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Foreword

It takes more effort to verify that digital system designs are correct
than it does to design them, and as systems get more complex the
proportion of cost spent on verification is increasing (one estimate is
that verification complexity rises as the square of design complexity).

Although this verification crisis was predicted decades ago, it is
only recently that powerful methods based on mathematical logic and
automata theory have come to the designers’ rescue. The first such
method was equivalence checking, which automates Boolean algebra
calculations. Next came model checking, which can automatically verify
that designs have – or don’t have – behaviours of interest specified in
temporal logic. Both these methods are available today in tools sold by
all the major design automation vendors.

It is an amazing fact that ideas like Boolean algebra and modal
logic, originating from mathematicians and philosophers before modern
computers were invented, have come to underlie computer aided tools
for creating hardware designs.

The recent success of ’formal’ approaches to hardware verification
has lead to the creation of a new methodology: assertion based design,
in which formal properties are incorporated into designs and are then
validated by a combination of dynamic simulation and static model
checking. Two industrial strength property languages based on tempo-
ral logic are undergoing IEEE standardisation.

It is not only hardware design and verification that is changing: new
mathematical approaches to software verification are starting to be de-
ployed. Microsoft provides windows driver developers with verification
tools based on symbolic methods.

Discrete mathematics, logic, automata, and the theory of com-
putability are the basis for these new formal approaches. Although they
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have long been standard topics in computer science, the uses made of
them in modern verification are quite different to their traditional roles,
and need different mathematical techniques. The way they are taught
often puts more emphasis on cultivating ‘paper and pencil’ proof skills,
and less on their practical applications and implementation in tools.
Topics in logic are often omitted, or taught without emphasizing con-
nections with automata, and without explaining the algorithms (e.g.,
fixed-point computation) used in verification.

This classroom-tested undergraduate textbook is unique in present-
ing logic and automata theory as a single subject. Public domain soft-
ware is used to animate the theory, and to provide a hands-on taste of
the algorithms underlying commercial tools. It is clearly written and
charmingly illustrated. The author is a distinguished contributor to
both theory and to new tool implementation methods.

I highly recommend this book to you as the best route I know into
the concepts underlying modern industrial formal verification.

Dr. Michael J.C. Gordon FRS
Professor of Computer Assisted Reasoning

The University of Cambridge Computer Laboratory



Preface

Computation Engineering, Applied Automata Theory and Logic:

With the rapidly evolving nature of Computing, and with multiple new
topics vying for slots in today’s undergraduate and graduate curricula,
“classical” topics such as Automata Theory, Computability, Logic, and
Formal Specification cannot fill the vast expanses they used to fill in
both the undergraduate and the graduate syllabi. This move is also
necessary considering the fact that many of today’s students prefer
learning theory as a tool rather than theory for theory’s sake. This book
keeps the above facts in mind and takes the following fresh approach:

• approaches automata theory and logic as the underlying engineering
mathematics for Computation Engineering,

• attempts to restore the Automaton-Logic connection missing in
most undergraduate books on automata theory,

• employs many interactive tools to illustrate key concepts,
• employs humor and directly appeals to intuitions to drive points

home,
• covers classical topics such as the Rice’s Theorem, as well as modern

topics such as Model Checking, Büchi Automata, and Temporal
Logics.

We now elaborate a bit further on these points, and then provide a
chapter-by-chapter description of the book.

Teach Automata Theory and Logic as if they were Engineering Math:

The computer hardware and software industry is committed to using
mathematically based (formal) methods, and realizes that the biggest
impediment to the large scale adoption of these methods would be
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the lack of adequately trained manpower. In this context, it is cru-
cial that students who go through automata theory and logic courses
retain what they have learned, and know how to use their knowledge.
Today’s undergraduate textbooks in the area of this book typically em-
phasize automata theory, and not logic. This runs the risk of imparting
a skewed perspective, as both these perspectives are needed in practice.
Also most of today’s books do not include tool-based experiments. Ex-
perience shows that tool based experimentation can greatly enhance
one’s retention.

Restoring the Missing Automaton/Logic Connection:

Automata theory and logic evolved hand-in-hand - and yet, this connec-
tion was severed in the 1970’s when the luxury of separate automata
theory and logic courses became possible. Now, the crowded syllabi
that once again forces these topics to co-exist may actually be doing
a huge favor: providing the opportunity to bring these topics back to-
gether! For example, Binary Decision Diagrams (BDD) - central data
structures for representing Boolean functions - can be viewed as min-
imized DFA. One can introduce this connection and then show how
finite state machines can be represented and manipulated either using
explicit state graphs or implicitly using BDD based Boolean transition
relations. Another example I’ve employed with great success is that
of the formulation and solution of the logical validity of simple sen-
tences from Presburger arithmetic – such as “∀xyz : x + y = z” –
using DFA. Here, the use of automaton operations (such as intersec-
tion, complementation, and projection) and corresponding operations
in logic (such as conjunction, negation, and existential quantification)
in the same setting helps illustrate the interplay between two intimately
related areas, and additionally helps build strong intuitions.

Teaching Through Interactive Tools:

To the best of my knowledge, none of the present-day undergraduate
books in automata theory employ interactive tools in any significant
manner. This approach tends to give the false impression to students
that these are topics largely of theoretical interest, with the only prac-
tical examples coming from the area of compiler parsers. We encourage
tool usage in the following ways:

• we illustrate the use of the Grail tools, originally from the University
of Western Ontario, to illustrate the application of operations on
automata in an interactive manner,
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• we illustrate the use of the JFLAP tool kit written by Professor
Susan Rodger’s group at Duke when discussing nondeterministic
Turing machines,

• we employ the BED Binary Decision Diagram package of Andersson
and Hulgaard in illustrating several aspects of BDD manipulation
and fixed-point computation,

• we illustrate the use of Boolean satisfiability tools such as Zchaff
and Minisat in leading up to the concept of NP-completeness,

• we illustrate DNF to CNF conversion and obtaining the Prenex
Normal Form using simple programs written in the functional lan-
guage Ocaml, and finally

• we present simple examples using the model checking tool SPIN.

On page 443, we provides the address of the book website where tool-
specific instructions will be maintained.

Letting Intuitions be the Guide:

I have found that introducing diagonalization proofs early on can help
students tie together many later ideas more effectively. I employ gentle
intuitive introductions (e.g., “the US map has more points than hair
on an infinite-sized dog”).

Many topics become quite clear if demonstrated in multiple do-
mains. For example, I illustrate fixed-point theory by discussing how
context-free grammars are recursive language equations. I also intro-
duce fixed-points by pointing out that if one repeatedly photocopies1

a document, it will often tend towards one of the fixed points of the
image transformation function of the photocopy machine(!).

My example to introduce the fact that there are a countably infinite
number of C programs consists of pointing out that the following are le-
gal C programs: main(){}, main(){{}}, main(){{{}}}, ... and then I use
the Schröder-Bernstein theorem relating this sequence to the sequence
of even numbers ≥ 8 (which can then be bijectively mapped to Natu-
ral numbers). In another example, I show that the set of C programs
are not regular by applying the Pumping Lemma to main(){{. . .}} and
getting a syntax error when the Pumping Lemma mangles the brack-
eting structure of such C programs! In my opinion, these examples do
not diminish rigor, and may succeed in grabbing the attention of many
students.

1 Xerox is still a trademark of Xerox Inc.
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Model Checking, Büchi Automata, and Temporal Logics:

From a practical point of view, automata theory and logic play a cen-
tral role in modeling and verifying concurrent reactive systems. The
hardware and software industry employs model checking tools to find
deep seated bugs in hardware and software. This book closes off with
an introduction to the important topic of model checking.

A Tour Through the Book:

Chapter 1 motivates the material in the book, presenting in great detail
why the topics it covers are important both in terms of theory and
practice.

Chapter 2 begins with the quintessentially important topics of sets,
functions, and relations. After going through details such as expressing
function signatures, the difference between partial and total functions,
we briefly examine the topic of computable functions - functions that
computers can hope to realize within them. We point out important
differences between the terms procedure and algorithm, briefly touching
on the 3x + 1 problem - a four-line program that confounds scientists
despite decades of intense research. In order to permit you to discuss
functions concretely, we introduce the lambda notation. A side benefit
of our introduction to Lambda calculus is that you will be able to study
another formal model of computation besides Turing machines (that we
shall study later).

Chapter 3 goes through the concept of cardinality of sets, which in
itself is extremely mentally rewarding, and also reinforces the technique
of proof by contradiction. It also sets the stage for defining fine distinc-
tions such as ‘all languages,’ of which there are “uncountably many”
members, and ‘all Turing recognizable languages,’ of which there are
only “countably many” members.

Chapter 4 discusses important classes of binary relations, such as
reflexive, transitive, preorder, symmetric, anti-symmetric, partial order,
equivalence, identity, universal, equivalence, and congruence (modulo
operators).

Chapter 5 provides an intuitive introduction to mathematical logic.
We have written this chapter with an eye towards helping you read
definitions involving the operators if, if and only if (iff), and quanti-
fiers for all, and there exists. The full import of definitions laden with
ifs and if and only ifs, as well as quantifiers, is by no means readily
apparent - and so it is essential to cultivate sufficient practice. You will
see proof by contradiction discussed at a ‘gut level’ - we encourage you
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to play the game of Mastermind, where you can apply this technique
quite effectively to win pretty much every time. Nested quantification
is reinforced here, as well as while discussing the pumping lemma in
Chapter 12. Our message is: write proofs clearly and lucidly - that way,
in case you go wrong, others can spot the mistake and help you.

Chapter 6 studies the topic of recursion at some depth. Given that
a book on automata theory is ‘ridden with definitions,’ one has to un-
derstand carefully when these definitions make sense, and when they
end up being ‘total nonsense,’ owing, say, to being circular or not
uniquely defining something. Lambda calculus provides basic notation
with which to reason about recursion. We present to you the “friendli-
est foray into fixed-point theory’ that we can muster.” We will use
fixed-points as a ‘one-stop shopping’ conceptual tool for understanding
a diverse array of topics, including context-free productions and the
reachable states of finite-state machines.

In Chapter 7, we begin discussing the notions of strings and lan-
guages. Please, however, pay special attention2 to “the five most con-
fused objects of automata theory,” namely ε, ∅, {ε}, {∅}, and the
equation ∅∗ = {ε}. We discuss the notion of concatenation, exponentia-
tion, ‘starring,’ complementation, reversal, homomorphism, and prefix-
closure applied to languages.

In Chapter 8, we discuss machines, languages, and deterministic fi-
nite automata. We construct Deterministic Finite Automata (DFA) for
several example languages. One problem asks you to build a DFA that
scans a number presented in any number-base b, either most signifi-
cant digit-first, or least significant digit-first, and shine its green light
exactly at those moments when the number scanned so far equals 0
in some modulus k. The latter would be equivalent to division carried
out least significant digit-first, with only the modulus to be retained.
We will have more occasions to examine the true “power” of DFAs
in Chapters 12 and 20. Chapter 8 closes off with a brief study of the
limitations of DFA.

Chapter 9 continues these discussions, now examining the crucially
important concept of non-determinism. It also discusses regular ex-
pressions - a syntactic means for describing regular languages. The im-
portant topic of Non-deterministic Finite Automaton (NFA) to DFA
conversion is also examined.

Automata theory is a readily usable branch of computer science the-
ory. While it is important to obtain a firm grasp of its basic principles

2 Once you understand the fine distinctions between these objects, you will detect
a faint glow around your head.
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using paper, pencil, and the human brain, it is quite important that
one use automated tools, especially while designing and debugging au-
tomata. To paraphrase Professor Dana Scott, computer-assisted tools
are most eminently used as the telescopes and microscopes of learning
- to see farther, to see closer, and to see clearer than the human mind
alone can discern. We demonstrate the use of grail tools to generate
and verify automata.

In Chapter 10, we discuss operations that combine regular lan-
guages, most often yielding new regular languages as a result. We dis-
cuss the conversion of NFA to DFA - an important algorithm both
theoretically and in practice. We also discuss the notion of ultimate pe-
riodicity which crystallizes the true power of DFAs in terms of language
acceptance, and also provide a tool-based demonstration of this idea.

In Chapter 11, we will begin discussing binary decision diagrams
(BDD), which are nothing but minimized DFA for the language of
satisfying assignments (viewed as sequences, as we will show) for given
Boolean expressions. The nice thing about studying BDDs is that it
helps reinforce not only automata-theoretic concepts but also concepts
from the area of formal logic. It teaches you a technique widely used in
industrial practice, and also paves the way to your later study of the
theory of NP-completeness.

In Chapter 12, we discuss the Pumping Lemma. We define the
lemma in first-order logic, so that the reader can avoid common confu-
sions, and grasp how the lemma is employed. We also discuss complete
Pumping Lemmas (regular if and only if certain conditions are met).

In Chapter 13, we present the idea of context-free languages. Context-
free languages are generated by a context-free grammar that consists of
production rules. By reading production rules as recursive equations,
we can actually solve for the context-free language being defined. We
will also have occasion to prove, via induction, that context-free pro-
ductions are sound and complete - that they do not generate a string
outside of the language, but do generate all strings within the language.
The important notions of ambiguity and inherent ambiguity will also
be studied.

Chapter 14 will introduce our first infinite state automaton variety
- the push-down automaton (PDA) - a device that has a finite-control
and exactly one unbounded stack. We will study a method to convert
PDA to CFG and vice versa. We will also show how to prove PDAs
correct using Floyd’s Inductive Assertions method.

In Chapter 15, we study Turing machines (TM). Important notions,
such as instantaneous descriptions (ID) are introduced in this chapter.
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Several Turing machine simulators are available on the web - you are
encouraged to download and experiment with them. In this chapter,
we will also introduce linear bounded automata (LBA) which are TMs
where one may deposit new values only in that region of the tape where
the original input was presented.

Chapter 16 discusses some of the most profound topics in computer
science: the halting problem, the notion of semi-decision procedures,
and the notion of algorithms. With the introduction of unbounded
store, many decision problems will become formally undecidable. In
a large number of cases, it will no longer be possible to predict what
the machine will do. For example, it will become harder or impossible
to tell whether a machine will halt when started on a certain input,
whether two machines are equivalent, etc. In this chapter, we will for-
mally state and prove many of these undecidability results. We will
present three proof methods: (i) through contradiction, (ii) through re-
ductions from languages not known to be decidable, and (iii) through
mapping reductions.

Chapter 17 continues with the notion of undecidability, discussing
two additional proof techniques: (i) through the computational history
method, and (ii) by employing Rice’s theorem. These are advanced
proof methods of undecidability that may be skipped during the initial
pass through the textbook material. One can proceed to Chapter 18
after finishing Chapter 16 without much loss of continuity.

Chapter 18 sets the stage to discuss the theory of NP completeness.
It touches on a number of topics in mathematical logic that will help
you better appreciate all the nuances. We briefly discuss a “Hilbert
style” axiomatization of propositional logic, once again touching on
soundness and completeness. We discuss basic definitions including sat-
isfiability, validity, tautology, and contradiction. We discuss the various
“orders” of logic including zeroth-order, first-order, and higher-order.
We briefly illustrate that the validity problem of first-order logic is
only semi-decidable by reduction from the Post Correspondence prob-
lem. We illustrate how to experiment with modern SAT tools. We also
cover related ideas such as �=-sat, 2-sat, and satisfiability-preserving
transformations.

Chapter 19 discusses the notion of polynomial-time algorithms, com-
putational complexity, and the notion of NP-completeness. We reiterate
the importance of showing that the problem belongs to NP , in addition
to demonstrating NP-hardness.

In Chapter 20, we introduce a small subset of first-order logic called
Presburger arithmetic that enjoys the following remarkable property:
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given a formula in this logic, we can build a finite automaton such
that the automaton has an accepting run if and only if the formula is
satisfiable. The neat thing about this technique is that it reinforces the
automaton/logic connection introduced in the previous chapter.

Chapters 21 through 23 introduce temporal logic and model check-
ing. These topics are ripe for introduction to undergraduates and grad-
uates in all areas of computer science, but without all the generality
found in specialized books. To this end, in Chapter 21, we provide
a history of model checking and also a detailed example. Chapter 22
introduces linear-time temporal logic and Computational Tree Logic,
contrasting their expressive power, and exactly why computation trees
matter. Finally, Chapter 23 presents an enumerative as well as a sym-
bolic algorithm for CTL model checking. We also present an enumer-
ative algorithm for LTL model checking through an example. We in-
troduce Büchi automata, discussing how Boolean operations on Büchi
automata are performed, and that non-deterministic Büchi automata
are not equivalent to deterministic Büchi automata.

Chapter 24 reviews the material presented in the book. Chapter A
lists the book website, software tool related information, and possible
syllabi based on this book.
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Introduction

Welcome to Computation Engineering - the discipline of applying engi-
neering principles to model, analyze, and construct computing systems.
Human society is, more than ever, reliant on computing systems operat-
ing correctly within automobile control systems, medical electronic de-
vices, telephone networks, mobile robots, farms, nuclear power plants,
etc. With so much entrusted to computers, how can we ensure that all
of these computers are being built and operated in a manner responsi-
ble to all flora and fauna? How do we avoid potential disasters - such
as mass attacks due to malevolent “viruses,” or an avionic computer
crashing and rebooting mid-flight? On a deeper, more philosophical
note, what exactly is computation? Can we mathematically character-
ize those tasks that computers are capable of performing, and those
they are incapable of performing? The subject-matter of this book is
about seeking answers to these deep questions using automata theory
and mathematical logic.

Computation Science and Computation Engineering

We distinguish a computer scientist from a computation engineer. We
define those people who seek an in-depth understanding of the phe-
nomenon of computation to be a computer scientist. We define those
people who seek to efficiently apply computer systems to solve real-
world problems to be computation engineers.1 The distinction is, in a
sense, similar to that between a chemist and a chemical engineer. This

1 We prefer calling the latter activity computation engineering as opposed to com-

puter engineering because the term “computer engineer” is, unfortunately, applied
nowadays to people with a hardware bias in their outlook. In this book, we carry
no such bias.
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book will expose you to computer science through automata theory and
logic. It will show you how computation engineers use automata theory
and logic as the engineering mathematics, much like ‘traditional engi-
neers’ apply differential and integral calculus to build better-engineered
products such as bridges, automobiles, and airplanes.

What is ‘Computation?’

By the way of popular analogy,2 we can offer one possible feeble answer:
“if it involves a computer, a program running on a computer, and num-
bers going in and out, then computation is likely happening.3” Such
an answer invites a barrage of additional questions such as “what is a
computer?”; “what is a program?”, etc. There are other tricky situa-
tions to deal with as well. Consider another place where computation
seems to be happening: within our very body cells. Thanks to modern
advances in genetics, we are now able to understand the mind-boggling
amount of “string processing” that occurs within our cells - in the pro-
cess of transcribing the genetic code (which resembles assembly code
in a strange programming language), doing all of that wonderful string
matching and error correction, and resulting in the synthesis of pro-
teins. Is this also computation?

The short answer is that we cannot have either a comprehensive or a
permanent definition of what ‘computation’ means. Unless we employ
the precise language offered by mathematics, philosophical or emotion-
ally charged discussions are bound to lead nowhere. One must build
formal models that crystallize the properties observed in real-world
computing systems, study these models, and then answer questions
about computing and computation in terms of the models. The ab-
straction must also be at the right level. Otherwise, we will end up
modeling a computer as a mindless electronic oscillator that hauls bits
around.4

Given all this, it is indeed remarkable that computer science has
been able to capture the essence of computing in terms of a single for-
mal device: the so called Turing machine. A Turing machine is a simple
device that has finite-state control that interacts with an unbounded
storage tape (or, equivalently, a finite-state control that interacts with
two unbounded stacks, as we shall show very soon). In fact, several

2 “If it walks like a duck and quacks like a duck, then it is a duck.”
3 I’ve “laced” this book with several footnotes, hoping to ‘break the ice,’ and make

you believe that you are not reading a theory book.
4 A similar end-result should we abstract the music of Mozart as a sound pressure

waveform.
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other formal devices - such as the Lambda calculus, Thue systems, etc.
- were proposed around the same time as Turing machines. All these
devices were also formally shown to be equivalent to Turing machines.
This caused Alonzo Church to put forth his (by now famous) thesis:
“All effectively computable functions can be understood in terms of
one of these models.” In Chapter 15 we shall study Turing machines
in great detail; Chapter 6 gives a glimpse of how the Lambda calculus,
essentially through the fixed-point theory, provides a formal model for
computer programs.

A Minimalist Approach

In a minimalist approach, models are created with the smallest possible
set of mechanisms. In the case of computational models, it is a bit ironic
that the first model proposed - namely Turing machines- was also the
most powerful. However, with the increasing usage of computers,5 two
other models born out of practical necessity were proposed, roughly
two decades after Turing machines were proposed: finite automata in
the late 1950’s, and push-down automata shortly thereafter. Rearrang-
ing computer history a bit, we will discuss finite automata first, push-
down automata next, and finally Turing machines (see Figure 1.1). All
these types of machines are meant to carry out computational proce-
dures (“procedures” for short,) consisting of instructions. They differ
primarily in the manner in which they record data (“state”). A proce-
dure always begins at an initial state which is highlighted by an arrow
impinging from nowhere, as in Figure 1.1. The “data input” to a proce-
dure, if any, is provided through the data storage device of the machine.
Each instruction, when executed, helps transform the current (data and
control) state into the next state. An instruction may also read an in-
put symbol (some view these inputs coming from a read-only tape).
Also, at every state, one or more instructions may become eligible to
execute. A deterministic machine is one that has at most one eligible
instruction to execute at any time, while a nondeterministic machine
can have more than one eligible instruction.

A procedure halts when it encounters one of the predetermined final
states. It is possible for a procedure to never encounter one of its final
states; it may loop forever. If a procedure is guaranteed to halt on all
inputs, it is called an algorithm. Unfortunately, it is impossible to tell

5 Thomas J. Watson, Chairman of IBM in 1943, is said to have remarked, “I think
there is a world market for maybe five computers.” Well, there are more than five
computers in a typical car today. Some cars carry hundreds, in fact!



4 1 Introduction

whether a given procedure is an algorithm - a topic that we shall revisit
many times in this book.

One of the central points made in this book is that there are essen-
tially three ways to organize the data (state) recording apparatus of a
machine: (i) have none at all, (ii) employ one stack to record data, and
(iii) employ two stacks to record data (in other words, employ zero,
one, or two stacks)! A finite-state control device by itself (i.e., without
any additional history recording device) is called a finite automaton
- either a deterministic finite automaton (DFA) or a nondeterminstic
finite automaton (NFA). A finite automaton is surprisingly versatile.
However, it is not as powerful as a machine with one stack, which,
by the way, is called a push-down automaton (PDA). Again there are
NPDA and DPDA - a distinction we shall study in Chapters 13 and
14.

A PDA is more powerful than a finite automaton. By employing
an unbounded stack, a PDA is able to store an arbitrary amount of
information in its state, and hence, is able to refer to data items stacked
arbitrarily prior. However, a PDA is not as powerful as a machine with
two stacks. This is because a PDA is not permitted to “peek” inside
its stack to look at some state s held deep inside the stack, unless it is
also willing to pop away all the items stacked since s was stacked. Since
there could be arbitrarily many such stacked items, a PDA cannot hope
to preserve all these items being popped and restore them later.

Two stacks
TMFA

No stack
PDA
One stack

Data states

Instructions

control
states

no data state

Fig. 1.1. The power of various machines, and how to realize them
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The moment a finite-state control device has access to two un-
bounded stacks, however, it will have the ability to pop items from
one stack and push them into the other stack. This gives these two-
stack machines the ability to peek inside the stacks; in effect, a finite-
state control device with two stacks becomes equivalent to a Turing
machine. We can show that adding further stacks does not increase its
power! (These two-stack devices were historically first introduced in the
form of Turing machines, as we shall see in more detail in Chapter 15,
Section 15.2.2.) All computers, starting from the humble low-end com-
puter of a Furbee doll or a digital wrist-watch, through all varieties of
desktop and laptop computers, all the way to ‘monstrously powerful’
computers, (Say, the IBM Blue Gene/L [4] computer) can be modeled
in terms of Turing machines.

There is an important point of confusion we wish to avoid early. Real
computers only have a finite amount of memory. However, models of
computers employ an unbounded amount of memory. This allows us to
study the outcomes possible in any finite memory device, regardless of
how much memory it has. So long as the finite memory device does not
hit its storage limit, it can pretend that it is working with an infinite
amount of memory.

How to Measure the Power of Computers?

In comparing computational machines (“computers,” loosely), we can-
not go by any subjective measure such as their absolute speed, as such
“speed records” tend to become obsolete with the passage of time. For
instance, the “supercomputers” of the 1950s did not even possess the
computational power of many modern hand-held computers and calcu-
lators. Instead, we go by the problem solving ability of computational
devices: we deem two machines M1 and M2 to be equivalent if they can
solve the same class of problems, ignoring the actual amount of time
taken. Problem solving, in turn, can be modeled in terms of algorith-
mically deciding membership in languages. Alas, these topics will have
to be discussed in far greater detail than is possible now, since we have
not set up any of the necessary formal definitions.

Complexity Theory

You may have already guessed this: in studying and comparing com-
puting devices, we cannot ignore time or resources entirely. They do
matter! But then one will ask, “how do we measure quantities such
as time, space, and energy?” It is very easy to see that using metrics
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such as minutes and hours is unsatisfactory, as they are non-robust
measures, being tied to factors with ephemeral significance, such as the
clock speed of computers, the pipeline depth, etc. With advances in
technology, computations that took hours a few years ago can nowa-
days be performed in seconds. Again, Turing machines come to our
rescue! We define a unit of time to be one step of a Turing machine
that is running the particular program or computation. We then define
time in terms of the asymptotic worst-case complexity notation “O()”
employed in any book on algorithm analysis (see for instance [29] or
[6]). However, such a characterization is often not possible:

There are many problems (called NP-complete problems) whose
best known solutions are exponential time algorithms. It is unknown
whether these problems have polynomial time algorithms.
There are problems for which algorithms are known not to exist; for
others, it is not known whether algorithms exist.

However, it is true that researchers engaged in studying even these
problems employ Turing machines as one of their important formal
models. This is because any result obtained for Turing machines can
be translated into corresponding results for real computers.

Automata Theory and Computing

In this book, we approach the above ideas through automata theory.
What is automata theory? Should its meaning be cast in concrete,
or should it evolve with advances in computer science and computer
applications? In this book, we take a much broader meaning for the
term ‘automata theory.’ We will use it to refer to a comprehensive list
of closely related topics, including:

• finite and infinite automata (together called “automata”),
• mathematical logic,
• computability and complexity (TR, co-TR, NP-complete, etc.),
• formal proofs,
• the use of automata to decide the truth of formal logic statements,
• automata on infinite words to model the behavior of reactive sys-

tems, and last but not least,
• applications of the above topics in formal verification of systems.

Automata theory is a ‘living and breathing’ branch of theory - not ‘fos-
silized knowledge.’ It finds day-to-day applications in numerous walks
of life, in the analysis of computing system behavior. In this book,
we present a number of tools to help understand automata theoretic
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concepts and also to illustrate how automata theory can be applied
in practice. We illustrate the use of automata to describe many real-
life finite-state systems, including: games, puzzles, mathematical logic
statements, programming language syntax, error-correcting codes, and
combinational and sequential digital circuits. We also illustrate tools
to describe, compose, simplify, and transform automata.

Why “Mix-up” Automata and Mathematical Logic?

We believe that teaching automata theory hand-in-hand with mathe-
matical logic allows us to not only cover concepts pertaining to formal
languages and machines, but also illustrate the deep connections that
these topics have to the process of formalized reasoning – proving prop-
erties about computing systems. Formalized reasoning about comput-
ing systems is escalating in importance because of the increasing use of
computers in safety critical and life critical systems. The software and
hardware used in life and resource critical applications of computers is
becoming so incredibly complex that testing these devices for correct
operation has become a major challenge. For instance, while perform-
ing 100 trillion tests sounds more than adequate for many systems, it
is simply inadequate for most hardware/software systems to cover all
possible behaviors.

Why Verify? Aren’t Computers “Mostly Okay?”

Human society is crucially dependent on software for carrying out an
increasing number of day-to-day activities. The presence of bugs in
software is hardly noticed until, say, one’s hand-held computer hangs,
when one pokes its reset button and moves on, with some bewilderment.
The same is the case with many other computers that we use; in general,
the mantra seems to be, “reset and move on!” However, this surely
cannot be a general design paradigm (imagine a machine getting stuck
in an infinite reboot loop if the problem does not clear following a
reset). In the modern context, one truly has to worry about the logical
correctness of software and hardware because there have been many
“close calls,” some real disasters, and countless dollars have been wasted
in verifying products before they are released. In 2004, the Mars Spirit
Rover’s computer malfunctioned when the number of allowed open files
in flash memory were exceeded. This caused a shadow of uncertainty
to hang over the project for a few days, with scientists wasting their
time finding a cure for the problem. Recently, car companies have had
recalls due to software bugs in their computerized engine control; the
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societal costs of such bugs (“software defects”) are estimated to be very
high [116, 103]. In 1996, Ariane-5, a rocket costing 2B, self-destructed
following an arithmetic overflow error that initially caused the rocket
nozzles to be pointed incorrectly [84].

A very important human lesson is contained in many software fail-
ures. In 1987, a radiation therapy machine called Therac-25 actually
caused the death of several patients who came to get radiation therapy
for cancer. At the time of the incident, the machine had recently been
redesigned and its software was considered so reliable that many of
its safety interlock mechanisms had been dispensed with. One of these
interlocks was for monitoring the amount of radiation received by pa-
tients. To cut a long story short, the software was, after all, buggy, and
ended up administering massive radiation overdoses to patients [76].
Every engineer shoulders the societal responsibility to adopt simple
and reliable safety measures in the systems they design and deploy to
avoid such catastrophes. The approach taken in each project must be:
“when in doubt, play it safe, keeping the well being of lives and nature
in mind.”

The root cause of a large majority of bugs is the ambiguous and/or
inconsistent specification of digital system components and subsystems.
Software built based on such specifications is very likely to be flawed,
hard to debug, and impossible to systematically test. As an example
from recent practice, the specification document of a widely used com-
puter interconnect bus called the ‘PCI’ [95] was shown to be internally
inconsistent [28]. Unfortunately, the design community had moved too
far along to take advantage of these findings. Many of the disasters of
computer science are not directly in the form of crashes of rockets or
chips (although such disasters have happened6). In 2001, the United
States Federal Bureau of Investigation (FBI) launched a project to
overhaul their software to coordinate terrorist databases. After nearly
four years and over 300 million dollars spent, the project has been de-
clared to have an unrealizable set of software requirements, and hence
abandoned.

The ability to write precise, as well as, unambiguous specifications is
central to using them correctly and testing them reliably. Such formal
methods for hardware and software have already been widely adopted.
Organizations such as Intel, AMD, IBM, Microsoft, Sun, HP, JPL,
NASA, and NSA employ hundreds of formal verification specialists.

6 The Ariane rocket, worth 2B, was lost because of incorrect version of software
running. Intel lost .5B due to a floating-point bug in their Pentium II micropro-
cessor.
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Unfortunately, there are many areas where the power of formal methods
has not been demonstrated. This book hopes to expose students to the
basics of formal methods, so that they will be able to participate in, as
well as contribute to, the formal methods revolution that is happening.

Verifying Computing Systems Using Automaton Models

It turns out that in order to prove that even the simplest of comput-
ing systems operates correctly, one has to examine so many inputs and
their corresponding outputs for correctness. In many cases, it will take
several thousands of centuries to finish complete testing. For example,
if such a computer has one megabit of internal storage, one has to check
for correctness over 2106

states. This is a number of unfathomable mag-
nitude. Chapters 21 through 23 present how automata theory, along
with the use of finite-state abstractions and symbolic state represen-
tations, helps debug concurrent systems through a powerful approach
known as model checking.

How does automata theory help ensure that safety critical systems
are correct? First of all, it helps create abstract models for systems.
Many systems are so complex that each vector consists of thousands, if
not millions, of variables. If one considers going through all of the 21000

assignments for the bits in the vector, the process will last thousands
of millennia. If one runs such tests for several days, even on the fastest
available computer, and employs a good randomization strategy in vec-
tor selection, one would still have covered only some arbitrary sets of
behaviors of the system. Vast expanses of its state-space would be left
unexamined. A much more effective way to approach this problem in
practice is to judiciously leave out most of the bits from vectors, and
examine the system behavior exhaustively over all the remaining be-
haviors. (In many cases, designers can decide which bits to leave out;
in some cases, computer-based tools can perform this activity.) That is,
by leaving out the right set of bits, we end up fully covering an abstract
model. Experience has repeatedly shown that verifying systems at the
level of abstract models can often find serious bugs quicker. The simu-
lation of non-abstracted models is also a necessary part of verification
in practice.

It turns out that abstracted models of most systems are finite au-
tomata. There are a number of techniques being developed that can
represent, as well as manipulate, very large finite automata. These tech-
niques help minimize the degree to which systems have to be abstracted
before they can be exhaustively verified. This, in turn, means that the
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risk of accidentally missing an error due to overly heavy abstractions
is also reduced.

Automaton/Logic Connection

Various branches of mathematical logic are employed to precisely and
unambiguously describe both system requirements and system behav-
iors. In modern verification systems, automata theoretic techniques are
often employed to process these logical specifications to check whether
they are true or false. It is therefore important for students to see these
topics treated in a cohesive manner.

The importance of precision and clarity in system descriptions can-
not be overstated. Many system description documents rival Los Ange-
les telephone directories in their size, containing a very large number of
subtle assertions that tax the human mind. Each person reading such
a document comes up with a different understanding. While engineers
are incredibly smart and are able to correct their misunderstandings
more often than not, they still waste their time poring over lengthy
prose fragments that are ambiguous, and simply too complex to trust
one’s mind with. It has been widely shown that formal statements in
mathematical logic can serve as very valuable augments to text-based
documents, supplying the missing precision in the text.

One of the most serious deficiencies of an exclusively natural-
language system description is that engineers cannot mechanically cal-
culate their consequences. In other words, they cannot ask “what if”
(putative) queries about scenarios that are not explicitly discussed in
the document. An example from the I/O system world is, “what if I/O
transaction x is allowed to overtake transaction y? Does it cause wrong
answers to be returned? Does it cause system deadlocks?” The number
of potentially interesting “what if” questions pertaining to any real sys-
tem is extremely large. It is impossible or even counterproductive for
a specification document to list all these questions and their answers.7

On the other hand, an approach where one is able to state the speci-
fication of complex systems (such as I/O buses) in a precise language
based on mathematical logic, and is able to pose putative or challenge
queries (also expressed in mathematical logic) is highly conducive to
gaining a proper understanding of complex systems. Ideally, systems of
this kind must either try to show that the posed conjecture or query
is true, or provide a clear explanation of why it is false. Model check-
ing based verification methods (discussed Chapter 21 onwards) provide

7 Doing so would result in not just a telephone directory, but an entire city library!
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this ability in most formal verification based design approaches under
development or in actual use today.

The ability to decide - provide an answer, without looping, for all
possible putative queries - is, of course, a luxury enjoyed when we em-
ploy simpler mathematical logics. Unfortunately, simpler mathematical
logics are often not as expressive, and we will then have to deduce, us-
ing partly manual steps and partly automatic (decidable) steps, the
answer. In Chapter 18, this book provides a formal proof as to why
some of these logics are undecidable.

Avoid Attempting the Impossible

Automata theory and logic often help avoid pursuing the impossible. If
one can prove that there cannot be a decider for some task, then there
is no point wasting everyone’s time in pursuit of an algorithm for that
task. On the other hand, if one does prove that an algorithm exists,
finding an efficient algorithm becomes a worthwhile pursuit.

As an example, the next time your boss asks you to produce a C-
grammar equivalence checker that checks the equivalence between any
two arbitrary C-grammar files (say, written in the language Yacc or
Bison) and takes no more than “a second per grammar-file line,” don’t
waste your time coding - simply prove that this task is impossible!8

Solving One Implies Solving All

There is another sense in which automata theory helps avoid work.
In many of these cases, researchers have found that while we cannot
actually solve a given problem, we can gang up or “club together”
thousands of problems such that the ability to solve any one of these
problems gives us the ability to solve all of these problems. Often the
solvability question will be whether it is tractable to solve the problems
- i.e., solve in polynomial time. In many cases, we are simply interested
in solvability, without worrying about the amount of time. In these
cases also, repeated work is avoided by grouping a collection of prob-
lems into an equivalence class and looking for a solution to only one
of these problems; this solution can be easily modified to solve thou-
sands of practical problems. This is the motivation behind studying
NP-completeness and related notions. We will also study the famous
Halting problem and problems related to it by taking this approach

8 You may wish to state that the difference between Bison and Yacc is that one
cannot wash one’s face in a Yacc!
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of clubbing problems together through the powerful idea of mapping
reductions.

Automata Theory Demands a Lot From You!

The study of automata theory is a challenging. It exposes students to
a variety of mathematical models and helps build confidence in them,
thus encouraging them to be creative, to take chances, and to tread new
ground while designing computing systems. Unfortunately, the notion
of formally characterizing designs is not emphasized in traditional sys-
tems classes (architecture, operating systems, etc.), where the goal has,
historically, been high performance and not high reliability. Therefore,
it takes an extra bit of effort to put formal specification and verification
into practice. Fortunately, the computer industry has embraced formal
methods, and sees it as the main hope for managing the complexity
and ensuring the reliability of future designs.

It is impossible to learn automata theory “in a hurry.” While the
subject is quite simple and intuitive in hindsight, to get to that stage
takes patience. You must allow enough time for the problems to gestate
in your minds. After repeatedly trying and failing, you will be able to
carry the problems in your minds. You may end up solving some of
them in the shower.9

A Brief Foray Into History

Let us take a historical perspective, to look back into how this subject
was viewed by two of the originators of this subject - Michael Rabin
and Dana Scott - in their 1959 paper (that, incidentally, is cited in their
ACM Turing award citation [100]):

Turing machines are widely considered to be the abstract pro-
totype of digital computers; workers in the field, however, have
felt more and more that the notion of a Turing machine is too
general to serve as an accurate model of actual computers. It
is well known that even for simple calculations, it is impossible
to give a prior upper bound on the amount of tape a Turing
machine will need for any given computation. It is precisely this
feature that renders Turing’s concept unrealistic.
In the last few years, the idea of a finite automaton has appeared
in the literature. These are machines having only a finite number

9 You may wish to warn your family members that you may one day bolt out of
the shower, all soaking wet, shouting “Eureka!”
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of internal states that can be used for memory and computation.
The restriction of finiteness appears to give a better approxima-
tion to the idea of a physical machine. [...]. Many equivalent
forms of the idea of finite automata have been published. One
of the first of these was the definition of “nerve-nets” given by
McCulloch and Pitts. [...]

In short, Rabin and Scott observe that the theory of Turing machines,
while all encompassing, is “too heavy-weight” for day-to-day studies of
computations. They argue that perhaps finite automata are the right
model of most real-world computations. From a historical perspective,
the more complex machine form (Turing machine) was proposed much
before the much simpler machine form (finite automata). All this is
clearly not meant to say that Turing machines are unimportant—far
from it, in fact! Rather, the message is that a more balanced view of
the topics studied under the heading of automata will help one better
appreciate how this area came about, and how the priorities will shift
over time.

Disappearing Formal Methods

In the article “disappearing formal methods [104],” John Rushby points
out how throughout the history of engineering, various new technolo-
gies had been [over] advertised, until they became widely accepted and
taken for granted. For instance, many olden-day radios had a digit (‘6’
or ‘8’) boldly written on their aluminum cases, advertising the fact
that they actually employed 6 or 8 (as the case may be) transistors.10

Centuries ago, differential and integral calculus were widely advertised
as the “magic” behind studying planetary motions, as well as building
everyday objects, such as bridges. Today, nobody hangs a sign-board
on a bridge proclaiming, “this bridge has been designed using differen-
tial and integral calculus!” In the same vein, the term formal methods
is nowadays used as a “slogan” to call attention to the fact that we
are really using ideas based on logic and automata theory to design
products, as opposed to previously, when we used no such disciplined
approach. While the explicit advertisement of the technology behind
modern developments is inevitable, in the long run when such applica-
tions are well understood, we would no longer be pointing out explicitly

10 Bob Colwell recently told me the story of a radio he opened in his younger days,
only to find that it had two transistors connected to nowhere - apparently serving
the only purpose of jacking up the number advertised outside!
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that we are actually designing, say, floating-point units, using higher
order logic.

Said another way, in a future book on automata theory, perhaps one
could dispense with all these motivational remarks that have prevented
us from heading towards the core of this book. Luckily, that is precisely
where we are headed now.

Exercises

1.1. Read the 1972 Turing Award Lecture by Edsger W. Dijkstra en-
titled “The Humble Programmer” [36]. This, and a significant number
of other articles referred to in this book, is available through the ACM
Digital Library, and often through the Google search engine.

1.2. Read and summarize the article “The Emperor’s Old Clothes” by
C. A. R. Hoare [57].

1.3. Read and summarize the article “Computational Thinking” by
Jeanette M. Wing [123]. Computational thinking represents a univer-
sally applicable attitude and skill set everyone, not just computer sci-
entists, would be eager to learn and use.
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Mathematical Preliminaries

In this chapter, we introduce many of the fundamental mathemati-
cal ideas used throughout the book. We first discuss sets, which help
organize “things” into meaningful unordered collections. We then dis-
cuss functions which help map things to other things. Next, we dis-
cuss relations that relate things. We provide a concrete syntax, that
of Lambda expressions, for writing down function definitions. We then
present ways to “count” infinite sets through a measure known as car-
dinality.

2.1 Numbers

We will refer to various classes of numbers. The set Nat, or natu-
ral numbers, refers to whole numbers greater than or equal to zero,
i.e., 0, 1, 2, . . .. The set Int, or integers, refers to whole numbers, i.e.,
0, 1,−1, 2,−2, 3,−3 . . .. The set Real, or real numbers, refers to both
rational as well as irrational numbers, including 0.123,

√
2, π, 1, and

−2.

2.2 Boolean Concepts, Propositions, and Quantifiers

We assume that the reader is familiar with basic concepts from Boolean
algebra, such as the use of the Boolean connectives and (∧), or (∨), and
not (¬). We will be employing the two quantifiers “for all” (∀) and “for
some” or equivalently “there exists” (∃) in many definitions. Here we
provide preliminary discussions about these operators; more details are
provided in Section 5.2.4.
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In a nutshell, the quantifiers ∀ and ∃ are iteration schemes for ∧, ∨,
and ¬, much like Σ (summation) and Π (product) are iteration schemes
for addition (+) and multiplication (×). The universal quantification
operator ∀ is used to make an assertion about all the objects in the
domain of discourse. (In mathematical logic, these domains are assumed
to be non-empty). Hence,

∀x : Nat : P (x)

is equivalent to an infinite conjunction

P (0) ∧ P (1) ∧ P (2) . . .

or equivalently ∧x∈Nat : P (x).

2.3 Sets

A set is a collection of things. For example, A = {1, 2, 3} is a set contain-
ing three natural numbers. The order in which we list the contents of a
set does not matter. For example, A = {3, 1, 2} is the same set as above.
A set cannot have duplicate elements. For example, B = {3, 1, 2, 1} is
not a set.1

A set containing no elements at all is called the empty set, written
{}, or equivalently, ∅. A set may also consist of a collection of other
sets, as in

P = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

P has a special status; it contains every subset of set A. P is in fact
the powerset of A. We will have more to say about powersets soon.

2.3.1 Defining sets

Sets are specified using the set comprehension notation

S = {x ∈ D | p(x)}.

Here, S includes all x from some universe D such that p(x) is true. p(x)
is a Boolean formula called characteristic formula. p by itself is called
the characteristic predicate. We can leave out D if it is clear from the
context.

1 An unordered collection with duplicates, such as B, is called a multi-set or bag.
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Examples:

• Set A, described earlier, can be written as

A = {x | x = 1 ∨ x = 2 ∨ x = 3}.

• For any set D,
{x ∈ D | true} = D.

Notice from this example that the characteristic formula can simply
be true, or for that matter false.

• For any set D,
{x ∈ D | false} = ∅.

The next two sections illustrate that care must be exercised in writ-
ing set definitions. The brief message is that by writing down a collec-
tion of mathematical symbols, one does not necessarily obtain some-
thing that is well defined. Sometimes, we end up defining more than
one thing without realizing it (the definitions admit multiple solutions),
and in other cases we may end up creating contradictions.

2.3.2 Avoid contradictions

Our first example illustrates the famous Russell’s Paradox. This para-
dox stems from allowing expressions such as x ∈ x and x /∈ x inside
characteristic formulas. Consider some arbitrary domain D. Define a
set S as follows:

S = {x ∈ D | x /∈ x}.
Now, the expression x /∈ x reveals that x itself is a set. Since S is a set,
we can now ask, “is S a member of S?”

• If S is a member of S, it cannot be in S, because S cannot contain
sets that contain themselves.

• However, if S is not a member of S, then S must contain S!

Contradictions are required to be complete, i.e., apply to all possible
cases. For example, if S /∈ S does not result in a contradiction, that,
then, becomes a consistent solution. In this example, we fortunately
obtain a contradiction in all the cases. The proposition S ∈ S must
produce a definite answer - true or false. However, both answers lead to
a contradiction.

We can better understand this contradiction as follows. For Boolean
quantities a and b, let a ⇒ b stand for “a implies b” or “if a then b;”
in other words, ⇒ is the implication operator. Suppose S ∈ S. This
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allows us to conclude that S /∈ S. In other words, (S ∈ S) ⇒ (S /∈ S)
is true. In other words, ¬(S ∈ S) ∨ (S /∈ S), or (S /∈ S) ∨ (S /∈ S), or
(S /∈ S) is true. Likewise, (S ∈ S) ⇒ (S /∈ S). This allows us to prove
(S ∈ S) true. Since we have proved S ∈ S as well as S /∈ S, we have
proved their conjunction, which is false! With false proved, anything
else can be proved (since false ⇒ anything is ¬(false)∨ anything, or
true). Therefore, it is essential to avoid contradictions in mathematics.

Russell’s Paradox is used to conclude that a “truly universal set”
– a set that contains everything – cannot exist. Here is how such a
conclusion is drawn. Notice that set S, above, was defined in terms
of an arbitrary set called D. Now, if D were to be a set that contains
“everything,” a set such as S must clearly be present inside D. However,
we just argued that S must not exist, or else a contradiction will result.
Consequently, a set containing everything cannot exist, for it will lack
at least S. This is the reason why the notion of a universal set is not
an absolute notion. Rather, a universal set specific to the domain of
discourse is defined each time. This is illustrated below in the section
devoted to universal sets. In practice, we disallow sets such as S by
banning expressions of the form x ∈ x. In general, such restrictions are
handled using type theory [48].

2.3.3 Ensuring uniqueness of definitions

When a set is defined, it must be uniquely defined. In other words, we
cannot have a definition that does not pin down the exact set being
talked about. To illustrate this, consider the “definition” of a set

S = {x ∈ D | x ∈ S},

where D is some domain of elements. In this example, the set being
defined depends on itself. The circularity, in this case, leads to S not
being uniquely defined. For example, if we select D = Nat, and plug
in S = {1, 2} on both sides of the equation, the equation is satisfied.
However, it is also satisfied for S = ∅, S = {3, 4, 5}. Hence, in the above
circular definitions, we cannot pin down exactly what S is.

The message here is that one must avoid using purely circular defini-
tions. However, sets are allowed to be defined through recursion which,
at first glance, is “a sensible way to write down circular definitions.”
Chapter 7 explains how recursion is understood, and how sets can be
uniquely defined even though “recursion seems like circular definition.”
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Operations on Sets

Sets support the usual operations such as membership, union, intersec-
tion, subset, powerset, Cartesian product, and complementation. x ∈ A
means x is a member of A. The union of two sets A and B, written
A∪B, is a set such that x ∈ (A∪B) if and only if x ∈ A or x ∈ B. In
other words, x ∈ (A ∪ B) implies that x ∈ A or x ∈ B. Also, x ∈ A or
x ∈ B implies that x ∈ (A ∪ B). similarly, the intersection of two sets
A and B, written A ∩ B, is a set such that x ∈ (A ∩ B) if and only if
x ∈ A and x ∈ B.

A proper subset A of B, written A ⊂ B, is a subset of B different
from B. A ⊆ B, read ‘A is a subset of B’, means that A ⊂ B or A = B.
Note that the empty set has no proper subset.

Subtraction, Universe, Complementation, Symmetric
Difference

Given two sets A and B, set subtraction, ‘\’, is defined as follows:

A \ B = {x | x ∈ A ∧ x /∈ B}.
Set subtraction basically removes all the elements in A that are in B.
For example, {1, 2} \ {2, 3} is the set {1}. 1 survives set subtraction
because it is not present in the second set. The fact that 3 is present
in the second set is immaterial, as it is not present in the first set.

For each type of set, there is a set that contains all the elements of
that type. Such a set is called the universal set. For example, consider
the set of all strings over some alphabet, such as {a, b}. This is universal
set, as far as sets of strings are concerned. We can write this set as

SigmaStar = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}.
(The reason why we name the above set SigmaStar will be explained
in Chapter 7.) Here, ε is the empty string, commonly written as "", a
and b are strings of length 1, aa, ab, ba, and bb are strings of length
2, and so on. While discussing natural numbers, we can regard Nat =
{0, 1, 2, . . .} as the universe.

The symbol ε is known to confuse many students. Think of
it as the “zero” element of strings, or simply read it as the
empty string "". By way of analogy, the analog of the arithmetic
expression 0+1, which simplifies to 1, is ε concatenated with a,
which simplifies to a. (We express string concatenation through
juxtaposition). Similarly, 0+2+0 = 2 is to numbers as ε aa ε =
aa is to strings. More discussions are provided in Section 7.2.4.
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Universal sets help define the notion of complement of a set. Consider
the universal set (or “universe”) SigmaStar of strings over some alpha-
bet. The complement of a set of strings such as {a, ba} is
SigmaStar \ {a, ba}. If we now change the alphabet to, say, {a}, the
universal set of strings over this alphabet is

SigmaStar1 = {ε, a, aa, aaa, aaaa, . . .}.

Taking the complement of a set such as {a, aaa} with respect to
SigmaStar1 yields a set that contains strings of a’s such that the num-
ber of occurrences of a’s is neither 1 nor 3.

Given two sets A and B, their symmetric difference is defined to be

(A \ B) ∪ (B \ A).

For example, if A = {1, 2, 3} and B = {2, 3, 4, 5}, their symmetric
difference is the set {1, 4, 5}. The symmetric difference of two sets pro-
duces, in effect, the XOR (exclusive-OR) of the sets.

For any alphabet Σ and its corresponding universal set SigmaStar,
the complement of the empty set ∅ is SigmaStar. One can think of ∅ as
the empty set with respect to every alphabet.

Types versus Sets

The word type will be used to denote a set together with its associated
operations. For example, the type natural number, or Nat, is associated
with the set {0, 1, 2, . . .} and operations such as successor, +, etc. ∅
is an overloaded symbol, denoting the empty set of every type. When
we use the word “type,” most commonly we will be referring to the
underlying set, although strictly speaking, types are “sets plus their
operations.”

Numbers as Sets

In mathematics, it is customary to regard natural numbers themselves
as sets. Each natural number essentially denotes the set of natural
numbers below it. For example, 0 is represented by {}, or ∅, as there
are no natural numbers below 0. 1 is represented by {0}, or (more
graphically) {{}}, the only natural number below 1. Similarly, 2 is the
set {0, 1}, 3 is the set {0, 1, 2}, and so on. This convention comes in
quite handy in making formulas more readable, by avoiding usages such
as

∀i : 0 ≤ i ≤ N − 1 : ..something..
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and replacing them with

∀i ∈ N : ..something..

Notice that this convention of viewing sets as natural numbers is
exactly similar to how numbers are defined in set theory textbooks,
e.g., [50]. We are using this convention simply as a labor-saving device
while writing down definitions. We do not have to fear that we are
suddenly allowing sets that contain other sets.

As an interesting diversion, let us turn our attention back to the
discussion on Russell’s Paradox discussed in Section 2.3.2. Let us take
D to be the set of natural numbers. Now, the assertion x /∈ x evaluates
to true for every x ∈ D. This is because no natural number (viewed
as a set) contains itself - it only contains all natural numbers strictly
below it in value. Hence, no contradiction results, and S ends up being
equal to Nat.

2.4 Cartesian Product and Powerset

The Cartesian product operation ‘×’ helps form sets of tuples of el-
ements over various types. The terminology here goes as follows:
‘pairs’ are ‘two-tuples,’ ‘triples’ are ‘three-tuples,’ ‘quadruples’ are
‘four-tuples,’ and so on. After 5 or so, you are allowed to say ‘n-ple’ -
for instance, ‘37-ple’ and so on. For example, the set Int×Int denotes
the sets of pairs of all integers. Mathematically, the former set is

Int × Int = {〈x, y〉 | x ∈ Int ∧ y ∈ Int}.

Given two sets A and B, the Cartesian product of A and B,
written A × B, is defined to be the set

{〈a, b〉 | a ∈ A ∧ b ∈ B}.

We can take Cartesian product of multiple sets also. In general, the
Cartesian product of n sets Ai, i ∈ n results in a set of “n-tuples”

A0 × A1 × . . . An−1 = {〈a0, a1, . . . , an−1〉 | ai ∈ Ai for every i}.

If one of these sets, Ai, is ∅, the Cartesian product results in ∅ because
it is impossible to “draw” any element out of Ai in forming the n-ples.
Here are some examples of Cartesian products:

• {2, 4, 8} × {1, 3} × {100} =
{〈2, 1, 100〉, 〈2, 3, 100〉, 〈4, 1, 100〉, 〈4, 3, 100〉, 〈8, 1, 100〉, 〈8, 3, 100〉}.
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• SigmaStar1×SigmaStar1 = {〈x, y〉 | x and y are strings over {a}}.
In taking the Cartesian product of n sets Ai, i ∈ n, it is clear that

if n = 1, we get the set A0 back. For example, if A0 = {1, 2, 3}, the
1-ary Cartesian product of A0 is itself. Note that A0 = {1, 2, 3} can
also be written as A0 = {〈1〉, 〈2〉, 〈3〉} because, in classical set theory
[50], 1-tuples such as 〈0〉 are the same as the item without the tuple
sign (in this case 0).

It is quite common to take the Cartesian product of different types
of sets. For example, the set Int × Bool denotes the sets of pairs of
integers and Booleans. An element of the above set is 〈22, true〉, which
is a pair consisting of one integer and one Boolean.

2.4.1 Powersets and characteristic sequences

The powerset of a set S is the set of all its subsets. As is traditional,
we write 2S to denote the powerset of S. In symbols,

2S = {x | x ⊆ S}.

This “exponential” notation suggests that the size of the powerset is
2 raised to the size of S. We can argue this to be the case using the
notion of characteristic sequences. Take S = {1, 2, 3} for example. Each
subset of S is defined by a bit vector of length three. For instance, 000
represents ∅ (include none of the elements of S), 001 represents {3}, 101
represents {1, 3}, and 111 represents S. These “bit vectors” are called
characteristic sequences. All characteristic sequences for a set S are of
the same length, equal to the size of the set, |S|. Hence, the number of
characteristic sequences for a finite set S is exponential in |S|.

2.5 Functions and Signature

A function is a mathematical object that expresses how items called
“inputs” can be turned into other items called “outputs.” A function
maps its domain to its range; and hence, the inputs of a function belong
to its domain and the outputs belong to its range. The domain and
range of a function are always assumed to be non-empty. The
expression “f : TD → TR” is called the signature of f , denoting that f
maps the domain of type TD to the range of type TR. Writing signatures
down for functions makes it very clear as to what the function “inputs”
and what it “outputs.” Hence, this is a highly recommended practice.
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As a simple example, + : Int × Int → Int denotes the signature of
integer addition.

Function signatures must attempt to capture their domains and
ranges as tightly as possible. Suppose we have a function g that accepts
subsets of {1, 2, 3}, outputs 4 if given {1, 2}, and outputs 5 given any-
thing else. How do we write the signature for g? Theoretically speaking,
it is correct to write the signature as 2Nat → Nat; however, in order to
provide maximum insight to the reader, one must write the signature
as

2{1,2,3} → {4, 5}.
If you are unsure of the exact domain and range, try to get as tight as
possible. Remember, you must help the reader.
The image of a function is the set of range points that a function
actually maps onto. For function f : TD → TR,

image(f) = {y ∈ TR | ∃x ∈ TD : y = f(x)}.

2.6 The λ Notation

The Lambda calculus was invented by Alonzo Church2 as a formal rep-
resentation of computations. Church’s thesis tells us that the lambda-
based evaluation machinery, Turing machines, as well as other formal
models of computation (Post systems, Thue systems, . . .) are all for-
mally equivalent. Formal equivalences between these systems have all
been worked out by the 1950s.

More immediately for the task at hand, the lambda notation pro-
vides a literal syntax for naming functions. First, let us see in the con-
text of numbers how we name them. The sequence of numerals (in pro-
gramming parlance, the literal) ‘1’ ‘9’ ‘8’ ‘4’ names the number 1984.
We do not need to give alternate names, say ‘Fred’, to such numbers!
A numeral sequence such as 1984 suffices. In contrast, during program-
ming one ends up giving such alternate names, typically derived from
the domain of discourse. For example,

function Fred(x) {return 2;}.
Using Lambda expressions, one can write such function definitions
without using alternate names. Specifically, the Lambda expression
λx.2 captures the same information as in the above function definition.

2 When once asked how he chose λ as the delimiter, Church replied, “Eenie meenie
mynie mo!”
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We think of strings such as λx.2 as a literal (or name) that describes
functions. In the same vein, using Lambda calculus, one name for the
successor function is λx.(x+1), another name is λx.(x+2− 1), and so
on.3 We think of Lambda expressions as irredundant names for functions
(irredundant because redundant strings such as ‘Fred’ are not stuck in-
side them). We have, in effect, “de-Freded” the definition of function
Fred. In Chapter 6, we show that this idea of employing irredundant
names works even in the context of recursive functions. While it may
appear that performing such ‘de-Fredings’ on recursive definitions ap-
pears nearly impossible, Chapter 6 will introduce a trick to do so using
the so-called Y operator. Here are the only two rules pertaining to it
that you need to know:

• The Alpha rule, or “the name of the variable does not matter.”
For example, λx.(x + 1) is the same as λy.(y + 1). This process of
renaming variables is called alpha conversion. Plainly spoken, the
Alpha rule simply says that, in theory,4 the formal parameters of a
function can be named however one likes.

• The Beta rule, or “here is how to perform a function call.” A func-
tion is applied to its argument by writing the function name and
the argument name in juxtaposition. For example, (λx.(x + 1)) 2
says “feed” 2 in place of x. The result is obtained by substituting 2
for x in the body (x + 1). In this example, 2 + 1, or 3 results. This
process of simplification is called beta reduction.

The formal arguments of Lambda expressions associate to the right. For
example, as an abbreviation, we allow cascaded formal arguments of
the form (λxy.(x+y)), as opposed to writing it in a fully parenthesized
manner as in (λx.(λy.(x+y))). In addition, the arguments to a Lambda
expression associate to the left. Given these conventions, we can now
illustrate the simplification of Lambda expressions. In particular,

(λzy.(λx.(z + x))) 2 3 4

can be simplified as follows (we show the bindings introduced during
reduction explicitly):

= (λzy.(λx.(z + x))) 2 3 4

3 You may be baffled that I suddenly use “23” and “+” as if they were Lambda
terms. As advanced books on Lambda calculus show [48], such quantities can
also be encoded as Lambda expressions. Hence, anything that is effectively

computable—computable by a machine—can be formally defined using only the
Lambda calculus.

4 In practice, one chooses mnemonic names.



2.7 Total, Partial, 1-1, and Onto Functions 25

= (using the Beta rule) (λz = 2 y = 3.(λx.(z + x)))4.
= (λx.(2 + x))4
= (using the Beta rule) (λx = 4.(2 + x))
= 2 + 4
= 6

The following additional examples shed further light on Lambda cal-
culus:

• (λx.x) 2 says apply the identity function to argument 2, yielding 2.
• (λx.x) (λx.x) says “feed the identity function to itself.” Before per-

forming beta reductions here, we are well-advised to perform alpha
conversions to avoid confusion. Therefore, we turn (λx.x) (λx.x)
into (λx.x) (λy.y) and then apply beta reduction to obtain (λy.y),
or the identity function back.

• As the Lambda calculus seen so far does not enforce any “type
checking,” one can even feed (λx.(x + 1)) to itself, obtaining (after
an alpha conversion) (λx.(x+1))+1. Usually such evaluations then
get “stuck,” as we cannot add a number to a function.

2.7 Total, Partial, 1-1, and Onto Functions

Functions that are defined over their entire domain are total. An ex-
ample of a total function is λx.2x, where x ∈ Nat. A partial function
is one undefined for some domain points. For example, λx.(2/x) is a
partial function, as it is undefined for x = 0.

The most common use of partial functions in computer science is to
model programs that may go into infinite loops for some of their input
values. For example, the recursive program over Nat,

f(x) = if (x = 0) then 1 else f(x)

terminates only for x = 0, and loops for all other values of x. Viewed
as a function, it maps the domain point 0 to the range point 1, and
is undefined everywhere else on its domain. Hence, function f can be
naturally modeled using a partial function. In the Lambda notation,
we can write f as λx.if (x = 0) then 1. Notice that we use an “if-then”
which leaves the “else” case undefined.

One-to-one (1-1) functions f are those for which every point y ∈
image(f) is associated with exactly one point x in TD. A function
that is not 1-1 is ‘many-to-one.’ One-to-one functions are also known
as injections. An example of an injection is the predecessor function
pred : Nat → Nat, defined as follows:
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λx.if (x > 0) then (x − 1).

We have pred(1) = 0, pred(2) = 1, and so on. This function is partial
because it is undefined for 0.

Onto functions f are those for which image(f) = TR. Onto functions
are also known as surjections. While talking about the type of the range,
we say function f maps into its range-type. Hence, onto is a special
case of into when the entire range is covered. One-to-one, onto, and
total functions are known as bijections. Bijections are also known
as correspondences.
Examples: We now provide some examples of various types of func-
tions. In all these discussions, assume that f : Nat → Nat.

• An example of a one-to-one (1-1) function (“injection”) is f =
λx.2x.

• An example of a many-to-one function is f = λx.(x mod 4).
• An example of an onto function is f = λx.x.
• An example of a partial function is f = λx.if even(x) then (x/2).
• An example of a bijection is f = λx.if even(x) then (x+1) else (x−

1). All bijections f : TD → TR where TD = TR = T are the same
type, are permutations over T .

• Into means not necessarily onto. A special case of into is onto.
• Partial means not necessarily total. A special case of partial is total.

For any given one-to-one function f , we can define its inverse to
be f−1. This function f−1 is defined at all its image points. Therefore,
whenever f is defined at x,

f−1(f(x)) = x.

For f : TD → TR, we have f−1 : TR → TD. Consequently, if f is
onto, then f−1 is total—defined everywhere over TR. To illustrate this,
consider the predecessor function, pred. The image of this function is
Nat. Hence, pred is onto. Hence, while pred : Nat → Nat is not total,
pred−1 : Nat → Nat is total, and turns out to be the successor function
succ.

Given a bijection f with signature TD → TR, for any x ∈ TD,
f−1(f(x)) = x, and for any y ∈ TR, f(f−1(y)) = y. This shows that if
f is a bijection from TD to TR, f−1 is a bijection from TR to TD. For
this reason, we tend to call f a bijection between TD and TR - given
the forward mapping f , the existence of the backward mapping f−1 is
immediately guaranteed.
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Composition of functions

The composition of two functions f : A → B and g : B → C, written
g ◦ f , is the function λx . g(f(x)).

2.8 Computable Functions

Computational processes map their inputs to their outputs, and there-
fore are naturally modeled using functions. For instance, given two
matrices, a computational process for matrix multiplication yields the
product matrix. All those functions whose mappings may be obtained
through a mechanical process are called computable functions, effec-
tively computable functions, or algorithmically computable functions.
For practical purposes, another equivalent definition of a computable
function is one whose definition can be expressed in a general-purpose
programming language. By ‘mechanical process,’ we mean a sequence
of elementary steps, such as bit manipulations, that can be carried out
on a machine. Such a process must be finitary, in the sense that for
any input for which the function is defined, the computational process
producing the mapping must be able to read the input in finite time
and yield the output in a finite amount of time. Chapter 3 discusses the
notion of a ‘machine’ a bit more in detail; for now, think of computers
when we refer to a machine.

Non-computable functions are well-defined mathematical concepts.
These are genuine mathematical functions, albeit those whose map-
pings cannot be obtained using a machine. In Section 3.1, based on
cardinality arguments, we shall show that non-computable functions
do exist. We hope that the intuitions we have provided above will al-
low you to answer the following problems intuitively. The main point
we are making in this section is that just because a function “makes
sense” mathematically doesn’t necessarily mean that we can code it up
as a computer program!

2.9 Algorithm versus Procedure

An algorithm is an effective procedure, where the word ‘effective’ means
‘can be broken down into elementary steps that can be carried out
on a computer.’ The term algorithm is reserved to those procedures
that come with a guarantee of termination on every input. If such a
guarantee is not provided, we must not use the word ‘algorithm,’ but
instead use the word procedure. While this is a simple criterion one
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can often apply, sometimes it may not be possible to tell whether to
call something an algorithm or a procedure. Consider the celebrated
“3x + 1 problem,” also known as “Collatz’s problem,” captured by the
following program:

function three_x_plus_one(x)

{ if (x==1) then return 1;

if even(x) then three_x_plus_one(x/2);

else three_x_plus_one(3x+1); }

For example, given 3, the three_x_plus_one function obtains 10, 5,
16, 8, 4, 2, 1, and halts. Will this function halt for all x? Nobody
knows! It is still open whether this function will halt for all x in Nat
[24]! Consequently, if someone were to claim that the above program is
their actual implementation of an algorithm (not merely a procedure) to
realize the constant function λx.1, not even the best mathematicians or
computer scientists living today would know how to either confirm or
to refute the claim! That is, nobody today is able to prove or disprove
that the above program will halt for all x, yielding 1 as the answer.5

2.10 Relations

Let S be a set of k-tuples. Then a k-ary relation R over S is defined to be
a subset of S. It is also quite common to assume that the word ‘relation’
means ‘binary relation’ (k = 2); we will not follow this convention,
and shall be explicit about the arity of relations. For example, given
S = Nat × Nat, we define the binary relation < over S to be

< = {〈x, y〉 | x, y ∈ Nat and x < y}.

It is common to overload symbols such as <, which can be used to de-
note binary relations over Int (the set of positive and negative numbers)
or Real. For the sake of uniformity, we permit the arity of a relation
to be 1. Such relations are called unary relations, or properties. For
example, odd can be viewed as a unary relation

odd = {x | x ∈ Nat and x is odd},

or, equivalently,

odd = {x | x ∈ Nat and ∃y ∈ Nat : x = 2y + 1}.

5 Our inability to deal with “even a three-line program” perhaps best illustrates
Dijkstra’s advice on the need to be humble programmers [36].
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Much like we defined binary relations, we can define ternary rela-
tions (or 3-ary relations), 4-ary relations, etc. An example of a 3-ary
relation over Nat is between, defined as follows:

between = {〈x, y, z〉 | x, y, z ∈ Nat ∧ (x ≤ y) ∧ (y ≤ z)}.

Given a binary relation R over set S, define the domain of R to be

domain(R) = {x | ∃y : 〈x, y〉 ∈ R},

and the co-domain of R to be

codomain(R) = {y | ∃x : 〈x, y〉 ∈ R}.

Also, the inverse of R, written R−1 is

R−1 = {〈y, x〉 | 〈x, y〉 ∈ R}.

As an example, the inverse of the ‘less than’ relation, ‘<,’ is the greater
than relation, namely ‘>.’ Similarly, the inverse of ‘>’ is ‘<.’ Please
note that the notion of inverse is defined only for binary relations - and
not for ternary relations, for instance. Also, inverse is different from
complement. The complement of < is ≥ and the complement of ‘>’ is
‘≤,’ where the complementations are being done with respect to the
universe Nat × Nat.

For a binary relation R, let elements(R) = domain(R)∪codomain(R).
The restriction of R on a subset X ⊆ elements(R) is written

R |X= {〈x, y〉 | 〈x, y〉 ⊆ R ∧ x, y ∈ X}.

Restriction can be used to specialize a relation to a “narrower” domain.
For instance, consider the binary relation < defined over Real. The
restriction < |Nat restricts the relation to natural numbers.

Putting these ideas together, the symmetric difference of ‘<’ and
‘>’ is the ‘�=’ (not equal-to) relation. You will learn a great deal
by proving this fact, so please try it!
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2.11 Functions as Relations

Mathematicians seek conceptual economy. In the context of functions
and relations, it is possible to express all functions as relations; hence,
mathematicians often view functions as special cases of relations. Let
us see how they do this.

For k > 0, a k-ary relation R ⊆ T 1
D×T 2

D×. . .×T k
D is said to be single-

valued if for any 〈x1, . . . , xk−1〉 ∈ T 1
D ×T 2

D× . . .×T k−1
D , there is at most

one xk such that 〈x1, . . . , xk−1, xk〉 ∈ R. Any single-valued relation R
can be viewed as a k−1-ary function with domain T 1

D×T 2
D× . . .×T k−1

D
and range T k

D. We also call single-valued relations functional relations.
As an example, the ternary relation

{〈x, y, z〉 | x, y, z ∈ Nat ∧ (x + y = z)}

is a functional relation. However, the ternary relation between defined
earlier is not a functional relation.

How do partial and total functions “show up” in the world of re-
lations? Consider a k − 1-ary function f . If a xk exists for any input
〈x1, . . . , xk−1〉 ∈ T 1

D ×T 2
D × . . .×T k−1

D , the function is total; otherwise,
the function is partial.

To summarize, given a single-valued k-ary relation R, R can be
viewed as a function fR such that the “inputs” of this function are
the first k − 1 components of the relation and the output is the last
component. Also, given a k-ary function f , the k + 1-ary single-valued
relation corresponding to it is denoted Rf .

2.11.1 More λ syntax

There are two different ways of expressing two-ary functions in the
Lambda calculus. One is to assume that 2-ary functions take a pair
of arguments and return a result. The other is to assume that 2-ary
functions are 1-ary functions that take an argument and return a result,
where the result is another 1-ary function.6 To illustrate these ideas,
let us define function RMS which stands for root mean squared in both
these styles, calling them rms1 and rms2 respectively:

rms1 : λ〈x, y〉.
√

x2 + y2

rms2 : λx.λy.
√

x2 + y2

6 The latter style is known as the Curried form, in honor of Haskell B. Curry. It
was also a notation proposed by Schöenfinkel; perhaps one could have named it
the ‘Schöenfinkeled’ form, as well.
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Now, rms1〈2, 4〉 would yield
√

20. On the other hand, we apply rms2

to its arguments in succession. First, rms2(2) yields λy.
√

22 + y2, i.e.,

λy.
√

4 + y2, and this function when applied to 4 yields
√

20. Usually, we
use parentheses instead of angle brackets, as in programming languages;
for example, we write rms1(2, 4) and λ(x, y).

√
x2 + y2.

The above notations can help us write characteristic predicates quite
conveniently. The characteristic predicate

(λ(z, y).(odd(z) ∧ (4 ≤ z ≤ 7) ∧ ¬y))

denotes (or, ‘defines’) the relation = {〈5, false〉, 〈7, false〉}. This is
different from the characteristic predicate

(λ(x, z, y).(odd(z) ∧ (4 ≤ z ≤ 7) ∧ ¬y))

which, for x of type Bool, represents the relation

R
′ ⊆ Bool × Nat × Bool

equal to

{〈false, 5, false〉, 〈true, 5, false〉, 〈false, 7, false〉}, 〈true, 7, false〉}.

Variable x is not used (it is a “don’t care”) in this formula.

Chapter Summary

This chapter provided a quick tour through sets, numbers, functions,
relations, and the lambda notation. The following exercises are designed
to give you sufficient practice with these notions.

Exercises

2.1. Given the characteristic predicate p = λx. (x > 0 ∧ x < 10),
describe the unary relation defined by p as a set of natural numbers.

2.2. Given the characteristic formula f = (x > 0 ∧ x < 10), describe
the unary relation defined by f as a set of natural numbers.

2.3. Given the characteristic predicate

r = λ(x, y, z). (x ⊆ y ∧ y ⊆ z ∧ x ⊆ {1, 2} ∧ y ⊆ {1, 2} ∧ z ⊆ {1, 2})

write out the relation described by r as a set of triples.

2.4. Repeat Exercise 2.3 with the conjunct x ⊆ y removed.
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2.5. What is the set defined by P = {x ∈ Nat | 55 < 44}?

2.6. The powerset, P , introduced earlier can also be written as

P = {x | x ⊆ {1, 2, 3}}

What set is defined by replacing ⊆ by ⊂ above?

2.7.
1. What is the set described by the expression

{1, 2, 3} ∩ {1, 2} ∪ {2, 4, 5}.

Here, ∩ has higher precedence than ∪.
2. What is the symmetric difference between {1, 2, 3, 9} and {2, 4, 5,−1}?
3. How many elements are there in the following set:

{∅} ∪ ∅ ∪ {{2}, ∅}? ∅ denotes the empty set. It is assumed that sets
may contain other sets.

2.8. Formally define the set S of divisors of 64. Either show the set
explicitly or define it using comprehension.

2.9. Formally define the set S of divisors of 67,108,864. Either show
the set explicitly (!) or define it using comprehension.

2.10. What is the set defined by {x | x ≥ 0 ∧ prime(x) ∧ x ≤ 10}?

2.11. What is the set defined by

{x | x ∈ 13 ∧ composite(x) ∧ x ≥ 1}?

A composite number is one that is not prime.

2.12. What is the set defined by

{x | x ∈ 25 ∧ square(x)}

square(x) means x is the square of a natural number.

2.13. What is the set S = {x | x ⊂ Nat ∧ 23 = 24}?

2.14. Take S = Nat, which contains an infinite number of elements.
How many elements are there in the powerset of S? Clearly it also
contains an infinite number of elements; but is it the “same kind of
infinity?” Think for five minutes and write down your thoughts in about
four sentences (we shall revisit this issue in Chapter 3).
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2.15. The set Odd of odd numbers is a proper subset of Nat. It is true
that Odd “appears to be smaller” than Nat - yet, both sets contain
an infinite number of elements. How can this be? Is the ‘infinity’ that
measures the size of Odd a ‘smaller infinity’ than that which measures
the size of Nat? Again, express your thoughts in about four sentences.

2.16. Let E be the set of Even natural numbers. Express the set E×2E

using set comprehension.

2.17. An undirected graph G is a pair 〈V,E〉, where V is the set of
vertices and E is the set of edges. For example, a triangular graph over
V = {0, 1, 2} is

〈{0, 1, 2}, {〈0, 1〉, 〈1, 2〉, 〈0, 2〉}〉.
We follow the convention of not listing symmetric variants of edges -
such as 〈1, 0〉 for 〈0, 1〉.

Now, this question is about cliques. A triangle is a 3-clique. A clique
is a graph where every pair of nodes has an edge between them. We
showed you, above, how to present a 3-clique using set-theoretic nota-
tion.

Present the following n-cliques over the nodes i ∈ n in the same
set-theoretic notation. Also draw a picture of each resulting graph:

1. 1-clique, or a point.
2. 2-clique, or a straight-line.
3. 4-clique.
4. 5-clique.

2.18. Write a function signature for the sin and tan functions that
accept inputs in degrees.

2.19. Decipher the signature given below by writing down four distinct
members of the domain and the same number from the range of this
function. Here, X stands for “don’t care,” which we add to Bool. For
your examples, choose as wide a variety of domain and range elements
as possible to reveal your detailed understanding of the signature:

(Int ∪ {−1}) × 2Int × Bool → 22Bool∪{X} × Int.

2.20. Write a function signature for the function 1/(1−x) for x ∈ Nat.

2.21. Express the successor function over Nat using the Lambda no-
tation.

2.22. Express the function that sums 1 through N using the Lambda
notation.
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2.23. Simplify (λzy.(λx.(z + ((λv.(v + x))5)))) 2 3 4

2.24. A half-wave rectifier receives a waveform at its input and pro-
duces output voltage as follows. When fed a positive voltage on the
input, it does not conduct below 0.7 volts (effectively producing 0
volts). When fed a positive voltage above 0.7 volts, it conducts, but
diminishes the output by 0.7 volts. When fed a negative voltage, it
produces 0 volts, except when fed a voltage below -100 volts, when it
blows up in a cloud of smoke (causing the output to be undefined).
View the functionality of this rectifier as a function that maps input
voltages to output voltages. Describe this function using the Lambda
notation. You can assume that ifthenelse and numbers are primitives
in Lambda calculus.

2.25. Provide one example of a bijection from Nat to Int.

2.26. Point out which of the following functions can exist and which
cannot. Provide reasons for functions that cannot exist, and examples
for functions that can exist.

1. A bijection from ∅ to ∅.
2. A bijection from {ε} to {∅}.
3. A partial 1-1 and onto function from Nat to Nat.
4. A partial 1-1 and onto function from Int to Nat.
5. A 1-1 into function from Nat to Nat.
6. A 1-1 into, but not onto, function from Nat to Nat.
7. A bijection from Int to Real.
8. A bijection from a set to its powerset. (Recall that we cannot have

∅ as either the domain or range of a function.)
9. A many-to-one function from the powerset of a set to the set.

10. An into map from a set to its powerset.

2.27. Describe a bijection from the set {ε} to the set {∅}. Here, ε is
the empty string.

2.28. Think about the following question, writing your thoughts in a
few sentences, in case you cannot definitely answer the question (these
will be addressed in Chapter 3).

Can there be a bijection between Int and 2Int?
How about a finite subset, F , of Int, and 2F ?
How about an infinite subset, I, of Int, and 2I?
Which other kinds of functions than bijections may exist?
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2.29. Do you see any problems calling a function g “computable” if g
were to accept a subset of Nat, output 4 if given {1, 2}, and output 5
given any other subset of Nat? How about a variant of this problem
with “any other subset” replaced by “any other proper subset?”

2.30. Which of the following functions are computable?:

1. A function that inverts every bit of an infinite string of bits.
2. A function that inverts every bit of a finite (but arbitrarily long)

string of bits.
3. A function that outputs a 1 when given π, and 0 when given

any other Real number. (Recall that π is not 22/7, 3.14, or even
3.1415926. In fact, π is not a Rational number.)

2.31. Does there exist a procedure that, given a C program P and its
input x, answers whether P halts on x? Does there exist an algorithm
for this purpose?

2.32. Can there be an algorithm that, given two C programs, checks
that they have identical functionality (over all their inputs)?

2.33. Can there be an algorithm that, given two Yacc grammar files
(capturing context-free grammar productions) checks whether the gram-
mars encode the same language or not? (Yacc is a tool to generate
parsers). Write your ‘best guess’ answer for now; this problem will be
formally addressed in Chapter 17.

2.34. What is the symmetric difference between ‘≤’ and ‘≥’? How
about the symmetric difference between ‘<’ and ‘≤’?

2.35. Consider the binary relation relprime over Nat × Nat such that
relprime(x, y) exactly when x and y are relatively prime (the greatest
common divisor of x and y is 1). Is relprime a functional relation?
What is its inverse? What is its complement?

2.36. Consider the 3-ary relation “unequal3,” which consists of triples
〈a, b, c〉 such that a �= b, b �= c, and a �= c. Is this relation a functional
relation? Provide reasons.

2.37. How many functions with signature Boolk → Bool exist as a
function of k? Here Boolk is Bool×Bool× . . .×Bool (k times). Think
carefully about all possible distinct functions that can have this sig-
nature. Each k-ary Boolean function can be presented using a k + 1-
column truth table with each row corresponding to one input and its
corresponding output.
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2.38. Repeat Exercise 2.37 for partial functions with signature Boolk

→ Bool. View each partial function as a table with the output field
being either a Boolean or the special symbol ⊥, standing for undefined.
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Cardinalities and Diagonalization

In this chapter, we discuss the important idea of measuring sizes of
infinite sets. In addition to helping reinforce many mathematical con-
cepts, we obtain a better appreciation of the work of pioneers, notably
George Cantor, who originated many of the fundamental ideas in this
area. We will employ many of the ideas found in this chapter in later
chapters to argue the existence of non-computable functions and cer-
tain languages called non Turing-recognizable—languages for which the
membership test (testing whether an arbitrary string is a member of
the language)—cannot be performed by any machine.

3.1 Cardinality Basics

The cardinality of a set is its size. The cardinality of a finite set is
measured using natural numbers; for example, the size of {1, 4} is 2.
How do we “measure” the size of infinite sets? The answer is that we
use “funny numbers,” called cardinal numbers. The smallest cardinal
number is ℵ0, the next larger cardinal number is ℵ1, and so on. If one
infinite set has size ℵ0, while a second has size ℵ1, we will say that the
second is larger than the first, even though both sets are infinite. For
now, ℵ0 is the number of elements of Nat, while ℵ1 is the number of
elements of Real. All these ideas will be made clear in this section.

To understand that there could be “smaller” infinities and “bigger”
infinities, think of two infinitely sized dogs, Fifi and Howard. While Fifi
is infinitely sized, every finite patch of her skin has a finite amount of
hair. This means that if one tries to push apart the hair on Fifi’s back,
they will eventually find two adjacent hairs between which there is no
other hair. Howard is not only huge - every finite patch of his skin has
an infinite amount of hair! This means that if one tries to push apart
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the hair on Howard’s back, they will never find two hairs that are truly
adjacent. In other words, there will be a hair between every pair of hairs!
This can happen if Fifi has ℵ0 amount of hair on her entire body while
Howard has ℵ1 amount of hair on his body.1 Real numbers are akin
to hair on Howard’s body; there is a real number that lies properly
between any two given real numbers. Natural numbers are akin to hair
on Fifi’s body; there is no natural number between adjacent natural
numbers.

We begin with the question of how one “counts” the number of el-
ements in an infinite set. For example, are there the same “number”
of natural numbers as there are real numbers? Since we cannot count
infinite sets, let us adopt a method that our ancestors sometimes used
when they could not count certain finite sets.2 Our ancestors used to
conduct trade successfully through the barter system without actually
counting the number of objects; say, a cabbage for an elephant, and
so on.3 The real idea behind barter is to establish a bijection or cor-
respondence between two sets of elements without actually counting
them. The same technique works quite well when we have to count the
contents of infinite sets; in fact, that is the only technique that works!
But what does ‘counting’, ‘countable’, etc., mean?

3.1.1 Countable sets

A set S is said to be countable if there is a 1-1 total mapping from it to
natural numbers. (This mapping need not be onto). Clearly, finite sets
are countable. Consider the infinite set Odd, the set of odd numbers.
Since there is a total 1-1 mapping λx.(x − 1)/2 from Odd numbers to
Nat, Odd is countable. The set Real is not countable, as we shall show
in this chapter.

3.1.2 Cardinal numbers

We now discuss the use of cardinal numbers more precisely. The cardi-
nality of Nat is defined to be ℵ0, written |Nat| = ℵ0. Two sets A and B
have the same cardinality if there is a bijection from A to B. Function
λx.(x − 1)/2 actually serves as a bijection from Odd numbers to Nat.
To sum up,

1 Hope this wouldn’t be viewed as splitting hairs. . .
2 It is good that Romans didn’t discover the concept of Avogadro’s number - how

could they have carved it out on stone tablets?
3 Cabbages with magical powers, perhaps.
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• Odd is countable,
• |Odd| = |Even| = |Nat| = ℵ0,
• But, note that Odd ⊂ Nat and Even ⊂ Nat;
• Therefore, it is entirely possible that for two sets A and B, A ⊂ B,

and yet |A| = |B|.
The above example demonstrates that one cannot determine the car-
dinality of sets purely based on subset relationships. One correct (and
handy) method for using subset relationships to determine the cardi-
nality of sets is using cardinality traps.

3.1.3 Cardinality “trap”

To motivate the notion of cardinality trap, consider the question, “how
many points are there in the map of mainland USA?” Let us treat this
map as a region of Real×Real. The theorem which we call cardinality
trap says:

If, for three sets A, B, and C, we have |A| = |C| and A ⊂ B ⊂ C,
then |A| = |B| = |C|.

Specifically, cardinality trap allows one to “trap” the cardinality of a
set B to be between those of two sets A and C. Exercise 3.12 asks
you to prove that cardinality trap is a simple corollary of the famous
Schröder-Bernstein theorem. For the question at hand,

• Any given map of the USA (set B of points) can be properly in-
scribed within a (larger) square (set C of points).

• Within the given map of the USA, one can properly inscribe a
(smaller) square (set A of points).

• All squares in Real×Real have the same number of points, ℵ1 (this
is a result we shall prove later (|A| = |C|).

• Therefore, |A| = |B| = |C|, or the map of the USA, however drawn,
has the same number of points as in a square, namely ℵ1.

Now, we present one of George Cantor’s central results, which allows us
to prove that two sets have different cardinalities. Known as the diago-
nalization method, it is basically a specific application of the principle
of proof by contradiction.

3.2 The Diagonalization Method

Let us return to our original question, “is there a bijection from Nat
to Real?” The answer is no and we proceed to show how. We follow
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the powerful approach, developed by Cantor, called diagonalization.
Diagonalization is a particular application of the principle of proof by
contradiction or reductio ad absurdum in which the solution-space is
portrayed as a square matrix, and the contradiction is observed along
the diagonal of this matrix. We now walk you through the proof, pro-
viding section headings to the specific steps to be performed along the
way.

Most textbooks prove this result using numbers represented in dec-
imal, which is much easier than what we are going to present in this
section - namely, prove it in binary. We leave the proof in decimal as an
exercise for you. In addition to being a ‘fresh,’ as well as illuminating
proof, a proof for the binary case also allows us to easily relate cardi-
nality of Reals to that of languages over some alphabet. Here, then,
are the steps in this proof.

3.2.1 Simplify the set in question

We first simplify our problem as follows. Note that (λx.1/(1 + x)) is
a bijection from [0,∞] ⊂ Real to [0, 1] ⊂ Real. Given this, it suffices
to show that there is no bijection from Nat to [0, 1] ⊂ Real, since
bijections are closed under composition. We do this because the interval
[0, 1] is “easier to work with.” We can use binary fractions to capture
each number in this range, and this will make our proof convenient to
present.

3.2.2 Avoid dual representations for numbers

The next difficulty we face is that certain numbers have two fractional
representations. As a simple example, if the manufacturer of Ivory soap
claims that their soap is 99.99% pure, it is not the same as saying it is
99.999% pure.4 However, if they claim it is 99.99% pure (meaning an in-
finite number of 9s following the fractional point), then it is equivalent
to saying it is 100% pure. Therefore, in the decimal system, infinitely
repeating 9s can be represented without infinitely repeating 9s. As an-
other example, 5.1239 = 5.124. The same ‘dual representations’ exist in
the binary system also. For example, in the binary system, the fraction
0.0100 (meaning, 0.010 followed by an infinite number of 0s) represents
0.25 in decimal. However, the fraction 0.0101 (0.010 followed by an in-
finite number of 1s) represents 0.0110 in binary, or 0.375 in decimal.
Since we would like to avoid dual representations, we will avoid dealing

4 Such Ivory soap may still float.
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with number 1.0 (which has the dual representation of 0.1). Hence, we
will perform our proof by showing that there is no bijection from Nat
to [0, 1) ⊂ Real. This would be an even stronger result.

Let us represent each real number in the set [0, 1) ⊂ Real in binary.
For example, 0.5 would be 0.100 . . ., 0.375 would be 0.01100 . . .. We
shall continue to adhere to our convention that we shall never use any
bit-representation involving 1. Fortunately, every number in [0, 1) can
be represented without ever using 1. (This, again, is the reason for
leaving out 1.0, as we don’t wish to represent it as 0.1, or 1.0).

3.2.3 Claiming a bijection, and refuting it

For the simplicity of exposition, we first present a proof that is “nearly
right,” and much simpler than the actual proof. In the next section, we
repair this proof, giving us the actual proof. Suppose there is a bijection
f that puts Nat and [0, 1) in correspondence C1 as follows:

0 → .b00b01b02b03 . . .
1 → .b10b11b12b13 . . .
. . .
n → .bn0bn1bn2bn3 . . .
. . .

where each bij is 0 or 1.
Now, consider the real number

D = 0.¬b00 ¬b11 ¬b22 ¬b33 . . . .

This number is not in the above listing, because it differs from the i-
th number in bit-position bii for every i. Since this number D is not
represented, f cannot be a bijection as claimed. Hence such an f does
not exist.

3.2.4 ‘Fixing’ the proof a little bit

Actually the above proof needs a small “fix”; what if the complement
of the diagonal happens to involve a 1? The danger then is that we
cannot claim that a number equal to the complemented diagonal does
not appear in our listing. It might then end up existing in our listing
of Reals in a “non 1 form.”

We overcome this problem through a simple correction.5 This cor-
rection ensures that the complemented diagonal will never contain a

5 Exercise 3.6 asks you to propose an alternative correction.
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1. In fact, we arrange things so that the complemented diagonal will
contain zeros infinitely often. This is achieved by placing a 1 in the un-
complemented diagonal every so often; we choose to do so for all even
positions, by listing the Real number .12n+10 . . . (2n+1 1s followed by
0) at position 2n, for all n. Consider the following correspondence, for
example:

0 → .10
1 → .c00c01c02c03 . . .
2 → .1110
3 → .c10c11c12c13 . . .
4 → .111110
5 → .c20c21c22c23 . . .
6 → .11111110
. . .
2n → .12n+10 . . .
2n + 1 → .cn0cn1cn2cn3 . . .
. . .

Call this correspondence C2. We obtain C2 as follows. We know that the
numbers .10, .1110, .111110, etc., exist in the original correspondence
C1. C2 is obtained from C1 by first permuting it so that the above
elements are moved to the even positions within C2 (they may exist
arbitrarily scattered or grouped, within C1). We then go through C1,
strike out the above-listed elements, and list its remaining elements in
the odd positions within C2. We represent C2 using rows of .cij , as
above.

We can now finish our argument as follows. The complemented diag-
onal doesn’t contain a 1, because it contains 0 occurring in it infinitely
often. Now, this complemented diagonal cannot exist anywhere in our
.cij listing. The complemented diagonal is certainly a Real number
missed by the original correspondence C1 (and hence, also missed by
C2). Hence, we arrive at a contradiction that we have a correspondence,
and therefore, we cannot assign the same cardinal number to the set
[0, 1) ⊆ Real. It is therefore of higher cardinality.

The conclusion we draw from the above proof is that Real and Nat
have different cardinalities. Are there any cardinalities “in between”
that of Real and Nat? Loosely speaking, “is there a ℵ0.5?!” The hy-
pothesis that states “no there isn’t a cardinality between ℵ0 and ℵ1,” or
in other words, “there isn’t a ℵ0.5,” is known as the Continuum Hypoth-
esis. It has been a problem of intense study over the last 120 years, and
in fact is the first of Hilbert’s 23 challenges to computer science [54].
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These challenges helped spur considerable amounts of research in Com-
puter Science, and contributed to much of the foundational knowledge
of the subject area (e.g., as covered in this book). For further details,
please see [26]. We shall use cardinality arguments when comparing the
set of all functions and the set of all computable functions.

3.2.5 Cardinality of 2Nat and Nat → Bool

In this section, we argue that the sets 2Nat (the powerset of Nat) and
Nat → Bool (the set of functions from Nat to Bool) have the same
cardinality as Real. Notice that each set within 2Nat can be represented
by an infinitely long characteristic sequence. For instance, the sequence
10010100 represents the set {0, 3, 5}; the sequence 101010 . . . represents
the set Even; the sequence 010101 . . . represents the set Odd; and so
on. Notice that the very same characteristic sequences also represent
functions from Nat to Bool. For instance, the sequence 10010100 rep-
resents the function that maps 0, 3, and 5 to true, and the rest of Nat
to false; the sequence 101010 . . . represents the function λx.even(x);
and the sequence 010101 . . . represents the function λx.odd(x). Hence,
the above two sets have the same cardinality as the set of all infinitely
long bit-sequences. How many such sequences are there? By putting a
“0.” before each such sequence, it appears that we can define the Reals
in the range [0, 1]. However, we face the difficulty caused by infinite
1s, i.e., we will end up having 1 occurring within an infinite number of
infinite sequences. Therefore, we cannot directly use the arguments in
Section 3.2.2, which rely on such numbers being absent from the listing
under consideration.

We now present the Schröder-Bernstein Theorem which allows us to
handle this, and other “hard-to-count” sets, very cleanly. We present
the theorem and its applications in the next section.

3.3 The Schröder-Bernstein Theorem

Theorem 3.1. (Schröder-Bernstein Theorem): For any two sets A and
B, if there is a 1-1, total, and into map f going from A to B, and
another 1-1, total, and into map g going from B to A, then these sets
have the same cardinality.

Section 3.3.3 discusses a proof of this theorem.
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3.3.1 Application: cardinality of all C Programs

As our first application of the Schröder-Bernstein Theorem, let us arrive
at the cardinality of the set of all C programs, CP . We show that this
is ℵ0 by finding 1-1, total, and into maps from Nat to CP and vice
versa. The real beauty of this theorem is that we can find such maps
completely arbitrary. For instance, we consider the class of C programs
beginning with main(){}. This is, believe it or not, a legal C program!
The next longer, such “weird but legal” C program, is main(){;}. The
next ones are main(){;;}, main(){;;;}, main(){;;;;}, and so on!
Now,

• A function f : Nat → CP that is 1-1, total, and into is the following:
− Map 0 into the legal C program, main(){}
− Map 1 into another legal C program main(){;}

− Map 2 into another legal C program main(){;;}

− . . ., map i into the C program main(){;i}—i.e., one that con-
tains i occurrences of ;.

• A function g : CP → Nat that is 1-1, total, and into is the following:
view each C program as a string of bits, and obtain the value of
this bit-stream viewed as an unsigned binary number.

By virtue of the existence of the above functions f and g, from the
Schröder-Bernstein Theorem, it follows that |CP | = |Nat|.

3.3.2 Application: functions in Nat → Bool

We have already shown that such functions can be viewed as infinite
bit-sequences, IBS. As already pointed out, we cannot interpret such
sequences straightforwardly as Real numbers in [0, 1) because of the
presence of 1 that gives rise to multiple representations. We use the
following alternative approach:

• We map every member of IBS that does not contain an occurrence
of 1 into the range [0, 1) by putting a “0.” before it, and interpreting
it as a Real number.

• We map every member of IBS that contains an occurrence of 1
into the range [1, 2] by putting a “1.” before it, interpreting it as
a Real number in [1, 2], and converting it into an equivalent form
without 1. For example, 0.010101 is mapped to 1.010110.

• This is a 1-1, total, and into map from IBS to [0, 2]. Composing this
map with the scale-factor λx.(x/2), we obtain the desired function
f that goes from IBS into [0, 1].
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• Now, we obtain function g that is 1-1, total, and into, going from
[0, 1] to IBS as follows:
• map every number except 1 in this range to the corresponding

number in IBS (with a “0.” before it) that does not contain 1.
• map 1 to 0.1.

This mapping hits every member of IBS except those containing 1
(the only exception being for 1). This is 1-1, total, and into.

From the Schröder-Bernstein Theorem, it follows that |IBS| = |Real|.

