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Preface

Compressed sensing is a new technique for nonadaptive compressed acquisition,
which takes advantage of signal sparsity and allows signal recovery starting from
few linear measurements. Distributed scenarios commonly arise in many applica-
tions, where data are inherently scattered across a large geographical area. This
applies, for example, to sparse event detection in wireless networks, distributed
indoor localization, and distributed tracking in sensor networks. Also distributed
sources naturally arise in wireless sensor networks, where sensors may acquire over
time several readings of the same natural quantity, e.g., temperature, in different
points of the same environment. Such data can be transmitted to a fusion center for
joint processing. In this case, a centralized reconstruction system employs joint
recovery algorithms exploiting the correlations among the signals coming from the
various sensors to enhance the reconstruction fidelity. A drawback of this model is
that, particularly in large-scale networks, gathering all data to a central processing
unit may be inefficient, as a large number of hops have to be taken, requiring a
significant amount of energy for communication over the wireless channel.
Moreover, this may also introduce delays, severely reducing the sensor network
performance. In this case, distributed protocols are required so that the recon-
struction can be performed in-network. In both centralized and distributed sce-
narios, a common element is the necessity of limiting computations and memory
usage, making compressed sensing very appealing as a cost-constrained represen-
tation in order to exploit data redundancies. This book presents a survey of the state
of the art of Compressed Sensing for Distributed Systems. It has to be noted that,
while compressed sensing has been studied for some time now, its distributed
applications are relatively new. Remarkably, such applications are ideally suited to
exploit all the benefits that compressed sensing can provide. The objective of this
book is to provide the reader with a comprehensive survey of this topic, from the
basic concepts to different classes of centralized and distributed reconstruction
algorithms, as well as a comparison of these techniques. This book collects different
contributions on these aspects. It presents the underlying theory in a complete and
unified way for the first time, presenting various signal models and their use cases.
It contains a theoretical part collecting latest results in rate-distortion analysis of
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distributed compressed sensing, as well as practical implementations of algorithms
obtaining performance close to the theoretical bounds. It presents and discusses
various distributed reconstruction algorithms, summarizing the theoretical recon-
struction guarantees and providing a comparative analysis of their performance and
complexity. In summary, this book will allow the reader to get started in the field of
distributed compressed sensing from theory to practice. We believe that it can find a
broad audience among researchers, scientists, or engineers with very diverse
backgrounds, having interests in mathematical optimization, network systems,
graph-theoretical methods, linear systems, stochastic systems, and randomized
algorithms. To help the reader become familiar with the theories and algorithms
presented, accompanying software is made available on the authors website (www.
crisp-erc.eu), implementing several of the algorithms described in the book.

Turin Giulio Coluccia
March 2015 Chiara Ravazzi

Enrico Magli
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Chapter 1
Introduction

Distributed applications have gained a lot of interest lately in several areas of
engineering, such as signal processing and information theory. Such applications
are characterized by a large number of entities that acquire, process, transmit, or
manage information, in contrast to the conventional setting involving one informa-
tion source and one receiver. Central to the concept of distributed systems is the
collaboration among these entities, which is known to provide huge potential ben-
efits. Indeed, many application scenarios have shown that distributed collaborative
systems can provide performance superior to that of a centralized system; notable
examples include peer-to-peer storage and streaming, sensor networks, ad hoc net-
works, as well as collaborative communication paradigms such as network coding,
to mention a few [1].

Oftentimes, nodes belonging to the system tend to have a selfish behavior. This
is typically a consequence of the fact that collaborating with other nodes implies a
price to be paid. The currency is the most important albeit scarce resource owned by
the node, i.e., energy. Particularly in the context of wireless devices, battery power is
limited and determines the node’s lifetime. Therefore, it is clear that a nodewill not be
willing to give up some of its battery life, unless it has a clear advantage to be gained.
In order to see that collaboration incurs an immediate cost upon the node, consider
that collaboration may require to synchronize the node’s activities, to receive and
transfer information from and to a node’s neighbors, to serve as a relay by forwarding
messages received by other nodes, and in general to be active even when the node
would otherwise not necessarily stay awake. All these collaboration activities will
require the node to process and transmit information, thereby draining their energy
resources from processor usage and access to the communication channel.

In order to save energy, therefore, it is imperative to employ compact and efficient
representations of the information sensed by the nodes. A straightforward approach
would be to apply lossless or lossy compression techniques to reduce the data size.
This will reduce the amount of data to be transmitted on the communication chan-
nel, thereby reducing energy consumption. However, the computations needed to
compress the information will themselves generatean extra energy consumption,

© The Author(s) 2015
G. Coluccia et al., Compressed Sensing for Distributed Systems,
SpringerBriefs in Signal Processing, DOI 10.1007/978-981-287-390-3_1
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2 1 Introduction

and possibly a delay. As is shown in [2], depending on the complexity of the
compression algorithm and the available computational power, this extra consump-
tion may outweigh the benefits of reduced access to the channel. Moreover, com-
pressed files may not be typically processes in-network, because in the compressed
format the information is coded in a variable-length fashion.

Many of these issues can be successfully addressed using compressed sensing
(CS) techniques. CS is a mathematical technique that exploits the inherent redun-
dancy of natural signals in order to represent them in a compact way through uni-
versal, nonadaptive, and computationally simple algorithms. In CS [3, 4], a signal
is represented by a small set of its linear projections onto some suitable sequences.
This compressed representation is significantly more compact than conventional
sampling as described by Shannon’s theorem, since the number of projections is typ-
ically much smaller than the number of signal samples. Surprisingly, under suitable
signal models it can be shown that a signal can be reconstructed exactly from its lin-
ear measurements employing nonlinear reconstruction algorithms. The most typical
signal model calls for the signal to be “sparse,” i.e., the signal has only few nonzero
coefficients in a suitable domain. The availability of strong guarantees regarding
signal recovery from linear measurements has spurred a huge amount of research
in the area of CS and its applications, including more sophisticated signal mod-
els, low-complexity reconstruction algorithms, application to multisensor systems,
analog-to-digital conversion, detection and estimation problems, machine learning,
imaging, geophysics, computational biology, radar, astronomy, system identification,
communications, audio and speech processing, remote sensing, computer graphics,
data retrieval, and many more. Interestingly, it has been shown [5] that the CS signal
representation is amenable to perform some signal processing tasks directly on the
linear measurements, such as signal detection, estimation, and classification. More-
over, it is known that CS can also be used as an encryption layer on the data [6, 7].
Therefore, CS represents a flexible tool that can provide many functionalities needed
in a distributed system, such as data reduction, processing, and security, within a
single low-complexity framework.

While much of the initial work on CS has been focused on the problem of one
sensing entity and one receiver, more recently the application of CS to distributed
systems has attracted a lot of interest. Indeed, distributedCS (DCS) has obvious appli-
cations in sensor networks, where a set of nodes acquiring information may leverage
the energy-efficient CS representation to reduce power consumption. Applications
include sensors for smart cities and environments, sensors for Internet of things,
visual sensor networks, video surveillance networks, and in general, any wireless
sensor network that acquires time series of data that need to be processed and com-
municated efficiently. Distributed systems raise specific technical challenges for CS.
Generally speaking, in a distributed system where energy is the scarcest resource,
data reduction and low-complexity algorithms are key aspects of the performance
optimization process. The distributed sensing process of a physical phenomenon
entails that the information signals sensed by different nodes are not independent
among each other due to the spatial smoothness of the phenomenon. Therefore,
besides the sparsity model that describes the degrees of freedom of each sensed



1 Introduction 3

signal, the sensing model must be augmented by taking into account the correlations
of the information signals sensed by different nodes. These models must be exploited
in the design of signal recovery algorithms that take advantage of these correlations,
requiring fewer linear measurements to reconstruct the ensemble of signals exactly
or within some prescribed tolerance. This is where DCS can really make a differ-
ence, because acquiring and transmitting fewer linear measurements can provide
large savings in the communication and computation energy.

Recovery, however, can be performed in different ways. The simplest scenario
involves that each node transmits its linear measurements to a fusion center, and
the fusion center employs a suitable signal model and cost criterion to recover the
signals. This is possible for small-scale networks, but becomes increasingly difficult
as the network grows in size. Indeed, for a large-scale network, transmission from a
node to the fusion center may require a large number of hops, incurring a significant
energy cost and a large delay. In large-scale networks, it may bemore convenient that
nodes communicate locally with their neighbors, attempting to iteratively finding a
consensus on the signal to be estimated. This avoids long-range communications and
also makes the network more resilient to failures, since the fusion center does not
represent any more a single breakdown point of the network.

The objective of this book is to provide a comprehensive treatment of recent
developments in the area of CS for distributed systems, covering all aspects related
to the sensing and recovery process of an ensemble of signals. As has been said,
this is the most important, but arguably not the only aspect of interest in this area.
CS techniques may provide the ability to process the data in a domain of reduced
dimensionality, as well as providing some form of encryption. For these aspects, we
refer the reader to the available literature, whereas this book is only concerned with
the sensing/recovery problem.

In particular, the book is organized as follows. Chapter 2 introduces the basic
notation for CS, and reviews different types of recovery algorithms. The purpose of
this chapter is not to provide a complete review of the existing techniques, which
are countless. Rather, we focus on the techniques that are more amenable to be
generalized to distributed systems, and particularly Lasso and iterative threshold-
ing techniques. We review sparsity models for ensembles of signals, and outline
design criteria for centralized and distributed recovery algorithms. In Chap. 3 we
consider correlated and distributed sources without cooperation at the encoder, and
perform their rate-distortion analysis. In particular, for these sources, we derive the
best achievable performance in the rate-distortion sense of any distributed com-
pressed sensing scheme, under the constraint of high-rate quantization. Moreover,
we derive a closed-form expression of the rate gain achieved by taking into account
the correlation of the sources at the receiver and a closed-form expression of the aver-
age performance of the oracle receiver for independent and joint reconstruction. We
report experimental results validating the theoretical performance analysis. InChap.4
we focus on the problem of centralized recoverywhen a fusion center is available.We
consider different joint sparsity models, and review and compare the performance of
existing algorithms, also considering a recent class of algorithms where one signal
is used as reference to perform differential encoding and reconstruction. In Chap.5

http://dx.doi.org/10.1007/978-981-287-390-3_2
http://dx.doi.org/10.1007/978-981-287-390-3_3
http://dx.doi.org/10.1007/978-981-287-390-3_4
http://dx.doi.org/10.1007/978-981-287-390-3_5


4 1 Introduction

we consider distributed reconstruction without a fusion center. We review different
types of consensus-based estimators and several algorithms for distributed estima-
tion, including the distributed sub-gradient method, the alternating direction method
of multipliers, and distributed iterative thresholding. Then we focus on algorithms
optimized for energy saving, providing performance, and energy comparisons among
these algorithms. Finally, in Chap.6 we draw some conclusions.
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Chapter 2
Distributed Compressed Sensing

This chapter first introduces CS in the conventional settingwhere one device acquires
one signal and sends it to a receiver, and then extends it to the distributed framework
in which multiple devices acquire multiple signals. In particular, we focus on two
key problems related to the distributed setting. The former is the definition of spar-
sity models for an ensemble of signals, as opposed to just one signal. The second is
the structure of the corresponding recovery algorithm, which can be centralized or
distributed; each solution entails specific advantages and drawbacks that are prelim-
inarily discussed in this chapter, whereas a detailed description of the corresponding
recovery algorithms is given in Chaps. 4 and 5.

2.1 Compressed Sensing for Single Sources

Before starting, we define some notations. We denote column vectors with small
letters, and matrices with capital letters. Given a matrix A, A� denotes its transpose.
We consider Rn as an Euclidean space endowed with the following norms:

‖x‖p =
(

n∑
i=1

|xi |p

)1/p

with p = 1, 2. Given x ∈ R
n , we denote the �0 pseudo-norm as

‖x‖0 =
n∑

i=1

|xi |0,

where we use the convention 00 = 0. For a rectangular matrix M ∈ R
m×n , we

consider the Frobenius norm, which is defined as follows:

© The Author(s) 2015
G. Coluccia et al., Compressed Sensing for Distributed Systems,
SpringerBriefs in Signal Processing, DOI 10.1007/978-981-287-390-3_2
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‖M‖F =
√√√√ m∑

i=1

n∑
j=1

M2
i j

and the operator norm

‖M‖2 = sup
z �=0

‖Mz‖2
‖z‖2 .

We denote the sign function as

sgn(x) =

⎧⎪⎨
⎪⎩
1 if x > 0

0 if x = 0

−1 otherwise.

If x is a vector in Rn , sgn(x) is intended as a function to be applied elementwise.

2.1.1 Sensing Model

The basic CS problem can be stated as follows. An unknown signal represented by a
column vector x ∈ R

n is sensed by taking a number m of its linear projections, i.e.,

y = Φx, (2.1)

where Φ ∈ R
m×n is a given sensing matrix, and y ∈ R

m , with m < n, is the
measurements vector. According to this process, x is repeatedly sensed by taking
its scalar product with every row of Φ, yielding a measurements vector y. Since
m < n, the signal representation provided by y is more “compact” than the original
representation x , hence the term compressed sensing.

TheCS reconstruction problemcanbe stated as follows: given y andΦ, onewishes
to reconstruct the original signal x . With m < n, this is clearly an underdetermined
problem that may have infinitely many valid solutions satisfying y = Φx . As is the
case of most regularization problems, in order to recover x , it is therefore necessary
to add some prior knowledge about the signal in order to constrain the solution set
of (2.1). In CS, this is done using the concept of sparsity. In plain terms, a signal
is said to be sparse if it has a low number of nonzero entries with respect to its
length. In particular, x is said to be k-sparse if it has at most k nonzero entries, or
equivalently ‖x‖0 ≤ k. The set of all k-sparse signals in R

n is denoted as �k , i.e.,
�k = {x ∈ R

n : ‖x‖0 ≤ k}.
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2.1.2 Sparse Recovery

Armed with the notion of sparsity, one can attempt to recover x solving the following
problem, which aims at finding the sparsest possible signal that satisfies the sensing
equation (2.1):

x̂ = argmin
x

‖x‖0 such that y = Φx . (2.2)

Problem (2.2) has very strong guarantees of success. In [1, Chap. 1] it is shown
that, under somemild conditions on the independence of the columns ofΦ, ifm ≥ 2k,
i.e., the number of linear measurements is at least twice as the sparsity of x , then
there exists at most one signal x ∈ �k such that y = Φx , and (2.2) will yield
the correct solution for any x ∈ �k . However, despite its attractiveness, solving
(2.2) is not a viable way to recover x , because this problem has combinatorial com-
plexity. The so-called “oracle” receiver simply assumes to know in advance the set
S = supp(x) = {i ∈ {1, . . . , n}|xi �= 0} identifying the indexes of the nonzero
entries of x . Given S , one can construct the reduced matrix ΦS which is obtained
removing from Φ the columns φi whose index does not belong to S . Then, the
nonzero components of x are readily obtained as xS = Φ

†

S y, where A† denotes the
pseudoinverse of A, i.e., A† = (A� A)−1A�. The oracle receiver is very useful to
derive theoretical properties of CS systems. In practice, however, S is not known,
so that in order to solve (2.2) one should consider all possible sets of k out of n index
positions, i.e., the sparsity supports of x , and test each of them for correctness. This
is an NP-hard problem that is computationally infeasible even for small values of n.

To address this issue, it is possible to solve a slightly different problem where the
function to be minimized is convex, namely

x̂ = argmin
x

‖x‖1 such that y = Φx . (2.3)

Replacing the �0 with the �1 normmakes the problem convex, and essentially reduces
it to a linear program that can be solved using convex optimization tools, e.g.,
quadratic programming [2], such as interior-point methods.
The complexity is polynomial and depends on the specific solver employed for (2.3),
e.g., O(n3). The algorithm in (2.3), also known as basis pursuit (BP), has very good
performance in terms of success of reconstruction, since the �1 norm tends to promote
a sparse solution. Moreover, it also has some interesting performance guarantees,
which are easily described via the Restricted Isometry Property (RIP, see e.g., [3]).
In particular, a matrix Φ satisfies the RIP of order k if there exists δ ∈ [0, 1) such
that the following relation holds for all x ∈ �k :

(1 − δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22. (2.4)
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We define the RIP-constant δk := inf{δ ∈ [0, 1): Φ satisfies the RIP of order k}.
Basically, the RIP ensures that the columns of Φ are nearly orthonormal, at least
when operating on sparse vectors.Moreover,Φ is an approximately norm-preserving
(and hence distance-preserving) mapping for k-sparse signals, all the more so as δk

approaches zero. It can be shown (see [4]) that, if x is k-sparse and Φ satisfies the
RIP of order 2k with RIP-constant δ2k <

√
2 − 1, then the solution to (2.3) is the

same as the solution to (2.2).
Verifying whether a given matrixΦ satisfies the RIP of order k is also an NP-hard

problem. However, it has been shown [5] that some classes of random matrices with
m = O(k log n

k ), and particularly those with independent and identically distributed
(i.i.d.) entries drawn from a sub-Gaussian distribution, satisfy the RIP with very high
probability. This is themain reason behind the popularity of random sensingmatrices
with Gaussian, Bernoulli or Rademacher distributions, so that it is also common to
refer to linear measurements as “random projections.”

In practice, in most cases the sparsity model describes well the signal in a trans-
formed domain, rather than in its natural domain. The formulation above can be
easily modified to accommodate this. In particular, we let x = Ψ θ , with Ψ ∈ R

n×n .
Matrix Ψ represents the linear inverse transform of a representation θ that is indeed
sparse. Putting this definition into (2.1) yields y = Φx = ΦΨ θ = Aθ , where
A = ΦΨ and θ is a sparse vector. This new problem can be solved in exactly the
same way as the original one, solving for θ and considering A as the new “sensing”
matrix, and eventually recovering x = Ψ θ .

Another limitation of the sensing model (2.1) lies in the fact that the acquired
linear measurements are typically affected by noise, leading to the following more
accurate model:

y = Φx + e, (2.5)

where e is some unknown perturbation bounded by ‖e‖2 ≤ ε.

Under certain assumptions on the sensing matrix and for a sufficiently low level
of the signal sparsity [6], robust signal recovery is achieved by solving

x̂ = argmin
x

‖x‖0 s.t. ‖y − Φx‖2 ≤ ε. (2.6)

This means that the solution x̂ of (2.6) obeys ‖x̂ − x‖ ≤ κε where κ is a positive
constant. Alternatively, an estimation can be provided by the following estimator

x̂ = argmin
x

‖y − Φx‖22 s.t. x ∈ �k . (2.7)

As in the noise-free scenario, (2.6) and (2.7) are known to be NP-hard problems.
However, an attractive alternative is given by considering (2.7) and taking the convex
relaxation of the �0 pseudonorm. This problem is also known as basis pursuit with
denoise (BPDN) and consists in selecting the element x with residual norm below
the tolerance ε which has minimal �1-norm:
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x̂ = argmin
x

‖x‖1 s.t. ‖y − Φx‖2 ≤ ε, (2.8)

It can be shown (see [4]) that, if x is k-sparse and Φ satisfies the RIP of order 2k
with RIP-constant δ2k <

√
2−1, then the solution to (2.8) is such that ‖x̂ − x‖ ≤ cε

where c is a positive constant.
Another take on the same problem is the least-absolute shrinkage and selection

operator (Lasso) [7], which recasts the problem (2.8) using an unconstrained formu-
lation:

x̂ = argmin
x

1

2

[
‖y − Φx‖22 + 2λ‖x‖1

]
, (2.9)

where the parameter λ > 0 weights the sparsity term of the cost function. It is well
known that for problems in which the number of variables n exceeds the number of
observations m the cost function in (2.9) is not strictly convex, and hence it may not
have a unique minimum. Sufficient conditions guaranteeing the uniqueness of the
solution of (2.9) are derived in [8]. The solution xLasso provides an approximation
of (2.6) with a bounded error, which is controlled by λ (see [9, 10]).

2.1.3 Iterative Thresholding Algorithms

Despite their provably good performance, however, solvers of BPDN and Lasso
problems have a rather high computational complexity, which may be excessive for
certain applications, especiallywhen the signal length n is large. Therefore, alongside
these solvers, the literature describes a large number of algorithms for sparse recovery.
The main approaches can be classified as optimization-based methods [11], pursuit
strategies [12–15], coding-theoretic tools [16, 17], and Bayesian methods (see [18]
and reference therein).

For example, the orthogonal matching pursuit algorithm [13] is a very popular
solution; this algorithm attempts to estimate the k nonzero components one by one,
starting from the strongest one. At the same time, iterative hard thresholding (IHT)
[19, 20], and iterative soft thresholding (IST) algorithms [21] have been proposed.
These algorithms have lower computational complexity per iteration and lower stor-
age requirements than interior-point methods, and are amenable to a theoretical
performance analysis. We briefly review IHT and IST, which will also be employed
in later sections of this book. They approximate the solution to (2.6) and (2.9).

The solution is obtained through an iterative technique that alternatively applies a
gradient descent step to minimize ‖y −Φx‖22, followed by a scalar thresholding step
that enforces sparse estimations. The procedure is iterated until a stopping criterion
is met. Generally, if the algorithm is analytically proved to converge, one can stop it
when numerical convergence is achieved, that is, when the relative distance between
the estimates of two successive iterates is below a fixed threshold. Alternatively, one
can fix a maximum number of iterations.
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The thresholding operators can be hard or soft and are defined as follows:

σk[x] = argmin
z∈�k

‖x − z‖2 (2.10)

and

ηλ[x] =
{
sgn(x)(|x | − λ) if |x | > λ

0 otherwise.
(2.11)

It should be noticed that the hard thresholding operator takes a best-k term approx-
imation for some value of k. This is equivalent to selecting a certain number of
components that have the largest magnitude and sets the remaining ones to zero at
each iteration. The soft thresholding operator is also called the “proximity operator”
of the �1-norm, and it acts component-wise by taking the componentswithmagnitude
above a certain threshold and shrinks remaining ones. IHT and IST are described in
Algorithm 1 and in Algorithm 2, respectively.

