

Modern Birkh~user Class i c s

Many of the original research and survey monographs in pure and
applied ma themat i c s publ ished by Birkh~user in recent decades
have been groundbreaking and have come to be regarded as foun-
dational to the subject. Through the MBC Series, a select number of
these mode rn classics, entirely uncorrected, are being re-released in
paperback (and as eBooks) to ensure that these t reasures remain ac-
cessible to new generat ions of s tudents , scholars, and researchers.

Algorithms and
Programming

Problems and Solutions

Alexander Shen

Reprint of the 1997 Edi t ion

Birkh~iuser

Boston �9 Basel �9 Berlin

Alexander Shen
Insti tute o f P rob lems

o f Informat ion T ransmis s ion
Moscow 103051
Russ i a

ISBN-13 :978 -0 -8176 -4760 -5
DOI: 10 .1007/978-0-8176-4761-2

e - I S B N - 1 3 : 9 7 8 - 0 - 8 1 7 6 - 4 7 6 1 - 2

Library of Congress Control Number: 2007940260

�9 Birkh~iuser Boston
All rights reserved. This work may not be translated or copied in whole or in part without the writ-
ten permission of the publisher (Birkh~iuser Boston, c/o Springer Science+Business Media LLC, 233
Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de-
veloped is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Cover design by Alex Gerasev.

Printed on acid-flee paper.

9 8 7 6 5 4 3 2 1

w w w . b i r k h a u s e r , co rn

Alexander Shen

Algorithms and Programming
Problems and Solutions

Birkh~iuser

B o s t o n �9 B a s e l �9 B e r l i n

Alexander Shen
Institute of Problems
of Information Transmission
Moscow 103051
Russia

Library of Congress Cataloging-in-Publication Data

Shen, A. (Alexander), 1958-
Algorithms and programming : problems and solutions / Alexander

Shen.
p. cm.

Includes bibliographical references and index.
ISBN 0-8176-3847-4 (alk. paper). -- ISBN 3-7643-3847-4 (alk.

paper)
1. Computer algorithms. 2. Electronic digital computers-

-Programming. I. Title.
QA76.9.A43S47 1996 96-30975
005.1--dc 20 CIP

Printed on acid-free paper
Original published 1995 in Russian
�9 1997 Birkh/iuser Boston

Birkh~user

Copyright is not claimed for works of U.S. Government employees.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without prior permission of the copyright owner.

Permission to photocopy for internal or personal use of specific clients is granted by
Birkh~iuser Boston for libraries and other users registered with the Copyright Clearance
Center (CCC), provided that the base fee of $6.00 per copy, plus $0.20 per page is paid
directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, U.S.A. Special requests
should be addressed directly to Birkh~iuser Boston, 675 Massachusetts Avenue,
Cambridge, MA 02139, U.S.A.

ISBN 0-8176-3847-4
ISBN 3-7643-3847-4

Typeset in Latex by the Author.
Printed and bound by Quinn-Woodbine, Woodbine, NJ.
Printed in the U.S.A.

9 8 7 6 5 4 3 2 1

Contents

Variables, expressions, assignments 1

1.1 Problems without arrays . 1

1.2 Arrays . 15

1.3 Inductive functions . 29

2 Generation of combinatorial objects 33

2.1 Sequences . 33

2.2 Permutations . 34

2.3 Subsets . 35

2.4 Partitions . 37

2.5 Gray codes and similar problems 38

2.6 Some remarks . 44

2.7 Counting . 46

3 Tree

3.1

3.2

traversal (backtracking) 49

Queens not attacking each other: position tree traversal 49

Backtracking in other problems 58

4 Sorting 60

4.1 Quadratic algorithms . 60

4.2 Sorting in n log n operations 61

4.3 Applications of sorting . 67

4.4 Lower bound for the number of comparisons 69

4.5 Problems related to sorting 70

Finite-state algorithms in text processing 73

5.1 Compound symbols, comments, etc 73

5.2 Numbers input . 74

Data

6.1

6.2

6.3

6.4

types 79

Stacks . 79

Queues . 85

Sets . 93

Priority queues . 96

Recursion 98

7.1 Examples . 98

7.2 Trees: recursive processing 101

7.3 The generation of combinatorial objects; search 103

7.4 Other applications of recursion 107

vi CONTENTS

Recursive and nonrecursive programs 114
8.1 Table of values (dynamic programming) 114
8.2 Stack of postponed tasks . 118
8.3 Difficult cases . 121

Graph algorithms 124
9.1 Shortest paths . 124
9.2 Connected components, breadth and depth search 127

10 Pattern matching
10.1
10.2
10.3
10.4
10.5
10.6
10.7

133
Simple example . 133
Repetitions in the pattern . 135
Auxi l iary lemmas . 136
Knuth-Morr is -Pra t t algorithm 137
Boyer -Moore algorithm . 140
Rabin-Karp algorithm . 142
Automata and more complicated patterns 143

11 Set
11.1
11.2

representation. Hashing 151
Hashing with open addressing 151
Hashing using lists . 153

12 Sets, trees, and balanced trees 158
12.1 Set representation using trees 158
12.2 Balanced trees . 165

13 Context-free grammars 176
13.1 General parsing algorithm 176
13.2 Recursive-descent parsing 181
13.3 Parsing algorithm for LL(1)-grammars 191

14 Left-to-right parsing (LR) 198
14.1 LR-processes . 198
14.2 LR(0)-grammars . 204
14.3 SLR(1)-grammars . 207
14.4 LR(1)-grammars, LALR(1)-grammars 208
14.5 General remarks about parsing algorithms 211

Further reading 212

Preface

Somebody once said that one may prove the correctness of an algorithm, but not
of a program. One of the main goals of this book is to convince the reader that
things are not so bad.

A well-known programmer, C.A.R. Hoare, said that the beauty of a program
is not an additional benefit but a criterion that separates success from failure. If,
while solving problems in this book, you come to appreciate the beauty of a well-
written program with each part in its correct place, the author's goal will have been
reached.

We have utilized the problem-solution format. Some sections are collections
of problems having a common topic, while others are devoted to one specific
algorithm (e.g., Section 14 covers LR(1)-parsing). The sections are more or less
independent, but the concluding sections are more difficult. Sections 1-7 cover
material usually included in undergradute courses while Sections 13-14 are more
appropriate for a graduate compiler course. In each section we have tried to give
problems at different levels starting with easy exercises.

Problems are usually provided with solutions, answers or hints. However,
we strongly recommend that the reader look at the solutions only after making a
good faith attempt to solve the problems independently.

Pascal is used as a programming language to write program examples; how-
ever, readers familiar with some other procedural language (C, Modula, Oberon,
etc.) will encounter no difficulties.

Most of the problems, of course, are well known. References are rare, but this
does not mean that the problem or algorithm is new. However, we hope that in
some cases the algorithm or the proof is explained better than what is found in
other sources.

This book is addressed both to the ambitious student who wants to test and
improve his/her skills and to the instructor looking for problems for his/her class.

I thank all the people I met while teaching programming (first of all, my former
students from 57th school and A.G. Kushnirenko, who was my programming
teacher) and all readers who sent me corrections for the preliminary versions of
this book (especially Yu.V. Matijasevich).

I also thank the American Mathematical Society (former Soviet Union aid
fund), International Science Foundation, Open Society Foundation, MIT, Uni-
versity of Bordeaux, Bonn University, the Rosenbaum Foundation, INTAS, the

viii PREFACE

Russian government and the Institute of Problems of Information Transmission
for support during the writing of this book.

I thank Ann Kostant and the other nice people at Birkhiiuser Publishing house
for their help. Tom Scavo did a great job correcting my English (as well as several
other errors) but in no case should he be blamed for the remaining mistakes.

The Russian version of this book is freely distributed in ASCII, TEX
and PostScript formats; please contact the author (shen@landau.ac.ru,
s h e n @ i u m . i p s . r a s . r u , s h e n O s c h 5 7 . m c n . m s k . s u) for details. I'd be
grateful if bug reports will be sent to the same addresses.

To the memory of Anna Pogossiants

Algorithms and Programming
Problems and Solutions

1 Variables, expressions, assignments

1.1 Problems without arrays

1.1.1. Consider two integer variables a and b. Write a program block that ex-
changes the values of a and b (i.e., the value of a becomes the value of b and vice
versa).

Solution. We use an auxiliary integer variable t .

t := a;

a := b;

b := t ; �9

If we try to eliminate this auxiliary variable by writing

a := b;

b := a;

we get an incorrect program (the value of a is lost after the first assignment).

1.1.2. Solve the preceding problem without an auxiliary variable. (Assume
all variables accept arbitrary integer values.)

Solution. (By a0 and b0 we denote the initial values of a and b.)

a : = a + b ; { a = a 0 + b 0 , b = b 0 }

b : = a - b ; { a = a 0 + b 0 , b = a 0 }

a := a - b; {a = bO, b = aO} �9

1.1.3. Let a be an integer and n be a nonnegative integer. Compute a n. In
other words, we ask for a program that does not change the values of a and n and
assigns the value a n to another variable (say, b). (The program may use other
variables as well.)

Solution. Consider an integer variable k, whose range is 0 . . n. (We maintain
the property: b = ak.)

k := O; b := i;

{b = a'k}

while k <> n do begin

k :=k+ i;

b :=b,a;

end;

2 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

Another solution:

k := n; b := 1;

{a^n = b * (a^k)}

while k <> 0 do begin

k := k- I;

b := b * a;

end;

1.1.4. Solve the preceding problem with the additional requirement that the
number of execution steps should be of order logn (i.e., it should not exceed C log n
for some constant C).

Solution. Let us make some changes in the second solution of the preceding
problem:

k := n; b := i; c := a;

{a^n = b * (c'k)}

while k <> 0 do begin

if k mod 2 = 0 then begin

k := k div 2;

C := C ' C ;

end else begin

k := k - i;

b:=b*c;

end;

end;

In both cases (even k and odd k) the value of k decreases; if k is even, it is divided
by 2; if k is odd, after k := k - I it becomes even and is divided by 2 during
the next iteration. Therefore, after any two iterations k becomes twice smaller (or
even less). �9

1.1.5. Two nonnegative integers a and b are given. Compute the product a*b
(only +, - , =, <> are allowed).

Solution.

k := O; c := O;

{invariant relation: c = a * k}

while k <> b do begin

I k :=k+ 1;
C := C + a;

end;

{c = a * k and k = b, therefore, c = a * b}

1.1 Problems without arrays 3

1.1.6. Two nonnegative integers a and b are given. Compute a + b. Only
assignments of the form

(variablel) := (variable2);

(variable) := (number);

(variablel) := (variable2> + 1;

are allowed.

[Hint. Use the invariant relation c = a + k] �9

1.1.7. A nonnegative integer a and positive integer d are given. Compute the
quotient q and the remainder r when a is divided by d. Do not use the operations
d i v or rood.

Solution. By definition, a = q*d + r and 0 < r < d.

{a >= O; d > O}

r := a; q := O;

{invariant relation: a = q * d + r, 0 <= r}

while not (r < d) do begin

{r >= d}

r := r - d; {r >= O}

q := q + I;

end; �9

1.1.8. For a given nonnegative integer n, compute n! (n! is the product 1 �9 2 .
3 - . . n ; w e assume that 0! = 1). �9

1.1.9. The Fibonacci sequence is defined as follows: a 0 = 0, a 1 = 1, a k =
ak_ l § 2 f o r k > 2. For a given n, computean . �9

1.1.10. Repeat the preceding problem with the additional requirement that the
number of operations should be proportional to log n. (Use only integer variables.)

[Hint. Any pair of consecutive Fibonacci numbers is the product of the matrix

1 1

and the preceding pair. Therefore, it is enough to compute the n-th power of this
matrix. It can be done in C logn steps in the same manner as problem 1.1.4 (for
integers).] �9

1.1.11. For a nonnegative integer n, compute

1 1 1

O! +~. T+ +n! �9

4 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

1.1.12. Repeat the preceding problem with the additional requirement that the
number of steps (i.e., the number of assignments performed during the execution)
should be of order n (i.e., not greater than Cn for some constant C).

Solution. The invariant relation: sum = 1/1! + . - . + t /k ! , l a s t = l / k ! (it is
important not to compute k! each time from scratch). �9

1.1.13. Two nonnegative integers a and b are not both zero. Compute
GCD (a , b), the greatest common divisor of a and b.

Solution (version 1).

if a > b then begin

I k := a;
end else begin

I k := b;
end;

{k = max (a,b)}

{invariant relation: no numbers greater than k are

common divisors}

while not ((a mod k = O) and (b mod k = 0)) do begin

I k := k- 1;
end;

{k is a common divisor, all larger k are not}

(version 2 - - Euclid's algorithm). We assume that GCD (0 , 0) =0. Then GCD (a , b)
= GCD(a-b ,b) = GCD(a ,b-a) with GCD(a,0) = GCD(0,a) = a for all a, b > 0.
This property allows us to decrease a and b without changing GCD (a , b).

m := a; n := b;

{invariant relation: GCD(a,b) = GCD(m,n); m,n >= 0 }

while not ((m=O) or (n=O)) do begin

if m >= n then begin

I m := m - n;
end else begin

I n := n - m;
end;

end;

{m = 0 or n = O}

if m = 0 then begin

I k := n;
end else begin {n = O}

I k := m;
end; �9

1.1.14. Write down a modified version of Euclid's algorithm using
the identities GCD(a,b) = GCD(a rnod b , b) for a > b and GCD(a,b) =
GCD(a, b rood a) f o r b > a . �9

1.i Problems without arrays 5

P
q

end

n

r

s

end

end;

1.1.15. Nonnegatwe integers a and b are gwen, at least one of which is not
zero. Find d = GCD(a,b) and integers x and y such that d = a*x + b*y.

So~tion. Add the auxiliary variables p, q, r , s to Euclid 's algorithm and add
the requirements m = p*a+q*b and n = r * a + s * b to the invariant relation:

m:=a; n:=b; p:=l; q:=0; r:=0; s :=l ;
{invariant relation:

GCD(a,b) = GCD(m,n);

m,n >= 0

m = p*a + q.b;

n = r*a + s*b.}

while not ((m=O) or (n=O)) do begin

if m >= n then begin

m := m - n;

:= p - r;

:= q - s;

else begin

:= n - m;

:= r - p;

:= s - q;

if m = 0 then begin

I k := n; x := r; y := s;

end else begin

I k := m; x := p; y := q;

end;

1.1.16. Solve the preceding problem using the rood operator. �9

1.1.17. (E. Dijkstra) Let us add three variables u, v, z to Euclid 's algorithm:

m := a; n := b; u := b; v := a;

{invariant relation: GCD (a,b) = GCD (m,n); m,n >= 0 }

while not ((m=O) or (n=O)) do begin

if m >= n then begin

I m := m - n; v := v + u;

end else begin

I n := n - m; u := u + v;

end;

end;

6 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

if m = 0 then begin

I Z: = V;

end else begin {n=O}

I z: = u;

end;

Prove that after execution the value of z is twice as large as the least common
multiple of a and b, that is, z = 2 �9 LCM(a,b).

Solution. Look at the value of m. u + n �9 v, which remains unchanged during
program execution. Initially it is equal to 2ab; therefore, this expression has the
same value at the end. Now apply the identity GCD(a, b) - LCM(a, b) = ab. �9

1.1.18. Write a version of Euclid's algorithm using the identities

GCD(2a, 2b) = 2 �9 GCD(a, b); GCD(2a, b) = GCD(a, b) for odd b

The algorithm should avoid division (div and rood operations); only division by

2 and the test "to be even" are allowed. (The number of operations should be of
order log k if both numbers do not exceed k.)

Solution.

m:=a; n : = b ; d : = l ;
{GCD(a,b) = d * GCD(m,n)}
while not ((m=O) or (n=O)) do begin

if (m mod 2 = O) and (n mod 2 = O) then begin

I d:= d*2; m:= m div 2; n:= n div 2;

end else if (m mod 2 = O) and (n mod 2 = i) then begin

I m:= m div 2;
end else if(m mod 2 = i) and (n mod 2 = O) then begin

I n:= n div 2;
end else if (m mod 2=1) and (n mod 2=1) then begin

if m >=n then begin

I m:= m-n;

end else begin {m < n}

I n:= n-m;

end;

end;

end;

{m=O => answer=d,n; n=O => answer=d,m}

If both numbers m and n do not exceed k, the number of operations does not exceed
C log k; indeed, each other operation makes at least one of the numbers m and n
twice smaller. �9

1.1.19. Modify the solution of the preceding problem to find x and y such that
ax + by = GCD(a, b).

1.1 Problems without arrays 7

Solution. (The idea was communicated by D. Zvonkin.) Assume that both a
and b are even. In this case we divide both of them by 2; the values of x and y we
are looking for remain unchanged. Therefore, without loss of generality, we may
assume that at least one of the numbers a and b is odd. (This property will remain
true.)

As before, we wish to maintain the numbers p, q, r , s such that

m= ap+bq

n=ar+bs

The problem, however, is that if we divide m by 2 (say), then we should at the same
time divide p and q by 2. In this case p and q are no longer integers but become
finite binary fractions, that is, numbers of the type r/2 s. Such a number can be
represented by a pair <r, s). As a result, we get d as a linear combination of a and
b with coefficients being finite binary fractions. In other words, we have

2id = ax + by

for some integers x, y and nonnegative integer i . What should we do if i > 0? If
both x and y are even, we may divide them by 2 (and decrease i by 1). I f not, we
apply the transformations:

x : - - - - x + b

y : = y - - a

(this transformation leaves a_x + by unchanged). Let us see why this works. Recall
that one of the numbers a and b is odd (according to our assumption). Let a be
odd. If y is even, then x is even as well (otherwise ax + by is odd); this case is
considered above. If a and y are odd, then y becomes even after executing the
statement y : = y - a. �9

1.1.20. Write a program that prints the squares of the natural numbers
0, 1 n.

Solution.

k:=O;
writeln (k,k);

{invariant relation: k<=n, all the squares
up to (k,k) are printed}

while not (k=n) do begin

I k:=k+1; writeln (k,k);

end;

1.1.21. Repeat the preceding problem, but only addition and subtraction are
allowed. The number of steps should be of order n.

8 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

Solution. We use the variable k_square , and maintain the relation
k_squa re = k2:

k := O; k_square := O;

writeln (k_square);

while not (k = n) do begin

k:=k+1;

{k_square = (k-l) * (k-l) = k*k - 2*k + 1}

k square := k_square + k + k - 1;

writeln (k_square);

end;

Remark. We can avoid subtraction by the following trick:

while not (k = n) do begin

k_square := k_square + k;

{k_square = k*k + k}

k :=k+ i;

{k_square = (k-1)*(k-1)+(k-1)=k*k-k}

k_square := k square + k;

end;

1.1.22. Write a program that prints the factorization of a given integer n > 0.
(In other words, it should print prime numbers whose product is equal to n; if
n = 1, nothing should be printed.)

Solution (version 1).

k := n;

{invaxiant relation: the product of k and all numbers

printed is equal to n; only prime numbers are printed}

while not (k = 1) do begin

t := 2;

{invariant relation: k has no divisors in (1,t)}

while k mod t <> 0 do begin

I t:=t+l;
end;

{t is the smallest divisor of k greater than 1;

therefore, t is prime}

writeln (t);

k:=k div t;

end;

1.1 Problems without arrays 9

(version 2)

k := n; t := 2;

{the product of k and all number printed is equal

to n; only prime numbers are printed;

k has no divisors in (l,t)}

while not (k = i) do begin

if k mod t = 0 then begin

{k is a multiple of t and has no divisors

less than t; therefore, t is prime}

k := k div t;

writeln (t);

end else begin

{k is not a multiple of t}

t := t+l;

end;

end;

1.1.23. SoNe the preceding problem taking into account the following ~ct:
any composite number N has a ~ctor not exceeding v ~ .

Solution. In version 2 of the above solution, replace t : = t+ l by

if t*t > k then begin

I t:=k;
end else begin

I t:=t+l;
end; �9

1.1.24. Check whether a given number n > 1 is prime. �9

1.1.25. (This problem requires some algebra) A Gaussian integer n+mi E Z [i]
is given. (a) Check whether it is a prime element in Z[i]; (b) print its factorization
as a product of prime factors in Z[i]. �9

1.1.26. Assume the command w r i t e (i) is allowed for i = 0, 1, 2,.. ,9.
Write a program that prints the decimal representation of a given positive integer
n.

Solution.

base:=l;

{base is an integer power of i0 not exceeding n}

while 10 * base <= n do begin

[base:= base * 10;

end;

{base is a maximal power of 10 not exceeding n}

10 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

k:=n;

{invariant relation: it remains to print k with the same

number of digits as in base; base = i00..00}

while base <> I do begin

write(k div base);

k: = k mod base;

base:= base div i0;

end;

{base=l; it remains to write one digit k}

write(k);

Please note that this program assumes that n > 0. �9

(A typical mistake while solving this problem is that the numbers with zeros in
the middle are printed incorrectly. The invariant relation mentioned above allows
the case k < base ; in this case, the decimal representation of k begins with zero.)

1.1.27. Write a program that prints the decimal representation in reverse. (For
n = 173, the program should print 371.)

Solution.

k:= n;

{invariant relation: it remains to print k reversed}

while k <> 0 do begin

I write (k mod lO);

k: = k div i0;

end;

1.1.28. A nonnegative integer n is given. Count all the solutions of the in-
equality x 2 + y2 < n where x and y are nonnegative integers. The program should
not use operations with real numbers (such as ~/--, etc.).

So~fion.

a := O; s := O;

{invariant relation: s = the number of all pairs

<x,y> such that x*x + y*y < n and x < a}

while a*a < n do begin

{t = the number of nonnegative integers y such that

a*a + y*y < n (for fixed a)}

a := a + I;

s := s + t;

end;

{a*a >= n, therefore s is the total number of solutions}

I.I Problems without arrays 11

Here the ellipsis represents part of the program that is still to be written. Here
it is:

b := O; t:= O;

{invariant relation: t is the number of integers y

such that a*a + y*y < n and O<=y<b }

while a*a + b*b < n do begin

b:=b+1;

t := t + 1;

end;

{a*a + b*b >= n, so t is the number of nonnegative

integers y such that a*a + y*y < n}

1.1.29. The same problem with the additional restriction that the total number
of operations should be of order v/-n. (The previous solution requires about n
operations.)

Solution. We have to count all the integer grid points in the first quadrant that
lie inside the circle of radius ~/~. The set in question (call it X) is a union of
columns of points having width 1 and non-increasing height.

The idea is to trace the boundary of this set, which resembles a staircase that goes
down as we move from left to right. The current position is <a,b>. We use one
more variable s and maintain the following invariant relation:

<a ,b> is on the top of a-th column;
s is the number of points in the preceding columns.

Formally,

�9 b is minimal among all b > 0 such that <a, b> is not in X;

�9 s is the number of all pairs <x, y> of nonnegative integers such that x < a
and <x, y> e X.

These conditions will be denoted by (I) .

a := 0; b := 0;
w h i l e <0,b> i s i n X do b e g i n
[b : = b + l ;
end;

12 I VARIABLES, EXPRESSIONS, ASSIGNMENTS

{a = O, b is minimal among all b >= 0

such that <a,b> is not in X }

s := O;

{invariant relation: (I)}

while not (b = O) do begin

s := s + b;

{s is the number of points in columns O..a}

a := a + I;

{point <a,b> is outside X, it should be moved down to

restore (I) unless (I) is already true}

while (b <> O) and (<a, b-l> is not in X) do begin

I b := b - i;

end ;

end;

{(I), b = O, therefore the a-th column and all subsequent

columns are empty; s is the required number}

An estimate for the number of steps is evident. First we move up performing not
more than ~ steps. Then we move right and down in not more than ~ steps in
each direction. �9

1.1.30. Nonnegative integers n and k are given, with n > 1. Print k digits
of the decimal representation of the number 1/n. (If two decimal representations
exist, such as 0.499 0.500 print the latter.) The program should use
integer variables only.

Solution. Moving the decimal point of the number l /n , k positions to the
right, we k get the number 10 /n. We wish to print its integer part, that is, we must
compute 10 k d iv n. We do not want to compute 10 k because of the possibility
of integer overflow. Instead, we perform ordinary division. Here is the program:

m := O;

r := i;

{m digits of I/n are printed; it remains to print

k - m digits of the decimal expansion of r/n}

while m <> k do begin

write ((I0 * r) div n);

r := (i0 * r) mod n;

m :=m+ i;

end; �9

1.1.31. A natural number n > 1 is given. Find the length of the period of the
decimal number i /n .

Solution. The period of a decimal fraction is equal to the period of the sequence
of "remainders" r (see the solution of the preceding problem). [Prove this fact;

I. 1 Problems without arrays 13

do not forget to prove that the period of the fraction cannot be less than the period
of the sequence of remainders.] In the sequence of remainders all terms that form
the period are distinct and the length of the nonperiodic initial segment does not
exceed n. Therefore, it is enough to find the (n + i)-th term of the sequence, and
then to find the minimal k such that the (n + 1 + k)-th term is equal to the (n + i)-th
term.

m := O;

r := i;

{r/n = what remains from i/n after the decimal point

is moved m positions to the right and the integral

part is discarded}

while m <> n+l do begin

r := (i0 * r) mod n;
m :=m+ i;

end;

C :=

{c =
r : =

k :=

r;

(n+l)-th term of the sequence of remainders}

(10 * r) mod n;

1;

{r = (n+k+1)-th term of the same sequence}

while r <> c do begin

I r := (10 * r) mod n;
k := k + i;

end ; �9

1.1.32. (R.W. Floyd, communicated by Yu.V. Matijasevich) A function f :
{ 1 . . N} -* { 1 . . N} is given. Find the period of the sequence 1, f (i) , f (f (1))
The number of operations should be proportional to the length of the smallest initial
segment that includes the period (this length may be significantly less than N).

Solution. After discarding the initial segment, we have a periodic sequence,
and all terms in the period are different.

{Notation: f[n,l]=f(f(...f(1)...)) (n times)}

k := I;

a := f (1) ;
b := f(f(1));
{a = f[k,l]; b = f[2k,1]}

while a <> b do begin

I k:=k+l; a:=f(a); b:=f(f(b));

end;

{a = f[k,l] = f[2k,1]; f[k,l] is in the periodic part}

m := I; b := f(a);

{b = f[k+m,l]; f[k,l] f[k+m-l,l] are different}

14 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

while a <> b do begin

I m:=m+l; b:=f(b);

end;

{period = m}

1.1.33. (E. Dijkstra). A function f whose arguments and values are non-
negative integers is defined as follows: f (0) = 0, f (1) = 1, f (2n) = f (n) ,
f (2n + 1) = f (n) + f (n + 1). Write a program that computes f (n) for a given n;
the number of operations should be of order log n.

Solution.

k := n; a := i; b := O;

{invariant relation: O<=k, f(n) = a*f(k) + b*f(k+l)}

while k <> 0 do begin

if k mod 2 = 0 then begin

1 := k div 2;

{k=21, f(k)=f(1), f(k+l) = f(21+i) = f(1) + f(l+l),

f (n) = a*f(k) + b*f(k+l) = (a+b)*f(1) + b*f(l+l)}

a := a + b; k := l;

end else begin

1 := k div 2;

{k = 21 + I, f(k) = f(1) + f(l+1),

f(k+l) = f(21+2) = f(l+l),

f(n) = a*f(k) + b*f(k+l) = a,f(1) + (a+b)*f(l+l)}

b :-- a + b; k :-- I;

end;

end;

{k = O, f(n) = a * f(O) + b * f(1) = b,

b is the answer}

1.1.34. The same problem for f (0) = 13, f (1) = 17, f (2n) = 4 3 f (n) +
57 f (n + 1) and f (2n + 1) = 91 f (n) + 1 7 9 f (n + 1) f o r n >_ 1.

[Hint. The program stores k, a, b, c such that f (n) = a . f (k) + b �9 f (k + l) +
c . f(k+2).] �9

1.1.35. Two nonnegative integers aand b are given, with b > 0. Find a mod b
and a d i v b using only integer variables and avoiding explicit d i v and mod op-
erations (the only exception: an even number may be divided by 2). The number
of operations should not exceed C1 log(a /b) + C2 for some constants C1 and C2.

1.2 Arrays 15

So~tion.

bl := b;

while bl <= a do begin

l bl := bl * 2;
end;

{bl > a, bl = b * (integer power of 2)}

q:=O; r:=a;

{invariant relation: q, r are quotient and remainder when

a is divided by bl; bl = b * (some integer power of 2)}

while bl <> b do begin

bl := bl div 2 ; q := q * 2;

{ a = bl * q + r, 0 <= r < 2 * bl}

if r >= bl then begin

r := r - bl;

q := q + i;

end;

end;

{q, r are quotient and remainder when a is divided by b}

1.2 A r r a y s

We assume in the sequel that x, y, z are defined as a r r a y [1 . . n] o f i n t e g e r
(here n is a fixed positive integer constant) unless otherwise stated.

1.2.1. Fill the array x with zeros. (Write a program fragment whose execution
guarantees that all values x [1] . . x In] are zero independent of the initial value of
x.)

Solution.

i := O;

{invariant relation: x[l] x[i] = O}

while i <> n do begin

i :=i+ I;

{x[1]..x[i-1] = O}

x[i] := O;

end ; �9

1.2.2. Count the number of zeros in an array x. (Write a program fragment that
does not change the value of x and guarantees that the integer variable k contains
the number of zeros among x [1] . . x [n] .)

Solution.

. ~

{invariant: k = number of zeros among x[l]..x[i] }

16 I VARIABLES, EXPRESSIONS, ASSIGNMENTS

1.2.3. Not using assignment statement for arrays, write a program that is equiv-
alent to the statement x: =y.

Solution.

i := O;

{invariant: y is unchanged, x[t]=y[t] for all t<=i}

while i <> n do begin

i := i + i;

x[i] := y[i];

end;

1.2.4. Find the maximum value among x [1] . . x [n].

Solution.

i := i; max := x[1];

{invariant relation: max = maximum(x[1]..x[i])}

while i <> n do begin

i := i + i;

{max = max imum (x [1] . . x [i- 1]) }

if x[i] > max then begin

I max := x [i] ;
end;

end;

1.2.5. An array x: a r r a y [1 . . n] o f i n t e g e r is given such that x [1] <
x [2] < . - . < x [n] . Find the number of different elements among x [1] . . x [n].

Solution (version 1).

i := 1; k := 1;

{invariant relation: k = the number of

different elements among x[1]..x[i]}

while i <> n do begin

i:=i+l;

if x[i] <> x[i-1] then begin

Ik:=k+l;

end;

end;

(version 2) The number in question is one unit larger than the number of i in
1 . . n -1 such that x [i] is not equal to x [i+1] , plus one.

1.2 Arrays 17

k := i;
for i := 1 to n-I do begin

if x[i]<> x[i+l] then begin
Ik:=k+l;
end;

end;

1.2.6. An array x : a r r a y [1 . . n] o f i n t e g e r is given. Compute the number
of different elements among x [1] . . x [n]. (The number of operations should be
o f o r d e r n 2.) �9

1.2.7. The same problem with an additional requirement: the number of op-
erations should be of order n log n.

[Hint. See chapter 4 on sorting.] �9

1.2.8. The same problem where all elements are integers in 1 . . k and the
number of operations should be of order n + k. �9

1.2.9. (Communicated by A.L. Brudno.) A rectangular field m x n contains
mn squares. Some squares are marked as black. It is known that black squares are
grouped into several disjoint rectangles that are at least one apart from each other.
Assuming that the colors of squares are represented as

array [l..m] of array [l..n] of Boolean;

count the number of rectangles. The number of operations should be of order ran.

Solution. The number of rectangles is equal to the number of their upper left
comers. It is easy to check whether a square is in the upper left comer. Just check
the color of the cell as well as the colors of its upper and left neighbors. (Don' t
forget the case when the cell is on the left or upper boundary of a given m x n
rectangle.) �9

1.2.10. An array x [1] . . x [n] is given. Without using other arrays, put its
elements in reverse order.

Solution. We should exchange x [i] and x [n + l - i] for all i such that i <
n+l--i,i.e.,2i <n+IC>2i_<nC>i_<n div 2:

for i := i to n div 2 do begin

I ...exchange x[i] and x[n+l-i];
end; �9

1.2.11. (From D. Gries' book [6]) An array x [1] . . x [re+n] is considered as
a concatenation of two segments: a prefix x [1] . . x [m] of length m and a suffix
x [r e+ l] . . x [re+n] of length n. Without using other arrays, exchange these prefix
and suffix segments. (The number of operations should be of order m + n.)

18 I VARIABLES, EXPRESSIONS, ASSIGNMENTS

Solution. (version 1) Reverse the prefix segment (see the preceding problem),
then the suffix segment, and finally the whole array.

(version 2, A.G. Kushnirenko) Imagine that the array is written down along a
circle. Then the required transformation is a rotation. Recall that rotation may be
represented as the composition of two axial symmetries. Each symmetry can be
performed by exchanges without extra memory.

(version 3) Consider the more general problem: Exchange two adjacent seg-
ments x [p + l] . . x [q] and x [q + l] . . x [r] in an array. Assume that the length of
the left segment (called A in the sequel) does not exceed the length of the right
segment (called B). Split B into two segments BI and B2, where B1 is an initial
segment of B of the same length as A. (So, B = B1 + B2, where + stands for
concatenation.) We need to transform A + B1 + B2 into B1 + B2 + A. We can easily
exchange A and B1 because they have equal lengths. After that we get B1 + A + B2
and it remains to exchange A and B2. Therefore, we have reduced our problem to
a similar problem for shorter segments. Here is the outline of the program:

p := O; q := m; r := m + n;

{invariant relation: it remains

to exchange x[p+l..q], x[q+l..r]}

while (p <> q) and (q <> r) do begin

{both segments are nonempty}

if (q - p) <= (r - q) then begin

�9 .exchange x[p+l]..x[q] and x[q+l]..x[q+(q-p)]

pnew := q; qnew := q + (q - p);

p := pnew; q := qnew;

end else begin

�9 .exchange x[q-(r-q)+l]..x[q] and x[q+l]..x[r]

qnew :=q- (r- q); rnew := q;

q := qnew; r := rnew;

end ;

end;

The number of operations may be estimated as follows. At each step the part of the
array that should be processed becomes shorter by the length of A. The number
of operations required is also proportional to the length of A. �9

1.2.12. An array a: a r r a y [0 . . n] of i n t e g e r contains the coefficients of
a polynomial of degree n. Compute the value of this polynomial at the point x,
that is, a[n] x n + . . . + a[1] x + a[0] .

Solution. (The algorithm described below is called Homer's rule)

k := 0; y := a [n] ;
{invariant relation: 0 <= k <= n,

y= a[n]*(x ** k)+...+a[n-l]*(x ** (k-l))+...+

+ a[n-k]*(x ** 0)}

1.2 Arrays 19

while k <> n do begin

I k : = k + l ;
y := y * x + a [n - k] ;

end;

1.2.13. (Requires some calculus; communicated by A.G. Kushnirenko) Ex-
tend Homer's rule to compute not only the value of a polynomial at some point,
but also the value of the derivative of the same polynomial at the same point.

Solution. When a new coefficient is added, the polynomial changes from P (x)
to Q (x) = x P (x) + c. The derivative QI (x) is equal to x P ' (x) + P (x). Therefore
we can easily compute Q(x) and Q'(x) if we know x, c, P (x) and P'(x) . �9

This solution has a unexpected feature: we do not need to know in advance
the degree of the polynomial. If we add this requirement and ask to compute the
value of the derivative only (not mentioning the polynomial itself), we get a rather
confusing problem.

There is a general statement about the computation of derivatives:

1.2.14. (W. Baur, V. Strassen) Assume that a "straight-line" program
(containing only assignment statements) computes the value of some polynomial
P(x l Xn) given the variables xl Xn. We assume that the right-hand
sides of the assignment statements are expressions that contain only addition,
multiplication, constants, variables x l , . . . , xn and the variables that appear on
the left-hand side of previous assignment statements. Prove that there exists a
program of the same type that computes all n derivatives 8 P / a x l 8P/Oxn,
where the number of arithmetic operations is only C times larger than in the
original program. (Here the constant C does not depend on n.)

[Hint. We may assume that each assignment consists of addition, multiplication
by a constant, or multiplication of two variables. Use induction on the number of
statements, applying the inductive assumption to the program obtained by deleting
the first command of the program.] �9

1.2.15. Two arrays a: a r r a y [0 . . k] of i n t e g e r and b : a r r a y [0 . . l] of
i n t e g e r contain the coefficients of two polynomials of degrees k and 1 respec-
tively. Put into c: a r r a y [0 . .m] of i n t e g e r the coefficients of their product.
(Here k, 1, m are nonnegative integers such that m = k + 1; the array element
indexed by i contains the coefficient of x i .)

Solution.

for i:=O to m do begin

I c [i] :=0;
end;

20 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

for i:=O to k do begin

for j:=O to 1 do begin

I c[i+j] := c[i+j] + a[i]*b[j];

end;

end;

1.2.16. The multiplication algorithm for polynomials given above uses about
n 2 operations to compute the product of two polynomials of degree n. Find an
(asymptotically) more effective algorithm that uses only O (n l~ operations.

[Hint. Suppose we want to multiply two polynomials of degree 2k. Represent
these polynomials as

A (x) x k + B(x) and C(x) x k + D(x)

where A, B, C, D are polynomials of degree k. The product in question is equal
to

A(x)C(x) x 2k + (A(x)D(x) + B(x)C(x)) x k + B(x)D(x) .

The natural way to compute AC, AD + BC, BD requires four multiplications
of degree k polynomials. However, the following trick requires only three mul-
tiplications: compute AC, BD and (A + B)(C + D), then use the identity
AD + BC = (A + B)(C + D) - A C - BD.] �9

1.2.17. Two arrays x : a r r a y [1 . . k] of i n t e g e r and y: a r r a y [1 . . 1] of
i n t e g e r are sorted (x [1] < . . . < x [k], y [1] < . .- < y [1]). Find the number
of common elements in both arrays, that is, the number of integers t such that
t = x [i] = y [j] for some i and j . (The number of operations should be of
order k + 1.)

Solution.

kl:=O; 11:=0; n:=O;
{invariant relation: O<=kl<=k; O<=ll<=l;
the number in question is n plus the number of common

elements in x[kl+l] x[k] and y[ll+l] y[1]}

while (kl <> k) and (11 <> l) do begin

if x[kl+l] < y[ll+1] then begin

I kl := kl + 1;
end else if x[kl+l] > y[ll+l] then begin

I 11 := 11 + 1;
end else begin {x[kl+l] = y[ll+l]}

kl := kl + i;

11 := 11 + 1;

n :=n+ i;

end;

end ;

1.2 Arrays 21

{kl = k or 11 = i; therefore, one of the sets

mentioned in the invariant relation is empty

and n is the number in question)

Remark. In the last alternative it is enough to increase only one of the variables
k l and 11 (though the symmetry would be broken if we did that). �9

1.2.18. Solve the preceding problem with the assumption that x [1] < .-- <
x [k] and y [1] _< --- < y [1] (arrays are nondecreasing but not necessarily
increasing).

Solution. In the third alternative of the previous solution, when increas-
ing k l and l l by 1, we decreased (by 1) the number of common elements in
x [k l + l] . . . x [k] and x [1 1 + 1] . . . x [l] . For nondecreasing arrays, this is not
enough since the same element may appear many times. A more complicated
procedure is required:

~

end else begin s = y[ll+l]}

t := x [kl+l];

while (k1<k) and (x[kl+l]=t) do begin

I kl := kl + 1;
end ;

while (ll<l) and (x[ll+l]=t) do begin

I 11 := 11 + i;
end ;

n := n+l;

end;

Remark. This program has a bug, however. If in the condition

(kl<k) and (x [kl+lJ =t)

(or in the similar second condition) the first expression (kl<k) is false, the second
one is meaningless (index out of bounds) and an error may occur. Some versions
of Pascal use "short circuit evaluation" of Boolean expressions: when evaluating
A and B the evaluation of B is "short circuited" when A is false. (This is the default
behaviour of Turbo Pascal 5.0, but not 3.0.) In this case, the problem disappears.

Rather than rely on implementation-dependent features (short-circuit evalua-
tion is not prescribed by the Pascal's author, N. Wirth), we can do the following.
Introduce an additional variable b : B o o l e a n and write:

i f k l < k t h e n b := (x [k l + l] = t) e l s e b : = f a l s e ;
{b = (k l<k) and (x [k l + l] = t) }
wh i l e b do b e g i n

k l := k l + l ;
i f k l < k t h e n b := (x [k l + l] = t) e l s e b : = f a l s e ;

end;

22 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

Another possibility (which is shorter, but less symmetric):

end else begin {x[kl+l] = y[ll+l]}

if kl + i = k then begin

kl := kl + i;

n := n + i;

end else if x[kl+l] = x [kl+2] then begin

I kl := kl + i;
end else begin

kl := kl + i;

n :=n+ I;

end ;

end;

Alternatively, we can increase the constant in the array declaration and reserve
a spare memory location. �9

1.2.19. Two arrays x : a r r a y [1 . . k] of i n t e g e r and y : a r r a y [1 . . l] of
i n t e g e r satisfying x[1] < . . . < x [k] , y [1] < . . . < y [1] are given. Find
the number of different elements among x [1] x [k] , y [1] y [1]. (The
number of operations should be of order k + 1.) �9

1.2.20. Two arrays x[1] < . . . < x [k] and y [1] < . . . < y [1] are given.

Merge them into one a r r a y z [1] < . . . < z[m] (m = k + l) . Any element
should appear is z as many times as it appears in x and y together. The number of
operations should be of order m.

Solution.

kl := O; ii := O;

{invariant relation: the answer is the concatenation

of z[l]..z[kl+ll] and the merge of

x[kl+l]..x[k] and y[ll+l]..y[l]}

while (kl <> k) or (ii <> i) do begin

if kl = k then begin

{li < l}

ii := ii + I;

z[ki+ll] := y[ll];

end else if II = 1 then begin

{kl < k}

kl := kl + i;

z[kl+ll] := x[kl];

end else if x[k1+l] <= y[ll+l] then begin

kl := kl + i;

z[kl+ll] := x[kl];

end else if x[kl+l] >= y[ll+l] then begin

1.2 Arrays 23

I ii := 11 + i;
z[kl+llJ := y[ll];

end else begin
I ~this cannot happen)
end ;

end;
{kl = k, II = l, arrays are merged)

This process can be illustrated as follows. Assume we have two piles of cards with
a word on each card, and each pile is alphabetically sorted. We merge them into
one pile as follows. At every step we compare the first cards of both piles and
take the one which is alphabetically first. If one pile is already empty, we take the
remaining cards from the other pile. �9

1.2.21. Two a r r a y s x [1] < . . - < x [k] a n d y [1] < . . . _ < y [1] are given.
Find their "intersection", i.e., an array z El] _< . . - _< z [m] that contains their
common elements. The multiplicity of each element in z should be equal to the
smaller of its multiplicit ies in x and y. The number of operations should be of
o r d e r k + l . �9

1.2.22. Two arrays x [1] < . - - < x [k] and y [1] < - . . < y [1] and a
number q are given. Find i and j such that x [i] + y [j] is as close to q as
possible. (The number of operations should be of order k+l . You may use a fixed
number of auxiliary integer variables; the arrays x and y are read-only.)

[Hint. We need to find the minimal distance between x [1] < �9 .- _< x [k] and
q - y [1] _< - . - < q - y e l l . This is easily done while merging these numbers
into one (imaginary) array.] �9

1.2.23. (from D. Gries ' book [6]) There is a number that is present in all three
nondecreas ingar raysxE1] < - . . _< x [p] , y E 1] < . . . < y E q] , z [1] _<- . - <
z Er]. Find this number (or one of them, if there is more than one). The number
of operations should be of order p + q + r .

Solution.

pi:=i; ql=l; r1:=1;
{invariant relation: x [p l J . . x [p] , y [q l J . . y [q] ,
z[rl]..z[r] have an element in common)

while not ((x [pl] =y [ql]) and (y [ql] =z [rl])) do begin
if x[plJ<y[ql] then begin

I pl:=p1+l;
end else if y[qlJ<z[rl] then begin

I q1:=q1+1;
end else if z[rlJ<x[pl] then begin

I rl:=rl+l;
end else begin

24 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

I {this cannot happen}

end;

end ;
{x[pl] = y[ql] = z[rl]}

writeln (x[pl]);

1.2.24. Repeat the previous problem assuming that we do not know in advance
if such a common element exist. Determine whether or not it exists and locate it if
it does. �9

1.2.25. The array a [1 . . n] consists of arrays [1 . . m] of integers:

a: array [l..n] of array [l..m] of integer;

a [1] [1] < . - - < a [1] [m] a [n] [1] < . - . < a [n] [m].

It is known that there is a common number present in all a [i] (that is, there exists
an x such that for all i in 1 . . n there exists a j in 1 . . m such that a [i] [j] = x).
Find such a number x.

