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Preface

Over the past 25 years helioseismology has at last enabled us to probe the internal
structure and dynamics of our local star, the Sun. Perhaps its greatest triumph has
been to determine how the rotation varies in the solar interior. Although the bulk
of the radiative zone, occupying the innermost 70% by radius, rotates more or
less uniformly, the known variation with latitude of angular velocity at the surface
persists down to the base of the outer convective envelope. Since it had previously
been supposed that the Sun rotates sufficiently rapidly for the angular velocity
to be constant on cylindrical surfaces in the convection zone it was a surprise to
find that it is actually constant on conical surfaces. It came as an even greater
surprise to discover that the transition between the differentially rotating exterior
and the uniformly rotating interior is effected through an extremely thin layer – the

tachocline – whose thickness is less than 4% of the solar radius.
This unexpectedly abrupt transition has forced us all to refine our ideas on the

interactions between turbulent convection, rotation and magnetic fields, for it seems
that these last play a key role in preventing the tachocline from spreading down-
wards into the radiative zone. To describe the internal structure of the tachocline
requires an understanding of convective penetration, turbulent diffusion, mixing and
angular momentum transport. This shear layer also hosts a great range of potential
instabilities and, furthermore, is the most likely seat for the dynamo responsible
for the cyclic magnetic activity that is observed at the surface of the Sun. These
physical processes are all of interest in themselves and not only raise major issues in
astrophysical fluid dynamics, but also relate to significant problems in the physics
of the Earth’s oceans and atmosphere, in planetary physics, and in plasma con-
finement. More importantly, an understanding of the dynamics of the tachocline
is essential not just in order to match the interior to the exterior of the Sun – and
hence to establish its global properties – but also to explain the structure, evolution
and magnetism of all similar stars with deep convection zones.

The programme on Magnetohydrodynamics of Stellar Interiors held at the Issac
Newton Institute for Mathematical Sciences in Cambridge, which we organized in
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2004, provided a timely opportunity for holding a workshop on Tachocline Dynam-

ics. This one week meeting (8–12 November 2004) was the first ever to be entirely
devoted to the subject and it brought almost all the key players together to discuss it.
The workshop was informally structured, our aim being to maximize opportunities
for argument and discussion. The number of invited lectures was therefore restric-
ted, so as to leave plenty of time for structured discussions, led and organized by
appropriate experts. In all, there were a dozen talks that introduced the principal
topics, and eight hours of scheduled discussion, which continued informally among
the 48 participants outside the lecture room. This format worked extremely well
and the workshop was felt to be a great success. It certainly identified all the main
issues, although no consensus on detailed models was expected or achieved.

There was a general feeling among the participants that, while tachocline dynam-
ics remained a young and rapidly developing subject, it had now reached a stage
where it was ready for description in a book. The workshop provided the ideal basis
for such a volume and this is the result. Rather than produce a volume of proceed-
ings, it was agreed that we should edit a book containing invited chapters from
selected participants, each of which would be refereed by another participant. We
are pleased that there is a wide range of age and experience among the authors; most
of them are known for their work in Astrophysical Fluid Dynamics, but we also
include chapters by experts in Geophysical Fluid Dynamics and Plasma Physics.

The chapters are grouped into different sections covering the main areas of our
subject. The opening section contains two essays; the first provides a comprehensive
introductory survey, while the second focuses on the history and pre-history of the
relevant theoretical ideas. The next section presents the fundamental observational
results, which underpin all of the theory that follows. Section III contains three
chapters on purely hydrodynamic aspects of the tachocline, covering its structure,
turbulence, and differential rotation. Magnetic fields enter next, in Section IV, with
two chapters on the magnetic confinement of the tachocline and one on the influence
of rotation on magnetohydrodynamic turbulence. This is followed by a section
containing three chapters reviewing instabilities driven by rotational shear, magnetic
fields and buoyancy. Section VI is concerned with the generation of large-scale
magnetic fields by dynamo action, whether in the turbulent convection zone or,
more likely, in the tachocline itself. The book then concludes with an overview that
summarizes current controversies and points to future progress. There is inevitably
some overlap between the different chapters and, given the lack of certainty about
the nature of the tachocline, authors have not been restrained from expressing
contradictory views. While we have tried to maintain some degree of uniformity
regarding notation, we have not attempted to impose complete uniformity, nor have
we prevented authors from using their preferred choices of electromagnetic and
other units.
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Part I

Setting the scene





1

An introduction to the solar tachocline

Douglas Gough

1.1 Preamble

The task that I have been assigned is to set the scene for the discussions that
follow: to present my view of the principal issues that had confronted us before the
meeting when trying to understand the dynamics of the solar tachocline. Most of
what I write here is enlarged upon, and in some cases superseded by, the chapters
that follow, in which references to most of the original publications can also be
found. Nevertheless, I trust that it can serve as a useful elementary introduction to
the subject, setting it into its wider astronomical context.

The tachocline is interesting to astrophysicists for a variety of reasons, the most
important being (i) that it couples the radiative interior of the Sun, where nearly
90% of the angular momentum resides, to the convection zone, which is being spun
down by the solar wind, (ii) that it controls conditions at the lower boundary of the
convection zone, and is therefore an integral component of the overall rotational
dynamics of the convection, and (iii), perhaps most relevant to the interests of the
greater proportion of the participants of the workshop, it is now generally recognized
as being the seat of the solar dynamo. It plays some role in shaping the evolution of
the Sun, and it must be taken into account when interpreting the helioseismological
diagnostics of the solar structure.

It is therefore perhaps useful first for me to make a few remarks about some
properties of the Sun that are pertinent to the dynamics of the tachocline, and to
agree on a practical definition, or at least a description, of what we even mean
by the tachocline. I shall then discuss the two existing dynamical descriptions of
the tachocline, and the extent to which I consider them to represent, or not, the
response of the Sun to the predominant balance of forces in what in reality are
circumstances much more complicated than those to which the idealized theories
really apply. This raises many theoretical issues, some of which are supported
either directly or indirectly by experiment (either physical or numerical) or by
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4 An introduction to the solar tachocline

astronomical observation; more might also be so supported in the not-too-distant
future, others not.

My discussion is not a balanced account of the various (disparate) views of the
community; it is peppered with my own opinions, with many of which the reader
may take issue. In so doing, I hope that it will stimulate productive thought that
will advance our understanding of this topical subject.

1.2 Some basic properties of the Sun

The Sun is a star on the Main Sequence: that is to say, it is in a state of hydrostatic and
thermal balance in which energy that is being produced in a hot central core from
thermonuclear transmutation of hydrogen into helium is being transported down
a temperature gradient through the surrounding envelope, and is finally radiated
into space from the photosphere, the visible surface of the Sun. This is generally
regarded as a state of one of the simplest phases of the evolution of a star. It is
certainly the most well studied. It is also the longest phase, at least before the
star finally condenses into a degenerate configuration such as a white dwarf or
a neutron star, and so most ordinary (non-degenerate) stars are currently in their
Main-Sequence phase. The duration of this phase, which ends when the supply of
hydrogen fuel is exhausted from the centre of the core, depends on the mass of the
star; for the Sun it is about 1.0 × 1010 years. The solar age is about 4.6 × 109 years,
so the Sun is nearly half-way through its Main-Sequence life.

The Sun’s core (the region in which, say, 95% of the thermonuclear energy is
generated) extends to about 20% of the radius R⊙ of the photosphere, and contains
about 35% of the total mass of the star. The surrounding envelope is divided into
two principal regions: a quiescent radiative region in which radiant heat diffuses
down the temperature gradient, extending to a radius, rc, of about 0.71R⊙, and
an overlying turbulent convective region which extends to the photosphere. These
two regions merge in – some would say are separated by – a thin boundary layer,
which is the tachocline, on which I shall enlarge very shortly. But before doing
so I should perhaps attempt to avert misunderstanding by drawing attention to a
potential source of confusion brought about by some newcomers to the field who
call the radiative envelope the core. I hope that any inadvertent occurrence of that
misnomer in this book will be subliminally ignored. I shall sometimes use the term
‘radiative interior’ to denote the entire radiative region beneath the convection zone,
encompassing both the radiative envelope and the core.

At this point it is perhaps useful to mention a few more timescales. The
thermal diffusion time τth through the radiative envelope, namely r2

c /π2κ , where
κ = 7.3×105 cm2 s−1 is an appropriate average (the square of the harmonic mean,
over radius r, of the square root) of the thermal diffusivity κ , is 1.2 × 107 years; the
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viscous timescale, in the absence of boundary layers, is about 1012 years, substan-
tially greater than the age of the Universe; and the thermal relaxation time of the
convection zone, namely the characteristic time over which the zone would return to
thermal equilibrium after a putative global perturbation to conditions at its base, is
105 years. The timescale for Ohmic decay of a large-scale magnetic field pervading
the radiative interior is of order 1011 years. All four timescales are much greater
than the characteristic times over which most of the dynamical processes discussed
in this volume operate, and so for many purposes the phenomena directly associated
with them can be ignored. On the other hand, the characteristic global dynamical
timescale, which is given by the acoustic travel time from the centre to the surface
of the Sun, is about 1 h, which is much shorter; therefore the radiative envelope
and the core remain quite precisely in hydrostatic equilibrium on the timescales of
major interest here.

The (sidereal) rotation period of the essentially uniformly rotating radiat-
ive interior of the Sun is about 27 days, corresponding to the angular velocity
�0 = 2.7 × 10−6 s−1. This is comparable with the characteristic turnover time of
the large convective eddies in the lower reaches of the convection zone. The angu-
lar velocity in the convection zone varies only weakly with depth, and declines
gradually from 2.9 × 10−6 s−1 at the equator to about 2.0 × 10−6 s−1 at the poles.

It should be realized that the convection zone contains only about 2% of the mass
of the star. Therefore any reasonable redistribution of matter in the convection zone
brought about by convection dynamics has very little impact on the overall weight of
the envelope pressing down on the core. Therefore the core evolves inexorably on its
own timescale of 1010 years, untrammelled by the machinations of the dynamically
active outer envelope. I should mention also the Eddington–Sweet timescale, τES,
the circulation time of large-scale meridional flow through the radiative envelope
that is associated with the baroclinicity induced by rotation, and which is enabled
by thermal diffusion; it is the thermal diffusion time divided by the square of
the rotational Froude number Fr = 2�0/N (where N is the value of the buoyancy
frequency characteristic of the body of the radiative envelope, about 2.5×10−3 s−1),
namely τES = Fr−2τth ≃ 2.5 × 1012 years. There is also a contribution to the
circulation from spin-down resulting from the extraction of angular momentum
from the convection zone by the solar wind via the external magnetic field, which
is currently slowing down the Sun on a timescale of τsd ≃ 1010 years, a time
comparable with, although a little longer than, the solar age.

There are other timescales more pertinent to the subject-matter of this volume
that will emerge in due course. Let me mention here just two. The first is the
global Alfvénic time τA. This is the time it takes for an Alfvén wave to traverse
the quiescent radiative interior of the Sun, and is characteristic of the period of
a magnetically restored global torsional oscillation. It depends, of course, on the
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(harmonic) mean intensity of the large-scale magnetic field, which is unknown.
Presumptions in the literature of its characteristic value vary widely, from zero, a
most unlikely value, to the order of megagauss. Suffice it to say that if one adopts
an intermediate value, say about 2 kG, a value characteristic of, though somewhat
lower than, the fields observed in sunspot umbrae, then τA is about 22 years, a
timescale which is central to issues discussed in this volume. It is therefore evident
that no theory of the solar cycle can be considered complete unless it addresses
the dynamical role of the radiative envelope. The second timescale is the internal
thermal or rotational equilibration time of the convection zone: the time it takes
for the convection zone to propagate (rather than merely to diffuse) a thermal or
angular-momentum perturbation towards an internal equilibrium without the entire
convection zone necessarily getting back into balance with its surroundings. That
time is about one year, again not very different from the timescale of the solar cycle.