Algorithm 1 IHT
Input: Sensing matrix Φ, measurement y, sparsity level k
Set x (0) = 0, iterate
for t = 1 to StopIter do

x (t) ← σk [x (t−1) + ΦT (y − Φx (t−1))]
end for

Algorithm 2 IST
Input: Sensing matrix Φ, measurement y, sparsity parameter λ

Set x (0) = 0, iterate
for t = 1 to StopIter do

x (t) ← ηλ[x (t−1) + ΦT (y − Φx (t−1))]
end for

The convergence of these algorithms was proved under the assumption that
‖�‖22 < 1 in [21] (for ISTA) and [20] (for IHTA). A dissertation about the con-
vergence results can be found in [11].

2.2 Compressed Sensing for Distributed Systems

Theproblemaddressed in the previous section refers to the sensing and reconstruction
process of a single signal. In many cases, however, it is of interest to consider a set of
signals sensed by independent nodes. The sensing setup can be extended accordingly,
and suitable recovery algorithms can be derived.
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2.2.1 Distributed Setup

In the following, we refer to a scenario where CS is applied to a distributed system in
which several nodes independently sense a signal according to (2.5), as in Fig. 2.1,
where each black dot represents a node and dashed lines represent available com-
munication links between pairs of nodes. Let V be the set of sensor nodes of size
J = |V |. The vth node acquires a signal xv ∈ R

n via linear measurements of the
form yv = Φvxv + ev. According to this model, each node senses a different signal
xv, using an individual sensing matrix Φv, the sensing process being affected by an
individual noise signal ev. Nodes are represented as vertexes of a graph G where the
set E of edges between pairs of nodes identify the communications links, so that
(G ,V ,E ) defines the network structure.

The distributed setup poses particular challenges for the sensing and reconstruc-
tion process.

• If the signals xv are independent, then the reconstruction problem is essentially
equivalent to J individual problems, one at each node. In other terms, each node
will have to acquire a number of linear measurements that is sufficiently large
to enable reconstruction of yv from xv and Φv. No collaboration among nodes is
needed or useful at all, because a node does not have any information that may
help in reconstructing the signal measured by another node.

• The more interesting case is when the signals xv are correlated among each other.
This typically occurs when the nodes sense a physical phenomenon that exhibits
a spatially smooth behavior, e.g., a temperature or pressure field. In this sce-
nario, there are two types of sparsity to be exploited. Namely, intranode sparsity
describes the degree of dependency among samples of the same signal at different
time instants, while internode sparsity describes the dependency among samples
acquired by different nodes at the same time instant. Internode sparsity is a specific

Fusion center

Fig. 2.1 Distributed system setting
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aspect of distributed systems, which will be addressed in the remaining part of this
chapter and in the next chapters.

• While the nodes individually acquire linear measurements of the signals, two
approaches are available for the reconstruction, namely centralized anddistributed.
In the centralized approach, the nodes offload the reconstruction process to a
fusion center, which receives the linear measurements {yv}J

v=1 acquired by all
nodes and recovers the corresponding set of signals {xv}J

v=1. Whether centralized
reconstruction is possible or even useful depends on many aspects, including the
energy cost incurred by transmitting the measurements to the fusion center; this
latter also depends on several factors, including distance and the existence and
willingness of neighboring nodes to serve as relays. Moreover, the nodes do not
get to know the reconstructed signal xv, which is known only at the fusion center,
unless it is transmitted back to each node.

• In the distributed approach, the network does away with a fusion center. This has
many advantages, as it avoids the need to transfer all the data to the fusion cen-
ter, thereby saving a lot of energy. Moreover, the network can function even in
the case that the fusion center suddenly becomes unavailable, e.g., because of a
hardware failure. In addition, the information does not travel long distances, avoid-
ing the danger of eavesdropping or other security threats. Conversely, distributed
reconstruction is based on local short-range communications of each node with its
neighbors. Short-range communications are very convenient in terms of privacy
and energy consumption, and the failure of few nodes will generally not break
down the operation of the whole network. On the other hand, local communica-
tions decrease the speed at which the information spreads through the network,
calling for iterative reconstruction techniques to allow time for each node to con-
tribute to the reconstruction of all other nodes in the network. Since each iteration
has an energy cost, the design of a distributed reconstruction algorithm must be
done carefully, in order to avoid that too many iterations outweigh the energy
benefits of local communications.

2.3 Joint Sparsity Models

This section extends the signal model for one source to the case of distributed signals.
Several joint sparsity models are considered, in which all or parts of the signal model
are assumed to be sparse. Joint sparsity models entail signals having a twofold source
of correlation:

• Intracorrelation, denoting how samples of the same signal are correlated to each
other (typically, correlation in time).

• Intercorrelation, denoting how samples of different signals are correlated to each
other at the same time instant (correlation in space).
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These models represent a good fit for physical signals acquired during time by a
sensor network in different points of space. In particular, the original signal sensed
by the vth node can be written as

xv = xC + xl,v , (2.12)

and node v acquires linear projections of this signal as

yv = Φvxv = Φv
(
xC + xl,v

)
. (2.13)

According to this model, each signal is composed of a common part xC, which is
the same for all sensors and is referred to as the common component, and an individual
part xl,v, called innovation component, which is specific to each individual sensor.
We also assume that xC has kC nonzero entries, and each xl,v has kl,v nonzero entries,
so that xv has at most kv = kC + kl,v nonzero entries. If each node had to recover xv

from yv without receiving help from other nodes, it should acquire a number of linear
measurements mv proportionally larger than kv, i.e., mv 
 Ckv, with C sufficiently
large depending on the recovery algorithm employed. If each node acted like this,
the total number of measurements acquired by the network would be equal to

∑
v

Ckv = C
∑

v

(
kC + kl,v

) = C

(
JkC +

∑
v

kl,v

)
.

What is clear from this analysis is that, while intrasensor sparsity is exploited at each
node, the common component is measured J times individually. This is a clear waste
of resource that is caused by the lack of exploitation of intersensor sparsity.

The model described in (2.12) can be further detailed according to the structure
of xC and xl,v. In particular, in [22, 23] the following cases are identified:

• Both the common and innovation components are sparse, namely kC � n and
kl,v � n for all v. This model is also referred to as JSM-1 in [23]. The common
and innovation components need not necessarily be sparse in the same basis. This
is a very general model that encompasses many cases of practical interest. For
example, a physical phenomenon that is spatially smooth over the coverage area of
the sensor networkwill typically yield a sparse common component that represents
the large-scale behavior of the phenomenon, and an innovation component that
accounts for the local behavior.

• The common and innovation components have the same sparsity support for all
signals (model JSM-2 in [23]). This model is relevant e.g., when a signal described
by few frequency components undergoes a frequency-selective attenuation such
as the multipath effect, whereby each component is multiplied by a different coef-
ficient, but no new component is created.
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• The common component is not sparse, but the innovation components xl,v are
sparse (model JSM-3). This is a more general version of JSM-1.

Similar sparsity models were proposed in [24], along with respective reconstruc-
tion algorithms.

2.4 Reconstruction for Distributed Systems

It should be noted that, given the number of possible setups, there is no one-size-fits-
all reconstruction algorithm that can be used in all cases. In the next chapters we will
overview a few algorithms which have been developed for specific scenarios, i.e.,
centralized (Chap. 4) versus distributed (Chap. 5) reconstruction for a specific joint
sparsity model.

The centralized problem entails that all linear measurements {yv}J
v=1 are available

at the fusion center, which attempts to take advantage of the correlation among the
signals xv. Early work on this reconstruction problem goes back to the multiple-
measurement vectors problem [25, 26]. Indeed, [25] showed that the availability
of multiple measurements improves recovery performance. Later, [26] extended the
equivalence between �0 and �1 reconstruction to the multiple-measurement vectors
case. A few practical algorithms have also been proposed, e.g., M-FOCUSS and
M-OMP. Typically, these algorithms are based on a sensing model Ỹ = Φ̃ X̃ , with
Ỹ = [y1, . . . , yv] ∈ R

m×|V |, X̃ = [x1, . . . , xv] ∈ R
n×|V |, and Φ̃ ∈ R

m×n . Such
algorithms are convenient extensions of the corresponding algorithm in the single-
sensor case. However, they have significant limitations. First, the dictionary Φ̃ must
be the same for all vectors. Second, they work well when all signals xv have the
same sparsity support, e.g., in the case of model JSM-2. This is because a common
sparsity support leads to an unknown vector X̃ that is row-sparse, facilitating the
recovery task as well as the derivation of theoretical recovery guarantees. In Chap.4
we will show more general application scenarios.

The distributed reconstruction problem is more challenging, because at any stage
no node has a complete knowledge of the measurements sensed by all other nodes.
This information spreads in the network over time, and nodes make greedy decisions
based on limited knowledge of the information circulating in the network.Distributed
reconstruction algorithms raise the following questions.

• Given the design of a specific distributed recovery algorithm, does the algorithm
converge at all?

• If it does converge, does it converge to the global or local minimum of some given
cost function?

• Is this functional a sensible one, e.g., the same functional solved by a corresponding
centralized reconstruction algorithm?

• Do all nodes individually converge to a sensible solution?

As will be seen in Chap.5, and as is the case of many single-sensor recovery
algorithms, these questions can be answered for some classes of algorithms, but

http://dx.doi.org/10.1007/978-981-287-390-3_4
http://dx.doi.org/10.1007/978-981-287-390-3_5
http://dx.doi.org/10.1007/978-981-287-390-3_4
http://dx.doi.org/10.1007/978-981-287-390-3_5
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sometimes only partial responses can be obtained. In particular, Chap. 5 will describe
a distributed generalization of thresholding algorithms, for which strong guarantees
can be obtained, and some extensions aimed at minimizing communication cost,
which are very interesting from the practical standpoint, but less amenable to a
complete analytical characterization.
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Chapter 3
Rate-Distortion Theory of Distributed
Compressed Sensing

In this chapter, correlated and distributed sources without cooperation at the encoder
are considered. For these sources, the best achievable performance in the rate-
distortion sense of any distributed compressed sensing scheme is derived, under the
constraint of high-rate quantization. Moreover, under this model we derive a closed-
form expression of the rate gain achieved by taking into account the correlation of
the sources at the receiver and a closed-form expression of the average performance
of the oracle receiver for independent and joint reconstruction. Finally, we show
experimentally that the exploitation of the correlation between the sources performs
close to optimal and that the only penalty is due to the missing knowledge of the
sparsity support as in (non-distributed) compressed sensing. Even if the derivation
is performed in the large system regime, where signal and system parameters tend to
infinity, numerical results show that the equations match simulations for parameter
values of practical interest.

3.1 Introduction

Using CS as signal representation requires to cast the representation/coding prob-
lem in a rate-distortion (RD) framework, particularly regarding the rate necessary to
encode the measurements. For single sources, this problem has been addressed by
several authors. In [1], a RD analysis of CS reconstruction from quantized measure-
ments was performed, when the observed signal is sparse. Instead, [2] considered
the RD behavior of strictly sparse or compressible memoryless sources in their own
domain. Fletcher et al. [3, 4] considered the cost of encoding the random measure-
ments for single sources. More precisely, RD analysis was performed and it was
shown that adaptive encoding, taking into account the source distribution, outper-
forms scalar quantization of random measurements at the cost of higher computa-
tional complexity. However, in the distributed context, adaptive encoding may loose

© The Author(s) 2015
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the intercorrelation between the sources since it is adapted to the distribution of each
single source or even the realization of each source.

On the other hand, the distributed case is more sophisticated. Not only one needs
to encode a source, but also to design a scheme capable of exploiting the correla-
tion among different sources. Therefore, distributed CS (DCS) was proposed in [5]
and further analyzed in [6]. In those papers, an architecture for separate acquisition
and joint reconstruction was defined, along with three different joint sparsity models
(which where merged into a single formulation in the latter paper). For each model,
necessary conditions were posed on the number of measurement to be taken on
each source to ensure perfect reconstruction. An analogy between DCS and Slepian-
Wolf distributed source coding was depicted, in terms of the necessary conditions
about the number of measurements, depending on the sparsity degree of sources,
and the necessary conditions on encoding rate, depending on conditional and joint
entropy, typical of Slepian-Wolf theory. Moreover, it was shown that a distributed
system based on CS could save up to 30% of measurements with respect to separate
CS encoding/decoding of each source. On the other hand, [5] extended CS in the
acquisition part, but it was mainly concerned with the performance of perfect recon-
struction, and did not consider the representation/coding problem, which is one of
the main issues of a practical scheme and a critical aspect of CS.

In [7], a DCS scheme was proposed that takes into account the encoding cost,
exploits both inter- and intracorrelations, and has low complexity. The main idea was
to exploit the knowledge of side information (SI) not only as a way to reduce the
encoding rate, but also in order to improve the reconstruction quality, as is common
in the Wyner-Ziv context [8]. The proposed architecture applies the same Gaussian
random matrix to information and SI sources, then quantizes and encodes the mea-
surements with a Slepian-Wolf source code.

In this chapter, we study analytically the best achievable RD performance of any
single-source and distributed CS scheme, under the constraint of high-rate quanti-
zation, providing simulation results that perfectly match the theoretical analysis. In
particular, we provide the following contributions. First, we derive the asymptotic (in
the rate and in the number of measurements) distribution of the measurement vector.
Even if the analysis is asymptotic, we show that the convergence to a Gaussian dis-
tribution occurs with parameter values of practical interest. Moreover, we provide
an analytical expression of the rate gain obtained exploiting intersource correlation
at the decoder. Second, we provide a closed-form expression of the average recon-
struction error using the oracle receiver, improving the results existing in literature,
consisting only in bounds hardly comparable to the results of numerical simulations
[9, 10]. The proof relies on recent results on random matrix theory [11]. Third, we
provide a closed-form expression of the rate gain due to joint reconstruction from the
measurements of multiple sources. We compare the results obtained by theory both
with the ideal oracle receiver and with a practical algorithm [7], showing that the
penalty with respect to the ideal receiver is due to the lack of knowledge of the spar-
sity support in the reconstruction algorithm. Despite this penalty, the theoretically



3.1 Introduction 19

derived rate gain matches that obtained applying distributed source coding followed
by joint reconstruction to a practical reconstruction scheme. With respect to [5, 6],
we use information theoretic tools to provide an analytical characterization of the
performance of CS and DCS, for a given number of measurements and set of system
parameters.

The chapter is organized as follows. Some background information about source
codingwith side information at the decoder is given in Sect. 3.2. Analytical results are
presented in Sects. 3.3 and 3.4. These results are validated via numerical simulations
that are presented throughout the chapter.

3.2 Source Coding with Side Information at the Decoder

Source coding with SI at the decoder refers to the problem of compressing a source X
when another source Y , correlated to X , is available at the decoder only. It is a special
case of distributed source coding, where the two sources have to be compressed
without any cooperation at the encoder.

For lossless compression, if X is compressed without knowledge of Y at its con-
ditional entropy, i.e., RX > H(X|Y), it can be recovered with vanishing error rate
exploiting Y as SI. This represents the asymmetric setup, depicted in Fig. 3.1, where
source Y is compressed in a lossless way (RY > H(Y )) or otherwise known at
the decoder. Therefore, the lack of SI at the encoder does not incur any compres-
sion loss with respect to joint encoding, as the total rate required by DSC is equal
to H(Y ) + H(X|Y) = H(X, Y ). The result holds for i.i.d. finite sources X and Y
[12] but also for ergodic discrete sources [13], or when X is i.i.d. finite, Y is i.i.d.
continuous and is available at the decoder [14, Proposition 19].

For lossy compression of i.i.d sources, [15] shows that the lack of SI at the encoder
incurs a loss except for some distributions (Gaussian sources, or more generally
Gaussian correlation noise). Interestingly, [14] shows that uniform scalar quanti-
zation followed by lossless compression incurs a suboptimality of 1.53 dB, in the
high-rate regime. Therefore, practical solutions (see for example [16]) compress and
decompress the data relying on an inner lossless distributed codec, usually referred to
as Slepian-Wolf Code (SWC), and an outer quantization-plus-reconstruction filter.

Fig. 3.1 The asymmetric
distributed source coding
setup

Encoder Decoder
X R X X

Y
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3.3 Rate-Distortion Functions of Single-Source
Compressed Sensing

In this section, we derive the best achievable performance in the RD sense over all
CS schemes, under the constraint of high-rate quantization. The distribution of the
measurements derived in Theorem 3.1 allows to write a closed-form expression of
the RD functions of the measurement vectors. In Theorem 3.2, we derive a closed-
form expression of the average reconstruction error of the oracle receiver, which will
use the results from Theorem 3.1 to present the RD functions of the reconstruction.

3.3.1 Single-Source System Model

Definition 3.1 (Sparse vector) The vector x ∈ R
n is said to be (k, n, σ 2

θ , Ψ )-sparse
if x is sparse in the domain defined by the orthogonal matrix Ψ ∈ R

n×n , namely:
x = Ψ θ , with ‖θ‖0 = k, and if the nonzero components of θ are modeled as i.i.d.
centered random variables with variance σ 2

θ < ∞. Ψ is independent of θ .

The sparse x vector is observed through a smaller vector of Gaussian measurements
defined as

Definition 3.2 (Gaussian measurement) The vector y is called the (m, n, σ 2
Φ,Φ)-

Gaussian measurement of x ∈ R
n , if y = 1√

m
Φx , where the sensing matrix Φ ∈

R
m×n , with m < n, is a random matrix1 with i.i.d. entries drawn from a Gaussian

N(0, σ 2
Φ) with σ 2

Φ < ∞.

We denote as yq the quantized version of y. To analyze the RD tradeoff, we consider
the large system regime defined below.

Definition 3.3 (Large system regime, overmeasuring and sparsity rates) Let x be
(k, n, σ 2

θ , Ψ )-sparse. Let y be the (m, n, σ 2
Φ,Φ)-Gaussian measurement of x . The

system is said to be in the large system regime if n goes to infinity, k and m are
functions of n and tend to infinity as n does, under the constraint that the rates k/n
and m/k converge to constants called sparsity rate (γ ) and overmeasuring rate (μ)
i.e.:

lim
n→+∞

k

n
= γ, lim

n→+∞
m

k
= μ > 1 (3.1)

The sparsity rate is a property of the signal. Instead, the overmeasuring rate is the
ratio of the number of measurements to the number of nonzero components, and is
therefore a property of the system [1].

1This definition complies with the usual form y = Φx where the variance σ 2
Φ of the elements of Φ

depends on m. Here, we wanted to keep σ 2
Φ independent of system parameters.
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3.3.2 Rate-Distortion Functions of Measurement Vector

The information RD function of an i.i.d. source X defines the minimum amount of
information per source symbol R needed to describe the source under the distortion
constraint D. For an i.i.d. Gaussian source X ∼ N(0, σ 2

x ), choosing as distortion
metric the squared error between the source and its representation on R bits per
symbol, the distortion satisfies

Dx (R) = σ 2
x 2

−2R. (3.2)

Interestingly, the operational RD function of the sameGaussian source, with uniform
scalar quantizer and entropy coding satisifies, in the high-rate regime:

lim
R→+∞

1

σ 2
x
22R DEC

x (R) = πe

6
(3.3)

where EC stands for entropy-constrained scalar quantizer. This leads to a 1.53 dB
gap between the information and the operational RD curves. The relation (3.3) can
be easily extended to other types of quantization adapting the factor πe

6 to the specific
quantization scheme.

Theorem 3.1 (CS: Asymptotic distribution of Gaussian measurements and
measurement RD function) Let x be (k, n, σ 2

θ , Ψ )-sparse. Let y be the
(m, n, σ 2

Φ,Φ)-Gaussian measurement of x, s.t. k < m < n. Consider the
large system regime with finite sparsity rate γ = limn→∞ k

n and finite over-
measuring rate μ = limn→∞ m

k > 1. The Gaussian measurement converges
in distribution to an i.i.d. Gaussian, centered random sequence with variance

σ 2
y = 1

μ
σ 2

Φσ 2
θ . (3.4)

Therefore, the information RD function satisfies

lim
n→+∞

1

σ 2
y
22R Dy(R) = 1, (3.5)

where R is the encoding rate per measurement sample, and the entropy-
constrained scalar quantizer achieves a distortion DEC

y that satisfies

lim
R→+∞ lim

n→+∞
1

σ 2
y
22R DEC

y (R) = πe

6
. (3.6)
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Sketch of proof.The distribution of the GaussianmatrixΦ is invariant under orthog-
onal transformation. Thus, we obtain y = 1√

m
ΦΨ θ = 1√

m
Uθ , where U is an i.i.d.

Gaussian matrix with variance σ 2
Φ . Then, we consider a finite length subvector y(m)

of y. From the multidimensional Central Limit theorem (CLT) [17, Theorem 7.18],
y(m) converges to a Gaussian centered vector with independent components. Then,
as m → ∞, the sequence of Gaussian measurements converges to an i.i.d. Gaussian
sequence. See [18, Appendix A] for the complete proof. �

Theorem 3.1 generalizes [1, Theorem 2], which derives the marginal distribution
of the measurements, when the observed signal is directly sparse. Instead, Theo-
rem 3.1 derives the joint distribution of the measurements and considers transformed
sparse signals.

It has to be stressed that, even if the RD curves for measurement vectors do not
have any “practical” direct use, they are required to derive the RD curves for the
reconstruction of the sources, which can be found later in this section.