Solution. We use an array b [1] . . b [n] whose elements mark the start of the
"non-scanned" portions of arrays a [1] a [n] .

for k:=l to n do begin
[b[k] :=1;
end;

eq := true;

for k := 2 to n do begin

] eq := eq and (a [1] [b [1]] = a [k S [b [k]]) ;
end ;
{invariant relation: non-scanned parts have nonempty

intersection, i.e., there is x such that for any i in

[1..n] there is j in [b[il..m] such that a[iS[j] = x;

eq <=> first non-scanned elements are all equal}

while not eq do begin

s := 1; k := 1;

{a[s] [b[s]] is minimal among a[l] [b[l]]..a[k][b[k]]}

while k <> n do begin

k := k + i;

if a[k] [b[k]] < a[s] [b[s]] then begin

I s := k;
end;

end;

{a[s][b[s]] is minimal among a[l][b[l]]..a[n][b[n]]}

b Is] := b Is] + i;

1.2 Arrays 25

for k := 2 to n do begin

I eq := eq and (a[l][b[l]]

end;

end;

writeln (a[l][b[l]]);

= aEk] [b E k]]) ;

1.2.26. Our solution of the preceding problem requires mn 2 operations. Find
an algorithm that needs only O(mn) operations (i.e., not more than Cnm operations
for some C).

[Hint. We have to break the symmetry and choose one of the rows as a "prin-
cipal" row. We move along the principal row maintaining the following relation:
in all other rows the maximal element not exceeding the current element of the
principal row is located.] �9

1.2.27. (Binary search) An array x [l] _< . . . _< x [n] of integers and an
integer a are given. Determine if a is present in x, that is, if there exists an i in
1 . . n such that x [i] = a. (The number of operations should be of order logn.)

Solution. (We assume that n > 0.)

1 := i; r := n+l;

{r > l, if a is present, it is present among x[1]..x[r-1]}

while r - 1 <> I do begin

m := 1 + (r-l) div 2 ;

{l<m<r}

if x[m] <= a then begin

I 1 :=m;
end else begin {x[m] > a}

I r := m;
end ;

end;

(Check that the invariant relation is maintained even if x [m] = a.)
At each step the difference r - 1 is halved, so we get the required bound for

the number of operations.
Program can be simplified using the equality

i+ (r-1) div2= (21+(r-l))div2= (r+l) div2. �9

Remark. It is very important that the array x [1] . . x [n] is sorted; otherwise
we have to test all n elements x [1] . . x In] to be sure that a given element is not
in the array ("sequential search").

1.2.28. (From D. Gries' book [6]) An array x: a r r a y [1. . n] o f
a r r a y [1 . . m] o f i n t e g e r is sorted both row-wise and column-wise:

x[i][j] _xFi] [j+l],

26 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

x [i] [j] _ < x [i + l] [j] ,

Determine if a given number a is present among the array elements x [i] [j] .

Solution. Represent x as a rectangular matrix. Choose a rectangle that contains
a (assuming that a is present at all) and then make this rectangle smaller and smaller.
This rectangle contains x [i] [j] such that 1 < i < 1 and k < j _< m.

(The rectangle is empty if 1 = 0 or k = m + 1.)

l:=n; k:=l;

{i>=0, k<=m+l, if a is present at all, it is present

inside the rectangle}

while (I > O) and (k < re+l) and (x[l] [k] <> a) do begin

if x[l] [k] < a then begin

I k := k + I; {left colnmn cannot contain a, delete it}

end else begin {x[l] [k] > a}

I 1 := 1 - i; {last row cannot contain a, delete it}

end;

end;

{x[l] [k] = a or the rectangle is empty}

answer:= (i > O) and (k < re+l) ;

Remark. Here the same error as in problem 1.2.18 appears: x [1] [k] may be
undefined. (We leave its correction to the reader.) �9

1.2.29. (Moscow programming contest) A nondecreasing integer array
a l l] < a [2] < . . . < a [n] contains positive numbers only. Find the minimal
positive integer that cannot be represented as a sum of several elements of this
array (no element may be used not more than once). The number of operations
should be of order n.

Solution. Assume all numbers that can be represented as sums of subsets
of {a[1] a [k]} form the set {1,2 N}. If a [k + l] > N+I, then N+I
is the smallest number that cannot be represented as the sum of some subset of
{a[1] a [n] }. If a [k + l] _< N+I, then all numbers that can be represented as
sums of subsets of { a [1] . . . a [k+ 1] } form the set { 1, 2 N+ a [k+ 1] }.

1.2 Arrays 27

k := O; N := O;

{invariant relation: all the numbers that can be

represented as sums of subsets of {a[l] a[k]},

form the set {1,2 N}}

while (k <> n) and (a[k+l] <= N+I) do begin

I N := N + a[k+l];
k := k + 1;

end;

{(k = n) or (a[k+l] > N+I); the answer is N+3.

in both cases}

writeln (N+I) ;

(Error: when the first condition in the whi le-const ruct is false, the second is
undefined.) �9

1.2.30. (Requires some algebra) An integer array a [1] . . a [hi contains some
permutation of 3... n (each of numbers 3... n appears exactly once).

(a) Determine if the permutation is even.
(b) Without using other arrays, replace the permutation by its inverse permu-

tation (i.e., if a [i] = j was true before execution, then a [j] = i is true after
execution).

(In both (a) and (b), the number of operations should be of order n.)

[Hint. (a) The number of cycles determines whether a permutation is even or
odd. To mark an already counted cycle, we can (for example) change the sign of
its elements. (b) The inverse permutation is computed cycle by cycle.] �9

1.2.31. An array a [1 . . n] and a threshold b are given. Rearrange the elements
of the array in such a way that all elements on the left of some boundary do not
exceed b whereas all elements on the right of the boundary are greater than or equal
to b. The number of operations should be proportional to n.

Solution.

I:=0; r:=n;

{invariant relation : a [i] . . a [i] <=b; a [r+l] . . a In] >=b}

while 1 <> r do begin

if a[l+l] <= b then begin

I 1 : =i+I ;
end else if a[r] >=b then begin

I r:=r-l;
end else begin {a[l+l]>b; a[r]<b}

..exchange a[l+l] and a[r]

I:=i+i; r:=r-l;

end;

end;

28 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

1.2.32. Repeat the previous problem with the additional restriction that the
elements smaller than b should precede elements equal to b which themselves
should precede elements greater than b.

Solution. We need three boundaries to divide our segment into four parts. The
first part contains elements smaller than b; the second part contains only elements
equal to b; the third part may contain anything; and the fourth part contains only
elements greater than b. (We can get a more symmetric solution using a fourth
boundary, but that's not important.) At each step we consider the left element of
the third part (just to the right of the second boundary).

i:=0; m:=O; r:=n;
{invariant relation:

a[l..l]<b; a[l+l..m]=b; a[r+l]..a[n]>b}
while m <> r do begin

if a[m+1]=b then begin
I m: =m+l;

end else if a[m+l]>b then begin
. .exchange aim+l] and air]
r:=r-1;

end else begin {a[m+1]<b}
�9 .exchange a[m+l] and a[l+l]
l:=l+l; m:=m+l;

end;

1.2.33. (This version of the preceding problem is called the "Dutch flag"
problem in E. Dijkstra's book [4].) The array contains n elements; each element is
equal to 0, i, or 2. Sort the array if the only allowed operation (besides reading its
elements) is the exchange of two elements of the array. The number of operations
should be proportional to n. �9

1.2.34. An array a [1 . . n] and a number m < n are given. For any segment
formed by m adjacent elements (there are n - m + i segments of this type) compute
its sum. The total number of operations should be of order n.

Solution. When moving the segment to the right, add one element and subtract
another. �9

1.2.35. A square matrix a [i . . n] [1 . . n] and a number m < n are given.
For any m • m-subsquare, compute the sum of its elements. The total number of
operations should be of order n 2.

Solution. First compute the sum for all horizontal rectangles of size m x 1.
(When such a rectangle is shifted to the right, one element is added and one is
subtracted.) After computing all these sums, we compute the sums for squares.
(When a square is shifted down, one rectangle is added and another rectangle is
subtracted.) �9

1.3 Inductive functions 29

1.2.36. ,am array a [1] . . a [n] contains all integers in [0 . . n] except one.
Find this omitted integer with fixed additional memory. Number of operations
should be proportional to n.

[Hint. Add all the numbers.] �9

1.3 Inductive functions (following A.G. Kushnirenko)

Let M be a set. Let f be a function whose arguments are finite sequences of elements
of M and whose values belong to some other set N. q~ne function f is called inductive
if its value on the sequence x [1] . . x [n] is uniquely determined by its value on the
sequence x [1] . . x [n - l] and by x Fn], that is, if there is a function F : N x M ---* N
such that

f((x[l] x[n] }) = F(f((x[l] x[n-l]}), x[n]).

For example, the sum x [i] + -- �9 + x [hi is an inductive function (it is enough to

know the sum x [l] + . . . + x [n - l] and the value of x [n] to compute x [l] +
�9 - - + x [n]) . At the same time, the average value is not an inductive function; if we
know x [n] and the average of x [1] x [n - l] , but have no information about
n, we cannot compute the average of x [1] x [n] .

Am inductive function can be computed as follows:

k := O; f := fO;
{invariant relation :

f is a value of the function on <x[l],...,x[k]>}

while k<>n do begin

I k :=k+ i;
f := F (f, x[k]);

end;

Here f 0 is the value of the function on the empty sequence (sequence of length
0). If f is defined only on nonempty sequences, the first line should be replaced
by

k:=l; f :=f (<x[l]>) ;

If a given function f is not inductive, it is instructive to look for its inductive
extension. By an inductive extension of f we mean an inductive function g whose
values determine uniquely the values of f (i.e., there exists a function t such that

f((x[l] ...x[n]>) = t(g(<x[l] ...x[n])))

for all (x [1] . . . x [n])) . One can prove that there exists a minimal extension F
among all inductive extensions of a given function f . Here the word "minimal"
means that for any other inductive extension g the values of F are determined
uniquely by the values of g, that is, F(x) = u(g(x)) for some function u.

30 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

1.3.1. Find an inductive extension for the following functions:
(a) the average value of a sequence of real numbers;
(b) the number of elements in a sequence that are equal to its maximal element;
(c) the second largest element of the sequence (second from the top after the

sequence is sorted in nondescending order);
(d) the maximal number of consecutive equal elements;
(e) the maximal length of a monotone (nonincreasing or nondecreasing) frag-

ment composed of consecutive elements of a sequence;
(f) the number of groups of ones separated by zeros (in a 0-1-sequence).

Solution.
(a) As we have seen, the average value is not an inductive function. However,

the average value is a ratio of two inductive functions. The first one is the sum of
all the terms; the second one is the number of terms. Therefore, the combination
(the sum of all elements; the length) is an inductive extension.

(b) (the maximal element; the number of elements equal to the maximal
element);

(c) (the maximal element; the second maximal element);
(d) (the maximal number of adjacent equal elements; the maximal number of

adjacent equal elements at the end of the sequence; the last element);
(e) (the maximal length of a monotone fragment; the maximal length of a non-

decreasing fragment at the end of the sequence; maximal length of a nonincreasing
fragment at the end of the sequence; the last term of the sequence);

(f) (the number of 1-groups; the last term). �9

1.3.2. (Communicated by D.V. Varsonofiev) Two sequences x [1] . . x In] and
y ['1] . . y [k] of integers are given. Determine if the second sequence is a subse-
quence of the first one, that is, if it is possible to delete some terms of the first
sequence to obtain the second one. The number of operations should be of order
n + k .

Solution. (version 1) Reduce the problem to the same problem involving shorter
sequences.

nl:=n;

kl:=k;

{invariant relation: the answer is TRUE <=>

it is possible to get y[lJ..y[kl] out of x[lJ~

while (nl > O) and (kl > O) do begin

if x[nl] = y[klJ then begin

I nl := nl- 1;
kl := kl - 1;

end else begin

I nl := nl- i;
end;

end;

1.3 Inductive functions 31

{nl = 0 or kl = O; if kl = O, the answer is positive;

if kl<>O (and nl = 0), the answer is negative}

answer := (kl = 0);

We use the following fact: If x [n l] = y [k l] and y [1] . . y [k l] is a
subsequence of x [1] . . x [n l] , then y [1] . . y [k l - 1] is a subsequence of
x[l] . .x [nl-l].

(version 2) The function (x [1] . . x [n l]) ~ [the maximal k l such that
y [1] . . y [k l] is a subsequence of x [1] . . x In1]] is inductive. �9

1.3.3. Two sequences x [1] . . x [n] and y [1] . . y [k] of integers are given.
Find the maximal length of a sequence that is a subsequence of both given se-
quences. The number of operations should be of order n �9 k.

Solution (communicated by M.N. Weinzweig and A.M. Dimentman). Denote
the maximal length of a common subsequence of sequences x [1] . . x [p] and
y [1] . . y [q] by f(p, q). Then

x [p] r y [q] :=~ f(p, q) = max (f(p, q - l) , f (p - 1 , q));

x [p] = y [q] ==~ f(p, q) = max (f(p, q - 1), f (p - 1, q), f (p - 1, q - 1)+ 1)

(In the second case, the maximum of three numbers is in fact equal to the third
number because f (p - 1, q - 1) + 1 > f(p, q - 1), f (p - 1, q).)

Therefore we can construct a table of f-values. This table is of size n- k. We can
even proceed using only k (or n) memory locations if we compute (for p = 1, 2)
the array (f (p , 0) f (p , k)) (it is an inductive function of p). �9

1.3.4. (from D. Gries' book [6]) A sequence of integers x [1] x [n] is
given. Find the maximum length of an increasing subsequence. (The number of
operations should be of order n log n).

Solution. The function in question is not inductive. However, it has the follow-
ing inductive extension: it consists of the maximal length of the increasing sub-
sequences (denoted by k in the sequel) and the numbers u [1] u [k] , where
u [i] is the minimal last term of all increasing subsequences of length i. Evidently,
u [1] < -.- < u [k] . When a new term is appended to x, the values o f u and k
should be updated.

nl := i; k := I; u[i] := x[l];

{invariant: k and u satisfy the description above}

while nl <> n do begin

nl := nl + I;

{i is the maximal number in I..k such that

u[i] < x[nl]; i=O if there is no such numbers}

32 1 VARIABLES, EXPRESSIONS, ASSIGNMENTS

if i = k then begin

k : = k + l ;
u[k+l] := x[nl];

end else begin {i < k, u[i]

I u[i+l] := x[nl];
end;

end;

< x[nl] <= u[i+l] }

The omitted fragment employs binary search (see 1.2.27, p. 1.2) In the invariant
relation we assume that u [0] = - o o and u [k + l] = +oo. The goal is u [i] <
x [n l] < u [i + l] .

i:=O; j :=k+l;

{u[i] < x[nl] <= u[j], j > i}

while (j - i) <> 1 do begin

s := i + (j-i) div 2; {i < s < j}

if x[nl] <= u[s] then begin

l j:--s;
end else begin {u[s] < x[nl]}

I i := s;
end;

end ;

{u[i] < x[nl] <= u[j], j-i = i}

Remark. We get a simpler (but not minimal) inductive extension if, for any i,
we keep the maximal length of an increasing sequence whose last term is x [i] .
This extension leads to an algorithm requiring n z operations. �9

1.3.5. What changes are needed in the solution of the previous problem if we
are looking for a maximal nondecreasing sequence? �9

2 Generation of combinatorial objects

In this section, we deal with problems that require us to generate all the elements
of some finite set one-by-one.

2.1 Sequences

2.1.1. Print all the sequences of length k composed of the numbers 1 . . n.

Solution. Let us print them in alphabetic order (a sequence a precedes sequence
b if for some s their initial segments of length s are equal and the (s + l) - t h term
of a is smaller.) The first sequence in this ordering is <1 ,1 1>; the last one
is <n ,n n>. We use an array x [1] . . x [k] to store the last sequence printed.

�9 .make x [1] . . . x [k] e q u a l t o 1
�9 .print x

�9 .make last [l] . . .last [k] make equal to n

{all sequences up to x (including x) are printed}

while x <> last do begin

...x := the successor of x

�9 x

end;

Let us explain how to get the successor of x. By definition, the successor
should have the same first s terms and larger (s + l) -th term. This is possible only
if x [s + l] < n. To get the immediate successor, we find the maximal s with this
property and increase the corresponding element by 1. In other words, we move
along the sequence from right to left and find the rightmost term that is smaller
than n (it does exist, because x < > l a s t by assumption). Then we increase it by 1
and make all the subsequent terms equal to 1.

p : = k ;
while not (x[p] < n) do begin

I P := p-l;
end;

{x[p] < n, x[p+l] =...= x[k] = n}

x[p] := x[p] + i;

for i := p+l to k do begin

Ix[i] := I;

end;

Remark. If we use the numbers 0 . . n - 1 instead of 1 . . n , then finding the
successor corresponds to adding 1 in n-ary notation. �9

2.1.2. The program above uses comparisons for arrays (x <> l a s t) . Elimi-
nate this step by using a Boolean variable i and adding the requirement

34 2 GENERATION OF COMBINATORIAL OBJECTS

1 r x : l a s t

to the invariant relation. �9

2.1.3. Print all subsets of the set 1 . . k.

Solution. These subsets are in one-to-one correspondence with all sequences

of 0s and l s of length k. �9

2.1.4. Print all sequences of length k of positive integers such that the i - th
term does not exceed i for all i . �9

2.2 Permutations

2.2.1. Print all permutations of 1 . . n (i.e., all sequences of length n that contain
all the numbers 1 . . . n).

Solution. We store the current permutation in an array x [1] . . x [n] . Permu-
tations are printed in lexicographic order. The first permutation (in this order) is
(1 2 . . n) . The last one is (n . . 2 1). How do we find the next permutation (in the
lexicographic order)? When is it possible to increase the k-th term in a permutation
without changing all preceding terms? The answer is: When the term is smaller
than one of the next terms (i.e., terms with larger indices). Therefore, to find the
next permutation we should find the maximum k for which it is possible, that is, a
k such that

x [k] < x [k + l] > - - . > x [n]

Next we increase x [k] but keep the increase as small as possible. This means
that we must find the minimal number among x [k + l] . . x [n] that is larger than
x [k] . After we exchange x [k] with the number found, we have to rearrange
x [k + l] . . x [n] to make the permutation as small as possible. To achieve this
goal, we put x [k + l] . . x [n] in increasing order. (Fortunately, they are already
arranged in decreasing order.)

Here 's how to get the next permutation:

{ < x [1] . . . x [n] > <> < n . . . 2 , 1 > }
k : = n - 1 ;
{after x[k] terms go in decreasing order: x[k+l]>...>x[n]}

while x[k] > x[k+l] do begin

I k:=k-l;
end ;

{x[k] < x[k+l] > ... > x[n]}

t:=k+l;
{t <=n, all terms x[k+l] > ... > x[t] are bigger than x[k]}

while (t < n) and (x[t+l] > x[k]) do begin

I t:=t+l;
end;

2.3 Subsets 35

{x[k+l] > ... > x[t] > x[k] > x[t+l] > ... > x[n]}

�9 .exchange x[k] and x[t]

{x[k+l] > ... > x[n]}

�9 .put x[k+l]...x[n] in reversed order

Remark. This program suffers from the usual problem: x [t+ l] is undefined
when t = n. �9

2 . 3 S u b s e t s

2.3.1. Generate all subsets of the set 1 . . n having k elements.

Solution. Each subset may be represented by a bit string of length n that
contains exactly k ls. (We'll consider another representation later.) We generate
these bit strings in alphabetic order. There is a natural way to do this: Generate
all bit strings and select those that contain exactly k ls. However, this solution is
considered as inefficient, because bit strings with k ls form a tiny fraction of all
bit strings of length n. In the program below the generation of each subsequent
string requires not more than C.n operations (for some constant C).

When is it possible to increase the s-th term of a bit string with k ls without
changing the preceding terms? If x [s] is changed from 0 to 1, we should replace
1 by 0 somewhere to keep the total number of is fixed. Therefore, it is necessary
to have is on the right of x [s] .

Conclusion: If we want to find the next bit string with k ls, we need x [s] to
be the rightmost 0 that has some ls on the right. In this case we have x [s+ l] =1
(otherwise, x [s] is not the rightmost one). Therefore, we should look for the
maximal s such that x [s] =0 and x [s + l] =i :

The term x [s + l] may be followed by several ls and then several 0s. After we
replace x [s] by 1 the next terms should be chosen to get the alphabetically first
string, that is, 0s should precede ls. Here is what we get:

first string: 0 . . . 0 1 . . . 1

n - k k

last string: 1 . . . 1 0 . . . 0

k n - k

How to find the next string after x [1] . . x [n] (assuming it exists):

s : = n - 1 ;

w h i l e n o t ((x [s] = O) and (x [s + l] = i)) do b e g i n
I S := S - i;

end ;

36 2 GENERATION OF COMBINATORIAL OBJECTS

{x[s] should be changed from 0 to i}

num: =0 ;
for k := s to n do begin

[num := num+ x[k];

end;

{num is the number of is among x[s]...x[n], the number

of Os is (length - number of is), that is, (n-s+l)-num}

x [s] :=i ;

for k := s+l to n-num+l do begin

I x[~] := o;
end ;

{it remains to put num-i Is at the end}

for k := n-hum+2 to n do begin

I x[k] :=1;
end;

We can also represent a subset by a list of its elements. To obtain the unique
representation we require that elements should be listed in increasing order. Now
we come to the following problem:

2.3.2. Generate (in alphabetic order) all increasing sequences of length k con-
sisting of the numbers 1 . . n . (Example: for n=5, k=2 we get (12 13 14 15 23
24 25 34 35 45).)

Solution. The first sequence is (1 2 . . k) ; the last one is ((n - k + l) . . (n - l) n).
When is it possible to increase the s-th element of the sequence? Answer: If it
is less than n -k+s . After the s-th element is increased, all subsequent elements
should form an arithmetic sequence with difference 1. Here is the algorithm:

s:=n;

while not (x[s] < n-k+s) do begin

I s:=s-l;
end;

{s-th element should be increased};

x[s] := x[s]+l;

for i := s+l to n do begin

I x[i] :: x[i-1]+1;
end ; �9

2.3.3. Suppose we represent subsets of 1 . . n of cardinality k by decreasing
sequencesof lengthk . (Example: (21 31 32 41 42 43 51 52 53 5 4) .) H o w
do we generate these sequences in alphabetical order?

[Hint. Find the maximal s such that x Fs+l] +1 < x [s] . (If it does not exist,
let s=0.) Now increase x [s + l] by 1 and let all subsequent elements be as small
as possible (x [t] : k + l - t fo r t>s) .] �9

2.4 Partitions 37

2.3.4. Solve the two preceding problems if alphabetic order is replaced by
reversed alphabetic order. �9

2.3.5. Generate all injective mappings of the set 1 . . k into 1 . . n (assume that
k < n). A mapping is injective if no two elements of 1 . . k are mapped to the same
element of 1 . . n. Generation of each mapping should require no more that C �9 k
operations.

[Hint. This problem can be reduced to generation of permutations and gener-
ation of subsets.] �9

2 .4 P a r t i t i o n s

2.4.1. Generate all partitions of a given positive integer n, that is, all the represen-
tations o fn as a sum of positive integers. We do not take the order of the summands
into account. (Example: For n=4, partitions are 1+1+1+1, 2+1+1, 2+2, 3+1 and
4.)

Solution. Let us agree that (i) the summands are written in nonincreasing
order; and (ii) the partitions are generated in alphabetic order. We store a partition
in the initial part of an array x [1] . . x [n] ; the length of the partition is k, and the
summands are x [1] . . x [k]. At the beginning, k = n and all x [1] . . . x [n] are
equal to 1. At the end, x [1] = n and k = 1.

When can we increase x [s] leaving all preceding elements unchanged? This
is possible only if x [s - l] > x [s] or if s = 1. Moreover, x [s] may not be the
last element of the partition (because an increase in x [s] should be compensated
by a decrease in the subsequent elements). After x [s] is increased, all subsequent
elements should be chosen as small as possible.

s := k - i;

while not ((s=l) or (x[s-l] > x[s])) do begin

I s := s-l;
end;

{x[s] should be increased}

x [s] := x [s] + 1;
sum := O;

for i := s+l to k do begin

I sum := sum + x[i];

end;

{sum = the sum of terms after x[s]}

for i := I to sum-i do begin

[x Is+i] := i ;
end;

k := s+sum-l; �9

38 2 GENERATION OF COMBINATORIAL OBJECTS

2.4.2. In this problem, partitions are still represented as nonincreasing se-
quences, but now we want to generate them in reversed alphabetic order (e.g., for
n=4, we would generate 4 , 3+1, 2+2, 2+1+1, 1+1+1+1).

[Hint. The rightmost term that may be decreased is the rightmost term not
equal to 1. Find it and decrease it by 1. All subsequent terms should be taken as
large as possible (equal to the selected term when possible; the last one may be
smaller).] �9

2.4.3. Partitions are represented as nondecreasing sequences; generate them
in alphabetic order. For example, when n = 4, we would generate 1+1+i+1,
1+1+2, 1+3, 2+2, 4.

[Hint. The last term x [k] cannot be increased, but the term x [k - l] can. (Of
course, the last one should be decreased to maintain the sum.) If the sequence
is no longer nondecreasing, we combine two terms into one. If the sequence is
still nondecreasing, then x [k] should be split into several terms equal to x [k - l]
(except for the last one, which may be larger).] �9

2.4.4. Partitions are represented as nondecreasing sequences. Generate
them in reversed alphabetic order. (For n = 4 we have 4 , 2+2, 1+3, 1+1+2,
1+1+1+1.)

[Hint. The element x [s] can be decreased only if s= l or x [s - l J <x [s] . If
x [s] is not the last term, these conditions are sufficient. If it is the last one, then
we must also have x [s - 1] < Lx [-sJ/2J or s=l . (Here [tel stands for the integer
part of te, that is, the greatest integer not exceeding ot.)] �9

2.5 Gray codes and similar problems

Sometimes it is useful to generate objects in an order such that the next object is
only a small modification of the preceding one. In this section, we consider several
problems of this type.

Consider 2 n strings of length n containing only 0s and l 's .

2.5.1. Prove that it is possible to list all of them in an order such that two
neighboring strings differ only in one bit.

Solution. Use induction on n. Assume that Xl, �9 �9 xk is such a sequence of
n-bit strings (here k = 2n; for any i, strings xi and Xi+l differ only in one bit).
Then the following sequence includes all (n + 1)-bit strings and satisfies the desired
condition:

0Xl, 0x2 Oxk, lxk, lxk-1 lxl

In geometric terms, the problem states that we can traverse the n-dimensional
Boolean cube visiting each vertex exactly once. The solutions considers
n-dimensional Boolean cube as composed of two n - 1-dimensional Boolean

2.5 Gray codes and similar problems 39

cubes; we traverse one of them (using the inductive assumption) and then switch
to another one. �9

We'll return to this problem later.

2.5.2. Generate all sequences of length n composed of the numbers 1 . . k in
such an order that neighboring sequences differ only in one place, and the numbers
at this place differ by 1.

Solution. Consider a rectangular chess board of width n and height k. Place a
piece in each column of the chess board. The position is represented by a sequence
of n integers (each between i and k); the i-th number represents a position of the
piece in the i- th column. At each piece we draw a small arrow that points up or
down. Initially, all the pieces are in the first row and all the arrows point up. We
move pieces according to the following rule: Find the rightmost piece that can be
moved in the direction of the arrow on it, and move it. At the same time all the
pieces on the right (they cannot move in the direction of their arrows) are turned
over.

It is evident that at each step only one piece is moving, therefore only one term
in the corresponding sequence is changed by I. Let us prove by induction on n that
all sequences of length n composed of the numbers 1 . . k will appear. The case
n=l is evident, so assume that n > 1. Divide all moves into two categories. The
first category is formed by moves where the last (rightmost) piece is moving. The
second category is formed by moves where the moving piece is not the last one. In
this case the rightmost piece is near the border and is turned over. Therefore, each
move of the second category is followed by k - 1 moves of the first category; during
this period the rightmost piece visits all the cells. Let us forget now about the
rightmost piece. Then the first n - 1 pieces are moving according to the prescribed
rules. Therefore, by the induction assumption, all sequences of length n -1 appear
exactly once. The movements of the last piece make k sequences of length n out
of each sequence of length n - i.

The program keeps an array x [1] . . x [nJ (positions of pieces) and an array
d [1] . . d [nJ composed of numbers +i and - i (+1 denotes up-arrow; - 1 denotes
down-arrow).

Initial state: x [1] x[nJ = 1; d [l J d[nJ = 1.

The following algorithm produces the next position according to the description
above. At the same time, it checks whether the next position exists; the answer is
stored in a Boolean variable p.

~if possible, make a move and let p := true;

otherwise, p := false)

i := n;

40 2 GENERATION OF COMBINATORIAL OBJECTS

while (i > i) and
(((d[i]=l) and (x[i]=n))

do begin
i:=i-l;

end;
if (d[i]=l and x[i]=n) or

then begin
p:=false;

end else begin

p:=true;

x[i] := x[i] + d[i];
for j := i+l to n do begin

I d[j] :=- d[j];
end;

end;

or ((d[i]=-l) and (x[i]=l)))

(d[i]=-i and x[i]=l)

Remark. For the case k = 2 there is another solution that uses the binary
system. (It is this solution that is usually associated with the name "Gray code".)

Let us write down all the numbers 0 2 n - 1 in binary notation. For example,
for n = 3 we have:

000 001 010 011 100 101 110 111

Each number is transformed according to the following rule: each digit (except
the first one) is replaced by its sum (modulo 2) with the preceding (untransformed)
digit. In other words, the number with binary digits al , a2 , an is transformed
into the number with binary digits al , al -q- a2, a2 -q- a3 an-1 -b an (addition
modulo 2). For n = 3, we get the following list:

000 001 011 010 110 111 101 100

It is easy to check that the transformation described (which can be applied to
any sequence of n binary digits, giving another sequence of the same length) is
invertible. Therefore, the list obtained contains all sequences of length n.

On the other hand, adding 1 to a number in binary notation means replacement
of the suffix 011... 1 by 100...0. This change leads to a change of exactly one digit
after the transformation is applied. �9

An application of Gray codes. Assume that some mechanical device has a
rotating drum and we wish to get information about the position of this drum. If
we make half the drum white, the remaining half black, and use a light sensor, we
can measure the position of the drum up to 180 ~ .

2.5 Gray codes and similar problems 41

Drum cover:

If we make another track with black and white parts, and use a second light
sensor, we can measure the position angle up to 90~

With a third track,

the precision becomes 45 ~ etc. However, there is a problem with this scheme.
When two light sensors change their state from black to white, this change may
not happen at exactly the same time, and for a while the data are senseless.

We can use Gray codes to overcome this difficulty: we arrange the black and
white sectors in such a way that only one track changes color each time. (This is
also true for the last change after a complete rotation is performed.)

The above formula allows us to convert the sensor data into the corresponding
rotation angle easily.

2.5.3. Generate all permutations of the numbers 1 . . n in such a way that each
permutation is obtained from the preceding one by an exchange (transposition) of
two adjacent numbers. For example, for n=3, one of the possible answers is

3 . 2 1 --~ 2 3 . 1 -~ 2 .1 3 -+ 1 2 . 3 - - * 1 .3 2 -+ 3 1 2

42 2 GENERATION OF COMBINATORIAL OBJECTS

(the dots indicate which numbers are exchanged at each step)

Solution. Put the set of all permutations into one-to-one correspondence with
another set. This latter set contains all sequences y [1] . . y [n] of nonnegative
integers such that y [1] < 0 y [n] < n-1 . It has the same cardinality as the
set of all permutations. The one-to-one correspondence is established as follows:
Each permutation corresponds to the sequence y [1] . . y [n] , where y [i] is the
number of j ' s such that both (a) j < i and (b) j is located to the left of i in this
permutation. Why is it an one-to-one correspondence? Any permutation of 1 . . n
can be obtained from a permutation of 1 . . n -1 by inserting n into one of the n
places (before the first term, between the first and the second terms , after the
last term). What means this insertion for the corresponding sequence of integers?
A number that ranges from 0 to n -1 is appended to the end while the other terms
remain unchanged.

This one-to-one correspondence can be explained by the following metaphor.
Consider n cards with numbers 1 . . n written on the cards, and a growing pile made
of the cards. Initially the pile has only one card with number 1 written on it. At the
next step we add the card with number 2. There are two possible positions for that
card (either before the first card or after it). Then we add the card with number 3
on it; there are three posiible positions, etc. After we add the last card (there are n
possible positions), we get a permutation of the numbers 1 . . n. This permutation
is determined by positions chosen at steps 1 . . n; if we denote by y [i] the number
of cards before the inserted card at step i , we get the one-to-one correspondence
defined above.

We make one more remark about this correspondence. Assume that we increase
or decrease y [i] by 1 for some i (leaving the other y [j] 's unchanged). Assume
also that all subsequent y [j] 's have maximal or minimal values. In this case two
adjacent numbers in our permutation are exchanged. Namely, an increase in y [i]
means that i is exchanged with its right neighbor, while a decrease means that i
is exchanged with its left neighbor.

Now recall how we generated all sequences of numbers 1 . . k in such a way
that each sequence differs from the preceding sequence in one and only one place
by using n x k rectangle. Now replace it by a board that resembles a staircase (the
i- th column is a rectangle of width 1 and height i). Moving pieces according to
the rules described above (using arrows on pieces), we traverse all the sequences,
and the property mentioned above (that the i- th term changes only if all subsequent
terms are maximal or minimal) holds.

To implement this scheme we need to modify the permutation according to
the changes on the board. An obvious approach is to search for a given number
i at each step. We can save ourselves some work if we keep (in addition to the
permutation itself) the function

i ~ position of i in the permutation

2.5 Gray codes and similar problems 43

thatis, theinverse mapping, and update boththepermutationanditsinverse. Here
is the program:

program test;

const n = ...;

var

x: array [l..n] of l..n; {permutation}

inv_x: array [l..n] of l..n; {inverse permutation}

y: array [i..n] of integer; {y[i] < i}

d: array [l..n] of-i..I; {arrows}

b: Boolean;

procedure print_x;

I var i: integer;
begin

for i := I to n do begin

I write (x[i], ' ');

end;

writeln;

end;

procedure set_first; {first: y[i]=O for all i}

I var i : integer;

begin

for i := 1 to n do begin

x[i] := n + I - i;

inv_x[i] := n + i - i;

y[i] := O;

d[i] := i;

end;

end;

procedure move (var done : Boolean);

I var i, j, posl, pos2, vall, val2, tmp : integer;

begin

i := n;

while (i > i) and (((d[i]=l) and (y[i]=i-l)) or

((d[i]=-l) and (y[i]=O))) do begin

i := i-l;

end ;

done := (i > i);

{simplification: the first term cannot be changed}

if done then begin

I y[i] := y[i] + d[i];

44 2 GENERATION OF COMBINATORIAL OBJECTS

for j := i+l to n do begin

I d[j] :=-d[j];
end;

posl := inv x[i];

vall := i;

pos2 := posl + d[i];

v a l 2 := x [p o s 2] ;
{posl, pos2 are positions of elements to be

exchanged; vall, val2 are its values; val2 <vall}

tmp := x[posl];

x[posl] := x[pos2];

x[pos2] := tmp;

trap := inv_x[vall] ;

inv_x[vall] := inv_x[val2];

inv_x[val2] := tmp;

end;

end;

begin

set_first;

print_x;

b := true;
{all permutations up to the current one (including it)

are printed;

if b is false, the current one is the last one}

while b do begin

move (b);

if b then print x;

end;

end.

2.6 Some remarks

Let us review the approach we've been using. We introduce some order on the
objects to be generated and write a procedure that obtains the next object (in this
order). In the Gray code problems, we were forced to maintain some additional
information (directions of arrows). Finally, when generating permutations in such
a way that only two numbers are exchanged at a time, we establish a one-to-
one correspondence between the set to be generated and some other (presumable
simpler) set. There are some cases where this trick is useful. In this section,
we consider several problems of this type connected with the so-called Catalan
numbers.

2.6 Some remarks 45

2.6.1. Generate all sequences of length 2n, composed of ls and - l s satisfying
the following conditions: (a) the sum of all terms is 0; (b) the sum of any prefix
is nonnegative, that is, the number of - i s does not exceed the number of ls. (The
number of such sequences is called the Catalan number; see the formula for Catalan
numbers on p. 48, problem 2.7.3.)

Solution. Represent 1 by a vector (1 ,1) and represent - 1 by (1, - 1). In terms
of vectors, we are looking for all paths from (0 ,0) to (2n, 0) that never go below
the x-axis.

Let us generate the sequences in alphabetic order (assuming that -1 precedes
1). The first sequence is the "zig-zag"

1, -1 , 1, -1 , . . .

The last sequence will be the sequence

1, 1, 1 , . . . , 1, - 1 , - 1 , . . . , -1 .

But how do we generate the next sequence? It should coincide with the current
sequence up to some point where they differ and -1 is replaced by 1. This place
should be as close to the end as possible. But there is a restriction; -1 may be
replaced by 1 only if there is 1 on the right of it (which can be replaced by -1).
After we replace -1 by 1, we are faced with the following problem: A prefix of
the sequence is fixed; find the minimal sequence with that prefix. The solution:
extend the given prefix step by step; at each step append - 1 if possible (the sum
must be nonnegative); otherwise, append 1. Here is the resulting program:

type array2n = array [1..2n] of integer;

~rocedure get next (var a: array2n; var last: Boolean);

{a is replaced by the next sequence if it exists
(and last:=false), otherwise last:=true)

var k, i, sum: integer;

begin

k:=2*n;

{invariant: a[k+l..2n] contains only -ls)

while a[k] = -1 do begin k:=k-1; end;

{k is maximal among all k such that a[k]=l)

while (k>O) and (a[k] = 1) do begin k:=k-l; end;

{a[k] is the rightmost -i preceding some 1;

k=O if there is no -i on the left of 1}

if k = 0 then begin

I last := true;

end else begin

I last := false;

46 2 GENERATION OF COMBINATORIAL OBJECTS

i:=O; sum: =0 ;

{sum = a[l]+...+a[i]}

while i<>k do begin
i

l i:=i+l; sum:= sum+a[i];

end;

{sum = a[l]+...+a[k], a[k]=-l}

a[k] := I; sum:= sum+2;

{all a[l]..a[k] have their final values,

sum=a [i] + . . . +a [k] }
while k <> 2*n do begin

k:=k+l;

if sum > 0 then begin

I a[k] :=-i
end else begin

I a[k] :=1;
end ;

sum: = sum+a [k] ;
end;

{k=2n, sum=a[l]+...a[2n] =0}

end;

end;

2.6.2. Find all possible ways to compute the product of n factors. (The order
of the factors remains unchanged.) Each multiplication should be indicated by
parentheses. For example, for n = 4, the following five expressions should be
generated:

((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd)).

[Hint. Each order of operations corresponds to a sequence of commands of the
stack calculator described on p. 122.] �9

2.6.3. There are 2n points on a circle numbered (along the circle) by the
numbers 1 . . 2n. Generate all possible ways to draw n non-intersecting segments
having those 2n points as endpoints. �9

2.6.4. Generate all ways to cut a convex polygon with n vertices into triangles
us ingn-2 diagonals. �9

(We will discuss polygon triangulations in the section 8 on dynamic program-
ming on p. 116.)

2.7 Counting

In this section we considered several methods that may be used to generate all the
elements of a given finite set. One more approach will be considered below (under

2.7 Counting 47

the name of "backtracking") in section 3. But sometimes it is much easier to count
all the objects with some property than it is to generate them. The classic example is
(~), which is the number of k-element subsets of an n-element set. These numbers
form the "Pascal triangle" and can be computed using the identities

(g) = (~) = ~ ~. ~_ ~)
(~) ,,-' = (k - l) + G 1) ~n > 1, 0 ~ k ~ n)

or the formula
n!

(~) - k~.(n-k)~"

(The first method is more efficient when many values of (~) for different n and k
are needed.)

Let us give some other examples.

2.7.1. (Number of partitions) Let P(n) be the number of representations of a
nonnegative integer n as a sum of positive integer summands (order is insignificant;
that is, the representations 1 + 2 and 2 + 1 are identical). We assume that P(0) = 1
(the only representation has no summands at all). Write a program that finds P(n)
for a given n.

Solution. One can prove the following (nontrivial) formula for P(n) :

P(n) = P (n - 1) + P (n - 2) - P (n - 5) - P (n - 7) + P (n - 1 2) + P (n - 1 5) + . . .

(terms are grouped in pairs, the signs before the pairs alternate, arguments in q-th
pair are n - (3q 2 - q)/2 and n - (3q 2 + q)/2). We assume P(k) = 0 for k < 0,
so the sum is finite.

Even if we did not know this formula, there is a way to compute P(n) that is
much more efficient than counting all the partitions one-by-one.

By R(n, k) (defined for n > 0, k > 0) we denote the number of representations
of n as a sum of positive integers not exceeding k. (Let R(0, k) be equal to 1 for
all k > 0.) Evidently, P(n) = R(n, n). All the representations of n are classified
according to the maximal summand (which is denoted by i in the sequel). The
number R(n, k) is the sum over all i in {1 k} of the number of partitions with
elements not exceeding k and maximal element i. The partitions of n into a sum
where all terms do not exceed k and maximal term is equal to i are in one-to-one
correspondence with the partitions of n - i into terms not exceeding i (assuming
that i < k). Therefore,

k

R (n , k) = Z R (n - i , i) f o r k < n ;
i = 1

R(n,k) = R(n,n) f o r k > n .

These equations allows us to construct a table of values of the function R. �9

48 2 GENERATION OF COMBINATORIAL OBJECTS

2.7.2. (Lucky numbers) A sequence of 2n digits (each digit is in the 0 9
range) is called "lucky" if the sum of the first n digits is equal to the sum of the
last n digits. Find the number of all lucky sequences of a given length.

Solution. Let us generalize the problem and find the number T(n, k) of se-
quences of length 2n where the difference between the sum of first n digits and the
sum of the last n digits is equal to k (where - 9 n < k < 9n).

We divide all these sequences into classes according to the difference between
the first and last digit. If this difference is equal to t, the difference between the
remaining sums of n - 1 digits is k - t. Recall that there are 10 - It[pairs of
decimal digits with difference t, so we get the formula:

9

T(n, k) = Z (1 0 - [t[)T(n - 1, k - t).
t = - - 9

(Some terms may be missing if k - t is too large.) �9

In some cases, the answer may be given by an explicit formula. For example,
this is the case for Catalan numbers

2.7.3. Prove that the Catalan number, that is, the number of sequences of
length 2n composed of n ones and n minus ones such that each initial segment has

2n n a nonnegative sum, is equal to (n) / (+ 1).

[Hint. The Catalan number is the number of polygonal paths going from (0, 0)
to (2n, 0) formed by vectors (1, 1) and (1, - 1) that do not intersect the half-
plane y < 0. Therefore, this number is the difference between the number of all
polygonal paths of the type described (which is (2n~)) and the number of paths that
intersect the half-plane y < 0. All paths of the type described that intersect the
half-plane y < 0 intersect the line y = - 1. If we reflect the part of the polygonal
path that is on the right of the rightmost intersection point, we get a one-to-one
correspondence between the polygonal paths in question and a l lpolygonal paths
from (0, 0) to (2n, - 2) . It remains to check that (znn) - (2 + 1) = (Znn)/(rl -~- 1).] �9

3 Tree traversai (backtracking)

3.1 Queens not attacking each other: position tree traversal

In the preceding section we considered several problems of a similar type: "gen-
erate all the elements of some set A". The scheme used to solve these problems
was the following one: A linear ordering on A was imposed and a procedure to
generate the next element of A (according to that order) was described. Some-
times this scheme cannot be applied directly. In this chapter, we consider another
useful approach that allows us to generate all elements of some set. It is called
"backtracking" or "tree traversal".

This approach is fairly general; however, we prefer to start with a specific
example.

3.1.1. Generate all the positions o fn chess queens on an n • n board such that
the queens are not attacking each other.

Solution. Evidently, each of n rows should contain exactly one queen. By
k-position we mean a position where k queens occupy k rows (starting from the
bottom of the chessboard) containing exactly one queen each. We do not impose
any restrictions as of yet and allow positions where some queens are attacking other
queens. Arrange all positions into a tree, whose root is the empty position (k = 0).
Each k-position has exactly n descendants, which have an additional queen in the
(k + 1)-th row (in one of the columns 1 n). These n descendants are ordered
from left to right according to the position of the last (i.e., the uppermost) queen.

We are to select (among the vertices of this tree) those n-positions where queens
are not attacking each other. To find them, our program will traverse the positions
tree. To avoid unnecessary work, we make use of the following fact: If some
tree vertex corresponds to a position where queens are attacking each other, all
descendants of this vertex have the same property and therefore may be ignored
safely. Therefore, this part of the position tree may be discarded.

50 3 TREE TRAVERSAL (BACKTRACKING)

Let us give some relevant definitions. A k-position is called "admissible" if
after the k-th queen is removed, the remaining queens are not attacking each other.
Our program will consider only admissible positions.

The tree of admissible positions for n = 3

Now the queens problem can be divided in two parts: (1) how to traverse all
the vertices of a given tree; (2) how to represent the tree of admissible positions
for the queens problem using Pascal constructs.