To conclude, I record in Table 1.1 characteristic values of various physical vari-
ables in the tachocline. They are evaluated at a radius r = 0.70R⊙. The density,
ρ, pressure, p, sound speed, c, and acceleration due to gravity, g, were obtained
seismologically; the remaining, non-seismic, variables were inferred from a solar
model (Model S) of Jørgen Christensen-Dalsgaard by adjusting it appropriately to
be consistent with the seismic variables, and taking the relative hydrogen abund-
ance by mass to be X = 0.737, as in the model. Under these conditions one can
compute diffusion coefficients. There is considerable diversity amongst the values
that one finds quoted in the literature; here I adopt what I consider to be the most
reliable estimates: I evaluate the magnetic diffusivity η and the ion contribution
νi to the kinematic viscosity from the formulae of Lyman Spitzer, using Georges
Michaud and Charles Proffitt’s more recent estimate of the Coulomb logarithm
(ln 	 = 2.5); I evaluate the photon-transport contribution νr to the viscosity from
the formula of L. H. Thomas; I evaluate the helium–hydrogen diffusion coeffi-
cients from Michaud and Proffitt’s extraction from the work of Paquette, Pelletier,
Fontaine and Michaud. About 10% of the total kinematic viscosity ν = νi + νr and
all of the thermal diffusivity κ come from photon transport; the magnetic diffus-
ivity comes entirely from particle transport. From these coefficients one deduces a
Prandtl number ν/κ ≃ 1.9×10−6 and a magnetic Prandtl number ν/η ≃ 6.6×10−2

characteristic of the tachocline. One can extrapolate the diffusion coefficients
downwards through the radiative envelope using the approximate scaling laws
η ∝ T−3/2 ln 	, νi ∝ T5/2/ρ ln 	, νr ∝ T4/ρ2κ̂ , κ ∝ T3/ρ2κ̂ , χ ∝ T5/2/ρ ln 	,
with 	 ∝ ρ−1/2T3/2, and kp and kT constant; κ̂ is the opacity, which in the radiative
interior satisfies roughly (to within 15%) the empirical law κ̂ ∝ ρ0.4T−3. The Soret
coefficients depend on chemical composition, and are each approximately propor-
tional to (1 − X2)(3 + 5X)/(3 + X); they increase inwards through the core by
about 50%. Beneath the tachocline the buoyancy frequency N increases gradually
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Table 1.1. Properties of the tachocline at r = 0.70R⊙

density ρ 0.21 g cm−3

pressure p 6.7 × 1013 g cm−2s−2

temperature T 2.3 × 106 K
sound speed c 2.3 × 107 cm s−1

opacity κ̂ 19 g−1 cm2

gravitational acceleration g 5.4 × 104 cm s−2

density scale height Hρ 0.12R⊙
pressure scale height Hp 0.08R⊙
adiabatic exponent γ1 1.665
buoyancy frequency N 8 × 10−4 s−1

magnetic diffusivity η 4.1 × 102 cm2 s−1

kinematic viscosity ν 2.7 × 101 cm2 s−1

thermal diffusivity κ 1.4 × 107 cm2 s−1

helium diffusion coefficient χ 8.7 cm2 s−1

pressure Soret factor kp 2.9
temperature Soret factor kT 2.6

The density and pressure scale heights are defined as Hρ =
(−d ln ρ/dr)−1 and Hp = (−d ln p/dr)−1 = c2/γ1 g, where
γ1 = (∂ ln p/∂ ln ρ)s is the first adiabatic exponent, the par-
tial thermodynamic derivative being taken at constant specific
entropy s. The buoyancy frequency is defined by N2 =
g(H−1

ρ − gc−2); it rises with depth from essentially zero at
the base of the convection zone to about 1 × 10−3 at the top
of the tachopause. The (upwards) helium diffusion velocity
vHe through hydrogen is given by vHe = −χ(d ln Y/dr −
kpd ln p/dr − kT d ln T/dr), where Y is the helium abundance,
whose value in the tachocline is 0.245. The diffusion velo-
city is defined such that vHeY is the mass flux of helium
through hydrogen. The total radius, mass and luminosity of
the Sun are R⊙ = 6.96 × 1010 cm, M⊙ = 1.99 × 1033 g, and
L⊙ = 3.84 × 1033 erg s−1.

with depth to a maximum of about 2.9 × 10−3 s−1 at r ≃ 0.1R⊙, and then declines
to zero at r = 0.

1.3 Solar spin-down

Perhaps the most serious problem to be faced by any protostar is how to dis-
pose of almost all of its angular momentum and magnetic field as it collapses to
its eventual hydrostatic state. A globular region of mass 1M⊙ of dense interstel-
lar gas, say with a density of 100 hydrogen atoms per cubic centimetre, rotating
with an angular velocity equal to half the mean vorticity of the galactic rotation
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(namely, 1×10−8 y−1, Oort’s second constant) and pervaded by a not atypical 3 µG
magnetic field, would, if it could conserve angular momentum and magnetic flux
as it contracted to solar dimensions, end up rotating some 3 × 105 times faster than
the Sun, and would possess a global magnetic field in the radiative interior of about
1TG, exceeding the solar value by perhaps a similar factor; the disrupting Lorentz
force would be comparable with the binding gravitational force, and the centrifugal
force would exceed the gravitational force by a factor in excess of 104. There has
been a fair amount of intellectual effort expended on the angular momentum issue,
on which I shall not dwell here, except to note that when the Sun first attained
hydrostatic equilibrium, having lost almost all of its angular momentum, it was still
rotating considerably faster than it is today. From that time on the solar-wind torque,
acting on a timescale comparable with, although at present apparently somewhat
longer than, the Main-Sequence age, has slowed down the convection zone, which,
as I pointed out earlier, equilibrates on the very short timescale of about a year. A
consequent issue that has exercised the minds of stellar physicists quite considerably
is the extent to which the spin-down of the convection zone has been transmitted to
the radiative interior. In the early days opinions varied widely, but now the matter
has essentially been settled by helioseismology. I raise it here because it was in that
context that the first idea of a tachocline emerged.

There was considerable debate in the 1960s and 1970s on the rotation of the solar
interior, brought about partly by Bob Dicke’s claim that the surface of the Sun is
some six times more oblate (implying a 2.5-fold increase in ellipticity) than one
would have expected had the Sun been rotating more-or-less uniformly throughout.
The import of the claim was that the external gravitational equipotentials deviate
from sphericity by more than 100 times expectation, and thereby destroy the precise
agreement between observations of the rate of precession of the perihelion of the
orbit of the planet Mercury and the prediction by General Relativity. (The reason
why the Sun’s surface and the gravitational equipotentials do not deform propor-
tionately is that in near-uniform rotation only 4% of the deviation from sphericity
of the surface layers arises from the asphericity of the gravitational equipotentials,
the rest being the direct centrifugal distortion arising from the observed rotation of
those layers.) Dicke argued that because the timescale for viscous diffusion of angu-
lar momentum through the quiescent radiative interior is substantially greater than
the age of the Sun – indeed, as I mentioned earlier, it is greater than the age of the
Universe – the core is still spinning with angular velocity comparable with the high
value it had when the Sun arrived on the Main Sequence, and is therefore still sub-
stantially flattened by the centrifugal force, inducing oblateness in the gravitational
field. Against that view, Ed Spiegel was the standard-bearer for realism, pointing
out that, as for any issue with non-uniformly rotating fluids, spin-down must be
considered in a dynamically consistent way, and that statements based on diffusion
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alone are highly misleading. (I should take this opportunity to remind the reader that
that is so also for issues concerning the tachocline today.) After some preliminary
toy-model studies with Derek Moore and Francis Bretherton, Spiegel addressed the
influence of the strongly stable stratification on the baroclinic angular-momentum-
transporting meridional flow induced by spin-down, and conceived of a growing
sequence of thin Holton shear layers which transported angular momentum prin-
cipally by advection, and which advanced from the base of the convection zone to
the core, spinning down the entire Sun. Although the advance occurred on a times-
cale much less than the age of the Sun, it was nonetheless quite slow by dynamical
standards, so perhaps Spiegel’s original appellation ‘tachycline’ was not entirely
appropriate.

It appears today that the existence of the tachocline is not directly dependent
on spin-down, and is instead driven principally by the stresses maintaining the
latitudinal differential rotation of the convection zone against a rigidly rotating
envelope below. This conclusion derives from the helioseismological measurements
of the variation of angular velocity in the solar interior (in addition to observational
estimates of the spin-down rate), which it is appropriate now to describe.

1.4 The rotation of the Sun today

I should point out immediately, to avoid possible misunderstanding, that by angular
velocity I mean the azimuthally averaged value, any deviations from that value being
regarded as zonal flow. I must also point out that, except when I state explicitly to
the contrary, all descriptions of the angular velocity � actually refer to an average of
values at equal latitudes in the northern and southern hemispheres, which is what
global helioseismology tells us. Observers almost invariably talk about rotation
rate, whose value they quote typically in nanohertz. For brevity, values of � are
sometimes quoted in nanohertz, but what is meant, of course, is values of �/2π .

It has long been known from direct visual observation of tracers that the surface
layers of the Sun rotate differentially, with angular velocity which is quite accurately
described by the three-term expression

�s(θ) = �e(1 − α2µ
2 − α4µ

4), (1.1)

where µ = cos θ , θ being colatitude, and �e, α2 and α4 are constants.
Helioseismological inferences from the rotational degeneracy splitting of acous-
tic modes obtained originally and separately by Tim Brown, Ken Libbrecht and
Jesper Schou, and their colleagues, have demonstrated that this kind of latitud-
inal variation persists almost unaltered down to the base of the convection zone,
although, as has been emphasized recently by Peter Gilman and Rachel Howe,
through the main body of the convection zone, at latitudes below about 70◦, the
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angular-velocity contours depicted by Schou and his collaborators are more closely
described as being inclined at a constant angle, about 30◦, to the axis of rotation,
except, of course, very near to the equator. At the base of the convection zone
there is an abrupt transition to almost uniform angular velocity throughout the
radiative envelope, with a value �0 intermediate between the extremes of �s.
The angular velocity in the core is uncertain, although there is some evidence
that its average is somewhat less than that in the surrounding envelope, a prop-
erty which was not expected by anyone who had contemplated solar spin-down
before helioseismology. The values of the constants defining �s in the subsur-
face layers, at radius r = 0.995R⊙, obtained seismologically by Schou and his
colleagues, are �e/2π ≃ 455 nHz, α2 ≃ 0.12, α4 ≃ 0.17; at r = 0.75R⊙ the
latitudinal variation of the angular velocity can be represented by the same expres-
sion with �e/2π ≃ 463 nHz, α2 ≃ 0.17 and α4 ≃ 0.08 (implying a specific
angular momentum, integrated over the sphere, the same as at r = 0.995R⊙). Sim-
ilar values are given by other investigators. The radiative interior rotates at a rate
�0/2π ≃ 430 nHz. The transition shear layer at the base of the convection zone –
the object of study in this volume – is too thin to be resolved by current seismic data,
but fits made by Sasha Kosovichev, Paul Charbonneau and others of simple func-
tional forms have suggested values of its thickness � ranging from about 0.02R⊙
to 0.05R⊙. Most of the estimates rest on the assumption that the base of the con-
vection zone is spherical. Any deviation from sphericity, for which there is some
weak seismological evidence, smears a spherical view. Therefore the estimates of
the thickness of the shear layer should probably be considered to be upper bounds.

