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Preface

Reconstruction of continuous signals from a number of their discrete samples is
central to digital signal processing. Digital devices can only process discrete data
and thus processing the continuous signals requires discretization. After discreti-
zation, possibility of unique reconstruction of the source signals from their sam-
ples is crucial. The classical sampling theory provides bounds on the sampling rate
for unique source reconstruction, known as the Nyquist sampling rate. Recently a
new sampling scheme, Compressive Sensing (CS), has been formulated for sparse
signals. CS is an active area of research in signal processing. It has revolutionized
the classical sampling theorems and has provided a new scheme to sample and
reconstruct sparse signals uniquely, below Nyquist sampling rates. A signal is
called (approximately) sparse when a relatively large number of its elements are
(approximately) equal to zero. For the class of sparse signals, sparsity can be
viewed as prior information about the source signal. CS has found numerous
applications and has improved some image acquisition devices.

Interesting instances of CS can happen, when apart from sparsity, side infor-
mation is available about the source signals. The side information can be about the
source structure, distribution, etc. Such cases can be viewed as extensions of the
classical CS. In such cases we are interested in incorporating the side information
to either improve the quality of the source reconstruction or decrease the number
of the required samples for accurate reconstruction.

A general CS problem can be transformed to an equivalent optimization
problem. We study a special case of CS with side information about the feasible
region of the equivalent optimization problem. Based on spherical section property
it is shown that the solution to such problems is unique and stable towards noise. In
addition, an efficient algorithms is provided, which incorporates the side infor-
mation to solve for better estimation of the source signal. Experiments confirm that
the proposed algorithm converges to the solution faster and results in a more
accurate estimation. Moreover, it is robust towards the noise power and also the
noise model.

The proposed scheme is applied to practical problems: image deblurring in
optical imaging, 3D surface reconstruction, and reconstructing spatiotemporally
correlated sources. Experimental results confirm the usefulness and effectiveness

vii



of the proposed scheme. The results indicate that we can apply the proposed
algorithm to improve the sampling devices in such applications without improving
the hardware. Consequently, we can consider this tool as a low-cost technique
compared to hardware improvement.

Mohammad Rostami
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Chapter 1
Introduction

Central to digital signal processing is the Shannon-Nyquist sampling theorem [1],
which provides conditions under which a band-limited signal can be reconstructed
via its discrete time samples uniquely. It states that the minimum uniform sampling
rate for exact reconstruction of these signals is twice the signal band-width (Nyquist
rate) in Fourier domain. This theorem has been extended for the case of bandpass [2]
and random sampling [3]. This classical conclusion is crucial in signal processing and
permits using digital devices to process natural continuous signals. Obviously we are
interested in decreasing the sampling rate to reduce complexity, but according to the
Shannon-Nyquist sampling theorem we are limited by the Nyquist rate in the general
case. But it is easy to build special cases where signal reconstruction is possible with
sampling rates less than the Nyquist rate. The question is, is it possible to identify
such classes of signals?

Over the time the problem of reconstruction of signals subject to prior information
gained interest among researchers. Is it possible to use the prior information to
decrease the sampling rate? For instance, consider a very simple case where we
know our signal of interest is a sinusoid y(t) = A sin(ωt); it is trivial that in this
extreme case one can reconstruct the signal via two non-zero samples to solve for A
and ω. Whereas, the classical theorem suggests to use infinitely many samples with
the sampling rate of π

ω . It is easy to show that more generally any finite mixture of
sinusoids can be reconstructed using finite number of samples (subject to knowing the
number of sinusoids) [4]. This simple example confirms how prior information can
be used to decrease the classical sampling rate, needed for reconstruction. Although
the mixture of sinusoids model has practical importance but such applications are
limited. Do we have a wider class of signals with similar property?

In around 2005, a new sampling scheme was formulated for sparse signals, i.e.,
signals which admit a sparse representation in a predefined basis/frame. This theory,
nowadays known as compressed sensing (aka compressive sampling), asserts that
sparse signals can be recovered from their discrete measurements, whose number is
proportional to the �0-norm of the coefficients of the sparse representation. As a result,
cases are numerous in which the sampling efficiency of compressed sensing (CS) far

M. Rostami, Compressed Sensing with Side Information on the Feasible Region, 1
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2 1 Introduction

supersedes that of the classical Shannon-Nyquist sampling [5, 6]. Over the last decade
many researchers have worked on this topic and developed many interesting results.
The results have been used in some areas of signal processing and communications.

1.1 Compressed Sensing

Compressed Sensing has been formulated and studied mathematically in [5–7] and
later became a major subject of interest. The theory is based on sparse prior assump-
tion on the source in the sampling problem. It is interesting to note that prior to
development of this theory, its reconstruction method had been studied fairly well.
In fact prior algorithms for convex optimization of l1-norm made CS a viable tech-
nique.

Definition 1 Assume x ∈ R
n is a discrete finite signal. It is called k-sparse if its

representation, s, in basis � ∈ R
n×n has at most k nonzero elements:

x = �s (1.1)

also we define support of a vector s as: supp(s) = {i |si �= 0},
similarly we call the source approximately sparse if at most k elements of the source
are greater than a (small) threshold that we set, i.e., if we sort the signal values, the
signal values decay rapidly after the kth element. For instance natural images have
this property in DCT domain. It is trivial that a k-sparse signal can be stored using 2k
numbers (Only we need to store the value and the index of k nonzero element). This
property has been used to design compression algorithms such as JPEG for natural
images or MPEG for video streams.

This class of signals were known before the development of CS theory and were
called compressible signals in the literature. CS theory provides conditions under
which one can sense this class of signals compressibly. In CS framework we assume
that we use non-adaptive linear sampling, i.e.:

y = ��s, (1.2)

where y ∈ R
m is vector of samples and � ∈ R

m×n, m < n is a full rank matrix, called
sensing matrix. This means that instead of point sampling, in each measurement we
measure a linear combination of signal samples. The value of m specifies the sampling
rate. To reconstruct the source signal s the undetermined system (1.2) must be solved.
In the general case we have infinitely many solutions (m < n) with a feasible region
automorphic to null(�) ≡ R

n−m . But k-sparsity condition limits the feasible region
and unique solution might be expected if the signal is sparse enough. Two main
questions are:
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1. Under what condition (1.2) has a unique solution (given �,�, y)?
2. In case of a unique solution how one can solve (1.2) for that unique solution?

Let’s focus on the matrix A = ��. Uniqueness of the solution for (1.2) holds if
no pairs of two distinct k-sparse signals result in the same samples: As1 = As2 =
y → s1 = s2. This means that the difference of no two distinct k-sparse signals must
not lay in nullspace of A. So linear independence of any 2k combinations of columns
of A is a necessary condition for uniqueness. Vandermonde matrices are a class of
matrices that possess this property but unfortunately are not stable for n → ∞. This
means that the existence of, even low power, additive noise fails the uniqueness. Also,
for the cases that our source is approximately sparse, again uniqueness fails. So one
must also consider stability towards noise. This is the intuition behind definition of
restricted isometry property (RIP) which will be discussed in Chap. 2. Consequently
in case of a unique solution, we will end up with the following optimization problem
to solve for s:

ŝ = arg min
s

‖s‖0 s.t. y = As, (1.3)

where ‖s‖0 = |supp(s)| denotes the l0-norm of the vector s.. Unfortunately this
problem is NP-Hard and can not be solved for large n. In parallel works [5, 6] it
was shown if the sensing matrix satisfies restricted isometry property (RIP) and the
signal is sparse enough then (1.2) has a unique solution and more interestingly the
solution is viable through solving a convex l1 optimization problem:

ŝ = arg min
s

‖s‖1 s.t. y = As, (1.4)

where ‖s‖1 = ∑
i |si | denotes the l1-norm of the vector s.

Mathematical proofs for CS theorems is hard to grasp and needs advanced har-
monic analysis tools. Here, we try to give some intuitions behind this result. Since
l p norm is not convex for 0 < p < 1 the problem of (1.3) is considered NP-Hard
and the solution is viable only through full search in the feasible region. This is an
intractable procedure for large n. The intuition behind replacing (1.3) with (1.4) is
to approximate l0 norm with a convex l p norm. Obviously the more p is close to
zero, the closer the approximated solution is to the real solution. It seems logical
to replace l0 norm with l1 norm since it is the closest convex norm to l0 norm. The
solution to (1.4) can be found using linear programming algorithms such as basis
pursuit (BP) with complexity of O(n3) [8]. There are various faster methods which
will be discussed in Chap. 2.

1.2 Applications of Compressed Sensing

Although theoretical progresses in CS theory is significant, its application has been
limited. Very often applications of l1-norm minimization are considered as applica-
tions of CS theory but this is not precisely correct. This area is older and papers such

http://dx.doi.org/10.1007/978-3-319-00366-5_2
http://dx.doi.org/10.1007/978-3-319-00366-5_2


4 1 Introduction

as [9] were published a decade before the derivation of CS theory. Although we can
decrease the sampling rate using CS but there are two main barriers which avoid
the applicability of CS theory to real world problems. First, one needs to solve the
optimization problem (1.4) to reconstruct the signal whereas in ordinary sampling
theory, reconstruction is done easily using low-pass filtering. Electronic implemen-
tation of (1.4) is more expensive and complex compared to that of a simple low-pass
filter. Second, designing the sampling procedure based on CS theory in practice is
not simple. Designing a suitable sensing matrix (sampling procedure) is not easy
and most known sampling matrices possess stochastic structure. Besides, designing
sampling devices where, in each measurement a linear combination of signal sam-
ples is measured, is not easy and sometimes is not possible. These limitations restrict
the applicability of CS to real world problems. CS can be applied to problems that
we really have a problem in sampling issue. Sampling the source is either expensive
or limited by the nature or our device. In other words the CS theory is practically
useful only in the cases that we are ready to pay the expense of implementing (1.4) to
decrease the sampling rate and also designing a measuring device for CS sampling.
Here, we review briefly some of those cases.

A promising application of CS is magnetic resonance imaging (MRI) [10]. The
MRI sampling device is designed to use magnetic field for imaging human tissues.
Due to rules of optics the device measures Fourier coefficients of human body tissues
images. On the other hand human tissue images are smooth in time domain and thus
sparse in gradient field. Also it is important to decrease the number of samples
to decrease the negative effects of magnetic field on human body. If we sample
Fourier coefficients partially we have all required conditions, making the use of CS
economically logical. This is the reason of applying CS to MRI and several other
medical imaging devices. Another direction is to apply CS in wireless network [11],
where we have limitations on power consumption and are interested in decreasing
the sampling devices (sensors) to save energy. CS also has been applied in radar
signal processing, where it is crucial to increase the sampling rate of analog to
digital convertors (ADC) [12]. Other applications include error correcting codes
[13], biology [14], sparse channel estimation [15], and blind source separation [16].
In this work we will provide two new areas where CS can be applied to, in order to
improve the hardware measuring devices.

1.3 Extensions of Compressed Sensing

After the development of the basic CS framework, considerable research has been
done on extensions of CS, from defining and proving CS theorems using different
mathematical perspectives to providing faster and more efficient CS reconstruction
algorithms and investigating related problems such as matrix completion [17]. One
possible direction for the extension of compressive sensing is cases where we have
additional side information along with source sparsity. It was explained that CS was
developed mainly for more efficient signal reconstruction, assuming sparse prior



1.3 Extensions of Compressed Sensing 5

on the source signal. How about cases that we have other types of information
about the source signal? for instance we know the source is in the positive orthant
(s ∈ R

n+) or we have some information about the source structure. Can we use the side
information and combine it with the sparsity prior to further decrease the sampling
rate and improve signal reconstruction? Answering this question has resulted in
several directions for extending CS. Depending on the type of side information,
several extensions on CS theory has been reported in the literature.

One type of side information is information about the source structure. For instance
along with sparsity the non-zero elements may have a pattern. In [18], the authors
have provided CS framework for block-sparse signals, i.e., sparse signals in which
non-zero element appear in blocks rather than individually. Block sparse signals are a
suitable model for pulse-shaped signals such as radar signals. Authors have derived
corresponding adopted CS theorems and recovery algorithms for this case. Some
applied signals such as image/video signals have spatial/time structure. Normally in
a natural image the value of a pixel has correlation with neighboring pixels. Apart
from spatial correlation, values of a pixel in a video stream are correlated over time.
In [19] the authors have tried to exploit the frame correlation to improve signal
recovery of images/video signals. In the case of an image, the image is split into
blocks of fixed size, which are all sparse in the same domain, and then each block is
recovered using information extracted from neighboring blocks. In case of a video
stream, a previous frame is used to help recovery of consecutive frames.

Another type of information is about the source probability distribution. Some
signals such as texture images can be modeled better via probabilistic models rather
than deterministic models. In [20], the authors provide a CS recovery algorithm when
prior information about the probability of each nonzero entry of the source is in hand.
Others have tried to adopt probabilistic graphical model message passing algorithms
such as belief propagation to result in faster CS recovery algorithms when the source
distribution is known [21, 22]. First an equivalent graphical model to a CS problem,
inspired from error correction codes, has been developed and next, message passing
has been used to solve for the source. This approach has provided some fast recovery
algorithms compared to CS general reconstruction algorithms. Research is going on
to develop non-parametric recovery algorithms using this approach in order to extend
it to the general case [22].

The third type of information is knowledge about the feasible region. Imagine we
have information which limits the feasible region of (1.3), which is automorphic to
null(A). For instance c ∈ R

n+. The previous information types dealt with the nature
of the source, so the uniqueness of the solution still holds for (1.3), whereas when
the feasible region changes uniqueness of the solution may fail. Consequently one
must first check the uniqueness of the solution and then provide the corresponding
sparse recovery algorithm. In [23] authors have provided an algorithm for non-
negative sources. Uniqueness of the solution is proved and one of the common
CS recovery algorithms has been altered to work for such sources more efficiently.
A more general case happens when another convex constraint is added to (1.3),
i.e., Bc = b, B ∈ R

m′× n, b ∈ R
m′

(note inequality conditions like s > 0 can be
transformed to equality condition). In the current work, we focus on such a case.
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Special case of this problem has been studied in the literature. In [24] derivative
compressive sampling is introduced. It is assumed that the source signal is a gradient
field. Next, it has been shown the problem can be transformed to an equivalent CS
problem and then solved using a general sparse recovery algorithm. In the current
work, uniqueness of the solution for the more general case is studied. Then it will be
shown for this case equivalence of l0-norm and l1-norm minimization solutions still
holds. Furthermore, a more efficient algorithm is provided for solution.

