLe I.

Substance, symmelry and structure type a,
Ba;Ni(NO;)s Cubic ) 10.67
Bas[Rh(NOs)¢J: Cubie or ) 10.70

Pscudo-cubic

Cas[Al(OH)sJ, Cubie (4] 12.56

Cs:AgAuCl, Cubic (s) 5.33

Cs;AutAut*+Cls Cubie (s) 5.33

Cs;Co(NO,)s Cubie (k) 11.15

Cs;Fe(CN)g (e)

Cs3Ir(NO2)s Cubic (k) 11.17

CsPFy Cubic (m) 8.19

Cs:PbCl, Cubic (NH,),PtCls 10.415
(a), (n)

Cs. PtCl, Cubie (NHq)thCln 10.185*
(@), (n)

Cs; Rh(NO,) 6 Cubhie (k) 11.30

Cs:5c¢Clg Cubie (NH,)PtCls 10.260
(@), (n)

Cs,5nClg Cubic (NH,).PtCl; 10.348
(a), (n)

CSgTec.la Cubic (NIL)thC]a 10.449
(@), (n)

Cs, TiCl; Cubhie (NH).ItCls 10.219
(a), (n)

Cs;ZrCly Cubic (NH,).PtCl; 10.407
(a), (n)

IK;BaCo(NQO;)s  Cubie ) 10.45

K,BaN1(NO,)s Cubie (f) 10.67

K,CuCo(NQO,)s Cubic ) 10.17

K,CaN1(NO,)¢ Cubic )] 10.29

K;Co(NOy)e Cubic (7) (k) 10.44

K;Cr(CN), (d)

K;Fe(CN)s (d)

IKGIr(CN), (@)

K;Ir(NO,)s Cubie (k) 10.57

K;Mn(CN), (d)

K;NaAlF, Cubie (o) 8.69

KN1(NO,)s Cubie (?) (p) 10.49

K,0sNCIt

K;0s0,Cl, Tetragonal (q) 6.99

KPF, Cubic (m) 7.76

K,PtCl, Cubic (NH,).PtCls 9.725
(@), (n)

K;Rh(NO,)s Cubic (k) 10.63

KQSOBTQ Cubic (NH¢)2PtClu 10363

(@), (n)

* According to 1933, 54, a,=10.120 A.
1 Journal not available.

c,0ra
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Substance, symmetry and structure type

K.SnCle
KQSI'CO(NOQ) 8
KoSrNi1(NOy),
KQTOCIG
(NH¢)3Co(NOy)e
(NHq)acha
(NI];)sI!‘ (NOz) 8
NH,PF,
(NH,).PbCls
(NIIL,).PtClsg

(NH)sRh(NO,),
(N I’Ii) 2SEBTG

(NII,),ScCl,

(NTIL),S1T
(NH;)gSIlC]a

(NH4) 2TE Cl 6

(N I‘Iq} 3V I'.‘G
Na;AlF
PhyNi(NO-)4
Phi[Rh(NO,)s ]2

R]JsCU(NOg)ﬁ
RIJJFE(CN)E

RbaII‘ (NOz) [
Rb,I’bCls

Rh,PtCl,

Rb;Rh(NO,),
Rb,SeCl,

Rb2SnCls
Rb,TeCls
Rb,TiCl,
Rb,ZrCl,
Sr;[AI(OH)g

ST:NI (NO:) 8
44| 3 Co (N Og) 8

Cubic (NH,).PtCls
(@), (n)

Cubic )]

Cubic )]

Cubic (N'H,).PtCl,
(@), (n)

Cubic (k)

Cubic (9)

Cubic (k)

Cubic (m)

Cubie (NH,),PtCl,
(a), (n)

Cubie (NH,).PtClg
(a), (n)

Cubie (k)

Cubie (NH,).PtCl,
(a), (n)

Cubic (NI‘L):PtCIs
(@), (n)

Hexagonal  (t)

Cubic (NH;):PtCIg
(@), (n)

Cubic (NH,),PtCl;
(@), (n)

Cubic (9)
(h)

Cubic (7)

Cubic or (r)

Pseudo-cubie

Cubie (k)

Monoclinic K;Fe(CN)s
(d)

Cubie (k)

Cubie (NH,).PtCls
(a), (n)

Cubic (NII,),PtCl,
(a), (n)

Cubic (k)

Cubie (NH,),PtCl,
(a), (n)

Cl.lbic (NH;)QPtCIu
(a), (n)

Cubic (NH,).PtCl,
(a), (n)

Cubic (NIL,).PtCls
(a), (n)

Cubic (NH,).PtCl,
(a), (n)

Cubic )

Cubie )

Cubie (k)

STRUCTURES OF THE TYPE R.(MX,),

a’n
9.983

C, 0r a

10.23
10.49
10.143

10.81
9.01

10.73
7.92

10.135

9.834

10 91
10.46

9.935

5.76
10.038

4.77

10.178
9.04

10.55
10.53

10.73
1374 863
b,=10.66, #=90°3"
10.77
10.198

9.882

10.83
9.978

10.100
10.233
9.922
10.178
13.02

10.54
10.72
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Substance, symmetry and structure (ype a, C, OT References
TLIr(NO,)s Cubic (k) 10.73 1933, 132.
T1,PtCl,s Cubic (NH,).PtCls 9.755 1934, 325.

(@), (n)
TlsRh(NOz)s Cubic (k) 10.91 1933, 134.
TLSiFs Cubic (NH,),PtCls 8.60 1933, 460.
(a)
TL,SnCl, Cubic (NH,).PtCls 9.970 1934, 325.
" (G), (n)
T1,TeCl,s Cubic (NH,).PtCls 10.107 1934, 325.
(a), (n)

(p) The compound K,Ni(NO,)s, which probably has less than cubic
symmetry, has been given a cubic or pseudo-cubic unit containing four
molecules.

(9) The tetragonal unit of potassium osmyl chloride, K,0s0,Cl,, is
bimolecular. Its atoms, with an arrangement which is a slight distortion
of the familiar (NH,).PtCls grouping (a), arc in the following spccial
positions of D} :

Os: (a) 000; 33% K: (d) 03%; 30%; 03%; 30%

O: (e) 00u’; 004’; 3, %, 3—u’'; 4, 4, u'+3 with u'=0.21

Cl: (h) uu0; uil0; u+%, 3—u, ; u+3, u+3, 3; aa0; Guo;
3—u, u+3, 3; 3—u, 3—u, 3 with u=0.230.

(r) Unit cubes or pseudo-cubes of Ba;[Rh(NO;)¢]: and Pbs[Rh(NO,)el2
arc supposed to contain two molecules.

(s) Powder patterns obtained from the triple halides Cs,AgAuCls and
Cs,AutAutt+Cls have only the lines required by a perowskite, CaTiO;
[XV, (d)], arrangement. Such a unit would contain only half a molecule;
hence it is suggested that the atoms have as coordinates: Cs: 000, Cl:
03%; 303; 330, Ag (or Aut) and Auttt at 333 in different cells. Though
the structure probably approaches such a simple atomic distribution, the
true unit undoubtedly is a larger one.

() The unit prism established for the hexagonal modification of
(NH,),SiF¢ is unimolccular. A structure has been proposed which places
atoms in the following special positions of Dj,:

NHy: (d) $%u; 330 with u=3 Si: (a) 000
F: (1) =+(uiv); £(2q, 4, v); +(u, 2u, v) with u=0.136, v=ca .

Practically no data have been published in support of this arrangement.



Chapter XVIIIA. Structures of Hydrates and
Ammoniates and of Miscellaneous
Inorganic Compounds

Hydrates and Ammoniates

The hydrates thus far analyzed by X-ray methods fall into three
types. Most of them, and all of the ammoniates, are coordination com-
pounds in which the H,O or NIH; molccules are closely bound to the
metal atoms present. In a few of the crystals described below water
molecules are not thus associated with cations but occupy holes in the
lattice. Such a water molecule is present in Pd(NH3),Cl,- H,O (ba); the
fifth H,0 in CuSO4-5H0 is similarly held. Though these H;O molecules
cannot be driven off without destroying the rest of the atomic arrange-
ment, in many other ways their bonding resembles that seen in the zeolites.
To the third type belong those compounds, like Al;O;- 11,0 or Al;O3-3H-0,
with water so firmly held that it may be present as hydroxyl groups.
Many minerals contain such “water of constitution.”

Fia. 313a.—(lgr) A portion of the di-
@ aspore, Al,O;-H,0, structure pro-
jected on an a-face. Small circles

@ ®|06 are Al atoms. Water molecules, as

® such, do not exist in this grouping.

O Fic. 313b.—(right) A packing draw-
ing of a.

O® OO
®
®

81



82 THE STRUCTURE OF CRYSTALS
TaBLe I. Ture CrysTAL STRUCTURES OF HYDRATES AND AMMONIATES
Substance, symmetry and structure lype a, c, or a References
AlLQ;- 11,0 Ortho- AlLO; 11,0 443 2.80 1932, 121; 1933, 462.
(Diaspore) rhombie (a), (ae) b,=9 36
CaCrQy-11,0 Ortho- (af) 7.99 8.11 1932, 106.
rhombie b, =12.77
2(CaS0y) -ca ;0 Hexagonal  (ag) 6.76 6.24 1034, 46
Fe,05- H,O Ortho- Al0;-H,O 4.64 3.03 1931, 132, 1932, 168.
(Goethite) rhombic (a), (ae) b,=10.0
Fe,03-H,0 Ortho- (ae) 3.87 3.06 1931, 132.
(Lepidocrocite)  rhombie b,=124
3(KPLCl) H,O Trclue 14.35 14 50* 1934, 172.
b,=9.05
Li:SO4- HO Monoclinic  (br) 543 8.14 1934, 361.
b,=4 83, =107°35
MO, - 11,0 Ortho- (ah) 4.41 283 1931, 112.
(Mangamte) rhombic b,=519
Na,CO;-11.0 Ortho- (bs) 10.72 524 1934, 321.
rhombie b,=6 44
Rby(CrI's-H,0)  Cubie (NH,).PtCl, 8.38 1932, 356.
(m)
Shy04- HO Cubic (az) 1024 1933, 316.
(Stibiconite)
TL(VF;-11,0) Cubic (NH,).PtCl, 845 1932, 355.
(m)
AgNO; 2NH; Ortho- (ht) 8.00 629 1934, 58.
rhombie b,=10 58
CaCrO4-2H,0  Ortho- (aj) 16 02 560 1932, 106.
rhombice b,=11.39
CallPO,-2I1,0  Monoclinic  (ak) 10.47 6.28 1931, 149.
(Brushite) b,=15.15, p=98°58'
Cas04-2H,0 Monoclinic  (d), (ak) 1931, 149; 1934, 347a.
(Gypsum)
Cd(ClO,);-2I,0 Monoclinic (al) 8.86 9.76 1931, 282.
b,=7.12, §=90°18'
K,CuCl-2H,O0  Tetragonal (e), (am) 1934, 48.
(NH,);CuBry- Tetragonal (NI,).CuCl,- 7.83 814 1933, 370.
2110 2H,0 (e), (am)
(NI1,),CuCl,- Tetragonal (e), (am) 1034, 48.
2H.0
NaBr-2H,0 Monoclinic  {(an) 6.59 6.51 1932, 482.
b,=10.20, 8=112°30"
Nal-2H,0 Trichnic (ao) 6 85 7.16 1932, 482
b,=5.76, «=98°, p=119° v=683°
a-Pt(NH;),Cly  Tetragonal (ap) 5.72 10.37 1933, 109.
B-Pt(NH,),Cly  Ortho- (ap) 10.0 6.0 1933, 109.
rhombic b,=11.2

* For 3(KPbCly) - 11,0, a=7y=ca 90°, =113°.
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1931, 282.

1934, 170.

1934, 290.
1934, 290
1934, 290.
1934, 59.
1934, 32, 33.
1933, 72.

1931, 401; 1932, 31.
1033, 455.

1933, 456.
1932, 156, 157.

1931, 193; 1932, 119.
1931, 193; 1932, 119.
1933, 53.

1933, 32;
154a.

1934, 15,

1934, 131.
1933, 109; 1934, 71.
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1933, 56.

1931, 184.
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1933, 56.

Substance, symmeltry and structure type a, C, OT @
Zn(ClO,)2-2H,O0 Monoclinic (al) 8.67 9.38
b,=6.88, §=90°20"
Al,Os:3H,0 Monoclinic  (aq) 8.6236  9.699
(Gibbsite) bo=5.0602, 8=85°26’
Ba(ClOy):-3H,0 Hexagonal (bq) 7.28 9.64
1aClO,-3H,0  Hexagonal  (bp) 7.71 5.42
1aI-3H,0 Hexagonal — (f), (bp)
AgS0,-4NH; Tetragonal (ar) 8.43 6.35
BaNi(CN)-411,0 Monoclinie  (as) 11.71 6.63
bo=13.48, 8=104°50"
BaPt(CN)4-4H;0 Monoclinic  (as) 11.89 6 54
bo=14 08, =103°42’
BeS0,4-4H0 Tetragonal (h), (at) 8.02 10.75
[CoNiJCIO,  Ortho- (aw) 18.05 6.95
] rhombic b,=8.10
1, 6[CO(RAJTICT  Ortho- (ar) 1436 1398
rhombic b,=17.97
Na,B0;-411,0 Monoclime (aw) 15.65 7.01
(Kernitc) b,=9 07, =108°52’
[Pt(NH,),JPtCl; Tetragonal (ax) 6.297 6.421
(Magnus’ Green Salt)
[PL(NH;)JPtCl, (az)
(Magnus’ Red Salt)
Zn(Cl0g)2-4NII; Cubie (ay) 10.250
CusS04-5H,0 Triclinie (), (az) 5.12 5.97
b,=10.7, «=82°16', 8=107°26", v=102°40’

IT;PW,,04-511,0 Cubic (bk) 12.14
PA(NH;)Cly- H,O Tetragonal (ba) 10 302 4.34
Pt(N H;).Cl;- I,0 Tetragonal (ba) 10.44 4.21
AlCl;-611,0 Hexagonal  (bb) 7.85 97°4-20"
Bal,-6H,0 Hexagonal SrCl,-6H,0  8.90 4.60

(p)
CaBr,-6I1,0 Hexagonal SrCl,-6IL,0  7.97 3.97

(p)
CaBr, 6NH, Cubic (NH,).P1Cls 10.706

(m)
CaCl;-6H,0 Ilexagonal SrCl,-6H,O  7.86 3.905

(p)
Cal;-6H,0 Hexagonal SrCl,-6H,O0 8.4 4.25

(p)
Cal,-6NT, Cubic (NH,).PtCls 11.24

(m)
Cd(BF,);-6NH; Cubic (NH,).PtCl; 11.380

(m)
CdBr,;-6NH; Cubie (NH,).PtCl, 11.540

(m)

{In 1931, 193, co=5.15 A.
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Substance, symmetry and structure type

Cd(ClOy)2-6NH; Cubic
CdI;-6NH, Cubic
Cd(SOsF).-6NH; Cubic

CdS0,- (NH,).80,-6H,0

Monoclinic

(NH,).PtCl,
(m)
(NH,).PtCl,
(m)
(NIL,):PtCl,
(m)
(n)

b,=12.705, 8=106°41"

a,

11.588
11.046
11.619

9.35

c, Or

6.27

References

1933, 53.
1933, 53.
1933, 54.

1931, 211.

[Co-6NH;](BF,), (m) 11.265 1932, 195; 1933, 54.
Cubic
[Co-6NH;](BFy), (NH,);FeFs 11.211 1933, 63.
Cubic @
[Co-6NH;]Br, Cubic (NH,).PtCls 10.389 1933, 55.
(m)
[Co-6NH;]Cl; Cubic (NH,):PtCls 10.10 1933, 55.
(m)
[Co-6NH;](ClO,), (m) 11.449 1932, 195.
Cubic
[Co-6NH,;](ClO,), ()] 11.384 1932, 195.
Cubie
[Co-6NH,]I, Cubic (NH,),PtCls 10.914 1033, 55.
(m)
[Co-6(NH;-CH,) ]I, (NH,),PtCls 12.05 1933, 55.
Cubic (m)
[Co-6NH;](PF), (NH,),PtCls 11.942 1933, 53.
Cubic (m)
[Co-6NH,](PFs)s (NH,);FeF, 11.670 1933, 53.
Cubie @)
[CO'GNHSJ(SOaF): (NH;)ipt-Ch 11.490 1933, 54.
Cubic (m)
CoS04- (NH)2S0,-6H,0 (n) 9.23 6.23 1931, 150.
Monoclinic b,=12.49, 8=106°56"
CrCl;-6H,0 Hexagonal (bb) 7.95 97°+20" 1934, 3.
Fe(BF,);-6NH; Cubic (NH,),PtCls 11.340 1933, 54.
(m)
FeBr,-6NH; Cubic (NH,),PtCls 10.468 1933, 53.
(m)
FeCl;-6NH;, Cubic (NH,).PtCls 10.148 1933, 53.
(m)
Fe(ClOy):-6NH; Cubic (NH,).PtCls 11.517 1933, 53.
(m)
Fel,-6NH, Cubic (NH,).PtCls 10.965 1033, 53.
(m)
Fe(SO,F),-6NH; Cubic (NH,),PtCls 11.544 1933, 54.
(m)
FeSO,- (NH,);S04- 6H,0 (n), (be) 9.28 6.22 1931, 211.

Monoclinic
Mg(BF ¢)j . 6NH| Cubie

b,=12.57, 8=106°50"
(NH,),PtCl, 11.337
(m)

1933, 54.
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Substance, symmetry and structure type

Mg(ClO,);-6NHs Cubic

M gIs - GNHI

MgSO; b KgSO. E BHso

MgNHAsO,-6H;0

MgSO. * (NH;) :SO; ¥ BHZO

MgSeO, - (NH,):Se0, - 6H,0

MgS0;,- T1:S0,-6H,0

Mn(BF,):-6NH; Cubic

MnBr,;-6NH,

M nCl, . GNHa

Mn(ClOy);-6NH; Cubic

MnIg‘ﬁNHa

Mn(SO;F).- 6N H; Cubic

Ni(BF,),-6NH;,

Nl'Bl'g - GN.‘Hs

NiCl;-6NH;

Ni(ClO,),-6NH;

Nil,-6NH,

Nil,-6(NH,;CHj)
Ni(PFy);-6NH,

Ni(S0,F),-6NH;

b,=7.15, =94°+20'

b,=12.24, f=104°48’

b,=12.72, §=106°27’

b,=12.42, 8=106°30

a

b,=7.40, 5=93°30’

b, =6.14

b,=12.57, #=107°6'

Monoclinic  (bd) 10.25

Cubie (NH,);PtCls 10.468
(m)

Monoclinic  (bd) 9.90

Cubic (NH,);PtCl; 10.158
(m)
(NH,).PtCls 11.531
(m)

Cubic (NIL),PtCl, 10.978
(m)
(n) 9.04

Monoclinie
(bo) 7.00

Orthorhombie
(n), (be) 9.28

Monoclinic
(n) 9.42

Monoeclinic
(n) 9.22

Monoclinic
(NH,).PtCls 11.374
(m)

Cubic (NH,),PtCls 10.519
(m)

Cubic (NH,).PtCls 10.198
(m)
(NH,),PtCl, 11.578
(m)

Cubie (NH,).PtCls 11.037
(m)
(NH,),PtCl, 11.593
(m)

Cubic (NH,),PtCls 11.219
(m)

Cubic (NH,),PtCl, 10.34
(m)

Cubic (NH,):PtCl, 10.064
(m)

Cubie (NH,),PtCls 11.410
(m)

Cubic (NH,),PtCl, 10.875
(m)

Cubie (NH|)gPtrCli 12.027
(m)

Cubic (NH,).PtCls 11.912
(m)

Cubice (NH,);PtCls 11.445

(m)

References

1034, 4.
1933, 53.
1934, 4.
1933, 53.
1033, 53.
1933, 53.
1931, 211.
1933, 397.
1931, 211; 1932, 220.
1031, 211.
1931, 211.
1933, 54.
1933, 53.
1933, 53.
1933, 53.
1933, 53.
1933, 54.
1932, 195; 1933, 54.
1033, 55.
1933, 55.
1932, 195.
1933, 55.
1933, 55.
1933, 53.

1932, 195; 1933, 54.
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Substance, symmetry and structure type a, C, 0T References
NiSO,-6H,0 Tetragonal (be) 6.80 18.3 1932, 32; 1933, 102.
SrBr;-6H,0 Hexagonal SrCl;-6H.0 8.212 4.146 1931, 183.

(p)
SrCl,-6H,0 Hexagonal SrCl;-6H,O0 7.906 4.07 1931, 185.
@), ()
Srl,-6H,0 Hexagonal SrCl,-611,0 8.51 4.29 1031, 184.
. (p)
ZnBr,;-6NH; Cubic (NH):PtCls 10.46 1933, 506.
(m)
Znl,-6NH, Cubic (NH,).PtCls 10.964 1933, 53.
(m)
ZnSO,- (NH,),S04-6H;0 (n) 9.205 6.225 1931, 211.
Monoclinic b,=12.475, B=106°52’
[Coa,. 2S04 3H0 (bn) 11.80 7.42 1933, 454.
Monoclinic b,=10.60, 3=98°39’
MgPt(CN), - 7H,O (t), (bg) 14.6 6 26 1932, 60.
Tetragonal
MgS0,-7H,0 Ortho- 1930, 378; 1932, 19.
rhombic
3CdSO,-8H;0  Monoclinic (bh) 14.65 16.35 1932, 138.
bh,=11 84, §=34°48’
SrO,-8H,0 Tetragonal (»), (D7) 1932, 322.
Naz;SbSs-9H, 0  Cubic* 1033, 483.
4(PO,)Al1-2A1(OH);-9H..0 (bl) 7.27 10.80 1933, 225.
(Wavellite) Orthorhombie be=14.41
Zn(AsO,)yOTT-12H,0 (bm) 1270 10.18 1932, 130.
(Legrandite) Monoclinic b,=7.90, $=75°35'
2Na; PO, Nal-19H,0 (b7) 27.86 1933, 322.
Cubue
GdPMo,;04 30H:0 (bk) 23.1 1933, 198.
Cubie
I;PMo0,;04-30H,0 (bk) 23.281 1033, 198, 248, 249.
Cubie
NdPMo,,04 30H,0 (bk) 23.10 1933, 198.
Cubie
SaPMo0,;:04,- 300 (bk) 23.1 1033, 198.
Cubie
Be,SiW1504,-311H,0 (bk) 23.3 1933, 198.
Cubie
Mg;SiM03;04+ 31 H,O (bk) 23.04 1933, 198.
Cubic
NigSiMO[z()qa':;lHeo (bk) 23.0 1933, 198.
Cubic

* The journal describing this work was not available.
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(ae) The orthorhombic units of diaspore, Al,0;-H,0 or H,Al,O,, and
of goethite, Fe,0;-I,0, arc bimolecular. Studied independently, they
have been given identical arrangements. All atoms are in special posi-
tions (c) of Vi': uv}; 0v3; u+3, i—v, %; 3—u, v+3, 1 with the values of
u and v listed in Table II. Except for ¢, which is half as long, the units
of these oxides and of chrysoberyl, BeAl,O,, are similar in size and shape.
As is readily seen by comparing Figure 313 with Figure 219 (book, p. 293)
the two groupings are similar, both being packings of oxygen atoms with
the small metal atoms lying in interstices.