Let us formulate the general problem of visiting all the vertices of a given tree.
Imagine there is a robot that can be placed at any vertex of a tree. (Vertices are
shown as small circles in our pictures.) The repertoire of the robot consists of the
following commands:

�9 up_left ("move along the up-left arrow")

�9 r i g h t ("move to the right neighbor")

�9 down ("move down one level")

(The pictures below show which movements correspond to these commands.)

3.1 Queens not attacking each other: position tree traversal 51

Moreover, the robot's repertoire includes tests that check whether each command
can be executed:

�9 is_up;

�9 is_right;

�9 is_down;

(the last test returns True everywhere except at the root). Please note that the
r i g h t command allows a move from the vertex to its "brother" but not to its
"cousin" having only a grandfather in common.

This is not
a valid

r i g h t move!

Finally, we assume that the robot is able to perform a command process. Our
goal is to process (that is, to execute the command p r o c e s s) all leaves of the tree
(a leaf is a vertex such that i s _ u p is false, that is, a vertex with no descendants).
In our chess problem, p r o c e s s means to check the position and to print it (if it
contains n queens not attacking each other).

Remark. Our trees have root at the bottom. Please note that in most computer
science books trees are drawn with the root at the top. While it seems to be
nonintuitive, it is the de facto standard.

The proof of the program below uses the following conventions. Assume that
the position of the robot is fixed. Then all the leaves of the tree are divided into
three categories: (1) leaves above the robot; (2) leaves on the left of the robot and
(3) leaves on the right of the robot. Indeed, the (unique) path from the root to a
given leaf (a) may go through the robot's position; (b) may turn to the left before
the robot's position, or (c) may go to the right before it. By (LP) we denote the
condition "all the leaves on the left of the robot are processed"; by (LAP) we denote
the condition "all the leaves on the left of the robot and above it are processed".
(In both cases we require that no other leaves are processed.)

52 3 TREE TRAVERSAL (BACKTRACKING)

We will use the following procedure:

procedure go_up_and_process;
I {before: (LP), after: (LAP)}
begin

{invariant: LP}
while is_up do begin
[up_left;
end
{LP, current position is a leaf}
process;
{LAP}

end;

Here is the main program:

before: robot is in the root, no leaves are processed
after: robot is in the root, all leaves are processed

{LP}
go_up_and_process;
{invariant: LAP}
while is_down do begin

if is_right then begin {LAP, is_right}
right;
{LP}
go_up_and_process;

end else begin
{LAP, not is_right, is_down}
down;

end;
end;
{LAP, current position is root => all leaves are processed}

Correctness now follows from the properties of the robot's commands. They
are presented below in the format:

{precondition} command {postcondition};

The postcondition is guaranteed after execution of the command, assuming that
the precondition was true before.

(l) {LP, not is_up} process {LAP}
(2) {LP} up_left {LP}
(3) {is_right, LAP} right {LP}
(4) {not is_right, is_down, LAP} down {LAP}

3. I Queens not attacking each other: position tree traversal 53

3.1.2. Prove that the program shown above terminates for any finite tree.

Solution. The procedure g o _ u p _ a n d _ p r o c e s s terminates (since the height of
the robot cannot increase indefinitely). Assume that the program as a whole does
not terminate. Leaves are never processed twice and the number of leaves is finite.
Therefore, there is a moment after which leaves are not processed. This is possible
only if the robot goes down at each step, but this is a contradiction. (The estimate
for the number of operations will be given below.) �9

3.1.3. Prove that the following program also processes all the leaves of a tree
(one time each):

var state: (LP, LAP);

state := LP;

while is_down or (state <> LAP) do begin

if (state = LP) and is_up then begin

I up left;
end else if (state = LP) and not is up then begin

I process; state := LAP;

end else if (state = LAP) and is right then begin

I right; state := LP;
end else begin {state = LAP, not is right, is down}

1 down;
end;

end;

Solution. The invariant relation: The value stored in the variable state is
correct, that is,

s t a t e = LP ~ L P i s true

s t a t e ---- LAP ==~ LAP is true

The proof of termination: the change from LP to LAP is possible only when
a vertex is processed. Therefore, if the program does not terminate, the variable
s t a t e achieves its final value and does not change further, which is impossible. �9

3.1.4. Write a program that traverses the tree and processes all vertices (not
only leaves).

Solution. Let x be a vertex. Then all vertices of the tree can be divided into
four categories. Indeed, let y be some other vertex. Consider the path from the
root to y. Four cases are possible:

(a) this path is a prefix of the path from the root to x (y is below x);
(b) this path turns to the left before reaching x (y is on the left of x);
(c) this path goes through x (y is above x);
(d) this path turns to the right before reaching x (y is on the right of x).

54 3 TREE TRAVERSAL (BACKTRACKING)

In particular, the vertex x belongs to class (c). Now the following conditions are
used in our program:

(ULP) all vertices under the current position and on the left of it are processed;

(ULAP) all vertices under the current position, on the left of it, and above it
are processed.

Here is the program:

procedure go_up_and_process ;
I {before: (ULP), after: (ULAP)}
begin

{invariant : ULP}
while is_up do begin

process ;
up_left ;

end

{ULP, the current position is a leaf}
process;
{ULAP}

end;

The main algorithm:

before: robot is in the root, no vertices are processed
after: robot is in the root, all vertices are processed

{ULP}
go_up_and_process;
{invariant: ULAP}
while is_down do begin

if is_right then begin {ULAP, is_right}
right;
{ULP}

go_up_and_process;
end else begin

{ULP, not is_right, is_down}
down;

end;

end;

{ULAP, robot is in the root => all vertices are processed} �9

3.1.5. The program given in the solution of the preceding problem processes
any vertex before its descendants. Modify the program in such a way that any
vertex will be processed twice, once before and once after its descendants. (The
leaves should be processed once.)

3.1 Queens not attacking each other: position tree traversal 55

So~tion. In the program below, by "Under-Le~-Processed" (ULP) we mean
"all the ve~ices under the current position of the robot are processed once; all the
ve~ices on the le~ are processed completely (that is, leaves are processed once, all
other vertices are processed twice: once before and once a~er their descendants)".
By "Under-Left-Above-Processed" (ULAP) we mean "all the ve~ices under the
current position of the robot are processed once; all vertices on the le~ of and above
the cunent position are processed completely".

Here is the auxiliary procedure:

procedure go_up_and_process;

I {before: (ULP), after: (ULAP)}
begin

{invariant: ULP}
while is_up do begin

process;
up_left;

end
{ULP, the current position is a leaf}
process;
{ULAP}

end;

The main program:

before: robot is in the root, no vertices are processed
after: robot is in the root, all vertices are processed

{ULP}
goup_and_process;
{invariant: ULAP}
while is_down do begin

if is right then begin {ULAP, is_right}
right;
{ULP}
go_up_and_process;

end else begin

{ULP, not is right, is down}
down;

process;
end;

end;

{ULAP, robot is in the root =>
all vertices are processed completely} �9

3.1.6. Provethatthe numberofoperat ionsinthis program is proportionalto
the numberofvenices.(Therefore, thesameis t rue fo r the programsgiven above

56 3 TREE TRAVERSAL (BACKTRACKING)

that differ from the last one only because some p r o c e s s commands have been
omitted.)

[Hint. Roughly speaking, each second operation is processing some vertex,
and any vertex is processed at most twice.] �9

Let us return to the queens problem. In this problem, we use only the first and
simplest of our tree traversal programs, which processes each leaf once.

We implement all the operations for the case of the positions tree. Each po-
sition is represented by a variable k: 0 . . n (the number of queens) and an array
c: a r r a y [l . . n l of 1 . . n . Here c [i] is the horizontal coordinate of the i-th
queen (whose vertical coordinate is i). If i > k, the value of c [i] is insignificant.
Only the admissible positions are included in the tree. (According to our definition,
a position is admissible if after the uppermost queen is removed, no queens are
attacking each other.)

Now we are ready to present the program that solves queens' problem:

program queens ;
const n = ...;
vat

k: O..n;
c: array [1..n] of 1..n;

procedure begin_work; {initialize}
begin
I k := O;
end;

function danger: Boolean;
I {the uppermost queen is under attack}

var b: Boolean; i: integer;
begin

if k <= 1 then begin

I danger := false;
end else begin

b := false; i := 1;
{b <=> the uppermost queen is under attack of

some queen with y-coordinate < i}

while i <> k do begin

b := b or (c [i] =c [k]) {vertical}
or (abs(c[i]-c[k])=abs(i-k)); {diagonal}

i := i+1;

end;

3.1 Queens not attacking each other: position tree traversal 57

I danger := b;
end;

end;

function is_up: Boolean;
begin

I is_up := (k < n) and not danger;
end;

function is_right: Boolean;
begin
I is_right := (k > O) and (c[k] < n);
end;
{danger: when k=O, the value c[k] is undefined}

function is_down: Boolean;
begin
I is_down := (k > 0);
end;

procedure up_left;
begin {k < n, not danger}

k := k + I;
c [k] := i;

end;

procedure right;
begin {k > O, c[k] < n}

I c [k] := c [k] + i;

end;

procedure down;
begin {k > O}

I k := k - i;

end;

procedure process;

I var i: integer;
begin

if (k = n) and not danger then begin

for i := I to n do begin

I write ('<', i, ',' , c[i], '> ');
end;

58 3 TREE TRAVERSAL (BACKTRACKING)

I writeln;
end;

end;

procedure go_up_and_process;
begin

while is_up do begin
I up_left;
end
process;

end;

begin
begin_work;
go_up_and_process;
while is_down do begin

if is_right then begin
right;
go_up_and_process;

end else begin
I down;
end;

end;
end.

3.1.7. The program above spends a lot of time inside the procedure i s_up
(to check if the uppermost queen is under attack, we need O(n) operations).
Modify the implementation of the positions tree in such a way that all three tests
i s_up/r i ght/down and the corresponding three commands require only 0 (1) op-
erations (that is, the number of operations for any of them should be limited by a
constant that does not depend on n).

Solution. For any vertical and for any diagonal line (there are two types of
diagonal lines - - ascending and descending ones) there is a Boolean variable that
indicates if this line is occupied by some queen (except the uppermost one, which
is ignored). Recall that any of those lines may be occupied by at most one queen
(because the position is assumed to be admissible). �9

3.2 Backtracking in other problems

3.2.1. Use backtracking in the following problem: An array o fn positive integers
a ['1] . . a [n] and a positive integer s are given. Determine if s can be represented
as a sum of some of the elements of the array a. (Each element may be used at
most once.)

3.2 Backtracking in other problems 59

Solution. Construct the position tree as follows: The k-position is a sequence
of k Boolean values that determines which of the elements a [l] . . a [kJ are used
as summands. The position is admissible if the sum of the corresponding elements
does not exceed s. �9

Remark. This approach is better than exhaustive search (that considers all
2 n subsets). We may also sort the array a in descending order. Also, we can
change the definition of an admissible position to exclude positions where the sum
of rejected elements is larger than the difference between s and the sum of all
accepted elements. However, this does not lead to a fundamental improvement;
this problem belongs to the category of the so-called "NP-complete problems". See
the book by A. Aho, J. Hopcroft, and J. Ullman [1] and the book by M.R. Garey
and D.S. Johnson [5].

This problem is traditionally called "the knapsack problem": A knapsack that
is capable of carrying s pounds should be filled completely using only objects of
weights a [i] . . a [n]. See section 8, p. 118, where a "dynamic programming"
algorithm is given whose running time is polynomial in n § s.

3.2.2. Generate all sequences of n digits 0, 1 and 2 that do not contain a
substring of type X X. (E.g., the sequence 210102 is prohibited because it contains
1010.) �9

3.2.3. Repeat the previous problem for binary strings of length n that do not
contain a substring of type X X X . �9

Another problem of the same category: "Is it possible to compose a given
polygon of 'pentamino' blocks?" The crucial component of an effective algorithm
for such a problem is a good criterion that can (in some cases) guarantee that a
given position cannot be extended to a solution of the problem and therefore may
be discarded.

4 Sorting

4.1 Quadratic algorithms

4.1.1. Let a [1] a [n] be an array of numbers (say, integers). Construct
the array b [1] b [n] that contains the same numbers in increasing order:
b[i] _<...<_b[n].

Remark. The elements a [1] . . a [n] need not to be distinct. In this case we
require that the multiplicity of each number in b [1] . . b In] should be equal to its
multiplicity in a [1] . . a In].

Solution. It is convenient to consider a [1] . . a [n] and b [1] . . b In] as the
initial and final values of some array x. The requirement"a and b contain the same
numbers" will be guaranteed if the only operation permitted on x is the exchange
of two its elements. (Of course, we are also allowed to read elements of x, too.)

k := O;

{k minimal elements of x are in their places}

while k <> n do begin

s := k + I; t := k + I;

{x[s] is minimal among xKk+l]...xKt] }
while t<>n do begin

t := t + 1;

if x[t] < x[s] then begin

I S := t;

end ;

end;

{x[s] is minimal among x[k+l]..x[n] }

... exchange x[s] and x[k+l];

k :=k+ 1;

end; �9

4.1.2. Give another sorting algorithm which uses the following invariant re-
lation: "first k elements are sorted" (x [1] < . - . < x [k]).

Solution. (This algorithm is called insertion sort.)

k:=l;

{first k elements are sorted}

while k <> n do begin

t :=k+ 1;

{k+l-th element moves to the left until it finds its

place; t is its current position}

4.2 Sorting in n logn operations 61

while (t > i) and (x[t] < x[t-l]) do begin

... exchange x[t-l] and x[t];

t := t - i;

end;

end;

Remark. Danger: When (t > I) is false, the test x [t] < x [t - l] refers to a
non-existing value x [0] . �9

Both of the above solutions require a number of operations proportional to n 2.
There are more efficient algorithms, however, as we shall see.

4.2 Sorting in n log n operations

4.2.1. Find a sorting algorithm that requires only O (n log n) operations. (In other
words, the number of operations should not exceed Cn log n for some constant C
that does not depend on n.)

We give two solutions.
Solution 1 (merge sort).
Let k be a positive integer, and split the array x [1] . . x [n] into segments

of length k. (The first segment is x [1] . . x [k] , the next is the segment
x [k+l] . . x [2k], etc.) The last segment is incomplete if n is not a multiple of
k. We say that the array x is k-sorted if each of these segments (considered
separately) is sorted. Of course, any array is 1-sorted. If an array of length n is
k-sorted for k >_ n, it is sorted.

Assume there is a procedure that transforms any k-sorted array into a 2k-
sorted array (containing the same elements). Using this procedure, we write down
an algorithm as follows:

k:=l;

{the array x is k-sorted}

while k < n do begin

..transform the k-sorted array into a 2k-sorted array;

k : = 2 * k ;
end;

How do we construct such a procedure? It repeats the following step: two
sorted segments of length at most k are merged into one sorted segment. Assume
that the procedure

merge (p , q , r : i n t e g e r)

called with p _< q _< r merges the sorted segments x F p + l q . . x [q] and
x [q + l] . . x [r] into a sorted segment x [p + l] . . x [r] (without changing other

62 4 SORTING

parts of the array x):

The t rans~rmat ionofa k-sorted a~ayinto a 2k-sortedarrayisasfollows:

t:=O;

{t is a multiple of 2k or t = n, x[1]..x[t] is

2k-sorted; the rest of x is unchanged}

while t + k < n do begin

p := t;

q := t+k;

...r := min (t+2*k, n);

{min(a,b) is the minimum of a and b}

merge (p,q,r);

t := r;

end;

The merge procedure uses an auxiliary array as temporary storage for the result.
This auxiliary a~ay will be denoted by b. Let p0 and q0 be the indices of the last
elements merged; sO is the index of the last element written to b. At each step,
one of the two Allowing actions is performed:

b[sO+l]:=x[pO+l];

pO:=pO+l;

sO:=sO+l;

or

b[sO+l]:=x[qO+l];

qO:=qO+l;

sO:=sO+l;

(C fans will enjoy the shorthands b [++sO] =x [-++p0] and b [++sO] =x [++q0]
here.)

The first action (where the element is taken from the first segment) may be
performed if the following two conditions are fulfilled:

(1) the first segment is not empty (p0 < q); and
(2) the second segment is empty (q0 = r) or its first element is greater than

or equal to the first element of the first segment [(q0 < r) and (x [p0+l] _<
x [q0+l])] .

4.2 Sorting in n log n operations 63

The conditions that make the second action possible are similar. We obtain the
following program:

pO := p; qO := q; sO := p;

while (pO <> q) or (qO <> r)

if (pO < q) and ((qO = r)

b [sO+i] := x

pO := pO+l;

sO := sO+i;

end else begin

{(qO < r) and

(x[pO+l]
[pO+l] ;

((pO = q)

do begin

or ((qO < r) and

<= x[qO+l]))) then begin

or ((pO<q) and

(x [p 0 + l] >= x [q 0 + l]))) }
b [s 0 + l] := x [q 0 + l] ;
q0 := q0 + 1;
sO := sO + I;

end ;

end ;

(If both segments are nonempty and have equal first elements, both actions are
legal. In this case, the program chooses the first one.)

The only thing left to do is copy the merged array back into x. (Warning: If
you decide to perform copying outside the merge procedure, please note that the
last segment should be copied even it was not merged with anything.)

The program has a standard deficiency: the array index can be out of bounds
when the Boolean expressions are evaluated (if "short-circuit evaluation" is not
used).

Solution 2 (heap sort).
Draw a "complete binary tree". The root of this tree is drawn as a small circle

at the bottom; two arrows go from the root node to the two nodes above it, two
arrows go from each of them, etc.

We say that arrows connect a "father" to its two "sons". Each node has two
sons and one father unless it is the the "root" (a node at the bottom) or the "leaf"

64 4 SORTING

(a node at the top). For simplicity, we assume that the length of the array to be
sorted is a power of 2 and the elements fill completely some level of the tree. Fill
the part of the tree below them using the following rule:

father = min (son1, son2)

According to this rule, the value at the root of the tree will be the minimal element
of the whole array.

Take the minimal element out of the array. To do that, we first locate it. It can
be traced going from bottom to top, traversing the son that has the same value as its
father. After the minimal element is removed, we replace it by the symbol e~ and
modify its ancestors going from top to bottom. (We assume that min(t, ~) = t.)
Consequently, the root of the tree contains the second minimal element. We locate
it, take it out (replacing it by cx)) and modify the tree. This procedure is repeated
until all the elements are taken out and the root of the tree is occupied by ec.

To write down the corresponding program the following agreement is useful.
Assume that the vertices of the tree are numbered by 1, 2 in such a way that
position n has sons 2n and 2n + 1. We do not give the details, because we will
write down a more efficient algorithm that does not use any additional memory
(except for a fixed number of variables and the array itself). Here it is:

The elements to be sorted are placed at all levels of the tree, not just the upper
level. Suppose we want to sort the array x [1] . . x In]. The tree has numbers 1 . . n
as vertices. We assume that x [5.] is placed at vertex i. During execution, the
number of vertices in the tree will decrease. The current number of vertices is stored
in k. Therefore, at any time the array x [1] . . x [n] is divided into two parts. Its
initial segment x [1] . . x [k] represents a tree. The remaining part x [k+ l] . . x [n]
contains the already sorted part of the array; those elements have already reached
their final destination.

At each step, the algorithm extracts the maximal element from the tree and puts
it into the sorted part (using the position freed when the tree becomes smaller).

Let us specify some terminology. The vertices of the tree are numbers from 1
up to the current value of k. Each vertex s may have sons 2s and 2s + 1. If both
numbers are larger than k, the vertex s has no sons. Such a vertex is called a leaf.
If 2s = k, the vertex s has exactly one son (2s).

For any s in 1 . . k, we consider a subtree rooted at s (or s-subtree). It contains
the vertex s and all its descendants (sons, grandsons, etc. - - until we leave the
segment 1 . . k). The vertex s is called regular if the element placed in it is the
maximal element of the s-subtree; the s-subtree is called regular if all its vertices
are regular. (In particular, any leaf is a regular singleton subtree.) Please note that
the validity of the statement "s-subtree is regular" depends not only upon s but
also upon the current value of k.)

Remark. Modem textbooks (see, e.g., [3]) use terms "child" ("parent",
"siebling", etc.) instead of "son" ("father", "brother", etc.) that are used in older
textbooks (see, e.g., [1]). When using this new terminology, you should have in

4.2 Sorting in n log n operations 65

mind that each vertex has only one parent, only one grandparent, etc.

The general structure of the algorithm is as follows:

k : = n

.. Make the l-subtree regular;

{x[1] x[k] <= x[k+l] <=..<= x[n]; 1-subtree is regular,

therefore, x[1] is maximal among x[l]..x[k]}

while k <> I do begin

�9 . exchange x[l] and x[k];

k := k - i;

{x[1]..x[k-1] <= x[k] <=...<= x[n]; 1-subtree is

regular everywhere except the root (may be)}

.. restore the regularity of 1-subtree

end;

As a tool, we use a procedure that restores the regularity of the subtree which is
regular everywhere except its root. Here it is:

{s-subtree is regular everywhere except perhaps its root}

t := S;

{s-subtree is regular everywhere except perhaps t}

while ((2.t+1 <= k) and (x[2*t+l] > x[t])) or

((2*t <= k) and (x[2*t] > x[t])) do begin

if (2*t+l <= k) and (x[2*t+l] >= x[2*t]) then begin

... exchange x[t] and x[2*t+l];

t := 2*t + I;

end else begin

�9 .. exchange x[t] and x[2*t];

t := 2*t;

end;

end;

Let us look closely at this procedure to check its correctness. Assume that all
vertices of the s-subtree are regular except perhaps the vertex t . Consider the
sons of t . They are regular and therefore contain maximal elements of their
subtrees. Therefore, we have only three possibilities for the maximal element
of the t-subtree, namely, the vertex t and its sons. If the vertex t contains the
maximal element, this vertex is regular, and we are done. The while-construct can
be rewritten as follows:

while the maximal element is not t but one of its sons

do begin

if it is the right son then begin

I exchange t and its right son; t:= right son;

end else begin {the maximal element is the left son of t}

66 4 SORTING

I exchange t and its left son; t:= left son;

end

end

After the exchange, the vertex t becomes regular (since it contains the maximal
element of the t-subtree). The son that does not take part in the exchange is still
regular. The other son may become non-regular. Any other vertex u of the s-
subtree remains regular because the value placed in u is unchanged, as well as the
u-subtree (though elements of the subtree may be permuted).

The same procedure may be used at the first stage of our algorithm to make the
1-subtree regular:

k := n;

u := Hi
(s-subtrees are regular for all s>u)

while u<>0 do begin

(u-subtree is regular everywhere

except the root (may be))

.. restore the regularity of u-subtree;

u:=u-1;

end;

This algorithm is called heap sort.

Now we are ready to write down the heapsort program in Pascal. We assume
that n is a constant and x is a variable of type a r r = a r r a y [1 . . n] o f i n t e g e r) .

)rocedure sort (var x: arr);

vat u, k: integer;

)rocedure exchange(i, j: integer) ;

var tmp: integer;

begin

tmp := x [i] ;

x[i] : = x[j] ;

x[j] := tmp;
end;

)roeedure restore (s: integer) ;

var t : integer;

begin

t:=s;

while ((2.t+1 <= k) and (x[2*t+l] > x[t])) or

((2*t <= k) and (x[2*t] > x[t])) do begin

if (2*t+l <= k) and (x[2*t+l] >= x[2*t]) then begin

exchange (t, 2*t+l);

t := 2.t+1;

end else begin

4.3 Applications of sorting 67

l exchange (t, 2*t);
t := 2*t;

end;
end;

end ;
begin

k:=n;
u:=n;
while u <> 0 do begin

restore (u);
u := u- i;

end ;
while k <> 1 do begin

exchange (1, k);
k :=k- 1;
restore (1);

end;
end;

Several remarks:

�9 The method used in the heapsort algorithm has other applications. One
example is the priority queue implementation, see section 6.4, p. 96.

�9 The advantage of the merge sorting algorithm is that it does not require the
entire array to be placed into RAM. We can sort portions of the array that fit
into available RAM (say, using heapsort) and then merge the files obtained.

�9 Another important sorting algorithm ("Hoare quicksort") uses the following
approach. To sort an array, choose a random element b and split the array
into three parts: elements smaller than b, equal to b and greater than b.
(This problem is discussed in section 1.) Now it remains to sort the first and
the third parts, which can be done recursively using the same method. The
number of steps of this algorithm is a random variable. One can prove that
its expectation does not exceed Cn log n. It is one of the fastest algorithms in
practice. (We shall discuss its recursive and non-recursive implementations
later.)

�9 Finally, let us mention that sorting in Cn log n operations may be performed
using the technique of balanced trees (see section 12), but the programs are
rather complicated and the constant C is large enough to make this method
impractical. �9

4.3 Applications of sorting

4.3.1. Find the number of different elements in an integer array. The number of

68 4 SORTING

operations should be of order n log n. (This problem was already mentioned in
section 1.)

Solution. Sort the array and then count the different elements going from left
to right. �9

4.3.2. Suppose that rt closed intervals [a [s b I i]] on the real line are given
(i = 1 . .n) . Find the maximal k such that there exists a point covered by k
intervals (the "maximal thickness" of covering). The number of operations should
be of order n log ft.

[Hint. Sort all the left and right endpoints of the intervals together. While
sorting, assume that the left endpoint precedes the right endpoint located at the
same point of the real line. Then move from left to right counting the number of
layers. When we cross the left endpoint, increase the number of layers by 1; when
we cross the right endpoint, decrease the number of layers by 1. Please note that
two adjacent intervals are processed correctly; that is, the left endpoint precedes
the right endpoint according to our convention.] �9

4.3.3. Assume that rt points in the plane are given. Find a polygonal arc with
n - 1 sides whose vertices are the given points, and whose sides do not intersect.
(Adjacent sides may form a 180 ~ angle.) The number of operations should be of
order i1 log n.

Solution. Sort all the points with respect to the x-coordinate; when
x-coordinates are equal, take the y-coordinate into account, then connect all
vertices by line segments (in that order). �9

4.3.4. The same problem for a polygon: for a given set of points in the plane
find a polygon having these points as vertices.

Solution. Take the leftmost point (the point whose x-coordinate is minimal).
Consider all the rays starting from this point and going through all other points.
Sort these rays according to their slopes, and sort the points that are on the same
ray according to their distance from the initial point. Do this for all rays except the
rays with maximal and minimal slopes. The polygon goes from the initial point
along the ray with minimal slope, then visits all the points in the order chosen,
returning via the ray with maximal slope. �9

4.3.5. Assume that n points in the plane are given. Find their convex hull, that
is, the minimal convex polygon that contains all the points. (A rubber band put on
the nails is the convex hull of the nails inside it.) The number of operations should
be of order rt log n.

[Hint. Order all the points according to one of the orderings mentioned in the
two preceding problems. Then construct the convex hull considering the points
one by one. (To maintain information about the current convex hull, it is useful to
use a deque; see section 6, page 87. It is not necessary, however, when the points
are ordered according to their slopes.)] �9

4.4 Lower bound for the number o f comparisons 69

4.4 Lower bound for the number of comparisons

Suppose we have n objects (say, stones) of different weights and a balance that can
be used to find which of any two given stones is heavier. In programming terms,
we have access to a Boolean function h e a v i e r (i , j : 1 . . n). Our goal is to sort all
the stones in increasing order using the balance as few times as possible (making
the fewest calls to the function h e a v i e r) .

Of course, the number of comparisons depends not only on the algorithm we
choose but also on the initial order of the stones. By complexity of the algorithm
we mean the number of comparisons in the worst case.

4.4.1. Prove that any sorting algorithm for n stones has complexity at least
log 2n!. (Here n! = 1 �9 2 - . - n .)

Solution. Assume that we have an algorithm of complexity d, that is, an
algorithm that makes at most d comparisons (in all cases). For any of n ! possible
orderings of the stones let us write down the results of all the comparisons (calls
to the function h e a v i e r) . The protocol is a binary string of length at most d.
If necessary, pad it with trailing zeros to get a string of length d. Now we have
n ! binary strings of length d (corresponding to n [permutations of input stones).
All those strings are different, otherwise our algorithm gives the same answer for
two different orderings (and at least one of the answers is incorrect). Therefore,
2 d > n ! .

Another way to say the same thing is to consider the tree of possibilities that
appear during the execution of the algorithm. Indeed, a tree of height d has no
more than 2 d leaves.

This argument shows that any algorithm that relies upon comparisons and ex-
change operations only, requires at least log 2 n ! comparisons. A simple calculation
shows that log 2 n! _> log 2 (n/2) n/2 (we omit the first half of the factors and replace
the remaining factors by n/2). Now log 2 (n/2) n/2 = (n/2) (log 2 n - 1) > Cn log 2 n
for some C. Therefore, our sorting algorithms are close to optimal (improvement
is limited to a constant factor). �9

However, a sorting algorithm that uses not only comparisons (but also the
internal structure of the sorted objects) may be faster. Here is an example:

4.4.2. An integer array a [1] . . a [n] is given; all the integers are non-negative
and do not exceed m. Sort this array using no more than C(m + n) operations (C is
a constant that does not depend on m and n).

Solution. For each number in 0..In, count how many times it appears in the
array. (These data can be collected during one pass through the array.) Then erase
the array and write down its elements in increasing order using the information
about the multiplicity of each number. �9

Note that this algorithm does not exchange elements of the array but puts
"fresh" sorted numbers into the array.

70 4 SORTING

There exists another sorting method that sequentially performs several "partial
sorts" with respect to fixed bits. Let us start with the following problem:

4.4.3. Rearrange the array a [1] . . a In] in such a way that all even elements
precede all odd elements (not changing the order inside each of the two groups).

Solution. Copy all the even elements into an auxiliary array. Then append all
the odd elements to that array and copy all elements back. �9

4.4.4. An array of n integers in the range 0 2 k - 1 is given. Each integer
is written as a binary string of length k. Using the tests "i-th bit is 0" and "i-th
bit is 1" instead of comparisons, sort all the integers. The number of operations
should be of order nk.

Solution. Sort all the numbers with respect to the last bit as in the preceding
problem. Then sort them with respect to the bit next the last one, etc. After k
stages, the numbers will be sorted. Indeed, by induction over i, we can easily
prove the following statement: "after i steps, any two numbers that differ only
in the last i bits, are in the correct order". (Or prove by induction the following
statement: "after i steps the suffixes of length i are in the right order".) �9

A similar algorithm can be constructed using m-ary notation instead of binary.
The following problem is useful in this regard.

4.4.5. Assume that an array of n elements and a function f defined on those
elements are given. Assume that the possible values of f are 1 m. Rearrange
the array in such a way that the values of f are in nondecreasing order and the
elements with equal values of f are in the same order as before. The number of
operations should be of order m + n.

[Hint. Create m lists of total length n using "pointer implementation" (see
section 6, p. 83). Put an element into the i-th list if the value of f is equal to i.
Another possibility: count how many elements have a given value of f (for all
m possible values); thereafter, we know where the elements of any given f -va lue
should be placed in the array.] �9

4.5 Problems related to sorting

4.5.1. Find the minimal complexity (= the number of comparisons in the worst
case) for an algorithm that finds the stone with minimal weight.

Solution. The obvious algorithm with the invariant relation "the minimal
among the first i stones is found" requires n - 1 comparisons. No algorithm
can have smaller complexity. This is a corollary of a stronger statement, see the
next problem. �9

4.5.2. An expert wants to convince a jury that a given stone has minimal weight
among n given stones. The expert wants to do this using a balance less than n - 1

4.5 Problems related to sorting 71

times. Prove that this is impossible. (The expert knows in advance the weights of
all the stones; the jury does not.)

Solution. Consider stones as vertices of a graph. For any comparison, draw
an edge between the corresponding pair of vertices. After n - 1 measurements,
the graph is not connected; it has more than 1 connected component, because each
edge decreases the number of connected components by at most 1. Therefore, the
jury knows nothing about the relation between weights of stones from different
components and may assume that the stone with minimal weight is in any of the
components. �9

Let us stress the difference between this problem and the preceding one. In
this problem, we have to show that n - 2 comparisons are not enough to prove that
a given stone has minimal weight even if we know the answer in advance - - not
to mention finding the answer. (The difference between the two settings is clear in
the case of sorting. When a correct answer is known, it can be confirmed by n - 1
comparisons (each stone should be compared with the next one), which is many
fewer comparisons than what was needed to find the answer.)

4.5.3. Prove that it is possible to find the stones with minimal and maximal
weights among 2n + 1 stones using only 3n comparisons.

[Hint. Divide all the stones into n pairs (one stone remains) and compare stones
within each pair.] �9

4.5.4. Assume that n stones of different weights are given. Let k be a number
in the range 1 k. Find the k-th stone (in the order of increasing weights)
making not more than Cn comparisons, where C is some constant that does not
depend on k or n.

Remark. Using sorting, we can do this in Cn logn steps. See the section 7,
p. 112, where a hint for this (rather difficult) problem is given. �9

The following problem has a surprisingly simple solution.

4.5.5. There are n stones that look identical, but in fact, some of them have
different weights. There is a device that can be applied to two stones and tells
whether they are different or not (but it does not say which one is heavier). It is
known in advance that most of the stones (more than 50%) are identical. Find
one of those identical stones making no more than n comparisons. (Beware: it is
possible that two stones are identical but do not belong to the majority of identical
stones.)

[Hint. If two stones are different, they may be discarded, because one of them
does not belong to the majority and the majority remains.]

Solution. The program processes the stones one-by-one and keeps the num-
ber of the stones processed in a variable 5.. (Assume that stones are numbered
1 . . n). The program remembers the number of the "current candidate" c and its
"multiplicity" k. The names are explained by the following invariant relation (I) :

72 4 SORTING

If we add k copies of the c-th stone to the unprocessed stones (i + 1 . . n),
the majority stones in the initial array will remain the majority in the
new array.

Here is the program:

k:=O; i:=O;

{(i)}

while i<>n do begin

if k=O then begin

I k:=l; c:=i+l; i:=i+l;
end else if (i+l-th stone is the same as c-th)

then begin

i:=i+l; k:=k+l;

{replace a physical stone by a virtual stone}

end else begin

i := i+l ; k:=k-1;
{discard one physical and one virtual stone}

end;

end;

c-th stone is the answer

Remark. All three branches of the if-block include the statement i : =i+l, SO
it can be moved to the next level. �9

Let us mention that this program finds the most frequent stone only if it forms
the majority (more than 50%).

This problem can be found as problem 4-7 on page 75 of the book [3] in a
completely different setting ("VLSI chip testing") where a recursive solution is
sketched.

At first glance, the following problem seems unrelated to sorting.

4.5.6. There is a square array a [1 . . n , 1 . . n] filled by 0s and ls. It is known
that for some i the i-th row contains only 0s and at the same time the i-th column
contains only ls (except the main diagonal entry a [i , i] , which may be arbitrary).
Find this i (which is unique). The number of operations should be of order n.
(Please note that the number of operations should be much smaller than the total
number of elements in a.)

[Hint. Assume we get the Boolean value a [i] [j] when comparing two virtual
stones with numbers i and j . Recall that the maximal element among n elements
may be found using n-1 comparisons. Take into account that the array may not
be "transitive"; however, after two numbers are compared, one of them may be
discarded.] �9

5 Finite-state algorithms in text processing

5.1 Compound symbols, comments, etc.

5.1.1. Throughout a program text the operation x y was denoted by x**y. It was
decided that notation should be changed to x^y. How do we do that? The input
text is read character-by-character; the output text should be printed in the same
manner.

Solut ion. At any time, the program is in one of two states: "basic" state and
"after" state (after an asterisk):

State Next symbol

basic *
basic x 76 *
after *
after x 76 *

New state Action

after none
basic print x
basic print ^
basic print *, x

If after reading all the text, the program is in the "after" state, it should print an
asterisk (and quit). �9

Remark. Our program replaces *** by ^* (and not by * ') . We did not specify
the behavior of the program in this case, assuming (as is often done) that some
"reasonable" behavior is expected. In this example, the simplest way to describe
the required behavior is to list the states and the corresponding actions.

Please note also that if two asterisks appear in other parts of the program (say,
comments), they will be also replaced.

5.1.2. Write a program that deletes all occurrences of the substring abc. �9

5.1.3. In Pascal, comments are surrounded by curly braces like this:

begin {here a block begins}
i:=i+l; {increase i by one}

Write a program that removes all comments and puts a space character in the place
of a removed comment. (According to Pascal rules, 1{one}2 is equivalent to 1 2,
not 12).

Solut ion . The program has two states: a "basic" state and an "inside" state
(inside a comment).

State

basic
basic
inside
inside

Next symbol New state Action

{ inside none
x 76 { basic print x
} basic print a space

x 76 } inside none

74 5 FINITE-STATE ALGORITHMS IN TEXT PROCESSING

This program cannot deal with nested comments: the string

{{comment inside a} comment}

is transformed into

comment}

(the latter string starts with two spaces). It is impossible to deal with nested
comments using a finite automaton (a program that has finite number of internal
states); roughly speaking, we have to remember the number of opening braces and
a finite automaton cannot do that.

Please note that after reading all the text, the program may still be in the "inside"
state. Most probably, we would like to consider this as an error.

5.1.4. Pascal programs also contain quoted strings. If a curly brace appears
inside a string, it does not mean the start of a comment. Similarly, a quote symbol
inside a comment does not signify a string. How do we modify the above program
to take this into account?

[Hint. We need three states: "basic", "inside a comment","inside a string".] �9

(Note that actual Pascal conventions are more complicated allowing a quote
appear inside a quoted string, etc.)

5.1.5. One more feature that exists in many Pascal implementations is a com-
ment of the type

i := i+l; (* here i is increased by 1 *)

A closing comment symbol must be paired with an opening comment symbol of
the same type (e.g., { . . . *) is not permitted). How do we deal with these types of
comments? �9

5.2 Numbers input

Assume that a program scans a decimal representation of some number from left to
right. The program should "read" this number, that is, put its value into a variable
of type r e a l . Also, the program should complain if the input is incorrect.

Let us specify the problem in more detail. Assume that the input string is
divided into two parts: the part that is already processed and the remaining part.
We have access to a function Next : char , which returns the first symbol of the
unprocessed part. Also, we have access to a procedure Move, which moves the
first unprocessed symbol to the processed part.

5.2 Numbers input 75

By a decimal number we mean a character string of the type

(0 or more spaces) (1 or more digits)

o r

(0 or more spaces) (1 or more digits). (1 or more digits)

Please note that this definition does not allow the following strings:

1. .1 1 . u l - 1 . 1

Let us now state the problem:

5.2.1. Read the maximal prefix of the input string that may be a prefix of a
decimal number. Determine whether this prefix is a decimal number or not.

Solution. Let us write a program using Pascal's "enumeration type" for clarity.
(The variable state may have one of the listed values.)

var state :

(Accept, Error, Initial, IntPart, DecPoint, FracPart);

state := Initial;

while (state <> Accept) or (state <> Error) do begin

if state = Initial then begin

if Next = ' ' then begin

I state := Initial; Move;

end else if Digit(Next) then begin

state := IntPart;

{after the start of the integer part}

Move;

end else begin

I state := Error;

end;

end else if state = IntPart then begin

if Digit (Next) then begin

I state := IntPart; Move;

end else if Next = ' ' then begin

state := DecPoint; {after the decimal point}

Move;

end else begin

I state := Accept;

end;

76 5 FINITE-STATE ALGORITHMS IN TEXT PROCESSING

end else if state = DecPoint then begin

if Digit (Next) then begin

I state := FracPart; Move;

end else begin

I state := Error; {at least one digit is needed}

end;

end else if state = FracPart then begin

if Digit (Next) then begin

I state := FracPart; Move;

end else begin

I state := Accept;

end;

end else if

I {this cannot happen}
end;

end;

Please note that the assignments s t a t e := Accep t and s t a t e := E r r o r are not
accompanied by a call to procedure Move, so the symbol after the end of the decimal
number is left unprocessed. �9

This program does not store the value of the numben

5.2.2. Add the following requirement to the preceding program: If a processed
pan is a decimal numbe~ its value should be placed into the variable v a l : r e a l .

So~tion. While reading the ~actional pan, we use the variable s c a l e which
is a ~ctor for the digit to come (0.1, 0.01 etc.).

state := Initial; val:= O;

while (state <> Accept) or (state <> Error) do begin

if state = Initial then begin

if Next = ' ' then begin

I state := Initial; Move;

end else if Digit(Next) then begin

state := IntPart;

{after the start of the integer part}

val := DigitVal(Next);

Move;

end else begin

I state := Error;

end;

end else if state = IntPart then begin

5.2 Numbers input 77

if Digit (Next) then begin

state := IntPart; val := lO*val + DigitVal(Next);

Move;

end else if Next = ' ' then begin

state := DecPoint; {after the decimal point}

scale := 0.1;

Move;

end else begin

I state := Accept;

end;

end else if state = DecPoint then begin

if Digit (Next) then begin

state := FracPart;

val := val + DigitVal(Next)*scale;

scale := scale/t0;

Move;

end else begin

I state := Error; {at least one digit is needed}

end;

end else if state = FracPart then begin

if Digit (Next) then begin

state := FracPart;

val := val + DigitVal(Next)*scale;

scale := scale/lO;

Move;

end else begin

I state := Accept;
end;

end else if

I {this cannot happen}
end;

end;

5.2.3. Repeat the previous problem if the number may be optionally preceded
b y - or +. �9

The format of numbers in this problem can be represented as follows:

78 5 FINITE-STATE ALGORITHMS IN TEXT PROCESSING

5.2.4. The same problem if the number may be followed by an integer expo-
nent, as in 254E-4 (= 0.0254) or 0. 123E+9 (= 123000000). Draw the corre-
sponding picture. �9

5.2.5. What changes in the above program above are necessary to allow empty
integer or fractional parts like in 1., . 1 or even. (the latter number is considered
to be equal to zero)? �9

We return to finite-state algorithms (also called finite automata) in section 10.

6 Data types

6.1 Stacks

Let T be some type. Consider the data type "stack of elements of type T". Values
of that type are sequences of values of type T.

Operations:

�9 Make_empty (va r s: stack of elements of type T)

�9 Add (t : T; v a r s: stack of elements of type T)

�9 Take (va r t : T; v a r s: stack of elements of type T)

�9 Is_empty (s: stack of elements of type T): B o o l e a n

�9 Top (s: stack of elements of type T): T

(We use Pascal notation even though the stack type does not exist in Pascal.) The
procedure "Make_empty" makes the stack empty. The procedure "Add" adds t
to the end of the sequence s (i.e., the top of the stack). The procedure "Take" is
applicable if the sequence s is not empty; it takes the last element away from s and
puts it into the variable t . The expression "Is_empty(s)" is true when the sequence
s is empty. The expression "Top(s)" is defined when s is not empty; its value is
the last element of the sequence s.

Usually the operations "Add" and "Take" are called "Push" and "Pop" respec-
tively; we use the names "Add" and "Take" to stress the similarity between stacks
and queues (section 6.2).

Our goal is to show how stacks can be implemented in Pascal and what they
can be used for.

Stack: array implementation

Assume that the number of elements in a stack never exceeds some constant n.
Then the stack can be implemented using two variables:

C o n t e n t : a r r a y [1 . . n] o f T;
Length: integer;

We assume that our stack contains elements

Content [l],...,Content [Length]

�9 To make the stack empty, it is enough to perform the assignment

Length := 0

80 6 DATA TYPES

�9 Adding element t:

{Length < n}

Length := Length + 1;

Content [Length] :=t;

�9 Taking element into a variable t :

{Length > O}
t := Content [Length];

Length := Length - I;

�9 The stack is empty when L e n g t h = 0.

�9 The top of the stack is C o n t e n t [Leng th] , assuming L e n g t h > 0.

Therefore, a variable of type stack can be replaced in a Pascal program by two
variables C o n t e n t and Length . We can also define the type s t a c k as follows:

const n = ...

t y p e
stack = record

Content: array [1..n] of T;

Length: integer;

end;

We then define procedures dealing with stack variables. For example, we write

procedure Add (t: T; var s: stack);

begin

{s. Length < n}

s. Length := s. Length + 1;

s. Content [s.Length] := t;

end;

The use of stacks

In the following problem, we consider sequences of opening and closing parenthe-
ses () and square brackets [] . Some sequences are considered to be "correct".
Namely, a sequence is correct if its correctness follows from the following rules:

�9 the empty sequence is correct;

�9 if A and B are correct, then A B is correct;

�9 if A is correct, then [A] and (A) are correct.

6.1 Stacks 81

Example. The sequences () , [[]] , [() [] ()] [] are correct, while the se-
quences] ,) (, (] , (D] are not.

6.1.1. Check the correctness of a given sequence. The number of operations
should be proportional to the length of the sequence. We assume that the sequence
terms are encoded as follows:

(1
[2
) - 1
] - 2

Solution. Let a [1] . . a [n] be a sequence of length n. Consider a stack whose
elements are opening parentheses and brackets (i.e., the numbers i and 2).

Initially the stack is empty. We scan the sequence from left to right. When an
opening parenthesis or bracket is found, we put it onto the stack. When a closing
parenthesis or bracket is found, we check if the top of the stack is a complementary
parenthesis or bracket. If not, we stop and reject the input. If so, we take the top
of the stack away. The sequence is correct if it is not rejected while reading the
input and if the stack is empty after the input is exhausted.