The validity of theRD functions derived for themeasurements is shown in Fig. 3.2.
The figure plots the quantization distortion of y, i.e., E

[ 1
m ‖y − yq‖22

]
versus the

rate R, measured in bits per measurement sample (bpms). The distortion has been
averaged over 104 trials, and for each trial different realizations of the sources, the
sensing matrix and the noise have been drawn. Figure3.2 shows two subfigures
corresponding to different sets of signal and system parameters (signal length n,
sparsity of the common component kC and of the innovation component kI, j , variance
of the nonzero components σ 2

θC
and σ 2

θI, j
, respectively, and length of themeasurement

vectorm). For each test,Ψ is the DCTmatrix, each nonzero component of θ is drawn
from a normal distribution, and σ 2

Φ = 1.

• The curve labeled as (HR)—standing for high rate—is the asymptote of the oper-
ational RD curves (3.19).

• The curve labeled as (Gauss.) corresponds to the distortion of a synthetic zero-
mean Gaussian source with variance σ 2

y as in (3.16) and quantized with a uniform
scalar quantizer.

• The curve labeled as (sim.) is the simulated RD for a measurement vector obtained
generating x according to Definition 3.1, measuring it with the sensing matrix Φ

to obtain y and quantizing it with a uniform scalar quantizer.

For the (Gauss.) and (sim.) curves, the rate is computed as the symbol entropy of the
samples yq , quantized with a uniform scalar quantizer. Entropy has been evaluated
computing the number of symbol occurrences over vectors of length 108.

First, we notice that the (HR) equation perfectly matches the simulated curves
when R > 2, showing that the high-rate regime occurs for relative small values of
R. Then, it can be noticed that (Gauss.) curves perfectly overlap the (sim.) ones,
showing the validity of equation (3.16) and showing that the convergence to the
Gaussian case occurs for low values of n, m, kC, kI, j , as was shown also in [19].



3.3 Rate-Distortion Functions of Single-Source Compressed Sensing 23

Rate, bits per measurement sample
0 2 4 6 8 10 12

D
is
to
rt
io
n

10 -8

10 -6

10 -4

10 -2

10(a)

(b)

0

D (sim )
y

D (Gauss )
y

D (HR)
y

Rate, bits per measurement sample
0 2 4 6 8 10 12

D
is
to
rt
io
n

10 -8

10 -6

10 -4

10 -2

10 0

D (sim )
y

D (Gauss )
y

D (HR)
y

.

.

.

.

Fig. 3.2 Simulated versus theoretical rate-distortion functions of measurement vectors for two
different sets of signal and system parameters. Single-source case. a n = 512, kC = kI, j = 8,
σ 2

θC
= 1, σ 2

θI, j
= 10−2, m = 128, b n = 1024, kC = 16, kI, j = 8, σ 2

θC
= σ 2

θI, j
= 1, m = 256
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3.3.3 Rate-Distortion Functions of the Reconstruction

We now evaluate the performance of CS reconstruction with quantized measure-
ments. The performance depends on the amount of noise affecting themeasurements.
In particular, the distortion ‖x̂ − x‖22 is upper bounded by the noise variance up to a
scaling factor [20, 21], i.e.,

‖x̂ − x‖22 ≤ c2ε2 , (3.7)

where the constant c depends on the realization of the measurement matrix, since
it is a function of the RIP constant. Since we consider the average2 performance,
we need to consider the worst case c and this upper bound will be very loose [22,
Theorem 1.9].

Here, we consider the oracle estimator (see Sect. 2.1.2), which is the estimator
knowing exactly the sparsity supportS = {i |θi 	= 0} of the signal x . For the oracle
estimator, upper and lower bounds depending on the RIP constant can be found, for
example in [9] when the noise affecting the measurements is white and in [10] when
the noise is correlated. Unlike [9, 10], here the average performance of the oracle,
depending on system parameters only, is derived exactly.

As we will show in the following sections, the characterization of the ideal oracle
estimator allows to derive the reconstruction RD functions with results holding also
when nonideal estimators are used.

Theorem 3.2 (CS: Reconstruction RD functions) Let x be (k, n, σ 2
θ , Ψ )-

sparse. Let y be the (m, n, σ 2
Φ,Φ)-Gaussian measurement of x, s.t. k + 3 <

m < n. Consider the large system regime with finite sparsity rate γ =
limn→∞ k

n and finite overmeasuring rate μ = limn→∞ m
k > 1. R denotes the

encoding rate per measurement sample. Assume reconstruction by the oracle
estimator, when the supportS of x is available at the receiver. The operational
RD function of any CS reconstruction algorithm is lower bounded by that of
the oracle estimator that satisfies

DCS
x (R) ≥ Doracle

x (R) = γ
μ

μ − 1

1

σ 2
Φ

Dy(R) = γ

μ − 1
σ 2

θ 2
−2R. (3.8)

Similarly, the entropy-constrained RD function satisfies in the high-rate regime

DEC−CS
x (R) ≥ DEC oracle

x (R) = γ

μ − 1
σ 2

θ

πe

6
2−2R. (3.9)

2The average performance is obtained averaging over all random variables i.e., the measurement
matrix, the nonzero components θ and noise, as for example in [10].

http://dx.doi.org/10.1007/978-981-287-390-3_2
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Sketch of proof. A novel result about the expected value of a matrix following a
generalized inverseWishart distribution [11, Theorem 2.1] is used. This result can be
applied to the distortion of the oracle estimator for finite length signals, depending on
the expected value of the pseudo inverse ofWishartmatrix [23]. The key consequence
is that the distortion of the oracle only depends on the variance of the quantization
noise and not on its covariance matrix. Therefore, our result holds even if the noise
is correlated (for instance if vector quantization is used). Hence, this result applies
to any quantization algorithm. This result improves those in [9, Theorem 4.1] and
[10], where upper and lower bounds depending on the RIP constant of the sensing
matrix are given, and it also generalizes [1, Section III.C], where a lower bound is
derived whereas we derive the exact average performance. See [18, Appendix B] for
the complete proof. �

It must be noticed that the condition m > k + 3 is not restrictive since in all cases
of practical interest, m > 2k.

Figure3.3 depicts the RD performance of the oracle receiver, in terms of recon-
struction error, i.e., E

[ 1
n ||̂x − x ||22

]
versus the rate per measurement sample R. The

distortion has been averaged over 104 trials, and for each trial different realizations
of the sources, the sensing matrix and the noise have been drawn. For each test, Ψ is
the DCT matrix, each nonzero component of θ is drawn from a normal distribution,
and σ 2

Φ = 1. The figure shows two subfigures corresponding to different sets of
signal and system parameters (n, kC, kI, j , σ 2

θC
, σ 2

θI, j
, m). Each subfigure compares

the RHS of Eq. (3.29) with the oracle reconstruction distortion from yq versus the
symbol entropy of the samples yq , obtaining a match for R > 2. For the (sim.)
curves, the rate is computed as the symbol entropy of the samples yq , quantized with
a uniform scalar quantizer. Entropy has been evaluated computing the number of
symbol occurrences over vectors of length 108.

3.4 Rate-Distortion Functions of Distributed Compressed
Sensing

In this section, the best achievable performance in the RD sense over all DCS
schemes, under the constraint of high-rate quantization, is derived. Note that [7]
(see Fig. 3.4) is one instance of such a scheme. Results about the distribution of the
measurements in the distributed case are presented in Theorem 3.3. Hence, Theo-
rem 3.4, will combine the results of Theorem 3.3 and previous section to derive the
RD functions of the reconstruction in the distributed case.
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Fig. 3.4 The Distributed compressed sensing scheme in [7]

3.4.1 Distributed System Model

Definition 3.4 (Correlated Sparse vectors) J vectors x j ∈ R
n×1, j ∈ {1, . . . , J }

are said to be ({kI, j }J
j=1, kC, {k j }J

j=1, n, σ 2
θC

, {σ 2
θI, j

}J
j=1, Ψ )—sparse if

1. Each vector x j = xC + xI, j is the sum of a common component xC shared by
all signals and an innovation component xI, j , which is unique to each signal x j .

2. Both xC and xI, j are sparse in the same domain defined by the orthogonal matrix
Ψ ∈ R

n×n , namely: xC = Ψ θC and xI, j = Ψ θI, j , with ||θC||0 = kC, ||θI, j ||0 =
kI, j and kC, kI, j < n.

3. The global sparsity of x j is k j , with max
{
kC, kI, j

} ≤ k j ≤ kC + kI, j .
4. The nonzero components of θC and θI, j are i.i.d. centered random variables with

variance σ 2
θC

< ∞ and σ 2
θI, j

< ∞, respectively.

The correlation between the sources is modeled through a common component and
their difference through an individual innovation component. This is a good fit for
signals acquired by a group of sensors monitoring the same physical event in differ-
ent spatial positions, where local factors can affect the innovation component of a
more global behavior taken into account by this common component. Note that the
Joint Sparsity Model-1 (JSM-1) [5] and the ensemble sparsity model (ESM) in [6],
described in Sect. 2.3, are deterministic models. Instead, the sparse model (Defini-
tion 3.4) is probabilistic, sincewe look for the performance averaged over all possible
realizations of the sources.

Focusingwithout loss of generality on the case J = 2,we assume that x1 and x2 are(
kI,1, kI,2, kC, k1, k2, n, σ 2

θC
, σ 2

θI,1
, σ 2

θI,2
, Ψ

)
-sparse. x1 is the source to be compressed

whereas x2 serves as SI. y1 and y2 are the (m, n, σ 2
Φ,Φ)-Gaussian measurements of

x1 and x2, and yq, j is the quantized version of y j .
The large system regime becomes in the distributed case:

Definition 3.5 (Large system regime, sparsity and overmeasuring rates, and over-

laps) Let the J vectors x j ∈ R
n×1, ∀ j ∈ {1, . . . , J } be

(
{kI, j }J

j=1, kC, {k j }J
j=1, n,

σ 2
θC

, {σ 2
θI, j

}J
j=1, Ψ

)
—sparse. For each j , let y j ∈ R

m×1 be the (m, n, σ 2
Φ,Φ)-

Gaussian measurement of x j . The system is said to be in the large system regime
if:

http://dx.doi.org/10.1007/978-981-287-390-3_2
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1. n goes to infinity.
2. The other dimensions kI, j , kC, k j , m are functions of n and tend to infinity as n

does.
3. The following rate converges to a constant called sparsity rate as n goes to

infinity:
k j

n
→ γ j . (3.10)

4. The following rate converges to a constant called overmeasuring rate as n goes
to infinity:

m

k j
→ μ j > 1. (3.11)

5. All following rates converge to constants called overlaps of the common and
innovation components as n goes to infinity:

kC
k j

→ ωC, j ,
kI, j

k j
→ ωI, j . (3.12)

Note that max
{
ωC, j , ωI, j

} ≤ 1 ≤ ωC, j + ωI, j ≤ 2.

3.4.2 Rate-Distortion Functions of Measurement Vector

The information RD function can also be derived for a pair (X, Y ) ∼ N(0, Kxy) of
i.i.d. jointly Gaussian distributed random variables with covariance matrix

Kxy =
(

σ 2
x ρxyσxσy

ρxyσxσy σ 2
y

)
. (3.13)

Interestingly, when the SI is available at both encoder and decoder or at the decoder
only, the information RD function is the same:

Dx|y(R) = σ 2
x (1 − ρ2

xy)2
−2R = Dx (R + R∗), (3.14)

where R∗ = 1
2 log2

1
1−ρ2

xy
≥ 0 is the rate gain,measuring the amount of rate one saves

by using the side information Y to decode X . This result holds for optimal vector
quantizer [15] but also for scalar uniform quantizers [14, Theorem 8 and Corollary 9]
by replacing Dx in (3.14) by the entropy-constrained distortion function DEC

x (R),
defined in (3.3).

To derive the RD curves for the reconstruction of the sources, we first generalize
Theorem 3.1 and derive the asymptotic distribution of pairs of measurements.
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Theorem 3.3 (DistributedCS:Asymptotic distribution of the pair ofGaussian

measurements andmeasurement RD functions)Let x1 and x2 be
(

kI,1, kI,2, kC,

k1, k2, n, σ 2
θC

, σ 2
θI,1

, σ 2
θI,2

, Ψ
)

-sparse. x2 serves as SI for x1 and is available at

the decoder, only. Let y1 and y2 be the (m, n, σ 2
Φ,Φ)-Gaussian measurements

of x1 and x2. Let (Y1, Y2) be the pair of random processes associated to the
random vectors (y1, y2). In the large system regime, (Y1, Y2) converges to an
i.i.d. Gaussian sequence with covariance matrix

K12 =
(

σ 2
y1 ρ12σy1σy2

ρ12σy1σy2 σ 2
y2

)
, (3.15)

σ 2
y j

= σ 2
Φ

μ j

[
ωC, jσ

2
θC

+ ωI, jσ
2
θI, j

]
(3.16)

ρ12 =
[(

1 + ωI,1

ωC,1

σ 2
θI,1

σ 2
θC

)(
1 + ωI,2

ωC,2

σ 2
θI,2

σ 2
θC

)]− 1
2

. (3.17)

Let R be the encoding rate per measurement sample. When the SI is not
used, the information RD function satisifies

lim
N→+∞

1

σ 2
y1

22R Dy1(R) = 1, (3.18)

and the entropy-constrained scalar quantizer achieves a distortion DEC
y1 that

satisfies

lim
R→+∞ lim

N→+∞
1

σ 2
y1

22R DEC
y1 (R) = πe

6
. (3.19)

When the measurement y2 of the SI is used at the decoder, the information
RD function satisifies

lim
N→+∞

1

σ 2
y1

22(R+R∗)Dy1|y2(R) = 1 , (3.20)

while the entropy-constrained scalar quantizer achieves a distortion DEC
y1|y2

that satisfies

lim
R→+∞ lim

N→+∞
1

σ 2
y1

22(R+R∗)DEC
y1|y2(R) = πe

6
, (3.21)



30 3 Rate-Distortion Theory of Distributed Compressed Sensing

where

R∗ = 1

2
log2

1

1 − ρ2
12

. (3.22)

Therefore, in the large system regime (and in the high-rate regime for
entropy-constrained scalar quantizer), the measurement y2 of the SI helps
reducing the rate by R∗ (3.22) bits per measurement sample:

Dy1|y2(R) = Dy1(R + R∗). (3.23)

Sketch of proof. We consider a vector of finite length 2m, which contains the first
m components of y1 followed by the first m components of y2. The vector can be
seen as a sum of three components, where each component converges to a Gaussian
vector from the multidimensional CLT [17, Theorem 7.18]. Finally, we obtain that
(Y1, Y2) converges to an i.i.d. Gaussian process. Therefore, classical RD results for
i.i.d. Gaussian sources apply. See [18, Appendix C] for the complete proof. �

Theorem 3.3 first states that the measurements of two sparse vectors converge to
an i.i.d. Gaussian process in the large system regime. Then, lossy compression of
the measurements is considered and the information and entropy-constrained rate-
distortion functions are derived. It is shown that if one measurement vector is used
as side information at the decoder, some rate can be saved, depending on the sparse
source characteristics, only (see (3.22) and (3.17)).

The validity of theRD functions derived for themeasurements is shown in Fig. 3.5.
The figure plots the quantization distortion of y1, i.e., E

[ 1
m ‖y1 − yq,1‖22

]
when y2 is

or is not used asSide Information, versus the rate R,measured in bits permeasurement
sample (bpms). The distortion has been averaged over 104 trials, and for each trial
different realizations of the sources, the sensing matrix and the noise have been
drawn. Figure3.5 shows two subfigures corresponding to different sets of signal and
system parameters (signal length n, sparsity of the common component kC and of
the innovation component kI, j , variance of the nonzero components σ 2

θC
and σ 2

θI, j
,

respectively, and length of the measurement vector m). For each test, Ψ is the DCT
matrix, each nonzero component of θ is drawn from a normal distribution, and
σ 2

Φ = 1. Each subfigure shows two families of curves, corresponding to the cases in
which y2 is (respectively, is not) used as SI. Each family is composed by 3 curves.

• The curve labeled as (HR)—standing for high rate—is the asymptote of the oper-
ational RD curves (3.19) (or (3.21)).

• The curve labeled as (Gauss.) corresponds to the distortion of a synthetic correlated
Gaussian source pair with covariance matrix as in (3.15), where σ 2

y j
is defined in

(3.16) and ρy1y2 in (3.17), and quantized with a uniform scalar quantizer.
• The curves labeled as (sim.) are the simulated RD for a measurement vector pair
obtained generating x1 and x2 according to Definition 3.4, measuring them with
the same Φ to obtain y1 and y2 and quantizing y1 and y2 with a uniform scalar
quantizer.
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Fig. 3.5 Simulated versus theoretical rate-distortion functions of measurement vectors for two
different sets of signal and system parameters. Single-source and distributed cases. a n = 512,
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= 10−2, m = 128, b n = 1024, kC = 16, kI, j = 8, σ 2
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For the (Gauss.) and (sim.) curves, the rate is computed as the symbol entropy of the
samples yq,1 (or the conditional symbol entropy of yq,1 given y2 in the distributed
case), quantized with a uniform scalar quantizer. Entropy and conditional entropy
have been evaluated computing the number of symbol occurrences over vectors of
length 108.

First, we notice that the (HR) equation perfectly matches the simulated curves
when R > 2, showing that the high-rate regime occurs for relative small values of R.
Then, it can be noticed that (Gauss.) curves perfectly overlap the (sim.) ones, showing
the validity of equation (3.17) and showing that the convergence to the Gaussian case
occurs for low values of n,m, kC, kI, j , as was shown also in [19]. It can be also shown
that, being the sources of Fig. 3.5b much less correlated than the ones of Fig. 3.5a
also the rate gain R∗ is smaller.

3.4.3 Rate-Distortion Functions of the Reconstruction

We now derive the RD functions after reconstruction of the DCS scheme.

Theorem 3.4 (Distributed CS: Reconstruction RD functions) Let x1 and x2
be

(
kI,1, kI,2, kC, k1k2n, σ 2

θC
, σ 2

θI,1
, σ 2

θI,2
, Ψ

)
-sparse. x2 serves as SI for x1 and

is available at the decoder, only. Let y1 and y2 be the (m, n, σ 2
Φ,Φ)-Gaussian

measurements of x1 and x2, s.t. k1 + 3 < m <. Let R be the encoding rate per
measurement sample. The distortiona of the source x1 is denoted as DIR

x1 when

the SI is not available at the receiver, DIR
x1|y2 when the measurements of the SI

are available at the SWC decoder (IR stands for independent reconstruction),
and DJR

x1|x2 when the SI is used not only to reduce the encoding rate but also
to improve the reconstruction fidelity (JR stands for joint reconstruction).
Then, when independent reconstruction is performed, the RD functions for x1
satisfy, in the large system regime:

DIR
x1 (R) ≥ DIR oracle

x1 (R) = γ1
μ1

μ1 − 1

1

σ 2
Φ

Dy1(R), (3.24)

DIR
x1|y2(R) ≥ DIR oracle

x1|y2 (R) = γ1
μ1

μ1 − 1

1

σ 2
Φ

Dy1|y2(R), (3.25)

Therefore, in the large system regime, the operational RD functions satisfy
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DIR
x1 (R) ≥ DIR oracle

x1 (R) = γ1
ωC,1σ

2
θC

+ ωI,1σ
2
θI,1

μ1 − 1
2−2R, (3.26)

DIR
x1|y2(R) ≥ DIR oracle

x1|y2 (R) = γ1
ωC,1σ

2
θC

+ ωI,1σ
2
θI,1

μ1 − 1
2−2(R+R∗), (3.27)

DIR
x1|y2(R) = DIR

x1 (R + R∗), (3.28)

where R∗ is defined in (3.22). In the large system regime and in the high-rate
regime, the entropy-constrained RD functions satisfy:

DIR EC
x1 (R) ≥ γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

μ1 − 1

πe

6
2−2R, (3.29)

DIR EC
x1|y2 (R) ≥ γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

μ1 − 1

πe

6
2−2(R+R∗). (3.30)

When joint reconstruction is performed, the RD functions for x1 satisfy:

DJR
x1|x2(R) ≥ DJR oracle

x1|x2 (R) = ωI,1γ1
μ1

μ1 − ωI,1

1

σ 2
Φ

Dy1|y2(R), (3.31)

where, in the large system regime,

DJR oracle
x1|x2 (R) = ωI,1γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

μ1 − ωI,1
2−2(R+R∗), (3.32)

and in the high-rate regime

DJR EC oracle
x1|x2 (R) = ωI,1γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

μ1 − ωI,1

πe

6
2−2(R+R∗). (3.33)

Finally,

DJR
x1|x2(R) ≥ DIR

x1 (R + R∗ + RJR), (3.34)

where RJR = 1

2
log2

[
1

ωI,1

μ1 − ωI,1

μ1 − 1

]
(3.35)

and where R∗ has been defined in (3.22). Therefore, when the SI is available
at the decoder, it helps reducing the rate by R∗ + RJR bits per measurement
sample.

aAll the RD functions are operational referred to CS reconstruction algorithms, so the CS
superscript is omitted not to overload the notation.
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Sketch of proof. An oracle is considered in order to derive lower bounds. More
precisely, it is assumed that the sparsity support of x1 is known if independent recon-
struction is performed and that also the support of the common component xC is
known if joint reconstruction is performed. The exact distortion of the oracles are
derived, from which a closed-form expression of the rate gains are given. The com-
plete proof can be found in [18, Appendix D]. �

As one would expect, when there is no innovation component (ωI, j → 0), the
distortion of the oracle is zero and the rate gain RJR is largest (tends to infinity).
On the contrary, when there is no common component (ωI, j → 1), RJR tends to
zero. Moreover, even if the SI could be exploited also to enhance the quality of
the dequantization of the unknown source, the gain due to Joint Dequantization
becomes negligible in the high-rate region [7]. For this reason, Joint Dequantization
is neglected in this analysis.