The other monohydrate of ¥e;0;, lepidocrocite, also has a bimolecular
orthorhombic unit but its space group is V}. It is said that lepidocrocite,
unlike goethite, gives magnetic Fe,0; on dehydration.

(af) The unit cell of CaCrO4-H,0 contains eight molecules. Its prob-
able space group is Vy .

TaBrLE II. PARAMETERS OF THE AToMs IN DIASPORE AND (GOETHITE

Atom For AL;O;‘H-;O FU’J" F&Os'[lgo
u v u v
Al or Fe —-0.02 0.11 —0.05 0103
O(1) 75 —.04 .75 —.04
0(2) 22 .29 .25 .29

(ag) Recent work on plaster of Paris revives the question of whether a
hemihydrate, CaSO,4-}H,0, or anhydrous CaSO, provides the proper for-
mula. It has been shown that the water remaining in burnt plaster can
be nearly all removed without destroying the crystal form and without
altering the diffraction pattern. From this it has been concluded that the
water is present in a zeolitic condition—within holes existing in the crystal-
line structure. Assuming that plaster of Paris is built only of CaSO.
molecules, threec of them are to be found within the prism of Table 1.

(ah) The unit cell selected for manganite, Mn,0;-H,0, contains one
molecule. Iixcept for the fact that the length of the b-axis is halved, this
cell is practically the same in size and shape as those of diaspore and
goethite.

(az) Stibiconite, Sb,04 -H,0, gives a powder pattern identical with
that of the anhydrous tetroxide Sb;O4. It is therefore not surprising that
no change of pattern occurs on dehydration.

(aj) The unit prism of CaCrO4-2H,0 contains eight molecules; its
space group is described as V}!.

(ak) Gypsum, CaSO,-2H,0, and brushite, CaHPO,-211,0, are said to
have indistinguishable X-ray patterns and hence to possess unit cells of
the same size and shape. It is reported that ardealite is a 1:1 double salt
of these compounds with practically the same cell.
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In a very recent study it is concluded that the correct space group of
gypsum is C3, and not C}, upon which the structure described in (d)
(book, p. 314) was based.

(al) Four molecules are found within the monoclinic units assigned to
Cd(ClOz)zszO a.nd Zn(Cl()z)g 21‘120

(am) Previous studies of erystals isomorphous with (NH,),CuCl,-2H,0
gave two different atomic arrangements. A reinvestigation, based on
quantitative intensity data and Fourier plots of electron distributions,
leads to a structure that differs from the first one described under (e)
(book, p. 314) only in making equal the parameters u and v for the chlorine
atoms in (f) and (g) [u=v=0.220] and in reducing the water parameters
in (e) to w=0.25. This arrangement for K,CuCl,-2H,0 gives definitely
better agreement with quantitative data than does the second one having
chlorine atoms in (j). It is interesting that no choice between these ar-
rangements could be made from the (NH,),CuCl,-2H;0 reflections.

(an) The monoclinic unit found for NaBr-2H,O contains four mol-
ecules; its space group is C},.

(a0) The compound Nal-2H,0 is described as triclinic with a two-
molecule unit and with C} as space group.

(ap) The a-diamminoplatinic chloride is reported to be tetragonal with
a two-molecule unit; its space group has been given as D,

The pB-form, of a lower symmetry, is said to have a four-molecule
orthorhombic unit.

(aq) Making use of photographic data and some spectrometric meas-
urements a pronouncedly layer-like structure has been assigned to gibbsite
(hydrargillite), Al,0;-3H,0. Atoms of the 8 Al(OII); molecules within
the large monoclinic unit that has been used are in general positions of
Can: (e) £ (xyz); =(3—x, y+3, 3—2). The choscn atomic parameters are
stated in Table III.

TaBLE III. PARAMETERS OF THE ATtoms IN GissiTe, Al,Qs-3H,;0

Atom x Y z

Al(1) 0.177 0.520 —0.005
Al(2) .333 .020 —.005
o) 182 202 -.110
0(2) .682 .672 —.110
0(3) 515 132 —.110
0(4) -.015 .632 -.110
O(5) 298 702 —.100
Q(6) .838 172 —.100

(ar) The tetragonal unit of Ag,SO,-4NHj; contains two molecules. Its
atoms are in the following special and general positions of V4:



THE STRUCTURES OF HYDRATES 89

S: (a) 000; 33% Ag: (d) O%u; 30a; 3, 0, 3—u; 0, %, u+3 with u=0.50

O: (e) xyz;yxz;Xy2;¥x2;5—X,y+3%, §—2; —y, §—x, z+%;x+3, 3y, §—3;
y+3, x+3, z+% with x=0.14, y=0.07, z=0.15

NH,: (e) x'y'z’; ete. with x'=0.10, y’'=0.30, z’=0.50.

As Figure 314 shows, this arrangement is a packing of SO, tetrahedra
and linear NH;-Ag-NH; groups.

a. >

Fia. 314a.—(left) The structure of Ag,SO4-4N1; projected on one of the a-faces of
its tetragonal unit. The argest circles are NH; groups, the smallest are S atoms;
Ag atoms are shown as thick rings.

F1a. 314b.—(right) A packing drawing of a. The small Ag atoms and the large NH,
groups are line-shaded.

(as) The monoclinic units assigned to BaNi(CN),-4H,0 and to the
isomorphous BaPt(CN),-4H,0 contain four molecules. The space group
is given as Cj, with Pt (or Ni) atoms at 000; 00}; 30; 111 and Ba atoms
at 0§%; 03%; 3%%; 333, Other atomic positions have not been fixed.

(at) Two determinations of the structure of BeSO,-4H,0 have been
made from photographic data. The first (1931, 401), based on D}, is
undoubtedly wrong. The other places atoms in the following positions of
Vi (written not as the face-centered grouping of 1930, 352, p. 77 but in
terms of a diagonal body-centered unit):

S: (c) 300; 030; 30%; 033 Be: (b) 00%; Ou?; 331; 333
O: () xyz; yxz; Xyz; J%Z; X+3, 3V, 2; y+4, 1—%, %;
3—Y, x+3, Z; 3—X, y+3%, z and 8 similar points about 33}.

For the sulfate oxygen atoms x=0.40, y=0.13, z=0.08. The water mol-
ecules, likewise in (i), are given the parameters x’=0.10, y'=0.14, z'=0.16.

In this arrangement the beryllium atoms, which of course cannot be
located with certainty by the X-ray data, have been placed at the centers
of the groups of water molecules. The structure as a whole thus is a
packing together of SO4 and Be(H,0), tetrahedra (Figure 315).

(au) The orthorhombic cell which has been given to [Coﬁ?ﬁ,).]ClO..
contains four molecules. Its space group is said to be Ci,.
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F1a. 315a.—(left) The atomic arrangement in tetragonal BeSOy- $H,0 projected on ils
c-face. Be atoms are shown as thick rings, S atoms as the smallest circles. The
H;0 molecules are thickened large circles.

Fra. 315b.—(right) A packing drawing of a. Oxﬂgpns of the SO, tetrahedra are line-
shaded; Be atoms show within their water tetrahedra.

(av) The orthorhombic unit of 1,6[Co{NEX]CI is reported to contain
16 molecules.

(aw) The unit found for Na,B,0,-4H,0 possesses four molecules; its
space group is thought to be Cj,.

(ax) The two studies that have been made of Magnus’ green salt,
[Pt(NHj,),]PtCl,, do not agree in the height of its one-molecule tetragonal
unit. The following atomic positions, suggested in 1932, 119, are not
adequately established by the published data:

Pt: 000; 00% Cl: £(uv0); £ (vi0) with u=0.18, v=0.32
NHs: +(u'v'}); =(va’3) with u'=0.40, v'=0.11.

In 1931, 193 it is said that Magnus’ red salt has not only the same
composition as the green salt but a cell of similar size and shape (a,=6.293
A, ¢,=525 A). Another determination (1932, 119) concludes that it is
orthorhombic with a,=7.9 A, b,=8.2 A, ¢,=7.9 A.

(ay) The unit cube of Zn(ClO,),-4NHj; is said to contain four mol-
ecules. It would be interesting to establish, by further chemical analyses,
that this salt is really a tetrammoniate and not a hexammoniate.

(az) A recent study of CuSO,4-5H,0, based on photographic data and
a Fourier analysis of some spectrometric measurements, has led to an ar-
rangement which places the copper atoms in its bimolecular triclinic unit
in the symmetry centers 000 and 330. The other atoms arc in general
positions =+ (xyz) of C} with the parameters of Table IV.

As can be seen from Figure 316 the water molecules are of two kinds.
Four of them are coordinated with the copper atoms. The fifth, like
zeolitic water, occupies a hole in the structure, its neighbors being two
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TaBLE IV. PaAraMETERS OF THE AToMms IN CuSO,-5H;0

Atom No. per cell ] Y z
Cu(1) 1 0 0 0
Cu(2) 1 Y ) 0
S 2 0 0.28 0.64
o(1) 2 0.89 .15 .69
0(2) 2 24 31 .82
0(@3) 2 86 .38 64
0O(4) 2 .02 .30 .38
H,0(1) 2 .83 .08 .16
H,0(2) 2 .29 A1 17
H,0(3) 2 .48 41 .32
H,0(4) 2 .76 42 .01
H,0(5) 2 43 12 .65

0 O
€D
@EE
Do

O
(O)\() O
Fra. 316a.—(left) A projection of the trielinic CuSO4-5H,0 arrangement viewed down
the c-axis (after 1934, 15a). The smallest circles are S atoms, the largest are H,O

molecules. Non-coordinated H,O molecules are thickened. Atoms of the SOy 1ons
are connected by hight lines.

Fia. 316b.—(mght) A packing drawing of a. The sulfate oxygens are line-shaded;
small black S atoms show 1n two of the SO4 groups. All H:O molecules, whether co-
ordinated with the Cu atoms or not, are dot-shaded.

water molecules and two sulfate oxygen atoms. Iach copper atom is
surrounded by an octahedron of atoms. Four of these are its coordinated
water molecules situated approximately at the corners of a square, the
other two, farther away, are oxygens from different sulfate groups.

(ba) Three unit cells have been suggested for [Pd (NH,),|Cl,-H,;0 and
its platinum analogue. The small one-molecule and the large four-mol-
ecule prisms are presumably wrong. The most recent study (1934, 71),
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using Laue and spectral photographic data, places the atoms of the two-
molecule cells (Table I) in the following special positions of D, :

Pd: (a) 000; 330 H,0: (d) 300; 030
Cl: (h) u, u+4, 3; 3—u, u, 3; u+3, G, 3; 4, 3—u, 3 with
u=0.285

N: (1) uv0; vi0; v+3, u+3, 0; u+3, 3—v, 0; Gv0; Vuo;
3—v, 3—u, 0; 3—u, v+3, 0 with u=0.194, v=0.027.

Four coordinated NH;s molecules are arranged about a central palladium
atom at the corners of a square (NH;3;-Pd=2.02 A). The extent to which
packing prevails in basal planes of this structure and the way the H,O
molecules lie in holes present in these planes can best be seen from
Figure 317.

F1a. 317a.—(left) The atomic arrangement assigned to tetragonal Pd(NHj;)Clp- H,O
as projected on its c-face. The largest circles are Cl ions, the smallest are Pd atoms.
Intermediate circles are NH; if light in outline, H;O if heavy.

Fia. 317b.—(right) A packing drawing of a. The H;O and NH; molecules are not
distinguished.

(bb) The rhombohedral unit found for AICly-6H,0, and for the iso-
morphous CrCl;-6H,0, contains two molecules. An atomic arrangement
of both salts, based on D},, has been determined as:

Al: (b) 000; 333

Cl: () u,3-y, %;3-u, 1, u; 4, v, 3—u; G, u+3 4 ut+3, 4, §; §, G, utd
with u=0.51

O: (f) x(xyz); £(zxy); = (yzx); £(y+3%, x+3, 2+3); £ (x+3, z+3, y+3);
+(2+3%, y+35, x+3) with x=0.26, y=0.16, z=—0.04.

(bc) The two-molecule cells of MgSO,-(NH,),SO4:-6H,0 and of the
many crystals isomorphous with it have arrangements developed from
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Ci.. A structure deduced from an elaborate consideration of photographic
data has all atoms except magnesium in the general positions: (e) 4 (xyz);
+(x+3, 3~Y, z), with the parameters listed in Table V. Mg atoms are
at (a) 000; $30. This arrangement can scarcely be correct because while
the NH,-O and Mg-H:0 separations are satisfactory, sulfate oxygens be-
longing to different SO, groups (such as A and B in Figure 318) are much
too near together (O-O=ca 2.10 A).

TasLe V. PARAMETERS OF THE Atoms IN MgSO,- (NH,).S0,:-6H,0

Atom x Y z
NH, 0.120 0.357 0.345
S .090 .635 .260
o) 153 746 .376
0(2) —-.032 .656 .020
0(3) 227 .566 225
0(4) 012 571 419
H,0(1) .108 127 .094
H,0(2) .168 —.084 .290
H,0(3) 123 —.062 -.150

Fra. 318.—The unit cell of the
structure proposed for MgSQ,-
(NH4}2804 '6[‘120 as pl‘OjBCth
on 1ts b-face. The smallest
circles are S atoms, the largest,
NH, ions. Circles shghtly
larger than S are Mg 10ns.
Molecules of H,O are distin-
guished from sulfate O atoms
by being heavily ringed.

(bd) The monoclinic units of MgBr,-6H,0 and MgCl,-6H,0 contain
two molecules. Photographic data have been used in choosing the fol-
lowing arrangement, based on C3:

Mg: (a) 000; 330  Clor Br: (i) uOv; 00v; u+3, 3, v; 3—u, 3, ¢
For Cl, u=0.320, v=0.615; for Br, u=0.318, v=0.615.

H,0(1): (i) u0v’; ete. with u’=0.20, v'=0.11 for both salts
H,0(2): (§) x(xyz); £(x¥z); £(x+3}, y+4, 2); =(x+3, 3y, 2)

with x=0.96, y=0.20 for both salts, z=0.230 for the chloride and 0.225 for
the bromide.

(be) The four molecules in the elongated tetragonal unit of NiSO,-
6H,0 are arranged according to the demands of the enantiomorphic pair
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of space groups D; and Df. Expressed in terms of D} the atomic posi-
tions found for this crystal are:

Ni: (a) uu0; 4i}; u+3, 3—u, $; 3—u, u+, 1 with u=0.71
S: (a) u'v’0; ete. with u’=0.21
H,0 and O: (b) xyz; y+3, 3%, 2+1; X, §, 2+3; 3—y, x+3, 2+1;
%-—X, Y'i"%; 3}""35 5’3 i: %——-Z; X+%, %_YJ %_Z; yXZ
with the parameters of Table VI.

TABLE VI. PARAMETERS oF THE OXYGEN AToms IN NiSO,.-6H,0

Atom z Y z
O(1) 0.12 0.12 0.068
0(2) 43 17 .000
H,0(1) .67 .45 .054
H,0(2) 97 75 .054
H,0(3) .56 .86 077

« ¢
Fig. 319a.—A projection of the tetragonal NiSO,-6H.0 grouping upon one of its a-faces.

In this figure the sulfate oxygens are heavily ringed, the H,) molecules hghtly out-
lined. Medium sized circles, at the centers of the water octahedra, are the N1 atoms.

Fig. 319b.—A packing drawing of a. The Ni atoms appear as black spheres within
their H;O octahedra; S atoms do not show.

The structure as a whole is a packing of SO, tetrahedra and (Ni-6H,0)
octahedra (Figure 319).

(6f) In a recent study a set of atomic positions, developed from Cj,,
has been proposed for SrCl,-6H,0. They are:
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Sr: (a) 000 Cl: (d) %%u; 210 with u=3%
H,0: (g) +(xyz); £(y—x, X, 2); +(J, x—y, z) with x=y=0.387, z=0.0.

The published data, which are scanty, are insufficient to establish this
structure.

(bg) The previously chosen unit for MgPt(CN),-7H,0 (a,=14.6 A,
¢,=3.13 A) was too small. The true cell is twice as high, ¢,=6.26 A,
and contains four molecules.

(bh) The space group of the four-molecule cell of 3CdSO4-8H,0 is
said to be (3.

(bi) Istimates of the intensities of powder lines have been used to
suggest the following atomic arrangement, based on D}, for SrO,-8H,0:

Sr:  (a) 000 O: (h) 33w; 33w with w=0.10
H,0: (r) +(uuv); +(uiv); +(itv); +(duv) with u=0.20, v=0.25.

In this arrangement strontium atoms are surrounded by cubes of H,0O
molecules with the somewhat short Sr-H;0 distance of 2.26 A; inside the
O, group the atomic separation is 1.11 A.

(bj) The large unit found for 2Na;PO4-NaF-19H,O holds 40 mol-
ccules. The data are those demanded by O5.

(bk) The unit cubes of scveral phosphotungstic and phosphomolybdic
acids and their salts crystallizing with 3041 molecules of H;O have been
found to contain cight molecules. Their space group is said to be Of.

Powder photographic data have been used to determine the shape and
size of the PW ;04 anion in the partially dehydrated H;PW ,04-5, or 7,
H,0 and to suggest probable positions for the H,O molecules. The unit
cube of this lower hydrate contains two molecules; the atoms of its anions
are in the following special positions of Of:

P: (2a) 000; 313
W: (24u) uuv; uiv; Guv; aiv; vuu; vuii; viu; via; uvu; Gvu; uvd; Gva;
I~ 31, 3=V; 3=, Uy, V35 utg, 34, Vg
ut3, uti, 3=V 3=V, 3=V, 305 v, 30, utg;
v+3, Uy, 3= 3=V, utd, utd; i, -, 3y
u+%: V+’%, '%—ll; %-—-ll, V+%, ll+%; ll+%, '%'—V, u+%

with u=0.205, v=0.006

O(1): (8d) u'u'u’;@u't’; 3—u’, 3=/, 1—u’; u'+3, }—0u', u'+3;
wae’; o'y’ 31—, 11'-{-%, ur+%; ur+_%’ w'+3, 31—

with u=0.081

0(2): (24u) uju,v,; ete. with u;=-0.080, v,=—0.234
0(@3): (24u) usuzvy; ete. with us=0.123, v,=0.292
0(4): (24u) ususvs; ete. with uz=-0.312, vs=-—0.008.
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The shape of one of these PW,;04 ions is shown in Figure 320. It
consists of a central PO, tetrahedron and 12 surrounding WOjs octahedra
that share oxygen atoms with it. The H,O molecules are considered to
be of two sorts: three in the positions: (6e) 00%; 300; 030; 330; 30%; 033
and four at (4e) $33; 311%; 13%; 114, if the crystal is a heptahydrate.

F1a. 320.—The PW;,0, ion is consid-
ered to have a shape suggested by
this diagram. The central I’ atom
is surrounded by four O atoms at the
corners of the dotted tetrahedron.
About it are 12 oxygen octahedra
which share atoms with one another
and with the PO, group and which
have W atoms at their centers (after
1034, 131).

(bl) The unit assigned to the complex phosphate wavellite, 4(PO,)Al-
2A1(OH);-9H,0, is bimolecular.

(bm) The unit cell of legrandite has one molecule of the composition
Zn14(As0,),0H - 12H,0.

(bn) The monoclinic unit given to [Cofgir]:504-3H:0 contains two
molecules; the space group is thought to be C..

(bo) Two molecules are found in the unit of MgNH,As04:6H,0; its
space group is Cj,.

(bp) The structure recently developed for LiClO4-3H,0 differs from
that previously found for the isomorphous Lil-3H.O (f) in the positions
of the lithium atoms. In the perchlorate, atoms are in the following
special positions of Cg,:

Li:  (a) 00u,; O, 0, u;+3% with u;=0.25

Cl: (b) 33u’; 2, 3, u'+3 with u’=0

O(1): (b) 33w; %, 3, w+ % with w=0.278

0(2): (c) uiiv; 24, G, v; u, 2u, v; G, u, v+3; 2u, u, v+3; G, 24, v+3

with u=0.439, v=—0.092
H;0: (¢) ualigvs; ete. with up=0.125, v=0.50.

This arrangement, which coordinates six 11,0 molecules about each lithium
atom (Figure 321), is practically identical with one found from quantita-
tive spectrometric data.*

* Unpublished measurements of R. B. Corey in this laboratory. The parameters

derived from this study are u,(Li)=0 25, u’(Cl)=0, w(0O)=0.265, u(0)=0.435, v(O)=
—0.09, us(H:O) -0.125, 73(H30) =0.50.
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It is probable that the lithium atoms in Lil-3H,0 should be in (a)
00us; 0, 0, ui+3 instead of the earlier (b) 33u;; %, 3, w+3. Photographic
data lead to the parameters: u;(Li)=0.25, u/(I)=0, u(H,0)=0.142, v,-
(H20)=0.50.

F1a. 321a.—(left) A basal projection of the structure found for LiClO,-3H,O. Li

atoms are at the corners of the diagram surrounded by the heawvily outlined water
molecules.

F1g. 321b.—(right) A packing drawing of a showing the tetrahedral ClO, ions and
(black) Li ions equidistant from six H,O molecules. The O atoms and H,O mol-
ecules, of equal size, are not distinguished by different shadings.

Fia. 321c.—(left) A projection upon its b-face of the monoclinic structure deduced

for Li,;SO,- ;0. Atoms of the SO, ions are connected by light lines; the H,O mol-
ecules are heavily ringed.

F1a. 321d.—(right) A packing drawing of ¢ with the H,0 moleculcs distinguished by
line-shading. The S atoms within their tetrahedra cannot be seen.

(bg) The hexagonal unit prism of Ba(Cl0,),-3H,0 is bimolecular. The
space group is reported to be CS or CZ,.

(br) The atoms of the two Li,SO,-H,O molecules contained within
the unit cell are in general positions of C; with the coordinates (a) xyz;
X, Y+%, 2. Parameters, determined from photographic data, are those of
Table VII. In this structure (Figure 321c and d) the lithium atoms are
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TasLeE VII. PARAMETERS oF THE AToms IN Li,SO,-H:0

Atom z Yy z

S 0.208 0.000 —-0.211
o(1) 153 —-.139 —.083
0(2) .500 —-.014 -.192
0(@3) .078 —-.078 -.397
0(4) .161 305 -.197
H.0 .569 472 —.386
Li(1) —.069 542 —.386
Li(2) 167 478 .003

surrounded by tetrahedra consisting of three sulfate oxygen atoms and
one H,0 molecule.

