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Preface

Color Image Processing

Digital image processing has become one of the most important research

fields in modern science. In fact, image processing algorithms are no longer

confined to professional photographers or dedicated technicians (e.g. experts

in medical imaging or in post-processing for fashion and cinema), but spread

across the entire society thanks to the constantly increasing diffusion of

portable digital devices, such as smartphones or tablets, with integrated

cameras. Moreover, the complexity of mathematical techniques used

nowadays in several image processing models is comparable to that of much

more ancient scientific disciplines, e.g. theoretical physics.

Despite this, many image processing algorithms are still proposed for

grayscale images and their extension to color images is not straightforward.

Treating color information with the naive replication of well-established

grayscale techniques on the three chromatic channels may not be feasible due

to intrinsic mathematical problems or the possible introduction of artifacts

and/or color shifts.

A dramatic example is given by histogram equalization, which will be

introduced in Chapter 4. While this technique can be regularized and

smoothed to considerably improve the contrast and detail visibility of a

grayscale image, it may totally disrupt the chromatic content when directly

replicated on the three color channels. In the literature, we can find multiple

proposals to avoid, or at least limit, this problem. A common strategy consists

of encoding the image information in a color space where achromatic and
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chromatic channels are separated, e.g. HVS, CIELab, Lαβ and so on, and

only performing transformation on the luminance (achromatic) channel, while

operating minor corrections on the chromatic content. Another proposal,

which will be presented throughout this book, consists of devising

transformations inspired by the human visual system (HVS) and applying

them to the three color channels independently. The precursor of this kind of

model is the famous Retinex model of Land and McCann [LAN 71], which

will be described in detail in Chapter 3, along with its many interpretations.

In the subsequent chapters, it will be shown how a whole class of

Retinex-based models inspired by the properties of the HVS can be embedded

in a rigorous variational framework. The variational interpretation allows us

to understand the behavior of these models with respect to important image

features such as contrast and dispersion of tonal intensities. Moreover, we can

mathematically compare different Retinex-based algorithms and clearly

understand their similarities and differences, which is very difficult to do

without relying on their variational formulation.

Due to the importance of human visual properties in the analysis of the

color correction models presented in this book, a brief summary of the basic

features of the HVS is presented in the first chapter.

Edoardo Provenzi

February 2017
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Rudiments of Human
Visual System (HVS) Features

In this chapter, the basic facts about the processing of a visual signal by

the retina and brain will be recalled. The purpose of this chapter is not only to

provide an exhaustive treatise about the Human Visual System (HVS), but

also to introduce some important concepts and formulae that will have a

fundamental role in the development of the models described in Chapter 5.

For complete details on these topics, see, for example, [FAI 05].

1.1. The retina

In Figure 1.1, a human eye and the cross-section of a retina are represented.

Several layers of neural cells constitute the retina, beginning with around

130 million photoreceptors (rods and cones) and ending with about 1 million

ganglion cells. The specific processing that occurs in each type of cell is

complex and not yet completely understood.

What we know for certain is that retinal cells may respond nonlinearly to

stimuli and are connected via links called synapses, which are able to perform

basic mathematical operations such as addition, subtraction, multiplication,

division, amplification and gain control. Considered as a whole, these

operations result in a clever and sophisticated modification of the visual input.

Among all retinal cells, the most important for our purposes are the

photoreceptors (rods and cones), to which the next section is devoted.

Computational Color Science: Variational Retinex-like Methods, First Edition. Edoardo Provenzi. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Figure 1.1. Top: a human eye. Bottom: the cross-section of a human
retina. Courtesy of [KOL 95]. For a color version of the figure, see

www.iste.co.uk/provenzi/color.zip

1.1.1. Photoreceptors: rods and cones

Rods and cones are labelled in this way because of their shape. Rods work

in the so-called scotopic region, below 10−3 cd/m2, while cones respond to

luminance levels higher than 10 cd/m2, a range called the photopic region.

In the intermediate range, called the mesopic region, both rods and cones are

activated, but their response is less efficient than when they work in isolation

from each other. Henceforward, we will only consider photopic conditions and

thus the properties of cones.



Rudiments of Human Visual System (HVS) Features 3

Color vision in the photopic region is possible, thanks to the existence of

three types of cone receptors with peak spectral sensibilities distributed along

the visual spectrum (see Figure 1.2). This is due to the existence of three

slightly different molecular structures in each cone type, which are referred to

as L, M and S cones. They refer to the long, middle and short wavelengths

where cones have their maximal sensitivity at 560 nm, 530 nm and 420 nm,

respectively.

The LMS cones can also be referred to as the RGB cones. Of course, RGB
is the notation for monochromatic red, green and blue, but, as shown in

Figure 1.2, this is an abuse of language, in particular because the L cones are

gathered in the region of monochromatic green-yellow, not red.

Figure 1.2. The normalized spectral sensitivity functions of the LMS
cones. Courtesy of [KOL 95]. For a color version of the figure, see

www.iste.co.uk/provenzi/color.zip

Note that the spectral sensibilities of the three cone types are broadly

overlapping, in particular those of the L and M cones. This constitutes a

substantial difference with respect to most physical imaging systems, in

particular digital cameras (see, e.g., [JIA 13]), where sensor responses are

only slightly overlapping.

Finally, it must be noted that the distribution of cones in the retina is not

uniform: S cones are relatively sparse and completely absent in the fovea, the

central part of the retina with the highest density of L and M cones.
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1.2. Adaptation and photo-electrical response of receptors

Light adaptation is the name used to describe the fact that the HVS is able

to adapt to different light intensities in order to enable detail perception over a

range of 10 orders of magnitude.

Figure 1.3. Compressive effect of Michaelis-Menten’s
response in arbitrary units between 1 and 1000 and with

γ = 0.74. The semi-saturation constant IS has been arbitrarily
set to 100 and r(IS ) = 1/2

Before reaching a photoreceptor, rod or cone, light intensity is reduced by

the cornea, crystalline lens, the humors and the macula. Moreover, when a

light photon is absorbed by a photoreceptor, a transduction occurs: the

electromagnetic energy carried by the photon is passed to the photoreceptor,

which changes the electric potential of its membrane. The empirical law that

describes the photoreceptor transduction is known as Michaelis-Menten’s
equation [SHA 84] (or Naka-Rushton’s equation when γ = 1):

r(I) =
ΔV
ΔVmax

=
Iγ

Iγ + IγS
, [1.1]

where ΔVmax is the highest difference of potential that the membrane can

handle, γ is a constant (measured as 0.74 for the rhesus monkey), I is light

intensity and IS is the value at which the photoreceptor response is half
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maximal, called the semi-saturation level. Note that, as previously mentioned,

each type of cone is most sensitive over a particular waveband, thus the value

of the semi-saturation constant IS can change for the three types of cones.

The photo-electrical response of photoreceptors, along with other

phenomena occurring mainly in the retina, is considered one of the main

explanations for the property of adaptation to the average luminance level of

the HVS. In fact, after the photoreceptors transduction, the dynamic range is

centered in r(IS ) = 1/2, as can be seen in Figure 1.3, which shows the

nonlinear compressive behavior of Michaelis-Menten’s response. The

adaptation property of the HVS is crucial: without it, the operational range of

our vision would be much narrower and sight as we know it would be

impossible.

1.3. Spatial locality of vision

Transduction curves shown in Figure 1.3 represent the very first stage of

visual processing. The electrical signals generated by the photoreceptors are

processed by the retinal neurons, synapses and ganglion cells, until they are

then finally transmitted to the brain via the optic nerve. In the brain, the visual

signal is processed in several zones, each of which is devoted to processing

different characteristics, e.g. shape, orientation, spatial frequency, size, color,

motion [ZEK 93].

Our present understanding of post-photoreceptors physiological operating

principles is far from being precise: not only the brain, but also retinal

functions still present some unknown features. Without entering the very

complicated analysis of post-photoreceptor physiology, what is important to

underline here is that the signals transmitted from the photoreceptors to

higher levels of the visual path are not simple point-wise representations, but

they consist of sophisticated combinations of receptors responses to photons

coming from different parts of the visual scene. In fact, even when we fix a

single point, our eyes are constantly moving and capturing light information

from all over the visual scene. These movements are called saccadics, and

they are the fastest of our body.
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A conventional nomenclature has been introduced to rigorously define

the local neighborhood of a point in a visual field (see, e.g., [HUN 14] and

[FAI 05]):

– Stimulus: the visual element corresponding to foveal vision, about 2◦ of

angular extension;

– Proximal field: the closest environment of the stimulus, it extends

isotropically for about 2◦ from its edge;

– Background: extends isotropically for about 10◦ from the edge of the

proximal field;

– Surround: a field that lies outside the background;

– Adapting field: the total environment of the stimulus considered the

proximal field, the background and the surround, until the limit of vision in

all directions.

The components of the adaptive field are shown in Figure 1.4.

Figure 1.4. Components of the adaptive field

1.4. Local contrast enhancement

The eye’s optical system and the response of photoreceptors strongly reduce

the range of light intensity that can be processed. To compensate this reduction,
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the HVS has developed a system to enhance contrast perception already in the

retina, in particular with the typical lateral inhibition phenomenon exhibited

by ganglion cells [CRE 87, CRE 90, HUR 90, ZAI 99, MCC 11].

Studies about ganglion cells revealed that the electric potential of their

membrane spontaneously oscillates at a base rate while at rest, an event called

firing of action potential. Excitation of retinal ganglion cells results in an

increased firing rate while inhibition corresponds to a depressed rate of firing.

For this reason, the magnitude of the signal is represented in terms of the

number of spikes of voltage per second fired by the cell rather than by the

difference of voltage across the cell membrane.

To represent the physiological properties of ganglion cells, it is useful to

consider the concept of receptive field, which is a graphical representation
of the area in the visual field to which a given cell responds. The positive or

negative response is indicated in the receptive field, as shown in Figure 1.5,

which represents a prototypical receptive field for ganglion cells.

Figure 1.5. Center-surround receptive fields: (a) on-center;
(b) off-center

Receptive fields illustrate center-surround antagonism: the receptive field

in Figure 1.5 (a), called on-center, describes a positive central response,

surrounded by a negative surround response, while Figure 1.5 (b), called

off-center, shows a ganglion cell response of opposite polarity.

The excitation-inhibition processing can explain some local contrast
enhancement effects as Mach bands, see Figure 1.6: If we focus on the

vertical band on the right the adjacent gray level appears lighter, if we focus

on the vertical band on the left the adjacent gray level appears darker, in spite

of the fact that the luminance value in each vertical gray band is constant.
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Consider Figure 1.7: in situation 1, excitation and inhibition fire signals

equally, so a uniform patch is perceived; in situation 2, part of the inhibition

component of the receptive field is activated by a region of highest luminance

and so it prevails, generating a sensation of darker gray; on the contrary, in

situation 3, part of the inhibition component of the receptive field is activated

by a region of lowest luminance and so it is dominated by the excitation

component, which produces a sensation of lighter gray.

Figure 1.6. Left: Mach bands effect. Right: real (above) and apparent
(below) luminance pattern

Figure 1.7. Excitation-inhibition explanation of the Mach band effect

Another well-known local contrast enhancement effect is simultaneous

contrast, first discussed by Chevreul in 1839 in his essay “La loi du contraste
simultané des couleurs”, as shown in Figure 1.8.
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Figure 1.8. Simultaneous contrast: even though the two inner squares
have the same luminosity, our perception is different, due to the

difference in the left and right background

The influence of context on the perception of a point decreases with

distance, as discussed, for example, in [WAL 48, RUD 04], where the authors

developed a clever psychophysical experiment to measure induction of

achromatic stimuli. We will discuss this method in Chapter 3.

1.5. Physical vs. perceived light intensity contrast: Weber-
Fechner’s law

In the previous section, we have seen that the HVS rearranges spatial

information in order to amplify the response to edges present in a visual

scene. This phenomenon concerns spatial contrast. In this section, we recall

the HVS response to light intensity contrast, without considering the spatial

distribution across the scene.

Psychophysics is the science that aims to model the magnitude of human

perception in response to external stimuli in a mathematically rigorous way.

The German physicist E. Weber, with results obtained in the second half of

the 19th Century, was one of the first scientists in history to develop

psychophysical experiments to test perception of light intensity contrast.

To avoid unwanted biases, Weber worked in a very constrained setting: a

dark-adapted human observer was put in a dim room in front of a white screen

on which a narrow beam of light was shone in the center of the visual field.

The light intensity I of the beam was increased very slowly and the observer

was asked to tell whether he/she could perceive an intensity change. The least

perceptible intensity change ΔI is called JND for Just Noticeable Difference.
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Weber found out that the JND increased proportionally with the light

intensity1, i.e. ΔI/I = K or ΔI = KI. K is called Weber’s constant and the

relationship between ΔI and I is called Weber’s law.

Weber’s law says that, as we increase the background light I, the

difference ΔI must increase proportionally in order to be able to appreciate

I + ΔI as being different from I. This partially explains why dark areas of a

visual scene are more sensitive to noise, and thus why it is more important to

perform denoising in dark areas of digital images rather than in bright ones.

This last consideration is a practical application of a psychophysical

phenomenon.

The founder of psychophysics, the German experimental psychologist G.

Fechner, gave the following interpretation of Weber’s law: he introduced the

adimensional quantity s(I) called light sensation and stated that the difference

of sensation Δs(I) is proportional to a slightly modified Weber’s ratio, i.e.

Δs(I) = k
ΔI

n + I , [1.2]

where k > 0 is a constant and n > 0 is a quantity, often interpreted as internal
noise in the visual mechanism. Fechner assumed that this finite difference

equation could be valid for arbitrarily small differences, which of course is

not possible because of the very definition of JND. However, following

Fechner’s hypothesis, the finite-difference equation [1.2] becomes a

differential equation [WYS 82]:

ds(I) = k
dI

n + I . [1.3]

By integrating both sides from I0, the lowest threshold of perceivable light

intensity, defined by s(I0) = 0 and s(I0 + ε) > 0 for all ε > 0, to a generic

value of I, we obtainˆ I
I0

ds(I) = k
ˆ I
I0

dI
n + I ⇐⇒ s(I) − s(I0)

= k[log(n + I) − log(n + I0)], [1.4]

1 Weber’s law is approximately valid not only for the visual sense, but also for all the other

senses, with different values of Weber’s constant.
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which can be rewritten as follows:

s(I) = k log

(
n + I
n + I0

)
= s0 + k log(n + I), [1.5]

where s0 = −k log(n+I0). This last formula is called Weber-Fechner’s law and

it states that the sensation of light differences, in the very constrained context

of Weber’s experiment, grows as the logarithm of the light intensity.

We must stress the limitations of Weber-Fechner’s law:

1) First, it is only valid for very simple visual scenes, such as those

considered by Weber in his experiments. As discussed in the previous

section, the presence of a non-trivial spatial context introduces significant

modifications in visual perception;

2) Second, even for very simple visual scenes, Fechner’s assumption about

the possibility to maintain the validity of Weber’s law passing from finite to

infinitesimal light intensity differences is correct only for a limited range of

light intensity between the minimum and the maximum perceivable light. As

we approach these extreme situations, this assumption fails dramatically due to

strong nonlinearities in the visual mechanism and Weber-Fechner’s law does

not hold anymore.

The last phenomenological feature of human vision that is worth recalling

is color constancy; however, its role in image processing is so important that it

will be separately discussed in the following chapter.
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Computational Color
Constancy Algorithms

Color constancy is the ability of human vision to perceive colors very

robustly with respect to changes in illumination. The precise reasons behind

color constancy are not yet known. Phenomenologically speaking, it is known

that both cognitive and physiological effects of color memory and chromatic

adaptation, respectively, play a major role in color constancy. For more

information about this topic, see, for example, [EBN 07] and [FAI 05].

Instead of investigating the causes of human color constancy, in this

chapter, we will review the computational models of image processing that

try to digitally reproduce color constancy. This discussion will also be

important for the development of perceptually variational models of color

enhancement in Chapter 5. Before providing the details about the variety of

computational color constancy models proposed in the literature, it is

worthwhile answering a common question about models of this kind, namely

“why do we need a color constancy algorithm when our visual system already

does that job?”. The answer is that humans possess the color constancy ability
when they are embedded in a visual scene and adapted to its illuminant
conditions. Thus, we cannot automatically remove the chromatic layer

superimposed on a digital image by a non-neutral illuminant simply by

looking at it on a digital screen. This is the reason why computational color

constancy algorithms are studied in image processing.

Computational Color Science: Variational Retinex-like Methods, First Edition. Edoardo Provenzi.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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2.1. The dichromatic and Lambertian image formation models

In order to understand the details of computational color constancy

models, it is necessary to start by describing the dichromatic and Lambertian

models of image formation [GEV 12]. Suppose that we have a visual scene

illuminated by only one spatially homogeneous light source with spectral

power distribution E : Λ → [0,+∞), with Λ being the set of visible

wavelengths λ of the electromagnetic spectrum. Let us also suppose that we

have an RGB camera with spectral sensitivity functions in the low, medium

and high visible wavelengths, denoted by R, G and B, respectively.

We denote the spectral sensitivity functions as Rc : Λ → [0,+∞),

c ∈ {R,G, B}. To avoid a cumbersome notation, each time the chromatic index

c appears, it is implicitly supposed to vary in the set {R,G, B}. The analysis

performed in [JIA 13], p. 4322, showed that supp(Rc), the supports of the

functions Rc, are very similar for practically all commercial cameras and do

not overlap as much as those of spectral sensitivity functions of retinal cones.

If we point the camera towards the light source, we obtain the light vector
�L = (LR, LG, LB) ∈ (0,+∞)3, with

Lc =

ˆ
Λ

E(λ)Rc(λ) dλ. [2.1]

Following [GIJ 11], we say that �L is neutral, or white, if there exists a real

positive constant K, such that �L = K( 1√
3
, 1√

3
, 1√

3
), i.e. if it is proportional to a

unit vector whose color channels are balanced and none of them prevail over

the others.

Let us now turn our camera from the illuminant to the objects of the visual

scene and denote by S (ξ, λ) ∈ [0, 1] the surface reflectance of the scene objects

in the spatial position ξ = (ξ1, ξ2, ξ3) ∈ R3 and at the wavelength λ ∈ Λ. If

S (ξ, λ) = 1, the point ξ is said to be perfectly reflective at the wavelength λ.

In the dichromatic reflection model [SHA 85], the scene elements are

supposed to have both a specular and a diffused reflectance. A specular

reflection is only visible if the normal vector of a shiny object is oriented

precisely halfway between the direction of incoming light and the direction of

the camera sensor. The diffused reflectance is due to the scattering between
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the light and the surface particles of an object, which produces an isotropic

reflection of light. We denote by ms(ξ) and md(ξ) the scale factors that weight

the relative amount of specular and diffused reflectance, respectively,

contributing to the overall light reflected at the location ξ.

Suppose now that we take a picture of the scene (and not of the illuminant)

with the same RGB camera. The rays of light emitted or reflected by scene

objects project univocally1 to the pixels of the image formed by the camera.

Using this one-to-one correspondence, we can identify the portion of the

visual scene represented by the camera with the two-dimensional support Ω

of the image, a particular point ξ of an object with the corresponding pixel

x = (x1, x2) ∈ Ω and denote, without ambiguity, the reflectance S (ξ, λ) as

S (x, λ).

With this notation in mind, we can write the intensity of any pixel x ∈ Ω of

the digital image as

IDichromatic
c (x) = md(x)

ˆ
Λ

S (x, λ)E(λ)Rc(λ) dλ + ms(x)Lc, [2.2]

note that in the specular term, the reflectance is assumed to be 1. The intensity

values Ic(x) will always be considered normalized in the unit interval [0, 1].

In the Lambertian reflection models, the specular reflection term is ignored,

so that md(x) ≡ 1 and ms(x) ≡ 0, and the resulting image formation model

reduces to

ILambert
c (x) =

ˆ
Λ

S (x, λ)E(λ)Rc(λ) dλ. [2.3]

In the literature, we often find equation [2.3] simplified as follows:

Ic(x) = S c(x)Lc. [2.4]

There are two possible ways to pass from equation [2.3] to the separable

form [2.4]. The first possibility is to suppose that the camera spectral

1 Here we assume that the resolution of the picture is high enough to consider negligible the

averaging of light information performed in the pixel area.
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sensitivity functions are Dirac deltas with spikes in R,G, B; this hypothesis is

not plausible in conventional digital photography [JIA 13].

The second possibility consists of supposing that the supports supp(Rc) of

the camera sensitivity functions Rc form a mutually disjoint partition of Λ, i.e.

Λ =
⋃

c∈{R,G,B}
supp(Rc), supp(S c) ∩ supp(S c′) = ∅, if c � c′, [2.5]

and that the reflectance functions S (x, λ) are constant with respect to λ in each
subset supp(Rc) of Λ, i.e.

S (x, λ) = S c(x) ∀λ ∈ supp(Rc). [2.6]

In fact, in that case, equation [2.3] can be rewritten as

Ic(x) = S c(x)
´
Λ

E(λ)Rc(λ) dλ, i.e. Ic(x) = S c(x)Lc, thanks to [2.1].

This hypothesis is much more realistic: in fact, even if the sensitivity

functions of digital cameras overlap, they all have a wide area in which they

can be considered as disjoint (see, e.g., Figure 1 in [JIA 13]). However, it

must be kept in mind that [2.4] is an approximation.

We also note that this hypothesis does not make sense for a vision model

because the L and M retinal cone sensitivity functions are highly overlapping.

Therefore, if we used the hypothesis of constant reflectance in support of the

spectral sensitivities of cones, then S L(x) would always be equal to S M(x).

Reflectance and illuminants play two very different roles in image

formation. To understand this, let us consider Figure 2.1. If the blue color

exhibited by the tissue depicted in the picture is given by the relative

difference between the reflectance values S R(x), S G(x), S B(x) of the tissue,

then we say that the dominant color of the image is blue. However, the picture

could represent a white tissue and the blue color could be generated by the

relative difference between the illuminant values (LR, LG, LB); in this case, we

say that the image has a blue color cast.

Let us note that, for both equations [2.3] and [2.4], the problem of

estimating the illuminant or the reflectance from the single image information

provided by Ic(x) is under-constrained, because we only have one piece of

information, Ic(x), for two unknowns: reflectance and illuminant value. There
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exist several approaches to break this ambiguity; a detailed summary is

provided in [GIJ 11]. In the following section, we will analyze the so-called

white-patch, gray-world and gray-edge methods in detail to estimate

illuminant value and reflectance. This information will be important for the

discussion of the color correction models presented in Chapter 3.