To put our study into its context, I shall elaborate a little on the seismologically
inferred angular velocity. These extra details do not all bear directly on the tacho-
cline, but they must surely be accounted for in any comprehensive theory of the
solar cycle. It is often said that the form �s(θ) persists unaltered through the convec-
tion zone, implying that the angular velocity contours are radial. As I have already
pointed out, it has been shown, by work of nearly a decade ago, that throughout
much of the convection zone the contours are more nearly uniformly inclined by
about 30◦ from the axis of rotation; and equatorwards of latitude 20◦ or so there
is a tendency for them to be even more nearly aligned with the axis of rotation. It
should be realized, however, that in this equatorial region � deviates only slightly
from being constant, so the slopes of the isotachs are not accurately determined.
Recently, Howe and her colleagues, using more extensive, more highly resolved
data, have concluded that the angle of inclination of the isotachs is closer to 25◦.
Near the poles the inclination of the isotachs from the axis of rotation continues to
increase with latitude, and in the lower reaches of the convection zone the angular-
velocity contours become more nearly horizontal: the angular velocity increases
more rapidly with depth at constant latitude towards the base of the convection
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zone, as though there the stresses imposed by the more rapidly rotating radiative
envelope extend further into the convection zone than do the corresponding stresses
near the equator. In addition, there is another shear layer, entirely within the con-
vection zone, and not far beneath the photosphere: the rotation rate rises with depth
at constant latitude to a maximum at radius r ≃ 0.94R⊙ some 20 nHz greater than
the corresponding photospheric value, and then declines gradually to roughly its
surface value. This is so equatorward of latitudes 50◦ or so. At higher latitudes
seismological inferences are less reliable, although it appears that the general trend
continues, but with an additional thinner shear layer of opposite sign immediately
beneath the surface associated with which is a local minimum in rotation rate at
r ≃ 0.995R⊙, some 5–10 nHz slower than the corresponding surface rate. Also at
high latitudes is an intriguing deviation of � from the parametrized function �s(θ);
there is an abrupt decrease by 20 nHz or more in the rate of rotation of the surface
layers in the vicinity of latitude 75◦, extending to a depth of about 0.05R⊙. It is
not possible at present to measure the rotation poleward of 80◦, but I guess the
regions of slow rotation extend all the way to the poles, and thereby, perhaps not
accidentally, are coincident with the regions from which the fast solar wind blows.

I have already mentioned that the tachocline may not be spherical. By fitting
parametrized shear-functions to the helioseismic data, Charbonneau and his col-
laborators inferred that the tachocline is prolate, with a likely ellipticity of about 0.25
(corresponding to a prolateness (rpole − req)/req ≃ 0.03), although with consider-
able uncertainty. How much this result is contaminated by the greater spreading of
the tachocline shear into the convection zone in polar regions is unclear. However,
the result is not inconsistent with an earlier finding that the base of the convection
zone, determined from the sound-speed stratification, appears to be similarly pro-
late with an ellipticity of about 0.20. There is no even half-convincing evidence of
a static spatial variation of any other tachocline property.

Superposed on the basic pattern of angular velocity described in the pre-
vious paragraph are subphotospheric zonal bands of alternately fast and slow
rotation which have been observed by Howe, Frank Hill, Rudi Komm, Christensen-
Dalsgaard, Michael Thompson, Schou and others, the surface manifestation of
which are the so-called torsional oscillations discovered earlier by Bob Howard
and Barry LaBonte. The bands are about 15◦ wide and penetrate at least 0.15R⊙
into the convection zone; they are more-or-less symmetrically placed about the
equator, and, according to Sergei Vorontsov and his colleagues, they migrate equat-
orwards from latitudes of about 42◦ at a rate which causes the angular velocity at
any given latitude to oscillate with a period of about 11 years. At higher latitudes the
bands appear to migrate towards the poles. Sunspots, whose locations also migrate
equatorwards as the sunspot cycle progresses, but from latitudes of only 30◦, are
found very roughly at latitudes at which the potential vorticity associated with the
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angular velocity has a maximum. Various other features have been reported, but I
conclude this brief description just with an observation that may be pertinent to the
tachocline, and which has been dubbed the tachocline oscillation: it is an oscilla-
tion in angular velocity near the equator, discovered by Howe and her colleagues,
with an amplitude of about 6 nHz and a period of 1.3 years. It was observed both
immediately above and immediately beneath the base of the convection zone, the
two regions being separated in depth by about 0.1R⊙ and oscillating in antiphase
with each other, implying that the radial shear has an antinode at the location of
the tachocline. I should point out that Sarbani Basu, Schou and Antia have failed to
reproduce this finding in a convincing light, and have challenged it. By contrast, I
might add that we have found a hint of a third region of the oscillation in �, with its
antinode about 0.1R⊙ beneath the lower of the two found previously, with a similar
amplitude and in antiphase with it, so the oscillation may not be a property of the
tachocline alone.

1.5 The solar tachocline

It is generally believed that the differential rotation of the convection zone res-
ults from a combination of the effects of the anisotropy of the Reynolds stresses,
asphericity of the heat flux, and angular-momentum transport by large-scale meri-
dional flow. These processes adjust on timescales of a year to a decade, which
are short compared with what is generally believed to be the timescale for angular-
momentum redistribution in the radiative envelope below. But they have presumably
been operating over the lifetime of the Sun, giving time for their influence to have
been transmitted to the radiative envelope. So why is it that the radiative envel-
ope rotates uniformly in the face of the differentially rotating convection zone?
And why is the transition layer so thin? These questions were first addressed ser-
iously in a seminal paper by Ed Spiegel and Jean-Paul Zahn, who argued that
shear-driven turbulence in the stably stratified envelope immediately beneath the
convection zone is almost two-dimensional, providing little stress to transport angu-
lar momentum vertically. They tacitly assumed that, in contrast to the turbulence
in the convection zone above, the Reynolds stresses are horizontally isotropic, and
act in the manner of viscous diffusion so as to oppose latitudinal gradients in �.
They argued convincingly, subject to that assumption, that the outcome would
be more-or-less in accord with the findings of helioseismology. Indeed, with not
implausible values of vertical and horizontal turbulent viscosity coefficients, they
obtained a thin shear layer, which they called the tachocline (from the Attic Greek
tachos = speed, in preference to tachys = fast, + klino = to cause to bend or slope).
Their model predicts that the angular velocity in the uniformly rotating radiative
envelope is �0SZ = 0.90�e. Had Spiegel and Zahn ignored the dynamics of the
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meridional circulation associated with the baroclinicity (which, of course, they
never would), thereby having a model with only pure rotational motion controlled
by homogeneously viscous angular-momentum transport, they would have obtained
�0visc = 0.96�e. This highlights the kind of error that can be made by a purely
diffusive description (not to mention erroneous timescales), which in this case pro-
duces only 40% of the full equatorial angular-velocity jump across the tachocline
of the model. Solar observations imply �0 ≃ 0.93�e.

In their analysis, Spiegel and Zahn ignored any reaction of the tachocline stresses
on the rotation of the convection zone, a simplification which is no doubt a very
good first approximation. As I described in the previous section, there is helio-
seismological evidence that the reaction is not entirely negligible, however, and
that the region of shear has spread upwards into the convection zone, particularly
in the polar regions. The dominating dynamics of that spreading is very different
from the dynamics in the stably stratified shear layer beneath, so we reserve the term
tachocline for only the latter, in accord with Spiegel and Zahn’s original appellation.

A word or two about the overlying convection zone is not out of place here.
Because the heat capacity of the fluid in the main body of the convection zone is
high, by the standards of the flux of heat that the Sun demands, convective velocities
are very subsonic and, more pertinently, the mean stratification is very close to being
adiabatic, the relative deviation from adiabaticity probably not exceeding 10−4 or so
(in the lower reaches of the convection zone it is as small as 10−6), except, of course,
very close to what one might regard as the boundaries of the convection zone. The
largest-scale eddies in particular have quite a high degree of coherence, so their
overall dynamics is determined not just locally. Therefore the mean stratification
in the convecting region need not be unstable everywhere, particularly near its
boundaries. Here I adopt the pragmatic approach, which, I hasten to add, is not
universally accepted, of regarding the entire region in which the mean stratification
is almost adiabatic (together with the highly superadiabatic upper boundary layer)
as constituting the convection zone, whether the stratification be superadiabatic or
not. It is the region in which the motion is sufficiently vigorous to isentropize the
fluid. It is a region that can be identified seismologically.

Beneath that region is the overshoot layer, in which maybe tongues of fluid
from the convection zone trespass into the very stably stratified tachocline beneath,
bringing with them their magnetic field, sometimes entraining quiescent fluid and
mixing entropy and chemical species, but perhaps more often simply undergo-
ing a reversal in the direction of their flow and returning to the convection zone
after little or no mixing, causing the interface between the well mixed convect-
ing layer and the relatively quiescent radiative layer beneath to undulate. Those
tongues are not space-filling, so the mean stratification of the region into which they
penetrate is intermediate between being adiabatic and being that of a quiescent fluid
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in radiative equilibrium; they provide a smoothing of the mean stratification in the
vicinity of the base of the convection zone (not a sharpening of the discontinuity,
as some purveyors of one-dimensional solar models have maintained), a smooth-
ing for which Nick Ellis and I once sought a seismic diagnostic from low-degree
g modes in the days before it was realized that reliable unambiguous internal-g-
mode detection is not imminent. There have been a wide variety of estimates of
the extent of the overshoot layer, some being greater than what we now believe
to be the thickness of the tachocline. It appears to me to be most likely that the
overshoot layer is rather thinner than the tachocline, but there remains some room
for doubt. At the very bottom of the overshoot region the direct convective motion
is too slow to remain adiabatic, and therefore transports almost no heat, although it
might be a not insignificant agent for mixing magnetic field and chemical species.
This is also a region where the more vigorous direct motion gives way to oscil-
latory wave motion, which itself has the potential for transporting heat, angular
momentum, chemical species and magnetic field. The physics is very complicated,
and it is being debated what role that region plays in the overall dynamics of the
tachocline.

1.6 On the basic dynamics of the tachocline

If we start the discussion by recognizing that the tachocline is basically a thin,
stably stratified, rotational shear layer, uniformly rotating at its base, we must con-
clude immediately that the imbalance of forces that must necessarily be present in
such a configuration acts in such a way as to drive an angular-momentum trans-
porting meridional circulation, towards the axis of rotation at latitudes where the
body of the tachocline rotates faster than its base, away from the axis where it
rotates more slowly. I should emphasize that the circulation is driven principally
by the stresses associated with the differential rotation of the convection zone, and
not significantly by the substantially weaker effects of spin-down as some have
claimed. The high degree of stabilization in the vertical, expressed by the buoy-
ancy frequency being very much higher than the top-to-bottom angular-velocity
difference across the tachocline, tries to constrain that flow to be almost horizontal
almost everywhere. I shall presume the motion also to be basically axisymmet-
rical, as has been assumed in most dynamical studies to date. As was pointed
out by Spiegel and Zahn, conditions in the tachocline are such that the balance of
forces in the latitudinal direction is cyclostrophic (which in this context Spiegel and
Zahn called heliostrophic, the solar analogue of geostrophic), the pressure gradient
being almost balanced (in a rigid frame of reference rotating with the characteristic
angular velocity of the fluid) by the Coriolis force. I should emphasize that this
balance is indeed a balance, a balance that is more-or-less permanently sustained,
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provided that the tachocline flow is not seriously unstable; although driven by a
force imbalance which induces baroclinicity, the meridional tachocline circulation
is not, strictly speaking, a baroclinic instability (or any other instability), as some
people have described it in the past. I should emphasize also that the baroclini-
city is not itself the fundamental driving force. The baroclinicity is a slave to the
rotation and the associated anisotropy of the Reynolds stresses and the buoyancy
associated with the asphericity of the heat flow in the convection zone, and is trans-
mitted to the tachocline principally via the vertical hydrostatic balance of forces
and advection by the meridional flow. The meridional circulation is driven pre-
dominantly by the stresses in the convection zone (and elsewhere) that provide the
azimuthal force to produce the differential rotation; the stresses are transmitted to
the tachocline to force a differential azimuthal flow which is deflected polewards,
near the equator, or equatorwards, near the poles, by (in a rotating frame of refer-
ence) the associated Coriolis force. This is called gyroscopic pumping. As I said
earlier, those convective stresses are more powerful than the stresses that can be
set up in the tachocline, so to a first approximation, at least, one can safely adopt
Spiegel and Zahn’s tactic of ignoring any back reaction to the tachocline in the
convection zone.