Illustration 3.3.1 Using the Schröder-Bernstein Theorem, define a
bijection between Nat × Int and Int.
Solution: Using the SB theorem, we just need to find a 1-1 total into
maps going from Nat×Int to Int and one going from Int to Nat×Int.
Here is the first map:

λ〈x, y〉.sign(y) × (2x × 3|y|).

That this map is total is obvious because × is defined everywhere.
Why is this 1-1? That’s because of the unique prime decomposition of
any number (note that we are not ignoring the sign). It is into because
we can’t generate numbers that are a multiple of 5, 7, etc.

The reverse map is much easier: just pair the Int with some arbitrary
Nat:

λx.〈0, x〉.
How about finding a bijection directly? It can be done as follows

(but it will become apparent how much harder this is, compared to
using the Schröder-Bernstein Theorem):

List all 〈Nat, Int〉 pairs systematically, then list all Ints sys-
tematically against it.

Listing all of the former proceeds systematically as follows:

• All that “add up to 0 ignoring signs,” with signs later attached
in every possible way. 〈0, 0〉 is the only pair that adds up to 0.
Additionally, −0 is 0.
• All that “add up to 1 ignoring signs,” with signs later attached
in every possible way. 〈0, 1〉 and 〈1, 0〉 add up to 1. List them as
follows:

〈0, 1〉, 〈0,−1〉, 〈1, 0〉.
• All that “add up to 2 ignoring signs,” with signs later attached in
every possible way. 〈0, 2〉, 〈1, 1〉, and 〈2, 0〉 add up to 2. List them
as follows:
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Fig. 3.1. Proof of the Schröder-Bernstein Theorem

〈0, 2〉,〈0,−2〉,〈1, 1〉,〈1,−1〉,〈2, 0〉.
The full bijection looks like the following:

<0,0> -> 0 <0,1> -> 1 <0,2> -> -2

<0,-1> -> -1 <0,-2> -> 3

<1,0> -> 2 <1,1> -> -3

<1,-1> -> 4

<2,0> -> -4

<0,3> -> 5 <0,4> -> -8

<0,-3> -> -5 <0,-4> -> 9

<1,2> -> 6 <1,3> -> -9

<1,-2> -> -6 <1,-3> -> 10

<2,1> -> 7 <2,2> -> -10

<2,-1> -> -7 <2,-2> -> 11

<3,0> -> 8 <3,1> -> -11

<3,-1> -> 12

<4,0> -> -12

3.3.3 Proof of the Schröder-Bernstein Theorem

We offer a proof of this theorem due to Hurd [62]. Page 49 provides an
alternative proof similar to that in [50].

Our goal is to show that if there are two sets P and Q, with injections
f : P → Q and g : Q → P , there exists a bijection h : P → Q as in
Figure 3.1.

Imagine P and Q being mirrors facing each other. Rays emanating
from P fall within Q, and vice versa. It stands to reason that these sets
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Fig. 3.2. Proof approach

then have the same cardinality. Our proof will exploit this analogy. We
will first prove Lemma 3.2 and then finish our proof.

Lemma 3.2. For two sets A and B, if B ⊂ A and there exists an
injection f : A → B, then there exists a bijection j : A → B.

Proof: Consider A and B as in Figure 3.2. The ring-shaped region
A−B can be regarded as f 0(A−B). The diagram also shows f(A−B),
f(f(A−B)), etc. (We will call f i(A−B) for i ≥ 1 as “thought bubbles”
in what follows). Since f is an injection from A to B, f(A − B) is
embedded within B, and likewise are the other f i(A−B) regions. Let
X = ∪i≥0 f i(A − B), i.e., the union of the ring and all the “thought
bubbles” embedded within B. Also, observe that f(X) are the “thought
bubbles” alone. So A can be written as X ∪ (B−f(X)). We will exploit
this fact in creating a bijection from A to B, as follows:

Suppose we propose the mapping j : A → B as λa. if a ∈
X then f (a) else a. In other words, everything within the ring
and the “thought bubbles” maps to the “thought bubbles” (f(X)),
and everything in the remaining region (which is the shaded region
B − f(X)) maps to itself.
Suppose we show that f is a bijection from X to f(X) (Claim 1
below); then j will be a bijection from A to B (j is defined partly
by the identity map and partly by f , both of which are injective;
furthermore, j’s domain covers A and range covers B).

Now, going back to the original problem, the desired bijection from P
to Q is found as follows:
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g(Q) is a subset of A. Furthermore, the composition of f and g,
g ◦ f , is an injection from A to g(B). Hence, there is a bijection j
from A to g(B). Now, since g is injective, g−1 exists. Therefore, the
desired bijection from A to B is inv(g) ◦ j.

Proof of Claim 1: f is a bijection from X to f(X) because f is
surjective, and f is injective from A to B; hence, it must be so when
restricted to domain X.

Illustration of the Proof

Let us choose P = O (O standing for Odd, the set of positive odd num-
bers) and Q = E (standing for Even, the set of positive even numbers).
Clearly, λx.x − 1 is a bijection that can be found manually. Let’s see
which bijection is found by the method in the proof (which, of course,
works automatically for any situation).

According to the Schröder-Bernstein theorem, if there is an injection
from O into E and vice versa, there exists a bijection between O and
E. Two such injections are easy to find. For example, f = λx.2x and
g = λx.(2x + 1). The proof gives a way to construct another bijection
automatically from these.

• The set A of the lemma is O, the Odd numbers.
• Applying f to O, we get f(O) = 2, 6, 10, 14, . . ..
• Applying g to E, we get g(E) = 1, 5, 9, 13, . . .. Call this set O1.
• Now, g ◦ f = λx.(4x + 1). Applying this to O, we get g ◦ f(O) =

5, 13, 21, 29, . . .. Call this set O2. Notice that O2 ⊂ O1 ⊂ O.
• Now, as far as the lemma goes, the set “A” is O and “B” is O1.

There is a bijection (namely g ◦ f) from O to O2. Therefore, the
same function is an injection from O to O1.

• Now, we can build function j as suggested in the lemma as follows:
− The set A−B is O−O1 = 3, 7, 11, 15, 19, . . .. This is the “outer

ring.”
− The “f” of the lemma is g ◦ f = λx.(4x + 1). Applying this to

O − O1, we get 13, 29, 45, 61, 77, . . ., which is the first “thought
bubble.”

− Similarly, f 2(O − O1) = 53, 117, 181, 145, . . ..
− X is the union of all the above sets.

• Now, the j function is λa.if a ∈ (O1−∪i≥1f(O−O1)) then a else f(a)
• Equivalently, j is λa.if a ∈ (O − X) then a else f(a)
• Hence, the j function is given by the map

1 → 1, 3 → 13, 5 → 5, 7 → 29, 9 → 9, 11 → 45, . . . This is
because 1, 5, 9, . . . is what’s missed by X.
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• Finally, the bijection from O to E is given by g−1 ◦ j, which is illus-
trated by the following table where the first map is the application
of j and the second is the application of g−1:

1 -> 1 -> 0

3 -> 13 -> 6

5 -> 5 -> 2

7 -> 29 -> 14

9 -> 9 -> 4

11 -> 45 -> 22

...

Alternate Proof—a sketch

The classical proof of the Schröder-Bernstein Theorem goes as follows
(the reader may draw a diagram to better understand the proof). Con-
sider the injections f : P → Q and g : Q → P . Let P0 = P − g(Q)
and Q0 = Q − f(P ). Let Qi = f(Pi−1) and Pi = g(Qi−1). Now,
f : Pi−1 → Qi and g : Qi−1 → Pi are bijections.

Define Peven = ∪even nPn, and likewise define Podd, Qodd, and Qeven.
Define P∞ = P − (Peven ∪ Podd), and similarly for Q. Now define the
desired bijection h : P → Q to be f on Peven, g−1 on Podd, and either
on P∞.

Cardinal Numbers

The topic of cardinalities is quite detailed; we have barely scratched
the surface. One of the more important take away messages is that sets
such as natural numbers are denumerable or countable, while sets such
as Reals are not denumerable or are uncountable. Hence, we cannot list
real numbers as “the first real,” “the second real,” etc., because they
are not denumerable. How about the powerset of Reals? Are they of
the same cardinality as Reals? We conclude with a theorem that shows
that there are more than a finite set of cardinalities (we omit delving
into sharper details).

Theorem 3.3. For a set S and its powerset 2S , we have |S| ≺ |2S |,
where ≺ says “of lower cardinality.”

The notion of cardinal numbers basically stems from this theorem. The
cardinal numbers form a sequence ℵ0, ℵ1, ℵ2, . . ., beginning with the
cardinality of the set of natural numbers ℵ0 and going up in cardinality
each time a powerset operation is invoked on the earlier set (ℵ1 for
Reals, ℵ2 for the powerset of Reals, etc.).
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The above would be a generalization of the diagonalization proof.
The style of the proof is precisely what will be used to prove the unde-
cidability of the Halting problem.

Chapter Summary

This chapter introduced the concept of cardinality and illustrated how
various infinite sets might have incomparable cardinalities. The main
technique for demonstrating that two sets have different cardinalities is
a proof technique by contradiction known as diagonalization. A useful
theorem for showing that two sets have the same cardinality is the
Schröder-Bernstein theorem. A thorough description of these concepts
in this early of a chapter has been found to be helpful to many students
when they study later chapters of this book.

Exercises

3.1. What is the cardinality of the set of all possible C programs?

3.2. What is the cardinality of the set of all binary files created by C
compilers (a.out files)?

3.3. What is the cardinality of the set of all fundamental particles in
the universe?

3.4. Show that |Real| = |Real × Real|. Hint: First map the numbers
into [0, 1]. Thereafter, interleave the bits of pairs of reals to get a unique
mapping to a single real. For example, given the pair

〈.b00b01b02b03 . . . , .c00c01c02c03 . . .〉,

we can uniquely obtain the single Real number .b00c00b01c01b02c02 . . ..

3.5. Show that there are more points on the map of the USA (viewed
as a set of points ⊂ |Real × Real|) than hair on an infinitely sized
dog such as Fifi (even though Fifi is infinitely sized, there isn’t a hair
between every pair of her hairs – unlike with Howard). Hint: Use the
idea of cardinality trap.

3.6. Propose another trick to deal with Reals of a “non 1 form” dis-
cussed in Section 3.2.4.

3.7. What is the cardinality of the set of all binary search routines one
can write in C to search an array of characters (a through z) of size 4?
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3.8. Compare the cardinality of the powerset of Odd and the powerset
of the powerset of Even. Argue whether these cardinalities are the
same, giving a semi-formal proof.

3.9. What is the cardinality of the set of all finite staircase patterns
in 2D space? Finite staircase patterns are curves that go a finite dis-
tance along the positive x axis (’right’), then a finite distance along the
positive y axis (’upwards’), and repeats this pattern a finite number of
times. The corners of the staircase may have coordinates that are pairs
of real numbers.

3.10. Repeat Exercise 3.9 if the corners of the staircase are restricted
to integer coordinate pairs.

3.11. Consider the directed graphs in Figure 22.6. For each graph, an-
swer the following questions:

1. What is the cardinality of the set of all finite paths?
2. What is the cardinality of the set of all infinite paths?

3.12. Prove the theorem of cardinality trap presented on page 39.

3.13. Illustrate this proof of the Schröder-Bernstein Theorem on the
above example involving Odd and Even.

3.14. Prove Theorem 3.3 by assuming there exists a total bijection f
from S to 2S , and arguing whether there can exist an element of S
which maps to the following set:

D = {x | x ∈ S ∧ x /∈ f(x)}.

If such an element d exists, first ask whether d ∈ D, and then ask if
d /∈ D. Derive a contradiction.

3.15. (The first part of the following problem was narrated to me by
Prof. Riesenfeld, my faculty colleague.) (i) Someone starts somewhere
on earth, walks 10 miles south, then 10 miles west, and finally 10 miles
north, and returns to where he started from. Where could he have
started such a journey from (provide two examples of where he could
have started the journey from). (ii) Find out the size of the set of
solutions to this problem.
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Binary Relations

Binary relations help impart structure to sets of related elements. They
help form various meaningful orders as well as equivalences, and hence
are central to mathematical reasoning. Our definitions in this chapter
follow [50, 77, 63] closely.

4.1 Binary Relation Basics

A binary relation R on S is a subset of S × S. It is a relation that can
be expressed by a 2-place predicate. Examples: (i) x loves y, (ii) x > y.

Set S is the domain of the relation. Theoretically, it is possible that
the domain S is empty (in which case R will be empty). In all instances
that we consider, the domain S will be non-empty. However, it is quite
possible that S is non-empty and R is empty.

We now proceed to examine various types of binary relations. In all
these definitions, we assume that the binary relation R in question is
on S, i.e., a subset of S×S. For a relation R, two standard prefixes are
employed: irr- and non-. Their usages will be clarified in the sequel.

Relations can be depicted as graphs. Here are conventions attributed
to Andrew Hodges in [63]. The domain is represented by a closed curve
(e.g., circle, square, etc) and the individuals in the domain by dots
labeled, perhaps, a, b, c, and so on. The fact that 〈a, b〉 ∈ R will be
depicted by drawing a single arrow (or equivalently one-way arrow)
from dot a to dot b. We represent the fact that both 〈a, b〉 ∈ R and
〈b, a〉 ∈ R by drawing a double arrow between a and b. We represent
the fact that 〈a, a〉 ∈ R by drawing a double arrow from a back to itself
(this is called a loop). We shall present examples of these drawings in
the sequel.



54 4 Binary Relations

4.1.1 Types of binary relations

R1

R4 R5 R6

1

2 3

1

2 3

1

2 3

R2

1

2 3

1

2 3

R3

1

2 3

Fig. 4.1. Some example binary relations

We shall use the following examples. Let S = {1, 2, 3}, R1 = {〈x, x〉 |
x ∈ S}, R2 = S × S, and

R3 = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈1, 2〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}.

All these (and three more) relations are depicted in Figure 4.1.

Reflexive, and Related Notions

R is reflexive, if for all x ∈ S, 〈x, x〉 ∈ R. Equivalently,

In R’s graph, there is no dot without a loop.

Informally, “every element is related to itself.”

A relation R is irreflexive if there are no reflexive elements; i.e., for
no x ∈ S is it the case that 〈x, x〉 ∈ R. Equivalently,

In R’s graph, no dot has a loop.
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Note that irreflexive is not the negation (complement) of reflexive. This
is because the logical negation of the definition of reflexive would be,
“there exists x ∈ S such that 〈x, x〉 /∈ R. This is not the same as ir-
reflexive because all such pairs must be absent in an irreflexive relation.

A relation R is non-reflexive if it is neither reflexive nor irreflexive.
Equivalently,

In R’s graph, at least one dot has a loop and at least one dot
does not.

Examples:

R1, R2, R3 are all reflexive.
R = ∅ is reflexive and irreflexive. It is not non-reflexive.
For x, y ∈ Nat, x = y2 is non-reflexive (true for x = y = 1, false for
x = y = 2).

Symmetric, and Related Notions

R is symmetric if for all x, y ∈ S, 〈x, y〉 ∈ R ⇒ 〈y, x〉 ∈ R. Here, x
and y need not be distinct. Equivalently,

In R’s graph, there are no single arrows. If the relation holds
one way, it also holds the other way.

Examples: R1, R2, and R3 are symmetric relations. Also note that ∅ is
a symmetric relation.

R is asymmetric if there exists no two distinct x, y ∈ S such that
〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R. In other words, if 〈x, y〉 ∈ R, then 〈y, x〉 /∈ R.
Example: “elder brother” is an asymmetric relation, and so is < over
Nat. Equivalently,

There are no double arrows in its graph; if the relation holds
one way, it does not hold the other.

Again, note that asymmetric is not the same as the negation of (the
definition of) symmetric. The negation of the definition of symmetric
would be that there exists distinct x and y such that 〈x, y〉 ∈ R, but
〈y, x〉 /∈ R.
R is non-symmetric if it is neither symmetric nor asymmetric (there is
at least one single arrow and at least one double arrow).
Example: ∅ is symmetric and asymmetric, but not non-symmetric.

R is antisymmetric if for all x, y ∈ S, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R ⇒
x = y (they are the same element). Equivalently,
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There is no double arrow unless it is a loop.

Antisymmetry is a powerful notion that, unfortunately, is too strong
for many purposes. Consider the elements of 2S , the powerset of S, as
an example. If, for any two elements x and y in S, we have x ⊆ y and
y ⊆ x, then we can conclude that x = y. Therefore, the set containment
relation ⊆ is antisymmetric; and hence, antisymmetry is appropriate
for comparing two sets in the “less than or equals” sense.

Consider, on the other hand, two basketball players, A and B.
Suppose the coach of their team defines the relation �BB as follows:
A �BB B if and only if B has more abilities or has the same abili-
ties as A. Now, if we have two players x and y such that x �BB y
and y �BB x, we can conclude that they have identical abilities - they
don’t end up becoming the very same person, however! Hence, �BB

must not be antisymmetric. Therefore, depending on what we are com-
paring, antisymmetry may or may not be appropriate.

Transitive, and Related Notions

To define transitivity in terms of graphs, we need the notions of a
broken journey and a short cut. There is a broken journey from dot x
to dot z via dot y, if there is an arrow from x to y and an arrow from
y to z. Note that dot x might be the same as dot y, and dot y might
be the same as dot z. Therefore if 〈a, a〉 ∈ R and 〈a, b〉 ∈ R, there is a
broken journey from a to b via a. Example: there is a broken journey
from Utah to Nevada via Arizona. There is also a broken journey from
Utah to Nevada via Utah.

There is a short cut just if there is an arrow direct from x to z. So if
〈a, b〉 ∈ R and 〈b, c〉 ∈ R and also 〈a, c〉 ∈ R, we have a broken journey
from a to c via b, together with a short cut. Also if 〈a, a〉 ∈ R and
〈a, b〉 ∈ R, there is a broken journey from a to b via a, together with a
short cut.
Example: There is a broken journey from Utah to Nevada via Arizona,
and a short cut from Utah to Nevada.

R is transitive if for all x, y, z ∈ S, 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R ⇒
〈x, z〉 ∈ R. Equivalently,

There is no broken journey without a short cut.

R is intransitive if, for all x, y, z ∈ S, 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R ⇒
〈x, z〉 /∈ R. Equivalently,

There is no broken journey with a short cut.
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R is non-transitive if and only if it is neither transitive nor intransi-
tive. Equivalently,

There is at least one broken journey with a short cut and at
least one without.

Examples:

Relations R1 and R2 above are transitive.
R3 is non-transitive, since it is lacking the pair 〈1, 3〉.
Another non-transitive relation is �= over Nat, because from a �= b
and b �= c, we cannot always conclude that a �= c.
R4 is irreflexive, transitive, and asymmetric.
R5 is still irreflexive. It is not transitive, as there is no loop at 1. It
is not intransitive because there is a broken journey (2 to 3 via 1)
with a short cut (2 to 1). It is non-transitive because there is one
broken journey without a short cut and one without.
R5 is not symmetric because there are single arrows.
R5 is not asymmetric because there are double arrows.
From the above, it follows that R5 is non-symmetric.
R5 is not antisymmetric because there is a double arrow that is not
a loop.

4.1.2 Preorder (reflexive plus transitive)

If R is reflexive and transitive, then it is known as a preorder. Contin-
uing with the example of basketball players, let the �BB relation for
three members A, B, and C of the team be

{〈A,A〉, 〈A,B〉, 〈B,A〉, 〈B,B〉, 〈A,C〉, 〈B,C〉, 〈C,C〉}.

This relation is a preorder because it is reflexive and transitive. It helps
compare three players A, B, and C, treating A and B to be equivalent
in abilities, and C to be superior in abilities to both.
In Section 4.3, we present a more elaborate example of a preorder.

4.1.3 Partial order (preorder plus antisymmetric)

If R is reflexive, antisymmetric, and transitive, then it is known as a
partial order. As shown in Section 4.1.1 under the heading of antisym-
metry, the subset or equals relation ⊆ is a partial order.
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4.1.4 Total order, and related notions

A total order is a special case of a partial order. R is a total order if for
all x, y ∈ S, either 〈x, y〉 ∈ R or 〈y, x〉 ∈ R. Here, x and y need not be
distinct (this is consistent with the fact that total orders are reflexive).

The ≤ relation on Nat is a total order. Note that ‘<’ is not a total
order, because it is not reflexive.1 However, ‘<’ is transitive. Curiously,
‘<’ is antisymmetric.
A relation R is said to be total if for all x ∈ S, there exists y ∈ S such
that 〈x, y〉 ∈ R. In other words, a “total” relation is one in which every
element x is related to at least one other element y. If we consider y
to be the image (mapping) of x under R, this definition is akin to the
definition of a total function.

Note again that R being a total order is not the same as R being a
partial order and a total relation. For example, consider the following
relation R over set S = {a, b, c, d}:

R = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉, 〈a, b〉, 〈c, d〉}
R is a partial order. R is also a total relation. However, R is not a total
order, because there is no relationship between b and c (neither 〈b, c〉
nor 〈c, b〉 is in R).

4.2 Equivalence (Preorder plus Symmetry)

An equivalence relation is reflexive, symmetric, and transitive. Consider
the �BB relation for three basketball players A, B, and C. Now, con-
sider a “specialization” of this relation obtained by leaving out certain
edges:

≡BB = {〈A,A〉, 〈A,B〉, 〈B,A〉, 〈B,B〉, 〈C,C〉}.
This relation is an equivalence relation, as can be easily verified.

Note that ≡BB = �BB ∩ �−1
BB . In other words, this equivalence

relation is obtained by taking the preorder �BB and intersecting it
with its inverse. The fact that �BB ∩ �−1

BB is an equivalence relation
is not an accident. The following section demonstrates a general result
in this regard.

1 Some authors are known to abuse these definitions, and consider < to be a total
order. It is better referred to as strict total order or irreflexive total order.
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4.2.1 Intersecting a preorder and its inverse

Theorem 4.1. The relation obtained by intersecting a preorder r with
its inverse r−1 is an equivalence relation.

Proof: First we show that R∩R−1 is reflexive. Let R be a preorder over
set S. Therefore, R is reflexive, i.e., it contains 〈x, x〉 pairs for every
x ∈ S. From the definition of R−1, it also contains these pairs. Hence,
the intersection contains these pairs. Therefore, R ∩ R−1 is reflexive.

Next we show that R ∩ R−1 is symmetric. That is, to show that
for every x, y ∈ S, 〈x, y〉 ∈ R ∩ R−1 implies 〈y, x〉 ∈ R ∩ R−1. If the
antecedent, i.e., 〈x, y〉 ∈ R ∩ R−1 is false, the assertion is vacuously
true. Consider when the antecedent is true for a certain 〈x, y〉. These
x and y must be such that 〈x, y〉 ∈ R and 〈x, y〉 ∈ R−1. The former
implies that 〈y, x〉 ∈ R−1. The latter implies that 〈y, x〉 ∈ R. Hence,
〈y, x〉 ∈ R ∩ R−1. Hence, R ∩ R−1 is symmetric.

Next we prove that R∩R−1 is transitive. Since R is a preorder, it is
transitive. We now argue that the inverse of any transitive relation is
transitive. From the definition of transitivity, for every x, y, z ∈ S, from
the antecedents 〈x, y〉 ∈ R and 〈y, z〉 ∈ R, the consequent 〈x, z〉 ∈ R
follows. From these antecedents, we have that 〈y, x〉 ∈ R−1 and 〈z, y〉 ∈
R−1 respectively. From the above conclusion 〈x, z〉 ∈ R, we can infer
that 〈z, x〉 ∈ R−1. Hence, R−1 is transitive and so is the conjunction of
R and R−1.

4.2.2 Identity relation

Given a set S, the identity relation R over S is {〈x, x〉 | x ∈ S}. An
identity relation is one extreme (special case) of an equivalence relation.
This relation is commonly denoted by the equality symbol, =, and
relates equals with equals. Please note the contrast with Theorem 4.1.

4.2.3 Universal relation

The universal relation R over S is S × S, and represents the other
extreme of relating everything to everything else. This is often an un-
interesting binary relation.2

2 This is sort of what would happen if one were to give everyone in a theory class
an ‘A’ grade.
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4.2.4 Equivalence class

An equivalence relation R over S partitions elements(R) = domain(R)∪
codomain(R) into equivalence classes. Intuitively, the equivalence classes
Ei are those subsets of elements(R) such that every pair of elements
in Ei is related by R, and Eis are the maximal such subsets. More
formally, given an equivalence relation R, there are two cases:

1. R is a universal relation. In this case, there is a single equivalence
class E1 associated with R, which is elements(R) itself.

2. R is not a universal equivalence relation. In this case, an equivalence
class Ei is a maximal proper subset of elements(R) such that the
restriction of R on Ei, R |Ei

, is universal (meaning that every pair
of elements inside each of the Eis is related by R).

Putting it all together, the set of all equivalence classes of an equiv-
alence relation R is written “elements(R)/R.” It can be read, “the
elements of R partitioned according to R.” In general, we will write
S/ ≡, meaning “set S partitioned according to the equivalence relation
≡.”
in Section 4.3.1, we will demonstrate Theorem 4.1 on the Power relation
that relates machine types.

4.2.5 Reflexive and transitive closure

The reflexive closure of R, denoted by R0, is

R0 = R ∪ {〈x, x〉 | x ∈ S}.

This results in a relation that is reflexive.
The transitive closure of R, denoted by R+, is

R+ = R ∪ {〈x, z〉 | ∃y ∈ S : 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R+}.

The use of ‘+’ highlights the fact that transitive closure relates items
that are “one or more steps away.”
The reflexive and transitive closure of a relation R, denoted by by R∗,
is

R∗ = R0 ∪ R+.

The use of ‘∗’ highlights the fact that reflexive and transitive closure
relates items that are “zero or more steps away.”
Example: Consider a directed graph G with nodes a, b, c, d, e, and f .
Suppose it is necessary to define the reachability relation among the
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nodes of G. Oftentimes, it is much easier to instead define the one-step
reachability relation

Reach = {〈a, b〉, 〈b, c〉, 〈c, d〉, 〈e, f〉}

and let the users3 perform the reflexive and transitive closure of Reach.
Doing so results in ReachRTclosed, that has all the missing reflexive and
transitive pairs of nodes in it:

ReachRTclosed = {〈a, b〉, 〈b, c〉, 〈c, d〉, 〈e, f〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉,
〈e, e〉, 〈f, f〉, 〈a, c〉, 〈a, d〉, 〈b, d〉}.

4.3 The Power Relation between Machines

DFA

NFA NDTM

DTM

DPDA NPDA LBA

Fig. 4.2. The binary relation Power is shown. The dotted edges are some
of the edges implied by transitivity. Undotted and dotted means the same in
this diagram. Therefore, Power actually contains: (i) the pairs corresponding
to the solid edges, (ii) the pairs indicated by the dotted edges, (iii) and those
pairs indicated by those dotted transitive edges not shown.

An example that nicely demonstrates the versatility of preorders is the
one that defines the “power” of computing machines. Let

MT = {dfa, nfa, dpda, npda, lba, dtm, ndtm}

represent the set of machine types studied in this book. These acronyms
stand for deterministic finite automata, nondeterministic finite au-
tomata, deterministic push-down automata, nondeterministic push-
down automata, linear bounded automata, deterministic Turing ma-
chines, and nondeterministic Turing machines, respectively. A binary

3 “Why sweat? Let the end users do all the work.”



62 4 Binary Relations

relation called Power that situates various machine types into a domi-
nance relation is shown in Figure 4.2. Each ordered pair in the relation
shows up as an arrow (→). We draw an arrow from machine type m1

to m2 if for every task that a machine of type m1 can perform, we can
find a machine of type m2 to do the same task. Spelled out as a set,
the relation Power is

Power={〈dfa, dfa〉, 〈nfa, nfa〉,
〈dpda, dpda〉, 〈npda, npda〉,
〈lba, lba〉,
〈dtm, dtm〉, 〈ndtm, ndtm〉,

〈dfa, nfa〉, 〈nfa, dfa〉, 〈dtm, ndtm〉,
〈ndtm, dtm〉, 〈dfa, dpda〉, 〈nfa, dpda〉,
〈dfa, lba〉, 〈nfa, lba〉,
〈dpda, npda〉, 〈npda, dtm〉, 〈npda, ndtm〉,
〈dpda, lba〉, 〈npda, lba〉,
〈lba, dtm〉, 〈lba, ndtm〉,

〈dfa, npda〉, 〈nfa, npda〉,
〈dpda, dtm〉, 〈dpda, ndtm〉,

〈dfa, dtm〉, 〈dfa, ndtm〉,
〈nfa, dtm〉, 〈nfa, ndtm〉

}.
We will now study this dominance relation step by step.

Any machine is as powerful as itself; hence, Power is reflexive, as
shown by the ‘self-loops.’ Power is transitive relation because for every
m1,m2,m3 ∈ MT , if 〈m1,m2〉 ∈Power and 〈m2,m3〉 ∈Power, then
certainly 〈m1,m3〉 ∈Power. (We do not show the transitive edges in the
drawing). Power is not antisymmetric because even though dfa and nfa
dominate each other, they have distinct existence in the set of machine
types MT . Power is a preorder, and in our minds captures exactly how
the space of machines must be subdivided. It is not a partial order.

4.3.1 The equivalence relation over machine types

Applying Theorem 4.1 to Power, we obtain the equivalence relation
≡MT over machine types:

Power∩ Power−1 ={〈dfa, dfa〉, 〈nfa, nfa〉,
〈dpda, dpda〉, 〈npda, npda〉,
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DFA

NFA NDTM

DTM

DPDA NPDA LBA

Fig. 4.3. The equivalence relation Power∩ Power−1

〈dtm, dtm〉, 〈ndtm, ndtm〉,
〈lba, lba〉,

〈dfa, nfa〉, 〈nfa, dfa〉, 〈dtm, ndtm〉, 〈ndtm, dtm〉
}.

Figure 4.3 illustrates ≡MT . We can see that ≡MT subdivides MT
into five equivalence classes: {dfa, nfa}, {dpda}, {npda}, {lba}, and
{dtm, ndtm}. Let us now look at this equivalence relation formally. As
pointed out earlier, an equivalence relation partitions the underlying
set into equivalence classes. The set of equivalence classes is denoted
by elements(R)/R below. The mathematical definition below elaborates
on equivalence relations and equivalence classes:

elements(R)/R = { ρ | ρ ⊆ elements(R)
∧ ρ × ρ ⊆ R
∧¬∃Y : ρ ⊂ Y ∧ Y ⊆ elements(R)

∧ Y × Y ⊆ R }
This definition says the following:

• Each equivalence class Ei is a subset of the elements of the under-
lying set

• For each Ei, Ei × Ei is a subset of the equivalence relation.
• Each such set Ei is maximal (no bigger Y containing each Ei exists)

Coming to our specific example, there are four equivalence classes
over Power∩ Power−1: {dfa, nfa}, {dpda}, {npda}, and {dtm, ndtm}.
As can be seen from Figure 4.3, they are four maximal universal re-
lations. Given an equivalence relation R, the equivalence class of an
element x ∈ elements(R) is denoted by [x].
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4.4 Lattice of All Binary Relations over S

A lattice (Q,�) is a partially ordered set such that for any two elements
x, y ∈ Q, the greatest lower-bound glb(x, y) and the least upper bound
lub(x, y) exist in Q, and are unique. An element x

′
is lower than x if

x′ � x. An element x
′
is a lower-bound of x and y if x

′
is lower than

x and y. glb(x, y) is then a lower-bound that is below no other lower
bound. Similarly, we can define lub(x, y) to be an upper-bound that is
above no other upper-bound. As an example, the powerset of a set S,
2S , forms a lattice under the partial order ⊆. In this lattice, the glb
among all elements of S is ∅, and the lub among all elements is S itself.

As another illustration, the set of all equivalence relations over S
forms a lattice under the normal set inclusion operator. The glb of this
lattice is the universal relation S × S, and the lub of this lattice is the
identity relation {〈x, x〉 | x ∈ S}.

4.5 Equality, Equivalence, and Congruence

DFA

NFA NDTM

DTM

DPDA NPDA LBA

Fig. 4.4. The identity relation over MT

By now, we have seen the notion of the identity relation, which is
what the = symbol really corresponds to. Our use of the term “equality”
will, without further qualifications, refer to =. Figure 4.4 illustrates
identity. Our use of the word equivalence, denoted by ≡, has already
been explained.

4.5.1 Congruence relation

A congruence relation captures the notion of substitutability. For ex-
ample, not only are 2 and (3− 1) equivalent, but in most contexts, one
can use 2 instead of (3 − 1). As discussed in Section 4.1.2, a resistor
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may be substituted with another having the same Ohmic value. Let
us take a generic example. Consider something “big”, say B, and let x
be a “small part of it.” In symbols, we denote B as B[x], or “B that
contains x.” Let x ≡ y be true under some equivalence relation ≡. If ≡
is a congruence relation (or simply “congruence”), then B[x] ≡ B[y].
As an example of big, think of a radio receiver, with x being a 10Ω
resistor inside the receiver, and y being two 5Ω resistors in series. Most
radio receivers will continue to behave the same if one were to pull out
a 10Ω resistor and replace it by two 5Ω resistors in series. This abil-
ity to replace “equals for equals” in various contexts is really the idea
behind congruence.

A context (or “hole”) inside a “big” expression is elegantly captured
by a lambda expression. For example, λz.z+1 gives the context “.+1.”
Now, 2 and 200− 198 are congruent modulo operator λz.z + 1 because
(λz.z + 1)2 = (λz.z + 1)(200 − 198). Such congruence can be lost in
systems where addition is implemented in a resource-bounded fashion,
causing overflows or loss of precision. Therefore, while arithmetic sub-
stitutability is a congruence, in real hardware implementations, this
substitutability may be lost! In other words, congruence respects the
operators in the underlying context. In the examples we discussed,
these operators are addition (+) and resistor parallel composition.

Formally, an equivalence relation R modulo operator

op : ×n elements(R) → elements(R)

for some n ≥ 0 is called a congruence relation, denoted R/≡, if

op(〈x1, . . . , xn〉) = op(〈y1, . . . , yn〉), for all i ∈ n, and
∀i : yi ∈ [xi] (here, yi in the equivalence class of xi).

Illustration 4.5.1 (Binary relations:) Let a relation ≺ over intervals
of Reals be defined as follows. Let [a, b] for a, b ∈ Real be an interval.
For intervals [a, b] and [c, d], [a, b] ≺ [c, d] iff a ≤ c ∨ d ≤ b. Find out
the exact nature of ≺: i.e., is it reflexive, symmetric, antisymmetric,
transitive, etc.?
Solution: We will show the following. First of all, ≺ is reflexive. It is
not symmetric. If it were symmetric, then we must have

((a ≤ c) ∨ (d ≤ b)) ⇒ ((c ≤ a) ∨ (b ≤ d))

This would mean that

((c > a) ∧ (b > d)) ⇒ ((a > c) ∧ (d > b))
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But this is not so; consider (a, b) = (0, 10) and (c, d) = (2, 9).
It is not transitive. If it were transitive, it would mean that

((a ≤ c) ∨ (d ≤ b) ∧ (c ≤ e) ∨ (f ≤ d)) ⇒ ((a ≤ e) ∨ (f ≤ b))

But this is not so; consider (a, b) = (2, 10), (c, d) = (3, 15) and (e, f) =
(1, 11).

Illustration 4.5.2 We will need this result in Illustration 4.5.3. Let
us prove that there are exactly 22N

Boolean functions over N Boolean
variables. Any N -ary Boolean function can be portrayed as a truth
table (see Table 18.1 if you have never seen a truth table) of 2N rows,
giving a value of the function for each of the 2N input combinations. For
each way of filling these output value columns, we obtain one distinct
function (e.g., the 2-input nand function in Table 18.1 has outputs 1,

1, 1, and 0). Since there are 22N

ways of filling the value column, there
are that many functions of N inputs. For example, there are 16 2-input
Boolean functions.

Illustration 4.5.3 (Equivalence over Boolean formulas): Let V =
{x, y, z} be a set of Boolean variables. Let F be the set of all Boolean
formulas formed over V using ∧,∨,¬. Let ⇒ stand for the implication
symbol. Define the relation R to be the set of all formula pairs 〈f1, f2〉
such that f1 ⇒ f2 is true, where f1 and f2 come from F . It is easy
to see that R is a preorder. Also, R ∩ R−1 is an equivalence relation
where each equivalence class contains formula pairs that are logically
equivalent. Since there are only 3 Boolean variables used, there are 223

equivalence classes (see Illustration 4.5.2). Each equivalence class is a
set with cardinality ℵ0 (e.g., f , ¬¬f , ¬¬¬¬f , etc., are in the equiva-
lence class of formula f).

Also, the set F with the operator ⇒ forms a lattice, with f1 ∨ f2

being the least upper-bound and f1∧f2 being the greatest lower-bound
of two formulas f1 and f2.

Chapter Summary

This chapter provided a thorough self-contained introduction to binary
relations. It went through many familiar definitions, such as reflexive,
symmetric, transitive, etc. It also introduced the “irr-” and “non-”
variants of most relations. For instance, it is clearly shown why an
irreflexive relation is not the negation (complement) of a reflexive rela-
tion. Preorders—very important in comparing machines with more or
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equivalent behaviors—are introduced. It was shown that given a pre-
order, one can define an equivalence relation by intersecting it with its
inverse. This was illustrated by taking the “power” of various machines
we are going to study in this book into account. We then introduced
universal as well as identity relations, defined congruence, and briefly
looked at the “power” of machines.

Exercises

4.1. Argue that ∅ is both symmetric and asymmetric.

4.2. Find a, b, and c for which transitivity holds, and those for which
transitivity does not hold.

4.3. Refereeing to Figure 4.1,

1. Which relations are preorders?
2. Which are partial orders?
3. Which are equivalence relations?
4. Which are universal equivalence relations?
5. Which are identity equivalence relations?

4.4. Characterize these human relationships in as many ways as you
can (ascribe as many attributes as you can think of):

1. x is the spouse of y
2. x is a sibling of y
3. x is an ancestor of y
4. x likes y
5. x does not know y

4.5. Explain the notions of a total relation and a total order in terms
of the required graph properties (in terms of dots and arrows).

4.6.
1. Give two examples (each) of a binary relation and a ternary relation

over Nat (choose practical examples of these relations).
2. Draw a directed graph G with nodes being the subsets of set {1, 2},

and with an edge from node ni to node nj if either ni ⊆ nj or
|ni| = |nj|. |S| stands for the size or cardinality of set S. Now, view
the above graph G as a binary relation RG. Write down the pairs
in this relation. A relation is written as

{〈a0, b0〉, 〈a1, b1〉, . . .}

where 〈ai, bi〉 are the pairs in the relation.
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3. Is RG a functional relation? Why, or why not? A functional relation
is one for which for one ‘input’, at most one ‘output’ is produced.
As far as an n-tuple 〈a1, a2, . . . , an〉 goes, the last position an is
regarded as the ‘output’ and the remaining n − 1 positions are
regarded as the ‘input.’ Therefore, for a functional binary relation,
if 〈ai, bj〉 and 〈ai, bk〉 are in the relation, then bj = bk.

4.7. Consider the Power relation defined in Section 4.3. Depict a sim-
plified power relation (“Spower”) that retains only DFA, NFA, DTM,
and NDTM. Argue that Spower is a preorder. Compute the equivalence
relation obtained by intersecting Spower and its inverse.

4.8. Consider electrical resistors. Let the set of resistors be defined
as follows. If x is a Real number, then the term res(x) is a resistor.
If r1 and r2 are in resistor, then series(r1, r2) is a resistor. (Again,
series(r1, r2) is a term). Some of the elements in set Resistor are:

• res(1), res(2), res(3), series(res(1), res(2)),
• series(res(1), series(res(2), res(3))), and
• series(series(res(2), res(3)), res(1)).

In any4 circuit, we must be able to substitute res(3) by series(res(1), res(2)),
as series connected resistors add up the resistivity. However, we cannot
regard res(3) and series(res(1), res(2)) as identical because they have
distinct representations in the set. To compare two resistors “properly,”
we define the relation Resistor leq:

Resistor leq = {〈x, y〉 | sumR(x) ≤ sumR(y)}

where sumR is defined as follows:

sumR(res(i)) = i,
sumR(series(x, y)) = sumR(x) + sumR(y).

Given the above, show that Resistor leq is reflexive and transitive, and
hence a preorder. Also show that Resistor leq is not antisymmetric.

4.9. Show that the ‘less than’ relation, ‘<’, defined over Nat, is anti-
symmetric.

4.10. Prove that the intersection of a partial order R over set S and
its inverse R−1 is the identity relation over S.

4 We are ignoring aspects such as size, weight, tolerance, etc.
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4.11. Define the following relation ≺ over intervals of Reals as follows.
Let [a, b] for a, b ∈ Real be an interval. For intervals [a, b] and [c, d],
[a, b] ≺ [c, d] iff a ≤ c ∧ d ≤ b. Now, is ≺ a preorder? Is it a partial
order? Show that ≺ ∩ ≺−1 is an identity relation.

4.12. Continuing with the above question, let’s change ≺ as follows.
For intervals [a, b] and [c, d], define

[a, b] ≺ [c, d] ⇔ ∃x : (a ≤ x ≤ b) ∧ (c ≤ x ≤ d).

Now, is ≺ a preorder or a partial order? Is ≺ ∩ ≺−1 an identity equiv-
alence relation or simply an equivalence relation?

4.13. Find out which are true and which are false assertions:

1. The intersection of two preorders is a preorder.
2. The intersection of a preorder order and its inverse can never be

the identity relation.
3. The universal relation is a preorder.
4. The empty relation is a preorder.

4.14. Choose all correct answers. The intersection of a partial order
and its inverse is:

1. The universal relation.
2. The identity relation.
3. An equivalence relation.
4. A preorder.

4.15. Choose all correct answers. The intersection of a preorder and its
inverse is:

1. a reflexive relation.
2. a congruence relation, modulo any given function f .
3. a transitive relation.
4. an antisymmetric relation.

4.16. Find a relation that is symmetric, asymmetric, antisymmetric,
irreflexive, and transitive (all at the same time).

4.17. List some of the equivalence classes of the equivalence relation
≺ ∩ ≺−1 of Exercise 4.12.

4.18. Compare the equivalence classes defined by ≺ ∩ ≺−1 as defined
by Exercise 4.12 and Exercise 4.11. It is the case that each equivalence
class of one of these examples contains many equivalence classes of the
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other example. Explain this statement. Specifically, consider the inter-
val [x, x] for some Real number x. Consider its equivalence class [[x, x]].
In which example does this equivalence class contain more members be-
sides [x, x]?

4.19. Define the following family of equivalence relations over Nat:
equivalence relation Ei, for 2 ≤ i ≤ 4, contains all pairs 〈x, y〉 such that
(x = y) mod i. For example, for i = 2, one equivalence class is Odd
and another equivalence class is Even. Sketch the equivalence classes
generated by i = 2, i = 3, and i = 4. Show the inclusion relationships
between these equivalence classes. Also show the inclusion relationships
between these equivalence classes and the universal and the identity
relations over Nat.

4.20. The two DFAs in Figure 10.11 are language-equivalent determin-
istic finite-state automaton (DFA) which will be discussed in Chapter 8.

A string s is in the language of a DFA if there is an s-labeled path
from the start state (state labeled by the arrow) to one of the final
states. Given two DFAs D1 and D2, define D1 ≤DFA D2 exactly when
for every string in D1’s language there exists the same string in D2’s
language.

1. Show that ≤DFA is a preorder.
2. Describe the equivalence relation ≤DFA ∩ ≤−1

DFA.
3. Show that the DFAs of Figure 10.11 (say DFA1 and DFA2) are

such that DFA1 ≤DFA DFA2 and DFA2 ≤DFA DFA1.

4.21. Electrical engineers can realize a resistor of a certain Ohmic value
by connecting resistors in series, parallel, or a combination of both. Two
resistors of Ohmic value R1 and R2 in series are equivalent to a single
resistor of Ohmic value R1 + R2, while two such resistors in parallel
are equivalent to a resistor of R1R2

R1+R2
Ohms. This equivalence is a con-

gruence relation modulo the series connection and parallel connection
operators, as far as resistivity goes.

Some attributes of circuits may not be preserved by this substitu-
tion.

• Derive a formula for the tolerance of a parallel connection, and
check whether tolerance is preserved by parallel composition.
For example, if each resistor in a collection has a tolerance in Ohmic
value of 5% (meaning that the actual Ohmic value may be +

−5%)
regardless of its Ohmic value, then do two 10Ω resistors from this
collection that are connected in parallel have the same overall tol-
erance as a single 5Ω resistor, also drawn from this collection?
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• Is tolerance preserved by any assembly? (In other words, suppose
we realize r Ohms through two different circuits c1 and c2 with
different serial/parallel structures; do these circuits have the same
tolerance overall?)
• Is the planarity of the circuit layout preserved by serial/parallel
resistive combinations? How about the wattage rating?
• Think of three other attributes that are not preserved.

This exercise drives home the point that not everything of interest may
be preserved in a substitution under a congruence.
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Mathematical Logic, Induction, Proofs

In this chapter, we present a sampling of ideas from mathematical logic.
We consider various operators such as if and if and only if that are
crucial to the proper understanding of formal statements made while
discussing automata theory. We then describe methods to write down
formal definitions and formal proofs, including inductive definitions,
and proofs by contradiction.

5.1 To Prove or Not to Prove!

Writing proofs is tedious work. Therefore, it goes without saying that
this activity is rewarding only if the proofs that one embarks on suc-
ceed in establishing the proof goal. Unfortunately, there are no guar-
anteed safe methods that one can follow to ensure success in proving
(or disproving) things. Here are some familiar (and some unfamiliar)
situations in slanted fonts, and the safety net that the human society
relies on to avoid them:

• One makes mistakes in the deductive steps, and nobody else who
proof-reads our proofs is able to spot mistakes in the proof. While
relatively infrequent, this situation is avoided in practice by one
of two means: (i) having multiple people proof-check, perhaps
spanning several years or even decades; (ii) having modern proof-
checkers (“theorem provers”) check the steps. The Flyspeck project
of Thomas Hales [69] attempts to find such machine-checked proofs
for several mathematical conjectures for which the problem state-
ment is easy, but the proofs are so immensely hard that it requires
experts plus reliable computer programs working in concert. Several
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impressive results have already been obtained, including a solution
to the Kepler conjecture.1

• We end-up proving something like 6 = 6, and then realize that we
have perhaps applied a circular chain of reasoning steps that led
us to a tautology. We crumple and discard our worksheets and try
another attack.
This could happen in a reasoning tool that loops due to the presence
of an unfortunate circular chain of reasoning steps. The solution is
to build proof tools that avoid such direct circularities from ever
manifesting. The ACL2 theorem prover [3] is an example of a tool
that incorporates such precautions.

• We attempt to prove a famous open conjecture, such as P �= NP ,
and end up deducing, after a few hours, that 5 = 5. This allows
us to conclude nothing! (Had we ended up proving 5 = 6 through
a sound chain of reasoning steps, we would have ended up proving
that P = NP ). In Chapter 12 on Pumping lemmas, we will revisit
this issue.

• We are asked to prove that 5 = 6. By negating the proof goal, we
try to prove that 5 �= 6 and get nowhere. In this particular case,
we might stop after a few hours and try instead to prove 5 �= 6.
We then begin by assuming the negation of 5 �= 6, which is indeed
5 = 6, and easily finish the proof by obtaining a contradiction (end
up proving false). At this point, we would have proved 5 �= 6 (see
Section 5.2.3).
This situation shows that one has to know what proof goal is likely
to be true before wasting much time.

• We are asked to prove that 267 − 1 is a prime number. We might
attempt to search for all factors in a certain range, but find such
brute-force techniques to be utterly infeasible. We sit utterly hope-
less until someone gives us one of the factors (761, 838, 257, 287),
and then we easily find the other factor.
This situation demonstrates that some proofs are hard because of
the sheer computational complexity involved. In fact, finding the
prime factors of an arbitrary natural number is a very hard prob-
lem. Cryptography systems rely on this fact for the secure transmis-
sion of data. Rivest, Shamir, and Adleman invented an algorithm
that goes by the acronym RSA, and depends on this computational
complexity [102].

1 The Kepler conjecture is about the most compact 3-dimensional arrangement for
cannon balls – or oranges in a fruit-stand for that matter. For details, see [69].
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In summary, before embarking on any proof, one must attempt to as-
sess the likelihood of the proof goal being true as well as the inherent
difficulty of finding the proof. Unfortunately, as discussed in Chap-
ters 17 and 18, these are, in general, impossible to do. Fortunately, in
practice, such proofs are routinely carried out in computer companies
such as AMD and Intel (e.g., [52]), with respect to systems such as
floating-point hardware.

5.2 Proof Methods

A proof is a sequence of steps justifying why something is true. More
formally, a proof of a statement sn in formal logic is a sequence
s0, s1, . . . , sn, such that each si is either an axiom or follows from some
of the earlier sj (j < i) through a rule of inference. In Chapter 18, we
shall introduce the formal logical machinery necessary to define what
a step can be, and what true means. In this section, we list a few styles
of proofs and their uses throughout this book. We begin with a review
of some of the basic operators.

5.2.1 The implication operation

Implication, or ⇒, stands for “if then.” It is used to assert the truth of
its consequent conditional on the truth of its antecedent. For example,

if (x > 2 ∧ even(x)) then composite(x)

is a true assertion. Written using ⇒, the above statement reads

(x > 2 ∧ even(x)) ⇒ composite(x).

This assertion is true because every even number is a composite num-
ber, and for odd numbers, the above assertion is vacuously true (its
antecedent is false). What about the statement

(x > 2 ∧ x < 2) ⇒ (x = x + 1)?

The antecedent that asserts that x is both > 2 and < 2 is false. In this
case also, the assertion is vacuously true. Note that we are not drawing
the conclusion x = x + 1 - the moment we find that the antecedent is
false, we leave the consequent alone. Another sentence of this form is,
“if the moon is made of blue cheese, then horses can fly,” in that it is
a true assertion.2 The assertion
2 Notice that we are not concluding that horses can fly.
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(x > 2 ∧ even(x)) ⇒ prime(x)

is, on the other hand, neither true nor false (it is both falsifiable and
satisfiable). Note that a ⇒ b is equivalent in meaning to ¬a ∨ b.

An exercise in reading iff

We now turn to the iff operator. Basically, a iff b, also written a ⇔ b
or a = b, means a ⇒ b and b ⇒ a. In other words, a has the same truth
value as b; if a is true, so is b; if a is false, so is b.

Definitions involving iff are sometimes tricky to read. Consider the
following definition that talks about ultimately periodic sets (see also
Section 10.5):

Definition 5.1. (Ultimately Periodic) A set S ⊆ N is said to be ul-
timately periodic (UP) if there exists a number n ≥ 0 and another
number (called ‘period’) p > 0 such that for all m ≥ n, m ∈ S iff
m + p ∈ S.

See if you understand the above definition by doing the following exer-
cise. The fact that the set in Question 3 is UP is clear, because n = 26
and p = 15 works. Think how you get the other two answers.

5.2.2 ‘If,’ or ‘Definitional Equality’

When one presents mathematical ideas, one often adopts a certain sys-
tematic style consisting of first introducing a bunch of definitions, fol-
lowed by the statement and proof of various theorems. While introduc-
ing definitions, you may have noticed that people use various kinds of
equality or arrow symbols, some of the typically used symbols being
.
=,

�
=, or sometimes even ⇐. Also while defining Boolean quantities,

we might even employ iff or ⇔ instead of these other variants. We will
prefer

.
= over all these various forms.

This is known as definitional equality. Definitional equalities are
used to introduce new definitions into the domain of discourse. Note
that such a definition, by itself, causes no contradictions. For example,
let there be a definition

foo(x)
.
= odd(x) ∧ prime(x)

in some domain of discourse, where foo has never before been intro-
duced, while odd and prime have already been defined. However, if one
continues defining functions ‘willy nilly,’ and later introduces the def-
inition foo(x)

.
= even(x), one would have introduced a contradiction



5.2 Proof Methods 77

that asserts that even(x) = odd(x) ∧ prime(x)! In many frameworks,
a second definition of something that is already defined is flagged as
an error. Consequently, some protection (through checking) is available
while using definitional equalities.

Considering all this, a real conundrum seems to arise when one uses
a definitional equality symbol to introduce a new symbol which also
appears on the right-hand side of the definition! How can we be intro-
ducing something “afresh” when we are also using it on the right-hand
side, as if it were already existing? This is, however, how recursive def-
initions are! Do such recursive definitions always ‘make sense?’ Can
they cause contradictions of the kind alluded to above? How do we
understand recursive definitions that, on one hand, are so very conve-
nient, but on the other hand prone to circularity? Chapter 6 examines
these questions in greater detail, and helps set the stage for using re-
cursive definitions with more assurance. If you are planning to skip
Chapter 6, try to at least study the following recursive definitions to
see which ones define a function (any function at all), which ones define
a function uniquely. Also, try to understand carefully why uniqueness
is achieved.

LHS and RHS: We define two abbreviations that will often
be used: LHS stands for left-hand side and RHS for right-hand
side. These abbreviations may refer to equations, production
rules, etc., all of which have two “sides” to them.

The as Notation

Sometimes, when we define a function f , we might be interested not
only in the entire argument fed to f but also the substructure of the
arguments. In this case, the use of the ‘as’ notation comes in handy.
Example: f(x as 〈y, z〉, w) = if w > 0 then f(x,w − 2) else z.

In this function, if w > 0 then we recurse, passing x “as is” in the
first argument. If w = 0, we return the second component of x, which
is z. The as notation allows both x and its components to be referred
to on the right-hand side.

5.2.3 Proof by contradiction

Proof by contradiction, or reductio ad absurdum, is a reasoning principle
one uses frequently in day-to-day life (for example in playing games, in
detecting contradictions in arguments, etc.). This principle is captured
by the contrapositive rule
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(A ⇒ B) ⇔ (¬B ⇒ ¬A),

as can easily be seen by converting A ⇒ B to ¬A∨B and also similarly
converting (¬B ⇒ ¬A).3 If we assume something (“A”) and derive a
contradiction, we have essentially proved A ⇒ false, which, by the
contrapositive, allows us to conclude true ⇒ ¬A, or ¬A.

We have already seen how proof by diagonalization uses proof by
contradiction. We shall also use proof by contradiction in the context
of the Pumping lemma in Chapter 12, and in the context of mapping
reducibility arguments in Chapter 17.

5.2.4 Quantification operators ∀ and ∃

We now present some facts about the ∀ and ∃ operators. These opera-
tors allow you to perform iteration over a certain range, similar to what
Σ (summation) and Π (product) do in traditional mathematics. The
universal quantification operator ∀ is used to make an assertion about
all the objects in the domain of discourse. (In mathematical logic, these
domains are assumed to be non-empty). For example,

∀x : Nat : P (x)

is equivalent to an infinite conjunction

P (0) ∧ P (1) ∧ P (2) . . .

or equivalently ∧x∈Nat : P (x). Note that we are saying “x : Nat.” This
is simply saying “x belongs to type Nat.” It is entirely equivalent to
x ∈ Nat—we show both uses here, as both usages may be found in the
literature; therefore, it pays to be familiar with both usages.
Here is an example of how ∀ works for a finite range:

∀x ∈ {0, 1, 2} : P (x)

The above formula is equivalent to P (0) ∧ P (1) ∧ P (2).
The above definitions allow us to establish numerous identities, for
instance:

(∀ x : Nat : P (x))∧ (∀ x : Nat : Q(x)) ≡ (∀ x : Nat : (P (x)∧Q(x))),

as the explicit ∧ gets absorbed into the iterated conjunction denoted
by ∀.

3 The above theorem can also be written (A ⇒ B) ≡ (¬B ⇒ ¬A), as the equality
symbol ≡ takes the meaning of ⇔ for Booleans.
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Similarly,
∃x : Nat : P (x)

is equivalent to an infinite disjunction

P (0) ∨ P (1) ∨ P (2) . . .

or equivalently ∨x∈Nat : P (x).
In [75], Lamport introduces a notational style for writing long math-

ematical formulas in a readable manner. His insight is that by using
suitable indentations, and by employing the operators ∧ and ∨ in a
manner similar to bullets, one can avoid many parentheses that would
otherwise be needed. For instance, the above formula would be written
as

∨ P (0)
∨ P (1)
∨ P (2)
∨ . . .

We will often employ this style in the following illustration.

Illustration 5.2.1 Fully expand out the ∀ and ∃ below, and simplify
the resulting Boolean formula. “and” and “or” are equivalent to ∧ and
∨, except they are written in the prefix syntax (not infix). Your final
answer should be T or F (true or false), with justifications.

(∀x ∈ Bool : ∀y ∈ Bool : (or(x, y) ⇒ ∃z ∈ Bool : and(y, z)))

Solution: The given formula is

∀x ∈ Bool : ∀y ∈ Bool :
or(x, y) ⇒ ∃z ∈ Bool : and(y, z)

Expanding x, we get
∧ ∀y : or(0, y) ⇒ ∃z : and(y, z)
∧ ∀y : or(1, y) ⇒ ∃z : and(y, z)

Now expand y:
∧ ∧ or(0, 0) ⇒ ∃z : and(0, z)

∧ or(0, 1) ⇒ ∃z : and(1, z)
∧ ∧ or(1, 0) ⇒ ∃z : and(0, z)

∧ or(1, 1) ⇒ ∃z : and(1, z)

Now, expand z:
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∧ ∧ or(0, 0) ⇒ ∨ and(0, 0)
∨ and(0, 1)

∧ or(0, 1) ⇒ ∨ and(1, 0)
∨ and(1, 1)

∧ ∧ or(1, 0) ⇒ ∨ and(0, 0)
∨ and(0, 1)

∧ or(1, 1) ⇒ ∨and (1, 0)
∨and (1, 1)

This simplifies to 0, or false.

In first-order logic, quantification is allowed over the domain of indi-
viduals (numbers, strings, etc.) while in the second-order logic, quan-
tification over functions and relations is allowed. Further facts about
quantification will be introduced as necessary.

5.2.5 Generalized DeMorgan’s Law Relating ∀ And ∃

DeMorgan’s law relates ∧ and ∨. For two Boolean variables a and b,
the DeMorgan’s laws are:

¬(a ∧ b) = (¬a ∨ ¬b), and ¬(a ∨ b) = (¬a ∧ ¬b).

Extending the above to infinite conjunctions (∀) and infinite disjunc-
tions (∨), we have the following generalized DeMorgan’s laws, otherwise
known as the duality between ∀ and ∃:

∀ x : Nat : P (x) ≡ ¬∃ x : Nat : ¬P (x)

and
∃ x : Nat : P (x) ≡ ¬∀ x : Nat : ¬P (x).

5.2.6 Inductive definitions of sets and functions

The term inductive definition finds widespread use throughout com-
puter science, and tends to mean a whole bunch of (related) things.
We introduce two specific usages of this term now.

Inductively Defined Sets and Functions

A set that is inductively defined is constructed in a principled way, by
first introducing the basis elements, and then “pumping” new elements
out of existing elements through constructors. For example, the set of
all lists over N , denoted list[N ], is defined as follows:
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nil ∈ list[N ]
if l ∈ list[N ] and n ∈ N , then cons(n, l) ∈ list[N ].

The intent is to say that list[N ] is the smallest set closed under the
above two rules. In a general setting, the process of inductively defining
a set S consists of first including the basis elements B = {bi | i ∈ m}
into S. Thereafter, for every element x in the set S, one of a (usually
finite) set of constructors C = {ci | i ∈ n} are applied to obtain
elements of the form ci(x). The set S being defined is the least set
that includes the basis-case elements and is closed under constructor
application. Said more formally:

Rule 1: For every i ∈ m, bi ∈ S.
Rule 2: If x ∈ S, and ci is a constructor for i ∈ n, then ci(x) ∈ S.
Rule 3: S is the least such set.

There are actually two other (and somewhat non-obvious) ways to ex-
press the intent of Rule 3. They are explained below, as they tend to
occur in other books as well as papers.

1. S is the intersection of all such sets.
2. Express S directly as follows:

S = {x | (x ∈ B) ∨ (∃ci ∈ C : x = ci(y) ∧ y ∈ S)}.

The constructors of an inductively defined set S have the status of
primitive functions that operate over the set. In most cases, a whole
list of other inductively (or, equivalently, recursively) defined functions
are also defined over an inductively defined set. One can then establish
properties of these functions by structural induction; for instance, if we
define the length of a list, and the append function on lists, inductively
as follows:

length(nil) = 0
length(cons(n,L)) = 1 + length(L)

append(nil, L) = L
append(cons(x,L1), L2) = cons(x, append(L1, L2)).

One can then easily prove properties such as

length(append(L1, L2)) = length(L1) + length(L2)

by inducting on the number of applications of the cons operator
(more detailed discussions of structural induction are provided in Sec-
tion 5.3.3). We shall use proof by structural induction when we deal
with data structures such as trees and lists.
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Free inductive definitions: The inductive definition of a set S is
called a free inductive definition if, for every object x in S, either x ∈ B,
or x = ci(y) for exactly one constructor ci and exactly one element
y ∈ S. Only one of these conditions must hold. Such sets are called
freely generated, from a set of basis elements B and a set of constructors
C.

To understand the notion of freely generated sets better (and to see
why it matters), suppose we have a set S such that for some element
y in it, y ∈ B and y = ci(z). Or suppose we have a set S such that
for some element y in it, y = ci(z1) and also y = cj(z2) for z1 �= z2

or ci �= cj . Then S is not freely generated. For example, in list[N ] if
some element y = nil, as well as y = cons(x1, cons(x2, cons(x3, nil)))
for some arbitrary x1, x2, and x3, what can go wrong? (Exercise 5.18.)
With freely generated sets, we can be assured that functions that are
inductively defined over them exist and are unique. With non-freely
generated sets, such functions may not have a unique definition.

5.3 Induction Principles

We now provide a brief tour through some of the induction princi-
ples that we shall use repeatedly. We begin with a recap of the two
familiar principles of induction over N , namely arithmetic induction
and complete induction. We shall demonstrate that these principles are
equivalent.

5.3.1 Induction over natural numbers

Generally, the induction principle over natural numbers is stated in
two forms: arithmetic induction and complete induction. We now state
these forms and prove them equivalent.
Arithmetic: The principle of arithmetic induction states that for all
P , if we can show P (0) and for all x we can show that P (x−1) implies
P (x), then for all x, P (x). In symbols:

∀P : ∧ P (0)
∧ ∀x > 0 : P (x − 1) ⇒ P (x)
⇒ (∀x : P (x)).

Complete: The principle of complete induction states that for all P ,
if we can show that for all y, for all x < y, P (x) implies P (y), then for
all x, P (x). In symbols:
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∀P : ∀y : (∀x < y : P (x)) ⇒ P (y)
⇒ (∀x : P (x)).

Proof of equivalence: To prove that these induction principles are
equivalent, we proceed as follows. First pick an arbitrary predicate P
for which the proof is being done. Then, these induction principles are
of the form A ⇒ B and C ⇒ B (A standing for arithmetic and C for
complete). Therefore, we merely need to prove A ⇔ C, i.e., that the
antecedents of these induction theorems are equivalent.

1. We need to prove A ⇔ C, where

A = P (0) ∧ ∀x > 0 : P (x − 1) ⇒ P (x)

and
C = ∀y : (∀x < y : P (x)) ⇒ P (y).

2. (A ⇔ C) ≡ (A ⇒ C) ∧ (C ⇒ A).
3. Let’s prove (C ⇒ A). I’ll leave (A ⇒ C) as an exercise for you

(Exercise 5.21).
4. Here there are two approaches possible: one is to prove (C ⇒ A)

itself, and the other is to prove the contrapositive form (¬A ⇒ ¬C).
We now detail the proof using the contrapositive form (the other
form is quite similar).

5. ¬A = ¬P (0) ∨ ¬(∀x > 0 : P (x − 1) ⇒ P (x)).
6. Let’s assume ¬P (0).
7. Now, ¬C = ∃y : (∀x < y : P (x)) ∧ ¬P (y).
8. Consider y = 0. For this y, there is no x < y. Hence, the (∀x < y :

P (x)) part is vacuously true.
9. Therefore, by the “infinite disjunction” property of ∃,

∃y : (∀x < y : P (x)) ∧ ¬P (y)

reduces to
¬P (0) ∨ . . . ,

which obviously follows from the assumption ¬P (0).
10. This finishes one of the cases of ¬A. Let us move on to the other

case, by now assuming

¬(∀x > 0 : P (x − 1) ⇒ P (x)).

This means (∃x > 0 : P (x − 1) ∧ ¬P (x)).
11. (I know how to “pull” a magic assumption here, but won’t do it,

as I want to illustrate this proof getting stuck and having to come
back to discover the magic).
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12. Since (∃x > 0 : P (x− 1)∧¬P (x)), assume a witness for x.4 Call it
x0.

13. Therefore, we have P (x0 − 1) ∧ ¬P (x0) as our assumption.
14. We can instantiate the y in C to x0, to get (∀x < x0 : P (x)) ⇒

P (x0).
15. Here, we are stuck. We cannot instantiate the x in the above for-

mula, as it lies under an “implicit negation.” (Anything belonging
to the antecedent of an implication is under an implicit negation).
Said another way, if ∀, an infinite conjunction, implies something,
we cannot say that one of the conjuncts implies the same thing).

16. Revisit Step 12. In there, assert that the witness x0 is the first such
x such that P (x − 1) ∧ ¬P (x).

17. Now, consider (∀x < x0 : P (x)) ⇒ P (x0) again. Clearly, because
of the way we selected x0, for all x < x0 we do have P (x) holding
true. So we are left with P (x0). Since this is false, we again have
¬C.

18. Consequently, for both cases resulting from ¬A we have ¬C, or in
other words, ¬A ⇒ ¬C, or C ⇒ A.

5.3.2 Noetherian induction

Both arithmetic and complete induction are special cases of the noethe-
rian induction rule stated in terms of well-founded partial orders. A
well-founded partial order � is one that has no infinite descending
chains of the form . . . � a−3 � a−2 � a−1 � a0. The total order (N,≤)
is a special case of a well-founded partial order. Other well-founded par-
tial orders include the lexicographic ordering of words, subset ordering,
etc. In a general setting, well-founded partial orders can have multiple
minimal elements (giving rise to multiple basis cases). For example,
consider the ordering between closed intervals over natural numbers:

�= {〈[a, b], [A,B]〉 | a ≥ A ∧ b ≤ B}.

We have [2, 2] � [1, 3], but neither [2, 2] � [3, 3] nor [3, 3] � [2, 2]. In
this case, we have an infinite number of minimal elements.
The principle of noetherian induction: Suppose (W,�) is a well-
founded partial order. Suppose property P holds for all minimal ele-
ments in W . Also, for all non-minimal elements x, if for all y � x P (y)
implies P (x), then ∀x.P (x). In symbols:

4 A witness is a value that, when substituted in place of a variable that is existen-
tially quantified in a formula, makes the formula true. For example, a witness for
y in ∃y.y < 5 is 4.
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∀P : ∧i∈min(W ) P (i)
∧ ∀x /∈ min(W ) : (∀y � x : P (y)) ⇒ P (x)
⇒ (∀x : P (x)).

5.3.3 Structural

The principle of structural induction can easily be seen to be a special
case of the principle of noetherian induction by selecting � to keep track
of the number of “layers” of application of constructors. Specifically,
min(W ) = B = {bi | i ∈ m}, and

preceq = {〈x, y〉 | x ∈ B ∨ x −→ y},

where x −→ y means there exists a sequence of constructors that can
be applied to x to obtain y.

5.4 Putting it All Together: the Pigeon-hole Principle

The colloquial version of the pigeon-hole principle states that if there
are n pigeons and n − 1 holes, then surely there is a hole with more
than one pigeon. Stated in general, we can say that there is no total
injection from a finite set S into any of its proper subsets. This is not
true of infinite sets, as Exercise 5.25 shows.

Illustration 5.4.1 We can prove the pigeon-hole principle using in-
duction, as well as proof by contradiction, as follows (adapted from
[106]). Consider finite sets Bi from some universe, where i is the size
of the set. We denote the size of a set (e.g., S) by the | | operator (e.g.,
|S|). Now, in order to show that for all k, there is no total injection f
from any Bk set to one of its proper subsets, we proceed as follows:

Basis case: Consider sets B2 with two elements. There is no total
injection from B2 into any of its proper subsets.
Induction hypothesis: Now assume by induction hypothesis that for
2 < i ≤ (k − 1), there is no total injection from any of the Bis to
any of their proper subsets. Suppose a particular set B

′

k of size k
has a total bijection into its proper subset AB

′
k

. But now, we can

remove any element x from B
′

k and its image under f , namely f(x),
from A

B
′
k

, and get a total injection from a set in Bk−1 to one of its

proper subsets. This is a contradiction. Therefore, we conclude that
for any k, there does not exist a total injection f from any set Bk

to one of its proper subsets.
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Chapter Summary

This chapter began with some cautionary remarks pertaining to con-
ducting formal proofs: how one has to spend some time assessing
whether the proof goal is achievable, and then how to carry out the
proof in a manner that is easily verifiable. It then discussed the op-
erators ‘if’ (⇒) and ‘iff’ (⇔). Proof by contradiction was introduced
through the game of Mastermind. After discussing quantifications, in-
ductively defined sets and functions, and induction principles, a proof
of equivalence between arithmetic and complete induction was given.
Various other induction principles were also discussed. Many of these
concepts were illustrated by the pigeon-hole principle.

Exercises

5.1. Read about the following man/machine produced proofs that have
made headlines (all references obtainable from
http://en.wikipedia.org/wiki or other sources):

1. The four-color theorem including the classic proof of Appel and
Haken and the recent proof of Georges Gonthier.

2. Andrew Wiles’s proof of Fermat’s Last Theorem.

5.2. With respect to the discussions concerning 267 − 1 on Page 74,
determine the other factor of 267 − 1 by long division.

5.3. Indicate which of the following implicational formulas are true,
and which are false:

1. (1 = 2) ⇒ (2 = 3).
2. (gcd(x, y) = z) ⇒ (gcd(x + y, y) = z). Here, gcd stands for the

greatest common divisor of its arguments.
3. (k > 1) ∧ hasclique(G, k) ⇒ hasclique(G, k − 1). Here,

hasclique(G, k) means that graph G has a clique of size k.
4. (k > 1) ∧ hasclique(G, k) ⇒ hasclique(G, k + 1).
5. ((a ⇒ (b ⇒ c)) ⇒ (a ⇒ b)) ⇒ (a ⇒ c).

5.4.
1. Justify that ∅ is ultimately periodic (UP).
2. Justify that {0, 1, 27} is UP.
3. Justify that {0, 1, 5, 23, 24, 26, 39, 41, 54, 56, 69, 71, 84, 86, 99, 101, . . .}

is UP.

5.5. Study the following “recursive definitions:” Assume that x ranges
over Int. The operator |x| takes the absolute value of x:
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1. f(x)
.
= f(x) + 1

2. f(x)
.
= f(x + 1)

3. f(x)
.
= f(x)

4. f(x)
.
= if (x = 0) then 1 else f(x + 1)

5. f(x)
.
= if (x = 0) then 1 else f(x − 1)

6. f(x)
.
= if (x = 0) then 1 else f(|x| − 1)

7. f(x)
.
= if (x = 0) then 1 else x + f(|x| − 1)

Answer the following questions:

(a) Which definitions are malformed (are not definitions but are
contradictions)?
(b) Which definitions are well-formed but end up defining an every-
where undefined function?
(c) For all other cases, describe the mapping effected by the function.

5.6. Prove that
√

2 is irrational.

5.7. Consider the game of Mastermind played using three colors (to
simplify the exposition), y, g, and b, standing for yellow, green, and
blue.

CODE y g b b Move number

-------------------------

rrr g g b b 3

www b b y y 2

rw y y g g 1

The game is played between two players A and B. A selects a secret code
hidden from view of the opponent B. In the example below, the code
is y g b b. Player B must try and guess the code, improving his/her
guesses based on scores assigned by A. In our example, B’s moves are
shown below, numbered as shown. B’s first move is y y g g, which
fetches a r (for red) and w (for white). A red means that one of the
pegs is in the right place and of the right color, while a white means
that there is a peg of the right color, but in the wrong place. In our
example first move, one y peg fetches a red, and one of the g pegs
fetches a white. The next two moves of B are as shown. With the game
poised at this point, show that B can, by using the principle of proof by
contradiction, finish the game in two more moves. (Hint: B views move
2 with interest. This move reveals that if there are two ys in the code,
there must only be one b. Taking this assumption, to move 1 leads to
an immediate contradiction. Continue to argue through the details).
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5.8. How does one prove the statement, “There exist horses with a
white tail?” (For this, and the following ‘horse proofs,’ conserve your
horse power - simply offer proofs, in a few sentences, of the form: “go
find a horse satisfying criterion x, then look for criterion y in them;
hence, proved/disproved”).

5.9. How does one disprove the statement, “There exist horses with a
white tail?”

5.10. How does one prove the statement, “For all horses that have
black ears there are some that have a white tail?”

5.11. How does one disprove the statement, “For all horses that have
black ears there are some that have a white tail?”

5.12. Propose a quantified statement in first-order logic that expresses
the fact that set S ⊆ Nat is infinite. Construct a statement that goes
like, “for all elements of S, . . ..”

5.13. Propose a quantified statement in first-order logic that expresses
the fact that set S ⊆ Nat is finite. Construct a statement that goes
like, “there exists. . ..”

5.14. Eliminate the negation operator entirely from the following for-
mula:

¬(∀x : ∃y : ∀z : (p(x, y) ⇒ ¬q(y, z))).

5.15.
1. Prove by induction that the sum of 1 through N is N(N + 1)/2.
2. Obtain an expression for the total number of nodes in a balanced

k-ary tree. Prove this result by induction.
3. Suppose we have the following kind of “almost binary” finite trees.

All nodes of such a tree have a branching factor of 2, except for the
father node of a leaf node, which has a branching factor of only 1
(these nodes “father” exactly one child).

Such trees arise in the study of context-free grammars whose
productions are of the A->BC or A->a. We shall study these
grammars, called the Chomsky Normal Form grammars, in
Chapter 15.

Obtain an expression for the length of the frontier of such a tree
as a function of the number of interior nodes. Verify your answer
through an inductive proof.
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5.16. Inductively define the set of all binary trees with nodes labeled
by elements from Nat. Employ the constructor Node(n) to introduce
a tree of height zero containing just a node n ∈ Nat. Employ the
constructor Tree(n, T1, T2) to introduce a tree rooted at node n with
left sub-tree and right sub-tree being T1 and T2, respectively. Write
down the mathematical equations that achieve such a definition.

5.17. Given a tree such as defined in Exercise 5.16, inductively define
a function that sums the values labeling all the nodes.

5.18. Pertaining to the definition of freely generated sets on Page 5.2.6,
explain what can go wrong with a non-freely generated set. Hint: Con-
sider length(y). Can we get two possible answers when length is applied
to the same y?

5.19. Find the smallest N such that using only 4-cent postage stamps
and 7-cent postage stamps, it is possible to make postage for any de-
nomination k ≥ N cents. Then prove your result by induction.

5.20. Prove using induction that using a 6-liter water jug and a 3-liter
water jug, one cannot measure out exactly 4 liters of water. Here are
further instructions.

1. What is wrong if you directly attack this induction proof, taking
the given property as the proof-goal (“cannot measure out”) (one
sentence)?

2. How would you choose the new proof goal (one sentence)?
3. Show the new proof goal by induction.

5.21. Prove the remaining case of A ⇒ C in the derivation on Page 84.

5.22. Provide an example of a well-founded partial order with more
than one minimal element.

5.23. If you have not already, then first read Section 5.3.2. Now con-
sider the relation [c1, c2] �c [d1, d2] where c1, c2, d1, d2 are characters
(belong to {a . . . z}) and d1 ≤ c1 and c2 ≤ d2, with the character ordi-
nal positions compared by ≤ in the usual way.

1. Show that ≤c is a well-founded partial order.
2. Show that any subset S of ≤c is also a well-founded partial order.
3. How many minimal elements does ≤c have?
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4. Define the height of any non-minimal element [c1, c2] of ≤c to be
one more than the maximum number of elements that could properly
exist between [c1, c2] and one of the minimal elements of ≤c. The
height of minimal elements are defined to be 0. For example, the
height of [b, d] is 2, as either [b, c] properly lies between [b, d] and
[b, b], or [c, d] properly lies between [b, d] and [d, d]. Write down a
general formula for the height of an element of ≤c and prove it by
Noetherian induction.

5.24. Develop a formula for the number of leaf nodes in a k-ary tree.
Prove the formula by structural induction.

5.25. Show that there exist infinite sets S such that there is a total
injection from S into one of its proper subsets.

5.26. How many different ways can n identical pigeons occupy n −
1 pigeon holes? (by “identical,” we mean that only the count of the
pigeons in various holes matters; also, each hole can accommodate any
number of pigeons).

5.27. I heard this one on NPR radio in the “Car Talk” show. A man
and his wife went to a party where a total of 52 people attended.
The party went well, with everyone mingling and shaking hands (the
exact number of such handshakes, nor who shook whose hands is not
known; also, a person shaking his/her own hands does not count as a
handshake). However, while returning from the party, the man told his
wife, “Gee, what a nice party!” The wife replied, “Yes! And, I know
for a fact that there were at least two people (let’s call them A and B)
who shook the same number of hands.” Prove this statement for 52,
and then prove it for any N , stating all steps clearly.

5.28. Consider the set of characteristic formulas, CF (x, y), over two
variables x and y. This set can be inductively defined by the following
rules:

1. true ∈ CF (x, y) and false ∈ CF (x, y).
2. If f1 ∈ CF (x, y) and f2 ∈ CF (x, y), then

a) f1 ∧ f2 ∈ CF (x, y)
b) f1 ∨ f2 ∈ CF (x, y)
c) ¬f1 ∈ CF (x, y)
d) (f1) ∈ CF (x, y).

3. CF (x, y) is the intersection of all such sets.
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While we allow the use of parentheses ( and ), they may be left out
with the convention that ¬ has the highest precedence, followed by ∧
and finally ∨.

Examples of formulas in CF (x, y) are (x ∨ y), x ∨ y, false, (true),
(x∧¬x), (x∧ y ∨ x∧ y ∨¬x), etc. Clearly many of these characteristic
formulas are equivalent, in the sense that they denote the same relation.

1. Show that (CF,⇒) forms a preorder. ⇒ is the implication opera-
tor. 〈x, y〉 ∈⇒ precisely when the formula x ⇒ y is valid (or ‘is a
tautology,’ or ‘is true for all x, y’).

2. Show that ≡= (⇒ ∩ ⇒−1)x is an equivalence relation. Recall that
⇒−1 can be written as ⇐.

3. How many equivalence classes does the equivalence relation (CF,≡)
have? Show by going through the definition of equivalence classes
given earlier (specifically, elements(R)/R).

4. Argue that two formulas, f1 ≡ f2, denote the same relation, and
hence [f1] = [f2].

5. Arrange the relations denoted by the equivalence classes of CF (x, y)
into a lattice, clearly pointing out the glb and lub.

Two Puzzles

The following two puzzles are due to Lewis Carroll (the author of Alice
in Wonderland and a mathematician at Christ Church, Oxford).

5.29. From the premises

1. Babies are illogical;
2. Nobody is despised who can manage a crocodile;
3. Illogical persons are despised.

Conclude that Babies cannot manage crocodiles.

5.30. From the premises

1. All who neither dance on tight ropes nor eat penny-buns are old.
2. Pigs, that are liable to giddiness, are treated with respect.
3. A wise balloonist takes an umbrella with him.
4. No one ought to lunch in public who looks ridiculous and eats

penny-buns.
5. Young creatures, who go up in balloons, are liable to giddiness.
6. Fat creatures, who look ridiculous, may lunch in public, provided

that they do not dance on tight ropes.
7. No wise creatures dance on tight ropes, if liable to giddiness.
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8. A pig looks ridiculous carrying an umbrella.
9. All who do not dance on tight ropes and who are treated with

respect are fat.

Show that no wise young pigs go up in balloons.



6

Dealing with Recursion

Recursion is a topic central to computer science. Lambda calculus offers
us a very elegant (and fundamental) way to model and study recursion.
In a book on computability and automata, such a study also serves
another purpose; to concretely demonstrate that Lambda calculus pro-
vides a universal mechanism to model computations, similar to the
role played by Turing machines. While this chapter can be skimmed,
or even skipped, we have taken sufficient pains to make this chapter as
“friendly” and intuitive as possible, permitting it to be covered without
spending too much time. Covering this chapter will permit fixed-point
theory to be used as a conceptual “glue” in covering much important
material, including studying context-free grammars, state-space reach-
ability methods, etc.

6.1 Recursive Definitions

Let’s get back to the discussion of function ‘Fred’ introduced in Chap-
ter 2, Section 2.6. Now consider a recursively defined function, also
called ‘Fred.’ We fear that this will make it impossible to ‘de-Fred:’

function Fred x = if (x=0) then 0 else x + Fred(x-1)

It is quite tempting to arrive at the following de-Freded form:

function(x) = if (x=0) then 0 else x + self(x-1)

However, it would really be nice if we can avoid using such ad hoc
conventions, and stay within the confines of the Lambda notation as
introduced earlier. We shall soon demonstrate how to achieve this; it
is, however, instructive to examine one more recursive definition, now
involving a function called Bob:

function Bob(x) = Bob(x+1).
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One would take very little time to conclude that this recursive definition
is “plain nonsense,” from the point of view of recursive programming.
For example, a function call Bob(3) would never terminate. However,
unless we can pin down exactly why the above definition is “nonsense,”
we will have a very ad hoc and non-automatable method for detecting
nonsensical recursive definitions - relying on human visual inspection
alone. Certainly we do not expect humans to be poring over millions
of lines of code manually detecting nonsensical recursion. Here, then,
is how we will proceed to “de-Fred” recursive definitions (i.e., create
irredundant names for them):

We will come up with a ‘clever’ Lambda expression, called Y, that
will allow recursion to be expressed purely within the framework of
Lambda calculus. No arbitrary strings such as “Fred” will be stuck
inside the definition.
Then we will be able to understand recursion in terms of solving an
equation involving a function variable F .
We will then demonstrate that recursive definitions ‘make sense’
when we can demonstrate that such equations have a unique solu-
tion. Or if there are multiple solutions, we can select (using a sound
criterion) which of these solutions ‘makes sense’ as far as computers
go.

6.1.1 Recursion viewed as solving for a function

Let us write our Fred function as an equation:

Fred=lambda x. if (x=0) then 0 else x + Fred(x-1).

The above equation can be rewritten as

Fred=(lambda Fred’ .lambda x. if(x=0) then 0 else x + Fred’(x-1)) Fred

The fact that this equation is equivalent to the previous one can
easily be verified. We can apply the Beta rule, plugging in Fred in
place of Fred’, to get back the original form.

We can now apply the Alpha rule, and change Fred’ to y, to obtain
the following:

Fred = (lambda y . lambda x . if(x=0) then 0 else x + y(x-1)) Fred.

Well, we are almost done eliminating the redundant name “Fred.”
What we have achieved is that we have expressed Fred using an equa-
tion of the form

Fred = H Fred

where H is the Lambda expression
(lambda y . lambda x . if(x=0) then 0 else y(x-1)). Note that
H contains no trace of Fred.
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6.1.2 Fixed-point equations

We now make a crucial observation about the nature of the equation
Fred = H Fred. Recall that juxtaposing H and Fred is, in Lambda
calculus, equivalent to applying H to Fred. If we wish, we can rewrite the
above equation as Fred = H(Fred) to express it in the more familiar
syntax of “f(x)”—for f applied to x. Note that there is something
peculiar going on; when we feed Fred to H, it spits out Fred. The
application of H seems to be “stuck” at Fred.

In mathematics, an equation of the form x = f(x) is called a fixed-
point equation. Think of a fixed-point as a fixed point, i.e., an “immov-
able point.” It appears that things are “stuck” at x; even if we apply
f to x, the result is stuck at x.

Can we find such “stuck function applications?” Surely!

• Take a calculator, and clear its display to get 0 on the display. Then
hit the cos (cosine) key to compute cos(0) = 1.

• Hit cos again, to get 0.9998477.
• Hit cos again, to get 0.99984774.
• Hit cos again, to get 0.99984774 - we are now “stuck” at the fixed-

point of cos. (The number of steps taken to achieve the fixed-point
will, of course, depend on the precision of your calculator).

• Now (assuming you have the factorial function on your calculator),
compute 0, 0!, 0!!, etc., then 2, 2!, 2!!, etc., and finally 3, 3!, 3!!, etc.
How many fixed-points did you discover for factorial?

Here is another way to get a “fixed-point out of a photocopying
machine.” More specifically, we can get the fixed-point of the image
transformation function of a photocopying machine. Go photocopy your
face; then photocopy the photocopy, photocopy the photocopy of the
photocopy, etc. In most photocopying machines, the image stabilizes,
by turning all gray regions to black or (sometimes) white. Such a stable
image is then one fixed-point of the image transformation function of
the photocopying machine.

Coming back to our example, we want a fixed-point, namely a func-
tion Fred, that solves the fixed-point equation Fred = H(Fred). Ide-
ally, we would like this fixed-point to be unique, but if that’s not possi-
ble, we would like some way to pick out the fixed-point that corresponds
to what computers would compute should they handle the recursive
program.

The beauty of Lambda calculus is that it does not fundamentally
distinguish between functions and “values,” and so the principles of
obtaining fixed-points remain the same, independent of whether the
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fixed-points in question are functions, numbers, or images. For the ex-
ample at hand, if Fred is a fixed-point of H, we must

either ensure that there is only one fixed-point, thus giving a unique
solution to Fred, or
in case multiple fixed-points exist, find a canonical way of picking
the desired fixed-point (solution).

We shall resolve these issues in what follows.

6.1.3 The Y operator

There exists a class of (almost “magical”) functions, the most popular
one being function Y below, that can find the unique fixed-points of
functions such as H!

Y = (lambda x. (lambda h. x(h h)) (lambda h. x(h h)))

In other words, we claim that (Y f) is the fixed-point of any arbi-
trary function f. Things seem almost too good to be true: if we desire
the fixed-point of any function f expressed in Lambda calculus, simply
“send Y after it.” In other words, Y (f) would be the fixed-point. For
the above to be true, the following fixed-point equation must hold:

(Y f) = f(Y f).

Here is how the proof goes:

Y f = (lambda x. (lambda h. x(h h)) (lambda h. x(h h))) f

= (lambda h. f(h h)) (lambda h. f(h h)) <-- look --|

|

|

= f( (lambda h. f(h h)) (lambda h. f(h h)) ) -------

= f( Y f ).

In the above derivation steps, in the penultimate step, we have f applied
to a big, long Lambda form that was obtained in the second step as
an expansion of Y f. Therefore, in the last step, we can obtain the
simplification indicated. Okay, now, finally, we have successfully “de-
Freded” our original recursive definition for Fred. We can write Fred
as

Fred = Y (lambda y . lambda x . if(x=0) then 0 else x + y(x-1))

where the right-hand side contains no trace of Fred. The right-hand
side is now an irredundant name defining what was originally cast as
an explicit recursion.
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6.1.4 Illustration of reduction

While we have shown how to turn the equation Fred = H Fred into
Fred = (Y H), does the new irredundant name really capture the re-
duction semantics of functional evaluation? Let us demonstrate that
indeed it does, by applying Fred to an argument, say 5:

Fred 5

= (Y H) 5

= H (Y H) 5

= (lambda y . lambda x . if(x=0) then 0 else x + y(x-1)) (Y H) 5

= (lambda x . if(x=0) then 0 else x + (Y H)(x-1)) 5

= (if(5=0) then 0 else 5 + (Y H)(5-1))

= 5 + (Y H) 4

= ...

= 5 + 4 + (Y H) 3

= ...

= 5 + 4 + 3 + 2 + 1 + 0

= 15

From the above, one can observe that the main characteristic of Y is
that it has the ability to “self-replicate” a Lambda expression. Notice
how a copy of (Y H) is “stashed away” “just in case” there would be
another recursive call. Self-replication, unfortunately, is also the basis
on which many malicious programs such as computer viruses operate.
In advanced computability theory, the deep connections between “self-
replication” and computability are captured in the so-called recursion
theorem. The interested reader is encouraged to read up on this topic,
including Ken Thompson’s widely cited article “Reflections on trusting
trust,” to be fully informed of the true potentials, as well as societal
consequences, of computers. On one hand, computers are mankind’s
most impressive invention to date; on the other hand, they are prone
to abuse, stemming either from innocent oversight or malicious intent -
in both cases demanding the eternal vigil of the computing community
to guard against, detect outbreaks, and restore normal operations if
bad things do happen.

6.2 Recursive Definitions as Solutions of Equations

The reduction behavior using Y indeed tracks the normal function eval-
uation method.

Fred 5 = (lambda x . if(x=0) then 0 else x + Fred(x-1)) 5

= if(5=0) then 0 else 5 + Fred(5-1)

= 5 + (Fred 4)
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= (lambda x . if(x=0) then 0 else x + Fred(x-1)) 4

= 5 + (if(4=0) then 0 else 4 + Fred(4-1))

= 5 + 4 + (Fred 3)

= ...

= 5 + 4 + 3 + 2 + 1 + 0

= 15.

What really is the advantage of a fixed-point formulation? To better
understand this, let us study the connection between recursion and
solving for functions more deeply.

The fact that we have equated Fred to a Lambda term (lambda x.

if (x=0) then 0 else x + Fred(x-1)) containing Fred suggests that
Fred is a solution for f in an equation of the form

f = (λx.if (x = 0) then 0 else x + f(x − 1)).

How many solutions exist for f? In other words, how many different
functions can be substituted in place of f and satisfy the equation?
Also, if there are multiple possible solutions, then which of these solu-
tions did (Y H) correspond to? Might the function f0 below, which is
undefined over its entire domain N , for instance, be a solution?

f0 = (λx. ⊥)

Here, ⊥ stands for “undefined” or “bottom” value.
Substituting f0 for f , the right-hand simplifies to the function

(λx.if (x = 0) then 0 else x+ ⊥),

or
(λx.if (x = 0) then 0 else ⊥).

This function is different from f0 in that it is defined for one input,
namely 0. Hence the above equation is not satisfied. Calling this func-
tion f1, let us see whether it would serve as a solution. Substituting f1

on the right-hand side, we get

(λx.if (x = 0) then 0 else x + f1(x − 1)).

Simplifying f1(x − 1), we get

(λx.if (x = 0) then 0 else ⊥)(x − 1)
= if ((x − 1) = 0) then 0 else ⊥
= if (x = 1) then 0 else ⊥.

The right-hand side now becomes

(λx.if (x = 0) then 0 else x + (if (x = 1) then 0 else ⊥))
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= (λx.if (x = 0) then 0 else if (x = 1) then x + 0 else x+ ⊥)
= (λx.if (x = 0) then 0 else if (x = 1) then 1 else ⊥)

which (calling it f2) is yet another function that defined for one more
input value. In summary, substituting f0 for f , one gets f1, and substi-
tuting f1, one gets f2. Continuing this way, each fi turns into a function
fi+1 that is defined for one more input value. While none of these func-
tions satisfies the equation, in the limit of these functions is a total
function that satisfies the equation, and hence is a fixed-point (com-
pared with earlier examples, such as the cos function, which seemed
to “stabilize” to a fixed-point in a few steps on a finite-precision cal-
culator; in case of the fi series, we achieve the fixed-point only in the
limit). This limit element happens to be the least fixed-point (in a sense
precisely defined in the next section), and is written

µx.(if (x = 0) then 0 else x + f(x − 1)).

Let this least fixed-point function be called h. It is easy to see that h
is the following function:

h(n) = Σn
i=0 i.

It is reassuring to see that the least fixed-point is indeed the function
that computes the same “answers” as function Fred would compute
if compiled and run on a machine. It turns out that in recursive pro-
gramming, the “desired solution” is always the least fixed-point, while
in other contexts (e.g., in reachability analysis of finite-state machines
demonstrated in Chapter 9), that need not be true.

The ‘solution’ point of view for recursion also explains recursive
definitions of the form

function Bob(x) = Bob(x+1).

The only solution for function Bob is the everywhere undefined function
λx. ⊥. To see this more vividly, one can try to de-Bob the recursion to
get

Bob = Y (lambda y . lambda x . y(x+1)).

Suppose H = (lambda y . lambda x . y(x+1)). Now, supplying a
value such as 5 to Bob, and continuing as with function Fred, one
obtains the following reduction sequence:

Bob 5 = (Y H) 5

= H (Y H) 5

= (lambda y . lambda x . y(x+1)) (Y H) 5

= (lambda x . (Y H)(x+1)) 5

= (Y H)(5+1)
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= (Y H) 6

= ...

= (Y H) 7

= ...

= (non-convergent).

In other words, Bob turns out to be the totally undefined function, or
“bottom function.”

6.2.1 The least fixed-point

In the above example, we obtained a fixed-point h which we asserted
to be the “least” in a sense that will now be made clear. In general,
given a recursive program, if there are multiple fixed-points,

The desired meaning of recursive programs corresponds to the least
fixed-point, and
The fixed-point finding combinator Y is guaranteed to compute the
least fixed-point [114].

To better understand these assertions, consider the following four
definitions of functions of type Z × Z → Z, where Z is the integers
(this example comes from [78]):

f1 = λ(x, y) . if x = y then y + 1 else x + 1
f2 = λ(x, y) . if x ≥ y then x + 1 else y − 1
f3 = λ(x, y) . if x ≥ y and x − y is even then x + 1 else ⊥
Now consider the recursive definition:

F (x, y) = if x = y then y + 1 else F (x, F (x − 1, y + 1)).

We can substitute f1, f2, or f3 in place of F and get a true equation!
Exercise 6.8 asks you to demonstrate this. However, of these functions,
f3 is the least defined function in the sense that

whenever f3(x) is defined, fi(x) is defined for i = 1, 2, but not vice
versa, and
there is no other function (say f4) that is less defined than f3 and
also serves as a solution to F .

To visualize concepts such as “less defined,” imagine as if we were plot-
ting the graphs of these functions. Now, when a function is undefined
for an x value, we introduce a “gap” in the graph. In this sense, the
graph of the least fixed-point function is the “gappiest” of all; it is a
solution, and is the most undefined of all solutions – it has the most
number of “gaps.” These notions can be captured precisely in terms of
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least upper-bounds of pointed complete partial orders [107]. In our ex-
ample, it can be shown that f3 is the least fixed-point for the recursion.

6.3 Fixed-points in Automata Theory

We will have many occasions to appeal to the least fixed-point idea in
this book. Here are some examples:

Cross-coupled combinational gates attain stable states defined by
fixed-points. For instance, two inverters in a loop become a flip-flop
that stores a 0 or a 1. These are the two solutions of the recursive
circuit-node equation x = not(not(x)).1

Three inverters in a loop form a ring oscillator. The reason, to a
first approximation, is that they are all trying, in vain, to solve the
recursive node equation x = not(not(not(x))); in addition, there is
a 3-inverter delay around the loop.
Context-free grammar productions are recursive definitions of lan-
guages. The language defined by such recursive definitions can be
determined through a least fixed-point iteration similar to what we
did by starting with ⊥; for context-free grammars, the empty lan-
guage ∅ serves as the “seed” from which to begin such iterations.
In the section pertaining to Binary Decision Diagrams, we will for-
mulate a process of computing the set of reachable states as a fixed-
point computation.
In the section on nondeterministic automata, we will write recursive
definitions for Eclosure and justify that such recursive definitions
are well-defined (i.e., they are not nonsensical, similar to the recur-
sion for function Bob, for which no solution exists).

It is also worth noting that while least fixed-points are most often of
interest, in many domains such as temporal logic, the greatest fixed-
points are also of interest.