Figure 2.1. A typical example of ambiguity in the interpretation of the color exhibited
by a picture: is it the image of a blue tissue taken under a neutral illuminant, or is it,
for example, the picture of a white tissue taken under a blue illuminant? For a color
version of the figure, see www.iste.co.uk/provenzi/color.zip

2.2. Classical hypotheses for illuminant and reflectance
estimation

If we consider the Lambertian image formation model and its simplified

version, equations [2.3] and [2.4] respectively, we infer that color changes in

pictures of a fixed visual scene taken with a fixed setting of an RGB camera

can only be produced by a change in illumination. Thus, if it were possible

to estimate the illumination, we could filter it out and retain just the intrinsic

object reflectance. In particular, if the hypotheses underlying the simplified

Lambertian image formation model described by equation [2.4] are satisfied,

then the estimated reflectance can be obtained by dividing the image values

Ic(x) by the estimated illuminant Lc:

S c(x) =
Ic(x)

Lc
. [2.7]

Before describing the white-patch, gray-world and gray-edge methods to

estimate the illuminant and reflectance, it is worthwhile underlying their

positive and negative sides. The major advantage of these methods is that they
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have fast performance, are easy to program and, at least for the pure

white-patch and gray-world assumptions, do not require a training procedure.

Their main disadvantages are the fact that they only make physical sense

when the scene is illuminated by a single spatially homogeneous light source

E and that they rely on the validity of an assumption on reflectance

distribution that is frequently violated in real-world scenes. This is the reason

why these algorithms often need an ad-hoc pre-processing step.

Finally, it is important to stress that intrinsic object reflectance cannot be

associated with color: while reflectance is a physical quantity, it’s the

interaction between the reflectance of objects that creates color sensation, not

the interaction between illumination and reflectance. In fact illumination is

discounted thanks to the color constancy property of human vision.

2.2.1. White-patch assumption and related models

The white-patch (WP) assumption [LAN 71, LAN 77] states that there
exists at least one patch of an object in the physical scene with perfect
reflectance (for all wavelengths). This means that if the scene is illuminated

by the neutral light defined in section 2.1, then the perfectly reflective patch

will be measured as having the same intensity in each chromatic channel. It

follows that any deviation from this situation will be caused by a certain color

temperature of the illuminant being different from that of white light

[WYS 82].

The white-patch assumption stated above is often violated in natural

scenes. For this reason, a relaxed version can be formulated which requires

the existence of at least a patch with perfect reflectance in each separated

chromatic channel. The relaxation lies in the fact that now the perfect

reflective patch may differ in every chromatic channel, which is a far more

common situation in practice.

Let us see how we can use the white-patch assumption to estimate Lc.

Remember that S (x, λ) ∈ [0, 1] for all x ∈ Ω and all λ ∈ Λ, so the white-patch

assumption implies that there exists a pixel x̄ ∈ Ω, such that S (x̄, λ) = 1 for all

λ ∈ Λ. It follows that:

Ic(x̄) =

ˆ
Λ

S (x̄, λ)E(λ)Rc(λ) dλ

=

ˆ
Λ

E(λ)Rc(λ) dλ = Lc, ∀c ∈ {R,G, B}. [2.8]
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Since Lc is supposed to be uniform across the image, and since 1 is the

highest reflectance value, it follows that Ic(x̄) = max
x∈Ω
{Ic(x)}. So, if the white-

patch assumption is satisfied, the illuminant can be estimated as follows:

LWP
c = max

x∈Ω
{Ic(x)}, [2.9]

this explains why this method of illuminant estimation is often, and more

properly, called “max-RGB”.

As a result, if the WP assumption is satisfied, then there exists a unique

x̄ ∈ Ω, such that Mc = Ic(x̄) = max
x∈Ω
{Ic(x)} for all c ∈ {R,G, B}, so if Mc is the

same for all c ∈ {R,G, B}, then the illuminant is neutral, otherwise the scene is

illuminated by a non-neutral light.

If the relaxed WP assumption is verified, then we can only guarantee the

existence of three (possibly different) pixels, x̄R, x̄G, x̄B, such that

Mc = max
x∈Ω
{Ic(x)} = Ic(x̄c), [2.10]

but the conclusion is the same as mentioned above, i.e. if Mc is different as c
varies in {R,G, B}, then the illuminant is non-neutral and vice versa.

If the WP assumption or its relaxed version is verified, then the estimated

reflectance is

S WP
c (x) =

Ic(x)

maxx∈Ω{Ic(x)} . [2.11]

The easiest computational model that used this strategy to enhance images

is the so-called von Kries algorithm [VON 02], which consists of the following

diagonal transformation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ĨR(x)

ĨG(x)

ĨB(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
maxx∈Ω{IR(x)} 0 0

0 1
maxx∈Ω{IG(x)} 0

0 0 1
maxx∈Ω{IB(x)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
IR(x)

IG(x)

IB(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , [2.12]

where Ĩc is the c-th component of the enhanced output image.
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To physically test the validity of the WP hypothesis (respectively, its

relaxed version), we must illuminate a scene with a uniform light of known

spectral composition and then verify whether the brightest pixel in the whole

image (respectively, in each separated chromatic channel) has the same values

as the illuminant or at least very similar ones. Without knowing the

reflectance of the materials in the scene or the spectral distribution and

geometry of illumination, the only way to determine whether or not a visual

scene fulfills the WP assumption or its relaxed version is to estimate the

illumination components (LR, LG, LB) with techniques that do not rely on

physically based hypotheses about the scene displayed in the picture (for an

overview of such techniques, see, e.g., [GIJ 11]).

Max-RGB algorithms are very sensitive to noise and outliers, which can

alter the whole computation. To overcome this problem, the image is often

preprocessed. For instance, in [BAR 02, FUN 10], the authors showed that

smoothing the image much improves the performances by limiting the effect

of outliers.

2.2.2. Gray-world assumption and related models

The gray-world assumption [BUC 80] states that “the (spatial) average
reflectance in a visual scene is achromatic (gray)”. As noted for the

white-patch assumption, if the gray-world assumption holds true and the

measured average intensity is not achromatic, then the illuminant has a

non-neutral color.

The mathematical translation of the gray-world assumption is as follows:

1

|Ω|
ˆ
Ω

S (x, λ) dx = k, ∀λ ∈ Λ, [2.13]

where |Ω| is the area of Ω (or the number of pixels of the image support in the

discrete framework). The formula presented above indicates that if the

gray-world hypothesis is true, when we compute the spatial average of the

reflectance, the dependence on λ decreases and there remains a constant k
(typically close to 1/2).

This does not mean that S is independent of λ; in fact, S (x, λ) is allowed to

vary with λ. Rather, it means that for every fixed λ ∈ Λ, the values of S (x, λ)
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are evenly distributed across the scene around a middle value k, so that the

deviations from k cancel out with the spatial integration.

Let us see how we can estimate the illumination components Lc with the

gray-world assumption. If we compute the average image intensity, we then

have:

Ic ≡ 1

|Ω|
ˆ
Ω

Ic(x) dx =
1

|Ω|
ˆ
Ω

(ˆ
Λ

S (x, λ)E(λ)Rc(λ) dλ
)

dx

=

ˆ
Λ

(
1

|Ω|
ˆ
Ω

S (x, λ) dx
)

E(λ)Rc(λ) dλ = kLc, [2.14]

where we have used the definition of Lc and the gray-world hypothesis in the

last step of the computation.

Consequently, the gray-world (GW) illuminant and reflectance estimations

are:

LGW
c =

Ic

k
, S GW

c (x) = k
Ic(x)

Ic
. [2.15]

Since k = Ic/Lc, without knowing the spectral composition of the

illuminant, we cannot assure that k remains constant in the three chromatic

channels because of the symmetrical distribution of the reflectance values

around k, or because of Lc. So, to physically test the GW assumption, we have

to illuminate the scene with a uniform neutral light and calculate the average

image intensity in the three chromatic channels: if this remains constant, then

the GW hypothesis holds true. As a result, if a scene complies with the GW

assumption and Ic varies with c, then the scene in the picture is taken under a

non-neutral illuminant.

Also in this case, as in the WP scenario, without knowing the spectral

distribution and geometry of illumination, the only way to determine whether

a visual scene fulfills the GW assumption or not is to estimate the

illumination components (LR, LG, LB) with techniques that do not rely on

hypotheses about the physical nature of the scene displayed in the picture.
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If the condition [2.6] holds, then we can consider the simplified Lambert

image formation model Ic(x) = S c(x)Lc. So, the relaxed GW assumption

1

|Ω|
ˆ
Ω

S c(x) dx = k [2.16]

implies again the equation Ic = kLc. Thus, the GW assumption and its

relaxation lead to the same illuminant estimation equation.

We observe that this method is not as sensitive to noise as the max-RGB

because it involves an average operation, in which the effect of outliers is

automatically smoothed. However, gray-world methods are sensitive to the

presence of large areas with a uniform color different from gray; in fact, for

these kinds of scenes, the gray-world assumption is evidently violated and the

illuminant estimation that they provide can be far from correct.

Also in this case, we can pre-process the image to partially overcome the

violation of the gray-world assumption; a typical strategy is to segment the

image, compute the average color of all segments and then suitably combine

this information to compute the global average color as proposed by [BAR 02].

2.2.3. Shades of gray and multi-scale max-RGB assumptions to
mix white-patch and gray-world hypotheses

The considerations of the previous two sections imply that the white-patch

and gray-world methods have a higher probability to work properly if the

picture has a high contrast. In fact, in this case, we maximize the probability

of having bright objects in the scene (thus approaching the white-patch

assumption) and minimize the probability of finding large homogeneous areas

(thus approaching the gray-world assumption, since bright and dark object

surfaces tend to compensate each other in the average operation).

However, as previously noted, for white-patch algorithms to perform

correctly, the digital image should be as noiseless as possible; thus, they are

not indicated for images taken under dim light conditions. Noise generated by

poor illumination, instead, does not significantly affect the performances of

gray-world algorithms, but they do not work properly for close-ups of

uniform regions, where the contrast is poor. In these unfavorable cases, the
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methods tend to return an incorrect illuminant estimation, resulting in an

estimated reflectance that is too saturated to white or to gray, respectively.

To minimize the drawbacks and capitalize on the assets of the white-patch

and gray-world methods, Finlayson and Trezzi [FIN 04] and Gijsenij and

Gevers [GIJ 07] studied two frameworks, in which the white-patch and

gray-world methods can be combined.

Let us describe the proposal of Finlayson and Trezzi that is based on a

simple, yet informative, observation. Consider the Lp-norm of the image

function Ic : Ω → [0, 1], which is well defined for all p ≥ 1 because Ic is

bounded and Ω is compact, i.e.

‖Ic‖p =
(ˆ
Ω

Ic(x)p dx
)1/p
, [2.17]

then, ‖Ic‖∞ = max
x∈Ω
{Ic(x)} and ‖Ic‖1 = |Ω|Ic. If we compare these expressions

with equations [2.9] and [2.15], we find that:

LWP
c = ‖Ic‖∞ and LGW

c =
‖Ic‖1
k|Ω| , ∀c ∈ {R,G, B}. [2.18]

Hence, it is reasonable to think that if we use intermediate values of p
between p = 1 (gray-world) and p = ∞ (white-patch) to estimate Lc, then we

obtain intermediate results between the gray-world and white-patch methods.

For this reason, Finlayson and Trezzi called this method “shades of gray”.

They defined the Lp-norm illuminant estimation for 1 ≤ p ≤ ∞ as follows:

Lc,p = kp‖Ic‖p, where kp plays the role of k in equation [2.15], but with respect

to the Lp-norm.

In this case, the reflectance is postulated after the aforementioned

mathematical observation as follows:

S c,p(x) =
Ic(x)

kp‖Ic‖p . [2.19]

Finlayson and Trezzi showed that, on the database [BAR 02], the best

performances are obtained with p = 6; however, the optimal value of p can

change from one database to another.
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Let us now describe the proposal of Gijsenij and Gevers [GIJ 07]. They

refined the pre-processing idea of [BAR 02] by considering the original image

at different scales. The multi-scale approach is built through the convolution

of the original image using a Gaussian kernel with the standard deviation σ:

Iσc ≡ Ic ∗Gσ.

We have two limit behaviors: the finest scale, σ = 0, in which the

convolution has no effect at all, i.e. Iσ=0
c = Ic, and the coarsest scale,

σ → +∞, in which the convolution reduces to a homogeneous averaging

operation, i.e. Iσ→∞c → ´
Ω

Ic(x) dx.

Gijsenij and Gevers postulate illuminant and reflectance estimation as

follows:

Lc,σ = kc max
x∈Ω
{Iσc (x)} and S c,σ(x) =

Ic(x)

kc maxx∈Ω{Iσc (x)} , [2.20]

∀c ∈ {R,G, B}, ∀x ∈ Ω, where kc plays the role of k in equation [2.15], but

with respect to Iσc . It can be seen that this technique combines the max-RGB

method with equation [2.20], and the gray-world technique by using Iσc instead

of Ic.

The results of this method are similar to those of the shades of gray model

and out-perform those of the pure white-patch and gray-world methods. The

major disadvantage is that the scale parameterσ, analogously to p in the shades

of gray algorithm, depends on the database of images under examination.

2.2.4. Gray-edge assumption and related models

Referencing the gray-edge assumption in [WEI 07], it is stated that “the
average of the reflectance differences in a scene is achromatic (gray)”. As

stated by the authors, this hypothesis originates from an empirical
observation: the plot of the color derivative distribution of an image

approximates an ellipsoid whose longest axis coincides with that of the light

source color [WEI 06]. So, if this axis is rotated with respect to that of neutral

light, it means that the illuminant has a non-neutral color.
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To compute reflectance differences, the authors consider the spatial

derivative ∂xS of the reflectance function S (x, λ) and translate the gray-edge

hypothesis as follows:

1

|Ω|
ˆ
Ω

|∂xS (x, λ)| dx = k, ∀λ ∈ Λ, [2.21]

where | | is the Frobenius norm and k is a suitable constant that depends on the

space in which color differences are represented [WEI 07]. In other words, the

total variation of the reflectance function in every chromatic channel must be

constant.

The illuminant estimation with this new proposal can be obtained by the

following computations:

|∂xIc| ≡ 1

|Ω|
ˆ
Ω

|∂xIc(x)| dx =
1

|Ω|
ˆ
Ω

(ˆ
Λ

|∂xS (x, λ)|E(λ)Rc(λ) dλ
)

dx

=

ˆ
Λ

(
1

|Ω|
ˆ
Ω

|∂xS (x, λ)| dx
)

E(λ)Rc(λ) dλ = kLc, [2.22]

where we have used the definition of Lc and the gray-edge hypothesis in the

last step of the computation.

Consequently, the illuminant and reflectance estimation with the gray-edge

(GE) assumption is given by:

LGE
c =

|∂xIc|
K
, S GE

c (x) = k
Ic(x)

|∂xIc|
. [2.23]

The considerations of section 2.2.2 can be translated here, with the only

difference being that the role of Ic here will be played by |∂xIc|.

The framework presented above can be generalized by considering the n-th

derivative, n ≥ 1, i.e. by formulating the following hypothesis [WEI 07]:

1

|Ω|
ˆ
Ω

∣∣∣∂n
xS (x, λ)

∣∣∣ dx = kn, [2.24]
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where, again, kn plays the same role as k in equation [2.15]. Using the same

arguments as above, the illuminant estimation in this case is given by:

LGE,n
c =

|∂n
xIc|
kn
. [2.25]

If hypothesis [2.6] is satisfied, the reflectance estimation is given by:

S GE,n
c (x) = kn

Ic(x)

|∂n
xIc|
. [2.26]

In [WEI 07], it is shown that the value of n that corresponds to the best

performances depends on the database chosen. In the next section, we will

show how all the previous methods can be fused into a single one.

2.2.5. Multi-scale n-th order shades of gray-edge assumption: a
general hypothesis

All the assumptions described in the previous sections can be fused into a

single one, as shown in [WEI 07]. Joining the names of all the previous ones,

it seems reasonable to call this assumption the “multi-scale n-th order shades

of gray-edge assumption”:

(
1

|Ω|
ˆ
Ω

∣∣∣∂n
xρ
σ(x, λ)

∣∣∣p dx
)1/p
= kn,σ,p, [2.27]

where ∂n
xρ
σ = ρ ∗ ∂n

xG
σ, with Gσ being a Gaussian with the standard deviation

σ. kn,σ,p is a constant for a fixed value of the parameters n (the order of the

spatial derivative), σ and p.

Following the same arguments as in the previous sections, we find that

the illuminant estimation provided by the method that uses this generalized

assumption is given by:

Lp,n,σ
c =

‖∂n
xIσc ‖p

kn,σ,p
, [2.28]

where ∂n
xIσc = Ic ∗ ∂n

xG
σ.
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If hypothesis [2.6] is satisfied, the estimated reflectance in this case is given

by:

S p,n,σ
c (x) = kn,σ,p

Ic(x)

‖∂n
xIσc ‖p . [2.29]

For the sake of clarity, we recall the meaning of the three parameters p, n, σ:

– 1 ≤ p ≤ ∞ determines which Lp-norm is used in the computation: if we

choose p → ∞, we emphasize the influence of large values of Ic(x) (white-

patch-like behavior); if we choose p = 1, all the values of Ic(x) influence the

computation in the same way (gray-world-like behavior);

– 0 ≤ n < ∞ is the derivative order: n = 0 corresponds to a shades of gray

algorithm and n > 1 to a gray-edge one;

– 0 ≤ σ ≤ ∞ is the scale at which the image is considered, the bigger it is,

the coarser the scale.

We refer to [GIJ 11] and [WEI 07] for a thorough discussion of the

performances of this algorithm as its parameters vary.
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Retinex-Like Algorithms for
Color Image Processing

Edwin H. Land coined the term “Retinex” in his 1964 paper [LAN 64], even

if the most popular paper about Retinex is the one that he published with John

J. McCann in 1971 [LAN 71]. Retinex stands for “Retina plus Cortex”, which

refers to the fact that the mechanisms underlying human color vision depend

both on the retinal photoreceptor catches and on the cortex interpretation of

these signals. The original Retinex is a computational model developed with

the aim of finding a perceptual correlate of reflectance, called “lightness” by

Land, to be tested with psychophysical measurements [MCC 70].

Through a series of ground-breaking experiments, mostly performed with

the famous “Mondrian tableaux”, as the one shown in Figure 3.1, Land and

McCann proved that human perception of a surface’s color is much more

influenced by the spatial distribution of the surrounding surfaces than by the

spectral distribution of the light used to illuminate the Mondrian tableau. As

underlined by McCann in many papers and conference speeches, spatial

locality of color perception is the central concept in the whole Retinex theory.

Thus, at least in its original form, the aim of Retinex is not to discard

illumination and recover the intrinsic reflectance of surfaces, as several

authors claim in their paper even nowadays, but to quantify how the points of

the spatial surround cooperate to modify the color perception of a given spot

in a visual scene.

In spite of their innovative and important experimental achievements,

neither Land nor McCann “carved their model into stone” through a rigorous

Computational Color Science: Variational Retinex-like Methods, First Edition. Edoardo Provenzi.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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mathematical formulation. To the author’s knowledge, the first explicit

Retinex formula that Land wrote appeared in the paper [LAN 83], which was

partially formalized in [BRA 86], too late to prevent many other authors from

diverging with respect to the first version. In the following section, we

provide a formalization of the original Retinex formula. This will help us fix

the ideas about many concepts and notations that will be used later on.

Figure 3.1. Digital reproduction of a typical Mondrian tableau used by
Land and McCann for their color matching experiments. For a color

version of the figure, see www.iste.co.uk/provenzi/color.zip

3.1. Mathematical description of the original ratio-threshold-reset
Retinex algorithm

As mentioned previously, the original Retinex model of Land and McCann

[LAN 71] is based on the assumption that the HVS operates with three

retinal-cortical systems, each processing the low, middle and high

wavelengths of the visible electromagnetic spectrum independently. Every

independent process forms a separate image that determines a quantity that

they called lightness and denoted as L. Inspired by several matching

experiments (see, e.g., [MCC 70, LAN 71]), Land and McCann found a

computational way to reproduce lightness for their Mondrian tableaux by
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introducing spatial comparisons among intensities, calculated over paths. The

comparison is performed through a multiplicative chain of ratios, subjected to

these nonlinear mechanisms1:

– Threshold mechanism: if the ratio does not differ from 1 by more than a

fixed threshold value, then it is set to be unitary;

– Reset mechanism: if the cumulated product of ratios overcomes the value

1 at a certain point of the path, then it is forced to be 1, so that the computation

restarts from it. In this way, this point becomes a local white reference, so the

reset mechanism is responsible for the white-patch behavior of Retinex.

Let us now present the mathematical formalization of Land and McCann’s

ratio-threshold-reset Retinex computation provided in [PRO 05]. Given a

discrete digital image function with a normalized range, I : Ω ⊂ Z2 → [0, 1],

let us consider a collection of N oriented paths �γ = {γ1, . . . , γN} composed of

ordered chains of pixels starting in yk and ending in x, k = 1, . . . ,N. Let nk be

the number of pixels traveled by the path γk and let tk = 1, . . . , nk be its

parameter, i.e. γk : {1, . . . , nk} → Ω ⊂ R2, γk(1) = yk and γk(nk) = x. For the

sake of simplicity, let us write two subsequent pixels of the path as γk(tk) = ytk
and γk(tk + 1) = ytk+1, for tk = 1, . . . , nk − 1. In every fixed chromatic channel

c ∈ {R,G, B}, let us consider their intensities I(ytk ), I(ytk+1) and then compute

the ratio Rtk =
I(ytk+1)

I(ytk )
with the initial condition R0 = 1.

With this notation in mind, the value of lightness provided by the

ratio-threshold-reset Retinex algorithm for a generic pixel x ∈ Ω, in every

fixed chromatic channel c (that we avoid specifying for the sake of a clearer

notation), is given by:

Lε,�γ(x) =
1

N

N∑
k=1

nk−1∏
tk=1

δk(Rtk ) [3.1]

1 A further mechanism, called scaling, can be introduced [LAN 77]. For the sake of a clearer

description of Retinex, we will avoid considering this mechanism in this chapter and will

introduce it in Chapter 5.
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where δk : R+ → R+, k = 1, . . . ,N, are functions defined in this way: δk(R0) =

1 and, for tk = 1, . . . , nk − 1,

δk(Rtk ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rtk if 0 < Rtk ≤ 1 − ε
1 if 1 − ε < Rtk < 1 + ε

Rtk if 1 + ε ≤ Rtk ≤ 1+ε∏tk−1

mk=0
δk(Rmk )

1∏tk−1

mk=0
δk(Rmk )

if Rtk >
1+ε∏tk−1

mk=0
δk(Rmk )

[3.2]

with ε > 0 being a fixed threshold.

The first option is satisfied when the intensity of the pixel ytk+1 is

appreciably smaller than the intensity of the pixel ytk , and then δk reproduces

the value of the ratio Rtk . The second option occurs when only a very small

change in intensity is measured between two subsequent pixels. In this case,

δk(Rtk ) is defined to be 1, so that the product of ratios remains exactly the

same as in the previous step. This is the mathematical implementation of the

threshold mechanism.

The third option is referred to the case when the ratio Rtk is greater than

1 + ε, but the product δk(R1)δk(R2) · · · δk(Rtk−1)Rtk is not greater than 1 + ε. In

this case, δk reproduces the value of Rtk as in the first option. Finally, the fourth

option holds when δk(R1)δk(R2) · · · δk(Rtk−1)Rtk > 1 + ε. In this case, δk resets

the chain of product to 1 because a “local white pixel” has been reached. This

option implements the reset mechanism (and so the white-patch behavior) of

the algorithm.