Figure3.6 depicts the performance of the complete DCS scheme, in terms of
reconstruction error, i.e., E

[ 1
n ‖x̂1 − x1‖22

]
versus the rate per measurement sample

R. The figure shows two subfigures corresponding to different sets of signal and
system parameters (n, kC, kI, j , σ 2

θC
, σ 2

θI, j
, m). Each subfigure shows three pairwise

comparisons, namely

• First, it compares the RHS of equation (3.29) (IR HR—standing for independent
reconstruction high rate) with the oracle reconstruction distortion from yq,1 ver-
sus the symbol entropy of the samples yq,1 (IR sim.—standing for independent
reconstruction simulated), obtaining a match for R > 2.

• Second, it compares the RHS of equation (3.30) (IR HR) with the oracle recon-
struction distortion from yq,1 versus the conditional symbol entropy of yq,1 given
y2 (IR sim.), obtaining a match for R > 2.5 and validating once more the evalu-
ation of the rate gain R∗ due to the SWC.

• Third, it compares the RHS of equation (3.33) (JR HR—standing for joint recon-
struction high rate) with the ideal (knowing the sparsity support of the common
component) oracle Joint Reconstruction distortion from yq,1 and y2 versus the
conditional symbol entropy of yq,1 given y2 (JR sim.—standing for joint recon-
struction simulated), obtaining a match for R > 3, validating the expression of
the Rate Gain due to Joint Reconstruction given in (3.35).

Moreover, comparing Fig. 3.6a with Fig. 3.6b further aspects can be noticed. The

sources ofFig. 3.6a,where
σ 2

θI, j

σ 2
θC

= 10−2 aremore correlated than theones ofFig. 3.6b,

where
σ 2

θI, j

σ 2
θC

= 1. Hence, the rate gain due to DSC, R∗, is bigger. On the other hand,

the sources of Fig. 3.6b have a stronger common component, hence the rate gain due
to Joint Reconstruction RJR is more significant.

To conclude, this chapter has studied the best achievable performance in the RD
sense over all single-source andDCS schemes, under the constraint of high-rate quan-
tization. Closed-form expressions of the RD curves have been derived in the asymp-
totic regime, and simulations have shown that the asymptote is reached for relatively
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small number of measurements (m100) and small rate (R > 2 bits/measurement
sample). The RD curve computation is based on the convergence of the measure-
ment vector to the multidimensional standard normal distribution. This generalizes
[1, Theorem 2] that derives the marginal distribution of the measurement samples
when the observed signal is directly sparse. We have then derived a closed-form
expression of the highest rate gain achieved exploiting all levels of source correla-
tions at the receiver, along with a closed-form expression of the average performance
of the oracle receiver, using novel results on random Wishart matrix theory. Simu-
lations showed that the scheme proposed in [7] almost achieves this best rate gain,
and that the only penalty is due to the missing knowledge of the sparsity support as
in single-source compressed sensing.
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Chapter 4
Centralized Joint Recovery

This chapter describes algorithms for distributed compressed sensing that take into
account the correlation among the sources at various stages of the compressed sensing
process. The nodes acquire measurements of a set of signals obeying a specific joint
sparsity model, while a centralized fusion center collects the measurements of the
entire network and jointly processes them to reconstruct the acquired signals. This
kind of mechanism has the advantage that there is no need for communication among
the nodes, they only need to transmit their measurements to the fusion center, which
will handle the most complex part of the process, i.e., the joint reconstruction.

We first describe the baseline algorithms of the pioneering work about DCS [1].
Then, we analyze a selection of the algorithms appeared in literature in the following
years. Finally, we compare the performance of the proposed algorithms in different
settings and scenarios.

We focus on the JSM-1 and JSM-3 models, since the JSM-2 can be cast as a
MMV problem, as described in Sect. 2.3. Anyway, references to algorithms tailored
for the JSM-2 model can be found in [1, Sect. 5.2.2] and [2]. Instead, as an example
of a recovery strategy for a signal ensemble not obeying the JSM model, we refer
the reader to [3]. Joint sparsity models similar to the previously described ones were
also proposed in [4], along with recovery strategies that bear some similarities with
the algorithms reviewed in this chapter.

4.1 Baseline Algorithms

4.1.1 Recovery Strategy for JSM-1: γ -Weighted �1-Norm
Minimization

The algorithm [1, Sect. 5.1.3] is able to reconstruct an ensemble of J signals, even
if, as it will be shown, in the case of large J complexity issues may arise. In fact, the
proposed technique solves the distributed problem as a “big” single-source one, by
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properly combining the signals and measurements belonging to the various sensors
as a single quantity. Moreover, it considers signals that are sparse in the sensing
domain, i.e., Ψ = I. Finally, it takes into account a distributed system where each
sensor uses its own sensing matrix, i.e., Φi �= Φ j , i, j ∈ [1, . . . , J ].

Hence, the following “merged” quantities are defined

X =

⎡
⎢⎢⎢⎢⎢⎣

xC
xI,1
xI,2
...

xI,J

⎤
⎥⎥⎥⎥⎥⎦ , X̂ =

⎡
⎢⎢⎢⎢⎢⎣

x̂C
x̂I,1
x̂I,2
...

x̂I,J

⎤
⎥⎥⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎣

y1
y2
...

yJ

⎤
⎥⎥⎥⎦ and Φ̃ =

⎡
⎢⎢⎢⎣

Φ1 Φ1 0 · · · 0
Φ2 0 Φ2 · · · 0
...

...
. . .

...

ΦJ 0 · · · ΦJ

⎤
⎥⎥⎥⎦ .

(4.1)

Then, the joint estimation of the signals X̂ is obtained as in Algorithm 1.

Algorithm 1 γ -weighted �1-norm minimization
Input: The measurements

{
y j

}
, the sensing matrices

{
Φ j

}
, the coefficients γC and

{
γ j

}
, j =

1, . . . , J
1: Build Y and Φ̃ as in (4.1)

2: X̂ ← arg min
xC,{xI, j }

γC ‖xC‖1 +
J∑

j=1

γ j
∥∥xI, j

∥∥
1 s.t. Y = Φ̃ X

3: Extract x̂C from X̂ as in (4.1)
4: for j ← 1, . . . , J do
5: Extract x̂I, j from X̂ as in (4.1)
6: x̂ j ← x̂C + x̂I, j
7: end for
Output: The signal estimation

{
x̂ j

}

Note that the coefficients γc, and
{
γ j

}
are positive scalars which need to be

numerically optimized. In [1], it is stated that in the symmetric case where ki = k j

and mi = m j , then one can set γi = γ j = 1 and then numerically optimize γC,
only. This is one of the main drawbacks of this solution. The other drawback is that
the problem tends to get rapidly unmanageable under the computational complexity
point of view. In fact, since the complexity of the �1 norm minimization is roughly
cubic with the signal length n, in the simple case of two signals J = 2 the signal to
be reconstructed X is 3n-samples long; hence the computational complexity of the
reconstruction is roughly 27 times the one required for the single-source problem.
For large values of J , the complexity increases by a factor J 3.

Notice that Algorithm 1 can be easily extended to signals which are sparse in a
generic basis Ψ �= I. The only modification required is to replace each block Φ j of
Φ̃ with the product Φ jΨ .
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As for the performance, the results of [1] (restricted for complexity issues to small
signals) show that for a signal ensemble with a strong common component, hence,
with a strong intracorrelation, the number of required measurements can be reduced
by 30% when compared to separate reconstruction. This gain rapidly drops when
the correlation between signals diminishes, i.e., when the innovation components
dominate the signals with respect to the common components.

4.1.2 Recovery Strategies for JSM-3

Asdescribed in Sect. 2.3, the design of a recovery system for the JSM-3model ismore
challenging, since a single signal, being nonsparse by itself, would not be recoverable
using CS techniques. But, as stated by [1, Corollary 3], in the distributed setting with
joint reconstruction, it is sufficient that the overall number ofmeasurements available
is enough to capture enough information about the nonsparse common component
to be able to reconstruct the entire ensemble. The principle behind the corollary,
which is common to many practical reconstruction schemes, but also to algorithms
working in different scenarios—see for example [5]—is the following. If the common
component of the ensemble xC was known, then its contribution could be subtracted
from the unknown signal’s measurements

y j − Φ j xC = Φ j xI, j

to reconstruct the sparse innovation signals from their compressive measurements.
Since in general xC is unknown, it needs to be estimated from the overall mea-
surements available at the joint decoder, using standard tools. For this reason, it is
necessary that all the sensors use different sensing matrices, i.e., Φi �= Φ j , i, j ∈
[1, . . . , J ] in order to be able to estimate the nonsparse n-samples long vector xC
from the set of measurements y j .

4.1.2.1 Transpose Estimation of Common Component (TECC)

The algorithm described below [1, Sect. 5.3.1] represents a prototype algorithm and
assumes that the elements of the sensingmatricesΦ j are distributed as i.i.d. Gaussian
N(0, σ 2

j ). First, the following quantities need to be defined:

Y =

⎡
⎢⎢⎢⎣

y1
y2
...

yJ

⎤
⎥⎥⎥⎦ and Φ̃ =

⎡
⎢⎢⎢⎢⎢⎣

1
m1σ

2
1
Φ1

1
m2σ

2
j
Φ2

...
1

m J σ 2
J
ΦJ

⎤
⎥⎥⎥⎥⎥⎦ . (4.2)
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Algorithm 2 Transpose Estimation of Common Component
Input: The measurements

{
y j

}
, the sensing matrices

{
Φ j

}
, j = 1, . . . , J

1: Estimate the common component as x̂C ← 1

J
Φ̃�Y

2: for j ← 1, . . . , J do
3: Cancel the contribution of the common component from themeasurements: ỹ j ← y j −Φ j x̂C
4: Reconstruct the innovation components, only x̂I, j ← argmin

x
‖x‖1 s.t. ỹ j = Φ j x

5: x̂ j ← x̂C + x̂I, j
6: end for
Output: The signal estimation

{
x̂ j

}

Then, Algorithm 2 is applied to reconstruct the signals. By “prototype” it is intended
that Algorithm 2 sets a principle, but both the estimation of the common component
and the reconstruction of each individual innovation component can be performed
using any known algorithm.

4.1.2.2 Alternating Common and Innovation Estimation (ACIE)

This algorithm [1, Sect. 5.3.2] iteratively refines the estimation of the common and
innovation components at each step. The principle is that a rough estimation of the
common component may help obtaining a first estimation of the sparsity support of
the innovation components, which in turn may help improving the estimation of the
common component, and so on. The process is described in Algorithm 3.

First, the following quantities are defined. ŜI, j is the estimation of the sparsity
support of the innovation component of the j-th source. Φ j,ŜI, j

is the m × ∣∣ŜI, j
∣∣

matrix obtained by keeping the columns of Φ j indexed by ŜI, j . Q j is a m × (m −∣∣ŜI, j
∣∣) orthonormal basis for the null space of ΦT

j,ŜI, j
. Moreover,

Ỹ =

⎡
⎢⎢⎢⎣

ỹ1
ỹ2
...

ỹJ

⎤
⎥⎥⎥⎦ and Φ̃ =

⎡
⎢⎢⎢⎣

Φ̃1

Φ̃2
...

Φ̃J

⎤
⎥⎥⎥⎦ . (4.3)

As stated in [1] and [7], when ŜI, j = SI, j , i.e., when the estimation of the
sparsity support of the innovation component is exact, the vector ỹ j from line 5 will
exactly consist of the measurements of the common component, only. If ŜI, j = SI, j
holds for every j and the number of available measurements is big enough, then the
estimation of the common component will be perfect. Simulation results in [1] show
that, if J is large enough, the signals in the ensemble can be recovered in most cases.
Moreover, it is shown that for small J the performance degrade as m grows large,
due to the misestimation of the common component.
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Algorithm 3 Alternating Common and Innovation Estimation
Input: The measurements

{
y j

}
, the sensing matrices

{
Φ j

}
, j = 1, . . . , J . The desired number of

iterations L .
1: Initialize ŜI, j ← ∅, j = 1, . . . , J and � ← 0

Estimate and refine the common component and innovation sparsity supports:
2: for � ← 1, . . . , L do
3: for j ← 1, . . . , J do
4: Evaluate Φ j,ŜI, j

and Q j from it (see above)

5: ỹ j ← Q�
j y j and Φ̃ j ← Q�

j Φ j
6: end for
7: Assemble Ỹ and Φ̃ as in (4.3)
8: Estimate the common component: x̂C ← Φ̃†Ỹ
9: for j ← 1, . . . , J do
10: Subtract the contribution of the estimated common component from the measurements:

ŷI, j ← y j − Φ j x̂C

11: Refine the innovation support estimation ŜI, j . For example, run OMP [6] using ŷI, j and
Φ j as inputs.

12: end for
13: end for
14: for j ← 1, . . . , J do
15: Estimate the innovation components as x̂I, j ← Φ

†
j,ŜI, j

(
y j − Φ j x̂C

)
16: x̂ j ← x̂C + x̂I, j
17: end for
Output: The signal estimation

{
x̂ j

}

Similar to algorithm 3 is the algorithm presented in [8], which is a generalization
of the one presented in [9], but for the JSM-1 scenario. It tries to solve the issue of
the γ -weighted �1-norm minimization algorithm, i.e., the numerical optimization of
the coefficients. The algorithm, named Extraction and Sparse Recovery, performs
the estimation of the common and innovation components using two iterative stages,
where each stage consists of an extraction phase and a sparse recovery phase.

4.2 Texas Hold’em

The first “practical” algorithm for the reconstruction of a JSM-1 modeled signal
ensemble was proposed in [10]. It is a two-stage reconstruction algorithm. In the
first stage, the common component is recovered. Then, in the second stage the
innovation components are recovered, by subtracting the contribution of the com-
mon component to the measurements, recovering then the innovation component,
only. The name of the algorithm stems from the poker Texas Hold’em terminol-
ogy, where “hold’em” refers to a variant of poker games where community cards
(shared among all the players) are used. In this algorithm, indeed, each measure-
ment vector y j is decomposed into two partitions, yc

j and yh
j , of length mc and mh,

respectively, such that mc + mh = m. As in poker, the former, yc
j , represent the
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community measurements, which are shared with the entire network. The latter, yh
j ,

instead, are the hold measurements, which are retained by each sensor. Denote with
Φc j and Φh j matrices obtained by partitioning the rows of Φ j in the same way y
is partitioned into yc

j and yh
j . Moreover, assume that each sensor uses the same Φc

j ,
namely, Φc

j = Φc for each j = 1, . . . , J .

Algorithm 4 Averaged Community Texas Hold’em
Input: The measurements

{
y j

}
, the sensing matrices

{
Φ j

}
, j = 1, . . . , J .

1: Evaluate the average measurements ȳ ← 1

J

J∑
j=1

yc
j

2: Recover the common component: x̂C ← argminx ‖x‖1 s.t. ȳ = Φcx
3: for j ← 1, . . . , J do
4: Subtract the contribution of the estimated common component from the measurements:

ŷI, j ← y j − Φ j x̂C
5: Recover the innovation component x̂I, j ← argminx ‖x‖1 s.t. ŷI, j = Φx
6: x̂ j ← x̂C + x̂I, j
7: end for
Output: The signal estimation

{
x̂ j

}

Notice that Algorithm 4 can be easily extended to signals which are sparse in a
generic basis Ψ �= I. The only modification required is to replace each matrix Φ j

with the product Φ jΨ . Moreover, the recovery steps 2 and 5 can be performed with
recovery algorithms different than the Basis Pursuit. The principle of the averaging
step 1 is that, if J is big enough, the contribution of the innovation components
will be averaged out. This implies that the recovery of the common component (and
hence, of the innovation compoennt) will be affected by a systematic error due to the
residual contribution of the innovation components into ȳ.

The partitioning into community andholdmeasurements can be explainedwith the
aim of minimizing the intersensor communications. Only the community measure-
ments are transmitted to the fusion center, which evaluates the common component
and sends it back to the sensors, which are then able to recover their own innovation
components independently.

Algorithm 4 can be adapted also to the JSM-3model, provided that the community
measurements are enough to recover the nonsparse common component, following
strategies similar to the ones described in Sect. 4.1.2.

4.3 Algorithms Exploiting Side Information

In this section, we show algorithms exploiting the fact that one signal in the ensemble
is perfectly known and, hence, serves as Side Information. This hypothesis is not
unrealistic since, in case of sparse signals (as in JSM-1), one can think of one sensor
taking M > m measurements, with M large enough to recover the signal by itself
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without cooperation with the desired accuracy. In this case, the overhead can be
estimated as ohSI = M−m

m J .

Under the JSM-3 model, instead, one signal in the ensemble can be acquired
uncompressed, or compressed using a standard technique, e.g., transform coding.
However, as the number of nodes increases, the overhead due to Side Information
becomes negligible. The savings in the number ofmeasurements to be acquired by the
other nodes outweigh the small overhead due to the acquisition of Side Information,
thus making the framework interesting even for the JSM-3 model, where the Side
Information signal is not sparse.

Several examples of “standard” algorithms, modified when some form of Side
Information is available, can be found in literature, not necessarily related to the
JSMmodel or, in general, to the distributed case. As an example, refer to [11], where
the OMP algorithm was modified in order to exploit the (imperfect) knowledge of
the signal sparsity support.

4.3.1 The Intersect and Sort algorithms

The algorithms described in this section were proposed in [12], and hold strictly for
signals ensembles modeled as the JSM-1 model. The principle behind both algo-
rithms, depicted in Fig. 4.1, is the following. Suppose that we are able to obtain an
estimation of the unknown j-th source, or of, at least, its sparsity support. Then, com-
paring the estimated unknown sparsity support with the one of the Side Information,
one can estimate the sparsity support of the common component, then estimating the
common component as the Side Information vector, limited to the elements indexed
by this estimated sparsity support. The difference between the algorithms relies in
how the comparison between the Side Information and the estimated unknown source
is performed. For the Intersect algorithm (Algorithm 5), the estimated sparsity sup-
port of the common component is given by the intersection between the sparsity
supports of the Side Information and of the estimated unknown source. On the other
hand, for the Sort algorithm (Algorithm 6), the estimated sparsity support of the com-
mon component is obtained by sorting bymagnitude the coefficients of the estimated
unknown source, in decreasing order. Then, they are scanned in order and their index
is picked, if they belong also to the sparsity support of the Side Information.

yj

Subspace
Detection

xSI

Subspace
Comparison

xC Φ
   yC

+

- CS-1
yI , j xI , j

+
+

x j

Fig. 4.1 Block diagram of the joint reconstruction stage
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Algorithm 5 Intersect algorithm
Input: The measurements

{
y j

}
, the sensing matrices

{
Φ j

}
, j = 1, . . . , J , the Side Information

xSI, a threshold t
1: Side Information sparsity support SSI ← {i |(xSI)i �= 0}
2: for j ← 1, . . . , J do
3: Coarsely estimate the j-th unknown source x̃ j ← argmin

x
‖x‖1 s.t. y j = Φ j x

4: Unknown source sparsity support estimation Ŝ j ← {i | ∣∣(x̃ j )i
∣∣ > t}

5: Estimate the sparsity support of the common component ŜC ← SSI ∩ Ŝ j
6: Estimate the common component as (x̂C)i ← (xSI)i if i ∈ ŜC and (x̂C)i ← 0 otherwise
7: Subtract the contribution of the estimated common component from the measurements:

ŷI, j ← y j − Φ j x̂C
8: Recover the innovation component x̂I, j ← argminx ‖x‖1 s.t. ŷI, j = Φx
9: x̂ j ← x̂C + x̂I, j
10: end for
Output: The signal estimation

{
x̂ j

}

It has to be noticed that both algorithms were proposed in a J = 2 settings, where
one source was unknown and the other one served as Side Information. Hence, in
this generalization the Side Information is used pairwise with each unknown source.
In particular for the Intersect algorithm, one could think to estimate the sparsity
support of the common component as the intersection of the sparsity supports of all
the sources in the ensemble.

Both algorithms assume that there is a high probability that the common com-
ponent and the innovation compontents have disjoint sparsity supports. Their weak
point is that they rely on an initial estimation of the unknown source, based on its
measurements, only. This reconstruction may completely fail if m is not big enough
to provide a reconstruction of acceptable quality. But it has to be noticed that this first
estimation does not need to be perfect in order to obtain a better quality as an output
of the algorithm. The role of the parameters t and K is the following. As for t , it sets
a threshold below which to consider a coefficent as a zero. This may be helpful if the
algorithm is run in a noisy setting. In a noiseless setting, it can be trivially set to 0.
As for K , it should be a rough estimate of the sparsity of the common component,
so that the set ŜC has a sparsity of K .