Make_empty (s) ;
i := O; Error_found := false;
{i symbols are processed}
while (i < n) and not Error_found do begin

i :=i+ i;
if (a[i] = I) or (a[i] = 2) then begin

I Add (a[i], s);
end else begin {a[i] is either -i or -2}

if Is_empty (s) then begin

[Error found : = true;

end else begin

Take (t, s);

Error_found := (t <> - a[i]);

end;

end;

end;

Correct := (not Error_found) and Is_empty (s);

Let us prove the correctness of our program.
(1) If the input sequence is correct, our program accepts it. This can be proved

by induction. We need to prove that (a) our program accepts the empty sequence;
(b) that it accepts the sequence A B (assuming that A and B are accepted); and (c)
it accepts the sequences [A] and (A) assuming that A is accepted.

An empty sequence is accepted for obvious reasons. (Note: In this case, the
while-loop is not executed.)

82 6 DATA TYPES

For A B our program works exactly as for A until all symbols of A are processed;
therefore, the stack is empty at that moment. Then program processes B (and
finishes with the empty stack, because B is accepted by assumption).

For [A] the program begins by putting an opening bracket onto the stack. Then
the program processes A, the only difference is that there is an additional bracket
at the bottom of the stack. When A is finished, the stack is empty except for the
left bracket; at the next step, the stack becomes empty. A similar thing happens
for (A).

(2) Let us now prove that if the program accepts some sequence, then the
sequence is correct. This is proved by induction over the length of the sequence.
Consider the length of the stack during execution. If the stack becomes empty at
some point, then the sequence can be divided into two parts and each of the parts
is accepted by the program. Therefore, each part is correct (inductive hypothesis)
and the sequence as a whole is correct (definition of correctness). Now assume that
the stack never becomes empty (except for the beginning and the end). This means
that the bracket or parenthesis put onto the stack at the first step is removed at the
last step. Therefore, the first and last symbols in our sequence are complementary,
the sequence is of type (A) or [A], and the behavior of the program differs from
its behavior on A only by the additional parenthesis or bracket at the bottom of
the stack. Therefore, by the induction hypothesis, A is correct and the sequence is
correct by definition. �9

6.1.2. The program can be simplified if the sequence contains only parentheses
and no brackets. How?

Solution. In this case, the stack is reduced to its length, and we arrive at the
following statement: A sequence of" (" and ") " is correct if and only if each prefix
contains no more symbols")" than "(" , and the entire sequence has equal numbers
of both symbols. �9

6.1.3. Implement two stacks using one array. The total number of elements in
both stacks is limited by the array length; all stack operations should run in O (1)
time (i.e., running time should be bounded by a constant).

Solution. The stacks grow from the beginning and end of the array
Content [1 . . n] in opposite directions. One stack occupies places

Content [i].. Content [Lengthi],

while the other stack occupies places

Content In] .. Content In-Length2+1]

(both stacks are listed from bottom to top). Stacks do not overlap if their total
length does not exceed n. �9

6.1.4. Implement k stacks of elements of type T with a total of at most n
elements using arrays with total length C(n + k). Each stack operation (except

6.1 Stacks 83

initialization, which makes all stacks empty) should be performed in constant time
(not depending on n and k). (In other words, the implementation should require
space O(n + k) and run in time O(1) for each operation.)

Solution. We use a "pointer implementation" of stacks. It uses three arrays:

Content: array [l..n] of T;

Next: array [l..n] of 0..n;

Top: array [l..k] of 0..n;

The array Content can be thought of as n cells numbered from I to n. Each of

the cells is capable of holding one element of type T. The array Next is represented
by arrows between elements: there is an arrow from • to j if Next [i] =j. (If
Next [i] =0, there are no arrows from 2.) The content of the s-th stack (s E { 1 . . k})
is determined as follows: the top element is C o n t e n t [Top [s]] and other elements
are read by following the arrow links (if they exist). Moreover,

(s-th stack is empty) r Top [s] = 0.

The "arrow trajectories" starting from

Top [I] Top [k]

(those not equal to 0) are disjoint. Besides these, we need one more trajectory
that traverses all locations that are currently free. Its starting point is stored in the
variable F r e e : 0 . . n (where F r e e = 0 means that all places are occupied). Here
is an example:

Stacks: the first one contains p, t , q, a (a is on the top); the second one contains
s, v (v is on the top).

84 6 DATA TYPES

procedure Initialize; {Make all stacks empty}

I var i: integer;
begin

for i := i to k do begin

I Top [i]:=0;
end;
for i := i to n-i do begin

I Next [i] := i+l;
end;
Next In] := O;
Free:=l;

end;

function Is_free: Boolean;
begin

I Is free := (Free <> 0);
end;

procedure Add (t: T; s: integer);
{Add t to the s-th stack}
var i: 1..n;

begin
{Is_free}
i := Free;
Free := Next [i];
Next [i] := Top Is];
Top Is] :=i;
Content [i] := t;

end;

function Is_empty (s: integer): Boolean;

I {s-th stack is empty}
begin

I Is empty := (Top [s] = 0);
end;

)rocedure Take (var t: T; s: integer);

{Take the top of the s-th stack into t}

var i: 1..n;

begin
{not Is empty (s)}

i := Top [s];

t := Content [i];

Top [s] := Next [i];

Next [i] := Free;

6.2 Queues 85

I Free := i;
end;

function Top_element (s: integer):
I {Top of the s-th stack}
begin
I Top_element := Content[Top[s]];
end;

6.2 Queues

Values of type "queue of elements of type T" are sequences values of type T. The
same is true for stacks, but the difference is that of queue elements are added to the
beginning of a sequence and are taken from the end of it. Therefore, an element
that arrived first to a queue will be the first element taken from it. Hence the name
First In First Out (FIFO), which is used for queues. The method used for stacks is
called Last In First Out (LIFO).

Operations on queues:

�9 Make_empty (v a r x : queue of elements of type T);

�9 Add (t : T, v a r x : queue of elements of type T);

�9 Take (va r t : T, v a r x : queue of elements of type T);

�9 Is_empty (x : queue of elements of type T): Boolean;

�9 First_element (x : queue of elements of type T): T.

The procedure "Add" adds the specified element to the end of the queue. The
procedure "Take" is applicable if the queue is not empty; it puts the first element
of the queue into a variable t , removing it from the queue. (The first element is
the longest-waiting element.)

The procedures "Add" and "Take" are often called "Enqueue" and "Dequeue".

Queue: array implementation

6.2.1. Implement a queue of limited size in such a way that all operations run in
O(1) time (that is, in time not exceeding some constant, which does not depend
on length of the queue).

Solution. Assume that queue elements are stored as consecutive elements in
an array. The queue grows to the right and is taken from the left. A growing queue
may reach the end of the array, so we assume the array is "wrapped around" in
circular fashion.

Our implementation uses an array

86 6 DATA TYPES

Conten t : a r r a y [O . .n -1] of T

and variables

First: O..n-i

Length : O..n

The queueisformedbyelements

Content [First], Content [First + i],...,

Content [First+Length-l]

where addition is performed modulo n. (Warning: If you instead use variables
F i r s t and Las t whose values are residues modulo n, be careful not to mix the
empty queue with the queue containing n elements.)

The queue operations are implemented as follows:

Make_empty:

Length := O;

First := O;

Add an element t:

{Length < n}

Content [(First + Length) mod n]

Length := Length + i;

Take element into variable t :

:= t;

{Length > O}

t := Content [First];

First := (First + I) mod n;

Length := Length - i;

Is_empty:

Length = 0

First_element:

Content [First]

6.2.2. (Communicated by A.G. Kushnirenko) Implement a queue using two
stacks (and a fixed number of variables of type T). For n queue operations starting
with an empty queue, the implementation should perform not more than Cn stack
operations.

Solution. We maintain the following invariant relation: stacks whose bottoms
areput together, form the queue. (In other words, listing all elements of one stack

~2 Queues 87

from top to bottom and then of the other stack from bottom to top, we list all the
queue elements in the proper order.) To add an element to the queue, it is enough
to add it to one of the stacks. To check if the queue is empty, we must check that
both stacks are empty. When taking the first element from the queue, we should
distinguish between two cases. If the stack that contains the first element is not
empty, there is no problem. If that stack is empty, the required element is buried
under all the elements of the second stack. In this case, we move all the elements
one-by-one onto the first stack (their ordering is reversed) and return to the first
case.

The number of operations for this step is not limited by any constant. However,
the requirement posed in the problem is still met. Indeed, any element of the queue
can participate in such a process at most once during its presence in the queue. �9

6.2.3. Deque (double-ended queue) is a structure that combines the properties
of a queue and a stack: we can add and remove elements from both ends of a
deque. Implement a deque using an array in such a way that each deque operation
runsin O(1) time. �9

6.2.4. (Communicated by A.G. Kushnirenko.) A deque of elements of type T
is given. The deque contains several elements. The program should detemine how
many elements are in the deque. Program may use variables of type T and integer
variables, but arrows are not allowed.

[Hint. (1) We can perform a cyclic shift on deque elements taking an element
from one end and adding it to the other end. After n shifts in one direction, we
return the deque to its initial state by n shifts in the other direction. (2) How do
we know that the cycle is complete? If we know in advance that some element
is guaranteed not to appear in the deque, this is easy. We put this element into
the deque and wait until it appears at the other end. But we do not have such an
element. Instead, we may perform (for any fixed n) a cyclic shift by n positions
twice adding two different elements. If the elements that appear after the shift are
different, we have made a complete cycle.] �9

Queue applications

6.2.5. (see E.W. Dijkstra's book [4]) Print in increasing order the first n positive
integers whose factorization contains only the factors 2, 3, and 5.

Solution. The program uses three queues x2, x3, x5. They are used to store
elements which are 2, 3, and 5 times larger than already printed elements, but are
not yet printed. We use the procedure

procedure Print_and_add (t : integer) ;
begin

writeln (t) ;
Add (2*t, x2);

88 6 DATA TYPES

Add (3 * t , x 3) ;
Add (5 * t , x 5) ;

end;

The program is as follows:

.. make queues x2, x3, x5 empty

Print_and_add (1);

k := 1;

~invariant relation: k first elements of the required

set are printed; the queues contain elements

that are 2, 3 and 5 times bigger that the elements

already printed, but are not printed yet

(in increasing order))

while k <> n do begin

x := min (Next(x2), Next(x3), Next(xS));

Print and add (x);

k := k+l;

.. take x from the queues where it was present;

end;

Let us check the correctness of the program. Assume that the invariant relation
is valid and we perform the operations as prescribed. Let x be the smallest element
of our set that is not printed. Then x is larger than 1, and it is divisible by 2, 3, or 5.
The quotient belongs to the set, too. The quotient is smaller than x and is therefore
printed. Thus x is present in one of the queues. It is the smallest element in any
queue to which x belongs (because all the elements less than x are already printed
and cannot appear in any queue). When x is printed, we must delete x from the
queues and add the corresponding multiples of x to maintain the invariant.

It is easy to check that queue lengths do not exceed the number of elements
printed. �9

The next problem is related to graphs (see section 9 for other graph problems).
Let V be a finite set whose elements are called vertices. Let E be a subset

of the set V x V; the elements of E are called edges. The sets E and V define
a directed graph. A pair (p, q) ~ E is called an edge going from p to q. One
says that this edge leaves p and enters q. Usually vertices are drawn as points and
edges as arrows. According to the above definition, there is at most one edge from
p to q; edges that are loops (from p to p) are allowed.

A (directed) path is a sequence of vertices connected by edges (for example,
path pqrs contains four vertices p, q, r, and s, connected by three edges (p, q),
(q, r), and (r, s).

6.2.6. Suppose a directed graph satisfies two requirements: (1) it is connected,
that is, there is a path from any given vertex to any other vertex; and (2) for any

6.2 Queues 89

vertex the number of incoming edges is equal to the number of outgoing edges.
Prove there exists an edge cycle that traverses each edge exactly once. Give an
algorithm to find this cycle.

Solution. A "worm" is a nonempty queue of vertices such that each pair of
adjacent vertices is connected by a graph edge (going in the direction from the first
element to the last element). The first element in the queue is the tail of the worm;
the last element in the queue is the worm's head. The worm can be drawn as a
chain of arrows; arrows lead from the tail to the head. When a vertex is added, the
worm grows near the head; when a vertex is removed, the tail is cut off.

Initially, the worm consists of a single vertex and evolves according to the
following rule:

while the worm includes not all the edges do begin

if there is an unused edge leaving from the worm's head

then begin

add this edge to the worm

end else begin

{the head and tail of the worm are at the same vertex}

cut a piece of tail and add it to the head

{"the worm eats its own tail"}

end;

end;

Let us prove that this algorithm terminates when the worm spans all edges with
its head and tail at the same vertex.

(1) Traversing the worm from tail to head, we enter each vertex as many times
as we leave it. We also know that each vertex has as many incoming edges as it
has outgoing edges. Therefore, we fail to find an outgoing edge only if the head
of the worm is located at the same vertex as its tail.

(2) The worm never becomes shorter. Therefore, it will eventually reach some
maximal length and never grow again. In the latter case, the worm will slide over
itself forever. This is possible only if all the vertices visited do not have outgoing
edges. Since the graph is connected, this is possible only if all the edges are
included in the worm.

Some remarks about the Pascal implementation. The vertices are numbered
1 . . n. For each vertex i , we store the number Out I i] of outgoing edges, as well as
the numbers Num [i] [1] , . . . , Num [i] l o u t [i]] of vertices receiving the outgoing
edges. While constructing the worm, we always choose the first unused edge. In
this case, it is enough to keep (for each vertex) only the number of used outgoing
edges to find the first unused edge. �9

6.2.7. Prove that for any n there exists a bit string x of length 2" with the
following property: any binary string of length n is a substring of the string x x x

Find an algorithm that constructs such a binary string in time C n (for some constant
C that does not depend on n).

90 6 DATA TYPES

[Hint. Consider a graph whose vertices are binary strings of length n - 1. An
edge leaving x and entering y exists if and only if there is a string z of length n
such that x is a prefix of z and y is a suffix of z. (In other words, if x minus its
first bit is equal to y minus its last bit.) This graph is connected; each vertex has
two incoming and two outgoing edges. A cycle that traverses all edges provides a
string satistying the desired property.] �9

6.2.8. Implement k queues with total length not exceeding n, using memory
of size O(n + k) (that is, not exceeding C(n + k) for some constant C). Each
operation (except for initialization, which makes all the queues empty) should run
in time O(1) (that is, limited by a constant that does not depend on n).

Solution. We use the same method as for the pointer implementation of stacks.
For each queue, remember the element that is first to be served; each element of
the queue remembers the next element (the one that came immediately after). The
last element believes that the next one is a special element number 0. We also
have to remember the last element of each queue (otherwise we would trace the
queue each time when a new element is added). As for stacks, all the free places
are linked into a chain. Please note that for an empty queue the information about
the last element makes no sense and is not used when adding elements.

Content: array [l..n] of T;

Next: array [l..n] of O..n;
First: array [l..k] of O..n;
Last: array [l..k] of O..n;
Free: O..n;

procedure Make_empty;

I var i: integer;
begin

for i := 1 to n-1 do begin

I Next [i3 := i + I;
end;

Next [n] := O;

Free := I;
for i := i to k do begin

] First [i]:=O;
end;

end;

function Is_space: Boolean;

begin

I Is_space := Free <> O;
end;

~2 Queues 91

function Is_empty (queue_number: integer): Boolean;
begin

I Is_empty := First [queue_numberS = O;
end;

procedure Take (var t: T; queue_number: integer);
I var frst: integer;
begin

{not Isempty (queue_number)}

frst := First [queue numberS;
t := Content [frst]

First [queue_numberS := Next [frst];
Next [frst] := Free;
Free := frst;

end;

procedure Add (t: T; queue_number: integer);

l var new, ist: l..n;
begin

{Is_space}
new := Free; Free := Next [FreeS;

{location new is removed from free space list}
if Is_empty (queue__number) then begin

First [queue_numberS := new;
Last [queue_numberS := new;

Next [news := O;
Content [news := t;

end else begin
ist := Last [queue_numberS;
{Next [ist] = 0 }
Next lists := new;
Next [news := O;
Content [news := t
Last [queue_numberS := new;

end;

end;

function First_element (queue_number: integer): T;
begin

I First element := Contents [First [queue_numberS];
end;

6.2.9. The same problem for deques.

92 6 DATA TYPES

[Hint. A deque is a symmetric structure, so we should keep pointers to both
the next and preceding elements. It is convenient to tie the ends of each deque with
a special element that forms a "ring". Another ring can be constructed from the
free locations.] �9

In the following problem, the deque is used to store the vertices of a convex
polygon.

6.2.10. Assume that n points in the plane are numbered from left to right (and
when the x-coordinates coincide, according to the order of the y-coordinates).
Write a program that finds the convex hull of these n points in time O (n) (that is,
the number of operations should not exceed Cn for some constant C). The convex
hull is a polygon, so the answer should be a list of all its vertices.

Solution. Consider the points one by one, each time adding a new point to the
existing convex hull. The ordering guarantees that the new point becomes one of
the vertices of the convex hull. We call this vertex of the convex hull a "marked"
vertex. At the next step the marked vertex is visible from the point to be added.
We extend our polygon by a "needle", which goes from the marked vertex to the
new point and back. We obtain a degenerate polygon and eliminate "concavities"
in that polygon.

The program stores the vertices of a polygon in a deque listed counter-clockwise
from the "head" to the "tail". The marked vertex is both the head and the tail of
the deque. Adding a "needle" means that new vertex is added to both ends of the
deque. The elimination of concavities is more difficult. Let us call the elements
nearest the head the "subhead" and "subsubhead", respectively. The elimination
of concavities near the head is done as follows:

while going from the head to the subsubhead we turn

to the right near the subhead do begin

remove the subhead from the deque

end

6.3 Sets 93

The concavity near the tail is eliminated in a similar way.

Remark. Strictly speaking, operations involving the subhead and subsubhead
of a deque are not allowed by definition. However, they may be reduced to a few
legal operations (for example, we can take three elements, process them, and put
back what remains).

Another remark. Two degenerate cases are possible. The first occurs when we
do not turn at all near the subhead (in this case, the three vertices lie on the same
line); the second occurs when we make a 180 ~ turn (this happens when we have
a "polygon" with two vertices). In the first case, the subhead should be removed
(to eliminate the redundant vertices from the convex hull); in the second case, the
deque isleft unchanged. �9

6.3 Sets

Let T be a type. There are several methods to store (finite) sets of values of type
2'. There is no "best" method; the choice depends on type 2" and on the operations
needed.

Subsets of { 1 n }

6.3.1. Using O(n) space (that is, space proportional to n), store a subset of
{1 n}.

Operations Time

Make empty Cn
Test membership C
Add C
Delete C
Minimal element Cn
Test if the set is empty Cn

Solution. Store the set as a r r a y [1 . . n] o f Boolean . �9

6.3.2. The same problem with an additional requirement: test if the set is
empty in constant (i.e., O (1)) time.

Solution. Store the number of elements in an additional variable. �9

6.3.3. The same problem with the following restrictions:

94 6 DATA TYPES

Operations Time

Make empty Cn
Test membership C
Add C
Delete Cn
Minimal element C
Test if the set is empty C

Solution. Maintain also the minimal element of the set. �9

6.3.4. The same problem with the following restrictions:

Operations Time

Make empty Cn
Test membership C
Add Cn
Delete C
Minimal element C
Test if the set is empty C

Solution. Store the minimal element of the set. Also, for each element we
maintain pointers to the next and preceding elements (in order determined by
value). �9

Sets of integers

In the following problems, elements of the set are integers (unbounded); the number
of elements does not exceed n.

6.3.5. The memory size is limited by Cn.

Operations Time

Make empty C
Cardinality C
Test membership Cn
Add element (known to be absent) C
Delete Cn
Minimal element Cn
Take some element C

Solution. The set is represented by the variables

a:array [1..n] o5 integer, k: O..n;

6.3 Sets 95

The set contains k (distinct) elements a [1] a [k] . In a sense, we keep the
elements of the set in a stack. (We require all elements in the stack to be different.)
We may also use a queue instead of a stack. �9

6.3.6. The memory size is limited by Cn.

Operations Time

Make empty C
Test if the set is empty C
Test membership C log n
Add Cn
Delete Cn
Minimal element C

Solution. We use the same representation as in the preceding problem, with
the additional restriction a [1] < .. �9 < a [kl . To test membership, we use binary
search. �9

In the following problem, different methods are combined.

6.3.7. Find all the vertices of a directed graph that can be reached from a given
vertex along the graph edges. The program should run in time Cm, where m is the
total number of edges leaving the reachable vertices.

Solution. (A recursive solution is given in section 7.) Let nura[i] be the
number of outgoing edges for vertex i (assume that vertices are numbered 1 . . n).
Let ou t [i] [1] , . . . , ou t [i] Inure [i]] be the endpoints of the edges starting from
vertex i.

9rocedure Print_Keachable (i: integer);

{print all the vertices reachable from i,

including the vertex i itself}

var X: subset of l..n;

P: subset of l..n;

q, v, w: l..n;

k: integer;

begin

...make X and P empty;

writeln (i);

...add i to X, P;

{(1) P is the set of printed vertices; P contains i;

(2) only vertices reachable from i are printed;

(3) X is a subset of P;

(4) all printed vertices which have an outgoing edge to

a non-printed vertex, belong to X}

96 6 DATA TYPES

while X is not empty do begin

...take some element of X into v;

for k := i to num [v] do begin

w := out [v][k];

if w does not belong to P then begin

writeln (w) ;

add w to P;

add w to X;

end;

end;

end;

end ;

Let us check that the requirements (1)-(4) mentioned in the program text, are
satisfied. (1) We print a number and simultaneously add it to P. (2) Since v is in
X, v is reachable; therefore, w is reachable. (3) Obvious. (4) We have deleted v
from X, but all the endpoints of edges emanating from v are printed.

Let us prove the upper bound for the number of operations. If some element
is removed from X, it never appears in X again. Indeed, it was present in P when
removed, and only elements not in P can be added. Therefore the body of the while-
loop is executed at most once for any reachable vertex; the number of iterations of
the for-loop is equal to the number of outgoing edges.

For X we use a stack or queue representation (see above); for P we use a Boolean
array. �9

6.3.8. Solve the preceding problem if all the reachable vertices are to be printed
in the following order: first the given vertex, then its neighbors, then (unprinted)
neighbors of its neighbors, etc.

[Hint. Use a queue for the representation of the set X in the program above.
By induction over k we prove that at some point all the vertices having distance
not exceeding k (and no others) are printed, and all the vertices having distance
exactly k (and no others) are in the queue. For the detailed solution see section 9.2,
p. 9.2] �9

More elaborate data structures for sets are considered in sections 11 (hash
tables) and 12 (trees).

6.4 Priority queues

6.4.1. Implement a data structure that has the same set of operations as an array
of length n, namely,

�9 initialize;

�9 put x in the i-th cell;

6.4 Priority queues 97

�9 find the contents of the i-th cell;

as well as the operation

�9 find the index of the minimal element

(or one of the minimal elements). Any operation should run in time C logn (except
initialization, which should run in time Cn).

Solution. We use the trick from the heapsort algorithm. Assume that the array
elements are positioned at the leaves of a binary tree and each non-leaf vertex
contains the minimum of its two sons. To maintain this information and to trace
the path from the root to the minimal element, we need only C log n operations. �9

6.4.2. A priority queue does not employ First In First Out (FIFO) rule; only
an element's priority is important. An element is added to the priority queue with
some priority (which is assumed to be an integer). When an element is taken
from the queue, it is the element with the greatest priority (or one of the elements
with greatest priority). Implement a priority queue in such a way that adding and
removing elements requires logarithmic (in the size of the queue) time.

Solution. Here we follow the idea of the heapsort algorithm in its final form.
We place queue elements in an array x [1 . . k] and maintain the following invariant
relation: x [i] is higher (has larger priority) than its sons x [2i] and x [2i+1] ,
if they exist. (Therefore, each element is higher than all its descendants.) The
priority information is maintained along with the elements in the array, so we have
an array of pairs (element, priority). From the heapsort algorithm, we know how
to delete an element and maintain this relation. Another thing we need to do is
restore this relation after adding some element to the end of the array. This is done
as follows:

t:= the number of element added

~invariant: any element is higher than any its

descendant if the descendant is not t)

while t is not root and t is higher than its father

do begin

exchange t and its father

end;

Suppose the priority queue is formed by people standing at the vertices of a
tree (drawn on the ground); each person has one predecessor and at most two
successors. The idea of the algorithm is this: A highly-ranked individual added
to the queue begins to move toward the head of the queue. If a predecessor has
lower rank, this new individual takes the predecessor's place. This continues until
a higher-ranked predecessor is encountered. �9

Remark. The priority queue is an important data structure in simulation. In-
deed, events are taken to be queue elements where the priority is determined by
the time planned for the event.

7 Recursion

7.1 E x a m p l e s

Up to now, we have not use recursion in our examples. Instead we devote a
special section to this important programming technique. Recursion can be very
useful and convenient, and in some cases recursive solutions are much shorter than
nonrecursive ones.

When a recursive procedure is given, we have to show that:

(a) the procedure terminates;

Co) the procedure works properly (assuming it terminates).

Let us start with (b). Here it is enough to check that a procedure containing
a recursive call works properly assuming that the called program (with the same
name) works properly. Indeed, in this case, all the programs in the chain of recursive
calls (from the end of the chain to its beginning) work properly. In other words, a
recursive procedure is proved correct by induction.

To prove (a) we usually find a parameter that decreases as the recursion depth
increases and prove that it cannot decrease indefinitely.

7.1.1. Write a recursive program that computes the factorial of a positive
integer n (i.e., the product n ! = 1 �9 2 . . . n).

Solution. We apply the relations 1! = 1 and n! = (n - 1)! �9 n for n > 1.

procedure factorial (n: integer; var fact: integer);
I { f a c t := n ! }
begin

if n=l then begin
fact :=1;

end else begin {n>l}
factorial (n-l, fact);
{ f a c t = (n - l) ! }
fact:= fact*n;

end;
end ; �9

Using Pascal functions, we may write the above procedure as follows:

function factorial (n: integer): integer;
begin

if n=l then begin
I factorial := i;
end else begin {n>1}
[factorial := factorial(n-1)*n;
end;

end ;

Z 1 Examples 99

Please note that the identifier f a c t o r i a l has two different meanings. It is a local
variable as well as a function name. Fortunately, the difference is clear because the
function name has parentheses after it. However, in the case of a function without
parameters we have to be careful. (A common error occurs as the programmer
sees a variable whereas the compiler sees a recursive call. This error is sometimes
difficult to find.)

7.1.2. The factorial of 0 is defined as 0! = 1. Modify the program accord-
ingly. �9

7.1.3. Write a recursive program that computes the nonnegative integral power
of a real number. �9

7.1.4. Repeat the previous problem with the requirement: the recursion depth
(number of recursion levels) should not exceed C log n, where n is the exponent.

Solution.

function power (a,n: integer): integer;
begin

if n = 0 then begin

I power:= I;
end else if n mod 2 = 0 then begin
i power:= power(a,a, n div 2);
end else begin

I power:= power(a, n-1)*a;
end;

end;

7.1.5. What happens if we replace the line

power:= power(a,a, n div 2)

in the above program by the line

power:= power(a, n div 2)* power(a, n div 2)

Solution. The program is still correct, but becomes much slower. In this case,
one call of the function power generates two calls of the same function (with
identical parameters). Thus, the number of calls grows exponentially as a function
of the recursion depth. The program still has logarithmic recursion depth, but the
number of steps is now linear instead of logarithmic. �9

This difficulty can be avoided by writing

t:= power(a, n div 2);

power:= t,t;

100 7 RECURSION

or by using Pascal's square function (sqr).

7.1.6. Using the procedure w r i t e (x) for x = 0 . . . 9, write a recursive pro-
cedure that prints the decimal representation of a positive integer n.

Solution. The recursive solution allows us to produce digits from right to left
but print them from left to right:

procedure print (n:integer); {n>O}
begin

if n<lO then begin
I write (n);
end else begin

print (n div I0);
write (n mod i0);

end;
end;

7.1.7. The "Towers of Hanoi" puzzle consists of three vertical sticks and N
rings of different sizes. The rings are put on one of the sticks in such a way that
larger rings are beneath smaller ones. We are to move this tower onto another stick
one ring at a time. While moving the rings from one stick to another, we are not
allowed to put a larger ring onto a smaller one. Write a program that shows the list
of movements required to solve the problem.

Solution. The following recursive procedure moves i upper rings from the m-th
stick to the n-th stick (we assume that the remaining rings are larger and remain
untouched).

procedure move(i,m,n: integer);
I var s: integer;
begin

if i = 1 then begin
[writeln ('move ', m,
end else begin

s:=6-m-n; {s is the
move (i-1, m, s);
writeln ('move ', m,
move (i-1, s, n);

end;
end;

'->', n);

third stick; I+2+3 = 6}

'->', n);

(The first recursive call moves a tower of i - 1 rings onto the third stick. After that
the i-th ring is free and is moved to the remaining stick. The second recursive call
moves the tower onto the i-th ring.) �9

7.2 Trees: recursive processing 101

7.2 Trees: recursive processing

A binary tree is represented by a picture like this:

The vertex at the bottom of the tree is called the root. Two lines may go up from
any vertex: one going up-left and one going up-right. These two vertices are called
the left and right sons of the given vertex. Any given vertex may have either two
sons, one son (which may be either the left son or the right son), or no sons at all.
In the latter case, the vertex is called a leaf.

Let x be a vertex of tree. Consider this vertex together with its sons, grandsons,
etc. This is a subtree rooted at x , the subtree of all descendants of the vertex x.

Please note that in most textbooks trees have root at the top and grow down-
wards. In some books terms "son" ("father", "brother", etc.) are replaced by
"child" ("parent", "siebling", etc.).

In the following set of problems tree vertices are numbered by positive integers,
and all numbers are different. The number assigned to the tree root is kept in the
variable r o o t . There exist two arrays

1 , r : a r r a y [1 . . N] o f i n t e g e r

The left and right sons of the vertex number i have numbers 1 [i] and r [i] ,
respectively. If vertex x has no left (or right) son, the value of 1 [i] (resp., r [i])
is equal to 0. (Traditionally, we use the symbolic constant n i l instead of the literal

0.) Numbers of all vertices do not exceed N.

Let us stress that the vertex number has no connection with its position in a
tree and that some integers in 1 . . . N are not assigned to vertices at all. (Therefore,

some data in the arrays i and r are irrelevant.)

7.2.1. Assume that N = 7, r o o t ---- 3, and the arrays i and r are as follows:

102 7 RECURSION

i
l [i]
r [i]

Draw the corresponding tree.

Answer:

1 2 3 4 5 6 7
0 0 1 0 6 0 7
0 0 5 3 2 0 7

7.2.2. Write a program that counts all the vertices in a gwen tree.

Solu6on. Consider a function n (x) , which is defined as the number of ve~ices
in the subtree rooted at vertex number x. We agree that n (n i l) = 0 (and the
corresponding subtree is empty) and ignore the values n (s) for s not assigned to
any vertex. Here is a recursNe program that computes n (x) :

function n(x:integer):integer;

begin
if x = nil then begin

[n:= O;
end else begin

I n:= n(1Kx]) + n(rKx]) + 1;
end;

end;

(Vertices in the x-subtree are vertices in the subtrees rooted at its sons plus the
vertex x itself.) The procedure terminates because the recursive calls refer to trees

of smaller heights. �9

7.2.3. Write a program that counts the leaves in a tree.

Solution.

function n (x:integer):integer;

begin

if x = nil then begin

I n:= O;
end else if (1[xl=nil) and (rKxl=nil) then begin ~leaf)

Z3 The generation of combinatorial objects; search 103

I n:= i;
end else begin
] n:= n(l[x]) + n(r[x]);
end;

end;

7.2.4. Write a program that finds the height of a tree. (The root of a tree has
depth 0, its sons have depth 1, its grandsons have depth 2, etc. The height of a tree
is the maximal depth of its vertices.

[Hint. Let h (x) be the height of the subtree rooted at x. The function h may
be defined recursively.] �9

7.2.5. Write a program which for a given n counts all the vertices of depth n
in a given tree. �9

Instead of counting vertices, we may ask to list them (in some order).

7.2.6. Write a program that prints all vertices (one time each).

Solution. The procedure p r i n t _ s u b t r e e (x) prints all the vertices of the
subtree rooted at x (one time each). The main program consists of the call
print_subtree (root).

procedure print_subtree (x: integer) ;
begin

if x = nil then begin
I {nothing to do}
end else begin

writeln (x);
print_subtree (l[x]) ;
print_subtree (r [x]) ;

end;
end;

This program uses the following ordering of tree vertices: first the root, then the
left subtree, and then the right subtree. This order is determined by the order of
the three lines in the e lse-par t . Any of six possible permutations of these lines
gives a specific order of tree traversal. �9

7.3 The generation of combinatorial objects; search

Recursion is a convenient tool to write programs that generate elements of some
finite set. As an example, we now return to the problems of section 2.

7.3.1. Write a program that prints all sequences of length n composed of the
numbers 1 . . k. (Each sequence should be printed once, so the program prints k n
sequences.)

104 7 RECURSION

Solution. The program employs an array a [1] . . a [n] and an integer variable t .
The recursive procedure g e n e r a t e prints all sequences with prefix a [1] . . a [t] ;

after it terminates, the value of t and a [1] . . a I t] are the same as before the call.

procedure generate ;

I var i,j : integer;
begin

if t = n then begin
for i:=1 to n do begin

I write(a[i]) ;
end;
writeln;

end else begin {t < n}
for j:=l to k do begin

t : =t+l ;
a [t] :=j ;
generate ;
t:=t-1;

end;
end;

end;

The main program body now consists of two lines:

t:=O;
generate ;

Remark. For efficiency reasons we may move the commands t : = t + l and
t : = t - 1 out of the f or- loop. �9

7.3.2. Write a program that prints all permutations of the numbers 1 . . n (each
should be printed once).

Solution. The program utilizes an array a [1] . . a [n] that contains a permuta-
tion of numbers 1 . . n. The recursive procedure g e n e r a t e prints all permutations
that have the same first t elements as the permutation a. After the call, the values
of t and a are the same as before the call. The main program is:

for i:=l to n do begin a[i]:=i; end;

t:=O;

generate ;

The procedure definition is as follows:

procedure generate ;

I var i,j : integer;

7.3 The generation of combinatorial objects; search 105

begin
if t = n then begin

for i:=l to n do begin

I write(a[i]) ;
end;

writeln;
end else begin {t < n}

for j:=t+l to n do begin
�9 . e x c h a n g e a [t + l] and a [j]
t:=t+l;
generate;
t:=t-1;
�9 . e x c h a n g e a [t + l] and a [j]

end ;
end ;

end ;

7.3.3. Print all increasing sequences of length k constructed from the natural
numbers 1 . . n. (We assume that k < n; otherwise the sequences do not exist.)

Solution. The program utilizes an array a [1] . . a [k] and integer variable t .
Assuming that a [1] . . a I t] is an increasing sequence whose terms are numbers
in 1 . . n, the recursive procedure g e n e r a t e prints all its increasing extensions of
length k. (After the call, the values of t and a [1] . . a I t] are the same as before
the call.)

procedure generate;
I var i: integer;
begin

if t = k then begin
["''print a[l]..a[k]
end else begin

t:=t+l;
for i:=a[t-l]+l to t-k+n do begin

a [t] :=i;
generate;

end;

t:=t-1;

end;

end;

Remark. The f o r - l o o p may use n instead of t - k + n. The above version

is more efficient; we use that the (k - 1) - t h term cannot exceed n - l , the (k - 2) - t h
term cannot exceed n - 2 , etc.

106 7 RECURSION

The main program:

t:=l;
for j :=1 to 1-k+n do begin

a[1] : = j ;
generate ;

end ;

(Another possibili ty is to add to a an auxiliary element a [0] : =0, then let t : =0
and call the procedure g e n e r a t e once.) �9

7.3.4. Generate all representations of a given positive integer n as the sum of
a nonincreasing sequence of positive integers.

Solution. The program uses an array a [1 . . n] (the maximal number of sum-
mands is n) and an integer variable t . The procedure g e n e r a t e assumes that
a [1] . . . a [t l is a nonincreasing sequence of positive integers whose sum does
not exceed n, and prints all the representations that extend this sequence. For
efficiency reasons, the sum a I1] + �9 -- + a [t] is kept in an auxiliary variable s.

procedure generate ;
I var i: integer;
begin

if s = n then begin

I ...print a[l]..a[t]
end else begin

for i:=l to min(a[t], n-s) do begin
t:=t+l;
a [t] : = i ;
S : =s+i ;

generate ;

s:=s-i;
t:=t-l;

end;
end;

end;

The main program looks like

t:=l;
for j :=i to n do begin

aEi] :=j
s:=j;
generate ;

end;

Remark. A small improvement is possible, since we may move the statements
that increase and decrease t out of the loop. Also, instead of setting the value of

Z4 Other applications of recursion 107

s each time (s : =s+i) and restoring it (s : =s-i) we may increase it by i at each
time through the loop and restore the original value at the end of loop. Finally, we
may add an auxiliary element a [0] -- n and simplify the main program:

t:=O; s:=O; a[O] :=n; generate; �9

7.3.5. Write a recursive program that traverses a tree (using the same state-
ments and conditions as in section 3).

Solution. The procedure p r o c e s s above processes all the leaves above the
robot's position and returns the robot to the start position. Here is the recursive
definition:

procedure process_above;
begin

if is_up then begin
up_left;
process above;
while isright do begin

right;
process_above;

end;
down;

end else begin
] process;
end;

end;

7.4 Other applications of recursion

Topological sorting. Imagine n government officials, each of whom issues per-
missions of some type. We wish to obtain all the permissions (one from each
official) according to the rules. The rules state (for each official) a list of permis-
sions that should be collected before you can obtain this permission. There is no
hope of solving the problem if the dependency graph has a cycle (we cannot get
permission from A without having B's permission in advance, B without C , . . . ,
Y without Z, and Z without A). Assuming that such a cycle does not exist, we
wish to find a plan that secures one of the permitted orders.

Let us represent officials by points and dependencies by arrows. (If permission
B should be obtained before A, draw an arrow going from A to B.) We then have
the following problem. There are n points numbered from 1 to n. From each point
there are several (maybe zero) arrows that go to other points. (This picture is called
a directed graph.) The graph has no cycles. We want to put the graph vertices in
such an order that the end of any arrow precedes its beginning. This is the problem
of topological sorting.

108 7 RECURSION

7.4.1. Prove that it is always possible to topologically sort a directed graph
without cycles.

Solution. The absence of cycles implies that there exists a vertex with no
outgoing edges (otherwise, we can follow edges until we come to the already
visited vertex). This vertex with no outgoing edges gets number 1. After we
discard all the edges entering vertex number 1, we reduce our problem to the same
problem with a smaller number of edges. �9

7.4.2. Assume that a directed graph without cycles is stored in the following
manner: Its vertices are numbered 1 . . n. For any i in 1 . . n, the value of num [i]
is the number of edges leaving vertex i , and a d r [i] [1] a d r [i] [hum[i]]
are the numbers of vertices those edges enter. Write a (recursive) algorithm that
performs a topological sort in time C �9 (n + m), where m is the number of edges
(arrows) in the graph.

Remark. The solution to the preceding problem does not provide such an
algorithm directly; we need a more ingenious construction.

Solution. Our program prints the vertices in question (their numbers). It uses
an array

printed: array [l . . n] of Boolean;

such that printed [i] is true if and only if vertex i is already printed (this infor-
mation is updated each time a vertex is printed). We say that a sequence of printed
vertices is correct if (a) no vertex is printed twice, and (b) for any printed vertex
i all the edges leaving i enter the vertices that are printed before i .

~ r o c e d u r e add (i : 1 . . n) ;
{before: the sequence of printed vertices is correct}
{after: the sequence of printed vertices is correct

and includes i}
begin

if printed [i] then begin {i is printed already}
[{nothing to do}
end else begin {printed sequence is correct}

for j:=l to num[i] do begin
[a d d (a d r [i] [j]) ;
end;
{printed sequence is correct; all the edges going out
of i are entering the vertices already printed; thus,
we may print i correctly if it is not printed yet)

if not printed[i] then begin
[writeln(i) ; printed [i] := TRUE;
end;

end;
end ;

Z4 Other applications of recursion 109

The main program is:

for i:=l to n do begin
I printed[i]:= FALSE;
end;
for i:=l to n do begin

I add(i)
end;

Thetime bound willbe proven shortly.

7.4.3. The program abovecan be s implif iedifweremovethetest , replacing

if not printed[i] then begin
I writeln(i); printed [i]:= TKUE;
end;

by

writeln(i); printed [i]:= TRUE;

(Why?) How should we change the specification of the procedure?
Solution. The specification of the procedure is now as follows:

{before: the sequence of printed vertices is correct}
{after: the sequence of printed vertices is correct

and includes i; all newly printed vertices
can be reached from i}

7.4.4. The correctness of the program depends on the assumption about the
absence of cycles. However, we did not mention this assumption in the solution
of problem 7.4.2. Why?

Solution. We omitted the proof that the program terminates. Let us give it now.
For any vertex we define its level as the maximal length of a path going out of it
along the edges. The level is finite because there are no cycles. Vertices of level
0 have no outgoing edges. For any edge the level of its endpoint is smaller than
the level of its starting point by at least 1. When add (i) is executed, all recursive
calls refer to vertices whose levels are smaller. �9

Now we return to the time bound. How many calls add (i) are possible for
some fixed i? The first call prints i; all others check that i is printed and exit
immediately. It is also clear that all the calls a d d (i) are induced by the first
calls of a d d (j) for all j such that the edge from j to i is present in the graph.
Therefore, the number of calls a d d (i) is equal to the number of incoming edges
for vertex i. All the calls except the first one require O(1) time. The first requires
time proportional to the number of outgoing edges (if we ignore the time needed

110 7 RECURSION

to perform add (j) for endpoints of outgoing edges). Therefore the total time is
proportional to the total number of edges (plus the number of vertices). �9

Connected component of a graph. An undirected graph is a set of points
(vertices) some of which are connected by lines (edges). An undirected graph is
a special case of a directed graph where for each edge there is another edge going
in the reverse direction.

The connected component of vertex i is the set of all vertices that are reachable
from i via graph edges. Since the graph is undirected, the relation "j belongs to
the connected component of i " is an equivalence relation.

7.4.5. Suppose an undirected graph is given (for each vertex its neighbors are
listed; see the problem about topological sorting for details). Write an algorithm
that for a given i prints all the vertices of the connected component of • (each vertex
is printed once; no other vertices should be printed). The number of operations
should be proportional to the total number of vertices and edges in the connected
component.

Solution. The program will "blacken" vertices of the graph as they are printed.
(Initially the vertices are assumed to be white.) By "white part" of the graph we
mean that part of the graph that remains after we remove all black vertices and all
edges adjacent to black vertices. The procedure a d d (i) blackens the connected
component of i in the white part of the graph (and does nothing if i is already
black).

procedure add (i:l..n);
begin

if i is black then begin

[{nothing to do}

end else begin
�9 �9 i and mark i as black

for all j that are neighbors of i do begin

I add(j);
end;

end;
end;

Let us prove that this procedure works properly (assuming that all recursive calls
work properly). Indeed, it cannot blacken anything except the connected compo-
nent of i. Let us check that all vertices in the connected component are blackened
(and printed). Let k be a vertex that is reachable from x via path i ~ j --+ �9 .. -+ k,
which includes only white vertices (and goes along graph edges). We may assume
that this path does not visit vertex i again. Among all the paths, we consider the
path with the smallest j (in the order they are considered in the for-loop). Then
after the calls add (m) for preceding neighbors m, no one of the vertices in the path
j ~ . . . ~ k becomes black (otherwise, j is not minimal). Therefore, k belongs
to the connected component of the white part at the time when add(j) is called.

7.4 Other applications of recursion 111

To prove that the algorithm terminates, it is enough to mention that the number
of white vertices decreases at each recursion level.

Let us estimate the number of operations. Each vertex is blackened at most
once, during the first call add (i) (for a given i). All subsequent calls occur when
one of the neighbors is blackened. Therefore, the number of those calls is limited by
the number of neighbors. And the only thing that happens during those calls is the
check that i is already black. On the other hand, during the first call to add (i) all
neighbors are considered and corresponding recursive calls are made. Therefore
the total number of operations related to vertex i (not including the operations
performed during the recursive calls add (j) for its neighbors j) is proportional to
the number of neighbors of i. The upper bound stated in the problem follows. �9

7.4.6. Solve the same problem for a directed graph (that is, print all the vertices
accessible from a given vertex). Note: the graph may contain cycles.