It is useful to write the contribution of the single path γk to Lε,�γ(x) as:

Lε,γk (x) =

nk−1∏
tk=1

δk(Rtk ), [3.3]

so that formula [3.1] simply reduces to the average of these contributions, i.e.

Lε,�γ(x) = 1
N

N∑
k=1

Lε,γk (x).

Since the logarithmic function transforms products into sums and

divisions into subtractions, the computational cost of the algorithm defined by
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formula 3.1 can be reduced via the decomposition of the identity function on

R
+ as exp ◦ log applied to the product of ratios, i.e.

Lε,�γ(x) =
1

N

N∑
k=1

exp

⎛⎜⎜⎜⎜⎜⎜⎝
nk−1∑
tk=1

log(δk(Rtk ))

⎞⎟⎟⎟⎟⎟⎟⎠ . [3.4]

We can simplify the formula by defining Ĩ(ytk ) = log(I(ytk )), R̃tk = log Rtk =

Ĩ(ytk+1) − Ĩ(ytk ), R̃0 = 0. We define the functions δk to be: δ̃k(R̃0) = 0 and, for

tk = 1, . . . , nk − 1,

δ̃k(R̃tk ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R̃tk if −∞ < R̃tk ≤ −ε̃
0 if − ε̃ < R̃tk < ε̃

R̃tk if ε̃ ≤ R̃tk ≤ ε̃ −
∑tk−1

mk=0
δ̃k(R̃mk )

−∑tk−1
mk=0
δ̃k(R̃mk ) if R̃tk > ε̃ −

∑tk−1
mk=0
δ̃k(R̃mk )

[3.5]

with ε̃ = log(1+ ε). If we use these notations, the formula for the lightness can

be written as:

Lε,�γ(x) =
1

N

N∑
k=1

exp

⎛⎜⎜⎜⎜⎜⎜⎝
nk−1∑
tk=1

δ̃k(R̃tk )

⎞⎟⎟⎟⎟⎟⎟⎠ , [3.6]

which contains only one exponential, sums and differences. For small values

of ε, it coincides with the lightness of the non-logarithmic formulation.

3.2. Analysis of the ratio-reset Retinex formula: the limit ε→ 0

The analytical formula that describes the ratio-threshold-reset Retinex

algorithm introduced above permitted making predictions about the model.

As explained in [PRO 05], this can be done if the threshold mechanism is

disregarded or, equivalently, by considering the case ε→ 0.

As ε→ 0, the functions δk become much simpler:

δk(Rtk ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rtk if 0 < Rtk

tk−1∏
mk=0
δk(Rmk ) ≤ 1

1
tk−1∏
mk=0
δk(Rmk )

if Rtk

tk−1∏
mk=0
δk(Rmk ) > 1

[3.7]
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hence, when ε → 0, δk behaves either as the identity function or as the reset

function.

For the sake of a simpler and more comprehensible notation, we shall

eliminate the suffix k for a moment, and focus attention on a given path γ

starting in γ(1) = y and ending in γ(n) = x. Let H be the value of the

parameter of γ, such that γ(H) = yH is the pixel with highest intensity in the

whole path.

If we write the contribution of γ explicitly as

δ

(
I(y2)

I(y)

)
· · · δ
(

I(yH)

I(yH−1)

)
δ

(
I(yH+1)

I(yH)

)
· · · δ
(

I(x)

I(yn−1)

)
[3.8]

we can prove that the pixel yH enables the reset mechanism. In fact, if no reset

occurs before yH , then we have:

I(y2)

I(y)

I(y3)

I(y2)
· · · δ
(

I(yH)

I(yH−1)

)
δ

(
I(yH+1)

I(yH)

)
· · · δ
(

I(x)

I(yn−1)

)
[3.9]

the first ratios cancel out, so that:

I(yH−1)

I(y)
δ

(
I(yH)

I(yH−1)

)
δ

(
I(yH+1)

I(yH)

)
· · · δ
(

I(x)

I(yn−1)

)
. [3.10]

Thanks to the hypothesis on yH ,
I(yH)

I(yH−1)
> 1; thus, the product of this ratio

with the previous ones reduces to:

I(yH−1)

I(y)

I(yH)

I(yH−1)
=

I(yH)

I(y)
[3.11]

which is again greater than 1. The reset mechanism is enabled and the chain of

products reduces to:

δ

(
I(yH+1)

I(yH)

)
· · · δ
(

I(x)

I(yn−1)

)
. [3.12]

If the reset mechanism is activated by some other pixel before yH in the

path γ, then the conclusion remains true: to verify this, it is sufficient to replace
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y with the last pixel that has produced the reset before yH and then use the same

arguments as before.

As a consequence, when ε→ 0, all the pixels composing the path γ before

the pixel with highest intensity are totally useless for the lightness

computation.

After the pixel yH , the reset mechanism is inhibited and the δ function

simply reduces to the identity. In fact, if all of the ratios remain less than 1

until the end of the path, then the statement is trivially true. Instead, if there

exists a pixel yK , K > H, such that
I(yK+1)
I(yK )

> 1, the reset mechanism cannot be

enabled because the product of ratios R1 · · ·RK reduces to:

I(yH+1)

I(yH)

I(yH+2)

I(yH+1)
· · · I(yK)

I(yK−1)

I(yK+1)

I(yK)
=

I(yK+1)

I(yH)
< 1. [3.13]

If there are other pixels with the same characteristic as yK , the conclusion is

unchanged. If there is more than one pixel with the same intensity as yH , then

all the considerations mentioned above have to be referred to the last pixel with

highest intensity traveled by γ. To resume, when ε → 0, the contribution of

the path reduces simply to I(x)
I(yH)

.

Since the arguments presented above work for every path, we can write:

L0,γk (x) =
I(x)

I(yHk )
, [3.14]

where yHk is the pixel with highest intensity traveled by γk, for every k =
1, . . . ,N. Thus, formula [3.1] can be written as follows:

L0,�γ(x) =
I(x)

N

N∑
k=1

1

I(yHk )
, [3.15]

or

L0,�γ(x) =
1

N

N∑
k=1

exp
(
Ĩ(x) − Ĩ(yHk )

)
, [3.16]

in the logarithmic formulation.
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Equation [3.15] shows explicitly that, when ε → 0, the Retinex lightness

is obtained simply by multiplying by I(x) the average of the inverse values of

the highest intensities of the pixels traveled by the paths γk. Henceforward, we

will refer to formula [3.15] as describing the “ratio-reset Retinex algorithm”.

Note that the similarity with the von Kries algorithm described in the

previous section is evident; however, the presence of paths makes the

ratio-reset Retinex a local algorithm, where locality is intrinsically

represented by the geometry of paths used. We will turn back to the path

dependency of the ratio-reset Retinex in section 3.3 when we will describe the

spray-based implementation. Here, we just observe that when nk → |Ω| or

N → ∞, the ratio-reset Retinex loses its local properties and reduces to the

global diagonal von Kries model [PRO 05]. In contrast, if we use small values

of nk or N, the resulting lightness images are affected by a lot of noise (see

again [PRO 05]).

We note that since intensity values are normalized, 0 < I(yHk ) ≤ 1 for

every k = 1, . . . ,N and then
∑N

k=1
1

I(yHk )
≥ N. It follows that L(x) ≥ I(x) for

every pixel i, which proves that an image filtered with the ratio-reset Retinex

is always brighter or equal to the original one. This shows an important

limitation of this algorithm: an over-exposed picture can only be worsened by

the application of the ratio-reset Retinex used as a color corrector.

Further interesting information that can be obtained via formula [3.15] is

the qualitative behavior of ratio-reset Retinex when it is iteratively applied to

an image. Mathematically, the operation of applying m-times Retinex

corresponds to the composition of the lightness function with itself m times.

The simplest case of m = 2 can be written as follows:

L2
0,�γ

(x) =
L0,�γ(x)

N

N∑
k=1

1

L0,�γ(yH′k )
⇔

L2
0,�γ

(x)

L0,�γ(x)

=
1

N

N∑
k=1

1

L0,�γ(yH′k )
, [3.17]

where yH′k is the pixel with the highest value of lightness in a given chromatic

channel along the path γk after the first application of Retinex. We stress that

yH′k is, in general, different from yHk , which is the pixel with the highest

intensity along γk before the first filtering operation.
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More generally, if we write with Lm
0,�γ

the composition of L0,�γ with itself m
times, it can be immediately seen that:

Lm
0,�γ

(x)

Lm−1
0,�γ

(x)
=

1

N

N∑
k=1

1

Lm−1
0,�γ

(yHm−1
k

)
[3.18]

where yHm−1
k

is the pixel with the highest value of lightness along the path γk

after m − 1 applications of Retinex to the original image.

Equation [3.18] shows that in every iteration of Retinex, the lightness of

any pixel x is greater or equal to that of the previous iteration. In fact,

0 < Lm−1
0,�γ

(yHm−1
k

) ≤ 1, k = 1, . . . ,N, hence the right-hand side of [3.18] is ≥ 1

and so Lm(x) ≥ Lm−1(x) for every pixel x ∈ Ω. In particular, the lightness of x
is forced to grow until the right-hand side of equation [3.18] reaches the value

1, but this happens if and only if Lm−1
0,�γ

(yHm−1
k

) = 1, i.e. when the lightness of

(at least) one pixel in all the paths γ1, . . . , γN reaches the value 1. This is the

convergence condition: every further iteration of the ratio-reset Retinex will

leave the image unchanged. At a visual level, when the convergence condition

is reached, the image is corrupted by “speckling”, i.e. the presence of a large

number of white spots across the image domain, as can be seen in

Figure 3.2.

3.2.1. Retinex: “a melody that everyone plays differently”

In image processing, it is hard to find a model whose name has been

interpreted in so many different ways as “Retinex”. In this subsection, we

present a synthetic description of the evolution of the Retinex interpretation.

In Chapter 5, we will link these different Retinex implementations to their

corresponding variational versions.

Path-wise Retinex shares a local WP nature and mostly differs from each

other by the path geometry used to explore spatial locality: Land and McCann

used piecewise linear paths in [LAN 71]. In [COO 04], [MAR 00] and

[SIM 14], those paths were substituted for double spirals, Brownian paths and

traces of a specialized swarm of termites, respectively.
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Figure 3.2. Top to bottom: original image and result of multiple
iterations of the ratio-reset Retinex algorithm until the convergence is

reached. Note the speckling effect

Center/surround Retinex are local GW algorithms originating from

[LAN 86], where Land noticed that he could reproduce Mach bands formed

by a spinning white square on a black background by using a different

Retinex formulation. Precisely, for every image point, the intensity of the

center x is replaced by the ratio between I(x) and the average value of the

surround, sampled with a density that decays as the inverse of the square

distance from the center. Writing with LCS this “center/surround lightness”,

we have:

LCS(x) =
I(y)

< {I(y), y ∈ Surround} >, [3.19]
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where < · > represents the average operator. Comparing [3.19] with [3.15],

it can be seen that there is a fundamental difference between this formulation

and the original one: there the ratio is performed over the pixel with highest

intensity, while in this formulation it is implemented over the mean value of

the surround. We can go further: comparing [3.19], with [2.15], it can be seen

that this formulation of Retinex is practically a GW method to remove the

illuminant component of the image.

In 1997, Johbson, Rahman and Woodell [JOB 97b] re-elaborated Land’s

idea presented in [LAN 86]: they worked with logarithmic data,

approximating the average of the surround by convolving the image function

I with a normalized kernel function F, usually a Gaussian. If we use again,

for simplicity, the symbol LCS, we can write this model as follows:

LCS(x) = log(I(x)) − log((F ∗ I)(x)), ∀x ∈ Ω. [3.20]

Multi-level Retinex algorithms were pioneered by Frankle and McCann in

[FRA 83] and further refined in [FUN 04]. In these works a multi-level

version of the original local WP Retinex is presented, the authors abandon

paths and consider a computation that takes into account all pixels. The input

image is progressively sub-sampled averaging a number of pixel that grows as

increasing powers of 2. On each sub-sample level, a ratio-reset computation

(without threshold) is operated a certain number of times from the coarser

sub-sample level to the finest one. Because of the sub-sampling, as we go

further from the target pixel, we do not consider actual pixel values, but

average values of macroareas of increasing size. A rigorous mathematical

formulation of these multi-level algorithms is still lacking.

Based on this idea, Marini, Rizzi and De Carli [MAR 00] constructed a

local WP multi-level version of Brownian path Retinex that reduced the

amount of noise in the output images. A different multi-level proposal has

been pointed out by Johbson, Rahman and Woodell in [JOB 97a]: they

introduced a certain number S of scales where performing the convolutions in

[3.20] with normalized Gaussian functions Fs, s = 1, . . . , S . Each scale is

associated with a suitable weight ws, which gives more importance to finer

scales than to coarser ones.

Finally, there are WP Retinex versions based on solving a Poisson

equation. They rely on a study by Horn [HOR 74], in which he remarkably
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pointed out, for the first time, the need for a spatially isotropic

two-dimensional version of Retinex. Horn considered, as Land, only

Mondrian tableaux illuminated by a smoothly varying light. However,

differently from Land, he explicitly tackled the ill-posed problem of inverting

the equation Ic(x) = S c(x)Lc(x), c ∈ {R,G, B}, with respect to S c(x) (the

reflectance of the point x ≡ (x1, x2)) knowing only the image intensity Ic(x). If

we now pass to logarithmic values, i.e. log Ic(x) = log S c(x) + log Lc(x) or,

equivalently, log S c(x) = log Ic(x) − log Lc(x), and we apply a differential

operator D to both sides, then D(log Lc(x)) will be small but finite

everywhere, while D(log S c(x)) will be different from zero only if x is close

to sharp edges.

If we apply a threshold operator δT defined as follows:

δT (s) =

⎧⎪⎪⎨⎪⎪⎩s if |s| > T
0 elsewhere,

for all s ∈ R and if the threshold T > 0 satisfies the constraints defines by the

following inequality:

max
x∈Ω
{D(log Lc(x))} < T < min {D(log S c(x)),

x ∈ Ω : D(log S c(x)) � 0} [3.21]

then we obtain D(log S c(x)) = δT (D(log Ic(x))). Horn insisted on the choice

of the Laplacian for D instead of the gradient, arguing that first order

derivatives are one-dimensional, while the second order derivatives involved

in the Laplacian are isotropic and thus more suited for the topology of an

image. By substituting D for the Laplacian operator Δ, the last formula

becomes a Poisson equation:

Δ(log S c(x)) = δT (Δ(log Ic(x))) [3.22]

whose solution allows recovering the logarithmic reflectance log S c(x). It is

clear that Horn’s method is based on quite restrictive hypotheses: smoothness

of illumination (violated by scenes with deep shadows, for instance) and a

Mondrian-like world (violated each time edges are not sharp). Blake

[BLA 85] refined Horn’s results using more suitable boundary constraints

when solving Horn’s Poisson equation, and Hurlbert pointed out in [HUR 86]
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a connection between Land’s and Horn’s versions of Retinex by analyzing

Green’s technique for the solution of Horn’s Poisson equation.

The alternative Retinex interpretations quoted above have been

mathematically formalized with the help of variational principles and the

theory of partial differential equations. In Chapter 5, these formalizations will

be discussed in detail.

3.3. From paths to pixel sprays: RSR

The information obtained, thanks to the mathematical formulation of

Retinex, has important consequences for the structure of Px(Ω), the set of

paths embedded in the image domain Ω and ending in the point x. After

formula [3.15], on this set, it is natural to define the following equivalence

relation: given γ, η ∈ Px(Ω),

γ ∼ η ⇔ max
y∈γ∗ {I(y)} = max

y∈η∗ {I(y)} [3.23]

where γ∗ and η∗ are the codomains of the paths, i.e. the collections of pixels

traveled by γ and η, respectively.

Paths belonging to different equivalence classes give different contributions

to the lightness computation, while every path in a given equivalence class

gives rise to the same value of L0,γk (x). It follows immediately that Px(Ω)

contains redundant paths and that the correct set of paths to consider is given

by the quotient set Px(Ω)/ ∼, whose elements are the equivalence classes of

paths with respect to the equivalence relation defined in [3.23].

In each equivalence class, we can choose a single representative path to

compute L0,γk (x), in particular, the more efficient one is the two-points path

whose codomain is simply given by {yHk , x}. Thus, the ordering operations

needed to generate the paths are totally unnecessary for the final lightness

computation. Moreover, from a mathematical point of view, paths are

topological manifolds of dimension 1 embedded in the image, which is a

topological manifold of dimension 2, so paths do not really scan local

neighborhoods of a pixel, but rather particular directions in these

neighborhoods. This directional extraction of information can lead to halos or

artifacts in the filtered image (see, e.g., [FRA 83]).
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The classical implementations of Retinex try to remedy this problem using

a large number of paths, but this increases the filtering time and does not

really overcome the problem. In conclusion, there are three reasons for which

paths are not perfectly suitable for the analysis of locality of color perception

within the Retinex model: they are redundant, their ordering is completely

unnecessary and they have an inadequate topological dimension.

These considerations led the authors of [PRO 07] to consider

two-dimensional objects such as areas instead of one-dimensional paths to

analyze image locality for an efficient color correction. Roughly speaking,

their idea is to implement spatial locality by selecting a fraction of pixels

from these areas with a density sample that changes according to a given

function of their distance with respect to the target pixel x. Each function

generates a different kind of pixel selection around x, leading to different

types of “sprays”, each of which shows different local filtering properties. The

new implementation of the ratio-reset Retinex that follows this idea is called

RSR for “Random Sprays Retinex”.

In RSR the role of a path γk traveling nk pixels and ending in the target x is

played by S k(x), a spray with nk pixels centered in x. Actually, once the

number of points per spray is chosen, there is no need to vary it with k, hence,

from now on, we will write n instead of nk to denote the number of pixels per

spray. The ratio-reset operation along a path is substituted for the search of

the pixel with highest intensity in the whole spray. The functional expression

of formula [3.14] to compute the lightness remains exactly the same in both

algorithms, so the ratio-reset Retinex and RSR share the same intrinsic

properties.

S k(x) is built as follows: starting with a uniform random distribution of n
values in the real unit interval [0, 1], we extend it to the intervals [0, 2π) and

[0,R], where R is a given positive real number that will represent the radius of

the spray. We denote the corresponding uniform random distributions by

randn[0, 2π] and randn[0,R], respectively. Then, if (x1, x2) are the

coordinates of x, we can define the polar coordinates of a generic pixel

y ≡ (y1, y2) belonging to S k(x) in this way:

{
y1 = x1 + ρ cos(θ)

y2 = x2 + ρ sin(θ)
[3.24]



Retinex-like Algorithms for Color Image Processing 43

where ρ ∈ randn[0,R] and θ ∈ randn[0, 2π). These are the coordinates of pixels

that have an isotropic angular distribution in a circle of radius R centered in

the pixel x.

However, note that the radial density is not isotropic; in fact, the spray

results are denser near the target pixel x than far away. To compute δ(r), the

mean areolar density variation in function of r, consider any circle Cr of

arbitrary radius r, 0 < r ≤ R, centered in x. The area of Cr is A = πr2, so

r =
√

A
π ; moreover, since we are dealing with uniform random distributions,

the mean number of points inside Cr is n r
R =

n
R

√
A
π . Computing the derivative

of this expression with respect to A, we get the rate of change of the average

areolar density:

d
(

n
R

√
A
π

)
dA

=
n

2R
√
πA

[3.25]

but A = πr2, so:

δ(r) =
( n
2πR

)
1

r
. [3.26]

Thus, the mean areolar density of spray pixels decreases as the inverse radius.

Figure 3.3 shows an example of such a spray with 400 points and radius R = 1.

The radial areolar density decay can be modified by applying a function to ρ.

More information about this use of RSR to study the dependence of Retinex

on spatial locality can be found in [PRO 07].

In [GIA 14], the RSR sampling technique has been studied from a

probabilistic point of view, resulting in the algorithm QBRIX.

3.3.1. LRSR and SMRSR

In this section, we will discuss two techniques proposed in

[BAN 13, BAN 15] that have been applied to RSR with the aim of reducing

the noise in the output image and also decreasing the computational time.

Let us start by describing the strategy described in [BAN 13] and called

“Light Random Sprays Retinex” (LRSR) devised to avoid noise formation

when a small value of n and/or N is used. Consider an arbitrary input image I
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and apply RSR to it, obtaining the image R. The ratio C = I
R is called the

intensity change image. In LRSR, the noise is reduced through a convolution

with a kernel function k. This can be done after the computation of C,

obtaining C′k = (C ∗ k)(x), ∀x ∈ Ω, or before it, i.e. applying the blurring to I
and R, obtaining C′′k (x) = (I∗k)(x)

(R∗k)(x)
, ∀x ∈ Ω. By combining the two approaches,

i.e. filtering before and after calculation with two (possibly identical) kernels

k1 and k2, respectively, we can define the new intensity change matrix:

C∗k1,k2
(x) = (C′′k1

(x) ∗ k2)(x).

Figure 3.3. Example of a random spray with 400 points
and unitary radius

The output image O of LRSR is calculated via the formula:

O(x) =
I(x)

C∗k1, k2
(x)

∀x ∈ Ω, [3.27]

the size of the kernels k1 and k2 used in [BAN 13] is 25 × 25.

In [BAN 15], the same authors attacked the problem of computational

complexity reduction with a technique called “Smart Light Random Memory

Sprays Retinex” (SLRMSR). The basic concept behind SLRMSR is that of
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“spray memory”, which consists of creating a single spray that will be

gradually modified while we browse the image. First of all, we extend the

image by mirror symmetry to correctly treat pixels that lie near the edge of

the image domain. We then consider the first pixel x ≡ (1, 1) ∈ Ω of the input

image and we build a spray S (x) with n pixels centered in x. We then pass to

the subsequent pixel in the same row, i.e. x′ ≡ (2, 1), and we modify just one
pixel of S (x), by randomly selecting a pixel that lies in the neighborhood of

x′. By iterating this procedure, we will gradually and smoothly modify the

content of each spray. At a computational level, if we store the pixels of the

spray in a hyper-matrix, for each new pixel we will just modify the last

element of this matrix. Thereby, the spray will be totally renewed every n
pixels.

Note that, thanks to this idea, the computational complexity passes from

O(nN |Ω|) to O(n|Ω|) because now one spray is used. When this technique is

applied directly without the filtering strategy quoted above, it produces results

affected by horizontal lines, as shown in Figure 3.4 (middle). The main reason

is to be found in the great deal of information redundancy in natural images,

i.e. the fact that nearby pixels are very likely to have similar values, unless they

lie in the proximity of a sharp edge, thus, if we change only one pixel spray at

the time and we browse the image horizontally, this kind of problem is to be

expected.

3.4. A psychophysical method to measure (achromatic) induction

One of the aims of the RSR model was the investigation of the effects of

spatial locality on the computed lightness. It thus seems pertinent to discuss

here the Rudd-Zemach model of achromatic induction, which, as the authors

say, shares some similarities with Retinex.