As a final remark, both algorithms can be adapted to the case in which signals
are sparse in a generic basis Ψ �= I. The only modification required is to replace
each Φ j with the product Φ jΨ . It has to be reported that in the paper where these
algorithms were proposed, [12], it was required that the sensing matrix was the
same for each source. Generally speaking, this is not mandatory and in [12] it was
required to preserve the elementwise correlation between the measurement vectors,
as in Chap.3.

http://dx.doi.org/10.1007/978-981-287-390-3_3
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Algorithm 6 Sort algorithm
Input: The measurements

{
y j

}
, the sensing matrices

{
Φ j

}
, j = 1, . . . , J , the Side Information

xSI, a parameter K
1: Side Information sparsity support SSI ← {i |(xSI)i �= 0}
2: for j ← 1, . . . , J do
3: ŜC ← ∅
4: Coarsely estimate the j-th unknown source x̃ j ← argmin

x
‖x‖1 s.t. y j = Φ j x

5: while
∣∣ŜC

∣∣ ≤ K do
6: i ← argmax

i

∣∣(x̃ j )i
∣∣

7: if i ∈ SSI then
8: ŜC ← ŜC ∪ i
9: end if
10: (x̃ j )i ← 0
11: end while
12: Estimate the common component as (x̂C)i ← (xSI)i if i ∈ ŜC and (x̂C)i ← 0 otherwise
13: Subtract the contribution of the estimated common component from the measurements:

ŷI, j ← y j − Φ j x̂C
14: Recover the innovation component x̂I, j ← argminx ‖x‖1 s.t. ŷI, j = Φx
15: x̂ j ← x̂C + x̂I, j
16: end for
Output: The signal estimation

{
x̂ j

}

4.3.2 Algorithms Based on Difference of Innovations

This family of algorithms, proposed in [13], are based on the reconstruction of
the difference signal between the unknown signal and the Side Information. The
requirement is then that all the signals are acquired using the same sensing matrix,
namely,Φ j = Φ. The resulting signal will be then the measurement of the difference
of innovation components, as the commononewill be canceled out by the subtraction

yD, j = y j − ySI
= Φx j + ΦxSI
= Φ

(
xC + xI, j

) − Φ
(
xC + xI,SI

)
= Φ

(
xI, j − xI,SI

)
= ΦxD, j .

(4.4)

Then, the difference signal xD, j will be recovered from yD, using any reconstruction
algorithm, and added to the Side Information to recover x j

x̂ j = xSI + x̂D, j

= xC + xI,SI + x̂I, j − x̂I,SI ,

where the difference xI,SI − x̂I,SI is ideally 0. The block diagram of the algorithm is
depicted in Fig. 4.2.
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Fig. 4.2 Difference of Innovations algorithm

Two aspects emerge from (4.4). The first is that the common component is exactly
removed from the measurements. This constitutes the biggest advantage with respect
to the Texas Hold’em algorithm described in Sect. 4.2. The second aspect is that, in
general, the difference signal xD, j is less sparse than the individual innovation com-
ponent xI, j . Thismeans that this kind of algorithms is expected to be performantwhen
the innovation components are significantly sparser that the common component (as
a rule of thumb, when kC ≥ 2kI, j ). The procedure is summarized in Algorithm 7 and
its block diagram is depicted in Fig. 4.2.

Algorithm 7 Difference of Innovations algorithm
Input: The measurements

{
y j

}
, the sensing matrix Φ, j = 1, . . . , J , the Side Information xSI

1: for j ← 1, . . . , J do
2: Compute the measurements of the difference signal yD, j ← y j − ySI
3: Recover xD, j as x̂D, j ← argmin

x
‖x‖1 s.t. yD, j = Φx

4: Recover x j as x̂ j ← xSI + x̂D, j
5: end for
Output: The signal estimation

{
x̂ j

}

One important fact about the difference of innovation algorithm is that it can be
readily implemented in a parallel architecture, since each reconstruction is indepen-
dent from each other.

The second algorithm proposed in [13] attempts at overcoming the drawbacks
of the difference of innovations algorithm and of the Texas Hold’em algorithm. It
is labeled as Texas Difference of Innovations, and it is schematically represented in
Fig. 4.3. From the Texas Hold’em algorithm, it inherits the idea of averaging the
measurement vectors of the unknown signals. On the contrary, instead of explicitly
estimating the common component, it combines the average of the measurements
with the Side Information, in the following way. On one hand, it uses the average of
the measurements, which is itself an estimation of the measurements of the common
component, and subtracts it from themeasurements of the Side Information, to obtain
the estimate of the measurements of the innovation of the Side Information, namely
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Fig. 4.3 Texas Difference of Innovations algorithm

ŷC = 1

J

J∑
j=1

y j (4.5)

ŷI,SI = ySI − ŷC . (4.6)

The output of this branch will be the estimate of the innovation component of the
Side Information, which will be recovered from ŷI,SI.

In parallel, on each branch corresponding to each unknown signal, the difference
of innovation procedure of (4.4) is performed. Adding to the output of (4.4) the previ-
ously estimated measurement of the innovation component of the Side Information,
it is possible to obtain an estimate of the innovation component of the unknown
source, namely,

ŷI, j = y j − ySI + ŷI,SI (4.7)

= yI, j − yI,SI + ŷI,SI ,

where the difference ŷI,SI − yI,SI is ideally zero, which can be separately recovered
to obtain the innovation component of each unknown signal. Combining the Side
Information, the estimate of its innovation component and the one of the unknown
signal, the estimate of the entire unknown signal will be obtained

x̂ j = xSI − x̂I,SI + x̂I, j (4.8)

= x̂c + x̂I, j

The complete procedure is reported in Algorithm 8.
As reported in [13], the Texas Difference of Innovations algorithm is affected

by the same error floor as the Texas algorithm of Sect. 4.2, due to the averaging
procedure. However, since this error floor decreases as 1√

J
, it is likely that with a

large ensemble, the performance is limited by different sources of noise.
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Algorithm 8 Texas Difference of Innovations algorithm
Input: The measurements

{
y j

}
, the sensing matrix Φ, j = 1, . . . , J , the Side Information xSI

1: Estimate the measurements of the common component ŷC ← 1
J

∑J
j=1 y j

2: Estimate the measurements of the innovation component of the Side Information ŷI,SI ← ySI −
ŷC

3: Recover the innovation component of the Side Information x̂SI ← argmin
x

‖x‖1 s.t. ŷI,SI =
Φx

4: for j ← 1, . . . , J do
5: Compute the measurements of the difference signal yD, j ← y j − ySI
6: Estimate the measurements of the innovation component of the unknown signal ŷI, j ←

yD, j + ŷI,SI
7: Recover the innovation component of the unknown signal x̂I, j ← argmin

x
‖x‖1 s.t. yI, j =

Φx
8: Recover x j as x̂ j ← xSI − x̂I,SI + x̂I, j
9: end for
Output: The signal estimation

{
x̂ j

}

4.4 Performance Comparison

In the following, we report some comparative performance figures. They compare
the performance of some of the algorithms described in this section in the JSM-1
and JSM-3 scenarios.
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Fig. 4.4 JSM-1.Mean square error versusmeasurement quantization rate. n = 512, kC = kI, j = 8,
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In [12, Fig. 3], it was shown that in a JSM-1 signal scenario, sort and intersect algo-
rithms perform quite close to each other, with a slight penalty with respect to the ideal
case. Here, we first compare in Fig. 4.4 the performance of the intersect algorithm
and of the γ -weighted �1 normminimization (properly modified to take into account
the presence of a perfectly known source) with an oracle scheme knowing perfectly
the sparsity support of the common component. The scenario is a noisy setting where
the source of noise is the quantization of the measurements with a uniform quantizer
using R bits per measurement sample. The comparison is performed in terms of
Mean Square Error versus R. The length of the signals is n = 512, the sparsity of the
common component and of the innovation components is kC = kI, j = 8, while the
nonzeros are modeled as zeromean Gaussian random variables with unit variance.
The number of measurements is m = 128. It can be noticed that the intersect algo-
rithm perform very close to the ideal Joint Reconstruction and slightly better (and
will less computational requirements) than the γ -weighted �1-norm minimization.

Then, in Fig. 4.5we report the performance of various algorithms in terms ofMean
SquareError versus the number ofmeasurements per signalm. Simulations have been
performed using sensing matrices with Gaussian i.i.d. entries, with zero mean and
unit norm columns. The model for the ensemble is the JSM-1 model, where the
nonzeros of the common and the innovation components are generated as zeromean
Gaussians with unit variance. Quantization noise is introduced by quantizing each
entry of the measurements with R bits. The signal ensemble counts J = 100 signals.
The sparsity of the common component is kC = 20,while the innovation components
are kI, j = 5-sparse. The length of the signals is n = 256. For what concerns the

Fig. 4.5 JSM-1. Mean square error versus number of measurements m. J = 100, kC = 20,
kI, j = 5, n = 256, R = 8 bps
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Texas Hold’em algorithm, the entire set of measurements is considered as community
measurements, hence contributing to the average.

From Fig. 4.5, it can be noticed that the Texas Hold’em algorithm, the only one
in the pool not relying on Side Information, is the one that performs worst. As we
have stated in Sect. 4.3, the overhead related to the Side Information becomes neg-
ligible when the signal ensemble dimension J is large. When few measurements
are available, corresponding to the left-hand side of the figure, the Texas DOI algo-
rithm is the one with best performance. DOI algorithm, in fact, performs worse than
Texas DOI when few measurements are available, since it needs to reconstruct the
difference signal, which is less sparse than the innovation component of the single
signal. Also sort and intersect algorithms have poor performance when m is low,
since they rely on an initial estimate of the unknown signal to recover the sparsity
support of the common component. On the other hand, when m grows large, Texas
DOI shows its typical error floor, due to averaging, while the performance of DOI,
Sort and Intersect improve, because they can fully exploit the presence of the Side
Information. For some m, the performance of Sort and Intersect overcome the one of
DOI, as the estimation of the common component improves, so they have to recover
the innovation component, which is sparser than the difference signal recovered by
DOI.

On the other hand, Fig. 4.6 reports the performance of various algorithms in terms
of Mean Square Error versus the number of measurements per signal m for a JSM-3
modeled signal ensemble. The nonsparse xc component contains i.i.d. Gaussian
random variables with zero mean and unit variance. The performance of DOI and

Fig. 4.6 JSM-3.Mean square error versus number ofmeasurementsm. J = 100, kI, j = 5, n = 256,
R = 8 bps
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Texas DOI are compared with the TECC algorithm described in Sect. 4.1.2.1, where
the latter uses a different sensing matrix for each source. From Fig. 4.6 it can be
noticed that the Texas DOI algorithm has the best performance when the number of
measurements m is low. In this regime, Texas DOI show slightly worse performance
than TECC. When m grows, the performance of TECC improves but slower than
DOI, while the one of Texas DOI tends to even out, because of the error floor due to
the averaging. Hence, after a certain threshold, DOI is the best performing algorithm.
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Chapter 5
Distributed Recovery

This chapter surveys a few basic algorithms for distributed reconstruction from
compressive measurements in a network of nodes, which may be sensors or nodes that
collect measurements from different sensors. This estimation problem can be recast
into an optimization problem where a convex and separable loss function should
be minimized subject to sparsity constraints. The goal of the network is to handle
distributed sparse estimation. Clearly, to achieve such a goal, the nodes must share,
at least partially, their estimation. A single node typically has limited memory and
processing capability, therefore cooperation is the key to compensate for this lack
and achieve satisfactory performance. Cooperation, however, raises the problem of
communication among nodes, which is known to be the largest consumer of the lim-
ited energy of a node, compared to other functions such as sensing and computation.
Particular attention is devoted to energy efficiency, in terms of transmissions and
memory requirements.

5.1 Introduction

In this chapter, we consider the problem of in-network processing and recovery
in DCS [1]. In the distributed setting, a network is considered with J nodes that
individually store data

yv = Φvx + ev,

where x ∈ �k ⊆ R
n, Φv ∈ R

m×n, and ev ∈ R
m is a bounded perturbation term

and v ∈ {1, . . . , J }. The most used paradigm can be summarized as follows: nodes
transmit data (yv, Φv)

J
v=1 to a central processing unit that performs joint estimation of

the signal x ∈ R
n with Φ = (Φ�

1 , . . . , Φ�
J )� and y = (y�

1 , . . . , y�
J )�. A drawback

of this model is that, particularly in large-scale networks, gathering all data to a
central processing unit may be inefficient, as a large number of hops have to be
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taken, requiring a significant amount of energy for communication over the wireless
channel. Moreover, this may also introduce delays, severely reducing the network
performance. In other applications, nodes providing private data may not be willing
to share them, but only to build the learning results. This occurs, for example, in
classification [2], one of the fundamental problems in machine learning, or in data
fitting in statistics [3], where the training data consist of sensitive information (such as
medical data, or data flow across the Internet). We also notice that parallel computing
can be recast in this distributed context. Even if the data are centrally available, we
could be interested in decentralizing them on the cores of a Graphics Processing Unit
(GPU) cores and threads in order to distribute the computational load and accelerate
the estimation procedure (see [4, 5]).

Specifically, we assume that no fusion center is available and we consider networks
formed by nodes that can store a limited amount of information, perform a low
number of operations, and communicate under some constraints. Our aim is to study
how to achieve compressed acquisition and recovery leveraging these seemingly
scarce resources, with no computational support from an external processor.

A common element to many distributed applications is the necessity of limiting
computations and memory usage, as the nodes generally consist of devices with
scarce capabilities in this sense. An evident example is given by sensor networks:
sensors require a lot of energy to perform computations and are generally endowed
with small memories of the order of a few kB. Also in parallel computing this issue
is crucial, as the memory is known to be a bottleneck to the system performance.

So far, distributed recovery has received less attention than the centralized prob-
lem and the literature is very recent [2, 6–9]. These first contributions propose nat-
ural ways to distribute known centralized methods, and obtain interesting results in
terms of convergence and estimation performance. However they do not consider the
problem of the insufficient computation and memory resources. In particular, in [6] a
distributed pursuit recovery algorithm is proposed, assuming that every node v knows
the matrix Φv of every other node. This estimation scheme is clearly unpractical in
large-scale networks, since individual nodes do not have the capacity to store and
process a large number of these matrices. Distributed basis pursuit algorithms for
sparse approximations when the measurement matrices are not globally known have
been studied in [7–9]. In these algorithms, sensors collaborate to estimate the original
vector, and, at each iteration, they update this estimate based on communication with
their neighbors in the network.

In this chapter, we describe in detail three families of methods: distributed sub-
gradient methods (DSM, [10]), alternating direction method of multipliers (ADMM,
[11]), and distributed iterative soft thresholding algorithms (DISTA, see [12–15]) for
Lasso estimation problems. We compare these algorithms via extensive simulations.
In particular, we show that distributed algorithms are satisfactory in the following
sense: when the product of the number of nodes in the network times the number of
data for each unit exceeds a given threshold, accurate estimation is achieved. More-
over, the total number of available data required for the estimation is comparable to
that required by joint estimation. This implies that decentralization is not a drawback.
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In the mentioned algorithms, each node keeps an approximation of the original
signal and updates it iteratively according to both its own measurements and local
information received from its neighbors. Although these methods are of significant
interest, as they do away with a centralized processing unit, they still suffer from one
or more of the following limitations [16]:

(a) Synchronous updates: the nodes are assumed to send and process signals syn-
chronously [12, 15, 17, 18].

(b) Selection of the gradient stepsize: we distinguish between constant and dimin-
ishing stepsizes. Constant stepsizes do not guarantee convergence [18] or guar-
antee convergence only to neighborhoods of the optimal solution [15]. Larger
stepsizes imply larger neighborhoods, while smaller ones produce slower con-
vergence. On the other hand, diminishing stepsizes can ensure convergence, but
a suitable design of them is very difficult and the convergence rate is always
slow [19].

(c) Spanning tree and multi-hop transmissions: the nodes first generate a spanning
tree, which implies that they must be aware of the network’s structure, in terms
of position of the root and of their own roles (parents or children) with respect
to their neighbors. Moreover, a routing protocol is necessary and multi-hop
communication occurs at each iteration [20].

(d) Bandwidth and energy consumption: these algorithms are generally not opti-
mized for metrics that are important in a distributed setting, most notably, band-
width and energy consumption.

(e) Computational complexity: these techniques often have a high computational
cost as they require every node to solve a convex optimization problem in each
iteration. Such computational capacity may not be available in low-power sensor
networks.

Since a single node has limited memory and processing capability, a cooperation is
the key to compensate for this lack and achieve satisfactory performance, as proved
in many works, e.g., [12, 15, 20]. Cooperation, however, raises the problem of
communication among nodes, which can be expensive from different viewpoints.
For example, if we consider a territorial monitoring wireless sensor network, the
nodes may be deployed at large distance or in unfavorable conditions, which makes
communication uneconomical.

We describe algorithms that reduce the number of necessary information
exchanges [13, 14, 20] and we compare them, in terms of transmissions, mem-
ory requirements, and energy efficiency. These methods use time-varying commu-
nication, which allows us to limit the communication load, and also to overcome
synchronization issues. These methods are able to achieve performance equivalent
to that of centralized schemes if properly designed. In this chapter we compare dif-
ferent algorithms in terms of accuracy of the reconstructed signals and number of
transmitted values required to obtain a certain accuracy.

Finally, we extend the discussion to the joint sparsity models and describe how to
design efficient distributed algorithms for the recovery of multiple correlated signals.
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5.2 Problem Setting

Before presenting the mathematical formulation of the problem, we fix some nota-
tions and review some basic definitions of graph theory. An undirected graph is a
pair G = (V ,E ) where V is the set of vertices (or nodes), and E ⊆ V × V is the
set of edges with the property (i, j) ∈ E implies ( j, i) ∈ E . In this chapter, we use
the convention that (i, i) ∈ E for all i ∈ V . A path in a graph is a sequence of edges
which connects a sequence of vertices. In an undirected graphG , two vertices u and v
are called connected if there exists a path from u to v. A graph is said to be connected
if every pair of vertexes in the graph is connected. A graph is said to be regular when
each vertex is connected to the same number of nodes. Using the convention that each
node has a self-loop, we call d-regular a graph in which each vertex is connected to
exactly d nodes different from itself. A matrix with nonnegative elements P is said
to be stochastic if

∑
j∈V Pi j = 1 for every i ∈ V . Equivalently, P is stochastic if

P1 = 1, where 1 is the vector of ones. The matrix P is said to be adapted to a graph
G = (V ,E ) if Pv,w = 0 for all (w, v) /∈ E . We finally define the neighborhood of v
as the set Nv that contains all w ∈ V such that Pv,w �= 0. According to our notation,
v ∈ Nv as (v, v) ∈ E .

In this chapter, we consider a network represented by an undirected graph G =
(V ,E ). V is the set of J nodes, labeled as v ∈ V = {1, . . . , J }, and E ⊆ V × V
is the set of available communication links. The set V can represent sensors or
processing units that collect measurements of a common sparse signal x� ∈ R

n of
the form

yv = Φvx�, v ∈ V (5.1)

where yv ∈ R
m are the local data and Φv ∈ R

m×n is the local sensing matrix.
If the data stored by all nodes (yv, Φv) were available at once in a single central

processing unit, an estimation of the signal x� would be provided by the solution of
the following constraint satisfaction problem:

{
y = Φx
x ∈ �k

(5.2)

where

Φ =

⎛
⎜⎜⎝

Φ1
Φ2
. . .

ΦJ

⎞
⎟⎟⎠ , y =

⎛
⎜⎜⎝

y1
y2
. . .

yJ

⎞
⎟⎟⎠ (5.3)

As already observed in Chap. 2, if for every index set Γ ⊆ {1, . . . , n} with |Γ | =
2k the columns of Φ associated with Γ are linearly independent, then x� is the
unique solution to (5.2) (see also [21]). From now on, we make also the following
assumption.

http://dx.doi.org/10.1007/978-981-287-390-3_2
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Assumption 1 The following conditions hold:

1. every 2k columns of Φ are linearly independent;
2. there exists v ∈ V such that every k columns of Φv are linearly independent.

Another way to express this condition is via the spark (spark(Φ) is the minimum
number of linearly dependent columns). Thus, Φ must satisfy spark(Φ) > 2k and
there exists v ∈ V such that spark(Φv) > k. When k ≤ m, Assumption 1.2 guar-
antees that the number of solutions to the linear system Φvxv = yv is finite. This
condition is rather mild in the sense that if the components of Φv are independently
randomly generated from a continuous distribution, then it will be satisfied with
probability one.

In a distributed scenario, it is reasonable to assume that (yv, Φv) are available
only at the v-th node. Nodes seek to estimate the signal x� ∈ R

n starting from
their own sets of measurements under the assumption that it is sparse. It should be
noted that the presence of the common variable x in the optimization problem (5.2)
imposes a coupling among the nodes in the network. Then any distributed algorithm
requires collaboration of sensor nodes that are assumed to be able to leverage local
communication and share partial information with other neighbors.

We need to specify two main features in order to describe the in-network estima-
tion system:

• the consensus-based optimization model, specifying the overall cost function that
nodes are cooperatively minimizing by individually minimizing their own local
objective functions;

• the communication and processing model describing the evolution of the nodes’
estimates and specifying the interactions among the nodes (e.g., how often the
nodes communicate, the confidence level on their own information and the infor-
mation received from the neighbors, etc.).

The models are discussed in the following sections.

5.2.1 Consensus-Based Optimization Model

Here, we describe the general principles behind distributed sparse recovery via opti-
mization. Then we will discuss some specific examples.

If the data stored by all nodes (yv, Φv) were available at once in a single central
processing unit, an estimation of the vector x� would be provided by optimization
problem of the form:

min
x∈Rn

f (x) (5.4)
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where f (x) = f (x; y, Φ) is a separable loss function, i.e., it can be decomposed as
a sum of J terms

f (x) :=
∑
v∈V

fv(x),

where we refer to fv(x) as the v-th term in the cost function that is only known
to node v. Local function fv(x) indicates how much a vector x ∈ R

n is consistent
with the local measurements vector yv and can also encode constraints by assigning
fv(x) = +∞ when a constraint is violated. The exchange of the loss function or
of its gradient may require the transmission of a large amount of data and is not
practical in most cases. Instead, the nodes must coordinate and communicate other
information such as their current estimates xv or gradients of fv(x) evaluated at a
particular value.