Solution. Essentially the same program can be used. The line "for all neighbors
of a vertex" should be replaced by "for all endpoints of outgoing edges". �9

Hoare Quicksort. A well-known sorting algorithm called "quicksort" is a re-
cursive algorithm considered to be one of the fastest algorithms available. Assume
that an array a [1] . . a [n] is given. The recursive procedure s e r r (1, r : i n t e g e r)
sorts an interval of the array awith indices in (1, r], that is, a F I + I] . . a [r] (leaving
the remaining part of the array unchanged).

procedure sort (1,r: integer);

begin

if 1 = r then begin

I {nothing to do - the interval is empty}

end else begin

..find a random number s in the interval (l,r]

b := a [s]

..rearrange the elements of the interval (l,r]

into three parts:

the elements smaller than b - the interval (I,II]

the elements equal to b - the interval (ll,rr]

then elements greater than b - the interval (rr,r]

sort (i,ii);

sort (rr,r);

end;

end;

How do we rearrange the elements of the interval according to the three categories
listed in the above algorithm? As problem 1.2.32 (p. 28) shows, it can be done in
time proportional to the length of the interval. Termination is guaranteed because
the length of the interval decreases by at least 1 for each recursion level.

112 7 RECURSION

7.4.7. (For readers familiar with probability theory) Prove that the expected
number of operations of the Hoare quicksort algorithm does not exceed Cn log n
where the constant C does not depend on the array to be sorted.

[Hint. Let T(n) be the maximal value of the expected number of operations
(the maximal value is computed over all possible inputs of length n). The following
inequality holds:

1
T(n) < Cn + - ~ (T(k) + T(l))

n
k+l=n-1

Indeed, the first summand corresponds to the stage where all elements are rear-
ranged (divided into "less than", "equal to", or "greater than" parts). The second
summand is an average value taken over all possible choices of a random number
s. (To be precise, we should note that some of the elements may be equal to the
threshold, so instead of T (k) and T (l) we should use the maximum of T (x) over all
x not exceeding k (or l), but this makes no difference.) Now, we prove by induction
over n that T (n) < Ctn In n. To compute the average value of x In x for all integer
x such that 1 < x < n - 1, we integrate f ~ x l n x d x by parts as f l n x d (x 2) .
When C t is large enough, the term Cn on the right-hand side is absorbed by the
integral f x 2 d In x and the inductive step is finished.] �9

7.4.8. An array of n different integers and a number k is given. Find the k-th
element of the array (in increasing order) using at most Cn operations (where C
is some constant that does not depend on k and n).

Remark. Sorting algorithms can be used, but the number of operations
(Cn logn) is too big. The naive algorithm (find the minimal element, then the next
one , then the k-th one) requires about kn operations (which is not allowed,
because the constant C must not depend on k).

[Hint. An elegant method (though hardly practical since the constants are rather
big) goes as follows:

A. Separate the array into n/5 groups each containing 5 elements. Sort each
group.

B. Consider the median (third) elements of each group. This gives an array of
n/5 elements. Calling our algorithm recursively, find the median element of this
array. Call it M.

C. Compare all other elements of the initial array with M. They are divided
into two groups (elements less than M and elements greater than M). Count the
elements in both groups. Then we know which category the required (k-th) element
belongs to and what its number is inside that part.

D. Apply the algorithm recursively to that part to find the required element.
Let T(n) be the maximal possible number of operations when this algorithm

is applied to arrays of length not exceeding n (the number k may be arbitrary). We
have the following bound:

T(n) <_ Cn + T(n/5) + T(0.7n).

7.4 Other applications o f recursion 113

The last term may be explained as follows. Each of the three categories contains
at least 0.3n elements. Indeed, about half of all the median elements (in 5-element
sets) are smaller than M. And if a median element of a 5-element set is smaller
than M, then at least two more elements are smaller than M. Therefore, 3/5 of
half of all elements are smaller than M.

Now the bound T(n) < Cn can be proved by induction. The crucial point is
that 1/5 + 0 . 7 < 1.] �9

8 Recursive and nonrecursive programs

For a universal programming language (like Pascal) recursion is, in a sense, re-
dundant: for any recursive program it is possible to write an equivalent program
without recursion. Of course, this does not mean that recursion should be avoided,
because it allows us to provide elegant solutions to otherwise complicated prob-
lems.

However, we want to show some methods that allow us to eliminate recursion
in some cases and transform a recursive program into an equvalent nonrecursive
program.

What for? A pragmatic answer is that many computers do not like recursion:
recursive programs may be two or three times slower than equivalent nonrecursive
programs. (Unfortunately, this is the case for some modem computers using so-
called RISC processors.) Another problem is that some programming languages
do not allow recursion at all. But the main reason is that elimination of recursion
is sometimes very instructive.

8.1 Table of values (dynamic programming)

8.1.1. The following recursive procedure computes binomial coefficients. Write
an equivalent program without recursion.

function C(n,k: integer):integer;

I {n >= O; 0 <= k <=n}
begin

if (k = O) or (k = n) then begin

I C:=l;
end else begin {O<k<n}

I C:= C(n-l,k-1)+C(n-l,k)
end;

end;

Remark. C(n, k) = (~) is the number of k-element subsets of an n-element
set. The identity

(~) = (~ - ~) - k - (n k 1)

is proved as follows: Fix some element x of the n-element set. Then all k-element
subsets are divided into two categories: those that contain x and those that do not.
The elements of the first type are in one-to-one correspondence with the (k - 1)-
element subsets of a (n - 1)-element set (just discard x); the elements of the second
type are k-element subsets of a (n - 1)-element set.

8.1 Table of values (dynamic programming) 115

The table of (~)

1
1 1

1 2 1
1 3 3 1

1 4 6 4

is called the Pascal triangle (the same Blaise Pascal who gave his name to a
programming language). In this triangle, any element (except the ls on the left
and the right) is the sum of the two elements above it.

Solution. One may use the formula

kt (n - k)!

We do not use it because we want to show more general methods to eliminate
recursion. Our program fills the table of values C (n, k) = (~) for n = 0, 1, 2
until it reaches the element in question. �9

8.1.2. Compare the computation time for the recursive and nonrecursive ver-
sions of the binomial coefficient algorithm, and similarly for the amount of memory
used.

Solution. The table used in the nonrecursive version occupies space of order
n 2. We can reduce it to n if we recall that only one line of the Pascal triangle is
needed to compute the next line. The time required is still n 2.

The recursive program requires much more time. Indeed, the call C (n , k)
causes two calls of type C (n - 1 , . .) , those two calls cause four calls of type
C (n - 2 , . .) , etc. Hence, the time is exponential (of order 2n). The recursive
procedure uses O (n) memory (we have to multiply the recursion depth, that is n,
by the amount of memory required by one copy of the procedure, that is O (1). �9

The reason why the nonrecursive version is so much faster is the following.
In the recursive version, the same computations are repeated many times. For
example, the call C (5 , 3) causes two calls of C (3 , 2) :

C(5,3)
j .,.,

C(4 ,2) C (4 ,3)

C (3 , 1) C (3 ,2) C (3 ,3)

When we fill the table, we compute the value for each cell only once, hence the
economy of the nonrecursive method. This method is called dynamic program-
ming, and is useful when the amount of information to be stored in the table is not
too large.

116 8 RECURSIVE AND NONRECURSIVE PROGRAMS

8.1.3. Compare the recursive and the (simplest) nonrecursive algorithm to
compute the Fibonacci numbers defined as the sequence

(I)l ~--- ~2 -m- 1; qb,, = qbn_ 1 + qbn_ 2 (n > 2). �9

8.1.4. A convex polygon with n vertices is given (by a list of coordinates of its
vertices). It is cut into triangles by non-intersecting diagonals; to do this, we need
exactly n - 3 diagonals (proof by induction over n). The cost of the triangulation
is defined as the total length of all the diagonals used. Find the minimal cost of the
triangulation. The number of operations should be limited by a polynomial of n.
(This requirement excludes exhaustive search, since the number of possibilities is
not bounded by any polynomial.)

Solution. Assume that the vertices are numbered from 1 to n and the numbers
increase in the clockwise direction. Let k and l be two numbered vertices and
suppose l > k. By A(k, l) we denote a polygon cut from the original polygon by
segment k-l. (The segment k-l cuts the polygon into two polygons, one of which
contains the 1-n side; A(k, l) is the other one.) The initial polygon is denoted by
A(1, n). When l = k + 1, we have a degenerate polygon with only two vertices.

By a(k, l) we denote the minimal cost of triangulation of A(k, l). Let us write a
recurrence formula for a(k, l). When I = k + 1, we have a degenerate polygon
with two vertices and let a(k, l) = 0. When I = k + 2, we have a triangle, and
a(k, l) = 0. Assume that l > k + 2.

The chord k-1 is a side of the polygon A(k,/); therefore, it is a side of one of the
triangles of the triangulation. The opposite vertex of this triangle has some number

8.1 Table of values (dynamic programming) 117

i. It may be any of the vertices k + 1 , l - 1, and the minimal triangulation
cost can be computed as

min{(the length of k-i) + (the length of i-l) + a (k, i) + a (i, l)}

where the minimal value is taken over all i = k + 1 1 - 1. We should also
take into account that for q = p + 1, the segment p-q is one of the sides and its
length should be counted as 0 for our purposes.

This formula allows us to fill the table of values a (k, l) in order of increasing
number of vertices (which is I - k + 1). The corresponding program uses memory
of order n 2 and time of order n 3 (one application of the recurrent formula requires
a search for a minimal value among not more than n numbers). �9

8.1.5. An m x n matrix is a rectangular table with m rows and n columns filled
with numbers. An m x n matrix may be multiplied by an n x k matrix (the width
of the left factor must be equal to the height of the matrix on the right) giving m x k
matrix as the result. The cost of such a multiplication is defined as rank (this is the
number of multiplications required by the standard multiplication algorithm, but
this is not important). Matrix multiplication is associative, therefore the product of
s matrices may be computed in any order. For each ordering, consider the total cost
of all matrix multiplications. Find the minimal cost when the sizes of the matrices
are given. The running time of the algorithm should be bounded by a polynomial
over the number of factors (s).

Example. Matrices of size 2 x 3, 3 x 4, 4 x 5 can be multiplied in two different
ways. The cost is e i t h e r 2 . 3 . 4 + 2 . 4 - 5 = 64 o r 3 - 4 . 5 + 2- 3 - 5 = 90.

Solution. Suppose the first matrix is associated with an interval [0, 1], the
second one is associated with [1, 2] , . . . , and the s-th matrix is associated with
[s - 1, s]. Adjacent matrices (for segments [i - 1, i] and [i, i + 1]) have a common
dimension so we can multiply them. Let us denote this common dimension by
d[i]. Therefore, the initial data of our problem is an array d[0] d[s].

Let a (i, j) be the minimal cost of computation of the product of all the matrices
in the interval [i, j] (here 0 < i < j < s). The cost in question is a(0, s). The
values o f a (i, i + 1) are equal to 0 (we have only one matrix and nothing to multiply).
The recurrence formula is as follows:

a(i, j) = min{a(i, k) § a(k, j) § d[i]d[k]d[j]}

where the minimal value is computed over all possible places of the last multipli-
cation, that is, over all k -= i + 1 j - 1. Indeed, the product of all matrices
in the interval [i, k] is a matrix of size d[i] • d[k], the product of all the matri-
ces in the interval [k, j] has size d[k] • d[j], and the cost of multiplication is

d[i]d[k]d[j], m
Remark. The last two problems are rather similar. This is clear if we associate

matrix factors with the sides 1-2, 2 - 3 , . . . ,(s - 1)-s of a polygon, and associate
any chord i - j with the product of all matrices covered by this chord.

118 8 R E C U R S I V E A N D N O N R E C U R S I V E P R O G R A M S

8.1.6. A one-way railway has n stops. We know the price of tickets from the
i-th stop to the j - th stop (for i < j , since there is no traffic in the other direction).
Find the minimal travel cost from stop 1 to stop n (taking into account possible
savings due to intermediate stops). �9

We have seen that sometimes we get a more effective algorithm by replacing
the recursion with a table that is filled cell by cell. A similar effect is achieved
if we retain the recursive algorithm, but store the values of the function already
computed and do not compute them again when the second request occurs. This
trick is called memoi za t ion .

8.1.7. A finite set and a binary operation (u, v) ~-~ u o v defined on this set
are given (the operation may be noncommutative and nonassociative). We have n
elements al an from the set and one more element x. Check if it is possible
to insert parentheses in the expression a l e �9 �9 �9 o an in such a way that the result is
equal to x. The number of operations should not exceed C n 3 for some constant C
(which depends on the cardinality of the set given).

Solu t ion . Fill a table that contains (for any subexpression ai o . . �9 o a j) the set
of all possible values (for different placements of parentheses). �9

The same trick is used in the polynomial algorithm that tests whether a given
word belongs to a context-free language (see section 13.1, p. 179).

The next problem (knapsack problem) was mentioned in section 3.2, p. 59.

8.1.8. An array Xl Xn of n positive integers and an integer N are given.
Check if N is equal to the sum of some subset of {Xl Xn}. T h e number of
operations should be of order N n .

[Hint. After i iterations, keep the set of all numbers in 0 N that can be
represented as a sum of some subset of {Xl �9 .. xi}.] �9

8.2 Stack of postponed tasks

We illustrate another way to eliminate recursion using the Towers of Hanoi (p. 100)
problem as an example.

8.2.1. Write a nonrecursive program that prints the sequence of moves for
Towers of Hanoi problem.

Solu t ion . Recall the following recursive program that moves i upper rings
from stick m to stick n:

procedure move(i,m,n: integer) ;
I var s: integer;
begin

if i = i then begin
l writeln ('move ', m, '->', n);

8.2 Stack of postponed tasks 119

end else begin

s:=6-m-n; {s is the unused stick; 1+2+3=6}

move (i-1, m, s);

writeln ('move ', m, '->', n);

move (i-1, s, n);

end ;

end;

This program reduces the task "move i rings from m to n" to three tasks of the
same type. Two of them deal with i - 1 rings; one of them deals with 1 ring.

Try to execute this program manually. You'll see that it is rather difficult to
remember which tasks are still to be done on different recursion levels.

The nonrecursive program uses a stack of postponed tasks, whose elements are
triples (i, m, n). Each triple is interpreted as the request "move i (upper) rings
from stick m to stick n". Tasks must be performed in the order they appear on the
stack (the request on the top of the stack is the most urgent one). We obtain the
following program:

p r o c e d u r e m o v e (i , m , n : i n t e g e r) ;
b e g i n

make the stack empty

put <i,m,n> into the stack

{invariant: it remains to process

all the requests in the stack}

while stack is not empty begin

take the top of the stack into <j,p,q>

if j = 1 then begin

I writeln ('move ', p, '->', q);
end else begin

s:=6-p-q; {s is the third stick; 1+2+3=6}
put the triple <j-l,s,q> into the stack

put the triple <l,p,q> into the stack

put the triple <j-l,p,s> into the stack

end;

end ;

end;

(Please note that the triple put on the stack first will be the last request processed.)
The stack of triples may be implemented as three separate stacks or one stack of
records containing three integers (using a r e c o r d type in Pascal). �9

8.2.2. (Communicated via A.K. Zvonkin by Andrzei Lissowski.) There are
other nonrecursive solutions of the Towers of Hanoi problem. Prove the correctness
of the following solution: the unused stick (the stick that is neither the source nor
the target of the move) should alternate cyclicly. (Another rule: alternately move
the smallest ring and another ring, always moving the smallest one clockwise.) �9

120 8 RECURSIVE A N D NONRECURSIVE PROGRAMS

8.2.3. In the recursive program that prints a decimal number (7.1.6), replace
the recursion by a stack.

Solution. The digits are generated from right to left and put onto the stack.
They are taken from the stack (in the reverse order) and printed. �9

8.2.4. Write a nonrecursive program that prints all the vertices of a binary tree.

Solution. In this case, the stack of postponed tasks will contain requests of
two types: "print a vertex" and "print all the vertices of a subtree rooted at a given
vertex". (We consider n i l to be the root of an empty tree.) Therefore, the stack
element is a pair (request type, vertex number).

When an element is taken off the stack, we either process it immediately (if it
is a request of the first type) or put onto the stack the three requests caused by it
(in one of six possible orderings). �9

8.2.5. What if we only want to count the number of vertices but not print
them?

Solution. Instead of printing a vertex, we add 1 to a counter. In other words,
the invariant is the following: (total number of vertices) = (counter) + (the total
number of vertices in the subtrees whose roots are in the stack). �9

8.2.6. For some orderings (among six possible), the program that prints all
vertices may be simplified. Show these simplifications.

Solution. If the order required is

root, left subtree, right subtree,

then a request to print the root may be processed immediately; thus we do not need
to put it onto the stack.

A more complicated construction is necessary for the case

left subtree, root, right subtree.

In this case, all the requests in the stack (except the first one, which requests to
print some subtree) are grouped into pairs

print vertex x, print "right subtree" of x

(that is, the subtree rooted at the right son of x). We can combine such pairs into
requests of a special type and use an additional variable for the first request; in this
way, all requests on the stack are homogenuous (have the same type).

For the symmetric case, similar simplifications are possible. Thus, for at least
four of six possible orderings the program may be simplified. �9

Remark. Another program that prints all the tree vertices is based on a program
constructed in section 3. That program uses the command "down", which is not
currently provided in the representation of trees. Therefore, we must keep a list of
all vertices from the root to the current position (this list behaves like a stack).

8.3 Difficult cases 121

8.2.7. Write a nonrecursive version of Hoare's quicksort algorithm. How do
we guarantee that the size of the stack does not exceed C logn, where n is the
number of elements to be sorted?

Solution. The stack is filled with pairs (i, j) , which are interpreted as requests
to sort the corresponding intervals of the array. All such intervals are disjoint,
therefore the size of the stack does not exceed n. To insure that the size of the
stack is logarithmic, we follow the rule: "a larger request is pushed onto the stack
first". Let f (n) be the maximal size of the stack that may appear when sorting
some array of length n using this rule. We desire an upper bound for f (n) . Indeed,
after the array is split into two fragments, the shorter one is sorted first (whereas
the request to sort the longer one is kept on the stack); then the longer fragment is
sorted. At the first stage, the size of the stack does not exceed f (n / 2) + 1, and at
the second stage it does not exceed f (n - 1); therefore

f (n) <_ m a x { f (n~2) + 1, f (n - 1)}

A simple induction argument gives f (n) = O(logn). �9

8.3 Difficult cases

Let f be a function with nonnegative integer arguments and values defined by the
equations

f(0) = a,

f (x) = h(x , f (l (x))) (x > O)

Here a is some number while h and I are known functions. In other words, the
value of f at x is determined by the value of f at l(x). We assume that for any x,
the sequence

x, l(x) , l (l (x))

reaches 0. If we know in addition that l (x) < x for all x, the computation of f is
trivial; just compute f (0) , f (1) , f (2) sequentially.

8.3.1. Write a nonrecursive program to compute f in the general case.

Solution. To compute f (x) , compute the sequence

l (x) , l (l(x)) , l (l (l (x)))

until 0 appears. Now compute the values of f for all terms of this sequence, going
from right to left. �9

The next example involves a more complicated case of recursion. (This exam-
ple is hardly practical, and if it did appear in practice, it would probably be better
to leave the recursion as is.)

122 8 RECURSIVE AND NONRECURSIVE PROGRAMS

Assume that a function f with nonnegative integer arguments and values is
defined by the equations

f (0) = a,

f (x) = h(x, f (l (x)) , f (r (x))) (x > 0),

where a is a constant, and l, r, h are (known) functions. We assume that if one
starts from any nonnegative integer and applies functions I and r in some arbitrary
order, one eventually gets 0.

8.3.2. Write a nonrecursive program to compute f .

Solution. It is possible to construct a tree that has x at the root, and has l(i)
and r(i) as sons of vertex i (unless i is equal to 0, in which case it is a leaf). Then
we may compute the values of f from the leaves to the root. However, we'l l use
another approach.

By a reverse Polish notation (orpostfix notation) we mean an expression where
the function symbol is placed after all the arguments; parentheses are not used. Here
are several examples:

f (2) 2 f
f (g (2)) 2 g f
s(2, t(7)) 2 7 t s
s(2, u(2, s(5,3)) 2 2 5 3 s U S

Postfix notation allows us to compute the value of an expression easily using a so-
called stack calculator. This calculator has a stack that we assume to be horizontal
(the top of the stack is on the right), as well as number and function keys. When
a number key is pressed, the number in question is put onto the stack. When
a function key is pressed, the corresponding function is applied to the several
arguments (according to its arity) taken from the stack. For example, if the stack
contains the numbers

2 3 4 5 6

and the function key s is pressed (we assume that s is a function of two arguments),
the new content of the stack is

2 3 4 s(5, 6)

Now let us return to our problem. The program employs a stack whose elements
are nonnegative integers. It also uses a sequence of numbers and the symbols f , 1,
r , h (which we consider a sequence of keys on a stack calculator). The invariant
relation:

If the number stack represents the current state of a stack calculator
and we press all the keys in the sequence, the stack contains only one
number that is the required answer.

8.3 Diflicnlt cases 123

Suppose we want to compute f (x) . Put the number x onto a stack and consider a
sequence that contains only one symbol f . (The invariant relation is true.) Then
the stack and the sequence are subjected to the following transformations:

old old new new
stack sequence stack sequence

X x P X x P
X x 1 P X l (x) P
X x r P X r (x) P

X x y z laP X h(x , y, z) P
X O f P X a P
X x f P X x x l f x r f h P

Here x, y, z are numbers, X is a sequence of numbers, and P is a sequence of
numbers and the symbols f , 1, r , h. In the last line, we assume that x ~ 0. This
line corresponds to the equation

f (x) = h(x , f (l (x)) , f (r (x)))

in postfix notation.
The transformations are performed until the sequence is empty. At that moment

the invariant relation guarantees that the stack contains only one number, and this
number is the answer required.

Remark. The sequence may be considered as a stack of delayed tasks (whose
top is on the left). �9

9 Graph algorithms

9.1 Shortest paths

This section is devoted to different versions of one problem. Suppose a country
has n cities numbered 1 . . n. For each pair of cities i and j , an integer a [i] [j l
is given that is the cost of a (nonstop) plane ticket from i to j . We assume that
flights exist between any two cities, and that a [k] [k] : 0 for any k. In general,
a [i] [j] may be different from a [j] [i] . Our goal is to find the minimal cost of
a trip from one city (s) to another one (t) that takes into account all the possible
travel plans (nonstop, one stop, two stops etc.). This minimal cost does not exceed
a [s] [t] but may be smaller. We allow a [i] [j] to be negative for some i and j
(you are paid if you agree to use some flight).

In the following problems, we compute the minimal cost for some pairs of
cities, but first we have to check that our definition is correct.

9.1.1. Assume there is no cyclic travel plan with negative total cost. Prove
that in this case a travel plan with minimal cost exists.

Solution. If a travel plan is long enough (includes more than n cities), it has a
cycle, which may be omitted (because of our assumption). Now there are only a
finite number of travel plans involving n or fewer cities. �9

Throughout the rest of this subsection, we assume that this condition (absence
of negative cycles) is satisfied. (It is evident if all edge costs are nonnegative, but
the latter condition is not always imposed.)

9.1.2. Find the minimal travel cost from the first city to all other cities in time
O(n3).

Solution. By MinCost (1 , s , k) we denote the minimal travel cost from 1 to s
with less than k stops. It is easy to see that MinCost(1, s, k+l) is equal to

min{MinCost(l,s,k), min {MinCost(l,i,k)+a[i][s]}}
i=l..n

The minimum on the right-hand side is taken over all possible places of the last
stop before the final destination.

As we have seen in the solution of the preceding problem, the cycles can be
eliminated, so the answer in question is MinCost (1 , i , n) for all i = 1 . . n. We
get the following program:

k:= i;
for i := 1 to n do begin x[i] := a[1] [i]; end;
{invariant: x[i] = MinCost(1,i,k)}
while k <> n do begin

for s := i to n do begin

I Y[S] := x[s];

9.1 Shortest paths 125

for i := i to n do begin

if y[s] > x[i]+a[i] Is] then begin

I y[s] := x[i]+a[i] [s];

end ;
end
{y[s] = MinCost(1,s,k+l)}

end;

for i := I to n do begin x[s] := y[s]; end;

k :=k+l;

end; �9

This algorithm is called the dynamic programming algorithm, or Ford-Bellman
algorithm.

9.1.3. Prove that the algorithm remains correct if the array y is not used, that
is, if all changes are made in array x (just replace all y ' s by x 's and delete redundant
lines).

Solution. In this case the invariant is

MinCost (l,i,n) _< x[i] _< MinCost (l,i,k). �9

This algorithm may be improved at least in two ways. First, with the same
running time O(n3), we can find the minimal travel cost i --~ j for all pairs i , j
(not just i = 1). Second, we can compute all travel costs from a given vertex in
time O (n2). (In the latter case, however, we require all flight costs a [i] [j] to be
nonnegative.)

9.1.4. Find the minimal travel costs i --~ j for all i , j in time O(n3).

Solution. For any k ---- 0 . . n consider the minimal travel cost from i to j
assuming intermediate stops are allowed only in cities 1 . . k. This cost is denoted
by A (i , j ,k) . Then

A (i , j , 0) = a [i] [j] ,

A (i , j , k + l) = m i n { A (i , j , k) , A (i , k § + A (k + l , j , k)]

(we either ignore city k + l or use it as an intermediate stop; there is no reason to
visit it twice). �9

This algorithm is called the Floyd algorithm.

9.1.5. Assume all costs a [i] [j] are nonnegative. Find the minimal travel
cost 1 ~ i for all i = 1 . . n in time O(n2).

Solution. Our algorithm will mark cities during its operation. Initially, only
city number I is marked. Finally, all cities are marked. For all the cities, a "current
cost" is maintained. This cost is a number whose meaning is explained by the
following invariant relation:

126 9 GRAPH ALGORITHMS

�9 for any marked city 5., the current cost is the minimal cost of travel 1 --> 5.;
it is guaranteed that this minimal cost is obtained via a path through marked
cities only;

�9 for any non-marked city • the current cost is the minimal cost among all
travel plans 1 ~ 5. such that all intermediate stops are marked.

The set of marked cities is extended using the following observation:

For a non-marked city with minimal current cost (among all non-
marked cities), the current cost is the true cost and is reached via a
path going through marked cities only.

Let us prove this. Assume that a shorter path exists. Consider the first non-
marked city along this path. Even if we stop the trip in that city, the cost is already
greater? (All costs are nonnegative.)

When a city is selected in this way, the algorithm marks it. To maintain the
invariant, we update the current cost for non-marked cities. It is enough to take
into account only those paths where the newly marked city is the last intermediate
stop. This is easy to do since the minimal travel cost from the starting point to the
newly marked city is already known.

If we store the set of marked cities in a Boolean array, we need O (n) operations
per city. �9

This algorithm is called the Dijkstra algorithm.

The problem of finding the shortest path has a natural interpretation in terms
of matrices. Assume that A is the cost matrix for some carrier and B is the cost
matrix for another carrier. Suppose we want to make one stop along the way, using
the first carrier (with matrix A) for the first flight and the second carrier (B) for the
second flight. How much should we pay for the trip from 5. to j ?

9.1.6. Prove that the costs mentioned above form a matrix that can be computed
using a formula similar to the standard formula for matrix multiplication. The only
difference is that the sum is replaced by a min operation and the product is replaced
by a sum:

Cij = min {Aik -1- Bkj} �9
k=l,...,n

9.1.7. Prove that matrix "multiplication" defined by the preceding formula is
associative. �9

9.1.8. Prove that finding the shortest paths for all pairs of cities is equivalent to
computation of A ~176 for the cost matrix A in the following sense. For the sequence
A, A 2, A 3 , . . . there exists an N such that all elements A N, A N+I, etc. are equal
to the matrix whose elements are minimal travel costs. (We assume that there are
no cycles with negative cost.) �9

9.2 Connected components, breadth and depth search 127

9.1.9. How large should N be in the preceding problem? �9

The usual (unmodified) matrix multiplication may also be applied, but in a
different situation. Let us assume that only some flights exist and let a [i] [j] be
equal to 1 if there is a (direct) flight from i to j ; otherwise, a [i] [j] =0. Compute
the k-th power of the matrix a (in the usual sense) and consider its (i , j)-th
element.

9.1.10. What is the meaning of this element?

Solution. It is the number of different travel plans from i to j using k flights
(and k - 1 intermediate stops). �9

Let us return to our original problem (finding the shortest path). We can easily
extend our algorithms to the case where not all pairs of cities are connected by direct
flights. Indeed, we may assume that nonexisting flights are infinitely expensive (or
just very expensive), so our algorithms may be applied in this case too. However, a
new question arises. The number of actual flights may be much smaller than n 2, so
it is of interest to find algorithms that are more effective in this special case. First,
we change the representation of the initial data: for each city we keep the number
of outgoing flights and an array containing the destination points and costs.

9.1.11. Prove that the Dijkstra algorithm may be modified in such a way that
if the number of cities is n and the total number of flights is m, then no more that
C(n + m) logn operations are required.

[Hint. What should we do at each step? We must choose a non-marked city with
minimal current cost and update the data for all cities that can be reached by direct
flight from this city. If there were an oracle to inform us which of the unmarked
cities has minimal current cost, C(n + m) operations would be enough. And an
additional logn-factor in the running time allows us to maintain the information
needed to find the minimal value in the array (see the problem on p. 97).] �9

9.2 Connected components, breadth and depth search

The simplest possible case of the shortest path problem is when all the flight costs
are 0 or + ~ . This means that we want to know whether it is possible to travel
from i to j , but do not worry about the price. In other words, we have a directed
graph (a picture composed of points and arrows that connect some of the points)
and we want to know which points are reachable from a given point via the arrows.

For this special case the algorithms given in the preceding section are not
optimal. Indeed, a faster recursive program that solves this problem was given
in section 7; its nonrecursive version was shown in section 6. Now we add the
following additional requirement: We not only want to list all the points (vertices)
that are reachable from a given vertex via arrows (edges), but we also want to list
them in a specific order. Two of the most popular instances of this are the so-called
"breadth-first" and "depth-first" search.

128 9 GRAPH ALGORITHMS

Breadth-first search

We are to list all the vertices of a directed graph that are reachable from a
given vertex. The order is determined by the distance (minimal number of edges
between a vertex and the given vertex). This list solves the answer to the problem
of minimal travel cost when all the edges have cost 1 or +c~.

9.2.1. Find an algorithm that performs breadth-first search in time Cm, where
m is the total number of outgoing edges of all reachable vertices.

Solution. This problem was considered in section 6, p. 96. Here we give
a detailed solution. Let num[i] be the number of outgoing edges for vertex i ,
and let ou t [i] [1] ou t [i] [nura[i]] be the terminal vertices of the edges
emanating from vertex i. Here is the program (as it was written before):

)rocedure Print_Reachable (i: integer) ;

{print all the vertices reachable from i,

including the vertex i itself}

var X: subset of 1..n;

P: subset of 1..n;

q, v, w: l..n;

k: integer;

begin

...make X and P empty;

writeln (i) ;
...add i to X, P;

{(1) P = is a set of printed vertices; P contains i;

(2) only vertices reachable from i are printed;

(3) X is a subset of P;

(4) all printed vertices which have an outgoing edge to

a non-printed vertex, belong to X}

while X is not empty do begin

...take some element of X into v;

for k := 1 to num [v] do begin

w := out [v][k];

if w does not belong to P then begin

writeln (w) ;

add w to P;

add w to X;

end;

end;

end;

end;

If we don' t worry about the order in which the reachable vertices are printed, it
doesn' t matter which element of X is chosen by the algorithm. Now we assume

9.2 Connected components, breadth and depth search 129

that X is a queue (first in, first out). In this case, the program prints all vertices
reachable from i in order of increasing distance from i (distance is the number of
vertices on the shortest path from i). Let us prove this assertion.

By V(k) we denote the set of vertices whose distance from i (in the sense
described above) is k. The set V(k § 1) is equal to the set

(endpoints of edges whose startpoints are in V(k))\ (V (0) U . . . U V(k))

Let us prove now that for a nonnegative integer k ---- 0, 1, 2 . . . there exists a point
during the execution of the program (after one of the while-iterations) such that

�9 the queue contains all the elements of V(k) and no other elements;

�9 all elements of V (0) V (k) and no others are printed.

For k ---- 0, it is the state before the first iteration. Now comes the induction step:
Assume that at some point, the queue contains elements of V (k). Those elements
are processed one by one (the new elements are appended to the end of the queue
and therefore cannot interfere). The endpoints of the edges emanating from the
elements of V(k) are printed and placed in the queue (unless they were printed
earlier), exactly as in the equation for V(k + 1) shown above. Therefore, when
all elements of V(k) are processed, the queue is filled with all the elements of

V(k + 1). m

Depth-first search

When thinking about depth-first search, it is convenient to represent a given
graph as the image of a tree. Let us explain what we mean by this. Suppose some
vertex x of a directed graph is given. Assume that all vertices are reachable (via
edges) from x. We construct a tree that may be called the "universal covering tree"
of the graph. Its root is the point x, and it has the same outgoing edges as in the
graph. The endpoints of those edges are sons of the root. Now consider any son y
of x and all its outgoing edges. Their endpoints are the sons of y in the tree. The
difference between the graph and the tree is that different paths from x to the same
vertex of the graph now lead to different vertices of the tree. In other words, the
vertex of the universal covering tree is a path in the graph starting from x. Its sons
are paths that are one edge longer. Please note that the tree is infinite if the graph
has (reachable) directed cycles.

There exists a natural mapping from the universal covering tree to the graph.
For any vertex y in the graph, the number of preimages is the number of paths from
x to y in the graph. Therefore, if we visit the tree vertices in some order, we at the
same time visit the vertices of the graph (but some graph vertices may be visited
many times).

Assume that for any graph vertex the outgoing edges are numbered. Then
for any vertex of the universal covering tree its sons are numbered. Let us visit
tree vertices in the following order: first the root, then the subtrees rooted at the

130 9 GRAPH ALGORITHMS

root 's sons (in the given order of sons). An algorithm which traverses tree in that
order was considered in section 7. This algorithm can be modified to traverse the
graph avoiding visits to vertices already visited. Doing that, we get what is called
"depth-first search".

Here is another description of depth-first search. Let us introduce a linear
ordering on paths starting at a given vertex x. Any path precedes all its extensions.
If two paths diverge at some vertex, they are ordered according to the ordering of
the outgoing edges at that vertex. After that, vertices are ordered according to the
minimal paths reaching them. This ordering is called depth-first ordering.

9.2.2. Write an algorithm for depth-first search.

[Hint. Take a program that traverses a tree (root ~ left subtree --~ right subtree)
from section 7 or 8 and modify it. The main difference is that we do not want to
revisit any visited vertex. Therefore, if we are at an already-visited vertex, we do
nothing. (If a path is not minimal among all paths going to some vertex, all its
extensions are not minimal as well, and can be safely ignored.)] �9

Remark. Recall that in section 8 two possible nonrecursive algorithms for
tree traversal were mentioned (p. 120). Both versions may be used for depth-first
search.

Depth-first search is used in several graph algorithms (sometimes in a modified
form).

9.2.3. An undirected graph is called a bipartite graph if its vertices may be
colored in two colors in such a way that each edge connects vertices of different
colors. Find an algorithm that checks whether a graph is a bipartite graph in time
C �9 (number of edges + number of vertices).

[Hint. (a) Each connected component may be considered separately. (b) After
we choose the color of some vertex, the colors of all other vertices of the same
component are uniquely determined.] �9

Remark. In this problem we may use breadth-first as well as depth-first search.

9.2.4. Write a nonrecursive algorithm for topological sorting of a directed
graph without cycles. (For a recursive algorithm, see p. 108.)

Solution. Assume that the graph has vertices 1 . . n . For any vertex
i , we know the number num[i] of outgoing edges and the vertices
d e s t [i] [1] d e s t [i] [num[i]] that the outgoing edges enter. We adopt
the following terminology: the outgoing edges are listed "from left to right" (so
d e s t [i] [1] is "on the !eft" of d e s t [i] [2], etc.).

Our goal is to print all the vertices of the graph; the requirement is that the
endpoint of any edge is printed before its starting point. We assume that the graph
has no cycles (otherwise this is impossible).

Let us add to the graph an auxiliary vertex 0 that has n outgoing edges to
1 n. If it is printed and the requirement is fulfilled, then all other vertices are
already printed.

9.2 Connected components, breadth and depth search 131

Our algorithm maintains a path that starts at 0 (the auxiliary vertex) and tra-
verses the graph edges. The length of this path is kept in an integer variable m.
The path is formed by the vertices v e r t [11 . . v e r t Kin] and edges having numbers
edge [1] . . edge Kin]. The number edge Ks] refers to the numbering of all out-
going edges of the vertex v e r t Ks]. Therefore, for all s, the following inequality
holds:

edge Ks] < num[vert Ks]]

as well as the equality

vert Ks+l] = dest [vert Ks]] [edge Ks] 1.

Please note that the end of the last edge in the path (i.e., the vertex
d e s t [v e r t Kin]] [edge [m]]), is not included in the array v e r t . Moreover, we
make an exception for the last edge and allow it to point "nowhere": edge [m]
may be equal to num [v e r t Kin]] +1.

The algorithm prints the vertices of the graph; a vertex is printed only after
all the vertices where the outgoing edges go are printed. Moreover, the following
requirement (I) is fulfilled:

all vertices in the path, except the last one (i.e., the vertices
v e r t [1] . . v e r t Kin]), are not printed, but if we turn to the left and
leave our path, we immediately come to an already printed vertex.

Here is the algorithm in full:

m:=l ; v e r t [1] : = O ; edge [1] :=l ;
{(I)}
while not((m=l) and (edge[1]=n+1)) do begin

if edge [m] =num [vert [m]] +l then begin
{path leads to nowhere, therefore all vertices

following vert[m] are printed and we may
print vert [m] }

writeln (vert Kin]) ;
m: =m-1 ; edge [m] :=edge [m]+1 ;

end else begin
{edge[m] <= num[vert [m]] , path ends in a real

vertex}
lastvert : = dest [vert [m]] [edge [m]] ;

if lastvert is printed then begin

I edge [m] :=edge [m] +1;
end else begin
I m:=m+l; vert[m]:=lastvert; edge[m] :=1;

end;

end ;
end ;

132 9 GRAPH ALGORITHMS

s path immediately goes to nowhere, so all the

vertices on the left (1..n) are printed)

9.2.5. Prove that if the graph has no cycles, this algorithm terminates.

Solution. Assume that this is not true. Any vertex may be printed at most once,
so the vertices are not printed after some point. In a graph without cycles, the path
length is limited (no vertex can appear in a path twice); therefore, after some point
the path never becomes longer. After that, the only possibility is an increase in
edge Im], but this cannot happen infinitely many times. �9

9.2.6. Prove that the running time of the previous algorithm is O (number of
vertices + number of edges). �9

9.2.7. Modify the algorithm in such a way that it can be applied to any graph.
The algorithm should either find a cycle (if it exists) or perform a topological sort
(if there are no cycles). �9

10 Pattern matching

10.1 Simple example

10.1.1. The character string x [1] . . x In] is given. Check if it contains the sub-
string abcd.

Solution. There are approximately n (n-3, to be exact) positions where a
substring of length 4 may be found. For each position, we can check whether the
substring is in that position. This would require approximately 4n comparisons.

However, there is a more efficient approach. While reading the string
x [1] . . x [n] from left to right, we are looking for the character a. After it
appears, we look for the character b (immediately after a), then for c, and finally
d. If our expectations are met, the substring abcd is found. If one of the letters is
not found where expected, we start from scratch looking for a again.

This simple algorithm can be described in different terms. In the framework
of so-called finite automata, we say that while scanning x from left to right the
algorithm is in one of the following "states": the initial state (0), the state " imme-
diately after a" (1), "immediately after ab" (2), "immediately after abc" (3) and
"immediately after abcd" (4). When reading the next character, we change the
state according to the following rule:

As soon as we come to state 4, or the input string is exhausted, the search is
complete.

The corresponding program is straightforward (we indicate the new state even
if it coincides with the old one, but those lines may be omitted):

i:=1; state:=O;

{i is the index of the first unread character;

state is the current state}

134 I 0 PATTERN MATCHING

while (i <> n+l) and (state <> 4) do begin

if state = 0 then begin

if x[i] = a then begin

I state:= i;

end else begin

I state:= O;

end;

end else if state = I then begin

if x[i] = b then begin

I state:= 2;

end else if x[i] = a then begin

I state:= i;

end else begin

I state:= O;
end;

end else if state = 2 then begin

if x[i] = c then begin

I state:= 3;
end else if x[i] = a then begin

I state:= i;

end else begin

I state:= O;

end ;

end else if state = 3 then begin

if x[i] = d then begin

I state:= 4;

end else if x[i] = a then begin

I state:: I;
end else begin

I state:= O;
end;

end;

end;

answer := (state = 4);

In other words, at any point we have information about the maximal prefix of
the pattern abcd which is a suffix of the substring already read. (Its length is the
value of the variable s t a t e .) �9

Let us recall the terminology used. A string is an arbitrary finite sequence of
elements of a set called an alphabet; its elements are called letters. If we discard
some letters at the end of a string, we get another string, which is called aprefix of
the first string. Any string is a prefix of itself. The suffix of a string is what remains
after several initial letters of a string are discarded. Every string is a suffix of itself.
A substring is obtained when we discard some letters both at the beginning and

10.2 Repetitions in the pattern 135

the end of a string. (In other words, substrings are prefixes of suffixes, as well as
suffixes of prefixes.)

In terms of"inductive functions" (see section 1.3) we can describe the situation
as follows: Consider a function whose arguments are strings and whose values are
either "True" or "False". The function has value "True" for all strings containing
substring abcd. This function is not inductive, but it does have an inductive
extension:

x ~ the length of the maximal prefix of abcd that is a suffix o f x

1 0 . 2 R e p e t i t i o n s i n t h e p a t t e r n

10.2.1. Can the previous algorithm be used for any other string instead of abcd?

Solution. A problem arises when the pattern contains repetitions. For example,
suppose we are looking for substring ababc. Assume that a appears, then b, a,
and b again. At this point, we are eagerly waiting for e. If the letter d appears
instead, we should start from scratch. However, if the letter a appears, we still
have a chance that b and c follow and the pattern is found.

Here is an illustration:

x y z a b a b a b c . .. +- input string
a b a b c +-- pattern was expected here

a b a b c +-- but it is here

In other words, at the point

x y z a b a b

a b a b

a b

+-- input string
c +- pattern was expected here
a b c +- but it is here

there are two possible pattern positions to be tested. �9

However, a finite automaton that reads the input string letter-by-letter, changes
its state according to some table, and says (after the input string is exhausted)
whether the input string contains the given substring, is still possible.

10.2.2. Construct such an automaton. Show all its states and the transition
table (which determines a new state as a function of an old state and an input
character).

Solution. As before, the current state is the length of the maximal prefix of the
pattern that is also a suffix of the currently read part of the string. There are six
states: 0, 1 (a), 2 (ab), 3 (aba), 4 (abab), 5 (ababc). The transition table is as

136 10 PATTERN MATCHING

follows:

Consider the second (from below) line in this table as an example. If the processed
part is ended by abab and the next letter is a, the new processed part is ended by
ababa. The maximal prefix of ababc, which is also a suffix of the processed part,
is aba. �9

Question: as we said, the difficulty appears because there are several possible
positions of the pattern; each position corresponds to some prefix of the pattern
that is also a suffix of the input string. The finite automaton remembers only the
longest one. What about others?

Answer. The longest prefix-suffix X determines all other prefix-suffixes.
Namely, prefix-suffixes of the processed part are prefixes of X that are also
suffixes of X.

It is easy to write a transition table and a program for any fixed pattern. How-
ever, we want to write a general program that will search for any given pattern in
any given input string. The following approach may be used. Consider a program
that has two stages. In the first stage, it examines the pattern and constructs a
transition table for that pattern. In the second stage, it reads the input string and
behaves according to the transition table. Such an approach is often used for more
complicated patterns (see below), but for substring search there is more direct and
efficient method called Knuth-Morris-Pratt algorithm. (A similar approach was
suggested by Yu. Matijasevich.) We start with some auxiliary lemmas.

10.3 Auxiliary lemmas

For any string X, consider all the prefixes of X that are at the same time suffixes
of X. Choose the longest one (not counting X itself), which is denoted by l(X).

For example, / (aba) = a, l(abab) = ab, l (ababa) = aba, l(abc) =
the empty string.

10.4 Knuth-Morris-Pratt algorithm 137

10.3.1. Prove that all strings I(X), l(l(X)), I(I(I(X))), etc. are prefixes of X.

Solution. Each of them is a prefix of the preceding one. (And any prefix of a
prefix of X is also a prefix of X.) �9

For the same reason all such strings are suffixes of X as well.

10.3.2. Prove that the sequence in the preceding problem is finite (the last
string is empty).

Solution. Each subsequent string is shorter than the preceding one (since I(Y)
is shorter than Y for any Y). �9

10.3.3. Prove that any string that is both a prefix and a suffix of X (except for
X itself) is listed in the sequence I(X), l(l(X))

Solution. Let Y be both a prefix of X and a suffix of X. The string l(X) is the
longest string having this property, so Y is not longer than l(X). Both Y and l(X)
are prefixes of X, and the shorter one is a prefix of the longer one. Thus Y is a prefix
of l(X). For the same reason, Y is a suffix of l(X). Using an induction argument,
we assume that the statement in question is true for all strings shorter than X. In
particular, it is true for l(X). So the string Y, being a prefix and a suffix of the
string l(X), is either equal to l(X) or one of the strings l(l(X)), l(l(l(X))) �9

10.4 K n u t h - M o r r i s - P r a t t algorithm
The Knuth-Morris-Prat t (KMP) algorithm takes a string

X = x [1] x [2] . . x [n]

as input and scans it from left to right. The output is the sequence of nonnegative
integers L [1] . . . L [n] such that

L [i] = the length o f / (x [1] . . x [i])

(the function L is defined in the preceding section). In other words, L [i] is the
length of the maximal prefix of x [1] . . x [i] that is simultaneously a suffix of
x[1] . .x[i] .