The meridional tachocline circulation must necessarily have a vertical compon-
ent. In view of the very highly stable stratification, that flow can penetrate into the
radiative envelope only if it does so slowly enough for thermal diffusion to can-
cel the opposing buoyancy. It can penetrate into the convection zone quite freely.
Spiegel and Zahn demonstrated that if one starts from a radiative envelope that is
rotating uniformly, and that is not pervaded by a large-scale magnetic field, then
after a time t the penetration depth is of order (t/τES)1/4rc, where rc is the radius of
the base of the convection zone. So even had the Sun arrived on the Main Sequence
rotating uniformly, by now the meridional flow generated in the convection zone,
and the angular momentum it advects, could have penetrated perhaps a quarter or
more of the way to the centre of the Sun, producing a region of shear some ten or
more times thicker than the tachocline is observed to be. This penetration is a robust
result, despite a recent invalid claim to the contrary by Gilman and Mark Miesch.
It follows that the tachocline is not an intrinsically transient diffusive phenomenon.
There must be some agent operating either in or immediately beneath the tachocline
to impose a degree of horizontal rigidity. Moreover, it is likely that the tachocline
is in a more-or-less steady state, save for a gradual evolution in response to the
spin-down of the entire Sun.

What I have said so far is probably not very controversial. Where opinions diverge
is on the issue of what the agent that imposes the rigidity might be. I shall summarize
my no doubt biased view of those opinions, on the whole refraining from discussing
the purely diffusive studies which ignore the dynamics of the meridional flow, for,
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as in the case of spin-down, without appropriate caution they can lead to faulty
conclusions.

As I said earlier, Spiegel and Zahn invoked layerwise almost two-dimensional
horizontally isotropic shear turbulence in the tachocline, which they expected
to occur on account of the large Reynolds number of the horizontal shear. The
Reynolds stresses exerted by the turbulence were presumed to act locally in the man-
ner of a viscosity, the viscosity coefficient being much greater for horizontal shear
than for vertical shear. The study begs the question of whether or not the shear can
sustain turbulence that is sufficiently vigorous to quench the very shear that drives
it. That raises the issue of the mode of instability of the rotational shear, about which
I shall remark briefly below. But more important is the objection raised by Michael
McIntyre and me about the nature of the angular-momentum transport in layerwise
two-dimensional turbulence. Because potential vorticity – namely Q = ρ−1ω · ∇s,
where ω is vorticity measured in an inertial frame (ρ is density and s is specific
entropy) – is conserved in dissipationless flow, turbulence tends to transport, and,
in regions where it is vigorous, homogenize, perhaps in an apparently diffusive
manner, potential vorticity, not angular velocity, which drives the mean flow away
from rather than towards a state of uniform rotation. This property is observed in
the Earth’s atmosphere; and it has been simulated numerically by Peter Haynes, in
plane geometry, and demonstrated in spherical geometry, in the weakly nonlinear
limit, by Pascale Garaud. But in addition there is often strong coupling to internal
waves, principally inertia-gravity waves and Rossby waves, which transport angu-
lar momentum far from the site of their generation to where the angular momentum
can be returned to the mean flow either via viscous or thermal dissipation or by
nondissipative, necessarily nonlinear, interactions. McIntyre has emphasized often
that this wave transport is not merely incidental to the turbulence but is an essential
ingredient of it, because a local reduction in a potential-vorticity gradient is not
angular-momentum preserving, so the waves are absolutely necessary for carrying
the angular momentum away. It follows that, unlike pure diffusion, the process of
redistributing angular momentum by layerwise two-dimensional turbulence is usu-
ally not local. In the Earth’s atmosphere there is often observed a mid-latitude band
in which potential-vorticity mixing is strong, sandwiched between more nearly
laminar polar and equatorial regions with which it communicates partly via waves.
It is perhaps interesting to note that if there were such a region in the tachocline that
matched smoothly onto a uniformly rotating polar cap, then the angular velocity in
that mixed region would increase equatorwards: in the jargon of solar physicists,
the turbulence would drive an equatorial acceleration.

At this point a digression on wave transport by gravity waves is not out of place. It
was an issue of some interest in the late 1970s in the early days of helioseismology,
particularly in view of reports of detections of the infamous large-scale 160 min
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oscillation of the Sun, an obvious gravity-mode candidate. It had already been
found theoretically that some large-scale gravity modes (standing gravity waves)
were likely to be self-excited, driven by the fluctuations in the nuclear reactions they
induce, in the manner suggested by Eddington as a potential source of excitation
of the pulsations of classical variable stars, although a solar gravity mode with a
period as long as 160 min is too dissipative to be one of those modes. This was also
a time when solar spin-down was a topical issue, and angular-momentum transport
by gravity waves seemed a plausible candidate for spinning down the core. Micro-
scopic dissipation processes were obviously much too slow to enable any large-scale
gravity mode to extract enough angular momentum directly from the core to spin it
down in the Sun’s lifetime; for such modes to act as an effective spin-down agent the
core would need to be turbulent, which seemed to be not out of the question at the
time. (Core turbulence would homogenize the chemical composition, but helioseis-
mology had not yet ruled that out.) Wojtek Dziembowski subsequently showed that
three-mode coupling to pairs of resonant small-scale daughter modes damps such
gravity modes so effectively that they are unlikely to grow to sufficient amplitude
to transport an interesting amount of angular momentum. Because microscopic
diffusion coefficients in the Sun are so tiny (to be more precise, the Reynolds and
Péclet numbers characteristic of the oscillations are so large), the damping of the
daughter modes is small enough to permit them to be driven by the large-scale par-
ent mode to amplitudes so high that they readily extract energy from their parent
and dissipate it, microscopically, at a high rate themselves, thereby keeping the
parent at very low amplitude – a result which might at first seem counterintuitive.
The process appeared to require very precise resonances to be maintained between
the three modes over a characteristic growth time (a frequency resonance within
about τ−1

κ over a thermal diffusion time τκ of the mode – about a million years), but
the gravity-mode spectrum is so dense that appropriate daughter pairs would have
easily been found had the background state of the Sun been independent of time. It
was subsequently shown by Chris Jordinson that continuous resonance is actually
not necessary, so even though such resonances are readily broken by the changing
structure of the Sun as it evolves on the Main Sequence (and as it responds to the
activity cycle), new resonances come into play to replace the broken ones without
changing the likely limiting amplitude of the parent. It would appear, therefore, that
large-scale gravity modes do not partake in the spin-down process.

One is thus led to enquire of the role of the gravity waves that are excited by con-
vective overshooting. Because of the enormous mismatch of the natural timescales
of the two regions – the inverse buoyancy frequency N−1 is about 15 min at the top
of the radiative envelope, compared with l/v ∼ 1 month (l and v being character-
istic length and velocity scales of the dominant eddies) in the lower reaches of the
convection zone – the resonant gravity waves that match the characteristic timescale
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and horizontal lengthscale of the convection have such high vertical wavenumbers
that they dissipate after propagating only a few kilometres beneath the convection
zone, a distance so small that the waves could be no more than froth on the bound-
aries of the overshooting motion. The peak of the spectrum of waves that penetrate
substantially into the radiative envelope, like the peak in the acoustic-mode spec-
trum, is therefore at a frequency rather higher than v/l. But gravity waves near
the peak are so far off resonance that their amplitudes, which can be estimated
by balancing the pressure fluctuations in the waves against the momentum flux of
the overshooting motion, are normally expected to be too small to be dynamically
interesting. However, the amplitudes of those waves are notoriously difficult to
estimate, not least because the properties of the convective motion in the Sun are
uncertain. So there is perhaps some chance that the wave flux is much higher than
is normally expected, and that that flux could provide a kind of ‘shearing rigidity’
to the solar envelope, and act as the carrier for spin-down. To be sure, a spectrum of
gravity waves would not lead to a state of uniform rotation, for prograde modes in
an initial shear dissipate faster than retrograde modes, and so tend to enhance that
shear; but when that property was first mooted the helioseismological evidence for
uniform rotation was not yet available.

The beautiful and now classic experiment of Alan Plumb and Angus McEwan,
demonstrating spontaneous gravity-wave-induced symmetry breaking that gener-
ates a shear from an initially uniformly rotating state, had not yet been published.
At the very least, it proved that a broad spectrum of gravity waves enhances shear,
even if that process was not instantly accepted as the mechanism that drives the
quasi-biennial oscillation (QBO) of the Earth’s atmosphere, as it is today. It is
interesting that much more recently, despite these arguments, Pawan Kumar and
Eliot Quataert, and Zahn, Suzanne Talon and José Matias simultaneously published
papers claiming that convection-driven gravity waves are the agent that constrains
the rotation of the Sun’s radiative interior to be uniform. Although it was immedi-
ately obvious, in the light of this discussion, that those claims are wrong, I mention
them because interestingly the gravity waves that penetrate deeply enough to be
dynamically interesting were estimated in both investigations, by apparently dif-
ferent reasoning, to carry a hundred or so times the angular-momentum flux that
previous pressure-balance arguments had yielded. This is a crucial discrepancy,
for if the new estimates were correct they would imply that gravity waves play a
significant role in the dynamics of the tachocline.

More recently, Talon, Kumar and Zahn have resurrected the idea that convectively
excited gravity waves play an important role in transporting angular momentum
right through the Sun, invoking a presence of turbulence throughout the radiative
interior to provide an effective diffusivity which they set arbitrarily to be 105 times
the radiative momentum diffusivity (i.e. kinematic viscosity) in order to enable the
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waves to dissipate angular momentum at an interesting rate. The implied turbulent
diffusion timescale for the core is about 3 × 108 years, substantially longer than
the radiative thermal diffusion timescale and therefore not upsetting the thermal
stratification directly, but considerably shorter than the age of the Sun (and, of
course, the characteristic microscopic diffusion time of helium through hydrogen),
implying that the profile of chemical composition in the core has been smoothed to
a degree that would be difficult to reconcile with (actually, it is generally considered
to be ruled out by) helioseismology.

Faced with the realization that the purely fluid dynamical processes that are able
to operate in the tachocline do not lead to a uniformly rotating radiative interior –
a personal realization, I hasten to add, which is not yet accepted by everyone –
McIntyre and I were forced to the conclusion that the rigidity required to oppose
the tendency to shear can be provided only by the Sun’s internal relic magnetic
field. We did not invoke a magnetic field, as some commentators mistakenly repor-
ted; all Main-Sequence stars are expected to harbour the largest-scale remnants of
the magnetic field that pervaded the interstellar gas from which they condensed.
Those remnants would be predominantly dipolar, comprising, as Roger Tayler and,
much more recently, Jonathan Braithwaite and Henk Spruit have emphasized, both
poloidal and toroidal components. Nor was there anything novel in the concept that
a magnetic field can hold the interior rigid, a concept which has been around since
the time of Alfvén and Ferraro, and which we took for granted (notwithstanding
Ferraro’s law; we tacitly presumed that any shear across field lines is likely to set
up Alfvén waves along field lines which would dissipate via phase mixing, except
possibly near O-type neutral points where the Alfvén time around neighbouring
field loops is almost constant). What was new is the conclusion that it necessarily
has to be the magnetic field that holds the interior rigid.

Our view of the basic dynamics has much in common with Spiegel and Zahn’s: a
baroclinic meridional flow in cyclostrophic balance, descending from the convec-
tion zone in polar and equatorial regions, and converging at mid-latitudes where it
returns to the convection zone in a region of little, or as I shall argue soon, essentially
no vertical shear. The principal difference is that in our idealized model we ignored
any turbulent transport in the main body of the tachocline, having instead a thin
magnetic boundary layer at downwelling latitudes producing a sharp tachopause
separating the tachocline from the uniformly rotating radiative interior. At those
latitudes the magnetic field is essentially horizontal, and is prevented from diffusing
into the tachocline by advection by the downward flow. This is no doubt a gross
oversimplification, but it does highlight what is perhaps the dominant dynamics.
The upwelling region is much more complicated, and we refrained from specu-
lating on the details. My view is that the upward flow drags with it the magnetic
field, which penetrates the convection zone and so provides the means to generate a
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Lorentz torque to couple the radiative interior to the convection zone for spin-down.
In most of that region the vertical shear has been quenched by the Maxwell stresses.
At its latitudinal extremities the poloidal magnetic field is sheared to create toroidal
field; the shear is susceptible to a thermal-diffusively moderated magnetorotational
instability polewards of the shear-free regions where �2 decreases away from the
rotation axis, which can develop into weak three-dimensional turbulence generat-
ing Maxwell stresses and, to a lesser degree, Reynolds stresses that force the flow
towards a state of locally uniform rotation and so keep the shear in check out to the
transition to the essentially field-free downwelling region. There is yet no helioseis-
mological evidence for such an extended shear-free zone, although such evidence
is currently being sought. I should add that we also have little evidence for the
latitudinal extent of that layer, should the layer exist. Some preliminary numerical
simulations by Garaud and myself suggest that it might be small, comparable with
the thickness of the tachocline. If that be so, it will be extremely difficult, if not
impossible, to detect it seismologically.