(bs) The unit prism of Na,CO,-H,0 contains four molecules; its space
group is said to be V.

(bt) Four molecules are within the cell of AgNO;-2NH,;. The space
group is C0.

Miscellaneous Inorganic Compounds

(ca) The cube lengths found for a large number of atopites and atopite-
like minerals, and for ochers of calcium and of lead vary between ca 10.25
A and ca 10.43 A.

(cb) A partial atomic arrangement for azurite, 2CuCO; - Cu(OH),, has
been based on some rotation photographs and spectrometer data. Copper
atoms have been placed in (a) 000; 033 and in general positions of C3;:
(e) £(xyz); (X, y+3, 3—2) with x=0.25, y=0.486, z=0.083. Suggested
parameters for the other atoms are not proved by the existing data.

(cc) The mineral hambergite, Be,BO;(OH), has been given a structure
which explains both a series of spectrometric intensities and the qualita-

Fra. 322a.—(left) A projection upon the c-face of the orthorhombic structure assigned
to hambergite, Be;BO;(OH). Atoms of the BO; groups are connected by light lines.
Intermediate circles represent Be atoms; the (OH) groups are heavily ringed.

Fia. 322h —(1ight) A packing drawing of a. Small spheres are the Be atoms; the B
atoms do not show. Hydroxyl groups are line-shaded.
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tive data from oscillation photographs. Atoms in its eight-molecule unit
are in general positions (¢) +(xyz); %(x+3, 3-y, 2); (&, y+3, 3—2);
+(3-x, ¥, z+3) of V3 with the coordinates listed in Table IX. The
axes of this description are the same as those of 1930, 352, p. 64.

As can be seen from Figure 322a and b the grouping consists of linked
BO; triangles and Be(OsOH) tetrahedra. Each oxygen atom is shared by
one B and two Be atoms; OH groups join two Be atoms.

TasLE IX. PARAMETERS oF THE AToMs IN HAMBERGITE

Atom No. per cell x Y z

Be(1) 8 —0.031 0.133 0.458
Be(2) 8 .236 .069 458
B 8 117 .103 —.028
O(1) 8 .031 .183 —.167
0(2) 8 .097 .103 278
0@3) 8 .194 .037 —.167
OH 8 —.167 .183 167

(cd) The copper atoms of the four molecules of CuCO;-Cu(OH), lying
in the unit cell of malachite are reported to be in two sets of general
positions of C%,: (e) :t(xyz) +(3—x, y+3%, z) with the paramecters x=0,
y=0.208, z=0.125, x'=0.264, y'=0.104, z'=0.625. The other atomie
parameters have not been found.

(ce) Some photographic data have been used in assigning a structure
to northupite, Na,Mg(CO;),-NaCl. According to this arrangement the
16 molecules of its unit cube are in the following special and general
positions of T} (1930, 352, p. 125):

Mg: (16¢c) £33; 5%%; 33%; 35 and 3 sets of similar points about 033, 303
d 330
Cl: (16b) £33; 13%, 23; 853 and 3 sets of similar points about 033, 303
and

C: (32b) uuy; uﬁﬁ; fiud; Gau; i-u, 3~u, }—u; i-u, u+i, u+d;
u+%, 1—u, u+%; u+4, u+%, 1—u and similar points about 033},
301 and 330 with u(C)=0.405
Na: (48c) u00; ©00; Ou0; 0a0; 00u; 00q;
%_u! i—! %; 11+}, '}1 %; %! i-'ur '}I; %J u+%: %; i; %: '}:_u; it i: u+%
and similar points about 033, 303, 30 with u(Na)=0.225
O: () xyz; XyZ; XyZ; Xyz; zXy; IXy; ZXy; 2X¥; y2X; §2X; yIX; ¥zX;
}—xa }_Y: %_Z; %-—-X, Y+%: Z+‘}; x+i'r i-Yr Z-Jr},
x+i’s y+is ‘1‘—2; %"""Z, ‘}l‘_x; i_y; Z-I—}, 1‘——)‘, Y+%r
+£1 x+}1 }"'Y; 1'—2, K+}, Y+1‘! '}-'-'Y! %-—-Z, %_x;
+% 2+ 1—x; -y, 241, x4+ y+i, 12, x+§ and similar
points about 033, 304, 330. The chosen parameters are x=0.392, y=0.348,
z=0.475.
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The arrangement given to tychite, Na,Mg;(CO3)4- Na,SOy, is like this
northupite grouping with Na,SO- in place of 2NaCl. The eight sulfur
atoms in the unit cube are at (8f) 000; 330; 303; 03%; 111; 133; 313, 331
Sulfate oxygen atoms are in (32b) u’u’u’; ete. with u’(0)=0.062. The
other atoms are placed as in northupite: Mg in (16¢); C in (32b) with
u=0.400; Na in (48¢) with u=0.225 and carbonate oxygens in (g) of T}
. with x=0.375, y=0.352, z=0.473.

(¢f) From spectral photographic data it has been found that the atoms
in potassium trithionate, K,S;0¢, are in the following positions of Vii:

() =(uvi); £G—u, v+3, § (d) £(xyz); £=(x+3, 3-Yy, §—2);
:t(x! Y, é"Z); :l'—'(x-l"':]f! %_Y! Z)

with the parameters of Table X. In this structure (Figure 322¢) S-O
within the same ion is ca 1.50 A, S-S=2.19 A and the angle joining the

three sulfur atoms is 103°.

TasLe X. DPARAMETERS OF THE AToMs IN K,S3;06

Atom No, per cell  Position T Y z
K1) 4 (c) 0.131 0.089 0.25
K(2) 4 (e) .180 —.236 25
S(1) 4 (e) .033 319 .25
S(2) 4 (e) .083 472 .25
S(3) 4 (e) .305 A72 .25
o) 4 (c) —.125 .305 .25
0(2) 4 (e) .347 .583 .25
0(@3) 8 (d) .083 278 012
0(4) 8 (d) .361 417 042

F1a. 322c.—(left) The structure found for K;S;0, projected on the a-face of its ortho-
rhombic cell. Largest circles are O atoms, mntermediate circles K ions. Atoms of
the S;0; ions are connected by light lines.

Fra. 322d.—(right) A packing drawing of ¢. The K ions are linc-shaded. No sig-
nificance is to be attached to the radii chosen for sulfur. -
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(cg) Estimated intensities on oscillation photographs have been used
in choosing a structure for potassium pvrosulfite, K,S,05. The atoms in
its two-molecule cell are placed in the following special and general posi-
tions of C3y: (e) =(u}v), (f) +(xyz); =(x, 3—y, z) with the parameters of
Table XI. The pyrosulfite ion resulting from this arrangement has the
structure 03;S-SO; (Figure 323) with a S-S distance of 2.18 A.

(ch) It is natural to infer from the fractional number of molecules
found in the unit of pyroaurite that either the formula, the cell size or

TasLe XI. PARAMETERs OF THE AToMs IN K;S;0;

Atom No. per cell  Position z Y z

K(1) 2 (e) 0.22 0.25 0.95
K(2) 2 (e) .65 .25 67
S(1) 2 (e) .70 25 22
S(2) 2 (e) .01 25 32
o(1) 4 (f) 07 .06 24
0(2) 4 (f) .63 .06 31
0(@3) 2 (e) 67 .25 .03

g e
k) e
B ks A
[ bl
.

F1a. 323a.—(left) The monoclinic structure of K»S:05 projected on its b-face. Oxygen
atoms are represented by the largest, S by the smallest circles. The light lines join-
ing them outline the S.0; ions.

Fia. 323b.—(right) A packing drawing of a. The size given the S atoms was deter-
mined by convenience only. K ions are line-shaded.

the density is in error. Existing data contain no evidence for a larger
cell and the formula is said to be substantially correct.

(ci) A large number of the cubic or pseudo-cubic voltaites have been
prepared and their unit cells measured (see Table XII). The composition
of these sulfates is still uncertain though a recent study (1932, 171) places
it as approximately (SO4)i.Fei+ +R TR, 16-18H,0.

(¢cj) A structure has been found for the complex sulfide binnite, (Cu,
Fe),2As,S,3, which, except for the addition of two extra sulfur atoms and
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Tasre XII. Unir Cusk Sizé oF VOLTAITES

Voltaite a, Vollaite a,
K-Cd compound 27.54 Rb-Cd eompound 27.80
K-Fet+ 27.33 Rb-Fet++ 27.60
K-Mnt++ 27.25 Rb-Mnt+ 27.60
K-Zn 27.10 Rb-Zn 27.15
NH-Cd 27.85 TI-Cd 27.69
NH-Fet+ 27.35 TIl-Fe*+ 27.43
NH.-Mg 27.42 Tl-Mn*+ 27.71
NH-Mn*+ 27.55 Tl-Zn 27.01

Fia. 324a.—(left) A cube face projection of the structure of binnite, (Cu, Fe);2As8:81.
The largest circles are (Cu, Fe), the smallest are S atoms.

Fre. 324b.—(right) A packing drawing showing the bottom half of the unit cube of
binnite. The atoms have their neutral radii; As atoms are line-shaded.

somewhat altered parameters, is identical with that previously deter-
mined for tetrahedrite, (Cu, Ag)s:(Sb, As)S; [XV, (p), p. 280]. The bin-
nite arrangement, as developed from photographic data, places the atoms
of its two-molecule cube in positions (of T3):

Cu, Fe(1): (12a) u00; ete. with u=0.225
Cu, Fe(2): (12h) 30%; ete.

As: (8a) u'u'u’; ete. with u’=0.255
S(1): (24g) vvw; ete. with v=0.122, w=0.363
S(2): (2a) 000; 333.

The packing is that to be expected from neutral atoms. It is instructive
to compare the atomic environments in this arrangement (Figure 324a
and b) with those prevailing in enargite, CusAsS, [XVIA, (an)]. All the
sulfurs in enargite and those [in (24g)] which are common to both binnite
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and tetrahedrite have four metal atoms tetrahedrally placed about them.
The two binnite sulfurs at 000 and 34} are enclosed by six octahedrally
grouped (Cu, Fe) atoms. In enargite the copper and arsenic atoms are
tetrahedrally surrounded but in binnite and tetrahedrite the metal en-
vironments are more complex. Arsenic atoms and the Cu, Fe(l) atoms
in (12a) have only three neighboring sulfurs; four sulfurs, however, are
to be found about Cu, Fe(2) in (12h).

(ck) The mineral boracite, with eight molecules of the composition
MgsCl:B14Og in its orthorhombic unit, has recently been assigned one of
the space groups Cj}, or C};. Previous studies had preferred CL..

Above 265° C this mineral is cubic with a four-molecule cell. Possible
space groups and structures have been discussed but no definite conclu-
sions have been reached.

(cl) 1t has been shown that the photographically observed powder lines
of sulphohalite, 2Na,SO,-NaCl-NaF, can be explained in terms of the
following arrangement based on O3, (Figure 324c):

F: (4b) 000; 330; 30%; 033 Cl: (4c) 333; 003; 030; 300

S: (8e) =(111); =(Gid); x(14d); =(GH

Na: (24a) u'00; ete. (see book, p. 303) with u’=0.226

0: (32a) %(uuu);==(uiili); 4= (0du); 4 (duid) and 3 sets of similar
points about 033, 303 and 130 (1930, 352, p. 110) with
u=0.164.

F1a. 324c.—A cube face projection of one eighth
of the unit of sulphohalite, 2N2,S0,-NaCl-
NaF. The circles Eave the radii of their cor-
responding atoms; in order of decreasing size

they refer to Cl-, O, F~ and Na*,

(em) The sulfide mineral tetradymite, Bi,Te,S, has an elongated rhom-
bohedral unit containing one molecule. From photographic data it has
been found that atoms are in the following positions:

S: 000 Bi: +(uuu) with u=0.392 Te: +(vvv) with v=0.788,

This yields a structure which is a succession of layers of atoms of a kind
normal to the three-fold axis. The shortest interatomic distances are:
Bi-8=3.05 A, Bi-Te=3.12 A, Te-Te=3.69 A.



Chapter XIXA. Structures of the Silicates

Some of the work of the last three years has been devoted to simple
silicates not yet analyzed, some to a revision of previous studies, but for
the most part it has been concerned with more complex mineral types
whose structures are still imperfectly understood. Most of these arc
either sheet structures, like the micas, or network groupings, such as the
sodalite minerals and the zeolites. The zeolites are of especial interest
because of the way they can be dehydrated and can reabsorb water with-
out destruction of their atomic frameworks; approximate arrangements
have been deduced for several which aid in understanding how this can
occur. Real progress is also being made towards unraveling the crystal
structures of the feldspars, one of the few important groups of the silicate
minerals for which reasonable atomic arrangements have not been pro-
posed.

A, I. Simple Orthosilicates

(ak) A reinvestigation of the structure of andalusite, Al,SiOg, has led
to slightly changed parameters in the X direction for the atoms O(3),
0O(4) and Al(2) (see Table IX, book, p. 333). The new arrangement, with
x(0, 3)=0.11, x(0, 4)=0.25, x(Al, 2)=-0.125, agrees with the earlier one
in giving aluminum atoms an oxygen coordination of five.

(al) A considerably altered grouping has been proposed for sillimanite,
Al,SiOs. This structure yielding good agreement with the lines observed
on a powder photograph differs from the previous one in having regular
SiO;, tetrahedra. Atoms are in the same special positions of V}’ as before
(book, pp. 331 and 293) with the new parameters listed in Table II.

(am) A structure has been assigned to the high temperature cubic form
of carnegieite, NaAlSiO,, which, if its silicate and aluminate tetrahedra
are considered equivalent, is closely related to that of high cristobalite.
This arrangement gives calculated intensities agreeing with a powder
photograph made at ca 760° C. The atoms in its four-molecule cube are
in the following positions of T* (book, p. 267):

106
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TaBLE II. PARAMETERS OF THE ATOMS IN SILLIMANITE

Atom No. percell  Position z Y z
0(1) 4 (c) 0.15 0.07 0.25
0(2) 4 (e) -.15 -.07 25
0(@3) 4 (c) .03 AT .25
0(4) 8 (d) -.11 22 0
Si 4 (c) 14 —-.35 25
Al(1) 4 (a) 0 0 0
Al(2) 4 (e) —.14 .35 .25
Al:  (4f) uuu; ete. with u=0.258 Si:  (4f) with u=0
Na: (4f) with u=0.744 O(1): (4f) with u=0.125

0(2): xyz; ete. with x=0.658, y=0.644, z=0.055.

It will be noticed that this structure (FFigure 325) would more closely
rescmble that of Na,CaSiO4 (an) if the Si and Al positions were inter-
changed; such an alternative grouping would give indistinguishable X-ray
effects.

(an) A further study of the cubic Na,CaSiO4 has led to a structure
that accounts well for powder photographic data and resembles B-cristo-
balite and a-carncgieite (am). It differs from the previously suggested
arrangement (book, p. 338) in an interchange of calcium and half the
sodium atoms and in the parameters for oxygen lying in general positions.
Its atoms (Figure 326) are in the following special positions of T* (book,
p. 267):

Si: (4f) uuu; with u=0.258 Ca: (1f) with u=-0.007

Na(l): (4f) with u=0.750 Na(2): (4f) with u=0.500
O(1): (4f) with u=0.134 0(2): xyz; ete. with x=0.555, y=0.667,
z=0.222.

(a0) The structure proposed for the cubic mineral eulytite yields dis-
crete Si0, tetrahedra. Its space group is T with bismuth atoms in
positions:

(16f) uuu; u, @, 1—u; 3—u, u, 4; 4, 3—u, u;
1 X 1. .1_. +.1_-. 3._ 8 | +1 .3._...u i_..u' .s._u %_u u+l
11+4, u+4; u+I: a—U, Uy, g—u;, Uty 3 ’ y 4 ] ) 4

and 8 similar points about 333, with u=0.083.

If the other atoms are arranged as follows, a reasonable grouping is ob-
tained that does not conflict with the powder data:

Si: (12k) 30%; 30%; $4%; 330; 0%F; 044 §34%; 831 180; 184 318 3k

O: xyz; etc. (1930, 352, p. 131) with the parameters x=-0.035,
y=0.125, z=0.284. Other values, x=0.055, y=0.11, z=0.284, which can-
not be excluded, are thought improbable.
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(ap) A structure has been proposed for euclase, HBeAlSiOg, which
explains spectrometric measurements of the first twelve orders of reflec-
tion from the (010) face. This arrangement based on C3,, instead of the
previously chosen C},, has all its atoms in general positions: (e) ==(xyz);
=+(x, §—y, z+3%) with the parameters of Table III. It is considered that
the y parameters are essentially correct but that those along X and Z
are only approximate.

TasLe III. ParaMeETERs CHOSEN FOR THE ATOMsS OF EUCLASE

Atom No. per cell x ] z

Be 4 0.50 -0.20 0.02
Al 4 .03 —-.06 .25
Si 4 47 .10 1D
0(1) 4 .22 .05 .39
0(2) 4 26 ~.03 ~.17
0(3) 4 .54 .19 .37
04) 4 —-.28 -.15 A1
OH 4 .22 -.17 31

(ag) A series of spectrometric measurements have been used to give
the minecral vesuvianite a grouping with four Ca0Als(Mg, Fe)2S1,03,(0OH),
molecules in its tetragonal unit. This arrangement, which somewhat re-
sembles that found for the cubic garnets, has atoms in the following gen-
eral and special positions of Dj,:

8(Mg, Fe): (f) 000; 300; 030; 00%; 330; 033; 303; 33%
4 8i(1):  (d) 110; 230; 113 33 4 Ca(l): (c) 1i1; 314 330 111
4Ca4): (e) 3iv; 1, 4 3—v; 319, 1 1) v+3§ with v=0.13
8 0(9): (h) uii}; u, u+3, §; 3—w, u+d, §;3—u, G, &
tu§; 4, 3—-u, §; ut3, 3-u, §; u+3, v, § with u=0.16.

The remaining atoms are in the following general positions with parameters
as listed in Table IV:

(k) =(xyz2); £(, x+%, 2); =(3—x, §-y, 2); £(v+4, %, 2);
=(y+3, x+3, 5-2); £, 3y, §-2); =7, %, §-2); £(3—x, 5, §-2).

The coordinates used in this description are derived from those of 1930,
352, p. 91 by transferring the origin to such a point as (—%, —%, 1).

It is uncertain how closely this structure describes the atomic arrange-
ment that prevails in vesuvianite crystals. The chosen chemical formula
differs from that previously given to the mineral and subsequent studies
of the available chemical analyses are said to favor formulas departing
appreciably from CajAl, (Mg, Fe),Sis03(OH)s. One of these (1932,
294) is X19Y155113(0, OH, F);s where X=Ca(Na, etc.) and Y=(Al, Fe,
Mg, etc.); another (1933, 461) is CasAli(Si, Al), (Fe, Mg, etec.)s(O,
OH, F)3;s.
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TaBLE IV. PARAMRTERS FOR ATOMS OF VESUVIANITE LYING IN GENERAL

PosiTIoNs

Atom No. per cell z ] z

Si(2) 16 0.19 0.05 0.87
Si(3) 16 .09 —-.17 37
Ca(2) 16 .19 .05 .36
Ca(3) 16 .09 —.17 .88
Al 16 21 a1 13
0(1) 16 .22 A7 .08
0(2) 16 13 .16 .28
0O(3) 16 .06 22 .08
04) 16 .07 13 48
0(5) 16 A7 .01 .18
0(6) 16 .01 .06 A7
o) 16 —.05 18 .32
0(8) 16 .10 —.08 07
OH 16 13 -.25 .06

A, II. Complex Silicate Groups

(ar) The structure found for hemimorphite, H,Zn,SiOs, indicates that
it is a pyrosilicate with a formula best written as Zn,(OH),Si;07-H,0.
Atoms are in the following positions of (2 :

2 0(1): (a) 00u; %, 3, u+3 with u=0

2 H,O: (b) 30u; 0, 3, u+3 with u=-0.150

4 OH: (¢) ulv; G0v; u+i3, 3, v+3; 13—, 3, v+3 with u=0.75, v=0.350

4 O(3): (d) Ouv; Otv; 3, u+3, v+3; 3, 2—u, v+3 with u=0.187, v=0.305

4 8i: (d) Ou'v’; ete. with u’=0.160, v'=0

8 Zn: (e) xyz; Xyz; xyz; Xyz, and four similar points about 33} (1930,
352, p. 56) with x=0.300, y=0.342, z=0.010.

8 0(2): (e) x'y'z’; ete. with x'=0.161, y’'=0.187, z’=0.850.

In this arrangement a zinc atom is surrounded by three oxygen atoms and
one OH group (Figure 327); the water molecules, bounded by OH groups
and oxygen atoms lie loosely in big holes that exist in the structure (min-
imum H;0 to OH or O=ca 3.3 A).

(as) An arrangement has been described for the mineral bertrandite,
Be:(BeOH),Si0;Si10;4, using spectrometric and photographic data. Based
on a hexagonal close packing of oxygen atoms it is said to be intermediate
between a silicate chain structure and one having discrete silicate groups.
Half the silicon atoms are centers of isolated SiO, tetrahedra; the other
half form parts of tetrahedra which are linked together in endless SiO;
chains such as those of diopside. Atoms are placed in special and general
positions of Cj::
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Fia. 327a.—(left) The structurc assigned to hemimorphite, H,Zn,8iOs, as projecled
upon the c-face of its orthorhombic unit. The largest ecircles represent O atoms,
H,O groups and (OH) radicals. The silicate O atoms are joined by light lines with
Si (the smallest circles) to form Si,O; groups; the heavily ringed circles are (OH).

Fia. 327b.—(right) A packing drawing of a. The (OII) radicals are line-shaded; the
Si atoms cannot be seen.

T'1g. 328.—The structure Frnposed for
bertrandite, Be,(BeOH),51,0,, as
projected on the c-face of its ortho-
rhombic unit. The smallest circles
are Si, the largest are O atoms [or
(OH) if heavily ringed].

o

TaBLE V. PARAMETERS OF THE AToMS IN BERTRANDITE

Atom No. per cell  Position x ] z
Be(1) 8 (b) 0.215 0.155 0.375
Be(2) 8 (b) 435 155 625
Si(1) 4 (a) 074 0 .625
Si(2) 4 (a) .360 0 .625
OH 8 (b) 215 156 0
0(1) 4 (a) .065 0 0
0(2) 4 (a) 283 0 .50
0(3) 4 (a) .360 0 0
0(4) 8 (b) 095 165 .50
0(5) 8 (b) 435 155 .50
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(a) w0v; 4, 0, v+3; ut, 3, v; 3—u, 3, v+3
(b) xyz; X, ¥, z+3%; X¥z; X, ¥y, z+3 and four similar points about }30.

The atomic parameters are reproduced in Table V.