1.4 Organization

This chapter covered a brief review of the compressed sensing (CS) theory. Chapter 2
covers a more detailed survey on CS theory and its mathematical foundations. The
classic framework of CS is provided in Sects. 2.1 and 2.2. Section 2.3 provides a
review on a more recent mathematical foundation for CS based on spherical section
property. This framework is easier to grasp and can be adopted for our problem, as
described in Chap. 3. Section 2.4 reviews CS reconstruction methods. In Chap. 3, the
problem of CS in the presence of side information about feasible region is studied.
After formulating the problem, uniqueness and stability of the l1-norm reconstruc-
tion are provided in Sect. 3.2. The next three chapters are devoted to applications
of the developed scheme. In Chap. 4 the problem of deburring in optical imaging is
studied. It is shown how the provided scheme can be used to improve performance
of interferometer devices. In Chap. 5 the problem of surface reconstruction in the
gradient field is studied and Chap. 6 addresses the problem of diffusive field recon-
struction. Numerical simulations for these applications confirm the effectiveness and
usefulness of the proposed method.
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Chapter 2
Compressed Sensing

In this chapter compressed sensing is introduced in more details. Gelfand’s width,
which is a pure mathematical concept with close connection to CS, is introduced in
Sect. 2.1. CS in restricted isometry perspective is considered in Sect. 2.2. Section 2.3
covers a review on spherical section property, which will be used in the next Chapter.

2.1 Gelfand’s Width

Some mathematical ideas that are used in CS originally came from the Harmonic
Analysis literature. In this section we introduce Gelfand’s width and show how it is
connected with CS theory. Let S ⊂ R

n and m < n ∈ N. Assume R
n is equipped

with l p-norm.

Definition 2 Gelfand’s width for this set is defined as:

dm(S)p = inf
K

sup{‖x‖p|x ∈ S ∩ K } = inf
K

sup
x∈S∩K

‖x‖p, p ≥ 1, (2.1)

where infimum is taken over all n − m dimensional subspace K of R
n. Assume S be

bounded such that:

∀s ∈ S : −s ∈ S (2.2)

∃a ∈ R
n : S + S ⊂ aS

For instance if S = {x ∈ R
n|‖x‖ < 1}, then assuming a = 2, this set satisfies

(2.2). Now assume we sample elements of S with a sampling matrix � ∈ R
m×n .

Also let D be an operator (possibly nonlinear) which is used for reconstructions:

y = �x
(2.3)x̂ = D(y)

M. Rostami, Compressed Sensing with Side Information on the Feasible Region, 9
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The error reconstruction in this sampling/reconstruction system over the set S would
be:

E(S,�, D) = sup
x∈S

‖x − x̂‖p = sup
x∈S

‖x − D(�x)‖p (2.4)

We are interested in finding a (�, D) pair such that E(S,�, D) is minimized. The
best possible performance in this framework is given by:

E(S) = inf
�,D

E(S,�, D). (2.5)

As we know dim(Null(�)) = n − m and thus null(�) is a n − m dimensional
subspace of R

n and can be considered an instance of K in the definition of Gelfand’s
width of S:

dm(S)p = inf
K

sup
x∈S∩K

‖x‖p ≤ sup
x∈S∩null(�)

‖x‖p. (2.6)

On the other hand:

∀x ∈ S ∩ null(�) : D(y) = D(�x) = D(0) = D(−�x) (2.7)

Now note:

‖x − D(�x)‖p + ‖ − x − D(−�x)‖p ≥ ‖x − D(0) − x + D(0)‖p = 2‖x‖p →
(2.8)

‖x − D(0)‖p ≥ ‖x‖p or ‖ − x − D(0)‖p ≥ ‖x‖p.

Thus for any x ∈ S ∩ null(�), there exists an element x′ ∈ S ∩ null(�) such
that:‖x′ − D(�x′)‖p ≥ ‖x‖p. Consider this fact:

E(S,�, D) ≥ sup
x∈S∩K

‖x−D(�x)‖p ≥ sup
x∈S∩null(�)

‖x−D(�x)‖p ≥ sup
x∈S∩null(�)

‖x‖p.

(2.9)
From (2.6) and taking infimum on (2.9) one can conclude:

E(S)p ≥ dm(S)p. (2.10)

Now assume K ⊂ R
n with dim(K) = n − m. Let {v1, ..., vm} be a basis for orthog-

onal complement of K (K ⊥). Form the sampling matrix � = [v1, ..., vm]T . Also we
define the reconstruction operator D as follows:

D(u) =
{

a if u ∈ �S

b if u /∈ �S
(2.11)

where a ∈ S is arbitrary such that u = �a and b is a randomly chosen vector in S.
With these assumptions on (�, D) we calculate E(S)p. Let x ∈ S:
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�(x − D(�x)) = �x − �D(�x) = �x − �x = 0, (2.12)

which yields x − D(�x) ∈ null(�) ≡ K. Also from (2.2):

∃a ∈ R : x − D(�x)

a
∈ S → x − D(�x)

a
∈ S ∩ K . (2.13)

Consequently:

E(S,�, D)p = a sup
x∈S

‖x − D(�x)

a
‖p ≤ a sup

x∈S∩K
‖x‖p →

(2.14)

inf
�,D

E(S,�, D)p ≤ a inf
K

sup
x∈S∩K

‖x‖p → E(S)p ≤ adm(S)p.

Overall from (2.10) and (2.14):

dm(S)p ≤ E(S)p ≤ adm(S)p. (2.15)

This is an important result and shows how the reconstruction error over the set S is
related to Gelfand’s width of S. In other words, the best reconstruction performance
in CS is bounded by Gelfand’s width. Unfortunately finding Gelfand’s width of a set
in the general case is an open problem and only for special instances of S, such as unit
ball, Solutions have been found. Advances in this area provide a strong mathematical
imbed for CS theory.

The central question is what�, D pair would satisfy the bounds given by Gelfand’s
width? Independently, in [1, 2] sufficient condition on the sensing matrix was pro-
vided. The authors introduced the concept of restricted isometry property (RIP) and
used this concept to provide theorems for unique and stable source reconstruction and
prove the CS theorems. They showed that the random sensing matrices with i.i.d.
Gaussian or Bernoulli entries satisfy the required conditions and efficient decod-
ing D, can be accomplished by linear programming as in (1.4) (this reconstruction
method has been provided before through empirical approach).

2.2 Restricted Isometry Property and Coherence

The classical theory of CS [1, 2] uses the concept of RIP. As discussed in Chap. 1,
if the source is k-sparse, then if any combination of 2k columns of A is linearly
independent, then the solution of (1.2) would be unique. Having this in mind, the
restricted isometry property (RIP) is defined as follows:

Definition 3 Restricted Isometry Property
We say an arbitrary matrix A, satisfies RIP of order k with constant 0 ≤ δk < 1,

if for all k-sparse vectors x:

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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1 − δk ≤ ‖Ax‖2
2

‖x‖2
2

≤ 1 + δk . (2.16)

This means that k-sparse sources not only will not lay in the null-space of A,
but also will have a distance δk with this space. This condition is stronger compared
to linear independency of any 2k columns of A and in return is also stable towards
noise. In other words it means that all sub-matrices of A with at most k columns
are well-conditioned. The constant 0 ≤ δk < 1 measures closeness of the sensing
operator to an orthonormal system. From discussions in Chap. 1, one concludes if
A satisfies RIP with 0 ≤ δ2k < 1 then the solution of (1.2) is unique and can be
recovered through solving (1.3). But for practical applications equivalence of the
solutions of (1.3) and (1.4) is essential.

Historically CS results are developed using RIP and over the time the conditions
and bounds on theorems are improved. The following two theorems are two main
state-of-the-art results based on the RIP approach [3].

Theorem 2.2.1 (Noiseless Recovery) Consider the system (1.2) with the unique
solution s, assume δ2k <

√
2 − 1. Let ŝ be the solution to (1.4), then:

‖s − ŝ‖1 ≤ C0‖s − sk‖1

and

‖s − ŝ‖2 ≤ C0
1√
k
‖s − sk‖1

where sk is a k-sparse approximation of s and C0 is a global constant.

Note that for the case the source is exactly k-sparse, this theorem states the recovery
is exact. The next theorem states the condition for robustness towards noise.

Theorem 2.2.2 (Noiseless Recovery) Consider the system y = As + n such that
‖n‖2 < ε, assume δ2k <

√
2 − 1. Let ŝ be the solution to (1.4), then:

‖s − ŝ‖2 ≤ C0
1√
k
‖s − sk‖1 + C1ε

with the same constant C0 as in the previous theorem and another global constant
C1.

Proofs of these theorems are complicated and based on advanced real analysis math-
ematics. Interested readers may refer to [1–3] for details.

RIP condition on the sensing matrix is a standard approach in CS theory, but
unfortunately its practical benefits is limited. Calculating RIP for a general matrix
is a NP-hard problem and only has been done for special cases. Using random
matrix theory, existence of such matrices have been proven for m > O(k log( n

k ))

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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for any desired δk ∈ (0, 1) but even in such cases building such matrices is an
independent issue. Note these theorems require RIP condition but we will discuss
that RIP condition is only a sufficient condition and is not a necessary condition for
accurate l1-recovery. On the other hand, it is also not a complete concept to study
CS.

An important quantity in designing the sensing matrix is mutual coherence.

Definition 4 Mutual Coherence
Let A ∈ R

n×m, the mutual coherence μA is defined by:

μA = max
i �= j

|〈ai , a j 〉|
‖ai‖‖a j‖

where ai , a j denote two distinct columns of A.

A small coherence implies of closeness of the sensing matrix to a normal matrix. If
a matrix possesses a small mutual coherence, then it also satisfies the RIP condition.
It means that coherence is a stronger condition. On the other hand the complexity
of calculating the coherence is O(n2) and thus is tractable. According to Welch
inequality [4]:

μA ≥
√

n

m(n − m)
(2.17)

This implies for n � m, μA ≥ 1√
m

. Consequently if we want to design sensing

matrices which satisfy RIP condition using mutual coherence, then m > O(k2)

which is much greater than m = O(k log( n
k )) bound for which existence of proper

sensing matrices has been proven. But due to computational complexity issues, it is
the only proper tool for this purpose.

Next section covers the new paradigm for compressive sensing [5–7]. This
approach uses a completely different approach based on studying the nullspace of
the sensing matrix using spherical section property.

2.3 Spherical Section Property

Analysis of compressive sensing based on RIP requires advanced mathematical tools,
but this approach is not necessary to develop compressive sensing [5, 6]. Moreover,
it is not a required condition for exact recovery.

Consider the problem of (1.2). The pair (A, y) carries the information in CS
framework. Consider an invertible matrix, B. It is trivial that the system B As = By is
equivalent to the system As = y. Thus the pair (B A, By) carries the same information
as (A, y). But the RIP of A and B A can be vastly different. For any CS problem one
can choose B to make RIP of B A significantly bad, regardless of RIP of A [6]. RIP is
a strong condition on sensing matrix and practical and experimental results confirm

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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it is not a necessary condition for main theorems of CS to hold. This motivates the
derivation of CS in a more simple and general approach based on spherical section
property (SSP) [5, 6]. Interestingly this approach is simpler and some of the main
results of CS theorems in RIP context can be derived easier using spherical section
property. Here we briefly describe CS theory in this context and follow the approach
of [6] in proving the main theorems.

Definition 5 Spherical Section Property (SSP) Let m, n ∈ N such that n > m and
V be an n − m dimensional subspace of R

n. This subspaces is said to have spherical
section property with constant �, if ∀s ∈ V:

‖s‖1

‖s‖2
≥

√
m

�

Here, � is called the distortion of V.

Note if we consider the nullspace of a sensing matrix as the subspace in this definition,
for an invertible matrix � = 0. Similar to RIP approach the following theorems are
developed.

Theorem 2.3.1 (Noiseless Recovery) Suppose null(A) has the �-spherical section
property. Let ŝ be a nonzero vector such that: Aŝ = y.

1. Provided that: ‖ŝ‖0 ≤ m
3�

, ŝ is the unique vector satisfying As = y and ‖s‖0 ≤
m

3�
.

2. Provided that: ‖ŝ‖0 ≤ m
2�

≤ n
2 , ŝ is the unique solution to the optimization

problem (1.4).

Proof 1

1. First define the vector sign(s) = [sign(si)]. According to the Cauchy-Schwarz
inequality:

|〈sign(s), s〉| ≤ ‖sign(s)‖2‖s‖2 →
∑

i

|si | ≤ √|supp(s)|‖s‖2 → ‖s‖1

≤ √‖s‖0‖s‖2 (2.18)

Now assume v be a second solution which is more sparse compared to ŝ and
‖v‖0 = m1. Let w = v − ŝ. Note, w �= 0 and w ∈ Null(A), then:

‖w‖0 ≤ ‖v‖0 + ‖ŝ‖0 ≤ m1 + m

3�

(2.18)−−−→ ‖w‖1

‖w‖2
≤

√

m1 + m

3�
(2.19)

√
m

�
≤

√

m1 + m

3�
→ 2m

3�
≤ m1,

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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this a contradiction and shows v is not sparse enough and uniqueness of the
solution results.

2. Again assume v be a second solution to (1.4) such that ‖v‖1 ≤ ‖ŝ‖1 and let
w = v − ŝ, S = supp(ŝ), S̄ = {1, ..., n} − S, and wS to be the projection of w on
S:

‖v‖1 = ‖w + ŝ‖1 = ‖wS + ŝS‖1 + ‖wS̄ + ŝS̄‖1 = ‖wS + ŝS‖1 + ‖wS̄‖1 ≥
(2.20)

‖ŝS‖1 − ‖wS‖1 + ‖wS̄‖1 = ‖ŝ‖1 − ‖wS‖1 + ‖wS̄‖1,

now since ‖v‖1 ≤ ‖ŝ‖1, one concludes ‖wS̄‖1 ≤ ‖wS‖1.

Note w ∈ null(A), now we want to calculate maximum value of the ratio ‖w‖1‖w‖2
.

This problem is invariant under scaling of w, thus we set ‖w‖2 = 1 and also we can
assume w lays in the positive orthant (since the element signs would not change the
norm value). We will have the following optimization problem:

max w1 + · · · + wn

s.t.: 0 ≤ wi , (2.21)
∑

i∈S̄

wi ≤
∑

i∈S

wi

The second constraint comes from the inequality we derived before. This problem is
a convex optimization instance, so we can exhibit the maximizer in closed form if we
can exhibit the solution to the KKT condition [8]. Let

wi =

⎧
⎪⎪⎨

⎪⎪⎩

a =
√‖ŝ‖0(n − ‖ŝ‖0)/n

‖ŝ‖0
, i ∈ S

b =
√‖ŝ‖0(n − ‖ŝ‖0)/n

‖n − ŝ‖0
, i ∈ S̄

(2.22)

It is easy to check that this point lays in the feasible region. The KKT multipliers are
the solutions to the system:

{
λ1 + 2λ2b = 1

−λ1 + 2λ2a = 1
→

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = a − b

a + b

λ2 = 1

a + b

(2.23)

So both multipliers are positive if ‖ŝ‖0 ≤ ‖n − ŝ‖0. Thus the objective value of (2.21)

would be
√

‖ŝ‖0(n−‖ŝ‖0)
n and consequently ‖w‖1‖w‖2

≤
√

‖ŝ‖0(n−‖ŝ‖0)
n . On the other hand

w ∈ null(A), which concludes:

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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√
m

�
≤

√‖ŝ‖0(n − ‖ŝ‖0)

n
≤

√
‖ŝ‖0 → m

�
≤ ‖ŝ‖0, (2.24)

which contradicts the assumption and results the proof.