McIntyre and I provided quantitative estimates of the tachocline structure only
in the downwelling zones, far from its extremities where the flow is more com-
plicated. However, we were able to predict a relation between tachocline thickness
and the strength of the magnetic field at the tachopause. We predicted also a vent-
ilation time τv by the meridional flow of order 106 years; this is essentially the
same as that implied by Spiegel and Zahn’s analysis, and is short compared with
the timescale for gravitational settling of heavy elements (some 1012 years). It is
therefore a consequence of the theory that, granted that the relic internal magnetic
field is now dominated by its most slowly decaying, dipolar, component, magnetic
confinement of the meridional flow weakens towards the magnetic axis (which
probably, although not necessarily, is common with the axis of rotation), perhaps
permitting a polar pit in which fluid from the convection zone descends to depths
substantially beyond the mean extent of the tachocline (although that would require
a megagauss magnetic field to sustain it, which is very much more intense than the
estimate we made based on purely laminar flow). It was suggested that this may
be deep enough for lithium to be destroyed by nuclear burning, so decreasing the
photospheric lithium abundance to its low observed level. Another consequence
of the ventilation is that the tachocline region immediately beneath the convection
zone, which in standard solar-evolution theory has suffered a degree of element
segregation by gravitational settling, is completely homogenized with the convec-
tion zone right down to the tachopause, producing a sound-speed anomaly (relative
to a standard tachocline-free theoretical solar model) which Julian Elliott, Takashi
Sekii and I calibrated seismologically to be 0.02R⊙ thick (under the assumption that
it is spherical). If one accepts the model, then this provides the most accurate meas-
ure of the tachocline thickness �, because the sound-speed variation is seismically
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resolved much more finely than the angular velocity. I should emphasize that it
is a calibration of a tachocline model, and not of a mere assumption as reviewers
have been apt to say. Moreover, it is important not to forget that it does depend
critically on the details of the theoretical modelling of the stratification of the Sun,
which recent atmospheric chemical-abundance observations imply are not yet quite
correct. In particular, the calibration relies heavily on the degree of gravitational
settling calculated (by Christensen-Dalsgaard, Proffitt and Thompson) in the stand-
ard model. Moreover, it ignores material transport by residual motion beneath the
tachopause, such as might possibly be produced by gravity waves driven in the
vicinity of the lower boundary of the convection zone whose amplitudes are too
low to have direct dynamical consequences; if the region of material transport were
extensive, then 0.02R⊙ should certainly be regarded as an upper bound to �. The
calibration implies a boundary–layer magnetic field of 1–10 G.

An important quantity that McIntyre and I did not predict is the angular velo-
city �0 of the rigidly rotating radiative envelope. That requires an assessment of
the overall angular-momentum balance of the tachocline, which our preliminary
piecemeal discussion, without further elaboration, was unable to provide. I should
emphasize that the Gough–McIntyre tachocline relies crucially on the downward
pumping of the radiative-envelope magnetic field to prohibit its outward diffusion,
preventing it from threading the tachocline except in the shear-free upwelling zones.

The two models of the tachocline dynamics have set the scene for further detailed
study. Garaud has adopted a global view, taking an initial tachocline-free state of an
idealized rotating solar model, and studying its dynamical evolution in two dimen-
sions. As with all numerical simulations, she was unable to work with realistically
low diffusion coefficients. But under some circumstances, starting with a dipolar
field aligned with the axis of rotation, she found that much of the field was swept
aside to produce a mid-latitude field-free shear layer beneath the convection zone.
Her model was left also with a field concentration about the axis which penetrated
into the convection zone, providing a torque to couple the radiative interior directly
with the slowly rotating polar regions of the convection zone. Whether that field
concentration would survive in a three-dimensional simulation (with realistic dif-
fusion coefficients) remains to be seen, particularly if the magnetic axis (if there is
one) is inclined from the axis of rotation. In an interesting simulation of a turbulent
wave field, Miesch has sought to establish whether tachocline turbulence could act
in such a way as to inhibit latitudinal shear, as Spiegel and Zahn had presumed.
Miesch considered a spherical shell of fluid between impenetrable, isothermal,
horizontal-stress-free boundaries, initially rotating uniformly with angular velocity
�0. He supplied the vertical component of the vorticity equation with a steady
axisymmetric body source term whose strength diminished with increasing depth,
to mimic mean forcing of differential rotation by overshooting convection, which
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he took to extend to the base of the shell; he also added an unsheared distribution
of random sources, rotating with angular velocity �0, either to the vertical com-
ponent of the vorticity equation, to generate Rossby waves, or to the equation for
the horizontal divergence of the velocity, to generate gravity waves. He carried
out a detailed analysis of the spectrum of the turbulence, and related the direction
of angular-momentum transport to the gradient of the mean zonal flow, labelling
downgradient transport as being diffusive. The outcome of the simulations most per-
tinent to the aim of the investigation was that, not surprisingly, wave drag from the
unsheared random sources reduced the latitudinal shear that had been induced in the
mean flow by the steady component of the forcing, particularly in the lower layers
of the fluid where the strength of that forcing was low. Miesch, perhaps too naively,
claimed that that result supports Spiegel and Zahn’s presumption that horizontal
two-dimensional turbulence reduces latitudinal shear. One should realize, however,
that by imposing random wave sources in a rigidly rotating frame an external body
force was being applied to the fluid. Indeed, Miesch recognized that his repres-
entation suffered shortcomings, accepting in particular that more realistic forcing
scenarios need to be considered. It would be interesting to see the result of having the
sources of the waves provided solely by internal, albeit artificial, stresses within the
fluid.

Gravity-wave transport beneath the convection zone has also been considered
by Edgar Knobloch and, in quasi-linear theory, by David Fritts, Sharon Vadas
and Øyvind Andreassen, who described how wave transport can contribute not
only to a modification of the angular velocity, but also to the driving of rectified
meridional flow which can advect light elements in particular perhaps down to
levels deep enough for them to undergo nuclear transmutation. This process is
important not only for solar physics, but also for understanding the light-element
abundances of all moderate-mass Main-Sequence stars. A characteristic ventilation
time of the wave-driven flow that penetrates deeply enough for lithium to have been
destroyed was estimated by Fritts, Vadas and Andreassen to be between 2×104 and
2×105 years, rather shorter than the timescale of 106 years of the flow discussed by
McIntyre and myself, although rather uncertain because it depends directly on the
poorly determined value of the wave momentum flux. Nevertheless, the physical
processes are certainly operating at some level. More recently, Talon, Kumar and
Zahn have reconsidered the possibility of a QBO-like oscillation, correcting their
previous error and extending the scope of their discussion to include the influence
of rotation and a large-scale magnetic field on the propagation of the waves. To
estimate the gravity-wave amplitudes they used the formalism of Peter Goldreich,
Norman Murray and Kumar, originally developed for acoustic modes, as had Kumar
and Quataert before them, quoting similar, although somewhat different, results.
With a broad spectrum of gravity waves they succeeded in generating a shear
layer beneath the convection zone with a characteristic scale of 0.1R⊙, although at
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first they failed to produce a temporal oscillation. They argued that in reality the
shear would be destroyed by merging with the convection zone, analogously to the
process in Plumb and McEwan’s experiment, thereby permitting cyclic behaviour
with perhaps a solar-cycle timescale. Following similar work by Eun-jin Kim and
Keith McGregor, who studied a model with just a single pair of gravity waves,
they succeeded in a subsequent paper, adopting a somewhat higher wave flux, in
generating a QBO-like oscillation, this time deeper in the star where the residual
wave flux is lower and the oscillation period correspondingly greater than in the
tachocline; the oscillation they generated had a period of about 300 years. They
concluded that not only would the waves induce this QBO-like oscillation, but
they would also establish an almost uniform rotation profile throughout the Sun
on a timescale of only 107 years. This timescale, and the oscillation period, are
inversely proportional to the flux of angular momentum carried by the waves, as
Plumb and McEwan had shown, so whether the process in the tachocline is actually
pertinent to the solar cycle depends critically on the veracity of Kumar, Talon
and Zahn’s (apparently high) wave-amplitude estimates. Numerical simulations
of gravity-wave generation currently being carried out by Tami Rogers and Gary
Glatzmaier may resolve this matter.

It is perhaps useful to add a few words about the effect of a putative dynamo field
diffusing from the convection zone into the tachocline. I refer to the work of Emese
Forgács-Dajka and Kristof Petrovay, who purport to have demonstrated that such a
field suppresses the imprint of the convection-zone shear onto the radiative envelope
beneath, an imprint which Spiegel and Zahn had shown to be inevitable in the
absence of highly anisotropic tachocline turbulence (and an internal magnetic field).
Forgács-Dajka and Petrovay considered a model in which an oscillating poloidal
magnetic field is presented to the radiative zone at the base, r = rc, of the convection
zone, the radiative zone being forced by viscous stresses to rotate differentially with
the convection zone at r = rc. They found, under the assumption that the motion
driven by viscosity and mediated by Maxwell stresses is purely azimuthal, that in
certain circumstances a thin shear layer could be produced. At face value this study
was essentially purely diffusive (thereby falling into the category of discussions
that I promised not to discuss), but I mention it because it has been the subject
of a fair amount of informal discussion of late. Moreover, in a subsequent paper
Forgács-Dajka and Petrovay imposed a specific meridional flow, finding that it had
little qualitative effect on the rotation, and suggesting that perhaps a dynamically
consistent model might behave similarly. It is important to realize, however, that
the dynamo magnetic field that suppressed the shear was itself presumed to be
unsheared by the convection zone. This property was achieved by asserting that
Bφ = 0 at r = rc, a boundary condition that was imposed without comment. The
field that diffuses into the radiative interior of this model therefore acts as an almost
rigid restrainer through which the flow must diffuse, and it is hardly surprising that
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with suitable choices of field strength and artificial turbulent diffusivity the shear in
the model is suppressed in a layer whose thickness can be made to be comparable
with that of the tachocline; it appears to me, therefore, that the required outcome was
essentially written into the formulation of the problem at the outset. Would it not
have been more realistic to have presented the radiative interior with a magnetic field
that had been distorted by the differential rotation of the convection zone? In that
case one might expect the penetration of the shear to be enhanced, not suppressed,
by the magnetic field. It seems to me that the real issue here is not whether an
undistorted magnetic field can suppress shear, but is to understand the difference
between the manner in which the convection-zone turbulence influences the field
and the manner in which the tachocline turbulence does: can dynamo action generate
a component of the azimuthal field to annul the component generated by the shear?
The observed rigid rotation of the magnetically constrained coronal holes and the
existence of active longitudes evince that such a process might not be impossible.