The first quantitative measure of achromatic induction was performed by

[WAL 48]. In his classical experiment (Figure 3.5), Wallach considered two

disks, DT and DM for Target and Match, surrounded by two rings RT and RM ,

embedded in a uniform background B. Let us denote LDM , LRM , LDT , LRT and

LB as the luminance values of DM , RM , DT , RT and B, respectively. He showed

this configuration to a set of observers adapted to the light conditions of a dimly

illuminated room, keeping LDT and LRM fixed, using LRT as an independent

variable that he could fix in every experiment and LDM as a dependent variable
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that the observers could adjust in order to achieve a perceptual match between

the two disks T and M. The stimuli presented to the observers did not have

chromatic components.

Figure 3.4. Top: original image. Middle: output of spray memory RSR
without applying the filters of LRSR. Bottom: output of SLMRSR. Top
(original) image courtesy of N. Banić. For a color version of the figure,

see www.iste.co.uk/provenzi/color.zip
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Figure 3.5. Wallach’s classical experiment. Over a uniform background
B, there are two inner disks, DT and DM (T and D for Target and Match,

respectively), surrounded by two external rings RT and RM

If the luminance of the surrounding rings failed to influence the perception

of the achromatic color of the disks, then the match between the two disks

would simply be the photometric one, i.e. LDM = LDT ; instead, Wallach found

that a fairly good match among the achromatic color of the two disks was

obtained when the ratios between the disk and the ring luminances were

identical on the two sides of the display, i.e.

LDM

LRM

=
LDT

LRT

, [3.28]

a formula called Wallach’s Ratio rule. By taking the logarithms at both sides

and solving for LDM we find:

log LDM = log LDT + log LRM − log LRT , [3.29]

thus, according to Wallach’s Ratio rule, the plot of the perceptual match in the

plane of coordinates (x, y) = (log LRT , log LDM ) should be a straight line with

slope −1, against the slope 0 that a photometric match would measure. More

recent measures using the classical Wallach’s experiment have shown that this

slope is actually between −1 and 0, as can be seen in Figure 3.6 (adapted from

Rudd & Zemach [RUD 04]).

To account for these new psychophysical data, Rudd and Zemach

[RUD 04] have proposed a more sophisticated model than Wallach’s. They

repeated Wallach’s experiment adding a non-black background B. As in
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Wallach’s experiment, LDT and LRM are fixed and the observer’s task is to

adjust LDM to achieve an achromatic color match to the test disk as a function

of LRT . LRT is varied from trial to trial by sampling from a set of six

luminance values spaced equally in RGB units from 2.54 to 6.31 cd/m2 (note

that Rudd and Zemach used the base 10 for their logarithmic values, so that

the logarithmic range goes from 0.405 to 0.800 cd/m2).
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Figure 3.6. Quantitative measures of Wallach’s achromatic color induction experiment
for four observers performed in [RUD 04]. The best-fit regression line slopes and
associated 95% confidence limits observed by [RUD 04] for the four subjects of the
experiment are the following: –0.639 ± 0.033, –0.791 ± 0.034, –0.723 ± 0.047 and
–0.657 ± 0.042

Rudd and Zemach also pointed out some similarities between their model

of achromatic induction and Retinex; however, they did not consider the

threshold and reset mechanisms. Their model can be described as follows: let

Li and L j be the luminance of two points i and j in an image, the ratio Li
L j

can

be decomposed as a sequential multiplication of the local luminance ratios at

borders encountered along a path connecting j and i, for instance:

Li

L j
=

j−1∏
k=i

Lk

Lk+1
, [3.30]
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by taking the logarithm at both sides we get

log
Li

L j
=

j−1∑
k=i

log
Lk

Lk+1
. [3.31]

Rudd and Zemach introduced induction strength weights wk in order to take

into account the fact that patches that lie in a nearby surround have a stronger

influence on the induced perception than those that are far away, i.e. spatial

locality of vision. Note that in the configuration shown in Figure 3.5, we have

i = DM, i+1 = j−1 = RM, j = B on the left part of the visual field and i = DT ,

i + 1 = j − 1 = RT , j = B on the right part. The logarithmic brightness of i,
which we denote as log Φ(i), and which can be inferred by Rudd and Zemach’s

model, is the following:

log Φ(i) ≡
j−1∑
k=i

wk−i+1 log
Lk

Lk+1
+ μ, [3.32]

where μ ∈ R is an arbitrary constant that will be eliminated by the matching

procedure and that we introduced to underline the fact that brightness

perception is relative to a context and not absolute.

It can be seen that if the luminances Lk and Lk+1 are equal, then their ratio

does not give any contribution to Φ(i). A meaningful contribution to Φ(i) is

given only by the luminances of points lying at the border of an edge. So, Φ(i)
represents the summed influence of all the edges present within the spatial

surround of the target point, suitably weighted. The weight index is k − i + 1,

which means that small values of the index refer to patches close to i and

vice versa. With this convention, and invoking the fact that induction strength

decreases with the distance, as proven by [WAL 63], we have that w1 > w2 >

. . ., i.e. w2

w1
< 1 and so on.

Rudd and Zemach called their model of achromatic induction “Weighted

Log Luminance Ratio” (WLLR). The WLLR predicts that the brightness

match between LDM and LDT is attained when Φ(DM) = Φ(DT ), i.e.

w1 log
LMatch

DM

LRM

+ w2 log
LRM

LB
+ μ = w1 log

LDT

LRT

+ w2 log
LRT

LB
+ μ, [3.33]



50 Computational Color Science

solving this equation w.r.t., log LDM we have:

log LMatch
DM

= log LDT +

(
1 − w2

w1

)
log LRM −

(
1 − w2

w1

)
log LRT , [3.34]

LMatch
DM

is the luminance value of DM selected by the observer to match LDT .

If we set u = log LMatch
DM

, α = log LDT +
(
1 − w2

w1

)
log LRM , β = −

(
1 − w2

w1

)
and

v = log LRT , then the WLLR model predicts the following linear behavior in
the logarithmic domain:

u = α + βv, [3.35]

with a slope β = −
(
1 − w2

w1

)
∈ (−1, 0), which is coherent with Rudd and

Zemach’s empirical observations. In fact, the estimations of the ratio w2

w1
from

their interpolated data for the four observers are: 0.361, 0.209, 0.277 and

0.343.

A key assumption of edge integration models, like the WLLR, is that the

total achromatic color induction produced by a complex surround is the sum
of the individual induction effects produced by the luminance borders

comprising that surround. Rudd and Zemach performed experiments to

directly test this assumption by predicting and then measuring the magnitude

of the total induction effect produced by combining three circular edges

located at different distances from the test disk. This was done after first

measuring the magnitudes of the induction effects produced by the individual

edges. The results were in accordance with the predictions of the model.

In section 5.4, we will reinterpret the WLLR model in terms of variational

principles.

3.5. Automatic Color Equalization: ACE

Automatic Color Enhancement (ACE) [RIZ 03] is an algorithm for color

image enhancement inspired by the HVS features. ACE, like Retinex,

transforms the intensity of an image in a local, differential and nonlinear way.

To show how ACE works, it is worthwhile to present its formulae and then

discuss their meaning. Keeping the notations used for Retinex, let us fix a
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target pixel x and let y denote the generic pixel in the rest of the image. Given

a fixed real constant α > 1, we construct the following odd function:

sα : [−1, 1]→ [−1, 1],

sα(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if − 1 ≤ t ≤ − 1

α

αt if − 1
α < t < 1

α

+1 if 1
α ≤ t ≤ 1

[3.36]

α and sα are called, respectively, slope and slope function. We are interested in

the analysis of sα when t assumes the values t = I(x) − I(y), i.e. we will deal

with sα(I(x)− I(y)), with I(x) constant (since x is fixed) and I(y) variable (since

y runs over the whole image). The reason for the use of differences in ACE is

that they are the easiest operations to jointly implement the differential nature

of spatial comparisons and the GW principle recalled in Chapter 2. This can

be easily understood considering the toy image with only two pixels x and y.

If we define Dxy = I(x)− I(y), then Dyx = −Dxy, so their average is 0. The null

value can then be mapped to the middle gray with the simple translation using

the term 1
2
. The same results can be obtained considering an image of any size

and using an odd function of I(x) − I(y), because the average value of an odd

function is 0.

We also consider a normalized weight function w : Ω × Ω → (0, 1),∑
y∈Ω

w(x, y) = 1 for all x ∈ Ω, where w(x, y) is a monotonically decreasing

function of the Euclidean distance ‖x − y‖ representing the induction weight.

w can be, for instance, the inverse of ‖x − y‖ or a Gaussian kernel with

standard deviation left as parameter and so on.

The lightness computation of x is performed by ACE in two steps, the first

is called chromatic spatial adjustment and consists of the determination of the

following pixel-wise value:

R(x) =
∑
y∈Ω

w(x, y)sα(I(x) − I(y)). [3.37]

Then, with M = maxy∈Ω{R(y)}, a dynamic tone reproduction scaling is

performed via the equation:

LACE(x) =
1

2
+

R(x)

2M
. [3.38]
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Note that, since the odd function sα is weighted, the sum in [3.37] is not

null. The nonlinearity in ACE is determined by the slope function, in fact, in

the region − 1
α < I(x) − I(y) < 1

α , i.e. for relatively small intensity differences,

sα increases the contrast, mapping I(x) − I(y) into α(I(x) − I(y)) with α > 1,

while it clips relatively big intensity differences. Finally, the mapping in [3.38]

implies a global WP behavior, since there surely exists, at least, one pixel x
such that R(x) = M so that its lightness becomes 1. Note that, differently from

the ratio-reset Retinex algorithms, ACE can increase and decrease the intensity

of a pixel.

3.6. RACE: a model with mixed features between RSR and ACE

Both RSR and ACE decrease the color cast of an image, if it exists.

However, while the results of RSR tend to have a nice saturation, those of

ACE tend to be somewhat washed out. On the contrary, ACE’s nonlinear

slope function allows for a noticeable contrast intensification, in particular

with large values of the slope parameter α, which cannot be reached with

RSR. Moreover, both models fail to work properly in large uniform areas: if

these regions are wide enough, RSR detects the region pixels as local

maxima, thus it normalizes those pixels on themselves and it produce a great

amount of visible noise; on the other side, ACE’s chromatic spatial

adjustment represented by equation [3.37] will be close to 0 and the pixels

will turn gray regardless their original color.

Starting from these considerations, in [PRO 08] the authors developed a

fusion of RSR and ACE into an algorithm called “RACE” with the aim of

combining the positive features of both algorithms, and they also proposed

a technique to avoid the problems mentioned above in case of large uniform

areas.

In order to build a combined algorithm between RSR and ACE, we must

implement spatially local operations within a common mathematical

framework. In [PRO 08], the local sprays of RSR have been favored over the
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weighted computation performed across the entire image as in ACE due to the

fact that they required substantially less computation time.

Once the use of localized spray is established, the main difference between

ACE and RSR is the presence of the dynamic tone reproduction scaling in

ACE. We recall that this operation introduces a global white-patch behavior in

ACE, but, in view of the combination with RSR, this step becomes redundant,

since a local white-patch behavior is already provided by RSR.

There is a simple way to remove the dynamic range mapping while keeping

the local weighted average behavior typical of ACE: incorporating the term 1
2

in sα, i.e. considering this new slope function:

s̃α(I(x) − I(y)) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if − 1 ≤ I(x) − I(y) ≤ − 1
2α

1
2
+ α(I(x) − I(y)) if − 1

2α < I(x) − I(y) < 1
2α

1 if 1
2α ≤ I(x) − I(y) ≤ 1.

[3.39]

Indicating the lightness corresponding to this spray formulation of the local

GW component of ACE with LsprayACE, we have:

LsprayACE(x) =
1

N

N∑
k=1

1

ñk

∑
y∈S k(x)\{x}

s̃α(I(x) − I(y)) [3.40]

ñk = card{(S k(x)\{x})∩Ω} being the number of spray pixels (center x excluded)

that lie inside the spatial domain of the image.

Now that the spray formulation of ACE and the new slope function s̃α are

defined, RSR and ACE can be combined by performing their local average.

This is the most natural operation for the purpose of developing an algorithm

with an intermediate behavior between the previous ones.

If we consider a single spray S k(x), the average contribution of RSR and

ACE is given by the formula:

LRACE
k (x) =

1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝ I(x)

I(Hk)
+

1

ñk

∑
j∈S k(x)\{i}

s̃α(I(x) − I(y))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , [3.41]
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as usual, the final lightness is obtained by averaging the N spray contributions:

LRACE(x) =
1

N

N∑
k=1

1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝ I(x)

I(Hk)
+

1

ñk

∑
y∈S k(x)\{x}

s̃α(I(x) − I(y))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . [3.42]

It is interesting to discuss how formula [3.42] behaves with respect to three

ideal conditions. The ideal white situation is that in which I(x) = I(Hk) and

s̃α(I(x) − I(y)) = 1 for every y ∈ S k(x) \ {x}; the ideal middle gray situation

happens when I(x) =
I(Hk)

2
and 1

ñk

∑
S k(x)\{i} s̃α(I(x) − I(y)) = 1

2
; finally, the

ideal black condition is defined by I(x) = 0 and s̃α(I(x) − I(y)) = 0 for every

y ∈ S k(x) \ {x}. The correct recovering of white, middle gray and black in

the ideal conditions defined above is a basic theoretic test for correct tonal

reproduction of RACE. All the ideal situations are easily seen to be correctly

verified.

We stress that RACE does not use ad hoc pre- or post-processing. The

only pre- or post-LUT treatments are due to the conversion respectively

from/to gamma encoded sRGB values. Thus, prior to any computation, if the

input image was encoded in sRGB, a gamma transformation must be applied

to linearize data. In a similar way, prior to visualization, a gamma correction

for sRGB encoding should be applied.

3.6.1. Regularization of RACE formula: attachment to original
image

As mentioned above, the action of RSR and ACE on large homogeneous

areas of an image fails to give good results. The combination of the two

algorithms in RACE does not remedy the problem. In this subsection, we

show how it is possible to modify the RACE formula with a regularization

term in order to avoid this unwanted behavior.

Let us fix the attention on the lightness contribution LRACE
k (x) associated

with a spray S k(x), as defined in [3.41]. The first step in the regularization

technique corresponds to modifying LRACE
k (x) taking a convex linear

combination with the original intensity value I(x) of the target pixel:

L̃RACE
k (x) = βk(x)LRACE

k (x) + (1 − βk(x))I(x). [3.43]
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The coefficient βk(x) ∈ [0, 1] is a local parameter that can vary with x.

The term βk(x)LRACE
k (x) in [3.43] is called the “RACE component”, while (1−

βk(x))I(x) is called the “original component”. For every x ∈ Ω, we have:

L̃RACE
k (x) −→

{
I(x) if βk(x)→ 0

LRACE
k (x) if βk(x)→ 1

[3.44]

hence, in order to preserve uniform areas from being corrupted by the incorrect

behavior of the algorithm, we would like βk(x) to take values close to 0 if S k(x)

samples a uniform image area. Conversely, we would like βk(x) to take values

close to 1 if S k(x) explores very detailed image regions. This task can easily be

accomplished by considering, for instance, βk(x) as a monotonically increasing

function of the standard deviation σk(x) associated with S k(x), i.e.

σk(x) =

√ ∑
y∈S k(x)

(I(y) − mk(x))2 pk,x(I(y)), [3.45]

where pk,x(I(y)) = 1
ñk

card{z ∈ S k(x), I(z) = I(y)} is the occurrence probability

of value I(y) inside the spray S k(x) and

mk(x) =
∑

y∈S k(x)

I(y)pk,i(I(y)) [3.46]

is the mean intensity value inside S k(x). Recalling that sprays are localized

around the center x, σk(x) can be interpreted as a local measure of average
contrast around x [GON 02].

The local nature of σk(x) is vital for the declared purposes: spatial locality

allows a modulation of RACE component in [3.43] such that it provides a

higher contribution in detailed areas than in uniform zones. This is coherent

with the characteristics of the HVS, since its efficacy is increased by the

presence of local details in a scene [LAN 83, JOB 97a]. Moreover, smooth

transitions between uniform and detailed areas correspond to smooth

transitions between original and RACE components, avoiding the generation

of halos, as confirmed by the tests performed in [PRO 08]. A similar, but

simpler, proposal for a local adaptive unsharp masking has been presented in

[POL 00].
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3.7. An alternative fusion between RSR and ACE: STRESS

A more recent proposal to fuse WP and GW features in a single algorithm

is that presented in [KOL 11] and is called STRESS (Spatio-Temporal

Retinex-like Envelope with Stochastic Sampling). Like Retinex, STRESS

computes, for each pixel, the local white reference, but also the black

reference in each chromatic channel. This is done through calculating the

maximum and minimum envelope functions, denoted as Emax(x) and Emin(x),

respectively.

The computational steps needed to obtain the envelope functions are the

following: fix a pixel x ∈ Ω and N random sprays [PRO 07] S k(x),

k = 1, . . . ,N, centered in x, then compute Mk = max
x∈S k(x)

I(x), mk = min
x∈S k(x)

I(x)

and the following objects:

rk(x) = Mk(x) − mk(x), vk(x) =

⎧⎪⎪⎨⎪⎪⎩
1
2

if Mk(x) = mk(x)
I(x)−mk(x)

Mk(x)−mk(x)
otherwise,

thus, essentially, the value of vk(x) is either the middle gray if x lies in a

homogeneous area or it is the linearly stretched value of I(x) with respect to

the interval [mk(x),Mk(x)]. By denoting r̄(x) and v̄(x) the average values of

rk(x) and vk(x) over the N sprays, i.e.

r̄(x) =
1

N

N∑
k=1

rk(x), v̄(x) =
1

N

N∑
k=1

vk(x),

the authors can finally define the two envelope functions Emin(x) as follows:

Emin(x) = I(x) − v̄(x)r̄(x), Emax(x) = I(x) + (1 − v̄(x)r̄(x))

= Emin + r̄(x). [3.47]

The final output of STRESS is the stretched value of I(x) on the interval

[Emin, Emax], namely:

STRESS(I(x)) =
I(x) − Emin

Emax − Emin
. [3.48]

STRESS, like RACE, is capable of handling both under and over exposed

images, but it is affected by the same noise problems as RSR. In Chapter 5,
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we will see a variational extension of the technique used to compute the

envelope functions based on the total variation. This will allow avoiding the

noise problems related to the random spray technique.



4

Variational Formulation
of Histogram Equalization

Generally speaking, variational principles amount to defining a suitable

functional, i.e. a scalar-valued function defined on a certain functional space,

so that its minima (ideally, its unique minimum) provide the optimal solution

of the problem under analysis. An introduction to variational principles can

be found in the Appendix.

In 1997, Caselles and Sapiro used variational principles to give a novel

interpretation of histogram equalization of a digital image. This work is not

only a profound achievement in itself, but also the main theoretical result on

which the next chapter’s variational framework of perceptual enhancement of

color images is based. For this reason, this entire chapter will be dedicated

to the description and interpretation of Caselles–Sapiro’s model of histogram

equalization.

4.1. The Caselles–Sapiro model

It is worthwhile to start with the notation that will be used from now on.

The functional space that we will consider here is that of RGB continuous

image functions. To introduce these functions, we will first denote Ω ⊂ R2

as the spatial domain of a digital image, |Ω| as its area, and x ≡ (x1, x2) and

y ≡ (y1, y2) as the coordinates of two arbitrary pixels in Ω. Unless otherwise

Computational Color Science: Variational Retinex-like Methods, First Edition. Edoardo Provenzi.
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60 Computational Color Science

specified, we will always consider a normalized dynamic range in [0, 1], so

that an RGB image function will be denoted as:

�I : Ω −→ [0, 1] × [0, 1] × [0, 1]

x �→ (IR(x), IG(x), IB(x))

where each scalar component Ic(x) defines the intensity level of the pixel x ∈ Ω
in the red, green and blue channels, respectively.

As in the previous chapters, we will perform every computation on the

scalar components of the image, thus treating each chromatic component
separately. Therefore, we will avoid the subscript c and write simply I(x) to

denote the intensity of the pixel x in a given chromatic channel.

From the point of view of functional analysis, we will implicitly consider

the space of image functions as a subspace of L2(Ω), the space of square-

integrable (finite-energy) functions from Ω to [0, 1].

Let us also recall very briefly what histogram equalization is. Let λ ∈ [0, 1]

be a generic intensity level, then the histogram of I computed in λ is given by:

h(λ) =
1

|Ω| Area{x ∈ Ω | I(x) = λ} λ ∈ [0, 1], [4.1]

i.e. the occurrence probability of the level λ in the image.

The cumulative histogram of I computed in λ, H(λ), is given by:

H(λ) =
1

|Ω| Area{x ∈ Ω | I(x) ≤ λ} λ ∈ [0, 1], [4.2]

i.e. the probability of finding a pixel with an intensity less than λ.

Of course, the relationship between h and H is given by:

H(λ) =

ˆ λ
0

h(t) dt, H′(λ) = h(λ), [4.3]

i.e. H is the integral function of h in the interval [0, 1] and the first derivative

of H in each level gives the histogram of that level.
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It will be useful for later purposes to note that the relationship H(λ) =´ λ
0 h(t) dt can be rewritten as follows:

H(λ) =

ˆ λ
0

h(t) dt =
1

|Ω|
ˆ 1

0

sign+(λ − I(t)) dt [4.4]

where

sign+(s) =

⎧⎪⎪⎨⎪⎪⎩
1 if s ≥ 0

0 if s < 0

and its spatial version

H(I(x)) =
1

|Ω|
ˆ
Ω

sign+(I(x) − I(y)) dy. [4.5]

An image is said to be equalized if each level has the same occurrence
probability, i.e. if h(λ) ≡ 1 (recall that the histogram is normalized) ∀λ,
which, of course, can be translated to the following condition on the

cumulative histogram: H(λ) = λ, ∀λ.

It is easy to prove (see, e.g., [GON 02]) that the transformation from [0, 1]

to itself given by λ �−→ H(λ) is the easiest application that implements

histogram equalization.

However, this is not the only histogram equalization transformation

available in the literature. In particular, a variational interpretation has been

provided by Caselles and Sapiro in [SAP 97]. For the purposes of this book,

the Caselles–Sapiro’s results can be resumed in the following theorem.

Theorem 4.1.– Given the functional

Ehist eq(I) ≡ 2

ˆ
Ω

(
I(x) − 1

2

)2
dx − 1

|Ω|
¨
Ω2

|I(x) − I(y)| dxdy [4.6]

if I∗ = argminI Ehist eq(I), then I∗ has equalized histogram, i.e. H(I∗(x)) =

I∗(x) for all x ∈ Ω.
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Moreover, if I0 is the original image, then the initial value problem for the

gradient descent

⎧⎪⎪⎨⎪⎪⎩
∂t I = −δEhist eq(I)

I(0) = I0

has only one solution, where t is the evolution parameter of the iterative

gradient descent scheme and the symbol δ represents the first variation of the

functional.

Ehist eq(I) will be called the Caselles–Sapiro functional from now on. The

entire proof of the theorem can be found in [SAP 97]. While the details of the

proof about the convergence to the minimum and the uniqueness are too long

and technical to be reproduced here, it is worthwhile showing that an image

function that satisfies the Euler-Lagrange equations associated with Ehist eq(I)

is equalized, because the tricks used in the proof show explicitly the link with

histogram equalization, which is far from being intuitive at a first glance by

looking at Ehist eq(I).