The consensus-based optimization can be viewed as a technique to recast the
optimization problem into a separable form that facilitates distributed implementa-
tion. For a recent overview on consensus algorithms, we refer to [22] and reference
therein. The goal is to split the problem into simpler subtasks that can be executed
locally at each node. Let us replace the global variable x in (5.4) with local variables
{xv}v∈V ∈ R

n . The problem can be rewritten as follows:

min
x1,...,xJ ∈Rn

∑
v∈V

fv(xv)

s.t. xv = xw ∀(v, w) ∈ E . (5.5)

This problem is generally known as global consensus problem, since the constraint
imposes a coupling among the nodes or, equivalently, an agreement among all the
local variables.

Proposition 5.1 If G is a connected graph, then the optimization problems in (5.4)
and (5.5) are equivalent, in the sense that any solution of (5.4) is a minimizer for
(5.5) and vice versa.

A variety of algorithms have been proposed to perform sparse recovery. They differ
essentially for the choice of loss functions fv(x) and for the constraints that generally
are relaxed. In the following, we give some examples. For simplicity of exposition,
we describe some examples of consensus-based sparse recovery problems under the
following assumption.

Assumption 2 The graph of communication is

1. connected;
2. regular, that is, all nodes v ∈ V have degree dv = d.
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5.2.1.1 Consensus-Based Distributed Lasso

As a first example, we consider the Lasso optimization problem

min
x∈Rn

f (x) := min
x∈Rn

1

2

∑
v∈V

[
‖yv − Φvx‖2

2 + 2λ‖x‖1

]
, (5.6)

for some λ > 0. It is well known that for problems in which the number of variables
n exceeds the number of observations m the function f (x) is not strictly convex,
and hence it may not have a unique minimum. Sufficient conditions guaranteeing
the uniqueness of the solution of (5.6) are derived in [23]. We make the following
assumption throughout the chapter.

Assumption 3 The problems in (5.6) admits a unique solution xLasso.

Example 5.1 (Consensus constraints relaxation) The consensus-based reformula-
tion of (5.6) can be expressed as

min
x1,...,xJ ∈Rn

1

2

∑
v∈V

[
‖yv − Φvxv‖2

2 + 2λ

J
‖xv‖1

]
, (5.7)

s.t. xv = xw, ∀w ∈ Nv,∀v ∈ V ,

where xw = 1
d+1

∑
u∈Nw

xu . The following can be easily guessed.

Proposition 5.2 If G is a connected graph, then the optimization problem in (5.7)
is equivalent to (5.6), in the sense that any solution of (5.6) is a minimizer for (5.7)
and vice versa.

Proof Since v ∈ Nv, from the constraints in (5.7) we have xv = xv and xw = xv

for all w ∈ Nv. This implies by transitivity that xv = xw for all w ∈ Nv. If the
graph is connected, then there exists a path connecting every pair of vertexes. We
can conclude that xv = x for any v ∈ Nv, in which case the cost function (5.7)
reduces to the one in (5.6).

Relaxing the consensus constraints in (5.7) and minimizing the functional F :
R

n×J 
−→ R
+ defined by

F (x1, . . . , xJ ) := 1

2

∑
v∈V

⎡
⎣‖yv − Φvxv‖2

2 + 2λ

J
‖xv‖1 + 1

τ(d + 1)

1 − q

q

∑
w∈Nv

‖xw − xv‖2
2

⎤
⎦

(5.8)

for some q ∈ (0, 1), each node seeks to estimate the sparse vector x� and to enforce
agreement with the estimates calculated by other nodes in the network. It should also
be noted that F (x, . . . , x) = f (x).
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The following theorem ensures that, under certain conditions on the parameter τ ,
the problem of minimizing the functions in (5.8) is well-posed. Moreover, the neces-
sary optimality conditions of (5.8) are derived and the relationships with the original
problem (5.6) is discussed.

Let Γ : Rn×J 
−→ R
n×J be the operator defined as

(Γ X)v = ηα

[
(1 − q)(X (P�)2)v + q(xv + τΦ�

v (yv − Φvxv))
]

(5.9)

where v ∈ V , α = qλτ/J , Pv,w = 1/(d + 1) if (v, w) ∈ E and Pv,w = 0 otherwise,
and

ηα(s) :=
{

sgn(s)(|s| − α) if |s| ≥ α

0 otherwise.
(5.10)

Theorem 5.1 (Characterization of minima) If τ < ‖Φv‖−2
2 for all v ∈ V , the

set of minimizers of the function F , defined in (5.8), is not empty and coincides
with the set

Fix(Γ ) := {Z ∈ R
n×J : Γ Z = Z}.

Theorem 5.1 is proved in [15] through variational techniques. The following the-
orem states that q can be interpreted as a temperature; as q decreases, estimates xv’s
associated with adjacent nodes become increasingly correlated. This fact suggests
that if q is sufficiently small, then each vector x̂q

v can be used as an estimate of the
vector x�. The proof of Theorem 5.2 is reported in [15].

Theorem 5.2 Let us denote as {̂xq
v }v∈V a minimizer ofF (x1, . . . , xJ ) in (5.8).

Under Assumption 2
lim
q→0

x̂q
v = xLasso, ∀v ∈ V .

Example 5.2 (Consensus-based quadratic programming distributed Lasso) We con-
sider now the following alternative that relies on a dual formulation of (5.6):

min
{xv}v∈V ,{z̆w

v ,žw
v }(v,w)∈E

1

2

∑
v∈V

[
‖yv − Φvxv‖2

2 + 2λ

J
‖xv‖1

]
, (5.11)

s.t. xv = z̆w
v , xw = žw

v , z̆w
v = žw

v ∀w ∈ Nv,∀v ∈ V .
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where ž and z̆ are auxiliary variables that yield an alternative representation of the
constraint set in (5.5).

Proposition 5.3 If G is a connected graph, then the optimization problem in (5.6) is
equivalent to (5.11), in the sense that any solution of (5.11) is a minimizer for (5.6)
and vice versa.

The quadratically augmented Lagrangian function (see [9, 11, 24] for back-
ground) is defined by

L (x, z, ω) := L ({xv}v∈V , {ω̆w
v }(v,w)∈E , {ω̌w

v }(v,w)∈E , {z̆w
v }(v,w)∈E , {žw

v }(v,w)∈E )

=
∑
v∈V

⎧⎨
⎩1

2
‖yv − Φvxv‖2

2 + λ

J
‖xv‖1 + ρ

2

∑
w∈Nv

[
‖xv − z̆w

v ‖2
2 + ‖xw − žw

v ‖2
2

]

+
∑

w∈Nv

[
(ω̆w

v )�(xv − z̆w
v ) + (ω̌w

v )�(xw − žw
v )
]⎫⎬
⎭ , (5.12)

where {ωw
v }(v,w)∈E are the Lagrange multipliers associated to the constraints. The

constraints z̆w
v , žw

v ∈ Cz = {z : z̆w
v = žw

v , (v, w) ∈ E } have not been dualized,
and ρ > 0 is a preselected parameter. It should be noted that the quadratic terms
in (5.12) guarantee that L is strictly convex with respect to the variables (x, z).
Moreover, the augmented Lagrangian function has a saddle point, i.e., there exists a
point (x�, z�, ω�) such that

L (x�, z�, ω) ≤ L (x�, z�, ω�) ≤ L (x, z, ω�)

The related dual problem is highly decomposable and it decouples into J subprob-
lems:

max
{ω̆w

v ,ω̌w
v }(v,w)∈E

g({ω̆w
v , ω̌w

v }(v,w)∈E )

g({ω̆w
v , ω̌w

v }(v,w)∈E ) = min
{xv,z̆w

v ,žw
v }(v,w)∈E

L ({xv, ω̆
w
v , ω̌w

v , z̆w
v , žw

v }(v,w)∈E ) (5.13)

Assuming that strong duality holds [24], the solution of the primal and dual problems
are the same and a primal optimal solution is retrieved from a dual optimal point.

A related estimation scheme is provided in [9] by the following optimization
problem

min{xv,zv}v∈V

1

2

∑
v∈V

[
‖yv − Φvγv‖2 + 2λ

J
‖xv‖1

]

s.t. xv = γv, v ∈ V (5.14)

xv = z̆w
v , xw = žw

v , z̆w
v = žw

v ∀w ∈ Nv,∀v ∈ V .
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Introducing the Lagrange multipliers ω̂ associated to the additional constraint in
(5.14) and iterating the procedure above the following augmented Lagrangian func-
tion can be used for estimation

Lr (x, z, ω) := L ({xv, ω̂v}v∈V , {ω̆w
v }(v,w)∈E , {ω̌w

v }(v,w)∈E , {z̆w
v }(v,w)∈E , {žw

v }(v,w)∈E )

=
∑
v∈V

⎧⎨
⎩1

2
‖yv − Φvxv‖2

2 + λ

J
‖xv‖1 + ρ

2

∑
w∈Nv

[‖xv − z̆w
v ‖2

2 + ‖xw − žw
v ‖2

2

]

+
∑

w∈Nv

[
(ω̆w

v )�(xv − z̆w
v ) + (ω̌w

v )�(xw − žw
v )
]⎫⎬
⎭

+
∑
v∈V

[
ω̂�

v (xv − γv) + ρ

2
‖xv − γv‖2

2

]
(5.15)

where {ωw
v }(v,w)∈E are the Lagrange multipliers associated to the constraints. The

constraints z̆w
v , žw

v ∈ Cz = {z : z̆w
v = žw

v , (v, w) ∈ E } have not been dualized, and
ρ > 0 is a preselected parameter.

5.2.1.2 Consensus-Based Sparsity Constrained Least Squares

We now consider the function f (x) := ∑
v∈V fv(x) = ∑ ||yv − Φvx ||22. If the data

stored by all nodes (yv, Φv) were available at once in a single central processing
unit, an estimation of the signal x� can be provided by the solution of the following
optimization problem:

min
x∈Rn

f (x) s.t. x ∈ �k, (5.16)

A key property of the considered model is that the function f under the Assump-
tion 1 is convex over canonical sparse subspaces, but they are not necessarily convex
everywhere, as often assumed in literature of distributed optimization [17, 25–27].
Let us replace the global variable x in (5.16) with local variables {xv}v∈V . We rewrite
the distributed problem as follows:

min
x1,...,xJ ∈Rn

∑
v∈V

fv(xv), (5.17)

s.t.

{
xv = xw, ∀w ∈ Nv,∀v ∈ V ,

xv ∈ �k .

In [14] the problem (5.5) is relaxed and the minimization of the following function
is considered F : Rn×J 
−→ R

+ defined as follows
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F (X) :=
∑
v∈V

⎡
⎣ fv(xv) + 1

4τ(d + 1)

∑
w∈Nv

‖xv − xw‖2

⎤
⎦ s.t. xv ∈ �k, ∀v ∈ V

(5.18)

where X = (x1, . . . , xJ ). By minimizing F , each node seeks to estimate the sparse
solution to (5.16) and to enforce agreement with the estimates calculated by other
nodes in the network. It should also be noted that F (x1�) = f (x).

We discuss necessary optimality conditions of (5.18) and the relations to the
original problem (5.16).

Definition 5.1 Z ∈ � J
k is called a τ -stationary point of (5.18) if it satisfies the

following condition ∀v ∈ V :

zv = σk (zv − τ∇ fv(zv)) .

The following proposition gives another representation of τ -stationary points. The
proof is omitted for brevity but can be easily derived from Definition 5.1.

Proposition 5.4 Z is a τ -stationary point of (5.18) if and only if ∀v ∈ V we have
zv ∈ �k and {

z j
v − τ∇ j fv(zv) = z j

v if j ∈ supp(zv)

|z j
v − τ∇ j fv(zv)| ≤ rk(zv) if j /∈ supp(zv).

(5.19)

Theorem 5.3 Suppose that Assumptions 1 and 2 hold.

1. If Z� is an optimal solution of (5.18), then Z� is a τ -stationary point for
any τ < 1

(d+1)L with L = maxv∈V ‖Φv‖2
2;

2. Any τ -stationary point of (5.18) is a local minimum for (5.18).

The first part of Theorem 5.3 proves that, under a suitable assumption, the
τ -stationarity is only a necessary but not a sufficient condition for optimality. This
means that τ -stationary points are only local minima of (5.18).

Let us state the relation between minimizers of (5.18) and of (5.16).

Theorem 5.4 Let us denote as X̂ τ
v the minimizer of F (X) in (5.18). If G is

connected, then limτ→0 X̂ τ = x�1�, where x� is the minimizer of (5.16).

Theorem 5.4 guarantees that parameter τ can be interpreted as a temperature;
as τ decreases, estimates xv’s associated with adjacent nodes become increasingly
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correlated. This suggests that if τ is sufficiently small, then each vector x̂τ
v can be

used as an approximation of the optimal solution x� of (5.16).
Before presenting distributed algorithms for sparse estimation problems, we recall

that they are tailored for specific optimization problems in the sense that the dynam-
ics will depend on the loss function we choose for the signal estimation. The task
of choosing the loss function is tricky and we show in next sections that different
choices may define distributed algorithms with different features in terms of energy
consumption, memory, and computational complexity.

5.2.2 Communication and Processing Model

In the distributed algorithms for sparse recovery, each node in the network is assumed
to update and share data at discrete times {Tt }t∈N. We label nodes’ estimates and any
other information at time Tt by index t ∈ N (e.g., we use xv(t) ∈ R

n to denote the
estimate provided by node v ∈ V at time Tt ). The rules that govern these dynamics
are generally based on the model proposed by Tsitsiklis et al. in [28, 29] for distrib-
uted computation. The set of neighbors of node v consists in the nodes w that are
communicating directly with node v through the directed link (w, v). Then the node
v combines its own estimate with the information received from the neighbors. We
mean that a communication step has occurred if all nodes in the network receive the
estimates from all the neighbors.

We can distinguish two classes of distributed algorithms:

• synchronous algorithms where the nodes are active at any time and are assumed
to send, process information and perform computations synchronously. It is also
assumed that there is no communication delay in the transmission of messages.

• asynchronous algorithms where the nodes are not required to be aware of a com-
mon clock and to communicate to the neighbors at each time instance. Moreover,
nodes may be allowed to sleep for some of the time and to perform computations
asynchronously.

The distributed methods can be also categorized into other two categories accord-
ing to the number of nested loops they have: the single-looped algorithms and the
double-looped algorithms.

• the single-looped algorithms have one communication step per iteration and, in
each iteration, every node solves a local optimization problem;

• the double-looped algorithms consist of an inner loop and an outer loop. In each
iteration of the inner loop, the nodes transmit data with their neighbors and multiple
loops are needed to solve the local optimization problem.

The distributed algorithms we consider in this chapter can differ also for the
updating rules. They can include:

• a rule on the weights that are used when a node combines its information with the
information received from the neighbors.
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• a connectivity rule ensuring the spread of information over the network.
• a rule on the frequency at which a node communicates its information to the

neighbors.
• an assumption on the topology of the communication graph that can be static or

time varying.

5.2.3 Distributed Algorithms for Lasso Estimation Problem

Algorithms for distributed sparse recovery (with no central processing unit) in sensor
networks have been proposed in the literature in the last few years. In this section,
we present different synchronization schemes that require that nodes periodically
exchange estimations and perform computations. We distinguish three classes:

1. algorithms based on the decentralization of subgradient methods for convex opti-
mization (DSM, [10, 25, 27]);

2. consensus and distributed ADMM ([11, 30, 31]);
3. distributed proximal-gradient methods (DISTA/DIHTA, [15]).

In particular, we review theoretical guarantees of convergence and we compare them
in terms of performance, complexity, and memory usage.

5.2.3.1 Distributed Subgradient Method

Most optimization algorithms developed for solving problem (5.6) are first-order
methods, i.e., methods that use gradient or subgradient information of the local
objective functions. These algorithms are computationally cheap and naturally lead to
distributed implementations over networks [10, 27]. The main idea behind distributed
algorithms is to use consensus as a mechanism for spreading information through
the network. In particular, each node, starting from an initial estimate, say xv(0) = 0
for all v ∈ V , updates it by first combining the estimates received from its neighbors,
then moving in the direction of a negative subgradient step, in order to minimize its
objective function. More formally,

xv(t + 1) =
∑
w∈V

Pv,wxw + rv(t)Φ
�
v (yv − Φvxv(t)) − rv(t)αsgn(xv(t)) (5.20)

where Pv,w = 1/(d + 1) if (v, w) ∈ E and Pv,w = 0 otherwise. In this setting, the
vector xv(t) is the estimate of an optimal solution of the problem (5.6) provided by
node v ∈ V at the time t .

The distributed subgradient method, tabulated in Algorithm 1, is a simple algo-
rithm. Although this method looks like the distributed gradient method for differen-
tiable convex functions, it is not a descent method of a consensus-based loss function.
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Algorithm 1 DSM-Lasso
Input: (yv, Φv), α = λ/J

xv(0) = x0, iterate
for t ∈ {1, 2, . . .} do

Transmit xv(t − 1) to neighbors in Nv
Update xv(t) according to (5.20)

end for

The subgradient method was originally developed in [28]. We refer to [10, 26, 29]
for an overview of distributed subgradient methods.

Several different step size rules are adopted in literature for rv(t). We distinguish
the following choices:

• constant step size rv(t) = r for all v ∈ V , i.e., independent of the time t (see [10]);
• square summable but not summable sequence {rv(t)}t∈N, i.e.,

rv(t) ∈ (0, 1),

∞∑
t=0

rv(t)
2 < ∞,

∞∑
t=0

rv(t) = ∞

(for example rv(t) = a/(b + t), with a ≥ 0 and b ≥ 0, see [17]);
• nonsummable diminishing step size rules, i.e., the sequence {rv(t)}t∈N, is such

that

rv(t) ∈ (0, 1), lim
t→∞ rv(t) = 0,

∞∑
t=0

rv(t) = ∞.

A typical example is rv(t) = a/
√

t , with a > 0.

The protocol in (5.20) with constant stepsize rt = r is not guaranteed to converge
and can (and often does) oscillate. The convergence of (5.20) can be achieved by
considering the related “stopped” model (see page 56 in [26]), whereby the nodes stop
computing the subgradient at some time, but they keep exchanging their information
and averaging their estimates only with neighboring messages for subsequent time.
However, the tricky point of such techniques is the optimal choice of the number of
iterations to stop the computation of the subgradient. Moreover, the final point has not
a variational characterization and the accuracy depends on the time the computation
on the gradient is stopped.

In [25] a distributed version of DSM is proposed for the minimization of a sepa-
rable convex function over a convex set. It is worth noticing that these types of algo-
rithms cannot be applied to LS problems under sparsity constraints (5.16), whose
feasible set is not convex.

The diminishing stepsize rules allow to force the convergence to a consensus
but requires to fix an initial time and is not feasible in case of time-variant input:
introducing a new input would require some resynchronization.
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5.2.3.2 Alternating Direction Method of Multipliers

The consensus ADMM [11] is a method for solving problems in which the objective
and the constraints are distributed across multiple processors. The problem in (5.6) is
tackled by introducing dual variables ωv and minimizing the augmented Lagrangian
(5.13) in a iterative way with respect to the primal and dual variables. More recently,
distributed versions of ADMM that just require local communications have been
proposed in the literature [9] for solving Lasso problems.

The ADMM for quadratic programming distributed Lasso is an iterative algorithm
that include three steps per iteration. The augmented function (5.12) is considered
and then

1. it is minimized with respect to {xv}v∈V variables, considering the variables
{ω(v,w), z(v,w)}(v,w)∈E as fixed parameters;

2. it is minimized with respect to {zv,w}v∈E variables, considering the other variables
fixed;

3. finally, the Lagrange multipliers {ωv,w}v∈E are updated via gradient one step of
the ascent algorithm [24].

It can be shown [9] that, if the Lagrange multipliers are initialized to zero, the dynam-
ics of ADMM can be simplified and each node does not need to keep track of all
multipliers {ω(v,w)}(v,w)∈E , but only to update an aggregate vector {μv(t)}. Summa-
rizing, each node stores two n-dimensional vectors {μv(t), xv(t)} and transmits at
each iteration, the local estimates {xv(t)} to the neighbors. Starting from xv(0) = 0
and μv(0) = 0, all nodes v ∈ V perform the following operations:

μv(t + 1) = μv(t) + ρ
∑

w∈Nv

(xv(t) − xw(t)) (5.21)

xv(t + 1) = argmin
xv

{
1

2
‖yv − Φvxv‖2

2 + λ

J
‖xv‖1

+μ�
v (t + 1)xv + ρ

∑
w∈Nv

∥∥∥∥xv − xv(t) + xw(t)

2

∥∥∥∥
2

2

⎫⎬
⎭ (5.22)

The algorithm is tabulated in Algorithm 2. The local optimization in (5.22) is well
defined and can be solved using standard optimization for QP problems [24].

Algorithm 2 DQP-Lasso
Input: (yv, Φv), α = λ/J > 0

Initialization: xv(0) = 0, and μv(0) = 0, iterate
for t ∈ {1, 2, . . .} do

Transmit xv(t − 1) to neighbors in Nv
Update μv(t) according to (5.21)
Update xv(t) according to (5.22)

end for
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As proved in [9], Algorithm 2 produces for all v ∈ V a sequence of local estimates
{xv(t)}t∈N converging to the Lasso solution as t → ∞.