The second theorem considers stability towards noise.

Theorem 2.3.2 Noisy Recovery Suppose null(A) has the �-spherical section prop-
erty. Let ŝ be the minimizer of (1.4). Then for every s̄ ∈ R

n and ∀k < min( m
16�

, n
4 ):

‖ŝ − s̄‖1 ≤ 4‖s̄k − s̄‖1, (2.25)

where sk denotes the k-sparse approximation of s.

Proof 2 Let w = ŝk − s̄, so w ∈ null(A):

‖ŝ‖1 = ‖s̄ + w‖1 =
‖s̄S + wS‖1 + ‖s̄S̄ + wS̄‖1 ≥
‖s̄S‖1 − ‖wS‖1 − ‖s̄S̄‖1 + ‖wS̄‖1 ≥ (2.26)

‖s̄‖1 − ‖wS‖1 + ‖wS̄‖1 − 2‖s̄S̄‖1,

Since ŝ is the minimizer of (1.4) we conclude:

‖wS̄‖1 ≤ ‖wS‖1 + 2‖s̄S̄‖1. (2.27)

Now define: R = ‖w‖1‖s̄−sk‖1
. To obtain the result, it is enough to find an upper bound

for R (R ≤ 4). We substitute R in (2.27):

‖wS̄‖1 ≤ ‖wS‖1 + 2‖w‖1/R → ‖wS̄‖1 ≤ ‖wS‖1 + 2(‖wS‖1 + ‖wS̄‖1)/R →
(2.28)

(1 − 2/R)‖wS̄‖1 ≤ (1 + 2/R)‖wS‖1.

Now note if 1 − 2/R ≥ 0, then R ≤ 2 ≤ 4 and the proof results, so let 1 − 2/R > 0.
Then from (2.28): ‖wS̄‖1 ≤ 1+2/R

1−2/R ‖wS‖1. Assuming γ = 1+2/R
1−2/R (γ ≤ 3) and in

exactly the same approach as in the previous theorem one can conclude (for details
refer to [6]):

‖w‖1

‖w‖2
≤ γ + γ

√
k(n − k)

k + 9(n − k)

w∈null(A)−−−−−−→
√

m

�
≤ γ + γ

√
k(n − k)

k + 9(n − k)

(2.29)

n−k≤((9(n−k)+k)/9)−−−−−−−−−−−−→
√

m

�
≤ (γ + 1)

√
k

k≤ m
16�−−−−→ 3 ≥ γ.

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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On the other hand the assumption was γ ≤ 3 and thus γ = 3. Consequently R = 2
which results in the desired bound on R and the result follows.

These two theorems establish CS theory but in SSP context and similarly state
uniqueness and stability of l1-norm solution for a CS problem. The results are derived
in a much simpler approach compared to RIP context [1, 2]. It is interesting to note
that the main results which are derived in RIP approach can be rederived in SSP
context. For instance the error bound in Theorem 2.3.2 has been derived in RIP
context, too. Also, it has been shown the Gaussian random matrices have spherical
section property and are good choice for sensing matrix [5]. Furthermore, as it will
be discussed this approach is a better embed for considering cases when we have
side information on the feasible region.

2.4 Reconstruction Methods

In this section a brief review on CS reconstruction methods is given. Nowadays one
of the limitation of using CS is the low-speed of the reconstruction methods with
high dimensional data. Improving the performance of reconstruction methods is an
active research area.

2.4.1 Minimization of l1-norm

Historically l1-norm minimization is the main approach for CS reconstruction algo-
rithms. Main CS theorems state robustness of the l1-norm minimization towards
additive noise and also system noise. The importance of l1-norm is that, it is a con-
tinuous convex function, so convex optimization tools can be applied to the problem.
The more important fact is that l1-norm minimization problem can be formulated as
a linear programming problem. Let A′ = [A,−A], s′ = [s1; s2], s = s1 − s2:

min[1; 1]T s′ s.t.A′s′ = y0, s′ ≥ 0, (2.30)

where 1 is an all-ones column vector and (·)T denotes matrix transposition. Con-
sequently well-known linear programming algorithms such as Simplex and Interior
Point methods can be used with complexity of O(n3). One group of successful
algorithms in this class is Basis Pursuit [9].

Although linear programming methods can find the solution in finite time but
for many practical applications O(n3) is not a tractable time. Specially in image
processing applications in which n = O(105) for a typical image.
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2.4.1.1 Thresholding Algorithms

Some iterative methods have been introduced to decrease the computational com-
plexity of l1-norm minimization. In these methods an iterative sequence of vectors
is produced, which converges to the solution through iterations. Although conver-
gence to the exact solution is more time consuming compared to linear programming
methods, these methods quickly converge to a very good approximate of the solution.

It can be shown that for a proper selection of λ, the optimization problem (1.4) is
equivalent to the following unconstrained problem:

ŝ = arg min
s

1

2
‖y − As‖2

2 + λ‖s‖1 (2.31)

Since this problem is unconstrained one can use steepest descend or conjugate gra-
dient approaches to derive an iterative relation. Although l1-norm is not a smooth
function but concept of subderivative enables us to apply a similar procedure to
steepest descend on (2.31) (more discussions is given in Chap. 3). Upon choosing
a proper initial value, the iterative relation will converge to the minimizer of (1.4).
Several algorithms have been developed for this purpose [10, 11]. In the current note
we work with image signals and thus we have used one of the-sate-of-the-art iterative
methods for reconstruction [12, 13].

The iterative formula for iterative hard thresholding (IHT) algorithm is as follows:

si+1 = G(si − AT (Asi − y)), (2.32)

where G(·) is a thresholding function:

G(x) =
{

0 |si | ≤ √
λ

si |si | ≥ √
λ

, (2.33)

The main advantage is that each iteration only involves multiplication of vectors
and A and AT , followed by thresholding. So the sensing matrix can be defined only
as an operator and it is not even required to store the sensing matrix. This is much
simpler than linear programming. Note the threshold in this algorithm is constant
in all iterations. A class of successful methods is the iterative shrinkage threshold-
ing algorithms (ISTA) which improve IHT through using an adaptive thresholding
function. The iterative step is as follows:

si+1 = Hλδ(si − δAT (Asi − y)), (2.34)

where δ is a parameter for step size and H(·) is a soft shrinkage threshold function:

Hλ(si ) = (|si | − λ)+sign(xi). (2.35)

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_3
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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FISTA algorithm [12] further improves ISTA by involving the solutions of the two
previous iterations in each step.

2.4.2 Greedy Algorithms

Greedy algorithms generally solve a problem in a number of steps (in CS problem,
mainly the number of steps is equal to the sparsity level k). In each step the best selec-
tion (in CS problem, normally the best column of the sensing matrix) is done without
considering the future steps. Consequently the result is not always the real solution
but this approach provides acceptable results in compressive sensing reconstruction.

A simple algorithm of this class is Matching Pursuit. An equivalent representation
for compressive sensing is:

y =
n∑

i=1

ai si , (2.36)

where ai is the i th column of A. If we have a k-sparse source, CS in this context can
be interpreted as finding the k related columns of A and corresponding si ’s. Matching
Pursuit approximates the source in k step. In each step one column of A is revealed
and then the corresponding si is revealed by solving a least square problem. In the
first step the inner product of y and all ai ’s are calculated (〈y, ai 〉). Then the column
a j with the maximum absolute value of 〈y, ai 〉 is selected as an active column in
(2.36) and si = 〈y, a j 〉. Thus the first term in (2.36) is known. Let this approximate
of s be s(1). The next steps are done similarly, only in each step we update the value
of y as follows:

y(i+1) = y(i) − si a j . (2.37)

The main disadvantage in this approach is that it is assumed that columns of A are
orthogonal which is not the case for most sensing matrices. Orthogonal Matching
Pursuit (OMP) [14] improves this method via updating the found si ’s in each step.
Since this approach uses similarity of ai ’s and the residual vector of (2.37), mutual
coherency of the sensing matrix plays an important role. Faster algorithms such as
Compressive Sampling Matched Pursuit (CoSaMP) [15] improves the algorithm via
a look on future steps. Overall, this class of reconstruction methods are fast but do
not necessarily find the real solution.

2.4.3 Norm Approximation

This class approximate l0-norm via a differentiable function and then use methods
such as steepest descend for minimization. For instance smoothed l0 (SL0) algorithm
[16] approximates the l0-norm as follows:
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‖s‖0 ≈ g(s) = n −
n∑

i=0

fσ(si ), (2.38)

where fσ(·) is defined as:

fσ(s) = e− s2

2σ2 , (2.39)

and σ ∈ R
+ is a small constant. The parameter σ determines the closeness to the

l1-norm and smoothness of the approximation, as σ → 0 then g(s) → ‖s‖0. The
function g(·) is continuous and differentiable and thus steepest descend methods can
be applied directly to find the minimizer of g(·). For a proper selection of σ, it may
be possible to find the global minimizer of (1.3). Experiments have shown that this
method is faster than l1-norm minimization methods but again for large scale systems
it is not applicable.

2.4.4 Message Passing Reconstruction Algorithms

Graphical Models is an active research area with a wide range of applications.
Recently fast iterative methods based on graphical models have been used in convex
optimization problems [17, 18]. The connection between belief propagation (BP)
message passing algorithm and convex optimization inspired researchers to apply
graphical models concepts to CS theory to find faster solvers.

In order to connect CS theory with graphical models, first we model CS prob-
lem as a probabilistic inference problem. Figure 2.1 [subplot (a)] provides a block
diagram representation for (1.3). It is assumed that the sparse source is resulted

(a) (b)

Fig. 2.1 (a) Probabilistic block diagram for CS and (b) corresponding factor graph

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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from sampling of a probability distribution Ps(s). Sparse sources have been modeled
with heavy-tailed distributions including Laplacian, Gaussian mixtures, generalized
Gaussian, and Bernoulli Gaussian distributions in the literature [18]. The obser-
vation is resulted from the source via linear transformation, A = ��, followed
by noise contamination. The goal is to estimate the source signal, either MAP or
MMSE estimations, using the observed measurement, y. In this framework the orig-
inal CS problem can be considered as a probabilistic inference problem. Exact MAP
estimate can be computed for the problem [18] but unfortunately the solution involves
heavier computational load compared to l1-norm minimization methods. One idea
is to use approximate inference algorithms such as BP to lessen the computational
load. To do this end a graphical model must be assigned to the problem. The main
idea for this purpose comes form error control coding area, where it is common to
represent a parity check matrix by a biparitite graph. Analogously the block diagram
in Fig. 2.1 [subplot (a)] can be represented by a biparitite factor graph as shown in
Fig. 2.1 [subplot (b)]. There are two class of nodes in the factor graph: variable nodes
(black) and constraint nodes (white). The edges connect variable nodes to constraint
nodes. A constraint node models the dependencies that its neighboring variable nodes
are subjected to. We have two types of constraint nodes; the first type imposes the
probability distribution on source coefficients while the second type connects each
coefficient node to a set of measurement variables that are used in computing that
measurement. Having this factor graph, belief propagation can be employed to infer
the probability distribution of the coefficients and consequently the MAP estimation
for source signal.

In [18], the authors used belief propagation to infer the source signal. While their
approach is interesting and the algorithm is much faster compared to general CS
reconstruction algorithms, it poses a main limitation: to run BP, the authors assumed
the sensing matrix to be sparse, which is not a realistic assumption in most CS
applications. The reason for this assumption is that the implementation of BP in the
general case is computationally intractable for dense graphs. Fortunately BP often
admits acceptable solution for large, dense matrix when Gaussian approximation is
used [19]. This property has led to generalization of approximate message passing
algorithms for dense graphs. The key idea of generalized message passing algorithm
(GMA) is to decompose the vector valued estimation problem into a sequence of
scaler problems. This idea combined with the idea given in [18], has been used to
generalize the compressive sensing algorithm via belief propagation for CS problems
with dense sensing matrices. This class of algorithms are new compared to other
classes and research is still going on to improve and generalize these algorithms
to non-parametric cases, where we do not have prior information about the source
distribution.

In this section a brief review on CS reconstruction algorithm was given. As stated
in Chap. 1, one of the main limitations of applying CS to applications is at its recon-
struction side. After about a decade of extensive research in this area, nowadays CS
is well established and matured in terms of theory and analysis, but research is still
going on to improve the current reconstruction algorithm in terms of computational

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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and implementational complexity. Simple algorithms which can be implemented
cheaply via electronic devices is crucial for this research area.
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Chapter 3
Compressed Sensing with Side Information
on Feasible Region

In the literature the problem of compressed sensing in the presence of side information
is studied. But, in most cases the side information are about the source itself, i.e.
structure, probability distribution, etc. In this chapter, the problem of compressed
sensing in the presence of side information about the feasible region is reviewed. We
follow an approach similar to [1] to formulate the problem mathematically for a wider
class. Next it is shown that uniqueness and stability results of CS still holds in this
formulation. Finally, an efficient recovery algorithm is derived which incorporates
the side information.

3.1 Formulation

Consider a general compressed sensing problem (1.3). Assume null(A) satisfies
spherical section property with parameter �, consequently Theorems 2.3.1 and 2.3.2
hold for this problem. From linear algebra if s1 is a special solution to the system
As = y, then the feasible region for the optimization problem (1.3) would be:

F = {s1 + s2|As2 = 0} = {s1} + null(A). (3.1)

In the current work we adopt FISTA as the reconstruction algorithm. To solve for the
unique solution we start from an initial point and then search in the feasible region in
(2.34). The size of this region depends on null(A) ≡ R

m (rank(A)) and intuitively
we expect the bigger this space is, the harder is to solve the optimization problem.
In other words when the feasible region is small then (2.34) converges faster to the
solution of (1.4). Thus any side information about the feasible region is helpful.

Now consider cases that we have side information about the feasible region. For
instance in the case of derivative compressed sensing (DCS) [1], where the source
signal is a gradient field, the side information will result in Bs = 0 condition on the
source signal (B ∈ R

n
2 ×n and is resulted from inherent property of a gradient field.
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We will discuss this special case in more details in Chap. 4). A more general case
may happen when we have side information as:

Bs = b, (3.2)

where B ∈ R
m′ × n is a full rank matrix. Many constraints on a source can be for-

mulated as (3.2). In such cases we have two types of information about the source.
We call the first type, primary information, which is resulted through measurements
(As = y). The secondary information comes in hand through an inherent property
of the source. Broadly speaking, we can assume we have a general inverse problem
(Bs = b) and we also have sparsity prior on the source, then we apply CS as a
regularization method on this problem. Some problems in image/signal processing
area such as image super-resolution, image impainting, and medical imaging can be
modeled in this framework. We expect that if we incorporate this side information it
somehow improves CS reconstruction. For instance we may be able to decrease the
number of measurements for recovering the source with similar accuracy or some
kind of robustness towards noise when the measurements are noisy.