First, let us start by recalling a classical lemma of variational calculus.

Lemma 4.1.– Given the two functionals

E1(I) =

ˆ
Ω

ψ(I(x)) dx, E2(I) =

¨
Ω2

φ(I(x), I(y)) dxdy, [4.7]

where ψ is a differentiable function defined on the codomain of I and φ is a

differentiable function defined on the 2-th Cartesian power of the codomain of

I, then their first variations are, respectively:

δE1(I, J) =

ˆ
Ω

∂ψ

∂I

∣∣∣∣∣
I(x)

J(x) dx ≡
ˆ
Ω

ψ′(I(x)) J(x) dx [4.8]

and

δE2(I, J) =

¨
Ω2

(
∂φ

∂I

∣∣∣∣∣
I(x)

J(x) +
∂φ

∂I

∣∣∣∣∣
I(y)

J(y)

)
dxdy, [4.9]

with J being a perturbation of I.



Variational Formulation of Histogram Equalization 63

Then, by linearity, we can compute the first variation of the two terms

appearing in Ehist eq(I) and then add the results. Therefore, we can write:

D 1
2
(I) = 2

ˆ
Ω

(
I(x) − 1

2

)2
dx; [4.10]

C(I) =
1

|Ω|
¨
Ω2

|I(x) − I(y)| dxdy. [4.11]

By virtue of formula [4.8], we have:

δD 1
2
(I, J) =

ˆ
Ω

4

(
I(x) − 1

2

)
J(x) dx, [4.12]

and thanks to formula [4.9], we have:

δC(I, J) =
1

|Ω|
¨
Ω2

[
sign(I(x) − I(y))J(x)

−sign(I(x) − I(y))J(y)
]

dxdy

=
1

|Ω|
{¨

Ω2

sign(I(x) − I(y))J(x) dxdy

−
¨
Ω2

sign(I(x) − I(y))J(y) dxdy
}
. [4.13]

Now, interchanging the role of the “mute” variables x and y in the second

integral of the last step, we have:

1

|Ω|
¨
Ω2

sign(I(x) − I(y))J(y) dxdy

=
1

|Ω|
¨
Ω2

sign(I(y) − I(x))J(x) dydx [4.14]

but using the oddness of the sign function, we have:

1

|Ω|
¨
Ω2

sign(I(x) − I(y))J(y) dxdy

= − 1

|Ω|
¨
Ω2

sign(I(x) − I(y))J(x) dydx. [4.15]
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Hence, we can write:

δC(I, J) =
1

|Ω|
{¨

Ω2

sign(I(x) − I(y))J(x) dydx

+

¨
Ω2

sign(I(x) − I(y))J(x) dydx
}

=
2

|Ω|
¨
Ω2

sign(I(x) − I(y))J(x) dydx [4.16]

which can be conveniently rearranged as follows:

δC(I, J) =

ˆ
Ω

(
2

|Ω|
ˆ
Ω

sign(I(x) − I(y)) dy
)

J(x) dx. [4.17]

Since δEhist eq(I, J) = δD 1
2
(I, J) − δC(I, J), by using formulas [4.12] and

[4.17], we have:

δEhist eq(I, J) =

ˆ
Ω

4

(
I(x) − 1

2

)
J(x) dx

−
ˆ
Ω

(
2

|Ω|
ˆ
Ω

sign(I(x) − I(y)) dy
)

J(x) dx [4.18]

i.e.

δEhist eq(I, J) =

ˆ
Ω

[
4

(
I(x) − 1

2

)

− 2

|Ω|
ˆ
Ω

sign(I(x) − I(y)) dy
]

J(x) dx. [4.19]

The stationary condition δEhist eq(I, J) = 0, ∀J implies that the expression

in the square bracket must be zero, i.e.

δEhist eq(I, J) = 0 ⇐⇒ 4

(
I(x) − 1

2

)

− 2

|Ω|
ˆ
Ω

sign(I(x) − I(y)) dy = 0, [4.20]
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so that the Euler-Lagrange equation relative to the energy functional Ehist eq is

the following implicit equation

2

(
I(x) − 1

2

)
− 1

|Ω|
ˆ
Ω

sign(I(x) − I(y)) dy = 0, [4.21]

which can be suitably rewritten as

1

|Ω|
ˆ
Ω

sign(I(x) − I(y)) dy = 2I(x) − 1. [4.22]

Now, using the identity sign(t) ≡ 2sign+(t) − 1 ∀t ∈ R, we can express the

left-hand side of the Euler-Lagrange equation as:

1

|Ω|
ˆ
Ω

(2sign+(I(x) − I(y)) − 1) dy

=
2

|Ω|
ˆ
Ω

sign+(I(x) − I(y)) dy −
´
Ω

dy
|Ω|

= 2H(I(x)) − 1, [4.23]

where we have used the fact that 1
|Ω|
´
Ω

sign+(I(x) − I(y)) dy is the spatial

version of the cumulative histogram H(I(x)), as noted in equation [4.5].

Thus, the Euler-Lagrange equation [4.22] is equivalent to 2H(I(x)) − 1 =

2I(x) − 1, i.e. to H(I(x)) = I(x), but then

δEhist eq(I, J) = 0 ⇐⇒ H(I(x)) = I(x), ∀x ∈ Ω, [4.24]

which means that the image function I that satisfies the Euler-Lagrange

equations of the functional Ehist eq(I) has an equalized histogram, as it had to

be proven.

4.2. Interpretation of Caselles–Sapiro’s functional for histogram
equalization

Interpretation of the energy functional Ehist eq(I) in terms of image features

is crucial for the following chapter. As stated previously, we can write

Ehist eq(I) = D 1
2
(I)−C(I). Thus, the minimization of Ehist eq(I) = D 1

2
(I)−C(I)

is achieved through the minimization of D(I) and the maximization of C(I).
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The meaning of the two functional terms is as follows:

– D 1
2
(I) is called global quadratic dispersion around the middle gray level

1
2
, which is minimized when I(x) ≡ 1

2
for all x ∈ Ω; that is, the minimization

of this term tends to turn I into an uniform gray image;

– C(I) is called global contrast whose maximization corresponds to the

maximization of the global contrast of the image I, expressed by the set of

absolute differences |I(x) − I(y)|.

Thus, the argmin of the Caselles–Sapiro functional is the image

corresponding to the optimal balance between two opposite effects: on the one

side, the minimization of D 1
2
(I) tends to set all the levels to the average gray

level 1
2

but, on the other side, the minimization of −C(I) tends to spread the
intensity levels apart, as far as possible from each other. So, the intrinsic

meaning of Theorem 4.1 is that the equilibrium among two conflicting
actions, dispersion control around the middle gray and global contrast
enhancement, induces histogram equalization.

One practical consequence of this result is that by applying, for example,

the gradient descent technique to minimize Ehist eq(I), we can stop the

minimization process before reaching the complete equalization, thus

realizing a partial equalization that can nonetheless be useful to avoid the

typical over-enhancement of low-key images (for more details, see

[GON 02]).

However, for the purposes of color image processing, the most important

consequences of Theorem 4.1 are theoretical: in fact, as we will see in the

next chapter, we can modify the functional Ehist eq(I) in such a way that the

basic balance principle of histogram equalization is preserved, but we can

change the analytical form of the terms D 1
2
(I) and C(I) by taking inspiration

from human visual perceptual features. The argmin image I∗ of the modified

functional is a color-corrected version of the original image driven by the

perceptual properties of the human visual system (HVS).
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4.3. Application of histogram equalization techniques to color
images

The application of histogram equalization to color images is far from

trivial. If we apply it on the three chromatic channels independently, then the

resulting image is likely to show unnatural colors. However, if we apply it to

the achromatic channel and keep chromaticity intact, the resulting image can

show a weak enhancement. Figure 4.1 clearly shows the aforementioned

features.

In the next chapter, we will see that if the histogram equalization functional

is suitably modified by introducing some important features of the HVS, then

we can perform a separate channel enhancement that gives sound results, even

if a certain color shift (that can be treated with ad hoc techniques) appears.

Figure 4.1. Left column: original color images. Middle column: histogram equalization
of the luminance. Note that the color cast of the picture of the first row is not filtered
out by the histogram equalization on the luminance channel. Right column: histogram
equalization of the three independent chromatic channels. Note the dramatic color
shifts. For a color version of the figure, see www.iste.co.uk/provenzi/color.zip
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Perceptually-inspired Variational Models
for Color Enhancement in the RGB Space

Now that the basic properties of the human visual system (HVS) and the

variational interpretation of histogram equalization have been introduced, it is

possible to describe the variational framework for perceptually inspired color

image enhancement, proposed in [PAL 09], and its consequences.

Before turning to the mathematical details, it is worth explaining the main

similarities and differences between histogram equalization and HVS

properties that led the authors of [PAL 09] to the formulation of this model.

Let us start with similarities. First, after the light intensity reduction

performed by the eye elements, the visual signal is transduced by

photoreceptors to an electrical signal centered around the semi-saturation

level. This can be thought as the HVS process equivalent to the adjustment

around the average gray level 1
2

in histogram equalization.

Second, the local contrast enhancement performed by the HVS opposes the

shrinking of a light dynamic range, analogously to what happens in histogram

equalization.

Regarding differences, the most important one is that the HVS handles

contrast locally, i.e. in a spatially dependent way. Furthermore, color

constancy and Weber-Fechner’s law are not taken into account in histogram

equalization.
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Therefore, the aim of [PAL 09], and its related papers [BER 07, BER 09,

PRO 14], was to modify the Caselles–Sapiro functional in order to make the

new energy consistent with the HVS properties recalled previously. It will be

seen that even working in the RGB space, the output images of the modified

functional are qualitatively much better than those of histogram equalization.

Of course, in the literature, we can find several other proposals to modify

histogram equalization which have comparable or even more efficient color

correction properties than those presented here. The aim of the work [PAL 09],

and its related papers, were primarily theoretical, i.e. the authors wanted to test

to what extent we can solely rely on a model of the HVS, and not on ad hoc
mathematical and/or algorithmic requirements, to avoid, or at least, strongly

diminish the problems related to RGB histogram equalization (and, in general,

separate waveband processing, as in multi-spectral imaging).

As it will be seen later, the framework that they have built is general enough

to be adopted also for other applications.

5.1. Beyond the Caselles–Sapiro model: modification of the
histogram equalization functional to approach visual properties

The main problem in the modification of the Caselles–Sapiro functional is

the determination of a contrast enhancement term that complies with the HVS

features. Once it is determined, the selection of the adjustment term can be

carried out through dimensional coherence, as it will be explained in more

detail in this section.

5.1.1. A contrast term coherent with HVS properties

Let us consider the problem of building a suitable contrast measure c(a, b)

between two gray levels a, b > 0 (to avoid some singular cases, we shall

assume that intensity image values are always positive). We require the

contrast function c : (0,+∞) × (0,+∞) → R to be continuous, symmetric in

(a, b), i.e. c(a, b) = c(b, a), increasing when min(a, b) decreases or max(a, b)

increases.

Basic examples of contrast measures are given by c = |a− b| ≡ max(a, b)−
min(a, b) or c(a, b) = max(a, b)/min(a, b).
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Since our purpose is to enhance contrast by minimizing an energy, we define

an inverse contrast function c(a, b), still continuous and symmetric in (a, b), but

decreasing when min(a, b) decreases or max(a, b) increases. Note that if c(a, b)

is a contrast measure, then c(a, b) = −c(a, b) or c(a, b) = 1/c(a, b) is an inverse

contrast measure, so that basic examples of inverse contrast measures are given

by c(a, b) = min(a, b) −max(a, b) or c(a, b) = min(a,b)
max(a,b)

.

Let us now introduce a weighting function to localize the contrast

computation. Let w : Ω × Ω → R+ be a positive symmetric kernel, such that

w(x, y) = w(y, x) > 0, for all x, y ∈ Ω, which measures the mutual influence

between the pixels x, y. The symmetry requirement is motivated by the fact

that the mutual chromatic induction is independent of the order of the two

pixel considered. Usually, we assume that w(x, y) is a function of the

Euclidean distance ‖x − y‖ between the two points. We shall assume that the
kernel is normalized, i.e.

ˆ
Ω

w(x, y) = 1 ∀x ∈ Ω. [5.1]

Given an inverse contrast function c(a, b) and a positive symmetric kernel

w(x, y), we define a contrast energy term by:

Cw(I) =

¨
Ω2

w(x, y) c(I(x), I(y)) dxdy. [5.2]

Thanks to the symmetry assumption, we may write

c(a, b) = c̃(min(a, b),max(a, b)) for some function c̃ (indeed, well defined by

this identity). Note that c̃ is non-decreasing in the first argument and

non-increasing in the second one. The symmetry hypothesis is not restrictive;

in fact, if the inverse contrast measure c(a, b) is not symmetric, we can write it

as the sum c(a, b) = cs(a, b) + cas(a, b), where cs(a, b) and cas(a, b) are

symmetric and anti-symmetric, respectively. Since the sum˜
Ω2 w(x, y) cas(I(x), I(y)) dxdy = 0, then the only remaining term is˜
Ω2 w(x, y) cs(I(x), I(y)) dxdy; hence, we may assume that c(a, b) is

symmetric in (a, b).

In order to find out which properties the contrast term should satisfy, let us

note that, thanks to color constancy, an overall change in illumination,

measured by the generic quantity λ > 0, does not affect the visual sensation.
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This requires the contrast function c to be homogeneous, recalling that c is

homogeneous of degree n ∈ Z if

c(λa, λb) = λn c(a, b) ∀λ, a, b ∈ (0,+∞), [5.3]

where a and b are synthetic representations of I(x) and I(y).

Of course, if n = 0, c automatically disregards the presence of λ, but we

can say more: since λ can take any positive value, if we set λ = 1/b, we may

write equation [5.3] as:

c(a, b) = bn c
(a
b
, 1
)
∀a, b ∈ (0,+∞), [5.4]

so when n = 0, bn = 1 and c results as a function of the ratio a/b that

intrinsically disregards the overall changes in light intensity. If n > 0, then λ

has a global influence and could be removed by performing a suitable

normalization (for instance, dividing by the n-th power of the highest

intensity level).

We summarize these observations by saying that we assume that the inverse

contrast function c(a, b) is homogeneous.

Thanks to the arguments presented so far, we have that inverse contrast

functions that are homogeneous of degree n = 0 are those that can be written

as a monotone non-decreasing function of min(I(x), I(y))/max(I(x), I(y)).

Finally, let us consider Weber-Fechner’s law: if the intensity of the uniform

background in Weber’s experiment is I0 and the supra-threshold stimulus is

I1, then we can rewrite the Weber ratio I1−I0

I0
as I1/I0 − 1, i.e. the sensation of

intensity contrast is a function of I1/I0.

This reason motivates us to say that c(a, b) is a generalized Weber-Fechner
contrast function if c is an inverse contrast function that can be written as a

non-decreasing function of min(a, b)/max(a, b).

Even if Weber-Fechner’s law is not valid for all intensity levels, it remains

correct for a large dynamic range; thus, it seems natural to require c to be a

generalized Weber-Fechner contrast function.
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Explicit examples of energy functionals complying with our set of

assumptions on the contrast function are given by:

Cid
w (I) :=

1

4

¨
Ω2

w(x, y)
min(I(x), I(y))

max(I(x), I(y))
dxdy [5.5]

C log
w (I) :=

1

4

¨
Ω2

w(x, y) log

(
min(I(x), I(y))

max(I(x), I(y))

)
dxdy [5.6]

C−Mw (I) := −1

4

¨
Ω2

w(x, y)M
(

min(I(x), I(y))

max(I(x), I(y))

)
dxdy [5.7]

where

M
(

min(I(x), I(y))

max(I(x), I(y))

)
:=

1 − min(I(x),I(y))
max(I(x),I(y))

1 +
min(I(x),I(y))
max(I(x),I(y))

≡ |I(x) − I(y)|
I(x) + I(y)

, [5.8]

is the well-known Michelson’s definition of contrast [MIC 27].

The upper symbol in the above definitions of Cw simply specifies the

monotone function applied on the basic contrast variable t :=
min(I(x),I(y))
max(I(x),I(y))

, i.e.

identity id(t) = t, logarithm log t and minus the Michelson’s contrast function

−M(t) = − 1−t
1+t , respectively.

Note that the function t = min(I(x), I(y))/max(I(x), I(y)) is minimized

when the minimum takes the smallest possible value and the maximum takes

the largest possible one, which corresponds to a contrast stretching. Thus,

minimizing an increasing function of the variable t will produce a contrast

enhancement. To refer to any one of them, we use the notation Cϕw(I), where

ϕ = id, log,−M.

5.1.2. Entropic adjustment term

Let us now consider the term that should control the dispersion. As

suggested previously, we intend it as an adjustment term to the initial given

image I0 (not to depart too much from the original image) and to the average

illumination value, represented by the quantity μ. Thus, we define two

dispersion functions: d1(I(x), I0(x)), which measures the separation between
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I(x) and I0(x), and d2(I(x), μ), which measures the separation from the

value μ.

Both d1 and d2 are continuous functions d1,2 : R2 → R
+, such that

d1,2(a, a) = 0 for any a ∈ R and d1,2(a, b) > 0 if a � b.

We write dI0,μ(I(x)) = d1(I(x), I0(x))+d2(I(x), μ), and the dispersion energy

term as:

D(I) =

ˆ
Ω

dI0,μ(I(x)) dx. [5.9]

In principle, to measure the dispersion of I with respect to I0 or 1/2, any

distance function can be used. The simplest example would be a quadratic

distance:

Dq
α,β(I) :=

α

2

ˆ
Ω

(
I(x) − 1

2

)2
dx +

β

2

ˆ
Ω

(I(x) − I0(x))2 dx, α, β > 0. [5.10]

However, given that contrast terms are expressed as homogeneous functions

of degree 0, the variational derivatives are homogeneous functions of degree

-1. We search for functions that are able to maintain dimensional coherence

with the contrast term.

A good candidate for this is the entropic dispersion term [AMB 05], i.e.

Dα,β(I) := α

ˆ
Ω

(
μ log

μ

I(x)
− (μ − I(x))

)
dx

+ β

ˆ
Ω

(
I0(x) log

I0(x)

I(x)
− (I0(x) − I(x))

)
dx, [5.11]

where α, β > 0, which is based on the relative entropy distance [AMB 05]

between I and μ (the first term) and between I0 and I (the second term).

Note that if a > 0 and f (s) = a log a
s − (a − s), s ∈ (0, 1], then

d f
ds (s) = 1 − a

s and
d2 f
ds2 (s) = a

s2 > 0, ∀s. So, f (s) has a global minimum in

s = a. In particular, this holds when a = I0(x) or a = μ. Given the statistical

interpretation of entropy, we can say that minimizing Dα,β(I) amounts to
minimizing the disorder of intensity levels around μ and around the original
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data I0(x). Thus, Dα,β(I) accomplishes the required tasks of an adjustment

term.

The minimization of Eϕw,α,β,μ(I) = Cϕw(I) + Dα,β,μ corresponds to a trade-off

between two opponent mechanisms: on the one hand, we have entropic

control of dispersion around μ and around the original data, and on the other

hand, we have local contrast enhancement invariant with respect to global

illumination changes. These energies are called perceptually inspired or

perceptual functionals.

In the following section, we show the explicit minimization of perceptual

functionals.

5.2. Minimization of perceptual functionals

The existence of a minimum in the discrete framework can be guaranteed

for a quite general class of energy functionals. Let us define, for ρ > 0, Fρ :=

{I : Ω → [0, 1], I(x) ≥ ρ ∀x ∈ Ω}. We minimize the energy E in the class Fρ
to avoid singularities in the entropic dispersion term or when we use ϕ = log.

In [PAL 09], the following result has been proved.

Theorem 5.1.– Let c : (0, 1] × (0, 1] → R be a continuous function. Let

Eϕw,α,β,μ(I) := Dα,β,μ(I) + Cϕw(I), where Cϕw(I) is given in [5.2]. There is a

minimum of Eϕw,α,β,μ(I) in the class of functions Fρ. An analogous result holds

if we use the quadratic dispersion term Dq
α,β,μ(I).

Note that if the energy E is differentiable, its argmin I∗ satisfies

δEϕw,α,β,μ(I
∗) = 0. Before computing the Euler-Lagrange equations, we note

that the contrast terms Cϕw(I), ϕ = id, log,−M are not convex and the basic

function t := min(a,b)
max(a,b)

is not differentiable.

In fact, we may write min(a, b) = 1
2
(a + b − |a − b|) and max(a, b) = 1

2
(a +

b+ |a− b|), for any a, b ∈ R. The non-differentiability comes from the absolute

value A(z) = |z|, z ∈ R.

To use a gradient descent approach for the minimization, we must

regularize the basic variable t. We note that A′(z) = 1 if z > 0, A′(z) = −1 if
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z < 0 and A is not differentiable at z = 0. However, all the values s ∈ [−1, 1]

are subtangents of A(z) at z = 0, i.e. A(z) − A(0) ≥ s(z − 0) for any z ∈ R.

Thus, we may write A′(z) = sign(z), where:

sign(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if z > 0

[−1, 1] if z = 0

−1 if z < 0

. [5.12]

We define sign0(z) as in [5.12], but with the particular choice 0 when z = 0.

It is useful to introduce the following definition. Given ε > 0, we say that

Aε(z) is a “nice regularization” of A(z) if Aε(z) ≥ 0 is convex, differentiable

with continuous derivative, Aε(0) = 0, Aε(−z) = Aε(z), and

i) Aε(z) ≤ |z| for any z ∈ R and Aε(z) = |z| + Q1,ε(z), where Q1,ε(z) → 0 as

ε→ 0, uniformly in z ∈ [−1, 1];

ii) Let us denote sε(z) = A′ε(z). Then, |sε(z)| ≤ 1 for any z ∈ [−1, 1], sε(z)→
sign0(z) as ε → 0 for any z ∈ R, and Q2,ε(z) := Aε(z) − zsε(z) → 0 as ε → 0,

uniformly in z ∈ [−1, 1].

A nice regularization of A(z) actually exists:

– Example 1): Aε(z) =
√
ε2 + |z|2−ε; in this case, sε(z) = z√

ε2+|z|2
, Q1,ε(z) =

O(ε) and Q2,ε(z) := Aε(z) − zsε(z) = O(ε);

– Example 2): Aε(z) = z arctan(z/ε)
arctan(1/ε) − ε

2 arctan(1/ε) log(1+ z2

ε2
), in this case sε(z) =

arctan(z/ε)
arctan(1/ε) , Q1,ε(z) = O(ε log (1/ε)) and Q2,ε(z) = O(ε log (1/ε)), uniformly in

z ∈ [−1, 1].

O(F(ε)) is any expression that satisfies |O(F(ε))| ≤ CF(ε) for some

constant C > 0 and ε > 0 small enough. In both cases, sε(z) → sign0(z) as

ε→ 0 for any z ∈ R (see [PAL 09]).