Theorem 5.5 If G is connected, then for any value of the penalty coefficient
ρ > 0 the Algorithm 2 generates sequences {xv(t)}t∈N for every v ∈ V such
that

lim
t→∞ xv(t) = xLasso

Although Theorem 5.5 guarantees the convergence of the algorithm, the com-
putation at each step of (5.22) has polynomial complexity in the signal length n.
However, cost of the nodes is a hard constraint that has to be taken into account
when designing a distributed algorithm. For example, in a sensor network, due to
limitation on battery life of sensors, it is necessary to reduce energy consumption as
much as possible and, consequently, to reduce the complexity of the operations per-
formed locally. In [9] different techniques to reduce the computational complexity
of (5.22) are proposed. For example, coordinate descent algorithms can be used to
reduce the operational complexity if the Lasso-type subproblem in (5.22). However,
these methods can not be run in parallel and need the nodes to update the estimate
in a cyclic order. This requirement makes the algorithm less flexible.

Another version of the DQP-Lasso is proposed in [9] that yields local updates
in closed-form. This algorithm is developed to solve the optimization in (5.14) and
entails the following steps for each t ∈ N: each node transmits the local estimate to
the neighbors that use them to evaluate the dual price vector and calculate the new
estimate via coordinate descent and thresholding operations. Formally, choosing
some ρ > 0, the update equations would typically be performed according to the
following rules:

μv(t + 1) = μv(t) + ρ
∑

w∈Nv

(xv(t) − xw(t)) (5.23)

ωv(t + 1) = ωv(t) + ρ(xv(t) − zv(t)) (5.24)

xv(t + 1) = 1

ρ(2d + 1)
η λ

J
(ρzv(t) − μv(t + 1) − ωv(t + 1) + ρ

∑
w∈Nw

(xv(t) + xw(t)))

(5.25)

zv(t + 1) = [ρ I + Φ�
v Φv]−1(Φ�

v yv + ρxv(t + 1) + ωv(t + 1)) (5.26)

Referring to [9] for the detailed derivation, the ADMM algorithm for the optimization
of the augmented Lagrangian function in (5.15) is tabulated in Algorithm 3.

The convergence of Algorithm 3 is stated in the following theorem and rigorously
proved in [9].
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Algorithm 3 D-Lasso
Input: (yv, Φv)

Initialization: xv(0) = 0, μv(0) = 0, iterate
for t ∈ {1, 2, . . .} do

Transmit xv(t − 1) to neighbors in Nv
Update μv(t) according to (5.23)
Update ωv(t) according to (5.24)
Update xv(t) according to (5.25)
Update zv(t) according to (5.26)

end for

Theorem 5.6 If G is connected, then for any value of the penalty coefficient
ρ > 0 the Algorithm 3 generates sequences {xv(t)}t∈N for every v ∈ V such
that

lim
t→∞ xv(t) = xLasso

5.2.3.3 Distributed Iterative Soft Thresholding Algorithm (DISTA)

In [15] distributed iterative thresholding algorithms are proposed as low complexity
techniques that require very little memory, while achieving performance close to
that of the ADMM estimation [9]. These algorithms build on the seminal work of
Daubechies et al. and are related to the literature on distributed computation and
estimation, which has attracted recent interest in the scientific community [10, 25,
27], and whose main goal is to design distributed iterative algorithms to cooperatively
minimize (5.8) in an iterative, distributed way. The key idea is as follows.

The algorithm is parametrized by a stochastic transition matrix P which is adapted
to the graph. All nodes v store two messages at each time t ∈ N, xv(t) and xv(t).
Starting from xv(0) = x0 for all v ∈ V , the update is performed in an alternating
fashion. More specifically, the update consists of two stages; for convenience, the
first stage is identified with even times t ∈ 2N, and the second stage with odd times
t ∈ 2N + 1, so that one complete iteration spans two time units. At even time
t ∈ 2N, each node v ∈ V receives the estimates xw(t) for each w ∈ Nv, which
is communicating with v, and xv(t + 1) is obtained by a convex combination of
these estimates. At odd time t ∈ 2N + 1, each node receives the vectors xw(t) from
their neighbors, the estimate xv(t + 1) is then obtained applying the thresholding
operator to a convex combination of the received messages and of the subgradient
step. The coefficients of the convex combination are obtained through the matrix
P and the temperature parameter q ∈ (0, 1). For simplicity, the nodes compute
simply the average of the received messages giving equal weight to each of them,
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i.e., Pv,w = 1/(d + 1) if (v, w) ∈ E and Pv,w = 0 otherwise, and setting q = 1/2.
The thresholding operation is soft as described in (5.10).

Starting from xv(0) = x0, all nodes perform the following operations:

• t ∈ 2N, v ∈ V ,

xv(t + 1) =
∑
w∈V

Pv,wxw(t), xv(t + 1) = xv(t)

• t ∈ 2N + 1, v ∈ V ,

xv(t + 1) = xv(t),

xv(t + 1) = ηα

⎡
⎣(1 − q)

∑
w∈V

Pv,wxw(t) + q
(

xv(t) + τΦT
v (yv − Φvxv(t))

)⎤⎦ .

In other words, in each iteration the nodes transmit data with their neighbors and
the double-stage consensus brings the estimates of the nodes close together before
performing the inexact centralized proximal-gradient method.

The proposed method defines a distributed protocol: each node only needs to
be aware of its neighbors and no further information about the network topology is
required. It should be noted that if J = 1, DISTA coincide with IST (see Algorithm 2).

The dynamics of the algorithm can be rewritten as follows: Let

X (t) = (x1(t), . . . , xJ (t)), X(t) = X (t)P�, t ∈ N.

The updates of DISTA can thus be rewritten as

X (t + 1) = Γ X (t) (5.27)

Notice that this recursive formula joins in one step the operations that was split into
two steps previously, but the dynamics is actually the same. X (0) can be arbitrarily
initialized. More precisely, the pattern is described in Algorithm 4.

Algorithm 4 DISTA
Input: (yv, Φv), α = qλτ/J > 0, τ > 0

xv(0) = 0, iterate
for t ∈ N, v ∈ V do

Transmit xv(t − 1) to neighbors in Nv
Update xv(t − 1) = ∑

w∈V Pv,wxw(t)
Transmit xv(t − 1) to neighbors in Nv
Update xv(t) = η1,α[(1 − q)

∑
w∈V Pv,wxw(t) + q(xv(t) + τΦT

v (yv − Φvxv(t)))]
end for
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Theorem 5.1 guarantees that, under suitable conditions, the minima of the cost
functions defined in (5.8) coincide with the fixed points of the map that rules the
dynamics of DISTA. In this section, we present the theoretical results regarding the
convergence of the proposed algorithm. More precisely, Theorem 4 defines sufficient
conditions to guarantee the convergence of DISTA to a fixed point. It follows that
DISTA converges to a minimum of (5.8).

Theorem 5.7 (DISTA convergence) If τ < ‖Φv‖−2
2 for all v ∈ V , DISTA

produces a sequence {X (t)}t∈N such that

lim
t→∞

∥∥X (t) − X�
∥∥

F = 0

where X� ∈ Fix(Γ ).

It is worth mentioning that Theorem 5.7 does not imply necessarily the conver-
gence of the algorithm to a consensus. The local estimates do not necessary coincide
at convergence. However, the disagreement among the nodes is controlled by tem-
perature parameter q. The consensus can be achieved by letting q go to zero as
suggested by Theorem 5.2 or considering the related “stopped” model [10], whereby
the nodes stop computing the subgradient at some time, but they keep exchanging
their information and averaging their estimates only with neighboring messages for
subsequent time. It should be noted that in the literature several consensus-based
estimation algorithms have been proposed, which do not reach consensus but where
the agreement can be induced by using a temperature parameter, e.g., [25, 32].

DISTA can be interpreted as a majorization-minimization algorithm. In fact, in
order to minimize F (x1, . . . , xJ ) in (5.8), a surrogate objective function [33] is
considered:

FS (X, C, B) := 1

2

∑
v∈V

(
q ‖Φvxv − yv‖2

2 + 2λ

J
‖xv‖1 + 1 − q

(d + 1)τ

∑
w∈Nv

‖xv − cw‖2
2

+ q

τ
‖xv − bv‖2

2 − q ‖Φv(xv − bv)‖2
2

)
(5.28)

where C = (c1, . . . , cN ) ∈ R
n×N , B = (b1, . . . , bN ) ∈ R

n×N .
It should be noted that, defining X = X PT,

FS (X, X , X) = F (X)

and that if τ < ‖Φv‖−2
2 for all v ∈ V then this surrogate objective function is a

majorization of F [34]. The optimization of (5.28) can be computed by minimizing
with respect to each xv separately.
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The proof is rather technical and is based on the fact that DISTA produces
sequences that do not increase the cost function F :

F (X (t + 1)) ≤ FS (X (t + 1), X(t + 1), X (t)) ≤ FS (X (t + 1), X(t), X (t)) ≤ F (X (t)).

5.2.3.4 Discussion

In this section, we compare the algorithms for distributed Lasso in terms of com-
plexity, communication, memory requirements, and accuracy level.

In particular, we show that, compared to DSM-Lasso, DISTA requires equal mem-
ory storage and communication cost but is extremely faster. This implies that the total
number of communications is minimized. Indeed, DISTA is only slightly suboptimal
with respect to D-Lasso or DQP-Lasso. On the other hand, compared to D-Lasso,
it requires a much lower memory usage and reduce the computationally complexity
of DQP-Lasso. These features make DISTA suitable also for low-energy environ-
ments such as wireless sensor networks. For what concerns communication, all the
proposed algorithms are comparable. A detailed discussion is given below.

Memory Requirements

DSM-Lasso, DQP-Lasso, and DISTA require to store a similar amount of real values.
More precisely, we need to store O(n) real values. In D-Lasso, instead, the inversion
of the n × n matrices (Φ�

v Φv + ρ I ) represents a bottleneck for the implementation.
Although the inversion of the matrices can be performed offline, the storage of that
matrix may be prohibitive for a low-power node with a small amount of available
memory. Specifically, for the D-Lasso each node has to store O(n2) real values.
Just as a practical example, nodes with 16kB of RAM are widely used for wireless
sensor networks, e.g. as STM32 F3-series microcontrollers with Contiki operating
system. As the static memory occupied by D-Lasso and DISTA is almost the same,
we neglect it along with the memory used by the operating system (the total is of the
order of hundreds of byte). Using a single-precision floating-point format, 212 real
values can be stored in 16 kB. Therefore, even assuming just one measurement per
node (m = 1), D-Lasso can handle signals with length of some tens, while DISTA
and DSM-Lasso up to thousands.

Communication Cost and Computational Complexity

Let us consider a complete network with J = 10 sensors. Each sensor acquires a
sparse signal, represented in vector form as x� ∈ R

150. The sampling is performed
at a rate below the Nyquist rate, using random linear projections as suggested by the
CS theory [35]. One can represent the measurements yv ∈ R

10 as
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Fig. 5.1 Evolution of the mean-square error as a function of the iterations

yv = Φvx� v ∈ {1, ..., 10}.

For purpose of illustration, the signal to be recovered is generated choosing k = 15
nonzero components uniformly at random among the n = 150 elements and drawing
the amplitude of each nonzero component from a Gaussian distribution N(0, 1). The
sensing matrices (Φv)v∈{1,...,10} are sampled from the Gaussian ensemble with 10
rows, 150 columns, zero mean and variance 1

10 . The DISTA parameters are set equal
to λ = 0.01 τ = 0.1 and q = 1/2; the parameter in the implementation of D-Lasso
is ρ = 0.1.

In Fig. 5.1, we compare the time of convergence: as known, DSM has problems
of slowness and thousands of steps are not sufficient to converge. DISTA, instead,
is significantly faster, hence feasible. It does not reach the quickness of D-Lasso,
which however has the price of the inversion of a n × n matrix at each node to start
the algorithm.

The number of iterations for convergence is not sufficient to compare the different
algorithms and we need to take into account the number of transmitted values per
iteration and the number of computations at each time step.

DSM-Lasso, DQP-Lasso, and D-Lasso require that each node transmits at each
communication step n real values to its neighbors. In DISTA, instead, the size of the
transmitted vector is 2n. As will be shown below, the DSM-Lasso is extremely slow
and it turns out to have a higher communication cost if compared to DISTA and to
DQP-Lasso and D-Lasso. It should also be noted that at each iteration DQP-Lasso
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and D-Lasso are much more complex since at each iteration (5.22) has polynomial
complexity O(n3). In this sense, DISTA combines a cost that is linear in n and
linear updates of the variables. Moreover, it can be shown that the resulting DISTA
strategy provably converges starting from any initial condition, and therefore does
not require any specific procedure for initialization as it happens in ADMM versions
(DQP-Lasso and D-Lasso) of distributed Lasso. It is worth remarking that the amount
of data transmitted at every communication step might decrease with the iterations.
In fact, since the signal x� is sparse, the estimates provided by the nodes tend to be
sparse, allowing a possible compression of the transmitted data (e.g., just transmit
the nonzero entries).

The interested reader can refer to [15] for a more detailed discussion on commu-
nication cost and complexity.

Performance: Centralized Versus Distributed Reconstruction

Let us consider a network of interconnected sensors modeled as a graphG = (V ,E ).
Each sensor acquires a sparse signal, represented in vector form as x ∈ R

n . The sam-
pling is performed at a rate below the Nyquist rate, using random linear projections
as suggested by the CS theory [35]. One can represent the measurements yv ∈ R

m

(with m << n) as
yv = Φvx�.

The asymptotic properties of the centralized Lasso estimator have been studied in
different papers. These include the bias, the weak support consistency, and the esti-
mation consistency.

DSM-Lasso algorithm tabulated in (5.20) with constant stepsize rt = r is not
guaranteed to converge and can oscillate. The convergence of (5.20) can be achieved
by considering the related “stopped” model (see page 56 in [26]), whereby the nodes
stop computing the subgradient at some time. As already noted, the final point has not
a variational characterization and the accuracy depends on the time the computation
on the gradient is stopped. On the other hand, from Theorem 5.5 and 5.6, distributed
implementation of ADMM for Lasso are guaranteed to converge to the Lasso solution
xLasso of (5.6). It can be deduced that all asymptotic properties of centralized Lasso
carry over to its distributed counterpart DQP-Lasso and D-Lasso. In this paragraph,
we show that DISTA achieves extremely good performance and there is no significant
loss compared to the centralized Lasso. Extensive simulations show that DISTA is
satisfactory in the following sense: when the product of the number of nodes in the
network times the number of data for each unit exceeds a given threshold, accurate
estimation is achieved. Moreover, the total number of available data required for
the estimation is comparable to that required by joint estimation. This implies that
decentralization is not a drawback.

For purpose of illustration, the signal to be recovered is generated choosing k
nonzero components uniformly at random among the n = 150 elements and drawing
the amplitude of each nonzero component from a Gaussian distribution N(0, 1).
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The sensing matrices (Φv)v∈V are sampled from the Gaussian ensemble with m
rows, n columns, zero mean, and variance 1

m . This is known to be a suitable choice
from compressed sensing theory [35]. The parameters λ and τ are set equal to 0.01
τ = 0.1 and q = 1/2, respectively. We now conduct a series of experiments for
different architectures and for a variety of total number of measurements. Here, we
are interested in the performance of the algorithms as a function of the number of
data to store in the memory, which we try to minimize, and of the size of the graph.
For each n, we vary the number of measurements m per node and the number of
nodes in the network. For each (n, m, J ) 3-tuple, we repeat the following procedures
50 times.

The measurements are then taken according to the model in (5.1). We use the
so-called metropolis random walk construction for P (see [36]) which amounts to
the following: if i �= j ,

Pi j =
{

0 if (i, j) �∈ E
(max{deg(i) + 1, deg( j) + 1})−1 if (i, j) ∈ E

where deg(i) denotes the degree (the number of neighbors) of unit i in the graph G .
In particular, we consider the following topologies:

1. Complete graph: Pi j = 1
J for every i, j = 1, . . . , J .

2. Ring graph: J sensors are disposed on a circle, and each node communicates
with its first neighbor on each side (left and right). The corresponding circulant
symmetric matrix P is given by Pi j = 1

3 for every i = 2, . . . , J − 1, and
j ∈ {i − 1, i, i + 1}; P11 = P12 = P1J = 1

3 ; PJ1 = PJ J−1 = PJ J = 1
3 ; Pi j = 0

elsewhere.
3. Random geometric graph: sensors are assumed to be deployed uniformly at ran-

dom in a square [0, 1] × [0, 1], and communication is allowed between sensors
with distance below a certain radius (here we fix the radius to 0.75).

We define a success the case when∑
v∈V

‖x� − x DI ST A
v ‖2

2

/
(n J ) < 10−4

where x� is the original signal to be recovered and x DI ST A
v is the estimate a provided

by node v by using DISTA. In Figs. 5.2, 5.3, and 5.4 the probability of success is
depicted as a function of the number of measurements over complete, ring, and
random geometric (radius 0.75) topologies, respectively.

The color of the cell in the figures reflects the empirical success rate: white denotes
perfect reconstruction in all the experiments, while black represents no success occur-
rence. It should be noted that the number of total measurements m J which are suffi-
cient for successful estimation is constant: the red curve collects the points (m, |V |)
such that m|V | = 70, which turns out to be a sufficient value to obtain good esti-
mation (probability greater then 0.95). We observe that the performance of DISTA
is not strongly affected by the graph topology. One could expect worse results with
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Fig. 5.2 DISTA performance (noise-free case, n = 150, k = 15): probability of success over a
complete graph
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Fig. 5.4 DISTA performance (noise-free case, n = 150, k = 15): probability of success over a
random geometric graph (radius 0.75)

less-connected graphs, since low connectivity may cause problems of scarce com-
munication and slowness. However, our results show that only a slight degradation
affects DISTA over the ring, while the behavior is very similar for the complete and
random geometric graph. This also highlights that no loss occurs due to nonregularity
of the graph.

In Fig. 5.5 the probability of success of DISTA, D-Lasso, and DSM-Lasso are
compared as a function of the number of measurements per node. The curves are
depicted for different numbers of sensors. We notice that the number of measurements
needed for success by DISTA is smaller with respect to DSM. On the other hand,
DISTA has performance close to the optimal ADMM: we obtain an almost perfect
match in the curves obtained in the same scenario.

5.2.4 Energy Saving Algorithms: Distributed Sparsity
Constrained Least Squares

Although the algorithms presented in the previous section provide good estimates of
the unknown signal in terms of the MSE, they are not optimized for metrics that are
relevant in distributed scenarios. Leaving aside the memory occupancy that can be
critical in sensor networks, [8] shows that D-Lasso outperforms the other algorithms
in terms of transmitted values. However, as already noted, the nodes transmit at each
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iteration an n-vector to every neighbor. These vectors may not be sparse for many
iterations and, consequently, the energy consumption can be very high. In this section,
we review alternative approach based on the sparsity constrained least squares that
reduce energy consumption.

5.2.4.1 Distributed Iterative Hard Thresholding

Distributed approaches to problems of kind (5.16) have drawn much attention
recently. In particular, [20] addresses (5.16) over static and time-varying networks
and proposes two protocols based on Iterative Hard Thresholding (IHT).

The first method is distributed iterative hard thresholding (DIHT) that can be
outlined as follows. Given a network, every node stores an identical copy of the
signal estimate x(t). Then one node r is chosen and a spanning tree is built fixing
r as root; then, iterative communication is activated from the root toward the leaves
and vice versa so that

(a) r broadcasts the estimate of the signal;
(b) the other nodes receive this estimate and transmit back information to r to update

it.

More precisely, given the current estimate x(t), each node v receives it and computes
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zv(t) = ∇ fv(x(t)) = −Φ�
v (yv − Φvx(t)). (5.29)

Then, starting from the leaves the n-vectors zv(t) are sent back and accumulated so
that r receives their sum and use it (along with zr (t)) to update x(t) to

x(t + 1) = σk

(
x(t) − τ

J∑
v=1

zv(t)

)
(5.30)

through hard thresholding. Pseudocode for DIHT is tabulated in Algorithm 5.

Algorithm 5 DIHT
Algorithm executed by root r
Input: (yr , Φr )

Initialize x(0) = x0
for t ∈ {1, 2, . . .} do

Update zr (t) = −Φ�
r (yr − Φr x(t − 1))

Transmit x(t) to children v ∈ C (r)

Receive sv(t) from each v ∈ C (r)

Update sr (t) = ∑
v∈Cr

sv(t) + zr (t)
Update x(t) = σk (x(t) − τ sr (t))

end for
Algorithm executed by nodes v �= r
Input: (yv, Φv), iterate

for t ∈ {1, 2, . . .} do
Receive x(t − 1) from parent
Update x(t) = x(t − 1)

Update zv(t) = −Φ�
v (yv − Φvx(t))

Transmit x(t) to children � ∈ C (v)
Receive sw(t − 1) from children w ∈ C (v)
Update sv(t) = ∑

w∈Cv
sw(t) + zv(t)

Transmit sv(t) to parent
end for

The estimate provided by the network x(t) evolves in the same way as the estimate
given by the centralized IHT in Algorithm (1). Thus, DIHT has the same convergence
guarantees as the centralized IHT. In [20], this method has been shown to work
efficiently and overcome other distributed methods in terms of convergence times and
number of required transmitted values. Its main limitation is in the imposed hierarchy,
specifically, an exclusion of node r (due, for example, to a failure) would seriously
disrupt the process, as it is the only node storing all the necessary information to
pursue the recovery.

The necessity of a spanning tree is removed in the second method proposed in
[20], known as CB-DIHT and based on diffusive consensus. In CB-DIHT, instead of
summing the gradients from the leaves to the root of a spanning tree, local means of
the gradients are computed by each node as in consensus procedures. In order to do
this, all the nodes should receive from a prescribed node r the current estimate x(t)
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through a diffusive procedure. This idea can be used even when the topology of the
network is time varying, provided that some connectivity conditions are respected.
Interestingly, CB-DIHT is identical to IHT except that at each iteration the gradient
is approximated [20, Proposition 4.4].