As can be seen from Figure 328 this grouping yields several improbable
interatomic distances. Atoms Be(2) and O(5) are only 0.57 A apart.
Both kinds of silicate groups are distorted. Thus Si(2)-0(2) is 1.30 A
while the distance from Si(1) to one of its four surrounding oxygen atoms
is 2.18 A.

B. Silicate Chain Structures

(at) The structure found for acmite, NaFe(SiO;),, is identical with
that of diopside (r) both in cell dimensions and in atomic parameters,
with sodium in place of calcium and ferric iron replacing magnesium.

Spodumene, LiAl(SiO;);, has the same arrangement but in a cell of
appreciably different size and shape. The atomic parameters, with lithium
and aluminum in place of calcium and magnesium, have been given ap-
proximate values close to those for diopside (see Table VI).

TaLE VI. DPARAMETERS OF THE ATOMS IN SPODUMENE

Atom No. per ccll Position z Y 2

Li 4 (e) 0 -0.31 0.25
Al 4 (e) 0 09 25
St 8 ) 0.21 41 25
0@) 8 (f) 39 41 14
0(2) 8 (f) 13 25 .32
0@®) 8 f) 14 49 0

(au) Photographie spectral data have been used to assign to a bronzite,
(Fe, Mg)SiO;, parameters that agree well with those previously found
for enstatite (book, p. 344).

(av) A structure for epididymite, HNaBeSi;Og, has been deduced from
spectrometric measurements. It places atoms in special and general posi-
tions of V}® with the parameters listed in Table VII:

(a) 000; 003; $30; 333 (b) 030; 03%; 300; 30%
() +(uvi); £(utd, 3—v, ) (@) x(xyz); =(x+3, 5—Yy, 3—2);
i(}_{: ys Z+%); :h(}(-l-%, %'—Y: z)'

The axes of this description differ from those used for chrysoberyl (book,
p. 293) by an interchange of a and b.

This structure must be revised since some of its interatomic distances
are impossible; for example Be-Si(1)=0.54 A, Be-0(3)=0.72 A, Si(1)-
0(3)=1.13 A (sec Table VII).
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TasLe VII. PARAMETERS OF THE ATOMS IN EPIDIDYMITE

Atom No. per cell Position z Y z
Na(1) 4 (a) 0 0 0
Na(2) 4 (b) 0 4 0
Be 8 (d) 0.035 0.250 0.052
Si(1) 8 (d) .065 .200 .060
Si(2) 8 (d) 435 200 —.060
Si(3) 8 (d) .335 250 .000
OH(1) 4 (c) —.155 150 3
OH(2) 4 (e) .041 .250 3
0(1) 8 (d) .040 .000 .145
0(2) 8 (d) .040 .500 145
0(3) 8 (d) .000 .250 010
0(4) 8 (d) .167 .000 —.040
0(5) 8 (d) 167 .500 —.040
0(6) 8 (d) 182 .250 130
o(7) 8 (d) 318 250 —-.130

C. Two-dimensional Silicate Nets

(aw) The atomic arrangement which has been given to the mica mus-
covite, KAl,(AlSi;)0,,(OH),, through a study of photographic and spec-
trometric inténsities is based on C3, (book, p. 343). Approximate param-
eters of its atoms, all of which except potassium are in gencral positions,
are listed in Table VIII. The central atoms of one quarter of the tetra-
hedra linked together to produce sheets are aluminum instead of silicon.

(ax) Six chlorites with the approximate composition Al,MgsSiz0,0(OH)s
possess four-molecule monoclinic units having dimensions within the limits
8,=5.304-5.352 A, b,=9.187-9.270 A, ¢,=28.306-28.582 A, $=97°9". Their
space group is considered to be either C3;, or C3,. Adopting earlier sugges-
tions that the brittle micas are built up of alternate mica- and brucite-like
layers, structures have been assumed and compared with intensities on
powder photographs. A grouping with the symmetry of Cj, has been
preferred but it is obvious that at least until the arrangements based on
C?, are definitely eliminated the chlorite structure has not been established.

(ay) Taking the data from powder photographs practically identical
structures have been proposed for a talc, MgsSisO1(OH),, and for pyro-
phyllite, Al,Si0(OH),. The distribution within layers is that previously
suggested but the layers are said to be stacked according to the require-
ments of CS;, not of C3,. Parameters have been proposed but additional
confirmation and a more precise description of the arrangement is de-
sirable.

(az) The clay minerals with their pronounced micaceous cleavage
should have silicon-oxygen tetrahedra united to form sheets. Structures
built up of such sheets have been proposed for kaolin, dickite and nacrite,
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TaBLE VIII. PARAMETERS OF THE ATOoMS IN MuscoviTe

Atom No. per cell Posilion z v z
OH 8 ) 0.062 0.083 0.055
0O(1) 8 (f) .062 417 .055
0(@2) 8 ) .062 .250 .055
0(3) 8 (f) 478 .083 164
0@4) 8 () 228 .166 .164
0(5) 8 () .228 .332 .164
(Si+Al)(1) 8 ) .033 417 135
(Si+AD(2) 8 () .033 250 135
Al 8 () .250 .083 0
K 4 (e) 0 .083 .250

each with the composition Al,Si;O5(0H),. These groupings, based of
necessity on powder photographic data and not conclusively proved, are
similar; they differ mainly in the orientation of their silicate layers. Each
is developed from C} with all atoms in general positions: (a) xyz; x+3,
y+3, z; %, ¥, z+%; x+3%, §—y, z+%. Kaolin and dickite have four-molecule
cells; the unit of nacrite is twice as big. The atomic parameters are
listed in Tables IX and X. Other arrangements for both kaolin and
dickite are in almost equally good agreement with the data. It is sug-
gested that some samples may have these alternative groupings—or one
which combines both. The mineral anauxite resembles kaolin but con-
tains a greater amount of silicon. If this silicon replaces aluminum, as
has been proposed, it would have a hitherto unknown six-fold coordination.

Some measurements have indicated that the substance called mont-
morillonite has an orthorhombic cell similar in size and shape to the
monoclinic cell of kaolin (1933, 205).

(ba) Apophyllite is a mineral which is sometimes considered a zeolite,
sometimes more nearly a mica. Some water can be driven from it without

TapLE IX. AtoMmic PArRaMETERS FOR KAOLIN AND DICKITE

Kaolin Dickite

Alom z Y z z Y z
Al(1) 0.25 -0.17 0 0.25 0.41 0
Al(2) .25 S b/ 0 25 .08 0
Si(1) .01 .50 0.19 14 25 0.19
Si(2) .01 % i | .19 —.36 .08 .19
0(1) -.05 .50 .08 A1 25 .08
0(2) -.05 17 .08 -.39 .08 .08
0(@3) .03 .33 .23 .16 42 23
0O(4) .28 —.41 .23 41 A% 23
0(5) 28 .08 23 -.09 A7 23
OH(1) -.056 -.17 .08 -.39 42 .08
OH(2) ~.05 0 42 -.11 .25 42
OH(3) ~.45 A7 42 .39 .08 42

OH(4) .05 33 42 39 42 42
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TasLE X. Aromic PARAMETERS FOR NACRITE

Atom z Y z Atom z Y 2z
Al(1) 0.75 0.33 0 0(6) -0.08 0.50 0.29
Al(2) 75 0 0 o(7) —.08 17 .29
Al(3) .08 0 0.25 0(8) 44 -17 .36
Al(4) .08 -.33 25 0(9) 19 —.42 .36
Si(1) 43 .33 .09 0(10) 19 .08 .36
Si(2) .43 0 .09 OH(1) —.08 17 .04
Si(3) 43 -.33 34 0OH(2) -.26 —-.33 21
Si1(4) 43 0 34 OH(3) —.26 0 .21
0(1) —.08 .50 .04 OH(4) —.26 .33 21
0(2) -.08 -.17 .04 OH(5) -.08 -.17 .29
0(3) 44 17 11 OI1(6) .08 -.33 46
0@4) 19 42 A1 OH(7) .08 0 .46
0(5) 19 -.08 A1 OH(8) .08 .33 .46

loss of structure but this is more difficult to do than with the true zeolites
and the lost water is not readily reabsorbed. The arrangement given it
from a study of rotation photographs and some spectrometric measure-
ments is mica-like and contains hydroxyl groups rather than H,O mol-
ecules. Its two molecules of composition CasSigOq-8H,0-KF are in
the following positions (1930, 352, p. 92) of D§,:

2F: (a) 000; 33% 2 K: (b) 00%; 130
8 Ca: (h) uVO; VHO; b %: u+%: é; u+%9 —%'—V, '12': ﬁ\?O, VUO; %"V, %-—l], %:
3—u, v+3, 3 with u=0.120, v=0.243
80(1): (&) u,u+3, §;u+3, 4, 150, -0, 53—, U, §; U, utg, §;
u+3, 0, 3; 0, 3—u, §; 3—u, u, § with u=0.362
16 O(2): (1) =(xyz); £(yX2); £(X¥2); £(¥x2); £(3—%, y+3, 2+3);
ﬂ:(".'la_'Y: %—X, Z+7}); :I:(X-{-';', %_Y! Z+T12); i(Y'*‘é.- X+%, Z-i-%)
with x=0.089, y=0.184, z=0.217
16 O(3): (i) x1yiz:1; ete. with x,=0.287, y,=0.117, z,=0.094
16 O(4): (1) Xgy22ze; ete. with x;=0.237, y2=0.445, 2,=0.09-
16 Si: (i) x'y'z’; ete. with x'=0.237, y'=0.091, z’=0.188.

D. Three-dimensional Silicate Nets

The zeolites have the surprising property of being able to lose and to
reabsorb water without destruction of their underlying atomic arrange-
ments. Previous studies [see (w)] of analcite, NaAlSi;O¢- Ho0, have in-
dicated that this zeolite consists of a three-dimensional network of inter-
locking AlO4 and SiO, tetrahedra with metal atoms and water molecules
occupying holes in the framework thus formed. Mecasurements on several
other zeolites have now yielded similar results.

(bb) A recent investigation of analcite indicates that it is not cubic
but tetragonal with D3} as the correct space group. It has also been
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shown that dehydration does not seriously alter the observed powder
pattern of this zeolite.

(be) The structure found for natrolite from photographic spectral data
has the symmetry of C;) and contains eight molecules of the composition
NaqAlSi3040-2H,0. All atoms except one set of silicon are in general
positions (1930, 352, p. 55):

(b) xyz; %yz; x+1%, -y, z+1; I—X, y+1, z+1 and three sets of similar

points about 330, 303, 033.
The parameters of these atoms are listed in Table XI. Si(1) atoms are
in special positions (a) 00u; ete. with u=0; i.e. at the points 000; 330;
30%; 033; 11k; 331, 313,133 The nature of the tetrahedral network and
the positions occupied by water molecules can be seen from Figure 329.

Besides closely agreeing determinations of cell dimensions on natural
natrolites from several sources, cell data exist on four synthetic com-
pounds of this type (Table XII).

TapLE XI. PARAMETERS FOR ATOMS OF NATROLITE
LyiNne 1IN GENERAL POsITIONS

Atom No. per cell z Y z

Na 16 0.222 0.028 0.625
Al 16 .036 .089 .625
Si(2) 16 .153 .208 .625
0(1) 16 .069 .180 .625
0(2) 16 .014 067 .875
0(3) 16 .183 .236 375
0(4) 16 097 .042 .500
O(5) 16 208 153 .750
H;0 16 .069 .180 125

I'ra. 329.—A projection upon its c-face
of one eighth of the unit of natrolite,
Na,AlS1;0,0:2H0.  The small light
circles are Si, the ringed small circles
are Al atoms. Na atoms are shown
by circles of intermediate size; the
largest ringed circles are H,O mol-
ecules.

TasrLE XII. CrrrL DIMENSIONS ON SuUBSTITUTED NATROLITES

Compound a, b, e
NMA]uSiaOln'ano 183 18.6 6.57
Li;Al:Si304- 2H0 18.0 18.6 6.5
Ag:AL;Sis04-2H0 18.6 18.9 6.6

(NH,) 2AL:Si;040 anhydrous 17.9 184 6.6



122 THE STRUCTURE OF CRYSTALS

(bd) The X-ray patterns of scolecite, CaAl,Si;Oy-3H,0, are indis-
tinguishable from those of natrolite so that it must have a unit of prac-
tically the same size and shape. Earlier it was suggested (1930, 258) that
Ca+3 H,0 of scolecite replace 2 Na+2 H;0 of natrolite. A recent study
proposes instead that Ca atoms in the former occupy half the Na posi-
tions in natrolite leaving the other half vacant and that the eight new
H,0 molecules go into half the 16-fold unoccupied holes in the natrolite
structure with the approximate parameters x=0.22, y=0.028, z=0.125.
No data are available for distinguishing between these possibilities.

(be) Mesolite, Na,Ca,AlsSiyOs0-8H,0, is another zeolite which gives
a pattern nearly identical with that of natrolite. The large cell of Table I
is indicated by certain faint lines seen on some rotation photographs.

(bf) Data from spectral photographs have been used to assign an
atomic arrangement to the rhombohedral zeolite chabazite. The atoms

of the two CaAl,Si 01, 6H;0 molecules are in the following positions of
ng:

2Ca:  (¢) *(uuu) with u=0.17

6 0O(1): (f) *=(ud0); £(i0u); +(Ouii) with u=0.34

6 02): (g) =(uidd); +=(@iu); +(Rud) with u=0.14

6 0@3): (h) +=(uuv); £(uvu); == (vuu) with u=0.35, v=—0.02
6 O4): (h) u'u’v’ with u’=0.13, v'=0.50

H,O0(1): (h) uu,v; with u;=0.31, v,=0.70

H:0(2): (h) ususve with uz=0.14, v,=—0.08

(Si+Al): (1) *(xyz); £(yzx); % (2xy); =(yxz); *=(x2y); =% (2yx)

with x=0.23, y=0.44, z=—0.01.

X-ray studies have been made of the dehydration of chabazite. It
has also been shown that mercury can replace the water in this zeolite
without destroying its diffraction pattern; by one investigator (1932, 286)
this has been taken to mean that the water molecules do not occupy
definite positions within the chabazite structure.

(bg) Another zeolite to which an atomic arrangement has been as-
signed is edingtonite, Ba,AlSi¢Oy-8H,0. There is some uncertainty as
to the true symmetry of this mineral. Samples of Swedish origin have
been found to be orthorhombic with a,=9.56 A, b,=9.68 A, ¢,=6.53 A;
their space group has been reported as V2. Material from Old Kilpatriek,
Scotland with the cell dimensions of Table I is said to be completely
tetragonal.

The Laue photographs of edingtonite from Bo6hlet, Sweden are ap-
parently tetragonal. Proceeding on the assumption that its atomic ar-
rangement does not depart significantly from this higher symmetry,
photographic spectral data have been used to place its two molecules in
the following special and general positions of V3 (1930, 352, p. 74):
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Ba: (¢) O%u; 300G with u=0.375 (Al48i)(1): (a) 000; 330
H.0(1):  (e) u, 3—u, v; 3—u, T, V; @, u+4, v; u+}, u, ¥

with u=0.333, v=0.875
H,0(2): (e) v/, 5—u’, v/ with u’=0.103, v'=0

0(1): (e) ui, $—uy, vy with u;=0.333, v,=0.375

0(2): (f) xyz; yXz; Xyz; §x3; 3—X, y+3, %; 3, §—X, z;
x+3%,3—y, Z; y+35, x+3, z with x=0.055, y=0.194, z=0.472

0(3)‘ (f) Xi1Viz with X1=0.128, y1=0.047, z,=0.139

(Al48i)(2): (f) x'y’z’ with x'=0.186, y’=0.103, z’=0.375.

The similarity between the tetrahedral strings in this mineral and in
other zeolites can be seen by comparing Figure 330 with Figure 329 for
natrolite. In this edingtonite arrangement four H;O molecules are co-
ordinated about each barium atom. The positions chosen for water are
considered most probable but because of the heavy barium the available
X-ray data cannot locate them uniquely.

Fra. 330.—A basal projection of the
tetragonal structure given to eding-
tonite, Ba,AlSis0-8H,0. Al and
Si atoms, which are not scparately
determined, are the smallest circles;
intermediate circles are Ba. Mol-
ecules of HyO are heavily ringed.

(bh) The true unit prism of thomsonite, NaCa,AlsSisO4-6H:0, contains
four molecules (Table I). There is, however, an approximate halving along
the ¢ direction that suggests a two-molecule pseudo-unit. A structure
based on this pseudo-cell with its atoms in the following positions of V},
is thought to be approximately correct.

Ca: (c) 30%; 033

(2 Ca+2 Na): (h) ==(u0v); £(3—u, %, v) with u=0.069, v=0.25
(28i4+2 Al):  (g) +=(31u); +=(310) with u=0.875

H,0(1): (e) =(0u0); (3, 2—u, 0) with u=0.139
H.0(2): (h) u,0v; with u;=0.403, v,=0.75
H20(3): (h) UQOVg Wlth ’llg=0.111, V2=0.75
0Q): (f) =@Guj); =(0, u+3, ) with u=0.361

0(2): (h) w0V’ with u’=0.402, v'=0.25.
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TasrLE XIII. PARAMETERS FOR ATOMS OF THOMSONITE
Lying 1IN GENERAL PosITIONS

Atom No. per cell x Y z
0(3) 8 0.167 0.194 0.75
0H4) 8 .180 119 376
0(5) 8 .305 139 0
0(6) 8 375 194 375
(Si+Al)(2) 8 125 .194 .500
(Al148i)(3) 8 305 125 .250

The rest of the atoms are in general positions: (i) & (xyz); +(xyz); +(3—x,
3—vy, 2z); £ (x+%, 3—v, ), with the parameters of Table XIII. It has been
suggested that this simplified structure departs from the true one mainly
in the distribution of Al and Si atoms within the positions assigned to
them as centers of oxygen tetrahedra. The existing data are inadequate
to show whether this is the case.

The axes of this description (abc) are connected with those of 1930,
352, p. 61 (X'Y’'Z’) by the relations: a=Z7', b=X’, ¢=Y".

(bi) X-ray patterns have been made of partially dehydrated heulandite
and of the B-heulandite obtained by dehydrating above 210° C. The
former gives a heulandite-like pattern and takes up water reversibly. The
B-form cannot be reversed. Digestion of heulandite in HCI results in a
gilica which, though pseudomorphic after the original crystal, yields an
amorphous X-ray pattern.

(bj) Other minerals which have been found to have three-dimensional
linked Si04 and AlO, tetrahedral networks are members of the sodalite
group.

A structure for sodalite itself, NasAl3Si;0:Cl, has already been pro-
posed [(z) book, p. 352]. This was developed from the space group T§.
Similar arrangements have been suggested for haiiynite and noselite.
Writing the formula for haiiynite as essentially Na,Al3Si;0,:804 with
some substitution of calcium for sodium, the necessary atomic positions,
already listed for sodalite, [(z) book, p. 352], are:

S: (2a) 000; 333 Si: (6f) 03%; cte. Al: (6g) 30%, ete.
Na: (8a) uuu with u=0.222 O(1): (8a) u'u’u’ with u’=-0.10
0(2): (1) xyz with x=0.136, y=0.475, z=0.147.

The coordinates for noselite are nearly identical, the assumption being
made that only some of the sulfate positions centering about 000 and 333
are occupied. For Na, u=0.217; for O(1), u’=-0.100; for O(2), x=0.136,
y=0.475, z=0.147.

A debate over the true formula of hailiynite has led to another, but
closely related, structure based on T;. Considering this mineral to be a
solid solution of the composition (Na, Ca)ssAleSigOs4 (SO4)1—2, sodalite
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TasLe XIV. TeHE T; STRUCTURES FOR SODALITE AND NOSELITE

Sodalite Noselite
Arrangement Atom Paramelers Atom Paramelers
(1a) 000 Cl e 8 -
(1b) 443 Cl — s v
(12f) u0}; ete. (6A1+468Si) u=0.25 (6A1+-6Si) u=0.26
(4a) wuuu; ete. Na(1) u=0.175 Na(1) u=0.150
(4a) u'u’u’; ete. Na(2) u’=0.675 Na(2) u’=0.750
(4a) uyuu; ete. — — o) u;=0.897
(12g) uuv; ete. o) u=0.147 0(2) u=0.144
v=0.445 v=0.473
(12g) u'u’v’; ete. 0(2) u’=0.660 0(3) u’=0.645
v'=—-0.056 v'=-0.028

(4a): wuuu; uiid; Gui; Glu
(12f): u0%; 03; ui0; ©30; u0; 300; Ou}; 0u}; Obu; 041; 30u; 300
(12g): uuv; utv; tuv; tiv; vuu; Vull; viu; vid; uvu; Gvu; uvd; avi.

and noseclite have been assigned the groupings of Table XIV. Upon this
basis some but not all cells of haiiynite would contain SO, groups in ap-
proximately the positions (1b) and (4a) [for O(1)] of noselite; Ca would
replace Na(1) or Na(2). A convincing choice between these alternative
arrangements cannot be made from the existing X-ray data.

It has been found that the two minerals ittnerite and skolopsite (1934,
162) give weak haiiynite patterns and presumably are alteration products.

None of these more recent studics of substances related to the ultra-
marines (aa) gives support to the suggestion earlier advanced that their
alkali atoms are ‘“wandering”’ without fixed positions in the structure.

(bk) The following structure, which gives qualitative agreement with
the data from two oscillation photographs, has been proposed for zunyite,
Al,3Si502(0H, I);sCl. Based on T% it places four molecules within the
unit cube. Atoms are in points having the coordinates listed below and
in three similar sets of points (1930, 352, p. 128) about 330; 303; 033.

Cl: (4c) 333 Si: (4d) 11 Al(1): (4e) 1i%
Si: (16a) uuu; ulid; Guid; Giu with u=0.117

0(1): (16a) upugu; with uy=-—0.177

0(2): (16a) ugusup with u,=0.184

(OH, F)(1): (24a) u00; @00; Ou0; 010; 00u; 004 with u=0.273

(OH, F)(2): (48d) uuv; uiiv; Guv; aiv; vuu; Vul; vau; vid; uvu; Gvu;
uvi; avia with u=0.181, v=0.545

0(@3): (48d) u’u’v’ with u’=0.139, v'=0.006

Al(2): (48d) uyu,v; with u;=0.089, v,=—0.228.

(bl) The hexagonal unit of cancrinite contains one molecule whose
ideal composition is said to be Ca;NagAlgSigO2:2C03. An arrangement
which is compared with some estimated intensity data from rotation
photographs has been developed from C;. It is as follows:
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2 Ca: (b) %3u; %, 3, u+% with u=0.36
2C: (b) 33u/; %, 4, u+3 with u'=-0.14.

The rest of the atoms are in general positions:
(G): Xyz; Y—X, i’ z, ?J XYy, z; i: yr z+%! X-Yy, X, Z+%) Y, ¥y—X, z+%
with the parameters of Table XV.