Let us now assume that Aε(z) is a nice regularization of A(z). We set:

minε(a, b) =
1

2
(a+b−Aε(a−b)), maxε(a, b) =

1

2
(a+b+Aε(a−b)).[5.13]
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We define the regularized version of the perceptual functionals as follows:

C id
w,ε(I) :=

1

4

¨
Ω2

w(x, y)
minε(I(x), I(y))

maxε(I(x), I(y))
dxdy; [5.14]

C log
w,ε (I) :=

1

4

¨
Ω2

w(x, y) log

(
minε(I(x), I(y))

maxε(I(x), I(y))

)
dxdy; [5.15]

C −Mw,ε (I) := −1

4

¨
Ω2

w(x, y)
Aε(I(x) − I(y))

I(x) + I(y)
dxdy. [5.16]

In [PAL 09], the following result has been proved.

Theorem 5.2.– Assume that Aε(z) is a nice regularization of A(z).

i) The first variation of C id
w,ε(I) is:

δCid
w,ε(I) = −1

2

´
Ω

w(x, y)
I(y)

maxε(I(x),I(y))2 sε(I(x) − I(y)) dy + S ε
= −1

2

´
Ω

w(x, y)
I(y)

max(I(x),I(y))2 sε(I(x) − I(y)) dy + S ′ε,
[5.17]

where S ε, S ′ε = O(Q1,ε(I(x) − I(y)) + Q2,ε(I(x) − I(y))). Note that in the first

formula, we have max and in the second one, we have maxε;

ii) The first variation of C log
w,ε (I) is:

δClog
w,ε(I) = −1

2

ˆ
Ω

w(x, y)
1

I(x)
sε(I(x) − I(y)) dy + S ε, [5.18]

where S ε = O(Q1,ε(I(x) − I(y)) + Q2,ε(I(x) − I(y)));

iii) The first variation of C−Mw,ε (I) is:

δC−Mw,ε (I) = −
ˆ
Ω

w(x, y)
I(y)

(I(x) + I(y))2
sε(I(x) − I(y)) dy + S ε, [5.19]

where S ε = O(Q2,ε(I(x) − I(y))).

In all cases, Q1,ε(z),Q2,ε(z)→ 0 as ε→ 0, uniformly in z ∈ [−1, 1].

Thus, we know that S ε = O(ε) if Aε(z) is given by Example 1), and S ε =
O(ε log 1/ε) if Aε(z) is given by Example 2). These were the cases of interest

in [PAL 09] for the experiments.



78 Computational Color Science

Note that letting ε→ 0, we have that δCϕw,ε(I)→ δCϕw,0(I), where:

δC id
w,0(I) = −1

2

ˆ
Ω

w(x, y)
I(y)

max(I(x), I(y))2
sign0(I(x) − I(y)) dy

= −1

2

(ˆ
{y∈Ω : I(x)>I(y)}

w(x, y)
I(y)

I(x)2
−
ˆ
{y∈Ω : I(x)<I(y)}

w(x, y)
1

I(y)

)
;

δClog

w,0(I) = −1

2

ˆ
Ω

w(x, y)
1

I(x)
sign0(I(x) − I(y)) dy

= −1

2

(ˆ
{y∈Ω : I(x)>I(y)}

w(x, y)
1

I(x)
−
ˆ
{y∈Ω : I(x)<I(y)}

w(x, y)
1

I(x)

)
;

δC−Mw,0 (I) = −
ˆ

y∈Ω
w(x, y)

I(y)

(I(x) + I(y))2
sign0(I(x) − I(y)) dy

= −
ˆ
{y∈Ω : I(x)>I(y)}

w(x, y)
I(y)

(I(x) + I(y))2

+

ˆ
{y∈Ω : I(x)<I(y)}

w(x, y)
I(y)

(I(x) + I(y))2
.

Now, by direct computation, the derivative of the entropic dispersion term

is given by:

δDα,β(I) = α

(
1 − μ

I(x)

)
+ β

(
1 − I0(x)

I(x)

)
. [5.20]

This expression has a degree of homogeneity -1 with respect to I(x), the

same as the variation of the three contrast terms Cϕw(I).

Assume that α, β > 0 are fixed. If Eϕw,ε,α,β,μ(I) = Dα,β,μ(I) + Cϕw,ε(I),

ε = id, log, −M, then by linearity of the variational derivative, we have

δEϕw,ε,α,β,μ(I) = δDα,β,μ(I) + δCεw,ϕ(I).

The argmin of Eϕw,ε,α,β,μ(I) satisfies δEϕw,ε(I) = 0. To search for the argmin,

we use a semi-implicit discrete gradient descent strategy with respect to log I.

The continuous gradient descent equation is:

∂t log I = −δEϕw,ε,α,β,μ(I), [5.21]
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being t the evolution parameter. Since ∂t log I = 1
I ∂t I, we have

∂t I = −IδEϕw,ε,α,β,μ(I). [5.22]

Using the gradient descent in log I leads to [5.22], which is related to a

gradient descent approach that uses the relative entropy as a metric, instead of

the usual quadratic distance (see [AMB 05]).

Let us now discretize our scheme: choosing a finite evolution step Δt > 0

and setting Ik(x) = IkΔt(x), k = 0, 1, 2, . . ., with I0(x) being the original image,

thanks to [5.20], we can write the semi-implicit discretization of [5.22] as:

Ik+1(x) − Ik(x)

Δt
= α

(
1

2
− Ik+1(x)

)
+ β
(
I0(x) − Ik+1(x)

)
− Ik(x)δC ϕw,ε(I

k). [5.23]

Now, considering the explicit expressions of δC ϕw,ε(Ik), neglecting their

second terms containing S ε (see Proposition 5.2 i), ii), iii)) and performing

some easy algebraic manipulations, we obtain the equation:

Ik+1(x) =
Ik(x) + Δt

(
αμ + βI0(x) + 1

2
Rϕ
ε,Ik (x)

)
1 + Δt(α + β)

, [5.24]

where the function Rϕ
ε,Ik (x) assumes three different forms for ϕ = id, log, −M,

precisely:

R id
ε,Ik (x) := −2IkδCid

w,ε(I
k)

=

ˆ
Ω

w(x, y)
Ik(x)Ik(y)

maxε(Ik(x), Ik(y))2
sε(Ik(x) − Ik(y)) dy. [5.25]

R log

ε,Ik (x) := −2IkδClog
w,ε(I

k) =

ˆ
Ω

w(x, y) sε(Ik(x) − Ik(y)) dy. [5.26]

RM
ε,Ik (x) := −2IkδC−Mw,ε (Ik)

=

ˆ
Ω

w(x, y)
2Ik(x)Ik(y)

(Ik(x) + Ik(y))2
sε(Ik(x) − Ik(y)) dy. [5.27]
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The discrete equations corresponding to the limit ε→ 0 are:

R id
0,Ik (x) =

∑
{y∈Ω : Ik(x)>Ik(y)}

w(x, y)
Ik(y)

Ik(x)

−
∑

{y∈Ω : Ik(x)<Ik(y)}
w(x, y)

Ik(x)

Ik(y)
; [5.28]

R log

0,Ik (x) =
∑
y∈Ω

w(x, y) sign0(Ik(x) − Ik(y)); [5.29]

R−M
0,Ik (x) =

∑
Ω

w(x, y)
2Ik(x)Ik(y)

(Ik(x) + Ik(y))2
sign0(Ik(x) − Ik(y)). [5.30]

5.2.1. Stability of the iterative semi-implicit gradient descent
scheme

We assume here that I0 : Ω → [ρ, 1], where ρ > 0 is a minimum value for

the initial image. We set ρ = 1/255, which means that we assume that I0 does

not take the value 0. In [PAL 09], the following statement about the stability

of the argmin computation for the perceptual functionals has been proved.

Theorem 5.3.– Assume that α ≥ 1
1−2ρ > 0. Then, ∀k ≥ 1:

– −1 ≤ Rϕ
ε,Ik (x) ≤ 1 ∀x ∈ Ω;

– ρ ≤ Ik(x) ≤ 1 ∀x ∈ Ω;

– ∀p ∈ [1,∞]:

‖Ik+1 − Ik‖p ≤
1 + Δt

(
1
ρ + mε

)
1 + Δt(α + β)

‖Ik − Ik−1‖p,

where mε := maxz∈[−1,1] |s′ε(z)|.

As a result, if α + β > 1
ρ + mε, then the iterative scheme given in [5.24] is

convergent to the unique function I∗ that satisfies

α(I∗ − μ) + β(I∗ − I0) − 1

2
Rϕε,I∗ = 0. [5.31]
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As usual, the ‖ · ‖p norm of a vector v = (vi)
n
i=1
∈ Rn, n ≥ 1, is defined by

‖v‖p :=
(∑n

i=1 |vi|p
)1/p

if p ∈ [1,∞) and ‖v‖∞ := maxi=1,...,n|vi| if p = ∞.

Note that [5.31] is essentially (and not exactly, due to our regularization of

the basic contrast variable) the Euler-Lagrange equation corresponding to the

energy Eϕw,ε,α,β,μ.

Note also that α+ β > 1
ρ +mε is not a reasonable condition in practice. The

reason is that 1/ρ = 255 and mε ≈ 1/ε for the particular nice regularization of

A(z) given in Examples 1) and 2) in section 5.2. Then, the values of α and/or β

are too big and produce a strong attachment to the initial data and/or the value
1
2
; in this case, we do not have enough enhancement power. The values of α

and β used in practice are much smaller, α = 255/253 and β = 1, but they are

enough to guarantee empirical stability and convergence.

5.2.2. A general strategy for the reduction of computational
complexity

To better appreciate the simplicity of the idea behind the computational

complexity reduction, it is worthwhile omitting the superscript k to avoid a

cumbersome notation.

The computational complexity relative to the general form of semi-implicit

gradient descent equation [5.24] is O(N), with N being the total number of

image pixels, for every x ∈ Ω, which means that the computational complexity

for the whole images is O(N2). Of course, this large cost is due to the term

RϕI (x).

In fact, RϕI (x) have the same analytical structure for every choice of ϕ, i.e.

Rϕε,I(x) =

ˆ
Ω

w(x, y) rϕε (I(x), I(y)) dy, [5.32]

where r ϕε (I(x), I(y)) is specified in equations [5.25], [5.26] and [5.27].

To reduce the complexity and obtain an algorithm that can be used in a

reasonable time, at least three strategies can be followed.
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The first strategy consists in localizing the computation in a circular

window centered in the pixel x under analysis and discarding all the pixels

that lie outside this window, using the argument that the kernel w takes values

very close to 0 when the distance between pixel pairs becomes large enough

(of course, this strategy implies a renormalization of w in the circular

sub-image). The second strategy consists in replacing the kernel by a sparse

sampling structure, for instance the local random spray technique proposed in

[PRO 07].

The third strategy is the one that has been pursued in [PAL 09], which is

based on polynomial approximations of the function r ϕε (I(x), I(y)), as we have

first proposed in [BER 07] and then further refined in [PAL 09].

Let p be a generic polynomial of order n of the variables I(x), I(y) and

define

r̃ϕn,ε(I(x), I(y)) = argminp ‖p − rϕε ‖2, [5.33]

i.e. r̃n is the polynomial of order n with minimal quadratic distance with

respect to the function ϕ.

It is convenient to write r̃ϕn,ε as follows: r̃ϕn,ε(I(x), I(y)) =
∑n

j=0

f ε,ϕj (I(x))I(y) j, where f ε,ϕj (I(x)) =
∑n− j

k=0
pε,ϕk, j I(x)k.

The numerical coefficients pε,ϕk, j depend on the approximation order n, but

we will not make explicit this dependence for the sake of a more readable

mathematical notation.

Introducing this expression of r̃ϕn,ε in [5.32] instead of r ϕε and noting that

f ε,ϕj does not depend on y, we obtain:

R̃ϕn,ε,ϕ(x) =

n∑
j=0

f ε,ϕj (I(x))

ˆ
Ω

w(‖x − y‖)I(y) jdy, [5.34]

but
´
Ω

w(‖x − y‖)I(y) jdy = (w ∗ I j)(x), i.e. the convolution between the kernel

w and the j-th power of the image I, hence

R̃ϕn,ε,ϕ(x) =

n∑
j=0

n− j∑
k=0

pε,ϕk, j I(x)k(w ∗ I j)(x). [5.35]
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The n convolutions w ∗ I j can be pre-computed through the FFT (Fast

Fourier Transform), which has computational complexity O(N log N), thus

drastically decreasing the computational time.

The degree n of the polynomial is a parameter that controls the precision of

the polynomial approximation. In our tests, we have found that n = 9 is a good

trade-off between time cost and approximation precision.

Online demonstrations for these techniques can be found in [GET 12] and

[FER 15]. A recent improvement of this approximation technique, which

makes use of the so-called Bernstein polynomials, has been proposed in

[PIE 16].

5.2.3. Results

In this section, we present some results of the algorithms derived by the

model described above with the three different choices of ϕ =id, log, −M. For

a more complete analysis of the results with respect to variations of parameters,

see [PAL 09].

The results presented here have been obtained by using the

implementation [FER 15], publicly available on the website IPOL, with the

following parameters: α = β = 1.2, ε = 1/20, w: Gaussian kernel with

standard deviation equal to 1/5 of the length of the image diagonal.

Let us start by showing in Figure 5.1 how a low-key image is handled by

the variational algorithm versus the von Kries algorithm (normalization over

the maximum intensity in the three chromatic channels separately) and the

automatic color enhancement performed by Photoshop. It can be seen that the

perceptual-inspired color enhancement avoids the color shifting of the von

Kries method, which shows many more details than the automatic Photoshop

algorithm. Also, recall from Figure 4.1 that histogram equalization has a

dramatic effect on this image, which is absent in our perceptually inspired

modification.

The intra-variations of the variational algorithm with respect to different

choices of ϕ are perceptually small, the major difference being that, in general,

ϕ = log corresponds to the brightest image, but with less saturated colors with

respect to the other two choices.
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Figure 5.1. First row from left to right: original image and results of the global von
Kries algorithms and the automatic color correction performed by Photoshop. Second
row from left to right: result of the variational algorithms with ϕ =id,log,−M. For a color
version of the figure, see www.iste.co.uk/provenzi/color.zip

In Figure 5.2, we can see the effect of the variational algorithm with ϕ =id

on an image with haze and the difference with respect to histogram

equalization.

Finally, in Figure 5.3, we can see the behavior of the perceptually inspired

variational algorithms with respect to the images with color cast and the

comparison with the von Kries and histogram equalization methods. Note that

the von Kries algorithm is not able to completely remove the color cast and

histogram equalization creates a dramatic color shift.
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It is important to underline that the main aim of the research presented in

this chapter is not to build the most efficient color correction algorithm, but to

show that how by carefully modifying the histogram equalization functional

guided by the HVS features, it is possible to strongly limit the typical

problems related to a large color shift and excessive amplification of contrast

even working in the three separated chromatic channels. The techniques

developed here may be used in applications where a parallel elaboration is

needed, and they can also be extended to more than three wavebands, as in

hyperspectral imaging.

Recent and extremely well-performing techniques to control color shift and

preserve the original hue have been proposed in [NIK 14] and [PIE 16].

5.3. Embedding existing perceptually inspired color correction
models in the variational framework

One of the main theoretical achievements of [PAL 09] is the proof that the

perceptual variational framework can embed and link together in a clear way

two of the most used perceptually inspired color correction algorithms: the

famous Retinex of Land and McCann [LAN 71] and ACE, automatic color

equalization [RIZ 03].

Figure 5.2. Row-wise from left to right: original image and results of the
variational algorithms with ϕ =id, the global von Kries algorithms and

histogram equalization. For a color version of the figure, see
www.iste.co.uk/provenzi/color.zip
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Figure 5.3. Row-wise from left to right: original image and results of the
variational algorithms with ϕ =id, the global von Kries algorithms and

histogram equalization. For a color version of the figure, see
www.iste.co.uk/provenzi/color.zip

The embedding of ACE is simple to discuss: if we choose ϕ = log, μ = 1/2,

α = 1 and β = 0 in equation [5.24], then, as proved in [BER 07], we obtain, as

a particular instance, the ACE algorithm (see equations [3.37] and [3.38)].

The embedding of Retinex has proved to be more difficult, in fact,

equations [3.3] and [3.15] seem very distant from the variational framework

just discussed. However, in the paper [BER 09], it has been proved that a

continuous (anti-) symmetrized version of Retinex can be considered as a

particular instance of the variational framework described before. In order to

understand how this is possible, let us come back to the lightness formula

[3.15], i.e.

L0,
γ(x) =
1

N

N∑
k=1

I(x)

I(yHk )
. [5.36]

As already anticipated in Chapter 3, Land and McCann proposed a further

Retinex mechanism, the scaling, implemented via a strictly increasing function
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f : (0, 1] → (0, 1] such that f (r) ≥ r for all r ∈ (0, 1] applied to the ratio

r = I(x)
I(yHk )

, so that the Retinex lightness formula becomes:

L0,
γ, f (x) =
1

N

N∑
k=1

f
(

I(x)

I(yHk )

)
. [5.37]

The reset mechanism of Retinex and the scaling operation can be merged:

in fact, we can extend f to (0,+∞) preserving its continuity by defining:

f̂ (r) =

⎧⎪⎪⎨⎪⎪⎩
f (r) if r ∈ (0, 1]

1 if r ∈ [1,+∞).

It is clear that applying this new scaling function f̂ to the ratios I(x)/I(y), with

x fixed and y that varies in Ω, jointly implements the scaling and the reset

mechanism.

Now we have all the elements to introduce the continuous version of the

Retinex algorithm presented in [BER 09] under the name “Kernel-Based

Retinex” (KBR). Given x ∈ Ω, let Yw,x be the random variable modeling the

selection of a pixel in the neighborhood of x according to the density w(x, y).

The output LKBR
w (x) of the KBR algorithm at the pixel x is defined as the

conditional expectation of f̂
(

I(x)
I(Yw,x)

)
with respect to the distribution w of

pixels around x, i.e.

LKBRw
w (x) = EYw,x

[
f̂
(

I(x)

I(Yw,x)

)]
. [5.38]

This formula is used independently for each color channel and can be

written more explicitly as:

LKBR
w (x) =

∑
{y∈Ω:I(y)≥I(x)}

w(x, y) f
(

I(x)

I(y)

)
+

∑
{y∈Ω:I(y)<I(x)}

w(x, y). [5.39]

All the basic properties of Retinex recalled in Chapter 3 are faithfully

implemented in [5.39]: KBR is founded on the propagation of a two-pixel

ratio comparison between the fixed target x and the generic pixel y that runs

across the image; these comparisons are then subjected to the reset and
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scaling performed by f̂ and, finally, locally averaged with weight w, in order

to produce the value of LKBR
w (x).

To study the action of KBR of pixel intensities, it is useful to rewrite [5.39]

introducing the functions:

sign+(ξ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ξ > 0,
1
2

if ξ = 0,

0 if ξ < 0,

sign−(ξ) = 1 − sign+(ξ),

so that equation [5.39] can be rewritten as:

LKBR
w (x) =

∑
y∈Ω

w(x, y) f
(

I(x)

I(y)

)
sign+(I(y) − I(x))

+
∑
y∈Ω

w(x, y) sign−(I(y) − I(x)). [5.40]

Thanks to equation [5.40], we can verify that KBR always increases

brightness as the original Retinex implementation. In fact, since f (r) ≥ r for

all r ∈ (0, 1], then f
(

I(x)
I(y)

)
≥ I(x)

I(y)
≥ I(x), so:

LKBR
w (x) ≥

∑
y∈Ω

w(x, y) I(x) sign+(I(y) − I(x))

+
∑
y∈Ω

w(x, y) sign−(I(y) − I(x)) [5.41]

moreover, with I(x) ≤ 1, we can write:

LKBR
w (x) ≥

∑
y∈Ω

w(x, y) I(x) sign+(I(y) − I(x))

+
∑
y∈Ω

w(x, y) I(x) sign−(I(y) − I(x))

= I(x)
∑
y∈Ω

w(x, y)
[
sign+(I(y) − I(x)) + sign−(I(y) − I(x))

]

= I(x)
∑
y∈Ω

w(x, y) = I(x), [5.42]
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having used the fact that the kernel is normalized. As in the original

formulation, this property implies that overexposed pictures could not be

enhanced with Retinex unless we use a post-processing stage and that further

iterations of Retinex keep on increasing the intensity until a white image is

reached.

In order to obtain a two-sided contrast modification able to enhance both

overexposed and underexposed images, it is interesting to analyze what

happens if we anti-symmetrize the analytic expression of equation [5.40].

As proved in [BER 09], if we anti-symmetrize the function

f
(

I(x)
I(y)

)
sign+(I(y) − I(x)) on the region {x ∈ Ω : I(y) ≤ I(x)}, then we obtain

the equations of the variational model described by the energy Eid
w,0,1,0,μ

presented in section 5.1. Thus, this last model can be considered as an

anti-symmetric regularized version of the continuous version of Retinex

represented by KBR.

5.3.1. Alternative variational and EDP formalizations of Retinex-
like algorithms

Besides the variational framework described in the previous sections, in the

literature there exist alternative variational models of Retinex-like algorithms

and also formalizations based on partial differential equations (PDE). The aim

of the discussion contained in this section is not to give an exhaustive list,

rather to discuss the main features of the most famous alternative mathematical

formalizations of Retinex-like algorithms present in the literature.

The first authors to embed a Retinex-like algorithm in a variational

framework were Kimmel and colleagues in [KIM 03]. They did not consider

the original Land’s ratio-threshold-reset Retinex, but Horn’s interpretation. In

fact, they started from the logarithmic equation log Ic(x) = log S c(x) +

log Lc(x), c ∈ {R,G, B} and tried to solve it with respect to log Lc(x) by

imposing the hypothesis of smoothness on the illuminant part of the

logarithmic image. Once we have obtained an estimation of the illumination,

they could infer the reflectance information S c(x). This one then undergoes

suitable transformations and gives an illuminant-invariant version of the

original image.
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It is important to underline a fundamental difference between this

variational technique and the one presented in the previous sections: here
contrast enhancement of the original image log Ic(x) is obtained by
decreasing the contrast of the illuminant image log Lc(x). In fact, log Ic(x) is

measured by the camera and so it is a fixed data, log Lc(x) is estimated by

using a smoothness prior, thus the estimated reflectance

log S c(x) = log Ic(x) − log Lc(x), or S c(x) = Ic(x)/Lc(x) is forced to have a

stronger contrast than the original image data. Instead, the variational

principles previously discussed act directly on the contrast of the original
image, without taking into account the separation between reflectance and

illuminant and related approximations and priors.

Let us now turn to the details of the functional proposed in [KIM 03]. By

avoiding the subscript c and by using the notations of this book, the energy of

Kimmel and colleagues can be expressed as follows:

Eα,β(log L) =

ˆ
Ω

[|∇ log L(x)|2 + α(log L(x) − log I(x))2

+ β|∇(log L(x) − log I(x))|2]dx [5.43]

with the constraints log L(x) ≥ log I(x), because the reflectance S (x) is always

between 0 and 1, and the boundary condition 〈∇ log L, 
n〉 = 0 on ∂Ω, i.e. log L
orthogonal to the normal 
n to the boundary ∂Ω of Ω.