10.4.1. How can we use the KMP algorithm to check whether a given string
I is a substring of a string B?

Solution. Apply the KMP algorithm to the string A#B, where # is a special
character that does not appear in A or B. The string A is a substring of B if and only
if the array L (which is the output of the KMP algorithm) contains a number equal
to the length of A. �9

10.4.2. How do we fill the table L [1] . . L [n] ?

Solution. Assume that the first i values L [1] . . L [i] are already known. We
read the next input character (i.e., x [i + 1]) and compute L [i + l] .

138 10 PATTERN MATCHING

How do we find L[i+l]? It is the length of the longest prefix Z of the string
x [1] . . x [i+1] that is at the same time a suffix of this string. Any string Z having
this property (except for the empty string) is obtained from some string Z' by
adding the letter x [i + l] . The string Z' is both a prefix and a suffix of the string
x [1] . . x [i] . However, it is not the only requirement for Z'; another requirement
is that Z' is followed (as a prefix of x [1] . . x [i]) by x [i + l] .

Therefore, the string Z may be found as follows. Consider all the prefixes Z'
of the string x [1] . . . x [i] that are also the suffixes of this string. Then choose
the longest one that is followed (as a prefix of x [1] . . . x [i]) by x [i + l] . Adding
x [i + l] produces the string Z.

Now it is time to use the lemmas proved earlier. Recall that all strings that are
both prefixes and suffixes may be obtained by applying the function I iteratively.
Here is the program:

i:=l; L[1]:= O;

{the table L[I]..L[i] is filled correctly}

while i <> n do begin

len := L [i]

{len is the length of a prefix of x[l]..x[i] that is

its suffix; all longer prefixes-suffixes were

tested without success}
while (x[len+l] <> x[i+l]) and (len > O) do begin

{this prefix does not fit also, we should apply i}

len := L[len];

end;
{we either have found the longest prefix that

fits our requirements (and its length is n)

or have found that it does not exist (len=O)}

if x[len+l] = x[i+l] do begin

{x[l]..x[len] is the longest prefix that fits}

L[i+l] := len+l;

end else begin

{there are no good prefixes}

L[i+l] := O;

end;

i := i+l;

end ;

I 0.4 Knuth-Morris-Pratt algorithm 139

10.4.3. Prove that the number of operations in the above algorithm is limited
by Cn for some constant C.

Solution. This is not obvious, because one input character may cause many
iterations in the inner loop. However, each iteration in the inner loop decreases
l e n by at least 1, so in this case, L [i + l] will be significantly smaller than L [i] .
On the other hand, while i is increased by 1, the value of L [i] may increase by at
most 1, therefore the values of i that require many iterations in the inner loop are
rare.

Formally, we use the inequality

L [i + l] _< L [i] - (the number of iteration at step i) + 1

or

(the number of iterations at step i) < L [i] -- L [i + l] § 1

Summing these inequalities over i , we get the required upper bound for the total
number of iterations. �9

10.4.4. Imagine that we use this algorithm to determine whether a string X of
length n is a substring of a string Y of length m. (We explained above how to do
that using a "separator" #.) The algorithm runs in time O (n + In) and uses memory
of size O (n + m). Find a way to do this using memory of size O (n) (which may
be significantly less if the pattern is short and the string is long).

Solution. Start applying the KMP algorithm to the string A#B. Wait until the
algorithm computes all the values L [1] L [n] for the word X of length n. All
those values are stored. From then on, we keep only the value L [i] for the current
i ; we only need L [i] and the table L [1] . . L [n] to compute L [i + l] . �9

In practice, the words X and V are usually separated, so the scan of X and the
scan of V should be implemented as two different loops. (This also makes the
separator # unnecessary.)

10.4.5. Write the program discussed in the last paragraph, which checks
whether the string X = x [1] . . x [n] is a substring of the string V = y [1] . . y Ira].

Solution. First we fill the table L [1] . . . L [n] as before. Then we execute the
following program:

j:=O; len:=O;
{len is the length of a longest prefix

a suffix of y[l]..y[j]}
while (len <> n) and (j <> m) do begin

while (x[len+l] <> y[j+l]) and (len >

{this prefix does not fit}

len := L[len];

end;

of X which is

O) do begin

140 10 PATTERN MATCHING

{we have found the prefix that fits or
have found that it does not exist}

if x[len+l] = y[j+l] do begin
{x[l]..x[len] is the longest prefix that fits}

len := len+l;

end else begin
{no prefixes fit}

len := O;
end;
j := j+l;

end;

{if len=n, X is a substring of Y;

otherwise we reached the end of Y not finding X}

10.5 Boyer-Moore algorithm

This algorithm attains a goal that seems impossible at first: In a typical situation,
it reads only a tiny fraction of all the characters of a string in which the pattern
is searched. How can this be done? The idea is rather simple. Suppose we are
searching for the pattern abcd in a string X. Check the fourth character of X. If it
is, say, e, there is no need to look at the first three characters, because our pattern
does not contain e and may start only after fourth position.

We show below a simplified version of the Boyer-Moore algorithm that does
not guarantee good running time in all cases.

Let X = x [1] . . x In] be the pattern we are searching for. For any character s,
we find the rightmost occurrence of s in the string Z, that is, the maximal k such
that x [k] = s. This information is stored in an array pos I s] . If the character
s does not appear in the pattern at all, it is convenient to put pos [s] := 0 (see
below).

10.5.1. How do we fill the array pos?

Solution.

...let all pos[s] be equal to 0

for i:=1 to n do begin

] pos Ix [i]] :=i ;
end;

The program searches for the pattern x [1] . . x [n] in the input string
y [1] . . y [m] . When searching, store in the variable l a s t the number of the
input character that corresponds to the last character of the pattern (in the current
pattern position). Initially, l a s t = n (the length of the pattern); then l a s t
increases gradually.

10.5 Boyer-Moore algorithm 141

last : =n ;

{all previous positions of the pattern are checked}

while last <= m do begin {the work is not finished}

if x[n] <> y[last] then begin

{the last characters differ}

last := last + (n - pos[y[last]]);

{n - pos[y[last]] is the minimal shift of the

pattern that makes the character y[last]

match the corresponding character in the

pattern. If y[last] does not appear in the

pattern, the new pattern position starts

immediately after y[last] }

end else begin

{x[n] = y[last]}

check if the current position is okay, that is,

if x[l]..x[n] = y[last-n+l]..y[last].

If yes, inform about that.

last := last+l;

end ;

end;

It is recommended to start testing the condition (x[l]..x[n] -----

y[last-n+l] ..y[last]) from right to left starting from the last posi-
tion (where the coincidence is already tested). We also obtain a small optimization
if we store n - p o s [s] instead of pos [s] (avoiding subtraction at each step);
n - p o s [s] is the number of characters to the right of the rightmost occurrence of
character s in the pattern.

Different versions of this algorithm exist. For example, we may replace the
line l a s t : = l a s t + l by l a s t : = l a s t + (n -u) , where u is the position of the second
(from the right) occurrence of the character x In] in the pattern.

10.5.2. What modifications in the program are necessary?

Solution. To fill up the table pos , we use the line

for i:=l to n-i do...

(all other lines remain the same); in the main program we replace the line
last : =last+l by

last : = last+n-pos [y [last]] ; �9

This simplified version of the Boyer-Moore algorithm sometimes require sig-
nificantly more that n operations (ran in the worst case), so the worst-case behavior
of the Knuth-Morris-Prat t algorithm is much better.

10.5.3. Give an example where a pattern of length n is not a substring of a
given string of length m, but the program above requires mn operations to determine
this.

142 10 PATTERN MATCHING

Solution. Assume that the pattern is b a a a . , aa and the string contains n letters
a. Then at each step we need n comparisons to discover that the pattern is not a
substring. �9

The complete (not simplified) Boyer-Moore algorithm guarantees that the num-
ber of operations does not exceed C(m + n) in the worst case. It uses ideas similar
to those in the KMP algorithm. Suppose we compare the pattern and the string
from right to left. Assume that we find the coincident suffix Z of the pattern, but
the characters before Z in the input string and in the pattern are different. What
do we know about the input string at that point? We have found a fragment equal
to Z that is preceded by a character that differs from the character in the pattern.
This information may allow us to shift the pattern to the right several positions.
These shifts should be computed in advance for all suffixes Z of the pattern. One
can prove that all operations (the computation and use of the shift table) can be
performed in time C(m + n).

10.6 Rabin-Karp algorithm

This algorithm is also based on a simple idea. Suppose we are looking for a pattern
of length i1 in a string of length m. Let us make a sliding window and move it along
the input string. Our goal is to check whether the substring in the window coincides
with the given pattern.

We want to avoid character-by-character comparison and find a faster method.
Let us consider some function defined on strings of length n. If this function takes
on different values when applied to both the pattern and the substring in the window,
we may be sure that there is no match. Only if the function values coincide, we
have to compare strings character-by-character.

What do we gain? It seems that we have achieved nothing because to compute
the function value for the substring in the window, we have to read all the characters
in the window anyway. So why not just compare them with the pattern characters?
Some gain, however, is still possible for the following reason. When we shift
the window, the substring in it does not change completely; a single character is
appended on the right and deleted on the left. If our function is well chosen, we
may compute its new value quickly, knowing its old value and the added/deleted
characters.

10.6.1. Find an example of such a "well chosen" function.

Solution. Replace all characters in the pattern by their codes, which are assumed
to be integers. The sum of all codes is such a function. (Indeed, after the shift, we
only have to add the numeric value of the new character and subtract the numeric
value of the old character.) �9

Given any function, most likely there are distinct strings that are mapped to
the same value. For the same pair of strings another function may indeed produce
distinct values. So let us have a pool of functions and begin the algorithm by

10. 7 Automata and more complicated patterns 143

choosing one of the functions at random. Then an adversary who wants to choose
the worst problem instance will not know which function it is working against.

10.6.2. Give an example of a family of easily computable functions (in the
sense explained above). �9

Solution. Let us choose some number p (presumably prime; see below) and
some residue x modulo p. Each string of length n is considered as a sequence
of integers (characters are replaced by their numeric codes). Those integers are
taken to be coefficients of a polynomial of degree n - 1. We compute the value of
this polynomial modulo p at the point x. This construction provides one function
of the family (for each p and x we get another function). When the window is
shifted by 1, we subtract the term of the highest degree (x n-1 should be computed
in advance), multiply by x, and add the constant term.

The following arguments show that the coincidence of function values (for
different arguments) is not very likely. Assume that p is fixed and is prime. Let
X and Y be two different words of length n. Then the corresponding polynomials
are different. (We assume that different characters have different codes modulo
p, so we need p to be larger than the size of the alphabet.) The coincidence of
function values on X and Y means that two different polynomials coincide at x,
that is, x is a root of their difference. This difference is a nonzero polynomial of
degree n - 1 and can have at most n - 1 roots. Therefore, if n is much smaller
than p, the chances for the random x to be a root are negligible.

10.7 Automata and more complicated patterns

Rather than a specific string, we may search for a string of some type. For example,
we may look for a substring of type a?b where ? denotes any single character. In
other words, we are looking for characters a and b with exactly one character in
between.

10.7.1. Construct a finite automaton that checks if the pattern a?b is present
in the input string.

Solution. While reading the input string, the automaton keeps track of whether
the character a is present at the two last positions. The automaton has states 00,
01, 10, 11 with the following meanings:

00 no a in the last two positions
01 a is in the last position but not in the position immediately

before it
10 a is in the position before the last one but not in the last

position
11 the processed part of the input string ends with aa

144 10 PATTERN MATCHING

Here is the transition table:

Another widely used notation in a pattern is an asterisk (*), which is matched
by any string (including the empty string). For example, the pattern a b * c d means
that we are looking for any occurrence of ab followed by cd (the distance between
ab and cd is arbitrary).

10.7.2. Construct a finite automaton that checks if the input string contains
the pattern a b * c d (in the sense just described).

Solution.

Another type of search occurs when we are looking for a substring that belongs
to a given finite set of strings.

10.7.3. Assume that strings X1 Xk (patterns) and a string Y are given.
Check if one of the strings Xi is a substring of the string Y. The number of

I0. 7 Automata and more complicated patterns 145

operations should not exceed the total length of all the strings (Xi and Y) multiplied
by some constant which does not depend on k.

Solution. The obvious approach is to check all the Xi separately (using one
of the algorithms given above). However, this method does not satisfy the speed
requirements (since we have to read the string Y many, in fact, k times).

Let us look at another aspect of the problem. For each pattern Xi, there exists a
finite automaton that tests for the presence of Xi. These automata may be combined
into one automaton whose set of states is the product of the sets of states for all the
automata. This set is very large. However, most of its elements are unreachable
and may be discarded.

This idea is used below (in a modified form).
Let us recall the Knuth-Morris-Pratt algorithm. While reading the input string,

the KMP algorithm keeps the maximal prefix of the pattern that is a suffix of the
processed part of the input string. Now we need to keep this information (the
longest prefix that is a suffix of the processed part) for all the patterns. The crucial
remark is: It is enough to keep the longest one, because all others are uniquely
determined by the longest one. Indeed, let X be the longest prefix of some pattern
that is a suffix of the processed part of the input string. Then for any pattern P,
the longest prefix of P being a suffix of the processed part is the longest prefix of
P being a suffix of X.

All the patterns may be "glued" together to form a tree if we "splice" together
equal prefixes. For example, the set of patterns

{aaa, aab, abab}

corresponds to the tree

Here is the formal definition: any prefix of any pattern is a tree vertex; a father of
a vertex is obtained by deleting the last character.

While reading the input string, we traverse this tree. The current position is
the maximal (rightmost) vertex that is a suffix of the processed part of the input
string (that is, the longest suffix of the processed part being a prefix of one of the
patterns).

Let us introduce a function 1 whose arguments and values are tree vertices,
namely, l(P) = maximal tree vertex that is a (proper) suffix of P. (Recall that tree
vertices are strings.) The following result will be used:

146 10 PATTERN MATCHING

10.7.4. Let P be a tree vertex. Prove that the set of all tree vertices that are
(proper) suffixes of P is {I(P), l(l(P)) }

Solution. See the proof of the similar assertion for the Knuth-Morris-Pratt
algorithm. �9

Now it is clear what the algorithm (or automaton) should do if it is at the vertex
P and the next input character is z: It should consider sequentially the vertices P,
l(P), l (l (P)) , . . , until it finds the vertex that has an outgoing (to the right) edge
labeled "z". The endpoint of that edge is the next position of the algorithm (next
state of the automaton).

It remains to show how to compute the values of the function l for all tree
vertices. This is done as before using the values of l for shorter strings to compute
the next value of 1. Therefore, we should consider all tree vertices in order of
increasing length. It is easy to see that this can be done in the required time.
(Please note that the constant in the upper bound for the running time depends on
the cardinality of the alphabet.) For a discussion of the methods used to store the
tree, see section 9. �9

The general question arises: Which properties of strings can be tested using
finite automata? It turns out that there is an easily defined class of patterns that
correspond to finite automata. These patterns are called "regular expressions".

Definition. Let F be a finite alphabet. We assume that F does not contain six
symbols A, s, (,) , * and I (these symbols will be used for constructing regular
expressions; therefore, we should not mix them with letters from F). Regular
expressions are constructed according to the following rules:

(a) any letter from F is a regular expression;

(b) the symbols A, e are regular expressions;

(c) if A, B, C E are regular expressions, then (A B C . . . E) is a regular ex-
pression;

(d) if A, B, C E are regular expressions, then (A I B I C I . . . I E) is a regular
expression;

(e) if A is a regular expression, then A* is a regular expression.

Each regular expression defines a set of strings (composed of characters from F)
according to the following rules:

(a) A letter corresponds to a singleton whose element is a one-character string
containing this letter;

(b) The symbol e corresponds to the empty set; the symbol A corresponds to the
singleton whose element is the empty string;

10. 7 Automata and more complicated patterns 147

(c) the regular expression (A B C . . . E) corresponds to the set of all strings ob-
tained as follows: take a string from the set that corresponds to A, a string
from the set that corresponds to B, to C , . . . , and to E and concatenate all
those strings in the given order (concatenation of sets);

(d) the regular expression (A I B I C I . . . I E) corresponds to the union of the sets
that correspond to expressions A, B, C E;

(e) the regular expression A* corresponds to the iteration of a set corresponding
to A, that is, to the set of all strings that may be cut into pieces in such a way
that each piece belongs to the set corresponding to A. (In particular, the set
corresponding to A* always contains the empty string.)

Sets that correspond to regular expressions are called regular sets. Here are
severalexamples:

Expression

(a [b) *
(a a) *

(A l a l b l a a [a b l b a m b b)

Set

All strings composed of a and b
All strings of even length composed of
as, including the empty string
all strings of length at most 2 composed
of a and b

10.7.5. Find a regular expression corresponding to the set of all strings com-
posed of a and b that contain an even number of as.

Solution. The expression b* defines the set of all strings without a; the expres-
sion (b* a b * a b *) defines the set of all words with exactly two as. It remains to
take the union of these two sets and then to apply iteration:

((b * a b * a b *) [b *) *

Another possible answer:
((b* a b * a) * b *)

10.7.6. Write a regular expression that defines a set of strings composed of
a, b, c having b a c as a substring.

Solution. ((a l b l c) * b a c (a l b l c) *) �9
Remark. A more difficult problem is to write the expression for the complement

of this set, that is, the set of all strings composed of a, b, c that do not have b a c as
a substring. This is possible, however, as we ' l l see below.

Now the general pattem-matching problem may be stated as follows: check
whether an input string belongs to the set corresponding to a given regular expres-
sion.

148 10 PATTERN MATCHING

10.7.7. What regular expressions are equivalent to the patterns a?b and ab* cd
used as examples earlier? (Please note that the symbol * in the pattern ab*cd has
a completely different meaning compared to its use in regular expressions.) We
assume that the alphabet is {a, b, c, d, e}.

Solution.

((a l b l c l d l e) * a (a l b l c l d l e) b (a l b l c l d l e) *)

((a l b l c I d l e) * a b (a l b l c l d l e) * c d (a l b l c l d l e) *)

10.7.8. Prove that for any regular expression there exists a finite automaton
that recognizes the corresponding set of strings.

Solution. To prove this, we need the notion of a nondeterministic finite au-
tomaton. Consider a directed graph containing several points (vertices) and some
arrows (edges) connecting those points. Assume that some of the edges are labeled
by letters (from a given alphabet) and some edges remain unlabeled. Assume also
that two vertices are selected; one is called the initial vertex I and the other is
called the final vertex E Such a labeled graph is called a nondeterministic finite
automaton.

Let us consider all the paths from I to E Going along a path, we read all the
letters (on labeled edges). Therefore, each path from I to F determines a string.
The automaton as a whole determines a set of strings, namely, the set of all strings
that can be read along some path from I to E We say that these strings are accepted
by the automaton.

Remark. If we draw the states of a finite automaton as points and the transitions
as labeled edges, it is clear that finite automata are special cases of nondeterministic
finite automata. They are distinguished by the following requirements: (a) all edges
are labeled except for the edges directed to the final vertex; (b) for each vertex and
for each letter there is exactly one outgoing edge labeled by this letter.

We transform a regular expression into a finite automaton in two stages. First,
we construct a nondeterministic finite automaton that corresponds to the same
set. Then for any nondeterministic finite automaton we construct an equivalent
deterministic finite automaton.

10.7.9. A regular expression is given. Construct a nondeterministic finite
automaton that corresponds to the same set.

Solution. This automaton is constructed inductively, following the definition
of a regular expression. If the regular expression is a letter or e, the corresponding
automaton has one edge. If the regular expression is A, the automaton has no

10. 7 Automata and more complicated patterns 149

edges at all. A union is implemented as follows:

Here the picture for the union of three sets is drawn. The rectangles show the
corresponding nondeterministic finite automata; their initial and final vertices are
shown. New arrows (there are six of them) are unlabeled.

Concatenation corresponds to the following picture:

Finally, iteration corresponds to the picture

10.7.10. A nondeterministic finite automaton N is given. Construct an equiv-
alent deterministic finite automaton (or a program with a finite number of states)
that checks if an input string x is accepted by N (that is, if x can be read on a path
from I to F).

Solution. The states of the deterministic automaton are sets of vertices of the
nondeterministic automaton. After a prefix X of the input string is read, the state
s (X) of the deterministic automaton is the set of all vertices that are reachable from
I along paths carrying the string X on it. In other words, consider all paths starting
from I. Each path determines a string that can be read along it. If the string is X,
include the end of the path into s (X). �9

The two-stage construction of a finite automaton corresponding to a given
regular expression, is finished. �9

150 10 PATTERN MATCHING

It turns out that regular expressions, deterministic finite automata, and nonde-
terministic finite automata define the same class of sets. To prove this, it remains
to solve the following problem:

10.7.11. A nondeterministic finite automaton is given. Construct a regular
expression that defines the same set.

Solution. Assume that the nondeterministic automaton has vertices 1 , k,
where 1 is its initial vertex and k is its final vertex. By D(i, j, s) we denote the set
of all strings read along all the paths from i to j if only 1, 2 s are allowed as
intermediate path vertices. By definition, the automaton itself corresponds to the
set D(1, k, k).

We prove by induction over s that all sets D(i, j, s) for all i and j are regular.
For s = 0, this is obvious (intermediate vertices are not permitted, therefore each
set is a finite set whose elements are strings of length not exceeding 1).

Which strings are elements of D(i, j, s + 1)? Let us consider a path from i to
j and mark all the steps when it enters the (s + 1)-th vertex. The marked steps
split our path into several paths that do not use s + 1 as an intermediate vertex.
This argument leads to the equation

D(i, j , s + 1) = D(i, j, s) I (D(i ,s + 1, s) D(s + 1, s + 1, s)* D(s + 1, j , s))

(here the notation for regular expressions is used for sets). It remains to apply the
induction assumption. �9

10.7.12. Where have you seen a similar argument?

Solution. In the Floyd algorithm for the shortest path (see section 9, p. 125). �9

10.7.13. Prove that the class of sets corresponding to regular expressions re-
mains the same if we agree to use not only set union but also complementation
(and therefore set intersection, since it can be expressed using set union and com-
plement).

Solution. For the deterministic finite automata the transition from a set to its
complement is evident. �9

Remark. From a practical point of view, things are not so easy. The problem
is that the transition from a nondeterministic automaton to a deterministic one
may exponentially increase the number of states. There are many theoretical and
practical questions concerning this problem. See the book of Aho, Sethi, and
Ullman on compilers [2].

11 Set representation. Hashing

11.1 Hashing with open addressing

In section 6 we considered several representations for sets whose elements are
integers of arbitrary size. However, all those representations are rather inefficient:
at least one of the operations (membership test, adding or deleting an element) runs
in time proportional to the number of elements in the set. This is unacceptable in
almost all practical applications.

It is possible to find a set representation where all three operations mentioned
run in time C log n (in the worst case). One such representation is considered in
the next section. In this section, we consider another set representation that may
require n operations in the worst case but is very efficient "in a typical case". The
method is called "hashing".

Suppose we want to store a set of elements of type T, where the number of
elements is guaranteed to be less than n. Choose a function h that is defined
on elements of type T and whose values are integers in the range 0 . . n-1. It is
desirable that this function have different values for different elements of the set
we are trying to represent (the worst case is when all the function values are the
same). This function is called a hash function.

Our representation uses two arrays

val: array [O..n-l] of T;

used: array [0..n-l] of Boolean;

(we write n -1 in the type definition, though it is not permitted in Pascal). The set
consists of v a l [i] for all i such that u sed [i] is true. (The values v a l [i] are
all different.) When possible, we store an element t at position h (t) , which is
considered a "natural place" for t . However, it may happen that a new element t
appears whose place h (t) is already used by another element (that is, u sed [h (t)]
is true). In this case, we search to the right looking for the first unused place and
put the element t there. (Here "to the right" means that the index increases; when
we reach n-1 , the index wraps around.) Recall that we assume that the number of
elements is always less than the number of places, therefore free places do exist.

Formally speaking, the invariant relation that we maintain is the following:
For any element, the interval between its natural place and its actual place is filled
completely.

This invariant makes the membership test easy. Suppose we want to check if
an element t is in the set. We find the natural place for t and then go to the right
until we find an empty slot or t . In the first case, the element t is not in the set (a
consequence of our invariant); in the second case, the element is in the set. If it is
absent, we may add it (filling the unused place found). If not, we can delete it by
putting F a l s e in the corresponding cell of the used array.

11.1.1. The last passage has a severe error. Find it and correct it.

152 I I SET REPRESENTATION. HASHING

So ,non . The delete operation implemented as described can destroy the in-
variant and create an empty position between the natural and actual posit ions of
some element. We should be more careful. After a gap appears, we move from
left to right until we find either an element that is not at its natural place or another
gap. If the gap appears first, we have nothing to worry about. If an element is
found not at its natural place, we check whether it needs to be moved to the gap
we 've created. If not, we continue our search. If yes, we move the element found

to the gap. A new gap appears which we deal with in the same way. �9

11.1.2. Write the programs for membership test, adding and deleting elements.

S o ~ o n .

function is_element (t: T): Boolean;

I var i: integer;
begin

i := h (t);
while used [i] and (val [i] <> t) do begin

I i := (i + I) mod n;
end; {not used [i] or (val [i] = t)}
is_element := used [i] and (val [i] = t);

end;

procedure add (t: T);

I var i: integer;
begin

i := h (t);
while used [i] and (val [i] <> t) do begin

I i := (i + i) mod n;
end; {not used [i] or (val [i] = t)}
if not used [i] then begin

used [i] := true;
val [i] := t;

end;

end;

procedure delete (t: T);

I var i, gap: integer;

begin
i := h (t);
while used [i] and (val [i] <> t) do begin

I i := (i + 1) mod n;
end; {not used [i] or (val [i] = t)}
if used [i] and (val [i] = t) then begin

used [i] := false;
gap := i;

11.2 Hashing using lists 153

i := (i + i) mod n;

{gap may be filled by one of i,i+l,...}
while used [i] do begin

if i = h (val[i]) then begin

I {i is the natural place, nothing to do}
end else if dist(h(val[i]),i) < dist(gap,i) then begin
I {gap...h(val[i])...i, nothing to do}
end else begin

used [gap] := true;

val [gap] := val [i];
used [i] := false;
gap := i;

end ;
i := (i + I) mod n;

end;
end;

end;

Here d i s t (a , b) is the distance from a to b measured clockwise, that is,

d i s t (a , b) = (b - a + n) modn.

(We add n, because mod works best when the dividend is positive.) �9

11.1.3. There are many versions of hashing. For example, when we find
that the natural place (say, i) is occupied, we look for a free place not among
i + 1, i + 2 but among r(i) , r(r(i)), r(r(r(i))) where r is some mapping
of the set {0 n - 1} into itself. What are the possible problems?

Answer. (1) We cannot guarantee that free space will be found even if we know
it exists. (2) It is not clear how to fill gaps after deleting an element. (In many
practical cases, deletion is not necessary, so this approach is sometimes used. The
idea is that a careful choice of the function r will prevent the appearance of big
"clusters" of occupied cells.) �9

11.1.4. Suppose hashing is used to store the set of all English words (say, for
a spelling checker). What should we add to the data to be able to find Russian
translations of all English words?

Solution. The array v a l (whose elements are English words) should be ex-
tended by a parallel array r v a l of their translations: if u s e d [i] is true, r v a l [i]
is a translation o f v a l [i] �9

11.2 Hashing using lists

A hash function with k values is a tool that reduces the storage problem for one
large set to a storage problem for k small sets. Indeed, after a hash function with

154 11 SET REPRESENTATION. HASHING

k values is chosen, any set is split into k subsets corresponding to the k different
values of the hash function. (Some of them may be empty.) If we want to perform
a membership test or an add/delete operation, we compute the hash function value
and determine for which of the k sets the operation should be performed.

These smaller sets may be stored conveniently using references, because we
know the total size of all the sets but not their individual sizes. The following
problem suggests an implementation.

11.2.1. Suppose the values of hash function h are 1 . . k. For any number j in
1 . . k, consider a list of all set elements z such that h (z) = j . Let us store those
k lists using the variables

Content: array [l..n] of T;

Next: array [l..n] of 1..n;
Free: l..n;
Top: array [l..k] of l..n;

in the same way as we did for k stacks of limited size (p. 83). Write the corre-
sponding procedures. (Please note that deletion is now easier than in the open
addressing case.)

Solution. We start with Top [i] = 0 for all i = 1 . . k. All the positions are
l inkedin a f ree l i s t asfollows: F r e e = 1; N e x t [i] = i + l f o r i = 1 . . . n - l ;
Next In] = O.

function is_element (t: T): Boolean;

I var i: integer;
begin

i := Top[h(t)];
{we should search in the list starting from i}
while (i <> O) and (Content[i] <> t) do begin

I i := Next[i];
end; {(i=O) or (Content [i] = t)}
is element := (i<>O) and (Content[i]=t);

end;

procedure add (t: T);

I var i: integer;
begin

if not is_element (t) then begin

i := Free;
{Free<>O; we assume that the size limit

Free := Next[Free];

Content[i]:=t;

is not reached}

11.2 Hashing using lists 155

Next [i] : =Top [h (t)] ;
Top [h(t)] :=i;

end;
end;

procedure delete (t: T);
I var i, pred: integer;
begin

i := Top[h(t)]; pred := O;
{we should search in the list starting from i;

pred is a predecessor of i in the list
(if exists; otherwise 0)}

while (i <> O) and (Content[i] <> t) do begin

I pred := i; i := Next[i];
end; {(i=O) or (Content[i] = t)}

if i <> 0 then begin
{Content[i]=t, the element exists

and should be deleted}
if pred = 0 then begin

{this is the first element in the list}

Top[h(t)] := Next[i];
end else begin
I Next[pred] := Next[i]
end;
{it remains to return i to the free list}
Next[i] := Free;
Free:=i;

end;
end;

11.2.2. (Requires some probability theory) Suppose a hash function with k
values is used to store a set of cardinality n. Prove that the expected number of
operations in the preceding problem does not exceed C(1 + n/k), if the element
t is taken at random in such a way that all values of h(t) are equiprobable (have
probability 1/ k).

Solution. Let l(i) be the length of the list corresponding to the hash value i.
The number of operations does not exceed C(1 + l(h(t))); the expectation does
not exceed C(1 + n/k), since Z i l(i) = n. �9

This estimate is based on the assumption that all values of h(t) have the same
probability. However, for a given input distribution and a given hash function this
assumption may be false, and many elements of the set may share the same value
of the hash function, so large clusters appear. A method that avoids this difficulty
is called universal hashing.

156 11 SET REPRESENTATION. HASHING

The idea is to use a family of hash functions instead of just one and to choose
a function from this family at random. The hope is that any fixed set behaves well
for most of the functions in the family.

Let H be a family of functions. Each function maps the set T into a set of
cardinality k (say, into 0 k - 1). The family H is called a universal family of
hash functions if for any two distinct elements s, t c T, the probability of the event
h(s) = h(t) (for a random function h a H) is equal to 1/k. (In other words, the
functions h E H satisfying h(s) = h(t) are in proportion 1/k with all functions in
H.)

Remark. A stronger requirement may be given, namely, we may require that for
any two distinct elements s, t E H, the values h (s) and h (t) (for a randomly chosen
h) are independent random variables uniformly distributed among 0 k - 1.
This stronger requirement is fulfilled in the examples below.

11.2.3. Let tl tn be any sequence of distinct elements of the set T. Con-
sider the sequence of events that occurs when the elements tl, �9 �9 t,, are added
to a set stored using a hash function h from a universal family H. Prove that the
expected number of operations (the mean value taken over all h ~ H) does not
exceed Cn(1 + n/k) .

Solution. By mi we mean the number of elements among tl tn with hash
value i. (Of course, the numbers m0 mk-1 depend on h.) The number of

2 up to a constant operations we are interested in is equal to m 2 + m 2 + . . . + mk_ 1
factor. (Indeed, if s elements are placed in a list, the number of operations is
approximately 1 + 2 + �9 - - + s ~ s2.) The same sum of squares may be written
as the number of pairs (p, q) satisfying h(tp) = h(tq). For any fixed p and q the
event h(tp) = h(tq) has probability 1/k (assuming that p ~ q). Therefore, the
expected value of the corresponding term is equal to 1/k, and the expected value
of the sum is roughly nZ/k. More precisely, we obtain n + n2/k since we need to
count terms with p = q. �9

This problem shows that the average number of operations per element is
C(1 + n/k) . Here n / k may be called the "average load of a hash value".

11.2.4. Prove a similar assertion about the arbitrary sequence of additions,
deletions, and membership tests (not only additions, as in the preceding problem).

[Hint. Let us imagine that while performing addition, search, or deletion, the
element is a person that traverses the list of its colleagues with the same hash value
until it finds its twin brother (an equal element; it this case, the element disappears)
or reaches the end of the list. By i- j -meeting we mean the event when elements
ti and tj meet each other. (It may or may not happen depending on h.) The total
number of operations is (up to a constant factor) equal to the number of meetings
plus the number of elements. When ti ~ tj, the probability of an i - j -meet ing
does not exceed 1/k. It remains to count the meetings of equal elements. Let us
fix some value x 6 T and consider all operations that refer to this value. They
follow the pattern: tests, addition, tests, deletion, tests, addition, etc. The meetings

11.2 Hashing using lists 157

occur between an added element and tested elements that follow it (up to the next
deletion, and including it), therefore the total number of meetings does not exceed
the number of elements equal to x.] �9

Now we give several examples of universal families. For any two finite sets
A and B, the family of all functions that map A into B is an universal family.
However, from a practical viewpoint this family is useless, since to store a random
function from this family, we need an array with #A elements (#A is the cardinality
of A). If we can afford an array of that size, we do not need hashing at all!

More practical examples of universal families may be obtained using simple
algebraic techniques. By Zp we denote the set of all residues modulo p where
p is a prime number, that is, the set {0, 1 p - 1}. Arithmetic operations
are performed on this set modulo p. An universal family is formed by all linear
functionals defined on Zg with values in Zp. More precisely, let al an be
arbitrary elements of Zp and consider the mapping

h : (Xl, � 9 Xn) w-~ alXl -Jr- �9 �9 �9 q- anXn

We get a family of pn mappings Zp ~ Zp indexed by n-tuples (al an).

11.2.5. Prove that this family is universal.

[Hint. Let x and y be distinct points of the space Zp. What is the probability of
the event "a random functional ot has the same values for x and y"? In other words,
what is the probability of the event "ot(x - y) = 0"? The answer is provided by
the following statement. If u is a nonzero vector, all possible values of or(u) are
equiprobable.] �9

In the following problem, the set B = {0, 1} is taken to be the set of residues
modulo 2.

11.2.6. Show that the family of all linear mappings of B n into B m is univer-
sal. �9

Hashing turns out to be useful in unexpected curcumstances. The following
example was communicated to me by D.V. Varsonofiev. Suppose we want to
contruct a spelling checker to find (most of) the typos in an English text. We do
not want, however, to keep a list of all correct words (in all grammatic forms).
We can use the following trick. Choose some positive integer N and functions
f l fk that map words to 1 N. Consider an array of N bits initially set to
zero. Then for any (correctly spelled) word x, compute the values f l (x) fk (x)
and make the corresponding bits equal to 1. (Some bits may correspond to several
words.) Then the approximate test to check whether a string z is a correctly spelled
word, is as follows. Compute all values f l (z) fk (Z) and check that all the
corresponding bits are ls. This test may miss some errors, but all correct words
will be allowed.

12 Sets, trees, and balanced trees

12.1 Set representation using trees

Full binary trees and T-trees

Draw a point. Now draw two arrows going up-left and up-right to two other points.
From those two points also draw two arrows, etc. The resulting tree is called a full
binary tree (the n-th level has 2 n-~ points). The initial point (at the bottom of the
tree) is called the root. Each vertex has two sons (arrows point to them), the left
son and the right son. Each vertex (except for the root) has an unique father.

Please note that many textbooks draw trees with the root at the top and also
use words "child" ("parent", "siebling", etc.) instead o f"son" ("father", "brother",
etc.).

Now choose some subset of the set of all vertices of the full binary tree. It
should satisfy the following requirement: for each vertex of the subset, its father
belongs to the subset, too. (Therefore, all vertices on a path from the root to some
vertex from the subset belong to the subset.) Assume that each vertex in the subset
has a label that is an element of some set T. (In other words, we assume that a
mapping from the subset into the set T is given.) Such a subset with labels from
T is called a T-tree. The set of all T-trees is denoted by Tree(T).

The notion of T-tree may be defined recursively. Any nonempty T-tree is
divided into three parts: the root (which carries a label from T), the left sub-tree,
and the right subtree (one or both of which may be empty). Therefore, there is an
one-to-one correspondence between the set of nonempty T-trees and the product
T x Tree(T) x Tree(T). We get the following equality:

Tree(T) = {empty} + T • Tree(T) x Tree(T).

(here empty stands for the empty tree).

Subtrees and height

Assume that some T-tree is fixed. For any vertex x, the following objects are
defined: the left subtree (the teft son of x and all its descendants); the right subtree
(the right son o f x and all its descendants); and the subtree rooted a t x (the vertex
x and all its descendants). The left and right subtrees of x may be empty, but the
subtree rooted at x may not (it always contains the vertex x). The height of a
subtree is defined as the maximal length of the sequence yl Yn of its vertices
where yi+l is a son of yi for all i, minus one. (The height of the empty tree is - 1
by definition; the height of a tree containing only the root is 0.)

12.1 Set representation using trees 159

Ordered T-trees

Assume that a linear order is defined on the set T. A T-tree is ordered if the
following requirement is fulfilled: for any vertex x, all labels in its left subtree are
less than the label at x and all labels in its right subtree are greater than the label
at x.

12.1.1. Prove that all labels in an ordered subtree are different.

[Hint. Induction over the height of the tree.[�9

Set representation using trees

Consider any tree as a representation of the set of labels of its vertices. (Of course,
the same set may have different representations.)

If the set is ordered, each element can easily find its way to a place in the tree.
It starts from the root; coming to a vertex, an element compares itself with the label
at that vertex and decides whether to go to the left or to the right.

Using this rule, the element either finds the identical label already present in the
tree or the place where it should stay to keep the tree ordered.

In this section, assume that the set T is a linearly ordered set. Al l T-trees we
consider are ordered.

Tree representation

The simplest way to represent a tree is to identify the vertices of a full binary tree
with integers 1, 2, 3 (the left son of n is 2n, the right son of n is 2n + 1) and
store the labels in an array v a l [1 . . N] (for a large enough N). However, this
approach wastes space because space is set aside for positions in the full binary
tree that are not filled in a specific T-tree.

The following approach is more space efficient. We use three arrays

val: array [1..n] of T;
left, right: array [l..n] of O..n;

160 12 SETS, TREES, AND BALANCED TREES

(n is the maximal possible number of tree vertices for trees we want to store) and
a variable r o o t : 0 . . n. Each vertex of the stored T-tree will have a number that is
an integer in 1 . . n. Different vertices have different numbers; some numbers may
be unused. The label of the vertex with number x is stored in v a l [x] . The root
has number r o o t . If vertex i has sons, their numbers are l e f t [i] and r i g h t [i] .
Nonexistent sons are replaced by the number 0. Similarly, the condition r o o t = 0
means that the tree is empty.

The tree vertices only occupy part of the array. For "free" values of i that are
not used as vertex numbers, the values v a l [i] have no meaning. We want the free
numbers to be "linked in a list"; the first free number is stored in a special variable
f r e e : 0 . . n, while the free number that follows i in the list is l e f t [i] . In other
words, the list of all free numbers is

free, left [free], left [left [free]]

For the last free number i in the list, the value l e f t [i] equals 0. If f r e e -- 0,
there are no free numbers. (Remark. We used the array l e f t to link all free
numbers in a list but of course, we may use the array r i g h t instead.)

We can use any other integer outside 1 . . n to indicate the absence of a vertex
(instead of 0). To stress this, we use a symbol ic constant n u l l = 0 instead of the
numeral 0.

12.1.2�9 Write a procedure that checks if an element t : Tis present in an ordered
tree (as described above).

Solution.

if root = null then begin

I ..t is not in the tree

end else begin

x := root ;

{invariant: it remains to check if t is present in

a nonempty subtree rooted at x}

while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin

if t < val [x] then begin {left [x] <> null}

I x := left [x];
end else begin {t > val [x], right [x] <> null}

I x := right [x];

end;

end;

{either t = val Ix] or t is not in the tree}

�9 .answer is (t = val [x])

end; �9

12.1.3. Simplify the procedure using the following trick. Extend the array
v a l , adding a cell with index n u l l . Let v a l [n u l l] be t .

12.1 Set representation using trees 161

Solution.

val [nullS := t;

x := root ;

while t <> val [x] do begin

if t < val [x] then begin

I x := left [x];

end else begin

I x := right [x];

end ;

end ;

�9 .answer is (x <> null).

12.1.4. Write a procedure that adds an element t to a set represented as an
(ordered) T-tree. (If t is already present, nothing should be done.)

Solution. The procedure g e t _ f r e e (v a r i : i n t e g e r) produces a free inte-
ger i in 1 . . n (that is, an integer that is not a number of any vertex) and updates
the free list. (For simplicity, we assume that free integers exist.)

procedure get_free (var i: integer) ;

begin

{free <> null}

i := free;

free := left [free];

end ;

Using this procedure, we write:

if root = null then begin

get_free (root) ;

left [root] := null; right [root] := null;

val [root] := t;

end else begin

x : = root ;

{invariant: it remains to add t to a (nonempty) subtree

rooted at x}

while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin

if t < val [x] then begin

I x := left Ix];

end else begin {t > val [x]}

I x := right [x];

end;

end ;

162 12 SETS, TREES, AND BALANCED TREES

if t <> val [x] then begin {t is not in the tree)

get_free (i);

left [i] := null; right [i] := null;

val [i] := t;

if t < val [x] then begin

I left [x] := i;
end else begin {t > val [x]}

I right [x] := i;
end;

end;

end;

12.1.5. Write a procedure that deletes an element t from a set represented as
an ordered tree. (If the element is not in the set, nothing should be done.)

Solution.

if root = null then begin

I ~the tree is empty, there is nothing to do}

end else begin

x := root;

{it remains to delete t from the subtree rooted at x;

since it may require changes in the father node,

we introduce the variables father: 1..n and
direction: (1, r) with the following

invariant: if x is not the root, then father
is (the number of) x's father node, direction is

equal to 1/r if x is the left/right son of its father)

while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin

if t < val [x] then begin

I father := x; direction := l;

x := left [x];

end else begin {t > val [x]}

father := x; direction := r;

x := right [x];

end;

end;

{t = val [x] or t is not in the tree)

if t = val [x] then begin

..delete the node x with a known father and direction

end;

end;

The deletion of a vertex uses the procedure

12. I Set representation using trees 163

procedure make_free (i: integer);

begin

left [i] := free;

free := i;

end ;

which adds the number i to the free list. While deleting a vertex, we should
distinguish between four cases depending on whether the vertex has a left/right
son or not.

if (left Ix] = null) and (right Ix] = null) then begin

{x is a leaf, no sons)

make free (x);

if x = root then begin

I root := null;

end else if direction = 1 then begin

I left [father] := null;
end else begin {direction = r)

I right [fathers := null;

end;
md else if (left [x] =null) and (right[x] <> null) then begin

{when x is deleted, right[x] occupies its place)

make_free (x) ;

if x = root then begin

] root := right [x];

end else if direction = 1 then begin

] left [fathers := right [x];
end else begin {direction = r)

I right [father] := right Ix];

end;

end else if (left Kx] <> null) and (right Kxl=null) then begin

I . .the symmetrical code

end else begin {left Ix] <> null, right Ix] <> null)

I ..delete a vertex with two sons

end ;

The deletion of a vertex with two sons is the most difficult case. Here we should
exchange it with an immediately following vertex (in the sense of label ordering).

y := right Ix]; father := x; direction := r;

{now father and direction refer to vertex y)

while left [y] <> null do begin

father := y; direction := l;

y := left [y];

end ;

164 12 SETS, TREES, A N D BALANCED TREES

<val[y] is minimal element of the set larger

than val[x], y has no left son}

val Ix] := val Ey];

..delete the vertex y (we already know how to do

that for a vertex without the left son)

12.1.6. Simplify the deletion procedure using the following observation:
Some cases (say, the first two) may be combined into a single case. �9

12.1.7. Use an ordered tree to store a function whose domain is a finite subset
of T and whose range is some set U. The operations are: find the value of the
function for a given argument; change this value; delete an element from the
domain; and add an element to the domain (the value is also provided).