The functional (higher order function) H from Section 6.1.1, namely

H = (λy.λx.if (x = 0) then 0 else x + y(x − 1))

has an interesting property: it works as a “bottom refiner!” In other
words, when fed the “everywhere undefined function” f0 (called the

1 Of course, this is a simplified explanation, as a golden wedding ring can also be
thought of as setting up a recursive node equation x = x or as x = not(not(x)),
since the two nots cancel. The crucial differences are of course that there is no
amplification around the wedding ring, and there is far less loop delay in a ring
than in case of a flip-flop loop.
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“bottom function”), it returns the next better approximation of the
least fixed-point h in the form of f1. When fed f1, it returns the next
better approximation f2, and so on. It may sound strange that the
meaning of recursive programs is determined starting from the most
uninteresting of functions, namely the ‘bottom’ or ⊥ function. However,
this is the most natural approach to be taking, because

⊥ contains no information at all,
going through the fixed-point iteration starting from ⊥, pulls into
subsequent approximants f1, f2, etc., only relevant information
stemming from the structure of the recursion.

Later when we study state-space reachability analysis techniques in
Section 11.3.2, and context-free grammars in Section 13.2.2, we will
appeal to this “bottom-refining” property. We will be identifying a
suitable “bottom” object in each such domain.

Chapter Summary

Fixed-point theory is often a dreaded topic. We attempted to present
the “‘friendliest foray into fixed-point theory” that we could muster. We
start with simple recursive function definitions and motivate the need
to have irredundant forms of these definitions. We arrive at such irre-
dundant forms using Lambda calculus, and the Y operator. We study
fixed-point equations and how to solve them using fixed-point itera-
tion, starting from the totally undefined function ‘bottom’ (⊥). We
shall employ fixed-points in numerous chapters of this book, especially
in two contexts: (i) viewing context-free grammars as recursive equa-
tions (Section 13.2.2), and (ii) computing the reachable set of states in
state transition systems (Section 11.3.2).
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Exercises

6.1. Present a recursive algorithm to mirror a binary tree “along the
y axis.” Mirroring an empty tree gives back an empty tree. Mirroring
a non-empty tree rooted at node n with left sub-tree L and right sub-
tree R results in a tree rooted at n with left sub-tree . . . (complete this
definition). Write the pseudocode.

6.2.
1. Write a recursive program (pseudocode will do) to traverse a binary

tree in postorder.
2. Write a recursive program to solve the Towers of Hanoi problem.
3. Describe a recursive descent parser for arithmetic expressions.
4. Describe a recursive descent parser for Reverse Polish expressions.

6.3. Define the Fibonacci function fib that determines the nth Fi-
bonacci number using tree recursion (non-linear recursion) using the
recipe “the first and second Fibonacci numbers are both 1, and the
nth Fibonacci number for n > 2 is obtained by adding the previous
two Fibonacci numbers.” Then compute fib(3) by first obtaining the
function H and using the Y combinator – as illustrated in Section 6.1.4
for function Fred. Show all the reduction steps.

6.4. With respect to the function f3 defined in Section 6.2.1, try to
arrive at different solutions by returning something non-⊥ instead of
⊥ in f3, and see if such variants serve as solutions. If they do, explain
why; also explain if they don’t.

6.5. Perform other fixed-point experiments (similar to the ones de-
scribed in Section 6.1.2) using a calculator. Try to find a fixed-point in
each case. In each case, answer whether the fixed-point is unique (are
there multiple fixed-points for any of the functions you choose?). Try
to find out at least one function that has multiple fixed-points.

6.6. This is Exercise 63, page 89 of [48], where it is attributed to Baren-
dregt: show that

(λxy.y(xxy))(λxy.y(xxy))

is a fixed-point operator.

6.7. What is one fixed point of Y itself? (Hint: Straightforward from
definition of Y as Y f = f(Y f).)

6.8. Verify the assertion on page 100 (that f1, f2, and f3 are solutions
to F ).
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7

Strings and Languages

Now we embark on studying strings of symbols over a given alphabet,
and languages, which are sets of strings. An alphabet is a finite col-
lection of symbols. Usually, an alphabet is denoted by Σ. Alphabets
are always non-empty. In most cases, alphabets are finite, although
that is strictly not necessary.

We said that an alphabet Σ is a finite collection of symbols. What
can symbols be? They can be letters, such as {a, b, c}, bits {0, 1}, mu-
sical notes, Morse code characters, a collection of smoke-signal puffs,
hieroglyphics, kicks you might administer to an errant vending ma-
chine, or just about anything we wish to regard as an indivisible unit of
communication or activity. We do not worry about the inner structure
of a symbol, even if it has one. We emphasize this point early on, lest
you be totally surprised when we start regarding such objects as regular
expressions (expressions that denote languages - they are discussed in
Chapter 8) as symbols.

Strings are zero or more symbols in juxtaposition. Each symbol from
an alphabet can also be regarded as a string of length one. Languages
are sets of strings. We will also use the term sequence instead of
“string,” and employ operations on strings on sequences also.

Each string or sequence can model sequences of key strokes you
might type on a computer, a piano, a telegraph machine, etc. We call
each such sequence or string a computation, a run of a machine, etc.
A vending machine has a computation consisting of coin plinks, candy
ejects, and kicks. A formal machine such as a Turing machine has com-
putations depending on what program is loaded into it, and what in-
put is submitted on its tape. In most chapters, we consider only finite
strings. Beginning with Chapter 21, we will consider automata on in-
finite strings. Infinite strings are useful to model certain properties of
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reactive systems - systems, such as operating systems that are supposed
to run forever (at least at a conceptual mathematical level). Such be-
haviors cannot be adequately modeled at a high level using only finite
strings.1

Strings and languages are fundamental to computer science theory.
By measuring run times or storage requirements of programs in terms
of the lengths of their input strings, we are able to study time and
space complexity. By studying patterns that sets of strings possess, we
are able to taxonomize degrees of problem solving abilities (computa-
tional “power”). In fact, life seems to be full of strings (pun intended2).
We now proceed to systematically examine this central role played by
strings and languages in computer science theory.

7.1 Strings

7.1.1 The empty string ε

A string may also be empty, meaning it has zero symbols in it. We
denote empty strings by ε. When the available type fonts (mostly in
mechanically-generated illustrations) do not permit, we also write ε
as e, or epsilon. Empty strings are the identity element for con-
catenation, meaning the concatenation of ε at the beginning or at the
end of a string s yields s itself. Many programming languages denote
empty strings by "". Many books on automata employ λ instead of ε
(we totally avoid this usage, as for us λ is reserved for use in Lambda
expressions). Examples of non-empty strings from programming lan-
guages are "abcd", "aaa", etc. In automata theory, we shall model these
strings using abcd and aaa, or in ordinary fonts sometimes quoted—as
in ‘abcd’.

To avoid some confusion early on, we stress upon a few basic con-
ventions. In a context where we are talking about strings, ‘123’ is a
string of length three, consisting of the symbols 1, 2, and 3, and not a
single integer. As an example, when asked to design a DFA that has

1 Of course, by taking timing into account, one can model everything in terms
of computations occurring over a finite number of steps—or finite strings. The
purpose of employing infinite strings is to reason about propositions such as “event
a happens, but following that event b never happens” with due precision. For
this, the concept of ‘never’ must be modeled in a manner that does not depend
on absolute timings. The only way to achieve this is to allow for an infinite string
after a wherein b is never found to occur.

2 DNA sequences are strings over the symbol-set A, C, T , and G – see “Cartoon
Guide to Genetics,” by Larry Gonick and Mark Wheelis.



7.2 Languages 107

alphabet {0, . . . , 9} and accepts all numeral sequences divisible with-
out remainder by 3, the DFA reads the symbols one by one, and checks
for the familiar condition for divisibility by 3 (the digits add up to a
number divisible by 3). Also, when given the input 126, it reads three
symbols—not the entire number 126 in one fell swoop. These conven-
tions mirror the reality that physical machines may never consume an
unbounded amount of information in a finite amount of time. The no-
tion of a symbol connotes this reality.

7.1.2 Length, character at index, and substring of a string

Given string s, its length is denoted by length(s). We have, for every
string s, length(s) ≥ 0. We of course have length(ε) = 0.

For each position i ∈ length(s) (i.e., 0 ≤ i ≤ (length(s) − 1)) of a
string s, s[i] denotes the character at position i. Notice the following:
since length(ε) = 0, the s[.] notation is undefined, as there are no i
such that i ∈ length(s), if s were to be ε.

If i and j are positions within a string s, and j ≥ i, substr(s, i, j)
is the substring of s beginning at i and ending at j, both inclusive.
If j < i, substr(s, i, j) = ε. For instance, substr(apple, 0, 0) = a,
substr(apple, 1, 1) = substr(apple, 2, 2) = p, substr(apple, 0, 2) = app,
substr(apple, 2, 4) = ple, and substr(apple, 4, 3) = ε. For every string
s, s = substr(s, 0, length(s) − 1).

7.1.3 Concatenation of strings

Given two strings s1 and s2, their concatenation, written as s1s2, yields
a string of length s1 +s2 in the obvious way. Sometimes we write string
concatenation as s1 ◦ s2 to enhance readability. Examples: apple worm
results in appleworm, as does apple ◦ worm.

7.2 Languages

A language is a set of strings. Like strings, languages are a central no-
tion in computer science theory. Questions pertaining to undecidability
as well as complexity can be studied in terms of languages. The small-
est language is ∅, since |∅| = 0. The next larger language has one string
in it. Of course there are many such languages containing exactly one
string. One example is the language {ε}, which contains one string that
happens to be empty. Given the alphabet Σ = {0, 1}, a few languages
of size 1 are {1}, {0}, {0101}; a few languages of size 2 are {0, 00},
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{0, 0101}, etc. Many (most?) of the languages we study will be infinite
in size.

7.2.1 How many languages are there?

Are there countably many languages, or uncountably many languages?
The answer is that there are uncountably many languages over any al-
phabet. In other words, there are as many languages over Σ = {0, 1} as
there are Real numbers. This is because each language L can be repre-
sented by an infinite characteristic sequence which tells which (among
the infinite strings over Σ = {0, 1}) are present in L and which are
absent. Since each such characteristic sequence can be read as a real
number in the range [0, 1], the set of all such characteristic sequences
is uncountable, as explained in Section 3.2.5.

Why does it matter that there are uncountably many languages? To
answer this question, let us briefly consider how we shall model compu-
tations. We shall study computations in terms of languages accepted by
Turing machines. Each Turing machine M is a very simple computer
program written for a very simple model of a computer. M is started
with an input string x on its tape, and “allowed to run.” Each such run
has three outcomes: M halts in the accept state, it halts in the reject
state, or it loops (much like a computer program can go into an infinite
loop). The set of all strings x that cause M to halt in the accept state
constitute the language of M . The language of a Turing machine is, in
a sense, the essence or meaning of a Turing machine. Now, each Tur-
ing machine M itself can be represented by a single finite string over
Σ = {0, 1} (this is akin to viewing an entire a.out file obtained by com-
piling a C program as a single string). Since the set of all finite strings
is countable, there can only be countably many Turing machines, and
hence countably many Turing machine languages. Hence, there are lan-
guages that are the language of no Turing machine at all. In a sense,
these languages (called non-Turing recognizable) carry “patterns” that
are “beyond the reach of” (or “defy analysis by”) any man-made com-
putational device. Their existence is confirmed by the above cardinality
arguments.

7.2.2 Orders for Strings

There are two systematic methods available for listing the contents of
sets of words. The first is known as the lexicographic order, or “order
as in a dictionary” while the second is called the numeric order which
lists strings by length-groups: all strings of a lower length are listed
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before a string of a higher length is listed. Within a length-group, the
strings are listed in lexicographic order. We now present some details
as well as examples.

Lexicographic order for strings

In this order, given two strings x and y, we compare the characters
comprising x and y position by position. We do this for each position
i ∈ min(length(x), length(y)) (here, min finds the minimum of two
numbers). For example, if we compare apple and pig, we compare for
each position i ∈ 3, as pig is the shorter of the two and has length 3.
While comparing characters at a position, we compare with respect to
the ASCII code of the character at that position.3

Given all this, for strings x and y such that x �= y, x said to be
strictly before y in lexicographic order, written x <lex y, under one of
two circumstances:

1. If there exists a position j ∈ min(length(x), length(y)) such that
x[j] < y[j], and for all i ∈ j (meaning, for positions 0 . . . (j −
1)), x[i] = y[i]. For example, aaabb <lex aaaca, aaron <lex abate,
apple <lex pig, and pig <lex putter.

2. For all positions j ∈ min(length(x), length(y)), we have x[j] = y[j],
and length(x) < length(y).

Definition: Define string identity, x =lex y, to hold for two identical
strings x and y. Also define ≤lex to be <lex ∪ =lex, and >lex to be the
complement of ≤lex.
Definition: Given two strings x and y, x is before y in lexicographic
order iff x ≤lex y.
Let us now go through some examples of lexicographic order:

• ε <lex aa follows from condition 2 above. This is because there
are no positions within a length of 0, and so the only condition to
be satisfied is length(x) < length(y), which is true for x �= y and
x = ε. Since ε <lex aa, we also have ε ≤lex aa.

• a <lex aa <lex aaa <lex aaaa . . .. Hence, these are also in the ≤lex

relation.

3 The ASCII code totally orders all the characters available on modern keyboards.
Refer to the web or a book on hardware design to know what this total order is.
We are taking this more pragmatic route of relying on ASCII codes to keep our
definitions concrete.
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Numeric order for strings

The idea of numeric order is of importance while systematically enu-
merating sets. To motivate this idea, consider a lexicographic ordering
of all strings over alphabet {a, b}. Such a listing will go as follows: ε,
a, aaa, aaaa, . . .. In other words, not a single string containing a b will
get listed. To avoid this problem, we can define the notion of a numeric
order as follows. For two strings x and y:

1. If length(x) = length(y), then x <numeric y exactly when x <lex y.
2. Otherwise, if length(x) < length(y), then x <numeric y.
3. Otherwise (length(x) > length(y)) x >numeric y.

As before, we define <numeric to be strictly before in numeric order, and

≤numeric = <numeric ∪ =lex

to be before in numeric order, or simply “in numeric order.”
The numeric order of listing the strings over alphabet {a, b} will yield
the sequence

ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . . .

7.2.3 Operations on languages

Given languages L,L1, and L2, new languages may be defined using var-
ious operations. First, consider the set operations of union, intersection,
set difference, and symmetric difference. These familiar set operations
help define new languages as defined below:

Union: L1 ∪ L2 = {x | x ∈ L1 ∨ x ∈ L2}
intersection: L1 ∩ L2 = {x | x ∈ L1 ∧ x ∈ L2}
Set difference: L1 \ L2 = {x | x ∈ L1 ∧ x /∈ L2}
Symmetric difference: (A \ B) ∪ (B \ A)

7.2.4 Concatenation and exponentiation

The concatenation operation on two languages L1 and L2 performs
the concatenation (juxtaposition) of strings from these languages. Ex-
ponentiation is n-ary concatenation. These ideas are basically quite
simple. Suppose we have a finite-state machine M1 that accepts strings
containing either an odd number of a’s or an even number of b’s. Sup-
pose we have another finite-state machine M2 that accepts strings con-
taining either an even number of a’s or an odd number of b’s. We can
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now build a new machine M whose runs are of the form xy such that x
is accepted by M1 and y by M2. We can also build a new machine M ∗

1
whose runs are of the form xx . . . x, where x is repeated some k ≥ 0
times, and x is a run of M1. The set of runs of these new machines can
be captured using concatenation and exponentiation.
We now formally define the concatenation and exponentiation opera-
tions on languages:
Concatenation: L1 ◦ L2 = {xy | x ∈ L1 ∧ y ∈ L2}.
Note: Often, we will omit the ‘◦’ operator and write L1L2 instead of
L1 ◦ L2.
Exponentiation: First of all, for any language L, define L0 = {ε}.
That is, the zero-th exponent of any language L is {ε}. Note that this
means that even for the empty language ∅, ∅∗ = {ε}. (The reason for
this convention will be clear momentarily).

Exponentiation may now be defined in one of two equivalent ways:

Definition-1 of Exponentiation: For all n ≥ 1,

Ln = {x1 . . . xn | xi ∈ L}.

Definition-2 of Exponentiation:

For n > 0, Ln = {xy | x ∈ L ∧ y ∈ Ln−1}.

In the second definition, note that we should define the basis case for
the recursion, which is L0. We must put into L0 anything that serves
as the identity element for string concatenation, which is ε. Hence, we
define L0 = {ε} for any language, L.
Consider a simple example:

{a, aba} ◦ {ca, da} = {aca, ada, abaca, abada},

while
{ca, da}3 = {ca, da} ◦ {ca, da} ◦ {ca, da},

which is the set

{cacaca, cacada, cadaca, cadada, dacaca, dacada, dadaca, dadada}.

Consider another example where L1 (which models the runs of M1) is
the set

L1 = {x | x is a sequence of odd number of a′s or even number of b′s}

and L2 (which models the runs of M2) is the set
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L2 = {x | x is a sequence of even number of a′s or odd number of b′s}.

Then, L1 ◦ L2 is a language in which each string consists of

• an odd number of a’s,
• an odd number of b’s,
• an odd number of a’s followed by an odd number of b’s, or
• an even number of b’s followed by an even number of a’s.

In addition, Lk
1 is a language in which each string can be obtained as

a k-fold repetition of a string from L1.

7.2.5 Kleene Star, ‘∗’

Star performs the union of repeated exponentiations:

L∗ = {x | ∃k ∈ N : x ∈ Lk}.

This definition can also be written as

L∗ = ∪k≥0 Lk,

or even as
L∗ = ∪k∈Nat Lk.

Notice that according to these definitions, ∅∗ = {ε} This is because for
any k, ∅k is defined to be {ε}. In turn, this is so because we must have
a basis element in the recursive definition of concatenation. In our case,
ε is the identity for string concatenation.
Examples:

• {a, b, c}∗ is all possible strings over a, b, and c, including the empty
string ε.

• {a, bc}∗ is all possible strings formed by concatenating a and bc in
some order some number of times. In other words, all the strings in
{a, bc}k , for all k, are present in this set.

In a programming sense, star is iteration that is unable to keep track
of the iteration count. The ability to “forget” the number of iterations
is crucial to obtaining simpler languages, and ultimately, decidability.

7.2.6 Complementation

Using the above-defined notion of star, we can now specify a universe
Σ∗ of strings, and define complementation with respect to that uni-
verse:

L = {x | x ∈ Σ∗ \ L}.
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7.2.7 Reversal

The notion of reversing a string is pretty straightforward - we simply
put the first character last, the second character penultimate, and so
on. The definition of reverse(s) for s being a string in some alphabet,
is as follows:

reverse(ε) = ε
reverse(s as ax) = reverse(x) ◦ a.

We use the as construct to elaborate a quantity. ‘s as ax’ means
‘view string s as a concatenation of symbol a and string x.’ The term
‘reverse(x) ◦ a’ says ‘reverse x and append a to its end.’

For language L, reverse(L) is then {reverse(x) | x ∈ L}.

7.2.8 Homomorphism

A homomorphism is a function that maps strings to strings and that
respects string concatenation. In other words, if h : Σ∗ → Γ ∗ is a
homomorphism that takes strings from some alphabet Σ to strings
in an alphabet Γ (not necessarily distinct), then it must satisfy two
conditions:

• h(ε) = ε
• For string s = xy in Σ∗, h(xy) = h(x)h(y). In other words, the

result of applying h to s is the same as the result of concatenating
the application of h to its pieces x and y.

To obtain a better appreciation for the fact that a homomorphism
“respects string concatenation,” let us consider something that is not
a homomorphism—say g. Let Σ = {a, b, c, d} and Γ = {0, 1, 2}.
• g(abcd) = 0
• g(ab) = 1
• g(cd) = 1
• g(s) = 2, for all other strings.

g is not a homomorphism because g(abcd) = 0 while g(ab)g(cd) is 11.

7.2.9 Ensuring homomorphisms

How do we ensure that a given function on strings is a homomorphism?
The most commonly used approach to ensure that something is a ho-
momorphism is to specify a mapping that goes from symbols to strings,
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and then to “lift” it up to map from strings to strings. Let h
′

be the
symbol to string map, with signature

h
′
: Σ ∪ {ε} → Γ ∗,

and define h using h
′
. Here is an example. Let h

′
be as follows:

• h
′
(ε) = ε

• h
′
(a) = 0

• h
′
(b) = 1

• h
′
(c) = h

′
(d) = 2

Formally, h(s) is defined in terms of h
′
as follows:

• If length(s) > 1, then let x �= ε and y �= ε be such that s = xy.
Then, h(s) = h(x)h(y).

• If length(s) = 1, then h(s) = h
′
(s).

Now, by definition, h respects string concatenation and all works out
well!
Homomorphisms can also be defined over languages in a straightfor-
ward manner. Given L,

h(L) = {y | h(x) = y for some x in L}.

7.2.10 Inverse homomorphism

Given a homomorphism h, an inverse homomorphism h−1 maps a string
y to the maximal set of strings that y could have come from; formally:

h−1(y) = {x | h(x) = y}.

Example: Consider h to be

h
′
(ε) = ε

h
′
(a) = 0

h
′
(b) = 1

h
′
(c) = h

′
(d) = 2

Then, h−1(012) = {abc, abd} because 2 could have come either from c
or from d. Inverse homomorphisms can also be defined over languages
in a straightforward manner. Given L,

h−1(L) = ∪y∈L h−1(y).

In other words, for each y ∈ L, take h−1(y), and then take the union
of all these sets.
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7.2.11 An Illustration of homomorphisms

In parsing a programming language such as C, the parser appeals to a
tokenizer that first recognizes the structure of tokens (sometimes called
lexemes) such as integers, floating-point numbers, variable declarations,
keywords, and such. The tokenizer pattern-matches according to reg-
ular expressions, while the parser analyzes the structure of the token
stream using a context free grammar (context free grammars are dis-
cussed in Chapters 13 and 14; basically, they capture the essential lexi-
cal structure of most programming languages, such as nested brackets,
begin/end blocks, etc.). Suppose one wants to get rid of the tokenizer
and write a context free grammar up to the level of individual char-
acters. Such a grammar can be obtained by substituting the character
stream corresponding to each token in place of each token in a modular
fashion, according to a homomorphism. For example, if begin were to
be a keyword in the language, instead of treating it as a token keyword,
one would introduce additional productions of the form

begin -> b e g i n

Thanks to the modular nature of the substitutions, it can be shown
that the resulting grammar would also be context-free.

7.2.12 Prefix-closure

A language L is said to be prefix-closed if for every string x ∈ L, every
prefix of x is also in L. If we are interested in every run of a machine,
then its language will be prefix-closed. This is because a physically real-
izable string processing machine must encounter substrings of a string
before it encounters the whole string. Prefix closure is an operation that
‘closes’ a set by putting in it all the prefixes of the strings in the set.
For instance, given the set of strings {a, aab, abb}, its prefix closure is
{ε, a, aa, ab, aab, abb}.

Chapter Summary

This chapter introduced the motivations for studying computations in
terms of strings and languages. It put our previous discussions about
cardinality in Chapter 3 to very good use by quickly showing the fact
that there are uncountably many languages. After defining various or-
derings between strings, we discuss operations on languages: how to
make new languages given existing languages. These discussions will
set the stage for virtually all of what the rest of this book involves.
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Exercises

7.1. How many languages over an alphabet of size 1 exist? Express
your answer using the ℵ notation.

7.2. Using the Schröder-Bernstein Theorem, argue that there are as
many languages over the alphabet {0} as there are over the alphabet
{0, 1}.

7.3. Name the main difference between the proof of the uncountability
of languages versus the uncountability of the set of Reals.

7.4. Choose among the sets given below, those with cardinality ℵ2 (re-
call that Nat has cardinality ℵ0):

1. The set of all languages over alphabet Σ = {0, 1}.
2. The powerset of the set of all languages over alphabet Σ = {0, 1}.
3. The set of all languages over alphabet Σ = {0}.
4. The powerset of the set of all languages over alphabet Σ = {0}.

7.5. Prove that ≤lex is a total order, while <lex is not.

7.6. Viewing C programs as ASCII strings, obtain a good estimate of
the number C programs of less than n bytes, for n ≤ 12? Obtain at
least five such C programs; compile them and demonstrate that they
do not cause any compilation errors.

Hint: main(){;} is one such program, with byte count 9. View each
C program as a string (so you could write "main(){;}" for clarity, if
you wish). In later discussions of strings, we will omit the quotes (")
which serve as string delimiters.

7.7. What is the set consisting of the first ten words in English oc-
curring in lexicographic order? (Follow any dictionary you may have
access to. Treat the upper and lower cases the same).

7.8. What is the set consisting of the first ten words in English oc-
curring in numeric order? (Follow any dictionary you may have access
to).

7.9. Suppose that in a strange language, ‘Longspeak’, typeset in char-
acters a through z, there are words of all lengths beginning with any
letter. Consider a lexicographic order listing of all words in Longspeak.
At what rank (ordinal position) does a word beginning with letter d
appear? How about for a numeric order listing?

Considering the answers to these questions, suppose you are charged
with the task of producing a dictionary for Longspeak. Fortunately, you
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are told that you don’t have to include words of lengths beyond 30.
Would you produce your dictionary in lexicographic order or numeric
order? Explain your reasoning.

7.10. Define languages L1 and L2 over alphabet Σ = {0, 1} as follows:

L1 = {x | x is a string over Σ of odd length}

and
L2 = L1 ∩ {x | x is a string of 0′s}.

What is the symmetric difference of languages L1 and L2?

7.11. Among the following languages, choose the ones for which LL =
L:

• L = ∅.
• L = {ε}.
• L = {x | x is an odd length string over{0, 1}}.
• L = {x | x is an even length string over{0, 1}}.
• L = {x | #0(x) = #1(x)}; here, #0 determines the number of 0s
in a given string, and likewise for #1.
• L = {x | #0(x) �= #1(x)}.

7.12. Repeat Exercise 7.11 to meet the condition L∗ = L.

7.13. Repeat Exercise 7.11 to meet the condition L∗ = LL = L.

7.14. Complement each of the languages defined in Exercise 7.11 and
express your answers using the set comprehension notation.

7.15. Consider the languages

• L1 = {x | x is an odd length string over{0, 1}}, and
• L2 = {x | x is an even length string over{0, 1}}.

1. Argue that the following map is a homomorphism (call it h):
h(ε) = ε
h(0) = 0
h(1) = 00.

2. Determine h(L1) ∩ h(L2).

7.16. In Exercise 7.11, find those languages in this list such that L =
pref(L).
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Machines, Languages, DFA

This chapter begins our study of machine models. We will first briefly
examine the general characteristics of various abstract machines that
can serve as language recognizers for the languages depicted in Fig-
ure 4.2 of Section 4.3. We will refer to this diagram as the “Power”
diagram. We will then study the Deterministic Finite-state Automaton
(DFA) model in the rest of the chapter.

8.1 Machines

All the machines discussed in the Power diagram, including DFAs dis-
cussed in this chapter, are primarily string processors. They are started
in their initial state and are fed an input string. The inputs of inter-
est are finitely long (“finite”) strings. The main question of interest is
whether, at the end of the input, the machine is in an accepting state or
not. The Turing machine has, in addition to a set of accepting states,
a set of rejecting states.

There are several axes along which machines can be distinguished.
Some of these distinctions are now pointed out. We will remind the
reader of these details when specific machine types are discussed. The
purpose of the current discussion is to portray the overall nature of the
variations that exist among machines.

All machine types in the Power diagram that are of lower power than
the LBA (namely the DFA, NFA, DPDA, and NPDA) must read their
input strings completely before it is deemed that they accept the input
string. Furthermore, they must read their input string in the process of
a single left-to-right scan (meaning, they cannot go back and reread a
previously read symbol). In each step of computation, these machines
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are allowed to read atmost one input symbol (they may read none, as
well).

The remaining machine types in the Power diagram, namely the
LBA, DTM, and the NDTM, are not required to read the whole input
on their input “tape.” In other words, it is possible for these machines
to accept an input without having read all of it—or for that matter,1

without having read any of it! Furthermore, they are allowed to reread
a previously read input. This rereading may happen in any order (i.e.,
not confined to the order in which inputs are laid out on the tape).

All the machines in the Power diagram possess a finite-state control
flow graph describing their behavior. The NFA, NPDA, and NDTM
allow nondeterminism in their control flow graph (nondeterminism is
described in the next section). While the DFA and NFA are totally
described in terms of this finite-state control, the remaining machine
types carry an additional data structure in the form of a stack or one or
more tapes. The DPDA and NPDA have access to a single unbounded
stack from which they pop a single symbol at every step. Additionally,
in each step, zero or more symbols may be pushed back onto the stack.

The LBA, the DTM, as well as the NDTM have, in addition to a
control flow graph, a single read/write tape. There is the notion of a
current position on this input tape, usually specified by the position of
a read/write “head.” Also, there is the notion of presenting the input
string over a contiguous sequence of cells on the input tape. The LBA
is allowed to write a tape cell only if this cell belongs to the contiguous
sequence of cells over which the initial tape input was presented. A
Turing machine has no such restriction.

Note that we avoid depicting the Büchi automaton in the Power
diagram of Chapter 3, as this machine type is not comparable with
these other machine types. For example, one can simulate an LBA
on a Turing machine, or a DFA on a push-down automaton; no such
simulation of the Büchi automata on any of the machines in the Power
diagram is possible. In a sense, the presentation of Büchi automata is
a way of making the reader aware of the existence of these machines
and the practical uses that these machines have in modeling time in
an abstract manner, as well as broaden the reader’s perspective early
on. Details on Büchi automata appear in Chapters 22 and 23. It is also
important to point out that due to space/time limitations, we have left
out many machine types on finite strings that could easily have been

1 While this sounds odd, this freedom is required when modeling machines with
power comparable to general-purpose computers, which may, as we all know, often
ignore reading their input entirely.
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depicted on the Power diagram, such as two-way automata [108]. Many
of these machine have been proved equivalent to machines in the Power
diagram, as far as the class of languages they recognize is concerned.

With this general introduction, we proceed to examine the various
machine types beginning with the DFA.

8.1.1 The DFA

A deterministic finite-state automaton (DFA) is specified through a
transition graph such as in Figure 8.1. It starts its operation in an initial
state (in this case I). When a DFA is situated in one of its reachable
states s and is fed an input string w, it advances to a unique state as per
its transition graph. Formally, a deterministic finite-state automaton
D is described by five quantities presented as a tuple, (Q,Σ, δ, q0, F ),
where:

Q, a finite nonempty set of states;
Σ, a finite nonempty alphabet;
δ : Q × Σ → Q, a total transition function;
q0 ∈ Q, an initial state; and
F ⊆ Q, a finite, possibly empty set of final (or accepting) states.

I

0

F1
0

1

Fig. 8.1. A DFA that recognizes strings over {0, 1} ending with 1

For example, in Figure 8.1, Q = {I, F}, Σ = {0, 1}, q0 = I, F = {F},
and δ = {〈I, 0, I〉, 〈I, 1, F 〉, 〈F, 0, I〉, 〈F, 1, F 〉}. A few useful conventions
pertaining to drawing DFAs as well as naming their states are now
described (these conventions will be followed in many of our initial
drawings, and possibly later also):

• The initial state will be called I. In drawings, it will be the state to
which an arrow without a source node points to.

• If the initial state is also a final state, it will be called IF. It will
then be a double-circled node.

• All final state names (other than the state named as IF, as explained
above) will begin with letter F, and will be double-circled nodes.
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/* Encoding of a DFA that accepts the language (0+1)*1 */

main()

{ bool state=0;

char ch;

while(1)

{ ch = getch();

switch (state)

{ case I: switch-off the green light;

switch (ch)

{ case 0 : break;

case 1 : state=F;

}

case F: switch-on the green light;

switch (ch)

{ case 0 : state=I;

case 1 : break;

}

}

}

}

Fig. 8.2. Pseudocode for the DFA of Figure 8.1

I

0

F1

0,1

Fig. 8.3. Multiple symbols labeling a transition in lieu of multiple transitions

I

0
F

1

X 0,1

0

1
Y 0,1

Fig. 8.4. A DFA with unreachable (redundant) states

• All other state names begin with letters other than I and F, and are
best chosen with mnemonic significance. They are drawn as single
circles.
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• Generally one would expect a DFA to decode every move out of
every state. If, for expediency, we leave out some of these moves, we
recommend that the following comment accompany such diagrams:
“we assume that all moves not shown lead the DFA to the black

hole state.” We recommend that the state name BH (for black hole)
be used for that state from which no escape is possible.2

• One could have a DFA with multiple symbols labeling a single tran-
sition in lieu of separate transitions that bear these symbols, as
shown in Figure 8.3.

• One could have a DFA with truly unreachable states, as shown in
Figure 8.4. These states (states X and Y in this example) may be
removed without any loss of meaning.

IF

FA0

FB

1

A1
1

B0
0

0

1

1

0

Fig. 8.5. Another example DFA

One can see the conventions explained above more clearly in Figure 8.5.
The DFA in Figure 8.1 is really encoding programs similar to the

one in Figure 8.2. All “DFA programs” are while(1) loop controlled
switch structures. While in a certain state, a DFA decodes the current
input symbol and decides to either update its state or keep its current
state. The next input symbol is decoded in this (possibly) updated
state. Whenever any final state (including the IF state) is entered, the
DFA turns on its green light. The green light stays on so long as the
DFA stays in one of the final state, and is turned off when it exits it. A
DFA program is not allowed to use any other variable than the single
variable called state. It cannot produce any other output than shine
the green light. It appears to be programming at its simplest - yet, such
humble DFAs are enormously powerful and versatile!

2 This is similar to gravitationally hyper-dense stars from which nothing - including
light - escapes. We did vote down the alternate name RM (for ‘Roach Motel’)
proposed by some students.
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The δ function of a DFA is also commonly presented as a table, with
rows being states, columns being inputs, with the final state(s) starred.
For our example, we have

input

-----

state| 0 1

------------

I | I F

*F | I F

A DFA is said to accept a string s if its green-light is ‘on’ after pro-
cessing that string; all other strings are rejected by the DFA. However,
note that a DFA “never stops working”; after processing any string s, it
will be in a position to process any one of the input symbols a, and may
(depending on the DFA) accept or reject that string, sa. DFAs can be
thought of as string classifiers, assigning a status (accepted/rejected)
for every string within Σ∗. The set of strings accepted by a DFA is
said to be its language. A DFA is said to recognize its language (not
accept its language - the term ‘accept’ is used for individual strings).

Formally speaking, a DFA is said to accept an input x ∈ Σ∗ if x
takes it from q0 to one of its final states. Define a function δ̂ that maps
a state and a string to a state, as follows:

For a ∈ Σ and x ∈ Σ∗, δ̂(q, ax) = δ̂(δ(q, a), x)

δ̂(q, ε) = q.

Then, a DFA accepts x exactly when δ̂(q0, x) ∈ F .
An alternate definition of the language of a DFA is based on the

notion of instantaneous descriptions (IDs). An ID is a “snapshot” of
a DFA machine in operation. For a DFA, this snapshot contains the
current state and the unconsumed input string. Knowing these, it is
possible to predict the entire future course of a DFA.

Formally speaking, we define the type of the ID of a DFA to be
TID DFA = Q × Σ∗. In other words, we take the view that the type of
the ID, TID DFA, includes all possible 〈state, string〉 pairs, i.e., Q×Σ∗.
We now define two relations,  and ∗; the latter being the reflexive
and transitive closure of the former.  is a one step move function that
captures how a DFA moves from one ID to another.

Suppose id1 is one snapshot, (q1, σ1), and id2 is another snapshot,
(q2, σ2), such that σ1 = aσ2. Now, if δ(q1, a) = q2, we know that the
DFA can go from snapshot (q1, σ1) to (q2, σ2). In other words, define
the relation  ⊆ TID DFA × TID DFA. as follows:

 (id1 as (q1, σ1), id2 as (q2, σ2)) =
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∃a ∈ Σ : σ1 = aσ2 ∧ δ(q1, a) = q2.

In the infix syntax,

(q1, σ1)  (q2, σ2) iff ∃a ∈ Σ : σ1 = aσ2 ∧ δ(q1, a) = q2.

As said before, define ∗ is defined to be the reflexive transitive closure
of . In other words, ∗ is the smallest relation ⊆ TID DFA × TID DFA

closed under the following rules:

〈x, x〉 ∈ ∗ for x ∈ TID DFA;
In other words, x ∗ x for x ∈ TID DFA,
〈x, y〉 ∈  ∧ 〈y, z〉 ∈ ∗ ⇒ 〈x, z〉 ∈ ∗;
In other words, x  y ∧ y ∗ z ⇒ x ∗ z,

Now, for DFA d, its language

L(d) = {x | ∃q ∈ F : (q0, x) ∗ (q, ε)}.

The above definition says that the language of a DFA consists of all
strings x such that ∗ can take the ID (q0, x) to the ID (q, ε), where
q ∈ F . Notice that the second ID contains ε, indicating that the DFA
has consumed the entire string x.
Example: Consider the DFA in Figure 8.3. What is in the  relation
with respect to snapshots that involve I and F? Since this is an infinite
set, we show a few members below (we use 〈 and 〉 as well as ( and )
to delimit tuples, to enhance readability):

{〈(I, 1), (F, ε)〉, 〈(I, 111), (F, 11)〉, . . . 〈(I, 1010100110), (F, 010100110)〉, }.

Now we show a few members of ∗:

{〈(I, 1111), (F, ε)〉, . . . 〈(I, 1010100110), (F, 0110)〉,
〈(I, 1010100110), (F, 010)〉, 〈(I, 1010100110), (F, 01)〉,
〈(I, 1010100110), (F, ε)〉, . . .}.

Note that ∗ can “consume” multiple symbols.
Some definitions, tips, and conventions:

A language L is defined to be regular if there is a DFA D such that
L = L(D).
While it is helpful to leave out those transitions of a DFA that
lead to the black hole - BH - state, please remember to reinstate the
black hole state and all the transitions going to this state before you
perform DFA operations, such as complementation.3

3 Otherwise, you will find yourselves in a ‘DH’ - deep hole.
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8.1.2 The “power” of DFAs

Despite their simple appearance, DFAs are incredibly powerful and
versatile! Here are some examples of their power:

The most touted applications of DFAs are in the area of compiler
scanner generation, where a scanner is a program that recognizes the
patterns hidden within strings representing keywords, floating-point
numbers, etc.
Exercises 8.16 and 8.17 demonstrate that using DFAs, one can per-
form division either going MSB-first (the ‘high-school’ method) or
even LSB-first. Only a finite amount of information needs to be
remembered across digits (essentially, the remainder after division;
fully explained in these exercises).
DFAs can be used to compactly represent Boolean functions (Chap-
ter 11) or even help determine the validity of formulas in certain
branches of mathematical logic, known as Presburger arithmetic
(Chapter 20).

Most questions about DFAs are algorithmically decidable. In particu-
lar, the following questions about DFAs are decidable:

Does a given DFA accept a given input?
Does a given DFA have an empty language?
Is the language of a given DFA all possible strings over Σ?
Are two given DFAs equivalent?

DFAs have many desirable properties, some of which are the following:

Given any DFA d, one can algorithmically obtain another DFA d
′

whose language is the reverse of the language of d.
Given any DFA d, one can algorithmically obtain another DFA d

′

whose language is the complement of the language of d.

8.1.3 Limitations of DFAs

DFAs have two main limitations. First, despite being adequately ex-
pressive, they may require “too many” (an exponential number) states,
which does adversely affect the space/time requirements of DFA-based
algorithms. Second, for classifying strings based on many frequently
occurring patterns, DFAs are simply inadequate. For instance, it is
impossible to build a DFA that accepts all and only those strings con-
taining an equal number of 0s and 1s. See Exercises 8.19, 8.20, and 8.21.
We shall soon see that using the concept of nondeterminism, we can
obtain exponentially more succinct finite-state representations, giving
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rise to the next machine type we shall study, namely, nondeterministic
finite automata (NFA).

Considering Exercise 8.20, one can easily prove that there can exist
no DFA. A proof sketch goes as follows:

Suppose there exists an M -state DFA for this language. Consider
the string w = (M )M .
w causes M + 1 states to be visited even while processing (M , a
string of M left parentheses.
Since only M of these states can be distinct states, one state repeats
during the (M traversal.
Therefore, there also exists a shorter, non state-repeating path lead-
ing to the same final state. However, taking this path causes the
DFA to omit one or more (, thus causing it to accept (k)M for some
k < M – a contradiction with the fact that this is the DFA for the
language L.

It is obvious that to recognize a language such as L above, all we need
to do is add a single stack to the DFA D. Doing so, we obtain a machine
known as deterministic push-down automaton (DPDA). In general, by
adding different kinds of data structures to the finite-state control, one
can handle languages whose strings have more complicated structures.
In Section 8.1.4, we shall now present a few examples that illustrate
this point.

8.1.4 Machine types that accept non-regular languages

Consider the language

L1 = {aibjck | i, j, k ≥ 0 ∧ if i = 1 then j = k}.

In all the strings in this language, the characters a, b, and c appear in
that order, with b’s and c’s being equal in number if the number of a’s
is 1. This language can obviously be handled using a DPDA, using its
stack. In fact,

reverse(L1)

can also be handled using a DPDA, as the finite-state control can re-
member whether the number of b’s and c’s were equal by the time the
a (or a’s) appear.

Now consider

L2 = {aibjckdm | i, j, k,m ≥ 0 ∧ if i = 1 then j = k else k = m}.
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This language can still be processed using only one stack, as the match-
ing between b’s and c’s or c’s and d’s (whichever is to occur) can be
decided by first seeing the a’s. No such luck awaits

reverse(L2),

which has to have two decisions, (whether the number of b’s and c’s
match, or whether the number of c’s and d’s match), in hand by the time
the a (or a’s) arrive. Clearly, these two decisions cannot be generated
using a single stack, thus showing that reverse(L2) cannot be processed
by a DPDA. The same can be concluded about

L3 = {ww | w ∈ {0, 1}∗}

also, as the second w’s head must be matched against the first w’s head
which, unfortunately, is at the bottom of the stack. It turns out (as we
shall demonstrate later) that

L4 = L3

indeed can be processed using a single stack push-down automaton.
One obvious solution to handling L3, as well as reverse(L2), would

be to employ two stacks instead of one. Unfortunately this gives more
power than necessary (the machine becomes as powerful as a Tur-
ing machine). Another machine type, the linear bounded automaton
(LBA), can be used. An LBA has finite control as well as a tape such
that it can read/write only the region of the tape in which the input
initially appeared. In addition, an LBA has a finite tape alphabet that
may (and typically does) contain Σ, the input alphabet, plus (typi-
cally) many additional symbols. Exploiting the ability to repeatedly
scan the input, an LBA can decide membership in all the languages
listed above. By the same token, an LBA can decide membership in
the language

{anbncn | n ≥ 0}
as well as

{anbn2 | n ≥ 0}.
We later present languages that cannot be decided using LBAs. To han-
dle the full generality of languages, we remove the restriction on LBAs
that they can write only where the input is presented, thus obtaining
a Turing machine.
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digraph G {

/* Defaults */

fontsize = 12;

ratio = compress;

rankdir=LR;

/* Bounding box */

size = "4,4";

/* Node definitions */

I [shape=circle, peripheries=1];

F [shape=circle, peripheries=2];

"" [shape=plaintext];

/* Orientation */

orientation = landscape;

/* The graph itself */

"" -> I;

I -> I [label="0"];

I -> F [label="1"];

F -> F [label="1"];

F -> I [label="0"];

/* Unix command: dot -Tps exdfa.dot >! exdfa.ps */

/* For further details, see the ‘dot’ manual */

}

Fig. 8.6. Drawing DFAs using dot

% Include everything till %--- in a latex document, and run latex

\begin{figure}

{\hfill {\psfig{file=exdfa.ps,height=4.5cm,width=2cm,angle=-90}\hfill}}

\caption{Whatever caption you desire}

\label{fig:label-for-cross-referencing}

\end{figure}

%---

Fig. 8.7. Processing .ps files in Latex

8.1.5 Drawing DFAs neatly

We close this chapter off with some pragmatic tips for DFA drawing. Al-
most all drawings in this book are created using the dot package which
is freely downloadable as part of the graphviz tools. After downloading
and installing this package, you will see an executable file dot. You may
then present your drawings in a file with extension .dot, and process
the drawing into a postscript file for inclusion into your documents, in-
cluding Latex documents, where you may further process the drawing.
For example, Figures 8.6 and 8.7 provide all the commands needed to
generate Figure 8.1.
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Chapter Summary

This chapter began with a brief overview of various machine types as
well as some key differences between them. It then introduced determin-
istic finite state automata (DFA). Various notations for representing
DFA were discussed: tables, diagrams, and mathematical structures.
After introducing the notion of acceptance of strings by DFA, the no-
tion of a language L being regular was defined; there is at least one
DFA that accepts all and only those strings in L. The chapter closed
with a description of some of the limitations of DFAs in terms of be-
ing able to serve as recognizers for certain (non-regular) languages. We
also pointed out how having one stack allows us to handle languages
with more interesting structure such as balanced parentheses. We also
presented a result that we shall see again much later; having two stacks
gives a machine based on finite-state control as much power as a Turing
machine.

Exercises
You are encouraged to use grail and/or JFLAP to check your results
in these exercises.

8.1. Present the pseudocode of an algorithm to reverse a directed graph
represented by an adjacency matrix. A directed graph is reversed by
reversing all its edges.

8.2. What is the language of the DFA in Figure 8.1 if:

the only accept state is the starting state?
there are no accepting states (no double-circled states)?
we reverse every arc, rename state I as state F, and rename state F
as state I, making it the initial state?

8.3. What is the language recognized by the DFA in Figure 8.5? List
ten strings in its language and ten not in its language in lexicographic
order.

8.4. Draw a DFA that is different from (non-isomorphic to) the DFA
shown in Figure 8.5, however with the same language.

8.5. What happens to the language of the DFA in Figure 8.5 if A1
jumps to B0 upon receiving a ‘1’, and B0 jumps to A1 upon receiving
a ‘0’?

8.6. Draw a DFA having language equal to the union of the languages
of the DFAs in Figure 8.1 and Figure 8.5.
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8.7. Draw a DFA having language equal to the symmetric difference of
the languages of the DFAs in Figure 8.1 and Figure 8.5.

8.8. Apply the following homomorphism to the language of the DFA
of Figure 8.1 and draw a DFA for the resulting language. Repeat for
the DFA of Figure 8.5.

h(ε) = ε
h(0) = 11
h(1) = 00

8.9. Obtain a DFA for the prefix-closure of the language of the DFA of
Figure 8.1. Repeat for the DFA of Figure 8.5.

8.10. Draw a DFA having language equal to the concatenation of the
languages of the DFAs in Figure 8.1 and Figure 8.5.

8.11. Draw a DFA having language equal to the star of the language of
the DFA in Figure 8.1. Repeat this exercise for the DFA of Figure 8.5.

8.12. Draw a DFA having language equal to the reverse of the language
of the DFA in Figure 8.1. Repeat this exercise for the DFA of Figure 8.5.

8.13. Draw a DFA having language equal to the complement of the
language of the DFA in Figure 8.1. Repeat this exercise for the DFA of
Figure 8.5.

8.14. What happens if, in the DFA in Figure 8.1, every transition car-
ries label ‘1’? Think of what the corresponding DFA program will do.

8.15. Give a DFA accepting the set of strings over Σ = {0, 1} such
that each block of five consecutive symbols contains at least two 0s.

8.16. Develop a DFA that recognizes the following language:

L = {x | x ∈ {0, 1}∗ and (||x|| mod 5) = 0}.

Here ||x|| stands for the magnitude of x viewed in unsigned binary.
Example: || 0101 ||= 5, with the leftmost 0 coming first. Hint: Notice
that the bits of x are being presented MSB-first. Act on each new
bit and recalculate the remainder and remember it in the DFA states.
Think of what happens to a number, say N , when it gets shifted left
and a least significant bit b gets inserted. Basically N becomes 2×N+b.
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8.17. With respect to the language L of Exercise 8.16, design a DFA for
rev(L), the set of strings which are reverses of strings in L (this is tan-
tamount to processing the bit stream LSB-first, as opposed to L which
processes it MSB-first). Example: || 0101 ||= 5, with the rightmost 1
coming first. Hint: N becomes b× 2m +N where m is the position into
which the new MSB b walks in. N mod 5 becomes (b× 2m +N) mod 5.
We need a recurrence that keeps track of 2m for various m. Each DFA
state remembers a pair
(“powers of 2 mod 5”, “the mod of the number mod 5”).
A few steps are:
(1,0) - 1 -> (2,1) - 1 -> (4,3) - 1 -> (3,2).

In general, the evolution of the state goes as follows:

State N mod 5 −→
(b × (Weight mod 5) + N mod 5) mod 5.

Now, Weight mod 5 is maintained as follows:

2m mod 5 −→ (2 × (2m mod 5)) mod 5.

A few of the state transitions are given below. Complete the rest.

(1,0) - 0 -> (2,0) (2,0) - 0 -> (4,0) (2,1) - 0 -> (4,1)

(1,0) - 1 -> (2,1) (2,0) - 1 -> (4,2) (2,1) - 1 -> (4,3) ...

8.18. Repeat Exercises 8.16 and 8.17 for k instead of 5 and for arbitrary
number base b (with Σ suitably adjusted) instead of binary. Obtain the
state transition relation in both these cases.

8.19. Design a DFA for the following language, for various n (up to the
limit of your time availability; do it at least up to n = 4):

{x0z | x ∈ {0, 1}∗ and z ∈ {0, 1}n}.

Prove that the required DFA has exponentially many states (exponen-
tial in n).

8.20. Either design a DFA for the following language

L = {(n )n | n ≥ 0},

or prove that no such DFA can exist! Note: Since this problem’s proof
was sketched on page 127, please come up with another proof that
considers taking the state-repeating path (perhaps more than once).

8.21. Write clear pseudocode for a stack-based algorithm to recognize
strings in L above.
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NFA and Regular Expressions

In the last chapter, we have seen many examples of the versatility of reg-
ular languages. We have also seen several examples of regular languages
for which the DFAs were both simple and intuitive. In Chapters 11 and
20, we will further elaborate on the power of DFAs by showing that
they can be used to encode as well as reason about statements from
certain decidable branches of mathematical logic. In Section 8.1.3, we
also discussed

some of the limitations of DFAs. Their main limitation is, of course,
that they cannot serve as recognizers for non-regular languages such as
L = {(n )n | n ≥ 0}, and these languages are very important in com-
puter science. In fact, they are part of the syntax of most computer pro-
gramming languages. In later chapters, we will develop rigorous proof
techniques for proving that certain languages are not regular. We will
then study machines that are strictly more powerful than DFAs.

In this chapter, we continue the study of regular languages, and in
that context, the main limitation of DFAs is that they can be unnatu-
ral,1 exponentially large or both. To overcome these limitations, in this
chapter we will introduce a new machine type called nondeterministic
finite automata, or NFA. NFAs subsume DFAs; in fact, every DFA is
an NFA (more precisely said, every DFA can, with a small adjustment
of mathematical definitions, be regarded as an NFA). We also wish to
point out that nondeterminism is one of the central ideas in theoreti-
cal computer science, going well beyond its role as a ‘description size
compressor.’ In this book, we will repeatedly be revisiting the concept
of nondeterminism in the context of various machine types.

1 DFAs can end up being unnatural with respect to highlighting the essential struc-
ture of a regular language, as will be illustrated in Illustration 9.2.2.
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NFA are specified much like DFA are: through pictures of directed
graphs (for human consumption), or through a description of the δ func-
tion, say through a tabular function description (for machine consump-
tion). However, often a textual syntax is preferred over these styles.
This is precisely what regular expressions are. In other words, regular
expressions allow us to write down mathematical expressions that de-
note regular languages, and each such regular expression has a very
straightforward interpretation as an NFA. All regular languages over
an alphabet Σ can be specified using just the primitive regular expres-
sions ∅, ε, and a ∈ Σ, and the regular expression building operators
∪, ◦ and ∗.
To sum up, the key results we are aiming to establish by the end of
Chapter 12 are as follows:

• Regular languages are those recognized by a deterministic finite
automaton.

• For every DFA, there is an equivalent NFA; for every NFA there is
an equivalent RE; and for every RE there is an equivalent DFA.

• For any regular language, the minimal DFA—the DFA with the
smallest number of states that serves as a recognizer for the language—
is unique.

• Regular languages are closed under many operations, including:
− union, intersection, complementation, star
− homomorphism, inverse homomorphism
− reversal, prefix-closure.

In this chapter, we will introduce NFAs and REs through several exam-
ples. We explain how NFA process strings by moving from sets of states
to other sets of states either by reading a symbol from an alphabet or
without reading any symbols (through ε moves). We explain how to
determine the language of an NFA using the notion of Eclosure.

We strive to provide an experimental flavor to this chapter by em-
ploying the grail tool suite for illustrations. In Section 9.3.6, we illus-
trate through a case study how to use the grail tool suite to design and
formally debug regular expressions. Virtually all the diagrams in this
book are generated using grail and a graph drawing package called
dot. We also try to relate the material to the real world by demon-
strating how a simple lexical analyzer can be built using the flex tool.
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9.1 What is Nondeterminism?

Nondeterminism has many uses in computer science. It can help de-
signers describe the systems they are about to build even at stages
of the design where they have not determined all the details. In some
cases, while these details may be known to designers, they may still
choose not to include them to avoid inundating their audience with
excess information.2

To understand nondeterminism in a real-world context, consider the
act of summoning an elevator car in a busy building that has multiple
elevators. After one presses the call button, it is not entirely predictable
what will happen. One may, if lucky, get a car headed in the same di-
rection as they intend to travel. If unlucky, one would get a car going
in the opposite direction, or a car that is full, etc. If one had perfect
knowledge about the entire building and its occupants, they could pre-
dict the outcome with certainty. However, most people3 do not want to
keep track of all such information, instead preferring to live according
to a nondeterministic protocol that goes as follows: “if I am fated not
to get an empty car, I should try again.” In short, by employing nonde-
terminism, one can write system descriptions at a high level, without
worrying about pinning down details too early. It has been said that
pinning down details too early (“premature optimization”) is at the
root of all that is evil in software design.

Nondeterministic descriptions have another property: they tend
to over-approximate the system being described. Over-approximation
helps ignore special cases in the behavior of a system (it is akin to
packaging a delicate, but odd-shaped, electronic gadget by inserting
it between a pair of molded Styrofoam carriers, thus smoothening the
overall appearance). By adding behaviors, over-approximation often
helps “round” things up, hence simplifying the whole system.

To better understand the ramifications of over-approximation, con-
sider a building where all north side elevators are designed not to be
interrupted during their upward journey during early mornings.4 In
other words, each elevator control algorithm has an if-then-else in it
that tests whether it is running inside a north side elevator, checks
what time of the day it is, and prevents interruption if the tests con-
firm ‘north’ and ‘morning.’ Now, if one were to hire a formal verifi-

2 In the modern society that suffers from ‘information pollution,’ nondeterminism
can be the breath of oxygen that saves us from asphyxiation.

3 Except perhaps “control freaks.”
4 Perhaps to ensure the speedy progression of the janitorial staff and their accou-

terments to top floors.
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cation specialist to mathematically verify that all the elevator control
algorithms are working correctly, here is how they could employ non-
determinism to simplify their activities. They could simply replace the
if-then-else with a nondeterministic jump to both cases. Such a mod-
ified control algorithm has more behaviors than the original, in which
every elevator could nondeterministically decide whether to ignore the
user’s interrupt or to heed to it. Now, if the verification specialist is
handed the property to verify; “If I ring for a car, it will eventually
come to my floor,” that property would pass on the nondeterministi-
cally over-approximated system. The specialist would end up having
verified this property more easily, by ignoring the if-then-else. On the
other hand, if they are handed another property, namely “if the car
is below my floor, is headed to a floor above my floor and I press the
‘up’ button, it will stop for me,” the verification will fail for the over-
approximated model because every elevator can exercise the ‘ignore
interrupt’ option. The verification specialist will realize that this is a
false positive—a false alarm—and then add the missing detail, which is
the if-then-else statement. During system design and verification, one
can then add just enough information to prove each properties of in-
terest. The alternative approach of revealing all internal information,5

both taxes the mind and adds to verification time. Computer science’s
essential mission is complexity management, and nondeterminism plays
an essential role in this regard.

In this book, we now return to the use of nondeterminism for de-
scribing regular languages. We now begin discussing the topic, “what
else does nondeterminism affect?” We provide the answers under sep-
arate headings.

9.1.1 How nondeterminism affects automaton operations

The presence of nondeterminism affects the ease with which automa-
ton operations (such as union, concatenation, and star) can be carried
out. In the context of finite automata, while the operations of union,
concatenation, and star become easier with the use of nondetermin-
ism, the operations of complementation, intersection, and equivalence
become harder to perform. We will see the details when we introduce
these algorithms.

5 Popular with many legal departments, who do so in fine print.
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9.1.2 How nondeterminism affects the power of machines

Nondeterminism also fundamentally affects the power of various ma-
chine types, as follows (see also Section 4.3):

• Nondeterministic finite automata and deterministic finite automata
are equivalent in power.

• Nondeterministic push-down automata are strictly more powerful
than deterministic push-down automata.

• The equivalence between deterministic PDAs is algorithmically de-
cidable. This is actually a recent result. It was obtained 30 years
after it was first conjectured to be true.

• The equivalence between nondeterministic and deterministic PDAs
(and hence between two nondeterministic PDAs) is undecidable.

• It is still an open problem whether nondeterministic and determin-
istic linear bounded automata are equivalent in power.

• The power of Turing machines does not change (with respect to
decidability properties) through the use of nondeterminism. How-
ever, with respect to complexity, certain problems (for instance,
NP-complete problems which are discussed later) take exponential
time on deterministic machines, but can be solved in polynomial
time on nondeterministic Turing machines. Also, Turing machine
equivalence is undecidable.

With this general introduction, we look at regular expressions and NFA
in greater detail. We begin with regular expressions because we believe
that they will already be familiar to users of computers - if not known
by that name.

9.2 Regular Expressions

The idea of using regular expressions to denote whole classes of strings
is quite widespread. In many card games, the Joker card is called the
“wild-card,” in that it can be used in lieu of any other card. In most
operating systems, the wild-card is ∗ that matches all file names—as in
rm *.* or del *.*. Such expressions are practical examples of regular
expressions in day-to-day use. Formally, we define regular expressions
as follows. We use the inductive definition style in which a basis case
and a list of inductive rules are provided, and define regular expressions
to be the least set satisfying these rules:

• ∅ is an RE denoting the empty language ∅.
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Most computer-assisted tools have trouble accepting ∅ directly,
and so their syntax for ∅ varies. It is written as {} in grail.
Check with each tool to see how it encodes ∅. A command man

regexp or man egrep issued on most Unix systems usually reveals
how Unix encodes REs.

• ε is an RE denoting the language {ε}.
Again, most computer-assisted tools encode ε variously—as ""

by grail, for example. In our drawings, we sometimes use e or
epsilon in lieu of ε. Unix has several flavors of ε—those occurring
within words, at the beginning, at the end, etc.6

• a ∈ Σ is an RE denoting the language {a}.
Most tools directly encode this regular expression in ASCII - for
example, a.

• For REs r, r1 and r2, r1r2, r1 + r2, r∗, and (r) are regular ex-
pressions. These regular expressions denote the following languages,
with the indicated encodings in grail (we write L(x) to mean ‘lan-
guage of’):
RE r1r2 denotes L(r1) ◦ L(r2) encoded in grail as r1 r2

RE r1 + r2 denotes L(r1) ∪ L(r2) encoded in grail as r1+r2
RE r∗ denotes (L(r))∗ encoded in grail as r*
RE (r) denotes L(r) encoded in grail as (r)

The above regular operators form a basis set in the sense that we do
not need any other operators such as complementation, reversal, inter-
section RE, etc., to build regular languages. All regular languages can
be specified using only the above regular expression syntax. In practice,
however, there are many languages that are very difficult to specify
without the use of these additional operators, especially complementa-
tion (also known as negation).7 The reason for this difficulty is that
the regular expression syntax, which only has ∗, ◦, and +, allows us to
build up the language from simpler languages, while often it would be
much more natural to build down a language, say, by specifying two
different (but larger) languages and intersecting them. If you attempt
Exercises 9.6 and 9.8, you will confront the extreme difficulty of speci-
fying two example languages directly in the RE syntax of the basis set
- i.e., without the use of negation.

6 According to the Unix Manual pages for grep(1), the symbol \b matches the
empty string at the edge of a word, and \B matches the empty string provided
it’s not at the edge of a word.

7 Recall that for two languages L1 and L2, the complement of their union,
(L1 ∪ L2), is equivalent to the intersection of their complements, L1 ∩ L2, by
DeMorgan’s law. Hence, if we have complementation and union, we can obtain
the effect of intersection.
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Illustration 9.2.1 In previous chapters we have seen how to write
out languages using set-theoretic syntax. In particular, we can express
language

Labck = {xabc | x ∈ {0, 1}k ∧ a, b, c ∈ {0, 1} ∧ (a = 0 ∨ b = 1)}
for various k as follows:

• k = 0 : {ε} ◦ {00, 01, 11} ◦ {0, 1},
• k = 1 : {0, 1} ◦ {00, 01, 11} ◦ {0, 1},
• k = 2 : {0, 1}2 ◦ {00, 01, 11} ◦ {0, 1},
• . . .

We can encode these languages using regular expressions as follows:

• k = 0 : ε ◦ (00 + 01 + 11) ◦ (0 + 1),
• k = 1 : (0 + 1) ◦ (00 + 01 + 11) ◦ (0 + 1),
• k = 2 : (0 + 1)(0 + 1) ◦ (00 + 01 + 11) ◦ (0 + 1),
• . . .

In the grail syntax, these regular expressions can be encoded as:

• k = 0 : ""(00+01+11)(0+1),
• k = 1 : (0+1)(00+01+11)(0+1),
• k = 2 : (0+1)(0+1)(00+01+11)(0+1),
• . . .

Illustration 9.2.2 Consider the language

Lk = {x0z | x ∈ {0, 1}∗ and z ∈ {0, 1}k}.
For various k, we can express this language using regular expressions
(in grail syntax) as follows:

• k = 0: (0+1)*0,
• k = 1: (0+1)*0(0+1),
• k = 2: (0+1)*0(0+1)(0+1),
• k = 3: (0+1)*0(0+1)(0+1)(0+1),
• . . .

We see that the size of the regular expression grows linearly with k—a
property also shared by nondeterministic automata for this language,
as we shall illustrate in Figure 9.2. In contrast, as shown in Figure 9.1,
minimal DFAs for this language will grow exponentially with k. In
particular, the minimal DFA for each k has 2k+1 states. The intuitive
reason for this situation is that DFAs have no ability to “postpone
decisions,” whereas NFAs have this ability “by keeping multiple options
open.”
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Fig. 9.1. Minimal DFAs for Lk for k = 2, 3, 4, 5, with 2k+1 states
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I

0,1

A0 B0,1 F0,1

Fig. 9.2. An NFA for (0 + 1)∗ 0 (0 + 1)k, for k = 2

9.3 Nondeterministic Finite Automata

We now formally introduce nondeterministic finite automata. Let Σε

stand for (Σ ∪ {ε}). A nondeterministic finite-state automaton N is a
structure (Q,Σ, δ, q0, F ), where:

Q, a finite non-empty set of states;
Σ, a finite non-empty alphabet;
δ : Q × Σε → 2Q, a total transition function (note, however, that
the range includes ∅; therefore, if for some state q, δ(q, x) = ∅, the
move from state q on input x is essentially to a black hole8);
q0 ∈ Q, an initial state; and
F ⊆ Q, a finite, possibly empty set of final states.

The use of nondeterminism allows much more natural-looking as well
as compact descriptions of many automata. Contrast Figure 9.2 with
the equivalent minimal DFAs in Figure 9.1. Notice that these minimal
DFAs are minimized as well as unique; in other words, it is impossible to
avoid the exponential growth based on k. The NFA, on the other hand,
simply accommodates all these figures by progressively elongating its
tail. Figure 9.2 for k = 2 has a tail labeled with 0, 1 of length k =2, and
this sequence can be made three, four, and five steps long to correspond
to the machines in Figure 9.1.

We now discuss various aspects of nondeterministic automata step-
by-step, and present a comprehensive, practical example in Section 9.3.5.

9.3.1 Nondeterministic Behavior Without ε

We provide two examples illustrating NFA. The first, provided in Fig-
ure 9.2, demonstrates one type of nondeterminism where, from a single
state, an NFA can advance to multiple next states upon reading an
input symbol—in this case, from state I upon reading 0 to states I

and A. The various components of this NFA are as follows:

8 Unlike in recent theories on real black holes by Stephen Hawking where he proves
that information can escape, nothing escapes an automaton blackhole!
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• Q ={I,A,B,F}

• Σ ={0,1}

• q0 =I

• F =F
• δ : {I,A,B, F} × {0, 1, ε} → 2{I,A,B,F} is given by the following

table:

Input 0 1 e

---------------------

States |

I | {I,A} { I } { }

|

A | { B } { B } { }

|

B | { F } { F } { }

|

F | { } { } { }

Notice that this NFA is assumed to move to the empty set of states, ∅
(written {}) in the absence of an explicitly given move in this table. To
trace out the behavior of this NFA on an input string such as 10101,
we place a token in state I and subject it to moves according to its
δ function. The use of instantaneous descriptions (ID) as employed in
Section 8.1.1 suggests itself as a way to keep track of ‘where the NFA
is in its diagram’ and ‘what the unconsumed input string is,’ except we
know that an NFA can be in a set of states after a move. What type
of IDs must we employ to keep track of all this? Of the many choices
possible, we employ the following type:

TID NFA = 2Q × Σ∗.

This ID keeps a set of states and the unconsumed string specific to
that set of states. We now use the  notation to indicate ‘one step’ of
forward progress of the NFA, where a step may be made through a
member of Σ or through ε.

� relation for an NFA

We define  ⊆ TID NFA × TID NFA as follows:

(Q1, σ1)  (Q2, σ2)
.
= ∃a ∈ Σε : σ1 = aσ2 ∧ Q2 = ∪q1∈Q1

δ(q1, a).

In other words,  causes a move from an ID (Q1, σ1) to another ID
(Q2, σ2) by moving every state q1 ∈ Q1 via the δ function upon a ∈ Σε,
and taking a union of the resulting sets of states. Notice that we allow
the choice of ε for a, meaning that σ1 can be the same as σ2, and the
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NFA can simply move through ε. An example that illustrates the use
of  is as follows:

• Initial ID of the NFA is ({I}, 10101).
• ({I}, 10101)  ({I}, 0101); after reading 1, the NFA is still in the

set of states {I}, as given by the δ function of the NFA.
• ({I}, 0101)  ({I,A}, 101); after reading 0, the NFA is simultane-

ously in two states, {I,A}, as given by the δ function.
• ({I,A}, 101)  ({I,B}, 01); after reading 1, the token in state I

goes back to state I itself, while the token in state A advances to
state B. For example, the NFA is now simultaneously in two states,
{I,B}. We obtain {I,B} by taking the union of δ(I, 1) and δ(A, 1).
Continuing in this manner, we go through the IDs shown below.

• ({I,B}, 01)  ({I,A, F}, 1); after reading 0, state I goes to the
set of states {I,A} whereas state B goes to state F . Now the DFA
has seen a substring that it accepts, namely 1010. If 1010 were the
entire string, one token would have reached F , and consequently
the NFA would have accepted. However, since the entire string is
10101, we continue as below.

• ({I,A, F}, 1)  ({I,B}, ε); after reading the final 1, F “falls out of
the diagram” (goes to the empty set of states, as shown by δ(F, 1)),
while the other states, I and A, move to I and B. Since neither of
these are final states, the NFA does not accept 10101.

9.3.2 Nondeterministic behavior with ε

I

0,1
A0 B

0,1

F
0,1

e

Fig. 9.3. An NFA for ((0 + 1)∗ 0 (0 + 1)k)+, for k = 2

We now illustrate an NFA’s ability to advance through ε moves with
the aid of Figure 9.3, which is a slight modification of Figure 9.2. In
Figure 9.3, the NFA can move from state F to state I via ε. In short,
this machine accepts one or more repetitions of a string in the language
of Figure 9.2. Let us see how. In terms of instantaneous descriptions,
the sequence of ID changes, when running with input 10101010, are as
follows: As before,
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• ({I}, 10101010)  ({I}, 0101010)
• ({I}, 0101010)  ({I,A}, 101010)
• ({I,A}, 101010)  ({I,B}, 01010)
• ({I,B}, 01010)  ({I,A, F}, 1010).
• One way to proceed is to treat the ID ({I,A, F}, 1010) as

({I,A, F}, ε1010) and allow the ε transition to fire. This sends I
and A to the empty set of states, while sending F to {I}:

• ({I,A, F}, ε1010)  ({I}, 1010).
• We now can perform ({I}, 1010)  ({I}, 010).
• Let us now accelerate our presentation by using ∗.
• ({I}, 010) ∗ ({I,A, F}, ε). The string is accepted since one of the

tokens has reached F .

Another way in which the NFA could proceed from ({I,A, F}, 1010)
is by moving states I, A, and F on 1 (without inserting the ε):

• ({I,A, F}, 1010)  ({I,B}, 010), in which move I proceeds to {I},
A proceeds to {B}, and F proceeds to ∅.

• ({I,B}, 010)  ({I,A, F}, 10).
• ({I,A, F}, 10)  ({I,B}, 0).
• ({I,B}, 0)  ({I,A, F}, ε), also resulting in the string being ac-

cepted.

To sum up, using , we have to be prepared to read a string such as
0100 as x0x1x0x0x, where each x is any number of εs in sequence. Sec-
tion 9.3.3 introduces a better alternative for determining the behavior
of NFAs using the concept of Eclosure or ε-closure.

Eclosure, in effect, considers all9 ε-laden interpretations of
strings in “one fell swoop.”

The language of an NFA

The language of an NFA consists of all those sequences of symbols that
can be encountered while tracing a path from the start state to some
final state. We eliminate all occurrences of ε from such sequences unless
the entire sequence consists of εs, in which case, we turn the sequence
into a single10 ε. Formally, given an NFA N = (Q,Σ, δ, q0, F ) with the
 relation defined as above, its language

9 While discussing nondeterministic push-down automata (NPDA) in later chap-
ters, we will see that a construct similar to Eclosure cannot be defined for NPDAs,
as the stack state also has to be kept around.

10 Please note that ε is not part of the alphabet of the NFA.
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L(n) = {w | ({q0}, w) ∗ (Q, ε) ∧ Q ∩ F �= ∅}.

In other words, if the ID ({q0}, w) can evolve through zero or more 
steps to an ID (Q, ε) where Q contains a final state, then w is in the
language of the NFA.

9.3.3 Eclosure (also known as ε-closure)

IF

e
FA

0

FB1

A1
1 B0

e

0

1

e

e

0

e

1

0

Fig. 9.4. An example NFA
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Fig. 9.5. DFA obtained using grail

Eclosure(q) obtains, starting from a state q, the set of states reached
by an NFA traversing zero or more ε labeled transitions. The best way
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to see which states are included in Eclosure(q), for any q, is to imagine
the following:

Apply a high-voltage to state q; imagine that every ε edge is
a diode that conducts in the direction of the arrow; now see
which are the states that would be fatal to touch due to the
high-voltage;11 all those are in Eclosure(q).

Example: Let us obtain the Eclosure of various states in Figure 9.4.

• The Eclosure of state IF is IF itself. The high-voltage spreads from
IF to itself.

• What is Eclosure of FA? Applying high-voltage to this state, it
spreads to state FA, to B0, to A1, and finally, to FB. For example,
Eclosure(FA) = {FA,B0, A1, FB}.

Unfortunately, an intuitive definition in terms of voltages isn’t rigorous
enough! Hence, we set up an alternate definition of Eclosure(q) as
follows:

• First, we need a way to compute all states which can be reached
from a given state by traversing ε edges.
Let →⊆ Q × Q be an arbitrary relation over Q. Then, given → ⊆
Q × Q, we will define a postfix usage of this operator, namely q →
, to be the image of q under →:

q → = {x | 〈q, x〉 ∈ →}.

• Now define the relation
ε→ which is a subset of Q × Q:

ε→ = {〈q1, q2〉 | q1, q2 ∈ Q ∧ q2 ∈ δ(q1, ε)}.
• Next, define the reflexive and transitive closure of

ε→ in the usual

way. Call it
ε
→∗.

Given all this, we define

Eclosure(q) = q
ε
→∗.

Here, we use the
ε
→∗ as a postfix operator. The reflexive part above

is very important to ensure that q gets included within Eclosure(q).

The overall effect of employing
ε
→∗ as a postfix operator is to force all

ε-only paths to be considered.
Example: Redoing our example with respect to Figure 9.4,

Eclosure(FA) = FA
ε
→∗.

11 An ideal non-leaky diode that does not break down.
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• This “grabs” state FA itself (the reflexive part of
ε
→∗ does this).

• Next, B0 enters this set, as it is one step away. In fact, B0 is in

FA
ε
→1.

• Next, A1 enters this set, as it is two steps away. In fact, A1 is in

FA
ε
→2.

• Finally, FB enters this set, as it is three steps away. In fact, FB is

in FA
ε
→3.

• No more states enter Eclosure(FA).

As said earlier, Eclosure helps define the behavior of an NFA, as
well as its language more directly. It also helps us define the NFA to
DFA conversion algorithm (Chapter 12) very directly.

9.3.4 Language of an NFA

Having defined Eclosure, we can now formally define the language of
an NFA. For a string x ∈ Σ∗, define δ̂(q0, x) of an NFA to be the
set of states reached starting from Eclosure(q0) and traversing all the
symbols in x, taking an Eclosure after every step. We are, in effect,
taking the image of q0 under string x, except that we are allowing an
arbitrary number of εs to be arbitrarily inserted into x. Also, we will
overload Eclosure to work over sets of states in the obvious manner,
as follows:

Eclosure(S) = {x | ∃s ∈ S : x ∈ Eclosure(s)}.

This definition can also be written as

Eclosure(S) = ∪s∈S Eclosure(s).

Likewise, we overload δ to work over sets of states:

δ(S, a) = {x | ∃s ∈ S : x ∈ δ(s, a)}.

Now we define δ̂(q, x), the ‘string transfer function,’ for state q and
string x inductively as follows:

δ̂(q, ε) = Eclosure(q).
For a ∈ Σ and x ∈ Σ∗,
δ̂(q, ax) = {y | ∃s ∈ Eclosure(δ(Eclosure(q), a)) : y ∈ δ̂(s, x)}.
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In other words, for every symbol a in ax, we Eclose state q, “run” a
from each one of these states, and Eclose the resulting states. From
each state s that results, we recursively run x. Notice that we apply
Eclosure before as well as afterward. While this is strictly redundant,
it leads to definitions that are simpler and more general, and hence
easier to reason about.12 Specifically, in the definition of δ̂(q, ax), we
need not assume that q is an already Eclosed state, even though in the
current context of its usage, we will be inductively guaranteeing that
to be the case because: (i) we begin with δ̂(q, ε) = Eclosure(q), and

(ii) in δ̂(q, ax), we restore “Eclosedness.”
Finally, the language of an NFA N is

L(N) = {w | δ̂(q0, w) ∩ F �= ∅}.
In other words, after running the NFA from state q0 with input w, we
see whether any ‘token’ has reached a final state.
A good way to intuitively understand the above definitions pertaining
to NFAs is through the following ‘token game:’

• Place a token in state q0. Spread one copy of the token to each state
in Eclosure(q0).

• For each symbol a from Σ that is entered, advance each token to
its set of a successors.

• Eclose the tokens and continue.
• If and when one of the tokens reaches some final state, the string

seen so far is accepted.

Illustration 9.3.1 The NFA in Figure 9.4 has string 0001 in its lan-
guage. First, Eclosure(IF ) = {IF}. After the first 0, the NFA is in
state FA, whose Eclosure is {FA,B0, A1, FB}. After the second 0,
A1 goes to FA, and the Eclosure results in {FA,B0, A1, FB}. The
same happens after the third 0. After the 1, FA and A1 go to A1, B0
goes to FB, and the token in FB goes to ∅, resulting in {A1, FB},
which is also its own Eclosure. This matches the definition

δ̂(q, ax) = {y | ∃s ∈ Eclosure(δ(Eclosure(q), a)) : y ∈ δ̂(s, x)}
as argued below:

• Eclosure(δ(Eclosure(IF ), 0)) is {FA,B0, A1, FB}.
• We recursively process the remaining input 001 from these states
to reach {A1, FB}.

12 Another way to set up the definitions would have been to start the NFA in the
Eclosure of its start state, and at each stage perform a δ step followed by one
Eclosure step.
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9.3.5 A detailed example: telephone numbers

-------------- --------------

Legal Illegal

-------------- --------------

[201]221-1221 [201]2211221

201-221-1221 201-2211221

2012211221 201221-1221

221-1221 2211-221

2211221

-------------- --------------

Fig. 9.6. Legal and illegal phone numbers in our example

We now point out that in some cases we prefer NFAs (or regular
expressions) not because they are smaller, but simply because they are
much easier to specify. Also, the results would be much more convincing
than if we were to draw a DFA directly or simply write a natural
language description of the language in question. Our example also
concretely illustrates the ability of ε transitions to make descriptions
clearer.

Illustration 9.3.2 Suppose we want to develop a lexical analyzer13

for telephone numbers. We want to be maximally flexible, and allow
multiple syntaxes for phone numbers for users’ convenience. First, let
us assume a world where we have not invented the terminology of non-
deterministic automata or regular expressions. We will then be forced
to describe the set of legal telephone numbers in natural language prose
(in our case, English). Here is how an initial attempt might look:

A telephone number consists of three parts: an area code (3 digits),

a middle part (3 digits), and the extension (4 digits), written in that

order. We consider only digits in the range of 0 to 2, to keep things

simple. All three parts may be written in juxtaposition or may be

separated by exactly one dash, ‘-’. If the area code is separated from

the middle part by a dash, the middle part must also be separated from

the extension by a dash. The area code may also be surrounded by

brackets,14 ‘[’ and ‘].’ In this case, the middle part must be separated

13 Also known as a “scanner” - a tool that digests input at the character level and
converts them into meaningful entities called tokens.

14 We use brackets [ and ] in lieu of the more traditional parentheses ‘(’ and ‘)’
because the grail tool we use assigns special significance to parentheses - and we
wanted to avoid work-arounds to keep things simple.
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(""+(0+1+2)(0+1+2)(0+1+2))(0+1+2)(0+1+2)(0+1+2)(0+1+2)(0+1+2)

(0+1+2)(0+1+2)+

(""+[(0+1+2)(0+1+2)(0+1+2)])(0+1+2)(0+1+2)(0+1+2)-(0+1+2)(0+1+2)

(0+1+2)(0+1+2)+

(""+(0+1+2)(0+1+2)(0+1+2)-)(0+1+2)(0+1+2)(0+1+2)-(0+1+2)(0+1+2)

(0+1+2)(0+1+2)

Fig. 9.7. An NFA formally specifying allowed telephone numbers, and the
RE describing it

from the extension by a dash. The area code is optional; if not present,

neither the brackets surrounding the area code nor the dash separating

the area code from the middle part must be employed.
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Fig. 9.8. A minimal DFA for the NFA of Figure 9.7

Example telephone numbers that are legal and illegal according to these
conventions are listed in Figure 9.6 (please verify that these indeed
follow the rules stated in English).

Unfortunately, as is well-known, natural language descriptions are
often prone to misinterpretation. Let us therefore provide a formal spec-
ification of legal and illegal telephone numbers. We do this by writing
a regular expression also shown in Figure 9.7. This RE can be turned
into an NFA as shown in Figure 9.7. This NFA exhibits three classes
of strings in the form of “three lobes” of state clusters. The corre-
spondence between the RE and the NFA must be quite apparent. The
minimal DFA for this NFA is given in Figure 9.8. We can then use a
modern lexical analyzer generator (flex in our case) that generates a
recognizer for this language, as sketched in Figure 9.9. The commands
to generate the lexical analyzer and a few interactions with the gen-
erated analyzer (including an error scenario) are also included. The
concept behind scanner programs was illustrated in Figure 8.2; mod-
ern scanners are, however, far more efficient than the simple-minded
program used in Figure 8.2.

Writing regular expressions is a highly error-prone activity. The next
section illustrates how to formally verify regular expressions through
putative queries (“challenge queries”). The main idea we stress is that
often the complement of the language we are interested in is far easier to
characterize—at least to a large approximation. We can then intersect
the complement of the language with the language of interest to see if
the intersection is empty.

9.3.6 Tool-assisted study of NFAs, DFAs, and REs

In this section, we illustrate the use of the Grail tools to help understand
the material so far. Basically, grail and the support scripts provide us
the following commands that can be invoked from Unix:
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/*----------- Definitions space -----------*/
D [0-2] /* Digit */
TD {D}{D}{D} /* Three Digits */

FD {D}{TD} /* Four Digits */
BAC "["{TD}"]" /* Bracketed Area Code */

DAC {TD}"-" /* Dashed Area Code */
BACOpt {BAC}|"" /* Optional Bracketed Area Code */

DACOpt {DAC}|"" /* Optional Dashed Area Code */
ACOpt {TD}|"" /* Optional Area Code */

Tele {ACOpt}{TD}{FD}|{BACOpt}{TD}"-"{FD}|{DACOpt}{TD}"-"{FD}
/* (""+(0+1+2)(0+1+2)(0+1+2)) (0+1+2)(0+1+2)(0+1+2)(0+1+2)(0+1+2)(0+1+2)(0+1+2)+

(""+[(0+1+2)(0+1+2)(0+1+2)])(0+1+2)(0+1+2)(0+1+2)-(0+1+2)(0+1+2)(0+1+2)(0+1+2)+
(""+(0+1+2)(0+1+2)(0+1+2)-)(0+1+2)(0+1+2)(0+1+2)-(0+1+2)(0+1+2)(0+1+2)(0+1+2) */

/*----------- Rules space -----------*/

%%
{Tele} { printf("A number:%s\n",yytext); }

[\t\n]+ /* eat up whitespace */

. printf("Unrecognized character:%s\n",yytext);
/*----------- User code space -----------*/

%%
int yywrap();

main()
{ yylex();}

int yywrap()
{ return 1;}

/*----------- End -----------*/
> flex telephone.l

> cc lex.yy.c
> a.out
> 0120120120

A number:0120120120
> 000-0000

A number:000-0000
> [000]111-2222
A number:[000]111-2222

> 000-000-0000
A number:000-000-0000

> 0001111
A number:0001111

> [122] 111-1111
Unrecognized character:[
Unrecognized character:1

Unrecognized character:2
Unrecognized character:2

Unrecognized character:]
Unrecognized character:
A number:111-1111

Fig. 9.9. Skeleton of an encoding of the telephone number syntax in flex

fa2grail.perl, a Perl script
grail2ps.perl, a Perl script
dot, a graphics package
ghostview or gv, a postscript viewer
One of several grail-specific commands. We include some of these
commands below (for details, kindly see the grail user manual):
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– retofm for converting regular expressions into grail-specific in-
ternal “fm” format,

– fmdeterm for determinizing fm-formatted NFAs,
– fmmin for minimizing DFAs,
– fmcment for complementing DFAs, and
– fmcross for obtaining the intersection of two DFAs.

A quick tool check

In order to check that all the tools are available in one’s search path,
type

> echo ’(a+b)*’ | retofm | fmdeterm | fmmin \

| perl grail2ps.perl - | gv -

Here > stands for the operating system prompt (grail currently runs
under Linux). This command has the following effect. The regular ex-
pression (ab)*+ would be turned into an NFA, this NFA determinized
and minimized, and finally picked up by the script grail2ps.perl

which, with the help of the dot tool, produces postscript and draws
the DFA for you! Note how we quote the command using ‘ and ’ to
prevent Unix from assigning a special interpretation to *. Also note
the use of the Unix pipe |, and the character - that denotes “standard
input.”

Tool-assisted RE debugging

While regular expressions are often easy to write, they can also prove to
be error-prone to write. We highly recommend that one always applies
tools similar to grail for debugging proposed REs. In this section, we
present a systematic method of debugging REs using grail.

Proposed RE

Someone proposes the following RE to express the language L, where
“L = the set of strings of 0s and 1s with at most one pair of consecutive
1s.”

(0+ + ε) (10+)∗ (11 + 1) (0+1)∗ (0+ + ε)

We assume that the reader did not find anything wrong about this RE,
but nevertheless wanted to make sure. Let’s formally debug by applying
putative queries to study the expected properties of such an RE. We
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know that the language of this machine must not have any 11(0+1)*11

or any 111 in it. One can often identify and specify whole classes of
such “bad strings” much more reliably than one can do with the RE of
interest. Capitalizing these facts, we proceed to debug as follows:

1. First, obtain a minimal DFA corresponding to the given RE:

> echo ’(00*+"")(100*)*(11+1)(00*1)*(00*+"")’ | retofm

| fmdeterm | fmmin >! a1.txt

> cat a1.txt | perl grail2ps.perl - >! a1.ps

1
0

41

3

0

0

1
1 0

20
1

0

2. Second, get “the machine of all bad strings” built. (Please make
sure you understand that this machine contains all the bad strings;
it contains two patterns, namely (i) at least two pairs of consecutive
11s, and (ii) the 111 pattern):

> echo ’(0+1)*11(0+1)*11(0+1)*+(0+1)*111(0+1)*’ | retofm

| fmdeterm | fmmin >! a2.txt

> cat a2.txt | perl grail2ps.perl - >! a2.ps

1
0

31
0 21

4

0

0

1
1 0

1
0

3. Now we take a look at the complement of the machine of bad strings:

> echo ’(0+1)*11(0+1)*11(0+1)*+(0+1)*111(0+1)*’ | retofm

| fmdeterm | fmcment | fmmin >! a2c.txt

> cat a2c.txt | perl grail2ps.perl - >! a2c.ps

2
0

3

1
0

0

1

10
1

0
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We find that the complement of the “bad machine” is not the same
as “our machine.” This is clearly indicative of something being
wrong with our original RE (assuming that the complement ma-
chine was correct). Since the description of the complement machine
was so direct and simple, we have every room to suspect the former.
In the following sequel, we will proceed to formally determine where
exactly the difference lies. This is the gist of the concept known as
formal verification, where we have every room to trust the “prop-
erty” (namely a description that is extremely easy to trust being
correct) and formally compare the system against it.

4. Let’s at least make sure that the original RE doesn’t contain any
bad strings.

> fmcross a1.txt a2.txt | perl grail2ps.perl - >! cross.ps

> gv cross.ps

6 0

19

1

0

2

01

0

5

7

0

0

15

1

10

22

01

0

0

20

0

1 0

4

1

11

21

0

1 0

14

1

16

0

1

12

1

0

17

0

1

3 0

1

8 0

1

13

23

0

1

0

1

18

0

1

10

9

1 01 0 1 0

24

10

Here we see the unminimized DFA. Apparently none of its states
are reachable. We now proceed to minimize and view this machine:

> fmcross a1.txt a2.txt | fmmin | perl grail2ps.perl - >!

crossmin.ps

> gv crossmin.ps

The last command (gv crossmin.ps) displays virtually nothing on
the screen—indicative of an empty automaton. This experiment
indicates that the original RE, indeed, does not include any bad
strings. Therefore, its error must lie in the fact that it is leaving out
some of the good strings. The next quest is to find out which these
are.

5. So what is in the complement of the bad machine that’s not in the
original RE (i.e. what are we leaving out)?

> cat a1.txt | fmcment | fmmin >! a1c.txt

> fmcross a2c.txt a1c.txt | fmmin >! a1ca2ccrossmin.txt

> cat a1ca2ccrossmin.txt | perl grail2ps.perl - >! a1ca2ccrossmin.ps
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Viola! We found the omitted set of strings!

0 0

Clearly we left out the all zeros case! Let’s fix that omission in our
original RE, and view that RE after this fix (notice that the fix
lies in using (11+1+"") now, instead of (11+1), which is what our
original RE contained):

> echo ’(00*+"")(100*)*(11+1+"")(00*1)*(00*+"")’ | retofm

| fmdeterm | fmmin >! a1fixed.txt

> cat a1fixed.txt | perl grail2ps.perl - >! a1fixed.ps

Now, this exactly matches the complement of the bad machine.

2
0

31
0

01 10
1

0

Since these perspectives agree, we consider our original RE as hav-
ing been formally verified against the bad machine RE that was
simpler to fathom.

Inputting DFAs into the Grail pipeline

We have created a script to intuitively encode DFAs in an ASCII syntax
and input into grail. We illustrate this through an example. Let file
expt1 contain the following:

I - 0 -> A

I - 1 -> Dead

A - 0 -> Dead

A - 1 -> Fbfi

Fbfi - 0 -> Ffia

Fbfi - 1 -> Dead

Ffia - 1 -> Fbfi

Ffia - 0 -> A

Dead - 0,1 -> Dead

Now, if we type
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> fa2grail.perl expt1 | fmdeterm | perl grail2ps.perl - | gv -

we can obtain the DFA in Figure 9.5. We will introduce further features
of the grail pipeline in subsequent chapters.

Chapter Summary

This chapter began with a discussion of why nondeterminism is such a
powerful idea in computer science. In addition to succinct descriptions
that are made possible (a dramatic illustration of which is provided
in Figure 9.1), the use of nondeterminism may make certain machine
types strictly more powerful, as in the case of push-down automata.
We also introduce the notion of regular expressions, hand in hand with
our discussion of nondeterminism. We introduce the notion of ε moves
in NFA: basically, ε allows machines to move without reading their
input. The notion of ε − closure was also introduced. This operator
allows NFAs to be converted into language equivalent DFAs. Several
NFAs were illustrated. In particular, Section 9.3.6 discussed how NFAs
for given regular expressions may be obtained, as well as verified, in a
tool-assisted manner.

Exercises
In all problems involving verification using grail, clearly explain your
verification method. If you checked for properties such as the pres-
ence/absence of sub-languages (as was shown in Section 9.3.6), please
elaborate on those details. You are also encouraged to use JFLAP to
perform these verification steps.

9.1. It seems as if when adding the ε transition from F to I, we didn’t
change the language of the NFA in Figure 9.3. Argue that this is true.

9.2. For the NFA in Figure 9.4, step through its IDs starting with input
101101. Also, answer whether this string is accepted or not.

9.3. This exercise may be attempted if you read Chapter 7, “Dealing
with Recursion.” An alternate definition of Eclosure is via recursion:

For q ∈ Q, Eclosure(q) = {q} ∪ {y | y ∈ δ(q, ε)
∨ ∃z ∈ δ(q, ε) ∧ y ∈ Eclosure(z)}

Notice that the use of recursion here is “well defined.” In particular,
we can compute the least fixed-point of the Eclosure function. We start
with Eclosure(q) returning the empty set ∅ for every state. Plug this
definition of Eclosure on the right-hand side and “pump” the recursion
one step, obtaining the Eclosure function for the left-hand side for
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every state. This adds q itself to Eclosure, and also adds those states
that are directly reachable from q via ε edges. Next plug in this version
of Eclosure on the right-hand side and pump up again until no more
states are added to any Eclosure. This process comes to a halt since
we have a finite number of states. Argue that this least fixed-point
based definition of Eclosure is equivalent to the transitive-closure based
definition.

9.4. What is the language of the NFA of Figure 9.4? List all strings of
length six or less in the language of this NFA. For each string, provide
all possible reasons for that string to be in the language.

9.5. Give an NFA accepting the set of strings over Σ = {0, 1} such that
every block of five consecutive symbols contains at least two 0s.

9.6. Attempt to write a regular expression directly for the language over
Σ = {0, 1} in which every block of five consecutive symbols contains
at least two 0s. Spend some time directly encoding the said condition
using regular expressions, and verify your results using grail. If you
fail, you may try again later by drawing a DFA and converting that
DFA to an RE.

9.7. Design an NFA to recognize the language of strings over {0, 1},
beginning with a 0, ending with a 1, and having an occurrence of 0101
somewhere in every string.

9.8. Attempt to directly write an RE for the language over Σ = {0, 1}
in which no string has a 0101 occurring in it. Spend some time directly
encoding the ‘no 0101’ condition using regular expressions, and verify
your results using grail. If you fail, you may try again later by drawing
a DFA and converting that DFA to an RE.

9.9. Draw an NFA to recognize the star of the language of the NFA in
Figure 9.4.

9.10. Design an NFA to recognize the reverse of the language of the
NFA in Figure 9.4.

9.11. Design an NFA to capture the syntax of floating-point numbers
over alphabet {0, 1,+,−, E, .} (for the sake of simplicity). A floating-
point number begins with an optional sign character (one of + or −),
followed by a mantissa, the letter E, an optional sign, and an exponent.
While the exponent is an integer, the mantissa is a decimal fraction of
the form whole.frac where whole or frac (but not both) may be empty.
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Operations on Regular Machinery

In this chapter, we introduce algorithms that operate on ‘regular ma-
chinery,’ meaning various representations of regular sets.

• We present algorithms to convert between NFA, DFA, and regular
expressions, thus establishing the equivalence of their expressive
power.

• We present algorithms for performing the following operations on
machines, and discuss which machine type (NFA or DFA) each op-
eration would be natural to perform on:
− union, intersection, complementation, star;
− homomorphism, inverse homomorphism;
− reversal, and Prefix-closure.
The existence of these algorithms establishes the closure of regular
languages under these operations.

• We present an algorithm to minimize DFAs, arguing that the results
are unique (up to isomorphism). We then briefly discuss a similar
operation on NFAs.

• Finally, we discuss the notion of ultimate periodicity. Ultimate pe-
riodicity not only helps understand regular languages better, but
also sets the stage to prove that certain languages are not regu-
lar. For instance, it helps us argue very directly that sets such as
{ai2 | i ≥ 0} are not regular.

10.1 NFA to DFA Conversion

Given an NFA N = (Q,Σ, δ, q0, F ), a DFA that is language-equivalent
to N is given by

D = (2Q, Σ, δD , Eclosure(q0), {f | f ∈ 2Q ∧ f ∩ F �= ∅}).
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NFA DFA

=== ===

Input 0 1 e Input 0 1

-------------------- ------------------

States | States |

I | {I,A} { I } { } {I} | {I,A} { I }

| |

A | { B } { B } { } {I,A} | {I,A,B} {I,B}

| |

B | { F } { F } { } {I,B} | {I,A,F} {I,F}

| |

F | { } { } { I } {I,A,B} | {I,A,B,F} {I,B,F}

|

{I,A,B,F} | {I,A,B,F} {I,B,F}

|

{I,B,F} | {I,A,F} {I,F}

|

{I,A,F} | {I,A,B} {I,B}

|

{I,F} | {I,A} {I}

|

Fig. 10.1. NFA to DFA conversion illustrated on the NFA of Figure 9.3

This DFA D is designed to mimic the acceptance behavior of the NFA
N as follows:

• N can have its tokens in (potentially) any combination of its states.
Therefore, the states of D are chosen to be 2Q, the powerset of the
states of N .

• When we place a token in the initial state of N , it will spread (ε-
close) to all states reachable through ε moves. To model this, D’s
starting state is chosen to be Eclosure(q0).

• N accepts a string when one of its tokens reaches a state in F . To
model this, the final states of D are chosen to be those subsets of
2Q that include a state of F .

• The last (and crucial) detail is δD:

δD(S, a) = {y | ∃s ∈ S : y ∈ Eclosure(δ(Eclosure(s), a))}.