I conclude this section by recalling that the tachocline dynamics is determined
predominantly by the convection-zone stresses that maintain the latitudinal dif-
ferential rotation. Although spin-down also plays a role, its importance today is
negligible. That is indicated by the fact that the spin-down time τsd, which is about
1010 years, is much longer than the characteristic ventilation time τv of the large-
scale tachocline flow. The latter is of the order of 106 years. That is a robust result.
It can be expressed in terms of the observed differential rotation, the buoyancy
frequency, the thermal diffusivity (actually the thermal diffusion time) and the
(observationally inferred) thickness of the tachocline, and when expressed in terms
of these quantities it is independent of the details of the dynamical balance that
causes the tachocline flow to be confined; the formula for τv is the same whether
the principal agent confining the shear is anisotropic viscosity, as Spiegel and Zahn
have suggested, or the interior magnetic field, as McIntyre and I maintain. Of
course, to be sure of this conclusion one must actually compare the magnitudes of
the terms in the governing equations, the details of which would be out of place here.
One might nevertheless wonder whether spin-down could have driven a tachocline
flow at least early in the Sun’s Main-Sequence lifetime, when the angular velocity
was much greater and the spin-down time much shorter than they are today. That
is not completely out of the question, particularly if one can imagine the Sun to
have arrived on the Main Sequence with an angular-velocity distribution through
its interior that was far from its current form. But, in my opinion, that is unlikely,
because the distribution of angular momentum through the Sun would surely have
adjusted as the Sun evolved from the Hayashi track to the Main Sequence, on
a timescale somewhat greater than even today’s tachocline ventilation time, in
response to forces not unlike those at work today.
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1.7 Tachocline instability and the solar dynamo

There has been a considerable amount of discussion of putative instabilities arising
in the solar tachocline. The first I should mention is the two-dimensional non-
axisymmetric inviscid shear instability arising from the latitudinal variation of the
angular velocity, which I presume, as have others, was principally in the minds of
Spiegel and Zahn as the mechanism driving their shear-destroying turbulence. It is
Rayleigh’s swirling-flow version of what is now commonly called the inflexion-
point instability, a necessary condition for which is that the potential vorticity Q be
stationary somewhere; Fjørtoft’s extension, applied to simple flows like the rotation
of the Sun, is tantamount to saying that the stationary value be a maximum in |Q|. If
the boundaries of the flow are sufficiently far (in units of the characteristic scale of
variation of Q) from that maximum, then the flow actually is unstable. Dziembowski
and Kosovichev studied the stability of angular-velocity variations of the form given
by Equation (1.1), and found that for values of α2 and α4 characteristic of the base of
the convection zone, the flow might just be unstable. As I have mentioned already,
Garaud subsequently studied the weakly nonlinear development of the flow, and
showed it to produce a flattening of the maximum of |Q|. That resulted in a barely
perceptible modification to �, one that is not contradicted by helioseismology. It
is not unlikely, therefore, that the tachocline is at most marginally unstable. The
perturbation to the angular velocity associated with the potential-vorticity flattening
can be described as a pair of azimuthal jets either side of the latitude 60◦ of the
maximum in |Q|, a prograde jet poleward, whose velocity maximum, according to
Garaud, is located at latitude 65◦, and a weaker retrograde jet centred about latitude
52◦. The difference in the velocities of the jets is a consequence of the spherical
geometry, and is such that the angular-momentum deficit in the retrograde jet is
largely compensated by the excess angular momentum in the prograde jet. Thus,
the shear-driven small-scale flow, which in reality one might expect to be layerwise
two-dimensional turbulence, does not so obviously demand the existence of waves
to remove angular momentum as it does in the case of turbulence imposed far from
any maximum in |Q|, the situation studied by Haynes which I mentioned in the
previous section. I should mention also that Charbonneau, Mausumi Dikpati and
Gilman subsequently presented a similar result, although, like Garaud, not quite in
the terms I have used to describe it here.

Dikpati and Gilman have also investigated a mildly three-dimensional version of
the instability in the ‘shallow-water’ approximation. As one would expect, when the
stable density stratification of the fluid layer is strong, the result agrees with the two-
dimensional analysis. But as the stability of the density stratification weakens, an
otherwise stable shear flow becomes unstable to a new kind of motion. That motion
has non-zero kinetic helicity, which Dikpati and Gilman suggested, notwithstanding
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the global nature of the instability, could produce a positive local α-effect to drive
the solar dynamo.

Another obvious instability to investigate is that which might arise from the
vertical shear. For adiabatic perturbations the flow should be linearly stable if
the Richardson number Ri = N2/S2, where N is the buoyancy frequency and
S is the rate of shearing, exceeds 1/4. Evry Schatzman, Zahn and Pierre Morel have
pointed out, however, that the motion in the tachocline can be of such a small scale
that radiative thermal diffusion has the potential of ironing out the stabilizing buoy-
ancy force. They cited analysis by Dudis and by Zahn which showed that under
such conditions the Richardson number should be replaced by the product of the
Richardson number and the Péclet number vl/κ characterizing the unstable eddies,
and that then the vertical tachocline shear could actually be weakly unstable close
to the equator. This instability could, therefore, have some influence on the equat-
orial tachocline dynamics; but it is unlikely to have a serious effect on the overall
tachocline structure.

A magnetic field can have a profound influence on the stability characteristic
of a flow, and on the nonlinear development of the instabilities. Most pertinent
to the tachocline is perhaps the magnetorotational instability, whose importance
to astrophysics was first stressed by Steve Balbus and John Hawley. The instabil-
ity arises in shearing flows in which �2 decreases outwards, and is particularly
important for redistributing angular momentum in accretion discs. In a convect-
ively stable tachocline, where the angular velocity increases outwards everywhere
on horizontal surfaces, the instability can develop only on timescales long enough
for thermal diffusion to annul the constraint imposed by the stabilizing buoyancy.
It tends to develop into weak three-dimensional turbulence which transports angu-
lar momentum down the gradient of angular velocity, thereby reducing shear; it is
not the dynamically rapid adiabatic instability that operates unhindered by negative
buoyancy in accretion discs. It is prone to operate particularly at the poleward inter-
face between the putative vertical-shear-free upwelling zone in the solar tachocline
and the adjacent downwelling region. The turbulence would tangle and strengthen
the magnetic field, isotropizing and possibly strengthening its elasticity, so that,
as Gordon Ogilvie and Michael Proctor have shown, the turbulent fluid becomes
on a large scale more like a visco-elastic medium. That can add to the torque that
couples the convection zone to the radiative envelope in spin-down. It is not out of
the question that, poleward of the shear-free zone, the magnetic boundary layer in
the tachocline model proposed by McIntyre and myself is also magnetorotationally
unstable, or unstable to the Tayler kink instability, as Spruit has recently argued.
The ensuing turbulence would increase the effective diffusion coefficients, the mag-
netic diffusivity by a larger factor than the thermal diffusivity, and so increase the
thickness of the magnetic boundary layer. It would also substantially increase the
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value of the intensity of the relic magnetic field in the radiative envelope that is
required to maintain the tachopause at its observed level, and it would decrease
the ventilation time. But it too would probably not produce a dramatic qualitative
change in the overall tachocline structure.

Instabilities driven by magnetic buoyancy are potentially important to tachocline
dynamics, if the field strength is great enough. They are an essential ingredient of
many solar dynamo theories. Buoyant fluid containing concentrations of magnetic
flux emerging into the convection zone from the mid-latitude upwelling region of
the tachocline could be caused to rise against the restraining tension. It must hardly
be mere fortuitous coincidence that the upwelling zone, situated where there is little
or no vertical tachocline shear, is inferred by helioseismology to be located at the
very same latitude as that at which sunspots emerge at the start of a new activity
cycle.

McIntyre and I argued that the downwelling regions of the tachocline are likely
to be essentially free from magnetic field. This presupposes that the tachocline is
not turbulent. As Garaud had shown, if the polarity of the magnetic field in the
lower layers of the convection zone alternates with the solar cycle, having, in the
long term, essentially zero mean, there is negligible field penetration into a quies-
cent region beneath. A tachocline meridional flow having a ventilation time of 106

years, or even 2 × 104 years, does not materially alter that conclusion. However, if
the dynamics of the dynamo process is genuinely wholly stochastic, the field would
not average precisely to zero. To be sure, convective overshooting into the stable
layers beneath must bring field down with it, but, as simulations by Nic Brummell,
Tom Clune and Jüri Toomre suggest, the overshoot layer may be rather thinner than
the tachocline, although one must be aware that the smallest dynamically import-
ant scales may not have been resolved adequately for modelling the most deeply
penetrating overshooting motion; however, for practical dynamical purposes the
overshooting layer can probably be viewed simply as a diffuse transition between
the tachocline and the convection zone. The model that McIntyre and I outlined
starts beneath that transition. The situation is rather different for the model proposed
by Spiegel and Zahn, however; in that model one would expect the turbulence to
entrain the overshooting field, in consequence becoming more three-dimensional
and enhancing the down-gradient vertical transport of angular momentum, which
would act in a direction to oppose the suppression of latitudinal shear by the hori-
zontal Reynolds stresses. The outcome would be to increase the prediction of the
angular velocity �0 of the radiative envelope, possibly leaving it significantly closer
to the value observed. The shear would stretch and strengthen the field into pre-
dominantly azimuthal bands, which eventually become buoyantly unstable and rise
into the convection zone at the start of a new activity cycle. The general effect of a
toroidal magnetic field on the susceptibility of the rotational shear to instability is
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thus a pertinent issue. According to Paul Cally, and David Hughes and Steve Tobias,
the direct effect of the Maxwell stresses tends to be stabilizing, whereas the mag-
netic buoyancy is destabilizing. Which of the two opposing influences dominates
depends on the details of the equilibrium configuration.

That the tachocline is pervaded by a predominantly azimuthal magnetic field
appears to be the view that is now most commonly held. It prompted Gilman, Dikpati
and Peter Fox to undertake an extensive study of the stability of configurations of
this genre, which resulted in a series of papers reporting that large-scale instability
occurs for a wide variety of magnetic profiles, in a manner not dissimilar to the
Tayler kink instability, and the magnetorotational instability of accretion discs with
toroidal magnetic fields that had been discussed earlier by Ogilvie and Jim Pringle.
It was also argued that the tension in the field would squeeze the tachocline to
produce the observed prolateness, although a full global equilibrium model of the
Sun with a prolate tachocline was not constructed.

It appears now to be generally accepted that the solar dynamo resides principally
in the tachocline, following arguments put forward by Spiegel and Nigel Weiss.
I shall not attempt to review the plethora of models that have been proposed, but
instead commend the reader to the excellent review by Tobias.1 Suffice it to say
that the appellation ‘solar dynamo’ is a technical term that refers to the sum of
magnetohydrodynamical processes commonly called dynamo action that twist and
strengthen the magnetic field to maintain it against Ohmic decay, and in so doing
cause the polarity of the dipole component of the field to reverse approximately
every 11 years. Whether that process is truly self-sustaining, or whether it relies for
its existence on being continually fed by the seed field that is being dredged up by
the upwelling tachocline flow, and is therefore running down as the global relic field
in the radiative interior decays, is not of concern to the majority of solar-dynamo
theorists, perhaps because it cannot be unambiguously checked observationally. It
does not even seem to command interest simply as an academic issue amongst those
whose principal motivation is explaining the variations of the external magnetic
field of the Sun. It is an important issue to astronomers, however, because it raises
the possibility of the evolution of stellar magnetic fields having a dependence on
time that is separate from the time-varying rotation and the structural evolution
of the convection zone. I once interested Nic Brummell in the matter for a while.
However, I failed to persuade him to carry out any numerical simulations to try
to distinguish between dynamo-like flows that do and do not require continual
refuelling, because Nic was funded to simulate dynamos; evidently it would have
been imprudent of him to spend a significant amount of supercomputer time on

1 In Fluid Dynamics and Dynamos in Astrophysics and Geophysics, ed. A. M. Soward, C. A. Jones, D. W. Hughes
& N. O. Weiss (London: CRC Press, 2005), p. 193.
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non-dynamos, for that would jeopardize his chances for further funding in the
future.

It is always amusing to play Devil’s advocate on matters upon which there is
almost universal agreement, and healthy too for the opposing advocates in cases
such as this where we lack a complete robust theory. And so I have occasionally
espoused heretical alternatives to the solar-cycle mechanism. One such possibility,
on which I worked for a while with Phil Goode, was a revival of the idea apparently
proposed by Walén that the cycle is controlled by a magnetically restored torsional
oscillation of the radiative interior. That would require a global field of intensity
comparable with that found in the umbrae of sunspots, at first sight a not unreason-
able value. If that were the case, then one would naturally expect the oscillation to
be basically periodic, the fluctuations in cycle period observed at the surface pre-
sumably being produced during the stochastic journey of the information through
the convection zone. The timing statistics of such a process are different from those
of a turbulent dynamo, in which the very restoring process contains a stochastic
element, and perhaps the difference could be detected in the sunspot record. I think
it is true to say that unfortunately the record is too short to distinguish between the
possibilities, although I hasten to add that Dicke, who had also performed a statist-
ical analysis, had more confidence in the outcome than I, claiming that it provides
evidence in favour of the torsional oscillation. One of the difficulties encountered
by such a model is to find a mechanism to drive the oscillation against Ohmic
dissipation enhanced by phase mixing. McIntyre and I entertained the idea that it
could be driven by differential dissipation of gravity waves, in the manner of the
QBO, but McIntyre has declared that he is now convinced that magnetorotational
instability would kill the oscillation. He is probably right. But I shall sit on the
fence for a while. Could the 1.3-year tachocline oscillation be excited similarly?
And should it too be expected to be similarly quenched by the magnetorotational
instability? Some would say that one should not spend too much time worrying
about such questions until it is clearer whether that oscillation actually exists.