TaBLE XV. PARAMETERS FOR ATOMs OF CANCRINITE
Lying 1N GENERAL PosiTions

Atlom No. per cell z Y z

Na 6 0.560 0.50 0.22
Si 6 .03 .26 .26
Al 6 .26 23 .24
@) 6 .05 .36 .01
0(?2) 6 .36 .32 —-.03
0(@3) 6 17 27 .26
0(4) 6 —.13 .16 .24
0(5) 6 .20 .64 .36

(bm) The feldspars have a grouping which thus far has resisted complete
analysis. A few years ago (1929, 289a; 1931, 391) a type of structure was
proposed which did not provide reasonable interatomic distances. Re-
cently a different arrangement has been suggested for a sanidine (KAISi;Os,
with some Na replacing K). This gives approximately the right atomic
separations and is in fairly good agreement with the reflections on several
rotation photographs. It has atoms in the following special and general
positions of C3, with the parameters of Table XVI:

(8) £(0u0); (3, u+i, 0) (1) £@Ov); =(u+3, 3, V)
() x(xyz); £(x¥z); £(x+3, y+4%, 2); £(x+3, 3—, 2).

A projection of the unit cell on its ac-plane is reproduced in Figure 331.
Its interlocking network of (Al, Si)Oy tetrahedra is seen to be very differ-
ent from those deduced for the sodalite and zeolitic minerals.

Measurements upon celsian, BaAl,Si;Os, have indicated that it is tri-
clinic but that it probably does not depart far from the monoclinic arrange-

TasLe XVI. PARAMETERS OF THE ATOMS IN SANIDINE

Atom No. per cell Position z Y z
0(1) 4 (g) 0 0.139 0
0(2) 4 (i) 0.658 0 0.236
0(3) 8 () .819 .153 .236
04) 8 §)) .000 319 .250
0o(5) 8 G) .153 125 417
Si+Al(1) 8 ) .000 .186 217
Si+Al1(2) 8 )] .703 111 347
K 4 @) 204 0 139
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o e

F1a. 331a.—(left) A portion of the monoclinic structure found for sanidine, KAISi;O,,
as projected on its b-face. The smallest circles are Al or Si (not distinguished in the
structure), the largest are O atoms.

F1a. 331b.—(right) A packing drawing of a. The K ions are line-shaded; two of the
(Si, Al) atoms are visible as black spheres.

ment of sanidine. The K-Ba feldspars, adularia and hyalophane, con-
taining up to ca 159, BaO are truly monoclinic. In these minerals there
is thought to be a haphazard replacement of K and Si by Ba and Al.

The soda feldspar albite, NaAlSi;Os, though definitely triclinic can be
described in terms of a sanidine-like cell. It has been found that an ar-
rangement with parameters modified from those of KAlSi;Os yields fairly
satisfactory agreement with photographic data. The cell for this descrip-
tion, being base-centered and hence not the simplest one possible has for
its general positions the coordinates: (i) x(xyz); =(x+3%, y+3%, z). Its
parameters are recorded in Table XVII. The similarity between this

structure and the sanidine grouping is best seen by comparing this table
with Table XVI.

TaBLe XVII. PARAMETERS OF THE ATOMS IN ALBITE

Atom T Y z
0(1) 0.014 0.125 -0.014
0(2) .611 —-.014 278
03, a) .833 125 214
03, b) 311 .361 .250
04, a) 014 .305 264
0O(4, b) .536 194 .230
0(5, a) 194 139 .389
0O(5, b) .658 .389 411
Si+Al(1, a) .000 175 222
Si+Al(1, b) 472 328 .233
Si+Al(2, a) 714 .105 333
Si+Al(2, b) 214 .383 .361

Na 278 -.167 172
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All of the plagioclase feldspars do not have albite-like cells. The units
of two andesites with albite-anorthite ratios of 3:1 and 2:1 are like albite,
but anorthite itself, CaAl,Si,Os, and a labradorite with the ratio 1:1 both
have ¢, axes that are twice as long.

New data bearing on the ccll dimensions of the feldspars are assembled
in Table XVIII1 (ef. Table XVIII, p. 351 of book).

Tasre XVIII. New Cern DimensioNs oN FELDSPARS

Mineral Symmetry a, b, 3 o i} ¥

Sanidine Monoclinic 8.45 12.90 7.15 — 116°6’

Adularia Monoclinic 8.45 12.90 7.15 — 116°3’ —
Hyalophane (A, B) Monoclinic 845 12.90 7.15 — 115°35’ —
Hyalophane (C) Monoclinic 8.52 12.95 7.14 — 115°35’ —
Celsian Triclinic 8.63 13.10 729 ca90° 116° ca 90°
Albite Triclinic 814 12.86 7.17  94°3’ 116°29’ 88°9’
Andesite Triclinic 814 12.86 7.17 903°23" 116°28' 89°59’
Labradorite Triclinic 821 1295 14.16 93°31’" 116°3’ 89°55’
Anorthite Triclinic 8.21 12.95 14.16 93°13" 115°66" 91°12’

(bn) An earlier (1929, 115) study of wollastonite, CaSiO;, resulted in
a monoclinic unit. More recently it has been shown to be triclinic. Sim-
ilar cells can be given to pectolite, NaHCa,(SiO;)s, and probably to
schizolite, HNa(Ca, Mn),(S103)s.

(bo) The cell dimensions for epidote quoted in Table I are those of
1932, 172. The two earlier studies gave it a two-molecule unit with a,
half as long. Clinozoisite, an cpidote without iron, is structurally like
the ordinary variety.

(bp) The structure of nephelite is yet to be determined. A few sug-
gestions have been made but, unsupported by the necessary X-ray data,
they are of little value.

(bg) Unit cells have been assigned to two wohlerite-like minerals be-
sides the one quoted in Table I. Lavenite with 209, of its Zr replaced by
Ca, has a,=10.93 A, b,=9.99 A, ¢,=7.18 A, =110°28'; hiortdahlite with
Ca, substituting for 25%, of its (Zr, F)Na is reported to be triclinic but
with very similar cell dimensions: a,=10.91 A, b,=10.29 A, ¢,=7.32 A,
a=90°29", =108°50", y=90°8'".

(br) Mosandrite is a rinkite in which H and OH replace Na and F
atoms. Though monoclinic the cell dimensions found for it are nearly
the same as those given to the orthorhombic rinkite. They are a,=18.47
A, b,=5.67 A, c,=7.46 A, =91°13".

(bs) The unit cubes of several garnets have been measured. One, a
489, grossularite-andradite, 529, almandite-pyrope, has a,=11.668 A
(1933, 182). Spessartite gives 11.603 A; partschinite, a spessartite with
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some iron in place of manganese has a,=11.613 A (1933, 522). It has
also been found that a, for Ca-Fe garnets increases from 11.93 A to 12.14
A as the titanium content mounts from zero.

(bt) It is suggested that though they seemingly are tetragonal, the

scapolites really are complex twinnings of monoclinic and triclinic in-
dividuals.



Chapter XXA. Structures of Organic Compounds

Nearly all the X-ray studies of organic crystals being published are
limited to unit cell and space group determinations. Some, as indicated
in the large tables, prove molccular symmetry for suitably constituted
compounds. Others point to the existence of associated molecules in the
crystalline state. Though a few of these associations, marked A in the
tables, may be real most of them are to be explained by the choice of too
large a unit cell.

Some progress has been made towards an understanding of the atomic
arrangements in aliphatic structures but most of the increase in our
knowledge of atomic positions in organic crystals has come through the
investigation of several aromatic hydrocarbons.

A. The Structures of Organic Salts and of Metallo-organic Compounds

(bd) A previous study of Be,O(C,H;0;)s has indicated that the eight
molecules in its unit cube are arranged according to the requirements of
Ti. This has been confirmed and it has been shown that by placing
atoms in the following positions of this space group an arrangement is
obtained which yields plausible interatomic distances and does not con-
flict with data from Laue and oscillation photographs.

Be: (32b) uuu; ete. [see XVIIIA, (ce)] with u=-0.060
O(1): (8f) 000; 303; 330; 033; 1i%; 3td; 33t 13

0(2): (g) xyz; ete. with x=—0.163, y=—0.064, z=—0.038
C(1): (48¢) u,00; ete. with u,;=0.197

C(2): (48¢c) u’00; ete. with u’=0.295.

As was earlier pointed out this choice of space group implies that the
two oxygen atoms of the acetate group are geometrically equivalent.

(be) Two studies of the dihydrate of copper formate, Cu(HCOO),-
2H,0, differ both in the size of the unit and in the chosen space group.

(bf) It is said that the lead atoms in Pb(HCOO). have the coordinates

'I!E: '1'1!': %; H: H: %; T’ﬂ'r 'II!: %; TT"! Tuﬂ's %'
130
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(bg) An claborate discussion, based on powder photographs, has been
given of possible arrangements for the atoms in methyl silicate, (CH;),SiOj.
It was shown that the structure is based on T! but the correct grouping
was not definitely established.

(bh) Spectral photographs have been used to find an atomic arrange-
ment for the atoms in dimethyl thallium iodide, TI(CH;),I. They are in
the following special positions of Djr:

2TI:  (a) 000; 3} 21: (b) 130; 00}
4(CHsj): (e) 00u; 004; 3, %, u+3; 3, 3, 2—u with u=ca 0.15.

The TI-CHj; separation is 2.01 A; the distance between CH; groups through
which contact is made along ¢, is 4.17 A (Figure 332). This large CH;-
CH; separation may mean that u should be greater than 0.15.

The bromide and chloride are structurally isomorphous with the iodide
but the methyl parameter could not be found for them.

B. The Structures of Substituted Ammonium Salts

(bz) Quantitative spectrometer measurements have been used to find
the structure of dimethyl ammonium chlorostannate, [NH;(CH3)2]2SnCls.
Atoms are in special and general positions of Cj,:

(8) Ouv; 3, 4, v+3  (b) xyz; 3—X, §, z2+3; x+3, §, 2+%; Ryz

TaBLE II. THE CRYSTAL STRUCTURES OF SUBSTITUTED AMMONIUM SALTS

Substance, symmetry a, b, ¢, No.mol. References
and structure type per cell

Monomethyl Ammonium Cuprie

Chloride
(NH;CHyg),CuCl, Ort. 730 7.535 18.55 4 1933, 157.
Dimethyl Ammonium Chlorostan=~

nate
[NH;(CHy);J:SnCls  Ort. (b2) 7.26 14.28 7.38 2 1933, 157; 1934, 60.
Tetramethyl Ammonium Fluosili~

cate
[N(CHs)J2SiT Tet. (bj) 7.88 11.19 2 1934, 57.
n-Monoamyl Ammonium Chloride
n-CalIuNHaCI Tet. (bk) 7.03 at 16.70 4 1933, 438.
—80° C
Octadecyl Ammonium Chloride
C.:Hs;NH;Cl Ort. (bl) 6545 540 69.4 4 1932, 41, 42.

with the parameters of Table III. The axes of this description, XYZ=
abe, are connected with those used for an earlier crystallographic descrip-
tion, a’b’c’, by the relations X=a=a/, Y=b=c¢/, Z=c=b'.
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TasLe III. PArRAMETERS OF THE AToMms IN [(CH,):NH;SnCl,

Atom No. per cell Position T y z
Sn 2 (a) 0 0.250 0
Cl(1) 2 (a) 0 .390 0.180
Cl(2) 2 (a) 0 .110 —.180
CI(3) 4 (b) 0.235 185 .190
Cl4) 4 (b) 235 315 —-.190
NQ@) 2 (a) 0 .620 .690
N(2) 2 (a) 0 .880 310
CH,(1) 2 (a) 0 .605 875
CH,(2) 2 (a) 0 .895 125
CH,(3) 2 (a) 0 .530 625
CH,(4) 2 (a) 0 .970 375

Fia. 333a.—(left) A ﬂortion of the structure of [NI;(CH,)::SnClg projected on the
a-face of its orthorhombic cell. The segments of circles, representing NH,, join
CH, groups (largest circles). The Cl and Sn (smallest circles) of SnCls ions are
connected by light hnes.

Fia. 333b.—(right) A packing drawing of a. The NH;(CH;); ions are line-shaded
Atoms of Sn cannot be seen.

The substituted ammonium chlorostannates thus far analyzed have
been relatively simple distortions of the (NH,),PtCls grouping [XVII,
(a)]. This arrangement (Figure 333) can be similarly viewed but the dis-
tortion is great. The two C-N bonds of a (CH;);NH," ion make the
tetrahedral angle with one another; the CH;-Cl separation, ca 3.83 A,
is the same as that found in other substituted ammonium chlorostannates.

(bj) The tetragonal packing found for the atoms in tetramethyl am-
monium fluosilicate, [N(CHj)4JsSiFe, is a distortion of that prevailing in
the cubic [N(CH;)4]sSnCls (u). Atoms are in the following general and
special positions (1930, 352, p. 82) of Cj, with parameters fixed by a series
of spectrometric measurements (Figure 334):
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Fic. 334a.—(left) A basal projection of the tetragonal arrangement found for
[N(CH;)41:SiFs. The smallest circles, as N atoms, are each jomned to their four
surrounding CH; groups by light lines. The heavy dotted circles are the Si atoms
at the centers of their surrounding F octahedra.

Fia. 334b.—(rght) A packing drawing of a. The CHj groups of the N(CHj), tetra-
hedra are line-shaded.

28i:  (a) 000; $3% 4 N: (d) 031; 30%; 0%%; 303
4 F': (e) 00u; 00G; %, 3, u+3; 3, 3, 3—u with u=0.155
8I:  (b) £(uv0); £(Fu0); £(F—v, u+}, 3); £(u+3, v+3, 3) with
u=0.18, v=0.12
16(CHs): (1) =(xyz); =(¥xz); (X¥z); *(y%z) and eight similar points
around %33, with x=0.14, y=0.47, 2=0.175.

(bk) In contrast with the two-molecule tetragonal cell found at room
temperature, a four-molecule tetragonal unit is observed for n-amyl am-
monium chloride both at CO,-snow and at liquid air temperatures. The
observed data are said to indicate that at low temperatures molecular
rotation is arrested but not necessarily with the carbon chains in equilib-
rium positions.

(bl) The orthorhombic arrangement found for octadecyl ammonium
chloride is said to be evidence that in this long chain compound the mol-
ecules are not rotating.

C. The Structures of Aliphatic and Aromatic Compounds
Aliphatic Compounds

(bm) A redetermination of a, for methane yields a value much lower
than that previously found and in better agreement with the experimental
density. The attempt to establish hydrogen positions from these photo-
graphs is undoubtedly of little real significance.
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(bn) A further study of the structure of iodoform, CHI;, using photo-
graphic data, has confirmed the previous choice of space group and iodine
positions. Carbon atoms are thought to be in }2u; %, }, u+3 with u
between 0.50 and 0.60.

(bo) If the space group assigned to these pentaerythritol tetrahalides
is correct, their molecules cannot have tetrahedral symmetry.

(bp) Additional spectrometric measurements on urea and their Fourier
analyses have led to the following more accurate parameters (see book,
p. 373): u(C)=0.335, v(0)=0.60, w(N)=0.145, t(N)=0.18.

(bg) Spectrometric measurements of intensity and Fourier analyses
have been used in a reexamination of the structure of thiourea, CS(NH,),.
Atoms are in the positions of Vi’ previously chosen, (ab), with the param-
eters (the origin in a center of symmetry):

C: (e) £(uv}); £G—u, v+3, 1) with u=-0.14, v=0.10

S: (¢) x£(uivi}i); ete. with u;=0.120, v,;=-0.007

N: (d) i(xyz); :t(xr Y, %_Z); ﬂ:(x'i'%: %_YJ Z-i-—%); :i:(X-I-%, '}_Yi 2)
with x=0.278, y=—0.130, z=—0.125.

The way the molecules pack together is illustrated by Figure 335. In
contrast with the earlicr arrangement all the atoms in a molecule lie in
one plane. The C-S separation is 1.64 A; NH, and S of different mol-
coules are 3.45 A apart. Other interatomic distances are practically the
same as in urea.

)

Fig. 335a.—(left) The orthorhombic structure of thiourea projected on the a-face.
Fia. 335b.—(right) A packing drawing of . The C atoms do not appear.

(br) Spectrometric measurements of crystals of methyl urea, CONH,-
(NHCHj;), have been made in an attempt to find its complete structure.
All atoms are in general positions of V4 Values of x and y atomic param-
eters have been determined from structure factor calculations and Fourier
analysis. They account for all the (hk0) reflections but a satisfactory
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structure using them in an explanation of the more complicated (hOl)
data was not found.

(bs) A structure for the ordinary («) form of glycine, CH,NII,COOH,
has been deduced which is in good agreement with spectrometric measure-
ments of the simplest reflections but which like that mentioned for methyl
urea, (br), is unable to explain the more complex intensities. In this pro-
posed arrangement, all atoms arc in general positions of C3,: (¢) ==(xyz);
+(3—x, y+3, 3—2) with the parameters of Table V.

It has been reported that X-ray results indicate the reality of the sup-
posed B-modification of glycine but the published evidence for this con-
clusion is not convincing,.

TasLe V. PARAMETERS oF THE AToMs IN GLYCINE

Atom No. per cell z Y z

o) 4 0.42 0.35 0.74
0(2) 4 44 47 .63
N 4 .88 .33 15
CQ) 4 22 41 .58
C(2) 4 12 .40 .26

(bt) By choosing axes in the ac-plane different from those of Table IV,
a-glycylglycine has been given a four-molecule cell with the dimensions
a,=7.7, b,=9.56, ¢,=9.5, 8=125°20" (1931, 41).

(bu) Conflicting cell dimensions have been published for the hexagonal
crystals of l-cystine. One determination (1931, 41), choosing D} as space
group, finds a six-molecule cell with a,=5.40 A, ¢,=57.8 A. The other
with thrce molecules in its unit has a,=9.40 A, ¢,=9.42 A (1931, 22).

(bv) Recent measurements of the unit cell of the room temperaturc
form of succinic acid (1931, 98; 1932, 131) confirm a previous assignment
of unit cell.

(bw) The simple hexagonal unit found for dodecanol at room tempera-
ture is considered to show that its molecules are rotating.

(bx) Positions have been found for the iodine atoms in 1,4 diiodocyclo-
hexane. They are in general positions of C3,: (e) = (xyz); +=(x+3, -V, 2)
with x=0.150, y=0.135 or 0.365, z=0.385. An earlier space group assign-
ment, of C3, (1931, 161), was wrong for this compound and for the isomor-
phous dibromide.

(by) Debate over the unit cell and structure of cellulose continues, the
symmetry being sometimes treated as tetragonal, sometimes as ortho-
rhombic and sometimes as monoclinic. The last is most probably correct.
It is obvious that from the standpoint of sound crystal analysis the ar-
rangements frequently described for cellulose and its derivatives must be
considered as speculations, more or less compatible with chemical infor-
mation, and perhaps not conflicting with the very limited X-ray data at
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hand. Assignments of positions to the atoms in rubber, in silk fibroin
and in most other macromolecular substances are equally uncertain.

Aromatic Compounds

Greater progress has been made in determining atomic positions in
crystals of aromatic compounds. This is largely due to the fact that their
benzene rings provide large building blocks that always have the same
size and shape and can enter into the known units in only a limited num-
ber of ways.

(bz) It has been found that the iodine atoms in o-iodobenzoic acid,
CelL ICOOH, are in general positions of C3,: (e) =+ (xyz); +(x+}, 31—y, 2)
with the parameters x=0.14, y=0.08, z=0.02. The positions of the other
atoms are not known.

(ca) p-Dibromobenzene, C;H,Br,, has its bromine atoms in gencral
positions of Cy,: (e) ==(xyz); (X, y+3%, 3—2z) with x=0.03, y=0.167,
z=(.170. Tor the isomorphous chloride x,=0.04, y,=0.16, 2,=0.16.
Parameters compatible with atomic packing and with observed optical
properties have been suggested for the carbon atoms. The available X-ray
data are not able to show whether these carbon positions are right.

The diffraction effects of p-hromochlorobenzene, C¢H,BrCl, are inter-
mediatc between those of the chlorine and bromine derivatives. This
presumably means that the molecules go into the structure, with half the
bromine atoms pointing one way and with the other half pointing in the
opposite direction.

(cb) The p-diiodobenzene, C4H,L,, is not isomorphous with its chloro-
and bromo-analogues. lodinc atoms in the orthorhombic unit are in gen-
eral positions of Vi’: (¢) =(xyz); £(x+3, -y, 2); =& y+3, 1-2);
+(3—Xx, ¥, z+%) with x=0.172, y=0.40, z=0.22.

m-Diiodobenzene also is orthorhombic. Iodine atoms are at +(uvl);
+(uvi); £(u+3, v+3, 3); £G—u, v+3, 1) with u=0.172, v=0.200. The
space group may be Ci.

(cc) A thorough study, including spectrometric measurements and a
Fourier analysis, has been made of the crystal structure of durene, 1, 2, 4, 5
CeH2(CHs)s. All atoms are in general positions of Ci,: (e) =+(xyz);
+(x+3, 3—Y, z) with the parameters listed in Table VII. This arrange-
ment (Figurc 336) gives a molecule that, like C4(CHj)g, is planar. The
packing is, however, a totally different one. In this crystal the nearest
approach of atoms belonging to adjacent molecules is relatively large—
3.90 A.

(ed) The x and z parameters of both the chlorine and the carbon atoms
in C4Cls have been selected from a Fourier analysis of the spectrometrically
determined (hOl) intensities. Data needed to establish the y parameters
could not. be obtained so that the strueture remaina anlv nartlv known.
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TaBLE VII. ParaMETERS OF THE CARBON ATOMS IN DURENE

Atom

No. per cell T y z
C) 4 0.188 0.314 0.267
C(2) 4 .093 157 127
C(@3) 4 .037 —.005 212
C@) 4 —.055 —-.162 .090
C(5) 4 —.108 -.325 194

F1a. 336.—A projection upon
the b-face of molecules in
the monoclinie structure of
durene, C¢H2(CH;)¢. The
sizes given C and CH; in
this drawing are without
real significance.

All atoms are in general positions of C3, (not C3,, as previously chosen):

(e) =(xyz); =(x, 3—y, z+3). The x and z parameters are given in Table
VIII.

TaBLE VIII. ParaMmMETERS oF THE AToMs IN CiCl,

Atlom z z Atom T z

C(1) 0.181 0.026 Cl(1) 0.412 0.070
C(@2) 118 .087 Cl1(2) 278 .205
C@3) .048 —.062 Cl(3) .133 —.137

(ce) Astructure hasbeen proposed for quinhydrone, C¢H,0,- C¢H,(OH),,
which makes the oxygen atoms and hydroxyl groups equivalent. Though
parameters have been published adequate data in support of them are
lacking.

(¢f) A partially described and tested structure has been suggested for
diphenyl, C¢H;-C¢H;. No atomic coordinates have been published. The
orientation of its molecule within the vnit may be reproduced by rotating
a planar (C¢H;); molecule having its center at a center of symmetry and
its plane in be. This rotation amounts to 32° about the c-axis and 20°
about the b-axis.