Let A′ =
[

A
B

]

(A′ ∈ R
(m+m′)×n and is full rank matrix) and y′ =

[
y
b

]

(y′ ∈
R

(m+m′)). We have the following equivalent problem:

ŝ = arg min
s

‖s‖0 s.t. y′ = A′s. (3.3)

Assume m + m′ ≤ n, in such cases the new problem is exactly in theform of a CS
problem. We assume m + m′ ≤ n so as to ensure an underdetermined system to
deal with problem in CS framework. Now the question is: Does this problem have
a unique solution? Can we still replace the l0-norm with l1-norm? To answer these
questions, the new sensing matrix A′ must be studied. In the next section we will
show the answers to both questions are positive.

3.2 Uniqueness and Stability

Consider the optimization problem (3.3). Our assumption is that A has �-spherical
section property, so (1.3) has a unique solution ŝ and also we have l1-l0 equivalence.
We show that adding the secondary condition will not violate the uniqueness, and
furthermore solutions of (1.3) and (3.3) are equal.

Lemma 1 The problem (3.3) has a unique solution ŝ equivalent to the solution of
(1.3). Furthermore l1-l0 equivalence holds for this problem, i.e.:

ŝ = arg min
s

‖s‖1 s.t. y′ = A′s. (3.4)

http://dx.doi.org/10.1007/978-3-319-00366-5 _4
http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5 _1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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Proof 3 The proof is simple. First we show A′ has spherical section property with
�′ = (1 + m′

m )�. Note dim(null(A′)) = n − (m + m′) and:

A′s = 0 →
{

As = 0
Bs = 0

→ null(A′) = null(A) ∩ null(B), (3.5)

thus null(A′) ⊂ null(A). Consequently ∀s ∈ null(A′) ⊂ null(A):

‖s‖1

‖s‖2
≥

√
m

�
=

√
m + m′

�(1 + m′
m )

, (3.6)

according to the definition of SSP, null(A′) has spherical section property with
� = (1 + m′

m )�.
According to the assumption ŝ is the solution of (1.3) and also satisfies Bs = b, ŝ

lays in the feasible region of (3.3). According to Theorem 2.3.1, ŝ is a unique solution
of (3.3), if ‖ŝ‖0 ≤ m+m′

2�′ . Note ‖ŝ‖0 ≤ m
2�

since it is the unique solution of (1.3),
then from Theorem 2.3.1:

‖ŝ‖0 ≤ m

2�
= m(m + m′)

2�(m + m′)
= m + m′

2�(1 + m′
m )

= m + m′

2�′ , (3.7)

which concludes the proof. Similarly we can conclude if the original primary CS
problem has l1-l0 equivalence in Theorem 2.3.2, then (3.3) inherits this property.
Also note that this unique solution satisfies As = y and thus is equal to solution
of (1.3).

This lemma states that we can add any side information in the form of (3.2) to
our problem and this will not make the situation worse. This result is very intuitive
and is expected but the Lemma also gives a mathematical justification. For source
reconstruction we can use a general proposed CS reconstruction algorithm and find
the unique solution of (3.3), however this may not be efficient enough. In the next
section, a more efficient algorithm is proposed to solve (3.3).

3.3 Numerical Solution Algorithm

As explained, the problem that we formulated in Sect. 3.1 can be formulated by
(3.3). We also expect some improvement if we use side information. In this section
an efficient algorithm is derived for solving this problem. When Lemma 1 holds,
(3.3) can be equivalently formulated as follows:

ŝ = arg min
s

μ‖s‖1 + ‖As − y‖2
2 s.t. Bs = b, (3.8)

http://dx.doi.org/10.1007/978-3-319-00366-5_1
http://dx.doi.org/10.1007/978-3-319-00366-5_1
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now we have our original CS reconstruction problem constrained to the side infor-
mation. To solve optimization problems in this form one can use operator splitting
[2–4]. We will have a quick review on this method and then use it to solve (3.8).

3.3.1 Bregman Iteration and Operator Splitting

Consider the following optimization problem:

min
s

J (s) s.t. H(s) = 0, (3.9)

where H is a convex differentiable furcation while J is also convex but possibly
non-differentiable functions. An efficient method to solve this type of problems is to
use the Bregman iterations [2].

To proceed we need the definition of sub-gradient and Bregman distance.

Definition 6 Let J (·) : R
n → R

+ be a convex and possibly non-differentiable
function. The vector p ∈ R

n is called a sub-gradient of J at point w0:

∀w ∈ R
n : J (w) − J (w0) ≤ 〈p, w − w0〉. (3.10)

Also, the set of all p’s is called sub-differentiable of J at point w and is denoted by
∂ J (w0).

For a differentiable function, ∂ J (w0) reduces to a singleton which only contains the
gradient vector, ∇ J (w0). This concept extends the definition of gradient to convex but
possibly non-differentiable functions. For instance sub-differentiable of J (w) = |w|
at the point w = 0 is the set [−1, 1]. Next we require definition of Bregman distance

Definition 7 The Bregman distance of a convex function J (·) : R
n → R

+ between
two points s and w is defined as:

Dp
J (s, w) = J (s) − J (w) − 〈p, s − w〉, (3.11)

where p is a sub-gradient of J at w.

Note (3.11) is not symmetric, thus Bregman distance is not a metric but somehow
measures closeness of the two points.

Now back in our problem (3.9), this problem can be solved iteratively as follows:

⎧
⎨

⎩

si+1 = arg min
s

Dpi

J (s, si ) + δH(s)

pi+1 = pi − δ∂ H(si+1),
(3.12)
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where δ ≥ 0 is a constant. It is shown in [4], that if the original problem (3.9) has a
solution ŝ, then through the iterations in (3.12), as i → ∞ then si → ŝ.

Now we apply this algorithm on (3.8), for which we can assume, H(s) = 1
2‖

Bs − b‖2
2 and J (s) = μ‖s‖1 + ‖As − y‖2

2. This will reduce (3.12):

{
(si+1, bi+1) = arg min

s,b
μ‖s‖1 + 1

2‖As − y‖2
2 + δ

2‖Bs − b + pi‖2
2

pi+1 = pi + δBsi+1 − bi+1.
(3.13)

Note that the update step of the first equation in (3.13) has the format of a standard
basis pursuit de-noising (BPDN) problem [5], which can be solved by a variety of
optimization methods [6]. In the present paper, we used the FISTA algorithm of [7]
due to the simplicity of its implementation as well as for its remarkable convergence
properties. It should be noted that the algorithm does not require explicitly defining
the matrices A and B. Only the operations of multiplication by these matrices and
their transposes need to be known, which can be implemented in an implicit and
computationally efficient manner. The main advantage of solving the problem using
operator splitting is the much faster convergence of the thresholding algorithm.

Now equipped with some theoretical evidence and an efficient reconstruction
algorithm we continue with some experimental study on advantageous prospect of
our approach.

3.4 Experimental Study

To verify our analysis and algorithm, this section is devoted to experimental study
on synthetics data, where as in the next Chapters we will focus on the practical
applications of the developed method.

3.4.1 Source Model

For source simulation we used mixture of Gaussian model as the sparse source model:

s ∼ pN (0, σ1) + (1 − p)N (0, σ2), (3.14)

where N (0, σi ) denotes a Gaussian distribution with zero mean and variance σ 2
i ,

σ1 � σ2, and p is the parameter for a Bernoulli distribution. This model has been used
to represent sparse signals in the literature [8, 9]. Although it is not a proper model
for some applications, it is useful for our experimental study. Here, it is assumed that
the source signal has two states. The first state corresponds to source elements with
large values (non-zero elements) and the second state corresponds to elements with
negligible value (approximately zero elements). The Bernoulli distribution parameter
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p decides for each element, what state is active and controls the level of sparsity, and
then each state is modeled via a Gaussian distribution. It must be taken into account
that we only use this procedure for producing the source and assume the user does
not have any information about the source probability distribution.

We also need a type of side information about the source that we can model in the
form of (3.2). For this purpose we assumed that we have a prior information about the
positions and values of some of the large value elements. This assumption is a good
embed for testing the proposed method. We transform this information to the form
of (3.2). An example makes the procedure clear. Assume we have a sparse source
s ∈ R

10. Assume we know that the second and the fourth elements are non-zero and
both equal to 2, thus one concludes:

B =
[

0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

]

(3.15)

and:

b =
[

2
2

]

. (3.16)

In the general case for B ∈ R
m′ × n , where m′ is the number of the known non-zero

elements, in each row we set Bi j related to the j th known non-zero element equal to
one and the rest of the matrix entries equal to zero. Trivially b j is equal to the j th
known non-zero element. We continue with experiments in this framework.

3.4.2 Experiments

We set n =1,024, σ1 = 0.1, and σ2 = 10 with sparsity level of p = 0.1 to generate
the source signal through this subsection. This means that we have an approximately
sparse source with about 100 large value elements. The sensing matrix was chosen
as a random matrix with i.i.d Gaussian entries and applied to the source to produce
the measurement vector y. This selection is standard in the CS literature because
these matrices satisfy both RIP and SSP. Based on our assumption, the positions and
the values of a fraction of large value elements are known and one can form (3.2).
Through the experiments, we assumed one fourth of the large value elements of the
source are known (m′ ≈ 25) and m = 300, unless stated.

Figure 3.1a depicts an instance of the generated source in which the signal is
presented versus time (index). Figure 3.1b depicts the reconstruction results for the
classical CS. Visually, it can be seen some approximately zero elements are estimated
larger than the real values and the quality of the reconstruction is poor. Figure 3.1c
depicts the reconstruction results for the proposed method. As it can be detected visu-
ally our method outperforms the classical method, which is also confirmed numer-
ically by calculating the signal-to-noise ration (SNR). The result confirms that the
proposed algorithm works properly and is able to incorporate the side information.
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Fig. 3.1 a The source signal b reconstructed using the classical CS, SNR = 14.4 c reconstructed
using the proposed method, SNR = 26.0

To analyze the algorithm two sets of experiments are done. First, we study the
effect of the number of the known elements on the performance of the algorithm.
Assume 0 < r ≤ 1 indicates the fraction of the known elements. Figure 3.2 depicts
the proposed algorithm reconstruction quality (measured via SNR) versus r for
r ∈ (0.1, 1). As expected as we increase the side information, the quality of the
reconstruction also improves such that for r = 1 we have near complete recovery.

In the second experiments we consider the effect of number of the measurements,
m, on reconstruction quality. Figure 3.3 depicts output reconstruction SNR versus
m for the classical CS and the proposed method. As expected, the reconstruction
quality improves as the number of measurement increases for both methods. As it
can be detected for large number of the measurements both methods are saturated
and we have high SNR values. This is not surprising since when the number of
the measurements are large enough we can reconstruct the source perfectly and the
side information has negligible effect on the quality of the measurements. But for
insufficient measurements, the side information becomes important and improves the
quality of the reconstruction. This implies that the proposed method can be used to
either improve the quality of the reconstruction or decrease the number of the required
measurements without deteriorating the quality of the reconstruction. Overall, these
experiments confirm the effectiveness of the proposed method. In the next chapters,
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Fig. 3.2 Output SNR versus the fraction of known large value elements (r)

Fig. 3.3 SNR of the source reconstruction obtained with different methods as a function of m. Here,
the dashed and solid lines correspond to the classical CS and the proposed CS method, respectively,
and r = 0.25

this method has been applied to two practical examples: image deblurring in optical
imaging [10] and surface reconstruction in the gradient field [11]. In both applications
the source signals are gradient fields and the side information can be formulated as
(3.2) as in [1]. Also, further analysis has been done through these applications.
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Chapter 4
Application: Image Deblurring for Optical
Imaging

The problem of reconstruction of digital images from their blurred and noisy
measurements is unarguably one of the central problems in imaging sciences. Despite
its ill-posed nature, this problem can often be solved in a unique and stable manner,
provided appropriate assumptions on the nature of the images to be discovered. In
this section, however, a more challenging setting is considered, in which accurate
knowledge of the blurring operator is lacking, thereby transforming the reconstruc-
tion problem at hand into a problem of blind deconvolution [1, 2]. As a specific
application, the current presentation focuses on reconstruction of short-exposure
optical images measured through atmospheric turbulence. The latter is known to
give rise to random aberrations in the optical wavefront, which are in turn trans-
lated into random variations of the point spread function (PSF) of the optical system
in use. A standard way to track such variations involves using adaptive optics. For
example, the Shack-Hartmann interferometer provides measurements of the opti-
cal wavefront through sensing its partial derivatives. In such a case, the accuracy
of wavefront reconstruction is proportional to the number of lenslets used by the
interferometer, and hence to its complexity. Accordingly, in this chapter, we show
how to minimize the above complexity through reducing the number of the lenslets,
while compensating for undersampling artifacts by means of derivative compressed
sensing. Additionally, we provide empirical proof that the above simplification and
its associated solution scheme result in image reconstructions, whose quality is com-
parable to the reconstructions obtained using conventional (dense) measurements of
the optical wavefront.

4.1 Background

The necessity to recover digital images from their distorted and noisy observations is
common for a variety of practical applications, with some specific examples including
image denoising, super-resolution, image restoration, and watermarking, just to name
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a few [3–6]. In such cases, it is conventional to assume that the observed image v is
obtained as a result of convolution of its original counterpart u with a point spread
function1 (PSF) i . To account for measurement inaccuracies, it is also standard to
contaminate the convolution output with an additive noise term ν, which is usually
assumed to be white and Gaussian. Thus, formally,

v = i ∗ u + ν. (4.1)

While u and v can be regarded as general members of the signal space L2(�) of
real-valued functions on � ⊆ R

2, the PSF i is normally a much smoother function,
with effectively band-limited spectrum. As a result, the convolution with i has a
destructive effect on the informational content of u, in which case v typically has a
substantially reduced set of features with respect to u. This makes the problem of
reconstruction of u from v a problem of significant practical importance [8].

Reconstruction of the original image u from v can be carried out within the
framework of image deconvolution, which is a specific instance of a more general
class of inverse problems [9]. Most of such methods are Bayesian in nature, in which
case the information lost in the process of convolution with i is recovered by requiring
the optimal solution to reside within a predefined functional class [10–12]. Thus, for
example, in the case when u is known to be an image of bounded variation, the above
regularization leads to the famous Rudin-Osher-Fatemi reconstruction scheme, in
which u is estimated as a solution to the following optimization problem [13, 14]

û = arg min
u

{
1

2
‖u ∗ i − v‖2

2 + α

∫

|∇u| dxdy

}

, (4.2)

where α > 0 is the regularization parameter. It should be noted that, if the PSF
obeys

∫
i dxdy �= 0, the problem (4.2) is strictly convex and therefore admits a

unique minimizer, which can be computed using a spectrum of available algorithms
[13–17].