In other words, δD takes a state S of D, first Ecloses all the states
it contains, runs δ of the NFA from each resulting state, and finally
Ecloses and unions the results.
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Please refer to Exercise 10.1 that addresses the “double Eclosure” we
are performing.

Another way to define δD is through the δ̂ (string transition) func-
tion of the NFA which, in effect, does the same thing as the above
definition:

δD(S, a) = {y | ∃s ∈ S : y ∈ δ̂(s, a)}.
It is straightforward to see that this construction is correct; by con-

struction, whenever N accepts a string w, D also accepts w, and vice
versa. Since NFAs can be converted to DFAs, the language of an NFA
is also regular. Also, D can potentially have 2|Q| states.

Illustration 10.1.1 Let us convert the NFA of Figure 9.3 to its equiv-
alent DFA. The results are shown in Figure 10.1. We succinctly demon-
strate the conversion by listing their state transition tables side by side
as below. We introduce only those states of 2Q that are reachable. A
systematic way to proceed is now illustrated with respect to an exam-
ple. Suppose the DFA is in state {I,A,B}. Suppose the input be 0.
Then we walk through the column 0 in the NFA table, union what we
see against I with what we see against A, and what we see against B.
These sets are, respectively, {I,A}, {B}, and {F}. The union of these
sets is {I,A,B,F}. Now, we perform the Eclosure step, which applies
only to state F which has an ε move to state I. But since I is already in
{I,A,B,F}, the final result is {I,A,B,F}. We proceed to do the same
for every other state of the DFA.

10.2 Operations on Machines

We now take operations one at a time and illustrate then on regular
machinery. Under each operation, we comment on the relative difficulty
of performing the operation directly on a certain machine type. More
importantly, we point out those algorithms that are incorrect to carry
over to the ‘wrong’ machine type. The operations will be illustrated on
DFA D1 and D2, NFA N1 and N2, and REs R1 and R2, as the case may
be. For the sake of notational uniformity, we employ alphabet names
Σ1 and Σ2, where in fact Σ1 = Σ2 = Σ. Specifically, we use

D1 = (Q1, Σ1, δ1, q
1
0 , F1), and D2 = (Q2, Σ2, δ2, q

2
0 , F2), for binary

operations, and D1 alone for unary operations.

Similarly, we will employ NFA

N1 = (Q1, Σ1, δ1, q
1
0, F1) and N2 = (Q2, Σ2, δ2, q

2
0 , F2)
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and regular expressions R1 and R2. The results will be presented in
terms of

D = (Q,Σ, δ, q0, F ) for DFA, N = (Q,Σ, δ, q0, F ) for NFA, and R
for regular expressions.

In some cases, the operation changes the type of the machine, and if
this happens we will explicitly point it out. For example, concatenation
of two DFA can be directly accomplished if we treat the DFA as NFA
and concatenate them; the result will then be an NFA. We show the
results for REs along with NFAs. Through minor notational abuse, we
also will call the resulting machines D1 for the complement of DFA D1,
D1 ∪ D2 for the union of two DFAs, etc.

10.2.1 Union

DFA Union:

The union of two DFAs is accomplished through the product construc-
tion algorithm. The same algorithm also works for intersection, except
for a minor detail (Section 10.2.2).

Given DFAs D1 and D2, a DFA D that models the marching of
D1 and D2 in lock-step, is constructed. Basically, the initial states of
D1 and D2 are paired, and made the initial state of D. Next, for each
symbol a ∈ Σ, the resulting next states of the individual DFAs are
paired, and the pair is regarded as the next state of D. Any paired
state where one of the DFAs is in one of its final states is considered a
final state of D. In particular,

D = D1 ∪ D2 = (Q1 × Q2, Σ, δ, 〈q1
0 , q

2
0〉, (Q1 × F2 ∪ F1 × Q2)),

where
δ(〈x, y〉, a) = 〈δ1(x, a), δ2(y, a)〉.

As an example, the result of applying the union algorithm on the DFA
shown in Figures 10.2(a) and 10.2(b) is given in Figure 10.2(c). Notice
that the result is a DFA, and that its state names are derived from the
names of the states of the individual DFA by gluing the state names
with an underscore ‘_’ - a convenient way to convert pairs of states to
state names.

NFA and RE Union:

Now we illustrate how to perform union on two NFAs. We introduce a
new start state I0 not present in Q1 or Q2, from which ε transitions are
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(a)

I F
1

BH1
0

A1

0

1 0
0,1

(b)

IF

B1

BH20
1

0
0,1

(c)

I_IF

F_B

1

BH1_BH2

0

A_IF
1

1

0,1

(d)

I_IF

F_B
1

BH1_BH2

0

A_IF
1

1

0,1

(e)

I

F

1

BH10

A

1

0

1
0

0,1

Fig. 10.2. DFA(a) ∪ DFA(b) = DFA(c); DFA(a) ∩ DFA(b) = DFA(d); DFA(a)

= DFA(e)



164 10 Operations on Regular Machinery

(a)

A1 A2
1 A3

1

1

(b)

B1 B2
1

B3
1

1

(c)

I

A1 A2
1 A3

1

1e

B1

e

B2
1

B3
1

1

(d)

A1

A2
1

B1e

A3

1

1
e

B2
1

B3
1

1

Fig. 10.3. NFA(c) = NFA(a) ∪ NFA(b); NFA(d) = NFA(a) ◦ NFA(b)

introduced into both the start states q1
0 and q2

0. The result of applying
this algorithm on Figures 10.3(a) and 10.3(b) is given in Figure 10.3(c).
This NFA is equivalent to the DFA given in Figure 10.2(c).

In symbols:

N = N1 ∪ N2 = (Q1 ∪ Q2 ∪ {I0}, Σ, δ, I0, F1 ∪ F2), where
δ = δ1 ∪ δ2 ∪ {〈I0, ε, {q1

0 , q2
0}〉}.

As can be seen, with NFA and RE, union is a linear-time operation,
while with a DFA, it is an O(N 2) operation.

For regular expressions, union is achieved using the RE builder ‘+.’
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10.2.2 Intersection

DFA Intersection:

With DFA, intersection works exactly like union, except that F =
F1 × F2, as shown in Figure 10.2(d), which is the result of intersecting
the DFAs of Figures 10.2(a) and 10.2(b). Notice that this machine has
no final states, because the component DFAs are never simultaneously
in one of their respective final states.

NFA Intersection:

Performing intersection directly on NFA or RE is not straightforward
(unless an extended RE notation containing intersection is employed—
but then, conversion to the basic RE syntax is not straightforward).
Therefore, before performing intersection, it is customary to convert
the NFA or RE (as the case may be) to a DFA. This can, of course,
incur an exponential cost, as the number of states after such conversion
may be exponential (see Figure 9.1 of Chapter 9, for example).

10.2.3 Complementation

DFA Complementation:

This operation is most easily performed on DFA, resulting in

D = D1 = (Q1, Σ1, δ1, q
1
0 , Q1 \ F1),

as illustrated in Figure 10.2(e).

NFA and RE Complementation:

With NFA and RE, the operation is most commonly done after conver-
sion to a DFA. In fact, with NFA, doing complementation directly by
exchanging final and nonfinal states is incorrect (see Exercise 10.10).

10.2.4 Concatenation

DFA Concatenation:

Concatenation on DFAs involves treating them as NFAs and applying
the NFA concatenation algorithm. So, in effect, a direct DFA concate-
nation algorithm is not usually given.
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NFA and RE Concatenation:

With NFAs, concatenation involves introducing an ε transition from all
the final states of the first NFA to the start state of the second NFA,
and regards the final states of the second NFA as the final states of the
resulting NFA; see Figure 10.3(d). In symbols:

N = N1 ◦ N2 = (Q1 ∪ Q2, Σ, δ, q1
0 , F2), where

δ = δ1 ∪ δ2 ∪ {〈x, ε, {q2
0}〉 | x ∈ F1}.

With RE, R = R1 ◦R2 or simply R = R1R2 (recall that we can omit ◦
and simply use juxtaposition).

10.2.5 Star

IF I

A1
e

B1e

e
A2

1 A3
1

e

1
e

B2
1

e

B31

1

Fig. 10.4. The result of Starring Figure 10.3(c)

DFA Kleene star:

With DFAs, Kleene star (()∗) is best performed by treating the DFA as
an NFA. So, in effect, a direct DFA star algorithm is not usually given.

NFA and RE Star:

With NFA, we introduce a new start state I0, regard this state also as
a final state (thus introducing ε into the language of N ∗), and intro-
duce a transition on ε from I0 to q0. Finally, to introduce iteration, we
introduce a transition from every state in F to q0. In symbols:

N = N∗
1 = (Q1 ∪ {I0}, Σ1, δ, I0, F1 ∪ {I0}), where

δ = δ1 ∪ {〈I0, ε, {q1
0}〉} ∪ {〈x, ε, {q1

0}〉 | x ∈ F1}.
Figure 10.4 illustrates this construction.

With REs, naturally we have R = R∗
1.
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10.2.6 Reversal

NewI

I

A1

e

A3

e

IF

e

B2

e

e

A2

1

1

1

e

e

e

e

B1
e

1

B3

1

1

Fig. 10.5. The result of reversing the NFA of Figure 10.4

DFA Reversal:

With DFA, reversal is best performed by treating the DFA as an NFA.

NFA and RE Reversal:

With REs, reversal is best performed after converting to an NFA. With
NFA, to do reversal, we introduce a new state I0, make that the initial
state, and introduce a transition on ε from I0 to the set of states F1.
We also reverse every edge in the NFA diagram, and regard {q1

0} as the
set of final states. In symbols:

N = rev(N1) = (Q1 ∪ {I0}, Σ1, δ, I0, {q1
0}), where

δ = {〈I0, ε, F1〉} ∪
{〈r, a, {q | q ∈ Q1 ∧ r ∈ δ(q, a)}〉 | r ∈ Q1 ∧ a ∈ Σ1∪{ε}}.
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Figure 10.5 illustrates this construction. Notice that in this example,
we have a jump from state NewI to state IF because IF was both a final
state and start state in the original machine.

The reason why δ looks so complicated is because we try to reverse
the transitions that, for an NFA, are specified via its delta function as
moves from a state to a set of next states. We must also preserve the
‘state to set of states’ nature of the mapping for the δ of the reversed
machine. In the δ for the reversed machine, we introduce a move from
every state r ∈ Q1 for every a ∈ Σ1 ∪ {ε} to all those states q, such
that those q states had at least one ‘forward’ transition through a to r.

10.2.7 Homomorphism

In Chapter 7, we introduced the notion of a homomorphism as a modu-
lar mapping with signature h : Σ∗ → Γ ∗. In general, a homomorphism
can be a function that, in place of each symbol in Σ1, substitutes a
regular language over Γ1. Suppose for x ∈ Σ1, we must substitute lan-
guage Lx. In the context of an NFA, such a homomorphism can be
easily implemented as follows:

• Build a separate NFA Nx corresponding to each instance of x in
the given NFA N1.

• Wherever a move on x appears in N1 from state s1 to state s2,
replace it with a jump from s1 to the starting state of Nx via ε, and
a jump from every final state of Nx via ε to s2. Make every state of
Nx nonfinal.

10.2.8 Inverse Homomorphism

We illustrate this construction through an example. Consider h to be

h(ε) = ε
h(a) = 0
h(b) = 1
h(c) = h(d) = 2.

Then, h−1(012) = {abc, abd} because 2 could have come either from
c or from d. Therefore, given an NFA over alphabet {0, 1, 2}, we can
label each move on a symbol (such as 2) with a move that is labeled
with all the symbols that map to 2 (in our case, c and d).
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10.2.9 Prefix-closure

This operation is straightforward to perform either on an NFA or on
a DFA. We simply turn every state along the way from the start state
towards one of the final states into a final state.

10.3 More Conversions

In this section, we define additional interconversions between REs,
NFAs, and DFAs, thus establishing the equivalence of their expressive
power.

10.3.1 RE to NFA

We first specify how to convert the basic regular expressions ∅, ε, and
a ∈ Σ into an NFA. For all other REs, we can recursively convert
their constituent basic REs into NFA and then apply the corresponding
NFA-building operator. The conversion of basic REs goes as follows:

∅ is an RE denoting ∅ The corresponding NFA is

N = ({q∅}, Σ, ∅, q∅, ∅),
where q∅ is the only state of the NFA. The transition function is ∅,
i.e., has no moves.
ε is an RE denoting {ε}. The corresponding NFA is

N = ({qε}, Σ, ∅, qε, {qε}),
where qε is the only state of the NFA that also happens to be a final
state.
a ∈ Σ is an RE denoting {a}. The corresponding NFA is

N = ({qa
0 , qa

F }, Σ, δa, qa
0 , {qa

F }),
where δ is {〈qa

0 , a, {qa
F }〉}.

The NFA for r1 r2, r1 + r2, and r∗1 are obtained by first obtaining
the NFA for r1 and r2, and applying, respectively, the algorithms
for NFA concatenation, union, and star.

Illustration 10.3.1 For the RE of Figure 10.14, an NFA can be ob-
tained in a very straightforward manner. The result is very easy to
imagine (although left out due to space considerations). It will consist
of an NFA for the embedding head sequence, branches labeled by ε to
the various cases of errors, finally converging on an NFA fragment for
the embedding tail sequence. The cases of errors will also have NFA
fragments that directly track the RE syntax. �
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10.3.2 NFA to RE

Given NFA N = (Q,Σ, δ, q0, F ), we can convert it to a regular ex-
pression by successively eliminating its states. This is often called the
generalized NFA or GNFA approach, where we build GNFA whose tran-
sitions are labeled using regular expressions, instead of members of Σε.

Preprocess N by adding one new initial state B and one new final
state E. In the following steps, we will eliminate every state of N ,
leaving only B and E behind. The transition connecting B and
E will be labeled with the desired RE upon termination of our
algorithm.
Make all states F nonfinal, and introduce a transition from every
state in F to E via ε.
Introduce an ε transition from B to q0.
Repeatedly eliminate a state from Q. In all the steps below, when-
ever any pair of states p and q has two transitions going from p to
q, labeled with regular expressions R1 and R2, replace them by a
single transition labeled R1 + R2.
Suppose
– state p has a transition into s labeled with RE Rps,
– state s has a transition to itself labeled Rss, and
– state s has a transition out of it to state q labeled Rsq.
Then, we can eliminate the ps and sq transitions, and introduce a
direct transition from p to q labeled Rps(Rss)

∗Rsq. We keep repeat-
ing these steps until state s is disconnected from the rest of the
graph, at which point, it can be eliminated.

We now illustrate the NFA to RE conversion algorithm on the ex-
ample NFA given in Figure 10.6. The result of the preprocessing step
is in Figure 10.7. This machine is represented as a GNFA.

Notice that state B0 reaches state A1 via (1+e). Therefore, we re-
place the two edges going from B0 to A1 by a single edge labeled with
(1+e). No other immediate simplifications are possible.

Now, let us eliminate state A1. Introduce the following paths:

FA to FB labeled by (11*) (this is to be understood as (1(1*)) or
as 1(1*), as * binds tighter than concatenation).
FB to FA labeled by (1*).
B0 to FA labeled by (1+e)(1*).
B0 to FB labeled by (1+e)(1*).

The result appears in Figure 10.8.
Now, let us eliminate state B0. Introduce the following paths:
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IF

e

FA

0

A11

B0
e

e
1

FB

e

A2

0 1

e

e

0

e

1

e

e

Fig. 10.6. An example NFA to be converted to a regular expression

B IF
e E

e

e FA
0 e

A1
1

B0

e

e

1

FB
e

A2
0

1

e

e

e

0

e
(1+e)

e

Fig. 10.7. Result of the preprocessing step
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B IF
e

E
e

e

FA

0

e

FB(11*)

B0
e

A2

0
1

e
e

(1*)

0

e

(1+e)(1*)

(1+e)(1*)
e

Fig. 10.8. Result of eliminating state A1

B IF
e

E

e

e

FA
0

e(1+e)(1*)

FB

(1+e)(1*)+(11*) e

e+(01*0) (1*)+(1+e)(1*)

(1+e)(1*)

Fig. 10.9. Result of Eliminating B0 and A2

FB to IF labeled by e.
FB to FA labeled by ((1*)+(1+e)(1*)).
FA to FB labeled by ((1+e)(1*)+(11*)).
Self-loop FA to FA labeled by (1+e)(1*).
Self-loop FB to FB labeled by (1+e)(1*).

We don’t depict this result yet. Let us also eliminate state A2 and then
depict the combined results of eliminating B0 and A2. In eliminating
A2, we merge the resulting FB to IF path with the existing one, resulting
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in the single FB to IF path labeled by the following label (with no other
changes in the GNFA):

e+(01*0)

The combined result of eliminating B0 and A2 appear in Figure 10.9.

B IFe
E

(e+0((1+e)1*)*)
e

FB

0((1+e)1*)*((1+e)1*+11*)
(e+(1*+(1+e)1*)((1+e)1*)*)

e+(01*0)

((1+e)1*+(1*+(1+e)1*)((1+e)1*)*((1+e)1*+11*))

Fig. 10.10. Result of Eliminating FA

Now, let us choose to eliminate state FA. Introduce the following
paths:

IF to E labeled by (e+0((1+e)1*)*).
Self-loop FB to FB labeled by ((1+e)1*+(1*+(1+e)1*)((1+e)1*)*

((1+e)1*+11*)).
IF to FB labeled by 0((1+e)1*)*((1+e)1*+11*).
FB to E labeled by (e+(1*+(1+e)1*)((1+e)1*)*).

The results appear in Figure 10.10.
We leave the final result (obtainable by eliminating FB and IF) as
Exercise 10.17.

From this example, it should be evident that

• NFAs can often express regular languages far more intuitively than
corresponding regular expressions can. The intuitiveness is due to
the use of intermediate states that help split the behavior into var-
ious categories.

• Sometimes, minimal DFAs (Section 10.3.3) are not very intuitive
(e.g., Figure 10.13), while regular expressions (see Section 10.4.2)
and their corresponding NFAs (see Section 10.3.1) are quite intu-
itive.
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10.3.3 Minimizing DFA

The most important result with regard to DFA minimization is the
Myhill-Nerode Theorem.

Theorem 10.1. The result of minimizing DFAs is unique, up to iso-
morphism.1

The theorem says that given two DFAs over the same alphabet that are
language-equivalent, they will result in identical DFAs when minimized,
up to the renaming of states. One very dramatic illustration of the
Myhill-Nerode Theorem will be in Chapter 13, where it will be shown
that Binary Decision Diagrams (BDDs)—an efficient data structure for
Boolean functions—are minimized DFAs for certain finite languages of
binary strings. These finite strings, in fact, encode the truth assign-
ment for Boolean formulas according to certain conventions that will
be explained in Chapter 13. Because of this uniqueness, equality test-
ing between two Boolean functions can be reduced to pointer-equality
in a representation of BDDs using hash tables. Another illustration is
provided in Section 10.4. We now discuss the minimization algorithm
itself.

The basic idea behind DFA state minimization is to consider all
pairs of states systematically by constructing a table. For each pair of
states, we consider all strings of length zero and up, and see if they can
distinguish any pair of states. Initially, we distinguish all pairs of states
〈p, q〉 such that p is a final state and q is nonfinal. We enter an x in the
table to record that these states are ε-distinguishable. In essence, at the
beginning of the algorithm we are treating all final states as belonging
to one equivalence class, and all non-final states as belonging to another.

Thereafter, in the ith iteration of table filling, we see if any of the
state pairs 〈p, q〉 that are not yet distinguished have a move on some
a ∈ Σ such that they go to states 〈p′

, q
′〉 that are distinguishable (at

the end of the i− 1st iteration); if so, distinguish 〈p, q〉. The algorithm
stops when two iterations k and k + 1 result in the same table.
Illustration: Consider the DFA in Figure 10.11 (from [71]) where the
final states are 2, 3, 6, and Σ = {a, b}.

1. The initial blank table that permits all pairs of states to be com-
pared is in Figure 10.11.

1 The concept of isomorphism comes from graph theory. Two directed graphs G1

and G2 are isomorphic if there is a bijection b between their nodes that preserves
the graph connectivity structure. In other words, if n1 and n2 are nodes of G1 and
G2, respectively, and if the bijection relates n1 and n2, then the list of successors
of n1 in G1 are also bijective with the list of successors of n2 in G2.
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3

4b

5

a1 b

2a

6
a

b

a
b

a
b

b
a

2 .

3 . .

4 . . .

5 . . . .

6 . . . . .

1 2 3 4 5

2 x 2 x 2 x 2 x

3 x . 3 x . 3 x . 3 x .

4 . x x 4 . x x 4 x x x 4 x x x

5 . x x . 5 . x x . 5 x x x . 5 x x x .

6 x . . x x 6 x x x x x 6 x x x x x 6 x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0-dist 1-dist 2-dist 3-dist? No change!

So, done.

4
a

b

1 2a
b

3a
b

a
b

Fig. 10.11. (i) Example for DFA minimization, (ii) initial table for DFA
minimization, (iii) steps in DFA minimization, and (iv) the final minimized
DFA
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2. All 0-length string distinguishable states are all pairs of states that
consist of exactly one accept state (see below). All subsequent steps
identifying i-distinguishable states for all i are also in Figure 10.11.

3. Let us understand how one x was added. In Figure 10.11, we put an
x (to distinguish between) states 2 and 6. Why is this so? This is
because 2 has a move upon input a to state 4, while state 6 moves
upon a to state 6 itself. From the 0-dist table, we know that states
4 and 6 are distinguishable: one being a final and the other being
a nonfinal state.

4. At the 3-dist step, there was no change from the previous ta-
ble (in other words, a fixed-point has been reached, as described in
Chapter 6). At this point, state pairs 3,2 and 5,4 still have a ‘.’
connecting them (they could not be distinguished). Therefore, we
merge these states, resulting in the minimized DFA of Figure 10.11.

10.4 Error-correcting DFAs

Consider another experiment that shows the value of tool-assisted de-
bugging of machines. In this experiment, a DFA has to be designed to
recognize all strings that are a Hamming distance of 2 away from the
set of strings denoted by the regular expression (0101)+. For instance,
010101 and 010110 are a Hamming distance of 2 apart, as are 010111

and 000110.

Definition 10.2. (Hamming Distance) Given two strings V1 and V2, of
equal length and over {0, 1}∗, they are a Hamming distance of d apart
if they differ in exactly d positions.

The DFA we are to design can be regarded as an error-correcting DFA
which corrects two-bit errors. We shall derive this DFA using two dis-
tinct approaches, each time by following two different lines of logic:

1. The first approach will be to develop a cyclic DFA that performs
transitions between states I, A, B, C, F, and back to A upon seeing
01010. However, upon seeing any erroneous symbol—for instance,
seeing a 1 in state I, it goes to a cycle at a lower “stratum” labeled
with states A1, B1, etc. This is presented in Figure 10.12.

2. Another approach will be to write a regular expression that cap-
tures all possible zero-bit errors, all possible one-bit errors, and all
possible two-bit errors.

We shall find the minimal DFAs corresponding to these constructions. If
correctly performed, we must obtain isomorphic minimal DFAs, again
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serving to verify our construction methods. We discuss these construc-
tions in the following sections.

10.4.1 DFA constructed using error strata

I - 0 -> A

I - 1 -> A1

A - 1 -> B A1 - 1 -> B1 A2 - 0 -> BH

A - 0 -> B1 A1 - 0 -> B2 A2 - 1 -> B2

B - 0 -> C B1 - 0 -> C1 B2 - 0 -> C2

B - 1 -> C1 B1 - 1 -> C2 B2 - 1 -> BH

C - 1 -> F C1 - 1 -> F1 C2 - 1 -> F2

C - 0 -> F1 C1 - 0 -> F2 C2 - 0 -> BH

F - 0 -> A F1 - 0 -> A1 F2 - 0 -> A2

F - 1 -> A1 F1 - 1 -> A2 F2 - 1 -> BH BH - 0,1 -> BH

Fig. 10.12. A DFA that has two error strata implementing all strings that
are a Hamming distance of 2 away from the language (0101)+

The DFA corresponding to the use of error-correcting strata is cap-
tured in Figure 10.12. By running the command perl fa2grail.perl

h2 > h2fa,2 we convert this ASCII input into a grail representation.
Following that, we apply the command

cat h2fa | fmdeterm | fmmin | perl grail2ps.perl - > h2fa.ps

The result is shown in Figure 10.13 on the left-hand side.

10.4.2 DFA constructed through regular expressions

A regular expression that captures all possible zero, one, and two-bit
errors is in Figure 10.14. We have added spaces and newlines, as well as
comments beginning with “--” to enhance the readability of the above
RE. We then perform the command sequence:

cat h2re | retofm | fmdeterm | fmmin | perl grail2ps.perl - > h2fa1.ps

The result is shown in Figure 10.13 on the right-hand side. Contrasting
it with the other DFA in this figure, we can see that barring node
numberings as well as the layout (under the control of the ‘dot’ drawing
package), these DFAs are isomorphic.

2 We present this file in an intuitively layered manner; before running the script,
one must present all the entries to occupy one column.
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((0101)*) -- Embedding head sequence

( 0101 -- 0-bit error option

+ 1101+0001+0111+0100 -- 1-bit error option

+

(1101+0001+0111+0100) -- One possibility for a

((0101)*) -- 2-bit error as two one-

(1101+0001+0111+0100) -- bit errors with a

-- correct mid-sequence

+

1001+1111+1100+0011+0000+0110 -- Another possibility for

-- a 2-bit error as two

) -- erroneous bits within

-- a block of four bits

((0101)*) -- Embedding tail sequence

Fig. 10.14. A regular expression for all 0-, 1-, and 2-bit errors

10.5 Ultimate Periodicity and DFAs

Ultimate periodicity is a property that captures a central property
of regular sets (recall the definition of ultimate periodicity given in
Definition 5.1, page 76).

Theorem 10.3. If L is a regular language over an alphabet Σ, then
the set Len = {length(w) | w ∈ L} is ultimately periodic.

Note: The converse is not true. For example, the language
{0n1n | n ≥ 0} has strings whose lengths are ultimately periodic, and
yet this language is not regular.

A good way to see that Theorem 10.3 is true is as follows. Given any
DFA D over some alphabet Σ, consider the NFA N obtained from D
by first replacing every transition labeled by a symbol in Σ \ {a} by a.
In other words, we are applying a homomorphism that replaces every
symbol of the DFA by a. Hence, the resulting machine is bound to be
an NFA, and the lengths of strings in its language will be the same as
those of the strings in the language of the original DFA (in other words,
what we have described is a length-preserving homomorphism). Now,
if we convert this NFA to a DFA, we will get a machine that starts out
in a start state and proceeds for some number (≥ 0) of steps before it
“coils” into itself. In other words, it attains a lasso shape. It cannot
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have any other shape than the ‘coil’ (why?). This coiled DFA shows
that the length of strings in the language of any DFA is ultimately
periodic with the period defined by the size of the coil.

We now take an extended example to illustrate these ideas. Consider
the DFA built over Σ = {a, b, c, d, f} using the following command
pipeline:

echo ’(ad)*+((abc)((acf)*+(da)*)d)’ | retofm | fmdeterm

| fmmin | grail2ps.perl - | gv -

8 5a

3

d

7b

2a
d

9c

d

6

a 1

c

4a 0d

f
The DFA generated by converting every symbol to a and deter-

minizing the result is as follows.

echo ’(aa)*+((aaa)((aaa)*+(aa)*)a)’ | retofm | fmdeterm

| fmmin | grail2ps.perl - | gv -

0 1a 7a

6

a

5

a

3a 4a

2a

a

The length of strings in the language of this DFA is ultimately
periodic, with the values of the constants n = 2 and p = 6 as per
the definition of UP appearing in Section 5.2.1. Based on all these
observations, we can state another theorem:

Theorem 10.4. A language over a singleton alphabet is regular if and
only if the length of strings in this language is ultimately periodic.

Chapter Summary

This chapter covered quite a bit of important ground in terms of con-
versions between machine types. It also illustrated two very fascinating
topics assisted by the grail tools. The first is that minimal DFAs for
the same language are isomorphic. The second is that DFAs with infi-
nite languages over a singleton alphabet always have a “lasso” shape to
them, and accepting states are sprinkled along the lasso. This has the
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effect of making the string lengths of strings in this language ultimately
periodic.

Exercises

10.1. Suppose an alternate definition of δD is offered:

δD(S, a) = {y | ∃s ∈ S : y ∈ Eclosure(δ(s, a))}.

Does it change the behavior of the resulting DFA? Justify your answer.
Why do we perform Eclosure before and after δ in case of the NFA,
on page 161?

10.2. Convert the NFA in Exercise 9.4 into an equivalent DFA, showing
all the steps.

10.3. Convert the NFA of Figure 9.2 to a DFA for k = 2 and k = 5.
Repeat for the modified NFA in Figure 9.3.

10.4. The token game of an NFA can be succinctly stated as follows:
an NFA accepts a string x if there exists a path labeled by z from the
start state to some final state, and x is z projected onto the alphabet
Σ. Consider a variant of an NFA called all-paths NFA. In an all-paths
NFA, a string x is accepted if and only if all such z paths that are
in the machine actually lead to some final state. Formally define the
all-paths NFA as a five-tuple mathematical structure, and prove that
its language is regular, by converting it to an equivalent DFA.

10.5. What are the languages of the machines in Figure 10.2 and Fig-
ure 10.3?

10.6. Argue that Ladd is regular, where

Ladd = {a0b0c0a1b1c1 . . . ak−1bk−1ck−1 | k > 0 ∧ AddOK}

where AddOK = (ak−1 . . . a0) + (bk−1 . . . b0) = (ck−1 . . . c0). In other
words, the addition of the unsigned binary words (ak−1 . . . a0) and
(bk−1 . . . b0) yields (ck−1 . . . c0), where ak−1 is the MSB and a0 the LSB
(and likewise for b and c).

10.7.
Let Σ = {0, 1} and let D be a DFA over Σ. Obtain an NFA N for the
language of strings that are the first third of all the strings accepted
by D (the “first-third” language). Formally,

Lx−− = {x | x ∈ Σ∗ ∧ ∃y, z ∈ Σ∗ : |x| = |y| = |z| ∧ xyz ∈ L(D)}
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10.8. Repeat Exercise 10.7 for the middle-third language.

10.9. Call the DFA in Figure 8.5 D. Obtain the complement DFA D by
the complementation algorithm. Then obtain a DFA corresponding to
the union of D and D. Repeat for the intersection of D and D. Check
that you are indeed obtaining the right answers.

10.10. Give an example of an NFA on which performing complemen-
tation, as with DFAs, (exchanging final and nonfinal states) is correct,
and another example where it is incorrect. This shows that exchanging
final and non-final states does not complement NFAs!

10.11. Section 10.2.5 describes a construction for star. Describe an
alternate construction for star that results in an NFA with exactly one
final state.

10.12. Notice that the NFA of Illustration 10.3.1 had a very direct cor-
respondence with the corresponding RE. In fact, if we apply the GNFA
method to convert it to an RE, we will obtain an RE that is very close
to that in Figure 10.14. However, the NFA of Section 10.3.2 when con-
verted to an RE resulted in an extremely complex RE. Now, if we were
to convert this RE back to an NFA using the procedure described in
Illustration 10.3.1, we would obtain something quite different from the
NFA of Figure 10.6. Intuitively describe the kinds of NFAs and REs for
which close correspondence will be maintained during conversions, and
those NFAs and REs where such correspondence will not be obtained.

10.13. Instantiate the NFA in Figure 9.3 for n = 2 and n = 3, calling
these machines N2 and N3, respectively. Perform union and concate-
nation. With respect to both these results, list eight strings in lexico-
graphic order.

10.14. For the N3 machine in Exercise 10.13, perform the star oper-
ation. How does the result differ from the machine in Figure 9.3 for
k = 3?

10.15. Reverse the NFAs in Figure 9.2 and Figure 9.3 for n = 3. Con-
vert each resulting NFA to a DFA and compare their languages.

10.16. Modify the regular expression in Figure 10.14 to account for the
constraint that no two consecutive bits may be in error. Perform this
modification in two ways:

1. By directly editing the RE of Figure 10.14
2. By constraining the RE of Figure 10.14 suitably
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Compare the results using grail by obtaining isomorphic minimal
DFAs.

10.17. Complete the derivation in Page 173.

10.18. Express the NFA to RE conversion algorithm through recursive
pseudocode. Assume that you are given a preprocessed NFA. Check
whether this NFA is “done” by seeing that it has a direct path from
B to E, and if so, output the RE that labels this path. Else, express
the choice of a state s at random using ∃ or choose. Then, eliminate s,
updating the REs of all the states that are directly reachable from s or
directly reach s. Recurse on the resulting automaton.

10.19. Convert the DFA of Figure 9.5 into a regular expression us-
ing the conversion procedure that you just now pseudocoded in Exer-
cise 10.18. Now convert the RE you obtain to an NFA. Determinize
this NFA, and compare the resulting DFA to the one you started from.

10.20. Another way to convert NFAs to RE uses Arden’s Lemma [68],
which is:

A language equation of the form X = AX ∪ B, where ε /∈ A
has a unique solution X = A∗B.

1. Write a system of recursive equations corresponding to the example
DFA in Figure 9.5. Some of the equations are the following, where
L1, L2, etc, denote the languages of states 1, 2, etc. (meaning, if
the start state were to be set to these states, these would be the
languages of the DFA):

L1 = 0 L2

L2 = 1 L4

L2 = 1 L4

L4 = 0 L5 ∪ {ε}
2. Convert this mutually recursive system of equations into a self-

recursive equation in terms of one variable, and solve it using Ar-
den’s lemma. You may refer to a method such as Gaussean elimi-
nation which is used to solve simultaneous equations over Reals.

3. Solve the self-recursion to a closed form solution using Arden’s
lemma, and back substitute the result to obtain a closed form so-
lution to all languages.

10.21. Use the least fixed-point approach introduced in Chapter 6 to
derive Arden’s Lemma.
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10.22. Apply the DFA minimization algorithm to the DFA of Fig-
ure 9.5.

10.23. Perform the grail command sequence

> echo ’(00*+"")(100*)*(11+1+"")(00*1)*(00*+"")’ | retofm

| fmdeterm >! a1fixed-unmin.txt

Then, hand-minimize the result (meaning, construct the DFA from the
regular expression by inspection and then hand-minimize it), compar-
ing it with the minimized version a1fixed.txt discussed on page 156.

10.24. Express the DFA minimization algorithm neatly using pseu-
docode. Analyze its time complexity.

10.25. Describe a language over a singleton alphabet such that the
length of strings in this language is not ultimately periodic.

10.26. Apply the homomorphism 1 → 0, 0 → 0, and ε → ε to the DFA
of Figure 9.5. Convert the resulting NFA into a DFA. Show that the
length of strings in this DFA is ultimately periodic by finding n and p
parameters.
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The Automaton/Logic Connection, Symbolic
Techniques

Most believe that computer science is a very young subject. In a sense,
that is true - there was the theory of relativity, vacuum tubes, radio,
and Tupperware well before there were computers. However, from an-
other perspective, computer science is at least 150 years old! Charles
Babbage1 started building his Analytic Engine in 1834 which remained
unfinished till his death in 1871. His less programmable Difference En-
gine No. 2 was designed between 1847 and 1849, and built to his spec-
ifications in 1991 by a team at London’s Science Museum. As for the
‘theory’ or ‘science’ behind computer science, George Boole published
his book on Boolean Algebra2 in 1853.

Throughout the entire 150 years (or so) history of computer science,
one can see an attempt on part of researchers to understand reasoning
as well as computation in a unified setting. This direction of thinking
is best captured by Hilbert in one of his famous speeches made in the
early 1900s in which he challenged the mathematical community with
23 open problems. Many of these problems are still open, and some
were solved only decades after Hilbert’s speech. One of the conjectures
of Hilbert was that the entire body of mathematics could perhaps be
“formalized.” What this meant is basically that mathematicians had
no more creative work to carry out; if they wanted to discover a new
result in mathematics, all they had to do was to program a computer to
systematically crank out all possible proofs, and check to see whether
the theorem whose proof they are interested in appears in one of these
proofs!

1 Apparently, Babbage is also credited with the invention of the ‘cow-catcher’ that
you see in front of locomotive engines!

2 Laws of thought. (You might add: to prevent loss of thought through loose
thought).
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In 1931, Kurt Gödel dropped his ‘bomb-shell.3 He formally stated
and proved the result, “Such a device as Hilbert proposed is impossi-
ble!” By this time, Turing, Church, and others demonstrated the true
limits of computing through concrete computational devices such as
Turing machines and the Lambda calculus. The rest “is history!”

11.1 The Automaton/Logic Connection

Scientists now have a firm understanding of how computation and logic
are inexorably linked together. The work in the mid 1960s, notably that
of J.R. Büchi, furthered these connections by relating branches of math-
ematics known as Presburger arithmetic and branches of logic known
as WS1S4 with deterministic finite automata. Work in the late 1970s,
notably by Pnueli, resulted in the adoption of temporal logic as a for-
mal logic to reason about concurrency. Temporal logic was popularized
by Manna and Pnueli through several textbooks and papers. Work in
the 1980s, notably by Emerson, Clarke, Kurshan, Sistla, Sifakis, Vardi,
and Wolper established deep connections between temporal logic and
automata on infinite words (in particular Büchi automata). Work in
the late 1980s, notably by Bryant, brought back yet another thread of
connection between logic and automata by the proposal of using binary
decision diagrams, essentially minimized deterministic finite automata
for the finite language of satisfying instances of a Boolean formula, as
a data structure for Boolean functions. The symbolic model checking
algorithm proposed by McMillan in the late 1980s hastened the adop-
tion of BDDs in verification, thus providing means to tackle the cor-
rectness problem in computer science. Also, spanning several decades,
several scientists, including McCarthy, Wos, Constable, Boyer, Moore,
Gordon, and Rushby, led efforts on the development of mechanical
theorem-proving tools that provide another means to tackle the cor-
rectness problem in computer science.

11.1.1 DFA can ‘scan’ and also ‘do logic’

In terms of practical applications, the most touted application do-
main for the theory of finite automata is in string processing – pattern
matching, recognizing tokens in input streams, scanner construction,
etc. However, the theory of finite automata is much more fundamental

3 Some mathematicians view the result as their salvation.
4 WS1S stands for the weak monadic second-order logic of one successor.
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to computing. Most in-depth studies about computing in areas such as
concurrency theory, trace theory, process algebras, Petri nets, and tem-
poral logics rest on the student having a solid foundation on classical
automata, such as we have studied so far. This chapter introduces some
of the less touted, but nevertheless equally important, ramifications of
the theory of finite automata in computing. It shows how the theory
of DFA helps arrive at an important method for representing Boolean
functions known as binary decision diagrams. The efficient represen-
tation as well as manipulation of Boolean functions is central to au-
tomated reasoning in several areas of computing, including computer-
aided design and formal verification. In Chapter 21, we demonstrate
how exploiting the “full power” of DFAs, one can represent logics with
more power than propositional logic. In Chapter 22, we demonstrate
how automata on infinite words can help reason about finite as well as
infinite computations generated by finite-state devices. In this context,
we briefly sketch the connections between automata on infinite words
as well as temporal logics. We now turn to binary decision diagrams,
the subject of this chapter.
Note: We use ∨ and + interchangeably, depending on what looks more
readable in a given context; they both mean the same (the or function).

11.2 Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs) are bit-serial DFA for satisfying
instances of Boolean formulas.5 To better understand this characteri-
zation, consider the finite language

L1 = {abcd | d ∨ (a ∧ b ∧ c)}.

Since all finite languages (a finite number of finite strings in this case)
are regular, a regular expression describing this language can be ob-
tained by spelling out all the satisfying instances of d∨ (a∧ b∧ c). This
finite regular language is denoted by the following regular expression:

(1110+1111+0001+0011+0101+0111+1001+1011+1101)

By putting this regular expression in a file called a.b.c+d, we can use
the following grail command sequence to obtain a minimal DFA for
it, as shown in Figure 11.1(a):

5 BDDs may also be viewed as optimized decision trees. We view BDDs as DFA
following the emphasis of this book. Also note that strictly speaking, we must
say Reduced Ordered Binary Decision Diagrams or ROBDDs. We use “BDD” as
a shorthand for ROBDD.
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4

0 1
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1

2

0 1

0

1 0 1

Fig. 11.1. Minimal DFAs for d ∨ (a ∧ b ∧ c) for (a) variable ordering abcd,
and (b) dabc. The edges show transitions for inputs arriving according to this
order.

cat a.b.c+d | retofm | fmdeterm | fmmin | perl grail2ps.perl -

> a.b.c+d.ps

Now consider the language that merely changes the bit-serial order in
which the variables are examined from abcd to dabc:

L2 = {dabc | d ∨ (a ∧ b ∧ c)}.

Using the regular expression

(0111+1000+1001+1010+1011+1100+1101+1110+1111)

as before, we obtain the minimal DFA shown in Figure 11.1(b). The
two minimal DFAs seem to be of the same size. Should we expect this
in general? The minimal DFAs in Figure 11.1 and Figure 11.2, are
suboptimal as far as their role in decoding the binary decision goes,
as they contain redundant decodings. For instance, in Figure 11.1(a),
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18

0

19

01 1
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0 1

Fig. 11.2. Minimal DFAs where the variable ordering matters

after abc = 111 has been seen, there is no need to decode d; however,
this diagram redundantly considers 0 and 1 both going to the accepting
state 0. In Figure 11.1(b), we can make node 6 point directly to node
0. Eliminating such redundant decodings, Figures 11.1(a) and (b) will,
essentially, become BDDs; the only difference from a BDD at that point
would be that BDDs explicitly include a 0 node to which all falsifying
assignments lead to.

Let us now experiment with the following two languages where we
shall discuss these issues even more, and actually present the drawing
of a BDD.

Linterleaved = {abcdef | a = b ∧ c = d ∧ e = f}
has a regular expression of satisfying assignments

(000000+001100+000011+110000+001111+110011+111100+111111)

and
Lnoninterleaved = {acebdf | a = b ∧ c = d ∧ e = f}
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01

14: f

27: d

28: b

10: f

29: d

30: b

31: e

32: d

33: b

34: d

35: b

36: e

37: c

38: b 39: b

40: e

41: b 42: b

43: e

44: c

exp4: a

Fig. 11.3. BDD for a = b ∧ c = d ∧ e = f for variable order acebdf

has

(000000+010010+001001+100100+011011+101101+110110+111111).

When converted to minimized DFAs, these regular expressions yield
Figures 11.2(a) and (b), where the size difference due to the variable
orderings is very apparent. The BDD for Figure 11.2(b) created using
the BED tool appears in Figure 11.3. The commands used to create
this BDD were:

bed> var a c e b d f % declares six variables

bed> let exp4 = (a=b) and (c=d) and (e=f) % defines the desired expn.

bed> upall exp4 % builds the BDD -

bed> view exp4 % displays the BDD

By comparing Figure 11.3 against Figure 11.2(b), one can see how, in
general, BDDs eliminate redundant decodings.6

6 The numbers inside the BDD nodes—such as the “14:” and “10:” in the nodes for
variable f—may be ignored. They represent internal numberings chosen by the
BED tool.
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BDDs are efficient data structures for representing Boolean func-
tions and computing the reachable states of state transition systems. In
these applications, they are very often ‘robust,’ i.e., their sizes remain
modest as the computation advances. As many of these state transi-
tion systems have well over 2150 states (just to pick a large number!),
this task cannot be accomplished in practice by explicitly enumerating
the states. However, BDDs can often very easily represent such large
state-spaces by capitalizing on an implicit representation of states as
described in Section 11.3. However, BDDs can deliver this ‘magic’ only
if a “good” variable ordering is chosen.

One also has to be aware of the following realities when it comes to
using BDDs:

The problem of determining an optimal variable ordering is NP-
complete (see Chapter 20 for a definition of NP-completeness). [42];
this means that the best known algorithms for this task run in ex-
ponential worst-case time.
In many problems, as the computation proceeds and new BDDs
are built, variable orderings must be recomputed through dynamic
variable re ordering algorithms, which are never ideal and add to
the overhead.
For certain functions (e.g., the middle bits of the result of multiply-
ing two N -bit numbers), the BDD is provably exponentially sized,
no matter which variable ordering is chosen.

Even so, BDDs find extensive application in representing as well as ma-
nipulating state transition systems realized in hardware and software.
We now proceed to discuss how BDDs can be used to represent state
transition relations and also how to perform reachability analysis.

11.3 Basic Operations on BDDs

BDDs are capable of efficiently representing transition relations of
finite-state machines. In some cases, transition relations of finite-state
machines that have of the order of 2100 states have been represented us-
ing BDDs. For example, a BDD that represents the transition relation
for a 100-bit digital ripple-counter can be built using about 200 BDD
nodes.7 Such compression is, of course, achieved by implicitly represent-
ing the state space; an explicit representation (e.g., using pointer based

7 Basically, each bit of such a counter toggles when all the lower order bits are a
1, and thus all the BDD basically represents is an and function involving all the
bits.
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data structures) of a state-space of this magnitude is practically impos-
sible. Given a transition relation, one can perform forward or backward
reachability analysis. ‘Forward reachability analysis’ is the term used
to describe the act of computing reachable states by computing the
forward image (“image”) of the current set of states (starting from the
initial states). Backward reachability analysis computes the pre-image
of the current set of states. One typically starts from the current set of
states violating the desired property, and attempts to find a path back
to the initial state. If such a path exists, it indicates the possibility of
a computation that violates the desired property.

Each step in reachability analysis takes the current set of states
represented by a BDD and computes the next set of states, also rep-
resented by a BDD. It essentially performs a breadth-first traversal,
generating each breadth-first frontier in one step from the currently
reached set of states. The commonly used formulation of traversal is in
terms of computing the least fixed-point as explained in Section 11.3.2.
When the least fixed-point is reached, one can query it to determine

the overall properties of the system. One can also check whether desired
system invariants hold in an incremental fashion (without waiting for
the fixed-point to be attained) by testing the invariant after each new
breadth-first frontier has been generated. Here, an invariant refers to
a property that is true at every reachable state.

We will now take up these three topics in turn, first illustrating how
we are going to represent state transition systems.

11.3.1 Representing state transition systems

!b b

Fig. 11.4. Simple state transition system (example SimpleTR)

We capture transition systems by specifying a binary state transi-
tion relation between the current and next states, and also specifying
a predicate capturing the initial states. If inputs and outputs are to
be modeled, they are made part of the state vector. Depending on the
problem being modeled, we may not care to highlight which parts of
the state vector are inputs and which are outputs. In some cases, the
entire state of the system will be captured by the states of inputs and
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outputs. Figure 11.4 presents an extremely simple state transition sys-
tem, called SimpleTR. Initially, the state is 0. Whenever the state is
0, it can become 1. When it is 1, it can either stay 1 or become 0.
These requirements can be captured using a single Boolean variable b
representing the current state, another Boolean variable b

′
represent-

ing the next state,8 and an initial state predicate and a state transition
relation involving these variables, as follows:

The initial state predicate for SimpleTR is λb.¬b, since the initial
state is 0. Often, instead of using the lambda syntax, initial state
predicates are introduced by explicitly introducing a named initial
state predicate I and defining it by an equation such as I(b) = ¬b.
For brevity,9 we shall often say “input state represented by ¬b.”
The state transition relation for SimpleTR is λ(b, b

′
).¬bb

′
+ bb

′
+

b¬b
′
, where each product term represents one of the transitions.

The values of b and b
′

for which this relation is satisfied represent
the present and next states in our example. In other words,
– a move where b is false now and true in the next state is repre-

sented by ¬bb
′
.

– a move where b is true in the present and next states is repre-
sented by bb

′
.

– finally, a move where b is true in the present state and false in
the next state is represented by b¬b

′
.

This expression can be simplified to λ(b, b
′
).(b + b

′
). The above re-

lation can also written in terms of a transition relation T defined as
T (b, b

′
) = b + b

′
. We shall hereafter say “transition relation b + b

′
.”

Notice that this transition relation is false for b = 0 and b
′

= 0,
meaning there is no move from state 0 to itself (all other moves are
present).

11.3.2 Forward reachability

The set of reachable states in SimpleTR starting from the initial state
¬b can be determined as follows:

Compute the set of states in the initial set of states.
Compute the set of states reachable from the initial states in n steps,
for n = 1, 2, . . ..

8 The ‘primed variable’ notation was first used by Alan Turing in one of the very
first program proofs published by him in [89].

9 Syntactic sugar can cause cancer of the semi-colon – Perlis
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In other words, we can introduce a predicate P such that a state x is in
P if and only if it is reachable from the initial state I through a finite
number of steps, as dictated by the transition relation T . The above
recursive recipe is encoded as

P (s) = (I(s) ∨ ∃x.(P (x) ∧ T (x, s))).

This formula says that s is in P if it is in I, or there exists a state x
such that x is in P , and the transition relation takes x to s.
Rewriting the above definition, we have

P = λs.(I(s) ∨ ∃x.(P (x) ∧ T (x, s)))).

Rewriting again, we have

P = (λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))) P.

In other words, P is a fixed-point of

λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s)))).

Let us call this Lambda expression H:

H = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s)))).

In general, H can have multiple fixed-points. Of these, the least fixed-
point represents exactly the reachable set of states, as next explained
in Section 11.3.3.

11.3.3 Fixed-point iteration to compute the least fixed-point

As shown in Section 6.1, the least fixed-point can be obtained by “bot-
tom refinement” using the functional obtained from the recursive defi-
nition. In the same manner, we will determine P , the least fixed-point
of H, by computing its approximants that, in the limit, become P . Let
us denote the approximants P0, P1, P2, . . .. We have P0 = λx.false, the
“everywhere false” predicate. The next approximation to P is obtained
by feeding P0 to the “bottom refiner” (as illustrated in Section 6.1):

P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P0

which becomes λs.I(s). This approximant says that P is a predicate
true of s whenever I(s). While this is not true (P must represent the
reachable state set and not the initial state alone), it is certainly a bet-
ter answer than what P0 denotes, which is that there are no states in
the reachable state set! We now illustrate all the steps of this computa-
tion, taking SimpleTR for illustration. We use the abbreviation of not
showing the lambda abstracted variables in each step.
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I = λb.¬b.
T = λ(b, b

′
). (b + b

′
).

P0 = λs.false, which encodes the fact that “we’ve reached nowhere
yet!”
P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P0.
This simplifies to P1 = I, which is, in effect, an assertion that we’ve
“just reached” the initial state, starting from P0.
Let’s see the derivation of P1 in detail. Expanding T and P0, we
have
P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ (x + s) ))) (λx.false).
The above simplifies to ¬b.
By this token, we are expecting P2 to be all states that are zero or
one step away from the start state. Let’s see whether we obtain this
result.
P2 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P1.
= λs.(¬s ∨ ∃x.(¬x ∧ (x + s))).
= λs.1.
This shows that the set of states reached by all the breadth-first
frontiers (combined) that are zero and one step away from the
start state, includes every state. Another iteration would not change
things; the10 least fixed-point has been reached.

BED Commands for SimpleTR:

The BED commands given in Figure 11.5 compute the reachable set of
states using forward reachability in our example. We can see that P2,
the least fixed-point, is indeed true — namely, the characteristic predi-
cate for the set of all states. (Note: In BED, the primed variables must
be declared immediately after the unprimed counterparts). In addition
to the explicit commands to calculate the least fixed-point, BED also
provides a single command called reach. Using that, one can calculate
the least fixed-point in one step. In our present example, RS and P2 end
up denoting the BDD for true.

let RS = reach(I,T)

upall RS

view RS

Section 11.3.4 discusses another example where the details of the fixed-
point iteration using BED are discussed.

10 We do not discuss many of the theoretical topics associated with computing fixed-
points in the domain of state transition systems — such as why least fixed-points
are unique, etc. For details, please see [20].
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var b bp % Declare b and b’

let I = !b % Declare init state

let t1 = !b and bp % 0 --> 1

upall t1 % Build BDD for it

view t1 % View it

let t2 = b and bp % 1 --> 1

let t3 = b and !bp % 1 --> 0

let T = t1 or t2 or t3 % All three edges

upall T % Build and view the BDD

view T %

let P0 = false

upall P0

view P0

let P1 = I or ((exists b. (P0 and T))[bp:=b])

upall P1

view P1

let P2 = I or ((exists b. (P0 and T))[bp:=b])

upall P2

view P2

0 1

P0: b

P0

01

P0: b

P1: a

P1

1

P2, the least fixed-point

Fig. 11.5. BED commands for reachability analysis on SimpleTR, and the
fixed-point iteration leading up to the least fixed-point that denotes the set
of reachable states starting from I

Why Stabilization at a Fixed-Point is Guaranteed

In every finite-state system modeled using a finite-state Boolean transi-
tion system, the least fixed-point is always reached in a finite number of
steps. Let us try to argue this fact first using only a simple observation.
The observation is that all the Boolean expressions generated during
the course of fixed-point computation are over the same set of vari-
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ables. Since there are exactly 22N

Boolean functions over N Boolean
variables (see Illustration 4.5.2), eventually two of the approximants in
the fixed-point computation process will have to be the same Boolean
function. However, this argument does not address whether it is pos-
sible to have “evasive” or “oscillatory” approximants Pi, Pi+1, . . . , Pj

such that i �= j and Pj = Pi. If this were possible, it would be possible
to cycle through Pi, . . . , Pj without ever stabilizing on a fixed-point.
Fortunately, this is not possible! Each approximant Pi+1 is more de-
fined than the previous approximant Pi, in the sense defined by the
implication lattice defined in Illustration 4.5.3. With this requirement,
the number of these ascending approximants is finite, and one of these
would be the least fixed-point. See Andersson’s paper [7] for additional
examples of forward reachability. The book by Clarke et.al. [20] gives
further theoretical insights.

11.3.4 An example with multiple fixed-points

Consider the state transition system in Figure 11.6 with initial state s0
(called MultiFP). The set of its reachable states is simply {s0} (and is
characterized by the formula a∧ b), as there is no reachable node from
s0. Now, a fixed-point iteration beginning with the initial approximant
for the reachable states set to P0 = false will converge to the fixed-
point a ∧ b. What are the other fixed-points one can attain in this
system? Here they are:

With the initial approximant set to {s0,s1}, which is characterized
by b, the iteration would reach the fixed-point of a ∨ b, which char-
acterizes {s0,s1,s2}.
Finally, we may iterate starting from the initial approximant be-
ing 1, corresponding to {s0,s1,s2,s3}. The fixed-point attained in
this case is 1, which happens to be the greatest fixed-point of the
recursive equation characterizing reachable states.

Hence, in this example, there are three distinct fixed-points for the
recursive formula defining reachable states. Of these, the least fixed-
point is a∧b, and truly characterizes the set of reachable states; a∨b is
the intermediate fixed-point, and 1 is the greatest fixed-point. It is clear
that (a∧ b) ⇒ (a∨ b) and (a∨ b) ⇒ 1, which justifies these fixed-point
orderings. Figure 11.6 also describes the BED commands to produce
this intermediate fixed-point.
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var a ap b bp

let T = (a and b and ap and bp) or /* S0 -> S0 */

(!a and b and !ap and bp) or /* S1 -> S1 */

(a and !b and ap and !bp) or /* S2 -> S2 */

(!a and !b and !ap and !bp) or /* S3 -> S3 */

(!a and b and ap and !bp) or /* S1 -> S2 */

(a and !b and !ap and bp) or /* S2 -> S1 */

(!a and b and ap and bp) or /* S1 -> S0 */

(a and !b and ap and bp) /* S2 -> S0 */

upall T

view T /* Produces BDD for TREL ’T’ */

let I = a and b

let P0 = b

let P1 = I or ((exists a. (exists b. (P0 and T)))[ap:=a][bp:=b])

upall P1

view P1

 {b}

s1

 {a,b}

 {a}

s2

s0

s3
Transition System MultiFP

0 1

P0: b

P0

01

P0: b

P1: a

P1

Fig. 11.6. Example where multiple fixed-points exist. This figure shows at-
tainment of a fixed-point a ∨ b which is between the least fixed-point of a ∧ b

and the greatest fixed-point of 1. The figure shows the initial approximant P0
and the next approximant P1

11.3.5 Playing tic-tac-toe using BDDs

What good are state-space traversal techniques using BDDs? How does
one obtain various interesting answers from real-world problems? While
we cannot answer these questions in detail, we hope to leave this chapter
with a discussion of how one may model a game such as tic-tac-toe and,
say, compute the set of all draws in one fell swoop. Following through
this example, the reader would obtain a good idea of how to employ
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mathematical logic to specify a transition system through constraints,
and reason about it. We assume the reader knows the game of tic-tac-
toe (briefly explained in the passing).

Modeling the players and the board:

We model two players, A and B. The state of the game board is modeled
using a pair of variables ai,j, bi,j (we omit the pairing symbols 〈〉 for
brevity) for each square i, j where i ∈ 3 and j ∈ 3. We assume that
player A marks square i, j with an o, by setting ai,j and resetting
bi,j, while player B marks square i, j with an x, by resetting ai,j and
setting bi,j. We use variable turn to model whose turn it is to play
(with turn = 0 meaning it is A’s turn). The state transition relation
for each square will be specified using the four variables ai,j, ai,jp, bi,j,
and bi,jp. We model the conditions for a row or column remaining the
same, using predicates samerowi and samecoli. We define nine possible
moves for both A and for B. For example, M00 model’s A’s move into
cell 0, 0; Similarly, we employ N00 to model B’s move into cell 0, 0, and
so on for the remaining cells. The transition relation is now defined as a
disjunction of the Mi,j and Ni,j moves. We now capture the constraint
atmostone that says that, at most one player can play into any square.
We then enumerate the gameboard for all possible wins and draws. In
the world of BDDs, these computations are achieved through “symbolic
breadth first” traversals. We compute the reachable set of states, first
querying it to make sure that only the correct states are generated.
Then we compute the set of states defining draw configurations. The
complete BED definitions are given in Appendix B.

Chapter Summary

This chapter briefly reviewed the history of mathematical logic and
pointed out the fact that in the early days of automata theory, math-
ematical logic and automata were discussed in a unified setting. This
approach has immense pedagogical value which this book tries to re-
store to some extent. A practitioner who works on advanced hard-
ware/software debugging method needs to know both of these topics
well. For instance, automata theory has, traditionally, been considered
an essential prerequisite for an advanced class on compilation. How-
ever, recent publications in systems/compilers (e.g., [121]) indicate the
central role played by BDDs (see below) and related notions in math-
ematical logic.

We then discuss how Boolean formulas can be represented in a
canonical fashion using the so-called ‘reduced ordered binary decision
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diagrams,’ or “BDDs” for short. We then present how finite-state ma-
chines can be represented and manipulated using BDDs. We show how
reachable states starting from a set of start states can be computed
using forward reachability, by using the notion of fixed-points intro-
duced in Chapter 6. We finish the chapter with an illustration of how
the game of tic-tac-toe may be modeled using BDDs, and how a tool
called BED may be used to compute interesting configurations, such as
all the draw positions, all possible win positions, etc.

BDDs are far richer in scope and application than we have room to
elaborate here. The reader is referred to [14, 13] for an exposition of how
BDDs are used in hardware and software design, how BDDs may be
combined using Boolean operations through the apply operator, etc. An
alternate proof of canonicity of BDDs appears in [14]. Our presentation
of BDDs as automata draws from [22], and to some extent from [111].

Exercises

11.1. Similar to Figure 11.3, draw a BDD for all 16 Boolean func-
tions over variables x and y. (Some of these functions are λ(x, y).true,
λ(x, y).false, λ(x, y).x, λ(x, y).y, etc. Down this list, you have more
“familiar” functions such as λ(x, y).nand(x, y), and so on. Express these
functions without the “lambda” part in BED syntax, and generate the
BDDs using BED.)

11.2.
1. Obtain an un-minimized DFA (in the form of a binary tree) for the

language
L = {abc | a ⇒ b ∧ c}

picking the best variable ordering (in case two variable orderings
are equal, pick the one that is in lexicographic order). Show the
black-hole state also.

2. Minimize this DFA, and then show the additional steps that cast
the minimized DFA into a BDD.

11.3. Consider the examples given in Figure 11.2. Construct similar
examples for the addition operation. More specifically, consider the bi-
nary addition of two unsigned two-bit numbers a1a0 and b1b0, resulting
in answer c2c1c0. Generate a BDD for the carry output bit, c2. Choose
a variable ordering that minimizes the size of the resulting BDD and
experimentally confirm using BED.

11.4. Repeat Exercise 11.3 to find out the variable ordering that max-
imizes the BDD size.
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11.5. Represent the behavior of a nand gate, under the inertial delay
model, as a state transition system. Encode this transition system using
a BDD. Here are some general details on how to approach this problem.

The behavior of an inverter can be modeled using a pair of bits
representing its input and output. (For a nand gate, we will need to
employ three bits.) In the transport delay model, every input change,
however short, is faithfully copied to the output, but after a small delay.
There is another delay model called the inertial delay model in which
“short” pulses may not make it to the output.

The behavior of an inverter under these delay models are shown in
figures (a) and (b) below.

00 01

1110

Initial inverter state

Input changes to a 1
Output has not changed

quiescent.
inverter is 
and the 
transitions
The output

Input
changes
and the 
inverter is
in a transient
state
again

The output
transitions
and the 
inverter is 
quiescent.

(a)

Input changes. 
Inverter is 
in a transient state.
However the input
can be withdrawn
nullifying the
scheduled output
change.

Input changes. 
Inverter is 
in a transient state.
However the input
can be withdrawn
nullifying the
scheduled output
change.

00 01

1110

Initial inverter state

quiescent.
inverter is 
and the 
transitions
The output

The output
transitions
and the 
inverter is 
quiescent.

(b)

11.6. Draw a BDD for the transition relation of a two-bit binary
counter with output bits a1a0 for initial state 00, counting in the usual
0, 1, 2, 3 order. Repeat for a two-bit gray-code counter that counts 00,
01, 11, 10, and back to 00.

11.7.
1. With respect to the state transition relation of Figure 11.6(a), iden-

tify all the fixed-points of the recursive equation for reachability.
2. Given a state transition system (say, as a graph, as in Figure 11.6(a)),

what is a general algorithm to determine the number of fixed-points
of its recursive equation for reachability?

11.8. Consider a three-bit shift register based counter with the indi-
cated next-state relation for its three bits:
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next(a) = b  ;  next(b) = c  ;  next(c) = not(and(a,b,c))

c b a

1. Represent the next-state relation of this counter using a single
ROBDD. Choose a variable ordering that minimizes the size of your
ROBDD and justify your choice.

2. Compute the set of all reachable states using forward reachability
analysis, using the reach command, starting at state 000.

3. Justify the correctness of the answer you obtain. The answer you
obtain must be a Boolean formula over a, b, c. Show that this for-
mula is satisfied exactly for those states reachable by the system.

11.9. A three-bit Johnson counter11 consists of a three-bit shift register
where the final Q output is connected to the first D input. Starting
from a reset state of 000, this counter will go through the sequence
100, 110, 111, 011, 001, and back to 000. For this counter, repeat what
Exercise 11.8 asks.

11.10. Using BED, determine the shortest number of steps to win in
Tic-Tac-Toe. Appendix B has a full description of the problem encod-
ing.

11.11. Check two conjectures concerning Tic-Tac-Toe, using BED:
(i) if a player starts by marking the top-left corner, he/she may lose;
(ii) if a player starts by marking the middle square, he/she may win.

11.12. Construct an example with four distinct fixed-points under for-
ward reachability, and verify your construction similar to that explained
in Figure 11.6.

11.13. Encode the Man-Wolf-Goat-Cabbage problem using BDDs. In
this problem, a man has to carry a wolf, goat, and cabbage across a
river. The man has to navigate the boat in each direction. He may
carry no more than one animal/object on the boat (besides him) at a
time. He must not leave the wolf and goat unattended on either bank,

11 Named after Emeritus Prof. Bob Johnson, University of Utah.
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nor must he leave the goat and cabbage unattended on either bank.
The number of moves taken is to be minimal. Use appropriate Boolean
variables to model the problem.
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The ‘Pumping’ Lemma

Theorem 10.3 reiterates why regular languages are so called – their
strings are “regular” in length. This fact can be taken advantage of
in reasoning about languages. The specific approach taken is based on
the fact that long strings meandering through finite-state structures
cannot avoid revisiting states. Hence, if such a string goes from the
start state to a final state, one can traverse the loop described by the
re-visitation an arbitrary number of times, including zero times, and
find other strings that also go from the start to the same final state.
Expressed rigorously, this idea forms the basis of showing that certain
languages are not regular, and takes the curious name of the “Pumping”
Lemma.

The most common usage comes in the form of incomplete Pumping
Lemmas or one-way Pumping Lemmas that help prove that certain
languages are not regular. There are also complete Pumping Lemmas
that can help prove that certain languages are regular. We now discuss
one incomplete Pumping Lemma in depth and show many usages of
the same. This will be followed by a brief discussion of one complete
Pumping1 Lemma.

12.1 Pumping Lemmas for Regular Languages

One incomplete Pumping Lemma for regular languages is as follows.
If a language L is regular, then there exists a number n (typically
equal in magnitude to the number of states of the minimal DFA D
of L) such that for any string w ∈ L exceeding n in length, w will
have a loop somewhere in it. More specifically, when a DFA makes n

1 Rumor has it that this is the most favorite lemma of a certain California governor.
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state transitions, it must go through n + 1 states;2 all of these states
cannot be distinct (since there are altogether only n states). This causes
the DFA to revisit at least one state, thus describing a path such as
s1, s2, . . . , si, . . . , si, . . . , sn+1. Now, break w into three distinct pieces.
Let x be the maximal prefix of w in which no states repeat (s1, . . . , si

in our example). Following x, we will have a segment of w that begins
and ends at some specific state; this segment would form a loop, such
as si, . . . , si in our example. Call this segment y. Now, the rest of w
is considered to be the string z, which leads w to one of the accepting
states s ∈ F of D. It is then clear that the portion y can be repeated
any number k ≥ 0 of times in going to s, thus ensuring that strings of
the form xykz are also in L. Using mathematical logic, and following
Lamport’s style, discussed on Page 79 in Chapter 5, we write:

Regular(L) ⇒
∃n ∈ N :
∀w ∈ L : |w| ≥ n

⇒
∃x, y, z ∈ Σ∗ :
∧ w = xyz
∧ y �= ε
∧ |xy| ≤ n
∧ ∀k ≥ 0 : xykz ∈ L.

Illustration 12.1.1 (Quantifier alternation) The Pumping Lemma
resembles the following example English assertion: “A zoo Z is inter-
esting if forall giraffes g in Z whose right rear leg is more than n feet
in length, there exists a reticulation patch on g’s skin of exactly

√
n

feet circumference, such that within this reticulation patch, forall hair
h, the color of h is brown.”

To show that Z is uninteresting, we have to find one giraffe of height
≥ n such that for all patches, either the patch is not

√
n feet in cir-

cumference, or (it is, and) there exists a non-brown hair in it.

To use the incomplete Pumping Lemma in proving that a language
Lsuspect is non-regular, we proceed as follows. Assume Regular(Lsuspect).
Then, use the incomplete Pumping Lemma, obtaining as a consequence,
the following formula C:3

2 If the n moves are compared to n webs on the foot of a duck, then the duck must
have n + 1 digits!

3 Note that C, being a fully quantified formula, or sentence, is either true or false.
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∃n ∈ N :
∀w ∈ Lsuspect : |w| ≥ n

⇒
∃x, y, z ∈ Σ∗ :
∧ w = xyz
∧ y �= ε
∧ |xy| ≤ n
∧ ∀k ≥ 0 : xykz ∈ Lsuspect.

Now, we try to show that formula C is false (or that ¬C is true). If we
succeed in doing so, we can conclude using proof by contradiction that
¬Regular(Lsuspect). What does showing ¬C involve? Let D = ¬C. We
can now write D as follows:

∀n ∈ N :
∃w ∈ Lsuspect : |w| ≥ n

∧
∀x, y, z ∈ Σ∗ :
∨ w �= xyz
∨ y = ε
∨ |xy| > n
∨ ∃k ≥ 0 : xykz /∈ Lsuspect.

Now, our goal is to show that D is true (if we were to achieve this goal,
we would have proved ¬C, or that ¬Regular(Lsuspect)), which is our
original proof goal. To make D true, we must clearly satisfy the “bullet
disjunction” embedded in it. That disjunction would be made true by
making any one of the following disjuncts true for every x,y,z ∈ Σ∗:

1. pick x, y, z such that w �= xyz,
2. pick y = ε,
3. pick x, y such that |xy| > n, or
4. find a k ≥ 0 such that xykz /∈ Lsuspect.

Now, for many x, y, z, it will be possible to satisfy one of disjuncts 1
or 3. This is clear because we can quite easily find xyz �= w, find
y = ε, or find xy, such that |xy| > n. So we don’t even bother with
these selections of x, y, z in the rest of this sequel. What about x, y, z
that falsify disjuncts 1 through 3? For that case, we must find a k ≥ 0
such that xykz /∈ Lsuspect. That surviving case is now spelled out fully,
below. This listing incorporates the fact that the first three disjuncts
are false.
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Pumping recipe: These steps below constitute the Pumping
recipe we shall follow in attacking problems using the Pumping
Lemma.

PR1: Consider x, y, z such that w = xyz and y �= ε (thus falsifying
disjuncts 1 and 2), and ensure that |xy| ≤ n (look for a loop within
the first n moves in w), thus falsifying disjunct 3.

PR2: Find a k ≥ 0 such that xykz /∈ Lsuspect (thus satisfying dis-
junct 4).

One should, however, bear in mind the following frequently
committed mistake, and avoid it:

If, instead of showing that formula C of page 206 is false, one
ends up showing C, i.e, that C is true, then we cannot draw
any conclusion about Lsuspect. It could either be regular or non-
regular! Refer to the discussion on page 74 around proving 5 = 5.

We shall now illustrate these steps as well as related methods with
several examples.

Illustration 12.1.2 Example: Consider L = {0m10m1 | m ≥ 0}. To
show L is not regular:

PR1:
1. Choose w = 0n10n1.
2. Choose y �= ε.
3. Choose x, y, such that |xy| ≤ n – aha! Observe that y must

contain a 0.
PR2:

1. Now, does there exist a k ≥ 0 such that xykz /∈ L?
2. Sure! For k = 0, we lose one 0, giving rise to a string of the form

0m1n where m < n. This satisfies the “D formula” associated
with this example. Hence, L is not regular.

Illustration 12.1.3 Example: Consider L = {10m10m | m ≥ 0}. To
show L is not regular:

PR1:
1. Choose w = 10n10n.
2. Choose y �= ε.
3. Choose x, y, such that |xy| ≤ n.

PR2:
1. We have three choices for y:

a) y = 1,
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b) y = 10l for l < n, or
c) y = 0l for 0 < l < n.

2. Does there exist a k ≥ 0 such that xykz /∈ L for all these choices?
3. Sure!

a) For y = 1, choose k = 0 (other choices work too; see Exer-
cise 12.5).

b) y = 10l for l < n, choose k = 0 (other choices work too).
c) y = 0l for 0 < l < n also, choose k = 0 (other choices work

too).
d) In all these cases, the assertion ∃ k ≥ 0 such that xykz /∈ L

is satisfied.
e) Therefore, we get full contradiction, and hence L is not reg-

ular.

12.1.1 A stronger incomplete Pumping Lemma

There is a stronger version of the Pumping Lemma which allows strings
“in the middle” to be pumped. We now state this Pumping Lemma
semiformally, and illustrate its power on a simple example:

Regular(L) ⇒
∃n ∈ N :
∀w ∈ L : |w| ≥ n

⇒
∀x, y, z ∈ Σ∗ :
∧ w = xyz
∧ |y| ≥ n
∃u, v,w ∈ Σ∗ :
∧ v �= ε
∧ ∀k ≥ 0 : xuvkwz ∈ L.

As can be seen, the pumping can occur “in the middle.”

Illustration 12.1.4 Consider the language Lif defined on page 212.
By applying the ordinary Pumping Lemma, we cannot derive a con-
tradiction starting from string abncn because the possibilities include
x = ε, y = a, and z = bncn, and by pumping y, we do not go outside the
language. However, with the stronger Pumping Lemma, we can pick x,
y, and z suitably, with |y| ≥ n. Observe that by letting x be a, we can
situate u, v,w in the bncn region, obtaining a violation in all cases.
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12.2 An adversarial argument

The Pumping Lemma provides a concrete setting to understand adver-
sarial arguments. Consider proving, directly using the Pumping Lemma,
that the language

L = {0i1j | i �= j}
is not regular. Here is how the proof goes as an adversarial argument.
Suppose an adversary (Y) claims that this is a regular language. You
(U) want to prove it is not. Here is how you can argue and win:

1. U: “OK if L is regular, you have a DFA D with you right?”
2. Y: “Yes.”
3. U: “How many states in it?”
4. Y: “n”.
5. U: “OK, describe to me the sequence of states that D goes through

upon seeing the first n symbols of the string 0n1(n+n!).” Here, n is
chosen to be the number of states in D. Since n �= (n + n!), this
string surely must be in L. (The choice of (n + n!) as the exponent
of 1s is rather purposeful — and very astute on the part of U — as
we shall see momentarily).

6. Y (Straight-faced): “It visits s0, s1, . . ., all of which are different
from one another.”

7. U: (Red-faced): “Lie! If there are n states in your DFA, then seeing
n symbols, the DFA must have traversed a loop, and hence you
must have listed two states that are the same. Don’t you know that
this follows from the pigeon-hole principle?”

8. Y: (Blue-faced): “OK, you are right, it is “s0, s1, . . . , si, si+1, si+2, . . . ,
. . . , si, sj . . ..” Notice that si is repeating in such a sequence.

9. U: “Aha! I’m going to call the pieces of the above sequence as
follows.”
a) the piece that leads up to the loop, s0, s1, . . . , si, will be called

x,
b) the piece that traverses the loop, si, si+1, si+2, . . . , si, will be

called y, and
c) the piece that exits the loop and visits the final state, si, sj . . .,

will be called z.
“You may pick any such x, y, z and I’m going to confound you.”

10. Y: “How?”
11. U: “Watch me!” (private thoughts of U now follow...)

a) Since I have no idea what |y| is, I must ensure that by pumping
y, no matter what its length, I should be able to create a string
of 0s equal in length to (n + n!).
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b) So, by pumping, if I can create an overall string 0(n+n!)1(n+n!),
I would have created the desired contradiction.

c) The initial distribution of 0s along the path xyz is as follows:
i. x has |x| 0s,
ii. y has |y| 0s, and
iii. z has (n − |y| − |x|) 0s.

d) Hence, by pumping y k-times, for integral k, we must be able
to attain n + n! = |x| + k × |y| + (n − |y| − |x|).

e) Simplifying, we should be able to satisfy n! = (k − 1)|y|. Since
|y| ≤ n, such a k exists!

12. U now begins his animated conversation: “See the above argument. I
can now pump up the y of your string k times where k = n!/|y| + 1.
Then you get a string 0n+n!1n+n! that is not in L. This path also
exists in your DFA. So your DFA cannot be designed exactly for
L— it also accepts illegal strings. Admit defeat!”

13. Y: Tries for an hour, furiously picking all possible x, y, z and goes
back to step 8. For each such choice, U defeats Y4 in the same
fashion. Finally Y admits defeat.

14. U: “Thank you. Next victim please.”

12.3 Closure Properties Ameliorate Pumping

The use of closure properties can simplify the application of the Pump-
ing Lemma. However, caution is to be exercised to avoid unsound ar-
guments. We now provide a few illustrations and exercises. First, let us
rework Problem 12.1.3 as follows:

1. The reverse of L = {10m10m | m ≥ 0} is L
′
= {0m10m1 | m ≥ 0}

2. Now, L
′
was proved to be not regular in Problem 12.1.2

3. Since reverse preservers regularity, the original language L isn’t
regular either.

As a general approach, here is how we use regularity preserving oper-
ations to help make our arguments:

1. Suppose M ∩ L(0∗ 1∗) = N
2. Suppose we can show (thru Pumping Lemma) that N is not regular
3. Then we can conclude that M is not regular.

4 I promise to make Y win in my next two books—and meanwhile, offer to put
replacement pages on my web-page for the benefit of anyone wishing that Y
trounce U in this very book!



212 12 The ‘Pumping’ Lemma

Here is an abuse of the incomplete Pumping Lemma (from [111]).
Consider the language

Lif = {aibjck | i ≥ 0, j, k > 0, and if i = 1 then j = k}.

While this language is not regular, we can still show that the C formula
of page 206 that results from the incomplete Pumping Lemma will be
a tautology (“can pump k without causing any violations”). This is
because

PR1: for every choice of w of the form aibjck, and a way to split it into
x, y, z that abide by the PR1 conditions,

PR2: we must find a k ≥ 0 such that xykz /∈ Lsuspect. Basically, for any
such x, y, z, there must always be a choice of y such that pumping
causes us to stay in the language Lsuspect, thus deriving no con-
tradictions. Exercise 12.8 asks you to spell out this argument, and
offers another attack on the same problem.

12.4 Complete Pumping Lemmas

There are many complete Pumping Lemmas of the form “Regular(L) if
and only if conditions,” i.e., a language is regular if and only if certain
conditions hold. We present two popular versions, one due to Jaffe [65]
and the other due to Stanat and Weiss [113]. Possible uses of these
complete Pumping Lemmas include showing that certain languages are
regular (we do not pursue such proofs of regularity in this book).

12.4.1 Jaffe’s complete Pumping Lemma

For a language L over a finite alphabet Σ, Jaffe’s Pumping Lemma is
the following:

Regular(L) ⇔
∃k ∈ N :
∀y ∈ Σ∗ : |y| = k

⇒
∃u, v,w ∈ Σ∗ :
∧ y = uvw
∧ v �= ε
∧ ∀z ∈ Σ∗ :

∀i ∈ N : (yz ∈ L ⇔ uviwz ∈ L).
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Notice that for a “long string” y = uvw with a pump-able middle
portion v, it is expressed that we can follow the original string y with
an arbitrary z and stay within L, if and only if we can pump the middle
and still follow it with that same z and stay within L. In [65], a proof
of this Pumping Lemma is provided.

12.4.2 Stanat and Weiss’ complete Pumping Lemma

For a language L over a finite alphabet Σ, Stanat and Weiss’ Pumping
Lemma is the following:

Regular(L) ⇔
∃p ∈ N :
∀x ∈ Σ∗ : |x| ≥ p

⇒
∃u, v,w ∈ Σ∗ :
∧ x = uvw
∧ v �= ε
∧ ∀r, t ∈ Σ∗ :

∀i ∈ N : (rut ∈ L ⇔ ruvit ∈ L).

Notice that this Pumping Lemma does not require the pump-able
string to be part of the prefix; an arbitrary string r can lead off, and
an arbitrary tail t can follow. In [113], a proof of this Pumping Lemma
using Jaffe’s Pumping Lemma is provided.

Chapter Summary

We discuss the so-called Pumping Lemmas that characterize regular
sets. We also discuss operations that preserve regularity; given one or
more sets, these operations are guaranteed to deliver only regular sets.
This chapter shows how one may exploit these facts to disprove that
certain languages are not regular. For the sake of completeness, we
also very briefly discuss the so-called complete Pumping Lemmas that
actually help establish that certain languages are regular. While we do
not utilize these complete Pumping Lemmas to carry out any proofs,
the fact that such lemmas exist is important to know.

Exercises

12.1. Argue that Lbadd is non-regular, where Lbadd is almost similar to
Ladd of Exercise 10.6 except for what is shown below:

Lbadd = {a0a1 . . . ak−1b0b1 . . . bk−1c0c1 . . . ck−1 | . . . same . . .}
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12.2. Consider the example language of Section 12.2 again:

L = {0i1j | i �= j}.

Using closure properties, show that this set is not regular.

12.3. Prove that if L is not regular, then LL is also not regular.

12.4. L0n1n = {0n1n | n ≥ 0} is easily shown to be non-regular. Now,
show

Leq = {x | x ∈ {0, 1}∗ and #0(x) = #1x}
is not regular. (Hint: intersection with 0* 1*).

12.5. Show how to solve the problems presented in Illustration 12.1.2
and 12.1.3 by choosing a k �= 0. Write out the complete proof using
such k values.

12.6. What’s wrong with this argument?

1. Suppose M ∩ L(0∗ 1∗) = N .
2. Suppose we can show (through Pumping Lemma) that M is not

regular.
3. Conclude that N is not regular.

12.7. Among the assertions below, identify those that are true, and
justify them. For those that are false, provide a counterexample.

1. The union of two non-regular sets is always non-regular.
2. The intersection of two non-regular sets is always non-regular.
3. A regular set can have a non-regular subset.
4. A regular set can have a non-regular superset.
5. Every regular set has a regular subset.
6. The star of a non-regular set can never be regular.
7. The prefix-closure of a non-regular set can never be regular.
8. The reverse of a non-regular set can never be regular.
9. The union of a regular and a non-regular set can be regular.

10. The union of a regular and a non-regular set can be non-regular.
11. The concatenation of a regular and a non-regular set can sometimes

be regular.
12. There is a finite non-regular set.
13. It is possible to apply a homomorphism to turn a non-regular set

into a regular set.
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12.8. Consider the language Lif of page 12.3. Show that using the ini-
tial incomplete Pumping Lemma, we can pump, i.e., prove the Pumping
Lemma condition C to be true, thus being unable to conclude anything.
Now, apply a closure property and use the incomplete Pumping Lemma
to show that Lif is non-regular.

12.9. Using the stronger incomplete Pumping Lemma of Section 12.1.1,
show that Lif is non-regular.

12.10. Prove the following languages to be non-regular:

1. Lsq = {0i2 | i ≥ 0}.
2. L() = {x | x ∈ {(, )}∗ and x is well − parenthesized}.
3. The set of palindromes over {0, 1}∗ is not regular.

The definition of well-parenthesized is as follows (see also page 224):

1. The number of ( and ) in x is the same.
2. In any prefix of x, the number of ( is greater than or equal to the

number of ).
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Context-free Languages

A context-free language (CFL) is a language accepted by a push-down
automaton (PDA). Alternatively, a context-free language is one that
has a context-free grammar (CFG) describing it. This chapter is mainly
about context-free grammars, although a brief introduction to push-
down automata is also provided. The next chapter will treat push-down
automata in greater detail, and also describe algorithms to convert
PDAs to CFGs and vice versa. The theory behind CFGs and PDAs
has been directly responsible for the design of parsers for computer
languages, where parsers are tools to analyze the syntactic structure
of computer programs and assign them meanings (e.g., by generating
equivalent machine language instructions).

A CFG is a structure (N,Σ,P, S) where N is a set of symbols known
as non-terminals, Σ is a set of symbols known as terminals, S ∈ N is
called the start symbol, and P is a finite set of production rules. Each
production rule is of the form

L → R1 R2 . . . Rn,

where L ∈ N is a non-terminal and each Ri belongs to N ∪ Σε. We
will now present several context-free grammars through examples, and
then proceed to examine their properties.

Consider the CFG G1 = ({S}, {0}, P, S) where P is the set of rules
shown below:

Grammar G1:
S -> 0.

A CFG is machinery to produce strings according to production rules.
We start with the start symbol, find a rule whose left-hand side matches
the start symbol, and derive the right-hand side. We then repeat the
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process if the right-hand side contains a non-terminal. Using grammar
G1, we can produce only one string starting from S, namely 0, and so
the derivation stops. Now consider a grammar G2 obtained from G1 by
adding one extra production rule:

Grammar G2:
S -> 0

S -> 1 S.

Using G2, an infinite number of strings can be derived as follows:

1. Start with S, calling it a sentential form.
2. Take the current sentential form and for one of the non-terminals

N present in it, find a production rule of the form N → R1 . . . Rm,
and replace N with R1 . . . Rm. In our example, S -> 0 matches
S, resulting in sentential form 0. Since there are no non-terminals
left, this sentential form is called a sentence. Each such sentence is
a member of the language of the CFG - in symbols, 0 ∈ L(G2).
The step of going from one sentential form to the next is called a
derivation step. A sequence of such steps is a derivation sequence.

3. Another derivation sequence using G2 is

S ⇒ 1S ⇒ 11S ⇒ 110.

To sum up, given a CFG G with start symbol S, S is a sen-
tential form. If S1S2 . . . Si . . . Sm is a sentential form and there is a
rule in the production set of the form Si → R1 R2 . . . Rn, then
S1S2 . . . R1 R2 . . . Rn . . . Sm is a sentential form. We write

S ⇒ . . . ⇒ S1S2 . . . Si . . . Sm ⇒ S1S2 . . . R1 R2 . . . Rn . . . Sm ⇒ . . . .

As usual, we use ⇒∗ to denote a multi-step derivation.
Given a CFG G and one of the sentences in its language, w, a parse

tree for w with respect to G is a tree with frontier w, and each interior
node corresponding to one derivation step. The parse tree for string
110 with respect to CFG G2 appears in Figure 13.1(a).

13.1 The Language of a CFG

The language of a CFG G, L(G), is the set of all sentences that can be
derived starting from S. In symbols, for a CFG G,

L(G) = {w | S ⇒∗ w ∧ w ∈ Σ∗}.

According to this definition, for a CFG G3, with the only production
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Fig. 13.1. (a) The parse tree for string 110 with respect to CFG G2; (b) and
(c) are parse trees for 110 with respect to G4.

Grammar G3:
S → S.

we have L(G3) = ∅. The same is true of a CFG all of whose productions
contain a non-terminal on the RHS, since, then, we can never get rid
of all non-terminals from any sentential form.

A derivation sequence, in which the leftmost non-terminal is selected
for replacement in each derivation step, is known as a leftmost deriva-
tion. A rightmost derivation can be similarly defined. Specific deriva-
tion sequences such as the leftmost and rightmost derivation sequences
are important in compiler construction. We will employ leftmost and
rightmost derivation sequences for pinning down the exact derivation
sequence of interest in a specific discussion. This, in turn, decides the
shape of the parse tree. To make this clear, consider a CFG G4 with
three productions

Grammar G4:
S → SS | 1 | 0.

The above notation is a compact way of writing three distinct elemen-
tary productions S → SS, S → 1, and S → 0. A string 110 can now be
derived in two ways:

• Through the leftmost derivation S ⇒ SS ⇒ 1S ⇒ 1SS ⇒ 11S ⇒
110 (Figure 13.1(b)), or

• Through the rightmost derivation S ⇒ SS ⇒ S0 ⇒ SS0 ⇒ S10 ⇒
110 (Figure 13.1(c)).

Notice the connection between these derivation sequences and the parse
trees.

Now consider grammar G5 with production rules
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Grammar G5:
S → aSbS | bSaS | ε.

The terminals are {a, b}. What CFL does this CFG describe? It is easy
to see that in each replacement step, an S is replaced with either ε or
a string containing an a and a b; and hence, all strings that can be
generated from G5 have the same number of a’s and b’s. Can all strings
that contain equal a’s and b’s be generated using G5? We visit this
(much deeper) question in the next section. If you try to experimentally
check this conjecture out, you will find that no matter what string of
a’s and b’s you try, you can find a derivation for it using G5 so long as
the string has an equal number of a’s and b’s.

Note: We employ ε, e, and epsilon interchangeably, often for
the ease of type-setting. �

13.2 Consistency, Completeness, and Redundancy

Consider the following CFG G6 which has one extra production rule
compared to G5:

Grammar G6:
S → aSbS | bSaS | SS | ε.

As with grammar G5, all strings generated by G6 also have an equal
number of a’s and b’s. If we identify this property as consistency, then
we find that grammars G5 and G6 satisfy consistency. What about
completeness? In other words, will all such strings be derived? Does it
appear that the production S → SS is essential to achieve complete-
ness? It turns out that it is not - we can prove that G5 is complete,
thus showing that the production S → SS of G6 is redundant.

How do we, in general, prove grammars to be complete? The general
problem is undecidable,1 as we shall show in Chapter 17. However,
for particular grammars and particular completeness criteria, we can
establish completeness, as we demonstrate below.

Proof of completeness:

The proof of completeness typically proceeds by induction. We have to
decide between arithmetic or complete induction; in this case, it turns
out that complete induction works better. Using complete induction,
we write the inductive hypothesis as follows:

1 The undecidability theorem that we shall later show is that for an arbitrary

grammar G, it is not possible to establish whether L(G) is equal to Σ∗.
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Fig. 13.2. A string that does not cause zero-crossings. The numbers below
the string indicate the running difference between the number of a’s and the
number of b’s at any point along the string
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Fig. 13.3. A string that causes zero-crossings

Suppose G5 generates all strings less than n in length having an
equal number of a’s and b’s.

Consider now a string of length n + 2 – the next longer string that has
an equal number of a’s and b’s. We can now draw a graph showing the
running difference between the number of a’s and the number of b’s,
as in Figure 13.2 and Figure 13.3. This plot of the running difference
between #a and #b is either fully above the x-axis, fully below, or has
zero-crossings. In other words, it can have many “hills” and “valleys.”
Let us perform a case analysis:

1. The graph has no zero-crossings. There are further cases:
a) it begins with an a and ends with a b, as in Figure 13.2.
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b) it begins with a b and ends with an a (this case is symmetric
and hence will not be explicitly argued).

2. It has zero-crossings, as in Figure 13.3. Again, we consider only
one case, namely the one where the first zero-crossing from the left
occurs after the curve has grown in the positive direction (i.e., after
more a’s occur initially than b’s).

Let us consider case 1a. By induction hypothesis, the shorter string
in the middle can be generated via S. Now, the entire string can be
generated as shown in Figure 13.2 using production S -> aSbS, with
a matching the first a, the first S matching ‘the shorter string in the
middle,’ the b matching the last b in the string, and the second S going
to ε. Case 1b may be similarly argued. If there is a zero-crossing, then
we attack the induction as illustrated in Figure 13.3, where we split
the string into the portion before its last zero-crossing and the portion
after its last zero-crossing. These two portions can, by induction, be
generated from G5, with the first portion generated as aSb and the
second portion generated as an S, as in Figure 13.3. �.

Illustration 13.2.1 Consider

Lambnck = {ambnck | m,n, k ≥ 0 and ((m = n) or (n = k))}

Develop a context-free grammar for this language. Prove the grammar
for consistency and completeness.
Solution: The grammar is given below. We achieve “equal number of
a’s and b’s” by growing “inside out,” as captured by the rule M -> a M
b. We achieve zero or more c’s by the rule C -> c C or e. Most CFGs
get designed through the use of such “idioms.”

S -> M C | A N

M -> a M b | e

N -> b N c | e

C -> c C | e

A -> a A | e

Consistency: No string generated by S must violate the rules of being
in language Lambnck . Therefore, if M generates matched a’s and b’s, and
C generates only c’s, consistency is guaranteed. The other case of A and
N is very similar.

Notice that from the production of M, we can see that it generates
matched a’s and b’s in the e case. Assume by induction hypothesis
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that in the M occurring on the right-hand side of the rule, M -> a M b,
respects consistency. Then the M of the left-hand side of this rule has
an extra a in front and an extra b in the back. Hence, it too respects
consistency.
Completeness: We need to show that any string of the form anbnck or
akbncn can be generated by this grammar. We will consider all strings
of the kind anbnck and develop a proof for them. The proof for the case
of akbncn is quite similar and hence is not presented.

We resort to arithmetic induction for this problem. Assume, by in-
duction hypothesis that the particular 2n + k-long string anbnck was
derived as follows:

• S ⇒ M C.
• M ⇒∗ anbn through a derivation sequence that we call S1, and
• C ⇒∗ ck through derivation sequence S2.
• S ⇒ M C ⇒∗ anbn C ⇒∗ anbn ck. Notice that in this derivation
sequence, the first ⇒∗ derivation sequence is what we call S1 and
the second ⇒∗ derivation sequence is what we call S2.

Now, consider the next legal longer string. It can be either an+1bn+1ck

or anbnck+1. Consider the goal of deriving an+1bn+1ck. This can be
achieved as follows:

• S ⇒ M C ⇒ a M b C.
• Now, invoking the S1 sequence, we get ⇒∗ a anbn b C.
• Now, invoking the S2 sequence, we get ⇒∗ a anbn b ck; and hence,
we can derive an+1bn+1ck.

Now, anbnck+1 can be derived as follows:

• S ⇒ M C ⇒ M c C.
• Now, invoking the S1 derivation sequence, we get ⇒∗ anbn c C.
• Finally, invoking the S2 derivation sequence, we get ⇒∗ anbn ck+1.

Hence, we can derive any string that is longer than anbnck, and so by
induction we can derive all legal strings.

13.2.1 More consistency proofs

In case of grammars G5 and G6, writing a consistency proof was rather
easy: we simply observed that all productions introduce equal a’s and
b’s in each derivation step. Sometimes, such “obvious” proofs are not
possible. Consider the following grammar G9:

S -> ( W S | e

W -> ( W W | ).
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It turns out that grammar G9 generates the language of the set of all
well-parenthesized strings, even though three of the four productions
appear to introduce unbalanced parentheses. Let us first formally define
what it means to be well-parenthesized (see also Exercise 12.10), and
then show that G9 satisfies this criterion.

Well-parenthesized strings

A string x is well-parenthesized if:

1. The number of ( and ) in x is the same.
2. In any prefix of x, the number of ( is greater than or equal to the

number of ).

With this definition in place, we now show that G9 generates only
consistent strings. We provide a proof outline:

1. Conjecture about S: same number of ( and ). Let us establish this
via induction.
a) Epsilon (e) satisfies this.
b) How about ( W S ?
c) OK, we need to “conquer” W.

i. Conjecture about W: it generates strings that have one more
) than (.

ii. This is true for both arms of W.
iii. Hence, the conjecture about W is true.

d) Hence, the conjecture about S is true.
e) Need to verify one more step: In any prefix, is the number of (

more than the number of )?
f) Need conjecture about W: In any prefix of a string generated

by W, number of ) at most one more than the number of (.
Induct on the W production and prove it. Then S indeed satisfies
consistency. �.

13.2.2 Fixed-points again!

The language generated by a CFG was explained through the notion
of a derivation sequence. Can this language also be obtained through
fixed-points? The answer is ‘yes’ as we now show.

Consider recasting the grammar G5 as a language equation (call the
language L(S5)):

L(S5) = {a} L(S5) {b} L(S5) ∪ {b} L(S5) {a} L(S5) ∪ {ε}.
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Here, juxtaposition denotes language concatenation. What solutions
to this language equation exist? In other words, find languages to plug
in place of L(S5) such that the right-hand side language becomes equal
to the left-hand side language. We can solve such language equations
using the fixed-point theory introduced in Chapter 7. In particular, one
can obtain the least fixed-point by iterating from “bottom” which, in
our context, is the empty language ∅. The least fixed-point is also the
language computed by taking the derivation sequence perspective.

To illustrate this connection between fixed-points and derivation
sequences more vividly, consider a language equation obtained from
CFG G6:

L(S6) = {a}L(S6){b}L(S6) ∪ {b}L(S6){a}L(S6) ∪ {b}L(S6)L(S6) ∪ {ε}

It is easy to verify that this equation admits two solutions, one of which
is the desired language of equal a’s and b’s, and the other language
is a completely uninteresting one (see Exercise 13.5). The language
equation for L(S5) does not have multiple solutions. It is interesting to
note that the reason why L(S6) admits multiple solutions is because of
the redundant rule in it. To sum up:

• Language equations can have multiple fixed-points.
• The least fixed-point of a language equation obtained from a

CFG also corresponds to the language generated by the derivation
method.

These observations help sharpen our intuitions about least fixed-points.
The notion of least fixed-points is central to programming because pro-
grams also execute through “derivation steps” similar to those em-
ployed by CFGs. Least fixed-points start with “nothing” and help at-
tain the least (most irredundant) solution. As discussed in [20] and
also in Chapter 22, in Computational Tree Logic (CTL), both the least
fixed-point and the greatest fixed-point play significant and meaningful
roles.