Solution. We represent the domain using an ordered tree and add one more
array

func_val: array E1..n] of U;

I f v a l [x] = t a n d f u n c _ v a l [x] = u, then the function value on t equals u. �9

12.1.8. Assume that we want to find the k-th element of a set (according to the
ordering on T) in time limited by C �9 (tree height). What additional information
do we need to store at the tree vertices?

Solution. At each vertex, we store the number of its descendants. When a
vertex is added or deleted, this information must be updated along a path from the
root to the new/deleted vertex. While searching for the k-th vertex, we maintain
the following invariant: the vertex in question is the s-th vertex (according to the
T-ordering) of a subtree rooted at x (here s and x are variables). �9

Running time

All of the procedures discussed above (membership test, addition, and deletion)
run in time C �9 (tree height). For a "well-balanced" tree where all leaves have
approximately the same height, the tree height is close to the logarithm of the
number of vertices. However, for a unbalanced tree the height may be much larger.
In the worst case, the vertices may form a chain (if all vertices have no left son, for
example) and the tree height is the number of vertices. This happens if we start
with the empty set and add elements in increasing order. However, one can prove
that if the elements are added in random order, then the expected height of the tree
will not exceed C log(tree size). If this "average bound" is not good enough for
our application, we must spend additional effort to keep the tree "balanced". This
is explained in the next section.

12.2 B a l a n c e d trees 165

12.2 Balanced trees

A tree is called b a l a n c e d (or an AVL-tree, in the honor of the inventors of this
algorithm, G.M. Adelson-Velsky and E.M. Landis) if for any vertex, the heights
of the left and the right subtrees differ by at most 1. (In particular, the only son of
a vertex is required to be a leaf, since the height of the other subtree is - 1 .)

12.2.1. Find the minimal and maximal number of vertices in a balanced tree
of height n.

Solu t ion . T h e maximal number of vertices is equal to 2 n+l - 1. If mn is the
minimal number of vertices, then ran+2 = 1 + m n + mn+l . A n easy induction
argument gives mn = q~n+3 - 1 (where q~n is the n-th Fibonacci number: ~1 : 1,
~2 = 1, and q~Pn+2 : qbn + ~ n + l) . �9

12.2.2. Prove that a balanced tree with n > 1 vertices has height at most
C log n for some constant C that does not depend on n.

Solu t ion . By induction over n, we prove that qbn+ 2 ~ a n where a is the larger
root of the quadratic equation a 2 = 1 + a, that is, a = (~/-5 + 1)/2. (This number
is usually called "the golden mean".) It remains to apply the preceding problem.

Rotations

After an element is added or deleted, the tree may become unbalanced, and we
have to restore the balance. Therefore, we need some tree transformations that
preserve the set of labels and the ordering requirement, but help to balance the
tree. Here are some of those transformations:

Assume that a vertex a has a right son b. Let P be the left subtree of a. Let Q
and R be the left and right subtrees of b, respectively. The ordering requirement
guarantees that P < a < Q < b < R. (This means that any label in P is smaller
than a, that a is smaller than any label in Q, etc.) The same condition is imposed by
the ordering requirements for another tree. The latter tree has root b; the left son a
of the root has left subtree P and right subtree Q; the right subtree of the root is R.
Therefore the first tree may be transformed to the second one without changing the
set of labels or violating the ordering requirements. This transformation is called a

166 12 SETS, TREES, AND BALANCED TREES

small right rotation. It is called "right" because there is a symmetr ic"lef t" rotation;
it is called "small" because there exists a "big" rotation, which we describe now.

Let b be the right son of the root vertex a; let c be the left son of b; let P be the
left subtree of a; let Q and R be the left and the right subtrees of c, respectively;
and finally, let S be the right subtree of b. Then P < a < Q < c < R < b < S.

The same ordering conditions are imposed by a tree with root c, its left son a and
right son b that have the left and the right subtrees P and Q (for a) and R and S
(for b). The corresponding transformation is called a big right rotation. (A big left
rotation is defined in a symmetric way.)

How to balance a tree using rotations

12.2.3. Suppose a tree is balanced everywhere except at the root where the dif-
ference of heights between the left and right subtrees equals 2 (that is, the left
and right subtrees are balanced and their heights differs by 2). Prove that this tree
may be transformed into a balanced tree using one of the four transformations
mentioned above and that the height remains the same or decreases by 1 after the
transformation.

Solution. Assume, for example, that the left subtree has smaller height, which
we denote by k. Then the height of the right subtree is k q- 2. Denote the root of the
tree by a. Let b be its right son (it does exist). Consider the left and right subtrees
of the vertex b. One of them has height k + 1, the other has height k or k q- 1. (Its
height cannot be smaller than k because the right subtree of the root is balanced.)
If the height of the left subtree of b is k q- 1, and the height of the right subtree of b
is k, a big right rotation is needed; in all other cases, a small right rotation suffices.
Here are the three possible cases:

12.2 Balanced trees 167

12.2.4. A leaf is added to or deleted from a balanced tree. Prove that it
is possible to make the tree balanced again using several rotations and that the
number of rotations does not exceed the tree height.

Solution. We prove the more general statement:

Lemma. If a subtree Y of a balanced tree X is replaced by a balanced tree Z,
and the heights of Y and Z differ by 1, then the resulting tree can be made balanced
by several rotations. The number of rotations does not exceed the height where
the change occurs (that is, where the root of Y and Z is located).

The addition/deletion of a leaf is a special case of the transformation mentioned
in the lemma, therefore it is enough to prove this lemma.

Proof of the lemma. We use induction over the height where the change is
made. If the change is made at the root, the entire tree is replaced; in this case, the
lemma is evident because the tree Z is balanced. Assume that the replaced tree Y
is, say, the left subtree of some vertex x. Two cases are possible:

1. After replacement, the balance condition at the vertex x is still valid. (How-
ever, the balance condition at the ancestors o fx may be violated because the
height of the subtree rooted at x may change.) In this case, we apply the
induction hypothesis assuming that the replacement was done at the lower
level and the whole tree rooted at x was replaced.

2. The balance condition at x is no longer valid. In this case, the height dif-
ference is 2 (it cannot be larger because the heights of Y and Z differ by at

168 12 SETS, TREES, AND BALANCED TREES

most 1). Here two subcases are possible:

(a) The right subtree ofx (the one that was not replaced) is higher. Assume
that the height of the left subtree of x (i.e., Z) is k; then the height of
the right subtree is k -4- 2. The height of the old left subtree of X (i.e.,
Y) was k + 1. The subtree of the initial tree rooted at x has height k + 3
and its height does not change after replacement.

By the preceding problem, a rotation can transform the subtree rooted
at x into a balanced subtree of height k 4- 2 or k 4- 3. While doing this,
the height of the subtree rooted at x (compared with its height before
the transformation) did not change or was decreased by 1. Therefore,
we apply the induction assumption.

(b) The left subtree of x is higher. Let the height of the left subtree (i.e.,
Z) be k 4- 2; the right subtree has height k. The old left subtree of x
(i.e., Y) was of height k 4- 1. The subtree rooted at x (in the initial
tree) has height k 4- 2; after the replacement it has height k 4- 3. After
a suitable rotation (see the preceding problem), the subtree rooted at x
becomes balanced and its height is k 4- 2 or k 4- 3; therefore, the change
in height (compared with the height of the subtree of X rooted at x)
does not exceed 1 and the induction assumption applies. �9

12.2.5. Write addition and deletion procedures that keep the tree balanced.
The running time should not exceed C. (tree height). It is allowed to store additional
information (needed for balancing) at the vertices of the tree.

Solution. For each vertex we keep the difference between the heights of its
right and left subtrees:

d i f f [i] = (the height of the right subtree of i) -

(the height of the left subtree of i).

We need four procedures that correspond to left/right, small/big rotations. Let us
first make two remarks. (1) We want to keep the number of the tree root unchanged
during the rotation. (Otherwise it would be necessary to update the pointer at the
father vertex, which is inconvenient.) This can be done, because the numbers of
tree vertices may be chosen independently of their content. (In our pictures, the

12.2 Balanced trees 169

number is drawn near the vertex while the content is drawn inside it.)

(2) After the transformation, we should update values in the diff array. To do
this, it is enough to know the heights of trees P, Q up to a constant (only
differences are important), so we may assume that one of the heights is equal to 0.

Here are the rotation procedures:

procedure SR (a:integer); {small right rotation at a}
I var b: l..n; val_a,val b: T; h_P,h_Q,h_R: integer;
begin

b := right [a]; {b <> null}
val_a := val [a]; val b := val [b];
h Q := O; h_R := diff[b]; h P := (max(h Q,h R) +l) -diff [a] ;
val [a] := val b; val [b] := val a;
right [a] := right [b] {subtree R}

right [b] := left [b] {subtree Q}
left [b] := left [a] {subtree P}

left [a] := b;
diff [b] := h_Q - h P;
diff [a] := h R- (max (h_P, h_Q) + 1);

end ;

procedure BR(a:integer) ;{big right rotation at a}

I vat b,c: 1..n; val a,val_b,val c: T;
h P,h Q,h R,h_S: integer;

170 12 SETS, TREES, AND BALANCED TREES

begin

b := right [a]; c := left [b]; {,c <> null}

val_a := val [a]; val_b := val [b]; val_c := val [c];

h_Q := O; h_R := diff[c]; h_S := (max(h_Q,h_R)+l)+diff[b];

h_P := i + max (h_S, h_S-diff[b]) - diff [a];

val [a] := val_c; val [c] := val_a;

left [b] := right [c] {subtree R}

right [c] := left [c] {subtree Q}

left

left

diff

diff

diff

end;

[c] := left [a] {subtree P}

[a] := c;

[b] := h_S - h_R;

[c] := h_Q - h_P;

[a] := max (h_S, h_R) -max (h_P, h_Q);

The (small and big) left rotations are similar. �9

The addition/deletion procedures are written as before, but now they have to
update the d i f f array and restructure the tree to keep it balanced.

An auxiliary procedure with the following pre- and postconditions is used:

before: the left and right subtrees of the vertex number a are
balanced; the difference of heights at a is at most 2; the d i f f array is
filled correctly for the subtree rooted at a;

af ter: the subtree rooted at a is now balanced; the d i f f is updated
(inside that subtree); the change in the height of the subtree rooted at
a is stored in d and is equal to 0 or -1; the remaining part of the tree
(including the d i f f array) remains unchanged.

procedure balance (a: integer; vat d: integer);

begin {-2 <= diff [a] <= 2}

if diff [a] = 2 then begin

b := right [a];

if diff [b] = -1 then begin

I BR (a); d := -1;
end e l s e i f d i f f [b] = 0 t h e n b e g i n
I SR (a); d := O;
end e l s e b e g i n { d i f f [b] = 1}

I SR (a); d :=- i;
end ;

end else if diff [a] = -2 then begin

b := left [a];

if diff [b] = 1 then begin

I BL (a); d :=-i;

end else if diff [b] = 0 then begin

12.2 Balanced trees 171

I SL (a); d := O;
end else begin {diff [b]

I SL (a); d := - i;
end;

end else begin {-2 <diff

I d := O;
end;

end;

= -1}

[a] < 2, there is nothing to do}

To restore the balance, we go downwards from a leaf to the root. To do that,
we store the path from the root to the current vertex in a stack. The elements of the

stack are pairs (vertex, direction of move from the vertex), that is, values of type

record

vert: l..n; {vertex}

direction : (i, r); {i for left, r for right}

end;

The addition of an element t is now as follows:

if root = null then begin

get_free (root) ;

left [root] := null; right [root] := null; dill[root] := O;

val[root] := t;

end else begin

x := root; ..make the stack empty

{invariant: it remains to add t to the nonempty subtree

rooted at x; the stack contains the path to x}
while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin

if t < val [x] then begin

�9 .add <x, l> to the stack

x := left [x];

end else begin {t > val [x]}

�9 .add <x, r> to the stack

x := right [x];

end;

end ;

if t <> val [x] then begin {t is not in the tree}

get_free (i); val [i] := t;

left [i] := null; right [i] := null; diff [i] := O;

if t < val [x] then begin

�9 .add <x, l> to the stack

left [x] := i;

end else begin {t > val [x]}

172 12 SETS, TREES, AND BALANCED TREES

..add <x, r> to the stack

right [x] := i;

end;

d := 1;

{invariant: the stack contains the path to a changed

subtree whose height has increased by d (= 0 or 1);

this subtree is balanced; values of diff for its

vertices are correct; in the remaining part of the

tree everything is unchanged (including the values

of diff)}

while (d <> O) and the stack is non-empty do begin

{d : i}
..take a pair from stack into <v, direct>

if direct = 1 then begin

if diff [v] = 1 then begin

I c := O;
end else begin

I c := i;
end;

diff [v] := diff Iv] - i;

end else begin {direct = r}

if diff [v] = -I then begin

I c := O;
end else begin

I c := i;
end;

diff [v] := diff [v] + I;

end;

{c = the change in the height of the subtree rooted

at v (compared with the initial tree); the array

diff has correct values inside that subtree; the

balance condition at v may be violated}

balance (v, dl); d := c + dl;

end;

end;

end;

It is easy to check that d may be equal to 0 or 1 (but not -1); indeed, if c = 0, then
d i f f [v] = 0 and balancing is not performed.

The deletion procedure is similar. Its main part is:

{invariant: the stack contains a path to the changed

subtree whose height was changed by d (=0 or -1)

compared with the initial tree; this subtree is

12.2 Balanced trees 173

balanced; the values of diff are correct for the

vertices of that subtree; the remaining part of the

tree is unchanged (including the values of diff)}

while (d <> O) and the stack is not empty do begin

{d = -i}

�9 .take a pair from the stack into <v, direct>

if direct = 1 then begin

if diff Iv] = -i then begin

I c :=-1;
end else begin

I C := O;
end;

diff [v] := diff [v] + I;

end else begin {direct = r}

if diff [v] = i then begin

I C :=-i;
end else begin

I c:=O;
end ;

diff [v] := diff [v] - i;

end ;

{c = the change in the height of the subtree rooted

at v (compared with the initial tree); the array diff

has correct values inside that subtree; the balance

condition at v may be violated}

balance (v, dl);

d := c + dl;

end ;

It is easy to check that d may be equal to 0 or -1 (but not -2); indeed, if c = -1,
then d i f f [v] = 0 and balancing is not performed.

Let us mention that the existence of the stack makes the variables f a t h e r and
d i r e c t i o n used in the deletion procedure (see above) redundant, because now
the stack top contains the same information.

12.2.6. Prove that while the element is added,

(a) the second case of the balancing step (see picture on p. 166) is, in fact,
impossible;

(b) the complete balancing of the entire tree requires only one rotation.

However, deletion may require many rotations to restore the balance. �9

Remark. Addition and deletion procedures may be simplified if we do not want
to make them similar.

174 12 SETS, TREES, A N D BALANCED TREES

Other versions of balanced trees

There are several other ways to represent sets using trees. Some of those methods
also guarantee a running time of order log n for each operation. Let us sketch one
of them, called B-trees. (It is often used for large databases stored on a hard disk.)

Up to now each vertex contained only one element of the set. This element was
used as a threshold that separates the left and right subtrees. Now let the vertex
store k > 1 elements of the set. The value of k may be different for different
vertices and may change while adding or deleting elements (see below). The k
elements stored at a vertex are used as separators between k + 1 subtrees (so a
vertex with k elements may have up to k + 1 sons).

Assume that some number t > 1 is fixed. We consider trees that satisfy the
following requirements:

1. Each vertex contains not less than t and not more than 2t elements. (The
root is an exception; it may contain any number of elements not exceeding
2t.)

2. Any vertex with k elements either has k + 1 sons or does not have any sons
at all (that is, it is a leaf).

3. All leaves are on the same level.

The addition of an element proceeds as follows. If the leaf where this element
goes is not full (that is, contains less than 2t elements), we simply add this element
to that leaf. If that leaf is full, then we have 2t + 1 elements (2t old ones and the
new one). We split them into two leaves with t elements and the median element
between them. This median element should be added to a vertex at the preceding
level. This is easy if that vertex has less than 2t elements. If it is full, then it is
split into two vertices, a median is found, etc. Finally, if we need to add the new
element to the root and the root is full, we split the root into two vertices and the
tree height is increased by 1.

The deletion of an element that is placed not at a leaf may be reduced to the
deletion of the next element of the set, which is in a leaf. Therefore, it is enough to
delete elements from leaves. If the leaf becomes too small, we can borrow some
elements from a neighboring leaf, unless it too has the minimal possible size t. If
both leaves have size t, together they have 2t elements, or rather 2t + 1 elements if
we count the separator between them. After deleting one element, the remaining
2t elements may be placed onto one leaf. However, the vertex of the preceding
level may now be too small. In that case, we have to do the same transformation
at that level, etc.

12.2.7. Implement this scheme of set representation and check that it also
performs additions, deletions, and membership tests in time C log n, where n is
the cardinality of the set. �9

12.2 Balanced trees 175

12.2.8. Another definition of a balanced tree requires that for each vertex the
number of vertices in its left and right subtrees do not differ too much. (The advan-
tage of this definition is that a rotation performed at some vertex does not destroy
the balance at the ancestors of that vertex.) Using this idea, find a set representa-
tion that guarantees a running time bound of C log n for additions, deletions and
membership tests.

[Hint. This approach also uses small and big rotations. The details can be
found in the book of Reingold, Nievergelt, and Deo [9].] �9

13 Context-free grammars

13.1 General parsing algorithm

To define a context-free grammar we should:

�9 fix a finite set A, called an alphabet, whose elements are called symbols or
letters; finite sequences of symbols are called strings or words;

�9 divide all symbols in A into two classes: terminal symbols and nonterminal
symbols;

�9 choose a nonterminal symbol called the initial symbol, or axiom;

�9 fix a finite set of productions, or production rules; each production has the
form K --~ X, where K is some nonterminal and X is a string that may
contain both terminal and nonterminal symbols.

Assume that a context-free grammar is given (we often omit the words "context-
free" because we do not consider another types of grammars). A derivation in
this grammar is a sequence of strings A0, A1 An, where A0 is a one-letter
string consisting of the initial symbol; Ai+l is obtained from Ai by replacing some
nonterminal K in Ai by a string X according to one of the production rules K -+ X.

A string containing only terminals is generated by a grammar if there exists a
derivation that ends in this string. The set of all strings generated by some grammar
G is called the context-free language generated by G. A language (that is, a set of
strings) is called context-free if it is generated by some context-free grammar.

In this section, as well as the following one, we are interested in the following
question: A context-free grammar G is given; construct an algorithm that checks
if an input string belongs to the language generated by G.

Example 1. Alphabet:

() [] E

(four terminals and one nonterminal E). Axiom: E. Productions:

E --> (E)

E --+ [E]

E-+ EE

E--+

(the last rule has the empty string on its right-hand side).
Examples of generated strings:

(empty string)
()

13.1 General parsing algorithm 177

([])

() [([]) 3
[() [] () [3 3

Examples of strings not in the language:

(
) (
(]

(D2

This grammar was considered in section 6. An algorithm that checks whether an
input string belongs to the corresponding language was considered; that algorithm
used a stack.

Example 2. Another grammar that generates the same language:

Alphabet: () [] T E

Productions:

E ---.~

E-+ TE

T --> (E)

r -+ [E]

In all subsequent examples, the axiom will be the nonterminal on the left-hand
side of the first rule unless stated otherwise (in this example, the axiom is E).

For any nonterminal K, consider the set of all strings composed of terminals
that can be obtained from K by a derivation. (For the axiom, this set is a language
generated by a grammar.) In a sense, each rule of the grammar is a statement
about those sets. Let us explain what we mean using the grammar of example 2.
Let T and E be the sets of all strings in the alphabet { (,) , [,] } derivable from
nonterminals T and E, respectively. The rules of the grammar correspond to the
following properties:

E---~

E - + TE

T ~ IE]

T --+ (E)

E contains an empty string

if A is in T and B is in E, then AB is in E

if A is in E, then IA] is in T

if A is in E, then (A) is in T

These four properties of E and T do not determine those sets uniquely. For
example, they are still true if T = E = the set of all strings. However, one may
prove (for an arbitrary context-free grammar) that the sets defined by the grammar
are minimal among all the sets having those properties ("minimal" means "minimal
up to inclusion").

178 13 CONTEXT-FREE G R A M M A R S

13.1.1. Give the precise statement and proof of this claim. �9

13.1.2. Construct a context-free grammar that generates the following strings
(and no others):

(a) O k 1 k (the numbers of zeros and ones are equal);
(b) 02kl k (the number of zeros is twice as large as the number of ones);
(c) O k 1 t (the number of zeros k is larger than the number of ones l).
(d) (communicated by M. Sipser) all the strings X2Y where X and Y are

composed of 0s and ls and X 5~ Y. �9

13.1.3. Prove that there is no context-flee grammar that generates all strings
of type O k lk2 k (and no other strings).

[Hint. Prove the following lemma about an arbitrary context-flee language:
Any sufficiently long string F in the language can be represented as F = A B C D E
in such a way that any string A B k CDkE (where B k is B repeated k times) belongs
to the language. To prove this lemma, find a nonterminal that is a descendant of
itself in the "derivation tree".] �9

A nonterminal may be considered a "class name" for all generated strings.
In the next example, we use fragments of English words as nonterminals; each
fragment is considered to be one nonterminal symbol of the grammar.

Example 3.

Terminals:
Nonterminals:

Production rules:

+ * () x
(expr) (restexpr) (summ)(restsumm) (fact)

(expr) --~ (summ) (restexpr)

(restexpr) -+ + (expr)

(restexpr)

(suture) ~ (fact) (restsumm)

(restsumm) ~ * (suture)

(restsumm)

(fact) --* x

(fact) --* ((e x p r))

According to this grammar, an expression is a sequence of summands separated
by symbols +; a summand is a sequence of factors, separated by symbols *; a
factor is either the letter x or an expression in parentheses.

13.1.4. Give another grammar that generates the same language.

13.1 General parsing algorithm 179

Answer. Here is one possibility:

(expr) --+ (expr} + (expr)

(expr) --~ (expr) * (expr)

/expr) --+ x

(expr) ~ ((exp r))

This grammar is simpler, but not quite as good (see below). �9

13.1.5. An arbitrary context-free grammar is given. Construct an algorithm
that checks if an input string belongs to the language generated by the grammar.
The algorithm should run in polynomial time: the number of operations should
not exceed P(input length) for some polynomial P. (The polynomial may depend
on the grammar.)

Solution. The required polynomial time bound rules out any solution based
on exhaustive search. However, a polynomial algorithm for a general context-free
language exists. We give an outline of that algorithm below. In fact, it has no
practical value, because all context-free grammars used in practice have special
properties that make more efficient algorithms possible.

(1) Let K1 Kn be the nonterminals of the given grammar. Construct a
new context-free grammar with nonterminals K~ K~. This grammar has the
following property: a string S can be generated from K~ (in the new grammar) if
and only if S is nonempty and can be generated from Ki in the old grammar.

To do that, we must know which nonterminals of the given grammar generate
the empty string. Then each rule is replaced by a set of rules obtained as follows:
On the left-hand side we add the dash, and on the right-hand side we omit some
of the nonterminals that generate the empty string and put dashes near the other
non-terminals. For example, if the initial grammar has the rule

K--+ LMN

and the empty string may be generated from L and N but not from M, the new
grammar contains rules

K t --+ LIMIN l

K' -+ M'N'

K' --~ L'M'

K' -+ M'

(2) Therefore, we have reduced our problem to the case of a grammar where
no terminal generates an empty string. Now we eliminate "cycles" of the form

K--+ L
L ---~ bI
M ---~ N
N - - + K

180 13 CONTEXT-FREE G R A M M A R S

(each rule has one nonterminal and no terminals on the right-hand side; nontermi-
nals form a cycle of any length). This is easy; we identify all the nonterminals that
appear in the same cycle.

(3) Now the membership test for the language generated by a grammar can be
performed as follows. For any nonterminal and for any substring of a given string,
we determine whether this substring can be generated from this nonterminal. We
consider all substrings in the order of increasing length. All nonterminals are
considered in such an order that for any rule of the form K --> L, the nonterminal
L is considered before the nonterminal K. (This is possible because there are no
cycles.) Let us explain this process by an example.

Assume that the grammar has rules

K ---> L
K-+MNL

and no other rules with K on the left-hand side. We want to know if a given word
A may be derived from the nonterminal K. This happens:

�9 if A can be derived from L;

�9 if A can be split into A = B C D where B, C, D are nonempty strings such
that B can be derived from M, C can be derived from N, and D can be derived
from L.

All this information is available because B, C, and D are shorter than A and the
nonterminal L is considered before the nonterminal K.

It is easy to see that the running time of the algorithm is polynomial. The degree
of the polynomial depends on the number of nonterminals on the right-hand side of
the grammar rules. The degree can be made smaller if we convert the grammar into
a form where right-hand sides of rules contain not more than two nonterminals.
This can be done easily; for example, the rule K --+ LMK may be replaced by two
rules K --> LN and N ~ MK where N is a new nonterminal. �9

13.1.6. Consider a grammar with one nonterminal symbol K, terminals 1, 2,
and 3, and the rules

K ---> 0
K-+ IK

K-+2KK

K--~ 3KKK

How do we check whether a given string belongs to the corresponding language
if the string is scanned from left to right? The number of operations per character
should be limited by a constant.

Solution. An integer variable n is used along with the invariant relation: "the
input string belongs to the language if and only if the non-processed part of the
input string is a concatenation of rt strings from the language". �9

13.1.7. Repeat the previous problem for the grammar

13.2 Recursive-descent parsing 181

K-+ 0

K-+ K 1

K-+ K K 2

K - + K K K 3 �9

13.2 Recursive-descent parsing

Unlike the algorithm of the preceding section (which is of mostly theoretical in-
terest), the recursive-descent parsing algorithm is used quite often. However, it is
not applicable to all grammars. (See below the requirements that allow us to apply
this method.)

The idea is as follows. For any nonterminal K we construct a procedure ReadK
(being applied to any input string x) that does two things:

�9 finds the maximal prefix z of the string x that may appear as a prefix of some
string derivable from K;

�9 says if the string z is derivable from K.

Before we give a more detailed description of this method, we should agree
how the procedures access the input string and how they communicate their results.
We assume that the input string is read character-by-character. In other words, we
assume that there is a separator between the "already read" (processed) part and
"the unread" part. (The last name should not be taken literally, because the first
symbol of the unread part may be already known to the procedure.)

We assume that there exists a function without parameters

Next : Symbol

which returns the first symbol of the unread part. Its values are terminals as well as
the special symbol E0I that stands for "End Of Input"; this symbol means that the
input string is ended. (In a sense, EOI is written after the last character of the input
string.) A call to Next does not move the separator between the read and unread
parts. There exists a special procedure Move that "reads" the next character, that
is, moves the separator to the right, adding one character to the processed part.
This procedure is applicable when Next<>EOI. Finally, we have also a Boolean
variable b; its role is described below

Now we state our requirements for the procedure ReadK:

�9 ReadK reads the maximal prefix A of the input string (its unprocessed part)
that may appear as a prefix of some string derivable from K;

�9 the value of b becomes true or false depending on whether A is derivable
from K or is only a prefix of some derivable string (but is not derivable
itself).

182 13 CONTEXT-FREE GRAMMARS

It is convenient to use the following notation: Any string that is derivable from
some nonterminal K is called a K-string. Any string that is a prefix of a string
derivable from K is called K-prefix. If the two requirements for ReadK stated above
are fulfilled, we say that "ReadK is correct for K".

Let us begin with an example. Assume that the rule

K--~ L M

is the only rule of the grammar that has K on the left-hand side. Assume that L, M
are nonterminals and ReadL, ReadM are correct procedures for those nonterminals.

Consider the following procedure:

procedure ReadK;
begin

ReadL;
if b then begin
I ReadM;
end;

end;

13.2.1. Give an example where this procedure is not correct for K.

Answer. Assume that any string 0 0 0 . . . 000 is derivable from L and that only
the string 01 is derivable from M. Then the string 00001 is derivable from K, but
the procedure ReadK does not see this. �9

Let us give a sufficient condition for the correctness of the procedure ReadK
given above. To do that, we need some notation. Assume that a context-free
grammar is fixed and that N is some nonterminal of that grammar. Consider the
N-string A that has a proper prefix B, which is also an N-string (assuming such A
and B exist). For each pair of such A and B, consider the terminal that follows B
in A (appears immediately after B in A). The set of all such symbols (for all A and
B) is denoted by Foil(N). (If no N-string is a proper prefix of another N-string,
the set Foil(N) is empty.)

13.2.2. Find (a) Foil(E) for the grammar given in example 1 (see p. 176); (b)
Foil(E) and Foil(T) for the grammar give in example 2 (see p. 177); (c) Foil((summ))
and Foll((fact)) for the grammar given in example 3 (see p. 178).

,answer. (a) Foil(E) = { [, (}. (b) Foil(E) = { [, (}; Foil(T) is empty (no T-string
is a prefix of another T-string). (c) Foll((summ)) = {*}; Foll(<fact)) is empty. �9

For any nonterminal N, we denote the set of all terminals that are first characters
of nonempty N-strings by First(N). Now we are ready to give a sufficient condition
for the correctness of the procedure BeadK in the situation explained above.

13.2.3. Prove that if Foil(L) and First(M) are disjoint sets and the set of all
M-words is not empty, then the procedure ReadK is correct for K.

13.2 Recursive-descent parsing 183

Solution. Consider two cases.
(1) Suppose that after the call to ReadL the value of b is false. In this case,

l:teadL reads the maximal L-prefix A; this prefix is not an L-string. The string A
is a K-prefix (here we use the fact that the set of strings derivable from M is not
empty). Will A be the maximal prefix of the input string that is at the same time
a K-prefix? The answer is "yes". Indeed, assume that A is not maximal and there
exists a longer string X that is both a K-prefix and a prefix of the input string. Since
l:teadL is correct, X is not a K-prefix, and therefore, X = B C where B is an L-string
and C is a M-prefix.

If B is longer than A, then A is not the maximal prefix of the input string that
is also a K-prefix, which contradicts the correctness of ReadL. If B = A, then A
would be an L-string, which is not true. Therefore, B is a proper prefix of A, C
is not empty, and the first character of C follows the last character of B in A. So
the first character of C belongs both to Foil(L) and First(M), which contradicts our
assumption.

This contradiction shows that A is a maximal prefix of the input string that is
also a K-prefix. Moreover, the argument above shows that A is not a K-string. The
correctness of the procedure l:teadK is therefore established (see its code).

(2) Assume that after the call to ReadL, the value of b is true. Then the
procedure ReadK reads some string of the form A B where A is an L-string and B is
an M-prefix. Therefore, A B is a K-prefix. Let us check that it is maximal. Assume
that C is a longer prefix, which is at the same time a K-prefix. Then either C is an
L-prefix (which is impossible because A is the maximal L-prefix) or C ---- AtB t,
where A t is an L-string and B t is an M-prefix. If A t is shorter than A, then B t is
not empty and begins with a character that belongs both to First(M) and Foil(L),
which is impossible. If A t is longer than A, then A is not the maximal L-prefix.
Therefore, the only possibility is A t = A, but in this case B is a prefix of B t, which
contradicts the correctness of l%eadM. Therefore, A B is the maximal prefix of the
input string that is a K-prefix.

It remains to check that the value of b returned by FteadK is correct. If b is
true, this is evident. If b is false, then B is not an M-string, and we have to check
that A B is not a K-string. Indeed, if A B = AtB t where A t is an L-string and B t
is an M-string, then A t cannot be longer than A (since ReadL reads the maximal
prefix), A t cannot be equal to A (since in this case B t would be equal to B and
could not be an M-string), and A t cannot be shorter than A (since in this case the
first character of B t would belong both to First(M) and Foil(L)). The correctness of
ReadK is proved. �9

Now we consider another special case. Assume that a context-free grammar
contains the rules

K-+L

K-+M

K-+N

184 13 CONTEXT-FREE G R A M M A R S

and has no other rules with K on the left-hand side.

13.2.4. Assume that ReadL, ReadM, and ReadN are correct (for L, M, and N)
and that First(L), First(M), and First(N) are disjoint. Write a procedure ReadK that
is correct for K.

Solution. Here is the procedure:

procedure ReadK ;

begin

if (Next is in First(L)) then begin

I ReadL ;
end e l s e i f (Next i s i n F i r s t (M)) t h e n b e g i n
I ReadM ;
end else if (Next is in First(N)) then begin

I ReadN ;
end else begin

b := true or false depending on whether an

empty string is derivable from K or not

end;

end ;

Let us prove that ReadK is correct for K. If the symbol Next is not in the sets
First(L), First(M), and First(N), then the empty string is the maximal prefix of the
input string that is a K-prefix. If Next belongs to one of those sets (and, therefore,
does not belong to the others), then the maximal prefix of the input string that is a
K-prefix is nonempty and the corresponding procedure reads it. �9

13.2.5. Using the methods discussed, write a procedure that recognizes ex-
pressions generated by the grammar of example 3 (p. 178):

(expr) --~ (summ) (restexpr)

(restexpr) --~ + (expr)

(restexpr) -~

(summ) ~ (fact) (restsumm)

(restsumm) ~ * (summ)

(restsumm)

(fact) -* x

(fact) ~ ((e x p r))

Solution. This grammar does not follow the patterns above: among the right-
hand sides of its rules there are combinations of terminals and nonterminals such
a s

+ (expr)

13.2 Recursive-descent parsing 185

as well as a group of three symbols

((e x p r))

This grammar also contains several rules with the same left-hand side and right-
hand sides of different types, such as

(restexpr} ~ + (expr}

(restexpr}

These problems are not fatal. For example, a rule of type K --+ L M N may be
replaced by two rules K ~ L Q and Q --+ M N. The terminals on the right-hand
side may be replaced by nonterminals (the only rule involving these nonterminals
allows to replace them by the corresponding terminals). If several rules have the
same left-hand side and different right-hand sides, such as

K--*L M N

K--*P Q

K-+

they can be replaced by rules

K --~ KI

K--* K2

K-+ K3

K1 ---+ L M N

K2 --+ P Q

K3 --+

We will not, however, transform the grammar (example 3) explicitly. Instead, we
imagine that this transformation is performed (new nonterminals added), then the
procedures for all nonterminals (old and new) are written, and finally the procedures
for the new nonterminals are eliminated (by in-line substitutions). For example,
for the rule

we getthe procedure

procedure ReadK;

begin

KeadL;

if
if

end;

K-+L M N

b then begin ReadM; end;

b then begin ReadN; end;

186 13 CONTEXT-FREE G R A M M A R S

Its correctness is guaranteed if (1) Foil(L) and First(MN) are disjoint (First(MN) is
equal to First(M) if the empty string is not derivable from M; otherwise, it is equal
to the union of First(M) and First(N)); (2) Foil (M) and First(N) are disjoint.

Similarly, the rules

K~LMN

K~PQ

K~

leadtotheprocedure

procedure ReadK;
begin

if (Next is in First(LMN)) then begin
ReadL;
if b then begin ReadM; end;
if h then begin ReadN; end;

end else if (Next is in First(PQ)) then begin
ReadP;
if h then begin ReadQ; end;

end else begin
I h := true;
end;

end;

To proveitsco~ectness, werequirethesetsFirst(LMN)and First(PQ)to be di~oint.

Now we applythesemethodstothe grammarofexample3:

procedure ReadSymb (c: Symbol);
b := (Next = c);
if b then begin Move; end;

end;

procedure ReadExpr;
ReadSllmm;
if b then begin ReadRestExpr; end;

end;

procedure ReadRestExpr;
I if Next = '+' then begin

ReadSymb ('+');
if b then begin ReadExpr; end;

end else begin

13.2 Recursive-descent parsing 187

l := true; b

end;

end;

p r o c e d u r e ReadSumm;
ReadFact ;
i f b t h e n b e g i n ReadRestSumm; end;

end;

)rocedure ReadRestSumm;

if Next = '*' then begin

ReadSymb (' * ') ;
i f b t h e n b e g i n ReadSumm; end;

end e l s e b e g i n
I b := t r u e ;
end;

end;

>rocedure ReadFact;

if Next = 'x' then begin

I ReadSymb (' x ') ;
end e l s e i f Next = ' (' t h e n b e g i n

ReadSymb (' (') ;
i f b t h e n b e g i n ReadExpr; end;
i f b t h e n b e g i n ReadSymb (') ') ; end;

end e l s e b e g i n
I b := f a l s e ;
end;

end;

These procedures are mutually recursive, that is, some procedure uses another one
which in its turn uses the first one, etc. This is allowed in Pascal if we use the
so-called fo rwa rd definitions of the mutually recursive procedures. As usual, to
prove the correctness of recursive procedures we need to prove that (1) each of them
is correct, assuming all calls work correctly (here our method works: one needs
only check that the corresponding sets are disjoint); (2) the procedure terminates.
The second claim is not self-evident. For example, if the grammar has the rule
K --+ KK, then no strings are derivable from K, and the sets Foil(K) and First(K) are
empty (and therefore disjoint), but the procedure

procedure ReadK;

begin

I ReadK;

188 13 CONTEXT-FREE G R A M M A R S

if b then begin

I ReadK;
end;

end;

(written according to our guidelines) never terminates.
In the case in question, the procedures ReadRestExpr, ReadRestAdd, and

ReadFact either terminate immediately or decrease the length of the unprocessed
part of the input string. Since any cycle of the mutually recursive calls includes
one of them, termination is guaranteed. Our problem is solved. �9

13.2.6. Assume that a grammar has two rules with nonterminal K on the left-
hand side:

K--~ L K

K--~

According to these rules, any K-string is a concatenation of several L-strings. As-
sume also that the sets Foil(L) and First(K) (which equals First(L) in this case) are
disjoint. Assume that a procedure ReadL is correct for L. Write a nonrecursive

procedure ReadK that is correct for K.

Solution. As we already know, the following recursive procedure is correct for
K:

procedure ReadK;
begin

if (Next is in First(L)) then begin
ReadL;
if b then begin ReadK; end;

end else begin
I b := true;
end;

end;

Termination is guaranteed because the length of the unprocessed part is decreased
before the recursive call. This recursive procedure is equivalent to the following
nonrecursive one:

procedure ReadK;
begin

b := true;
while b and (Next is in First(L)) do begin
] ReadL;
end;

end;

13.2 Recursive-descent parsing 189

Let us formally check this equivalence. Termination is guaranteed both for the
recursive and nonrecursive procedures. Therefore, it is enough to check that the
body of the recursive procedure becomes equivalent to the body of the nonrecursive
one if the recursive call is replaced by the call of the nonrecursive procedure. Let
us make this replacement:

if (Next is in First(L)) then begin
~eadL;
if b then begin

b := true;
while b and (Next is in First(L)) do begin

[ReadL;
end;

end;
end e l s e b e g i n

b := t r u e ;
end;

The first command b: = t r u e may be deleted because at this point b is already true.
The second command b : - - t rue may be moved to the beginning:

b := true;
if (Next is in First(L) then begin

ReadL;
if b then begin

while b and (Next is in First(L)) do begin
I ReadL;
end;

end;
end;

Now the second i f may be removed (because if b is false, the while-loop does
nothing). We may also add the condition b to the first i f (because b is true at that
point). Thus we get

b := true;
if b and (Next is in First(L)) then begin

ReadL;
whi le b and (Next i s in F i r s t (L)) do b e g i n
I ReadL;
end;

end;

which is equivalent to the body of the nonrecursive procedure above (the first
iteration of the loop is unfolded). �9

190 13 CONTEXT-FREE G R A M M A R S

13.2.7. Prove the correctness of the nonrecursive procedure shown above di-
rectly, without referring to the recursive version.

Solution. Consider the maximal prefix of the input string that is a K-prefix. It
can be represented as a concatenation of several nonempty strings: all are L-strings
except, maybe, the last one, which is an L-prefix. We call those strings (including
the last one) "components".

The invariant relation: several components are read; b is true if and only if the
last component is an L-string.

Let us check that this invariant relation remains true after the next iteration. If
only the last component remains, it is evident. If several components remain, the
first of the remaining components is followed by a character that belongs to First(L)
and is therefore not in Foil(L); so the first remaining component is a maximal L-
prefix that is also a prefix of the of the unprocessed part. �9

In practice a shorthand notation for grammars is used. Namely, rules of the
form

K-+L K

K--~

(we assume that no other rule has K on the left-hand side, so K-strings are concate-
nations of L-strings) are omitted, and K is replaced by L enclosed in curly braces
(which denotes iteration in this case). Also, several rules with the same left-hand
side are often written as one rule where alternatives are written one after other
separated by bars.

For example, the grammar for expressions given above may be rewritten as
follows:

(expr) ~ (summ) { + (summ) }

(summ) ~ (fact){ * (fact) }

(fact) --~ x l ((expr>)

13.2.8. Write a procedure that is correct for (expr), following this grammar.
Use iteration instead of recursion whenever possible.

Solution.

procedure ReadSymb (c: Symbol);
I b := (Next = c);

if b then begin Move; end;
end;

procedure ReadExpr;
begin
I ReadSumm;

13.3 Parsing algorithm for LL(1)-grammars 191

while b and (Next = ' + ') do begin

I Move; ReadSumm;

end;
end;

procedure ReadSumm;

begin
ReadFact;
while b and (Next = '*') do begin

Move; ReadFact;

end;
end;

procedure ReadFact;
begin

if Next = 'x' do begin

I Move; b := true;
end else if Next = '(' then begin

Move; ReadExpr;
if b then begin ReadSymb (')'); end;

end else begin
] b := false;
end;

end;

13.2.9. The assignment b: = t r u e in the last procedure may be omitted. Why?

Solution. We may assume that all procedures are called only when b=t rue . �9

13.3 Parsing algorithm for LL(1)-grammars

In this section, we consider one more algorithm to check if a given string is gen-
erated by a given grammar. This algorithm is called LL(1)-parsing. Its main
idea can be summed up in one sentence: we may assume that all the production
rules are applied to the leftmost nonterminal only; if we are lucky, the applicable
rule is determined uniquely by the first character of the string derivable from this
nonterminal.

Now we give the details. To begin with, we have the following
Definition. A leftmost derivation (of a string in a grammar) is a derivation

where the leftmost nonterminal is replaced at each step.

13.3.1. Each derivable word (which contains only terminals) has the leftmost
derivation.

Solution. During the derivation process, different nonterminals in a string
are replaced independently of each other. (That is why the grammar is called

192 13 CONTEXT-FREE GRAMMARS

"context-free".) In other words, if at some point of the derivation we have the
str ing. . . K . . . L . . . where K and L are nonterminals, then the substitutions for K
and L may be performed in any order. Therefore, we can rearrange the derivation
in such a way that the left nonterminal K is replaced first. �9

13.3.2. Consider the grammar with four production rules:

(I) E -->

(2) E --> TE

(3) T --> (E)

(4) T -+ [E]

Find the leftmost derivation of the word A = [() ([])] and prove that it is
uniquely determined.

Solution. At the first step, only the rule (2) may be applied:

E-+ TE

What happens with T then? Since A starts with [, only the rule (4) can be applied:

E-+ TE-+ [E]E

The leftmost E is now replaced by TE (otherwise the second symbol of the input
string would be]):

E -+ TE --+ [E] E --+ [TE] E

and T is replaced according to (3):

E --> TE --> [E]E --~ [TE]E --~ [(E)E]E

Now the leftmost E should be replaced by the empty string, otherwise the third
character of the input string would be (or [(other characters cannot be the first
character of a T-string):

E-+ TE-+ [E]E-+ [TE]E--~ [(E)E]E--> [()E]E

We continue:

. . . - -> [()TE]E-+ [()(E)E]E--+ [()(TE)E]E-+ [()([E]E)E]E-+

--> [()([]E)E]E--~ [()([])E]E--~ [()([])]E-+ [()([])]

Thus we see that the leftmost derivation is uniquely determined. �9

What are the requirements for a grammar that make this approach (finding
the unique leftmost derivation) possible? Assume that at some point the leftmost
nonterminal is K. In other words, we have the string AKU where A is a string

13.3 Parsing algorithm for LL(1)-grammars 193

containing only terminals and U is a string that may contain both terminals and
nonterminals. Suppose the grammar has the rules

K--+ L M N

K ~ P Q

K--~ R

and we have to choose one of them. We make the choice based on the first symbol
of the part of the input string that is derivable from K U.

Consider the set First(LMN) of all terminals that are first symbols of nonempty
strings of terminals derivable from LMN. This set is equal to the union of the
set First(L), the set First(M) (if the empty string is derivable from L), and the
set First(N) (if the empty string is derivable from both L and N). To make the
choice (based on the first character) possible, we require that the sets First(L MN),
First(P Q), and First(R) are disjoint. But this is not the only requirement. Indeed,
it is possible, for example, that the empty string is derivable from LMN, and the
string derived from U starts with a character in First(P Q). The definitions below
take this problem into account.

A language recognized by a context-free grammar was defined as the set of all
strings of terminals derivable from the initial nonterminal (axiom). We will also
speak about strings composed of terminals and nonterminals derivable from the
axiom, or from any other nonterminal, or from any string composed of terminals
and nonterminals. So the relation "derivable from" can be considered as a binary
relation defined on the set of all strings composed of terminals and nonterminals.
(However, if we say that some string is derivable and do not specify the starting
point of the derivation, we always mean that the derivation starts from the axiom.)