In some applications, the knowledge of the PSF may be lacking, which results in
the necessity to recover the original image from its blurred and noisy observations
alone. Such a reconstruction problem is commonly referred to as the problem of blind
deconvolution [9]. In the present study, however, we follow the philosophy of hybrid
deconvolution [18], whose main idea is to leverage any partial information on the PSF
to improve the accuracy of image restoration. In particular, in the algorithm described
in this chapter, such partial information is derived from incomplete observations of
the partial derivatives of the phase of the generalized pupil function (GPF) of the
optical system in use, as detailed below.

Optical imaging is unarguably the field of applied sciences from which the notion
of image deconvolution has originated [19–21]. In particular, in short-exposure turbu-
lent imaging [2], acquired images are blurred with a PSF, which depends on a spatial
distribution of the atmospheric refraction index along the optical path connecting

1 Note that, in optical imaging, this function is also referred to as an impulse transfer function [7].
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an object of interest and the observer. Due to the effect of turbulence, the above
distribution is random and time-dependent, which implies that the PSF i cannot be
known in advance.

A standard way to overcome the above limitation is through the use of adaptive
optics (AO) [22]. As will be shown later, the PSF of a short-exposure optical system
is determined by its corresponding generalized pupil function (GPF) P , which can
be expressed in a polar form as P = A ejφ. While, in practice, the amplitude A can
be either measured through calibration or computed as a function of the aperture
geometry, the phase φ accounts for turbulence-induced aberrations of the optical
wavefront, and hence is generally unknown at any given experimental time. Fortu-
nately, the phase φ turns out to be a measurable quantity, and this is where the tools
of AO come into play. One of such tools is the Shack-Hartmann interferometer (SHI)
(aka Shack-Hartmann wavefront sensor) [23–25], which allows direct measurement
of the gradient of φ over a predefined grid of spatial coordinates. Subsequently, these
measurements are converted into a useful estimate of φ through numerically solving
an associated Poisson equation.

Among some other factors, the accuracy of phase reconstruction by the SHI
depends on the size of its sampling grid, which is in turn defined by the number
of lenslets composing the wavefront sensor of the interferometer (see below). Unfor-
tunately, the grid size and the complexity (and, hence, the cost) of the interferometer
tend to increase pro rata, which creates an obvious practical limitation. Accordingly,
to overcome this problem, we propose to modify the construction of the SHI through
reducing the number of its lenslets. Although the advantages of such a simplification
are immediate to see, its main shortcoming is obvious as well: the smaller the number
of lenslets is, the stronger is the effect of undersampling and aliasing. These artifacts,
however, can be compensated for by subjecting the output of the simplified SHI to
the derivative compressed sensing (DCS) algorithm of [26], which is a special case of
the problem, studied in Chap. 3. As will be shown below, DCS is particularly suitable
for reconstruction of φ from incomplete measurements of its partial derivatives. The
resulting estimates of φ can be subsequently combined with A to yield an estimate
of the PSF i , which can in turn be used by a deconvolution algorithm. Thus, the
proposed method for estimation of the PSF i and subsequent deconvolution of u can
be regarded as a hybrid deconvolution technique, which comes to simplify the design
and complexity of the SHI on one hand, and to make the process of reconstruction
of optical images as automatic as possible, on the other hand.

4.2 Technical Preliminaries

In short exposure imaging, due to phase aberrations in the optical wavefront induced
by atmospheric turbulence, the PSF of an imaging system in use is generally unknown
[2]. To better understand the setup under consideration, we first note that, in optical
imaging, the PSF i is obtained from an amplitude spread function (ASF) h as i :=
|h|2. The ASF, in turn, is defined in terms of a generalized pupil function (GPF)
P(x, y) and is given by [27]

http://dx.doi.org/10.1007/978-3-319-00366-5_3
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h(ξ, η) = 1

λwzi

∫ ∞

−∞

∫ ∞

−∞
P(x, y)e

− j 2π
λzi

(x ξ+y η)
dxdy, (4.3)

where zi is the focal distance and λw is the optical wavelength. Being a complex-
valued quantity, P(x, y) can be represented in terms of its amplitude A(x, y) and
phase φ(x, y) as

P(x, y) = A(x, y) ejφ(x,y). (4.4)

Here, the GPF amplitude A(x, y) (which is sometimes simply referred to as the
aperture function) is normally a function of the aperture geometry. Thus, for instance,
in the case of a circular aperture, A(x, y) can be defined as [28]

A(r) =
{

1, if r ≤ D
2

0, otherwise
(4.5)

where D denotes the pupil diameter. Thus, given φ(x, y), one could determine h and
therefore i . Unfortunately, the phase φ(x, y) is influenced by the random effect of
atmospheric turbulence, and as a result cannot be known ahead of time.

A standard way to overcome the uncertainty in φ(x, y) is to measure it using the
tools of shearing interferometry, a particular example of which is the SHI [23, 29].
The latter is capable of sensing the partial derivatives of φ(x, y) over a predefined grid
of spatial locations. In this case, an accurate reconstruction of φ(x, y) entails taking
a fairly large number of the samples of ∇φ(x, y), which is essential for minimizing
the effect of aliasing on the estimation result [30]. Thus, in some applications, the
number of sampling points (as defined by the number of SHI lenslets) reaches as
many as a few thousands. It goes without saying that reducing the number of lenslets
would have a positive impact on the SHI in terms of its cost and approachability.
Alas, such a reduction is impossible without undersampling, which is likely to have
a formidable effect on the overall quality of phase estimation.

To minimize the effect of phase undersampling, we exploit the DCS algorithm
of [31]. The latter can be viewed as an extension of the conventional compressed
sensing (CCS) scheme, in which the standard sparsity constraints are supplemented
by additional constraints related to some intrinsic properties of partial derivatives.
This “side information”—which are called the cross-derivative constraints—allows
substantially improving the quality of reconstruction of φ(x, y), as compared to the
case of CCS-based estimation.

4.2.1 Shack-Hartmann Interferometer

As it was mentioned the SHI can be used to measure the gradient ∇φ(x, y) of the
GPF phase φ(x, y), from which its values can be subsequently inferred. A standard
approach to this reconstruction problem is to assume the unknown phase φ(x, y) to
be expandable in terms of some basis functions {Zk}∞k=0, viz. [24]
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φ(x, y) =
∞∑

k=0

ak Zk(x, y), (4.6)

where the representation coefficients {ak}∞k=0 are supposed to be unique and stably
computable. Note that, in this case, the datum of {ak}∞k=0 uniquely identifies φ(x, y),
while the coefficients {ak}∞k=0 can be estimated due to the linearity of (4.6) which
suggests

∇φ(x, y) =
∞∑

k=0

ak ∇Zk(x, y). (4.7)

In AO, it is conventional to define {Zk}∞k=0 to be Zernike polynomials (aka Zernike
functions) [27]. These polynomials constitute an orthonormal basis in the space of
square-integrable functions defined over the unit disk in R

2. Zernike polynomials
can be subdivided in two subsets of the even Zm

n and odd Z−m
n Zernike polynomials,

which possess closed-form analytical definitions as given by

Zm
n (ρ,ϕ) = Rm

n (ρ) cos(m ϕ) (4.8)

Z−m
n (ρ,ϕ) = Rm

n (ρ) sin(m ϕ), (4.9)

where m and n are nonnegative integers with n ≥ m, 0 ≤ ϕ < 2π is the azimuthal
angle, and 0 ≤ ρ ≤ 1 is the radial distance. The radial polynomials Rm

n in (4.8) and
(4.9) are defined as

Rm
n (ρ) =

(n−m)/2∑

k=0

(−1)k (n − k)!
k! ((n + m)/2 − k)! ((n − m)/2 − k)! ρn−2 k . (4.10)

Note that, since the Zernike polynomials are defined using polar coordinates, it
makes sense to re-express the phase φ and its gradient in the polar coordinate system
as well. (Technically, this would amount to replacing x and y in (4.6), (4.7) by ρ
and ϕ, respectively.) Moreover, due to the property of the Zernike polynomials to be
an orthonormal basis, the representation coefficients {ak}∞k=0 in (4.6), (4.7) can be
computed by orthogonal projection, namely

ak =
∫ 2π

0

∫ 1

0
φ(ρ,ϕ) Zk(ρ,ϕ) ρ dρ dϕ. (4.11)

In practice, however, φ(ρ,ϕ) is unknown and therefore the coefficients {ak}∞k=0 need
to be estimated by other means. Thus, in the case of the SHI, the coefficients can be
estimated from a finite set of discrete measurements of ∇φ(ρ,ϕ).

The main function of the SHI is to acquire discrete measurements of ∇φ by
means of linearization. The linearization takes advantage of subdividing a (circular)
aperture into rectangular blocks with their sides formed by a uniform rectangular
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Fig. 4.1 An example of
a 10 × 10 SHI array on a
circular aperture. The shading
indicates those blocks (i.e.,
lenslets) which are rendered
active

lattice. An example of such a subdivision is shown in Fig. 4.1 for the case of a 10×10
lattice grid. In general, the grid is assumed to be sufficiently fine to approximate φ by
a linear function over the extent of a single block. This results in a piecewise linear
approximation of φ, whose accuracy improves asymptotically when the lattice size
goes to infinity. Formally, let � := {(x, y) ∈ R

2 | x2 + y2 ≤ D2} be a circular
aperture of radius D and S = {(x, y) ∈ R

2 | max{|x |, |y|} ≤ D} be a square subset
of R

2 such that � ⊂ S. Then, for each polar coordinate (ρ,ϕ) ∈ � and an N × N
grid of square blocks of size 2D/N × 2D/N , the phase φ can be expressed as

φ(x, y) ≈ ax + by + c, (4.12)

for all (x, y) in a neighbourhood of (ρ cos ϕ, ρ sin ϕ). The approximation in (4.12)
suggests that

∇φ(x, y) ≈ (a, b)T (4.13)

where (·)T denotes matrix transposition. While c in (4.12) can be derived from
boundary conditions, coefficients a and b should be determined through direct mea-
surements. To this end, the SHI is endowed with an array of small focusing lenses
(i.e., lenslets), which are supported over each of the square blocks of the discrete grid,
thereby forming a wavefront sensor. In the absence of phase aberrations, the focal
points of the lenslets are spatially identified and registered using a high-resolution
CCD detector, whose imaging plane is aligned with the focal plane of the sensor.
Then, when the wavefront gets distorted by atmospheric turbulence, the focal points
are dislocated towards new spatial positions, which can also be pinpointed by the
same detector. The resulting displacements can be measured and subsequently related
to the values of ∇φ at corresponding points of the sampling grid.
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To explain how the above procedure can be performed, additional notations are
in order. Let �d denote a finite set of spatial coordinates defined according to

�d :=
{
(xd , yd) ∈ �

∣
∣

xd = −D + 2D

N

(

i + 1

2

)

, i = 0, 1, . . . , N − 1 (4.14)

yd = −D + 2D

N

(

j + 1

2

)

, j = 0, 1, . . . , N − 1

and x2
d + y2

d ≤ D2
}
.

The set �d can be thought of as a set of the spatial coordinates of the geo-
metric centres of the SHI lenslets, restricted to the domain of its aperture �.
Under the assumption of (4.12), one can then show [1] that the focal displacement
�(x, y) = [�x (x, y),�y(x, y)]T measured at some (x, y)∈ �d is related to the
value of ∇φ(x, y) according to

∇φ(x, y) ≈ 1

F
�φ(x, y), ∀(x, y) ∈ �d , (4.15)

where F is the focal distance of the wavefront lenslets. An example of the above
measurement setup is depicted in Fig. 4.2.

Now, provided a total of M := #�d (#�d denotes the cardinality of �d )
measurements of ∇φ over �d , one can approximate the coefficients {ak}L

k=1 of a trun-
cated series expansion of φ as a solution to the least-square minimization problem
given by

Fig. 4.2 Basic structure of the SHI and a resulting pattern of the focal points
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min{ak }
∑

(x,y)∈�d

∥
∥

L∑

k=0

ak∇Zk(x, y) − F−1�(x, y)
∥
∥2

2, (4.16)

subject to appropriate boundary conditions. It is worthwhile noting that (4.16) can
be rewritten in a vector-matrix form as

min
a

‖Z a − d‖2
2, s.t. a ≥ 0, (4.17)

where Z is a 2M × L + 1 matrix of discrete values of the partial derivatives of the
Zernike polynomials, d is a measurement (column) vector of length 2M , and a =
[a0, a1, . . . , aL ]T is a vector of the representation coefficients of φ. The constraint
a ≥ 0 in (4.17) is optional and may be used to further regularize the solution by
forcing a to belong to some convex set K≥. Thus, for example, when the set coincides
with the whole R

L+1, the solution to (4.17) is given by

a = Z#d, (4.18)

where Z# denotes the Moore-Penrose pseudo-inverse of Z, whose definition is unique
and stable as long as the row-rank of Z is greater or equal to L +1 (hence suggesting
that 2M ≥ L + 1). Having estimated a, the phase φ can be approximated as

φ(ρ,ϕ) ≈
L∑

k=0

ak Zk(ρ,ϕ). (4.19)

A higher accuracy of phase estimation requires using higher-order Zernike poly-
nomials, which in turn necessitates a proportional increase in the number of wavefront
lenses. Moreover, as required by the linearization procedure in the SHI, the lenses
have to be of a relatively small sizes (sometimes, on the order of a few microns), which
may lead to the use of a few thousand lenses per one interferometer. Accordingly, to
simplify the construction and to reduce the cost of SHIs, we propose to reduce the
number of wavefront lenslets, while compensating for the induced information loss
through the use of DCS, which is detailed next.

4.3 Point Spread Function Estimation via Compressive
Sampling

We now apply the proposed algorithm on this problem. First we show the side data,
a source signal is a gradient field, can be transformed to (3.2) and then provide
experiments that confirms that we can take advantage of the proposed scheme to
improve the quality of image deblurring.

http://dx.doi.org/10.1007/978-3-319-00366-5_3
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4.3.1 Derivative Compressed Sensing

Let the partial derivatives of φ evaluated at the points of set �d be column-stacked
into vectors fx and fy of length M = #�d . In what follows, the partial derivatives
fx and fy are assumed to be sparsely representable by an orthonormal basis in R

M .
Representing such a basis by an M × M unitary matrix W , the above assumption
suggests the existence of two sparse vectors cx and cy such that fx = W cx and fy =
W cy . In the experimental studies of this section, the matrix W is constructed using
the nearly symmetric orthogonal wavelets of I. Daubechies having five vanishing
moments [32].