13.3 Ambiguous Grammars

As we saw in Figures 13.1(b) and 13.1(c), even for one string such as
1110, it is possible to have two distinct parse trees. In a compiler, the
existence of two distinct parse trees can lead to the compiler producing
two different codes - or can ascribe two different meanings - to the same
sentence. This is highly undesirable in most settings. For example, if we
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E

E + T

T T * F

F F 6

4 5

Fig. 13.4. Parse tree for 4 + 5 ∗ 6 with respect to G8.

have an arithmetic expression 4 +5 ∗ 6, we want it parsed as 4 + (5 ∗ 6)
and not as (4 + 5) ∗ 6. If we write the expression grammar as G7,

Grammar G7:
E → E + E | E ∗ E | number,

then both these parses (and their corresponding parse trees) would be
possible, in effect providing an ambiguous interpretation to expressions
such as 4 + 5 ∗ 6. It is necessary to disambiguate the grammar, for
example by rewriting the simple expression grammar above to grammar
G8. One such disambiguated grammar is the following:

Grammar G8:
E → E + T | T
T → T ∗ F | F
F → number | (E).

In the rewritten grammar, for any expression containing + and ∗, the
parse trees will situate ∗ deeper in the tree (closer to the frontier) than
+, thus, in effect, forcing the evaluation of ∗ first, as illustrated in
Figure 13.4.

13.3.1 If-then-else ambiguity

An important practical example of ambiguity arises in the context of
grammars pertaining to if statements, as illustrated below:

STMT -> if EXPR then STMT

| if EXPR then STMT else STMT

| OTHER

OTHER -> p
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EXPR -> q

The reason for ambiguity is that the else clause can match either of the
then clauses. Compiler writers avoid the above if-then-else ambiguity
by modifying the above grammar in such a way that the else matches
with the closest unmatched then. One example of such a rewritten
grammar is the following:

STMT -> MATCHED | UNMATCHED

MATCHED -> if EXPR then MATCHED else MATCHED | OTHER

UNMATCHED -> if EXPR then STMT

| if EXPR then MATCHED else UNMATCHED

OTHER -> p

EXPR -> q

This forces the else to go with the closest previous unmatched then.

13.3.2 Ambiguity, inherent ambiguity

In general, it is impossible to algorithmically decide whether a given
CFG is ambiguous (see Chapter 17 and Exercise 17.2 that comes with
hints). In practice, this means that there cannot exist an algorithm
that can determine whether a given CFG is ambiguous. To make things
worse, there are inherently ambiguous languages – languages for which
every CFG is ambiguous. If the language that one is dealing with is
inherently ambiguous, it is not possible to eliminate ambiguity in all
cases, such as we did by rewriting grammar G7 to grammar G8.

Notice that the terminology is not inherently ambiguous gram-
mar but inherently ambiguous language - what we are saying is
every grammar is ambiguous for certain CFLs.

An example of an inherently ambiguous language is

{0i1j2k | i, j, k ≥ 0 ∧ i = j ∨ j = k}.

The intuition is that every grammar for this language must have pro-
ductions geared towards matching 0s against 1s and 1s against 2s. In
this case, given a string of the form 0k1k2k, either of these options can
be exercised. A formal proof may be found in advanced papers in this
area, such as [82].
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13.4 A Taxonomy of Formal Languages and Machines

Machines Languages Nature of grammar

DFA/NFA Regular
Left-linear or Right-linear
productions

DPDA
Deterministic
CFL

Each LHS has one non-terminal
The productions are deterministic

NPDA
(or “PDA”) CFL

Each LHS has only
one non-terminal

LBA
Context Sensitive
Languages

LHS may have length > 1, but
| LHS| ≤ |RHS|, ignoring ε productions

DTM/NDTM
Recursively
Enumerable

General grammars
(|LHS| ≥ |RHS| allowed)

Fig. 13.5. The Chomsky hierarchy and allied notions

We now summarize the formal machines, as well as languages, stud-
ied in this book in the table given in Figure 13.5. This is known as the
Chomsky hierarchy of formal languages. For each machine, we describe
the nature of its languages, and indicate the nature of the grammar
used to describe the languages. It is interesting that simply by vary-
ing the nature of production rules, we can obtain all members of the
Chomsky hierarchy. This single table, in a sense, summarizes some of
the main achievements of over 50 years of research in computability,
machines, automata, and grammars. Here is a summary of the salient
points made in this table, listed against each of the language classes:2

Regular languages:

DFAs and NFAs serve as machines that recognize regular languages.
Context-free grammars written with only left-linear or only right-linear
productions can generate or recognize regular languages. The linearity

2 We prefer to highlight the language classes as they constitute the more abstract
concept, while machines and grammars are two different syntactic devices that
denote languages.
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of the production rules means that there is only one non-terminal al-
lowed on the RHS of each production, which appears leftmost or right-
most. Hence, these non-terminals can be regarded as states of an NFA,
as discussed in Section 13.6.

Deterministic context-free languages (DCFL):

Push-down automata are machines that recognize DCFLs, as illus-
trated in Illustration 13.4.2. In effect, they can parse sentences in the
language without backtracking (deterministically). As for grammars,
the fact that each context-free production specifies the expansion of
one and only one non-terminal on the left-hand side means that this
expansion is good wherever the non-terminal appears—i.e., regardless
of the context (hence “context-free”). The grammars are deterministic,
as illustrated in Illustration 13.4.2.

Context-free languages (CFL):

These are more general than DCFLs, as the constraint of determinism
is removed in the underlying machines and grammars.

Context-sensitive languages (CSL):

CSLs can be recognized by linear bounded automata which are described
in Section 15.2.3. Basically, they are restricted Turing machines which
can write only on that portion of the input tape on which the input
was originally laid out. In particular, given any LBA M and a string
w, it can be conclusively answered as to whether M accepts w or not.
This is impossible with a Turing machine.

As for grammars, CSLs are recognized by productions in which the
length of a left-hand side is allowed to be more than 1. Such a context-
sensitive production specifies a pattern on the LHS, and a sentential
form on the RHS. In a sense, we can have a rule of the form a A d

-> a a c d and another of the form a A e -> a c a d. Notice that
A’s expansion when surrounded by a and d can be different from when
surrounded by a and e, thus building in context sensitivity to the in-
terpretation of A. The length of the RHS is required to be no less than
that of the LHS (except in the ε case) to ensure decidability in some
cases.

Recursively enumerable or Turing recognizable (RE or TR) languages:

These form the most general language class in the Chomsky hierarchy.
Notice that Turing machines as well as unrestricted productions, form
the machines and grammars for this language class.
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CFGs and CFLs are fundamental to computer science because they
help describe the structure underlying programming languages. The
basic “signature” of a CFL is “nested brackets:” for example, nesting
occurs in expressions and in very many statically scoped structures
in computer programs. In contrast, the basic signature of regular lan-
guages is “iteration (looping) according to some ultimate periodicity.”

Illustration 13.4.1 Let us argue that the programming language C
is not regular. Let there be a DFA for C with n states. Now consider
the C program

CNOP = {main(){n}n | n ≥ 0}.

Clearly, the DFA for C will loop in the part described by main(){n,
and by pumping this region wherever the loop might fall, we will obtain
a malformed C program. Some of the pumps could, for instance, result
in the C program maiaiain(){. . ., while some others result in strings
of the form main{{{}}, etc.
Using a CFG, we can describe CNOP using production rules, as follows:

L_C_nop -> main Paren Braces

Paren -> ()

Braces -> epsilon | { Braces }.

13.4.1 Non-closure of CFLs under complementation

It may come as a surprise that most programming languages are not
context-free! For instance, in C, we can declare function prototypes that
can introduce an arbitrary number of arguments. Later, when the func-
tion is defined, the same arguments must appear in the same order. The
structure in such “define/use” structures can be captured by the lan-
guage

Lww = {ww | w ∈ {0, 1}∗}.
As we shall sketch in Section 13.8 (Illustration 13.8.1), this language

is not context-free. It is a context-sensitive language which can be ac-
cepted by a linear bounded automaton (LBA). Basically, an LBA has a
tape, and can sweep across the tape as many times as it wants, writing
“marking bits” to compare across arbitrary reaches of the region of the
tape where the original input was presented. This mechanism can easily
spot a w and a later w appearing on the tape. The use of symbol tables
in compilers essentially gives it the power of LBAs, making compilers
able to handle C prototype definitions.
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While Lww is not context-free, its complement, Lww, is indeed a
CFL. This means that CFLs are not closed under complemen-
tation!

Lww is generated by the following grammar Gww :

Grammar Gww:
S -> AB | BA | A | B

A -> CAC | 0

B -> CBC | 1

C -> 0 | 1.

Illustration 13.4.2 For each language below, write

• R if the language is regular,
• DCFL if the language is deterministic context-free (can be recog-
nized by a DPDA),
• CFL if it can be recognized by a PDA but not a DPDA,
• IA if the language is CFL but is inherently ambiguous, and
• N if not a CFL.

Also provide a one-sentence justification for your answer. Note: In some
cases, the language is described using the set construction, while in
other cases, the language is described via a grammar (“L(G)”).

1. {x | x is a prefix of w for w ∈ {0, 1}∗}.
Solution: This is R, because the language is nothing but {0, 1}∗.

2. L(G) where G is the CFG S → 0 S 0 | 1 S 1 | ε.
Solution: CFL, because nondeterminism is required in order to
guess the midpoint.

3. {anbmcndm | m,n ≥ 0}.
Solution: The classification is N , because comparison using a single
stack is not possible. If we push an followed by bm, it is no longer
possible to compare cn against an, as the top of the stack contains
bm. Removing bm “temporarily” and restoring it later isn’t possible,
as it is impossible to store away bm in the finite-state control.

4. {anbn | n ≥ 0}.
Solution: DCFL, since we can deterministically switch to matching
b’s.

5. {aibjck | i, j, k ≥ 0 and i = j or j = k}.
Solution: IA, because for i = j = k, we can have two distinct parses,
one comparing a’s and b’s, and the other comparing b’s and c’s (the
capability for these two comparisons must exist in any grammar,
because of the “or” condition).
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Illustration 13.4.3 Indicate which of the following statements per-
taining to closure properties is true and which is false. For every true
assertion below, provide a one-sentence supportive answer. For every
false assertion below, provide a counterexample.

1. The union of a CFL and a regular language is a CFL.
Solution: True, since regular languages are also CFLs. Write the top-
level production of the new CFL as S -> A | B where A generates
the given CFL and B generates the given regular language.

2. The intersection of any two CFLs is always a CFL.
Solution: False. Consider {ambmcn | m,n ≥ 0} ∩ {ambncn |
m,n ≥ 0}. This is {anbncn | n ≥ 0}, which is not a CFL.

3. The complement of a CFL is always a CFL.
Solution: False. Consider Lww = {ww | w ∈ {0, 1}∗} which was
discussed on page 230. Try to come up with another example your-
self.

Illustration 13.4.4 Describe the CFL generated by the following
grammar using a regular expression. Show how you handled each of
the non-terminals.
S → TT
T → UT | U
U → 0U | 1U | ε.

It is easy to see that U generates a language represented by regular
expression (0 + 1)∗, while T generates U+. Note that for any regular
expression R, it is the case that (R∗)+ is R∗ ∪ R∗R∗ ∪ R∗R∗R∗ . . .
which is R∗. Therefore, T generates (0 + 1)∗. Now, S generates TT , or
(0+1)∗(0+1)∗, which is the same as (0+1)∗. Therefore, L(S) = {0, 1}∗.

13.4.2 Simplifying CFGs

We illustrate a technique to simplify grammars through an example.

Illustration 13.4.5 Simplify the following grammar, explaining why
each production or non-terminal was eliminated:

S → A B | D
A → 0 A | 1 B | C
B → 2 | 3 | A
D → A C | B D
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E → 0.

Solution: Grammars are simplified as follows. First, we determine which
non-terminals are generating - have a derivation sequence to a terminal
string (if a non-terminal is non-generating, the language denoted by it
is ∅, and we can safely eliminate all such non-terminals, as well as, re-
cursively, all other non-terminals that use them). We can observe that
in our example, B is generating. Therefore, A is generating. C is an
undefined non-terminal, and so we can eliminate it. Now, we observe
that S is generating, since AB is generating; so we had better retain
S (!). D is reachable (‘reachable’ means that it appears in at least one
derivation sequence starting at S) but non-generating, so we can elimi-
nate D. Finally, E is not reachable from S through any derivation path,
and hence we can eliminate it, all productions using it (none in our ex-
ample), and all productions expanding E (exactly one in our example).
Therefore, we obtain the following simplified CFG:

S → A B
A → 0 A | 1 B
B → 2 | 3 | A.

Here, then, are sound steps one may employ to simplify a given
CFG (it is assumed that the productions are represented in terms of
elementary productions in which the disjunctions separated by | on the
RHS of a production rule are expressed in terms of separate productions
for the same LHS):

• A non-generating non-terminal is useless, and it can be eliminated.
• A non-terminal for which there is no rule defined (does not appear
on the left-hand side of any rule) is non-generating in a trivial sense.
• The property of being non-generating is ‘infectious’ in the following
sense: if non-terminal N1 is non-generating, and if N1 appears in
every derivation sequence of another non-terminal N2, then N2 is
also non-generating.
• A non-terminal that does not appear in any derivation sequence
starting from S is unreachable.
• Any CFG production rule that contains either a non-generating
or an unreachable non-terminal can be eliminated.
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Illustration 13.4.6 Simplify the following grammar, clearly showing
how each simplification was achieved (name criteria such as ’generating’
and ’reaching’):

S -> A B | C D

A -> 0 A | 1 B

B -> 2 | 3

D -> A C | B D E

E -> 4 E | D | 5.

B is generating. Hence, A is generating. S is generating. B, A, and S are
reachable. Hence, S, A, and B are essential to preserve, and therefore C
and D are reachable; however, C is not generating. Hence, production
CD is useless. Hence, we are left with:

S -> A B

A -> 0 A | 1 B

B -> 2 | 3.

�

We now examine push-down automata which are machines that recog-
nize CFLs, and bring out some connections between PDAs and CFLs.

13.5 Push-down Automata

A push-down automaton (PDA) is a structure (Q,Σ,Γ, δ, q0, z0, F )
where Q is a finite set of states, Σ is the input alphabet, Γ is the
stack alphabet (that usually includes the input alphabet Σ), q0 is the
initial state, F ⊆ Q is the set of accepting states, z0 the initial stack
symbol, and

δ : Q × (Σ ∪ {ε}) × Γ → 2Q×Γ ∗
.

In each move, a PDA can optionally read an input symbol. However,
in each move, it must read the top of the stack (later, we will see that
this assumption comes in handy when we have to convert a PDA to
a CFG). Since we will always talk about an NPDA by default, the δ
function returns a set of nondeterministic options. Each option is a
next-state to go to, and a stack string to push on the stack, with the
first symbol of the string appearing on top of the stack after the push
is over. For example, if 〈q1, ba〉 ∈ δ(q0, x, a), the move can occur when
x can be read from the input and the stack top is a. In this case, the
PDA moves over x (it cannot read x again). Also, an a is removed from
the stack. However, as a result of the move, an a is promptly pushed
back on the stack, and is followed by a push of b, with the machine
going to state q1. The transition function δ of a PDA may be either
deterministic or nondeterministic.
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13.5.1 DPDA versus NPDA

A push-down automaton can be deterministic or nondeterministic.
DPDA and NPDA are not equivalent in power; the latter are strictly
more powerful than the former. Also, notice that unlike with a DFA,
a deterministic PDA can move on ε. Therefore, the exact specification
of what deterministic means becomes complicated. We summarize the
definition from [60]. A PDA is deterministic if and only if the following
conditions are met:

1. δ(q, a,X) has at most one member for any q in Q, a in Σε, and X
in Γ .

2. If δ(q, a,X) is non-empty, for some a in Σ, then δ(q, ε,X) must be
empty.

In this book, I will refrain from giving a technically precise defini-
tion of DPDAs. It really becomes far more involved than we wish to
emphasize in this chapter, at least. For instance, with a DPDA, it be-
comes necessary to know when the string ends, thus requiring a right
end-marker �. For details, please see [71, page 176].

13.5.2 Deterministic context-free languages (DCFL)

Current
State Input Stack

top
String
pushed

New
State Comments

q0 0 z0 0 z0 q1 0. Have to push on this one
q0 1 z0 1 z0 q1 ...or this one
q1 0 0 0 0 q1 1a.Assume not at midpoint
q1 0 1 0 1 q1 Have to push on this one
q1 0 0 ε q1 1b. Assume at midpoint
q1 1 1 1 1 q1 2a. Assume not at midpoint
q1 1 0 1 0 q1 Have to push on this one
q1 1 1 ε q1 2b. Assume at midpoint
q1 ε z0 z0 q2 3. Matched around midpoint

Fig. 13.6. A PDA for the language L0 = {wwR | w ∈ {0, 1}∗}

A deterministic context-free language (DCFL) is one for which there
is a DPDA that accepts the same language. Consider the language

Language L0 = {wwR | w ∈ {0, 1}∗}.
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L0 is not a DCFL because in any PDA, the use of nondeterminism is
essential to “guess” the midpoint. Figure 13.6 presents the δ function
of a PDA designed to recognize L0. This PDA is described by the
structure

PL0
= ({q0, }, {0, 1}, {0, 1, z0}, δ, q0, z0, {q0, q2}).

This PDA begins by stacking 0 or 1, depending on what comes first.
The comments 1a and 1b describe the nondeterministic selection of
assuming not being at a midpoint, and being a midpoint, respectively.
A similar logic is followed in 2a and 2b as well. Chapter 14 describes
PDA construction in greater detail.
Let us further our intuitions about PDAs by considering a few lan-
guages:

L1: {aibjck | if i = 1 then j = k}.

L2: {aibjckdm | i, j, k,m ≥ 0 ∧ if i = 1 then j = k else k = m}

L3: {ww | w ∈ {0, 1}∗}.

L4: {0, 1}∗ \ {ww | w ∈ {0, 1}∗}.

L5: {aibjck | i = j or i = k}.

L6: {anbncn | n ≥ 0}.
L1 is a DCFL, because after seeing whether i = 1 or not, a deter-

ministic algorithm can be employed to process the rest of the input. A
DPDA can be designed for reverse(L1) also. Likewise, a DPDA can be
designed for L2. However, as discussed in Section 8.1.4, reverse(L2) is
not a DCFL, as it is impossible to keep both decisions – whether j = k
or k = m – ready by the time i is encountered. L3 is not a CFL at all.
However, L4, the complement of L3, is a CFL. L5 is a CFL (but not a
DCFL) – the guesses of i = j or i = k can be made nondeterministi-
cally. Finally, L6 is not a CFL, as we cannot keep track of the length
of three distinct strings using one stack. �

13.5.3 Some Factoids

Here are a few more factoids that tie together ambiguity (of grammars)
and determinism (of PDA):
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• If one can obtain a DPDA for a language, then that language is not
inherently ambiguous. This is because for an inherently ambiguous
language, every CFG admits two parses, thus meaning that there
cannot be a DPDA for it.

• There are CFLs that are not DCFLs (have no DPDA), and yet they
have non-ambiguous grammars. The grammar

S -> 0 S 0 | 1 S 1 | e

is non-ambiguous, and yet denotes a language that is not a DCFL.
In other words, this CFG generates all the strings of the form ww,R

and these strings have only one parse tree. However, since the mid-
point of such strings isn’t obvious during a left-to-right scan, a
nondeterministic PDA is necessary to parse such strings.

13.6 Right- and Left-Linear CFGs

A right-linear CFG is one where every production rule has exactly
one non-terminal and that it also appears rightmost. For example, the
following grammar is right-linear:

S -> 0 A | 1 B | e

A -> 1 C | 0

B -> 0 C | 1

C -> 1 | 0 C.

Recall that S -> 0 A | 1 B | e is actually three different production
rules S -> 0 A, S -> 1 B, and S -> e, where each rule is right-linear.
This grammar can easily be represented by the following NFA obtained
almost directly from the grammar:

IS - 0 -> A

IS - 1 -> B

IS - e -> F1

A - 1 -> C

A - 0 -> F2

B - 0 -> C

B - 1 -> F3

C - 0 -> C

C - 1 -> F4.

A left-linear grammar is defined similar to a right-linear one. An ex-
ample is as follows:

S -> A 0 | B 1 | e

A -> C 1 | 0

B -> C 1 | 1

C -> 1 | C 0.
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A purely left-linear or a purely right-linear CFG denotes a regular
language. However, the converse is not true; that is, if a language is
regular, it does not mean that it has to be generated by a purely left-
linear or purely right-linear CFG. Even non-linear CFGs are perfectly
capable of sometimes generating regular sets, as in

S -> T T | e

T -> 0 T | 0.

It also must be borne in mind that we cannot “mix up” left- and right-
linear productions and expect to obtain a regular language. Consider
the productions

S -> 0 T | e

T -> S 1.

In this grammar, the productions are linear - left or right. However,
since we use left- and right-linear rules, the net effect is as if we defined
the grammar

S -> 0 S 1 | e

which generates the non-regular context-free language

{0n1n | n ≥ 0}.

Conversion of purely left-linear grammars to NFA

Converting a left-linear grammar to an NFA is less straightforward.
We first reverse the language it represents by reversing the grammar.
Grammar reversal is approached as follows: given a production rule

S → R1R2 . . . Rn,

we obtain a production rule for the reverse of the language represented
by S by reversing the production rule to:

Sr → Rr
nRr

n−1 . . . Rr
1.

Applying this to the grammar at hand, we obtain

Sr -> 0 Ar | 1 Br | e

Ar -> 1 Cr | 0

Br -> 1 Cr | 1

Cr -> 1 | 0 Cr.

Once an NFA for this right-linear grammar is built, it can be reversed
to obtain the desired NFA.
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13.7 Developing CFGs

Developing CFGs is much like programming; there are no hard-and-
fast rules. Here are reasonably general rules of the thumb for arriving
at CFGs:

1. (Use common idioms): Study and remember many common pat-
terns of CFGs and use what seems to fit in a given context. Ex-
ample: To get the effect of matched brackets, the common idiom
is

S -> ( S ) | e.

2. Break the problem into simpler problems:
Example: {ambn | m �= n, m, n ≥ 0}.

a) So, a’s and b’s must still come in order.
b) Their numbers shouldn’t match up.

i. Formulate matched up a’s and b’s
M -> e | a M b

ii. Break the match by adding either more A’s or more B’s
S -> A M | M B

A -> a | a A

B -> b | b B

13.8 A Pumping Lemma for CFLs

Consider any CFG G = (N,Σ,P, S). A Pumping Lemma for the lan-
guage of this grammar, L(G), can be derived by noting that a “very
long string” w ∈ L(G) requires a very long derivation sequence to derive
it from S. Since we only have a finite number of non-terminals, some
non-terminal must repeat in this derivation sequence, and furthermore,
the second occurrence of the non-terminal must be a result of expand-
ing the first occurrence (it must lie within the parse tree generated by
the first occurrence).

For example, consider the CFG

S -> ( S ) | T | e

T -> [ T ] | T T | e.

Here is an example derivation:
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S => ( S ) => (( T )) => (( [ T ] )) => (( [ ] ))

^ ^

Occurrence-1 Occurrence-2

Occurrence-1 involves Derivation-1: T => [ T ] => [ ]

Occurrence-2 involves Derivation-2: T => e

Here, the second T arises because we took T and expanded it into
[ T ] and then to [ ]. Now, the basic idea is that we can use
Derivation-1 used in the first occurrence in place of Derivation-2, to
obtain a longer string:

S => (S) => ((T)) => (( [ T ] )) => (( [[ T ]] )) => (( [[ ]] ))

^ ^

Occurrence-1 Use Derivation-1 here

In the same fashion, we can use Derivation-2 in place of Derivation-1
to obtain a shorter string, as well:

S => ( S ) => ( ( T ) ) => ( ( ) )

^

Use Derivation-2 here

When all this happens, we can find a repeating non-terminal that
can be pumped up or down. In our present example, it is clear that
we can manifest (([i ]i)) for i ≥ 0 by either applying Derivation-2

directly, or by applying some number of Derivation-1s followed by
Derivation-2. In order to conveniently capture the conditions men-
tioned so far, it is good to resort to parse trees. Consider a CFG with
|V | non-terminals, and with the right-hand side of each rule containing
at most b syntactic elements (terminals or non-terminals). Consider a
b-ary tree built up to height |V |+1, as shown in Figure 13.7. The string
yielded on the frontier of the tree w = uvxyz. If there are two such parse
trees for w, pick the one that has the fewest number of nodes. Now,
if we avoid having the same non-terminal used in any path from the
root to a leaf, basically each path will “enjoy” a growth up to height at
most |V | (recall that the leaves are terminals). The string w = uvxyz
is, in this case, of length at most b|V |. This implies that if we force
the string to be of length b|V |+1 (called p hereafter), a parse tree for
this string will have some path that repeats a non-terminal. Call the
higher occurrence V1 and the lower occurrence (contained within V1)
V2. Pick the lowest two such repeating pair of non-terminals. Now, we
have these facts:

|vxy| ≤ p; if not, we would find two other non-terminals that exist
lower in the parse tree than V1 and V2, thus violating the fact that
V1 and V2 are the lowest two such.
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V_1

S

V_2

Height |V| + 1
max. branching factor = b

V_2

u v x y z

S

u z

x

y zx

S

V_1

V_1

V_2
u v

v x y

Fig. 13.7. Depiction of a parse tree for the CFL Pumping Lemma. The
upper drawing shows a very long path that repeats a non-terminal, with the
lowest two repetitions occurring at V 2 and V 1 (similar to Occurrence-1 and
Occurrence-2 as in the text). With respect to this drawing: (i) the middle
drawing indicates what happens if the derivation for V 2 is applied in lieu of
that of V 1, and (ii) the bottom drawing depicts what happens if the derivation
for V 2 is replaced by that for V 1, which, in turn, contains a derivation for
V 2

|vx| ≥ 1; if not, we will in fact have w = uxz, for which a shorter
parse tree exists (namely, the one where we directly employ V2).
Now, by pumping, we can obtain the desired repetitions of v and y,
as described in Theorem 13.1.

Theorem 13.1. Given any CFG G = (N,Σ,P, S), there exists a num-
ber p such that given a string w in L(G) such that |w| ≥ p, we can split
w into w = uvxyz such that |vy| > 0, |vxy| ≤ p, and for every i ≥ 0,
uvixyiz ∈ L(G).
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We can apply this Pumping Lemma for CFGs in the same manner as
we did for regular sets. For example, let us sketch that Lww of page 230
is not context-free.

Illustration 13.8.1 Suppose Lww were a CFL. Then the CFL Pump-
ing Lemma would apply. Let p be the pumping length associated with
a CFG of this language. Consider the string 0p1p0p1p which is in Lww.
The segments v and y of the Pumping Lemma are contained within
the first 0p1p block, in the middle 1p0p block or in the last 0p1p block,
and in each of these cases, it could also have fallen entirely within a
0p block or a 1p block. By pumping up or down, we will then obtain a
string that is not within Lww. �

Exercise 13.13 demonstrates another “unusual” application of the CFG
Pumping Lemma.

Chapter Summary

This chapter discussed the notion of context-free grammars and context-
free languages. We emphasized ‘getting a grammar right’ by showing
that it has two facets—namely consistency and completeness. Fixed-
point theory helps appreciate context-free grammars in terms of re-
cursive equations whose least fixed-point is the “desired” context-free
language. We discussed ambiguity and disambiguation—two topics that
compiler writers deeply care about. After discussing the Chomsky hier-
archy, we discuss the topics of closure properties (or lack thereof under
intersection and complementation). We present how CFGs may be sim-
plified. We then move on to push-down automata, which are machines
with a finite control and one stack. We discuss the fact that NPDAs
and DPDAs are not equivalent. We close off with a discussion of an in-
complete Pumping Lemma for CFLs. Curiously, there is also a complete
Pumping Lemma for CFLs (“strong Pumping Lemma” [124]). We do
not discuss this lemma (it occupies nearly one page even when stated
in a formal mathematical notation).

Exercises

13.1. Draw the parse tree for string

a a a b b a b b b b b b a a b a b a a a

with respect to grammar G5, thus showing that this string can be
derived according to the grammar.
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13.2.
1. Parenthesize the following expression according to the rules of stan-

dard precedence for arithmetic operators, given that ∼ stands for
unary minus:

∼ 1 ∗ 2 − 3 − 4/ ∼ 5.

2. Convert the above expression to Reverse Polish Notation (post-fix
form).

13.3. Prove by induction that the following grammar generates only
strings with an odd number of 1s. Clearly argue the basis case(s), the
inductive case(s), and what you prove regarding T and regarding S.

S → S T 0 | 0 1
T → 1 1 T | ε

13.4. Write the consistency proof pertaining to G9 in full detail. Then
write a proof for the completeness of the above grammar (that it gen-
erates all well-parenthesized strings).

13.5. Which other solution to the language equation of L(S6) of
page 225 exists?

13.6. Prove that Gww of Page 231 is a CFG for the language Lww. Hint:
The productions S -> A and S -> B generate odd-length strings. Also,
S -> AB and S -> BA generate all strings that are not of the form ww.
This is achieved by generating an even-length string pq where |p| = |q|
and if p is put “on top of” q, there will be at least one spot where they
both differ.

13.7. Argue that a DPDA satisfying the definition in Section 13.5.1
cannot be designed for the language {wwR | w ∈ Σ∗}.

13.8. (Adapted from Sipser [111]) Determine whether the context-free
language described by the following grammar is regular, showing all
the reasoning steps:

S -> T T | U

T -> 0 T | T 0 | #

U -> 0 U 0 0 | #.

13.9. Answer whether true or false:

1. There are more regular languages (RLs) than CFLs.
2. Every RL is also a CFL.
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3. Every CFL is also a RL.
4. Every CFL has a regular sublanguage (“sublanguage” means the

same as “subset”).
5. Every RL has a CF sublanguage.

13.10.
1. Obtain one CFG G1 that employs left-linear and right-linear pro-

ductions (that cannot be eliminated from G1) such that L(G1) is
regular.

2. Now obtain another grammar G2 where L(G2) is non-regular but
is a DCFL.

3. Finally, obtain a G3 where L(G3) is not a DCFL.

13.11. Using the Pumping Lemma, show that the language
{0n1n2n | n ≥ 0} is not context-free.

13.12. Show using the Pumping lemma that the language
{ww | w ∈ {0, 1}∗} is not context-free.

13.13. Prove that any CFG with |Σ| = 1 generates a regular set. Hint:
use the Pumping Lemma for CFLs together with the ultimate period-
icity result for regular sets. Carefully argue and conclude using the PL
for CFLs that we are able to generate only periodic sets.

13.14. Argue that the syntax of regular expressions is context-free while
the syntax of context-free grammars is regular!
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Push-down Automata and Context-free
Grammars

This chapter details the design of push-down automata (PDA) for vari-
ous languages, the conversion of CFGs to PDAs, and vice versa. In par-
ticular, after formally introducing push-down automata in Section 14.1,
we introduce two notions of acceptance - by final state and by empty
stack - in Sections 14.1.2 and 14.1.3, respectively. In Section 14.2, we
show how to prove PDAs correct using the Inductive Assertions method
of Floyd. We then present an algorithm to convert a CFG to a language-
equivalent PDA in Section 14.3, and an algorithm to convert a PDA
to a language-equivalent CFG in Section 14.4. This latter algorithm
is non-trivial - and so we work out an example entirely, and also show
how to simplify the resulting CFG and prove it correct. In Section 14.5,
we briefly discuss a normal form for context-free grammars called the
Chomsky normal form. We do not discuss other normal forms such as
the Greibach normal form, which may be found in most other text-
books. We then describe the Cocke-Kasami-Younger (CKY) parsing
algorithm for a grammar in the Chomsky normal form. Finally, we
briefly discuss closure and decidability properties in Section 14.6.

14.1 Push-down Automata

A push-down automaton (PDA) is a structure (Q,Σ,Γ, δ, q0, z0, F )
where Γ is the stack alphabet (that usually includes the input alphabet
Σ), z0 is the initial stack symbol, and δ : Q × (Σ ∪ {ε}) × Γ → 2Q×Γ ∗

is the transition function that takes a state, an input symbol (or ε),
and a stack symbol (or ε) to a set of states and stack contents. In
particular, the 2Q×Γ ∗

in the range of the signature indicates that the
PDA can nondeterministically assume one of many states and stack
contents. Also, as the signature of the δ function points out, in each
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move, a PDA may or may not read an input symbol (note the ε in the
signature), but must read the top of the stack in every move (note the
absence of a ε associated with Γ ).

We must point out that many variations on the above signature
are possible. In [111] and in the JFLAP tool [66], for instance, PDAs
may also optionally read the top of the stack (in effect, they employ
the signature δ : Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) → 2Q×Γ ∗

). Such varia-
tions do not fundamentally change the “power” of PDAs. We adopted
our convention—of always reading and popping the stack during every
move—because it yields an intuitively clearer algorithm for converting
PDAs to CFGs1 (following [60]).

Notions of Acceptance:

There are two different notions of acceptance of a string by a PDA.
According to the first, a PDA accepts a string when, after reading the
entire string, the PDA is in a final state. According to the second, a
PDA accepts a string when, after reading the entire string, the PDA
has emptied its stack. We define these notions in Sections 14.1.2 and
14.1.3. In both these definitions, we employ the notions of instanta-
neous descriptions (ID), and step relations , as well as its reflexive
and transitive closure, ∗.

Instantaneous Description:

An instantaneous description (ID) for a PDA is a triple of the form

(state, unconsumed input, stack contents)

Formally, the type of the instantaneous description of a PDA is TID =
Q × Σ∗ × Γ ∗. The type of  is  ⊆ TID × TID. The  relation is as
follows:

(q, aσ, bγ)  (p, σ, gγ)〉 iff
a ∈ Σε ∧ b ∈ Γ ∧ g ∈ Γ ∗ ∧ ∃(p, g) ∈ δ(q, a, b).

In other words, if δ allows a move from state q and stack top b to state p
via input a ∈ Σ∪{ε}, then  does allow that. In this process, the stack
top b is popped, and the new stack contents described by g is pushed
on. The first symbol of g ends up at the top of the stack. Sometimes,
the last symbol of g is set to b, thus helping restore b (that was popped).
In some cases, g is actually made equal to b, thus modeling the fact
that the stack did not suffer any changes.

1 In fact, a PDA move that optionally reads the top of the stack may be represented
by a PDA move that reads whatever is on top of the stack, but pushes that symbol
back.
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14.1.1 Conventions for describing PDAs

We prefer to draw tables of PDA moves. Please make the tables de-
tailed. Do write comments - after all, you are coding in a pretty low-level
language that is highly error-prone; therefore, the more details you pro-
vide, the better it is for readers to follow your work. A diagram will
also be highly desirable, as is included in Figure 14.1.

In Section 14.2, we present a method to formally prove the correct-
ness of PDAs using the inductive assertions method of Floyd [40]. This
technique should convince the reader that arguing the correctness of
a PDA is akin to verifying a program; both are activities that can be
rendered difficult if comments and clear intuitive explanations are not
provided.

The diagramming style we employ for PDAs resembles state dia-
grams used for NFAs and DFAs, the only difference being that we now
annotate moves by insymb, ssymb → sstr where

insymb is an input symbol or ε,
ssymb is a stack symbol, and
sstr is a string of stack symbols that is pushed onto the stack when
the move is executed.

Also, recall that PDAs don’t need to specify a behavior for every possi-
ble insymb/ssymb combination at every state. If an unspecified combi-
nation occurs, the next state of the PDA is undefined. In effect, PDAs
are partial functions from inputs and stack contents to new stack con-
tents and new states.
As said earlier, a PDA accepts an input if the input leads it to one of
the final states. There is one important difference between DFAs and
DPDAs: the latter may have undefined input/stack combinations. In
other words, one does not have to fully decode inputs and transition
to “black hole” states upon arrival of illegal inputs, as with a DFA.
Finally, recall the difference between NPDAs and DPDAs pointed out
in Section 13.5.1. Now we define the different notions of acceptance of
PDAs in more detail.

14.1.2 Acceptance by final state

A PDA accepts a string w by final state if and only if, for some
qf ∈ F , the final set of states of the PDA, (q0, w, z0) ∗ (qf , ε, g). For
any given PDA, our default assumption will be that of acceptance by
final state. The language of the PDA will be defined as follows:

{w | ∃g . (q0, w, z0) ∗ (qf , ε, g) for qf ∈ F}.
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Current
State Input Stack

top
String
pushed

New
State Comments

q0 0 z0 0 z0 q1 0. Have to push on this one
q0 1 z0 1 z0 q1 ...or this one
q1 0 0 0 0 q1 1a.Assume not at midpoint
q1 0 1 0 1 q1 Have to push on this one
q1 0 0 ε q1 1b. Assume at midpoint
q1 1 1 1 1 q1 2a. Assume not at midpoint
q1 1 0 1 0 q1 Have to push on this one
q1 1 1 ε q1 2b. Assume at midpoint
q1 ε z0 z0 q2 3. Matched around midpoint

q2q0 q1

0,z0 -> 0 z0
1,z0 -> 1 z0 E,z0 -> z0

0,0 -> 00
1, 1 -> 11
0,1 -> 01
1,0 -> 10
0,0 -> E
1,1 -> E

WINNER TOKEN LOSER TOKEN

(q0,001100, z0) (q0,001100, z0)

push |- (q1, 01100, 0z0) push |- (q1, 01100, 0z0)

push |- (q1, 1100, 00z0) pop |- (q1, 1100, z0)

push |- (q1, 100, 100z0) stuck! |- can’t accept

pop |- (q1, 00, 00z0)

pop |- (q1, 0, 0z0)

pop |- (q1, , z0)

accept |- (q2, , z0)

ACCEPT! REJECT!

Fig. 14.1. Transition table and transition graph of a PDA for the language
L0 = {wwR | w ∈ {0, 1}∗}, and an illustration of the � relation on input
001100
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For a PDA P whose acceptance is defined by final states, we employ the
notation “L(P )” to denote its language. In contrast, for a PDA P whose
acceptance is defined by empty stack, discussed next in Section 14.1.3,
we employ the notation “N(P )” to denote its language. These are,
respectively, subsets of Σ∗ that lead the PDA into a final state or
cause its stack to be emptied.

14.1.3 Acceptance by empty stack

To further highlight PDAs that accept by empty stack, we leave out
the F component from their seven-tuple presentation, thus obtaining
the six-tuple P2 = (Q,Σ,Γ, δ, q0, z0). For such PDAs, a string w is in
its language exactly when the following is true:

(q0, w, z0) ∗ (q, ε, ε).

Here, q ∈ Q, i.e., q is any state. All that matters is that the input is
entirely consumed and an empty stack results in doing so.

Consider the PDA for language L0 defined in Figure 13.6, repro-
duced in Figure 14.1 for convenience. This figure also shows how IDs
evolve. In particular, nondeterminism is clearly shown by the fact that
for the same input string, namely 001100, one token (called the “win-
ner”) can progress towards acceptance, while another token (called
“loser”) progresses towards demise. Each token also carries with it the
PDA stack. As long as one course of forward progress through  exists,
and leads to a final state (q2, in our present example), the given string
is accepted. The other tokens “die out.2” Such animations are best ob-
served using tools such as JFLAP [66]. In fact, JFLAP allows users to
choose the acceptance criterion—through final states, through empty
stack, or both (when a final state is reached on an empty stack3). JFLAP
maintains a view of each token as it journeys through the labyrinth of
a PDA transition diagram, therefore watching JFLAP animations is a
good way to build intuitions about PDAs.

An arbitrarily given PDA may reach a final state without having
emptied its stack. A given PDA may also have an empty stack in a state
other than its final state. It is, however, possible to modify a given PDA
so that it enters a final state or empties its stack only in a controlled

2 Nondeterminism in PDAs is akin to the “fork” operation in operating systems
such as Unix: an entire clone of the PDA, including its stack, are created at
every nondeterministic choice point, and these clones—or tokens as we have been
referring to them—either “win” or “lose.”

3 “...on an empty stomach?!”
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manner. Specifically, Section 14.1.4 describes how to convert a PDA
that accepts by final state into one that empties its stack exactly when
in a final state, and Section 14.1.4 describes how to convert a PDA that
accepts by empty stack into one that goes into a final state exactly when
its stack is empty.

Start state = q00

Current
State Input Stack

top
String
pushed

New
State Comments

q00 ε z00 z0 z00 q0 Start stack with z00; add z0 here.
q0 ε z0 z0 qS q0 is a final state; so jump to qS

qS ε any ε qS
qS drains the stack regardless of
what’s on top of the stack.

q0 0 z0 0 z0 q1 1a. Decide to stack a 0
q0 1 z0 1 z0 q1 2a. Decide to stack a 0
q1 0 0 0 0 q1 1a’. Decide to stack a 0
q1 0 1 0 1 q1 Forced to stack
q1 0 0 ε q1 1b. Decide to match
q1 1 1 1 1 q1 2a’. Decide to stack a 1
q1 1 0 1 0 q1 Forced to stack
q1 1 1 ε q1 2b. Decide to match
q1 ε z0 z0 q2 Prepare to drain the stack

q2 ε z0 z0 qS
Jump to
stack-draining state qS

q00 q0
e,z00 -> z0 z00

q1
0,z0 -> 0 z0
1,z0 -> 1 z0

qSe,z0 -> z0

0,0 -> 00 1, 1 -> 11 0,1 -> 01
1,0 -> 10 0,0 -> e 1,1 -> e

q2
e,z0 -> z0

e,z0 -> z0
e,any
-> e

Fig. 14.2. The PDA of Figure 13.6 converted to one that accepts by empty
stack. There are some redundancies in this PDA owing to our following a
standard construction procedure.
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14.1.4 Conversion of P1 to P2 ensuring L(P1) = N(P2)

Given a PDA P1 that accepts by final state, we can obtain a PDA
P2 that accepts by empty stack such that N(P2) = L(P1), simply by
ensuring that P2 has an empty stack exactly when P1 reaches a final
state (for the same input w seen by both these PDAs). The following
construction achieves the above condition:

• To avoid the stack of P2 becoming empty “in between,” introduce
an extra symbol in P2’s stack alphabet, say z00.

• Start P2 with its stack containing z00, and then z0 riding above it.
• The remaining moves of P2 are similar to that of P1. However, “fi-

nal” states are insignificant for P2. Therefore, whenever P1 reaches
a final state, we introduce in P2, a move from it to a new stack-
draining state qS. While in qS, P2 empties its stack completely.

• No state other than qS tests for the stack-top being z00. Hence, the
stack is totally emptied, including z00, only in state qS.

Figure 14.2 illustrates this construction.

14.1.5 Conversion of P1 to P2 ensuring N(P1) = L(P2)

Given a PDA that is defined according to the “accept by empty stack”
criterion, how do we convert it to a PDA that accepts by final state?
A simple observation tells us that the stack can become empty at any
control state. Therefore, the trick is to start the PDA with a new bot-
tom of stack symbol z00. Under normal operation of the PDA, we do
not see z00 on top of the stack, as it will be occluded by the “real” top
of stack z0. However, in any state, if z00 shows up on top of the stack,
we add a transition to a newly introduced final state qF . qF is the only
final state in the new PDA. Hence, whenever the former PDA drains
its stack, the new PDA ends up in state qF .

Illustration 14.1.1 Develop a push-down automaton for Lambnck of
Illustration 13.2.1.

The PDA is shown in Figure 14.3. The PDA will first exercise a
nondeterministic option: either I shall decide to match a’s and b’s, or
do b’s against c’s. Recall that PDAs begin with z0 in the stack, and
further we must pop one symbol from the stack in each step. Also, in
each move, we can push zero, one, or more (a finite number) symbols
back onto the stack.

Here are some facts about this PDA (based on intuitions - no
proofs):
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Initial state = Q0 Final states = Q0,Qc,Qd

Current
State Input Stack

top
String
pushed

New
State Comments

Q0 ε z0 z0 Qab
Nondeterministically proceed to match
a’s against b’s

Q0 ε z0 z0 Qbc ..or proceed to match b’s against c’s

Qab a z0 a z0 Qab Stack the first ‘a’

Qab a a a a Qab Continue stacking a’s

Qab b a ε Qb
The first b to come;
match against an ‘a’

Qb b a ε Qb
One more b came; perhaps more
to come; so stay in Qb

Qb ε z0 z0 Qc
Go to Qc (“eat c” state), an
accept state

Qc c z0 z0 Qc Any number of c’s are OK in Qc

Qab ε z0 z0 Qc Enter the “eat c” accept state

Qbc a z0 z0 Qbc
Any number of a’s can come. Qbc
ignores them; it will match b’s and c’s

Qbc b z0 b z0 Qbc1 First b to come; no more a’s allowed

Qbc b b b b Qbc1 Continue stacking b’s; no no more a’s

Qbc1 c b ε Qm
Continue matching c’s; no
more b’s allowed

Qm c b ε Qm
Continue matching c’s; no
more a’s or b’s

Qm ε z0 z0 Qd
A token goes to Qd whenever
z0 is on top of the stack

Q0

Qabe,z0 -> z0

Qbc

e,z0 -> z0

Qc

c,z0 -> z0

Qd

e,z0 -> z0

a,z0 -> a z0
a,a -> a a

Qb

b,a -> e
e,z0 -> z0b,a -> e

a,z0 -> z0

Qbc1

b,z0 -> b z0
b,b -> b b

Qm
c,b -> e e,z0 -> z0

c,b -> e
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• Nondeterminism is essential. We do not know whether we are going
to match a’s and b’s or b’s and c’s. In fact, for a string “abc,” there
must be two different paths that lead to some final state - hence,
nondeterminism exists.
• This language is inherently ambiguous. For string “abc” it must be
possible to build two distinct parse trees no matter which grammar
is used to parse it.

14.2 Proving PDAs Correct Using Floyd’s Inductive
Assertions

q0 q1
a,Z -> aZ

a,e -> a

q2
e,e -> e

b,a -> e q3

b,a -> e

q5
e,Z -> Z

e,a -> e

q4

e,a -> e

e,a -> e

Fig. 14.4. A PDA whose language is being proved correct using Floyd’s
method

Consider the PDA in Figure 14.4. What is its language? Think hard
before you proceed reading! �

Guessing the language and proving its correctness

We guess the language of this PDA to be

{aiabib | ib ≤ ia ≤ 3.ib}.

How do we prove this claim? We will use Floyd’s method which rests
on finding loop invariants. To simplify the discussion of the method a
bit, we assume that the PDA has arrived into state q2, having stacked
all the a’s (this being the only way this PDA can proceed to accept
anything). We seek a loop invariant (explained below) for the loop at
state q2.

Let ia be the number of a’s initially in the input; likewise for ib. Let
sa be the number of a’s on the stack (note that b’s don’t get into the



254 14 Push-down Automata and Context-free Grammars

stack, ever). Let nb be the number of b’s yet to be read. Let pa be the
number of a’s popped so far.

We explain Floyd’s method with respect to a single loop (for more
details, see [78]). With this assumption,

Floyd’s method works by pretending that we have arrested the pro-
gram (PDA in this case) suddenly within its loop, at an arbitrary
point during its execution.
We are then asked to find an accurate description relating all “im-
portant” variables used in the loop. This is known as the loop in-
variant.
The assertion and the variables participating in it must be suffi-
ciently comprehensive so that when we bring the loop to its exit
point, the final answer falls out as a special case of the loop invari-
ant.

Considering all this, we come up with these equations:

1. ia = sa + pa. This is because all the a’s are stacked, and then some
are popped, with the rest remaining in the stack.

2. (ib − nb) ≤ pa ≤ 3.(ib − nb). This is because for each ‘a’ that
is popped, we match it against one to three b’s. Therefore, the b’s
read thus far, namely (ib − nb), are as per this equation.

Now, these must be inductive assertions as far as any q2 to q2 path is
concerned. Let us check this:

In any q2 to q2 traversal, the a’s that are popped are the ones that
are removed from the stack; hence, the first assertion is inductive.
Consider the q2 to q3 to q2 traversal (the rest can be similarly
argued - see Exercise 14.3). We have nb going down by 1 while pa

goes up by 2. Thus we have to prove

(ib−nb) ≤ pa ≤ 3.(ib−nb) ⇒ (ib−nb+1) ≤ pa+2 ≤ 3.(ib−nb+1),

which follows from simple arithmetic.

Now, specializing the invariant to the exit point, we observe that exiting
occurs when pa = ia and nb = 0. This immediately gives us ib ≤ ia ≤
3.ib. �

14.3 Direct Conversion of CFGs to PDAs

When given the option of capturing a context-free language using a
PDA or a CFG, what would one choose? In many cases, a CFG would
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be easier to first obtain; in that case, there exists a rather elegant direct
conversion algorithm to convert that CFG into a PDA. This algorithm,
in effect, is a nondeterministic parsing algorithm. The opposite conver-
sion - a PDA to a CFG - is much more involved and is discussed in
Section 14.4.

By determinizing the CFG to PDA conversion algorithm, we can ob-
tain an exponential-time parsing algorithm for any CFG. Determiniza-
tion can be achieved by arranging a backtracking search; whenever the
NPDA is faced with a nondeterministic choice, we arrange a piece of
code that recursively searches for one of the paths to accept.4 In Sec-
tion 14.5, we discuss the Chomsky Normal Form for a CFG, and in
its context, discuss an O(N 3) parsing algorithm attributed to Cocke,
Kasami, and Younger (Section 14.5.1).

In the CFG to PDA conversion algorithm, the non-terminals and
terminals of the given grammar constitute the stack alphabet of the
PDA generated. In addition, the stack alphabet contains z0. The con-
version proceeds as follows:

• Start from state q0 with z0 on top of the stack.
• From q0, jump to state qM (for “main state”) with S, the start sym-

bol of the grammar, on top of the stack, and z0 below it (restored
in the jump).

• In state qM ,
− If the top of the stack is z0, jump to state qF , the only accepting

state.
− If the top of the stack is the terminal x, jump back to state qM

upon input x, without restoring x on top of the stack. Essen-
tially, the parsing goal of x has been fulfilled.

− If the top of the stack is the non-terminal X, and there is a rule
X → R, where R is a string of terminals and non-terminals,
jump to state qM by popping X and pushing R. Essentially, the
parsing goal of X is turned into zero or more parsing subgoals.

Illustration 14.3.1 Let us convert the CFG in Illustration 13.2.1 into
a PDA. The resulting PDA is given in Figure 14.5. First set up S to be
the parsing goal. The PDA can then take a nondeterministic jump to
two different states. One state sets up the parsing goals M and C, with
M on top of the stack. The other path sets up A and N.

Suppose parsing goal M is on top of the stack. We can then set up
the parsing goal a M b, with a on top of the stack. Discharging the

4 In a technical sense, your computer program would then serve as a deterministic
Turing machine that simulates your NPDA.
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Initial state = Q0 Final states = QF

Current
State Input Stack

top
String
pushed

New
State Comments

Q0 ε z0 S z0 Qmain Qmain is the main state of this PDA

Qmain ε S M C Qmain Create subgoals, ignoring actual input

Qmain ε S A N Qmain Create subgoals, ignoring actual input

Qmain ε M a M b Qmain Create subgoals, ignoring actual input

Qmain ε M ε Qmain Epsilon production for M

Qmain ε N b N c Qmain Create subgoals, ignoring actual input

Qmain ε N ε Qmain Epsilon production for N

Qmain ε C c C Qmain Create subgoals, ignoring actual input

Qmain ε C ε Qmain Epsilon production for C

Qmain ε A a A Qmain Create subgoals, ignoring actual input

Qmain ε A ε Qmain Epsilon production for A

Qmain a a ε Qmain Eat ‘a’ from input - a parsing goal

Qmain b b ε Qmain Eat ‘b’ from input - a parsing goal

Qmain c c ε Qmain Eat ‘c’ from input - a parsing goal

Qmain ε z0 z0 QF
Accept when z0 surfaces
(parsing goals met)

Fig. 14.5. CFG to PDA conversion for the CFG of Illustration 13.2.1
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parsing goal a is easy: just match a with the input. On the other hand,
with parsing goal M on top of the stack, we could also have set up the
parsing goal “ε” which means – we could be done! Hence, another move
can simply empty M from the stack. Then, finally, when z0 shows up
on top of stack, we accept, as there are no parsing goals left.

14.4 Direct Conversion of PDAs to CFGs

We first illustrate the PDA to CFG conversion algorithm with an ex-
ample. As soon as we present an example, we write the corresponding
general rule in slant fonts. Further details, should you need them, may
be found in the textbook of Hopcroft, Motwani, and Ullman [60] whose
algorithm we adopt. A slightly different algorithm appears in Sipser’s
book [111].

delta contains Productions

---------------------- -------------------------------

S -> [p,Z0,x] for x in {p,q}

<p,(,Z0> <p,(Z0> [p,Z0,r_2] -> ( [p,(,r_1] [r_1,Z0,r_2]

for r_i in {p,q}

<p,(,(> <p,((> [p,(,r_2] -> ( [p,(,r_1] [r_1,(,r_2]

for r_i in {p,q}

<p,),(> <p,e> [p,(,p] -> )

<p,e,Z0> <q,e> [p,Z0,q] -> e

Fig. 14.6. PDA to CFG conversion. Note that e means the same as ε.

Consider the PDA that accepts by empty stack,

({p, q}, {(, )}, {(, ), Z0}, δ, p, Z0)

with δ given in Figure 14.6. Recall that since this is a PDA that ac-
cepts by empty stack, we do not specify the F component in the PDA
structure. The above six-tuple corresponds to (Q,Σ,Γ, δ, q0, z0). This
figure also shows the CFG productions generated following the PDA
moves. The method used to generate each production is the following.
Each step is explained with a suitable section heading.



258 14 Push-down Automata and Context-free Grammars

14.4.1 Name non-terminals to match stack-emptying
possibilities

Notice that the non-terminals of this grammar have names of the form
[a,b,c]. Essentially, such a name carries the following significance:

It represents the language that can be generated by starting in state
a of the PDA with b on top of the stack, and being able to go to
state c of the PDA with the same stack contents as was present
while in state a.

This is top-down recursive programming at its best: we set up top-level
goals, represented by non-terminals such as [a,b,c], without imme-
diately worrying about how to achieve such complicated goals. As it
turns out, these non-terminals achieve what they seek through subse-
quent recursive invocations to other non-terminals - letting the magic
of recursion make things work out!

General rule: For all states q1, q2 ∈ Q and all stack symbols
g ∈ Γ , introduce a non-terminal [q1, g, q2] (most of these non-
terminals will prove to be useless later).

14.4.2 Let start symbol S set up all stack-draining options

All the CFG productions are obtained systematically from the PDA
transitions. The only exception is the first production, which, for our
PDA, is as follows:

S -> [p,Z0,x] for x in {p,q}.

In other words, two productions are introduced, they being:

S -> [p,Z0,p]

S -> [p,Z0,q].

Here is how to understand these productions. S, the start symbol of
the CFG, generates a certain language. This is the entire language of
our PDA. The entire language of our PDA is nothing but the set of all
those strings that take the PDA from its start state p to some state,
having gotten rid of everything in the stack. In our PDA, since it starts
with Z0 on top of stack, that’s the only thing to be emptied from the
stack. Since the PDA could be either in p or q after emptying the stack
(and since we don’t care where it ends up), we introduce both these
possibilities in the productions for S.

General rule: For all states q ∈ Q, introduce one production
S → [q0, z0, q].
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14.4.3 Capture how each PDA transition helps drain the
stack

A PDA transition may either get rid of the top symbol on the stack
or may end up adding several new symbols onto the stack. Therefore,
many PDA transitions do not help achieve the goal of draining the
stack. However, we can set up recursive invocations to clear the extra
symbols placed on top of the stack, thus still achieving the overall goals.

To see all this clearly, consider the fact that δ contains a move, as
shown below:

delta contains

----------------------

<p,(,Z0> <p,(Z0>

In this PDA, when in state p, upon seeing ( in the input and Z0 on top
of the stack, the PDA will jump to state p, having momentarily gotten
rid of Z0, but promptly restoring ( as well as Z0. Then the PDA has to
“further struggle” and get rid of ( as well as Z0, reaching some states
after these acts. It is only then that the PDA has successfully drained
the Z0 from its stack. Said differently, to drain Z0 on the stack while in
state p, read (, invite more symbols onto the stack, and then recursively
get rid of them as well. All this is fine, except we don’t know rightaway
where the PDA will be after getting rid of (, and subsequently getting
rid of Z0. However, this is no problem, as we can enumerate all possible
states, thus obtaining as many “catch all” rules as possible. This is
precisely what the set of context-free grammar rules generated for this
grammar says:

[p,Z0,r_2] -> ( [p,(,r_1] [r_1,Z0,r_2] for r_i in {p,q}

The rule says: “if you start from state p with a view to completely drain
Z0 from the stack, you will end up in some state r_2. That, in turn, is
a three step process:

• Read ( and, for sure, we will be in state p.
• From state p, get rid of ( recursively, ending up in some state r_1.
• From state r_1, get rid of Z0, thus ending up in the very same state
r_2!

Fortunately, this is precisely what the above production rule says, ac-
cording to the significance we assigned to all the non-terminals. We
will have sixteen possible rules even for this single PDA rule!! Many of
these rules will prove to be useless.

General rule: If δ(p, a, g) contains 〈q, g1, . . . , gn, introduce one
generic rule

[p, g, q0] → a [q, a, q1][q1, g1, q2] . . . [qn, gn, q0]
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and create one instance of the rule for each qi ∈ Q chosen in all
possible ways.

14.4.4 Final result from Figure 14.6

We apply this algorithm to the PDA in Figure 14.6, obtaining an ex-
tremely large CFG. We hand simplify, by throwing away rules as well
as non-terminals that are never used. We further neaten the rules by
assigning shorter names to non-terminals as shown below:

Let A=[p,Z0,p], B=[p,Z0,q], C=[q,Z0,p], D=[q,Z0,q],

W=[p,(,p], X=[p,(,q], Y=[q,(,p], Z=[q,(,q].

Then we have the following rather bizzare looking CFG:

S -> A | B

A -> ( W A | ( X C

B -> ( W B | ( X D

W -> ( W W | ( X Y

X -> ( W X | ( X Z

W -> )

B -> e

How are we sure that this CFG is even close to being
correct?

We simplify the grammar based on the notions of generating and
reachable from the previous chapter. This process proceeds as follows:

1. Notice that C,D,Y,Z are not generating symbols (they can never
generate any terminal string). Hence we can eliminate production
RHS using them.

2. W and B are generating (W -> ) and B -> e).
3. X is not generating. Look at X -> ( W X. While ( is generating and

W is generating, X on the RHS isn’t generating – we are doing a
“bottom-up marking.” The same style of reasoning applies also to
X -> ( X Z.

4. Even A is not generating!

Therefore, in the end, we obtain a short (but still ‘bizzare looking’)
grammar:

S -> ( W S | e

W -> ( W W | )
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Fortunately, this grammar is now small enough to apply our verification
methods based on consistency and completeness:

Consistency: Any string s generated by S must be such that it has an
equal number of ( and ). Further, in any of its proper prefixes, the
number of ( is greater than or equal to the number of ).

Completeness: All such strings must be generated by S.

Proof outline for consistency:
Let us establish the ‘same number of ( and ) part. Clearly, e (ε)

satisfies this part. How about ( W S? For this, we must state and prove
a lemma about W:

Conjecture: W has one more ) than (.
True for both arms of W, by induction.
Hence, this conjecture about W is true.

Therefore, s has an equal number of ( and ).
Now, to argue that in any of the proper prefixes of s, the number of

( is greater than or equal to the number of ), we again need a lemma
about W:

Conjecture: In any prefix of a string generated by W, number of ) is
at most one more than the number of (.
This has to be proved by induction on W.

Hence, S satisfies consistency.

Completeness

To argue completeness with respect to S, we state and prove a com-
pleteness property for W.

All the following kinds of strings are generated by W: In any
prefix of a string generated by W, number of ) is at most one
more than the number of (.

The proof would proceed as illustrated in Figure 13.3. Now, the com-
pleteness of S may be similarly argued, as Exercise 14.1 requests.5

5 In fact, the plot will be simpler for this grammar, as there will be no zero-crossings.
There could be occasions where the plot touches the x-axis, and if it continues,
it promptly takes off in the positive direction once again.
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14.5 The Chomsky Normal Form

Given a context-free grammar G, there is a standard algorithm (de-
scribed in most textbooks) to obtain a context-free grammar G

′
in the

Chomsky normal form such that L(G
′
) = L(G) − {ε}. A grammar in

the Chomsky normal form has two kinds of productions: A → BC, as
well as A → a. If ε is required to be in the new grammar, it is explicitly
added at the top level via a production of the form S → ε. There is an-
other well-known normal form called the Greibach normal form (GNF)
which may be found discussed in various textbooks. In the GNF, all
the production rules are of the form A → aB1B2 . . . Bk where a is a
terminal and A,B1, . . . , Bk, for k ≥ 0, are non-terminals (with k = 0,
we obtain A → a). Obtaining grammars in these normal forms facili-
tates proofs, as well as the description of algorithms. In this chapter,
we will skip the actual algorithms to obtain these normal forms, focus-
ing instead on the advantages of obtaining grammars in these normal
forms.

A grammar G in the Chomsky normal form has the property that
any string of length n generated by G must be derived through exactly
2n− 1 derivation steps. This is because all derivations involve a binary
production A → BC or an unary production A → a. For example,
given the following grammar in the Chomsky normal form,

S -> A B | S S B -> b A -> a,

a string abab can be derived through a seven step (2×4−1) derivation

S => SS => ABS => ABAB => aBAB => abAB => abaB => abab.

In the next section, we discuss a parsing algorithm for CFGs, assuming
that the grammar is given in the Chomsky normal form.

14.5.1 Cocke-Kasami-Younger (CKY) parsing algorithm

The CKY parsing algorithm uses dynamic programming in a rather ele-
gant manner. Basically, given any string, such as 0 0 1, and a Chomsky
normal form grammar such as
S → S T | 0
T → S T | 1,
the following steps describe how we “parse the string” (check that the
string is a member of the language of the grammar):

• Consider all possible substrings of the given string of length 1, and
determine all non-terminals which can generate them.
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• Now, consider all possible substrings of the given string of length
2, and determine all pairs of non-terminals in juxtaposition which
can generate them.

• Repeat this for strings of lengths 3, 4, . . ., until the full length of
the string has been examined.

1 2 30

(a) (b)0

b

d

1

e 3

0

a

b

d

1

c

e f 3

Parsing string 0 0 1  with  these  positions  :     0     0     1

{S}

{S}

{T}

0

1

3

{S}

{}

(d)(c)0

d

1

3

{S}

{} {S}

{S,T} {T} {T}{S,T}

{S} 2222

{S,T}

Fig. 14.7. Steps of the CKY parsing algorithm on input 001

To capture all this information, we choose a convenient tabular repre-
sentation as in Figure 14.7(a). The given string 001 has four positions
(marked 0 through 3) in it. Position a in the table represents the por-
tion of the string between positions 0 and 1, i.e., the first “0” in the
string. Likewise, positions c and f represent 0 and 1, respectively. Let
us fill these positions with the set of all non-terminals that can gener-
ate these strings. We know that S can generate a 0, and nothing else.
Therefore, the set of non-terminals that generates 0 happens to be {S}.
Likewise, {T} is the set of non-terminals that generate a 1. Filling the
table with these, we obtain Figure 14.7(b).

What can we say about position b in this table? It represents the
region in the string between positions 0 and 2. Which non-terminal can
generate the region of the string between positions 0 and 2? The answer
depends on which non-terminals generate the region of the string be-
tween positions 0 and 1, and which non-terminals generate the region
of the string between positions 1 and 2. We know these to be {S} and
{S}. The set of non-terminals that generate the substring 02 are then
those non-terminals that yield SS. Since no non-terminals yield SS, we
fill position b with {}. By a similar reasoning, we fill position e with
{S, T}. The table now becomes as shown in Figure 14.7(c).

Finally, position d remains to be filled. Substring 03 can be gener-
ated in two distinct ways:

• Concatenating substring 01 and 13, or
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• Concatenating substring 02 and 23.

Substring 01 is generated by {S} and substring 13 by {S,T}. There-
fore, substring 03 is generated by all the non-terminals that generate
{S}{S,T}, i.e., those that generate {SS,ST, i.e., {S,T}. No non-terminal
generates substring 02, hence we don’t pursue that possibility anymore.
Hence, we fill position d with {S,T} as in Figure 14.7(d).

The parsing succeeds because we managed to write an S in position
d—the start symbol can indeed yield the substring 03.

14.6 Closure and Decidability

In this section, we catalog the main results you should remember, plus
some justifications. Details are omitted for now.

1. Given a CFG, it is decidable whether its language is empty. Ba-
sically, if you find that S is not generating, the language of the
grammar is empty! It is the bottom-up marking algorithm discussed
above.

2. Given a CFG, it is not decidable whether its language is Σ∗.
3. The equivalence between two CFGs is not decidable. This follows

from the previous result, because one of the CFGs could easily be
encoding Σ∗.

4. Given a CFG, whether the CFG is ambiguous is not decidable.
5. Given a CFG, whether the CFG generates a regular language is not

decidable.
6. CFLs are closed under union, concatenation, and starring because

these constructs are readily available in the CFG notation.
7. CFLs are closed under reversal because we know how to “reverse a

CFG.”
8. CFLs are not closed under complementation, and hence also not

closed under intersection.
9. CFLs are closed under intersection with a regular language. This is

because we can perform the product state construction between a
PDA and a DFA.

10. CFLs are closed under homomorphism.

14.7 Some Important Points Visited

We know that if L is a regular language, then L is a context-free lan-
guage, but not vice versa. Therefore, the space of regular languages is
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properly contained in the space of context-free languages. We note some
facts below:

• It does not follow from the above that the union of two CFLs is
always a non-regular CFL; it is not so, in general. Think of {0n1n |
n ≥ 0} and the complement of this language, both of which are
context-free, and yet, their union is Σ∗ which is context-free, but
also regular.

• The union of a context-sensitive language and a context-free lan-
guage can be a regular language. Consider the languages Lww and
Lww of Section 13.4.1.

All this is made clear using a real-world analogy:

• In the real world, we classify music (compared to context-free lan-
guages) to be “superior” to white noise (compared to the regular
language Σ∗) because music exhibits superior patterns than white
noise.

• By a stretch of imagination, it is possible to regard white noise as
music, but usually not vice versa.

• By the same stretch of imagination, utter silence (similar to the
regular language ∅) can also be regarded as music.

• If we mix music and white noise in the air (they are simultaneously
played), the result is white noise. This is similar to taking {0n1n |
n ≥ 0} ∪ Σ∗ which yields Σ∗.

• However, if we mix music and silence in the air, the result is still
music (similar to taking {0n1n | n ≥ 0} ∪ ∅).

• Regular languages other than ∅ and Σ∗ ‘sound different.’ For in-
stance, {(01)n | n ≥ 0} ‘sounds like’ a square wave played through
a speaker. Therefore, the result of taking the union of a context-free
language and a regular language is either context-free or is regular,
depending on whether the strings of the regular language manage
to destroy the delicate patterns erected by the strings of the CFL.

It must also be clear that there are ℵ0 regular languages and the same
number of context-free languages, even though not all context-free lan-
guages are regular. This is similar to saying that not all natural numbers
are prime numbers, and yet both have cardinality ℵ0.

Illustration 14.7.1 Consider {ambmcm | m ≥ 0}. This is not a
CFL. Suppose it is a CFL. Let us derive a contradiction using the CFL
Pumping Lemma. According to this lemma, there exists a number n
such that given a string w in this language such that |w| ≥ n, we can
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split w into w = uvwxy such that |vx| > 0, |vwx| ≤ n, and for every
i ≥ 0, uviwxiy ∈ L(G).

Select the string anbncn which is in this language. These are the
cases to be considered:

• v, w, and x fall exclusively in the region “a”.
• v, w, and x fall exclusively in the region “b”.
• v, w, and x fall exclusively in the region “c”.
• v and x fall in the region “a” and “b”, respectively.
• v and x fall in the region “b” and “c”, respectively.

In all of these cases, “pumping” takes the string outside of the given
language. Hence, the given language is not a CFL.

Illustration 14.7.2 We illustrate the CKY parsing algorithm on string
aabbab with respect to the following grammar:

S -> AB | BA | SS | AC | BD

A -> a B -> b C -> SB D -> SA
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Fig. 14.8. Steps of the CKY parsing algorithm on input aabbab

The basic idea is to subdivide the string into “regions” and apply dy-
namic programming to “solve” all the shorter regions first, and use that
information to solve the “larger” regions. Let us build our table now.
The region 01 is generated by the set of non-terminals A. We just write
A below. We write likewise the other non-terminals (Figure 14.8(a)).
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The next table is obtained as follows: There is no non-terminal that
has a right-hand side of the production as AA. So we put a ∅ (phi)
at 02. Since S -> AB, A marks 12, and B marks 23, we put an S at
13. We proceed in the same manner for the remaining entries that are
similar. Last but not least, we write a C at 14, because 14 is understood
to be representing 12-24 or 13-34. 12-24 is A phi (A concatenated
with the empty language ∅), and so we ignore it. 13-34 is SB, and
C -> SB; therefore, we write “C” there. We fill the remaining table
entries similarly. The results are shown in Figure 14.8(b). The parsing
is successful if, in position “06”, you manage to write a set of non-
terminals that contain “S”. Otherwise, the parsing fails.

Illustration 14.7.3 Prove that any context-free grammar over a sin-
gleton alphabet generates a regular language.

We provide a proof sketch, leaving details to the reader (see [45,
page 86] for a full proof). To solve this problem, we can actually use
the Pumping Lemma for context-free languages in an unusual way! The
CFL Pumping Lemma says that for a long w (longer than some “k”),
we can regard w = uvxyz such that uvixyiz ∈ L. Each pump up via i
increases the length by v + y. However, since |vxy| ≤ k, there are only
a finite number of v+y’s we can get. These are the periodicities (in the
ultimate periodicity sense). If a set is described by a finite number of
periods p1, p2, . . ., it is easily described by the product of these periods.
This was the argument illustrated in Section 12.2 when we tackled a
regular language Pumping Lemma problem, and chose 0n 1n+n! to be
the initial string. In that problem, the n! we chose served as the product
of all the values possible for |y|. For instance, if a set S is such that

it has strings of a’s in it, and
S is infinite, and for a sufficiently large i,
– if ai ∈ S then ai+4 ∈ S as well as ai−4 ∈ S,
– if ai ∈ S then ai+7 ∈ S as well as ai−7 ∈ S,

then S is ultimately periodic with period 28.
Therefore, we conclude that any CFL over a singleton alphabet has

its strings obeying lengths that form an ultimately periodic set. This
means that the language is regular.

14.7.1 Chapter Summary – Lost Venus Probe

In this chapter, we examined many topics pertaining to PDAs and
CFGs: notions of acceptance, interconversion, and proofs of correct-
ness. We also examined simple parsing algorithms based on the Chom-
sky normal form of CFGs. The theory of context-free languages is one
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of the pinnacles of achievement by computer scientists. The theoret-
ical rigor employed has truly made the difference between “winging”
parsing algorithms—which are highly likely to be erroneous—versus
producing highly reliable parsing algorithms that silently work inside
programs. For instance, Hoare [55] cites the story of a Venus probe that
was lost in the 1960’s due to a FORTRAN programming error. The er-
ror was quite simple - in hindsight. Paraphrased, instead of typing a
“DO loop” as

DO 137 I=1,1000

...

137 CONTINUE,

the programmer typed

DO 137 I=1 1000

...

137 CONTINUE.

The missed comma caused FORTRAN to treat the first line as the
assignment statement DO137I=11000 — meaning, an assignment to a
newly introduced variable DO137I, the value 11000. The DO statement
essentially did not loop 1000 times as was originally intended! FOR-
TRAN’s permissiveness was quickly dispensed with when the theory
of context-free languages lead the development of “Algol-like” block-
structured languages.

Sarcastically viewed, progress in context-free languages has helped
us leapfrog into the era of deep semantic errors in programs, as op-
posed to unintended simple syntactic errors that caused programs to
crash. The computation engineering methods discussed in later chap-
ters in this book do help weed out semantic errors, which are even
more notoriously difficult to pin down. We hope for the day when even
these errors appear to be as shallow and simpleminded as the forgotten
comma.

Exercises

14.1. Argue the consistency and completeness of S and W.

14.2. The following “optimization” is proposed for the PDA of Fig-
ure 14.1: merge states q0 and q1 into a new state q01; thus, (i) q01
will now be the start state, and (ii) for any move between q0 and q1 or
from q1 to itself, now there will be a q01 to q01 move. Formally argue
whether this optimization is correct with respect to the language L0; if
not, write down the language now accepted by the PDA.
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14.3. Argue the remaining cases of the proof in Section 14.2, namely
the direct q2 to q2 traversal, and the q2 to q3 to q4 to q2 traversal.

14.4. Prove one more case not covered in Exercise 14.3; prove that
the language of this PDA cannot go outside the language of regular
expressions a∗ b∗.

14.5. Consider the following list of languages, and answer the questions
given below the list:

• Laibjck =

{aibjck | i, j, k ≥ 0 and if odd(i) then j = k}.

In other words, if an odd number of a’s are seen at first, then an
equal number of j’s and k’s must be seen later.
• Lbjckai =

{bjckai | i, j, k ≥ 0 and if odd(i) then j = k}.

• Laibjckdl =

{aibjckdl | i, j, k, l ≥ 0 and if odd(i) then j = k else k = l}.

• Lbjckdlai =

{bjckdlai | i, j, k, l ≥ 0 and if odd(i) then j = k else k = l}.

1. Which of these languages are deterministic context-free?
2. Which are context-free?
3. Write the pseudocode of a parsing algorithm for the strings in this

language. Express the pseudocode in a tabular notation similar to
that in Figure 14.1.

4. For each language that is context-free, please design a PDA and
express it in a tabular or graphical notation.

5. For each language that is context-free, please design a CFG.
6. For each of these CFGs, convert each to a PDA using the CFG to

PDA conversion algorithm.

14.6. Prove using Floyd’s method that the PDA of Figure 14.1 is cor-
rect.
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14.7. Convert the following PDA to a CFG:

delta contains

----------------------

<p,(,z0> <q,(z0>

<q,(,(> <q,((>

<q,),(> <q,e>

<p,e,z0> <r,e>

<q,e,z0> <r,e>

14.8.
1. Develop a PDA for the language

w | w ∈ {0, 1}∗ ∧ #0(w) = 2 × #1(w)}

In other words, w has twice as many 0’s as 1’s.
2. Prove this PDA correct using Floyd’s method
3. Convert this PDA into a CFG
4. Simplify the CFG
5. Prove the CFG to be correct (consistent and complete)
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Turing Machines

We live in a digital society “steeped” in computers. Computers are em-
ployed in everyday devices ranging from toys and shoes, telephones,
automobiles, and spacecraft. Such was not the world in the early 20th
century when no computers were around, and logicians and philoso-
phers such as Hilbert were discussing the possibility of automating
computation. The extent to which computation can be automated was
the main subject of discussions. In that era, a simple machine called the
Turing machine was proposed as a formal model of computers. Turing
machines embodied the notion of effective (algorithmic, mechanical)
computability in such an unambiguous and elementary fashion that it
was taken to be the canonical device that defined the limits of mechan-
ical computability. Many alternative mechanisms such as Thue sys-
tems, the Lambda calculus, and the combinatory logic [31] have also
been shown to be capable of defining the notion of computation. In
fact, in combinatory logic, merely two letters, S and K, representing
two specific Lambda calculus terms, and their reduction rules,1 have
been shown to be complete. This means that the computation ensuing
from any arbitrary computer program running on arbitrary input data
can be modeled through a sequence of rewrites performed on a string
comprised of S and K. These notations have been shown to be equiva-
lent in power to Turing machines. Yet, Turing machines are “king,” in
the sense that they most closely resemble the kinds of stored-program
computers that we are most familiar with.

This chapter begins in Section 15.1 with historical accounts of early
work by Church and Turing from Andrew Hodges’s web site [118] and
the Stanford Encyclopedia of Philosophy web site [119]. We then define
Turing machines formally in Section 15.2, touching on TM variants as

1 S = λxyz. xz(yz) and K = λxy. x.



272 15 Turing Machines

well as related machines. We then define notions such as acceptance and
Halting in Section 15.3, and provide examples of deterministic Turing
machines in Section 15.4. Finally, we provide an account of NDTMs in
Section 15.5.

15.1 Computation: Church/Turing Thesis

The Encyclopedia of Philosophy web site [119] gives the following ac-
count of the evolution of the Church Turing thesis. We now provide
direct excerpts from this web site.
(Begin excerpts)

The Princeton logician Alonzo Church had slightly outpaced Turing
in finding a satisfactory definition of what he called effective calculabil-
ity. Church’s definition required the logical formalism of the Lambda
calculus. This meant that from the outset Turing’s achievement merged
with and superseded the formulation of Church’s Thesis, namely the
assertion that the Lambda calculus formalism correctly embodied the
concept of effective process or method. Very rapidly it was shown
that the mathematical scope of Turing’s computability coincided with
Church’s definition (and also with the scope of the general recursive
functions defined by Gödel). Turing wrote his own statement (Turing
1939, p. 166) of the conclusions that had been reached in 1938; it is in
the Ph.D. thesis that he wrote under Church’s supervision, and so this
statement is the nearest we have to a joint statement of the Church
Turing thesis:

A function is said to be effectively calculable if its values can be
found by some purely mechanical process. Although it is fairly
easy to get an intuitive grasp of this idea, it is nevertheless de-
sirable to have some more definite, mathematically expressible
definition. Such a definition was first given by Gödel at Prince-
ton in 1934. These functions were described as general recursive
by Gödel. Another definition of effective calculability has been
given by Church who identifies it with lambda-definability. The
author [i.e. Turing] has recently suggested a definition corre-
sponding more closely to the intuitive idea. It was stated above
that a function is effectively calculable if its values can be found
by a purely mechanical process. We may take this statement lit-
erally, understanding by a purely mechanical process one which
could be carried out by a machine. It is possible to give a math-
ematical description, in a certain normal form, of the structures
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of these machines. The development of these ideas leads to the
author’s definition of a computable function, and to an iden-
tification of computability with effective calculability. It is not
difficult, though somewhat laborious, to prove that these three
definitions are equivalent.

Church accepted that Turing’s definition gave a compelling, intu-
itive reason for why Church’s thesis was true. The recent exposition
by Davis (2000) emphasizes that Gödel also was convinced by Turing’s
argument that an absolute concept had been identified (Gödel 1946).
The situation has not changed since 1937.

15.1.1 “Turing machines” according to Turing

Two excerpts from Turing’s own paper, [117, 118] “On Computable
Numbers, with an Application to the Entscheidungsproblem”—which,
in German, stands for the decision problem—are given below:

1. Computing is normally done by writing certain symbols on paper.
We may suppose this paper is divided into squares like a child’s
arithmetic book. In elementary arithmetic the two-dimensional
character of the paper is sometimes used. But such a use is al-
ways avoidable, and I think that it will be agreed that the two-
dimensional character of paper is no essential of computation. I as-
sume then that the computation is carried out on one-dimensional
paper, i.e. on a tape divided into squares. I shall also suppose that
the number of symbols which may be printed is finite . . .

2. The behavior of the [human] computer at any moment is determined
by the symbols which he is observing, and his state of mind at that
moment . . ..

(End of excerpts)
Turing argued that his formalism was sufficiently general to encom-

pass anything that a human being could do when carrying out a definite
method. Turing also proposed the notion of universal Turing machines
capable of simulating the operation of any Turing machine.

15.2 Formal Definition of a Turing machine

The Turing machine is a conceptual machine with an infinite sequential
access store called a “tape.” It serves the purpose of modeling actual
computers as well as computations occurring within them. In a sense,
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the use of Turing machines with infinite tape storage to model com-
putations that can occur in finite-memory real computers is analogous
to the use of real numbers that have infinite precision to model ra-
tional numbers that only have finite precision; in both cases, only the
finite counterparts can be directly represented and manipulated within
a computer. Given that all “activities of interest” must either transpire
in a finite amount of time or be subject to a finitary description, it
is clear that one will never be able to use an infinite amount of mem-
ory or a description with infinite precision within a finite amount of
time. On the other hand, placing an arbitrary upper bound on storage
requirements, or the precision allowed, will a priori rule out many com-
putations/rational numbers as the case may be; this is not desirable.
Hence, conceptual devices with an infinite capacity become essential.

Formally, a Turing machine M is a structure (Q,Σ,Γ, δ, q0, B, F ).
The finite state control of M ranges over the control states in Q, be-
ginning at the initial control state q0 ∈ Q. States F ⊆ Q of M are
called final states, and are used to define when a machine accepts a
string. The input on which M operates is initially presented on the
input tape. It is a string over the input alphabet Σ. Once started, it
is possible that a Turing machine may never halt; it may keep zigzag-
ging on the tape, writing symbols all over, and running amok, much
like many tricky programs do in real life. A Turing machine cannot
manufacture new symbols ad infinitum - so all the symbols written by
a Turing machine on its tape do belong to a finite tape alphabet, Γ .
Notice that Σ ⊂ Γ , since Γ includes the blank symbol B that is not al-
lowed within Σ. We assume that a Turing machine begins its operation
scanning cell number 0 of a doubly-infinite tape (meaning that there
are tape cells numbered +x or −x for any x ∈ Nat); more on this is in
the following section. A fact to remember is this: in order to feed the
string ε to a TM, one must present to the Turing machine a tape filled
with blanks (B). However, some authors alter this convention slightly,
allowing ε to be fed to a Turing machine by ensuring that, in the ini-
tial state, the symbol under the tape head is blank (B) (i.e., the rest
of the tape could contain non-blank symbols). In any case, a normal
Turing machine input is such that for every i ∈ length(w), w[i] �= B
is presented on tape cell i, with all remaining tape cells containing B,
and the head of the Turing machine faces w[1] at the beginning of a
computation.

A TM may be deterministic or nondeterministic. The signature of
δ for a deterministic Turing machine (DTM) is

δ : Q × Γ → Q × Γ × {L,R}.
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This signature captures the fact that a TM can be in a certain state
q ∈ Q and looking at a ∈ Γ . It can then write a

′
on the tape in lieu of a,

move to a state q
′
, and move its head left (L), or right (R), depending

on whether δ(q, a) = 〈q′
, a

′
, L〉 or δ(q, a) = 〈q′

, a
′
, R〉, respectively.

For an NDTM, δ(q, a) returns a set of next control states, tape
symbol replacements, and head move directions. The signature of δ for
a nondeterministic Turing machine (NDTM) is

δ : Q × Γ → 2Q×Γ×{L,R}.

Think of a nondeterministic Turing machine as a C program where in-
stead of the standard if-then-else construct, we have an if/fi construct
of the following form (as in the Promela language of Chapter 21):

if :: condition_1 -> action_1

:: condition_2 -> action_2

:: ...

:: condition_n -> action_n

fi

The intended semantics is as follows. Each conditionmay be a Boolean
expression such as (x > 0). There may be more than one condition
becoming true at any given time. In that case, one of the conditions
is nondeterministically chosen. The actions can be goto, assignment,
while-loops, etc., as in a normal C program. With just this change to
the C syntax, we have a class of nondeterministic C programs that are
equivalent to nondeterministic Turing machines.

Nondeterministic Turing machines may be regarded as “fictitious,”
since real-world computers do not behave nondeterministically in the
above manner.2 They are, however, conceptual devices that play a fun-
damental role in the study of complexity theory. Chapter 19 fully delves
into this topic; an example also appears in Section 15.5.2.

In this program, we shall treat Turing machines and programs
synonymously. Therefore, “build a program” will also mean
“build a Turing machine.”3

15.2.1 Singly- or doubly-infinite tape?

Some authors assume that the tape of a TM is a singly-infinite list
of cells “going to the right,” while others allow a doubly-infinite tape

2 Unless they have a circuit board that is loose inside them, making erratic electrical
contact!

3 This is done, suspecting that most students will understand “programming” far
more readily than “building a Turing machine.”
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(going to the left and the right). Those using a singly-infinite tape are
taking the view that, after all, a description of the contents of the tape
as well as the position of the TM head can be given in terms of a
singly-infinite sequence of characters. However, this view forces one to
answer the question, “what happens when the head attempts to move
towards the left of the leftmost cell?” The most common answer is,
“the head cannot move to the left of the leftmost cell.” Hence, the TM
would behave as if the “belt that moves it head slips,” making the
head stay at the leftmost cell. Those working with a doubly-infinite
tape may, on the other hand, assume that there is a special “left-end
marker” symbol. This allows one to answer the question “what happens
when the TM attempts to move to the left of the leftmost cell” more
uniformly: the head will then face the left-end marker symbol. If we
assume that the transition function δ of the TM will then specify a
move to the right, it will end up restoring the head to the left-most
position of the “working region” of the tape. In this book, we will work
with both these representations; that is, we will not explicitly show
the δ move on a left-end marker; sometimes (e.g., when we discuss
experiments with the JFLAP tool), we may even ignore the notion of
there being a leftmost cell, and truly allow the machine to span any
range going left and right with respect to the initial cell.

These and many other variations of the TM specification can be
shown to be equivalent in the sense that any computation that one
type of TM performs can also be performed by another TM type. Such
TMs are termed universal in the sense they can perform all possible
computations. The extreme amount by which one can vary the specifi-
cation of a TM and retain universality is tribute to the high degree of
robustness exhibited by TMs.

To sum up, when a TM with a doubly-infinite tape begins operation,
its head is scanning the first character of the input string. The entire
input string lies to the right of the head. The portion of the tape towards
the left side of the head contains only blanks (B).

The reader is urged to download and experiment with the JFLAP tool
at this point. It provides very intuitive animations of TMs, especially
NDTMs.

15.2.2 Two stacks+control = Turing machine

In previous chapters, we discussed how DFAs can be used to model
finite-state C programs (C programs that do not contain recursive calls
and have only a finite number of variables). We also discussed how
PDAs can be used to model C programs in which the only infinite-state
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component appears in the form of a push-down stack. One can view
the DFA as just a finite-state control device (i.e., a finite-state control
device coupled with zero stacks). Likewise, one can view the PDA as
finite-state control coupled with one stack. Along the same lines, a
TM can be viewed as finite-state control coupled with two stacks, by
modeling the infinite tape using two stacks:

When a TM goes one step left from its current position, the tape
segment to the left of the head shrinks by one cell while the segment
to the right of the head grows by one segment. This can be viewed
in terms of popping the left-hand stack and pushing the right-hand
stack of the finite-state control.
A TM taking one step to the right can be viewed in terms of popping
the right-hand stack and pushing onto the left-hand stack.

In the next chapter, we will discuss the fact that adding more stacks
does not increase the power of the machine; and hence, “two stacks are
necessary and sufficient.”

15.2.3 Linear bounded automata

Linear Bounded Automata (LBA) (see Figure 13.5) are machines that
have the same overall structure as a TM. The only difference between
a TM and an LBA is in the input tape and the δ function. For an
LBA, each input string is presented on its tape bracketed by a left-
end marker and a right-end marker. Without loss of generality, we can
assume that the right-end marker is at least two cells to the right of
the left-end marker (recall how ε is presented to a TM through a string
of blanks; the same convention is used for the LBA). The δ of an LBA
is defined such that when faced with the left-end marker in any state,
the head moves one step to the right, and similarly, when faced with
the right-end marker, the head moves one step left. Hence, we obtain a
special TM that cannot go beyond the extent of the initial input. Such
a machine is termed an LBA.

An LBA properly subsumes a PDA in power, and can be used to
recognize context-sensitive languages such as Lww of Section 13.4.1.
Unlike with other machine types, it is not known whether or not non-
deterministic LBAs (NLBAs) and deterministic LBAs are equivalent
in power or not. This has been an open problem for quite some time
now.
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15.2.4 Tape vs. random access memory

The most familiar hardware view of a computer is as a stored-program
computer running machine-language instructions. Each machine-language
instruction describes what the machine does in its current “step,” as
well as which machine-language instruction is eligible to be executed in
the next step; in fact, this is what the abstraction of finite-state con-
trol ends up being in a random access machine. However, unlike in a
TM, each machine-language instruction specifies the addresses of zero
or more memory cells to be loaded from and/or stored into. The key
advantage of a TM is that the current head position is never recorded
anywhere explicitly. In a TM, updates happen at the cell facing the
current head position, and the TM then moves one step to the left or
right relative to the current head position. These conventions differ in
a fundamental way from those in a random access memory based com-
puter, where addresses are needed to address a memory cell, and all
addresses belong to a finite range. Hence, in a random access memory
based computer, only a finite number of locations can be accessed to
fetch or store data, and to fetch instructions from. Therefore, every
hardware realization of a computer is a DFA. However, we derive the
most insights by viewing these computations as occurring within a sin-
gle uniform device called a TM, as opposed to viewing them in terms of
one DFA for every machine-language instruction set and machine-level
program.

15.3 Acceptance, Halting, Rejection

Given a Turing machine M = (Q,Σ,Γ, δ, q0, B, F ), the transition func-
tion δ is partial - it need not be defined for all inputs and states. When
not defined, the machine becomes “stuck” - and is said to halt. There-
fore, note that a TM can halt in any state. Also, by convention,
no moves are defined out of the control states within F . Therefore, a
TM always halts when it reaches a state f ∈ F . Here are further
definitions:

A TM accepts when halting at f ∈ F .
A TM rejects when halting in any other state outside F .
A TM loops when not halting.

15.3.1 “Acceptance” of a TM closely examined

Compared to DFAs and PDAs, the notion of acceptance for a TM is
unusual in the following sense: a TM can accept an input without fully
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reading the input—or, in an extreme situation, not even reading one cell
of the input (e.g., if q0 ∈ F )! Hence, curiously, any TM with q0 ∈ F has
language Σ∗. On the other hand, if a TM never accepts, its language is
∅. This can be the result of the TM looping on every input, or the TM
getting stuck in a reject state for every input. As a final illustration,
given an arbitrary language L1, a TM that accepts any string within
the set L1 and does not accept (loops or rejects) strings outside L1, has
L1 as its language.

15.3.2 Instantaneous descriptions

While capturing the ‘snapshot’ of a TM in operation, we need to record
the control state of the machine, the contents of the tape, and what
the head is scanning. All these are elegantly captured using an instan-
taneous description containing the tape contents, w, with a single state
letter q placed somewhere within it. Specifically, suppose that the string
lqr represents that the tape contents is lr, the finite-state control is in
state q, and the head is scanning r[0]. The initial ID is q0w, for initial
input string w. We define , the ‘step’ function that takes IDs to IDS,
as follows:

l1par1  l1bqr1 if and only if δ(p, a) = (q, b,R). The TM changes
the tape cell contents a to b and moves right one step, facing r1[0],
the first character of r1.
Similarly, l1cpar1  l1qcbr1 if and only if δ(p, a) = (q, b, L). The
TM changes an a to a b and moves left one step to now face c, the
character that was to the left of the tape cell prior to the move.

We define the language of a TM M using ∗:

L(M) = {w | q0w ∗ lqfr, for qf ∈ F, and l, r ∈ Σ∗}.

In other words, a TM that starts from the initial ID q0w and attains
an ID containing qf (namely lqfr, for some l and r in Σ∗) ends up
accepting w.

15.4 Examples

We now present short examples that illustrate various concepts about
Turing machines (Section 15.4.1). This is followed by a deterministic
Turing machine that accepts strings of the form w#w for w ∈ Σ∗

(Section 15.4.2). Section 15.5 introduces NDTMs, and Section 15.5.2
presents an NDTM that accepts strings of the form ww.
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Turing machines are specified fully at the implementation level by
completely specifying their δ function (or δ relation for NDTMs) in a
tabular form as in Figure 15.1 or diagrammatic form as in Figure 15.3.
After gaining sufficient expertise with Turing machines, we will allow
them to be specified at the high level through pseudo-code or precise
English narratives. When resorting to high-level descriptions, the spec-
ification writer must strive to ensure sufficient clarity so that a reader
can, in principle, reconstruct an implementation level description if
necessary.

15.4.1 Examples illustrating TM concepts and conventions

Illustration 15.4.1 Consider the Turing machine with a doubly-infinite
tape M = (Q,Σ,Γ, δ, q0, B, F ), where Q = {q0, qa}, Σ = {0, 1},
Γ = {0, 1, B}, F = {qa}, and δ is as below:

δ(q0, 0) = (q0, 0, L)
δ(q0, 1) = (q0, 1, L)
δ(q0, B) = (q0, B,L).

This TM will not stop running - it will keep moving left (even this is
called “looping”). Its language is ∅.

Illustration 15.4.2 Now consider changing δ to the following:

δ(q0, 0) = (qa, 0, L)
δ(q0, 1) = (qa, 1, L)
δ(q0, B) = (qa,B,L).

Now the language of this Turing machine is Σ∗. Notice that we need
not specify moves for state qa for input B. In other words, this Turing
machine will move one step to the left and get “stuck” in state qa which
is accepting.

Illustration 15.4.3 Suppose the entries for (qa,1,L) as well as (qa,B,L)
are removed from the transition table given in Illustration 15.4.2. The
language of this Turing machine will then be 0(0+1)∗. This is because:

Neither δ(q0, 1) nor δ(q0, B) is specified—hence, the input has to
begin with a 0.
State qa accepts everything. Hence, (0 + 1)∗ can follow.
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q0 q1 q2 q3 q4 q5 q6

----------------------------------------------------------------

q0 | - | a; X, R| - | - | Y; Y, R| - | B; B, R|

|---------------------------------------------------------------

q1 | - | a; a, R| b; Y, R| - | - | - | - |

| - | Y; Y, R| - | - | - | - | - |

|---------------------------------------------------------------

q2 | - | - | Z; Z, R| c; Z, L| - | - | - |

| - | - | b; b, R| - | - | - | - |

|---------------------------------------------------------------

q3 | X; X, R| - | - | b; b, L| - | - | - |

| - | - | - | Y; Y, L| - | - | - |

| - | - | - | a; a, L| - | - | - |

| - | - | - | Z; Z, L| - | - | - |

| - | - | - | c; c, L| - | - | - |

|---------------------------------------------------------------

q4 | - | - | - | - | Y; Y, R| Z; Z, R| - |

|---------------------------------------------------------------

q5 | - | - | - | - | - | Z; Z, R| B; B, R|

|---------------------------------------------------------------

q6 | - | - | - | - | - | - | - |

----------------------------------------------------------------

Fig. 15.1. A TM for {anbncn | n ≥ 0}, with start state q0, final state q6,
and moves occurring from the row-states to column-states

q6

q0

q1

0; X, R

q5#; #, R

q7

1; Y, R

1; 1, R
0; 0, R

q2
#; #, R

X; X, R
Y; Y, R

q3

0; X, L
X; X, L
Y; Y, L

q4

#; #, L

X; X, R
Y; Y, R

0; 0; L
1; 1, L

B; B, R

X; X, R
Y; Y, R

1; 1, R
0; 0, R

q8
#; #, R

Y; Y, R
X; X, R

q9
1; Y, L

X; X, L
Y; Y, L

q10
#; #, L

X; X, R
Y; Y, R

1; 1; L
0; 0, L

Fig. 15.2. A Turing machine for w#w
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A Turing machine for anbncn

A Turing machine that recognizes Lanbncn = {anbncn | n ≥ 0} is given
in Figure 15.1 in the JFLAP tool’s saved-table syntax. The algorithm
implemented is one of turning a’s into X’s, b’s into Y’s, and c’s into Z’s.
Here is an execution on aabbcc:

We start in state q0 where we seek an a, changing it to an X when
we see one, and at the same time entering state q1.
In q1, we skip over a’s going right, while staying in q1. Upon en-
countering a b, we change it to a Y, and move over to state q2.
In q2, we move over b’s going right, until we encounter a c, turning
it into a Z, and then move over to state q3, and start moving in the
left (L) direction.
Notice that in q3, we keep moving left upon seeing any one of b,
Y, a, Z, or c, and stop only when we see an X. Then we sweep
over the input once again.