The first term of the functional forces spatial smoothness on the

illumination L. The authors chose that particular analytical form because the

Euler-Lagrange equation associated with
´
Ω
|∇ log L(x)|2 dx is the Laplace

PDE Δ log L = 0, whose steepest descent solution is equivalent to a Gaussian

smoothing. The second penalty term forces a proximity between log L and

log I, so that their difference log S , the logarithmic reflectance, tends to 0, i.e.

the reflectance R tends to 1, or white. The authors declare that the principal

objective of this term is to regularize the problem, so that it is better

conditioned in view of a numerical solution and they set the constant α to a

very small value not to force too much log L towards log I. The third term

represents a Bayesian penalty, which forces reflectance gradients to be

smooth. The authors declared to have introduced it to force R to be visually

pleasing, without abrupt variations. The choice of a quadratic expression is

made to maintain the model simple: defined in this way, the minimization

problem has a Quadratic Programming (QP) form that the authors solve via a
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Projected Normalized Steepest Descent (PNSD) algorithm, accelerated by a

multi-resolution technique.

Morel, Petro and Sbert [MOR 10] analyzed Land’s original Retinex model

[LAN 64] without the reset mechanism. They showed that if the Retinex paths

are interpreted as symmetric random walks, then Retinex is equivalent to the

following Neumann problem for a Poisson equation:

⎧⎪⎪⎨⎪⎪⎩
−ΔL(x) = F(x) x ∈ Ω
∂L(x)
∂
n = 0 x ∈ ∂Ω,

where F is a suitable scalar field, see [MOR 10] in page 2830. This turns out

to be very similar to Horn’s and Blake’s equations on one side, and to the

so-called “Poisson editing” equations proposed by Perez et al. in [PÉR 03].

[ZOS 15] further extended the link among different versions of Retinex by

considering sparsity constraints.

Let us now consider the algorithm STRESS, introduced in section 3.7. We

recall that the basic information needed by STRESS is given by the two

envelope functions Emin and Emax which, in the original formulation, are

computed through the same random spray technique of RSR [PRO 07]. To

avoid the typical noise problems related to this technique, in [SIM 12], the

authors proposed to compute the envelope functions via the minimization of a

functional based on the total variation, instead of using the random spray

technique. For this reason, the corresponding algorithm is called STRETV

and corresponds to the minimization of the following functional for E (in this

case E denotes the envelope and not the energy functional):

ˆ
Ω

[|∇E(x)| + λ
2
|E(x) − I(x)|2]dx [5.44]

subjected to E(x) ≥ I(x) to compute Emax and to E(x) ≤ I(x) for Emin.

The minimization of the first (total variation) term assures the spatial

smoothness of the envelope functions, the second term is a fidelity term used

not to differ too much from the original image values. The authors declare

that the coefficient λ must be� 1 for good results. The authors do not specify

if they consider a spatial kernel to localize their computation or not.
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The last variational formalization that we discuss here is that presented in

[LEC 16] relative to the termite Retinex. Here, an energy functional is taken

into account to determine the geometry of the paths used by Retinex.

Considering a fixed pixel x ∈ Ω, the authors search for the path

γ : [0, 1]→ Ω, γ(0) = x, that minimizes the energy functional defined by:

E(γ) =

ˆ 1

0

[
1

1 + (D2 − ‖x − γ(s)‖2)‖∇I(γ(s))‖2 + θ(γ(s))]ds, [5.45]

where D is the diagonal of Ω and 1 is introduced to avoid singularities if the

denominator is 0. The paths that minimize E(γ) are those which balance the

fact to remain as close to x as possible and, simultaneously, to explore image

areas with high values of the gradient. Both features maximize the denominator

of the first term. The interpretation is that if x lies in an area with a high density

of edges, then the path γ will not go too far from x, instead, if x lies in a

rather homogeneous area, γ will be forced to explore the image points far away

from x to find the important edge information. θ(γ(s)), the so-called “poison

term”, is set to zero at the beginning, and it increases each time a path has been

traveled, to prevent from exploring the same image area all the time.

Once a set of N path has been selected, the intensity I(x) of the pixel x in

each separate chromatic channel is modified with the Retinex formula [3.15].

5.4. Variational interpretation of the Rudd-Zemach model of
achromatic induction

In this section, we will discuss an alternative version of the Rudd-Zemach

model presented in section 3.4 which leads to analogous predictions and that

has the advantage of being understandable in terms of variational principles.

The choice made by Rudd and Zemach to pass from equation [3.31] to

equation [3.32] during the description of their WLLR model is questionable.

The reason is that the weights of spatially local induction w1,w2, . . . should

decrease with the distance between two point of the visual scene; however, in

the decomposition of the chain of ratios in equation [3.30], the points

corresponding to the indexes k − 1 and k and those corresponding to k and

k + 1 have exactly the same distance. Instead, if we keep the target point i
fixed and consider points at an increasing distance from it, then it is perfectly

correct to consider weights of decreasing strength.
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These considerations have been thoroughly analyzed in previous works on

the interpretation of Retinex [BER 09, PRO 05, PRO 07, PRO 08]. Starting

from this more coherent Retinex interpretation, we propose the following

alternative definition of logarithmic brightness of i, denoted as logΨ(i):

log Ψ(i) ≡
j−1∑
k=i

wk−i+1 log
Li

Lk+1
+ μ, [5.46]

where, as for log Ψ(i), μ ∈ R is an arbitrary constant. If we compare the

formulae of log Φ(i) and log Ψ(i), we see that in the latter the numerator of

each ratio is Li, this means that the contribution to Ψ(i) is given by the

logarithmic ratios between L(i) and the luminance of all the other patches in

the visual field, weighted by the distance between i and the patches.

It is easy to see that this model also predicts a linear relationship between

log LMatch
DM

and log LRT with slopes in (−1, 0) for the visual match in Wallach’s

experiment. In fact, developing equation [5.46] for both sides of the visual field

and matching the brightness, we obtain:

w1 log
LMatch

DM

LRM

+ w2 log
LMatch

DM

LB
+ μ = w1 log

LDT

LRT

+ w2 log
LDT

LB
+ μ,[5.47]

solving this equation w.r.t. log LMatch
DM

we have:

log LMatch
DM

= log LDT +
w1

w1 + w2
log LRM −

w1

w1 + w2
log LRT . [5.48]

We stress that the absolute value of the slope w1/(w1 + w2) = β1 is

naturally bounded between -1 and 0, so it also accounts for Rudd-Zemach’s

observations, even without the hypothesis that w2 < w1. The weight w2 can be

expressed in terms of the measured value of β1 as follows:

w2 =
1 − β1

β1
w1. [5.49]

If we now add two other rings in both the match and target bipartite field,

and again use the outermost ring in the target field as an independent variable,

then, by direct computation, it can be proved that expression of the induction



94 Computational Color Science

weight w3 corresponding to this new, and more distant, ring predicted by our

model is the following:

w3 =
1 − β2

β2
w2 − w1, [5.50]

where β2 ∈ (0, 1) is the absolute value of the measured slope of the linear

relationship in the logarithmic domain between the LMatch
DM

and the logarithmic

luminance of the new outermost target ring. By iterating the process, we find

the following formula for the n-th induction weight (corresponding to the

configuration given by one disk and n − 1 rings):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w2 =

1 − β1

β1
w1

wn =
1 − βn−1

βn−1
wn−1 −

n−2∑
k=1

wk n ≥ 3,
[5.51]

where βn−1 ∈ (0, 1) is the absolute value of the measured slope of the linear

relationship in the logarithmic domain between the LMatch
DM

and the logarithmic

luminance of the outermost (n − 1)-th target ring.

It is natural to search for a generalization of Rudd-Zemach’s model that is

valid for arbitrary spatial configurations and not just for the special one

discussed in their experiments. To do that, we will distinguish between a

discrete and a continuous context. In a discrete context, we will denote the

discrete visual field with the lattice Ω ⊂ Z2, the coordinates of two arbitrary

points in Ω as x = (x1, x2), y = (y1, y2) and the corresponding luminance

values as L(x) and L(y), respectively. The equivalent of the logarithmic

brightness of x defined in equation [5.46] in this case is:

log Ψ(x) =
∑
y∈Ω

w(‖x − y‖) log
L(x)

L(y)
+ μ Discrete context [5.52]

where w(‖x − y‖) is, as usual, a weight function which decreases with the

distance ‖x − y‖ and μ is an arbitrary constant. In a continuous context, Ω is a

subset of R2, and of course the discrete sum must be replaced by an integral:

log Ψ(x) =

ˆ
Ω

w(‖x − y‖) log
L(x)

L(y)
dy + μ Continuous context [5.53]
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The advantage of this formulation, over that of Rudd and Zemach, is that it

is possible to provide a variational interpretation of formulae [5.52] and [5.53],

as the following proposition states [GRO 16].

Proposition 5.1–. The achromatic logarithmic brightness Ψ(x) of an arbitrary

point x ∈ Ω is the argmin of the functional:

Ew(log L) =
1

2

∑
x∈Ω

(
log

L(x)

μ

)2
− 1

4

∑
x∈Ω

∑
y∈Ω

w(‖x − y‖)
(
log

L(x)

L(y)

)2
, [5.54]

in the discrete scenario, and of the functional:

Ew(log L) =
1

2

ˆ
Ω

(
log

L(x)

μ

)2
dx− 1

4

¨
Ω2

w(‖x− y‖)
(
log

L(x)

L(y)

)2
dxdy.[5.55]

in the continuous scenario.

The consequence of this proposition is that the logarithmic brightness

values Ψ(x) can be interpreted as being the optimal balance between two
opposite mechanisms: one that tends to adjust all stimuli to a constant,

uniform value, and the other that tends to do the opposite, i.e. to amplify as

much as possible the differences among all stimuli in a local, or

context-driven, way. This shows how the variational generalization of

Rudd-Zemach’s model can be linked to the framework described before in

this chapter.

5.5. Perceptual enhancement in the wavelet domain

Let us now present the wavelet version of the variational model presented

in section 5.1.

Let us start by very briefly recalling the basic information about wavelet

theory in one dimension, then we will extend the discussion to 2D wavelets,

the main reference for all the results quoted hereafter is [MAL 99]. A 1D

(mother) wavelet ψ ∈ L2(R) is a unit norm and null-mean function. Of course

this is possible only if ψ oscillates, but, unlike infinite waves, wavelets can

have compact support. The ψ-wavelet transform Wψ f of f ∈ L2(R) in the

point ξ at the scale s is given by the inner product
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Wψ f (ξ, s) =
´
R

f (x) 1√
sψ
(

x−ξ
s

)
dx. Wψ f gives a “measure of similarity”

between f and ψ around the point ξ at the scale s. So, if a signal is constant or

do not vary “too much” in the support of a wavelet, then its wavelet transform

will be zero or very small, this is how wavelets provide a multi-scale

information about the local contrast of a signal.

The set {ψ j,k}( j,k)∈Z2 ⊂ L2(R) given by ψ j,k(x) ≡ 1√
2 j
ψ
(

x−2 jk
2 j

)
is a complete

orthonormal system of L2(R). Moreover, L2(R) can be recovered by the

closure of the union of a sequence of nested closed subspaces V j ⊂ V j−1 with

suitable properties (see [MAL 99] for more details). The orthogonal

projections of f ∈ L2(R) onto V j and V j−1 give the approximation of f at the

scales 2 j and 2 j−1, respectively. The 2 j-approximation is coarser and the

missing details with respect to the finer 2 j−1-approximation are contained in

the orthogonal complement W j of V j in V j−1: V j−1 = V j ⊕W j. W j is called the

j-th detail space and it can be proved that the orthogonal projection of f on

W j is given by PW j f =
∑

k∈Z〈 f , ψ j,k〉ψ j,k ≡ ∑k∈Z d j,kψ j,k. The coefficients d j,k

are called detail coefficients of f at the scale 2 j. Fine-scales detail coefficients

at fine scale are sparse, in fact, they are non-null only when the support of ψ j,k

intersects a high contrast zone, i.e. around sharp edges.

Finally, let us recall that every wavelet ψ is related to a mirror filter h and

to a function φ, called scale function, through the following equation that

involves their Fourier transforms: ψ̂(2ω) = 1√
2
e−iωĥ∗ (ω + π) φ̂ (ω), see

[STR 96] for a complete and detailed description of how to generate wavelets

using the filter design methodology. φ appears in the orthogonal projection of

a signal f onto the approximation space V j, in fact it can be proved that

PV j f =
∑

k∈Z〈 f , φ j,k〉φ j,k ≡ ∑k∈Z a j,kφ j,k, where φ j,k(x) = 1√
2 j
φ
(

x−2 jk
2 j

)
and a j,k

are called approximation coefficients at the scale 2 j. It follows that

PV j−1
f = PV j f + PW j f =

∑
k∈Z a j,kφ j,k +

∑
k∈Z d j,kψ j,k.

In practical applications, we are interested in a multi-resolution analysis

between two fixed scales 2L and 2J , L, J ∈ Z, L < J. In this case

VJ−1 = VJ ⊕ WJ , VJ−2 = VJ−1 ⊕ WJ−1 = VJ ⊕ WJ ⊕ WJ−1 and so on, thus

VL = VJ ⊕
⊕

2J≥2 j≥2L+1 W j. For this reason, following [MAL 99], we say that

a discrete orthogonal wavelet multi-resolution representation of a

one-dimensional signal f between two fixed scales 2L and 2J , L, J ∈ Z, L < J,

is given by the collection of detail coefficients {d j,k} at all scales, completed

by the approximation coefficients at the coarser scale, i.e. {aJ,k}.
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When we deal with 2D signals, as images, we have to consider a

multi-resolution analysis of L2(R2). Multidimensional wavelet bases can be

generated with tensor products of separable basis functions defined along

each dimension. In this case, an orthogonal wavelet multi-resolution

representation between two scales 2L and 2J , L, J ∈ Z, L < J, is given by

three sets of detail coefficients {dH
j,k, d

V
j,k, d

D
j,k} at all scales, which correspond

to the horizontal, vertical and diagonal detail coefficients, respectively,

completed by the approximation coefficients at the coarser scale, i.e. {aJ,k}.
As seen in this chapter, the perceptual color correction proposed in

[PAL 09] is performed through a local contrast enhancement balanced by the

action of an adjustment term around the average value plus a conservative

term that avoids over-enhancement. Wavelet detail coefficients are related to

local contrast, let us see how this fact has been used in [PRO 14] to provide a

wavelet-based framework for perceptually inspired color correction.

The general scheme of the algorithm is the following:

1) Consider the coarsest approximation coefficients {aJ,k, k ∈ Ω}, and

modify them to implement adaptation to the average gray level in the wavelet

domain (according to equation [5.56] found in section 5.5.1);

2) Fix these new approximation coefficients and use them along with

{d�J,k, k ∈ Ω}, � = H,V,D, to modify the horizontal, vertical and diagonal

detail coefficients according to the equations of theorem 5.4 found in section

5.5.2. This will implement local contrast enhancement in the wavelet domain

at the scale 2J;

3) Pass to the scale 2J−1 and compute the approximation coefficients by

summing the approximation and detail coefficients just computed at the scale

2J;

4) Fix these approximation coefficients and we repeat step 2 at the scale

2J−1;

5) Iterate this scheme until reaching the finest scale. As an optional step,

we can operate a linearly scaling of the minimum value towards 0 and of the

maximum towards 1.

The equations quoted in the scheme above will be presented and analyzed

in full detail in sections 5.5.1 and 5.5.2, but before doing that it is convenient

to make some assumptions that will greatly simplify the exposition.
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First of all, since changing the sign of a wavelet coefficient can result in

drastic modifications of an image, we will modify only the absolute value of

the wavelet coefficients, restoring the original sign at the end of the

computation.

Moreover, in every scale 2 j, only coefficients with magnitude bigger than

a fixed threshold T j > 0 will be considered, the others will be left unchanged

to avoid intensification of noise. Thus we will deal with positive, bounded and
finite sequences of wavelet coefficient magnitudes.

To simplify the notation, we will avoid the superscript � in the detail

coefficients, by making the implicit assumption that the operations are

repeated on the horizontal (H), vertical (V) and diagonal (D) detail

coefficients.

The variability of the scale coefficient 2 j will be confined within the scales

2L and 2J , L, J ∈ Z, L < J, with 2L being the finest and 2J the coarsest.

Typically J − L ranges between 2 and 10, depending on the image dimension.

Finally, with the notation k ∈ Ω, we will implicitly assume a column-wise

ordering of Ω, the spatial support of the image, so that Ω can be seen as a finite

subset of Z.

5.5.1. Adjustment to the average value in the wavelet domain

Let us first consider the effect of adaptation to the average level. If we were

dealing with Fourier transforms, the average image intensity value μ would be

represented by the zero-order Fourier coefficient, in the wavelet domain there

is no such direct correspondence. However, since the coefficients {a j,k, k ∈ Ω}
represent the image approximation at the scale 2 j, a natural analogue of the

average value μ in the wavelet framework at the scale 2 j is represented by

a j ≡ 1
|Ω|
∑

k∈Ω a j,k, i.e. the average approximation coefficient.

We also stress that we only need to modify the approximation coefficients

of the coarsest scale, since this modification will be propagated to finer scales.

Thus, we implement the adaptation to the average value at the coarser scale

balanced by the adjustment to the original values through this convex linear

combination:

aJ,k ≡ αaJ + (1 − α)a0
J,k, [5.56]
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where {a0
J,k, k ∈ Ω} is the original sequence of approximation coefficients at

the scale 2J and α ∈ [0, 1] is a suitable weight coefficient. The bigger the α,

the stronger the adjustment to the average value aJ and vice versa.

5.5.2. Local contrast enhancement in the wavelet domain

Let us now consider local contrast enhancement. We have remarked that

the two most important features of the contrast functional Eϕw,α,β,μ(I) described

in section 5.1 are the fact that it enhances contrast locally and in an illuminant-
independent way. In order to maintain these characteristics also in the wavelet

domain, in [PRO 14] the following local contrast enhancement functional at

the scale 2 j has been proposed:

Cw j,ϕ,{a j,k}({d j,k}) ≡
∑
k∈Ω

w j ϕ

(
a j,k

d j,k

)
, 2J ≥ 2 j ≥ 2L+1, [5.57]

where w j are positive coefficients that permit to differentiate the contrast

enhancement action depending on the scale 2 j and ϕ : [0,∞) → [0,∞) is a

differentiable monotonically increasing function such that ϕ(r) → +∞ as

r → ∞.

We stress that the approximation coefficients are passed to the functional C
as fixed parameters in every scale, from the coarsest to the finest. In particular,

the approximation coefficients used in the coarsest scale are those defined in

equation [5.56].

Cw j,ϕ,{a j,k} is minimized when the ratio between the approximation and

detail coefficients decreases, but since the approximation coefficients are fixed

at each scale, the minimization of Cw j,ϕ,{a j,k} corresponds to an intensification

of the coefficients d j,k. This implies a local and multi-scale contrast

enhancement of the image. The locality depends both on the mother wavelet

chosen (because different mother wavelets have different shape) and on the

scale 2 j at which one operates: the finer the scale, the more local is contrast

enhancement and vice versa.

Furthermore, the invariance with respect to global illumination changes, in

the sense of the von Kries model [VON 02], is guaranteed by the fact that also
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the functional Cw j,ϕ,{a j,k} is homogenous of degree 0, i.e. so the transformation

I �→ λI, λ > 0 will have no effects on Cw j,ϕ,{a j,k} and its Euler-Lagrange

equations.

In order to prevent an excessive magnification of the original detail

coefficients, whose absolute value is denoted as d0
j,k, a conservative term

should be introduced. To maintain dimensional coherence with Cw j,ϕ,{a j,k}, an

entropic dispersion functional is a suitable choice:

Dd0
j,k

({d j,k}) ≡
∑
k∈Ω

⎡⎢⎢⎢⎢⎢⎢⎣d0
j,k log

d0
j,k

d j,k
−
(
d0

j,k − d j,k
)⎤⎥⎥⎥⎥⎥⎥⎦ , 2J ≥ 2 j ≥ 2L+1. [5.58]

Combining these two effects, we can define the energy functional that

realizes local contrast enhancement as Ew j,ϕ,{a j,k},d0
j,k
= Cw j,ϕ,{a j,k} +Dd0

j,k
, i.e.

Ew j,ϕ,{a j,k},d0
j,k
≡
∑
k∈Ω

⎡⎢⎢⎢⎢⎢⎢⎣w jϕ

(
a j,k

d j,k

)
+ d0

j,k log
d0

j,k

d j,k
−
(
d0

j,k − d j,k
)⎤⎥⎥⎥⎥⎥⎥⎦ , [5.59]

with 2J ≥ 2 j ≥ 2L+1. The following theorem ensures the existence of a

minimum of Ew j,ϕ,{a j,k},d0
j,k

and determines the corresponding Euler-Lagrange

equations. Its proof can be found in [PRO 14].

Theorem 5.4.– There exists a minimum of the functional Ew j,ϕ,{a j,k},d0
j,k

.

Moreover, the Euler-Lagrange equations for the detail coefficients are:

∂Ew j,ϕ,{a j,k},d0
j,k

∂{d j,k} (d j,k) = 0 ⇐⇒ d j,k = d0
j,k + w jϕ

′
(
a j,k

d j,k

)
a j,k

d j,k
, [5.60]

where ϕ′ denotes the derivative of ϕ. In particular, when ϕ ≡ id,

∂Ew j,{a j,k},d0
j,k

∂{d j,k} (d j,k) = 0 ⇐⇒ d j,k = d0
j,k + w j

a j,k

d j,k
. [5.61]

In Theorem 5.4, the role of the identity has been highlighted because it is

the easiest choice for ϕ. Equation [5.61] is an implicit equation that has to
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be solved using a numerical method. In [PRO 14], Newton-Raphson’s method

has been used to find the zero of the function F(d j,k) ≡ d j,k − d0
j,k − w j

a j,k
d j,k

by

iteratively solving the equation

dn
j,k = dn−1

j,k −
F(dn−1

j,k )

F′(dn−1
j,k )
, [5.62]

n ≥ 1. Since the solution is not expected to differ too much from the original

magnitude d0
j,k, Newton-Raphson’s algorithm is initialized with d0

j,k.

A standard result guarantees the convergence of Newton-Raphson’s

algorithm as long as the initial condition d0
j,k is sufficiently near the solution,

F′(d0
j,k) is small enough, F′′(d j,k) varies smoothly and the inverse of F′′(d j,k)

is bounded near the solution (see, e.g., [CIA 89]). In particular, these

conditions imply that we cannot take the weights w j to be too big, otherwise

Newton’s algorithm can oscillate. In [PRO 13], it has been proved that if the

identity function is substituted by the gamma function, then the stability of

Newton-Raphson’s algorithm in this setting is improved.

Note that since Newton-Raphson’s method is initialized with the

coefficients d0
j,k, which are bounded from below, the solution of equation

[5.61] belongs to an open neighborhood of d0
j,k and the numerical method

converges to a positive solution of equation [5.61].