The proposed simplification of the SHI amounts to reducing the number of wave-
front lenslets. Formally, such a reduction can be described by two n×M sub-sampling
matrices �x and �y , where n < M . Specifically, let bx := �x fx and by := �yfy be
incomplete (partial) observations of fx and fy , respectively. Then, based on the theo-
retical guarantees of classical CS, the vectors fx and fy of the partial derivatives of φ
can be approximated by W c∗

x and W c∗
y , respectively, where c∗

x and c∗
y are obtained as

c∗
x = arg min

c′
x

{
1

2
‖�x W c′

x − bx‖2
2 + λx‖c′

x‖1

}

(4.20)

and

c∗
y = arg min

c′
y

{
1

2
‖�y W c′

y − by‖2
2 + λy‖c′

y‖1

}

(4.21)

for some λx ,λy > 0. Moreover, in the case when λx = λy := λ, computing the
above estimates can be combined into a single optimization problem. Specifically,
let c = [cx , cy]T , b = [bx , by]T , and A = diag{�x W, �y W } ∈ R

2n×2M . Then,

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖2

2 + λ‖c′‖1

}

. (4.22)

In this form, the problem (4.22) is identical to (1.4), in which case it can be solved
by a variety of available tools of convex optimization [33, 34].

The DCS algorithm augments classical CS by subjecting the minimization in
(4.22) to an additional constraint which stems from the fact that [7]

∂2φ

∂x ∂y
= ∂2φ

∂y ∂x
, (4.23)

which is valid for all twice continuously differentiable functions φ. Thus, in the
discrete setting, the above condition can be expressed using two partial differences
matrices Dx and Dy , in which case it reads

Dx fy = Dyfx . (4.24)

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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To further simplify the notations, let Tx and Ty be two coordinate-projection matrices,
which map the composite vector c into cx and cy according to Tx c = cx and Tyc = cy ,
respectively. Then (4.24) can be re-expressed in terms of c as

Dy W Tx c = Dx W Tyc (4.25)

or, equivalently,
Bc = 0, (4.26)

where B := Dy W Tx − Dx W Ty . Consequently, with the addition of the cross-
derivative constraint (4.26), DCS solves the constrained minimization problem
given by

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖2

2 + λ‖c′‖1

}

, (4.27)

s.t. Bc′ = 0.

The problem (4.27) is an instance of (3.8) and can be solved through the sequence
of iterations produced by

⎧
⎪⎪⎨

⎪⎪⎩

c(t+1) = arg minc′
{

1
2‖Ac′ − b‖2

2

+λ‖c′‖1 + δ
2‖Bc′ + p(t)‖2

2

}

p(t+1) = p(t) + δBc(t+1),

(4.28)

where p(t) is a vector of Bregman variables (or, equivalently, augmented Lagrange
multipliers) and δ > 0 is a user-defined parameter.2

Once an optimal c∗ is recovered, it can be used to estimate the noise-free versions
of fx and fy as W Tx c∗ and W Tyc∗, respectively. These estimates can be subsequently
passed on to the fitting procedure to recover the values of φ, which, in combination
with a known aperture function A, provide an estimate of the PSF i as an inverse
discrete Fourier transform of the autocorrelation of P = A ejφ. Algorithm 1 below
summarizes our method of estimation of the PSF.

The estimated PSF can be used to recover the original image u from v through
the process of deconvolution as explained in the section that follows.

4.3.2 Deconvolution

The acquisition model 4.1 can be rewritten in an equivalent operator form as given by

2 In this work, we use δ = 0.5.

http://dx.doi.org/10.1007/978-3-319-00366-5_3
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Algorithm 1: PSF estimation via DCS
1. Data: bx , by , and λ > 0

2. Initialization: For a given transform matrix W and matrices/operators �x , �y , Dx , Dy ,
Tx and Ty , preset the procedures of multiplication by A, AT , B and BT .

3. Phase recovery: Starting with an arbitrary c(0) and p(0) = 0, iterate (4.28)
until convergence to result in an optimal c∗. Use the estimated (full) partial derivatives W Tx c∗
and W Tyc∗ to recover the values of φ over �.

4. PSF estimation: Using a known aperture function A, compute the inverse Fourier
transform of P = A ejφ to result in a corresponding ASF h. Estimate the PSF i as
i = |h|2.

v = H{u} + ν, (4.29)

where H denote the operator of convolution with the estimated PSF i . Note that,
in this case, the noise term ν accounts for both measurement noise as well as the
inaccuracies related to estimation error in i .

The deconvolution problem of finding a useful approximation of u given its dis-
torted measurement v can be addressed in many way, using a multitude of different
techniques [35–39]. In this work, we use the ROF model and recover a regularized
approximation of the original image u as

u∗ = arg min
u

{
1

2
‖H{u} − v‖2

2 + γ ‖u‖T V

}

, (4.30)

where ‖u‖T V = ∫ ∫ |∇u| dx dy denotes the total variation (TV) semi-norm of u.
The minimization problem in (4.30) can be solved using a magnitude of possible

approaches. One particularly efficient way to solve (4.30) is to substitute a direct
minimization of the cost function in (4.30) by recursively minimizing a sequence
of its local quadratic majorizers [38]. In this case, the optimal solution u∗ can be
obtained as the stationary point of a sequence of intermediate solutions produced by

{
w(t) = u(t) + μH∗ {

v − H{u(t)}}

u(t+1) = arg minu
{ 1

2‖u − w(t)‖2
2 + γ ‖u‖T V

}
,

(4.31)

where H∗ is the adjoint of H and μ is chosen to satisfy μ > ‖H∗H‖. In this work, the
TV denoising at the second step of (4.31) has been performed using the fixed-point
algorithm of Chambolle [14]. The convergence of (4.31) can be further improved
by using the same FISTA algorithm of [38]. The resulting procedure is summarized
below in Algorithm 2.
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Algorithm 2: TV deconvolution using FISTA

1. Initialize: Select an initial value u(0); set y(0) = u(0) and τ (0) = 1

2. Repeat until convergence:

• w(t) = y(t) + μ H∗ {
v − H{y(t)}}

• u(t+1) = arg minu
{ 1

2 ‖u − w(t)‖2
2 + γ ‖u‖T V

}

• τ (t+1) = 0.5
(

1 + √
1 + 4 (τ (t))2

)

• y(t+1) = u(t+1) + (τ (t)/τ (t+1))(u(t+1) − u(t))

In summary, Algorithms 1 and 2 represent the essence of the proposed algo-
rithm for hybrid deconvolution of short-exposure optical images. Next, experimental
results are provided which further support the value and applicability of the proposed
methodology.

4.4 Experiments

To demonstrate the viability of the proposed approach, its performance has been
compared against two reference methods. The first reference method used a dense
sampling of the phase (as it would have been the case with a conventional design
of the SHI), thereby eliminating the need for a CS-based phase reconstruction. The
resulting method is referred below to as the dense sampling (DS) approach. Second,
to assess the importance of incorporation of the cross-derivative constraints, we have
used both classical CS and DCS for phase recovery. In what follows, comparative
results for phase estimation and subsequent deconvolution are provided for all the
above methods.

4.4.1 Phase Recovery

To assess the performance of the proposed and reference methods under controllable
conditions, simulation data was used. The random nature of atmospheric turbulence
necessitates the use of statistical methods to model its effect on a wavefront prop-
agation. Specifically, in this work, the effect of atmospheric turbulence was simu-
lated based on the modified Von Karman model [40]. This model is derived based
on Kolmogorov’s theory of turbulence which models atmospheric turbulence using
temperature fluctuations [41]. In particular, under some general assumptions on the
velocity of turbulent medium and the distribution of its refraction index, the Von
Karman power spectrum density is given by
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(a) (b) (c)

Fig. 4.3 An example of a simulated phase φ (a) along with its partial derivatives w.r.t. x (b) and
y (c)

Q(t) = 0.033 C2
n

e(−t2/t2
m )

(t2 + t2
0 )11/6

, (4.32)

where C2
n is the refractive-index and tm , t0 are chosen to match the high frequency and

low frequency behaviour of turbulence. The model of (4.32) can be used to generate
random realizations of the GPF phase, as described, e.g., in [2].

A typical example of the GPF phase φ is shown in subplot (a) of Fig. 4.3. In this
case, the size of the phase screen was set to be equal to 10×10 cm, while the sampling
was performed over a 128 × 128 uniform grid (which would have corresponded to
the use of 16384 lenslets of a SHI). The corresponding values of the (discretized)
partial derivatives ∂φ/∂x and ∂φ/∂y are shown in subplots (b) and (c) of Fig. 4.3,
respectively.

The subsampling matrices �x and �y were obtained from an identity matrix
I through a random subsampling of its rows by a factor resulting in a required
compression ratio r . To sparsely represent the partial derivatives of φ, W was defined
to correspond to a four-level orthogonal wavelet transform using the nearly symmetric
wavelets of I. Daubechies with five vanishing moments [32] and periodic boundary
condition.

To demonstrate the value of using the cross derivative constraint for phase recon-
struction, the classical CS and DCS algorithms have been compared in terms of
the mean squared errors (MSE) of their corresponding phase estimates. The results
of this comparison are summarized in Fig. 4.4 for different compression ratios (or,
equivalently, (sub)sampling densities) and SNR = 40 dB.

As expected, one can see that DCS results in lower values of MSE as compared
to classical CS, which implies a higher accuracy of phase reconstruction. Moreover,
the difference in the performances of classical CS and DCS appears to be more
significant for lower sampling rates, while both algorithms tend to perform similarly
when the sampling density approaches the DS case. Specifically, for the sampling
density of r = 0.3, DCS results in a ten times smaller value of MSE as compared
to the case of classical CS, whereas both algorithms have comparable performance
for r = 0.83. This result suggests that, at higher compression rates, DCS is likely to
result in more accurate reconstructions of the GPF phase as compared to the case of
classical CS.



46 4 Application: Image Deblurring for Optical Imaging

Fig. 4.4 MSE of phase reconstruction obtained with different methods as a function of r . Here,
the dashed and solid lines correspond to classical CS and DCS, respectively, and SNR is equal to
40 dB

A number of typical reconstruction results are shown in Fig. 4.5, whose left and
right subplots depict the phase estimates obtained using the classical CS and DCS
algorithms, respectively, for the case of r = 0.5. The error maps of the two estimates
are shown in subplot (c) and (d) of the same figure, which allows us to see the differ-
ence in the performance of these methods more clearly. Also, a close comparison with
the original phase (as shown in subplot (a) of Fig. 4.3) reveals that DCS provides a
more accurate recovery of the original φ, which further supports the value of using the
cross-derivative constraints. In fact, exploiting these constraints effectively amounts
to using additional “measurements”, which are ignored in the case of classical CS.

As an additional comparison, Fig. 4.6 illustrates the convergence of the MSE as
a function of the number of iterations, for both classical CS and DCS algorithms.
One can see that DCS results in a substantially faster convergence as compared to
classical CS. This behaviour could be explained by considering the cross-derivative
constraints exploited by DCS to be effectively equivalent to noise-free measurements.
To further investigate this argument, Fig. 4.7 compares the convergence of the cross-
derivative fidelity term ‖Dy fx − Dx fy‖2 for both methods under comparison. One
can see that, in the case of DCS, this term converges considerably faster than in the
case of classical CS, which improves to the overall speed of convergence of DCS,
making it superior to that of classical CS.

To investigate the robustness of the compared algorithms towards measurement
noises, their performances have been compared for a range of SNR values. The results
of this comparison are summarized in Fig. 4.8. Since the cross-derivative constraints
exploited by DCS effectively restrict the feasibility region for an optimal solution, the
algorithm exhibits an improved robustness to the effect of additive noise as compared
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(a) (b)

(c) (d)

Fig. 4.5 a Phase reconstructed obtained by means of classical CS for SNR = 40 dB and r = 0.5;
b Phase reconstructed obtained by means of DCS for the same values of SNR and r ; c and d
Corresponding error maps for classical CS and DCS

to the case of classical CS. This fact represents another advantage of incorporating
the cross-derivative constraints in the process of phase recovery.

From the viewpoint of statistical estimation theory, the data fidelity terms in (4.27)
suggests a Gaussian noise model, which may not be natural for all optical systems. In
fact, this is the Poisson noise model, which is considered to be a more standard one in
optical imagery. It turns out, however, that the use of the cross-derivative constraints
by DCS makes it robust towards the inconsistency in noise modeling. This argument
is supported by the results of Fig. 4.9, which summarizes the values of MSE obtained
by classical CS and DCS reconstructions for different levels of Poisson noise. One
can see that, in this case, the MSE values are comparable to the Gaussian case, while
being substantially smaller in comparison to the CCS-based reconstruction.

It should be taken into account that, although the shape of φ does not change the
energy of the PSF i , it plays a crucial role in determining its spatial behaviour. In the
section that follows, it will be shown that even small inaccuracies in reconstruction of
φ could be translated into dramatic difference in the quality of image deconvolution.