5.2.4.2 Asynchronous Hard Thresholding, Broadcast Hard
Thresholding, and Gossip Hard Thresholding

We now describe another family of distributed algorithms, all based on the idea that
each node performs an IHT reconstruction procedure, but adjusts its own estimate
based on knowledge of the estimates of its neighbors. The communication protocols
can be of different kind, leading to a variety of different algorithms. Here, we study
three cases that we name asynchronous hard thresholding (AHT), broadcast hard
thresholding (BHT), and gossip hard thresholding (GHT). These methods are itera-
tive, hence stopping criteria should be defined. As stopping criteria is not explicitly
specified but the algorithm can be stopped when numerical convergence is achieved,
that is, when the distance between the estimates of two successive iterates is below
a fixed threshold.

The AHT algorithm is reported in Algorithm 6.

Algorithm 6 AHT
Input: Data (yv, Φv), sparsity guess k
1: Initialization: xv(0) = 0, τ > 0
2: for t = 0, 1, . . . , StopI ter do
3: Selection of v ∈ V
4: xv(t + 1) = σk

[
1

d+1

∑
w∈Nv∪{v} xw(t) + τΦ�

v (yv − Φvxv(t))
]

5: xh(t + 1) = xh(t) for any h �= v
6: end for

At each iteration step, a node is selected and communicates with its neighbors
to receive their estimates. After communication, the selected node performs the
following operations:

(a) gradient computation of its loss function;
(b) average of the received neighbors’ estimates (included itself);
(c) combined gradient step using (a) and (b);
(d) best k-term approximation of (c).

The procedure is iterated until a stopping criterion is met. In Algorithm 6, the
pseudocode is reported. An example of a network with four nodes is presented in
Fig. 5.6: when node 3 is initially selected, it receives the estimates from its neighbors
and updates its estimate.

In the BHT procedure (Algorithm 7), the communication protocol is reversed with
respect to AHT.
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Fig. 5.6 Example of a network with four nodes: dynamics of AHT when node 3 is initially selected:
node 3 gets information from its neighbor and updates its estimate

Algorithm 7 BHT
1: Initialization: xv(0) = 0 ∈ R

n , τ > 0
2: for t = 0, 1, . . . , StopI ter do
3: Selection of v ∈ V
4: xw(t + 1) = σk

[ 1
2 (xv(t) + xw(t)) + τΦ�

w (yw − Φwxw(t))
]

for any w ∈ Nv
5: xh(t + 1) = xh(t) for any h /∈ Nv ∪ {v}
6: end for

At each iteration step, one node v ∈ V is selected and sends its estimation to
the neighbors w ∈ Nv. After communication, each node w ∈ Nv updates its status
performing the following operations:

(a) computation of the gradient of its loss function;
(b) average between its estimate xw and the received estimate xv;
(c) combination of the gradient step using (a) and (b);
(d) best k-term approximation of (c).

The procedure is iterated until a stopping criterion is met. Figure 5.7 shows the
dynamics of the algorithm when node 3 in a network of four nodes is activated.

Fig. 5.7 Example of a network with four nodes: dynamics of BHT when node 3 is initially selected:
node 3 broadcasts its estimate and makes the update, and its neighbors (node 2 and node 4) update
their own estimate
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Fig. 5.8 Example of a
network with 4 nodes:
dynamics of GHT when edge
(3,4) is initially selected:
node 3 receives the estimate
provided by node 4 and
makes the update

In GHT, only one communication link is used at each iteration step. One node is
selected and woken up and, in turn, selects one neighbor, receives its estimate, and
performs the update as in Algorithm 8. The procedure is iterated until a stopping
criterion is reached. The pseudocode is tabulated in Algorithm 8.

Algorithm 8 GHT
1: Initialization: xv(0) = 0 ∈ R

n for any v ∈ V , τ > 0
2: for t = 0, 1, . . . , StopI ter do
3: Selection of (v, w) ∈ E

4: xv(t + 1) = σk

[
xv(t)+xw(t)

2 + τΦ�
v (yv − Φvxv(t))

]
5: xh(t + 1) = xh(t) for any h �= v
6: end for

We have not specified a rule for the selection of node or edge at each iteration yet.
Two different scenarios, which are formally described in the following definitions,
can be considered.

Definition 5.2 (Randomly persistent communication network) A network of J nodes
is said to be a randomly persistent communicating network if there exists a J -upla
(p1, . . . pJ ) such that pv > 0, for all v ∈ V ,

∑
v∈V pv = 1, and such that, for all

t ∈ N, P[Ωv,t ] = pv, where Ωv,t is the event

Ωv,t = {node v makes the update at iteration t.}

Definition 5.3 (Uniformly persistent communication network) A network of J
nodes is said to be a uniformly persistent communicating network if there exists
a positive integer number T > 0 such that, for all t ∈ N, each node makes the update
perform at least once within the iteration-interval [t, t + T ).

An illustrative single example where perfect recovery is achieved is shown in
Fig. 5.9. We have set the parameters n = 150 and k = 15. The nonzero components’
positions are chosen uniformly at random; the amplitude of each nonzero component
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Fig. 5.9 Noise-free compressed sensing, n = 150, k = 15, m = 10, J = 10, complete graph:
GHT converges to x� (whose components are marked by circles)

is drawn from a Gaussian distribution N(0, 1). The sensing matrices Φv ∈ R
m×n

are sampled from the Gaussian ensemble: Φ
i j
v ∼ N (0, 1/m) , ∀v ∈ V . GHT is

implemented, over a complete graph, with m = 10, J = 10. Clearly, m = 10 is not
sufficient for individual recovery, but collaboration among the 10 nodes allows to
get it, in a reasonable number of iterations.

5.2.4.3 Discussion

We conclude the presentation of the algorithms with some remarks on their require-
ments in terms of computational complexity, memory storage, and communication
cost.

Computational and Communication Requirements

Concerning the memory usage, all algorithms (DIHT, AHT, GHT, and BHT) require
O(n) storage at each node: we need to save 2k real values of the solution esti-
mation (the nonzero components and their positions) at each node, in addition to
the measurements yv, the sensing matrix Φv and the necessary information to com-
pute the gradient of its local loss function ∇ fv(xv(t)) = −Φ�

v (yv − Φvxv(t)). The
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computational complexity per iteration requires only matrix vector multiplication.
Therefore, the local computation is much simpler than the double- and single-looped
algorithms that require each node to solve a convex optimization problem in every
iteration (see DQP-Lasso in previous section for example).

The considered algorithms differ for communication cost per iteration. We recall
that, for simplicity, we assume that all the nodes v ∈ V have degree dv = d. At each
iteration of DIHT, a k-sparse vector is sent down the tree and n-vectors corresponding
to the gradient of the local loss functions are aggregated up the tree. Since a tree has
J − 1 edges, 2k(J − 1) total values are sent per iteration for the broadcast. For the
convergecast, the node sends a single message to its parent in the tree, for a total
of (2k + n)(J − 1) messages per iteration. In this computation, we have to take
into account the number of messages required to create a breadth-first spanning tree
over the network, rooted at node r , using a distributed algorithm (see for example).
This generally requires 2|E | − (J − 1) = J (d − 1) + 1 messages. We analyze
now the communication cost per iteration of AHT, BHT, and GHT. For GHT, only
one communication link is used at each iteration step, while for AHT and BHT
the number of active links is equal to d. The use of best k-term approximation is an
advantage for what concerns the transmission of the current estimate at each iteration
step, as the number of real values that have to be sent is reduced from n to 2k for
each communication link. The number of updating nodes (that is, nodes that perform
computations to update their own estimations) is d for BHT, and just 1 for both AHT
and GHT. The number of nodes sending messages is d for AHT, and 1 for BHT and
GHT. In Table 5.1, AHT, BHT, and GHT are compared in terms of computational
effort, memory, and communication requirements.

It is clear that the total number of usages of communication links or sent values
depend on the total number of iterations required to reach the convergence. We
present some results of numerical tests about DIHT, AHT, BHT, and GHT.

We start by presenting some numerical results in the noise-free compressed sens-
ing framework. In all the simulations we observe that convergence to the true signal
can be achieved by AHT, BHT, and GHT, provided that the number of measurements
is large enough (but keeping the number of measurements per node smaller than the
number sufficient for individual reconstruction).

Table 5.1 Computational/communication requirements per iteration

DIHT AHT BHT GHT

Storage O(n) O(n) O(n) O(n)

Active comm.
links

J − 1 d d 1

Sent values (2k + n)(J − 1) 2kd 2kd 2k

Updating nodes J 1 d + 1 1

Sender nodes J d 1 1
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We assume that each node can in turn acquire m = 10, 15, 20 measurements and
we study how the recovery accuracy varies at the increasing of the number of nodes.
On one hand, adding nodes will augment the total number of measurements, which
is expected to improve the recovery; on the other hand, a larger network may cause
some degradation due to greater decentralization.

In Fig. 5.10, we show that the good effect prevails, that is, increasing the total
number of measurements m J (namely, the network size, having fixed m) the per-
formance accuracy improves. More precisely, in Fig. 5.10 we show the results over
two different topologies: ring (all the nodes communicates with two neighbors), and
random geometric (we assign a uniformly random position to each node in the square
[0, 1] × [0, 1], and we let communication between nodes with distance below a cer-
tain radius, in this case 0.75, [37]). The ring topology represents the least connected,
regular case, while with the random geometric topology we explore the nonregular
framework (for which we do not have theoretical guarantees). The algorithms are

stopped at time T such that
∑

v∈V
∥∥xT −1

v − xT
v

∥∥2
2 < 10−15 or after T = 2 × 105

iterations, whichever occurred first [20, Section V.C].
The graphs show the rate of success (we declare a success when the accuracy

condition
∑

v∈V
∥∥xT

v −x�
∥∥2

2
J‖x�‖2

2
< 10−4 holds) as a function of m J for AHT, BHT, and

GHT. All the results are obtained by averaging over 500 different runs. For these
experiments, for each node v ∈ V , we choose a τv = J−1 ‖Φv‖−2

2 . In all the figures,
we draw the curve for the (centralized) IHT as a benchmark.

Observing Fig. 5.10, we conclude that BHT tends to work better in the few mea-
surements regime, immediately followed by GHT. AHT is a bit less reliable, in
particular for m = 10 and ring topology. This can be explained with the presence of
many stationary points when the number of measurements is low, among which the
search of the true signal is even more difficult over few connected networks that do
not support much collaboration. We finally notice that the gap with IHT is not dra-
matic, and that a 95 % of success is achieved by all the algorithms, over the different
topologies, for m J ≥ 120 (except for AHT with m = 10 in the ring topology).

Number of Transmitted Values for Convergence

We now study the efficiencies of AHT, BHT, and GHT in terms of number of trans-
mitted values necessary to achieve convergence (by transmitted value we mean a real
scalar sent over a communication link in the network). As communications are typi-
cally energy expensive, we aim to keep that number as low as possible. To the best of
our knowledge, among the possible distributed approaches to problem (5.16), DIHT
[20] is the most efficient in terms of transmitted values: in [20, Section V], some tests
are proposed that compare DIHT to CB-DIHT, D-ADMM, and subgradient methods,
and the outcomes attest its higher performance. Those tests were conducted on a set
of sparse problems selected from the Sparco dataset [38]; here, we consider a couple
of those Sparco problems, with the same network topologies and parameters, and we
show that AHT, BHT, and GHT overcome DIHT.
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Table 5.2 Sparco problems’ setting

Problem n m |V | k

Sparco 902 1000 4 50 3

Sparco 7 2560 15 40 20

We repeat the experiments of [20]. More precisely, we consider the following prob-
lems: (a) Sparco 7, in which a sign spike signal is compressed through a Gaussian
matrix; (b) Sparco 902, in which a signal sparse in the DCT domain has to be
recovered (see [38]). Signals’ lengths, number of measurements, and network spec-
ifications that we assume (see Table 5.2) are taken from [20, Table1]). We consider
Erdos–Rényi (ER) and random geometric graphs (Geo), respectively, with connec-
tivity parameters 0.25, 0.75 and 0.5, 0.75. The setting that we consider is the same
as in [20, Section V], the only differences being in the different realizations for the
random graphs and in the number of instances: our results are averaged over 100
instances, while in [20] 5 runs were performed.

In Table 5.3, we present our experimental results of the implementation of AHT,
BHT, GHT, and DIHT on Sparco 7 and Sparco 902. As in [20, Sect. V.C], (a)
algorithms are stopped at the time T such that

√√√√∑
v∈V

∥∥xT
v − x�

∥∥2
2

J ‖x�‖2
2

< tol,

with tol = 10−2 or tol = 10−5; (b) x� is the true original signal or the stationary point
to which the algorithm converges. In the next, we will show that not only AHT, but
also BHT and GHT are always convergent in this setting, which makes unnecessary
to fix an upper limit of iterations.

As in [20], in the implementation of DIHT we have considered τ = 1
2.01 . The

results that we obtain (in which we neglect the communications necessary to build
the spanning tree) are substantially consistent with those presented in the original
paper. It should be noted that the number of sent values for DIHT does not depend
on the given topology, as communications are performed on the spanning tree which
always has J −1 edges. The number of transmitted values is then (J +1)(2k +n)T ,
where T is the number of iterations to get convergence, 2k is the number of values
required to diffuse the current k-sparse estimate from the root to the leaves, while n
is the length of the nonsparse gradients that are accumulated and sent from the leaves
to the root.

Concerning AHT, BHT, and GHT, we have fixed τ = 0.01. For the Sparco 7 prob-
lem, no particular initialization is required, and the initial estimates are fixed to zero.
For Sparco 902, instead, we assume that before starting the iterative procedure, each
node v computes xv(0) = σk

[∑
w∈Nv

τΦT
w yw

]
(if connectivity is high, the sum can

be reduced over a selection of neighbors). This initialization has been experimentally
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proved to speed up the convergence. The total number of sent values is evaluated as
2kT (

∑T
t=1 l(t) + I ), where T is the total number of iterations to get convergence,

l(t) is the number of used links at each time step (this number depends on the nodes’
degree for AHT and BHT, while is simply 1 for GHT) and I is the number of used
links in case of initialization. Notice that, as a difference from DIHT, only k-sparse
vectors are transmitted (from which the coefficient 2k), as each node performs hard
thresholding before transmitting.

We remind that in principle BHT and GHT may not converge, and in particular
may not converge to x�; however, for Sparco 7 and 902 considered in Table 5.3,
we always observe convergence to x�, no matter which communication topology is
assumed. In the table, we show the mean, minimum, and maximum number of sent
values we have obtained over 100 runs. We point out that BHT, GHT, and DIHT
converge to the true signal, while AHT converges to a stationary point different from
x� (this fact is highlighted by a “�” in Table 5.3).

In Table 5.1, we can appreciate the gain obtained by AHT, BHT, and GHT with
respect to DIHT: in the 100 runs we consider, the number of transmitted values is
always smaller using AHT, BHT, and GHT, which are then expected to outperform
also CB-DIHT, D-ADMM, and subgradient methods, according to the results in [20].

We finally remark that AHT and BHT require less-transmitted values over less-
connected topologies. This means that a limited collaboration, which reduces the
number of used links at each iteration step, does not necessarily slow down the total
algorithms’ dynamics.

5.3 Beyond Single Source Estimation: Distributed Recovery
of Correlated Signals

In previous sections, we focused on the distributed reconstruction of a common signal
acquired in a networked system. Obviously, the main goal of the nodes in the network
was to reach a consensus on the estimate of the signal.

In many applications, however, it is of interest to consider an ensemble of mul-
tiple correlated signals sensed by independent nodes in the networks. Algorithms
for centralized reconstruction of signals that obey JSM-1, JSM-2, and JSM-3 cor-
relation models have been already reviewed in Chap. 4. In literature, the problem
of in-network reconstruction of multiple correlated sparse signals has been recently
considered in [39, 40] and reference therein.

We are not interested in reviewing in detail the algorithms proposed in literature but
we put the emphasis on the methodology used to design efficient and low-complex
algorithms for distributed reconstruction. For this reason we start with a simple
model of correlation, e.g. JSM-1, and we provide a simple recipe to follow: recast
the problem as a sparse optimization problem, replicate the unknown variables, and
solve the consensus-based optimization problem.

http://dx.doi.org/10.1007/978-981-287-390-3_4
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We start by recalling the notational convention of the JSM-1 problem. Given a
network represented by a connected graph G = (V ,E ), the nodes acquire measure-
ments of the form

yv = Φvxv, v ∈ V

where Φv ∈ R
m×n is the sensing matrix of the v-th node, the observed signal follow

the JSM-1 model
xv = (xC + xl,v), v ∈ V

where xC and xl,v are both sparse unknown terms with respective sparsities kC and
kl,v. As already noted in Chap. 2, within the classical compressed sensing framework,
the JSM-1 corresponds to a compressed sensing problem with one source

⎧⎨
⎩

y = Ax
xC ∈ �kC ,

xl,v ∈ �kl,v , v ∈ V
(5.31)

where x = ( x�
C x�

l,1 x�
l,2 . . . x�

l,J )�,

A =

⎛
⎜⎜⎝

Φ1 Φ1 0 . . . . . . 0
Φ2 0 Φ2 0 . . . . . . 0

. . .

ΦJ 0 . . . 0 ΦJ

⎞
⎟⎟⎠ , y =

⎛
⎜⎜⎝

y1
y2
. . .

yJ

⎞
⎟⎟⎠ (5.32)

If the measurements were available in a central processing unit, a reasonable
estimation of the signals can be obtained by solving the following optimization
problem:

min
xC,xl,v

1

2

J∑
v=1

‖yv − Φv(xC + xl,v)‖2
2 + λC‖xC‖1 +

∑
v∈V

λv‖xl,v‖1 (5.33)

where λC, λv are scalar parameters related to the sparsity levels of the common signal
and innovations. Following the consensus-based optimization, (5.31) can be recast
into a separable form, that is prone to distributed implementation. The common
variable zC is replaced with local variables {ζv}v∈V and the optimization problem
(5.33) is rewritten in the following form

min
ξv,zl,v

1

2

J∑
v=1

[
‖yv − Φv(ζv + zl,v)‖2

2 + 2
λC

J
‖ζv‖1 + 2λv‖zl,v‖1

]
(5.34)

s.t. ζv = ζw, (v, w) ∈ E .

http://dx.doi.org/10.1007/978-981-287-390-3_2
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Starting from this separable problem, a variety of algorithms can be proposed by
using distributed subgradient method, iterative thresholding algorithms, or alternat-
ing direction method of multipliers.

References

1. Baron, D., Duarte, M.F., Wakin, M.B., Sarvotham, S., Baraniuk, R.G.: Distributed compressive
sensing. arXiv preprint arXiv:0901.3403 (2009)

2. Forero, P.A., Cano, A., Giannakis, G.B.: Consensus-based distributed support vector machines.
J. Mach. Learn. Res. 99, 1663–1707 (2010)

3. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In Koller, D.,
Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, Curran Associates, Inc. pp. 289–296
(2008)

4. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical
algorithms. ACM Trans. Graph. 22(3), 908–916 (2003)

5. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T.J.: A
survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1),
80–113 (2007)

6. Sundman, D., Chatterjee, S., Skoglund, M.: A greedy pursuit algorithm for distributed com-
pressed sensing. In: IEEE ICASSP, pp. 2729–2732 (2012)

7. Mota, J., Xavier, J., Aguiar, P., Puschel, M.: Basis pursuit in sensor networks. In: IEEE ICASSP,
pp. 2916–2919 (2011)

8. Mota, J., Xavier, J., Aguiar, P., Puschel, M.: Distributed basis pursuit. IEEE Trans. Signal Proc.
60(4), 1942–1956 (2012)

9. Mateos, G., Bazerque, J.A., Giannakis, G.B.: Distributed sparse linear regression. IEEE Trans.
Signal Proc. 58(10), 5262–5276 (2010)
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Chapter 6
Conclusions

Compressed sensing has attracted a huge interest in the scientific community, with
hundreds of papers published in conferences and journals. The equivalent distributed
problem has been studied comparatively less, but has an extremely large application
potential in large-scale distributed systems. This book has summarized the state of the
art of CS for distributed systems, covering both theory and algorithms. Intentionally,
the material included in this book does not cover all available techniques, but only
those that are more suitable in a distributed scenario, with an emphasis on low power
techniques. As a consequence, very general techniques which have proved to be very
successful in many applications but are not always applicable in a sensor network
scenario have been left out of this book. The interested reader will find a lot of related
material available.

CS for distributed systems is reaching a stage where it is now becoming mature.
However, since it involves a more sophisticated system model than conventional
CS, a lot of work still has to be done in the areas of sensing and reconstruction,
as well as other communication and processing aspects. There are many things that
distributed nodes can do usingCS, besides just usingCSas an efficient representation.
As nodes cooperate to reconstruct a signal, they could also cooperate in order to
extract information from that signal, or more precisely, from its linear measurements.
Processing signals in the compressed domain has been proved possible in the classical
case, but it is a much less studied problem in the distributed case. Yet, there is a
large potential because not only the intranode, but also the internode statistics may
be inferred through collaboration. CS security is another area that may certainly
benefit from more research. The security properties of random projections point to
an intriguing new class of encryption techniques. The possibility to consider these
security properties in a more general distributed scenario paves the way for secure
distributed multiparty computation based on CS. At the same time, considering the
relation between CS and channel coding, it is easy to see that there are relations
between DCS and network coding, which might be exploited to design new network
coding schemes or new DCS schemes alike. These ideas only scratch the surface of
what can be done applying CS to distributed systems, and we hope that this book
will stimulate researchers to tackle innovative CS problems in order to advance this
field even more.
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