Finally, I should point out that if the tachocline really does harbour the solar
dynamo there should be helioseismologically observable consequences. Putative
magnetic-field concentrations, which must necessarily be aspherical, and the associ-
ated density perturbations split the frequencies of otherwise degenerate components
of a seismic oscillation multiplet, thereby providing a diagnostic of solar aspheri-
city. One might hope that in the near future a magnetic signature in the seismic
frequencies produced by a latitudinal variation of the wave propagation speed
of magnitude comparable with a (substantial) fraction of the mean (spherically
averaged) tachocline sound-speed anomaly would be detectable, which trans-
lates, perhaps optimistically, into a magnetic field intensity of order 5 × 105 G.
Unfortunately, frequency perturbations produced by a magnetic field cannot be
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distinguished from perturbations produced by any other agent, aside from horizontal
flow, so other, theoretical, considerations would need to be brought to bear in order
to be able to infer whether it is actually a magnetic field that is responsible for the
signature. To be sure, a magnetic field distorts the eigenfunctions differently from
a horizontal density variation, but it will probably be a very long time before that
can be measured in modes that penetrate as far as the tachocline. Therefore, at least
for the time being, we shall have to be content with calibrating models and looking
for temporal variation. Evidence for 11-year variations in structure and rotation in
the vicinity of the tachocline has been sought by several investigators, but none has
yet convincingly been found. The search continues.
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Reflections on the solar tachocline

Edward A. Spiegel

Solar activity takes place in narrow bands of latitude that move like solitary waves
from mid-latitudes toward the solar equator. This behaviour points to the existence
of a thin layer in the Sun that may serve as a waveguide. With its grand minima,
the cycle is intermittent in a way that does not occur in the simplest chaos models.
To be useful as a primitive model of the cycle, a differential equation should be of
high enough order to display such strong intermittency. These and other features of
solar fluid dynamics led to the adumbration of an intermediate shear layer between
the convection zone and the radiative core. This layer, like the weather layers in
planetary atmospheres, produces coherent structures – sunspots and perhaps vor-
tices. Similar layers may play a role in stellar activity in cool stars other than the
Sun and perhaps even in hot stars if their atmospheres are turbulent.

2.1 The maculate Sun

Rotation and turbulence in stars are significant for an understanding of stellar evol-
ution and for the fluid dynamics of accretion discs. We can watch these processes
most closely in our own Solar System. Observations of the Sun, the giant planets and
the earth reveal coherent structures whose study has been one of the most exciting
adventures in the mathematical science of the twentieth century. (At a meeting in
the Newton Institute, we ought to recall this.) To put it simply, a coherent structure

is a dynamical object that lasts much longer than we might have expected on the
basis of simple dimensional arguments. The discrete vortex tubes seen in Jupiter’s
atmosphere are good examples – the Great Red Spot has been observed since the
telescope was invented. But here I am more concerned with the relatively dark spots
on the Sun that mark the locations where discrete magnetic flux tubes protrude from
the photosphere.

The space-time diagram of the locations of spots called the (Maunder) butterfly
diagram shows how the bands of solar excitation converge from the mid-latitudes
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toward the equator every 11 years or so. The narrow extent of these activity belts
in their stately motion toward the equator suggest that we look for a layer in the
Sun that can serve as a wave guide. Such a layer can be thought of as analogous to
what planetary scientists call a weather layer or even to the oceanic thermocline.
This perception led to the name tachocline (Spiegel & Zahn 1992). In adopting this
name we attempt to reduce the problem of the solar cycle to a previously unsolved
problem. We may usefully recall that, in discussing the atmospheres of the outer
planets, Ingersoll (1990) wrote ‘How deep do the zonal winds extend? Is there a
level below which the fluid rotates uniformly? These are fundamental questions,
but there are no simple answers’. He mentions various possibilities such as that ‘the
winds could be confined to a thin weather layer above cloud base with the interior
in solid rotation . . . ’.

The difficulty is that we really do not understand why vortices form in rotating
turbulent fluids. Nor do we know why vortex tubes are formed on Jupiter while
magnetic tubes appear in the Sun. That the solar atmosphere is ionized, while
Jupiter’s is not, is probably relevant, but that is not an explanation. It is worth
reflecting on this difference but I want to do some recollecting before I begin
reflecting. Let me then first describe the erratic path that led to my being asked to
reflect on the tachocline by the organizers of the workshop.

2.2 Braking the Sun’s rotation

I have alluded to planetary vortices to underscore the connections of our subject to
well studied processes of geophysics and planetary physics. A possible connection
of the internal rotation of the Sun to the verification of Einstein’s theory of gravity
was also debated for a short period some 40 years ago. There were other, less
pressing issues that involved the problem of solar rotation as well. Stars like the
Sun are observed in galactic clusters like the Pleiades and the Hyades. These young
counterparts of the Sun rotate more rapidly than the Sun does (Kraft 1967). Thus
they offer evidence for believing that the rotation of solar-type stars decreases with
time. This is probably caused by torques exerted by magnetic fields that are drawn
out by stellar winds, as suggested by Schatzman (1962; see Mestel 1999). The
lithium abundances in solar-type stars also decrease with time. Hence this topic has
implications for mixing in stars, with possible consequences for stellar evolution
and perhaps also certain issues arising in cosmology.

Let J be the Sun’s angular momentum, R its radius and M its mass. (I omit
the ⊙ subscript so that these quantities may also refer to those properties for any
suitable object.) Let us assume at first that the angular velocity, �, is roughly
constant throughout the body of the Sun. Given a solar model, we can compute
the coefficient α in J = αMR2�. If there were no magnetic fields involved, the



E. A. Spiegel 33

rate of loss of angular momentum would be ṀR2�. However, because the solar
wind pulls the magnetic field out with it, the departing mass rotates at roughly the
surface angular velocity out to a limiting (Alfvén) radius, RC, as foreshadowed by
the (Ferraro) law of isorotation. (I shall try to adhere to the McIntyre dictum of
calling things by descriptive names rather than by the names of people who worked
on them. Perhaps I should not even call it the McIntyre dictum.)

Beyond RC the field is too weak to maintain the near constancy of angular velocity
and the material can be considered to have left the Sun. Hence we estimate the loss
rate of angular momentum as

dJ

dt
= ṀR2

C�. (2.1)

We may write this loss rate as a slowing down of the solar rotation:

d�

dt
=

ṀR2
C

αMR2
�. (2.2)

The rotational lifetime implied in this formulation cannot be expected to be constant.
The mass loss rate depends on coronal heating which is a function of the magnetic
field and that in turn depends on the current rotation rate. Though dimensional
estimates of the dependence of the magnetic field strength on rotation rate exist,
such as the pleasantly simple one of Cowling (1969), they are not of much help in
estimating Ṁ, which ultimately depends on coronal heating rates. This is unknown
so, for qualitative purposes, let us suppose this lifetime ultimately depends on � as
a power law. We then have

�̇ = −β�n+1, (2.3)

where β and n are constants. Thus, we find (Spiegel 1968) that

� = �0

(1 + t/τ)1/n
, (2.4)

where �0 is the rotation rate when the star reaches the Main Sequence and

τ = (nβ�n
0)

−1. (2.5)

The ages of the Pleiades, Hyades and the Sun are respectively 50, 500 and 5000
megayears and the surface rotation rates of the solar-type stars are 19, 9 and 2 km/s
(Kraft 1967). A rough fit of this formula to those data suggests that τ ≈ 108 y and
n ≈ 1. The simpler approach of fitting a power law to those data with no τ suggests
n = 2 (Skumanich 1972). In either case, one finds that the half-life of the solar
rotation is comparable to the Sun’s age.

So far, I have presumed that the effects of the loss of angular momentum from
the solar surface are transmitted to the solar interior in a short time. This had been
the standard assumption for some time as it had generally been believed that the
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differential rotation resulting from a slowing down of the outer layers leads to
instability. However, Dicke (1964) proposed that the rotational instability could not
overcome the stable density stratification below the convection zone. Hence, he
argued, the radiative core of the Sun still rotated at about the rate it had on arriving
at the zero age Main Sequence. This claim took no account of the possibility of
doubly diffusive instability, although Townsend (1957) had discussed the role of
radiative transfer in reducing the stabilizing effect of density stratification in parallel
shear flow: ‘The criterion for turbulent motion . . . is usually expressed as a crit-
ical value of the Richardson number . . . However, the derivation of this criterion
neglects radiative transfer . . . its inclusion will cause a reduction in the mag-
nitude of the buoyancy forces which are responsible for the inhibition of turbulent
motion’.

Both the Richardson criterion and Townsend’s modification of it provide only
necessary conditions for instability but, in the cylindrical case studied by Yih (1961),
necessary and sufficient conditions emerge from the linear theory. Yih’s study of the
instability of Taylor–Couette flow showed how the Rayleigh criterion for instability
of swirl in a nominally stable density gradient is promoted by thermal diffusivity.
He wrote that ‘The destabilizing effect of thermal diffusivity . . . is almost exactly
the same as [in convective] instability . . . ’ and referred to the so-called salt foun-
tain (Stommel et al. 1956). Yih’s work paralleled Stern’s (1960) results on doubly
diffusive convection, which also referred to the salt fountain that has provided a
paradigm of this type of diffusive destabilization. (For an account of the convective
work see Spiegel 1969 and the papers in Brandt & Fernando 1995.) The study of
doubly diffusive instability of differential rotation in the spherical case by Goldreich
& Schubert (1967) and Fricke (1968) had a much more decisive influence on astro-
physical work. These latter authors noted a further instability caused by variation
of � along the rotation axis, developed more fully by Lebovitz & Lifschitz (1993).

The discussion concerning Dicke’s suggestion of a rapidly rotating solar interior
heated up when he and Goldenberg announced that they had measured a significant
solar oblateness. Their observations were reported at the Texas Conference on
Relativistic Astrophysics in New York in December of 1967. I was in Cambridge
then at the invitation of Dennis Sciama who had gone off to attend the conference.
When Sciama returned to Cambridge, he handed me the preprint of their paper
(Dicke & Goldenberg 1967), of which I had not yet heard, and assigned me to
give a seminar that same day in which I was to criticize the paper from both the
theoretical and observational point of view. The reason for this sense of urgency
was that it was being proposed that a solar oblateness was evidence for a quadrupole
term in the solar mass distribution. That would imply an inverse cube term in the
solar gravitational force field. In turn, this would cause some precession of the
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perihelion of Mercury and so would spoil the agreement between the prediction of
general relativity and the result of celestial mechanics for the precession rate.

This work came at the same time that the question of the depletion of lithium
in solar type stars became current. Bob Kraft had organized a meeting on The Sun

Among the Stars in 1966 that was, I suspect, a forerunner of the meetings named
for what became known as the solar–stellar connection. It does not take a very high
temperature (by stellar standards) to destroy lithium, and it was not easy to come
up with a process that would mix lithium down from the outer layers at just the
right rate (Spiegel 1968). Schwarzschild used to put it that anything connected with
convection would be too fast if it worked at all and much too slow if it did not work.
The arguments that were used against Dicke’s model were helpful in this respect.
They implied that there was rotational turbulence below the convection zone in the
Sun that offered a possible resolution of the lithium problem. A modern treatment
of this question has recently been presented by Brun et al. (1999).