In q0, encountering an X is impossible (why?). Also notice that we
explicitly decode the B (blank) input case in the q0 state. While in q0,
encountering a Z is impossible. We may, however, encounter a Y (e.g.,
consider the input ‘abc’ which would be changed to XY Z; and then in
state q3, we would skip over the X and be in state q0 facing a Y). The
reader is invited to argue that this DTM is correct with respect to the
advertised language Lanbncn .

15.4.2 A DTM for w#w

In Figure 15.2, we provide a deterministic Turing machine for the lan-
guage of strings of the form w#w, where w ∈ Σ∗. Notice how the
presence of # allows the midpoint to be deterministically located. The
Turing machine basically hovers to either side of #, scoring off matching
characters.

15.5 NDTMs

An NDTM is a Turing machine with nondeterminism in its finite-state
control, much like we have seen for earlier machine types such as PDAs.
To motivate the incorporation of nondeterminism into Turing machines,
consider a problem such as determining whether an undirected graph
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G has a clique (a completely connected subgraph) of k nodes.4 No effi-
cient algorithm for this problem is known: all known algorithms have a
worst-case exponential time complexity. Computer scientists have found
that there exist thousands of problems such as this that arise in many
practical contexts. They have not yet found a method to construct a
polynomial algorithm for these problems. However, they have discov-
ered another promising approach:

They have found a way to formally define a class called “NP-
complete” such that finding a polynomial algorithm for even one
of the problems in the NP-complete class will allow one to find a
polynomial algorithm for all of the problems in the NP-complete
class. Furthermore, most of these thousands of problems that
have confounded scientists have been shown to belong to the
NP-complete class.

In short, scientists now have the strong hope of resorting to the maxim
introduced in Chapter 1, namely: “solving one implies solving all,”
meaning solving even one NP-complete problem using a polynomial-
time algorithm will provide a polynomial-time algorithm for the thou-
sands of known NP-complete problems.

The aforesaid techniques rely on measuring the runtime of nonde-
terministic algorithms in a certain way which will be made precise in
Chapter 20, but briefly consists of the following approach:

If an NDTM can solve a certain problem P in polynomial-time,
then the problem belongs to the class “NP.” If, in addition,
problem P belongs to the “NP-hard” class, then this combi-
nation (being in NP and NP-hard) ensures that P is in the
NP-complete class.

15.5.1 Guess and check

While all this may sound bizarre, the fundamental ideas are quite sim-
ple. The crux of the matter is that many problems can be solved by
the “guess and check” approach. For instance, finding the prime factors
of very large numbers is hard. As [98] summarizes, it was conjectured

4 If you walk into a room full of people, and imagine drawing a graph of who knows

each other mutually, then a k-clique exists wherever all pairs within a group of k

people know each other. Whether there exists a group of such “tight-knit” people
is, essentially, the clique problem.
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by Mersenne5 that 267 − 1 is prime. This conjecture remained open
for two centuries until Frank Cole showed, in 1903, that it wasn’t; in
fact, 267−1 = 193707721×761838257287. Therefore, if we could some-
how have guessed that 193707721 and 761838257287 are the factors of
267 − 1, then checking the result would have been extremely easy! The
surprising thing is that there are two gradations of “difficulty” among
problems for which only exponential algorithms seem to exist:

those for which short guesses exist, and checking the guesses is easy,
and
those for which the existence of short guesses is, as yet, unknown.

To sum up:

If, for a problem p, we can generate a “short guess” and check the
guess efficiently, then p belongs to the class NP. Clique is in NP (as
we will see in more detail in the next chapter) because a “guess” will
be short (simply write out k of the graph nodes) and the “check” is
easy (see if these nodes include a k-clique).
If a problem is NP-complete, it is believed to be unlikely that it will
have a polynomial algorithm, although this issue is open.
Problems for which the guesses are not short, and also checking
guesses is not easy, do not belong to NP. Hence, these problems are
thought to be much harder to solve.

For instance, Clique is the problem: “the given graph does not have
a k-clique.” There is no known way to produce a succinct guess of a
solution for this problem, let alone check the guess efficiently. Every
purported solution that a graph does not have a k-clique seems to
warrant providing a guess of a solution of the form, “this set of k nodes
does not span a clique; neither does this other set of k nodes; etc. etc.”
This may, however, end up enumerating all k-node combinations, which
are exponential in number.

NDTMs are machines that make the study of complexity theory
in the above-listed manner possible. Their use in defining complexity-
classes such as NP-hard and NP-complete forms the main hope for
finding efficient algorithms for thousands of naturally occurring NP-
complete problems—or to prove that such algorithms cannot exist.
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q1

q14

q0

B; B, R

q2

1; 1, S
0; 0, S

1; 1, R
0; 0, R

q3

0; X, L
1; Y, L

1; 1, L
0; 0, L

q4

B; B, R

q5

0; P, R

q6

1; Q, R

q7

X; X, R

q8

Y; Y, R

q13

2; 2, R
3; 3, R

0; 0, R
1; 1, R
2; 2, R
3; 3, R

q11

X; 2, R

0; 0, R
1; 1, R
2; 2, R
3; 3, R

q12

Y; 3, R

q9

P; R, R

0; 0, L
1; 1, L
2; 2, L
3; 3, L

q10

Q; Q, R

0; 0, L
1; 1, L
2; 2, L
3; 3, L

0; X, L
B; B, L
1; Y, L

1; Y, L
0; X, L
B; B, L

B; B, R

3; 3, R
2; 2, R

Fig. 15.3. A Nondeterministic Turing machine for ww. Letter ‘S’ means that
the head stays where it is
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15.5.2 An NDTM for ww

In Figure 15.3, we provide a nondeterministic Turing machine for the
language of strings of the form ww, where w ∈ Σ∗. Letter ‘S’ in the edge
from q0 to q2 means that the head stays where it is (can be simulated
by an R followed by an L). This TM has to “guess” the midpoint; this
happens in the initial nondeterministic loop situated at state q2. Notice
that the Turing machine can stay in q2, skipping over the 0s and 1s or
exit to state q3, replacing a 0 with an X or a 1 with a Y. This is how
the Turing machine decides the midpoint; after this step, the Turing
machine zigzags and tries to match and score off around the assumed
midpoint. Any wrong guess causes this check phase to fail. One guess
is guaranteed to win if, indeed, the input is of the form ww.

The animation of this NDTM in action using JFLAP would be
highly intuitive, and the reader is strongly urged to do so.

15.6 Simulations

We show that having multiple tapes or having nondeterminism does
not change the inherent power of a Turing machine.

15.6.1 Multi-tape vs. single-tape Turing machines

A k-tape Turing machine simply maintains k instantaneous descrip-
tions. In each step, its δ function specifies how each ID evolves. One
can simulate this behavior on a single tape Turing machine by placing
the k logical tapes as segments, end-to-end, on a single actual tape,
and also remembering where the k tape heads are through “dots” kept
on each segment. One step of a k-tape Turing machine now becomes
a series of k activities conducted one after the other on the k tape
segments.

15.6.2 Nondeterministic Turing machines

A nondeterministic Turing machine can be conveniently simulated on
a single tape deterministic Turing machine. However, it is much more
convenient to explain how a nondeterministic Turing machine can be
simulated on a multi-tape deterministic Turing machine. For the ease

5 Prime numbers of the form 2p − 1 are known as Mersenne primes. The 42nd
known Mersenne prime was discovered on February 18, 2005 and is 225964951 − 1,
having 7,816,230 decimal digits.



15.6 Simulations 287

of exposition, we will carry this explanation out with respect to the
example given in Figure 15.3.

We will employ a 3-tape deterministic Turing machine to simulate
the NDTM in Figure 15.3 (hereafter called ww ndtm). The first tape
maintains a read-only copy of the initial input string given to ww ndtm.
We call it the input tape. The second tape maintains a tree path in the
nondeterministic computation tree of ww ndtm. We call it the tree
path tape. The third tape is the “working tape.”

Tree path conventions

Notice that state q2 is the only nondeterministic state in ww ndtm;
and hence, the computation tree of ww ndtm will have a binary non-
deterministic split every so often—whenever the nondeterminism in q2

is invoked. The tree paths in ww ndtm can be specified as follows, with
the associated computations shown next to it:

ε—the empty computation beginning at q0,
0—the computation q0 → q1 of length 1,
1—the computation q0 → q2,
1, 0—the computation q0 → q2 → q2, and
1, 1—the computation q0 → q2 → q3.

We will uniformly use the 0 path for a “self” loop (if any), and 1
for an exit path; example: 1, 0 and 1, 1 above. The only exception to
this convention is at state q4 where there are three exits, and we can
number them 0, 1, and 2, going left to right. Therefore, note that the
tree path 1,1,1,4,0 refers to the march q0, q2, q3, q4, q13, and back
to q13. Notice that we do not have a path 0, 0 or 0, 1, as state q1 has
no successor. When we require the next path in numeric order to be
generated below, we skip over such paths which do not exist in the
computation tree, and instead go to the next one in numeric order.

15.6.3 The Simulation itself

Here is how the simulation proceeds, with the second tape (tree path
tape) containing ε:

If the machine has accepted, accept and halt.
Copy the first (input) tape to the third (working) tape.
Generate the next tree path in numeric order on the tree path tape.
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Pursue the δ function of the NDTM according to the tree path
specified in the tree path tape, making the required changes to the
working tape. If, at any particular point, the tree path does not
exist or the symbol under the TM tape head does not match what
the δ function is forced to look, move on to the next option in the
tree path enumeration.
Repeat the above steps.

For example, if the input 0, 1, 0, 1 is given on the input tape, the sim-
ulation will take several choices, all of which will fail except the one
that picks the correct midpoint and checks around it. In particular,
note that in state q2, for input string 0, 1, 0, 1, the self-loop option can
be exercised at most three times; after four self-loop turns, the Turing
machine is faced with a blank on the tape and gets stuck (rejects). The
outcome of this simulation is that

the given NDTM accepts ww if and only if the DTM that sim-
ulates the NDTM as described above accepts.

The astute reader will, of course, have noticed that we are walk-
ing the exponential computation tree of the nondeterministic Turing
machine repeatedly. In fact, we are not even performing a breadth-first
search (which would have been the first algorithm thought of by the
reader) because

Performing breadth-first search (BFS) requires maintaining the
frontier
Even after the extra effort towards maintaining a BFS frontier, the
overall gain is not worth it: we essentially might achieve an O(2n)
computation instead of an O(2n+1) computation.

Chapter Summary

This chapter provided a historical account of TMs. It presented some
examples of DTMs and NDTMs. It was shown that NDTMs and DTMs
have the same expressive power. We hope to provide enough intuitions
about these topics to permit users to appreciate the benefits of formal
methods to system construction. The next chapter introduces languages
defined by TMs more formally, and also discusses several known unde-
cidability results as well as proof techniques for showing undecidability.

Exercises

15.1. Consider a Queue Machine (QM) - a variant of a Turing machine
which uses an unbounded queue instead of two stacks or an infinite
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tape. Assume that the head and tail of this queue are available for
manipulation. QM may, in one step, read what is at the head of its
queue, dequeue this item, change the item to something belonging to
the “tape alphabet” Γ , and enqueue this item back. Is QM equivalent
in power to a regular Turing machine? Justify your answer.

15.2. Argue that performing a BFS — as opposed to walking the com-
putation tree repeatedly as in Section 15.6.3 — does not reduce the
asymptotic worst-case complexity (the “big O() complexity”).

15.3. Argue that we cannot perform a DFS search in the simulation
discussed in Section 15.6.3, and still claim the equivalence between the
NDTM and the DTM that simulates it.

In all the JFLAP experiments requiring simulation to check various
machines, conduct a sufficient number of simulation runs to cover a
reasonable number of corner cases, choosing strings inside the language
of interest as well as strings outside.

15.4. Using JFLAP, develop a TM for rev(L1) where

L1 = {aibjckdl | i, j, k, l ≥ 0 ∧ if i = 1 then (j = k) else (k = l)}.

Obtain a DTM if possible; if not, explain why a DTM is not possible
to find, and obtain an NDTM. Simulate and check.

15.5. Build a deterministic Turing machine in JFLAP that recognizes
the language

Lsubseq = {x#y | x, y ∈ {0, 1}∗ ∧ x is a subsequence of y}.

Simulate and check.

15.6. Build a nondeterministic Turing machine in JFLAP for Lsubseq.
Simulate and check.
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16

Basic Undecidability Proofs

In this chapter, we define the notion of decidability, semi-decidability,
and undecidability. These notions pertain to degrees of solvability of
problems by Turing machines. We will present three proof methods in
this chapter: (i) through contradiction (Section 16.2.3), (ii) through
reductions from languages unknown to be decidable (Section 16.2.4),
and (iii) through mapping reductions (Section 16.2.5). Chapter 17 will
discuss two additional proof methods: (iv) Rice’s theorem, and (v) com-
putational history method.

Methods (ii), (iii), and (iv) are strongly related to each other, in the
following sense:

Applications of method (ii), namely reduction from a known unde-
cidable language, A, to the language in question, B, employs an ‘if
and only if’ argument of the form x ∈ A ⇔ f(x) ∈ B.
Method (iii), namely mapping reductions, isolates this ‘if and only if’
argument into a mapping reduction principle which is quite powerful,
and also applicable in other contexts (e.g., in our study of NP-
completeness in Chapter 19).
Method (iv), namely Rice’s Theorem, capitalizes on the core argu-
ment underlying all these proofs. It tends to make the connection
that

Hidden in every undecidability proof is a proof of the unde-
cidability of the Halting problem.

Rice’s Theorem makes it even more convenient to carry out unde-
cidability proofs.

The parallels between this chapter and Chapter 19 are worth re-
iterating. In this chapter, we present mapping reductions of the form
A ≤m B where there exists a function f such that x ∈ A ⇔ f(x) ∈ B.
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All we require of f is that it be a total computable function. In Chap-
ter 19, we will define A ≤P B where the function in question will be
one that has polynomial runtime. Also, in Chapter 19, we will point
out the analogous fact that

Hidden in every NP-complete problem is a proof of the NP-
completeness of Boolean satisfiability.

With these introductions, we now proceed to study the three reduction
methods.
At this juncture, it pays to recall the facts introduced in Chapter 1,
namely:

• We can deem two computers to be equivalent if they can solve the
same class of problems — ignoring the actual amount of time taken
(see discussions on page 5).

• Problem solving can be modeled in terms of deciding membership
in languages (page 5).

• Some problems are unsolvable. Formally stated, there exists a class
of problems P such that for any p ∈ P , one can model p using a
language Lp such that Lp admits no membership deciders.

• Other problems have deciders, but these may take different amounts
of runtime to decide language membership.

In Section 16.1.1, we examine a list of decidable problems with a
view to sharpen our intuitions in this area. The existence of deciders is
shown by presenting the pseudocode of an algorithm. In Section 16.1.2,
we examine a list of undecidable problems.

16.1 Some Decidable and Undecidable Problems

16.1.1 An assortment of decidable problems

In all descriptions below, we use 〈〉 to indicate the code or description;
for instance, 〈G〉 stands for a grammar G’s description as a character- or
bit-string. Also, for a Turing machine M , 〈M〉 will mean its description,
say in the form of a table such as in Figure 15.1. Sometimes, we omit
〈. . .〉 if the intent is clear from the context.

 ALLDFA: Given a DFA, is its language Σ∗?
This problem is modeled as a language membership question in the
language:

ALLDFA = {〈A〉 | A is a DFA that recognizes Σ∗}.
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ALLDFA can be shown to be decidable by minimizing the given DFA
and examining the result.

 AεCFG: Given a CFG, does it generate ε?

AεCFG = {〈G〉 | G is a CFG that generates ε}.
One approach is to trace all ε-generating productions using a bottom-
up marking algorithm similar to how we found generating non-terminals
in Section 13.4.2, except we focus on which non-terminals generate ε.
Call this notion ε-generating. Now, for any a ∈ Σ, a is not ε-generating.
If A → ε, then A is ε-generating. If A → B1 . . . Bn and if all of Bi are
ε-generating, then so is A. Finally, check whether the start symbol S
is ε-generating.

 INFINITEDFA: Given a DFA, does it have an infinite language?

INFINITEDFA = {〈A〉 | A is a DFA and L(A) is Infinite}.

Exercise 16.2 asks you to show that this is a decidable language.

 NOODDDFA =

{〈A〉 | A is a DFA that does not accept any string with odd 1s}.

Exercise 16.3 asks you to show that this is a decidable language.

 ONESTARCFG: Given a CFG, does it include some strings from
1∗?

ONESTARCFG = {〈G〉 | G is a CFG over {0, 1} and 1∗ ∩ L(G) �= ∅}

One algorithm is to build the product machine of a DFA for 1∗ and a
PDA for G with a view to obtain the intersection of their languages.
The result will be a PDA. We can then check the language emptiness
of this PDA, which is decidable (e.g., by converting the resulting PDA
to a CFG and running the bottom-up marking algorithm on the CFG
to see if the start symbol, S, of the CFG, is generating). Details of this
product construction algorithm are left to the reader (Exercise 16.4,
which offers some hints also). Exercise 16.5 requests an alternative
algorithm.

 ALLSTARCFG: Given a CFG, does it include all strings from 1∗?

ALLSTARCFG = {〈G〉 | G is a CFG over {0, 1} and 1∗ ⊆ L(G)}.
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Exercise 16.6 requests an algorithm (also offers hints).

 EMPTYCFG:

EMPTYCFG = {〈G〉 | is a CFG and L(G) = ∅}.
One can employ the marking algorithm of Section 13.4.2 to decide
whether starting from the initial non-terminal, S, one can generate a
terminal-only string.

16.1.2 Assorted undecidable problems

We now present a list of undecidable problems and sketch reasons for
them to be undecidable. In Section 16.2, we present the actual un-
decidability proofs, after introducing basic notions such as recursive
enumerability.

• The universality of the language of a CFG is undecidable. A lan-
guage L is universal if L = Σ∗.

• The equivalence of two CFGs is undecidable.
• In-equivalence of two CFGs is undecidable.
• Whether a given Turing machine accepts string w is undecidable.
• Whether a given Turing machine halts on string w is undecidable.
• The emptiness of the language of a Turing machine is undecidable.
• Whether a given Turing machine’s language is context-free is unde-

cidable.

Here are intuitive arguments that support the above claims:

• LG = Σ∗: Informally, given a CFG G, it seems one must find a
string that G cannot generate. One can, of course, keep checking
the strings within Σ∗ in an ascending order of lengths, with each
check taking a finite amount of time; however, this process does not
have a definite stopping criterion. A formal proof will be given later,
but intuitively it does appear that this is undecidable – and let us
assume so for the purpose of supporting the following discussions.

• LG1
= LG2

: If this were to be decidable, we would be able to decide
LG = Σ∗.

• LG1
�= LG2

: We observe that we must examine whether every string
generated by G1 is generated by G2, and vice versa. This appears
to be a search with no definite stopping criterion. However, since
LG1

= LG2
is not decidable, LG1

�= LG2
cannot be decidable (if set

S is decidable, so is S; otherwise, we can employ the algorithm to
decide S as an algorithm to decide S. Please think why).
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• We will state and prove results about the halting and acceptance
of Turing machines. It also will turn out that we can find similar
proofs for the emptiness of the language of a Turing machine being
undecidable, and for whether a given Turing machine’s language is
context-free being undecidable. This series of undecidability results
about Turing machines will be captured by one “master theorem”
called Rice’s Theorem.

In Section 16.2, we will motivate the important concept of recursive
enumerability. We will show that all pairs 〈G1, G2〉 such that LG1

�= LG2

are enumerable, in the sense that every such pair can be found in a finite
amount of time and printed out. This will mean that the language of
pairs 〈G1, G2〉 such that LG1

= LG2
is not enumerable (if a set S and its

complement are enumerable, then membership in S becomes decidable,
as will be re-iterated soon). This is another reason why the language
of pairs 〈G1, G2〉 such that LG1

�= LG2
is not decidable.

16.2 Undecidability Proofs

16.2.1 Turing recognizable (or recursively enumerable) sets

The terms Turing recognizable (TR) and recursively enumerable (RE)
will be used interchangeably as they essentially mean the same thing,
but from two different perspectives. A language L is TR if it is the
language of some Turing machine M . We write LM for emphasis. A
language L is RE if there exists a Turing machine M that can enumerate
the strings in L (say, on an “output tape”) such that any member x ∈ L
is guaranteed to appear in a finite amount of time.

Notice that if L is LM for one TM M , then it is the language of
an infinite number (ℵ0) of other machines, M

′
, as we can simply

pad M with i “no op” instructions, for every i ∈ Nat.

For instance,

NEQCFG = {〈G1, G2〉 | G1, G2 are CFGs and L(G1) �= L(G2)}

is TR, with a candidate Turing machine being the following:

• Input: 〈G1, G2〉.
• Output: If 〈G1, G2〉 ∈ NEQCFG, then “accept,” else “loop.”
• Method:

− Generate strings x ∈ Σ∗ in numeric order, feeding x to a parser
(PDA) for G1 and another for G2.
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− For each such x, if x can be parsed by G1 and not by G2 (or
vice versa), go to accept.

Notice that we do not say “or else, keep continuing.” This is typ-
ical of semi-algorithms which may keep continuing ad infinitum
– essentially going into an “infinite loop.”

A recursively enumerable (RE) language is the language that an
enumerator Turing machine can enumerate. An enumerator Turing ma-
chine is a Turing machine that has no input tape, but has an output
tape. In addition, it may employ a working tape. It keeps generating
(finite) strings, and appends each generated string to the output tape.
Here is an enumerator for NEQCFG:

• Keep enumerating all possible pairs of grammars 〈G1, G2〉 over
the given alphabet, on a working tape. This is possible (see Ex-
ercise 13.14) because the syntax of any context-free grammar over a
given set of terminals and non-terminals is expressible as a regular
expression, and one can generate random strings and filter those
passing the regular expression as a legal CFG.

• Keep enumerating strings x ∈ Σ∗ in enumeration order, also on the
working tape.

• Run one additional step of a parsing algorithm for all the grammar
pairs 〈G1, G2〉 generated so far acting on all the inputs x generated
so far (these are called the ‘simulations in progress’).

• If one of the simulations in progress reports that the parser for
grammar G1 accepted an x while the parser for the corresponding
grammar G2 rejected x (or vice versa), then write 〈G1, G2〉 on the
output tape.

The above enumerator guarantees that every pair of nonequivalent
grammars will, eventually, be enumerated. From the above construc-
tions, it is an easy exercise to conclude the following theorem.

Theorem 16.1. A language is TR if and only if it is RE.

The main argument is that given an enumerator (in the sense of RE),
we can build a recognizer (in the sense of TR), and vice versa.

Dovetailing and systematic enumeration methods

In many of our Turing machine constructions, we face the situation of
enumerating the Cartesian product of a collection of sets Si, i ∈ k for
some k ∈ N . For example, we may have to enumerate pairs of grammars
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and strings, thus effectively enumerating triples from sets that, individ-
ually, have ℵ0 cardinality. There are many systematic approaches for
achieving this end; we now summarize a standard approach, taking
triples of Nat as an example:

• Enumerate all the triples that add up to i before enumerating any
triple that adds up to i + 1. Within each group that adds up to i,
employ a lexicographic order.

• As an example, enumerate 〈0, 0, 0〉, followed by 〈0, 0, 1〉, 〈0, 1, 0〉,
〈1, 0, 0〉, followed by 〈0, 1, 1〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈0, 0, 2〉, 〈0, 2, 0〉,
〈2, 0, 0〉, etc.

16.2.2 Recursive (or decidable) languages

A recursive language LM is the language of a Turing machine M that,
given any x ∈ LM , accepts x, and given any y /∈ LM , rejects y. In
other words, M does not loop on any input. Note that it is possible
to have another machine N such that L(M) = L(N) and N loops on
inputs y /∈ LM ; however, so long as there exists one decider M , we can
conclude that LM is recursive (or decidable).
Another very important characterization of recursive languages is this:

Theorem 16.2. L is recursive if and only if L and L are RE (equiva-
lently, are TR).

Imagine an enumerator enumerating L and another enumerating L. To
decide whether some x ∈ Σ∗ is in L, all we need to do is watch which
enumerator outputs x.1 Decidable languages correspond to algorithmi-
cally solvable problems.

Non-RE languages

The cardinality of the set of all Turing machine descriptions is ℵ0. This
is because a Turing machine can be described through a finite number
of bits that model its states and its transitions, and such a description
can be read as a natural number (these numbers are known as Gödel
numbers). On the other hand, there are ℵ1 languages over Σ. Therefore,
there are non-TR (non-RE) languages.

This means that there exist languages in which membership
testing cannot be carried out by any Turing machine.

Exercise 16.8 asks you to construct such a language.
1 Imagine two big ‘spigots,’ one pouring out the contents of L and another pouring

out the contents of L. One can decide membership of x ∈ L by watching which
spigot emits x.
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16.2.3 Acceptance (ATM) is undecidable (important!)

This is one of the most fundamental results that we shall encounter in
our study of Turing machines and computation. Define

ATM = {〈M,w〉 | M is a Turing machine that accepts string w}.

Deciding membership in ATM is tantamount to asking “does a given
Turing machine M accept a string w?” We prove this set to be unde-
cidable through contradiction, as follows:

• Suppose there exists a decider H for ATM . H expects to be given a
Turing machine M and a string w. Notice that “giving H a Turing
machine” means “giving it a character string representing a Turing
machine program.” Hence, in reality, we will be feeding it 〈M,w〉
as mentioned in Section 16.1.1.

• Build a program called D as follows:
− D takes a single argument M .
− As its first step, D invokes H on 〈M,M〉.2
− If H(〈M,M〉) rejects, D(〈M〉) accepts.
− If H(〈M,M〉) accepts, D(〈M〉) rejects.

• Now we can ask what D(〈D〉) will result in (to preserve the clarity
of our arguments, the reader is invited to suppress any occurrence
of 〈. . .〉 in the text below):
− The D(〈D〉) “call” turns into an H(〈D,D〉) call.

− Suppose H(〈D,D〉) rejects. In that case, D(〈D〉) accepts.

− But, according to the advertised behavior of H — which is that
it is a decider for ATM — the fact that H(〈D,D〉) rejects means
that D is not a Turing machine that will accept 〈D〉, or that

D(〈D〉) rejects!

− Suppose H(〈D,D〉) accepts. In that case, D(〈D〉) rejects.

− But, according to the advertised behavior of H — which is that
it is a decider for ATM — the fact that H(〈D,D〉) accepts means
that D is a Turing machine that accepts 〈D〉, or that

D(〈D〉) accepts!

Therefore, we obtain a contradiction in both cases.3 Hence, the claimed
decider H for ATM cannot exist, or

2 Basically, we feed 〈M〉 twice over, just to ‘please’ H that expects two arguments.
3 Please recall our discussions of Section 2.3.2.
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The acceptance problem for Turing machines is undecidable. �

16.2.4 Halting (HaltTM) is undecidable (important!)

Decider for A_TM

for
Decider

Halt_TM

Run
M on w

accept

reject

accept

reject

accept

reject

M

w

Fig. 16.1. ATM to HaltTM reduction. Notice that if we assume that the inner
components – namely the OR-gate, the ability to run M on w, and DHaltT M

exist, then DATM can be constructed; and hence, DHaltT M
cannot exist!

In Chapter 1, page 11, we presented the idea of “solving one implies
solving all.” This idea is captured by the central concept of reduction.

The golden rule of reduction is: Reduce an existing (“old”)
undecidable problem to the given (“new”) problem.
This way, if we assume that the new problem is decidable, we
would be forced to conclude that the existing undecidable prob-
lem is decidable — a contradiction. See Figure 16.1 where the
“new problem” is HaltTM , and by assuming that it is decidable,
we can assume the existence of the decider DHaltTM

, and using
it, build a decider for ATM , the “old problem” already shown
to be undecidable; this obtains a contradiction. Hence, DHaltTM

cannot exist.

Don’t get reduction backwards!

We should not go by the English language meaning of the term “reduc-
tion” that can lead us astray. Getting the meaning of ‘reduction’ back-
wards means trying to reduce the new problem to an existing (“old”)
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problem. This does not help us. To see why, assume this to be the
right direction. Then we will be trying to employ proof by contradic-
tion (following reduction) in the following futile way: “IF the existing
undecidable problem is decidable, THEN we would have shown the new
problem to be decidable.” However, this is a statement of the form “IF
false, THEN assert X.” Clearly, in this case, we cannot assert X.

An introduction to mapping reduction

Reduction is an abbreviation for mapping reduction — a concept fully
explored in Section 16.2.5. In this section, we informally apply the
(mapping) reduction idea to show that HaltTM is undecidable. Define

HaltTM = {〈M,w〉 | M is a Turing machine that halts on string w}.

We show HaltTM to be undecidable as follows:

Suppose not; i.e., there is a decider for HaltTM . Let’s now build
a decider for ATM (call it DATM

). DATM
’s design will be as

follows:
− DATM

will first feed M and w to DHaltTM
, the claimed de-

cider for HaltTM .
− If DHaltTM

goes to acceptDHaltTM

, DATM
knows that it can

safely run M on w, which it does.
− If M goes to acceptM , DATM

will go to acceptDATM

.

− If M goes to rejectM , or if DHaltTM
goes to rejectDHaltTM

,

DATM
will go to rejectDATM

.

Notice that we have labeled the accept and reject states of the two
machines DHaltTM

and DATM
. After one becomes familiar with these

kinds of proofs, higher-level proof sketches are preferred. Here is such
a higher-level proof sketch:

Build a decider for ATM . This decider accepts input 〈M,w〉 and
runs Halt decider (if it exists) on it. If this run accepts, then
we can safely (without the fear of looping) run M on w, and
return the accept/reject result that this run returns; else return
“reject.”

A diagram that illustrates this construction is in Figure 16.1. Therefore,
we conclude that

the Halting problem for Turing machines is undecidable. �
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Two observations that the reader can make after seeing many such
proofs (to follow) are the following:

• One cannot write statements of the form “if f(x) loops, then ...”
in any algorithm, because termination is not detectable. Of course,
one can write “if f(x) halts, then ... .” This asymmetry is quite
fundamental, and underlies all the results pertaining to halting /
acceptance.

• One cannot examine the code (“program”) of a Turing machine
and decide what its language is. More precisely, one cannot build
a classifier program Q that, given access only to Turing machine
programs Pm (which encode Turing machines m), classify the m’s
into two bins (say “good” and “bad”) according to the language
of m. Any such classifier will have to classify all Turing machines
as “good” or all as “bad, ” or itself be incapable of handling all
Turing machine codes (not be total). This result will be proved in
Chapter 17 as Rice’s Theorem.

16.2.5 Mapping reductions

A B
Sigma*

f

f

f(A)

Fig. 16.2. Illustration of mapping reduction A ≤M B

Definition 16.3. A computable function f : Σ∗ → Σ∗ is a mapping
reduction from A ⊆ Σ∗ into B ⊆ Σ∗ if for all x ∈ Σ∗, x ∈ A ⇔ f(x) ∈
B.

In Chapter 19, we will employ polynomial-time mapping reductions,
which are denoted by ≤P .
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How a decider for A_TM is obtained:

Step 1: Here is the initial tape.

------------------------------------------------------------------

| M | w |

------------------------------------------------------------------

Step 2. Build M’ and put it on the tape

------------------------------------------------------------------

| M | w | ..build M’ that incorporates M here.. |

------------------------------------------------------------------

Step 3. Put w on the tape.

---------------------------------------------------------------------

| M | w | ..build M’ that incorporates M here.. | ..put w here.. |

---------------------------------------------------------------------

Step 4. Run Halt_TM_decider on M’ and w and return its decision

---------------------------------------------------------------------

| M | w | ..build M’ that incorporates M here.. | ..put w here.. |

---------------------------------------------------------------------

DHaltT M
(M

′

, w) =

{
accepts ⇒ M

′

halts on w ⇒ M accepts w

rejects ⇒ M
′

doesn′t halt on w ⇒ M doesn′t accept w

Fig. 16.3. How the mapping reduction from ATM to HaltTM works

Definition 16.4. A polynomial-time mapping reduction ≤P is a map-
ping reduction where the reduction function f has polynomial-time
asymptotic upper-bound time complexity.4

See Figure 16.2 which illustrates the general situation that A maps
into a subset denoted by f(A) of B, and members of A map into f(A)
while non-members of A map outside of B (that means they map out-
side of even B \ f(A)). Also note that A and B need not be disjoint
sets, although they often are. A mapping reduction can be (and usually
is) a non-injection and non-surjection; i.e., it can be many to one and
not necessarily onto. It is denoted by ≤m. By asserting A ≤m B, the
existence of an f as described above is also being asserted.
Typically mapping reductions are used as follows:

• Let A be a language known to be undecidable (“old” or “existing”
language).

4 Using the familiar notation O(. . .) for asymptotic upper-bounds, polynomial-time
means O(nk) for an input of length n, and k > 1. See [5, 88, 29] for details.
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M’(x) {

if x <> w then loop ; // could also goto reject_M’ here

Run M on w ;

If M accepts w, goto accept_M’ ;

If M rejects w, goto reject_M’ ; }

How a decider for E_TM is obtained:

Step 1: Build above M’ and put it on the tape

------------------------------------------------------------------

| M | w | ..build M’ that incorporates M and w here.. |

------------------------------------------------------------------

Step 2: Run E_TM_decider on M’ and return its decision

------------------------------------------------------------------

| M | w | ..build M’ that incorporates M and w here.. |

------------------------------------------------------------------

DeciderETM
(M

′

) =

{
accepts ⇒ L(M

′

) is empty ⇒ M does not accept w

rejects ⇒ L(M
′

) is not empty ⇒ M accepts w

Fig. 16.4. Mapping reduction from ATM to ETM

M’(x) {

if x is of the form 0^n 1^n then goto accept_M’ ;

Run M on w ;

If M accepts w, goto accept_M’ ;

If M rejects w, goto reject_M’ ; }

DeciderRegularT M
(M

′

) =

⎧⎪⎪⎨
⎪⎪⎩

accepts ⇒ L(M
′

) is regular

⇒ Language isΣ
′ ⇒ M accepts w

rejects ⇒ L(M
′

) is not regular

⇒ Language is 0n1n ⇒ M does not accept w

Fig. 16.5. Mapping reduction from ATM to RegularTM

• Let B be the language that must be shown to be undecidable (“new”
language).

• Find a mapping reduction f from A into B.
• Now, if B has a decider DB , then we can decide membership in A

as follows:
− On input z, in order to check if z ∈ A, find out if DB(f(z))

accepts or not. If it accepts, then z ∈ A, and if it rejects, then
z /∈ A.
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Mapping Reduction From ATM to HaltTM

We first illustrate mapping reductions by taking A = ATM and
B = HaltTM with respect to Figure 16.2. Function f takes a mem-
ber of ATM , namely a pair 〈M,w〉, as input, and prints out 〈M ′

, w〉 on
the tape as its output. Function f , in effect, generates the text of the
program M

′
from the text of the program M . Here is the makeup of

M
′
:

M
′
(x) =
Run M on x
If the result is “accept,” then “accept”
If the result is “reject,” then loop

Notice that the text of M
′
has “spliced” within itself a copy of the text

of program M that was input. Mapping reductions such as f illustrated
here need not “run” the program they manufacture; they simply accept
a program such as M , and a possible second input, such as w, and
manufacture another program M

′
(and also copy over w) and then

consider their task done! The reason such a process turns out to be
useful is for the following reasons:

Suppose someone were to provide a decider for HaltTM . The
mapping reduction f then makes it possible to obtain a decider
for ATM . When given 〈M,w〉, this decider will obtain 〈M ′

, w〉 =
f(〈M,w〉), and then feed it to the decider for HaltTM .

We have to carefully argue that f is a mapping reduction. We will be
quite loose about the argument types of f (namely that it maps Σ∗ to
Σ∗; we will assume that any 〈M,w〉 pair can be thought to be a string,
and hence a member of a suitable Σ∗. The proof itself is depicted in
Figure 16.3.

Mapping reduction From ATM to ETM

We show that

ETM = {〈M〉 | M is a TM and L(M) = ∅}

is undecidable through a mapping reduction that maps 〈M,w〉 into
〈M ′〉, as explained in Figure 16.4.

Mapping reduction from ATM to RegularTM

Similarly, we can prove RegularTM to be undecidable by building the
M

′
shown in Figure 16.5.
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16.2.6 Undecidable problems are “ATM in disguise”

This chapter covered many important notions including decidability,
semi-decidability (TR, RE), and mapping reductions. The techniques
discussed here lie at the core of the notion of “problem solving” in that
they help identify which problems possess algorithms and which do not.

A closing thought to summarize the proofs in this chapter is the
slogan that undecidable problems are ATM in disguise. We leave you
with this thought, hoping that it will provide you with useful intuitions.
Section 19.3.2 proposes a similar slogan with respect to NP-complete
problems.
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Exercises

16.1. Present an alternate proof for AεCFG being decidable by convert-
ing the given grammar to the Chomsky normal form and then looking
for something special about the resulting grammar.

16.2. Show that INFINITEDFA =

{〈A〉 | A is a DFA and L(A) is Infinite}

is decidable.

16.3. Describe an algorithm to decide NOODDDFA.

16.4. Describe an algorithm to obtain a PDA whose language is the
intersection of the language of a given DFA and a PDA.

Hint: The procedure similar to that described in Section 10.2.2.
The main difference occurs when the PDA has an ε move while the
DFA, quite naturally, does not have such a move. In this case, the
product construction proceeds by advancing the PDA control state
while arresting the DFA’s control state in its current state. Prove this
algorithm to be correct.

16.5. Describe another algorithm for the decidability of ONESTARCFG.

16.6. Describe an algorithm to decide ALLSTARCFG. Hint: Consider
all production rules to be simple – no | on the right-hand side. Next,
eliminate any production whose right-hand side sentential form includes
a 0 (the only symbol other than 1 in Σ). We now have a CFG over a
singleton alphabet which is regular, from Illustration 14.7.3. Complete
all these steps.

16.7. Argue that the set of all pairs of equivalent C programs is not
recursively enumerable. Argue that the set of all pairs of inequivalent
C programs is also not recursively enumerable.

16.8. Describe a non-TR language. Hint: Employ diagonalization to
specify such a language with respect to an enumeration of all possible
Turing machines, M .

16.9. Prove that if A ≤m B, then A ≤m B. Also prove that ≤m is a
preorder.

16.10. Describe a mapping reduction from ATM to CFLTM , the set of
Turing machines that have a context-free language.
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16.11. Show that the language

EQLTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)}

is neither Turing recognizable nor Co-Turing recognizable. A language
L is Co-Turing recognizable if L is Turing recognizable.

16.12. Suppose A ≤m B. Identify those assertions below that are true
and those that are false. Then rigorously establish your results, provid-
ing proof-sketches or counterexamples:

(a) If A is TR then B is TR
(b) If B is TR then A is TR
(c) If A is not TR then B is not TR
(d) If B is not TR then A is not TR
(e) Variations of (a), (b), (c), and (d) with A and B replaced by
A and B in all combinations (derive a sufficient number of the 255
variations, and test your understanding sufficiently)
(f) If A is decidable then B is decidable
(g) If B is decidable then A is decidable
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17

Advanced Undecidability Proofs

In this chapter, we will discuss Rice’s Theorem in Section 17.1, and the
computational history method in Section 17.3. As discussed in Chap-
ter 16, these are two additional important methods to approach the
question of decidability.

17.1 Rice’s Theorem

Rice’s Theorem asserts:

Theorem 17.1. Every non-trivial partitioning of the space of Turing
machine codes based on the languages recognized by these Turing ma-
chines is undecidable.

Rice’s Theorem is, basically, a general statement about the undecid-
ability of non-trivial partitions one can erect on Turing machine codes
based on the language that the corresponding Turing machines accept.
Stated another way, Rice’s Theorem asserts the impossibility of build-
ing an algorithmic classifier for Turing machine codes (“programs”)
based on the language recognized by these Turing machines, if the clas-
sification attempted is anything but trivial (a trivial partition puts all
the Turing machines into one or the other bin).

Relating these notions more to real-world programs, consider the
language L consisting of all ASCII character sequences s1, s2, . . . such
that each si is a C program ci. Now suppose that each ci, when run on
inputs from {0, 1},∗ accepts only those sequences that describe a regular
set. Rice’s Theorem says that languages such as L are not decidable. In
other words, it is impossible to classify all C programs (or equivalently
TMs) into those whose languages are regular and those whose languages
are non-regular. Mathematically, given a property P, consider the set
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L = {〈M〉 | M is a Turing machine and P(Lang(M))}.

Furthermore, let P be non-trivial — meaning, it is neither ∅ nor Σ∗.
For example, P could be “Regular”; since there are TMs that encode
regular sets and there are TMs that do not encode regular sets, P
represents a non-trivial partition over TR languages. Rice’s Theorem
asserts that sets such as L above are undecidable.

17.2 Failing proof attempt

M ′(x)
Run M on w ;

IF this run ends at state reject M, THEN loop ;

Manifest N;

RUN N on x ;

IF this run accepts, THEN goto accept M ′ ;

IF this run rejects, THEN goto reject M ′ ;

Fig. 17.1. Machine M
′

in the proof of Rice’s Theorem

For the ease of exposition, we present, as a special case of Rice’s
Theorem, the proof of Rice’s Theorem for P = Regular. Our first
proof attempt will fail because of a small technical glitch. The glitch
is caused by ∅ ∈ P, or in other words, allowing P(∅). In our special
case proof, this glitch manifests in the form of ∅ ∈ Regular, as we
are proving for the special case of P = Regular. We fix this glitch in
Section 17.2.1.

Proof, with a small glitch, of a special case of Rice’s Theorem:

By contradiction, assume that L has a decider, namely DL. The Tur-
ing machine DL is capable of classifying Turing machine codes into
those whose languages pass the predicate test Regular. As noted ear-
lier, Regular is a non-trivial property. Therefore, given DL, it should
be possible to find at least one Turing machine— say N — whose lan-
guage is regular (it does not matter which Turing machine this is). In
particular, algorithm Manifest N is:

Find the first (in numeric order) string from Σ∗ accepted by
DL.
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Now, we use Manifest N in defining a machine M
′

shown in Fig-
ure 17.1. Then, using M

′
(built with respect to arbitrary M and x),

we try to derive a contradiction:

• If M accepts w, L(M
′
) = Lang(N), which is regular. Hence, M

′
is

in RegularTM .
• If M does not accept w, L(M

′
) = ∅. Unfortunately, ∅ is also regu-

lar! Hence, in this case too, M
′

is in RegularTM . Alas, this is the
place where we ought to have obtained a contradiction. Somehow,
we “blew our proof.”

• In other words, if we feed M
′
to DL, we will get true regardless of

whether or not M accepts w. Therefore, no contradiction results.

17.2.1 Corrected proof

Surprisingly, the proof goes through if we take P = non-regular; in this
case, we will obtain a contradiction. We redo our proof steps as follows:

• Now define L and DL for the case of P = non-regular.
• Define Manifest N using DL, which manifests a Turing machine N

whose language is not regular.
• Define M

′
in terms of N . In other words, in M

′
’s body, we will

manifest N and also use it.

Let us analyze the language of M
′
:

• If M accepts w, L(M
′
) = Lang(N), which is non-regular. Hence,

L(M
′
) is in non-regular.

• If M does not accept w, L(M
′
) = ∅. ∅ is regular, and in this case,

L(M
′
) is NOT in non-regular.

• Therefore, if the decider DL exists, we can generate M
′

and feed
it to DL. Then we will see that if M accepts w, DL(M

′
) = true,

and if M does not accept w, DL(M
′
) = false. Hence, if DL exists,

we can decide ATM . Since this is a contradiction, DL cannot exist;
and hence, we obtain a contradiction!

Summary of the proof of Rice’s Theorem: We observe that if
we go with ∅ /∈ P, then the proof succeeds. The general proof of Rice’s
Theorem assumes that P does not contain ∅. This approach is justified;
there is no loss of generality. This is because if P indeed contains ∅,
then we can always proceed with ¬P as our “new P” and finish the
proof. When we fail to obtain a contradiction with respect to P but
obtain a contradiction with respect to ¬P, we would have shown that
DL — the decider of Turing machine codes whose language is ¬P — is
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undecidable. But, this is tantamount to showing that DL — the decider
of Turing machine codes whose language is P — is undecidable.

Proof for a general non-trivial property P

The reader can easily verify that substituting P for Regular in the pre-
vious proof makes everything work out. In particular, M

′
’s language

either would be ∅ or would be N . If ∅ /∈ P, this would result in a
full contradiction when DL is fed M

′
. If ∅ ∈ P, then M

′
would be

constructed with respect to Mhas¬P ’s language, and even here full con-
tradiction will result. Therefore, we would end up showing that either
L defined with respect to an arbitrary non-trivial property P has no
decider, or that L defined with respect to ¬P has no decider.

17.2.2 Greibach’s Theorem

There is a theorem analogous to Rice’s Theorem for PDAs. Known as
Greibach’s Theorem, the high-level statement of the theorem (in terms
of its practical usage) is as follows:

It is impossible to algorithmically classify (using, of course, a
Turing machine) context-free grammars on the basis of whether
their languages are regular or not.

For details, please see [61, page 205].

17.3 The Computation History Method

As we mentioned in Chapter 1, it is possible to “teach” LBAs (and
NPDAs) to answer certain difficult questions about Turing machines.
This idea is detailed in Section 17.3.2 through 17.3.4.

We first recap basic facts about linear bounded automata (LBA) and
present a decidability result about them (Section 17.3.1). Thereafter,
we present three undecidability results based on the computation his-
tory method: (i) emptiness of LBA languages (Section 17.3.2), (ii) uni-
versality of the language of a CFG (Section 17.3.3), and (iii) Post’s cor-
respondence problem (Section 17.3.4). In Chapter 18, Section 18.2.3,
we emphasize the importance of the undecidability of Post’s correspon-
dence problem (PCP) by presenting a classic proof due to Robert Floyd:
we reduce PCP to the validity problem for first-order logic. This proof
then establishes that the validity problem for first-order logic is unde-
cidable.
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17.3.1 Decidability of LBA acceptance

LBAs are Turing machines that are allowed to access (read or write)
only that region of the input tape where the input was originally pre-
sented. To enforce such a restriction, one may place two distinguished
symbols, say and , around the original input string.1 With these
conventions, it can easily be seen that instantaneous descriptions of
an LBA that begin as q0w will change to the general form lqr, where
|lr| = |w|. Therefore, there are a finite number, say N , of these IDs
(see Exercise 17.1). A decider can simulate an LBA starting from ID
q0w, and see if it accepts within this many IDs; if not, the LBA will
not accept its input. Hence, LBA acceptance is decidable.

17.3.2 Undecidability of LBA language emptiness

Suppose a Turing machine M accepts input w; it will then have an ac-
cepting computational history of IDs starting with q0w, going through
intermediate IDs, and ending with an ID of the form aqfb where qf ∈ F .
With respect to a given 〈M,w〉 pair, it is possible to generate an LBA
LB〈M,w〉 that accepts a string s exactly when s is a sequence of IDs

representing an accepting computational history of M running on w.2

All LB〈M,w〉 need to do is this: check that the first ID is q0w; check that
the i + 1st ID follows from the ith ID through a legal transition rule of
the Turing machine M ; and check that the final ID is of the form aqfb.
Hence, if the emptiness of an LBA’s language were decidable through
a decider DE LBA, one could apply it to LB〈M,w〉.

By virtue of its design, LB〈M,w〉 has an empty language exactly
when M does not accept w.

Therefore, the decision of DE LBA would be tantamount to whether or
not M accepts w — a known undecidable problem; and hence, DE LBA

cannot exist.

17.3.3 Undecidability of PDA language universality

The question of whether an NPDA over alphabet Γ has a universal
language (language equal to Γ ∗) is undecidable. The proof proceeds
almost exactly like the proof that DE LBA cannot exist.
• We will define an NPDA P〈M,w〉 (created with respect to Turing
machine M and input string w), such that

1 If the input to an LBA is ε, and will lie in adjacent cells.
2 It is possible to separate these IDs using some fixed separator character that is

not in the original Γ .
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− The language of P〈M,w〉 is Γ ∗ if M does not accept w.
− The language of P〈M,w〉 is Γ ∗ \ {s} if M accepts w through an

accepting computational history s.

If we manage to define such an NPDA, then simply feeding it to a
claimed decider for universality will allow us to solve the acceptance
problem of Turing machines, which is known to be undecidable (Sec-
tion 16.2.3).
• Here is how P〈M,w〉 is designed:

− P〈M,w〉 is designed to examine the computation history of M run-
ning on w. In other words, what is fed to P〈M,w〉 is a sequence
of instantaneous descriptions (ID) of some Turing machine M (for
reasons to be made clear soon, we require odd-numbered IDs to be
reversed in the input).

− If what is fed to P〈M,w〉 is an accepting computational history of M
on w, then P〈M,w〉 rejects the input.

− If there is some i such that ID i+1 does not follow from ID i through
a rule of M , then the given sequence of IDs is not an accepting
computational history of M on w; in this case, P〈M,w〉 accepts.

From this design, it is clear that if M does not accept w, then P〈M,w〉

has a universal language. This is because no string will be an accepting
computational history in this situation! On the other hand, if M accepts
w, P〈M,w〉’s language will precisely miss the accepting computational
history of M on w.
• Now, all we need to present is how P〈M,w〉 can do the said checks.
This is easy:

− An NPDA can be made to nondeterministically pick the ith ID on
the tape; it nondeterministically decides to either move over an ID
or actually read and stack that ID.

− Once the ith ID has been picked and stacked, the i + 1st ID can
be compared against it by popping the ith ID from the stack each
time one character of the i + 1st ID is read.

− The only twist is that the NPDA will have to detect how ID i
changed over to ID i + 1. Fortunately, this comparison can be done
around the head of the TM in the ith ID and the head of the TM
in the i + 1st ID. This much (finite) information can be recorded
within the finite-state control of the NPDA.
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17.3.4 Post’s correspondence problem (PCP)

At first glance, a PCP instance is a simple puzzle about finite se-
quences3 of pairs of strings of the form

〈01, 1〉〈01, ε〉〈01, 0〉〈1, 101〉.

It is customary to think of the above as “tiles” (or “dominoes”), with
each tile at the respective index portrayed thus:

Index 0 1 2 3

Tile [01] [01] [01] [ 1]

[ 1] [ ] [ 0] [101]

The question is: is there an arrangement of one or more of the above
tiles, with repetitions allowed, so that the top and bottom rows read
the same? Here is such an arrangement:

[ 1] [01] [01] [1 ] [01] --> This row reads 10101101

[101] [ 0] [ 1] [101] [ ] --> This row reads 10101101

In obtaining this solution, the tiles were picked, with repetition, accord-
ing to the sequence given by the indices 3,2,0,3,1:

Index 3 2 0 3 1 --> Solution is

3,2,0,3,1

[ 1] [01] [01] [1 ] [01] --> reads 10101101

[101] [ 0] [ 1] [101] [ ] --> reads 10101101

Given a PCP instance S of length N (N = 4 in our example), a so-
lution is a sequence of numbers i1, i2, . . . , ik where k ≥ 1 and each
ij ∈ {0 . . . N − 1} for j ∈ {1 . . . k} such that S[i1]S[i2] . . . S[ik] has
the property of the top and bottom rows reading the same. By the
term “solution” we will mean either the above sequence of integers or
a sequential arrangement of the corresponding tiles.

Note that 3,2,0 is another solution, as is 3,1. The solution 3,1 is:

Index 3 1 --> Solution is 3,1

[ 1] [01] --> reads 101

[101] [ ] --> reads 101

3 Recall from Chapter 8 that sequences and strings are synonymous terms.
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17.3.5 PCP is undecidable

The PCP is a fascinating undecidable problem! Since its presentation
by Emil L. Post in 1946, scores of theoretical and practical problems
have been shown to be undecidable by reduction from the PCP.4 A
partial list includes the following problems:

• Undecidability of the ambiguity of a given CFG (see Exercise 17.2).
• Undecidability of aliasing in programming languages [101].
• Undecidability of the validity of an arbitrary sentence of first-order

logic (see Section 18.2.3 for a proof).

The impressive diversity of these problems indicates the commonal-
ity possessed by this variety of problems that Post’s correspondence
problems embody.
The main undecidability result pertaining to PCPs can be phrased as
follows. Given any alphabet Σ such that |Σ| > 1, consider the tile
alphabet T ⊆ Σ∗ × Σ∗. Now consider the language

PCP = {S | S is a finite sequence over T that has a solution}.
Theorem 17.2. PCP is undecidable (a proof-sketch is provided in Sec-
tion 17.3.6).

In [125], PCP is studied at a detailed level, and a software tool
PCPSolver is made available to experiment with the PCP. The fol-
lowing terminology is first defined:

• A PCP instance is a member of the language PCP .
• If any member of T is of the form 〈w,w〉, then that PCP instance

is trivial (has a trivial solution).
• The number of pairs in a PCP instance is its size. The length of

the longest string in either position of a pair (“upper or lower string
of a tile”) in a PCP instance is the width of the instance.

• An optimal solution is the shortest solution sequence. The example
given on page 315 has an optimal solution of length 2.

With respect to the above definitions, here are some fascinating results
cited in [125], that reveal the depth of this simple problem:

• Bounded PCP is NP-complete (finding solutions of length less than
an a priori given constant K ∈ Nat). Basically, checking whether
solutions below a given length is decidable, but has, in all likelihood,
exponential running time (see Chapter 19 for an in-depth discussion
of NP-completeness).

4 PCP is taken as the existing undecidable problem, and a mapping reduction to
a new problem P is found, thus showing P to be undecidable.
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• PCP instances of size 2 are decidable, while PCP instances of size 7
are undecidable (note: no restriction on the width is being imposed).
Currently, decidability of sizes 3 through 6 are unknown.

Here are more unusual results that pertain to the shortest solutions
that exist for two innocent looking PCP instances:

• The PCP instance below has an optimal solution of length 206:

[1000] [01] [1 ] [00 ]

[ 0] [ 0] [101] [001]

• The PCP instance below has two optimal solutions of length 75:

[100] [0 ] [1]

[ 1] [100] [0]

These discussions help build our intuitions towards the proof we are
about to sketch:

the undecidability of PCP indicates the inherent inability to
bound search while solving a general PCP instance.

17.3.6 Proof sketch of the undecidability of PCP

The basic idea behind the proof of undecidability of PCP is to use ATM

and the computation history method. In particular,

• Given a Turing machine M , we systematically go through the tran-
sition function δ of M as well as the elements of its tape alphabet,
Γ , and generate a finite set of tiles, T ilesM .

• Now we turn around and ask for an input string w that is in the
initial tape of M . Then, with respect to M and w, we generate one
additional tile, tileMw. We define T iles = T ilesM ∪ {tileMw}.

• We arrange it so that any solution to T iles must begin with tileMw.
This is achieved by putting special additional characters around the
top and bottom rows of each tile, as will soon be detailed.

• We then prove that T iles has one solution, namely SolnT iles, ex-
actly when M accepts w. If M does not accept w, T iles will have
no solutions, by construction. Furthermore, SolnT iles would end up
being a sequence t1, t2, . . . , tk such that when the tiles are lined up
according to this solution, the top and bottom rows of the tiles
would, essentially,5 be the accepting computation history of M on
w.

5 We say “essentially” because there would be extraneous characters introduced to
“align” various tiles. In addition, at the very end of the solution sequence, the
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• Hence, given a solver for PCP, we can obtain a solver for ATM .

p01
change 0 to 1 move right−→ 1q1

change 1 to 0 move left−→ A10

T1 T2 T3 T4 T5 T6 T7 T8

------------- ------ ---- ---- ------- ---- ------ ----

[*# ] [*p*0] [*1] [*#] [*1*q*1] [*#] [*A*1] [*0]

[*#*p*0*1*#*] [1*q*] [1*] [#*] [A*1*0*] [#*] [A* ] [0*]

T9 T10 T11 T12 T13

---- ------ ---- ------- ---

[*#] [*A*0] [*#] [*A*#*#] [*<>]

[#*] [A* ] [#*] [#* ] [<> ]

Fig. 17.2. An accepting computation history and its encoding as per the
PCP encoding rules

The crux of achieving the above reduction is to generate each set of tiles
carefully; here is how we proceed to generate the members of T iles.6

Here, the following notations are used: if u is the string of characters
u1u2 . . . un,

◦ ∗u = ∗u1 ∗ u2 . . . ∗ un,
◦ u∗ = u1 ∗ u2 ∗ . . . un∗, and
◦ ∗u∗ = ∗u1 ∗ u2 ∗ . . . un∗.

In Figure 17.2, we illustrate the encoding ideas behind the PCP unde-
cidability proof through the example of a Turing machine starting from
state p with its tape containing string 0100 — i.e., ID p01. This Turing
machine first moves one step right to ID 1q1, and in the process changes
the 0 it was initially facing to a 1, as shown in Figure 17.2. Then the
Turing machine moves one step left, and in the process changes the 1 it
was facing to a 0, as also shown in Figure 17.2. At this point, it enters
the accepting state A, as shown by the ID of A10 attained by this Tur-
ing machine, and hence halts. The general rules below are illustrated
on specific tiles mentioned by the annotation “Tn” below:

top and bottom rows will shrink from being an accepting ID to an ID that simply
contains qa. Ignoring these characters, we would have the computational history
of M on w on the top and bottom.

6 We base our explanations quite heavily on those provided in [111].



17.3 The Computation History Method 319

T1: tileMw =

[∗#]

[∗#q0w#∗]. As said earlier, any solution to the PCP will
start with this tile. This is ensured, as we shall soon see, by having
a ∗ begin the top and bottom row of this tile.

T13: T ilesM must include

[∗ ]
[ ] . This tile will end any solution to the

PCP. The extra ∗ at the top will, as we shall soon see, supply the
last needed star in a run of tiles. The  at the top and bottom forces
this to be the last tile.

T3,T4,T6,T8,T9,T11: For every a ∈ Γ ,

[∗a]

[a∗] is a tile in T ilesM . In

addition, include

[∗#]

[#∗] as a tile in T ilesM .

T2: For every move δ(q, a) = (r, b,R),

[∗qa]

[br∗] is a tile in T ilesM . Notice
that this pattern in a 2 × 2 window captures the Turing machine
head, changing the ‘a’ character of the ID qa into a b, and moving
right, attaining state r in the process.

T5: For every move δ(q, a) = (r, b, L) and for every c ∈ Γ ,

[∗cqa]

[rcb∗] is a
tile in T ilesM . This pattern in a 3 × 2 window captures the tape
head moving left.

T10: For every a ∈ Γ ,

[∗aqa]

[qa∗] and

[∗qaa]

[qa∗] are tiles in T ilesM . These tiles
help shrink the top and bottom rows of the solution sequence from
being the accepting ID to being the ID qa.

T12: For qa ∈ F ,

[∗qa##]

[#∗] is in T ilesM . This tile helps finish off the
accepting computation history that will form on the top row of a
solution sequence.

The reader may verify that the top and bottom rows in Figure 17.2
essentially have the accepting computation history for M on w. Ignoring
[, ], and *, what we have is

# p01 # 1q1 # A10 # A0 # A ##  .
The crux of the PCP proof was that ATM can be decided if and only
if the PCP instance generated by these tile generation rules can be
decided to possess a solution.
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Chapter Summary

This chapter discussed Rice’s Theorem, the computation history method,
and Post’s correspondence problem. We took a semi-formal approach,
but highlighting many details and intuitions often lost in highly theo-
retical presentations of these ideas. The basic techniques are all quite
simple, and boil down to the undecidability of the acceptance problem,
ATM .

Exercises

17.1. Calculate N , referred to in Section 17.3.1, in terms of |Q| and
|Γ |.

17.2. Show that it is undecidable whether an arbitrary CFG is ambigu-
ous. Hint: Let

A = w1, w2, . . . , wn

and
B = x1, x2, . . . , xn

be two lists of words over a finite alphabet Σ. Let a1, a2, . . . , an be
symbols that do not appear in any of the wi or xi. Let G be a CFG

({S, SA, SB}, Σ ∪ {a1, . . . , an}, P, S),

where P contains the productions

S → SA,
S → SB,
For 1 ≤ i ≤ n, SA → wiSAai,
For 1 ≤ i ≤ n, SA → wiai,
For 1 ≤ i ≤ n, SB → xiSBai, and
For 1 ≤ i ≤ n, SB → xiai.

Now, argue that G is ambiguous if and only if the PCP instance (A,B)
has a solution (thus, we may view the process of going from (A,B) to
G as a mapping reduction).

17.3. Show that the unary PCP problem — PCP over a singleton al-
phabet (|Σ| = 1) — is decidable.

17.4. Modify the Turing machine for which Figure fig:pcp-complete-
example is drawn, as follows: in state q, when faced with a 0, it changes
0 to a 1 and moves right, and rejects (gets stuck) in state R. Now go
through the entire PCP “tile construction” exercise and show that the
PCP instance that emerges out of starting this Turing machine on input
string 00 in state p has no solution.
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17.5. Someone provides this “proof:” There are PDAs that recognize
the language L = {0n1n | n ≥ 0}. This PDA erects a non-trivial
partitioning of {0, 1}∗. Both the partitions are recursively enumerable.
Hence, L is the language of infinitely many Turing machines M i

L, for
i ranging over some infinite index set. The same is true for L and
M j

L
. However this is a non-trivial partitioning of the space of Turing

machines. Hence, L is undecidable.
Describe the main flaw in such a “proof.”
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Basic Notions in Logic including SAT

This chapter is on propositional logic, first-order logic, and modern
Boolean satisfiability methods. In particular, we will prove the unde-
cidability of the validity of first-order logic sentences. Boolean satisfi-
ability is discussed in sufficient detail to ensure that the reader is well
motivated to study the theory of NP-completeness in Chapter 19.

Mathematical logic is central to formalizing the notion of assertions
and proofs. Classical logics include propositional (zeroth-order), first-
order, and higher-order logics. Most logics separate the notion of
proof and truth. A proof is a sequence of theorems where each theorem
is either an axiom or is obtained from previous theorems by applying
a rule of inference.

Informally speaking, it is intended that all theorems are “true.” This
is formalized through the notion of a meaning function or interpretation
which maps a well-formed formula (a syntactically correct formula,
often abbreviated wff) to its truth value. If a wff is true under all
interpretations, it is called a tautology (or equivalently, it is called valid).
Therefore, when we later mention the term, “the validity problem of

first-order logic,” we refer to the problem of deciding whether a given
first-order logic formula is valid (this problem is later shown to be only
semi-decidable, or equivalently TR or RE).

A logical system consisting of a collection of axioms1 and rules of
inference is sound if every theorem is a tautology. A logical system is
complete if every tautology is a theorem. A logical system has indepen-
dent rules of inference if omitting any rule prevents certain theorems
from being derived.

1 Note that axioms can be regarded as rules of inference that have an empty
premise.
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One uses the terminology of “order” when talking about logics.
Propositional (zeroth-order) logic includes Boolean variables that range
over true and false (or 1 and 0), Boolean connectives, and Boolean rules
of inference. Predicate (first-order) logic additionally allows the use of
individuals such as integers and strings that constitute infinite sets,
variables that are quantified over such sets, as well as predicate and
function constants. Second (and higher) order logics allow quantifica-
tions to occur over function and predicate spaces also. For example,
in Chapter 5, Section 5.3, we presented two principles of induction,
namely arithmetic and complete; the formal statement of both these
induction principles constitutes examples of higher order logic. There
are also special classes of logics that vary according to the kinds of
models (interpretations) possible: these include temporal logic, which is
discussed in Chapters 21 and 22. In these logics, notions such as va-
lidity tend to acquire specialized connotations, such as validity under
a certain model. In this chapter, however, we will stick to the classical
view of these notions.

Section 18.1 discusses a Hilbert style axiomatization of propositional
logic due to Church. Section 18.2 begins with an example involving
“quacks and doctors,” presents examples of interpretations for formu-
las, and closes off with a proof for the fact that the validity problem
of first-order logic is undecidable, but semi-decidable (or equivalently,
RE or TR).

We then turn our attention to the topic of satisfiability in the setting
of propositional logic in Section 18.3. We approach the subject based
on notions (and notation) popular in hardware verification - follow-
ing how “Boolean logic” is treated in those settings (a model theoretic
approach). We first examine two normal forms, namely the conjunc-
tive and the disjunctive normal forms, and discuss converting one to
the other. We then examine related topics such as �=-satisfiability, 2-
satisfiability, and satisfiability-preserving transformations.

18.1 Axiomatization of Propositional Logic

We now present one axiomatization of propositional calculus following
the Hilbert style. Let the syntax of well-formed formulas (wff) be as
follows:

Fmla ::= Pvar | ¬Fmla | Fmla ⇒ Fmla | (Fmla).

In other words, a formula is a propositional variable, the negation of a
propositional formula, an implication formula, or a parenthesized for-
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mula. This grammar defines a complete set of formulas in the sense
that all Boolean propositions can be expressed in it (prove this asser-
tion). Following Church [17], a Hilbert calculus for propositional logic
can be set up based on three axioms (A1-A3) and two rules of inference
(R1-R2) shown below. Here, p and q stand for propositional formulas.

A1: p ⇒ (q ⇒ p)
A2: (s ⇒ (p ⇒ q)) ⇒ (s ⇒ p) ⇒ (s ⇒ q)
A3: (¬q ⇒ ¬p) ⇒ (p ⇒ q)

R1 (Modus Ponens): If P is a theorem and P ⇒ Q is a theorem, con-
clude that Q is a theorem.

Example: From p and p ⇒ (p ⇒ q), infer p ⇒ q.
R2 (Substitution): The substitution of wffs for propositional variables

in a theorem results in a theorem. A substitution is a “parallel
assignment” in the sense that the newly introduced formulas them-
selves are not affected by the substitution (as would happen if, for
instance, the substitutions are made serially).

Example: Substituting (p ⇒ q) for p and (r ⇒ p) for q in formula
p ⇒ q, results in (p ⇒ q) ⇒ (r ⇒ p). It is as if p and q are replaced
by fresh and distinct variables first, which, in turn, are replaced by
(p ⇒ q) and (r ⇒ p) respectively.
We do not perform the substitution of r ⇒ p for q first, and then
affect the p introduced in this process by the substitution of (p ⇒ q)
for p.

Given all this, a proof for a simple theorem such as p ⇒ p can be
carried out – but it can be quite involved:

P1: From A1, through substitution of p ⇒ p for q, we obtain

p ⇒ ((p ⇒ p) ⇒ p).

P2: From A2, substituting p for s, p ⇒ p for p, and p for q, we obtain

(p ⇒ ((p ⇒ p) ⇒ p)) ⇒ (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p).

P3: Modus ponens between P1 and P2 yields

(p ⇒ (p ⇒ p)) ⇒ (p ⇒ p).

P4: From A1, substituting p for q, we obtain

p ⇒ (p ⇒ p).

Modus ponens between P4 and P3 results in (p ⇒ p). �
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It is straightforward to verify that the above axiomatization is
sound. This is because the axioms are true, and every rule of infer-
ence is truth-preserving. The axiomatization is also complete, as can
be shown via a proof by induction. The take away message from these
discussions is that it pays to hone the axiomatization of a formal logic
into something that is parsimonious as well as enjoys the attributes of
being sound, complete, and independent, as explained earlier.

18.2 First-order Logic (FOL) and Validity

Below, we will introduce many notions of first-order logic intuitively,
through examples. We refer the reader to one of many excellent books
in first-order logic for details. One step called skolemization merits some
explanation. Basically, skolemization finds a witness to model the ex-
istential variable. In general, from a formula of the form ∃X.P (X), we
can infer P (c) where c is a constant in the domain. Likewise, from P (c),
we can infer ∃X.P (X); in other words, for an unspecified constant c in
the domain,

∃X.P (X) ⇔ P (c).

We will use this equivalence in the following proofs. There is another
use of skolemization illustrated by the following theorem (which we
won’t have occasion to use):

∀X.∃Y.P (X,Y ) ⇔ P (X, f(X)).

Here, f is an unspecified (but fixed) function. This equivalence is valid
because of two reasons:

The right-hand side leaves X as a free variable, achieving the same
effect as ∀X goes, as far as validity goes (must be true for all X).
The right-hand side employs f(X) to model the fact that the selec-
tion of ∃Y may depend on X.

18.2.1 A warm-up exercise

Suppose we are given the following proof challenge:

Some patients like every doctor. No patient likes a quack. There-
fore, prove that no doctor is a quack.
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It is best to approach problems such as this using predicates to model
the various classes of individuals2 instead of employing ‘arbitrary con-
stants’ such as p and d to denote patients, doctors, etc. Introduce pred-
icate p to carve out a subset of people (P ) to be patients, and similarly
d for doctors. Let l (for “likes”) be a binary relation over P . Our proof
will consist of instantiation of formulas, followed by Modus ponens, and
finally proof by contradiction.

A1: The statement, “Some patients like every doctor:”

∃x ∈ P : (p(x) ∧ ∀y : (d(y) ⇒ l(x, y))).

A2: The statement, “No patient likes a quack:”

∀x, y ∈ P : (p(x) ∧ q(y) ⇒ ¬l(x, y)).

Proof goal: “No doctor is a quack.”

∀x ∈ P : (d(x) ⇒ ¬q(x)).

Negate the proof goal: ∃x ∈ P : (d(x) ∧ q(x)).
Skolemize negated proof goal: (x0 ∈ P ∧ d(x0) ∧ q(x0).
Skolemize A1: c ∈ P ∧ (p(c) ∧ ∀y : (d(y) ⇒ l(c, y))) (we will suppress

domain membership assertions such as c ∈ P from now on).
Specialize: From A1, we specialize y to x0 to get:
p(c) ∧ (d(x0) ⇒ l(c, x0)).
But since d(x0) is true in the negated proof goal, we get:
p(c) ∧ l(c, x0) (more irrelevant facts suppressed).
Since q(x0) is true in the negated proof goal, we also get:
p(c) ∧ l(c, x0) ∧ q(x0).
Use A2 and specialize x to c and y to x0 to get ¬l(c, x0).

Contradiction: Since we have l(c, x0) and ¬l(c, x0), we get a contradic-
tion.

18.2.2 Examples of interpretations

Manna’s book [78] provides many insightful examples, some of which
are summarized below. We focus on the notion of interpretations,
which, in case of first-order logic: (i) chooses domains for constants,
predicates, and function symbols to range over, and (ii) assigns to them.
Examples below will clarify.

2 Pun intended; in FOL, members of domains other than Booleans are called indi-
viduals.
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Example 1

Consider the formula

Fmla1 = ∃F.F (a) = b
∧(∀x).[p(x) ⇒ F (x) = g(x, F (f(x)))]

We will now provide three distinct interpretations for it.
Interpretation 1.

D = Nat
a = 0
b = 1
f = λx.(x = 0 → 0, x − 1)
g = *
p = λx.x > 0

Interpretation 2.

D = Σ∗

a = ε
b = ε
f = λx.(tail(x))
g(x,y) = concat(y,head(x))
p = λx.x �= ε

Interpretation 3.

D = Nat
a = 0
b = 1
f = λx.x
g(x,y) = y+1
p = λx.x > 0

It is clear that under Interpretation 1, Fmla1 is true, because there
indeed exists a function F , namely the factorial function, that makes
the assertion true. It is also true under Interpretation 2, while it is
false under Interpretation 3 (Exercise 18.4 asks for proofs). Hence, this
formula is not valid — because it is not true under all interpretations.

Example 2

Consider the formula
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Fmla2 = ∀P.P (a)
∧(∀x).[(x �= a) ∧ P (f(x)) ⇒ P (x)]

⇒ (∀x.P (x))

We can interpret this formula suitably to obtain the principle of induc-
tion over many domains: for example, Nat, strings, etc.

18.2.3 Validity of first-order logic is undecidable

Valid formulas are those that are true under all interpretations. For
example,

∀x.f(x) = g(x) ⇒ ∃a.f(a) = g(a).

Validity stems from the innate structure of the formula, as it must
remain true under every conceivable interpretation. We will now sum-
marize Floyd’s proof (given in [78]) that the validity problem for first-
order logic is undecidable. First, an abbreviation: for σi ∈ {0, 1}, use
the abbreviation

fσ1,σ2,...,σn(a) = fσn(fσn−1
(. . . fσ1

(a)) . . .).

The proof proceeds by building a FOL formula for a given “Post sys-
tem” (an instance of Post’s correspondence problem).
Given a Post system S = {(α1, β1), (α2, β2), . . . , (αn, βn), n ≥ 1 over
Σ = {0, 1}, construct the wff WS (we will refer to the two antecedents
of WS as A1 and A2, and its consequent as C1):

∧n
i=1 p(fαi

(a), fβi
(a)) (A1)

∧ ∀x ∀y [p(x, y) ⇒ ∧n
i=1 p(fαi

(x), fβi
(y))] (A2)

⇒ ∃z p(z, z) (C1)

We now prove that S has a solution iff WS is valid.
Part 1. (WS valid) ⇒ (S has a solution).

If valid, it is true for all interpretations. Pick the following interpre-
tation:

a = ε
f0(x) = x0 (string ‘x’ and string ‘0’ concatenated)
f1(x) = x1 (similar to the above)
p(x, y) = There exists a non-empty sequence i1i2 . . . im such that

x = αi1αi2 . . . αim and y = βi1βi2 . . . βim

Under this interpretation, parts A1 and A2 of WS are true. Here is
why:
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• Under the above interpretation, fαi
(a) = εαi = αi and similarly

fβi
(a) = βi.

• Thus A1 becomes ∧n
i=1 p(αi, βi). Each conjunct in this formula is

true by p’s interpretation; hence A1 is true.
• The part [p(x, y) ⇒ ∧n

i=1 p(fαi
(x), fβi

(y))] reduces to the following
claim: p(x, y) is true means that x and y can be written in the
form x = αi1αi2 . . . αim and y = βi1βi2 . . . βim ; the consequent of
this implication then says that we can append some αi and the
corresponding βi to x and y, respectively. The consequent is also
true by p’s interpretation. Thus A2 is also true.

• Since WS is valid (true), C1 must also be true. C1 asserts that
the Post system S has a solution, namely some string z that lends
itself to being interpreted as some sequence αi1αi2 . . . αim as well as
βi1βi2 . . . βim . That is,

αi1αi2 . . . αim = z = βi1βi2 . . . βim .

Part 2. (WS valid) ⇐ (S has a solution).
If S has a solution, let it be the sequence i1i2 . . . im. In other words,

αi1αi2 . . . αim = βi1βi2 . . . βim = Soln. Now, in order to show that WS

is valid, we must show that for every interpretation it is true. We ap-
proach this goal by showing that under every interpretation where the
antecedents of WS , namely A1 and A2, are true, the consequent, namely
C1, is also true (if any antecedent is false, WS is true, so this case is
not considered).

From A1, we conclude that

p(fαi1
(a), fβi1

(a))

is true. Now using A2 as a rule of inference, we can conclude through
Modus ponens, that

p(fαi2
(fαi1

(a)), fβi2
(fβi1

(a))

is true. In other words,

p(fαi1
αi2

(a), fβi1
βi2

(a))

is true. We continue this way, applying the functions in the order dic-
tated by the assumed solution for S; in other words, we arrive at the
assertion that the following is true (notice that the subscripts of f de-
scribe the order in which the solution to S considers the α’s and β’s):

p(fαi1
αi2

...αim
(a), fβi1

βi2
...βim

(a)).
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However, since

αi1αi2 . . . αim = βi1βi2 . . . βim = Soln,

we have essentially shown that

p(fSoln(a), fSoln(a)).

Now, p(fSoln(a), fSoln(a)) means that there exists a z such that p(z, z),
namely z = fSoln(a). �

18.2.4 Valid FOL formulas are enumerable

It was proved by Gödel in his dissertation that first-order predicate
calculus is complete. In other words, there are axiomatizations of first-
order logic in which every valid formula has a proof. Hence, by enu-
merating proofs, one can enumerate all valid first-order logic formulas.
Thus the set of valid FOL formulas is recursively enumerable (or is
Turing recognizable).

18.3 Properties of Boolean Formulas

18.3.1 Boolean satisfiability: an overview

Research on Boolean satisfiability methods (SAT) is one of the “hottest”
areas in formal methods, owing to the fact that BDDs are often known
to become exponentially sized, as already hinted in Chapter 11. In [11],
the idea of model checking without BDDs was introduced. This work
also coincided with the arrival on the scene, of efficient Boolean sat-
isfiability methods. These modern SAT solvers (e.g., [81, 90]) followed
the basic “DPLL” procedure presented in [33, 32], but made consid-
erable improvements, including intelligent methods for backtracking
search over the space of satisfying assignments, and improving the ef-
ficiency of computer memory system (e.g., cache) utilization in carry-
ing out these algorithms. Easily modifiable versions of these tools are
now freely available (e.g., [87]). Boolean SAT methods are now able
to often handle extremely large system models, establish correctness
properties, and provide explanations when the properties fail. Ander-
sson [7] presents many of the basic complexity results, including the
inevitability of exponential blow up, even in the domain of SAT. We
discuss a summary of these issues, and offer a glimpse at the underlying
ideas behind modern SAT tools. Unfortunately, space does not permit
our detailed presentation of the use of SAT techniques or some of their
unusual applications in system verification (e.g., [46]). The reader may
find many tutorials on the Internet or web sites such as [105].



332 18 Basic Notions in Logic including SAT

18.3.2 Normal forms

We now discuss several properties of Boolean (or propositional) formu-
las to set the stage for discussions about the theory of NP-completeness.
There are two commonly used normal forms for Boolean formulas:
the conjunctive normal form (CNF) and the disjunctive normal form
(DNF).3 Given a Boolean expression (function) over n variables
x1 . . . xn, a sum-of-products (SOP) or disjunctive normal form (DNF)
expression for it is one where products of literals are disjoined (OR-ed)
– a literal being a variable or its negation. For example, nand(x, y) is
expressed in SOP (DNF) as

nand(x, y) = ¬x¬y + ¬xy + x¬y.

A POS (CNF) expression for nand would be (¬x + ¬y). A systematic
way to obtain DNF and CNF expressions from truth tables is illustrated
below: basically, the DNF form for a Boolean function is obtained by
disjoining (OR-ing) the min terms at which the function is a 1, while
the CNF form for a Boolean function is obtained by conjoining (AND-
ing) the max terms at which the function is a 0. All these are illustrated
in Figure 18.1, and details may be found in any standard digital system
design text book (e.g., [12]).

Row x y nand(x,y) Minterm Maxterm
0 0 0 1 m0 = ¬x ¬y M0 = (x + y)
1 0 1 1 m1 = ¬x y M1 = (x + ¬y)
2 1 0 1 m2 = x ¬y M2 = (¬x + y)
3 1 1 0 m3 = x y M3 = (¬x + ¬y)

Fig. 18.1. Min/Max terms for nand, whose DNF form is m0 + m1 + m2 and
CNF form is M3 (the only max term where the function is 0)

Here are important points pertaining to these normal forms:

Conversion between the CNF and the DNF forms incurs an exponen-
tial cost. This is best illustrated by a conversion program included in
Figures 18.2 and Figures 18.3.4 You are encouraged to run this code

3 Strictly speaking, we should call the normal forms being discussed here the canon-

ical sum-of-products form and the canonical product-of-sums form, since each
product term or sum term consists of n literals.

4 These programs do not prove that the conversion is exponential, but provide
strong intuitions as to why.
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under an Ocaml system. You will see that an exponential growth
in formula size can occur, as demonstrated in the tests at the end
of Figure 18.3. While these tests indicate the results on DNF to
CNF conversion, the same complexity growth exists even for CNF
to DNF conversion (Exercise 18.8 asks you to modify this program
to one that obtains the DNF form of a given formula. The modifi-
cations are based on the duality between ∨ and ∧, and hence the
complexity follows).
CNF satisfiability will be shown to be NP-complete in the next chap-
ter, whereas DNF satisfiability is linear-time (see exercise below).
However, due to the exponential size blow up, one cannot “win”
against NP-completeness by converting CNF satisfiability to DNF
satisfiability.

18.3.3 Overview of direct DNF to CNF conversion

Consider Figure 18.3 in which some terms representing DNF formulas
are given. In particular, note that formula f5 is a 4-DNF formula with
eight product terms. The expression List.length ( gencnf( f5 ) 1

[] ).cnf converts this formula to CNF, and measures its length, which
is found to be 65536, showing the exponential growth in length. Here
is a brief explanation of this code.5

In Figure 18.2, the types for literals, clauses, and CNF formulas are
given. The Ocaml List of lists [[1; 3; -2]; [1; -1]] stands for the
CNF formula (x1 ∨ x3 ∨ ¬x2) ∧ (x1 ∨ ¬x1). The syntax of formulas,
fmla, declares what formula terms are permissible. According to these
conventions, true is represented by [], i.e., an empty list of clauses,
while false is represented by [[]], i.e., one empty clause.

The program proceeds driven by pattern matching. Suppose fmla

matches true (Tt); this results in an Ocaml record structure as shown
in the following line:

Tt -> {cnf=[ ]; nvgen=0; algen=[]}

Note that [] is how true is represented. This is a list of lists with the
outer list empty. Since the outer list is a list of conjunctions, an empty
outer list corresponds to the basis case of a list of conjunctions, namely
true. Likewise, [[]] represents false because the inner list is empty, and
its basis case (for a list of disjunctions) is false (Ff). We also record the
number of new variables generated in nvgen, and an association list of

5 This code can convert arbitrary Boolean expressions to CNF - we choose to
illustrate it on DNF.
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type literal = int (* 1, 3, -2, etc *)
type clause = literal list (* [1; 3; -2] -> [ ] means TRUE and [ [ ] ] means FALSE *)
type cnffmla = clause list (* [[1; 3; -2]; [1; -1]] -> (x1 \/ x3 \/ ~x2)/\(x1 \/ ~x1)*)

type fmla =

Ff | Tt | Pv of string | And of fmla * fmla | Or of fmla * fmla
| Eq of fmla * fmla | Imp of fmla * fmla | Not of fmla

type cnf_str = {cnf:cnffmla; (* CNF formula as a list *)
nvgen:int; (* Variable allocation index *)

algen: (string * int) list} (* Association list between variable-names
and integers representing them *)

let rec gencnf(fmla)(next_var_int)(var_al) =
match fmla with

Tt -> {cnf=[ ]; nvgen=0; algen=[]}

| Ff -> {cnf=[[]]; nvgen=0; algen=[]}
| Pv(s) ->

if (List.mem_assoc s var_al)
then {cnf = [ [ (List.assoc s var_al) ] ];

nvgen = 0; algen = []}
else {cnf = [ [ next_var_int ] ]; nvgen = 1; (* 1 new var generated *)

algen = [(s,next_var_int)]}

| And(q1,q2) ->

let {cnf=cnf1; nvgen=nvgen1; algen=algen1}
= gencnf(q1)(next_var_int)(var_al) in

let {cnf=cnf2; nvgen=nvgen2; algen=algen2}

= gencnf(q2)(next_var_int + nvgen1)(algen1 @ var_al) in
{cnf=doAnd(cnf1)(cnf2); nvgen=nvgen1+nvgen2;

algen=algen1 @ algen2}

| Or(q1,q2) ->
let {cnf=cnf1; nvgen=nvgen1; algen=algen1}
= gencnf(q1)(next_var_int)(var_al) in

let {cnf=cnf2; nvgen=nvgen2; algen=algen2}
= gencnf(q2)(next_var_int + nvgen1)(algen1 @ var_al) in

{cnf=doOr(cnf1)(cnf2); nvgen=nvgen1+nvgen2;
algen=algen1 @ algen2}

| Imp(q1,q2) -> gencnf(Or(Not(q1),q2))(next_var_int)(var_al)
| Eq(q1,q2) -> gencnf(And(Or(Not(q1),q2), Or(Not(q2),q1)))(next_var_int)(var_al)

| Not(Pv(s)) ->
if (List.mem_assoc s var_al)

then {cnf = [ [ (0-(List.assoc s var_al)) ] ];
nvgen = 0; algen = []}

else {cnf = [ [ (0-next_var_int) ] ]; nvgen = 1; (* 1 new var generated *)

algen = [(s,next_var_int)]}
| Not(q1) ->

let {cnf=cnf1; nvgen=nvgen1; algen=algen1}
= gencnf(q1)(next_var_int)(var_al) in
{cnf=doNot(cnf1); nvgen=nvgen1;

algen=algen1}

and
doAnd(cnf1)(cnf2) =

(match (cnf1,cnf2) with
| ([],cnf2’) -> cnf2’
| (cnf1’,[]) -> cnf1’

| ([[]],_) -> [[]]
| (_,[[]]) -> [[]]

| _ -> List.append(cnf1)(cnf2) )

(* See PART-2 ... *)

Fig. 18.2. A CNF generator, Part-1 (continued in Figure 18.3)
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and
doOr(cnf1)(cnf2) =

(match (cnf1,cnf2) with
| ([],_) -> []
| (_,[]) -> []

| ([[]],cnf2’) -> cnf2’
| (cnf1’,[[]]) -> cnf1’

| ([cl1],[cl2]) -> [List.append(cl1)(cl2)]
| (cnf1’,[cl2]) -> doOr([cl2])(cnf1’)

| (cnf1’, (cl2::cls)) ->
let door1 = doOr(cnf1’)([cl2]) in
let door2 = doOr(cnf1’)(cls) in

doAnd(door1)(door2) )
and

doNot(cnf1) =
(match cnf1 with

| [] -> [[]]

| [[]] -> []
| (cl1::cls) ->

let compclause = comp_clause(cl1) in
let donot’ = doNot(cls) in

doOr(compclause)(donot’) )
and
comp_clause(clause) =

(match clause with
| [] -> []

| (lit::lits) ->
let cl = 0-lit in (* complement literal *)
let cl_cnf = [[cl]] in (* turn literal into CNF *)

let rest = comp_clause(lits) in
doAnd(cl_cnf)(rest) )

;;
(* To run tests, load these definitions, and type, e.g., gencnf(f5) 1 [];;

let f1 = And(And(Pv "x", Pv "y"), And(Pv "z", Pv "w"));;
let f2 = And(And(Pv "p", Pv "q"), And(Pv "r", Pv "s"));;
let f3 = Or(f1,f2);;

let f4 = Or(f3,f3);;
let f5 = Or(f4,f4);;

f5 is really (xyzw + pqrs + xyzw + pqrs + xyzw + pqrs + xyzw + pqrs)

List.length ( gencnf( f5 ) 1 [] ).cnf;;
- : int = 65536

Fig. 18.3. A CNF generator, Part-2 (continued from Figure 18.2)

variable names to their integer values in algen. These are respectively
0 and [] for the case of Tt. Formula Ff is handled similarly.

A propositional variable is converted by the code under Pv(s). We
look up s in the association list var_al, and if found, generate its CNF
with respect to the looked-up result. Else, we generate a CNF clause
containing next_var_int, the next variable to be allocated, and also
return nvgen=1 and algen suitably records the association between s

and next_var_int.
The remaining cases with propositional connectives are handled as

shown: for And, we recursively convert its arguments, and call doAnd
(Figure 18.3). The first four cases of doAnd deal with one of the argu-
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ments being false or true. The last case simply appends cnf1 and cnf2,
as they are already in CNF form. In case of doOr, we perform a more
elaborate case analysis. The case

| ([cl1],[cl2]) -> [List.append(cl1)(cl2)]

corresponds to two CNF clauses; here, we simply append the list of
disjuncts to form a longer list of disjuncts. Given the case

| (cnf1’,[cl2]) -> doOr([cl2])(cnf1’)

This helps bring the first argument towards a single clause, at which
time we can apply the append rule described earlier.

Let us discuss the last case:

| (cnf1’, (cl2::cls)) ->

let door1 = doOr(cnf1’)([cl2]) in

let door2 = doOr(cnf1’)(cls) in

doAnd(door1)(door2) )

We recursively OR cnf1’ with the head of the second list, namely cl2,
and the tail of the list, namely cls, and call doAnd on the result.

These are the places which cause an exponential size growth of
formulas.

18.3.4 CNF-conversion using gates

To contain the size explosion during the conversion of Boolean formu-
las to CNF or DNF, one can resort to a circuit-based representation
of clauses. This keeps the sizes of formulas linear, but introduces a
linear number of new intermediate variables. Theoretically, therefore,
the exponential cost remains hidden. This is because during Boolean
satisfiability, an exponential number of assignments can be sought for
these new variables. In practice, however, we can often avoid suffering
this cost.
We now illustrate the idea of CNF conversion using gates through an ex-
ample. Consider converting the DNF expression xyzw + pqrs to CNF.
We build a circuit net-list as follows, by introducing temporary nodes
t1 through t7:

t1 = and(x,y) ; t2 = and(z,w) ; t3 = and(p,q) ; t4 = and(r,s)

t5 = and(t1,t2) ; t6 = and(t3,t4) ; t7 = or(t5,t6)

Now, we convert each gate to its own CNF representation. We now
illustrate one conversion in detail:

t1 = x ∧ y.
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Treat it as t1 ⇒ (x ∧ y) and (x ∧ y) ⇒ t1.
The former is equivalent to (¬t1) ∨ (x ∧ y) which is equivalent to
(¬t1 ∨ x) ∧ (¬t1 ∨ y).
The latter is equivalent to (¬x ∨ ¬y ∨ t1).
Hence, t1 = x ∧ y can be represented through three clauses.

The following ML functions accomplish the conversion of AND gates
and OR gates into clausal form (t1 = x ∧ y was an example of the
former):

let gen_andG_clauses({gatetype = Andg; inputs = (i1,i2); output = output} as andG)
= [ [-i1; -i2; output]; [-output; i1]; [-output; i2] ]

let gen_orG_clauses ({gatetype = Org; inputs = (i1,i2); output = output} as orG)
= [ [i1; i2; -output]; [output; -i1]; [output; -i2] ]

Using these ideas, the final result for the example xyzw + pqrs is the
following 15 variables (8 variables were in the original expression, and
seven more – namely, t1 through t7 – were introduced) and 22 clauses
(7 gates, each represented using 3 clauses each; the last clause is the
unit clause t7 — encoded as variable number 15).

x=1, y=2, z=3, w=4, p=5, q=6, r=7, s=8, t1=9, t2=10,

t3=11, t4=12, t5=13, t6=14, t7=15

[ [-1; -2; 9] ; [-9; 1] ; [-9; 2] ] t1 = and(x,y)

[ [-3; -4; 10] ; [-10; 3] ; [-10; 4] ] t2 = and(z,w)

[ [-5; -6; 11] ; [-11; 5] ; [-11; 6] ] t3 = and(p,q)

[ [-7; -8; 12] ; [-12; 7] ; [-12; 8] ] t4 = and(r,s)

[ [-9; -10; 13] ; [-13; 9] ; [-13; 10] ] t5 = and(t1,t2)

[ [-11; -12; 14]; [-14; 11]; [-14; 12] ] t6 = and(t3,t4)

[ [13; 14; -15] ; [15; -13]; [15; -14] ] t7 = or(t5,t6)

[ 15 ] t7

18.3.5 DIMACS file encoding

At this point, having generated the gate net-list and their clauses, we
now need to generate a file format representing the conjunction of these
clauses. The standard format employed is the so called DIMACS format,
where the literals in each clause are listed on separate lines, terminated
by 0.

Given such a DIMACS file, one can feed the file to a Boolean sat-
isfiability solver. Three examples of SAT solvers are [87, 81, 90], with
reference [105] listing some of the latest news in the area of Boolean
satisfiability.
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p cnf 15 22 # Problem CNF format : Nvars and Nclauses.

-1 -2 9 0 # Each line lists the literals of each clause.

-9 1 0 # All lines end with a 0.

-9 2 0

-3 -4 10 0

-10 3 0

-10 4 0

-5 -6 11 0

-11 5 0

-11 6 0

-7 -8 12 0

-12 7 0

-12 8 0

-9 -10 13 0

-13 9 0

-13 10 0

-11 -12 14 0

-14 11 0

-14 12 0

13 14 -15 0

15 -13 0

15 -14 0

15 0

Type command ‘‘zchaff CNF-File’’ - here the file is "cnf"

The result of feeding the above file to zchaff is shown below:

[ganesh@localhost CH19]$ zchaff cnf

Z-Chaff Version: ZChaff 2003.11.04

Solving cnf ......

22 Clauses are true, Verify Solution successful.

Instance satisfiable

1 2 3 4 -5 -6 -7 -8 9 10 -11 -12 13 -14 15

Max Decision Level 7

Num. of Decisions 8

Num. of Variables 15

Original Num Clauses 22

Original Num Literals 50

Added Conflict Clauses 0

Added Conflict Literals 0

Deleted Unrelevant clause 0

Deleted Unrelevant literals 0

Number of Implication 15

Total Run Time 0

SAT

The SAT solver Zchaff picked the assignment given by the line
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1 2 3 4 -5 -6 -7 -8 9 10 -11 -12 13 -14 15

which stands for the Boolean assignment

x=1, y=1, z=1, w=1, p=0, q=0, r=0, s=0, t1=1, t2=1,

t3=0, t4=0, t5=1, t6=0, t7=1

Suppose we force the assignment of x=0 by adding the clause ¬x: the
assignment then becomes the one shown below, where p,q,r,s are set
to 1:

-1 -2 -3 -4 5 6 7 8 -9 -10 11 12 -13 14 15

18.3.6 Unsatisfiable CNF instances

Consider the unsatisfiable CNF formula represented by the DIMACS
file in Figure 18.4: An important theorem pertaining to unsatisfiable

p cnf 4 16

1 2 3 4 0

1 2 3 -4 0

1 2 -3 4 0

1 2 -3 -4 0

1 -2 3 4 0

1 -2 3 -4 0

1 -2 -3 4 0

1 -2 -3 -4 0

-1 2 3 4 0

-1 2 3 -4 0

-1 2 -3 4 0

-1 2 -3 -4 0

-1 -2 3 4 0

-1 -2 3 -4 0

-1 -2 -3 4 0

-1 -2 -3 -4 0

Fig. 18.4. An unsat CNF instance

CNF formulas is the following:

Theorem 18.1. In any unsatisfiable CNF formula, for any assignment,
there will be one clause with all its variables false and another with all
its variables true.

Proof: We can prove this fact by contradiction, as follows. Suppose
Fmla is an unsatisfiable CNF formula and there is an assignment σ
under which one of the following cases arise (both violating the ‘one
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clause with all its variables false and another with all its variables true’
requirement):

There are no clauses with all its literals assuming value true. In
this case, we can complement the assignment σ, thus achieving a
situation where no clause will have all false values.
There are no clauses with all its literals assuming value false. In this
case, Fmla is satisfiable.

If we feed the file in Figure 18.4 to a SAT solver, it will conclude
that the formula is indeed unsatisfiable. In modern SAT solvers, it is
possible to find out the root cause for unsatisfiability. In particular, if
the clauses of Figure 18.4 were embedded amidst many other clauses,
upon finding the system to be unsatisfiable, a modern SAT solving
framework is capable of extracting the clauses of Figure 18.4 as the
root cause. This capability is being used during formal verification to
provide explanations for failed proofs (e.g., [91, 109]).