(cg) A complete determination based upon quantitative intensity data
and their Fourier analysis has becen made of the atomic arrangement in
naphthalene, C,;H;. All atoms are in general positions of C,: (e) =(xyz);
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+(x+4%, -y, z) with the parameters of Table IX. The molecules of this
grouping pack together as shown in Figure 337. Atoms of neighboring
molecules come within 3.60 A of one another.

TaBLE IX. PARAMETERS OF THE ATOMS
IN NAPHTHALENE

Atom T Y z

CcQ1) 0.087 0.014 0.328
C(2) 114 .162 217
C(3) 047 104 .035
C(4) 074 .251 -.078
C(5) 007 .193 —.260

Fia. 337a.—(left) A projection of a portion of the monoclinic structure of naphthalene,
10Hs, upon its b-face. The circles re{)resent, C atoms. Only parts of the molecules
belonging to the bottom half of the cell are shown.

F1a. 337b.—(right) A packing drawing of a indicating the way the naphthalene mol-
ecules contact with one another.

(ch) The structure of anthracene, C;{H, also has been completely
worked out from a series of spectrometer measurements and their Fourier
analysis. Like naphthalenc the atoms of its two-molecule monoclinic cell
are in general positions of C3;: (e) %(xyz); & (x+3%, 3—y, z). The param-
eters are those of Table X. The close similarity that exists between this
anthracene arrangement (I'igure 338) and the naphthalene grouping (Fig-
ure 337) may be most easily seen by comparing the two figures. In
anthracene contacting molecules are slightly farther apart, the nearest
intermolecular atomic separation being 3.77-3.80 A.

(c7) Another ring structure, established {from quantitative data, is that
of p-diphenylbenzene, C¢H;(CeH,)CeH;s. With its atoms also in general
positions of Cj,: (e) x(xyz); ==(x+3, 3—y, z) (parameters in Table XI)
this arrangement (Figure 339) is very similar to the two preceding. It
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Fia. 338a.—(left) A })ortion of the monoclinic structure of anthracene, C,(H,o, pro-
jected on a b-face of 1ts monoclinic unit. The close similarity between the arrange-
ments found for naphthalene and anthracene may be seen by comparing Figures
337 and 338.

Fia. 338b.—(right) A packing drawing of a. In this and Figure 337b the radius chosen

for the atomic spheres is that suggested by the closest approach of C atoms in ad-
jacent molecules.

TaBrLE X, PARAMETERS OF THE ATOMS IN ANTHRACENE

Atom z Y z Atom z y z

C(1) 0.094 0.032 0.369 C(5) 0.033 0.130 -0.089
C(2) 124 157 279 C(6) .065 .254 —.179
C(3) .062 .082 .140 C(7) .002 A77 -.319

C@4) .095 207 .050

TaBLE XI. PARAMETERS OF THE ATOMS IN P-DIPHENYLBENZENE

Atom T Y z Atom T Y z

C(1) 0.059 0.182 0.064 C(6) -—0.082 0.182 0.368
C2) —.046 0 .100 C(7) —~.187 0 402
C(3) -.105 —.182 .036 C(8) —.246 —.182 .339
C@4) —.094 0 204 C(9) —.200 —.182 .239

C() —.036 182 .268

differs from them mainly in the fact that the long axes of its molecules
are parallel to the ac-plane, whereas those of C,olls and CyH,o are tilted
at considerable angles.

Diphenyl, C¢Hj;- C¢H;, p-diphenylbenzene, Ce¢lHs(CsH4)CoHs, and qua-
terphenyl, CgHjy(CeH,)2CeHs, have nearly equal a, and b, axes and
angles. The molecules must therefore be similarly oriented in their
crystals.
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THE STRUCTURE OF CRYSTALS
Fia. 339 —(left) A portion of the

13.59A -—-———hl

Fia. 340.—(right) A portion of the
chrysene, C,sy,, structure projected

on its b-face.

Only the molecules

midway along the c-axis are fully

shown.

structure of p-diphenylbenzene,
CeHy(CeHj)s, projected on the b-face
of its monochnic unit. As in the fig-
ures 1mmediately preceding circles
represent C atoms. Only parts of
the molecules associated with the
upper half of the unit are included.

TasLe XII. PARAMETERS oF THE AToMs IN CHRYSENE

Atom

C(1)
C(2)
C(@3)
C@
C(5)
C(6)
C(7)
C(8)
C(9)

No. per cell

CoO 0o GO Q0 0O 00 OO Q0 o

z

-0 026
018
—.036
.010
.108
.161
116
170
125

Y z
0.086 0.013
.084 074
256 100
254 161
079 196
—.095 171
-.089 110
—.262 .084
—.260 023
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CmHa—‘-CH
(¢j) Chrysene, [ || , differs from the preceding aromatic hydro-
C¢H,—CH
carbons in having a four-molecule arrangement developed from CS,. All
atoms arc in the general positions: (f) +(xyz); +(%, y, $—2); £(x+13, y+},
z+3); £(3—X, y+3, z). The parameters of Table XII, deduced from
spectrometric measurements of intensity, lead to the symmetrical ring
formula outlined in one of the molccules of Figure 340. Atoms of adjacent
chrysene molecules come especially close to one another (ca 3.5 A).

(ck) It is said that there exists a 1:1 compound of 2, 4, 6 CgH,CI(NO,);
and 2, 4, 6 CgH,CII3(NO,); which has cell dimensions identical with those
of 2, 4, 6 CngCII:{(NOz)a.

(cl) It is interesting that styphnic acid, C;H(NO,);(OI1),, and 2, 4, 6
trinitrophloroglucinol, C(NO2)3;(OH);, which differ by an OH group, should
have similar crystal structures.

(em) It has been pointed out (1933, 361) that azobenzene, Cell;N=
NC¢Hj;, stilbene, Cell,CH=CHC¢H;, and tolane, CiI;C=CC¢H; have
cells of nearly the same shape and size.

The unit of dibenzyl, CsH;CH,—CII,Cgll;, differs only in having a
c-axis reported to be half as long. Two structures have been proposed for
this erystal. One of them gives a molecule that is almost planar. The
molecule of the other has its two phenyl groups stepped with respeet to
one another but lying in parallel plancs. Unfortunately the atomic param-
eters for the second arrangement have not heen given.

(en) Irom a preliminary study of 1, 3, 5 triphenylbenzene, CsH;(CsHj)s,
it has been concluded that the molecular centers are in general positions
of C3,: () xyz; X, ¥, 2+3; x+3, 31—y, z; 1—x, y+1, z+3 with z=0. Atomic
parameters have not yet been found.

(co) A preliminary note, without a complete description of atomic
positions, has recently been published on p-quinone, C¢H ;0.

Recent Aliphatic Structures

(cp) Laue and spectral photographs have been used to assign positions
to the atoms in oxalic acid dihydrate, (COOH),-2H;0. The space group
is C3, with two molecules per cell. Writing the coordinates of the general
positions of this space group as (e) & (xyz); & (x+2%, 3—y, z+3), the chosen
atomic parameters are those of Table XIII. As can be seen from Figure
341, each water molecule is nearly equally distant (2.60-2.87 A) from three
oxygen atoms. Within a molecule C-C=1.59 A, C-0=1.25 A; the angle
between C-O bonds is 126°.
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TaBLe XIII. PARAMETERS OF THE ATOMS IN
(COOH),;-2H,0

Atom z

C -0.011
0O(1) .089
0(2) —-.222
H,0 —.444

(cg) A spectrometric study of hexamethylenetetramine, CgI1;,N4, and
a Fourier analysis of the intensities thus obtained are in complete agree-
ment with one of the earlier investigations of this crystal. Carbon atoms
are in (12a) v00; ete. [(as), book, p. 389], nitrogen in (8a) uuu; ete. with

Yy z
0.041 0 056
—.062 150

.222 041
—.375 174

F1a. 341.—A b-face projection of the
molecules of Hy(,0,-2H,0 associated
with its monoclinic unit. The large
circles are H,O molecules. The O
and OH of carboxyl groups, which
are equivalent in this structure, are
shown by the intermediate circles.
The radii used in this figure were
determined by convenience only.

the same parameters: u=0.12, v=0.23.*

* On p. 390 of the book, values of u and v have been erroneously interchanged.
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Appendix
Bibliography of Crystal Structure Data

This bibliography continues that published as an appendix to the second edition
of *“The Structure of Crystals.” In adding items through 1930, papers by suthors
who already appear have been given existing numbers with an added a, b, cte.;
articles by new authors have been arranged alphabetically with new numbers. The
same procedure has been followed mn numbering very recent additions to the lists
for subsequent years.

Year 1025 ) )
281, Meisel, K. Dissertation, Hannover.

Year 1027
313, Shinoda, G. X-ray Analysis of Cast Alloys II. Bronze, Suiyokaishi 5, 472.

Year 1028
253a, Menzer, G. Crystal Lattice of Eulytite, Centr. Mineral. Geol. 1928A, 420.
451, Sarkar, A, N. X-ray Examination of the Crystal Structure of Resorcinol,
Proc. 16th Indwn Sci. Cong. 1928, 92.

Year 1929

205a. Machatachki, F. Algodonite and Whitneyite, Neues Jahrb. Mineral. Geol.
Beilage-Bd. 59A, 137. 205b. X-ray Examination of Remelted Algodomte and Whit-
neyite. Supplement, Centr. Mineral. Geol. 19294, 371.

289a. Schiebold, E. Crystal Structure of Feldspars, Fortschr. Min. Krist. Pet.
14, 62.

381, Barth, T. F. W. The Symmetry of Potash Feldspar, Fortschr. Min. Krist.
Pet. 13, 31. (See also Centr. Mineral. Geol. 1928A, 380).

382. Eulitz, W. An Auxihary Apparatus for the Orentation of Small Crystals
for X-ray Investigation, Z. Krist. 70, 506.

383. Nakamoto, M. and Sano, G. Water Content of Inorganic Compounds I.
Water Content of Acid Clay of Koto, J. Chem. Soc. Japan 50, 473.

384. Schiebold, E. and Reininger, H. X-ray Structure Investigations, Giesserei-
Ztg. 26, 634, 666.

Year 1930

3a, Ageev, N. and Sachs, G. The X-ray Determination of the Solubility of
Copper in Silver, Matt. deut. Materialpriifungsanstalt 13, 50.

19a. Bragg, W. H. Cellulose in the Light of X-rays, Cellulose 1, 80, 110;
Nature 125, 315.

22a. Bragg, W. L. Structure of Silicates, J. Soc. Glass Tech. 14, 295.

38a. Brill, R. X-ray Determination of the Form and Boundary Surfaces of
Submicroscopic Crystals, Z. Krist. 75, 217.

44a, Brukl, A, and Ortner, G. The Sulfides of Gallium, Sitzungsber. Akad. Wiss.
Wien, Math-naturw. Kl. Abt. 11b, 139, 594.

45a. Bruni, G. and Natta, G. The Crystal Structure of Benzene and its Relation
to that of Thiophene II, Rendicont; accad. Linces 11, 1058.

49a. Busse, W. Dependence of the Width and Intensity of Debye Lines and
Rings on the Dimensions of the X-ray Source, of the Preparation and of the
Camera, Z. Physik 66, 285.
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Year 1930

69a. Debye, P. Interferometric Determination of the Structure of Individual
Molecules, Z. Elektrochem. 36, 612.

72a, Dehlinger, U. X-ray Investigation of the System Cadmium-Magnesium,
Z. anorg. Chem. 194, 223.

74a, Desmaroux and Mathieu, X-ray Study of the Gelatinization of Nitro-
cellulose, Compt. rend. 191, 786.

97a, Friauf, J. B. The Application of X-rays to the Study of Metals, Rev. Sci.
Instruments 1, 361.

105a. Gossner, B. FEudialyte, Centr. Mineral. Geol. 1930A, 449. 105b. Boleite,
Pseudoboleite and Cumengeite, Z. Krist. 75, 365.

111b. Gossner, B. and Mussgnug, F. Alstomite and Milarite—a Contribution to
the Study of Complex Crystals, Centr. Muneral. Geol. 1930A, 220. 11lc. Baryto-
calcite and its Structural Relations to Other Matenals, 1bud. 1930A, 321. 111d.
Crystallographic Relationships between Epidote and Zoisite, ibiud. 1930A, 369.

Bliﬁa. Higg, G. Crystal Structure of the Compound Fe.B, Z. physik. Chem.
11B, 152,

110a. Halla, F. and Mehl, E. Fiber Structure of Plastic Sulfur, Sitzung Akad.
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Barium Imide, BaNH, 16

Barium Iodide Hexahydrate,
Bal,-6H;0, 83

Barium Nickel Cyanide Tetrahydrate,
BaNi(CN),-4H,0, 83

Barium Nickel Nitrite, Ba;Ni(NOx)s, 78

Barium Nitrate, Ba(NOy),, 54

Barium Oxide, BaO, 16

Barium Perchlorate Trihydrate,
Ba(CI()i)z'SH:O, 83

Barium Platinum Cyanide Tetrahydrate,
BaPt(CN),-4H,0, 83 .

Barium Rhodium Nitrite,
Ba, Rh(NOs)s ], 78

Barium Thorate, BaThO;, 54

Barium Tungstate, BaWO,, 64

Barium Zirconate, BaZrQOs, 54

Barytocalcite, BaCa(CO;)s, 54
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Bastniisite, (Ce,La- - - )FCOs, 54
Baveiloi‘?e, 9810, - Al,O; - Be0-4Ca0 - H,0,
Be,Cu, 24

Be,Fe, 24

B&gSiWnOw':‘}ngO, 86

Benzene, CgHs, 146

Bertra._miite I’nge‘,SiaOu, 107

Beryllium, Be, 9

Beryllium Carbide, Be,C, 24

Beryllium Fluoride, BeFs, 24

Beryllium Nitride, BesN,, 36

Beryglllm Oxyacetate, Be,O(CeH;0,)s,

Beryllium Phosphide, Be;P,, 36

Beryllium Sulfate Tetrahydrate,
BeSO,-4H,0, 83

Beryllonite, BeNaPO,, 64

Bindheimite, PbySb:O7, 99

Binnite, (CD,FE)IBAB4S“, 99

a-Bisdiethyl Sulfine Platinous Chloride,
PHS(CHL); LCly, 132

a-Bisdimethyl Sulfine Platinous Chloride,
Pt[S(CH;),; 1:Cl,, 132

B-Bisdimethyl Sulfine Platinous Chloride,
Pt[S(CHj;)2 1Cls, 132

Bisethylene Diamino Platinous Chloride,
Pt(C:H;N,),Cl,, 132

3, 4 Bis(5 Methyl-&lsoxazolgllcarbonyl)
Furazan-2-Oxide, C;3HgNOs, 160

Bismuth, Bi, 9

Bismuth Todide, Bily, 38

Bismuth Sulfide, B1,S;, 36

Bismuthinite. See Bismuth Sulfide

Boleite, 99

Bone, 69

Boracite, MgsC1B;0ys, (low), 99

Boracite, MgsCiB;O;s, (high), 99

Boric Acid, H;BO;, 54

Boron Arsenate, BAsO,, 64

Boron Carbide, B:C, 39

Boron Phosphate, BPO,, 64 v

Bournonite, CuPbSbS;, 99

Braggite, (Pt,Pd,Ni)S, 18

Braunite, 3Mn:0; - MnSiO,, 108

Brominated Northupite,

Na,;Mg(COys). - NaBr, 100

Bromlite, BaCa(COs),, 54

1 Brom-2-Naphthylamine,
ClDHIBl' H; ’ 150

4 Brom-1-Naphthylamine,
CioHyBr(NH,), 150

4 Brom-1-Naphthylamine, 2, 6 Dinitro-

henol (red form), C,cH¢Br(NII,),
CiH,OH(NO,)s, 150 ,

4 Brom-1-Naphthylamine, 2, 6 Dinitro-
phenol (yellow form), C,cHsBr(NH,),
CeH;0H(NOy),, 151

-Bromochlorobenzene, CeH(BrCl, 146
rushite, CaHPO,-2H,0, 82

CHI;- 3S;, 99
CH;N,0;, 159
Can;, 38
CaSn;, 38
CaTl, 16
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CaTla, 38

Cadmium, Cd, 9

Cadmium Ammonium Sulfate Hexahy-
drate, CdSOx- (NH,),SO,-6H,0, 84

Cadmium Arsenide, Cd;As;, 36

Cadmium Bromide, CdBr;, 24

Cadmium Bromide Hexammoniate,
CdBl’a‘ GNH;a, 83

Cadmium Chlorite Dihydrate,
Cd(Cl0O,),- 21,0, 82

Cadmium Ferrite, CdFe,0,, 64

Cadmium Fluoborate Hexammoniate,
Cd(BF,),-6NH;, 83

Cadmium Fluosulfate Hexammoniate,
Cd(80sF),-6NH;, 84

Cadmium Hydroxychloride, CdCI1(OH), 24

Cadmium Iodide, CdI,, 24

Cadmium Jodide Hexammoniate,
CdI,-6NH;, 84

Cadmium Oxide, CdO, 16

Cadmium Perchlorate Hexammoniate,
Cd(Cl0,).- 6NH;, 84

Cadmium Phosphide, Cd;P,, 36

Cadmium Thiochromite, CdCr,S,, 64

Cadmium Titanate, CdTiOs, 54

Calﬁifer()l, CMHHOH, 162

Calciferol Pyrocalciferol, 162

Calcite. See Calcium Carbonate

Calcium, g-Ca, 9

Culcium Aluminate, Ca[A1(OH)s ], 78

Calcium Boride, CaBs, 39

Calcium Bromide Hexahydrate,
Ca.Bn : BII:;O, 83

Calcium Bromide Hexammoniate,
CaBr,;-6NH;, 83

Calcium Carbonate, CaCO;, 54

Calcium Chloride Hexahydrate,
Cﬂ.Clz' 6H20, 83

Calcium Chlorite, Ca(Cl0,),, 40

Calcium Chromate, CaCrO,, 64

Calciumn Chromate Dihydrate,

* CaCr0,-2H,0, 82

Calecium Chromate Monohydrate,
Oﬂ-crO" IT;O, 82

Calcium Fluoride, CaF,, 24

Calcium Imide, CaNH, 16

Culcium Iodide, Calg, 24

Calcium Iodide Hexa.hydmt,e,
Cal;-6H,0, 83

Calcium Iodide Hexammoniate, ,
CaIg 'GNH;, 83

Culcium Magnesium Carbonate,
CaMg(COs)n, 54

Calcium Metaborate, CaB,0,, 40

Calcium Nitrate, Ca(NOy)s, 54

Calcium Nitride, a-CagN,, 36

Calcium Sulfate Dihydrate,

aS0,-2H,0, 82

Calcium Sulfate flemihydrate,
2(CaS0y) - ca H,0, 82

Calcium Sulfate Urea,
CaS0,-CO(NHjy), 131

Cancrinite,
3(Na,AlLO - 28i0s) - 2CaCO;, 108

Carbon Dioxide, CO., 24

Carbon Monoxide, g-CO, 16
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Carbon Oxysulfide, COS, 24 .
Carbon Tetraiodide, CI,, 39
Carbonato Tetrammine Cobalti-Perchlor-

ate, [Co (5 JCIO,, 83
Carbonato Tetrammine Cobalti-Sulfate
Trihydrate, [Co ({2, 2S04 3H,0, 86
a-Carnegieite, NaAlSiO,, 108
CdLi, 16

3CdS0,-8H,0, 86

CdSb, 16

Cd,Sb,, 36

CcMgs, 38

CePbs, 38

Cesrls, 38

Cellulose, (CquDOi) ny 142

Cellulose Hydrate, 142

Cellulose Perchlorate,
2CsH,00;5- HCI0,, 142

Celsian, 128

Cementite. See Iron Carbide

Cerium, a-Ce, 9

Cerium Boride, CeBs, 39

Cerussite. See Lead Carbonate

Cesium Acid Tartrate, CsHC,H,Os, 131

Cesium Aurous Auric Chloride,
Cs;AutAut++Cl,, 78

Cesium Chloride, CsCl(low), 16

Cesium Chloride, CsCl (high), 16

Cesium Chloroplatinate, Cs;PtCls, 78

Cesium Chloroplumbate, Cs,PbCls, 78

Cesium Chloroselenite, dSzSGCIn. 78

Cesium Chlorostannate, Cs,SnCls, 78

Cesium Chlorotellurite, Cs,TeCl, 78

Cesium Chlorotitanate, Cs,TiCls, 78

Cesium Chlorozirconate, Cs.ZrCls, 78

Cesium Cobaltinitrite éssCo(NOn)a, 78

Cesium Cyanide, CSCN, 16

Cesium Dichloroiodide, CsClI, 42

Cesium Dithionate, Cs.S,0s, 54

Cesium Ferricyanide, Cs,Fe(CN)s, 78

Cesium Fluophosphate, CsPF,, 78

Cesium Hydrosulfide, CsHS, 16

Cesium Iridium Nitrite, Cs;Ir(NO;)s, 78

Cesium Nitrate, CsNO;, 54

Cesium Osmiamate, CS(SSNO;, 64

Cesium Perrhenate, CsReQy, 64

Cesium Persulfate, Cs,S,0s, 64

Cesium Rhodium Nitrite, CssRh(NO,)s, 78

Cesium Silver Auric Chloride,
Cs;AgAuCls, 78

Chabazite, CaAl:Si0y;-6H;0, 108

Chalcopyrite, CuFeS,, 41

Chilcite, 74

d-Chitosamine Hydrochloride,
CsHOsNCl, 142

Chlorites, 108

Chlor-X- d)atite
Cao(C1,X)s(POy)s, 69

Choleic Acid, 1

Cholesteryl ﬁromide, 162

Cholesteryl Chloride, 162

Cholesteryl Salicylate, CyHyQs, 162

Chromite, (Fe,Mg)Cr:0,, 65

Chromium, a-Cr, 9

Chromium Carbide, Cr;C,, 36
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Chromium Carbide, Cr,C, 39
Chromium Chloride Hexahydrate,
CrCl;-6H,0, 84
Chromium Oxide, CrO;, 38
Chromium Tribromide, CrBr,, 38
Chromium Trioxide, CryOy, 36
Chrysene_, CuHu, 152
Clinozoisite, 128
Co.S,, 40
Cobalt, 8-Co, 9
Cobalt Sulfate, CoSO,, 64
Cobalt Titanate CoTi0,, 64
Cobaltic Fluoride, CoF, 38 .
Cobalti-Fluoborate Hexammoniate,
500-6NH;](BF0;. 84
Cobalti-Fluo hoaghate Hexammoniate,
Co-6NH,(PF.);, 84
Cobalti-Perchlorate Hexammoniate,
Co-6NH,](ClO,),, 84
Cobaltous Aluminate, CoAL,O,, 64
Cobaltous Ammonium Sulfate Hexahy-
drate, CoSO,- (NH,),S04-6H:0, 84
Cobaltous Bromide Hexammoniate,
[lCo-ﬁNHs]Bn, 84
Cobaltous Carbonate, CoCO;, 54
Cobaltous Chloride, CoCls, 24
Cobaltous Chloride Hexammoniate,
CO'GNH; Cls, 84 =
Cobaltous Fluoborate Hexammoniate,
Co-6NH,](BF,)., 84 .
Cobaltous Fluophosphate Hexammoniate,
Co-6NH; |(PF,)., 84
Cobaltous Fluosulfate Hexammoniate,
Co-6NH,](SO:F),, 84
Cobaltous Iodide Hexamethylamine,
£CO-G(NH,-CH;)]I=, 84
Cobaltous Iodide Hexammoniate,
Co-6NH,]I;, 84
Cobaltous Perchlorate Hexammoniate,
B]iCo ‘6N H,J(ClOy),, 84
Cobaltous Sulfide, CoS, 16
Cobaltous Titanate, CoTiQ,, 54
Columbium, Cb, 9
Colusite, (Cu,Fe,Mo,Sn).(S,As,Te)ss, 16
Cooperite. See Platinum Sulfide
Copper, Cu, 9
Copper Aluminate, CuALO,, 64
Copper Antimony Sulfide, dquS,, 41
Copper Bismuth Sulfide, CuBisS;, 40
Copper Ferrite, CuFe.0y, (quenched), 64
Copper Ferrite, CuFe,Q,, (annealed), 65
Copper Formate Dihydrate,
Cu(HCO,),-2H, y 131
Copper Formate Tetrahydrate,
Cu(HCO,),-4H,0, 131
Copper Glance. See Cuprous Sulfide
Copper Sulfate Pentahydrate,
CuSO. . 5H;0, 83
Copper Vanadium Sulfide, Cu,VS,, 65
Coré?lite, Ba.GO.-2RFCd,, 54
Sormﬁ;ium. SeSe%a—A lugzi%m Trioxide
ovellite. e Cupric Sulfide
Cr ’Cl; 40
a-Cristobalite. See Silicon Diozide
B-Cristobalite. See Silicon Diozide
Cryolite, Na;AlF,, 79
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CsCy (brown), 40