48 4 Application: Image Deblurring for Optical Imaging

Fig. 4.6 Convergence analysis of phase reconstruction obtained with different methods as a function
of iterations. Here, the dashed and solid lines correspond to classical CS and DCS, respectively,
SNR = 40, and r = 0.5

Fig. 4.7 Convergence analysis of derivative constraint obtained with different methods as a function
of iterations. Here, the dashed and solid lines correspond to classical CS and DCS, respectively,
SNR = 40, and r = 0.5

4.4.2 Deblurring

As a next step, the phase estimates obtained using the CCS- and DCS-based methods
for r = 0.5 were combined with the aperture function A to result in their respective
estimates of the PSF i . These estimates were subsequently used to deconvolve a
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Fig. 4.8 MSE of phase reconstruction obtained with different methods as a function of SNR. Here,
the dashed and solid lines correspond to classical CS and DCS, respectively, and r = 0.5

Fig. 4.9 MSE of phase reconstruction obtained with different methods as a function of SNR where
the noise model is Poisson. Here, the dashed and solid lines correspond to classical CS and DCS,
respectively, and r = 0.5

number of test images such as “Satellite”, “Saturn”, “Moon” and “Galaxy”. All the
test images were blurred with an original PSF, followed by their contamination with
additive Gaussian noise of different levels which is controlled by the variance of
noise distribution. As an example, Fig. 4.10 shows the “Satellite” image [subplot (a)]
along with its blurred and noisy version [subplot (b)].
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Fig. 4.10 Satellite image (a) and its blurred and noisy version (b)

Table 4.1 SSIM and PSNR comparisons of phase recovery results

Image PSNR comparison (dB) SSIM comparison
Noise std Blurred DS CS DCS Blurred DS CS DCS

10−5 14.06 27.97 17.06 27.42 0.200 0.730 0.349 0.674
Satellite 0.001 14.06 27.75 16.93 27.22 0.200 0.720 0.344 0.667

0.003 14.06 25.97 16.54 25.56 0.199 0.554 0.306 0.519
0.005 14.05 22.43 15.63 22.22 0.197 0.269 0.206 0.263
10−5 17.78 31.49 23.42 31.02 0.226 0.688 0.424 0.656

Saturn 0.001 17.78 31.08 23.38 30.65 0.226 0.66 0.416 0.641
0.003 17.78 28.50 22.80 28.30 0.226 0.506 0.348 0.483
0.005 17.78 23.89 20.55 23.72 0.175 0.228 0.212 0.223
10−5 19.98 25.06 22.36 25.00 0.512 0.645 0.539 0.643

Moon 0.001 19.97 25.04 22.38 24.99 0.512 0.642 0.538 0.64
0.003 19.97 24.83 22.30 24.78 0.509 0.607 0.493 0.604
0.005 19.97 21.76 19.73 21.73 0.504 0.552 0.488 0.549
10−5 18.79 23.58 21.16 23.52 0.257 0.493 0.348 0.490

Galaxy 0.001 18.79 23.60 21.12 23.54 0.257 0.495 0.347 0.491
0.003 18.78 23.38 20.64 23.32 0.257 0.501 0.326 0.501
0.005 18.78 20.93 18.46 20.86 0.254 0.397 0.224 0.393

Using the PSF estimates, the deconvolution was carried out using the method
detailed in [14]. For the sake of comparison, the deconvolution was also performed
using the PSF recovered from dense sampling (DS) of φ. Note that this reconstruction
is expected to have the best accuracy, since it neither involves undersampling nor
requires a CS-based phase estimation. All the deconvolved images have been com-
pared with their original counterparts in terms of PSNR as well as of the structural
similarity index (SSIM) of [42], which is believed to be a better indicator of perceptual
image quality [43]. The resulting values of the comparison metrics are summarized
in Table 4.1, while Fig. 4.11 shows the deconvolution results produced by the CCS-
and DCS-based methods.
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Fig. 4.11 a Image estimate obtained with the CCS-based method for phase recovery (SSIM =
0.781). b Image estimate obtained with the DCS-based method for phase recovery (SSIM = 0.917)

Fig. 4.12 a Image estimate obtained with the CCS-based method for phase recovery (SSIM =
0.732). b Image estimate obtained with the DCS-based method for phase recovery (SSIM = 0.888)
where the noise model is assumed to be Poisson

The above results demonstrate the importance of accurate phase recovery, where
even a relatively small phase error can have a dramatic effect on the quality of image
deconvolution. Under such conditions, the proposed method produces image recon-
structions of a superior quality as compared to the case of classical CS. Moreover,
comparing the results of Table 4.1, one can see that DS only slightly outperforms
DCS in terms of PSNR and SSIM, while in many practical cases, the difference
between the performances of these methods are hard to detect visually.

Finally, Fig. 4.12 shows the results of CCS-based and DCS-based image recon-
struction for the case of Poisson noise contamination. A close comparison of
these results reveals a noticeable degradation in the performance of the CCS-based
algorithm, while the DCS-based results are virtually indistinguishable from those
obtained in the Gaussian case.
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4.5 Summary

In this chapter, the applicability of the proposed scheme to the practical problem of
image deblurring in optical imaging was studied. It was shown that, in the presence
of atmospheric turbulence, the phase φ of the GPF P = A ejφ is a random function,
which needs to be measured using adaptive optics. To simplify the complexity of the
latter, a CS-based approach was proposed. As opposed to classical CS, however, the
proposed method performs phase reconstruction subject to an additional constraint,
which stems from the property of ∇φ to be a potential field. The DCS algorithm
has been shown to yield phase estimates of substantially better quality as compared
to the case of classical CS. our main focus has been on simplifying the structure of
the SHI through reducing the number of its wavefront lenslets, while compensating
for the effect of undersampling by means of DCS. The resulting phase estimates
were used to recover their associated PSF, which was subsequently used for image
deconvolution. It was shown that the DCS-based estimation of φ with r = 0.3 results
in image reconstructions of the quality comparable to that of DS, while substantially
outperforming the results obtained with classical CS.
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28. V. Stanković, L. Stanković, and S. Cheng. Compressive image sampling with side information.
In Proceedings of the 16th IEEE International Conference on Image Processing, ICIP’09, pages
3001–3004, 2009

29. T.O. Salmon, L.N. Thibos, A. Bradley, Comparison of the eyes wave-front aberration mea-
sured psychophysically and with the ShackHartmann wave-front sensor. Journal of the Optical
Society of America A 15, 2457–2465 (2007)

30. O. Michailovich, A. Tannenbaum, A fast approximation of smooth functions from samples
of partial derivatives with application to phase unwrapping. Signal Processing 88, 358–374
(2008)

31. M. Hosseini, O. Michailovich, Derivative compressive sampling with application to phase
unwrapping (In Proceedings of EUSIPCO, Glasgow, UK, August, 2009)

32. I. Daubechies, Ten Lectures on Wavelets (SIAM, CBMS-NSF Reg. Conf. Series in Applied
Math, 1992)

33. D. L. Donoho and Y. Tsaig. Fast solution of l1-norm minimization problems when the solution
may be sparse. Technical Report 2006–18, Stanford, 2006

34. S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, An iterative regularization method for total
variation-based image restoration. Simul 4, 460–489 (2005)

35. A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares
procedures. Anal. Chem. 36, 1627–1639 (1964)

36. A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problem, vol. H (Winston, Washington,
D.C., 1977)

37. Å. Björck, Numerical methods for least squares problems (SIAM, Philadelphia, 1996)
38. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM Journal on Imaging Sciences 2, 183–202 (2009)
39. O. Michailovich, An iterative shrinkage approach to total-variation image restoration. IEEE

Trans. Image Process 20(5), 1281–1299 (2011)
40. J.D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB

(SPIE, Washington, 2010)



54 4 Application: Image Deblurring for Optical Imaging

41. I. Daubchies, M. Defrise, C.D. Mol, An iterative thresholding algorithm for linear inverse
problems with sparsity constraint. Comm. Pure Appl. Math. 75, 1412–1457 (2009)

42. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: From error
visibility to structural similarity. IEEE Trans. Image Process 13(4), 600–612 (2004)

43. Z. Wang, A.C. Bovik, Mean squared error: Love it or leave it? - A new look at signal fidelity
measures. IEEE Signal Processing Magazine 26(1), 98–117 (2009)



Chapter 5
Application: Surface Reconstruction
in Gradient Field

Surface reconstruction from measurements of spatial gradient is an important
computer vision problem with applications in photometric stereo and shape-from-
shading. In the case of morphologically complex surfaces observed in the presence
of shadowing and transparency artifacts, a relatively large number of gradient mea-
surements may be required for accurate surface reconstruction. Consequently, due to
hardware limitations of image acquisition devices, situations are possible in which
the available sampling density might not be sufficiently high to allow for recovery
of essential surface details. In this section the above problem is resolved by means
of derivative compressed sensing (DCS). The results of this study are supported by
a series of numerical experiments.

5.1 Derivative Compressed Sensing for Surface Recovery

The notions of photometric stereo (PS) and shape-from-shading (SFS) [1] are stan-
dard in computer vision, with their practical applications ranging from video surveil-
lance to surface quality assessment. In both PS and SFS, a 3-D surface of interest is
recovered from the measurements of its spatial gradient. In particular, under some
reasonable assumptions on the light source and the object reflection properties, the
unit normal to such a surface can be calculated from its grey-scale representation.
Consequently, the normal can be used to recover its corresponding partial deriva-
tives, followed by reconstructing an approximation of the original surface through
the solution of a Poisson equation.

A practical difficulty in implementation of the above-mentioned techniques stems
from the necessity to deal with relatively large sets of gradient data. Typically, such
dense data sets are required to allow for accurate reconstruction of fine surface details,
which are often occluded due to shadowing and transparency artifacts. In such cases,
improving the acquisition requirements of the hardware in use through reducing the
sampling density would unavoidably produce aliasing artifacts. Fortunately again
we can overcome the above limitation, while allowing for accurately recovering dig-
ital signals from their sub-Nyquist measurements by means of compressive sensing.
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CS has already been used to tackle computer vision problems [2]. In this section,
we introduce a method for reconstruction of 3-D surfaces from the sub-critical
(incomplete) measurements of their spatial gradients.

Gradient space is the 2-D space of all (zx , zy) points. It is convenient to represent
surface orientation in this space. In practice the gradient field is determined via the
reflectance map R(zx , xy) [3], which in turn is measured empirically. The reflectance
map can be viewed as a 2-D image i(x, y), where the image intensity is a function
of zx and zy .

For Lambertian surfaces [3], the light is reflected in a given direction only based
on the surface orientation. If the the measuring camera is placed at infinity (a single
distant point source), the reflectance map based on Lambertian shading rule is given
as [3],

R(zx , zy) = ρ(1 + zx ps + zyqs)
√

1 + z2
x + z2

y

√
1 + p2

s + qs
y

(5.1)

where ρ is a reflectance factor.
The idea for both PS and SFS is to vary the viewing direction for measuring the

x and y components of the gradient field of a surface, z(x, y), at discrete points.
Although the surface orientation is fixed, this will affect the reflectance map. For
known ρ at least two views are required for determining zx and zy . But due to the
nonlinearity in (5.1), more than one solution may exist. To emit such extra solutions,
at least three measurements with three different light directions are required to solve
uniquely for zx and zy . In practice, for improving the measurements, N images
i(x, y) = R(zx , zy) may be used (N > 3). These images result in the following
equation for each point (xi , x j ),

⎡

⎢
⎣

i1( j, i)
...

iN ( j, i)

⎤

⎥
⎦ =

⎡

⎢
⎣

d1x d1y d1z
...

...
...

dnx dny dnz

⎤

⎥
⎦

⎡

⎣
n̂x

n̂ y

n̂z

⎤

⎦ (5.2)

where (dkx , dky, dkz) is the kth light ray direction and n̂T = [n̂x , n̂ y, n̂z]T is the
surface normal vector. This equation in matrix form can be written as:

I = Dn̂, (5.3)

and the least square solution is given by

n̂ = D+ I, (5.4)

where D+ denotes Moore pseudo-inverse of D. Having the surface normal vector,
the x and y components of the gradient field can be computed: zx = n̂x/n̂z and
zy = n̂ y/n̂z . Consequently, over the whole surface the following measurements are
obtained:
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Zx ( j, i) = ∂z

∂x
|(x,y)=(xi ,y j )

Z y( j, i) = ∂z

∂y
|(x,y)=(xi ,y j ) (5.5)

For accurate surface reconstruction a high sampling density for the gradient field is
required [3]. The sampling density is limited by the measuring device and there may
be situations in which the sampling density is not sufficient for recovery of the sur-
face details. This limitation may be resolved by applying DCS to this reconstruction
problem. Having the partial measurements of matrices Zx and Z y , one can obtain
vectors bx and by via lexicographical column-stacking and similar to previous appli-
cation use Algorithm 3 to solve for zx and zy . Analogously this is equivalent with
increasing the sampling density of the gradient field without improving the hardware
device.

Algorithm 1: Derivative Compressive Sampling for Surface Reconstruction
1. Data: bx , by , and λ > 0

2. Initialization: For a given transform matrix W and matrices/operators �x , �y , Dx , Dy , Tx
and Ty , preset the procedures of multiplication by A, AT , B and BT .

3. Gradient field recovery: Starting with an arbitrary c(0) and p(0) = 0, iterate (4.28) until
convergence to result in an optimal c∗. Use the estimated (full) partial derivatives W Tx c∗ and
W Tyc∗ to recover the values of zx and zy .

4. Source recovery: Use a Poisson solver to reconstruct the original source from its gradient field

Algorithm 3 summarizes DCS for surface reconstruction. In the final stage of
Algorithm 3, it is required to solve a Poisson equation to yield the original source
(the surface). Several approaches such as least square (LS) [4], algebraic [5], and
l1-minimization [6] have been proposed in the literature for this purpose. We use LS
approach [4] in the current study for solving the Poisson equation.

5.2 Experimental Results

Simulated surfaces from [4] were used to assess the performance of the proposed
method. The algorithm was tested over three surfaces known as Sphere, Peak-Valley,
and Peak-Ramp. The surface lattices size is chosen 64×64, δ = 0.5, and λ = 0.001.
The subsampling matrices �x and �y were obtained from an identity matrix I
through a random subsampling of its rows by a factor, r , resulting in a required
partial sampling ratio. For sparse representation basis, again W was selected to be
a four-level orthogonal wavelet transform using the nearly symmetric wavelets of
Daubechies with five vanishing moments.
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(a) (b)

(c) (d)

Fig. 5.1 Peak-Ramp surface (a) and its reconstructed versions using (b) DS, c classical CS, and
d DCS for SNR = 20 dB

For the purpose of comparison we have compared our algorithm with standard
dense sampling (DS) and classical CS approaches in terms of MSE. The results of
this comparison are summarized in Table 5.1 for different levels of noise and partial
sampling ratio of r = 0.5 for classical CS and DCS. As expected, one can see that
DCS results in substantially lower values of MSE as compared to classical CS, which
implies a higher accuracy of surface reconstruction. As expected DS outperforms
both methods but the performance of DCS is comparable and confirms the possibility
of simplifying the hardware device using our approach without substantial reduction
in reconstruction quality. The reconstruction result for Peak-Ramp surface is given in
Fig. 5.1 for SNR = 20 dB. Visual inspection on images, specially at the surface edges,
confirms that DCS provides a result comparable with that of DS reconstruction. As it
can be detected CS reconstruction results in smoothed edges in the ramp part of the
surface, manifesting severe reduction of high frequency energy, which, by contrast,
is well preserved in DCS reconstruction.

In another set of experiment we studied robustness of the proposed method towards
noise addition. The cross-derivative constraints exploited by DCS effectively restricts
the feasibility region for an optimal solution. Moreover, as explained in [7], the
constraint Bc′ = 0 in (4.27), can be considered as extra measurements of the sparse
source. These measurements are noise free and consequently one can conclude that if
we use this constraint, the reconstruction algorithm will become more robust towards
the noise power. To investigate the robustness of the proposed algorithms towards
measurement noises, its performances has been compared for a range of SNR values
(as a measure for noise power) with classical CS. The results of this comparison
are summarized in Fig. 5.2. As expected in both cases the reconstruction quality
degrades with decreasing SNR, but this dependency is more critical for classical CS,

http://dx.doi.org/10.1007/978-3-319-00366-5_4
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Fig. 5.2 MSE of surface reconstruction as a function of SNR. Here, the dashed and solid lines
correspond to classic CS and DCS, respectively, and r = 0.5

which results in steeper graph in Fig. 5.2. This fact represents another advantage of
incorporating the cross-derivative constraints in the process of surface recovery.