18.3.7 3-CNF, �=-satisfiability, and general CNF

A 3-CNF formula is a CNF formula in which every clause has three
literals. For example,

(a ∨ a ∨ ¬b) ∧ (c ∨ ¬d ∨ e)

is a 3-CNF formula. As can be seen, there is no requirement on what
variables the clauses might involve. Many proofs are rendered easier by
standardizing on the 3-CNF form.

In many proofs, it will be handy to restrict the satisfying assign-
ments allowed. One useful form of this restriction is the �=-satisfiability
restriction. Given a 3-CNF formula, a �=-assignment is one under which
every clause has two literals with unequal truth values. Given a set of
N clauses where the ith clause is ci = yi1 ∨ yi2 ∨ yi3, suppose we trans-
form each such clause into two clauses by introducing a new variable
zi per original clause, and a single variable b for the whole translation:

ci1 = (yi1 ∨ yi2 ∨ zi) and ci2 = (¬zi ∨ yi3 ∨ b).

We can show that for any given formula Fmla = ∧i∈Nci, the above
described transformation is a polynomial-time mapping reduction ≤P

from 3-SAT to �=-sat.
Finally, a general CNF formula is one where the number of literals

in each clause can vary (a special case where this number is ≤ 2 is
discussed in Section 18.3.8). A conversion from general CNF to 3-CNF
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that does not increase the length of the formula beyond a polynomial
factor and takes no more than polynomial-time is now described (for
each clause with less than 3 literals, replicating some literal can increase
its size to 3; e.g., (a∨ b) = (a∨ b∨ b)). Consider a clause with l literals:

a1 ∨ a2 ∨ . . . ∨ al.

This clause can be rewritten into one with l − 2 clauses:

(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) . . . (¬zl−3 ∨ al−1 ∨ al).

Applying these transformations to a general CNF formula results in
one that is equivalent as far as satisfiability goes. This is known as
equi-satisfiable.

18.3.8 2-CNF satisfiability

A 2-CNF formula is one where each clause has two literals. One can
show that the satisfiability of 2-CNF is polynomial-time, as follows:

Consider one of the clauses l1 ∨ l2. This can be written as two im-
plications, (¬l1 ⇒ l2) and (¬l2 ⇒ l1).
The complete algorithm is to process each clause of a 2-CNF formula
into such a pair of implications. Now, viewing each such implication
as a graph edge, we can connect its source to its destination; for
example, in (¬l1 ⇒ l2), connect node ¬l1 to node l2. In any situation,
if a double negation is introduced, as in ¬¬a, we must simplify it to
a before proceeding.
Finally, we connect pairs of edges such that the destination vertex of
one edge is the source vertex of the other. For example, if (¬l1 ⇒ l2)
is an edge, and (l2 ⇒ l3) is another edge, connect these edges at the
common point l2.

Now, the following results can be shown:

If the graph resulting from the above construction is cyclic and a
cycle includes p and ¬p for some literal p, the formula is unsatisfi-
able.
If this situation does not arise, we can perform a value assignment
to the variables (find a satisfying assignment) as follows:
– If a literal x (for variable x) is followed by literal ¬x in the graph,

assign x false.
– If a literal ¬x (for variable x) is followed by x in the graph, assign

x true.
– Else assign x arbitrarily.
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Chapter Summary

This chapter considered many topics in propositional and first order
logic. The highlights were: (i) the undecidability of the validity of first
order logic sentences, by reduction from PCP, and (ii) Boolean sat-
isfiability from a theoretical and practical point of view. Armed with
this background, we will next study the very important problem of
NP-completeness.

Exercises

18.1. Using the operators used in the Hilbert style axiomatization of
Section 18.1, describe how to implement the familiar operators ∧, ∨,
and ⊕ (exclusive-OR). Also implement the constants true and false.

18.2.
1. Describe what the following terms mean:

a) axiom
b) rule of inference
c) theorem
d) satisfiable
e) proof
f) tautology

2. Show that the following is a tautology:

(¬x ⇒ ¬y) ⇔ (y ⇒ x)

Recall that x ⇔ y means (x ⇒ y) ∧ (y ⇒ x).

18.3. Prove the following using a similar approach as illustrated above
(Sperschneider’s book, p. 107): Every barber shaves everyone who does
not shave himself. No barber shaves someone who shaves himself. Prove
that there exists no barber.

18.4. Show that Fmla2 is true under Interpretation 2 of page 328,
describing the witness function (“∃F”). Also show that it is false under
Interpretation 3.

18.5. One often falls into the following trap of claiming that FOL for-
mulas are decidable: the negation of every FOL formula is an FOL
formula; thus one can enumerate proofs, and see whether F or ¬F gets
enumerated in a proof, and hence decide the validity of F . What is the
fallacy in this argument? (Hint: Are the cases listed, namely F being
valid and ¬F being unsatisfiable, exhaustive)?
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18.6. Argue that the set of all non-valid but satisfiable FOL formulas
is not recursively enumerable.

18.7.
1. Minimize the Boolean expression (¬a+ab)c+ac using a Karnaugh

map.
2. How many Boolean functions can you build with a 4-to-1 multi-

plexer that has two select inputs?

18.8. Modify the program in Figures 18.2 and 18.3 to obtain a CNF to
DNF converter. Test your resulting program.

18.9. Argue that DNF satisfiability and CNF validity have linear-time
algorithms.

18.10. Solve Exercise 5.29 through proof by contradiction. Encode the
problem as a CNF formula, and use a SAT tool.

18.11. Solve Exercise 5.30 similar to Exercise 18.10.

18.12. Write down the CNF formula represented by the DIMACS file
given in Figure 18.4.

18.13. Prove that this transformation is indeed a polynomial-time
mapping reduction ≤P from 3-SAT to �=-sat. In other words, prove
that (i) it is a mapping reduction, and (ii) the runtime of the function
involved is a polynomial with respect to the input size.

18.14. Why does the conversion from general CNF to 3-CNF described
on page 341 preserve only satisfiability? (i.e., why do the formulas not
emerge to be logically equivalent)

18.15. Prove that the 2-CNF satisfiability algorithm sketched in Sec-
tion 18.3.8 is correct (meaning that it finds a satisfying assignment
whenever one exists).

18.16. Apply the 2-CNF satisfiability algorithm of Section 18.3.8 to
the following 2-CNF formulas, showing the steps as well as your final
conclusion as to the satisfiability of these formulas:

(a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b)
(a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b)
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Complexity Theory and NP-Completeness

The theory of NP-completeness is about a class of problems that have
defied efficient (polynomial-time) algorithms, despite decades of intense
research. Any problem for which the most efficient known algorithm
requires exponential time1 is called intractable. Whether NP-complete
problems will remain intractable forever, or whether one day someone
will solve one of the NP-complete problems using a polynomial-time al-
gorithm remains one of the most important open problems in comput-
ing. The Clay Mathematics Institute has identified seven Millennium
Problems, each carrying a reward of 1 million (US) for the first person
or group who solves it; the ‘P =NP’ problem is on this list. Stephen
Cook provides an official description of this problem, and associated
(extremely well-written) set of notes, also at the Clay web site [23].

The theory of NP-completeness offers a way to “bridge” these prob-
lems through efficient simulations (polynomial-time mapping reduc-
tions ≤P (Definition 16.4) going both ways between any two of these
problems) such that if an efficient algorithm is found even for one of
these problems, then an efficient algorithm is immediately obtained
for all the problems in this class (recall our discussions in Chap-
ter 1, page 11). Section 19.1 presents background material. Section 19.3
presents several theorems and their proofs. Section 19.4 provides still
more illustrations that help avoid possible pitfalls. Section 19.5 dis-
cusses notions such as CoNP. Section 19.5 concludes.

1 The best known algorithm for an intractable problem has complexity O(kn) for
an input of length n, and k > 1.
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19.1 Examples and Overview

19.1.1 The traveling salesperson problem

The traveling salesperson problem is a famous example of an NPC prob-
lem. Suppose a map of several cities as well as the cost of a direct
journey between any pair of cities is given.2 Suppose a salesperson is
required to start a tour from a certain city c, visit the other n − 1
cities in some order, but visiting each city exactly once, and return to
c while minimizing the overall travel costs. What would be the most
efficient algorithm to calculate an optimal tour (optimal sequence of
cities starting at c and listing every other city exactly once)?

• This problem is intractable.
• This problem has also been shown to be NPC.

The NPC class includes thousands of problems of fundamental impor-
tance in day-to-day life - such as the efficient scheduling of airplanes,
most compact layout of a set of circuit blocks on a VLSI chip, etc. They
are all intractable.

19.1.2 P-time deciders, robustness, and 2 vs. 3

NPC

P

NP

Fig. 19.1. Venn diagram of the language families P, NP, and NPC; these set
inclusions are proper if P �= NP — which is an open question

2 Assume that these costs, viewed as a binary relation, constitute a symmetric
relation.
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The space of problems we are studying is illustrated in Figure 19.1.
It is not know whether the inclusions in Figure 19.1 are proper.3 The
oval drawn as P stands for problems for which polynomial time deciders
exist.

Let

TIME(t(n)) = { L | L is a language decided by an O(t(n)) time TM }
Then,

P = ∪k≥0 TIME(nk).

As an example, the following language L0n1n is in P

L0n1n = {0n1n | n ≥ 0}
because

• it is in TIME(n2), as per the following algorithm, A1:
− Consider a DTM that, given x ∈ Σ∗, zigzags on the input tape,

crossing off one 0 and then a (supposedly matching) 1. If the
tape is left with no excess 0s over 1s or vice versa, the DTM
accepts; else it rejects.

• It is even in O(n logn) as per the following algorithm, A2:
− In each sweep, the DTM scores off every other 0 and then every

other 1. This means that in each sweep, the number of surviving
0s and 1s is half of what was there previously. Therefore, log(n)
sweeps are made, each sweep spanning n tape cells. The stopping
criterion is the same as with algorithm A1.

Another member of P is TwoColor (see Exercise 19.1); here two-
colorable means one can color the nodes using two colors, with no two
adjacent nodes having the same color:

TwoColor = {〈G〉 | G is an undirected graph that is two colorable }
We shall define NP and NPC later in this chapter.

19.1.3 A note on complexity measurement

We will not bother to distinguish between N and N log(N), lumping
them both into the polynomial class. The same is true of N k logm(N)
for all k and m. Our complexity classification only has two levels: “poly-
nomial” or “exponential.” The latter will include the factorial function,
and any such function that is harder than exponential (e.g., Acker-
mann’s function).

3 When the 1M Clay Prize winner is found, they would either assert this diagram
to be exact, or simply draw one big circle, writing “P” within it – with a footnote
saying “NP and NPC have been dispensed with.”



348 19 Complexity Theory and NP-Completeness

19.1.4 The robustness of the Turing machine model

There are a mind-boggling variety of deterministic Turing machines:
those that have a doubly-infinite tape, those that have multiple tapes,
those that employ larger (but finite) alphabets, and even conventional
deterministic random-access machines such as desktop and laptop com-
puters (given an unlimited amount of memory, of course). All this va-
riety does not skew our two-scale complexity measurement:

− P is invariant for all models that are polynomially equivalent to the
deterministic single-tape Turing machine (which includes all these
unusual Turing machine varieties)

− P roughly corresponds to the class of problems that are realistically
solvable on modern-day random-access computers.

Hence, studying complexity theory based on deterministic single-tape
Turing machines allows us to predict the complexity of solving problems
on real computers.

19.1.5 Going from “2 to 3” changes complexity

It is a curious fact that in many problems, going from “2 to 3” changes
the complexity from polynomial to seemingly exponential. For instance,
K-colorability is the notion of coloring the nodes of a graph with K
colors such that no two adjacent nodes have the same color. Two-
colorability is in P, while three-colorability is NPC. This is similar to
the fact that the satisfiability of 2-CNF formulas is polynomial (Sec-
tion 18.3.8), while that of 3-CNF formulas is NPC (Theorem 19.8). The
reasons are, not surprisingly, somewhat similar.

19.2 Formal Definitions

We now proceed to define the remaining ovals in Figure 19.1.

19.2.1 NP viewed in terms of verifiers

We now present the verifier view of NP, with the decider view presented
in Definition 19.5.

Definition 19.1. (Verifier view of NP) A language L is in NP if there
exists a deterministic polynomial-time Turing machine VL called the
verifier, such that given any w ∈ Σ∗, there exists a string c ∈ Σ∗ such
that x ∈ L exactly when VL(w, c) accepts.
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Here, c is called a certificate. It also corresponds to a “guess,” as in-
troduced in Section 15.5.1 of Chapter 15 (some other equivalent terms
are witness, certificate, evidence, and solution). According to Defini-
tion 19.1, the language

Clique = {〈G, k〉 | G is an undirected graph having a k-clique}

is in NP because there exists a verifier VClique such that

Clique = {〈G, k〉 | There exists c such that VClique accepts (G, k, c)}.

Here, c is a sequence of k nodes. VClique is a polynomial-time algo-
rithm that is captured by (as well as carried out by) a deterministic
Turing machine. This DTM does the following: (i) checks that G is an
undirected graph, and c is a list of k nodes in G, and (ii) verifies that
the nodes in c indeed form a clique. Note that the ability to verify a
guess in polynomial-time means that the length of c must be bounded
by a polynomial in terms of input size.

Given G and k, all known practical algorithms take exponential time
to find out which k nodes form a clique. On the other hand, given an
arbitrary list of k nodes, verifying whether these form a clique is easy
(takes a linear amount of time). Problems in NP share this property
by definition. Recall our discussions in Section 15.5.1 about Mersenne
primes that also shares this property of easy verifiability.4

19.2.2 Some problems are outside NP

It is indeed remarkable that there are problems where even verifying
a solution is hard, taking an exponential amount of time with respect
to all known algorithms for these problems! Clearly these problems
do not belong to NP. For example, for the Clique problem defined
in Chapter 17, efficient verifiers have, so far, remained impossible to
determine. Intuitively, this seems to be because languages (problems)
such as Clique seem to call for an enumeration of all candidate list of
k nodes and an assertion that each such list, in turn, does not form
a clique.5 It seems that the certificates for these problems must be

4 Students believe that every problem assigned to them is NP-complete in difficulty
level, as they have to find the solutions. Teaching Assistants, on the other hand,
find that their job is only as hard as P, as they only have to verify the student
solutions. When some students confound the TAs, even verification becomes hard
- something discussed in Section 19.2.2.

5 Continuing with the analogy introduced in Chapter 17, we are being asked to
prove that no group of k people know each other, as opposed to proving that
some k people know each other.
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exponentially long, because they are a concatenation of an exponential
number of these candidate list of nodes mentioned above. The mere
act of reading such certificates consumes an exponential amount of
time! Of course, these are simply conjectures: it is simply not know
at present how to prove that problems such as Clique cannot have
succinct (polynomially long) certificates.

To sum up, problems whose solutions are easy to verify (NP) are, in
some sense, easier than problems whose solutions are not easy to verify
— even though finding the solution is hard in both cases. As Pratt puts
it so eloquently in his paper where he proves that primes are in NP

[98],

“The cost of testing primes and composites is very high. In con-
trast, the cost of selling composites (persuading a potential cus-
tomer that you have one) is very low—in every case, one multi-
plication suffices. The only catch is that the salesman may need
to work overtime to prepare his short sales pitch.

19.2.3 NP-complete and NP-hard

Definition 19.2. (NP-complete) If a language L is shown to be in NP,
and furthermore, if it can be shown that for every language X ∈ NP,
X ≤P L, then L is NPC.

Therefore, showing a problem to be in NP is a prerequisite to showing
that it is NPC.

Definition 19.3. (NP-hard) If for all X ∈ NP we have X ≤P L, then
L is said to be NP-hard.

From all this, “NPC” means “NPH” and “belongs to NP.”

Note: If L is NP-hard, it means that L is at least as hard as NP.
It is possible that L is so hard as to be undecidable, as is shown in
Section 19.4.

19.2.4 NP viewed in terms of deciders

In Definition 19.1, NP was defined with the help of deterministic Tur-
ing machines VL which are verifiers. There is an alternative definition
of NP in terms of nondeterministic Turing machines, which is now pre-
sented, after presenting the notions of a nondeterministic decider and
a nondeterministic polynomial-time decider.
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Definition 19.4. (NP decider) An NDTM NL with starting state q0 is
a nondeterministic decider for a language L exactly when for all x ∈ Σ∗,
x ∈ L if and only if NL has an accepting computation history starting
at q0x. It is an NP (nondeterministic polynomial-time) decider for L if,
for all strings x ∈ L, the length of the shortest accepting computation
history starting at q0x is O(nk).

Note that we are not requiring this NDTM to terminate along all paths.
Using the notion of ‘shortest,’ we are able to ignore all other paths.

Definition 19.5. (Decider view of NP) NP is the class of decidable
languages such that associated with each L ∈ NP is a nondeterministic
polynomial-time decider.

Definition 19.4 is adopted in [44], [39], and [67]. In [111], different defi-
nitions (that consider the longest computation) are employed. The ad-
vantages of definitions that go by the shortest accepting computation
history are the following:

• It allows NDTMs to be designed without special precautions that
are irrelevant in the end. In particular, we do not need to define
the NDTMs to avoid paths that are unbounded in length (see Sec-
tion 19.2.5 for an example).

• It helps focus one’s attention on positive outcomes (the x ∈ L case),
as well as the “guess and check” principle of Section 15.5.1, and,
last but not least,

• It helps present and prove Theorem 19.6 very clearly.

Also, please note the following:

• A nondeterministic polynomial-time decider Turing machine NL

has nondeterministic polynomial runtime. ‘Nondeterministic poly-
nomial’ is a different way of measuring runtime, different from how
it is done with respect to DTMs, where run times are measured in
terms of the number of steps taken by a DTM from start to finish
over all inputs, where each input induces exactly one computation
history. In case of NP, for each input, there could be multiple com-
putation histories, and we simply focus on the shortest ones.

19.2.5 An example of an NP decider

These notions are best explained using an example; we choose Fig-
ure 15.3 for this purpose. Given any string of the form ww, this ma-
chine generates one guess (refer to Section 15.5.1) that correctly identi-
fies and checks around the midpoint, ultimately leading to acceptance.
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However, this machine also has many useless guesses that lead to re-
jection. In fact, there is no a priori bound on the number of times this
NDTM loops back to state q2 before exiting the loop! It could, there-
fore, be guessing any point that is arbitrarily away from the left-end of
the tape to be the midpoint! Of course we could easily have defined a
“better” NDTM that rejects as soon as we are off the far right-end of
the input. However, such “optimizations” are not helpful in any way;
keep in mind that

• NDTMs are mathematical devices that only serve one purpose: to
measure complexity in a manner that implements the “guess and
check” idea discussed in Section 15.5.1 (and further discussed in
this chapter).

• In its role as a theoretical device, it is perfectly normal for an
NDTM to have a computation tree that has an infinite number
of branches out of its nondeterministic selection state(s). However,
since we measure the time complexity in terms of the shortest ac-
cepting computation history, these longer paths automatically end
up getting ignored.

Theorem 19.6. The verifier view of NP (Definition 19.1) and the de-
cider view of NP (Definition 19.4) are equivalent.

Proof outline:
With respect to the first part of the proof, we observe that an NDTM

can always be designed to have a loop similar to the self-loop at state
q2 of Figure 15.3. In this loop, it can write out any string from the tape
alphabet and then call it “the certificate c” and then verify whether
it is, indeed, a certificate. Now, if there exists any certificate at all,
then one would be found in this manner. Furthermore, if there exists a
polynomially bounded certificate, then again, it would be found since
we heed only the shortest accepting computation history. For the second
part of the proof, we let the certificate be tree paths, as described in
Section 15.6.2.
Proof: Given VL, we can build the NDTM NL as follows:

N_L =

Accept input w;
Employ a nondeterministic loop, and write out

a certificate string c on the tape; c is

an arbitrary nondeterministically chosen finite string;

c is written after the end of w;
Run V_L on (w,c), and accept if V_L accepts.
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Going by our definition of the shortest accepting computation history,
there will be one certificate that works, since VL has a certificate that
works. Therefore, NL will consist of the certificate generation phase
followed by feeding VL with w and c. The NL thus constructed will
have a nondeterministic polynomial runtime and decides L. �

• Given NL, we can build the NDTM VL as follows.

V_L =

On input w, c,
Use c to guide the selection among the

nondeterministic transitions in N L;
Accept when N L accepts.

In essence, c would be a sequence of natural numbers specifying which
of the nondeterministic selections to make (“take the first turn; then
the third turn; then the second turn; . . .6). Now, if NL has an accepting
computation history, there is such a certificate c that leads to accep-
tance. Hence, the DTM VL would be a deterministic polynomial-time
verifier for w, c. �

19.2.6 Minimal input encodings

In measuring complexity, one must have a convention with regard to
n, the length of the input. The conventions most widely used for this
purpose are now explained through an example.. Consider the Clique
problem again. To measure how much time it takes to answer this
membership question, one must encode 〈G, k〉 “reasonably”—in a min-
imality sense. In particular, we should avoid encoding 〈G, k〉 in a unary
fashion. Doing so can skew the complexity. Details are in Section 19.5.

19.3 NPC Theorems and proofs

Definition 19.2 defined L ∈ NPC in terms of a reduction from all
X ∈ NP. This may seem to be an infeasible recipe to follow, as there are
ℵ0 languages that are in NP. Historically, only one problem was solved
using this tedious approach (detailed in Section 19.3.1). All other prob-
lems shown to be NPC were proved using Definition 19.7, which offers

6 Imagine a boat in a lake being turned and pushed around by the hands of a giant,
and its rudder limply rotating, following the motions of the boat. The motions of
the rudder are analogous to c.
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first proved
NPC

Problem Problems
subsequently
proved NPC

P−time
Mapping
Reduction

P−time
Mapping
Reduction

All of NP

Fig. 19.2. Diagram illustrating how NPC proofs are accomplished. Defini-
tion 19.2 is illustrated by the reduction shown on the left while Definition 19.7
is illustrated on the right.

a much more practical recipe, assuming there exists at least one NPC

language.7

Definition 19.7. (NP-complete) A language L is NPC if L ∈ NP and
furthermore, for some other language L

′ ∈ NPC, we have L
′ ≤P L.

This definition is equivalent to Definition 19.2 because if L
′ ∈ NPC, we

have ∀X ∈ NPC : X ≤P L
′
, and ≤P is transitive. The “funnel diagram”

in Figure 19.2 illustrates this approach.
In order to identify the very first NPC problem, we do need to go

by Definition 19.2. The first problem that had this ‘honor’ was 3-CNF
satisfiability (“3-SAT”), as Cook and Levin’s celebrated proof shows.
Recall from Section 18.3.7 general discussions about 3-CNF.

19.3.1 NP-Completeness of 3-SAT

Theorem 19.8. 3-CNF satisfiability is NP-complete.

3-SAT is in NP

We go by Definition 19.1. Consider a satisfying assignment σ for a given
3-CNF formula ϕ. Clearly, σ is of polynomial length, and verifying that
it satisfies ϕ takes polynomial-time through a verification algorithm
that substitutes into ϕ as per σ and simplifies the formula to true or
false.

7 Like the proverbial ‘chicken and the egg,’ we assume the first egg, - er, first chicken
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For any L ∈ NP, L ≤P 3-SAT

We sketch the proof emphasizing the overall structure of the proof as
well as some crucial details. For example, (i) we show how the existence
of a deterministic polynomial time algorithm for 3-SAT implies the ex-
istence of such an algorithm for any problem in NP, and (ii) we show
how, given a specific NP problem such as Clique and given a determin-
istic polynomial algorithm for 3-SAT, we can obtain a deterministic
polynomial algorithm for Clique.

Consider some L ∈ NP. Then there exists an NDTM decider NL

for L. What we have to show is that there exists a polynomial-time
mapping reduction f from L to 3-CNF such that given NL and an
arbitrary w ∈ Σ∗, there exists a 3-CNF formula ϕL,w that can be
obtained from NL and w using f , such that ϕL,w is satisfiable if and
only if w ∈ L.

Punchline: Therefore, if one were to find a polynomial-time algo-
rithm for 3-CNF satisfiability, there would now be a polynomial-
time algorithm for every L in NP.

To prove the existence of the mapping reduction alluded to above,
refer to Figure 19.3. Consider the computation of NL on some w ∈ Σ∗

starting from the instantaneous description ID0 = q0w. If w ∈ L, there
is an accepting computation history that starts with q0w and is of
polynomial length (we do not know this length exactly; all we know is
that it is a polynomial with respect to |w| = n). Let this polynomial be

Time

Space

ID0 = q0  w

ID1 = q1  w1

IDn = qa wn

Fig. 19.3. Proof of the Cook-Levin Theorem
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p(n). If w /∈ L, then no accepting computation history (of any length!)
exists.

Imagine a computation history (sequence of IDs) of length p(n). In
it, (i) only a polynomial amount of new tape cells get written into (the
“space” axis) and (ii) the accepting computation history is of polyno-
mial length (the “time” axis; see Figure 19.3 for an illustration). This
figure illustrates the computation starting from q0w as a sequence of
IDs starting with ID0 at the bottom. Now, observe that if w ∈ L,
there must exist a p(n) × p(n) matrix as shown in Figure 19.3 that
(i) starts with q0w at the bottom, (ii) ends with an accepting ID at the
top, and (iii) has any two adjacent rows related by a Turing machine
transition rule. Now, it is clear that there are basically two rules, as
mentioned in Section 17.3.6: (i) one rule corresponds to a right-hand
move (δ(q, a) = (r, b,R)), and (ii) another corresponding to a left-
hand move (δ(q, a) = (r, b, L) for every c ∈ Γ ). Furthermore, the effect
of these moves on adjacent IDs can be captured through “windows”
that change across two IDs. For instance, for IDi+1 obtained from IDi

through a right move, a 2 × 2 window comes into play, and for a left
move, a 3× 2 window comes into play, as mentioned in Section 17.3.6.
It is also clear that the contents of each cell in this p(n)× p(n) matrix
can be represented using a finite number of cell level Boolean variables.

Given all this, the crux of our proof is that given this p(n) × p(n)
matrix, we can build our 3-CNF formula ϕL,w involving the cell level
Boolean variables such that this formula is true exactly when the ma-
trix represents an accepting computation history (we also refer to this
3-CNF formula as a “circuit,” connoting a digital combinational cir-
cuit that can serve as a decoder for an accepting computation history
matrix). The actual construction of this formula is tedious and skipped
here (but may be found in scores of other web references or books). On
page 357, we illustrate what this formula achieves with respect to the
Clique example.

What we have sketched thus far is the existence of a mapping reduc-
tion that yields ϕL,w such that this formula is satisfiable exactly when
w ∈ L. If w /∈ L, there is no matrix that will represent an accepting
computation history, and hence ϕL,w will not be satisfiable. �

A detail about not knowing p(n)

A point that may vex the reader is this: how do we know how big a
circuit (3-CNF formula) to build, given that the circuit has to sit on top
of the p(n)×p(n) matrix, hoping to decode its contents, when we don’t
even know p(n) concretely? Fortunately, this step is not necessary—all
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we care for is the existence of a family of circuits, one circuit for each
value of p(n). There would, in this family, exist a circuit that “works”
for every language L in NP, and correspondingly there would be a
family of f functions that produced this family of circuits. Therefore,
for each possible value of p(n), there exists an f function that produces
a matrix of size p(n) × p(n) and a 3-CNF formula that acts on this
matrix; and hence, the desired mapping reduction L ≤P 3-CNF exists
for each L ∈ NP. The existence of this mapping reduction for every
L ∈ NP allows us to claim that 3-SAT is in NPC.

What if 3-SAT is in P ?

It is good to be sure that formal proofs mean something concrete; to
this end, we subject our discussions above to an acid test. Suppose 3-
SAT is in P (which is an open question; but we entertain this thought
to see what happens) and let the decider be DP3−CNF. Because of what
NP-completeness means, we should now be in a position to argue that
there exists a deterministic polynomial-time algorithm for any L ∈ NP.
How do we achieve that?

Fortunately, this result is immediate. Since the polynomial p(n)
exists, a mapping reduction to yield ϕL,w exists. We can obtain this
formula using the mapping reduction, feed it to DP3−CNF, and re-
turn the accept/reject decision of DP3−CNF. Therefore, a deterministic
polynomial-time algorithm for an arbitrary L ∈ NP exists, which would
then mean P = NP .

Illustration on Clique

We would like to take our acid test even further: suppose 3-SAT is in P;
let us find a polynomial algorithm for Clique. Since Clique ∈ NP, it has
a nondeterministic polynomial time decider, say NClique. We can design
a specific NDTM decider for Clique. One of the most straightforward
designs for NClique would be to have an NDTM nondeterministically
write out k nodes on the tape and check whether these nodes indeed
form a k-clique. Now, there are many (exponentially many!) choices of k
nodes to write out on the tape. However, after writing out one of those
guesses on the tape, NClique would engage in a polynomially bounded
checking phase. The 3-CNF formula ϕL,w that would be synthesized
for this example will have the following properties:

• It will be falsified if the first ID (bottom row of the matrix) is not
the starting ID which, in our example, would be q0〈G, k〉.



358 19 Complexity Theory and NP-Completeness

• It will be falsified if any two adjacent rows of the matrix are not
bridged by a legitimate transition rule of the NDTM.

• It will be falsified if the final row (topmost) is not an accepting ID.
• The formula will straddle a matrix of size p(n) × p(n), where the

value of p(n) will be determined by the nature of the algorithm used
by NClique for Clique, and the value of k. In particular, p(n) will
equal the number of steps taken to write out some sequence of k
nodes nondeterministically, followed by the number of steps taken
to check whether these nodes form a clique.

In short, an accepting computation history will deposit a bit-pattern
inside this matrix to make the Boolean formula emerge true. Said an-
other way, the satisfiability of the formula will indicate the existence
of an accepting computation history (the existence of a selection of k
nodes that form a clique). Therefore, if DP3−CNF exists, Clique can be
solved in polynomial-time.

To reflect a bit, the existence of DP3−CNF is a tall order because
it gives us a mechanism to encode exponential searches as poly-
nomially compact formulas (such as ϕL,w did) and conduct this
exponential search in polynomial-time! This is one reason why
researchers strongly believe that deciders such as DP3−CNF do
not exist.

19.3.2 Practical approaches to show NPC

The most common approach to show a language L to be NPC is to use
Definition 19.7 and reduce 3-SAT to L, and then to show that L ∈ NP.
This has led many to observe that ‘NP-complete problems are 3-SAT in
disguise.’ Many other source languages for reduction (besides 3-SAT)
are, of course, possible.

Illustration 19.3.1 LetHampath =

{〈G, s, t〉 | G is a directed graph with a Hamiltonian path from s to t}.

It can be shown that Hampath ∈ NP, and further 3-SAT≤P Hampath.
This establishes that Hampath is NPC.

Illustration 19.3.2 Let us prove that Clique is NPC. First of all,
Clique ∈ NP as captured by the verifier VClique on page 349. To show
that Clique is NPH, we propose the mapping reduction from 3-SAT into
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X1

X1

X2

X1 X1

X2

~X2

~X1

~X1

~X2~X1 ~X1

phi = (X1 \/ X1 \/ X2) /\ (X1 \/ X1 \/ ~X2) /\ (~X1 \/ ~X1 \/ X2) /\ (~X1 \/ ~X1 \/ ~X2)

graph(phi) has no
4−cliques

Fig. 19.4. The Proof that Clique is NPH using an example formula ϕ =
(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x1 ∨ ¬x2)

Clique as captured in Figure 19.4. Basically, for every clause, we intro-
duce an “island” of nodes with each node in the island labeled with the
same literal as in the clause. There are no edges among the nodes of an
island. Between two islands, we introduce an edge between every pair
of literals that can be simultaneously satisfied (are not complementary
literals).

Suppose ϕ ∈ 3-SAT. This means that there is an assignment that
satisfies every clause. Let li be the literal that is set to true by the
assignment in clause ci, for every i ∈ C, where C is the number of
clauses (for uniqueness, we may select the literal with the lowest index
that is set to true in each clause). In this case, by construction, graph(ϕ)
will have a clique connecting the nodes l0, l1, . . . , lC−1, l0.

Suppose ϕ /∈ 3-SAT. Now suppose we assume that graph(ϕ) has a
k-clique. The existence of a k-clique means that by following the edges
of the clique, it should be possible to pick one literal per clause such
that all these literals (and hence these clauses) can be simultaneously
satisfied. However, from Theorem 18.1, we know that given any unsat-
isfiable CNF formula ϕ, one can pick an arbitrary assignment σ, and be
assured that σ(ϕ) (the formula under the assignment) has one clause
all of whose literals are true, and another clause all of whose literals are
false. The clause that has all its literals false will prevent there being a
k-clique. To confirm all this, in Figure 19.4 we observe that there are
no 4-cliques.
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19.4 NP-Hard Problems can be Undecidable (Pitfall)

What happens if someone shows L to be NPH but neglects to show
L ∈ NP, and yet claims that L ∈ NPC? To show the consequences of this
mistake rather dramatically, we will show that the language of Diophan-
tine equations, Diophantine, is NP-hard (NPH). Briefly, Diophantine
is the set of Diophantine equations that have integer roots. An example
of such an equation is 6x3z2 + 3xy2 − x3 − 10 = 0. This language was
shown to be undecidable by Yuri Matijasević in a very celebrated theo-
rem. Hence, if someone forgets to show that a language L is in NP, and
yet claims that L is NPC, he/she may be claiming that something un-
decidable is decidable! (Recall that all NPC problems are decidable.) In
short, NP-completeness proofs cannot be deemed to be correct unless
the language in question is shown to belong to NP.

19.4.1 Proof that Diophantine Equations are NPH

We follow the proof in [27] to show that the language Diophantine
below is NPH:

Diophantine = {p | p is a polynomial with an integral root}
The mapping reduction 3-SAT ≤P Diophantine is achieved as follows.
Consider a 3-CNF formula ϕ:

• Each literal of ϕ, x, maps to integer variable x.
• Each literal x maps to expression (1 − x).
• Each ∨ in a clause maps to . (times).
• Each clause is mapped as above, and then squared.
• Each ∧ maps to +.
• The resulting equation is set to 0.
• Example: map

ϕ = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

to
E = (x.y)2 + (x.(1 − y))2 + ((1 − x).(1 − y))2 = 0.

• To argue that this is a mapping reduction, we must show that ϕ is
satisfied iff E has integral roots. Here is that proof:
− For the forward direction, for any assignment of a variable v to

true, assign v in the integer domain to the integer 0; if v is false,
use integer 1. In our example, x = true, y = false satisfies
ϕ, and so choose x = 0, y = 1 in the integer domain. This
ensures that (x.y)2 is zero. Proceeding this way, every satisfying
assignment has the property of leaving the entire summation of
expressions 0, thus satisfying the integer equation.
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− For the reverse direction, note that E = 0 means that each
product term in the integer domain is 0 (since squares can’t be
negative). For example, if xy is a product term in the summation
of E, we may have x = 45 and y = 0. The Boolean assignment
for this case is found as follows: for every integer variable x that
is zero, assign the corresponding Boolean variable x to true; for
integer variable x that is non-zero, assign the Boolean variable
x to false. For example, if we have x = 0 in a product term
x.y, we assign Boolean x to true. This ensures that (x ∨ y) is
true. Also, in x.(1−y) if x = 45 and y = 1, we assign y to false
and x to false. This ensures that (x∨¬y) is true. We can easily
check that this construction ensures that E = 0 exactly when
the corresponding ϕ has a satisfying assignment.

19.4.2 “Certificates” of Diophantine Equations

In order to visualize the transition from being NPC, to being outside NP

but still decidable, and finally to being undecidable, let us discuss Dio-
phantine equations in the context of certificates. Consider the language
Hampath; clearly, every member of this language has a polynomial
certificate. This certificate is a simple path (path without repeating
nodes) connecting s and t that visits every other node. Languages such
as Hampath do not have, as best as is known, polynomial certificates.
However, exponentially long certificates do exist; these certificates list
every simple path connecting s and t, thus providing cumulative evi-
dence that there does not exist a Hamiltonian path.

It is evident that Diophantine is recursively enumerable (it is TR)
but not recursive (it is not decidable). One may attempt to build a
nondeterministic machine MDio, of as yet unclear status, to process
membership of a given Diophantine equation in Diophantine: MDio

guesses a certificate in the guess-generation phase consisting of guessed
values for the variables of the equation. MDio then plugs in these values
and checks whether the given equation is satisfied (equals 0). For an
undecidable languages such as Diophantine, certificates exist, but are
unbounded for the case where the equation has a solution. When the
equation has no solution, the certificates are infinite (one has to list
every possible value for the variables and show that they do not solve
the equation).

In summary, polynomial, exponential, and unbounded certifi-
cates correspond to three classes of hardness.
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19.4.3 What other complexity measures exist?

There are many other complexity metrics such as space complexity
and circuit (parallel) complexity. It must be relatively obvious what
the term ‘space complexity’ means: how much space (memory) does an
algorithm require? In this context, please note that space is reusable
while time is not. This means that the term space complexity refers to
the peak space requirement for an algorithm. There is also the funda-
mentally important result, known as Savich’s Theorem, that says that
nondeterministic Turing machines can be simulated on top of deter-
ministic Turing machines with only a polynomial added cost. This is in
contrast with time complexity where we do not know whether nonde-
terministic Turing machines can be simulated on a deterministic Turing
machine with only a polynomial added cost.

The term ‘circuit complexity’ may be far from obvious to many.
What it pertains to is, roughly, how easy a problem is to parallelize. In
circuit complexity, the intended computation is modeled as a Boolean
function, and the depth of a combinational circuit that computes this
function is measured. Problems such as depth-first search are, for in-
stance, not easy to parallelize (log-depth circuits cannot be found),
whereas breadth-first search easy to parallelize under this complexity
measure. Log-depth circuits, in a sense, help assess how easy it is to
divide and conquer a problem.

19.5 NP, CoNP, etc.

NP

P

CoNPC NPC

CoNP

Fig. 19.5. The language families P, NP, and NPC. All these set inclusions
are likely to be proper

A language L is said to be CoNP exactly when L is in NP. Similarly,
L is said to be CoNPC exactly when L is in NPC. Figure 19.5 depicts
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these additional language classes and their likely containments. To il-
lustrate these ideas, consider the following languages which are both
subsets of positive natural numbers {1, 2, 3, . . .}:
The language

Primes = {n | (n > 1) ∧ (∃p, q > 1 : n = p × q ⇒ p = 1 ∨ q = 1}.

The language
Composites = Primes,

where the complementation is with respect to positive naturals.
Composites is clearly in NP because there exists a P-time verifier for
this language, given a certificate which is a pair of natural numbers
suggested to be factors. In [98], Pratt proves that Primes are also in
NP; he shows this result by demonstrating that there are polynomially
long proofs for primes (given a prime p, a polynomially long sequence
of proof steps can serve to demonstrate that p is such). Furthermore,
he showed that such a proof for Primes can be checked in polynomial-
time. Now, Composites is in CoNP because Primes is in NP, and
Primes is in CoNP because Composites is in NP. The question now
is: could either of these languages be NPC? Theorem 19.9 below, shows
that even if there exists one such language, then NP and CoNP would
become equal—a result thought to be highly unlikely. Surely enough,
in 2002, Agrawal et al. [1] proved that Primes are in P (and hence
Composites are also in P). Theorem 19.9 has helped anticipate the
direction in which some of the open problems in this area would resolve.

Illustration 19.5.1 (A Caveat) Please bear in mind that recognizing
a number to be composite in polynomial-time does not, by itself, give
us the ability to find its prime factors in polynomial-time. Therefore, all
public key crypto systems are still safe, despite Agrawal et al.’s result.
Factoring a composite number into its prime factors can be expressed
as a language

PrimeFactors = {(x, i, b) | ith bit of prime factorization of x is b}.

Here, it is assumed that the prime factors of x are arranged in a
sequence. Clearly, we do not want the PrimeFactors language to be
in P . It can be easily shown that this language is in NP, however. �

Theorem 19.9. L is in NPC and L is in CoNP if and only if NP =
CoNP.



364 19 Complexity Theory and NP-Completeness

Proof:
• To show that if L is NPC and CoNP then NP=CoNP.

− Assume L is NPC; therefore,
. L is in NP

. For all L1 in NP, we have L1 ≤P L. Now, assuming L is in NP

(because L is in CoNP), we have L ≤P L.
− Now, we are about to embark on showing the NP =CoNP part. For

that, consider an arbitrary L
′
in NP. Then L

′ ≤P L.

− Now, using the result of Exercise 16.9, L′ ≤P L. Also L′ ≤P L ≤P

L.
− Now, since there is an NP decider for L, there is an NP decider for

L′ also, using the above mapping reduction chain; in other words
L

′
is in CoNP.

− Now, consider an arbitrary L
′
in CoNP. This means that L′ in NP.

Since L is NPC, we have L′ ≤P L. From this we have L
′ ≤P L.

− Using the fact that L ≤P L, we have L
′ ≤P L ≤P L, or that there

is an NP decider for L
′
.

− Hence, NP = CoNP.

• To show that if NP =CoNP, then there exists an L that is NPC and
CoNP. This is straightforward: consider any NPC language L; it would
be CoNP because L is in NP and NP =CoNP.

Chapter Summary

We discussed the theory of NP-completeness, going through practical
techniques to show that a problem is NP-complete. We now discuss the
question of input encodings postponed in Section 19.2.6. In the setting
of input encodings, there are basically two classes of problems:

• Strongly NPC: Those problems where the problem remains NPC

even if the input is encoded in unary. Almost every NPC prob-
lem we have studied (e.g., Clique, 3-SAT, etc.), is strongly NPC.
In addition, the 3-partition problem (discussed momentarily), sev-
eral problems in the context of the game of Tetris [34], and several
scheduling problems are strongly NPC.

• Not Strongly NPC, or pseudo polynomial: There are problems where
encoding the input in unary can give a polynomial algorithm. The
2-partition problem is an example which has a pseudo polynomial
algorithm.

The 2-partition problem is: Given a finite set A = {a1, a2, . . . , an} of
positive integers having an overall sum of 2b, is there a subset A

′
of
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A that sums exactly to b (in other words, A \ A
′

and A
′

sum to b)?
Note that we only determine the existence of such a subset—not which
subset it is. Analogously, the 3-partition problem seeks three disjoint
subsets that contain all the elements of A and sum to equal values.

2-partition is known to be NP-complete. However, there is a straight-
forward dynamic programming algorithm to solve the 2-partition prob-
lem, which is now briefly discussed. Stating things in genera, let g be
the ‘goal’ in terms of a subset of the ai’s adding up to g. Let T (j, g)
denote the assertion that the sum of {a1, . . . , aj} is exactly g. We now
write a recursive recipe to compute the truth of T (i + 1, g). This falls
into two cases:

1. We do not include ai+1, and T(i, g); or
2. We include ai+1, and the remaining elements add up to g − ai+1.

We build a dynamic programming table following the above recurrence,
as follows:

• T (i + 1, g) = T (i, g) ∨ ((ai+1 ≤ g) ∧ T (i, g − ai+1))
• T (1, g) = ((g = 0) ∨ g = a1)

Now, the answer we seek—whether there exists a subset of a1 through
an that adds up to b—is the value of T (n, b) when the above algorithm
finishes.

This algorithm has complexity O(n.b), as there are that many en-
tries to be filled in the memoization table T . Note that by encoding
the problem in O(n.b) bits, we can achieve polynomial-time solution.
However, a reasonable encoding of this problem takes only n log(b) bits.
Therefore, by “bloating” the input representation, 2-partition can be
solved in polynomial-time. No such luck awaits strongly NP-complete
problems—they cannot be solved in polynomial-time even with a unary
input representation (the most bloated of input representations). Fur-
ther work on this topic may be easily found on the internet.

Exercises

19.1. Show that TwoColor ∈ P.

19.2. Suppose we write a program that traverses a “tape” of n cells,
numbered 1 through n. The program performs n traversals of the tape,
with the ith traversal sequentially examining elements i through n.
What is the runtime of such a program in the Big-O notation?

19.3. 1. Let k = 2. Estimate the magnitudes of xk (polynomial) kx

(exponential) complexity growth for x = 1, 2, 5, 10, 50 and 100.
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2. Estimate 222
2
...2

2

(i times) for various i (note how to read this tower:
begin with 2, and keep taking ‘2previous’).

19.4.
1. Draw an undirected graph of five nodes named a, b, c, d, e such that

every pair of nodes has an edge between them (such graphs are
called “cliques” - the above being a 5-clique).

2. What is the number of edges in an n-clique?
3. Which n-cliques are planar (for what values of n)?
4. What is a Hamiltonian cycle in an undirected graph?
5. Draw a directed graph G with nodes being the subsets of set {1, 2},

and with an edge from node ni to node nj if either ni ⊆ nj or
|ni| = |nj|. |S| stands for the size or cardinality of set S.

6. How many strong components are there in the above graph? A
strong component of a graph is a subset of nodes that are connected
pairwise (reachable from one another).

7. What is the asymptotic time complexity of telling whether a di-
rected graph has a cycle?

19.5. A Hamiltonian cycle in a graph with respect to a given node n is
a tour that begins at n, visits all other nodes exactly once, returning
to n. In a 5-clique, how many distinct Hamiltonian cycles exist? How
about in an n-clique?

19.6.
1. Suppose you are sent into a classroom where n (honest) students

are seated, and are patiently awaiting your arrival. You are charged
by your boss with determining whether some k of these students
know each other – any such subset of k students will do. Suppose
you pick exactly one random subset of k of these students and each
pair within this subset tells you that they know each other. Can
you now report back your answer to the boss?

2. The above is a nondeterministic algorithm to check whether a graph
has a k-clique. What would a deterministic algorithm be?

3. Suppose what you are charged with is to assure that no k-subset is
such that all its members know each other pairwise. Suppose you
pick exactly one random subset of k of these students and listen to
them pairwise as to whether they know each other or not. Can you
now report back any answer to your boss? How many more queries
would you need as a function of n and k?

19.7. Define the language HalfClique to be the set of input encodings
〈G〉 such that G is an undirected graph having a clique with at least
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n/2 nodes, where n is the number of nodes in G. Show that HalfClique
is NPC.

19.8. Show that �=-sat, as defined in Section 18.3.7, is NPC.

19.9. Problems pertaining to NPC abound in various places; rather
than repeat them, we leave it to the student / teacher to find and
assign them suitably. We close off by assigning a rather interesting
proof to read and understand.

In his MS thesis, Jason Cantin (Wisconsin) proves that the problem
of verifying memory coherence is NPC [15, 16]. Read and understand
his proof.



20

DFA for Presburger Arithmetic

To motivate the subject matter of this and the subsequent chapters,
let us briefly reflect on the topics we have studied thus far. We have
largely studied computation from the point of view of standard ma-
chines such as finite automata, push-down automata, and Turing ma-
chines. In Chapter 11, we took our first step towards presenting another
perspective of computation, namely one based on mathematical logic.
Specifically, in Chapter 11, we demonstrated that

• Boolean propositions (expressed through Boolean formulas) can be
represented using binary decision diagrams (BDDs).

• Each BDD b representing a Boolean formula f is a minimized DFA
that recognizes the finite language of bit-strings that satisfy f .

• We introduced the notion of state transition systems, which can be
used to represent the behavior of many real-world systems such as
synchronous hardware and even recreational games.

• We showed that the allowed moves of transition systems can be
encoded using Boolean formulas, based on the convention of using
two classes of Boolean variables capturing the current and the next
state values. Such formulas can, then, be encoded using BDDs.

• We showed how to compute the set of all states reached by a
transition system through logical manipulations performed on two
BDDs, one representing the “present state” and another represent-
ing the “machine” (or transition system). Essentially, given these
BDDs, one conjoins them and projects out the present state vari-
ables through existential quantification to obtain the next state.
The present and next states are pooled, thus forming the set of all
visited states. When this pool stops growing, we essentially reach a
fixed-point amounting to the set of all reachable states.
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We connected these ideas to the real world by demonstrating how to en-
code the familiar game of tic-tac-toe using BDDs, as well as computing
all possible draw configurations in one fell swoop. In Chapter 18, we ex-
amined the power of machines to decide the validity of first-order logic
sentences, and proved that Turing machines cannot be programmed to
algorithmically carry out this decision. In Chapter 19, we showed that
Turing machines can decide Boolean logic, but the apparent complex-
ity is exponential (the NPC class). Chapters 21 through 23 will again
pursue the automaton/logic connection, but in the context of verifying
reactive systems.

This chapter illustrates another instance of automaton-logic connec-
tion. In contrast to the undecidability of full first-order logic discussed
in Section 18.2.3, there is a fragment of first-order logic called Pres-
burger arithmetic that is decidable. A widely used decision procedure
for Presburger arithmetic consists of building a DFA for the satisfy-
ing instances of Presburger formulas. In this connection, an interesting
contrast with Chapter 11 is the following. BDDs are essentially DFA
whose languages are a finite set of finite strings,1 with each string spec-
ifying assignments to the Boolean variables of the BDD. In contrast,
the languages of the Presburger DFA built in this chapter are finite or
infinite sets of finite but unbounded strings. Each string encodes the
assignments to the quantified individual variables of a Presburger for-
mula. As another contrast, in Chapter 23, Section 23.3, we introduce
Büchi automata which are machines that accept only infinitely long
strings.
In this chapter we present the following results:

• We define the syntax of Presburger arithmetic formulas.
• We introduce, largely through examples,2 a technique by which

DFA can be made to accept bit-serial presentations of tuples of
natural numbers.

• Using this method, we present a conversion algorithm from a given
Presburger formula f to a DFA d such that the satisfying assign-
ments for the free variables of f correspond to the language of d.

• We further demonstrate that logical operations and automaton op-
erations have a natural strong correspondence. In particular, we
sketch the following results:

1 In fact, the length of these strings is bounded by the number of BDD variables,
which is usually a small number - no more than a few hundred in practice.

2 We believe that our choice of extremely simple examples will help the reader
study this fascinating topic with ease. We are indebted to Comon et al.’s [25]
very readable presentation of this topic from which we borrow heavily.
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− The DFA for the conjunction of two Presburger formulas f1 and
f2 may be obtained by first obtaining the DFA d1 and d2 for
the individual formulas and then performing a DFA product
construction for intersection. Similar results are obtained for
disjunction and negation.

− Existential quantification can be modeled by hiding the quanti-
fied symbol from the interface of the corresponding automaton.
The result may be an NFA that can then be determinized.

20.1 Presburger Formulas and DFAs

20.1.1 Presburger formulas

The basic terms in Presburger arithmetic consist of first-order variables
x, y, x1, x

′
, . . ., the constants 0, and 1, and sums of basic terms. For

instance, x + x + 1 + 1 + 1 is a basic term, which we also write as
2x + 3. The atomic formulas are equalities and inequalities between
basic terms. For instance, x + 2y = 3z + 1 is an atomic formula. The
formulas of Presburger logic are first-order formulas built on the atomic
formulas. For instance,

∀x.∃y.(x = 2y ∨ x = 2y + 1)

is a formula. The free variables of formula ϕ are defined as usual: for
instance,

FV (ϕ1 ∨ ϕ2) = FV (ϕ1) ∪ FV (ϕ2), and FV (∃x.ϕ) = FV (ϕ) \ {x}.

A formula without free variables is called a sentence. Sentences are
true (valid) or false (non-valid).

Any first-order formula with nested quantifiers, for example

∀x.(p(x) ⇒ [∃y.q(x, y)])

may be rewritten as a logically equivalent formula, in this example as

∀x.∃y.[p(x) ⇒ q(x, y)]

using a transformation process called prenexing or arriving at the
prenex normal form. As another example, the prenex normal form for
the formula

∀x.([∃y.q(x, y)] ⇒ p(x))
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(*----------------------------------------------------------------------------*)
(* Prenexing code in Ocaml *)
(* ‘‘_’’ stands for wild-card, and ‘‘rec’’ helps define a recursive function. *)

(*----------------------------------------------------------------------------*)
let rec prenex(fmla) =

match fmla with
| FORALL(t1, f1) -> FORALL(t1, prenex(f1))

| EXISTS(t1, f1) -> EXISTS(t1, prenex(f1))
| AND(f1, f2) ->

let pf1 = prenex(f1) in

(match pf1 with
| FORALL(t1’, f1’) -> prenex(FORALL(t1’, AND(f1’, f2)))

| EXISTS(t1’, f1’) -> prenex(EXISTS(t1’, AND(f1’, f2)))
| _ ->

(let pf2 = prenex(f2) in

(match pf2 with
| FORALL(t2’, f2’) -> prenex(FORALL(t2’, AND(pf1, f2’)))

| EXISTS(t2’, f2’) -> prenex(EXISTS(t2’, AND(pf1, f2’)))
| _ -> AND(pf1,pf2))

)
)

| OR(f1, f2) -> (* ... similar to AND ... *)

| NOT(f1) ->

let pf1 = prenex(f1) in
(match pf1 with

| FORALL(t1’, f1’) -> prenex(EXISTS(t1’, NOT(f1’)))

| EXISTS(t1’, f1’) -> prenex(FORALL(t1’, NOT(f1’)))
| _ -> NOT(pf1)

)
| IMPLIES(f1,f2) ->

let pf1 = prenex(f1) in
(match pf1 with

| FORALL(t1’, f1’) -> prenex(EXISTS(t1’, IMPLIES(f1’, f2)))

| EXISTS(t1’, f1’) -> prenex(FORALL(t1’, IMPLIES(f1’, f2)))
| _ ->

(let pf2 = prenex(f2) in
(match pf2 with

| FORALL(t2’, f2’) -> prenex(FORALL(t2’, IMPLIES(pf1, f2’)))

| EXISTS(t2’, f2’) -> prenex(EXISTS(t2’, IMPLIES(pf1, f2’)))
| _ -> IMPLIES(pf1,pf2))

)
)

| _ -> fmla (* The final default match is a wild-card match that returns ‘‘fmla’’ *)
(*------------------------------------------------------------------------------------*)

Fig. 20.1. Prenexing code in Ocaml

is
∀x.∀y.[q(x, y) ⇒ p(x)].

Notice how the quantifier changes from ∃ to ∀ when lifted out of the
antecedent of an implication, since the antecedent of an implication
has an implicit negation (a ⇒ b is equivalent to ¬a ∨ b). After prenex-
ing, we are left with a list of quantified variables called the prefix and
a quantifier-free inner formula called the matrix. While prenexing is
not essential in the Presburger formula to DFA transformation to be
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described,3 it is quite helpful for the purposes of exposition. Another
reason why we present prenexing is that it is an important algorithm
to know about. The full set of rewrite rules for prenexing are captured
in the Ocaml program in Figure 20.1.

The interpretation domain of formulas is the set of natural numbers
Nat in which 0, 1, +, =, and ≤ have their usual meanings. A solution
of a formula is an assignment of the free variables of the formula in
Nat which satisfies the formula.

20.1.2 Encoding conventions

We now define the encoding conventions for natural numbers employed
in our automaton construction. We define natural numbers in base 2
using a bit-serial format, with the least significant bit (LSB) appearing
leftmost. This means that when viewed as inputs of DFA, numbers will
be consumed LSB-first. For example, 13 is written as 1011 (or as 10110,
or in general, with as many zeros to the right). Pairs of natural numbers
are represented as a sequence of tuples, and in general k-tuples of natu-
ral numbers are represented as a sequence of k-tuples. k-tuples of zeros
may be added to the right without changing the meaning of these repre-
sentations. For example, 〈13, 6〉 is represented as 〈1, 0〉〈0, 1〉〈1, 1〉〈1, 0〉.

20.1.3 Example 1 — representing x ≤ 2

1 2

0, 1

BH 0

0

1

1

00, 1

Fig. 20.2. Presburger Formula x ≤ 2 and its DFA

Figure 20.2 shows how a DFA for x ≤ 2 is represented. Before seeing
any of the bits of x (that will, as explained above, arrive LSB-first), the
value of “x seen so far” is 0. At this stage, the imbalance between x and

3 Prenexing may even hurt the performance of the Presburger decision procedure
to be presented in this chapter, as it postpones quantification steps, and quan-
tification steps can help get rid of variables.
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1
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0, 1
1, 0

,

1, 1

0, 1
,
, BH

1, 0 0, 1,

0, 0 1, 1, ,

1, 1
0, 0

,

Initial state: 1, Final state : 0

T1: 1 -- <0,1> --> 0 T6: 0 -- <0,0> --> 0

T2: 1 -- <1,0> --> 0 T7: 0 -- <0,1> --> BH

T3: 1 -- <1,1> --> BH T8: 0 -- <1,0> --> BH

T4: 1 -- <0,0> --> BH T9: BH -- any --> BH

T5: 0 -- <1,1> --> BH Ta: BH -- any --> BH

Fig. 20.3. DFA for x + y = 1. The transition names are referred to in Sec-
tion 20.1.5.

2 is 2—which is what the initial state of the automaton is labeled with.
When a 0 bit arrives, the magnitude of “x seen so far” is still 0. As far
as the next bit of x yet to arrive is concerned, it possesses a positional
weight that is two times the weight of the LSB. However, we want
to restore an ‘inductive’ situation in our DFA diagram; therefore, our
convention will be that we will ‘div’ (divide with truncation) both sides
of the equation by 2. This results in the weight imbalance reducing
to 1—exactly equal to the state label of the state to which state 2
transitions. On the other hand, if the LSB were to be 1, we advance to
state 0 which is (2−1) div 2. It is also apparent that a sequence such as
011 represents, in the new format, the number 6. Since 6 ≤ 2 does not
hold, the machine moves to a “black hole” state labeled with BH, and
stays there forever. The language of the DFA in Figure 20.2 includes
all bit-serial sequences representing natural numbers that satisfy this
formula; for instance, 01 = 210 as well as 10 = 110 are both in the
language of this DFA.
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NFA for ∃y.(x + y) = 1:

0

0

0, 1

BH

0, 1

1

0, 1

0, 1

DFA for ∃y.(x + y) = 1:

0+
BH 1

1 0, 1

0

BH

0, 1

Fig. 20.4. NFA for ∃y.x + y = 1 and its equivalent DFA

20.1.4 Example 2 — ∀x.∃y.(x + y) = 1

We continue example-driven, now demonstrating how to show the non-
validity of the sentence ∀x.∃y.(x + y) = 1. To that end, we start with
the matrix sub-formula (x + y) = 1, and build up the whole formula,
as will now be described.

Subformula (x + y) = 1:

As illustrated in Figure 20.3, we build a DFA that can handle the bit-
serial left-to-right arrival of the bits comprising x + y = 1. When 〈1, 1〉
arrives, the machine is thrown into the black hole (BH) state because
the left-hand side of the equation adds up to at least 2 now, and will
from now on never equal the right-hand side. The reason we mention at
least is because the LSB of x and the LSB of y are both 1s, as captured
by the pair 〈1, 1〉 that has just arrived; and hence, even if the entire
sequence of tuples yet to arrive were to be 〈0, 0〉, the left-hand side
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would be 2. The accepting runs are either 〈0, 1〉 or 〈1, 0〉 followed by an
arbitrary number of 〈0, 0〉s.

Subformula ∃y.(x + y) = 1:

The meaning of ∃y.x + y = 1 is that one should take the disjunction of
x + y = 1 with y set to 0 and 1, in turn (y is a Boolean variable owing
to our following a bit-serial format). In the automaton world, this effect
would be attained if we project away the second component of the pairs
from the alphabet (e.g., 〈x, y〉 would become just x). The resulting
machine—an NFA now—is shown in Figure 20.4. Determinizing, we
obtain the DFA also shown in the same figure. This DFA shows that if
the LSB of x is a 0 or a 1, the machine can be in a final state (y can
be internally chosen to be 1 or 0, respectively, thus still satisfying the
equation).

Handling the complete formula

The full formula ∀x.∃y.(x + y) = 1 is handled by treating ∀x.P as
¬(∃x.¬P ). The corresponding automaton operations are automaton
complementation, hiding, determinization, and finally complementa-
tion once again, as Figure 20.5 shows.

Throughout these conversions, we have maintained a correspon-
dence between formulas and automata. Because of this, when convert-
ing sentences to DFA, there can only be two outcomes: if the sentence is
true, the final DFA will have a single state that is initial and final. This
is a DFA that, “upon power-up,” instantaneously accepts. If the sen-
tence is false, the final DFA will have a single state that is only initial
and not final. This is a DFA that, “upon power-up,” instantaneously
rejects. The proof that these are the only two outcomes possible for
Presburger sentences is left to the reader (Exercise 20.1). Section 20.2
discusses a pitfall to be avoided while using this algorithm.

20.1.5 Conversion algorithm: Presburger formulas to
automata

Let us review the conversion algorithm presented thus far, again keep-
ing the example (x+ y) = 1 in mind, referring to Figure 20.3. The ma-
chines we build employ bit-serial conventions, meaning: (i) they begin
in a start state where initially it has not seen any inputs (by conven-
tion, we assume that x = y = 0). If the formula is satisfied for these
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Starting DFA for ∃y.(x + y) = 1:

0+
BH 1

1 0, 1

0

BH

0, 1
After complementation:

0+
BH 1

1 0, 1

0

BH

0, 1
After hiding x:

0+
BH 1BH

After determinization:

After final complementation:

Fig. 20.5. Obtaining the DFA for ∀x.∃y.(x + y) = 1 from the DFA in Fig-
ure 20.4 through complementation, hiding, determinization, and complemen-
tation

values of x and y, the start state is also a final state. In this case, since
0 + 0 �= 1, the start state is not a final state. Furthermore, the start
state gets labeled as “1.” This is because each state will be labeled by
the “imbalance” between the right-hand side and the left-hand side of
the equation x + y = 1 divided by 2. This quantity is signed negative
if the left-hand side is “heavier,” and positive if the left-hand side is
“lighter.” The division by 2 happens because as far as the next bit to
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arrive is concerned, it will treat the imbalance as occurring in a position
of half the weight. The general algorithm for handling quantifier-free
formulas (matrices) is now described. Quantifications are handled as
already illustrated.

General equation format: The general equation we are dealing with is

a1x1 + a2x2 + . . . + anxn = b(where a1, . . . , an,b ∈ Z).

Here Z stands for integers (positive and negative numbers). Re-
member that we allow x1, . . . , xn to range over Nat only.
Example: Our equation is x + y = 1.

Initial state rule: The initial state is always q0. In our example, the
initial state is 0 (we simply express the subscript, omitting the “q”
part).

State Transition Equation: Let the set of states be Q. State qc ∈ Q
will evolve to state qd ∈ Q upon arrival of bit-tuple θ, written
(qc, θ, qd) ∈ δ, provided the following side conditions are true:

The state transition exists only if the LSB of the equation is
satisfied. In other words, a1θ1 + a2θ2 + . . . + anθn = c must be
true. If this condition is not satisfied, the transition upon θ goes
to the black hole state “BH.” Here, θ = 〈θ1, θ2, . . . , θn〉.
In our example, transition T3 goes to BH because the LSB of the
addition 1 + 1 does not equal the LSB of 1. The same is the
reason for T4 going to BH.
If the above condition holds, then d = (c − a1θ1 − a2θ2 . . . −
anθn) div 2.
Consider T1 for the sake of illustration. The above equation
yields 0 which is where this transition goes. Consider T5. The
above equation yields -1, and so the transition goes to the BH
state, because the arrival of further bits of x and y only makes
the left-hand side of the equation heavier (more unbalanced).

In summary, these two equations describe: (i) how to determine
whether a state transition exists, and (ii) how to decide which state
the transition leads to.

20.2 Pitfalls to Avoid

Let us do another example that points out a real pitfall. Consider the
formulas Ff = ∀x.∃y.(x − y) = 1 and Ft = ∀y.∃x.(x − y) = 1. Over
natural numbers, Ff is false (consider x = 0) while Ft is true. Follow-
ing the method for DFA construction all the way through, however,
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Fig. 20.6. Study of ∀x.∃y. x − y = 1 versus ∀y.∃x. x − y = 1

Figure 20.6 (which only represents the common matrix of these formu-
las) will reduce to the same machine with empty language as shown in
Figure 20.5. In other words, our reasoning shows that Ff and Ft are
false. Why?

20.2.1 The restriction of equal bit-vector lengths

Let us think a bit more carefully about how the DFA construction
method treats the matrix x−y = 1. This DFA is based on the following
conventions:

• Bit-sequences are to be interpreted in unsigned binary. For example,
1 represents the value 1 in decimal while 11 represents 3 in decimal.

• We will accept x and y bit serially with the number of bits of x
and y seen at any stage being equal. Suppose we have seen n 1s
corresponding to y. What should be the n-long bit sequence corre-
sponding to x such that x − y = 1? We immediately realize that
there is no such x!

Therefore, we have to read ∀y.∃x.(x − y) = 1 as

∀y.∃x.[(x − y) = 1 ∧ eqlen(x, y)],

where eqlen is a predicate that asserts that the bit-serial vectors mod-
eling x and y have the same length. With this interpretation, both
formulas emerge false. In other words, for any run of y’s of all 1s (equal
in magnitude to 2n − 1 for various n), there is no run of x of the same
length that exceeds this magnitude.
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Chapter Summary

This chapter provided another example of how exceedingly powerful
and versatile finite automata are! In particular, we demonstrated two
facts:

• That the validity problem of Presburger arithmetic can be modeled
and solved using DFAs, and

• The procedure we employed shows the nice duality that exists be-
tween logical operators and automata-theoretic operators.

An efficient computer tool named Mona [70] employs many of these
ideas, and employs an augmented form of BDDs to reason about Pres-
burger logic sentences. Despite the non-elementary complexity (defined
by the “towers of 2” formula given in Exercise 19.3), this tool has been
able to handle many real-world problems in formal verification.

Exercises

20.1. Prove the assertion in Page 376 that only two outcomes are pos-
sible when converting any Presburger sentence into a DFA.

20.2. Apply the DFA construction method of Section 20.1.4 on the
Presburger sentence

∃x.∃y.∃z. (x + 2y = 3z + 1)

and determine whether this sentence is true or false.

20.3. First inspect the sentence

∃x.∃y.∀z. (x + 2y = 3z + 1)

and determine whether it is true or false. Next, apply the DFA con-
struction method and check your answer.

20.4. Carry the DFA construction method presented in Section 20.1.4
all the way through for the formulas Ff and Ft of Section 20.2, and
verify the assertion that their languages emerge to be empty. In the
light of this result, explain the need for the eqlen assertion introduced
in Section 20.2.1.

20.5. Consider the addition of the multiplication (‘∗’) operator into the
“Presburger” arithmetic language. Can one still employ DFAs to reason
about sentences in this language? What problems do you anticipate?
Consider two cases: (i) only multiplications with constants are allowed
(e.g., 2 ∗ x), (ii) arbitrary multiplications are allowed (e.g., x ∗ y).
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Model Checking: Basics

21.1 An Introduction to Model Checking

The development of model checking methods is one of the towering
achievements of the late 20th century in terms of debugging concur-
rent systems. This development came about in the face of the pressing
need faced by the computing community in the late 1970’s for effective
program debugging methods. The correctness of programs is the cen-
tral problem in computing, because there are often very designs that
are correct, and vastly more that are incorrect. In some sense, defining
what ‘correct’ means is half the problem - proving correctness being
the other half of the problem.

The quest for high performance and flexibility in terms of usage
(e.g., in mobile computing applications) require systems (software or
hardware) to be designed using multiple computers, processes, threads,
and/or function units, thus quickly making system behavior highly con-
current and non-intuitive. With the rapid progress in computing, es-
pecially with the availability of inexpensive microprocessors, the com-
puter user community found itself – in the late 1970’s – in a position
where it had plenty of inexpensive hardware but close to no practical
debugging methods for concurrent systems! We will now examine the
chain of events that led to the introduction of model checking in this
setting.

The enterprise of sequential program verification pioneered, among
others, by Floyd [40], Hoare [55], and Dijkstra [37] was soon followed by
the quest for parallel program correctness, pioneered, among others, by
Owicki and Gries [93], and Lamport [73]. The difficulty of these meth-
ods when applied to real-world programs led to alternate proposals,
such as relying on social processes [35]. Unfortunately, the arbitrari-
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ness hidden in such proposals makes it difficult to situate computation
engineering in the same plane as other engineering disciplines where de-
sign verification against rigorous specifications is the rule rather than
the exception. Contrast the following guarantees: where the former is
likely to be offered by a

“If I press the eject button, I am guaranteed to be safely ejected
from a burning airplane in less than 5 seconds.”

versus

“If I am lucky to be in a plane that was debugged by an expert
reader of a program who happened to spot a bug, then I might
get ejected in a reasonable amount of time.”

In one thread of work that was evolving in the late 1970’s, some
scientists, notably Pnueli [97], had the vision of focusing on concur-
rency. In a nutshell, by focusing on control and not data, it becomes
possible to model a system in terms of finite-state machines, and then
employ decision procedures to check for its reactive properties. Even af-
ter such simplifications, system control tends to be highly non-intuitive,
and hence simply not amenable to any reasonable social processes. Au-
tomated analysis of finite-state models can, on the other hand, au-
tomatically hunt bugs and report them back. Pnueli’s vision lead to
Manna, Pnueli, and many others developing temporal logic proof sys-
tems [79, 80].

We must admit that in this historical “sampler” that we are pre-
senting, it is entirely possible that we have overlooked some key ref-
erences, despite our best efforts to prevent any such omissions. One
such unfortunately omitted citation from many recent works on model
checking pertains to Carl Adam Petri’s [96] seminal work. Petri not
only proposed many basic ideas in concurrency and work-flow as early
as 1963, but also saw the importance of focusing on control flow and
synchronization. Similarly, Hoare [56] and Milner [85] pioneered much
of the understanding of concurrency in terms of process algebras. How-
ever, none of the early works had emphasized algorithmic approaches
similar to model checking, which is our focus in this chapter.

The breakthrough towards algorithmic methods for reasoning about
concurrent systems (as opposed to the initial proof theoretic methods)
was introduced in the work of Clarke and Emerson [18], Queille and
Sifakis [99], and Clarke, Emerson, and Sistla [19]. This line of work
also received multiple fundamental contributions, notably from Vardi
and Wolper who introduced an automata theoretic approach to auto-
matic program verification [120], and a team of researchers at AT&T



21.1 An Introduction to Model Checking 383

Bell Laboratories, notably by Holzmann, Peled, Yannakakis, and Kur-
shan [58, 51, 72, 59], who developed various ways to build finite-state
machine models and formally analyze them. Known as model check-
ing, these methods relied on (i) creating a finite state model of the
concurrent system being verified, and (ii) showing that this model pos-
sesses desired temporal properties (expressed in temporal logic). Graph
traversal algorithms were employed in lieu of deductive methods, thus
turning the whole exercise of verification largely into one of building
system models as graphs, and performing traversals on these graphs
without encountering state explosion.

State explosion—having to deal with an exponential number of
states—is an unfortunate reality of model checking methods because
finite-state models of concurrent systems tend to interleave in an ex-
ponential number of ways with respect to the number of components
in the system. Effective methods to combat state explosion became the
hot topic of research – but meanwhile model checking methods were
being applied to a number of real systems, with success, finding deep-
seated bugs in them! In [14, 13], Bryant published many seminal results
pertaining to binary decision diagrams (BDD), and following his popu-
larization of BDDs in the area of hardware verification, McMillan [83]
wrote his very influential dissertation on symbolic model checking. This
is one line of work that truly made model checking feasible for certain
“well structured,” very large state spaces, found in hardware modeling.
The industry now employs BDDs in symbolic trajectory evaluation
methods (e.g., [2]).

Model checking has truly caught on in the area of hardware veri-
fication, and promises to make inroads into software verification—the
area of “software model checking” being very actively researched at the
time of writing this very sentence. In particular, Boolean satisfiability
(SAT) methods are being widely researched, as already discussed in
Section 18.3. In modern reasoning systems, SAT and BDD methods
are being used in conjunction with first-order (e.g., [92, 110]) reasoning
systems, for example in tools such as BLAST [53]. In addition, higher-
order logic (e.g., [3, 47, 94]) based reasoning systems also employ BDD,
SAT, and even model checking methods as automated proof assistants
within them. As examples of concrete outcomes, we can mention two
success stories:
Model checking in the design of modern microprocessors: All
modern microprocessors are designed to be able to communicate with
other microprocessors through shared memory.1 Unfortunately since

1 Often these other microprocessors are situated on the same silicon chip
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only one processor can be writing at any memory location at a given
time, and since “shared memory” exists in the form of multiple levels
of caches, with further levels of caches being far slower to access than
nearly levels of caches, extremely complex protocols are employed to
allow processors to share memory. Even one bug in one of these pro-
tocols can render a microprocessor useless, requiring a redesign that
can cost several 100s of millions of dollars. No modern microproces-
sor is sold today without its cache coherence protocol being debugged
through model checking.
Model checking in the design of device drivers: Drivers for
computer input/output devices such as Floppy Disk Controllers, USB
Drivers, and Blue-tooth Drivers are extremely complex. Traditional de-
bugging is unable to weed out hidden bugs unless massive amounts of
debugging time are expended. Latent bugs can crash computers and/or
become security holes. Projects such as the Microsoft Research SLAM
project [9] have technology transitioned model checking into the real
world by making the Static Driver Verifier [8] part of the Windows
Driver Foundation [122]. With this, and other similar developments,
device-driver writers now have the opportunity to model-check their
protocols and find deep-seated bugs that have often escaped, and/or
have taken huge amounts of time to locate using traditional debugging
cycles.
Has the enterprise of model checking succeeded? What about social
processes? We offer two quotes:
Model checking has recently rescued the reputation of formal methods
[64].
Don’t rely on social processes for verification [38].
In this chapter and Chapter 22, we offer a tiny glimpse of model check-
ing basics as well as tools. The rest of this chapter is organized as
follows. Section 21.2 examines reactive systems. Section 21.3 discusses
the verification of safety and liveness properties. Section 21.4 illustrates
these ideas on one example—namely the Dining Philosophers problem
of Dijkstra [37]—using the Promela language and SPIN model checker.

21.2 What Are Reactive Computing Systems?

Reactive computing systems are hardware/software ensembles that
maintain an ongoing interaction with their environment, coordinating
as well as facilitating these interactions. They are widely used in all
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walks of life—often in areas that directly affect life. Examples of reac-
tive systems include device drivers that control the operation of com-
puter peripherals such as disks and network cards, embedded control
systems used in spacecraft or automobiles, cache coherency controllers
that maintain memory consistency in multiprocessor machines, and
even certain cardiac pacemakers that measure body functions (such
as body electric fields and exercise/sleep patterns) to keep a defective
heart beating properly. Model checking has already been employed in
most of these areas, with its use imminent in critical areas such as med-
ical systems. Clearly, knowing a little bit about the inner workings of
a model checker can go a long way towards their proper usage.

21.2.1 Why model checking?

The design of most reactive systems is an involved as well as exacting
task. Hundreds of engineers are involved in planning, analyzing, as well
as building and testing the various hardware and software components
that go into these systems. Despite all this exacting work, at least two
vexing problems remain:

• Reactive systems often exhibit nasty bugs only when field-tested.
Unfortunately, at such late stages of product development, identi-
fying the root cause of bugs as well as finding solutions or work-
arounds takes valuable product engineering time. A manufacturer
caught in this situation can very easily lose their competitive ad-
vantage, as these late life-cycle bug fixes can cost them dearly—
especially if they miss critical market windows.

• The risk of undetected bugs in products is very high,2 in the form
of law-suits and recalls. Since software testing methods are seldom
exhaustive, product managers have a very difficult time deciding
when to begin selling products.

Formal methods based on model checking are geared towards eliminat-
ing the above difficulties associated with late cycle debugging. While
model checking is not a panacea, it has established a track record of
finding many deep bugs missed by weeks or months of testing. Specifi-
cally,

• model checking is best used when a reactive protocol is in its early
conceptual design stages. This is also the most cost-effective point
at which to eliminate deep conceptual flaws.

2 Software is often like a bridge that does not fail when subject to 100 tons or 101
tons of weight, but suddenly collapse when 101.1 tons of weight are applied.
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• model checking can return answers — either successful verification
outcomes or high level counterexamples — often in a matter of a few
minutes to a few hours. In contrast, testing can wastefully explore
vast expanses of the state-space over weeks or months of testing.
Error location can also become nightmarishly hard during testing,
as the state-space sizes are large, and because an astronomically
large number of computation steps may be executed from when
the actual erroneous steps were carried out until when the system
crashes or other symptoms of “ill health” are manifested.

In reality, the success of model checking can be attributed to several
facts. Many of these facts are just pure “common sense,” not exclusive
to model checking in any way. Yet, it has been observed that model
checking facilitates the use of such common sense! We now list the
“virtues of model checking,” starting from the most pragmatic and
going towards the more mathematical reasons.

Successive refinement:

Human thought seldom advances3 without the benefit of symbolic
thought or successive refinement. Once one erects symbols and defines
“rules of the game,” one can begin playing. In the same sense, rather
than remain frozen with indecision in the face of full design complex-
ity, designers adopting model checking methods have at their disposal a
vehicle for testing early prototypes and evaluating design alternatives.
The models that a designer builds for reactive systems are largely finite-
state machines. These finite-state machines can either be standard ones
or embellished with extra information pertaining to communication or
computation.

Exhaustively verify simplified models:

Even though a manually created design model can be defective, creating
one actually allows the designer to unload a piece of their mounting
mental burden, and test the integrity of their thoughts through model
checking experiments. The modern tendency in this area is to supplant
manual model construction with abstraction refinement techniques that
can help one gradually discover, through tool assistance, what a suitable
abstract model is. This approach promises to considerably reduce the
level of effort needed in creating abstract models.

3 Children are known to have difficulties with symbolic thought, and have been
observed to try inserting their feet into pictures of shoes.
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State-space analysis tools are the ‘heart’ of any model checker. These
tools help exhaustively analyze finite-state machine models through a
combination of techniques that help reduce memory requirements as
well as overall computation time. As Rusbhy points out [104], expe-
rience has shown that the exhaustive analysis of finite-state models
of reactive systems can often lead to the discovery of unexpected in-
teractions (“corner cases”) and bugs much more readily than testing
methods can, for the same amount of resources (human and computer
time) spent.

21.2.2 Model checking vs. testing

Model checking is a technique for verifying finite-state models of re-
active computing systems for proper behavior. The intuitive notion of
‘proper behavior’ is, in turn, formalized through the use of either tem-
poral logic (e.g., linear-time temporal logic) or automata (e.g., Büchi
automata) which are used to express the desired properties of these
systems. In contrast, testing is a well-established and expansive area
central to product integrity, and employs both formal and informal cri-
teria for coverage. Neither approach excludes the other; in fact, some
of the most promising recent results are in combining model checking
and testing ideas, for instance as in [10].

Traditional testing-based debugging methods are known to miss
bugs due to many reasons. Typical systems being tested contain an
astronomical number of states: 2109

states, for instance, in a memory
of capacity 1MB! While engineers are known to hand-simplify designs
before testing them, in model checking, such simplifications are often
done much more aggressively, to the point of turning control branches
into nondeterministic selections. Such simplifications help abstract (or
“smoothen”) the state-space modeled. BDDs (Chapter 12), and many
other symbolic representation methods for state spaces, have the (cu-
rious) property that by adding more information (which helps overap-
proximate state spaces, perhaps by adding some infeasible states) the
actual BDD sizes are dramatically reduced. Hence, even though the
number of states modeled may increase, the memory for representing
the states diminishes.

Two additional important benefits due to the use of nondetermin-
ism are: (i) failure possibilities are introduced without increasing model
or state-space sizes, and (ii) the effect of testing for all values of cer-
tain critical system parameters is obtained through nondeterminism.
Of course these benefits come at a cost, and a designer who under-
stands this cost/benefit ratio can often swing the overall balance in
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favor of benefit. To understand these discussions, consider the process
of debugging of a concurrent system that uses a ‘send’ communication
primitive in a library. Assume that send uses a FIFO buffer, and would
block if the buffer were to be full. Further, suppose that such blocked
sends are considered errors. If one were to allocate a certain number
of buffer locations and test in the traditional sense, one would have to
wait for the right combinations of global states to arise in which the
send buffer in question becomes full, and then only be able to observe
the error. Furthermore, the input/state combinations under which this
error can be observed during testing may differ from those in the real
system because, clearly, the designer would have downscaled all system
parameters before testing begins. To make matters worse, it is easy to
eliminate errors while downscaling systems in an ad hoc manner.

In contrast to the testing approach described above, a model check-
ing based approach to solving the same problem would consist of: (i) not
modeling buffer capacities, and (ii) nondeterministically triggering a
buffer full condition at every possible point in the state-space (this is
called over-approximation of the reachable state-space). The advantage
of this approach is that all possible buffer capacities are being simu-
lated in one fell swoop. The obvious disadvantage of this approach is
that a buffer full may be simulated by the nondeterministic selection
mechanism when not warranted (e.g., at the very first send), and the
test engineer is forced to study and overrule many false alarms reported
by the model checker. This is often a small price to be paid for the thor-
oughness of coverage offered by a model checker, especially given that
testing may not be feasible at all. We are really talking about model-
ing several thousands of lines of actual code (which may be impossible
to test in any real sense) by a less than 100-line model checker input
description. In this setting, repeated running of model checking and
overruling errors is actually feasible.

It is possible that, despite the best precautions, over-approximation
based model checking can inundate the engineer with false alarms.
There are many recently emerging solutions to this problem, the most
important of which is an approach based on abstraction refinement.
This approach promises to enhance the power of model checking, while
helping us handle larger models and at the same time avoiding in-
accuracies arising due to hand abstractions created by the designer.
In the counterexample guided abstraction refinement (CEGAR, [21])
approach for abstraction/refinement, the initial abstraction is deliber-
ately chosen to be too coarse. This abstraction is successively refined
by heuristically discovering aspects of the system which need to be
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captured in detail. The end result is often that systems are verified
while keeping much of their behavior highly abstract, thus reducing
the overall complexity of verification.

21.3 Büchi automata, and Verifying Safety and Liveness

Büchi automata are automata whose languages contain only infinite
strings. The ability to model infinite strings is important because of
the fact that all bugs can be described in the context of infinite exe-
cutions. We now elaborate on these potentially unusual sounding, but
rather simple, ideas. Broadly speaking, all errors (bugs) in reactive sys-
tems can be classified into two classes: safety (property) violations and
liveness (property) violations.

• Safety violations are bugs that can be presented and explained to
someone in the form of finite executions (finite sequence of states)
ending in erroneous states. Some examples of systems that exhibit
safety violations are the following:
− two people who, following a faulty protocol, walk opposite in a

narrow dark corridor and collide;
− an elevator which, when requested to go to the 13th floor, pro-

ceeds to do so with its doors wide open;
− a process P which acquires a lock L and dies, thus permanently

blocking another process, say Q, from acquiring L.
All finite executions of the form s1 . . . sk can be modeled as infinite
executions that infinitely repeat the last state, namely s1s2 . . . (sk)

ω.
Modeling finite executions as infinite executions allows one to em-
ploy Büchi automata.

• Liveness violations are bugs that can be presented and explained to
someone only in the form of an infinite execution in which a desired
state never occurs. In practice, liveness violations are those that
end in a bad “lasso” shaped cyclic execution path which does not
contain the desired state. Examples of liveness violations are:
− two people who, following a faulty protocol, engage in a per-

petual ‘dance,’ trying to pass each other in a narrow well-lit
corridor;

− an elevator that permanently oscillates between the 12th and
14th floors when requested to go to the 13th floor;

− A process P which acquires a lock L precisely before another
process Q tries to acquire it, and releases the lock precisely
after Q has decided to back off and retry; this sequence repeats
infinitely.
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All infinite executions in finite state systems can be cast into the
form s1s2 . . . (sj . . . sk)

ω where the reachable bad cycle (sj . . . sk)
ω

is called the “lasso.” Liveness verification of finite state systems
reduces to finding one of these reachable lassos.

Model checking methods based on the use of Büchi automata help
detect safety and liveness violations through language containment of
Büchi automata as is described in Section 21.4.1.

Outline of the rest of the chapter

In Section 21.4, we present the example of three dining philosophers—a
slight variant of the example presented by Dijkstra in [37] to illustrate
the principles of concurrent programming and synchronization. We do
not study the whole gamut of solutions that have been discussed for this
problem for nearly four decades. Instead we simply use this example for
the sake of illustration, since it is such a well-known example. In fact,
we deliberately present a buggy solution and demonstrate how model
checking can be employed to detect this bug. Section 21.4.1 informally
presents how to express models as well as properties as automata in the
syntax of Promela and find a liveness bug in the philosophers example.

21.4 Example: Dining Philosophers

0

12

C2

C4

C3

C1

C5 C0

F2

F1F0

Fig. 21.1. Three dining philosophers

Imagine three philosophers numbered P0, P1, and P2 seated around
a table with a bowl of spaghetti in the middle (Figures 21.1 and 21.2).
They decide to eat out of the same spaghetti bowl as well as share forks
as per the following rules:4 P0 would eat with F0 and F1 in his right

4 Foregoing basic hygiene...
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mtype = {are_you_free, yes, no, release}

byte progress; /* SPIN initializes all variables to 0 */

proctype phil(chan lf, rf; int philno)

{ do

:: do

:: lf!are_you_free ->

if

:: lf?yes -> break

:: lf?no

fi

od;

do

:: rf!are_you_free ->

if

:: rf?yes -> progress = 1 -> progress = 0

-> lf!release -> rf!release -> break

:: rf?no -> lf!release -> break

fi

od

od

}

proctype fork(chan lp, rp)

{ do

:: rp?are_you_free -> rp!yes ->

do

:: lp?are_you_free -> lp!no

:: rp?release -> break

od

:: lp?are_you_free -> lp!yes ->

do

:: rp?are_you_free -> rp!no

:: lp?release -> break

od

od

}

init {

chan c0 = [0] of { mtype }; chan c1 = [0] of { mtype };

chan c2 = [0] of { mtype }; chan c3 = [0] of { mtype };

chan c4 = [0] of { mtype }; chan c5 = [0] of { mtype };

atomic {

run phil(c5, c0, 0); run fork(c0, c1);

run phil(c1, c2, 1); run fork(c2, c3);

run phil(c3, c4, 2); run fork(c4, c5); }

}

never { /* Negation of []<> progress */

do

:: skip

:: (!progress) -> goto accept;

od;

accept: (!progress) -> goto accept;

}

Fig. 21.2. Promela model for three dining philosophers
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and left hands (respectively), while P1 would eat with F1 and F2, and
P2 with F2 and F0. Clearly, when one philosopher ‘chows,’ the other
two have to lick their lips, patiently waiting their turn. It is assumed
that despite their advanced state of learning, they are disallowed from
trying to eat with one fork or reach across the table for the disallowed
fork. In order to pick up a fork, a philosopher sends a message to the
fork through the appropriate channel. For example, to acquire F0 or F1,
respectively, P0 would send an are_you_free request message through
channel C5 or C0, respectively. Such a request obtains a “yes” or a “no”
reply. If the reply is “yes,” the philosopher acquires the fork; otherwise
he retries (if for the left fork) or gives up the already acquired left fork
and starts all over (if for the right fork). Consequently, the deadlock
due to all the philosophers picking up their left forks and waiting for
their right forks does not arise in our implementation. After finishing
eating, a philosopher puts down the two forks he holds by sequentially
issuing two release messages, each directed at the respective forks
through the appropriate channels.

Figure 21.2 describes how the above protocol is described in the
Promela modeling language. Consider the init section where we cre-
ate channels c0 through c5. Each channel is of zero size (indicated by
[0]) and carries mtype messages. Communication through a channel of
size 0 occurs through rendezvous wherein the sender and the receiver
both have to be ready in order for the communication to take place.
As one example, consider when proctype phil executes its statement
lf!are_you_free. We trace channel lf and find that it connects to
a philosopher’s left-hand side fork. This channel happens to be the
same as the rp channel as far as fork processes are concerned (rp
stands for the ‘right-hand philosopher’ for a fork). These connections
are specified in the init section. Hence, proctype fork must reach
rp?are_you_free statement at which time both lf!are_you_free and
rp?are_you_free execute jointly. As a result of this rendezvous, proc-
types phil as well as fork advance past these statements in their re-
spective codes.

Continuing with the init section, after “wiring up” the phil and
fork processes, we run three copies of phil and three copies of fork in
parallel (the atomic construct ensures that all the proctype instances
start their execution at the same time). The never section specifies the
property of interest, and will be described in Sections 21.4.1 and 22.1.
Now we turn our attention to the proctypes phil and fork.

Proctype phil consists of one endless outer do/od loop, inside which
are two sequential do/od loops. The first of these loops has as its first
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statement lf!are_you_free. This statement acts as a guard, in the
sense that the execution of this statement allows the subsequent state-
ment to be engaged in — in our example, this happens to be a nested
if/fi statement (sequencing is indicated by ->; in Promela, one may
use -> and ; interchangeably to denote sequencing). An if/fi offers
a selection of guards, and nondeterministically selects one of the arms
that can execute (a do/od is like an if/fi with a goto leading back to
the beginning). Hence, if lf?yes rendezvous with rp!yes, the first in-
ner do/od loop breaks, and the second do/od loop is engaged. In this,
the guard is rf!are_you_free. If the reply obtained is rf?yes, the
philosopher in question can begin eating. To indicate that a philoso-
pher has successfully started eating, we set a progress flag to 1 and
then to 0. The attainment of progress=1 will be monitored by a never

automaton. The forks are released and the execution continues with an-
other iteration of the outer do/od loop. Notice that if the second arm of
the if/fi statement is chosen (through lf?no), the lf!are_you_free

is retried. Therefore, phil repeatedly requests its left fork, and if/when
successful, requests its right fork. If a rf?no is obtained when request-
ing the right fork, notice that the already acquired left fork is released
via lf!release and the whole process is restarted.

The process of acquiring both forks in the manner described above
is based on two-phase locking—an algorithm known to be able to avoid
deadlocks. The idea is (i) to acquire all the required resources in some
sequential order, and (ii) when some resource is found unavailable, in-
stead of holding on to all the resources acquired thus far and waiting
for the unavailable resource (which can cause deadlocks), we release
all the resources acquired thus far and restart the acquisition process.
It is easy to see that while this approach avoids deadlocks, it can in-
troduce livelocks. To detect the livelock in our example, we employ a
property automaton expressed in the never section of a Promela model.
Our property automaton (or “never” automaton) is designed to check
whether the progress bit is set to true infinitely often. Even if one phil
proctype violates this assertion—meaning that it only sets progress

true a finite number of times—we want the bug to be reported. We
describe this property automaton as well as how it finds the liveness
violation in the next section. In Chapter 22, we explain the relation-
ship between property automata as well as linear-time temporal logic
assertions.
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21.4.1 Model (proctype) and property (never) automata

A typical Promela model consists of multiple proctypes and one never
automaton. The proctypes are concurrent processes whose atomic
statements interleave in all possible ways. The collection of proctypes
represents the “system” or “model.” Formally, one can say that the
asynchronous or interleaving product of the model automata represents
the set of all behaviors of interest. A never or property automaton ob-
serves the infinite runs of this interleaving product (all model runs).
Conceptually, after every move of the model (a move of one of the con-
stituent proctypes), one move of the property automaton is performed
to check whether the model automaton move left the system in a good
state. Formally, one can say that the synchronous product of the model
and property automata are performed. In Figure 21.2, the property au-
tomaton represents the complement5 of the desired property—hence,
the keyword never. One of the desired properties in our example is
that progress is infinitely often set true. This means that infinitely
often, every philosopher gets to eat. If there is even one philosopher
who, after a finite amount of eatings, is never allowed to eat again, we
certainly would like to know that. The never automaton accepts a run
(or a computation) if the run visits one of the final states infinitely. The
never automaton defined in Figure 21.2 can nondeterministically loop
in its initial do/od loop. In fact, it can even stay in its initial state if
progress is false. However, it may also choose to go to the final state
labeled accept when progress is false. Here, it can continue to visit
accept so long as progress is false. Hence, this never automaton ac-
cepts only an infinite sequence of progress being false—precisely when
our desired liveness property is violated.

When we ran the description in Figure 21.2 through the SPIN model
checker (which is a model checker for descriptions written in Promela),
it quickly found a liveness violation which indicates that, indeed, there
exists at least one philosopher who will starve forever. SPIN produces
a message sequence chart (MSC) corresponding to this error; this is
shown in Figure 21.3.

An MSC displays the “lifelines” (time lines of behaviors) of all the
processes participating in the protocol. Ignoring the never and init

lifelines that are at the left extremity, the main lifelines shown are verti-
cal lines tracing the behaviors of various process instances, specifically
phi1:1, fork:2, phi1:3, fork:4, phi1:5, and fork:6. Reading this
MSC, we find out how the bug occurs:

5 The complement of the property automaton is expected to be given by the user
as complemented automata are, in the worst case, exponentially bigger.
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phil:5

9

fork:4
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Fig. 21.3. Message sequence chart showing liveness violation bug

• phil:5 acquires fork:4 by sending it an are_you_free message
and obtaining a yes reply (the channel names have been converted
into internal channel numbers in this MSC). It also acquires fork:6
in the same manner.

• phil:1 attempts to acquire fork:6 by sending an are_you_free

and obtaining a no repeatedly. This is a liveness violation because
phil:1 is starving.

Chapter Summary

In this chapter, we examined the basic differences between informal
and formal approaches to debugging concurrent reactive systems. We
presented an overview of the Promela modeling language and the SPIN
verifier through a simple example. In the next chapter, we delve slightly
deeper into how temporal specifications are written, and some of the
algorithms used in enumerative model checking approaches that explic-
itly enumerate states.
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Exercises

21.1. Write a Promela model for a two-process mutual exclusion al-
gorithm that is based on Dekker’s solution (many operating systems
books contain a description of this algorithm). State one safety and
one liveness property, express these using never automata, and verify
these properties in turn.

21.2. Repeat Exercise 21.1, but following Peterson’s mutual exclusion
algorithm, again described in most books on operating systems.

21.3. Modify the dining philosophers protocol to eliminate the liveness
bug described in Section 21.4.1. Also make sure that your solution is
deadlock free.

21.4. Even sequential programs are easily gotten wrong. This exercise
shows that even though transformational programs are most often re-
quired to be analyzed through Floyd-Hoare-Dijkstra’s logic [40, 55, 37],
they can sometimes be easily verified through finite-state methods as
well.

In an old textbook on Algorithms (name withheld), the following
Bubble sort program is offered, accompanied by the assertion, “It takes
a moment’s reflection to convince oneself first that this works at all,
second that the running time is quadratic.”

procedure bubblesort;

var j, t: integer;

begin

repeat

t:=a[1];

for j:=2 to N do

if a[j-1]>a[j] then

begin t:=a[j-1]; a[j-1]:=a[j]; a[j]:=t end

until t=a[1];

end;

Examine the above program and find a bug such that the program
can exit with an unsorted array(!)6

Next, run the following Promela model encoding this Bubblesort
program and find the bug in it.