CS‘C]& (bla.ck), 40

Cu;Cda, 40

Cu:Mg, 24

CuuSig, 40

uﬁzn& 40

Cumengeite, 99

Cupric Fluoride, CuFs, 24

Cupric Oxide, CuO, 16

Cupric Sulfide, Cué, 16

Cuprite. See Cuprous Ozide

Cuprodescloizite, 74

Cuprous Ferrite, Cu,Fe,0,, 41

Cuprous Fluoﬁ(fe, Cul, 16

Cuprous Glutathione, 131

Cuprous Mercuric Iodide, o-Cu,Hgl,, 65

Cuprous Mercuric Iodide, 8-Cu,Xigl,, 65

Cuprous Oxide, Cu,0, 24

Cuprous Sulfide, Cu,S, 24

Cyanite, ALSiO;, 108

p-Cysano-o-Nitro-p’~-Methoxystilbene,
CeH;3(CN)(NO,;)CH = CHCeH,(OCHj;)
(orange form), 149

p-Cyano-o-Nitro-p’-Methoxystilbene,
CeH; (CN) (NO,) CH =CHC.H, (OCH))
(metastable yellow form), 149

Cyanuric Triazide, C;N3(Nj),, 159

Cyclododecane, CysHy, 139

a—Cyclohexandi.ol 1, 2, GsHm(OH):, 139

B-Cyeclohexandiol 1, 4, CsH,0(0H),, 139

v-Cyclohexandiol 1, 2, CsH;0(OH);, 139

B-Cyclohexandiol Diacetate 1, 4,
CoH,o(CH;COq),, 139

Cyeclohexane, CsHy,, 139

Cyclooctacosane 1, 15 dion,
CysHy2O,, 140

Cyclotetracosane 1, 13 dion,
CaHO,, 140

1-Cystine, COOHCH(NH,)CH,S=
SCH,CH(NH,)COOH, 137

Dechinite, 74

Descloizite, PbZn(OH)VO,, 66

3, 3’-Diaminodimesityl, 152

Diamminoplatinic Tetrachloride,
a-Pt(NH;),Cl, 82

Diamminoplatinic 'Tetrachloride,

. B-Pt(NH;),Cl,, 82
Dganhydrogntoxgemn CyH2902(OH), 163
Dianthracene, ( uHmin, 152
Diaspore. Sece Aluminum Triozide Mono-

ydrate
1, 2, 6, 6 Dibenzanthracene, 152
7,_7'-f)ibenzoca.rbazole 152
Dibenzoy] Disulfde, (C;H,CO8)s, 150
Dibenzy 3 C_aHgCHg-Cch|H| 148
Dibenzyl Diselenide, (CsH:CH,Se)s, 150
Dibenzyl Disulﬁde% (C.HCH,S),, 150
Dibenzylidenebenzidine, 148
p-Dibromobenzene, CaI‘thl'g, 146
1, 4 Dibromocyclohexane, CeH,Br,, 139

Dichlorobenzene, CeH,Cl,, 146

ickite, AlSi,Os(OH),, 108
55 DiethKTl Barbituric Acid,

. CyHuN,Oy, 160
Digitoxigenin, CosHy03(0H)s, 163
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a-Diglycylglycine, NH;,CH,CONHCH,-
CONHCH,COOH, 137
g-Di lycyllgllgcine, NH;CH.CONHCH,-
ONHCH;COOH, 137
Diglycglﬁl cine Dilgdrate, NH,CH,-
f37 CH,CO HCH,COOH -2H,0,

Digoxigenin, CpHj;0;(0H)s, 163
a-Dihydroergosterol, Ethyl Alcoholate,
HoOH,C:HsOH, 162
m-Diiodobenzene, CsH,ls, 146
o-Diiodobenzene, CgH,l,, 146
p-Diiodobenzene, CeH.l,, 146
1, 4 Diiodocyclohexane, CeHol,, 139
Diketopiperazine
NHCH,
0= >C=0, 159
H,NH
Dimesityl, 152
Dimethyl Ammonium Chlorostannate,
[NH3(CH;); :SnCl,, 133
Dimethyl Thallium Bromide,
T1(CH,).Br, 132 )
Dimethyl Thallium Chloride,
TI(CH,),Cl, 132
Dimethyl Thallium Iodide, TI(CHj),I, 132
2, 7 Dinitroanthraquinone,
CyHe(NO,);0;, 151
2, 7 Dinitroanthraquinone Fluorene,
CuHe(NO,);0,, (CsHy).CH,, 151
m-Dinitrobenzene, CeH((NOs),, 146
1, 2, 6 Dinitrophenol, CsH;OH(NO,),, 147
trans-Dinitrotetrammine Cobalti-

Chloride, 1, 6[Co ((ﬁgz)ﬁ]cn, 83

Diphenic Acid, (COOHC,H,),, 150
Diphenyl, CeHj;- CsHs, 150
gl)iphenglbengene, daH;(C.H.)C.Hn, 152
iphenylbutadiene
CsH;CH = (CH),=CHC,Hj, 149
Diphenyldecapentaene,
ClHu(CII=CH)5CQH|, 149
Diphenyl Diselenide, (CsH;Se),, 149
Diphenyl Disulfide, (CeHsS)s, 149
Diphenyldodecahexaene
Colly(CH = CH)(Coll;, 149
Diphenylhexatriene,
C.ﬁ;CH-(CH_gH),nCHC.H., 149
Diphenfvl Nitrosoamine,
CeHgN-NO-CsHs, 150
Diphenyloctatetraene
CoHly(CH =CH)(CHy, 149
Diphenyltetradecaheptaenc,
C¢Hs(CH=CH):C¢Hs, 149
Disodium Calcium Orthosilicate,
Dodecanol, C;;H;OH, 138 )
Dolomite. See Calcium Magnesium Car-

bonate
Dulcitol, CgHuOg, 140
Durene, 1, 2, 4, 5§ CsH3(CHa),, 147

Edingtonite, BayAlSisOs0-8H:0, 108
Empiostite” See Copper Biswith Sulfide
Enargite, Cu;AsS,, 64

Enstatite (var. Bronzite), 108
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I-Ephedrine Hydrobromide,
C]uH];ON,HBI‘, 160

Ephedrine Hydrobromide (racemic),
C1oH150N ,HBI‘, 160

I-Ephedrine Hydrochloride,
CyoHy;ON, HC], 160

Ephedrine Hﬁdmchloride (racemic),
C1oH1;:ON,HCI, 160

l-Ephedrine Hydroiodide,
C,H;sON, HI, 160

Ephedrine Hydroiodide (racemic),

_ C,0H,,ON,HI, 160
Epididymite, NaBeSi;O.(0H), 108
Epidote, (Si04);ALCas(Al,Fe)OH, 108
Epso}f;idt,e. See Magnesium Sulfate Hepta~

rate

Erbium Boride, ErB,, 39
Lirgosterol, CyrH40 , 162
Ethyl Anisal &Amino Cinnamate,

C“H“N s 1_48
Euclase, HBeAlSiO;, 108
Kudialyte, 108
Kulytite, BiSiyO, 108
Eusynchite, 74

FeSi, 16

Fe;Wa (e-pha.ae), 36

Feldspars, 108, 128

Ferric Chloride, FeCls, 38

Ferric Fluoride, FeF;, 38

Ferric Oxide, Fe;0;, 36

Ferric Oxide, Fe,0,, (magnetic), 36

Ferric Oxide Monohydrate, Fe,é;-H;O, 82

Ferric Oxychloride, f‘eOCl 24

Ferrous Aluminate, FeAlg()., 65

Ferrous Ammonium Sulfate Hexahydrate,
FeSO0,+ (NH,),S0,6H,0, 84

Ferrous Bromide Hexammoniate,
FeBr, -6 NH;, 84

Ferrous Carbonate, FeCO,, 54

Ferrous Chloride Hexammoniate,
FeCl;-6NH;, 84

Ferrous Chromite, FeCr,0,, 65

Ferrous Ferric Oxide, FesOy, 65

Ferrous Fluoborate Hexammoniate,
FE(BF ¢)3'6NH;, 84

Ferrous Fluosulfate Hexammoniate,
Fe(SO,F),-6NH;, 84

Ferrous Iodide Hexammoniate,
Fel;-6NH;, 84

Ferrous Oxide, FeO, 16

Ferrous Perchlorate Hexammoniate,
Fe(ClO,),-6NH;, 84

Ferrous Sulfide, FeS, 16

Ferrous Titanate, Fe;TiO,, 65

Ferrous Vanadium Spinel, FeV:0;, 65

Fluorite. See Calcium Fluoride

a-Follicular Hormone, (unstable rhombic
form), CysHaaOs, 162

a-Follicular Hormone,
form), CysH2:0,, 162

a-Follicular Hormone Monohydrate,
CysHai0s, 162

Fuller's Earth, Aly0y-48i0,-H;0, 109

(stable rhombie
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Gadolinium Boride, GdB,, 39
Gahnite. See Zinc Aluminate
B-a-Galactose, CsH;30s, 140
Gallium, Ga, 10

Gallium Zincate, Ga,Zn0y, 65
Garnet, 109
GdPMo0,304-30H;0, 86
Gehlenite (synthetic), 109
Germanium Dioxide, GeQ,, 24
Germanous Sulfide, GeS, 17
Gibbsite. See Aluminum Triozide Trihy-

drate
Gitoxigenin, CanOs(OH);, 163
B-d-Glucosan, C¢H, (05, 141
d-Glucose, CsH130s, 140
Glucose Pentaacetate, 142
l-Glutamic Acid,
C?,OOH -CH,-CH,;CH(NH,)COOH,
137
a-Glutaric Acid, COOH (CH,);COOH, 138
p-Glutaric Acid, COOH(CH,);COOH, 138
a-Glycine, CH;NH,COOH, 137
p-Glycine, CH,NH,COOH, 137
a-GlycﬁliiIﬁzine
CH,NH,CONHCH,COOH, 137
B-Glyevlglycine
CH,NH,CONHCH,COOH, 137
v-Glyeylglycine,
CH;NH,CONHCH,COOH, 137
Goethite. See Ferric Ozide Monohydrate
Gold, Au, 9
Graphite, C, 9
Guanidine d-Tartrate Hydrate,
[C(NH;):NH }(CHeQs) - 14H,0, 138
Guarii:;iinium Chloride, (NI1;),CNH-HCI,
6
Gypsum. See Calcium Sulfate Dihydrale

Hafnium Tetrafluoride, HfF,, 39
Hambergite, BeaBO;(OH), 99
Hanksite, 9N2,S0;-2N2,CO;- KCI, 99
Hauerite. See Manganese Disulfide
Haiiynite,NagSisAlsOzu(1-2, SO,), 109
Hematite. Sec Ferric Oxide
Hemimorphite, Zn(O0H),Si,0,-H;0, 109
Hercynite. Ferrous Aluminate
Hessite. See Sulver Telluride
Heulandite, 109
Hexabromobutylene,
CHBr,BrC=CBrCHBr, 136
Hexachlorethane, C,Cls, 136
Hexachlorobenzene, CsCls, 147
Hexachlorodipherﬁvi, (C.ﬁ,Cl,),, 150
Hexadecanol, C,sHysOH, 138
Hexamethylenetetramine, CsHy.Ny, 140
Hexamethylethane, C,(Cﬁ.);, 136
Hexaminobenzene, Cs(NH,)s, 147
Hexuronic Acid, CeH,0s, 159
Hgli, 17
Hiortdahlite, 128
Hornblendes, 109
Hyalophane, 128
Hydrargillite. See Aluminum Triozide
Trihydrate
Hydrobromic Acid, HBr (low), 17
Hydrobromic Acid, HBr (high), 17
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Hydrochloric Acid, HCI (low), 17
Hydrochloric Acid, HCI (high), 17
Hydrogen Selenide, IT,Se, 25
Hydrogen Sulfide, i-IgS, 25
Hydroiodic Acid, ITI, 17
Hydroxy-Apatite, C;o(OH):(PO,)s, 69

Ice, H,O, 25

Ilmenite, FeTiO;, 54

Indium, In, 10

Indium Borate, InBOs, 54

i-Inositol, CsHs(OH)s, 139

l-Inositol, Celg(OH),, 139

i-Inositol Dihydrate, CsHs(OII)s - 2H,0,139

Insulin, 163

o-Iodobenzoic Acid, C;H,JICOOH, 146

Iodoform, CHI;, 136

Iridium, Ir, 10

Iron, a-Fe, 9

Iron Arscnide, FeAs, 24

Iron Boride, Fe, B3, 24

Iron Carbide, Fvsé, 38

Iron Phosphide, FeP;, 24

Iron Sulfide, Fe$S,, 24

Iron Tetracarbonyl, Fe(CO),, 39

4 Isoxazolyl-5-Isoxazolyl Ketone,
C;H;N,(g;, 160

Ittnerite, 125

Joaquinite, NaBa(Ti,Fe):Si05, 109

KBi,, 25

KCq (brown), 40

KCu [blaek), 40

KFeS,, 41

K:NaAlF,, 78

Kaliophilite, KXAlISiO,, 109

Kalithomsonite. Sce Ashcroftine

Kaolin, Al,Si;0(0OH),, 109

Kemitc, NB.QBqu"lI‘IgO, 83

Ketohydroxyoestrin, 162

Koppite,
gga,Cc,Na.,K)g(Cb,Fe);Og(0,0H,F),

Krokoite. Sce Lead Chromate
Krypton, Kr, 10

LaAh, 39

LaMg,, 38

Lanﬂ, 38

LaSn;, 38

Labradorite, 128

(Lactone 135), Cy3Hye0,, 163
Langbeinite, K;Mg.(SO4)s, 65
Lanthanum, «-La, 10
Lanthanum, g-La, 10

Lanthanum Borate, 1.aBO;, 55
Lanthanum Boride, LaB,, 39
Laurite. See Ruthenium Disulfide
Lavenite, 128

Lawsonite, Ca(SiOs)s- (Al1O,H,),, 109
Lead, Pb, 10

Lead Bromide, PbBr,, 25

Lead Carbonate, PbCOs, 55

Lead Chloride, PbCls, 25

Lead Chlorite, Pb(Cl0O,)s, 41
Lead Chromate, PbCrO,, 66
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Lead Dioxide, PbO,, 26

Lead Ferrite, PbFe;0y, 41

Lead Fluobromide, PbFBr, 25

Lead Fluochloride, PbFCIl, 25

Lead Fluoride, o-PbF;, 26

Lead Fluoride, 8-PbF;, 26

Lead Formate, Pb(HCOy);, 131
Lead Nickel Nitrite, PbeNi(NOs)s, 79
Lead Nitrate, Ph(NOs)s, 55

Lead Oxide, PbO Ered), 18

Lead Oxide, PbO (yellow), 18

Lead Rhodium Nitrite, PbyLRh(NO:)sL,

79
Legrandite, Zn,(AsO,),OH -12H,0, 86
Lepiﬂocrouite. ¢ Ferric Oxide Monohy-
rate
Leucophanite, (Ca,Na);BeSi;(0,0H,F),,

109

Lewisite, (Ca,Fe,Na),(Sb,Ti);(0,0H),, 99

LiCd,, 38

LiGa, 17

Liln, 17

LiTl, 17

LiZn, 17

Lievrite, CaFe,*+(Fet**OH) (8i0y),, 109

Linneite, (CO;Ni)sSd., 64

Lithium Ferrite, Li;['e;Oy, 41

Lithium Hydride, LiH, 17

Lithium Hydroxide, 110H, 17

Lithium Jodate, LilO;, 55

Lithium Iodide Trihydrate, Lil-3H,0, 83

Lithium Orthophosghute, Li;PO,, 65

Lithium Oxide, Li,O, 25

Lithium Perchlorate Trihydrate,
LiCl0-3H:0, 83

Lithium Selenide, Li,Se, 25

Lithium Sulfate, Li:SOy, 65

Lithium Sulfate Monohydrate,
Li;SO,- H,0, 82

Lithium Sulfide, Li,S, 25

Lithium Telluride, Li,Te, 25

Lollingite. See Iron Arsenide

Loparite, (Na,Ce,Ca)(Ti,Cb)O;, 55

Lorandite. See Thallium Arsenic Sulfide

Lumisterol, Cz’;HnOII, 162

Lusakite,
H;0-4(Fe,Co,Ni,Mg)O-9(Al,Fe).-
0;-8H:0, 110

Magnesium, Mg, 10

Magnesium Aluminate, MgAl;Oy, 65

Magnesium Ammonium Arsenate Hexahy-
drate, MgNH,AsO,- 6H,0, 85

Magnesium Ammonium Selenate Hexahy-
drate, MgSeOr (NH{)QSQO"GI{QO, 85

Magnesium Ammonium Sulfate Hexahy-
dmte, MESO.|. (NH;)gROq‘ﬁHgO, 85

Magnesium Bromide ITexahydrate,
MgBl‘g-BHgO, 85 .

Magnesium Bromide Hexammoniate,
MgBl’rﬁNHal 85

Magnesium Chloride Hexahydrate,
MgClg-BH,O, 85

Magnesium Chloride Hexammoniate,
MgCl,-6NH;, 85

Magnesium Chromite, MgCr;O;, 65
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Magnesium Ferrite, MgFe;Oy, 65

Magnesium Fluoborate Hexammoniate,
Mg(BF,),-6NH,, 84

Magnesium Gallium Spinel, MgGa;0,, 65

Magnesium Indium Spinel, Mgfn,O;, 66

Magnesium Iodide, Mgl;, 25

Magnesium Iodide Hexammoniate,
Mgl;-6NH,, 85

Magnesium Nitride, Mg;N,, 36

Magnesium Perchlorate Hexammoniate,
Mg(Cl0,). -6 NH;, 85

Magnesium Phosphide, Mg;P;, 36

Magnesium Platinocyanide Heptahydrate,
MgPt(CN),-7H,0, 86

Magnesium Potassium Sulfate Hexahy-
drate, MgSO,-K,S80,-6H,0, 85

Magnesium Sulfate Heptahydrate,
MgSO4'7H20, 86

Magnesium Thallous Sulfate Hexahydrate
MESOPTIQSOPBH:O 85

Magnesium Titanate, Mg’I‘iOs, 55

Magnesium Titanate, Mg, TiOy, 66

Magnetite. See Ferrous Ferric Ozide

Magnus’ Green Salt EPt(NHs);]PtCI(, 83

Magnus’ Red Salt, [ Pt(NII;),]PtCl,, 83

Malachite, CuCO;- Cu(OH),, 99

a-Malonic Acid, COOHCH,COOH, 138

Manganese, Mn, 10

Manganese Aluminate, MnAlO,, 66

Manganese Chromite, MnCr;0,, 66

Manganese Disulfide, MnS,, 25

Manganese Ferrite, MnFe,O,, 66

Manganese Thiochromite, MnCr,S,, 66

Manganese Trioxide Monohydrate,
Mn;0;-H,0, 82

Manganite. See Manganese Triozide

onohydrate

Manganous Bromide Ilexammoniate,
MDB!‘:'GNH;, &5

Manganous Chloride Hexammoniate,
MnCl;-6NH;, 85

Manganous Fluoborate Hexammoniate,
MD(BF-I)E' 6NH;, 85

Manganous Fluosulfate Hexammoniate,
Mn(SO;F),-6NH;, 85

Manganous [odide Hexammoniate,
MHIQ'GNHS 85

Manganous Oxide, MnO, 17

Manganous Perchlorate Hexammoniate,
Mn(ClO,);-6NH;, 85

Manig?nom Sulfide, MnS (red precipitate),

Manganous Sulfide, MnS (green precipi-
tate, 17

Manganous Titanate, MnTiOs, 55

Manganous Titanate, Mn,TiO,, 66

d-Mannitol, CsH;(0s, 140

y-d-Mannonolactone, 141

d-Mannose, CuHuOs, 140

Marcasite. See [ron Sulfide

Matlockite. See Lead Fluochloride

Meliphanite, 110

Mellite, Al,C120y,-18H;0, 131

Mercuric Bromide, HgBr;, 25

Mercuriec Chloride, HgCl,, 25

Mercuric Fluoride, HgF;, 25
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Mercuric Iodide, Hgl,, 25