5.3 Summary

In this chapter, the applicability of the proposed scheme to the practical problem
of surface reconstruction was demonstrated. To simplify the measuring devices, a
DCS-based approach has been proposed. Experiments confirm the source estimates
by DCS have better quality as compared to the case of classical CS and comparable as
to the case of dense sampling. One direction for future work is applying the algorithm
in designing the sampling devices for surface reconstruction. Applying the algorithm
in the sampling device structure will improve the capability of reconstructing surface
details in the presence of low density measurements.
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Chapter 6
Application: Diffusion Fields Reconstruction
Under Heat Equation Constraint

Reconstructing a diffusion field from spatiotemporal measurements is an important
problem in engineering and physics with applications in temperature flow, pollution
dispersion, and disease epidemic dynamics. In such applications, sensor networks
are used as spatiotemporal sampling devices and a relatively large number of spa-
tiotemporal measurements may be required for accurate source field reconstruction.
Consequently, due to limitations on the number of nodes in the sensor networks as
well as hardware limitations of each sensor, situations may arise where the available
spatiotemporal sampling density does not allow for recovery of field details. In this
chapter, the above limitation is resolved by means of using the proposed algorithm.
We propose to exploit the intrinsic property of diffusive fields as side information to
improve the reconstruction results of classic CS.

6.1 Introduction

Many natural phenomenon in physics are governed by diffusion equation, includ-
ing temperature flow, pollution dispersion, and disease epidemic dynamics. In such
applications, sensor networks are used as spatiotemporal sampling devices to sample
and reconstruct diffusion fields [1]. In contrast to general multidimensional signals,
the effect of temporal and spatial down-sampling are not homogeneous. Generally,
it is more expensive to increase the spatial sampling density as more sensors are
needed in the network, while temporal sampling density is only limited by each sen-
sor hardware [2]. An efficient sampling scheme will have an impact on real world
applications such as pollution detection [3] and plume source detection [4].

Inverse problems of the diffusive fields are generally ill-posed and require a rel-
atively large number of measurements. Typically, such dense data sets are required
to allow for accurate reconstruction of fine field details. In such cases, improving
the acquisition requirements of the hardware in use through reducing the sampling
density would unavoidably produce aliasing artifacts. To overcome this limitation,
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64 6 Application: Diffusion Fields Reconstruction Under Heat Equation Constraint

we apply the proposed algorithm for accurate reconstruction of sources from sub-
Nyquist sampling rates.

In the current note, we consider spatiotemporal sampling and reconstruction of a
1-D diffusive field u(x, t) governed by the heat equation:

∂u(x, t)

∂t
= γ

∂2u(x, t)

∂x2 , t ≥ 0,

u(x, 0) = f (x) (6.1)

where γ is the diffusion coefficient, x denotes spatial domain variable, t denotes time
domain variable, and f (x) represents the initial field value.

If the initial field value is available, we can solve (6.1) for u(x, t). However, in
many situations, initial field value is not available [2], and it is not possible to derive
u(x, t) based on solely the partial differential equation constraint, as u(x, t) varies
dramatically with different initial condition. In these situations, we can measure
spatiotemporal samples and use them to reconstruct u(x, t).

Here, we take advantage of CS for efficient field sampling. It seems to be natural
to reconstruct the source field using the fact that it satisfies the partial differential
equation in (6.1) more efficiently. Specifically, we propose new CS formulation that
incorporates the side information derived from (6.1) to improve the reconstruction
quality of the standard CS, while resulting in substantial reduction in the required
sampling density. We show that our efficient CS formulation can reduce the dimension
of the feasible region in field reconstruction, resulting in better reconstruction quality.

6.2 Diffusive Compressive Sensing

Let u(x, t) represents an original diffusive field which satisfies (6.1). For the sake
of convenience, u(x, t) is assumed to be defined over a finite-dimensional, uniform,
rectangular lattice in R

2. The discretized version of this field can be represented in a
matrix X ∈ R

N×M . We assume that this field is sampled via a sensor network with
Ns nodes which are deployed uniformly in the space and each sensor collects Nt

uniform samples in time. Clearly, we have m = Nt Ns measurements which can be
represented in a matrix Y ∈ R

Ns×Nt with m = Ns Nt ≤ N M = n. X and Y can be
concatenated into two column vectors x and y by means of lexicographic ordering,
respectively. It is assumed that the observed version y of the vector x is obtained as
y = �x, where � is a subsampling matrix which accounts for the effect of uniform
downsampling. It is also assumed that x admits sparse representations with respect
to a linear transformation W, x = W c. Finally, in order to apply CS to the problem,
it is assumed that null(�) satisfies SSP by choosing � and W properly.

Under the above conditions, CS-based reconstruction of the representation coef-
ficients c can be performed according to (1.3). Our proposed diffusive CS algorithm
uses the fact that u(·, ·) satisfies (6.1). Let Dx and Dt denote the matrices of dis-

http://dx.doi.org/10.1007/978-3-319-00366-5_1
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crete partial differences in the spatial and time directions, respectively. Then, the
discretized version of the constraint (6.1) suggests that

Dt x = γDx Dx x → (Dt − γDx Dx )W c = 0. (6.2)

Let B := (Dt − γDx Dx )W , �′ =
[
�

B

]

, y′ =
[

y
0

]

, and n′ =
[

n
0

]

, then:

y′ = �′c + n′. (6.3)

Algorithm 1: Diffusive Compressive Sampling
1. Data: y, δ, γ and λ > 0

2. Initialization: For a given transform matrix W and matrices/operators �, Dx , Dt , preset the
procedures of multiplication by A = �W , AT , B and BT .

3. Diffusisive field recovery: Starting with an arbitrary c(0) and p(0) = 0, iterate (4.28) until
convergence to result in an optimal c∗.

a. Use CS solver algorithm of [5] for solving the optimization problem in (4.28).
b. Update the vector of Bregman variables p(t).

4. Source recovery: Use the estimated (full) sparse representation c∗ to recover the values of
x = W c∗.

Note that the problem (6.3) is an instance of the problem (3.3) and can be studied in
the proposed CS framework. Algorithm 1 summarizes all the diffusive CS algorithmic
steps.

6.3 Experimental Results

The proposed algorithm is tested over three different solutions of the heat equa-
tion (6.1) as the source field, denoted by u1(·, ·), u2(·, ·), and u3(·, ·) for different
boundary and initial conditions. The fields are assumed to be defined over the lattice
[0, 2π] × [0, 1] ⊂ R

2, uniformly discretized with M = N = 128 → n = 16, 384.

We set the boundary conditions to be non-homogeneous for u1(·, ·) and u2(·, ·), and
homogenous Neumann condition for u3(·, ·). The initial conditions are chosen to be
f1(x) = x, f2(x) = δ(x − π) (local point source), and f3(x) = �(0,π) for each
case, respectively. The subsampling matrix � is assumed to downsample the source
field uniformly with downsampling dt and ds factor in time and spatial domains,
respectively:

http://dx.doi.org/10.1007/978-3-319-00366-5_3
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Table 6.1 PSNR comparisons of diffusion field recovery results for noise level of 10 dB

ds 1 2 2 1 4 4 1 8 8 1 16 16

dt 2 1 2 4 1 4 8 1 8 16 1 16
PoS 50 % 50 % 25 % 25 % 25 % 6.25 % 12.5 % 12.5 % 1.56 % 6.25 % 6.25 % 0.39 %

PSNR comparison (in dB) for u1(·, ·)
CS 14.07 20.04 13.57 6.73 7.41 5.72 0.65 0.62 −0.07 −0.51 −0.58 −0.06
DCS 24.95 25.22 21.61 21.46 21.43 14.96 17.36 17.88 11.61 14.00 14.50 10.45

PSNR comparison (in dB) for u2(·, ·)
CS 14.03 19.97 13.70 12.38 15.54 11.57 6.79 7.20 5.87 0.61 0.58 −0.08
DCS 25.10 25.17 21.54 23.07 23.31 17.59 21.31 21.70 14.92 17.28 18.06 11.61

PSNR comparison (in dB) for u3(·, ·)
CS 16.71 19.63 14.16 16.04 13.04 10.91 0.13 0.03 −0.37 −0.58 −0.59 −0.07
DCS 21.87 21.52 18.87 18.78 18.33 12.82 15.32 14.93 9.80 12.33 11.88 8.64

Y (i, j) = X (dsi, dt j), 1 ≤ i ≤ Ns, 1 ≤ j ≤ Nt (6.4)

For sparse representation basis, W was selected to be a four-level orthogonal wavelet
transform using the nearly symmetric wavelets of Daubechies with five vanishing
moments and δ = 0.5,λ = 0.001, γ = 1.

For the purpose of comparison, we have compared our algorithm with classic
CS approach in terms of reconstruction SNR. The results of this comparison are
summarized in Tables 6.1 and 6.2 for different levels of noise and different percentage
of the samples (PoS) in each table. In each table results for downsamling factors of
2, 4, 8, 16 in different directions are provided. As expected, for all cases one can see
that DCS results in substantially high values of output SNR as compared to classic

Table 6.2 PSNR comparisons of diffusion field recovery results for noise level of 40 dB

ds 1 2 2 1 4 4 1 8 8 1 16 16

dt 2 1 2 4 1 4 8 1 8 16 1 16
PoS 50 % 50 % 25 % 25 % 25 % 6.25 % 12.5 % 12.5 % 1.56 % 6.25 % 6.25 % 0.39 %

PSNR comparison (in dB) for u1(·, ·)
CS 14.95 23.45 14.19 6.88 7.56 6.01 0.70 0.61 −0.06 −0.51 −0.57 −0.06
DCS 25.22 25.28 21.66 21.27 21.54 14.97 17.41 17.96 11.63 14.00 14.53 10.49

PSNR comparison (in dB) for u2(·, ·)
CS 14.60 23.48 14.13 6.91 7.57 6.01 −0.08 −0.51 −0.57 −0.43 −0.58 −0.06
DCS 25.21 25.28 21.60 21.27 21.55 14.98 13.96 11.61 10.53 9.44 10.35 6.14

PSNR comparison (in dB) for u3(·, ·)
CS 17.41 20.33 14.46 16.05 13.20 10.91 −0.07 −0.07 −0.35 −0.60 −0.61 −0.07
DCS 21.92 21.53 18.79 18.78 18.23 12.87 15.41 15.01 9.83 12.30 11.87 8.50
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CS, which implies a higher accuracy of field reconstruction. A close look on both
tables reveals interesting results of the proposed algorithm. Note if we downsample
a source field in one direction with the same downsampling factor, regardless of the
direction, the resulting number of measurements are the same. Now consider those
columns of tables with the same downsampling factor but different direction, e.g. first
and second column, while for the case of classic CS the reconstruction quality differs
in both tables, the quality of reconstruction for the case of DCS is similar. This can
be explained through different correlations of the samples in different dimensions.
From (6.2) one concludes that a field sample X (i, j) is correlated with X (i + 1, j)
and X (i + 2, j) in spatial domain while it is only correlated with X (i, j + 1) in
time domain. In other words dependency of the samples are not the same in time and
spatial domain and it is harder to reconstruct the field when we lack time samples
which is reflected in CS reconstruction results. In contrast, when we apply DCS
these dependencies are considered as an additional data and thus the reconstruction
quality is similar and is independent of downsampling direction. Generally, when
we encounter insufficient spatial samples, oversampling in time domain is used to
compensate [2]. Our result indicates that DCS can recover the source with less time
samples which can be translated as energy saving in sensor nodes.

Another important result is on robustness of the proposed scheme towards insuffi-
cient samples. Consider a row in Tables 6.1 or 6.2, it can be seen that as the downsam-
pling factor increases the reconstruction quality for classic CS degrades severely and
for downsampling factors of 8 and 16 almost no information is recovered. While for
the case of DCS, the algorithm is robust and even when we downsample a field with
factor of 16 in both directions, using almost 0.4 % of the samples, it still can recover
some information. For better comparison Fig. 6.1 depicts performances of CS and
DCS algorithm for a range of downsampling factors with dt = 1, SN R = 40 dB,
and u2(·, ·). It can be seen that for the case of CS, the reconstruction quality degrades
sharply for downsampling factors greater than 4 while diffusive CS is robust towards
downsampling. This can be explained by the constraint exploited by DCS. The con-
straint Bc′ = 0 in (4.27), can be considered as extra measurements of the sparse
source which can compensate for insufficient real measurements. This can explain
while the difference between CS and diffusive CS is negligible for small downsam-
pling factors, why it becomes considerable as the scaling factor increases. When we
have enough information to recover the source then constraint (6.2) does not pro-
vide considerable information but when we lack enough information, this constraint
becomes more important.

A comparison between the result of Tables 6.1 and 6.2 also reveals that although
reconstruction quality degrades as the additive noise power of measurements increases
but DCS seems more robust towards the noise. To investigate the robustness of the
proposed algorithms towards measurement noises, its performances has been com-
pared for a range of SNR values (as a measure for noise power) with classic CS for
the case dt = 2, ds = 2 and u3(·, ·). The results of this comparison are summarized
in Fig. 6.2. As expected in both cases the reconstruction quality degrades by decreas-
ing SNR, but this dependency is more critical for classic CS, which results in steeper
graph in Fig. 6.2. Again, this can be explained by the constraint exploited by DCS

http://dx.doi.org/10.1007/978-3-319-00366-5_4
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Fig. 6.1 SNR of field reconstruction as a function of spatial downsampling factor. Here, the solid
and dashed lines correspond to classic CS and DCS, respectively, and dt = 1

which restricts the feasibility region for an optimal solution. Moreover, as explained
the constraint Bc′ = 0 in(4.27), can be considered as extra measurements of the
sparse source. These measurements are noise free and consequently one concludes
that if we use this constraint, the reconstruction algorithm will become more robust
towards the noise power. Intuitively one can say that since n ∈ R

m, n′ ∈ R
n+m, and

Fig. 6.2 SNR of field reconstruction as a function of noise SNR. Here, the solid and dashed lines
correspond to classic CS and DCS, respectively, and dt = 2, ds = 2

http://dx.doi.org/10.1007/978-3-319-00366-5_4
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‖n′‖2 = ‖n‖2, the noise power has been multiplied by m
n+m < 1. This fact represents

another advantage of incorporating the diffusive field constraints in the process of
field recovery.

6.4 Summary

In this chapter, the problem of diffusive field reconstruction using sub-Nyquist sam-
pling rates is studied. An efficient CS-based approach has been proposed to simplify
the measuring devices and improve the device resolution. The proposed method
applies CS for field reconstruction subject to an additional constraint, which stems
from the intrinsic property of a diffusive field. Experiments confirm the source esti-
mates by diffusive CS have better quality as compared to the case of classic CS and
comparable as to the case of dense sampling. One direction for future work is apply-
ing the algorithm in designing the sampling devices for diffusive field reconstruction.
Applying the algorithm in the sampling device structure will improve the capability
of reconstructing diffusive field details in the presence of low density measurements.
Another direction is to understand the performance under partial model knowledge.
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