#define Size 5

#define aMinIndx 1

#define aMaxIndx (Size-1)

6 It may be that the author meant to write a few side conditions, but going by
exactly what he wrote, I assert that there is a bug in the program.
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/* Gonna "waste" a[0] because Sedgewick uses 1-based arrays */

active proctype bubsort()

{ byte j, t; /* Init to 0 by SPIN */

bit a[Size]; /* Use 1-bit abstraction */

/* Nondeterministic array initialization */

do ::break ::a[1]=1 ::a[2]=1 ::a[3]=1 ::a[4]=1 od;

t=a[aMinIndx];

j=aMinIndx+1;

do /* First ‘‘repeat’’ iteration */

:: (j >(aMaxIndx)) -> break /*-- For-loop exits --*/

:: (j<=(aMaxIndx)) ->

if

:: (a[j-1] > a[j]) -> t=a[j-1]; a[j-1]=a[j]; a[j]=t

:: (a[j-1] <= a[j])

fi;

j++

od;

do /* Subsequent ‘‘repeat’’ iterations */

:: t!=a[1] ->

t=a[aMinIndx];

j=aMinIndx+1;

do

:: (j >(aMaxIndx)) -> break /*-- For-loop exits --*/

:: (j<=(aMaxIndx)) ->

if

:: (a[j-1] > a[j]) -> t=a[j-1]; a[j-1]=a[j]; a[j]=t

:: (a[j-1] <= a[j])

fi;

j++ /*-- for-index increments --*/

od /*-- end of for-loop --*/

:: t==a[1] -> break

od;

t=1; /*-- Comb from location-1 to look for sortedness --*/

do

:: t < aMaxIndx-1 -> t++

:: t > aMinIndx -> t--

:: a[t] > a[t+1] -> assert(0) /*- announce there is a bug! -*/

od

}

21.5. Modify the Bubblesort algorithm of Exercise 21.4, recode in
Promela, and prove that it is now correct.
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Model Checking: Temporal Logics

This chapter presents two temporal logics, namely computational tree
logic (CTL) and linear-time temporal logic (LTL). Section 22.1 presents
Kripke structure, 22.1.2 presents computations versus computation
trees, and 22.1.3 show how LTL and CTL assertions serve as Kripke
structure classifiers. Section 22.1.4 presents key differences between
CTL and LTL through some examples. Chapter 23 will present Büchi
automata as well as model checking algorithms.

22.1 Temporal Logics

22.1.1 Kripke structures

Kripke structures1 are finite-state machines used to model concurrent
systems. A Kripke structure is a four-tuple 〈S, s0, R,L〉 where S is a
finite set of states, s0 is an initial state, R ⊆ S × S is a total relation
known as the reachability relation, and L : S → 2P is a labeling func-
tion, with P being a set of atomic propositions. It is standard practice
to require that R be total, as Kripke structure are used to model infi-
nite computations (in modeling finite computations, terminal states are
equipped with transitions to themselves, thus in effect making R total).
The fact that we choose one initial state is a matter of convenience.

Figure 22.1 (bottom) presents two Kripke structures. In the Kripke
structure on the left, S = {s0, s1, s2}, s0 = s0, R is shown by the
directed edges, and L by the subsets of {a, b} that label the states. In
its behavior over time, this Kripke structure asserts a and b true in

1 Named after Saul Kripke, who is famous for his contributions to philosophy and
modal logic. Temporal logic can be viewed as an offshoot of modal logic where
the possible “worlds” are various points in time.
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Fig. 22.1. Two Kripke structures and some of their computations. In the
Kripke structure on the left, the assertion ‘Henceforth (a ∨ b)’ is true.

the first time step, b true in the second time step, and a in the third
time step. In the fourth time step, it may assert either a or b. One of
these sequences is shown in the middle – namely, choosing to assert a
in the fourth time step, and b in the fifth. When a label is omitted (e.g.,
there is no b in state s2), we are effectively asserting ¬b. Therefore, the
assertion in state s3 is ¬a∧¬b. The corresponding “waveforms2” (as if
viewed on an oscilloscope) are shown at the top of this figure.

From these discussions it is clear that we model the behavior of sys-
tems in terms of the truth values of a set of Boolean variables. This
is the most common approach taken when modeling systems as finite-
state machines. We therefore let P be the set of these Boolean variables.
There are of course other ways to model systems. For instance, if one

2 Notice that we ‘connect the dots’ only for visual clarity. The values of the signals
shown are actually undefined in between various discrete time points. Depending
on the actual context, intermediate values may or may not be defined. For exam-
ple, if a signal is the output of a clocked flip-flop, it may be valid even between
the points. Even in this case, it is only sampled at discrete points.
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were to employ a set of Boolean variables B and a set of integer vari-
ables I to model a system, P would consist of B as well as propositions
over integers, such as i > 2 or i = j +1. In any case, knowing the truth
of the atomic propositions P , it is possible to calculate the truth of any
Boolean proposition built over P .

Each state s ∈ S is an equivalence class of time points, while R
models how time advances. Whenever the system is at a state s ∈ S, a
fixed set of Boolean propositions determined by L are true. Since S is
finite, we can immediately see that the temporal behavior of systems
modeled using Kripke structures recur over time, thus basically gener-
ating a regular language of truth values of the propositions in P . For
example, Figure 22.1 shows how the truth of the Boolean proposition
a∨ b varies with time. Since either a or b is always true, a∨ b is always
true for the Kripke structure on the left; that is not the case for the
Kripke structure on the right, as we can enter state s3 where both a
and b are false.

This chapter is concerned with how we can study such Kripke struc-
tures through formal analysis. We will conduct this analysis by evaluat-
ing temporal logic properties with respect to Kripke structures. We will
study both linear sequences of runs through Kripke structures, such as
captured by waveforms, as well as branching behaviors (to be discussed
under the heading of computation trees).

22.1.2 Computations vs. computation trees

In general, it is not sufficient to view the behavior of a system in terms of
computational sequences, such as captured by waveforms. To see why,
consider Figure 22.2, where two scenarios of a user interacting with
a machine (say, a vending machine) are shown in the top and bottom
half. In each scenario, the behavior shown to the left of the ‖ sign is that
of the vending machine, while the behavior shown to the right of the ‖
sign is that of the human customer. The upper vending machine accepts
a coin-drop (shown as a), and decides to allow the user to bang open its
trap door (b). Since there are two (nondeterministic) ways to open the
trap door, the user may be faced with a candy (c) or a donut (d) – never
both at the same time! Since the user is always insistent on collecting
a candy (c) after a b event, the system will deadlock if the machine
chooses d instead of a c. Unfortunately, these “internal choices” made
by the machine cannot3 often be controlled from outside, and so such
machines do exist in real life. The machine in the bottom half is not

3 Perhaps depending on the “mood” of the machine or weather conditions...
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Fig. 22.3. Computation trees for the two Kripke structures of Figure 22.2,
as well as the left-hand side Kripke structure of Figure 22.1

prone to this deadlock, as it always leaves c and d enabled after a b.
How does one model this subtle, but important difference between the
two machines? Modeling the finite behaviors of the machines through
regular expressions, one obtains (ab(c + d))∗ as the regular expression
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for both machines — and so the use of regular expressions does not help
distinguish the machines.4

Let us therefore take another approach to see how we can distin-
guish these machines. In this approach, we unwind the machines into
their infinite computation trees, as shown in Figure 22.3 for the Kripke
structures of Figure 22.2 and the left-hand side Kripke structure of
Figure 22.1. With these computation trees at hand, one can then ask
questions such as:

“At all times, after seeing a b event being offered, does there
exist a path leading into a future where the c event is guaranteed
to be offered?”

It is clear that the Kripke structures of Figure 22.2 are distinguished
by this query: the bottom machine provides this guarantee by always
allowing the user to pull out c, while the top machine might some-
times precommit to offering only a d. Computational tree logic (CTL)
considers not only the truths of atomic propositions along paths as
linear-time temporal logic (LTL) does, but also has the ability to con-
sider: (i) whether there exists (E) paths at a state that satisfy a given
criterion, or whether for all (A) paths at a state, some criterion holds.
However, this is not to say that CTL is superior to LTL. There are many
path-centered properties such as fairness that are expressible only in
LTL and not in CTL. We will compare these logics in Section 22.1.4 as
well as in Section 23.3.1. We now come to the main idea behind LTL
and CTL that allows them to be studied on an equitable basis.

22.1.3 Temporal formulas are Kripke structure classifiers!

CTL formulas can be viewed as classifiers of Kripke structures or as
classifiers of computation trees. Both these views are equivalent (know-
ing the Kripke structure, we can obtain the computation tree, and vice
versa). LTL formulas can also be viewed in the same manner. We now
explain these ideas, beginning with CTL first.

4 Since infinite behaviors of reactive systems are of interest, LTL would view the
vending machines as having the set of behaviors described by (ab(c + d))ω (see
Section 2.8 for an explanation of ω) while CTL would view them in terms of
infinite computation trees.
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CTL formulas are Kripke structure classifiers

Given a CTL formula ϕ, all possible computation trees fall into two
bins—models and non-models.5 The computation trees in the model
(‘good’) bin are those that satisfy ϕ while those in the non-model (‘bad’)
bin obviously falsify ϕ.
Consider the CTL formula AG (EF (EG a)) as an example. Here,

• ‘A’ is a path quantifier and stands for all paths at a state
• ‘G’ is a state quantifier and stands for everywhere along the path
• ‘E’ is a path quantifier and stands for exists a path
• ‘F’ is a state quantifier and stands for find (or future) along a path
• ‘X’ is a state quantifier and stands for next along a path

The truth of the formula AG (EF (EG a)) can be calculated as follows:

• In all paths, everywhere along those paths, EF (EG a) is true
• The truth of EF (EG a) can be calculated as follows:

− There exists a path where we will find that EG a is true.
− The truth of EG a can be calculated as follows:

∗ There exists a path where a is globally true.

In CTL, one is required to use path quantifiers (A and E) and state
quantifiers (G, F, X, and U) in combinations such as AG, AF, AX,
AU, EG, EF, EX, and EU. More details are provided in Section 22.1.7.
In other temporal logics such as CTL*, these operators may be used
separately; see references such as [20] for details.

Coming back to the examples in Figure 22.1, AG (EF (EG a)) —
which means,

Starting from any state s of the system (s0, s1, or s2 in our
case), one can find a future reachable state t such that starting
from t, there is an infinite sequence of states along which a is
true

is true of the Kripke structure on the left, but not the one on the right.
This is because wherever we are in the “machine” on the left, we can
be permanently stuck in state s2 that emits a. In the machine on the
right, a can never be permanent. As another example, with respect to
the Kripke structures of Figure 22.2, the assertion AG(b ⇒ EX c)
(“wherever we are in the computation, if b is true now, that means

5 It is understood that for any formula ϕ involving variables vars(ϕ), the Kripke
structures that are considered to be models or non-models include all of the
variables vars(ϕ) in their set of variables. In other words, these Kripke structures
must assign all these variables; they may assign more variables, but not less.
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that there exists at least one next state where c is true”) is true of the
bottom Kripke structure but not the top Kripke structure.

LTL formulas are Kripke structure classifiers

Turning back to LTL, at its core it is a logic of infinite computations
or truth-value sequences (“waveforms”). For example, the LTL formula
�(a ∨ b) (also written as G (a ∨ b) or “henceforth a ∨ b”) is true with
respect to the computation (waveform) shown on the left-hand side of
Figure 22.1 against (a ∨ b) = 1, while it is false with respect to the
waveform shown on the right.

It is customary to view LTL also as a Kripke structure (or compu-
tation tree) classifier. This is really a simple extension of the basic idea
behind LTL. Under this view, an LTL formula ϕ is true of a computa-
tion tree if and only if it is true of every infinite path in the tree. As
an example, no LTL formula can distinguish the two Kripke structures
given in Figure 22.2, as they both have the same set of infinite paths.

22.1.4 LTL vs. CTL through an example

The differences between LTL and CTL are actually quite subtle.
Consider Figure 22.4, and the CTL formula AG (EFx). In order for

s1s0

{x}{}

Fig. 22.4. AG (EF x) is true, yet there is a computation where x is perma-
nently false

this formula to be true over this Kripke structure, in all paths start-
ing from s0, everywhere along those paths, EFx must be true. This, in
turn, means that there must exist a path where x is eventually found.
Starting either from s0 or s1, we see that there exists a path on which
x is found true eventually. Hence, AG (EFx) is true of this Kripke
structure.

Let us try to pretend that the CTL formula AG (EF x) is equiva-
lent to the LTL formula G (F x). An LTL formula is true of a Kripke
structure if and only if it is true of every infinite path in the Kripke
structure considered separately! Now consider the infinite path of spin-
ning in state s0. For this infinite path, ¬x is permanently true. There-
fore, we will violate Fx, and hence G (Fx). In short, this one path
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serves as the “death knell” for G (F x) with respect to this Kripke
structure—whatever other paths might exist in this Kripke structure.
Section 23.3.1 in Chapter 23 will have more to say about LTL versus
CTL. We now introduce these logics formally.

22.1.5 LTL syntax

LTL formulas ϕ are inductively defined as follows, through a context-
free grammar:

ϕ → x, a propositional variable
| ¬ϕ negation of an LTL formula
| (ϕ) parenthesization
| ϕ1 ∨ ϕ2 disjunction
| Gϕ henceforth ϕ
| Fϕ eventually ϕ (“future”)
| Xϕ next ϕ
| (ϕ1U ϕ2) ϕ1 until ϕ2

| (ϕ1W ϕ2) ϕ1 weak-until ϕ2

Note that G is sometimes denoted by � while F is denoted by ♦. We
also introduce the X operator into the syntax above to capture the
notion of next in a time sense. It is clear that in many real systems—
for example, in globally clocked digital sequential circuits—the notion
of next time makes perfect sense. However, in reasoning about the
executions of one sequential process Pi among a collection of parallel
processes P1, . . . , Pn, the notion of next time does not have a unique
meaning. As far as Pi is concerned, it has a list of candidate “next”
statements to be considered; however, these candidate statements may
be selected only after an arbitrary amount of interleavings from other
processes. Hence, what is “next” in a local sense (from the point of view
of Pi alone) becomes “eventually” in a global sense. While conducting
verification, we will most likely not be proving properties involving X.
However, X as a temporal operator can help expand other operators
such as G through recursion. With this overview, we now proceed to
examine the semantics of LTL.

22.1.6 LTL semantics

Recall that the semantics of LTL are defined over (infinite) computa-
tional sequences. LTL semantics can be defined over computation trees
by conjoining the truth of an LTL formula over every computational
sequence in the computational tree. Let σ = σ0 = s0, s1, . . ., where the
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superscript 0 in σ0 emphasizes that the computational sequence begins
at state s0. By the same token, let σi = si, si+1, . . ., namely the infinite
sequence beginning at si. By σ |= ϕ we mean ϕ is true with respect to
computation σ; σ �|= ϕ means ϕ is false with respect to computation σ.
Here is the inductive definition for the semantics of LTL:

σ |= x iff x is true at s0 (written s0(x))
σ |= ¬ϕ iff σ �|= ϕ
σ |= (ϕ) iff σ |= ϕ
σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 ∨ σ |= ϕ2

σ |= Gϕ iff σi |= ϕ for every i ≥ 0
σ |= Fϕ iff σi |= ϕ for some i ≥ 0
σ |= Xϕ iff σ1 |= ϕ
σ |= (ϕ1U ϕ2) iff σk |= ϕ2 for some k ≥ 0 and σj |= ϕ1 for all j < k
σ |= (ϕ1W ϕ2) iff σ |= Gϕ1 ∨ σ |= (ϕ1U ϕ2)

LTL example

Consider formula GF x (a common abbreviation for G(F x)). Its se-
mantics are calculated as follows:

σ |= GFx iff σi |= Fx, for all i ≥ 0
σi |= Fx iff σj |= x, for some j ≥ i

Putting it all together, we obtain the meaning as:

x is true infinitely often—meaning, beginning at no point in time
is it permanently false.

22.1.7 CTL syntax

CTL formulas γ are inductively defined as follows:

γ → x a propositional variable
| ¬γ negation of γ
| (γ) parenthesization of γ
| γ1 ∨ γ2 disjunction
| AG γ on all paths, everywhere along each path
| AF γ on all paths, somewhere on each path
| AX γ on all paths, next time on each path
| EG γ on some path, everywhere on that path
| EF γ on some path, somewhere on that path
| EX γ on some path, next time on that path
| A[γ1 U γ2] on all paths, γ1 until γ2
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| E[γ1 U γ2] on some path, γ1 until γ2

| A[γ1 W γ2] on all paths, γ1 weak-until γ2

| E[γ1 W γ2] on some path, γ1 weak-until γ2

22.1.8 CTL semantics

The semantics of CTL formulas are defined over computation trees.
Our approach to defining this semantics recurses over the structure
of computation trees. We will also employ fixed-points to capture this
semantics precisely. Other approaches may be found in references such
as [20] and [83]. Some of the reasons for taking a different approach6

are the following:

Some approaches (e.g., [20]) introduce a more general temporal logic
(namely CTL∗) and then introduce CTL and LTL as special cases.
We wanted to keep our discussions at a more elementary level.
Our definitions make an explicit connection with the standard fixed-
point semantics of CTL (discussed in Chapter 23).
The view of LTL and CTL being Kripke structure classifiers (see
Section 22.1.3) is more readily apparent from our definitions.

Let a computation tree be denoted by τ . Here are the notations we
shall use (see Figure 22.5):

• τ = τ ε. We are going to “exponentiate” τ with tree paths as de-
scribed in Section 15.6.2, with ε denoting the empty sequence.

• The state at τ ε is s(τ ε).
• τ ε has β(τ ε) + 1 branches numbered 0 through β(τ ε). In effect, β

specifies the arity at every node of the computation tree. Since each
Kripke structure has a total state transition relation R, β(τ) ≥ 0
for any computation tree τ .

• Branch 0 ≤ j ≤ β(τ ε) leads to computation tree τ j (for example,
τ0 is the computation tree rooted at the first child of τ ε, τ1 is the
computation tree rooted at the second child of τ ε, etc).

• Generalizing this notation, for a sequence of natural numbers π, τ π

denotes the computation tree arrived at by traversing the branches
identified in π. We call these the (computation) trees yielded by π
(for example, τ 1,0,1,1,2 is a computation tree obtained by traversing
the tree path described by 1, 0, 1, 1, 2, starting from τ ε).

• For an arbitrary sequence of natural numbers π, τ π is not defined
if any of the natural numbers in the sequence π exceeds the corre-
sponding β value, i.e., the arity of the tree at a certain level. We

6 Our definitions appear to resemble co-inductive definitions [86].
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Fig. 22.5. Illustration of basic notions relating to computation trees

will make sure not to exceed the arity. Hence, s(τ π) is the state that
the computation tree τπ is rooted at, and β(τπ) + 1 is the number
of children it has.

Basically, there are as many computation trees as states. Each state
uniquely defines a tree. Each tree is represented by a state at its root.
Given that Kripke structures only have a finite number of states, it is
easy to see that with respect to any computation tree τ , only finitely
many distinct computation trees may be yielded. Therefore, along every
path, the computation trees tend to recur. In the Kripke structure on
the left-hand side of Figure 22.1, τ ε is the computation tree rooted at s0.
Taking the self-loop at state s2 as its 0-th child, τ 0,0,0 is the computation
tree rooted at s2. This is the same computation tree as τ 0,0,0,0, or as
τ0,0,0,1,0. Given all this, we will end up defining the semantics of CTL
through mutual recursion over a finite number of computation trees.
This recursion can then be solved by appealing to the least fixed-point
or the greatest fixed-point.
More notation: For a computation tree τ = τ ε associated with a Kripke
structure (S, s0, R,L), define Π(τ) to be a set of tree paths such that for
every state s ∈ S, there is exactly one path in Π(τ) that corresponds
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to the path taken by standard depth first search (DFS) applied to the
Kripke structure to reach s. For example, for the Kripke structure of
Figure 22.1, Π(τ) = {ε, 0, 00}.
Note: We really do not care about the exact search method; we merely
want Π(τ) to be a unique set. We use this definition of Π towards the
end of this page.
We first define the semantics of the propositional logic subset of CTL
formulas:

τπ |= x iff x is true at s(τπ) (written s(τπ)(x))
τπ |= ¬γ iff τπ �|= γ
τπ |= (γ) iff τπ |= γ
τπ |= γ1 ∨ γ2 iff τπ |= γ1 or τπ |= γ2

We now define the CTL semantics for the remaining CTL formulas,
beginning with the AG operator.
Notation: For sequences of natural numbers α and β, we write α.β to
denote their concatenation. For example, if α = 1, 2 and β = 3, then
α . β = 1, 2, 3. Similarly, 1, 2 . 3, 4 = 1, 2, 3, 4.

• AG :

τπ |= AGγ iff τπ |= γ and τπ.j |= AG γ for all 0 ≤ j ≤ β(τπ).

The first question that probably pops into one’s mind is: does this
recursion define a unique semantics? To answer this question, notice
that the quantity being defined, generically written as the configuration
“τπ |= Fmla”, will recur since there are only a finite number of compu-
tation trees. In effect, we have a standard finitary mutual recursion for
which we can provide a fixed-point semantics. Illustration 22.1.1 will
clarify these ideas through an example.

The intended semantics for ‘AG’ is that of the greatest fixed-point
(the greatest fixed-point defines a fixed-point that is higher than any
other fixed-point in the implication order defined in Illustration 4.5.3).
To cut a long story short, when a configuration “τ |= Fmla” recurs, one
must substitute true for the second occurrence, unravel the formula up
to and including the second occurrence, and thus obtain a closed-form
solution.7 One can see that AG indeed computes the finitary conjunc-
tion computed by the following equivalent formulation:

7 We refer the reader to [20] and/or [83] for an explanation of why greatest fixed-
point computations begin with the “bottom” or “seed” element being true. See
also the discussion on this topic in Chapter 6. Likewise, for the least fixed-point
computation, we use the seed of false.
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τπ |= AGγ iff τπ.σ |= γ for all σ ∈ Π(τπ).

Therefore, AGγ evaluates γ at every state of the computation tree and
takes the conjunction of the results.
We now proceed to define the remaining CTL operators through recur-
sion, pointing out in each case which fixed-point is to be taken.

• AF :

τπ |= AFγ iff τπ |= γ or τπ.j |= AFγ for all 0 ≤ j ≤ β(τπ).

Here, the least fixed-point is what is intended. This means that when
a configuration “τπ |= Fmla” recurs, we must substitute false for
all such repeated occurrences, thus obtaining a closed-form solution.
Again, Illustration 22.1.1 provides a simple example. Notice that the
AF obligation is required of every path going forwards. In other words,
in all paths, γ holds somewhere.

• EG :

τπ |= EGγ iff τπ |= γ and τπ.j |= EGγ for some 0 ≤ j ≤ β(τπ).

Here, the greatest fixed-point is what is intended. In other words, when
a configuration “τ |= Fmla” recurs, we must substitute true for all
such repeated occurrences, thus obtaining a finitary conjunction along
some path.

• EF :

τπ |= EFγ iff τπ |= γ or τπ.j |= EFγ for some 0 ≤ j ≤ β(τπ).

Here, the least fixed-point is what is intended, thus obtaining a finitary
disjunction along some path.

• AU :

τπ |= A[γ1 U γ2] iff τπ |= γ2 or τπ |= γ1 and τπ.j |= A[γ1Uγ2]
for all 0 ≤ j ≤ β(τπ).

Here, the least fixed-point is what is intended. The least fixed-point
ensures that the recursion will “bottom out” with γ2 holding somewhere
along all paths.

• EU :

τπ |= E[γ1 U γ2] iff τπ |= γ2 or τπ |= γ1 and τπ.j |= E[γ1Uγ2]
for some 0 ≤ j ≤ β(τπ).

Here, the least fixed-point is what is intended. The least fixed-point
ensures that the recursion will “bottom out” with γ2 holding somewhere
along some path.
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• AW :

τπ |= A[γ1 W γ2] iff τπ |= AGγ1 or τπ |= A[γ1 U γ2].

We define AW by permitting the possibility of γ2 not happening. The
idea behind EW is also similar. In effect, these are weakenings of AU
and EU. Section 23.2.4 shows that this subtle variation is caused merely
by changing which fixed-point we choose: least fixed-point for AU, and
greatest fixed-point for AW. This is the reason why ‘U’ is termed the
strong until while ‘W’ is termed the weak until.

• EW :

τπ |= E[γ1 W γ2] iff τπ |= EGγ1 or τπ |= E[γ1 U γ2].

Illustration 22.1.1 Consider a Kripke structure with states {s0, s1, s2}
and reachability relation s0 → s1, s0 → s2, s1 → s0, and s2 → s0.
The labeling over one variable x is L(s2) = {x}, L(s1) = L(s0) = {}.
For example, s2(x) = true, s1(x) = false, s0(x) = false.

s0

s1

s2{}

{}

{x}

We show how to evaluate AG (EF x):

s0 |= AG (EF x) = ∧ s0 |= (EFx)
∧ s1 |= AG(EFx)
∧ s2 |= AG(EFx)

s1 |= AG (EF x) = ∧ s1 |= (EFx)
∧ s0 |= AG(EFx)

s2 |= AG (EF x) = ∧ s2 |= (EFx)
∧ s0 |= AG(EFx)

Let

R = 〈 s0 |= AG(EFx), s1 |= AG(EFx), s2 |= AG(EFx) 〉

Also let #1, #2, and #3 represent tuple component selectors. Then we
have the following recursion in terms of R which represents the above
“tuple of solutions:”



22.1 Temporal Logics 413

R = 〈 s0 |= (EFx) ∧ #1(R) ∧ #2(R),
s1 |= (EFx) ∧ #2(R),
s2 |= (EFx) ∧ #0(R)

〉.

The conjunctions can be solved using the greatest fixed-point (GFP)
iteration, starting from “seed” 〈T, T, T 〉, standing for a tuple of three
trues. The GFP iteration proceeds as follows, with the R approximants
named R0, R1, R2, etc:

R0 = 〈 T, T, T 〉.

R1 = 〈 s0 |= (EFx), s1 |= (EFx), s2 |= (EFx) 〉.

R2 = 〈 s0 |= (EFx) ∧ s1 |= (EFx) ∧ s2 |= (EFx),
s1 |= (EFx) ∧ s0 |= (EFx),
s2 |= (EFx) ∧ s0 |= (EFx)

〉.
R3 = 〈 s0 |= (EFx) ∧ s1 |= (EFx) ∧ s2 |= (EFx),

s0 |= (EFx) ∧ s1 |= (EFx) ∧ s2 |= (EFx),
s0 |= (EFx) ∧ s1 |= (EFx) ∧ s2 |= (EFx)

〉.
The GFP has been attained.
Now, we need to solve for EFx. Proceeding as before, define

S = 〈 s0 |= (EFx), s1 |= (EFx), s2 |= (EFx) 〉.

The recursive equation for S is

S = 〈 s0 |= x ∨ #1(S) ∨ #2(S),
s1 |= x ∨ #0(S),
s2 |= x #0(S)

〉.
The LFP iteration proceeds as follows:

S0 = 〈 F, F, F 〉

S1 = 〈 s0 |= x ∨ F ∨ F, s1 |= x ∨ F, s1 |= x ∨ F 〉.
i.e.,

S1 = 〈 s0 |= x, s1 |= x, s2 |= x 〉.
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S2 = 〈 s0 |= x ∨ s1 |= x ∨ s2 |= x,
s1 |= x ∨ s0 |= x,
s2 |= x ∨ s0 |= x

〉.

S3 = 〈 s0 |= x ∨ s1 |= x ∨ s2 |= x,
s0 |= x ∨ s1 |= x ∨ s2 |= x,
s0 |= x ∨ s1 |= x ∨ s2 |= x

〉.
The LFP has been attained. So now, coming back to R, the item of
interest, and substituting for S in it, and simplifying, we get:

R = 〈 s0 |= x ∨ s1 |= x ∨ s2 |= x,
s0 |= x ∨ s1 |= x ∨ s2 |= x,
s0 |= x ∨ s1 |= x ∨ s2 |= x

〉.
and so, s0 |= AG(EFx) is (s0 |= x ∨ s1 |= x ∨ s2 |= x). �

CTL example

Consider formula AG (EFx). Its semantics is calculated as follows:

τ ε |= AG EFx iff s(τ ε)(EFx) and
τ ε.j |= AG EFx for all 0 ≤ j ≤ β(τ ε).

This simply means that EFx is true at every state of the computation
tree. This assertion is satisfied by the computation tree generated by
the Kripke structure shown in Figure 22.4, as was discussed in Sec-
tion 22.1.4.

Chapter Summary

This chapter presented the syntax and semantics of LTL and CTL,
both formally and informally. The next chapter will further concretize
this body of knowledge by presenting three model checking algorithms:
an enumerative algorithm for CTL, a symbolic algorithm for CTL, and
an enumerative algorithm for LTL.

Exercises

22.1. Based on the definitions in Section 22.1.1, argue that all compu-
tational trees are infinite. Also argue that the number of children of
any node of a computation tree is finite (“finitary branching”).
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22.2. In both LTL and CTL, show that the “until” operator ‘U’ can
help realize the ‘G’ and ‘F’ operators.

22.3. Explain the semantics of all sixteen combinations of [γ1 U γ2]
where γ1 and γ2 range over {true, false, γ,¬γ}. Explain which famil-
iar temporal logic operator (if any) is modeled by each of the cases
considered. Explain the overall semantics in all cases.

 {b}

s0 s1

 {a,b}

 {a}

s2

 {b}

s0 s1

 {a,b}

 {a}

s2

 {b}

s0 s1

 {a,b}

 {a}

s2

 {b}

s0 s1

 {a,b}

 {a}

s2

 {a,b}  {b}

 {a}

s0 s1

s2 s3

 {b}

s0 s1

 {a,b}

 {a}

s2

 {b}

s0 s1

 {a,b}

 {a}

s2

 {b}

s0 s1

 {a,b}

 {a}

s2

(a)
 {b}

s0 s1

 {a,b}

 {a}

s2 s3

(b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 22.6. Nine diagrams, some of which are Kripke Structures

22.4. Consider the nine state machines (a) through (i) in Figure 22.6.
They are all drawn with respect to two variables, a and b. Which of
them are Kripke structures and which are not?

22.5. We now discuss how to construct an LTL formula such that it is
true only of structure (b) of Figure 22.6, and not of structure (a). We
include an encoding of these Kripke structures in Promela as well as
an LTL query that demonstrates this assertion.

/* Declare states that’ll be used in Kripke structures */

mtype = {s0, s1, s2, s3}

/* Declare sa,... standing for kripke structure a, ... */

mtype = {sa, sb, sd, se, sf, sg, sh}
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byte state=s0; /* Init state to s0 */

bit a=1; /* Initial values of a and b */

bit b=1;

proctype generic(mtype structure)

{ if

:: structure==sa ->

do

:: d_step{state==s0;a=1;b=1} -> d_step{state=s1;a=0;b=1}

:: d_step{state==s0;a=1;b=1} -> d_step{state=s2;a=1;b=0}

:: d_step{state==s1;a=0;b=1} -> d_step{state=s2;a=1;b=0}

:: d_step{state==s2;a=1;b=0} -> d_step{state=s2;a=1;b=0}

:: d_step{state==s2;a=1;b=0} -> d_step{state=s1;a=0;b=1}

od

:: structure==sb ->

do

:: d_step{state==s0;a=1;b=1} -> d_step{state=s0;a=1;b=1}

:: d_step{state==s0;a=1;b=1} -> d_step{state=s1;a=0;b=1}

:: d_step{state==s0;a=1;b=1} -> d_step{state=s2;a=1;b=0}

:: d_step{state==s1;a=0;b=1} -> d_step{state=s2;a=1;b=0}

:: d_step{state==s2;a=1;b=0} -> d_step{state=s2;a=1;b=0}

:: d_step{state==s2;a=1;b=0} -> d_step{state=s3;a=0;b=0}

:: d_step{state==s3;a=0;b=0} -> d_step{state=s1;a=0;b=1}

od

fi

/*

:: structure==sd -> ... similar ... */

}

init

{ run generic(sb) }

/* sb satisfies this, and not sa */

/*Type ‘spin -f "formula"’ and cut&paste the resulting never aut. */

/*----------------------------------------------------------------*/

never {/* !( !(<>([](a && b))) -> ((<>([]a)) || (<> (!a && !b)))) */

T0_init:

if

:: (! ((a)) && (b)) -> goto accept_S373

:: ((((a)) || ((b)))) -> goto T0_init

fi;

accept_S373:

if

:: ((((a)) || ((b)))) -> goto T0_init
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fi;

}

/*--- in contrast, both sa and sb satisfy this --->

never { /* !( !(<>([](a && b))) -> ( (<>([]a)) || (<> (b)) ) ) * /}

<---*/

Understand the Promela code for the Kripke structures. In partic-
ular note that the never automaton specifies a property true of sb
and not sa. This never automaton was synthesized using SPIN’s
LTL translator.
There is also another property given in the comments such that the
property is true both of sa and sb. Translate this property into a
Büchi automaton using SPIN’s LTL translator and check the results
on sa and sb.
Come up with assertions that pairwise distinguish the remaining
Kripke structures and test your understanding using Promela and
SPIN.

22.6. Consider the Kripke structures (d) and (f) of Figure 22.6.

Obtain two LTL formulas Pd and Pf that are true of (d) and false of
(f); these formulas must capture as many of the features of structure
(d) as possible. Demonstrate using SPIN that Pd and Pf are both
true of (d) and are both false of (f).
Now obtain Qd and Qf that are both false of (d) and both true of
(f), and demonstrate as above using SPIN.
Now write down Rd and Rf which are two CTL formulas that are
both true of (d) and both false of (f) and check using NuSMV.
Now write down Sd and Sf which are two CTL formulas that are
both false of (d) and both true of (f) and check using NuSMV.

Here is a hint of how one might code things in NuSMV (please find out
which Kripke structure is modeled by this):

MODULE main

VAR state: {s0, s1, s2};

ASSIGN init(state) := s0;

next(state) := case state = s0 : {s1, s2};

state = s1 : s2;

state = s2 : {s2, s1};

esac;

DEFINE a := (state = s0) | (state = s2);

b := (state = s0) | (state = s1);

SPEC AG (EF (a & b))
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Model Checking: Algorithms

This chapter closes off our presentation of model checking by present-
ing three different model checking algorithms at an intuitive level. Sec-
tion 23.1 presents an enumerative algorithm for CTL model checking.
Section 23.2 presents a symbolic algorithm for CTL model checking.
Section 23.3 introduces Büchi automata, discusses how Boolean oper-
ations on Büchi automata are performed, and that nondeterministic
Büchi automata are not equivalent to deterministic Büchi automata.
It also presents an enumerative algorithm for LTL model checking. All
algorithms are presented through intuitive examples; however, we do
present salient details such as the exact fixed-point computation process
(for symbolic CTL model checking) or the nested depth-first search pro-
cess (for enumerative LTL model checking). For further details, please
see references such as [20, 83].

23.1 Enumerative CTL Model Checking

We now present the basic ideas behind an enumerative (or explicit
state) method for CTL model checking through one example, reinforc-
ing ideas presented in Chapter 22. In the enumerative approach, explicit
graph-based algorithms are employed, with states typically stored in
hash tables. This is as opposed to representing and manipulating states
as well as state transition systems using BDDs. Our presentation of enu-
merative CTL model checking contains excerpts from the paper [19] by
Clarke, Emerson, and Sistla.

Let us consider the problem of verifying the formula below at the
starting state of the Kripke structure presented in Figure 23.1:

(AG (OR (NOT T1) (AF C1)))
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N1,N2
0

1 2

3 4 5 6

7 8

T1,N2

T1,T2 T1,T2

N1,T2

C1,N2 N1,C2

C1,T2 T1,C2

Fig. 23.1. A Kripke structure for critical sections

The algorithm proposed by [19] accomplishes this task, and in the pro-
cess actually labels all states of this Kripke structure with all formulas,
as well as subformulas of this formula, thanks to a recursive depth-first
traversal over the formula structure. The algorithm runs in polynomial
time with respect to the size of the Kripke structure and the CTL
formula to be checked. However, please bear in mind that the size of
the Kripke structure may be exponential in the number of constituent
processes, and so our polynomial is actually over an exponential.

The Kripke structure of Figure 23.1 represents the execution of two
parallel processes with alternating priorities, taking N to stand for “in
non-critical region,” T for “trying to enter,” C for “in critical region,”
and the numbers adjoining N, T, and C representing process IDs.

The first step of the model checking algorithm is to number the
formula and its subformulas as shown in Figure 23.2. Basically, each
subformula acquires a higher number in this scheme than all its includ-
ing formulas:

The next step of the model checking algorithm consists of executing
the for loop shown in Figure 23.3 that considers the subformulas of the
given formula bottom-up, and labels each state of the FSM with those
subformulas that are true in that state (a ‘*’ in the table indicates
that the formula in the column heading is true in the state shown on
the left).

In our example, we would invoke label graph on formulas C1, (AF
C1), T1, (NOT T1), (OR ...), and (AG ...), in that order. While doing
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Formula
number Formula

Subformula
List

1 (AG (OR (NOT T1)(AF C1))) (2)
2 (OR (NOT T1)(AF C1)) (3 5)
3 (NOT T1) (4)
4 T1 nil
5 (AF C1) (6)
6 C1 nil

Fig. 23.2. Formula and its Subformulas

so, we generate and fill the table given in Figure 23.4. Each column
under a subformula indicates whether the subformula holds in various
states. Because of the order in which the subformulas are considered,
the table can be filled using a recursive depth-first traversal. We present
the pseudocode executed by label graph(AF C1) in Figure 23.3. For
further details, please see [19]. Figure 23.4 summarizes the results of
model checking on this example. We see that the property of interest
is true at state 0, and so is true of the given Kripke structure (in fact,
this property is true of every state).

23.2 Symbolic Model Checking for CTL

We will now present symbolic model checking algorithms for CTL
through examples. Our first example is to evaluate EG p on the Kripke
structure of Figure 23.5(a), where p will be a ⊕ b.

23.2.1 EG p through fixed-point iteration

The steps below show how to use the BED tool as a “calculator” in
this process.
• First we obtain a fixed-point formulation for EG p.

EG p = p ∧ (EX (EG p))

• We then realize that this can be solved through greatest fixed-point
iteration (iterating with “seed” equal to true). Iterating with a seed
of “false” yields a solution for EG p equal to false—clearly not its
intended semantics!
• We realize that we will need the TREL of this Kripke structure. We
obtain it in the same manner as already explained in Section 11.3.1 of
Page 192. The BED tool session is below:
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for i := length(f) step -1 until 1

do label_graph(fi)

procedure label_graph(f)

var b : boolean; % dummy var

{ %-- Do a case analysis based on the principal operator

CASE: principal operator of "f" is AF :

begin

ST := empty_stack;

for all s in S do marked(s) := false; -- S’ are the set of states

for all s in S do -- of the Kripke structure.

if not marked(s) then AF(f, s, b);

%-- Other cases are not shown...

}

procedure AF(f, s, var b) -- var parameters can return values

{if marked(s) then

{if labeled(s,f) then

{ b := true; return }

b := false; return

}

marked(s) := true;

if labeled(s, f) then

{ add_label(s, f); b := true; return }

push(s, ST);

for all s1 in successors(s) do

{ AF(f, s1, b1);

if not(b1) then

{ pop(ST); b := false; return }

}

pop(ST); b := true; add_labels(s, f); return

}%-- procedure AF

Fig. 23.3. Algorithm used in CTL model checking illustrated on the “AF”
operator

bed> var a a1 b b1

var a a1 b b1

bed> let TREL =

(not(a) and b and a1 and not(b1)) or (a and not(a1) and b1) or

(a and not(b) and b1) or (a and not(b) and a1)

bed> upall TREL

Upall( TREL ) -> 53

bed> view TREL ... (displays the BDD)
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State
number

Atomic
Propositions C1 (AF C1) T1 (NOT T1)

(OR

(NOT T1)

(AF C1))

(AG

(OR

(NOT T1)

(AF C1)))
0 N1,N2 * * * *
1 T1,N2 * * * *
2 N1,T2 * * * *
3 C1,N2 * * * * *
4 T1,T2 * * * *
5 T1,T2 * * * *
6 N1,C2 * * * *
7 C1,T2 * * * * *
8 T1,C2 * * * *

Fig. 23.4. Table for our CTL model checking example

 {b}

s0 s1

 {a,b}

 {a}

s2

(a)

s2s3

s1

 {p}

 {p}  {q}

 {p,q}

s0(b)

Fig. 23.5. Kripke structures that help understand CTL

• In the BED syntax, a ⊕ b is written a != b. Now we perform the
fixed-point iteration assisted by BED. We construct variable names
that mnemonically capture what we are achieving at each step:

EG_a_xor_b_0 = true -- first approximant

EG_a_xor_b_1 = (a != b) and (EX true) -- second approximant

This simplifies to (a != b), as (EX true) is true.
Now, in order to determine EG_a_xor_b_2, we continue the fixed-

point iteration process, and write

EG_a_xor_b_2 = (a != b) and EX (a != b)

At this juncture, we realize that we need to calculate EX (a != b).
This can be calculated using BED as follows:

bed> let EX_a_xor_b = exists a1. exists b1. (TREL and (a1 != b1))

bed> upall EX_a_xor_b

bed> view EX_a_xor_b
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01

4: b

EX_a_xor_b: a

Fig. 23.6. BDD for EX (a != b)

Section 23.2.2 explains the details of why this represents EX_a_xor_b.
The BDD in Figure 23.6 confirms that EX (a != b) is true at those
states where a or b are true — i.e., the states {s0, s1, s2}. Now we
carry on with the fixed-point iteration:

bed> let EG_a_xor_b_2 = (a != b) and EX_a_xor_b

bed> upall EG_a_xor_b_2

bed> view EG_a_xor_b_2

We see that EG_a_xor_b_2 becomes equal to (a != b), and hence we
stabilize at this fixed-point.

The set of states in which EGa⊕b is true is a⊕b, which includes
states s1 and s2. Notice that state s0 is avoided because a⊕ b is
false there.

23.2.2 Calculating EX and AX

Calculating EX for a simple example

Let’s take a simpler example to begin with. Suppose for some machine
M, whose state is described using two bits a and b, the TREL is as below,
where a1 and b1 describe the next states:

TREL = (!a and !b and a1 and b1) or (!a and b and !a1 and b1)

Basically, machine M has the following moves:

00 -> 11 and 01 -> 01.

Suppose we want to find out all starting states from which M has at
least one move that ends up in a state which satisfies (a != b) i.e., EX
(a != b). Here is a portrayal of the situation:

Present State Next State Next States Satisfying (a != b)

00 11 This next state does not satisfy
01 01 This next state does satisfy
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So we basically perform

STARTSTATES = exists a1. exists b1. ( TREL and (a1 != b1) ).

This simplifies to !a and b. Indeed, these are the states that have a
move to a state satisfying (a1 != b1).

If we wanted to calculate those states that have at least one next
state that satisfies !a1 and !b1, we would have obtained STARTSTATES

= false (try it using BED). This is of course correct because there are
no “next states” where !a1 and !b1.

Calculating AX

If we have to calculate AX p, we would employ duality and write it as

!(EX !p)

This approach will be used in the rest of this book.

Calculating EX for the example of Section 23.2.1

As said earlier on Page 424, the following formula represents EX_a_xor_b:

EX_a_xor_b = exists a1. exists b1. ( TREL and (a1 != b1) ).

TREL captures constraints between a, b, a1, and b1, saying which a,b

pairs can move to which other a,b pairs. Of course, the next values of
a and b are modeled using a1 and b1. Now, in the resulting new states,
a and b must satisfy the formula (a != b). Since it is the next state
that must satisfy the XOR constraint, we write a1 != b1. However, it
is the present state we must return. So, we constrain the next state and
then quantify away a1 and b1.

23.2.3 LFP and GFP for ‘Until’

We now will perform the least fixed-point iteration sequence for cal-
culating A[p U q] with respect to Kripke structure (b) of Figure 23.5.
This will be followed by the greatest fixed-point iteration sequence for
A[p U q] with respect to the same Kripke structure. As Section 22.1.8
observed, these respectively obtain the strong Until and weak Until
semantics.

The recursion over which these semantics are calculated is the fol-
lowing:

A[pUq] = q ∨ (p ∧ AX (A[pUq]))

We will calculate AX using duality, as explained in Section 23.2.2.
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23.2.4 LFP for ‘Until’

0 1

45: q1

58: q

59: p1

9: q1 41: q

66: p1

TREL: p

0 0 1

A_p_U_q_1: q

0 1

A_p_U_q_1: q 41: q

EX_not_q: p

0 1

41: q A_p_U_q_1: q

AX_q: p

0 1

A_p_U_q_1: q

Fig. 23.7. The Strong Until (U) iteration that reaches a fixed-point

bed> var p p1 q q1

bed> let TREL = (p and not(q) and p1 and not(q1))

or (p and not(q) and p1 and q1)

or (p and q and not(p1) and q1)

or (not(p) and q and p1 and not(q1))

or (p and not(q) and not(p1) and q1)

or (p and not(q) and p1 and not(q1))

bed> upall TREL

Upall( TREL ) -> 67

bed> view TREL

bed> let A_p_U_q_0 = false

bed> let AX_A_p_U_q_0 = false

bed> let A_p_U_q_1 = (q or (p and AX_A_p_U_q_0))
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bed> upall A_p_U_q_1

Upall( A_p_U_q_1 ) -> 3

bed> view A_p_U_q_1

bed> let EX_not_q = exists p1. exists q1. (TREL and !q1)

bed> upall EX_not_q

Upall( EX_not_q ) -> 80

bed> view EX_not_q

bed> let AX_q = !EX_not_q

bed> upall AX_q

Upall( AX_q ) -> 82

bed> view AX_q

bed> let A_p_U_q_2 = (q or (p and AX_q))

bed> upall A_p_U_q_2

Upall( A_p_U_q_2 ) -> 3

bed> view A_p_U_q_2 --> gives ‘‘q’’, hence denotes {S1,S2} -- LFP

The results of all the view commands are pooled in Figure 23.7. The
final fixed-point reached is q, which means that states s1 and s2 are
included in it. Clearly, these are the only states from which it is the
case that all paths satisfy A[pUq]. Therefore, we have the following:

Starting from either s0 or s3, there is the possibility of never
encountering a q, and hence these states are eliminated by the
strong until semantics of AU.

23.2.5 GFP for Until

Taking the greatest fixed-point, we obtain the ‘W’ (weak Until) se-
mantics. We give the BED scripts, leaving it to the reader to try them.
We indeed reach the greatest fixed-point of q ∨ p, which covers states
{S0,S1,S2,S3}. We also see that from these states, we either have p
holding forever, or p holding until q holds.

bed> let A_p_U_q_0 = true

bed> let AX_A_p_U_q_0 = true

bed> let A_p_U_q_1 = (q or (p and AX_A_p_U_q_0))

bed> upall A_p_U_q_1

Upall( A_p_U_q_1 ) -> 72

view A_p_U_q_1

bed> let EX_not_p_or_q = exists p1. exists q1. (TREL and !(p1 or q1))

bed> upall EX_not_p_or_q

Upall( EX_not_p_or_q ) -> 0

bed> let AX_p_or_q = !EX_not_p_or_q

bed> upall AX_p_or_q

Upall( AX_p_or_q ) -> 1

bed> view A_p_U_q_1

bed> let A_p_U_q_2 = (q or (p and AX_p_or_q)) --> reached

Fixed-point (q or p) which denotes {S0,S1,S2,S3}
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23.3 Büchi Automata and LTL Model Checking

We now revert to a more detailed look at LTL. In particular, we present
material leading up to a study of enumerative LTL model checking
using Büchi automata.

Büchi automata come in the deterministic and nondeterministic va-
rieties; the latter are strictly more expressive than the former. There-
fore, by the term “Büchi automata,” we will mean nondeterministic
Büchi automata (NBA). NBA are structures (Q,Σ, δ, q0, F ) where Q
is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q×Σε → 2Q is a total transition function, q0 ∈ Q is an initial state,
and F ⊆ Q is a finite, possibly empty set of final states. An infinite
run (or computation) σ = s0, s1, . . . is in the language of a Büchi au-
tomaton if there is an infinite number of occurrences of states from F
in σ. Notice that the graphs in Figure 23.8, when viewed as an NFA,

a

b

a

b

Fig. 23.8. Transition graphs read as an NFA or as an NBA

have different languages while they have the same language (ab)ω when
viewed as an NBA. In Section 23.3.2, we define the notion of ω-regular
sets which are similar to regular sets, except, in addition to a Kleene
star operator, we also have an infinite iterate operator, ()ω. This will
help us define the notion of infinite runs.

23.3.1 Comparing expressiveness

From the discussions in Sections 22.1.3 and 22.1.4, it is clear that when
LTL and CTL formulas are viewed as Kripke structure classifiers (each
formula partitions all Kripke structures into two bins “models” and
“non-models”), LTL tends to forget the branching structure, focusing
only on the “straight-line runs” while CTL considers the branching
structures. For example, an important fact about the example in Fig-
ure 22.4 is that in whichever state the computation is situated, there
exists a path leading to a state where x is true.

We now state some facts pertaining to the expressiveness of LTL,
CTL, and Büchi automata. Consider all possible Kripke structures
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to be the set K. Let KV ⊆ K be Kripke structures that involve
all the variables of V (assign all the variables in V , and possibly
more). Let ka, ka1

, ka2
, . . . , kb, kb1 , kb2 , . . . refer to various subsets of

KV (with a, b, a1, b1, . . . ranging over a suitable index set), and let
ka, ka1

, ka2
, . . . , kb, kb1 , kb2 , . . . be the complements of these sets relative

to KV . Given all this, we state a few facts pertaining to the expres-
siveness of various temporal logics and automata; for details, see [59]
as well as [112].

• There exist sets ka, ka1
, . . . such that for any one of these sets, say

kaj
, there exists an LTL formula ϕLTL

aj
that regards all of kaj

as its

models and all of kaj
as its non-models exactly when there exists

a CTL formula ϕCTL
aj

that also regards kaj
as its models and all of

kaj
as its non-models. In other words, partitions such as kaj

capture
temporal patterns that are equally expressible in both these logics.
− An example of a temporal fact that corresponds to such a par-

titioning would be “henceforth a is true.”
• There are partitionings, say kbj

, such that there exist only LTL

formulas ϕLTL
bj

that regard all of kbj
as its models and all of kbj

as

its non-models. In other words, the partitioning expressed by kbj

captures temporal patterns expressible only in LTL.
− An example of a temporal fact that corresponds to such a par-

titioning would be “infinitely often a.” Any CTL formula one
attempts to write down to effect such a classification would end
up “lying”—it would either put a Kripke structure that is cor-
rect with respect to this behavior into the non-model bin or put
a Kripke structure that is incorrect with respect to this behavior
into the model bin.

• There are partitioning kcj
for which only CTL formulas exist and

no LTL formulas exist.

− A temporal fact that corresponds to such a partitioning is the
AG (EFx) example considered earlier.

• There exist CTL* formulas in all the above cases. In fact, using a
logical connective, one can combine an LTL formula that has no
equivalent CTL formula and a CTL formula that has no equivalent
LTL formula into a CTL* formula that can now express something
that neither LTL nor CTL can express.

• The never claim language of Promela allows (negated) Büchi au-
tomata to be specified. All LTL specifications have corresponding
Büchi automata specifications, but not vice versa. An example of a
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temporal pattern expressible using Büchi automata but not linear-
time temporal logic is

p can hold after an even number of execution steps, but never
holds after an odd number of steps.

• A logic called modal µ-calculus properly subsumes all of the above
logics in terms of expressiveness.

23.3.2 Operations on Büchi automata

The language of a Büchi automaton is a ω-regular set of strings over a
given set Σ. Following [115], we now inductively define ω-regular sets;
this definition involves the notion of a regular set over Σ as defined in
Chapter 10. For completeness we repeat that definition also here (albeit
in terms of context-free productions); we employ two non-terminals re
and ore standing for regular expressions and ω-regular.

Please note: abωc does not make sense as an infinite string,
as there is “no sensible way” in which we can affix c after an
infinite run of b’s. In other words, infinite sequences will be “tail
infinite.”

re → ∅ | ε | a ∈ Σ | (re) | re1 + re2 | re1re2 | re∗

ore → reω | re ore | ore1 + ore2

With respect to the above grammar, we can now define operations on
Büchi automata.

Union of Büchi Automata: We can stitch the two Büchi automata in
question using ε, much like we perform the corresponding operation
with NFAs.

Concatenation: We may stitch an NFA and a Büchi automata in that
order, as specified in the grammar for ω-regular sets.

Complementation: Büchi automata are closed under complementation,
although the resulting Büchi automata are exponentially bigger,
and the algorithm for complementation is extremely complex (ref-
erences such as [43, 49] provide some details). For this reason, users
are often required to manually come up with negated Büchi au-
tomata, as is the case with never automata in SPIN.
In Section 23.3.3 we prove that DBAs are not closed under comple-
mentation.

Intersection: The standard intersection algorithm no longer works, as
one has to keep track of when a single infinite run is in the language
of the constituent Büchi automata, visiting final states infinitely in



23.3 Büchi Automata and LTL Model Checking 431

both of them. This algorithm is given in many references (e.g., see
[20]).

23.3.3 Nondeterminism in Büchi automata

q0 q1

a,b

b

b

b

b

q0 q1

a

a

Fig. 23.9. An NBA accepting finitely many a’s (left) and a DBA accepting
infinitely many a’s (right)

We now prove that there is at least one NBA—in particular, the one
on the left-hand side of Figure 23.9—that has no corresponding DBA.
The language of this NBA is (a + b)∗bω. Suppose there is a DBA D
with this language. Clearly, then, bω is in L(D). Hence, there exists a
number n1 ∈ Nat such that after encountering bn1 , the DBA will be
in some final state – say x1 – of D for the first time. Note that if D
never visits a final state, it cannot have any string in its language, let
alone bω. Moreover, any given string takes D from a given state s to a
unique state s

′
.

Now, consider string bn1abω: it is also in L(D). Hence there exists
n2 such that bn1abn2 takes D to the first final state after x1 – say x2 –
in D. Continuing this way, bn1abn2a . . . bnk first takes D to some final
state xk in D. But all these states xi cannot be distinct, as the number
of states is finite. Assume that state xi is the first one to repeat, and
the first repeated occurrence is identified by x

′

i. This means that there

is an accepting cycle q0 . . . xi . . . x
′

i where the loop xi . . . x
′

i includes an
a. In turn, this means that there is some string with an infinite number
of a’s in L(D). This is a direct contradiction with respect to what the
language L(D) is supposed to be. Therefore, a DBA D does not exist
for this language.

Also, note that DBAs are not closed under complementation. The
machines in Figure 23.9 are complements, and yet the one on the right-
hand side is a DBA whereas we just now proved that the machine on
the left has no equivalent DBA.
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23.4 Enumerative Model Checking for LTL

{}

{x}

{x}{}

{}

B

A P

Q

x

x x

x

Fig. 23.10. A Kripke structure (left), its corresponding Büchi automata (mid-
dle), and a property automaton expressing GFx (right)

We now provide a glimpse of the enumerative model checking al-
gorithm used by model checkers such as SPIN. Consider the Kripke
structure given in Figure 23.10 on the left-hand side. In its initial state,
x is false. In one of the computations of this Kripke structure, x would
remain false forever; in all others (an infinite number of them exist), x
would become infinitely often true. This Kripke structure can be viewed
as a Büchi automata as shown in the middle. Notice how we go from
state labels to edge labels, as is our convention when diagramming the
state transition relation of automata. We are, in effect, declaring the
alphabet of these Büchi automata to be powersets of atomic propo-
sitions. Also, by virtue of the fact that all states are final states, we
are also asserting that all infinite runs of such Büchi automata are of
interest to observe.

{x}{}

{}

B

A P

Q

x

x

1 1

x

x
1

x x

x

BP

AP BQ

AQ

Fig. 23.11. System automaton (left), complemented property automaton
(middle), and product automaton (right)
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When it comes to formal verification, we would like to state proper-
ties of interest in either temporal logic or in terms of Büchi automata.
From the discussions in Section 23.3.1, we can gather that anything
that can be stated in LTL has a corresponding Büchi automata ver-
sion. An example of this appears in the right-hand side of Figure 23.10.
Here, we present a Büchi automata that expresses GFx. In other words,
the language of this Büchi automata is exactly those computations that
satisfy the LTL formula GFx.

23.4.1 Reducing verification to Büchi automaton emptiness

Notice that the “property automaton” (P ) on the right-hand side of
Figure 23.10 includes all runs that satisfy GFx. Therefore, to determine
whether a given Kripke structure (“system” S) satisfies a property P ,
we can check whether

L(S) ⊆ L(P ).

This check is equivalent to

L(S) ∩ L(P ) = ∅.

Figure 23.11 shows the system automaton (left), the complemented
property automaton (middle), and the product automaton (right) real-
izing the intersection (∩) operator, above. Since the “system automa-
ton” has all its states being final states, this intersection is obtained
through the standard NFA intersection algorithm. In particular, a state
of the product machine is final if and only if the constituent states of
the component machines are both final states.

We notice that the intersection gives a Büchi automata whose lan-
guage is not empty. In particular, it has an accepting run where the
product state AP leads to product state AQ which repeats infinitely.
Hence,

L(S) ∩ L(P ) �= ∅.
When this condition is true, a bug has been found (i.e., the property
has been violated). This accepting run can be displayed as an error-
trace or a MSC. Consequently, the debugging of concurrent systems
can be reduced to emptiness checking of Büchi automata.

Explicit enumeration algorithms, such as used in tools like SPIN,
find property violations and depict them in an intuitive fashion, such
as shown in the MSC of Figure 21.3. In summary, here are the steps
they employ (for details, see references such as [20]):
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Fig. 23.12. Searching of a product graph for cycles: Example product graph
(left), group of stacks for the outer DFS (middle), and group of stacks for the
inner DFS (right)

• Obtain the system automaton by performing an interleaving (asyn-
chronous) product of the system proctypes. In effect, we pick one
of the enabled processes nondeterministically, and perform one if its
enabled moves nondeterministically. This is called taking the “sys-
tem step,” and corresponds to the interleaving product mentioned
in Section 21.4.1.

• Next, we take a “property step” by taking the never automaton
(negated property automaton) and move it one step. In effect, the
condition of the property automaton move must be enabled in the
state resulting from the earlier system step, in order for the prop-
erty automaton to be taking a step. This corresponds to taking the
synchronous product as mentioned in Section 21.4.1.

• Generate the entire reachable graph by alternating the system- and
property- steps using depth-first search (DFS). A hash table is em-
ployed to record states already visited, thus cutting off search at
these re-visitations. This depth-first search can be thought of as
a mechanism for enumerating the final states of the synchronous
product machine in postorder.

• Whenever the DFS backs off a final state, a nested DFS is spawned.
The task of this “inner” DFS is to look for Büchi automata “lassos”
(accepting cycles). In [30, 20], it has been shown that if the product
Büchi automata has at least one accepting cycle, then one such
cycle will be found by this procedure.

In a sense, this is an on-the-fly cycle detection approach that often
works much more efficiently than an offline cycle detection procedure
such as Tarjan’s strongly connected components (SCC) algorithm. We
illustrate this nested depth-first search on a simple example in Fig-
ure 23.12. We supply all details below, including details glossed over
above. Please pay attention to “outer DFS hash table”—ODHT, and
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“inner DFS hash table”—IDHT, below. Basically, we enter states into
the same hash table, but tag it with an additional bit saying whether
the state was inserted during an outer or an inner DFS:

• Suppose the synchronous product generates the graph shown on the
left-hand side of Figure 23.12.

• The “outer” DFS will perform many traversals, as shown by the
stack histories shown in the middle of Figure 23.12. These traversals
are as follows (we assume that when at state S1, the first edge to
be searched is the one indicated with a “1” on it, and the second
edge has a “2”; likewise for state S3 as well):
− Search S0, S1, take outgoing edge “1” and continue with S2,

and back to S1. The stack snapshot at this point is shown in
the left-hand stack of the middle group of stacks in Figure 23.12.
This closes a cycle, and so DFS unwinds the stack up to state
S1. ODHT now has states S0, S1, S2 in it.

− Search forward from S1 through outgoing edge marked “2”, go-
ing up to state S3, then taking “1” to go to S4, and finally to S2.
The stack snapshot at this point is shown in the middle stack
of the middle group of stacks in Figure 23.12. Since S2 is in the
ODHT, the DFS is cut off, and the search wants to unwind to
state S3.

− However, we notice that we are backing off from S4, which is a
final state. Hence, we spawn an inner DFS.

• The inner DFS proceeds in the manner shown in the right-hand
group of two stacks shown in Figure 23.12. In particular,
− The inner DFS proceeds forward from S4, producing the stack

history S4, S2, S1, and taking the “1” edge, back to S2. All
these states are inserted into the IDHT, and that is why we did
not cut off at S2 after S4. This did not find an accepting cycle
“lasso.”

− The inner DFS backs off to state S1 and continues via the “2”
edge to S3, and then to S4.

− At this point, the inner DFS has reached a state that is already
in the stack, and so it “knows” that a cycle has been closed!

− Also since the inner DFS was triggered from a final state, we
know that we have found a “lasso” that includes a final state.

− Last but not least, since the outer DFS had performed a pos-
torder enumeration of the final states, a reachable lasso has been
found.

− Therefore, we conclude that

L(S) ∩ L(P ) �= ∅
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and so the property in question has been violated.
− An error-trace is generated and printed, following the DFS stack

history, in the form of a MSC.

Chapter Summary

We presented an enumerative model checking algorithm for CTL, and a
symbolic model checking algorithm for CTL. The interactive sessions in
the BED tool present intermediate BDDs created during the fixed-point
iteration. Then we presented LTL and Büchi automata, and presented
an enumerative algorithm for LTL model checking.

Exercises

23.1. Write the pseudo-code of an algorithm (similar to Figure 23.3)
for procedure EG that handles an EG formula. Then show the details
of checking
(EG (OR N1 (OR T1 C1))) by filling a table similar to Figure 23.2.

23.2. Consider the “release” (R) operator whose definition is as follows.
A[p R q] means that q holds along the path up to and including the
first state where p holds. However, p is not required to hold eventually.
Express the semantics of ‘R’ more rigorously. Now, find a fixed-point
formulation for ‘R’, and illustrate it on the same example as illustrated
in Section 23.2.3. If there are two natural interpretations for the LFP
and GFP, consider both, and then explain what their semantics are.
Present all the BED sessions you employed in arriving at your answers.

23.3. Write three LTL properties that try to capture “p can hold after
an even number of execution steps, but never holds after an odd num-
ber of steps,” and point out where they go wrong. Now draw a Büchi
automata that specifies this pattern.

23.4. Assume that you are given a digital circuit to verify and you
have access to only a linear-time temporal logic model checker. You
are, however, required to state and prove a CTL correctness assertion
with respect to some of the input/output ports of this circuit. This
CTL assertion is known to not have any equivalent LTL assertions.
Can you proceed to check these assertions, somehow, using the given
LTL model checker? Assume that you have access to the internal nodes
of the circuit, and so you are allowed to state LTL assertions not only
with respect to the input/output ports, but also with respect to the
internal nodes of the circuit.
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If it is theoretically possible to check the CTL assertions in terms
of a (perhaps larger) set of LTL assertions, think of a simple practical
example where such a situation can be faced (employing simple reset-
table counters and logic gates), and describe, in terms of this example,
what your solution will be.

23.5. Do a literature search and find out whether the property ex-
pressed in Exercise 23.3 is expressible in (a) CTL, (b) CTL*, (c) µ-
calculus.

23.6. Argue that if one of the Büchi automata being subject to the
intersection operation has only final states (it has no non-final states),
then the standard intersection algorithm for NFA can be used to inter-
sect two Büchi automata. Provide an example illustrating your answer.

23.7. Change the property to be verified in Figure 23.10 from GFx to
FGx, and rework all the steps of that example, including details of the
nested DFS algorithm. Verify your answer by inspection (see if FGx is
supposed to be true, and compare with what you got when you applied
the nested DFS algorithm).
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Conclusions

This book is about “automata” in the broad sense of the word intro-
duced in Chapter 1. We viewed automata and logic as two sides of
the same coin. Connections between automata and logic were empha-
sized multiple times. We often took an informal approach to drive the
main point across as intuitively and in as friendly a fashion as pos-
sible. We believe that the material presented here will help someone
with virtually no formal computation engineering background to pick
up a considerable amount of that topic and apply it towards debug-
ging sequential and concurrent hardware and software systems through
automated finite-state methods known as model checking.
A journey of a 1000 miles begins with one step (ancient Chinese
proverb); however, such a journey must somehow end! We close off,
rather unceremoniously, picking four important (but random) topics to
reiterate.

Beginner’s mistakes

Experience has shown that a large majority of proofs written by begin-
ners are flawed. For instance, it is easy to simply forget to prove one
of the directions of an iff proof. Other common mistakes include using
unproven facts, using totally circular definitions, etc. While there is no
point fretting over one’s past mistakes, good ways to avoid fundamental
mistakes are to proofread one’s proof presentations, write it out neatly
(preferably in a bulleted fashion), and presenting one’s proofs to others.
Other ways to avoid these mistakes include a careful observation of how
“common situations” are handled, and remember them by heart. For
instance, while negating A ⇒ B, since A is already “under a negation”
(because A ⇒ B ≡ ¬A∨B), it does not get negated in the final result,
which is A ∧ ¬B.
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Mistakes Due to Inattention to Detail

After passing the initial hurdles, the second category of “mistakes”
are simply due to inattention to detail, or to unfamiliarity with the
particular domain. Here are some examples of common mistakes (the
details are unimportant now; only the pattern of the mistakes needs to
be noted):

1. Misusing the unidirectional Pumping Lemma: In Chapters 12 and
13, we studied several Pumping Lemmas of the form A ⇒ B as well
as A ⇔ B. An example of a Pumping Lemma of the form A ⇒ B is
Regular(L) ⇒ C where C is a big complicated formula. The recom-
mended usage is to assume for some language L that Reg(L) holds,
and to find that ¬C (i.e., a contradiction), thus proving ¬Reg(L).
Many students abuse this argument to try and prove Reg(L).

2. Forgetting to do full case analysis: Even after grasping the Pumping
Lemma, many students forget to do full case analysis to derive con-
tradictions in all cases. Similar mistakes are often repeated in doing
proofs by reducibility, where also contradictions must be obtained
in all possible cases.

3. Forgotten cases of definitions: Here, my favorite is relating to NP-
complete (NPC) proofs, where the full definition of NPC is not kept
in mind. Many students forget to show that the given problem is in
the class NP, thus leaving open the question of whether the prob-
lem is even decidable (i.e., it is not enough to establish polynomial
reducibility).

4. Abuse of “hard” theorems: Theorems such as the Rice’s Theorem
are often not well understood, and hence abused. They often treat
it as if it were a “magic” theorem or “panacea,” which it isn’t.
For instance, many students are known to apply Rice’s Theorem to
context-free languages and even regular languages in a loose man-
ner. Rice’s Theorem basically states the impossibility of building
an algorithmic classifier for Turing machines based on the language
recognized by these Turing machines, if the classification attempted
is anything but trivial. They do not remember that it is the Tur-
ing machine codes (“programs”) that we need to classify, based on
the language of these Turing machines, should we run these Turing
machines; we are not classifying DFA or PDA.

Here, there is no quick answer except to gain experience, as well as be
formal about definitions.
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Experts’ mistakes

Humans are fallible - expert or not! Lamport [74] observes that about
a third of the proofs published in mathematical journals are flawed.
In fact, everyone knows that, and the attitude at this level is not to
“denigrate” or “get even” with the person, but to help fix the proofs.
Therefore, the best advice one can pass on is

“How do I present my proofs so that it helps others easily spot
my mistakes and correct them?”

Proofs do have value even when flawed. Proofs are, after all, pro-
grams, albeit in a mathematical language, and hence prone to ‘pro-
gramming errors.’ While mathematical notation helps you avoid nasty
errors due to pointers overflowing their ranges, etc., a poorly written
formal description is no better than a program written at an insidiously
low level and hence fraught with many dangers.

Whether to trust machine checked proofs

Mechanical theorem proving has been developed to be able to machine
check proofs. Other tools such as model checkers and finite-state rea-
soning tools have also been developed to verify correctness. In a well-
developed mechanical reasoning system, all the critical reasoning steps
are carried out inside a logic kernel that is very compact, and hence
subject to much scrutiny. In Chapter 11, as well as Chapters 21 through
23, we obtained a glimpse of the inner workings of many mechanical
correctness checking tools. While these tools are no panacea, they have
often helped find very subtle flaws that, for all practical purposes, can-
not be detected through casual inspection or repeated simulation using
ad hoc test cases. Continued development of these tools and techniques
is indeed a sign of maturation of computation engineering. For addi-
tional details, please refer to [41].

The End. Fini. Thank you for your company in this rather long jour-
ney.1 If you spot any mistakes,2 or have suggestions, kindly drop me
a line, won’t you? My email address and the book website appear on
page 443. Many thanks in advance!

1 Unless you are peeking at this page without reading most others!
2 The safest place for a fly to sit is on the fly-swatter handle! – Quoted from “The

Logic of Bugs” by Gerard Holzmann, Foundations of Software Engineering, 2002.
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Book web site and tool information

A.1 Web site and e-mail address

The author maintains a web site for this book to post errata, updates,
and copies of some of the tools and scripts. It is

www.cs.utah.edu/ganesh-comp-engg-book.
The author welcomes your comments and suggestions. Please send

them to ganesh-comp-engg-book@cs.utah.edu.

A.2 Software tool usage per chapter

8 through 11:
dot and graphviz tools mentioned in these chapters are down-
loadable from www.graphviz.org.
grail, originally developed at the University of Western Ontario
by Darrel Raymond and Derick Wood
(http://www.csd.uwo.ca/Research/grail/index.html).A copy
courtesy of Andrei Paun and Shenghua Ni will be placed on the
website of this book also.
Two scripts, fa2grail.perl and grail2ps.perl, kept at the
website of this book.

11: BED, a BDD manipulation package by Henrik Reif Andersson
and Henrik Hulgaard, is available at
http://www.itu.dk/research/bed/. It will be kept on the
website of this book also.

15: JFLAP, developed by Susan Rodger’s team, is downloadable
from http://www.jflap.org/.

18 and 19:
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Zchaff, developed by Sharad Malik’s group, is downloadable from
http://www.princeton.edu/~chaff/. There are many other SAT
solvers that serve the same purpose, such as MiniSAT
(http://www.cs.chalmers.se/Cs/Research
/FormalMethods/MiniSat/).
Ocaml is used in a few examples, and may be downloaded from
caml.inria.fr.

21: SPIN is used in this chapter, and may be downloaded from
www.spinroot.com

22: This chapter may also involve the use of BED.

A.3 Possible Syllabi

This book includes more material than can be comfortably taught in a
typical academic semester. Subsets of this book may be used to meet
the needs of the following types of courses:

An undergraduate course on basic discrete mathematics, finite au-
tomata, and logic may be taught along the following lines:
– Week 1: Mathematical Preliminaries (Chapter 2).
– Week 2: Main topics from Binary Relations (Chapter 4), includ-

ing Pre- and Partial Orders, Reflexive and Transitive Closure.
– Week 3: Proof Methods (Chapter 5), skipping Induction Princi-

ples.
– Week 4-5: Strings and Languages (Chapter 7), perhaps skipping

Homomorphisms.
– Week 6: Machines, Languages, and DFA (Chapter 8).
– Week 7: NFA and Regular Expressions (Chapter 9).
– Week 8: Operations on Regular Machinery (Chapter 10), includ-

ing illustrations using Grail.
– Week 9: The Pumping Lemma (Chapter 12).
– Week 10: Context-free Languages (Chapter 13).
– Week 11: Push-down Automata and Context-free Grammars

(Chapter 14).
– Week 12: Turing Machines (Chapter 15).
– Week 13: Selected topics from Basic Notions in Logic (Chap-

ter 18).
– Week 14: Complexity Theory and NP-Completeness (Chapter 19).
An undergraduate course on automata, languages, Turing machines,
mathematical logic, and applied Boolean methods may be taught
along the following lines:
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– Week 1: Assign exercises from Mathematical Preliminaries (Chap-
ter 2). Then convey the main ideas from Cardinalities and Di-
agonalization (Chapter 3), including a proof of the Schröder-
Bernstein Theorem.

– Week 2: Binary Relations (Chapter 4). Also dive straight into
Section 5.3.1 and work out a proof of the equivalence between
the two induction principles (Arithmetic and Complete).

– Week 3: Strings and Languages (Chapter 7).
– Week 4: Machines, Languages, and DFA (Chapter 8).
– Week 5: NFA and Regular Expressions (Chapter 9).
– Week 6: Operations on Regular Machinery (Chapter 10), includ-

ing illustrations using Grail.
– Week 7: The Automaton/Logic Connection, Symbolic Tech-

niques (Chapter 11), including illustration using BED.
– Week 8: The Pumping Lemma (Chapter 12).
– Week 9: Context-free Languages (Chapter 13), including Consis-

tency and Completeness proofs.
– Week 10: Push-down Automata and Context-free Grammars

(Chapter 14).
– Week 11: Turing Machines (Chapter 15). Basic Undecidability

Proofs (Chapter 16).
– Week 12: Basic Notions in Logic (Chapter 18).
– Week 13: Complexity Theory and NP-Completeness (Chapter 19).
– Week 14: Model Checking: Basics (Chapter 21).
A graduate course on automata, relationships with Boolean meth-
ods, undecidability, NP-completeness, and modern formal verifica-
tion methods may be taught along the following lines, taking advan-
tage of graduate students’ relative independence, as well as keeping
their impatience with rote work in mind:

– Week 1-3: Quickly go through Chapters 2 through 6.
– Week 4-6: Review concepts from NFA, DFA, and RE (Chapters 7

through 10 and Chapter 12), suggesting that they use Grail to
quickly note various results.

– Week 7: Chapters 11, Automaton/Logic Connection. Reachabil-
ity using BDDs. It is possible to cover Chapter 20 (Presburger
arithmetic) at this juncture.

– Week 8: Chapter 13, 14.
– Week 9: Chapter 15.
– Week 10: Chapter 16.
– Week 11: Chapter 17.
– Week 12: Chapter 18.
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– Week 13: Chapter 19.
– Week 14: Chapter 21 through 23.
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BED Solution to the tic-tac-toe problem

The reader may enter the following script into the BED tool and watch
the display of all draws.

var turn turnp

a00 a00p b00 b00p

a01 a01p b01 b01p

a02 a02p b02 b02p

a10 a10p b10 b10p

a11 a11p b11 b11p

a12 a12p b12 b12p

a20 a20p b20 b20p

a21 a21p b21 b21p

a22 a22p b22 b22p ;

let init=!a00 and !b00 and !a01 and !b01 and

!a02 and !b02 and !a10 and !b10 and

!a11 and !b11 and !a12 and !b12 and

!a20 and !b20 and !a21 and !b21 and

!a22 and !b22 and !turn ;

let initp=

!a00p and !b00p and !a01p and !b01p and

!a02p and !b02p and !a10p and !b10p and

!a11p and !b11p and !a12p and !b12p and

!a20p and !b20p and !a21p and !b21p and

!a22p and !b22p and !turnp ;

let samerow0 = (a00=a00p) and (b00=b00p) and (a01=a01p) and (b01=b01p)

and (a02=a02p) and (b02=b02p);

let samerow1 = (a10=a10p) and (b10=b10p) and (a11=a11p) and (b11=b11p)

and (a12=a12p) and (b12=b12p);

let samerow2 = (a20=a20p) and (b20=b20p) and (a21=a21p) and (b21=b21p)
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and (a22=a22p) and (b22=b22p);

let samecol0 = (a00=a00p) and (b00=b00p) and (a10=a10p) and (b10=b10p)

and (a20=a20p) and (b20=b20p);

let samecol1 = (a01=a01p) and (b01=b01p) and (a11=a11p) and (b11=b11p)

and (a21=a21p) and (b21=b21p);

let samecol2 = (a02=a02p) and (b02=b02p) and (a12=a12p) and (b12=b12p)

and (a22=a22p) and (b22=b22p);

let M00 = !a00 and !b00 and a00p and !b00p and !turn and turnp

and samerow1 and samerow2 and samecol1 and samecol2;

let M01 = !a01 and !b01 and a01p and !b01p and !turn and turnp

and samerow1 and samerow2 and samecol0 and samecol2;

let M02 = !a02 and !b02 and a02p and !b02p and !turn and turnp

and samerow1 and samerow2 and samecol0 and samecol1;

let M10 = !a10 and !b10 and a10p and !b10p and !turn and turnp

and samerow0 and samerow2 and samecol1 and samecol2;

let M11 = !a11 and !b11 and a11p and !b11p and !turn and turnp

and samerow0 and samerow2 and samecol0 and samecol2;

let M12 = !a12 and !b12 and a12p and !b12p and !turn and turnp

and samerow0 and samerow2 and samecol0 and samecol1;

let M20 = !a20 and !b20 and a20p and !b20p and !turn and turnp

and samerow0 and samerow1 and samecol1 and samecol2;

let M21 = !a21 and !b21 and a21p and !b21p and !turn and turnp

and samerow0 and samerow1 and samecol0 and samecol2;

let M22 = !a22 and !b22 and a22p and !b22p and !turn and turnp

and samerow0 and samerow1 and samecol0 and samecol1;

let N00 = !a00 and !b00 and !a00p and b00p and turn and !turnp

and samerow1 and samerow2 and samecol1 and samecol2;

let N01 = !a01 and !b01 and !a01p and b01p and turn and !turnp

and samerow1 and samerow2 and samecol0 and samecol2;

let N02 = !a02 and !b02 and !a02p and b02p and turn and !turnp

and samerow1 and samerow2 and samecol0 and samecol1;

let N10 = !a10 and !b10 and !a10p and b10p and turn and !turnp

and samerow0 and samerow2 and samecol1 and samecol2;

let N11 = !a11 and !b11 and !a11p and b11p and turn and !turnp

and samerow0 and samerow2 and samecol0 and samecol2;



B BED Solution to the tic-tac-toe problem 449

let N12 = !a12 and !b12 and !a12p and b12p and turn and !turnp

and samerow0 and samerow2 and samecol0 and samecol1;

let N20 = !a20 and !b20 and !a20p and b20p and turn and !turnp

and samerow0 and samerow1 and samecol1 and samecol2;

let N21 = !a21 and !b21 and !a21p and b21p and turn and !turnp

and samerow0 and samerow1 and samecol0 and samecol2;

let N22 = !a22 and !b22 and !a22p and b22p and turn and !turnp

and samerow0 and samerow1 and samecol0 and samecol1;

let T = M00 or M01 or M02 or

M10 or M11 or M12 or

M20 or M21 or M22 or

N00 or N01 or N02 or

N10 or N11 or N12 or

N20 or N21 or N22 ;

let atmostone =

!(a00 and b00) and !(a01 and b01) and !(a02 and b02)

and

!(a10 and b10) and !(a11 and b11) and !(a12 and b12)

and

!(a20 and b20) and !(a21 and b21) and !(a22 and b22) ;

let wina1 = atmostone and

(a00 and !b00) and (a01 and !b01) and (a02 and !b02) ;

let wina2 = atmostone and

(a10 and !b10) and (a11 and !b11) and (a12 and !b12) ;

let wina3 = atmostone and

(a20 and !b20) and (a21 and !b21) and (a22 and !b22) ;

let wina4 = atmostone and

(a00 and !b00) and (a10 and !b10) and (a20 and !b20) ;

let wina5 = atmostone and

(a01 and !b01) and (a11 and !b11) and (a21 and !b21) ;

let wina6 = atmostone and

(a02 and !b02) and (a12 and !b12) and (a22 and !b22) ;

let wina7 = atmostone and

(a00 and !b00) and (a11 and !b11) and (a22 and !b22) ;
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let wina8 = atmostone and

(a02 and !b02) and (a11 and !b11) and (a20 and !b20) ;

let winb1 = atmostone and

(!a00 and b00) and (!a01 and b01) and (!a02 and b02) ;

let winb2 = atmostone and

(!a10 and b10) and (!a11 and b11) and (!a12 and b12) ;

let winb3 = atmostone and

(!a20 and b20) and (!a21 and b21) and (!a22 and b22) ;

let winb4 = atmostone and

(!a00 and b00) and (!a10 and b10) and (!a20 and b20) ;

let winb5 = atmostone and

(!a01 and b01) and (!a11 and b11) and (!a21 and b21) ;

let winb6 = atmostone and

(!a02 and b02) and (!a12 and b12) and (!a22 and b22) ;

let winb7 = atmostone and

(!a00 and b00) and (!a11 and b11) and (!a22 and b22) ;

let winb8 = atmostone and

(!a02 and b02) and (!a11 and b11) and (!a20 and b20) ;

let allmoved = (a00 = !b00) and (a01 = !b01) and (a02 = !b02)

and

(a10 = !b10) and (a11 = !b11) and (a12 = !b12)

and

(a20 = !b20) and (a21 = !b21) and (a22 = !b22) ;

let draw = allmoved and

!wina1 and !wina2 and !wina3 and !wina4 and

!wina5 and !wina6 and !wina7 and !wina8 and

!winb1 and !winb2 and !winb3 and !winb4 and

!winb5 and !winb6 and !winb7 and !winb8 ;

upall init; upall samerow0; upall samerow1; upall samerow2;

upall samecol0; upall samecol1; upall samecol2; upall M00;

upall M01; upall M02; upall M10; upall M11; upall M12;

upall M20; upall M21; upall M22;

upall N00; upall N01; upall N02; upall N10; upall N11;

upall N12; upall N20; upall N21; upall N22; upall T;

upall atmostone;
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upall wina1; upall wina2; upall wina3; upall wina4; upall wina5;

upall wina6; upall wina7; upall wina8;

upall winb1; upall winb2; upall winb3; upall winb4; upall winb5;

upall winb6; upall winb7; upall winb8;

upall allmoved; upall draw; view draw;

Here, be prepared to obtain a six-page BDD describing all possible
draws in one fell swoop.
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25. Comon, H., Marché, C., and Treinen, R. Constraints in Computational

Logics, Theory and Applications. Springer, 2001.
26. Continuum Hypothesis.

http://mathworld.wolfram.com/ContinuumHypothesis.html.
27. Cook, Stephen A. “Computer Science Lectures, NP-Completeness”.

www.cs.toronto.edu/~sacook/.
28. Corella, F., Shaw, R., and Zhang, C. “A formal proof of absence of

deadlock for any acyclic network of PCI buses”. In Hardware Description
Languages and their Applications, pages 134–156. Chapman Hall, 1997.

29. Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L. In-
troduction to Algorithms. McGraw-Hill Company, 1990.



References 455

30. Courcoubetis, C., Vardi, M.Y., Wolper P., and Yannakakis, M. “Memory
Efficient Algorithms for the Verification of Temporal Properties”. In
Formal Methods in System Design, volume 1, pages 275–288, 1992.

31. Curry, H.B. and Feys, R. Combinatory Logic (Vol. 1). North Holland,
Amsterdam, 1958.

32. Davis, M., Logemann, G., and Loveland, D. “A Machine Program for
Theorem Proving”. Communications of the ACM, 5(7):394–397, 1962.

33. Davis, M. and Putnam, H. “A Computing Procedure for Quantification
Theory”. Journal of the ACM, 7(1):201–215, 1960.

34. Demaine, E.D., Hohenberger, S., and Liben-Nowell, D. “Tetris is Hard,
Even to Approximate”. In Computing and Combinatorics (COCOON),
pages 351–363, 2003.

35. DeMillo, R. A., Lipton, R.J., and Perlis, A.J. “Social Processes and
Proofs of Theorems and Programs”. Communications of the ACM,
22(5):271–280, 1979.

36. Dijkstra, Edsger W. “The Humble Programmer”. Communications of
the ACM, 15(10):859–866, 1972.

37. Dijkstra, Edsger W. A Discipline of Programming. Prentice-Hall, 1976.
38. Dill D. Comment made in keynote address offered at the Principles of

Programming Languages (POPL) Conference, 1999.
39. Du, D.-Z. and Ko, K.I. Problem Solving in Automata, Languages, and

Complexity. John Wiley & Sons, 2001.
40. Floyd, R. W. “Assigning Meanings to Programs”. In J. T. Schwartz,

editor, Mathematical Aspects of Computer Science, pages 19–32, Provi-
dence, RI, 1967. American Mathematical Society.

41. Formal Methods. Jonathan Bowen’s Formal Methods Resource Page at
http://www.afm.sbu.ac.uk.

42. Friedman, S. J. and Supowit, K. J. “Finding the Optimal Variable
Ordering for Binary Decision Diagrams”. In Proceedings of the 24th
ACM/IEEE conference on Design automation, pages 348–356, 1987.

43. Fritz, Carsten. “Constructing Büchi Automata from Linear Temporal
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Büchi Automata, 389
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computation theory, 12
Homomorphism, 113

inverse, 114

ID, 124
Identity relation, 59
Iff, 76
Image, 23, 192, 193
Implication, 17

antecedent, 75
consequent, 75

Independent, 323
Individual, 324
Individuals, 79

Induction, 81
arithmetic, 82
complete, 82
noetherian, 84
structural, 81, 85

Inductive, 80
basis elements, 80
closed under, 81
constructor, 80
definition, 80
free, 81
least set, 81
set, 80

Inductive assertions, 247
Infinite loop, 25
Infinitely often, 394
Inherently ambiguous, 227
Input encoding, 353

strong NPC, 364
unary, 353

Instantaneous description, 124
Interior node , 218
Interleaving, 383
Interpretation, 323
Intractable, 345
Invariant, 192

checking, 192
Inverse homomorphism, 114, 168
Irredundant name, 24, 94
Isomorphism, 174
Ivory soap, 40

Kripke structure, 399

Lambda calculus, 3, 23
alpha conversion, 25
alpha rule, 24
associativity, 24
beta reduction, 24
beta rule, 24
bindings, 24
function application, 24
irredundant names, 24
syntactic conventions, 30
Y, 94

Language, 5, 105, 107, 125
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cardinality, 108
concatenation, 110, 111
context-free , 217
exponentiation, 111
homomorphism, 113, 114
intersection, 110
of a CFG, 218
prefix closure, 115
recursive definition, 101
regular, 125
reversal, 113
setminus, 110
star, 112
symmetric difference, 110
uncountably many, 108
union, 110
universality, 294

language
empty, 107

Language , 217
Lasso, 180
Lasso shape, 179
Lattice, 64
�, 64
all equivalences, 64
glb, 64
greatest lower bound, 64
illustration on 2S , 64
least upper-bound, 64
lub, 64

LBA, 128, 277
acceptance decidable, 313
undecidable emptiness, 313

Least and greatest FP, 425
Least fixed-point, 192
Left-end marker, 276
Left-to-right scan, 119
Lexical analyzer, 149
Lexicographic, 109

strictly before, 109
Lexicographic order, 109
LHS, 77
Linear bounded automata, 277
Linear bounded automaton, 128
Linear CFGs, 237

Linear-time temporal logic, 405
Livelock, 393
Liveness, 389
Logic
∃, 78
∀, 78
if-then, 75
axiom, 75
axiomatization, 324
complete, 323
first-order, 323
FOL validity, 326
higher-order, 323
Hilbert style, 324
if, 75
implication, 75
independent, 323
individual, 324
interpretation, 323
modus ponens, 325
predicate, 324
proof, 75, 323
propositional, 323
quantification, 78
rule of inference, 75
sound, 323
substitution, 325
theorem, 323
vacuous truth, 75
validity, 323
well-formed formula, 323
wff, 323
zeroth-order, 323

logic
⇒, 75

Logic/automaton connection, 186
Loop invariant, 253
LTL, 405

enumerative model checking, 432
expressiveness, 428
semantics, 406
syntax, 406

LTL vs. CTL, 405, 428

Machines
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with one stack, 4
with two stacks, 4
with zero stacks, 4

Map of USA, 39
Mapping reduction, 301
≤m, 301

Matrix, 372
Mechanical process, 27
Message sequence chart, 394
Millennium problem, 345
Minimalist approach, 3
Mixed left/right linear, 238
Model checking, 381

vs. testing, 387
BDD, 383
disappearing, 387
history, 381

Modular, 113
homomorphism, 113
substitution, 113

Modus ponens, 325
MSC, 394
Multiple fixed-points, 197
Myhill-Nerode Theorem, 174

Natural number
as set, 20

NBA, 428, 431
versus DBA, 431

Nested DFS, 434
NFA, 141

δ, 142
→, 146
ε moves, 143
ε-closure, 145
�, 142
�∗, 142
concatenation, 165
generalized, 170
homomorphism, 168
ID, 142
instantaneous description, 142
inverse homomorphism, 168
Kleene-star, 166
language, 147

prefix-closure, 169
reversal, 167
to DFA, 159
to Regular Expressions, 170
token game, 148
union, 162

NFA transition function, 141
NLBA, 277
Non-terminals , 217
Non-trivial property, 312
Nondeterminism, 135, 136, 387

abstraction, 387
over-approximation, 387
power of machines, 137

Nondeterministic Büchi automata,
431

Nondeterministic BA, 428
Nondeterministic machines, 137
NP, 345, 348, 350
NP decider, 350
NP verifier, 348
NP-completeness, 345
NP-hard, 350

Diophantine, 360
NPC, 345

2-partition, 364
3-SAT, 354
3-partition, 364
decider, 351
funnel diagram, 354
strong, 364
tetris, 364
verifier, 348

Number
ℵ0.5??, 43
cardinal, 37, 38
integer, 15
natural, 15
real, 15

Numeric
strictly before, 110

Numeric order, 110

Omega-regular language, 430
syntax, 430
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One-stop shopping, 224
Order

partial, 57
pre, 57

Over-approximation, 135

P, 345
P versus NP, 288
P vs. NP, 345
Parse tree , 218
Parser, 217
PCP, 315

computation history, 318
dominoes, 315
solution, 315
tiles, 315
undecidable, 316

PDA, 4, 245, 253
�, 246
ID, 246
instantaneous description, 246
intersection with DFAs, 293
proving their correctness, 247
undecidable universality, 313

PDA acceptance, 247
by empty stack, 249
by final state, 247

PDA to CFG, 257
Periodic

ultimate, 76
Philosophers, 390
Photocopying machine

fixed-point, 95
image transformation, 95

Pigeon, 85
Pigeon-hole principle, 85
POS, 332
Post’s correspondence, 315
Power of computers, 5
Power of machines, 3, 62, 137
Pre-image, 192
Predicate constant, 324
Predicate logic, 324
Prefix, 372
Prefix closure, 115

Prenexing, 371
Presburger, 371

atomic, 371
conversion to automata, 376
encoding, 373
interpretation, 373
pitfall to avoid, 378
quantification, 376
sentences, 371
term, 371

Presburger arithmetic, 126, 370
Primed variable, 193
Primes, 363
Procedure, 3
Product of sums, 332
Production, 217

elementary, 219
Promela, 384

accept label, 394
never automaton, 394
proctype, 394
progress label, 394

Proof, 75, 323
reductio ad absurdum, 77
axiom, 75
by contradiction, 77
machine-checked, 441
mistakes, 439
model-checker, 441
of a statement, 75
reliability, 439
rule of inference, 75
theorem prover, 441

Proof by contradiction, 207
Property, 28
Propositional logic, 323
Proving PDAs, 247
Pumping

case analysis, 207
full contradiction, 209
stronger, incomplete, 209

Pumping Lemma, 205
complete, 205, 212
incomplete, 205
Jaffe, 212
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one-way, 205
quantifier alternation, 206
Stanat and Weiss, 213

Purely left-linear , 238
Purely right-linear , 238
Push-down automata, 245
Push-down automata , 234
Push-down automaton, 4
Putative queries, 10

Quantifier alternation, 206

RE, 134, 137, 295
closure, 134
Complementation, 138
DeMorgan’s Law, 138

Reachability
in graphs, 60
multiple fixed-points, 197

Recognize, 124
Recursion, 93

nonsensical, 94
solution of equations, 97
solving an equation, 94

Recursive definition, 77
Recursively enumerable, 295
Reflexive and transitive closure, 124
Reflexive transitive closure, 60
Regular, 125
Regular Expression

to NFA, 169
Regular expression, 137
Regular expressions, 134
Regular language

closure properties, 211
Regular set

closure properties, 211
Regular sets, 211
Regularity, 211

preserving operations, 211
Rejecting state, 119
Relation, 28

irr, 53
non, 53
antisymmetric, 55

asymmetric, 55
binary, 28, 53
broken journey, 56
co-domain, 29
complement, 29
domain, 29, 53
equivalence, 58
functional, 30
identity, 59
intransitive, 56
inverse, 29
irreflexive, 54
non-reflexive, 55
non-symmetric, 55
non-transitive, 57
partial functions as, 30
partial order, 57
preorder, 57
reflexive, 54
restriction, 29, 60
short cut, 56
single-valued, 30
symmetric, 55
ternary, 29
total, 58
total functions as, 30
total order, 58
transitive, 56
unary, 28
universal, 59

Resistor, 68
Respect, 65, 113

concatenation, 113
operator, 65

Reverse, 238
of a CFG, 238
of a CFL, 238

RHS, 77
Rice’s Theorem

corrected proof, 311
failing proof, 310

Rice’s theorem, 309
partition, 309

Robustness of TMs, 276
Run, 105
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Russell’s paradox, 17, 21

Safety, 389
SAT solver, 338
Satisfiability, 331

2-CNF, 341
Scanner, 149

telephone number, 149
Schöenfinkeled form, 30
Schröder-Bernstein Theorem, 43

Nat → Bool, 44
all C programs, 44

Second-order logic, 79
Sentence , 218
Sentential form , 218
Sequence, 105
Set, 16

Real versus Nat, 43
cardinality, 37
complement, 20
comprehension, 16
countable, 38
empty, 16
intersection, 19
numbers as, 20
powerset, 16, 22
proper subset, 19
recursively defined, 18
subtraction, 19
symmetric difference, 20
union, 19
unique definition, 18
universal, 18, 19

Skolem constant, 326
Skolem function, 326
Skolemization, 326
Solving one implies all, 11
SOP, 332
Sound, 323
SPIN, 384

interleaving product, 394
message sequence chart, 394
MSC, 394
property automaton, 394

Stack, 128

single, 128
two, 128

Start symbol , 217
State

accepting, 121
black hole, 123
final, 121

State explosion, 383
State transition systems, 192
String, 105

ε, 106
length, 107
substr, 107
concatenation, 107
empty, 106
in living beings, 106
lexicographic order, 109
numeric order, 110
reversal, 113

String classifier, 124
Strong NP-completeness, 364
Strongly NP-complete, 364
Structural induction

proof by, 81
Substitution, 325
Sum of products, 332
Symbol, 105, 107

bounded information, 107
Symbolic model checking, 421

Tape, 275
doubly infinite, 275
singly infinite, 275

Telephone number NFA, 149
Temporal logic, 382
Term, 68
Terminals , 217
Testing computers, 9
Tetris, 364
Theorem, 323
Theorem prover, 73

ACL2, 74
floating point arithmetic, 75
Flyspec project, 74

Therac-25, 8
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Tic-tac-toe, 198
TM, 274

deterministic, 274
nondeterministic, 274
robust, 276

TR, 108, 295
Transition function, 124

δ, 121
δ̂, 124
for strings, 124
total, 121

Transition systems, 192
Triple, 21
Trivial partition, 309
Tuple, 21
Turing machine, 2, 128
Turing recognizable, 108, 295
Turing-Church thesis, 272
Two stacks + control = TM, 276
Twocolor, 347
Type, 20

versus sets, 20

Ultimate periodicity, 179, 181
Ultimately periodic, 76
Unambiguous, 10
Unique definition, 18

function, 77, 94
functions, 82
sets, 18

Uniqueness, 77
Universal relation, 59
Unsatisfiability core, 340
Unsatisfiable CNF, 340
Until

GFP, 427
LFP, 426
recursion, 425

Vacuously true, 75
Valid, 323
Validity, 326

undecidable, 329
Variable ordering, 190
Venus probe, 267
Verifier, 348

Weird but legal C program, 44
Well-formed formula, 323
Well-founded partial order, 84
Well-parenthesized, 224
well-parenthesized, 215
WFF, 323
What if queries, 10
Wild-card, 137

Y function, 96

Zchaff, 338
Zeroth-order logic, 323
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