Mercurous Fluoride, I-igF, 17

Mercury, Hg, 10

Mesanthraquinone, 152

Mesolite, Na,Ca,AlsSis040-8H,0, 110

Methane, CH,, 136

a-Methyl-l-Arabinoside, CoH,,05, 140

8—Methz!—l.-Arabinoside, CeH1,05, 141

Methylbixin, CyH3,0,, 159

1-Methyl EBiledrine Ifydrobromide,
Can NHBI’ 161

Methyl Ephedrine i:lydrobromide
gralcemm, 1st mod.), C,;H,;;ON,HBr,

6
Methyl Ephedrine Hydrobromide
%aicemic, 2nd mod.), CnH"ON,HBr,

1-Methyl Ephedrine Hydrochloride,
Cy,H,;ON,HC], 161

Methyl Ephedrine Hydrochloride
(racemic), C,,H,;ON,HCl, 161

1-Methyl Ephedrine Hydroiodide,
CyH;;ON,HI, 161

Methyl Ephedrine Hydroiodide (racemic),

uH“ON,HI, 161

a-Methyl-d-Glucoside, C,H,Os, 141

B-Methyl-d-Glucoside Hemihycirate,
C,H,,0s-3H,0, 141

Methyl-l-Inositol, CoHs(OH)s(OCH,), 139

a-Methylmannoside, C;H1Os (furanose
form), 141

a-Methylmannoside, C;H,Os (pyranose
form), 141

Methyl-l-Rhamnoside, C;H;,0;, 141

Methyl Silicate, (CHy)(8i0y, 132

Methyl Urea, CONH,(NHCH,), 136

a-Methylxyloside, C¢H,205, 141

B-d-MethyE(ylosicie, CnHu()a, 141

Mg;As,, 36

Mgth, 36

MggGe, 25

MgNi,, 25

MgNiZn, 25

Mg.Pb, 25

MgPr, 17

Mg,Sh,, 36

Mg:SiM()nOn':‘]ngO, 86

Mg,Sn, 25

MgTl, 17

MgZn, 17

MgZn,, 25

MgZns, 39

Mlargfrrite. See Silver Antimony Sulfide

Microlite, (Ca,Na)s(Ta,Cb)s(0,F)s, 100

Milarite, HKCagAly(Si;05)e, 110

Mimetite, Ph;oCly(AsO,)s, 66, 69

MoC, 17

Mo.C, 25

Molybdenum, Mo, 10

Molybdenum Trioxide, MoQ;, 38

v-Monoacetylmethyl-l-Rhamnoside,
C.Hl!ol 142

n-Monoamyf Ammonium Chloride,
D-C.HHNHQCI, 133

Monomeric Butadiene Sulfone,

HeSO,, 159
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Monomeric Dimethyl Butadiene Sulfone,
CsH;080;, 160

Monomeric Isoprene Sulfone,
CyHS0,, 159

Monomethyl Ammonium Cuprie Chloride,
(NH; H;)gC“Cl‘, 133

Montmorillonite, HyO - Al;0y-4Si0,, 110

Mosandrite, 128

Mottramite, 74 )

MlchOVit&, KM:(MS&)Ow(OH); 110

NaBi, 17

Naln, 18

Nanb 39

Naupba, 40

NaTl, 18

Na-W Bronze (blue), Nas(WOsy)s, 55

Na-W Bronze (cubic). See Sodium Tung-
state

Na.crit,e, Al!SiaO; (0}.{)4, 110

Naphthalene, C,,Hj, 150

Naphthazarin, 151

1, 2 Naphthoquinone, C;,HgQs, 151

1, 4 Naphthoquinone, C,,HsO,, 151

Narsarsukite, (Si,0y;)(Ti,FeF)Na,, 110

Natrol.ite, Nn,Al,Si,Om . 2H30, 110

NdPMO;;Om'-?OHsO, 86

Neodymium, Nd, 10

Neodymium Boride, NdB;% 40

Neodymium Carbide, NdC,, 25

Neghelite, NaAlSiO,, 110

Niz iM0120¢n'31H30, 86

Niccolite. See Nickel Arsenide

Nickel, «-Ni, 10

Nickel, g-Ni, 10

Nickel Aluminate, NiAl,Oq, 66

Nickel Arsenide, NiAs, 18

Nickel Bromide, NiBr;, 25

Nickel Bromide Hexammoniate,
NiBr;-6NH,, 85

Nickel Chloride Hexammoniate,
NiCl,-6NH;, 85

Nickel Chrom.ite, NiCr;O;, 66

Nickel Fluoborate Hexammoniate,
Ni(BF.),-6NH;, 85 _

Nickel Fluophosphate Hexammoniate,
Ni(PFaﬁ-ﬁ H,, 85

Nickel Fluosulfate Iiexammonia.te,
Ni(SO;F),+6NH,, 85

Nickel Hydroxide, N1(OH), 25

Nickel Iodide, Nil,, 25

Nickel Iodide Hexamethylamine,
Nil;-6(NH,CHj), 85

Nickel Iodide Hexammoniate,
Nil;-6NHj,, 85

Nickel Oxide, NiO, 18 .

Nickel Perchiorate Hexammoniate,
Ni(ClO,)2-6NH;, 85

Nickel Sulfate Hexahydrate,

. . NiSO,-6H:0, 86

Nickel Sulfide, N1S, 18

Nickel Titanate, N1TiO,, 55

Niobium. See Columbium

Nitrogen, a-Nj, 10

Nit.rogen, ﬂ-Ng, 10

Nitrogen Dioxide, NO,, 25
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4 Niﬁo;&Methyla.minotoluene, (red form)

4 Nitro-2-Methylaminotoluene,
form), 147
p—Nitmﬂtifbene
. CiH,CH=CHC/H,(NO,), 149
Nitrous Oxide, N20O, 25
Nordenskioldite, CaSn(BQ,),, 54
Northupite, Na;Mg(COy),- NaCl, 100
Noselite, N 23A1s51s02 - SO,, 110
Octadecgll Ammonium Chloride,
CisHay NH,C, 133
Osmium, Os, 10
Osmium Disulfide, 0sS,, 25
Oxalic Acid Dihydrate
(COOH);-2H,0, 138
Oxy-Apatite, Ca;e0(PO,)s, 69
Oxygen, O,, 10

(yellow

Palladium, Pd, 10
Palladium Trifluoride, PdF;, 39
Palladous Fluoride, PdF;, 26
a-Palmitic Acid, CHy(CH,),,COOH, 138
Parisite, CaCO; - 2RFCO;, 54
Partschinite, 128
Pectolite, NaHCa,(Si0;),, 110
Pentaeré’thritol Tetrabromide,
C(CH;Br),, 136
Pentaerythritol Tetrachloride,
C(CH,Cl),, 136
Pentme?hritof Tetraiodide,
C(CH,l),, 136
Pepsin, 163
d-Phenyl Alanine
CsH,CH,-CH(NH,)COOH, 146
Phenylaminoacetic Acid,
H;CHNH,COOH, 146
Phosphine, PH,, 39
Phosphomolybdic Acid,
3PM01:040‘30H20, 86
Phosphorus Triiodide, PI;, 39
Phosphotungstic Acid Pentahydrate,
. st1:040‘5H303 83
Platinum, Pt, 11
Platinum Arsenide, PtAs,, 26
Platinum Sulfide, PtS, 18
Pollucite, .
(CsALH,)Si,0s, 110
Polybasite, (Ag,Cu):Sb.S;, 40
Eu-Polyethylene Oxide,
(CH,CH;0)4, 159
B-Polyoxymethylene, 159
Potassium Acid Tartrate,
KHC,H,0Os, 131 o
Potassium Barium Cobalto-Hexanitrite,
KgB&CO(NOg)g 78 .
Potassium Barium Nickel Hexanitrite,
K:BaNi(NQ,)s, 78
Potassium Bron_:sefenite, KSeBrs, 78
Potassium Calcium Cobalto-Hexanitrite,
K,CaCo(NO,)e, 78 .
Potassium Caleium Nickel Hexanitrite,
K,CaNi(NO,)s, 78
Potassium Chloropiatinate, K PtCls, 78
Potagsium Chlorostannate, KaSnCls, 79

237

Potassium Chlorotellurite, K,TeCls, 79
Potassium Chromate, K,éro., 65
Potassium Chromcyanide, KyCr(CN),, 78
Potassium Cobaltinitrite, K;Co(NO,),, 78
Potassium Columbiate, KCbOy, 54
Potagsium Cugnc Chloride Dihydrate,
KgCllClr H:O, 82
Potassium Cyanide, KCN, 17
Potassium Dithionate, K,S,04, 55
Potassium Ferricyanide, K;Fe(CN)e, 78
Potassium Ferrite, K,Fe,O,, 41
Potassium Fluoborate, KBF,, 65
Potassium Fluophogphate, KPF,, 78
Potassium Hydrosulfide, KHS (low), 17
Potassium Hydrosulfide, KHS (high), 17
Potassium Iridium (l'}qvanide, Kslr (%NS., 78
Potassium Iridium Nitrite, KyIr(NQs)s, 78
Potassium Lead Chloride ]’iydrate,
3(XPbCly) -H;0 82
Potassium Manganicyanide,
KsMn(CN),, 78
Potassium Nickel Hexanitrite,
KNi(NQ,)s, 78
Potassium Nitrate, KNO,, 54
Potassium Osmiamate, KéaNO;, 65
Potassium Osmyl Chloride,
K,0s0.Cl,, 78
Potassium Oxide, K;0, 25
Potassium Pentachloronitrilosmiate,
K;0sNCl;, 78
Potassium Perchlorate, KCIO; (low), 65
Potassium Perms.nganate, KMnO,, 65
Potassium Pyrosulfite, K,S,05, 100
Potassium Rhodium Nitrite,
K;Rh(NO,)s, 78
Potassium Selenide, K:Se, 25
Potassium Silver dyanide, KAg(CN),, 41
Potassium Strontium Cobalto-Hexani-
trite, KgSl'CO(NOn)., 79
Potassium Strontium Nickel Hexanitrite,
KoSrNi(NQ,)s, 79
Potassium Sulfide, K.S, 25
Potassium Tantalate, I:(TaO:, 55
Potassium Telluride, KaTe, 25
Potassium Thiocyanate, KCNS, 38
Potassium Trithionate, K,S;0,, 100
PrMg;, 39
Praseodymium, Pr, 11
Praseodymium Boride, PrBs, 40
Praseodymium Carbide, PrC,, 26
Pregnandiol, 162
Prehnite, Caa(8i04);(AIOH)AIO:H, 110
Pseudoboleite, 100
d-Pseudococaine-1-Ephedrine-d-Tartrate
Monohydrate 1Hu0nNrHso, 161
d-Pseudococain -f—Methyl Ephedrine-d-
Tartrate Dihydrate,
CpHuOuN: -2H,0, 161
d-Pseudoephedrine Hydrobromide,
C,oH“ON,HBr, 160 .
Pseudo:ﬁhedrine Hydrobromide (racemic)
C,Hy:ON,HBr, 161
d-Pseudoephedrine Hydrochloride,
C,H,,ON,HC], 161
Pseudoephedrine Hydrochloride (racemic),
C,H,ON,HC], 161
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d-Pseudoephedrine Hydroiodide,
C,.HsON,HI, 161

Pseudoephedrine i{ydroiodide (racemic),
CioH1sON,HI, 161

Psittacinite, 74

PtSn, 18

Pyramidon, 160

Pyrite. See Iron Sulfide

Pyrof.(\;orit.e, Fe(OH);-3Mg(OH),;- 3H,0,

Pyrochlore,

(Na,Ca:)g(Cb,Ti();,(O F)s, 100
Pyromorh)_hxte, Pb;¢ h(ﬁO;)n, 66, 69
Pyrophyllite, Alz8i,010(OH);, 111
Pyrosmalite

Si;07(Mn,Fe)3(Mn,Fe) (OH,Cl),, 111
hite, 100

a-Quartz. See Silicon Diozide
Quaterphenyl, Can(CaH;):C]H;, 152
Quebrachitol. See Methyl-l-Inositol
Quercitol, CsH:(OH)s, 139
Qu.lnl_lydrone Cqu.Og'C.Hc(OH):, 148
p-Quinone, duILOg, 146

RbC, (brown), 40
RbCys (black), 40
Rb:(CrFs-H,0), 82
Resorcinol, m-CeH,(OH),, 146
l-Rhli::l%nose Monohydrate, C¢H;,05-H,0,
Rhbenium, Re, 11
Rhenium Trioxide, ReOs, 39
Rhodium, «-Rh, 11
Rhodium, g-Rh, 11
Rhodium Trifluoride, RhF;, 39
Rinkite, (Si0.)[(Ti,Ce)F]Ca,Na, 111
Rochelle Salt,
NaOOC(CHOH),COOK-4H,0, 131
Romeite, (Ca N&,MB)QSbg(0,0H,F)T, 100
Rubidium Chloroplatinate, Kb;PtCls, 79
Rubidium Chloroplumbate, Rb,PbCls, 79
Rubidium Chloroselenite, Rb,SeCls, 79
Rubidium Chlorostannate, Rb,SnCls, 79
Rubidium Chlorotellurite, Rb,;TeCls, 79
Rubidium Chlorotitanate, Rb,TiCls, 79
Rubidium Chlorozirconate, RbsZrCls, 79
Rubidium Cobaltinitrite, Rb;Co(NQO;)s, 79
Rubidium Cyanide, RbCN, 18
Rubidium Dithionate, Rbs$%:0s, 55
Rubidium Ferricyanide, Rb;Fe(CN)s, 79
Rubidium Hydrosulfide, RbHS (low), 18
Rubidium Hydrosulfide, RbHS (hi%h), 18
Rubidium Iridium Nitrite, Rb;Ir(INO;)e, 79
Rubidium Nitrate, RbNda, 55
Rubidium Osmiamate, RbOsNO;, 66
Rubidium Perrhenate, RbReO,, 66
Rubidium Rhodium Nitrite,
Rbth(NOS)h 79
Rubidium Trinitride, RbNj, 39
Ruthenium Disulfide, RuS,, 26

S&PMOBO“':;OH;O, 86
Samarium Carbide, SaC,, 26
Sanidine, KAISi,Oy, 111, 128
Sb,Tl,, 40
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SbZn, 18

Scandium Borate, ScBOs, 55

Scapolite, 111

Schizolite, 128

Schlippe’s Salt, Nas;SbS,-9H,0, 86

Schneebergite, (Ca,Na,Fe),Sb;0s(OH), 100

Scole('ite, EAI;SiaON'SII:O, 111

Selenium, a-Se, 11

Selenium, g-Se, 11

Siderite. See Ferrous Carbonate

Silicon Carbide, SiC (11), 18

Silicon Dioxide, SiO,, 26

Silicon Tetrafluoride, SiF,, 39

Silicon Tetraiodide, Sil,, 39

Sillimanite, Al,03-5i0,, 111

Silver, Ag, 9

Silver Antimony Sulfide, AgSb$S,, 40

Silver Chlorite, AgClO,, 40

Silver Clyanidc, AgCN, 16

Silver Fluorate, AgFO;, 54

Silver Iodide, Agl, 16

Silver Iodide, AgI (low), 16

Silver Iodide, AgII (high), 16

Silver Mercuric lodide, a-Ag:Hgly, 64

Silver Mercuric Iodide, g-Ag,Hgl,, 64

Silver Nitrate Diammoniate,

NO;-2NH;, 82

Silver Nitrate Ureai_.,I

A NO;CO(N 3)21 131

Silver Periodate, AglO,, 64

Silver Perrhenate, AgReO,, 64

Silver Selenate, Ag:SeQ,, 64

Silver Sulfate, AgsSO4, 64

Silver Sulfate Tetrammoniate,
A!ZzS()"4NH3, 83

Silver Sulfide, Ag.S, 24

Silver Telluride, Ag,Te, 24

Skolopsite, 125

Sodalite, Na,Al;81;0:.,Cl, 111

Sodium Bicarbonate, NaHCO;, 55

Sodium Bromide Dihydrate,
NaBr-2H,0, 82

Sodium Carbonate Monohydrate,
Na.gC()a' Hg(), 82

Sodium Columbiate, NaChQs, 55

Sodium Cyanate, NaCNO, 38

Sodium Cyanide, NaCN, 17

Sodium Ferrite, Na,Fe,Os, 41

Sodium Fluophosphate
2Na; PO, - Nak'- 19H;0, 86

Sodium Hydrosulfide, NaHS (low), 17

Sodium Hydrosulfide, NaHS (high), 18

Sodium Iodide Dihydrate, Nal-2H,0, 82

Sodium Nitrate, NaNO;, 55

Sodium Nitrite, NaNO;, 41

Sodium Selenide, Na,Se, 25

Sodium Sulfate, Na:SO,, 66

Sodium Sulfide, Na,S, 25

Sodium Sulfite, N2,80s, 55

Sodium Tantafate, Na.'t‘aO;, 55

Sodium Telluride, Na;Te, 25

Sodium Trinitride, NaN;, 38

Sodium Tungstate, NaWO;, 55

Sperrylite. %ee Platinum Arsenide

Spessartite, 128

Spinel. See Magnesium Aluminate
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Spodumene, LiAl(Si0s)s, 111

SrPb;,, 39

SrTl, 18

Stannite, Cu,FeSnS,, 65

Stannous Oxide, SnO, 18

a-Stearic Acid, CHy(CHy)1COOH, 138

B—Stearic Acld, CH;(CH!)],;COOH, 139

Stephanite, AgsSbS,, 64

Stibiconite, SbyO¢-H;O, 82

Stibnite. See Antimony Trisulfide

Stilbene, CeH;CH=CHC,H;, 148

Stilbene+2 mol. 1, 3, 5 Trinitrobenzene,
(1355150}1=C}i0uﬂa-2[CaHa(NO,),],

Strontium Aluminate, Srs[ A1(OH)s, 79

Strontium Boride, SrBs, 40

Strontium Bromide Hexahydrate,
SrBr;-6H:0, 86

Strontium Carbide, SrC,, 26

Strontium Chloride Hexahydrate,
SI‘C]z'GHgO, 86

Strontium Fluoride, SrF;, 26

Strontium Hafniate, SrH{O;, 56

Strontium Imide, SrNH, 18

Strontium Iodide Hexahydrate,
Srl;-6H,0, 86

Strontium Nickel Nitrite, Sr;Ni(NO,)s, 79

Strontium Nitrate, Sr(NO;);, 56

Strontium Oxide, érO, 18

Strontium Peroxide Octahydrate,
Sr0,-811,0, 86

Strontium Zirconate, SrZrQs, 56

Styphnio Acid, CsH(OH)y(NO,)s, 147

a-Succinic Acid, COOH(CH,),COOH, 138

p-Succinic Acid, COOH(CH,).COOH, 138

Sulfur, S, 11

Sulphohalite, 2N2a;SO- NaCl- NaF, 100

Sulvanite. See Copger Vanadwum Sulfide

Swedenborgite, NaSbO;-4BeQ, 55

Svnchisite, CaCO;-RFCO;, 54

T&zC, 26

'l‘ulc, MgsSitolu(OH)g, 111

Tantalum, Ta, 11

Tantalum Carbide, TaC, 18

Telluric Acid, Te(OH)s, 40

Telluric Acid, Te(OI1)s (sccond form), 40
Tenorite. See Cupric Oxde

Terphenyl. See p-Diphenylbenzene

1, 3, 14215 Tetraacetyl-g-d-Fructopyranose,

Tetradymite, Bi;Te.S, 100

Tetramethyl Ammonium Fluosilicate,
[N(CHs),]oSiF, 133

1, 3, 4, 5 Tetramethyl-g-d-Fructopyranose,
141

2, 3, 5, 6 Tetramethyl-y-d-Mannonolac-
tone, 142

Tetramminopalladous Chloride Monohy-
dra.te, Pd(NH;);C]gHzO, 83

Tetramminoplatinous Chloride Monohy-
dra.te, Pﬁ(NHs)4CIg'HgO, 83

1, 2, 4, 6 Tetranitrobenzene,
CoHa(NO2)y, 147

Tetraphosphonitrile, (PNCl),, 100
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Thallium, T1, 11

Thallium Arsenic Sulfide, T1AsS,, 41
Thallium Chloride, TIC], 18

Thallium Cyanide, TICN, 18

Thallous Chloroplatinate, Tl,PtCls, 80
Thallous Chlorostannate, T1,SnCls, 80
Thallous Chlorotellurite, Tl;TeCls, 80
Thallous Cobaltinitrite, TL,Co(NOs)s, 79
Thallous Fluosilicate, 'f‘lgSiFg, 80
Thallous Iridium Nitrite, TlsIr(NO,)s, 80
Thallous Osmiamate, TIOsNOs, 66
Thallous Perrhenate, TIReO,, 66
Thallous Rhodium Nitrite, TI;Rh(NO,)s,

80
Thallous Thiocyanate, TICNS, 39
Thaumasite,
CaCO0;-CaS0,- CaSiOs - 156H,0, 111
Thiophene, C,H,S, 159
Thiourea, CS(NH;);, 136
Thomsonite
NaCaxAlSisOz-6H;0, 111
Thorium Boride, ThBs, 40
TiAl,, 39
Tilasite, CaMg(OH)AsO,, 64
Tin, Sn, 11
Tin Arsenide, SnAs, 18
Titanium Carbide, ’I‘iC, 18
Titanium Tetrabromide, TiBry, 39
Titanium Tetraiodide, Til,, 39
Tl (VF;- H,0), 82
Tolane, CsH,C=CCsH, 149
o-Tolidine, (CsH:CHsN Hy)z, 150
Tricalcium Phosphate Hydrate,
Cag(HgO)g(POt)n, 69
Trihydroxyoestrin, 162
2, 3, 4 Trimethyl-&-l-Arabonolactone, 141
2, 3,1 % Trimethyl-y-1-Rhamnonolactone,
4
2, 3, 4 Trimethyl-a-d-Xylopyranose, 141
2, 4, 6 Trinitroaniline,
CsH3(NH;) (NOy)s, 147
2, 4,6 ’I‘rinitmbromoﬁenzeue,
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2, 4, 6 Trinitrochlorobenzene,
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Troilite. See Ferrous Sulfule
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Tungsten Carbide, WC, 18
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Tungstic Trioxide, WO;, 39
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Tysonite, (Ce,La,- - +)Fs, 38
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Ultramarines, 112
Uranium, U, 11
Urea, CO(NH,),, 136

Va.nadinite, P!DmCls(VO;)a, 66, 69

Vanadium Oxide, VO, 18

Veramon, 160

Veronal. See 6§, 6 Diethyl Barbituric Acid

Vesuvianite, 112
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CisH;s0:NS,2HCI, 163

Voltaites, 100

Wavellite, 4(PO,)Al-2A1(0OH),-9H,0, 86
Wohlerite, (SiO4)s(ZrF,Cb0)Ca,Na, 112
Wolfsbergite. See Copper Antimony Sulfide
Wollastonite, CaSiOs, 112

Xenon, X, 11
1-Xylose, CsHioOs, 140

Ytterbium Boride, YtBs, 40
Yttrium, Y, 11

Yttrium Borate, YBO,, 56
Yttrium Boride, YB,, 40
Yttrium Carbide, YC,, 26
Yttrium Vanadate, YVO,, 66

Zine, Zn, 11
Zine Aluminate, ZnAl, Oy, 66
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Zinc Chlorite Dihydrate,
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Zine Chromite, ZnCr,0,, 66
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Zine Hydroxide, Zn(éH),, 26
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