To stress the perceptual nature of the model, Figure 5.4 shows a scan line of

the classical Mach bands picture: the wavelet algorithm is able to reproduce the

well-known undershoots and overshoots typical of the HVS behavior recalled

in Chapter 1.

In Figure 5.5, the action of the wavelet algorithm can be seen on three

images affected by distinct problems: underexposure, color cast and

overexposure. As can be seen, the wavelet algorithm is able to perform a

radiometric adjustment of the non-optimally exposed pictures and to strongly

reduce the color cast, as shown in Figure 5.6.

5.6. High-dynamic-range (HDR) imaging

Radiance in natural scenes can span several orders of magnitude, yet

commercial cameras can capture only two orders of magnitude and reproduce
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Low-Dynamic-Range (LDR) photographs, often affected by saturated areas

and loss of contrast and detail. During the last fifteen years, many techniques

have been studied and proposed in order to expand the dynamic range of

digital photographs to create the so-called High-Dynamic-Range (HDR)

images, i.e. matrices whose entries are proportional to the actual radiance of

the scene. For a thorough overview of the HDR imaging, we refer the

interested reader to [REI 05b].

Figure 5.4. From left to right: a scan line of the Mach bands image before and after
the wavelet algorithm, respectively. The undershoot and overshoot effects are typical
HVS features that the wavelet model is able to reproduce. The wavelet algorithm was
applied with the following parameters: the mother wavelet is the biorthogonal wavelet
with two vanishing moments; the computation is performed over the maximum number
of scales allowed for each image, wj = 0.5, T j =

maxk∈Ω{d j,k}
2.5

for each scale, and α = 0.1

HDR images have been widely used to capture scene illumination, but also

for a realistic scene representation. That is to say, the wider dynamic range of

HDR images allows a better capture of details and color differences. This high

precision is the reason why most photographers nowadays use cameras with a

wider dynamic range than two orders of magnitude.

Two main problems remain to be solved in HDR imaging. First, while the

technique proposed by Debevec and Malick [DEB 97] can be considered as

the “de facto standard” for the creation of HDR images in static conditions,

i.e. with perfectly still camera and without moving objects in the scene, no

standard is available when these condition fail. Second, HDR images cannot be

entirely displayed or printed on the majority of commercial screens or printers,

hence a so-called Tone Mapping (TM) transformation is needed to properly

reduce their range without losing details and respecting as much as possible the

original color sensation. In what follows, we consider only the latter problem.
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Figure 5.5. Images on the left: original ones. Images on the right: enhanced versions
after the wavelet algorithm: details appear in originally underexposed and overexposed
areas, and the pink color cast in the “Lena” image is removed. The filtering parameters
are the following: the mother wavelet is the Daubechies wavelet with two vanishing
moments; the computation is performed over the maximum number of scales allowed
for each image, wj = 0.5, and T j =

maxk∈Ω{d j,k}
10

for each scale 2 j. For a color version of the
figure, see www.iste.co.uk/provenzi/color.zip
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Figure 5.6. Left column: original RGB histograms of the image in the second row of
Figure 5.5. Right column: enhanced RGB histograms corresponding to the image in
the second row of Figure 5.5. Again, note the histogram stretching without reaching a
complete equalization, which would have been inappropriate. For a color version of the
figure, see www.iste.co.uk/provenzi/color.zip

Many tone mapping operators (TMOs) have been proposed in the

literature; for a thorough review and analysis of the state of the art until 2005,

we refer to [REI 05b]. Here, we just want to give a very brief overview of the

different schools of thought that have been proposed so far. There is a

category of perceptually based TMOs which can be either spatially global or

local. The former are, in general, very fast and do not introduce halos or

artifacts, but their contrast rendition tends to be poor. The first global TMOs

used Stevens’ law [3] to achieve range compression and were proposed by

Tumblin and Rushmeier [TUM 93], Chiu et al. [CHI 93] and Ward et al.
[WAR 97].

Schlick [SCH 94] proposed a rational function very close to the

Michaelis-Menten formula [1.1], showing improvements with respect to

Stevens’ law [GON 02]. The global Michaelis-Menten formula has been

exploited by Pattanaik et al. [PAT 00], Reinhard and Devlin [REI 05a], and

more recently, by Kuang et al. [KUA 07]. More sophisticated vision models

were also proposed, taking into account time adaptation such as Ferwerda’s
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model [FER 96] or Weber-Fechner’s law, e.g. the methods by Ward et al.
[WAR 97] and Ashikhmin [ASH 02].

Reinhard et al. [REI 02] and Tamburrino et al. [TAM 08] introduced local

TMOs that improved detail but created halos and artifacts next to edges. A

TMO based on a modified version of the Retinex model of color vision was

proposed by Jobson et al. [JOB 97a], and the anchoring theory 1 has been used

by Krawczyk et al. [KRA 05] after a suitable subdivision of the original image

into layers of similar luminance.

There is another category, that of gradient-based TMOs, which rely on the

idea of shrinking large intensity gradients while preserving small fluctuations,

corresponding to fine details. Tumblin and Turk [TUM 99] used a hierarchical

method based on a Partial Differential Equation (PDE) inspired by anisotropic

diffusion.

Durand and Dorsey [DUR 02] and Kuang et al. [KUA 07] obtained

improved results by using techniques inspired by bilateral filtering. Fattal

et al. [FAT 02] and Mantiuk et al. [MAN 06] proposed methods where

spatially varying compression factors were used to implement suitable

manipulations of the gradient field.

Here we describe the algorithm proposed in [FER 11], where the authors

followed the TM philosophy proposed by Ward et al. [WAR 97], where the

main purpose of TM is to emulate as much as possible the perception of

contrast and color produced by the real-world scene. Lacking a perfect model

of the Human Visual System (HVS), they concentrated on the HVS properties

recalled in Chapter 1 to propose their TM operator.

While visual adaptation is considered as a retinal process, local contrast

enhancement (and color constancy) is thought to involve also higher stages

of the visual cortex (see, e.g., Hubel’s book [HUB 95]). This suggests that

the processes involved in these two phases are quite different; therefore, in

[FER 11] the processes were implemented in two independent stages.

5.6.1. A two-stage tone mapping

Neuroscience experiments to measure visual adaptation have been

performed using very simple, non-natural images: brief pulses of light with

intensity I were superimposed on a uniform background.



106 Computational Color Science

As already recalled in Chapter 1, when a photoreceptor absorbs a photon,

the electric potential of its membrane changes accordingly to the empirical

law known as the Michaelis-Menten equation [1.1], which we replicate here

for clarity:

r(I) =
ΔV
ΔVmax

=
Iγ

Iγ + IγS
, [5.63]

IS is the light level at which the photoreceptor response is half maximal, called

the semi-saturation level, and which is usually associated with the level of

adaptation.

Each type of cone is most sensitive to a particular waveband; thus, the semi-

saturation constant must depend on the amount of light in this same waveband

that reaches it, not on the luminance of the light source, as pointed out by

Boynton [BOY 02] and Wade and Wandell [WAD 02].

The change of electric potential ΔV is the photoreceptor’s physiological

response to I, Vmax is the highest difference of potential that can be generated

and γ is constant, measured as 0.74 for the rhesus monkey [VAL 83]. This

change in electric potential describes the light response of one single living

photoreceptor isolated in a tiny glass pipette, which is different than the

response of the cell embedded in the retina. In fact, adjacent photoreceptors

strongly affect each other both chemically and electrically: none of the

retina’s approximately 125 million photoreceptor cells respond

independently, and the brain receives no light meter-like signals from them.

Instead, three layers of retinal neurons interconnect to construct 20 or more

different kinds of signals that summarize local changes in retinal illumination.

Equation [1.1] has been used extensively in the TM literature, as

mentioned in the previous section. Although not been explicitly stated, the

underlying assumption here is that the output of equation [1.1], a ratio of

voltage amplitudes of electrical responses (or the ratio of light intensities),

which is a physical magnitude, is assumed to be correlated with the perceived

brightness, which is a sensation, a perceptual magnitude. So, each TMO that

uses [1.1], or its variations, takes an HDR input intensity and gives an LDR

output, trying to mimic the perceived brightness.

On the side of perception of intensity changes, we have Weber-Fechner’s

law presented in Chapter 1, i.e. the logarithmic behavior of the sensation of
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light intensity: s(I) = s0 + k log(n + I). As pointed out in [REI 05b], this

logarithmic transformation is probably the simplest procedure we might use

as a TMO, and it works fairly well for medium-dynamic-range images.

Nonetheless, this equation is questionable and still contested in the

psychophysics community, where researchers disagree on the validity of

accumulating and/or integrating JNDs to assess supra-threshold stimuli of any

sort.

Now we have two equations, Michaelis-Menten’s (MM) and

Weber-Fechner’s (WF), which are different but which are used (directly or

with some modifications) under the assumption that they are both modeling

the same thing, namely, the perceived brightness.

Let us examine this situation in more detail to understand how to solve this

apparent contradiction. Michaelis-Menten (MM) and Weber-Fechner (WF)

equations model mathematically the results of different experiments that

measured different visual phenomena. WF describes detectable-difference

thresholds for small, steady-state stimuli; users adapt to a steady, uniform

background, and experiments measure the tiniest steady difference we can

distinguish from that background. MM models electrical responses to flashed

stimuli; it measures how well we can detect tiny differences in intensities far

away from that of the adapting background (and measured before our

adaptation level can change).

Since MM does not match with WF, we cannot claim that a TMO based

on the NR equation accurately models perception in the HVS. However, the

TM results obtained with these NR-like methods, based on modifications of

the MM equation, are usually better than those obtained with the logarithmic

mapping corresponding to WF: their overall appearance seems closer to our

own perception.

To try to understand this fact, let us recall that TMOs map an arbitrarily

large radiance range into image values in a limited range, without loss of

generality we may assume that the output range is the interval [0, 1]. The

values given by MM are already in this interval, but for WF, it is necessary to

apply a normalization step to the output. The outputs of MM and WF are

fairly similar for the first three or four orders of I, but then the output of MM

tends to 1 while the output of WF increases indefinitely.
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The fact that MM tends to 1 for high-radiance values is explained by the

saturation property of photoreceptors: the activity of cones covers

approximately four orders of magnitude around the semi-saturation value, as

is explained by Valeton and van Norren [VAL 83], and for higher radiances

the cones saturate.

The saturation of the cones is not considered in WF, and therefore the

corresponding curve always increases. Taking all the above considerations

into account, in [FER 11], the authors claimed that since cones are indeed

saturating, in order to model the perceptual response, we must not use the

curve obtained with steady stimuli fields because these fields do not cause

saturation in the cones and we end up with the logarithmic curve, which

increases indefinitely. Instead, we must use the curve obtained with pulsating

fields. This complies with WF in an operative range of four orders of

magnitude, but for higher radiances increase very steeply because the cones

saturate at those radiance values.

Dunn et al. [DUN 07], while talking about visual adaptation and saccades,

said the following: “retinal mechanisms [. . .] adjust sensitivity in the 200 ms

intervals between saccades,” and “As we make saccades to explore a visual

scene, retinal neurons encounter a wide range of light intensities. Receptor

and post-receptor adaptation permit the amplification required to see objects

in shadows while avoiding saturation from the sky. The combination of these

adaptive mechanisms allows the visual system to encode details in a scene with

greater fidelity than a standard camera at a single exposure setting”.

The implication would be that while viewing real-world scenes, as we

frequently use saccadic movements to look for and track objects or simply to

gather all of the details, the stimuli fields are not steady but pulsed. Hence, the

curve that more accurately matches perception in real-world images would be

the upper curve in Figure 5.7.

In short, Figure 5.7 shows an inflexion point at the radiance value located

approximately two orders of magnitude above the semi-saturation radiance,

which we will call IM: for radiances below IM, Weber-Fechner’s law holds, so

the perceptually valid tone mapping curve is the one given by WF; for

radiances above IM, the cones’ responses start to saturate so the perceptually

(and physiologically) valid tone mapping curve must have an horizontal

asymptote, and for this, we can use the curve given by the MM.
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Saturation in human cones
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Figure 5.7. Cones saturate when the stimuli field is not steady but
pulsed: perceptual curves of cones for pulsed and steady stimuli

(adapted from Shevell [SHE 77])

With this information, we can now introduce the first stage of our algorithm.

We propose to use a TM curve C(I) which combines the curves MM and WF

in the aforementioned way:

C(I) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s0 + k log(I + n) if I ≤ IM
Iγ
Iγ+IγS

if I > IM
[5.64]

where s0 is chosen so as to ensure the continuity of c at the critical point IM .

The output of c will be normalized, i.e. linearly scaled so that it spans the

interval [0, 1].

Figure 5.8 shows the TM results obtained using MM, WF and C(I) on

the same HDR image. The left-hand side image, obtained using MM, has an

overall good contrast but the brightest regions appear overexposed (e.g. the

areas near the windows or the trees); the middle image, obtained with the

logarithmic mapping of WF, has overall poor contrast but the details of the

brightest regions are not lost.
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The right-hand side result is the one obtained with the first stage of the

method just described, C(I), and we see that it combines the best

characteristics of the other two images, showing overall good contrast and

little or no loss of detail in the brightest areas.

Figure 5.8. Left: TM output using the Michaelis-Menten equation.
Middle: TM output using a logarithmic mapping (Weber-Fechner’s law).

Right: TM output equation 5.64

The second stage consists simply in the application of the perceptually

inspired variational algorithm for color correction discussed in the previous

sections, which is associated with higher stages of visual perception and will

produce a local enhancement of the first stage, also allowing the reduction of

a possible color cast due to a non-neutral illuminant in the photographed

scene.

All the implementation details of the two-stage tone mapper and the

comparison with the state-of-the-art TMOs are given in [FER 11]; here we

just want to stress the fact that the proposed tone mapper has the best overall

performance with respect to one of the most vastly used quality measures (see

[AYD 08]).



Appendix

Rudimentals of Variational Principles

Calculus of variations is a generalization of ordinary calculus in Rn. In the

latter we deal with functions f : D ⊆ Rn → Rm, n,m integers ≥ 1, while in

variational calculus we work with functions acting on functional spaces.

More precisely, a functional space is a vector space whose elements are

functions having some specified features. To give a concrete example let us

consider two very well-known and useful functional spaces:

– Cn(D), D ⊆ Rn, D open, is the space of functions f : D → R which are

n-times differentiable, with continuous derivatives on the whole D, the case

n = 0 corresponds simply to continuous functions on D;

– L2(R) is the space of square-integrable functions on R, i.e. f : R → R
such that

´
R

f (x)2 dx < +∞. These functions are also said to be finite-energy

functions.

Given an abstract functional space F over the field K (in general K = R or

C), the linear operations in F are defined point-wise, i.e. given f , g ∈ F and

α, β ∈ K, the function h ∈ F defined by the linear combination h = α f + βg ∈
F acts as follows on the arguments x of f and g: h(x) = α f (x) + βg(x).

A functional ϕ acting on the abstract functional space F is a linear form

over F , i.e. a linear function from F to the field K:

ϕ : F −→ K
f �−→ ϕ( f ).

Computational Color Science: Variational Retinex-like Methods, First Edition. Edoardo Provenzi.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Let us also recall that, in ordinary calculus, a great deal of effort is dedicated

to finding the extrema of functions. To fix ideas, let us consider a function

f ∈ Cn(D), �x ∈ D, then:

– we call �x = argmin
D

f , if f
(
�x
)
= min
�x∈D

f (�x);

– we call �x = argmax
D

f , if f
(
�x
)
= max
�x∈D

f (�x).

We recall that, given a function f : D ⊆ Rn → R, f ∈ Cn(D) and any unit

vector �v ∈ D, the directional derivative of f along �v, calculated in �x, is defined

by:

D�v f (�x) = lim
ε→0

f (�x + ε�v) − f (�x)

ε
, [A.1]

the partial derivatives ∂i f (x), i = 1, . . . , n, of f are simply the n directional

derivatives computed by choosing �v = �ei, the i-th unit vectors of the canonical

basis of Rn. Finally, the gradient �∇ f (x) is the n-dimensional vector whose

components are the partial derivatives of f in x.

By virtue of Fermat’s interior extrema theorem, the gradient of f (and its

directional derivatives in every direction) must be null when computed in the

argmin or argmax of f . This necessary condition becomes also sufficient when

D and the function f are convex.

The computation, analytical or approximated, of the extrema of a function

f ∈ Cn(D) belongs to a field called optimization in Rn.

Contrary to ordinary calculus, in variational calculus the argmin and
argmax of a functional are functions, more precisely, for an arbitrary functional

E : F → K:

– we call f = argmin
F

E, if E
(

f
)
= min

f∈F
E( f );

– we call f = argmax
F

E, if E
(

f
)
= max

f∈F
E( f ).

The possibility to pass from extrema of functions represented by points of

R
n to extrema of functionals represented by functions allows us to examine, in
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variational calculus, much more general problems than in ordinary calculus.

Of course, this comes at the expense of a greater mathematical difficulty.

The computation, analytical and, most of the time, approximated, of the

extrema of a functional E is called variational (or functional) optimization and

it has been the subject of research by many mathematicians, physicists and

engineers in the past two centuries [BOY 04, HIR 12]. In the following, we

will give the reason for the name “optimization”.

A basic tool in variational optimization is the concept of first variation of

a functional, which is a direct generalization of the directional derivative of

a function. More precisely, given a functional E : F → R and any function

g ∈ F , called perturbation, the first variation (or Gâteaux derivative) of E
along g, calculated in f , is defined by

δE( f , g) = lim
ε→0

E( f + εg) − E( f )

ε
, [A.2]

here the perturbation g plays the role of the vector �v in the definition of

directional derivative.

The generalization of Fermat’s interior extrema theorem to variational

calculus states that the first variation of a functional computed in any extreme

(argmin or argmax) must be null for every perturbation. Moreover, this

necessary condition becomes also sufficient under suitable convexity

hypotheses or when it is associated to some properties of the second variation,

i.e. the first variation of the first variation interpreted as a functional.

The equations

δE( f , g) = 0 ∀g ∈ F , [A.3]

are called Euler-Lagrange equations.

For a better comprehension of the variational framework of Chapters 4 and

5, it is worthwhile to complete this overview by showing explicit examples of

functionals given by one or two terms and by explaining why the search of

their extrema is called optimization.

Let us start with the problem of finding the extremal function y = f (x)

whose graph gives the shortest curve that connects two points (x1, y1) and
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(x2, y2) in R2. To find the variational principle associated to this problem, let

us recall that the arc length A of the curve represented by the graph of a

differentiable function y = f (x) between the points (x1, y1 ≡ f (x1)) and

(x2, y2 ≡ f (x2)) is given by the integral
´ x2

x1

√
1 + [y′(x)]2 dx. The solution to

our problem will therefore be the argmin of the functional

A : C([x1, x2]) −→ R
f �−→ A( f ) =

´ x2

x1

√
1 + [ f ′(x)]2 dx.

It can be easily proven that, as expected, the argmin of A( f ) is given by

the straight line function f (x) = mx + b, where m = (y2 − y1)/(x2 − x1) and

b = (x2y1 − x1y2)/(x2 − x1).

In this case, it is very easy to understand why the argmin of A( f ) represents

the optimal solution to the problem of finding the shortest curve, because of

the direct interpretation of A( f ) as the arc length functional.

It is more difficult to understand what optimality means when the functional

associated to a problem is given by two or more terms. To help understand

this, let us consider the problem of determining, with a variational principle,

the trajectory of a particle moving into space between time t0 and time t1 in a

conservative physical system1.

The Italian-French mathematician and physicist Lagrange solved this

problem by considering the following functional, that nowadays we call

Lagrangian in his honor:

L(�q) =

ˆ t1

t0
L(�q(t)) dt [A.4]

where L(�q) = T (�q)−V(�q), �q : [t0, t1]→ R3 being the time-dependent position

function of a moving particle in R3 and T,V being the kinetic and the potential

energy functions of the physical system, respectively.

The outstanding achievement of Lagrange is that the argmin of the

functional in [A.4] is the function �q(t) which solves Newton’s equation of

1 A physical system is called conservative if the forces acting on it can be expressed as minus

the gradient of a potential energy function V .
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motion �F(t) = m�̈q(t), ∀t ∈ [t0, t1], where �F is the resultant of forces acting on

the particle and �̈q(t) is the second temporal derivative of �q, i.e. its acceleration.

Since it is well known that the trajectory of a particle in a (non-relativistic)

physical system satisfies Newton’s second law of dynamics, Lagrange proved

that this is equivalent to searching for the argmin of the functional [A.4].

In other words, the minimization of functional [A.4] gives the optimal

result because it coincides with the solution of Newton’s second law of

dynamics. Since L(�q(t)), the integrand function of [A.4], is given by two

terms with opposite sign, i.e. the kinetic energy T (�q(t)) = 1
2
m‖�̇q(t)‖2 and the

potential energy V(�q(t)), we can interpret Lagrange’s result by saying that, in

every instant t ∈ [t0, t1], the particle moves along a trajectory which

minimizes the difference between the energy that the particle actually has due

to its motion (i.e. T ) and the energy that the particle could potentially attain

(i.e. V). This interpretation is commonly summarized by saying that the

trajectory of motion of a particle is given by the optimal balance between its

kinetic and potential energy in every instant. The balance between them is

always present, but it is optimal to describe the trajectory of motion only for

the argmin of the functional [A.4].

Of course, when we deal with another problem, not necessarily related to

motion of particles or length of curves, optimality will refer, more generally, to

the match between the argmin of the functional with an empirical or theoretical

law describing a phenomenon or a property. Consistent with the nomenclature

just recalled, also in those cases we will say that the argmin is characterized

by the optimal balance between the functional terms.

An illuminating example in this sense is the very deep variational

interpretation of histogram equalization of digital images provided in

[SAP 97], that is discussed in Chapter 4. There it is shown that a digital image

with an equalized histogram2 can be interpreted as the argmin of a functional

characterized by the difference between a functional term which describes

adjustment to the middle gray-level of the image and another one which gives

a global measure of contrast carried by the image. Coherently with the

considerations above, we will say that histogram equalization is given by the

2 We recall that the intensity of a digital image is quantized and bounded in the set of values

{0, 1, . . . , 255}. A digital image is said to be equalized if each intensity level has the same

occurrence probability in the image.
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optimal balance between control of the dispersion around the middle gray and

contrast intensification.

The possibility to arrive at these highly non-intuitive interpretations of

known phenomena and also to predict new ones is what makes the use of

variational calculus so prevalent among many different disciplines as a sort of

unifying principle. This is one the main reasons why, in this book, we analyze

the possibility of using variational principles as a bridge between the

description of perceptual and non-physical judgments.

Remark A.1.– Optimization of functionals is conventionally associated with

the search of their minima. Of course, a minimization problem can be

transformed into a maximization one simply by changing the sign of the

functional under analysis.

Remark A.2.– When parameters are involved in the definition of a functional,

the interpretation of optimality can be a little more difficult. In fact, functional

minimization in this case generates a whole family of optimal solutions that

depend on the selection of the parameters appearing in the equations. In these

cases, a suitable tuning procedure that may vary from case to case, must be

used to set the parameters once and for all, thus providing the (only) optimal

solution to the problem under consideration.
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