For any string X composed of terminal and nonterminals, First(X) denotes the
set of all terminals that are the first characters of nonempty strings of terminals
derivable from X. If for any nonterminal there is at least one string of terminals
derivable from it, then the phrase "of terminals" may be omitted in the definition.
We assume in the sequel that this condition is satisfied.

For any nonterminal K, the notation Follow(K) is used for the set of all ter-
minals that appear in the derivable (from the axiom) strings immediately after K.
(Please do not confuse this set with Foil(K) defined in the preceding section.) We
add the symbol E0I to Follow(K) if there exists a derivable string that ends with
K.

For each rule

K---~ V

(where K is a nonterminal and V is a string that contains terminals and nontermi-
nals) we define the set of leading terminals, which is denoted by Lead(K --+ V).
By definition, Lead(K ~ V) is equal to First(V) or the union of First(V) and
Follow(K) if the empty string is derivable from V.

194 13 CONTEXT-FREE GRAMMARS

Definition. A context-free grammar is called an LL(1)-grammar if for any two
rules K --+ V and K ~ W with the same left-hand sides, the sets Lead(K --~ V)
and Lead(K --~ W) are disjoint.

13.3.3. Is the grammar

K--~K #

K-+

(derivable strings are sequences of #'s) an LL(1)-grammar?

Solution. No, because # is a leading terminal for both rules. (This is true for
the second rule because # belongs to Follow(K).) �9

13.3.4. Write an equivalent LL(1)-grammar.

Solution.

K--+# K

K---~

We have replaced a "lefl-recursive" rule by a "right-recursive" one. �9

The next problem shows that for a LL(1)-grammar, the next step in the con-
struction of a leftmost derivation is uniquely defined.

13.3.5. Assume that a string X is derivable in an LL(1)-grammar and K is
the leftmost nonterminal in X, that is, X = AKS where A is a string of terminals
and S is a string of terminals and nonterminals. Assume that two different rules of
the grammar have K on the left-hand side, and both of them were applied to the
nonterminal K selected in X. Both derivations were continued and two strings of
terminals (having prefix A) were obtained. Prove that this prefix is followed by
different terminals. (Here we consider E0r as a terminal.)

Solution. Those terminals are leading terminals of two different rules. �9

13.3.6. Prove that if a string is derivable in an LL(1)-grammar, its leftmost
derivation is unique.

Solution. The preceding problem shows that at each step there is only one
possible continuation. �9

13.3.7. A grammar is called lefl-recursive grammar if there exists a nonter-
minal K and a string derivable from K that starts with K (but is not equal to
K). Prove that if (1) a grammar G is left-recursive; (2) for each nonterminal K,
there exists a nonempty string derivable from K; and (3) for each nonterminal K
there exists a derivation starting from the axiom and including K, then G is not an
LL(1)-grammar.

13.3 Parsing algorithm for LL(1)-grammars 195

Solution. Consider the derivation of a string KU from a nonterminal K where
U is a nonempty string. We may assume that it is a leftmost derivation (other
nonterminals may remain untouched). Consider the derivation

K ' ~ K U ' ~ KUU',-~ ""

(here ~ stands for several derivation steps) and the derivation K ---* A where A is
a nonempty string of terminals. At some point these two derivations diverge; how-
ever, both derivations may lead to a string that starts with A (in the first derivation
there is still the nonterminal K at the beginning, which may be transformed to A).
This contradicts the fact that the next step of the leftmost derivation is determined
uniquely by the first character of the derived string. (This uniqueness is valid for
derivations that start from the axiom; recall that K may appear in such a derivation
by assumption.) �9

Therefore, the LL(1) approach cannot be applied to left-recursive grammars
(except for trivial cases). We have to transform them to equivalent LL(1)-grammars
first (or use other parsing algorithms).

13.3.8. For any LL(1)-grammar, construct an algorithm that checks if the input
string belongs to the language generated by the grammar. Use the preceding results.

Solution. We follow the scheme outlined above and look for a leftmost deriva-
tion of the given string. At each point, we have an initial part of the leftmost
derivation that ends with a string composed of terminals and nonterminals. This
string has the processed part of the input string as a prefix. Our algorithm stores the
remaining part. In other words, we keep a string S of terminals and nonterminals
with the following properties (the processed part of the input string is denoted by
A):

1. the string AS is derivable (in the grammar);

2. any leftmost derivation of the input string includes the string AS.

These properties are denoted by "(I)" in the sequel.

Initially, A is empty and $ contains only one nonterminal (the axiom).

If at some point the string S begins with a terminal t and t = Next, then we
may call the procedure Move and delete the initial terminal t from S. Indeed, this
operation leaves AS unchanged.

If the string S starts with a terminal t and t r Next, then the input string is
not derivable at all, because (I) implies that any (leflmost) derivation goes through
the stage AS. (The same is true if Next = EOI.)

If S is empty, the condition (I) implies that the input string is derivable if and
only if Next = EOI.

The only remaining case is that S starts with some nonterminal K. As we have
already shown, all the leflmost derivations that start with S and end with a string
whose first character is Next, begin with the same production rule, that is, the

196 13 CONTEXT-FREE G R A M M A R S

production rule whose set of leading terminals includes Next. I f such a rule does
not exist, the input string is not derivable at all. If such a rule exists, we apply it
to the opening nonterminal K of the string S and property (I) remains valid. We
arrive at the following algorithm:

S := empty string;

error := false;

{error => input string is not derivable}

{not error => (I)}

while (not error) and not ((Next=EOI) and (S is empty))

do begin

if (S starts with a terminal equal to Next) then begin

I Move; delete the first symbol from S;

end else if (S starts with a terminal different from Next)

then begin

error := true;

end else if (S is empty) and (Next <> EOI) then begin

I error := true;
end else if (S starts with some nonterminal K and Next

belongs to the set of leading terminals for one of

the production rules for K) then begin

apply this rule to K

end else if (S starts with some nonterminal K and Next
does not belong to the set of leading terminals

for all the production rules for K) then begin

error := true;

end else begin

I {this cannot happen}

end;

end;
{the input string is derivable <=> not error}

This algorithm always terminates. Indeed, if a terminal appears as the first symbol
in S, the algorithm stops or reads the next input character. If nonterminals alternate
as first symbols of S in an infinite loop, then the grammar is left-recursive; we may
assume that this is not the case. (This follows from the preceding problem; we
may easily remove from the grammar all the nonterminals that do not appear in
derivations beginning with the axiom; the same can be done for nonterminals from
which only the empty string is derivable.) �9

Remarks.

�9 This algorithm uses S as a stack (all operations are made near its left end).

�9 In either of the last two cases (in the if-construct) , no input characters are
read. Therefore, we can precompute the action for all nonterminals and all

13.3 Parsing algorithm for LL(1)-grammars 197

possible values of Next. Doing that, we need only one iteration per input
character.

�9 In practice, it is convenient to have a table that lists all actions for all pairs
(input symbol, nonterminal), and a small program that interprets this table.

13.3.9. To check ifa given grammar is an LL(1)-grammar, we need to compute
Follow(T) and First(T) for all nonterminals T. How can we do that?

Solution. If the grammar includes, say, the rule K --~ L M N, then (A denotes
the empty string):

First (L) C First (K),
First (M) C First (K), if A is derivable from L,
First (N) C First (K), if A is derivable both from L and M,

Follow (K) C Follow (N),
Follow (K) C Follow (M), if A is derivable from N,
Follow (K) C Follow (L), if A is derivable both from M and N,

First (N) C Follow (M),
First (M) C Follow (L),
First (N) C Follow (L), if A is derivable from M.

These rules (written for all productions) allow us to generate the sets First(T), and
thereafter Follow(T), for all terminals and nonterminals T. As a starting point we
use

EOI ~ Follow (K)

for an initial nonterminal K (the axiom) and

z ~ First (z)

for any terminal z. We stop the generation process when the repeated applications
of the rules give no new elements of the sets First(T) and Follow(T). �9

14 Left-to-right parsing (LR)

Here we consider another approach to parsing, called LR(1)-parsing algorithm, as
well as some simplified versions of it.

14.1 LR-processes

There are two main differences between LR(1)-parsing and LL(1)-parsing. First,
we seek a rightmost derivation, not a leflmost one. Second, we construct the
derivation from the bottom (beginning with the input string) to the top (the axiom)
and not vice versa (as in LL(1)-parsing).

A rightmost derivation is a derivation where the rightmost nonterminal is re-
placed at each step.

14.1.1. Prove that any derivable string of terminals has a rightmost deriva-
tion. �9

It is convenient to look at the rightmost derivation backwards, starting from the
input string. Let us define the notion of an LR-process on the input string A. This
process involves the string A and another string S that contains both terminals and
nonterminals. Initially, the string S is empty. The LR-process includes two types
of actions:

(1) the first character of A (called the next input symbol and denoted by Next)
may be moved to the end of the string S (and deleted from A); this action is
called a shift action;

(2) if the right-hand side of some production rule is a suffix of S, then it can be
replaced by the nonterminal that is on the left-hand side of that rule; the
string A remains unchanged. This action is called a reduce action.

Let us mention that the LR-process is not deterministic; there are situations
where many different actions are possible.

We say that the LR-process on a string A is successful if the string A becomes
empty and the string S contains only one nonterminal, and this nonterminal is the
initial nonterminal (the axiom).

14.1.2. Prove that for any string A (of terminals) a successful LR-process ex-
ists if and only if A is derivable in the grammar. Find a one-to-one correspondence
between rightmost derivations and successful LR-processes.

Solution. The shift action does not change the string SA. The reduce action
changes SA and this change is a reversed step of a derivation. This derivation is a
rightmost one because the reduction is done at the end of S and all symbols of A
are terminals. Therefore, each LR-process corresponds to a rightmost derivation.

Conversely, assume that a rightmost derivation is given. Imagine a separator
placed after the last nonterminal in the string. When a production rule is applied to

14.1 LR-processes 199

that nonterminal, we may need to move the separator to the left (if the right-hand
side of the rule applied ends with a terminal). Splitting this move into steps (one
symbol per step) we get a process that is exactly an inverted LR-process. �9

All changes in the string S during an LR-process are made near its right end.
This is why the string S is called the stack of the LR-process.

So the problem of finding the rightmost derivation of a given string is the
problem of constructing a successful LR-process on this string. At each step we
have to decide whether we want to apply a shift or reduce action, and choose a
production rule if several reductions are possible. In the LR(1)-algorithm, the
decision is made based on S and the first symbol of A. If only information about
S is used, it is an LR(0) algorithm. (The exact definitions are given below.)

Assume that a grammar is fixed. In the sequel, we assume that for each non-
terminal there exists a string of terminals derivable from it.

Let K ~ U be one of the grammar's rules (K is a nonterminal, U is a string
of terminals and nonterminals). We consider a set of strings (composed of both
terminals and nonterminals) called the left context of the rule K ~ U. (Notation:
LeftCont(K ~ U).) By definition, this set contains all the strings that may appear
as a stack content immediately before the reduction of U to K in a successful LR-
process.

14.1.3. Reformulate this definition in terms of rightmost derivations.

Solution. Consider all rightmost derivations of the form

(axiom) ~ XKA ~ XUA,

where A is a string of terminals, X is a string of terminals and nonterminals, and
K --~ U is a production rule. All strings XU that appear in those derivations form
the left context of the rule K --~ U. Indeed, recall that we assume that for any
nonterminal there exists a string of terminals derivable from it; therefore, the
rightmost derivation of the string XUA may be continued until a right derivation of
some string of terminals is obtained. �9

14.1.4. All strings from LeftCont(K ~ U) end with U. Prove that if we delete
this suffix U, the resulting set of strings does not depend on which rule (for the
nonterminal K) is chosen. This set is denoted by Left(K).

Solution. The preceding problem shows that Left(K) is the set of all strings that
may appear at the left of the rightmost nonterminal K in some rightmost deriva-
tion. �9

14.1.5. Prove that in the last sentence the words "the rightmost nonterminar '
may be omitted: Left(K) is the set of all strings that may appear on the left of any
occurence of K in a rightmost derivation.

Solution. The derivation may be continued and all nonterminals on the right
of K may be replaced by terminals; this replacement does not change anything on
the left of K. �9

200 14 LEFT- TO-RIGHT PARSING (LR)

14.1.6. Let G be a grammar. Construct a new grammar G l such that for
any nonterminal K of G, the grammar G t contains a nonterminal (LeftK), and all
elements of Left(K) (and no others) are derivable from (LeftK) in G I. The terminals
of G l are nonterminals and terminals of G.

Solution. Let P be the initial nonterminal of G. The new grammar G t has a
rule

(LeflP) --~ (right-hand side is the empty string)

For any production rule of the G, say,

K --+ L t M N (L, M, N are nonterminals, t is a terminal)

we add the following rules to Gt:

(LeftL) ~ (LeflK)

(LeftM) --+ (LeftK) L t

(LeflN) ~ (LeflK) L t M

etc. The meaning of the new rules may be explained as follows. An empty string
may appear on the left of P. If a string X may appear on the left of K, then X may
appear on the left of L; at the same time XLt may appear on the left of M, and XLtM
may appear on the left of N. By induction over the length of a rightmost derivation,
we check that everything that may appear on the left of some nonterminal, appears
according to these rules. �9

14.1.7. Why is it important in the preceding problem that we consider only
the rightmost derivations?

Solution. Otherwise we must take into account transformations performed on
the left of K. �9

14.1.8. A context-free grammar is given. Construct an algorithm that for any
input string finds all the sets Left(K) containing the string.

Remark (for experts only). The existence of such an algorithm, even a finite
automaton (an inductive extension with a finite number of values, see section 1.3),
follows from the preceding problem. Indeed, the grammar constructed has a special
form: The right-hand sides of rules contain only one nonterminal and it is in the
leftmost position. Nevertheless, we give an explicit construction of that automaton
below.

Solution. By a situation of a given grammar we mean one of its rules with
some additional information; namely, one of the positions on the right-hand side
(before the first symbol, between the first and the second symbols , after the
last symbol) is marked. For example, the rule

K --~ LtMN

14.1 LR-processes 201

(K, L, M, N are nonterminals, t is a terminal) gives five situations

K-+_LtMN K-+L_tMN K-+Lt_MN K-+LtM_N K--~LtMN_

(the position is indicated by the underscore sign).
We say that a string S is coherent with a situation K ~ U _V if S ends with U,

that is, if S = TU for some T and, moreover, T belongs to Left(K). (The meaning
of this definition may be explained as follows: the suffix U of the stack S is ready
for the future reduction of UV into K.) Now we can give an equivalent definition
of LeftCont(K ~ X) as the set of all strings that are coherent with the situation
K ~ X _, and Left(K) as the set of all strings coherent with the situation K ~ _ X
(here K --~ X is any production rule for nonterminal K).

Here is an equivalent definition in terms of LR-processes: S is coherent with
the situation K -+ U _ V if there exists a successful LR-process such that:

�9 during the process, the string S appears in the stack and S ends with U;

�9 for some time S is not touched and the string V appears on the right of S;

�9 UV is reduced into K;

�9 the LR-process continues and eventually terminates successfully.

14.1.9. Prove the equivalence of these two definitions.

[Hint. If S = TU and T belongs to Left(K), then it is possible to have T on the
stack, then add U, then V, then reduce UV to K, and finally finish the LR-process
successfully. (Several times we use the assumption that for any nonterminal there
exists some string of terminals derivable from it; this assumption guarantees that
we may add an arbitrary string to the stack.)] �9

Our goal is to construct an algorithm that finds all K such that the input string
belongs to Left(K). Consider a function that maps each string S (of terminals and
nonterminals) into the set of all situations that are coherent with S. This set is
called a state corresponding to S. We denote it by State(S). It is enough to show
that the function State(S) is inductive, that is, the value State(S J) for any terminal
or nonterminal J is determined by State(S) and J. (We have seen that membership
in Left(K) may be expressed in terms of that function.) Indeed, the value State(S J)
can be computed according to the following rules (1)-(3):

(1) If the string S is coherent with the situation K -+ U_V, and the
string V starts with the symbol J, that is, V = JW, then SJ is coherent
with the situation K --+ UJ _ W.

This rule determines completely what situations not starting with an underscore
are coherent with SJ. It remains to find for which nonterminals K the string SJ
belongs to Left(K). This can be done according to the following rules:

202 14 LEFT- TO-RIGHT PARSING (LR)

(2) If the situation L --~ U_V turns out to be coherent with $3 (ac-
cording to (1)) and V starts with a nonterminal K, then SJ belongs to
Left(K).

(3) If SJ is in Left(L) for some L, the grammar contains a production
rule L --~ V and V starts with a nonterminal K, then SJ belongs to
Left(K).

Please note that the rule (3) may be considered a version of rule (2). Indeed,
if the assumptions of (3) are valid, then the situation L ~ _V is coherent with SJ
and V starts with a nonterminal K.

The correctness of these rules becomes more or less evident upon reflection.
The only thing that requires comment is why the rules (2) and (3) generate all
terminals K such that SJ belongs to Left(K). Let us try to explain why. Consider
a rightmost derivation where SJ is on the left of K. How can the nonterminal K
appear in this derivation? If the production rule that created K created a suffix of the
string SJ at the same time, then the membership of SJ in Left(K) will be disclosed
according to the rule (2). On the other hand, if K was the first symbol in a string
generated by some other nonterminal L, then (because of the rule (3)) it is enough
to check that SJ belongs to Left(L). It remains to apply the same argument to L
and so on.

In terms of an LR-process, the same idea may be expressed as follows. First,
the nonterminal K may participate in several reductions that do not touch SJ (those
reductions correspond to applications of the rule (3)). Then a reduction that touches
$3 is performed (this reduction corresponds to an application of rule (2)).

It remains to determine which situations are coherent with the empty string,
that is, for which nonterminals K, the empty string belongs to Left(K). This can be
done according to the following rules:

(1) the initial nonterminal (the axiom) has this property;

(2) if K has this property, K --~ V is a production rule, and the string V
starts with a nonterminal L, then L has this property as well. �9

14.1.10. Perform the above analysis on the grammar

E-+E+T

E-+T

T-+T*F

T--+F

F-+x

F-+ (E)

(which generates the same language as the grammar of example 3, p. 178).

14.1 LR-processes 203

State(S), problem 14.1.10

204 14 LEFT- TO-RIGHT PARSING (LR)

Solution. The sets State(S) for different S are shown in the table, p. 203. The
equals sign means that the sets of situations that are values of the function State(S)
of the strings connected by the the equals sign are equal.

Here is the rule to find State(S J), provided we know State(S) and J (here S is
a string of terminals and nonterminals, and J is a terminal or nonterminal):

Find State(S) in the right column; consider the corresponding string
T in the left column; append the symbol J to the end and find the set
corresponding to the string TJ. (If the string TJ is not in the table,
then State(S J) is empty.) �9

14.2 L R (0) - g r a m m a r s

Recall that our goal is to find a derivation for a given string. In other words, we
seek a successful LR-process on this string. In all cases where our methods are
applicable, such a successful LR-process (for a given string) is unique. We find it
stepwise. At any point, we find the only possible next step. To ensure that only
one step is possible, we need to put some requirements on the grammar. In this
section we consider the simplest case, the so-called LR(O)-grammars.

As we already know:

(1) The reduction according to the rule K ~ U with stack S may appear
in a successful LR-process if and only i fSbelongs to LeftCont(K ~ U)
or, equivalently, if S is coherent with situation K --~ U_.

A similar statement about shift is as follows:

(2) A shift with next symbol a and stack S may appear in a successful
LR-process if and only if S is coherent with some situation of type
K ---> U_aV.

14.2.1. Prove the above claim.

[Hint. Assume that a shift occurs and a new terminal a is added to the stack S.
Consider the first reduction that includes this terminal.] �9

Assume that some grammar is fixed. Consider an arbitrary string S of terminals
and nonterminals. If the set State(S) contains a situation where the underscore sign
is followed by a terminal, we say that the string S allows a shift. If the set State(S)
contains a situation where the underscore sign is the last symbol, we say that the
string S allows a reduction (according to the corresponding rule). We say that there
is a shift~reduce conflict for the string S if both shift and reduction are allowed.
We say that there is a reduce/reduce conflict for S if the string S allows a reduction
according to two different rules.

The grammar is called a LR(O)-grammar if it has no conflicts of type
shift/reduce and reduce/reduce for any string S.

14.2 LR(O)-grammars 205

14.2.2. Is the grammar given above (with nonterminals E and T) a LR(0)-
grammar?

Solution. No, it has shift/reduce conflicts for strings T and E+T. �9

14.2.3. Are the following grammars LR(0)-grammars?

(a) T ---+ 0 (b) T ~ 0
T --~ TI T --~ 1T

T --~ TT2 T -+ 2TT

T --~ TTT3 T --~ 3TTT

Solution. Yes, see the corresponding tables (a) and (b) (no conflicts).

(14.2.3, a)

This problem shows that LR(0)-grammars may be left-recursive as well as
right-recursive.

14.2.4. Assume that an LR(0)-grammar is given. Prove that each string has
at most one rightmost derivation. Give an algorithm that checks whether the input
string is derivable.

Solution. Assume that an arbitrary input string is given. We construct an LR-
process on that string stepwise. Assume that the current stack of the LR-process
is S. We have to decide whether a shift or reduce action is needed (and which rule
should be used in the reduction case). The definition of LR(0)-grammar guarantees

206 14 LEFT- TO-RIGHT PARSING (LR)

(14.2.3, b)

14.3 SLR(1)-grammars 207

that only one action is possible, and all the information needed to make the decision
is contained in State(S). Therefore, we can find the (only possible) next step of
the LR-process. �9

14.2.5. What happens if the input string has no derivation in the grammar?

Answer. There are two possibilities: (1) neither a shift nor a reduce action will
be possible at some point; (2) all possible shifts have the next symbol different
from the actual one. �9

Remarks. 1. When implementing this algorithm, there is no need to compute
the set State(S) from scratch for each value of S. These sets may be kept in a stack.
(At any point we keep on the stack the sets State(T) for all prefixes T of the current
value of S.)

2. In fact, the string S itself is not used at all. It is enough to keep the sets
State(T) for all its prefixes T (including S itself).

The algorithm that checks whether a given string is derivable in a LR(0)-
grammar uses only some of the information available. Indeed, for each state it
knows in advance which action (shift or reduction - - and which reduction) is the
only possible one. More elaborate algorithms can make a choice using the next
input symbol as well as the stack content. Looking at the set State(S), it is easy to
say for which input symbols a shift is possible. (It is possible for all terminals that
follow the underscore in situations coherent with S.) The more difficult problem
is: How do we use the next input symbol to decide if a reduction is possible?

There are two methods: the first is simpler, the second is more powerful. The
grammars for which the first method is applicable are called SLR(1)-grammars (S
for Simple). The second method uses all available information; these grammars are
called LR(1)-grammars. (There is also an intermediate class of grammars called
LALR(1)-grammars, discussed below.)

14.3 SLR(1)-grammars

Recall that for any nonterminal K we have defined (see p. 193) the set Follow(K) of
terminals that may follow K in strings derivable from the initial nonterminal; this
set also includes the symbol E0I if K may appear at the end of a derivable string.

14.3.1. Prove that if at some point of the LR-process the last symbol of the
stack S is K and the process can be finished successfully, then Next belongs to
Follow(K).

Solution. This fact is an immediate consequence of the definition (recall the
correspondence between rightmost derivations and successful LR-processes). �9

Assume that some grammar is fixed. Consider a string S of terminals and
nonterminals, and a terminal x. If the set State(S) contains a situation where the
underscore is followed by a terminal x, we say that the pair (S, x) allows a shift. If
the set State(S) contains a situation K ~ U_ where x belongs to Follow(K), we say

208 14 LEFT-TO-RIGHT PARSING (LR)

that the pair (S, x) SLR(1)-allows reduction (according to the rule K --+ lJ). We say
that for the pair <S, x) there is a SLR(1)-conflict of type shift~reduce, if both shift
and reduction are allowed. We say that for the pair <S, x) there is a SLR(1)-conflict
of type reduce~reduce if reductions according to different rules are allowed.

The grammar is called a SLR(1)-grammar if it has no SLR(1)-conflicts of type
shift/reduce and reduce/reduce for all pairs (S, x).

14.3.2. Assume that a SLR(1)-grammar is given. Prove that each string has at
most one rightmost derivation. Give an algorithm to check whether a given string
is derivable in the grammar.

Solution. We repeat the argument used for LR(0)-grammars. The difference is
that the choice of the next action depends on the next input symbol (Next). �9

14.3.3. Check if the grammar shown above on p. 202 (having nonterminals E,
T and F) is an SLR(1)-grammar.

Solution. Yes; both conflicts that prevent it from being a LR(0)-grammar are
resolved when we take the next input symbol into account. Indeed, for both T and
E+T a shift is possible only when Next = *, and the symbol * belongs neither to
Follow(E) = {EOI, +,) } nor to Follow(T) = {EOI, +, *,) }. Therefore, reduction
is impossible when Next = *. �9

14.4 L R (1) - g r a m m a r s , L A L R (1) - g r a m m a r s

The SLR(1) approach still does not use all available information to decide if re-
duction is possible. It checks (for a given rule) whether reduction is possible with
a given stack content and separately checks whether reduction is possible with a
given input symbol Next. However, these tests are not independent. It may happen
that both checks give a positive answer, but nevertheless the reduction for the given
S and the given Next is impossible. The LR(1)-approach is free of this deficiency.

The LR(1)-approach is as follows: All our definitions and statements are mod-
ified to take into account what symbol is on the right of the replaced nonterminal
while using a production rule. In other words, we carefully inspect the next symbol
when reduction is performed.

Let K --> U be one of the production rules, and let t be a terminal or a special
symbol E0I (which is assumed to be at the end of the input string). We define
the set LeflCont(K --~ U, t) as the set of all strings that may be the stack content
immediately before the reduction 0 to K during a successful LR-process, assuming
that Next = t at the time of reduction.

All strings in LeflCont(K --~ lJ) have suffix U. If we discard this suffix, we
obtain the set of all strings that appear in the rightmost derivations immediately
before the nonterminal K followed by t . This set (which does not depend on the
specific rule K --> LI, but only on the nonterminal K) is denoted by Left(K, t) .

14.4.1. Write a grammar whose nonterminals generate the sets Left(K, t) for
all nonterminals K of the given grammar.

14.4 LR(1)-grammars, LALR(1)-grammars 209

Solution. Nonterminals are symbols (LeftK t) for any nonterminal K and any
terminal t (and also for t = E01). Its production rules are as follows: Let P be the
initial nonterminal (the axiom) of the given grammar. Then our new grammar has
the rule

(Le f tP EOI) --~ (the right-hand side is the empty string).

Each rule of the given grammar produces several rules of the new one. For example,
if the given grammar has a rule

K -+ LuMN

(L, M, N are nonterminals, u is a terminal), then the new grammar has rules

(LeftL u) -+ (LeftK x)

for all terminals x;
(LeftM s) --~ (LeftK y) L u

for any s that may appear as a first character in a string derivable from N, and for
any y, as well as for all pairs s = y, if the empty string is derivable from N); and

(LeftN s) -+ (LeftK s) LuM

for any terminal s. �9

14.4.2. How should we modify the definition of a situation?

Solution. Now a situation is defined as a pair

[situation in the old sense, terminal or EOI] �9

14.4.3. How to modify the definition of a string coherent with a situation?

Solution. The string S (of terminals and nonterminals) is coherent with the
situation [K -+ U_V, t] (here t is a terminal or EOI) ifU is a suffix of S, that is, if
S = TU, and, moreover, T belongs to Left(K, t) . �9

14.4.4. Show how to compute inductively the set State(S) of all situations
coherent with a given string S.

Answer.

(1) If a string S is coherent with a situation [K ~ U_V, t] and the
first character in V is J, that is, V = JW, then SJ is coherent with the
situation [K ~ OJ_W, t].

This rule determines completely which situations that do not start with underscore
are coherent with SJ. It remains to find out for which nonterminals K and terminals
t the string SJ belongs to Left(K, t) . This is done according to the following two
rules:

210 14 LEFT-TO-RIGHT PARSING (LR)

(2) If the situation [L --+ U_V, g] is coherent with SJ (according to (1))
and V starts with a nonterminal K, then SJ belongs to Left(K, s) for any
terminal s that may appear as a first symbol in a string derivable from
V \ K (the string V without the first symbol K), as well as for s = g, if
the empty string is derivable from V \ K.

(3) If SJ is in Left(L, t) for some L and g, and L --+ V is a production
rule, and V starts with a nonterminal K, then SJ belongs to Left(K, s)
for any nonterminal s that may appear as a first symbol in a string
derivable from V \ K, as well as for s = t , if the empty string is
derivable from V \ K. �9

14.4.5. Give the definition of the shift/reduce and shift/shift conflicts in the
LR(1)-case.

Solution. Assume that a grammar is fixed. Let S be an arbitrary string of
terminals and nonterminals. If the set State(S) contains a situation where the
underscore sign is followed by a terminal t , we say that the pair (S, t) allows a
shift. (This definition is the same as in the SLR(1)-case; we ignore the second
components of pairs in State(S).)

If State(S) contains a situation whose first component ends with the under-
score sign and the second component is a terminal t , we say that the pair (S, t)
LR(1)-allows a reduction (via the corresponding rule). We say that there is a
LR(1)-conflict of type shift~reduce for a pair (S, t) if this pair allows both shift and
reduction. We say that there is a LR(1)-conflict of type reduce~reduce for a pair
(S, t) if this pair allows reductions according to different rules. �9

The grammar is called a LR(1)-grammar, if there are no LR(1)-conflicts of
type shift/reduce and reduce/reduce for all pairs (S, t) .

14.4.6. For any LR(1)-grammar, construct an algorithm that checks if a given
string is derivable in the grammar.

Solution. As before, at each stage of the LR-process we can determine which
action is the only possible one. �9

It is useful to understand how the notions of LR(0)-coherence and LR(1)-
coherence are related. (It is used below, when LALR(1)-grammars are considered.)

14.4.7. Find and prove the connection between the notions of LR(0)-coherence
and LR(1)-coherence.

Solution. Assume that a grammar is fixed. The string S of terminals and
nonterminals is LR(0)-coherent with situation K ~ U_V if and only if it is LR(1)-
coherent with the pair [K --+ U_V, t] for some terminal t (or for z = EOI). In other
words, Left(K) is the union of the sets Left(K, g) for all 1;. (In the latter form, the
statement is almost obvious.) �9

14.5 General remarks about parsing algorithms 211

Remark. Thus the function State(S) in the LR(1)-sense is an extension of the
function State(S) in the LR(0)-sense: StateLR(0)(S) is obtained from StateLR(1)(S)
when we discard the second component of all pairs.

Now we give a definition of a LALR(1)-grammar. Assume that a context-free
grammar is fixed, S is a string of terminals and nonterminals, and t is a terminal (or
EOI). We say that the pair (S, t) LALR(1)-allows reduction (according to some
production rule) if there is another string Sl with StateLR(0)(So) = StateLR(0)(Sl)
such that the pair (S,, t) LR(1)-allows reduction according to that rule. Thereafter,
the conflicts are defined in a natural way and a grammar is called a LALR(1)-
grammar if there are no conflicts.

14.4.8. Prove that every SLR(1)-grammar is a LALR(1)-grammar and every
LALR(1)-grammar is a LR(1)-grammar.

[Hint. This is an easy consequence of the definitions.] �9

14.4.9. Find an algorithm that checks if an input string is derivable in an
LALR(1)-grammar. This algorithm should keep less information in the stack than
the corresponding LR(1)-algorithm.

[Hint. It is sufficient to store the sets StateLR(0)(S) in the stack, because the
LALR(1)-possibility of reduction is determined by those sets. (Therefore, the only
difference with SLR(1)-algorithm is in the table of possible reductions.)] �9

14.4.10. Give an example of an LALR(1)-grammar that is not a SLR(1)-
grammar. �9

14.4.11. Give an example of an LR(1)-grammar that is not a LALR(1)-
grammar. �9

14.5 General remarks about parsing algorithms

Practical applications of the methods described is a delicate matter. (For example,
we need to store the tables as compactly as possible.) Sometimes a given grammar
is not an LL(1)-grammar but still is an LR(1)-grammar. Often the given grammar
can be transformed into an equivalent LL(1)-grammar. It is not clear which of these
two approaches is more practical. The following general rule may be useful. If you
design the language, keep it simple and do not use the same symbols for different
purposes. Then usually it is easy to write an LL(1)-grammar or a recursive-descent
parser. However, if the language is already defined by an LR(1)-grammar that is
not LL(1), it is better not to change the grammar, just write a LR(1)-parser. To do
this, you may use tools for automatic parser generation such as yacc (UNIX) and
bison (GNU).

Much useful information about the theoretical and practical aspects of parsing
can be found in the well-written book of Alfred V. Aho, Ravi Sethi, and Jef-
frey D. Ullman on compilers [2].

Further reading

1. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms, Reading, MA, Addison-Wesley, 1976.

2. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Reading, MA, Addison-Wesley, 1986.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction
to Algorithms. Cambridge (Mass.): The MIT Press, 1990.

4. Edsger W. Dijkstra. A discipline of programming. Englewood Cliffs, NJ,
Prentice Hall, 1976.

5. Michael R. Garey, David S. Johnson. sl Computers and Intractability: A
Guide to the Theory of NP-completeness. San Francisco, Freeman, 1979.

6. David Gries. The Science of Programming. New York, Springer, 1981.

7. A.G. Kushnirenko, G.V. Lebedev. Programming for mathematicians (Pro-
grammirovanie dlja matematikov). Moscow, Nauka, 1988.

8. Witold Lipski. Kombynatoryja dla programistow. Warszawa, Wydawnic-
twa naukowo-techniczne, 1982.

9. Edward M. Reingold, Jurg Nievergelt, Narsingh Deo. Combinatorial Algo-
rithms. Theory and Practice. Englewood Cliffs, NJ, Prentice Hall, 1977.

10. Michael Sipser. Introduction to the Theory of Computation. Boston, PWS
Publishing Company, 1996.

11. Niklaus Wirth. Systematic Programming: An Introduction. Englewood
Cliffs, NJ, Prentice-Hall, 1973.

12. Niklaus Wirth. Algorithms + Data Structures = Programs. Englewood
Cliffs, NJ, Prentice-Hall, 1976.

Index

Adelson-Velsky, G.M., 165
Aho, A.V., 59, 150, 211,212
alphabet, 134, 176
angle detector, 40
array, 15

with minimal element, 96
automaton

finite, 73, 133, 143
finite nondeterministic, 148

AVL-tree, 165
axiom (of a grammar), 176

B-tree, 174
backtracking, 49

recursive, 107
Baur, W., 19
binary search, 25
binomial coefficient, 47, 114
bipartite graph, 130
Boyer-Moore algorithm, 140
Brudno, A.L., 17

calculator
stack, 122

Catalan numbers, 44, 48, 116
chords of a circle, 46
code

Gray, 38
coherent, 201
comments

nested, 74
removal, 73

common element (in sorted arrays),
23

complement
of a regular set, 150

compound symbols, replacement, 73
conflict

reduce/reduce, 204, 208, 210
shift/reduce, 204, 208, 210

connected component

directed graph, 95, 111,127
undirected graph, 110

connected graph, 88
context-free grammar, 176
context-free language, 176

polynomial decidability, 179
convex hull, 68, 92
Cormen, T., 212
cost matrix, 126
cycle, Euler (along all the edges), 88

decimal fraction
period, 12

decimal number
printing, 9, 12, 120
printing, recursive, 100
reading, 74

Deo, N., 175, 212
deque

array implementation, 87
pointer implementation, 91

derivation
in a grammar, 176
leflmost, 191
rightmost, 198

descendant of a vertex, 101
determinization, 149
Dijkstra algorithm (shortest path),

125, 127
Dijkstra, E.W., 5, 14, 28, 212
Dimentman, A.M., 31
Diophantine equation, 5, 7
directed graph, 88
division, 3

fast, 14
Dutch flag, 28
dynamic programming, 114, 115,

179
shortest path, 124

edge of a graph, 110

214 INDEX

error
index out of bounds, 21, 26, 27,

61, 63
Euclid's algorithm, 4, 5

binary, 6
even permutation, 27
exchange, 18
expression, 178

regular, 146
extension, inductive, 29

factor, 178
factorial, 3

recursive program, 98
factorization, 8
fast multiplication, 20
Fibonacci numbers, 3, 116, 165

fast computation, 3
FIFO, 85
finite automaton, 73, 133, 143

nondeterministic, 148
First(X), 182, 193
Floyd algorithm, 125, 150
Floyd, R.W., 13
FolI(X), 182
Follow(X), 193
Ford-Bellman algorithm, 124
function

inductive, 29

Garey, M.R., 59, 212
Gaussian integers, 9
GCD, 4
generated string, 176
grammar

context-free, 176
for expressions, 178
LALR(1), 211
left-recursive, 194
LL(1), 193
LR(0), 204
LR(1), 210
SLR(1), 208

graph

bipartite, 130
connected, 88
connected component, 95, 110,

127
directed, 88
edge, 110
shortest paths, 124
undirected, 110
vertex, 88, 110

Gray code, 38
greatest common divisor, 4
Gries, D., 18, 23, 26, 31,212

Hanoi, Towers of
nonrecursive solution, 118
recursive solution, 100

hash function, 151
universal family, 156, 157

hashing, 151
running time, upper bound, 155
universal, 155
using lists, 154
with open addressing, 151

height, 158
Hoare sorting, 67, 111

nonrecursive, 121
Hoare, C.A.R., 111, 121
Hopcroft, J., 59, 212
Homer's rule, 18

inductive extension, 29
inductive function, 29
integer points in a circle, 10
intersection

of regular sets, 150
of sorted arrays, 23

inverse permutation, 27

Johnson, D.S.,59,212

knapsack problem, 59, 118
Knuth, D.E., 136
Knuth-Morris-Pratt algorithm, 136
Kushnirenko, A.G., 18, 19, 29, 86,

87, 212

INDEX 215

LALR(1)-grammar, 211
Landis, E.M., 165
language

context-free, 176
not context-free, 178

LCM, 5
Lead(K --+ V), 193
least common multiple, 5
Lebedev, G.V., 212
left context of the rule, 199
Left(K), 199
Left(K, t), 208
LeftCont(K --> U), 199
LeftCont(K ---> U, t), 208
Leiserson, C., 212
letter, 176
LIFO, 85
Lipski, W., 212
Lissowski, Andrzei, 119
LL(1)-grammar, 193
LL(1)-parsing, 191
LR(0)-grammar, 204
LR(1)-grammar, 210
LR-process, 198

Matijasevich, Yu.V., 13, 136
matrix multiplication, optimal order,

117
matrix product, 126
median, search, 71,112
memoization, 118
merge

of sorted arrays, 22
minimal element, search, 70
monotone sequences

generation, 36, 105
Morris, J.H., 136
multiplication

fast, 20
of polynomials, 19

nearest sum, 23
Nievergelt, J., 175,212
nonassociative operation, 118

nondeterministic finite automaton,
148

nonterminal, 176
NP-completeness, 59
number

of common elements, 20
of different elements, 16, 17, 68
of partitions, 47

open addressing, 151
operation

non-associative, 118
ordered tree, 159

parentheses, 46
correct expressions, 80, 176

parsing
general context-free language,

179
LL(1), 191
LR(1), 198
recursive-descent, 181

partitions
generation, 37, 106
number of, 47

Pascal, 21
Pascal triangle, 47, 115
Pascal, B., 115
paths, number of, 127
pattern matching, 133, 142, 143
period of a decimal fraction, 12
permutation

even, 27
inverse, 27, 43

permutations
generation, 34, 42, 104

polygon, triangulation, 46
polynomial

derivative, 19
multiplication, 19, 20
value, 18

positions tree, 49
postfix notation, 122
power

216 INDEX

computation, 1
quick computation, 2
recursive computation, 99

Pratt V.R., 136
prefix, 134
prime factors, 8
priority queue, 97
problem

knapsack, 59, 118
NP-complete, 59

product
non-associative, 46

production rule, 176
programming

dynamic, 114, 115, 179

queens problem, 49
queue, 85

array implementation, 85
made of two stacks, 86
pointer implementation, 90
priority, 97

quicksort algorithm, 67, 111
nonrecursive, 121

Rabin-Karp algorithm, 142
recursion, 98

elimination, 114
recursive procedure, 98
recursive-descent parsing, 181
reduce, 198
regular expression, 146
regular set, 147

complement, 150
intersection, 150

Reingold, E.M., 175,212
remainder, 3
reverse Polish notation, 122
Rivest, R., 212
rotation

left, right, 166
small, big, 166

search

k-th element, 71,164
binary, 25
breadth-first, 96, 128
depth-first, 129
majority representative, 71
of a shortest path, 124
of a substring, 133, 136, 139,

140, 142
of the k-th element, 112
of the minimal element, 70
one of substrings, 145

sequences
generation, 33

set
bit array implementation, 93
data types, 93
list implementation, 94
regular, 147
representation, 151, 154
tree representation, 158

Sethi, R., 150, 211,212
shift, 198
simulation, event queue, 97
Sipser, M., 212
situation

for a grammar, 200
SLR(1)-grammar, 208
sorting

n logn, 61
heapsort, 63, 97
Hoare (quicksort), 67, 111
lower complexity bound, 69
merge, 61, 67
number of comparisons, 69
quadratic, 60
quicksort, nonrecursive, 121
radix, 70
topological, 107, 130

spelling checker, 157
stack, 79

array implementation, 79
of postponed tasks, 119
pointer implementation, 83

INDEX 217

two in an array, 82
stack calculator, 122
State(S), 201
Strassen, V., 19
string, 134

coherent with a situation, 201
generated by a grammar, 176
having all possible substrings of

length n, 90
subsequence

common, 31
increasing, 31
test, 30

subsets
generation, 34
of given cardinality, generation,

35
substring, 134

search, 136, 139, 140, 142
subtree, 158
suffix, 134
summand, 178
symbol

initial, 176
nonterminal, 176
terminal, 176

terminal, 176
leading, 193

topological sorting, 107, 130
Towers of Hanoi

nonrecursive solution, 118
recursive solution, 100

tree
B-tree, 174
balanced, 165
binary, 63
full binary, 158
height, 103
number of leaves, 102
number of vertices, 102, 120
of positions, 49
of positions, implementation,

56

ordered, 159
pointer implementation, 101,

159
recursive processing, 102
root, 101
traversal, 49, 50, 103, 107, 120
traversal, nonrecursive, 120
vertex, 101

triangle, Pascal, 115
triangulation of a polygon, 46, 116
Turbo Pascal, 21

Ullman, J.D., 59, 150, 211,212
undirected graph, 110

value exchange, 1
Varsonofiev, D.V., 30, 157
vertex of a graph, 88, 110

Weinzweig, M.N., 31
Wirth, N., 21,212
word

generated by a grammar, 176

Zvonkin, A.K., 119
Zvonkin, D., 7

	Cover Page
	Title of Book: Algorithms and Programming -
	ISBN 0817638474
	Contents
	Preface
	1 Variables, expressions, assignments
	1.1 Problems without arrays
	1.2 Arrays
	1.3 Inductive functions

	2 Generation of combinatorial objects
	2.1 Sequences
	2.2 Permutations
	2.3 Subsets
	2.4 Partitions
	2.5 Gray codes and similar problems
	2.6 Some remarks
	2.7 Counting

	3 Tree traversal (backtracking)
	3.1 Queens not attacking each other: position tree traversal
	3.2 Backtracking in other problems

	4 Sorting
	4.1 Quadratic algorithms
	4.2 Sorting in n log n operations
	4.3 Applications of sorting
	4.4 Lower bound for the number of comparisons
	4.5 Problems related to sorting

	5 Finite-state algorithms in text processing
	5.1 Compound symbols, comments, etc.
	5.2 Numbers input

	6 Data types
	6.1 Stacks
	6.2 Queues
	6.3 Sets
	6.4 Priority queues

	7 Recursion
	7.1 Examples
	7.2 Trees: recursive processing
	7.3 The generation of combinatorial objects; search
	7.4 Other applications of recursion

	8 Recursive and nonrecursive programs
	8.1 Table of values (dynamic programming)
	8.2 Stack of postponed tasks
	8.3 Difficult cases

	9 Graph algorithms
	9.1 Shortest paths
	9.2 Connected components, breadth and depth search

	10 Pattern matching
	10.1 Simple example
	10.2 Repetitions in the pattern
	10.3 Auxiliary lemmas
	10.4 Knuth-Morris-Pratt algorithm
	10.5 Boyer-Moore algorithm
	10.6 Rabin-Karp algorithm
	10.7 Automata and more complicated patterns

	11 Set representation. Hashing
	11.1 Hashing with open addressing
	11.2 Hashing using lists

	12 Sets, trees, and balanced trees
	12.1 Set representation using trees
	12.2 Balanced trees

	13 Context-free grammars
	13.1 General parsing algorithm
	13.2 Recursive-descent parsing
	13.3 Parsing algorithm for LL(1)-grammars

	14 Left-to-right parsing (LR)
	14.1 LR-processes
	14.2 LR(0)-grammars
	14.3 SLR(1)-grammars
	14.4 LR(1)-grammars, LALR(1)-grammars
	14.5 General remarks about parsing algorithms

	Further reading
	Index
	Back Page