2.3 Solar spin-down

The solar wind torques have a direct influence on the outer layers of the Sun all
the way down to the roots of the surface fields. Even if those roots are not very
deep, the convective turbulence will quickly spread the effects to the bottom of the
convection zone. Then what happens? The problem of how the loss of solar angular
momentum in the solar wind is passed on to the rest of the Sun has not been fully
resolved. The process will likely involve magnetic fields but, in the early 1970s,
many people working on the problem granted, for the sake of argument, Dicke’s
claim at the peak of the discussion that there was no magnetic field in the solar
interior. If there were any field, it would be enhanced by the proposed differential
rotation and, by opposing, end it. So there was a nonmagnetic interregnum with only
a few interruptions that lasted from the 1950s, when Alfvén and Cowling battled in
the pages of the Monthly Notices over Alfvén’s theory of how the solar cycle arose
in a strong dipole field in the solar core, to the present when Gough & McIntyre
(1998; McIntyre 2002) have restored the internal field in order to maintain a rigid
rotation in the solar interior.

Guidance for the nonmagnetic case of solar spin-down came from the paper
of Greenspan & Howard (1963) on impulsive spin-up and the even more closely
related paper by Bondi & Lyttleton (1948) on the slowing of the Earth’s rotation.
Both of these relied on Ekman pumping, as did the suggestion that such a process
occurred in the Sun (Howard et al. 1967).

In the conventional treatment of spin-down, in either the gradual or the impulsive
case, the slowing down of a solid boundary sets up a boundary layer of thickness
δ = √

ν/�, where ν is the kinematic viscosity and � is the current angular velocity.
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The resulting mismatch of rotation rates between the boundary layer and the fluid
interior establishes a pressure gradient that drives flow between the two parts of
the fluid. This induces a large-scale circulation in the body of the fluid that redis-
tributes the vorticity and leads to spin-down of the interior fluid. The timescale
for the process is the geometric mean between the rotation period and the viscous
time of the fluid, or d/δ times the rotation period, where d is the depth of the fluid.
But a more powerful driving occurs if there is a relatively deep layer at the bound-
ary that has a much higher viscosity than the interior fluid (Bretherton & Spiegel
1968). In the case of the Sun, the convection zone is such a layer even without
the extra boost from its (mildly) unstable entropy gradient. The higher viscosity
would be turbulent viscosity and, since the convection zone is much thicker than
any supposed (Ekman) boundary layer, spin-down is greatly speeded up by this
mechanism.

As we did not know how to treat a turbulent flow like that in the convective zone,
we simply represented the turbulent viscosity by a Darcy frictional law. Even then
the problem was difficult and we cravenly assumed that the Darcy damping time
is much shorter than the rotation period. The implied analogy to a porous medium
allowed a quick if qualitative check of the idea in the lab. In the 1969 GFD Pro-
gram at Woods Hole, Joseph Buschi tried to test the notion of convective pumping
more directly by the experiment of spinning up a layer with penetrative convection
(the ice water version) in a rotating frame. A numerical study of rotating penet-
rative convection at high Rayleigh number would be of value in confirming these
notions.

For a brief description of the effects of stable stratification, we may use the model
of a rotating layer of fluid stratified by a constant gravitational force antiparallel to
the rotation vector. If the dissipation is small enough to be neglected in the body of
the fluid, the spindown of a homogenous fluid is as just described. A disturbance
made at some depth in the fluid with horizontal extent h will be felt all along a
column parallel to the rotation axis as implied by the Taylor–Proudman theorem.
The effect of a stable stratification is to truncate this (Taylor) column to a stub
whose height is

ℓ = 2�h

N
. (2.6)

Here the buoyancy frequency is given by

N2 = g

cp

dS

dz
, (2.7)

where S is the specific entropy, cp is the specific heat, assumed constant, and z

is the vertical coordinate. The introduction of stratification confines the rotational
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control to an ever decreasing range of depths as N/� is increased. (That ratio is
now around one thousand in the Sun.)

In GFD, only the stably stratified case, S′ > 0, is normally considered and one
usually asks the complementary question of how wide a region must be before a
disturbance in a layer of depth ℓ can be controlled by the rotational constraint, as
it is called. This width is known as the (Rossby) deformation radius, Nℓ/(2�). A
corresponding wavenumber appears in the theory of rotating convection, as can be
seen in a careful reading of a paper by Cowling (1951). In that case the meaning
seems much clearer: for wavenumbers smaller than the (Cowling) wavenumber,
rotation prevents convective instability in the absence of dissipation.

Since the spin-down of a non-dissipative, stratified medium can directly affect
only a sublayer of depth ℓ, the process takes only ℓ/d of the full spin-down time.
We spent some time working these things out (during what Andrew Ingersoll called
The Great Oblate Debate) as did geophysicists such as Holton (1965), though for
other reasons. The problem was not a difficult one given the usual idealizations,
though complications caused by boundaries did raise some subtle issues. In the
solar case, the disturbance comes down from the convection zone over a horizontal
distance of order 2R. Therefore the short initial phase of spindown affects only a
sublayer of thickness 2R�/N .

When lecturing on solar rotation, I used to illustrate these processes with a cave
drawing like that in Figure 2.1 (Spiegel 1972). I called the sublayer that is spun
down by direct convective pumping the tachycline. Since I did not expect such
a layer to be observed in the then foreseeable future, I felt free to choose that
infelicitous name as a joke that is too convoluted to be recalled here. Fortunately,

Figure 2.1. An early cartoon of solar spin-down currents.
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since the tachycline is transient, this terminology allows it to be distinguished from
its more permanent relative, the tachocline, as Zahn and I (1992) later called the
quasi-stationary velocity transition layer.

Ultimately, dissipation cannot be ignored in this process. If the spun-down layer
is not unstable, the rest of the radiative core will be spun down dissipatively on the
Eddington–Sweet time. This is (N/�)2 times the thermal time of the core. That
thermal time is normally called the Kelvin–Helmholtz time in astrophysics while
the Eddington–Sweet time is the thermal time scale of a region of radius RN/�.

Since the spun-down sublayer is likely to be unstable and even turbulent, it is
not obvious how the process will evolve. It may be that a turbulent tachocline
will produce further pumping and spin down a second sublayer. This, in its turn,
will become turbulent and so on. That version of the process would give rise to a
rotationally layered interior flow reminiscent of the layering seen in thermohaline
convection. This suggestion could be checked by numerical simulations with the
means that are currently available. But all this has to do with a transient process
that seems to have done its job by now.

2.4 Solar intermittency

The notion of a quasi-static sublayer, or tachocline, in fact arose (in my own case) in
attempting to model the intermittency of the solar cycle. In the early 1960s, Derek
Moore and I were studying the origin of the solar oscillations that had been reported
by Leighton et al. (1962) . We considered the possibility that the oscillations were
driven by a convective overstability like those known in magnetic and rotational
convection. (In fact, sound waves can be convectively overstable in the manner
of those other convective instabilities (Spiegel 1964). However, it is believed that
acoustic instabilities are too weak to account for the observed oscillations.) To
understand convective overstability, we constructed what we intended as a generic
model of the process (Moore & Spiegel 1966). We wrote the dynamical equations
for a fluid element moving vertically under the influence of a restoring force in an
unstably stratified medium. The restoring force, represented by a nonlinear spring,
was meant to represent a magnetic force or a stabilizing molecular weight gradient.
This led to an equation of the form

ẍ = −∂V

∂x
− µẋ, (2.8)

where the potential V is a quartic function of (amplitude) x and is linear in a control
parameter, p. (We normally omitted the friction term back then but, with time, I
came to feel the need for it.) The key to the overstability in the model is to let p

vary slowly in time. We made the model autonomous by introducing an equation
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Figure 2.2. A projected orbit of a thermally excited nonlinear oscillator.

for the slow variation of p with the form

ṗ = ǫg(x, p), (2.9)

where ǫ is a small positive constant and g is a simple function, linear in p. For a
suitable range of the parameters, numerical solutions of the system are aperiodic,
as in Figure 2.2, an orbit projected onto the x − ẋ plane as computed (much) later
by Leonard Smith. We naturally speculated that many phenomena of astrophysics
whose aperiodic behaviour had been ascribed to some dei ex machina were simply
exhibiting the sort of natural dynamics we were seeing.

Later, when Eddy (1976) re-examined the historical record of sunspots and repor-
ted that indeed, as Maunder had noted, there were very few spots during the life
of Newton, the plot thickened. We had not seen any such behaviour in the simple
third-order systems that were by then thought to be representative chaotic systems.
We wondered whether a more complicated system might give rise to the kind of
intermittency that was seen in the grand minima of solar activity. As a means to
model this, we imagined that some secondary dynamo process in the Sun could
be driving the solar cycle. Its chaotic interaction with the main convective dynamo
could then produce the grand minima. Such a dynamo process ought to operate
in a thin layer, given the narrow (if time dependent) activity zones. Since we had
already worked on the rotational sublayer involved in solar spindown, we naturally
considered the possibility that such a layer could persist at the bottom of the con-
vection zone. The activity of this layer could nonlinearly interfere with the main
convective dynamo process. This leap of faith provided a working hypothesis to
guide the construction of an intermittency mechanism.

In dynamical systems theory, around that time, the term intermittency was coming
to mean vacillation between different kinds of behaviour (Pomeau & Manneville
1990). However, I had in mind the meaning intended by Batchelor & Townsend
(1949) in describing the structure of turbulence. The plan was to couple two dynamo
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models into a single functioning machine and use some property of this object to
quantify the level of solar activity. For the component dynamo models, I turned to
the nonlinear system that Malkus (1972) had derived to describe his modification
of the Bullard disc dynamo model. His system had the same general form as our
aperiodic oscillator, but differed in significant details. It turned out to be equivalent
to the Lorenz (1963) system, which I did not learn about till the early 1970s, so
sparse were the people working on such things then.

I made a symbiotic system of two of those disc dynamos, that is, of two Lorenzian
systems. A dynamo model representing the main convective process was coupled
to a second dynamo model taking the role of the tachocline. For this, I enlarged
Equation (2.8) to allow V to depend on a second amplitude y and set

ÿ = −∂W

∂y
− ξ ẏ, (2.10)

with W = W(x, y, p) and V = V(x, y, p). To bring about symbiosis, I let them share
the parameter p and set g = g(x, y, p). In the conservative limit (ǫ, µ and ξ all = 0),
this system becomes a two-dimensional nonlinear oscillator whose potential is one
of Thom’s catastrophes. The set of three equations forms a system of fifth order.
For suitable parameter choices, it has an unstable, invariant manifold, y = 0. In that
manifold there lives a third-order system that is equivalent to the Lorenz system.

For non-zero initial y, in a certain finite parameter range, the system leaves the
invariant manifold and wanders about in the five-dimensional state space until it
encounters a stable manifold of the invariant manifold. Then it is brought back to
small |y| where it skims along the invariant manifold only to fly off again after
a while. The first run with that model produced the intermittency illustrated in
Figure 2.3. It was so easy to get it that I was (and am – see Hardenberg et al.

1997) persuaded that the behaviour is robust. (However, I have yet to make a case
for the suggestion that it has something to do with intermittency in turbulence, cf.
Spiegel 1981.) Though the detailed behaviour of the model did not resemble the
observed variation of the sunspot number, the general behaviour seemed to support
the supposition that a secondary dynamo process in the Sun could be at work in the
solar cycle.

When Nathan Platt, a GFD fellow, took an interest in the intermittency model
(Platt 1990), we worked with Tresser to develop the process, which we called on/off
intermittency (Platt et al. 1993a). Our attempt to model the time variation of the
sunspot number as an intermittent dynamical system worked reasonably well (Platt
et al. 1993b). Naturally, detailed prediction is not possible for a chaotic process
that the cycle resmbles. (The data are not good enough to establish that it really is
chaotic (Spiegel & Wolf 1987).) We assumed that a (suitably defined) distance from
the invariant manifold measured the level of activity (y2 worked well) and we saw
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Figure 2.3. On/off intermittency: y vs t.

Figure 2.4. The improved model of the solar cycle (see the text).

grand minima somewhat like those observed. There was almost no activity (y2 ≈ 0)
during the grand minima and I thought this was a good thing. Later, I learned that
careful study of historical records showed that there was some spot activity during
the Maunder minimum (Ribes & Nesme-Ribes 1993; Beer et al. 1998). A slight
modification of the model made with Claudia Pasquero and Antonello Provenzale
fixed that problem and led to results of the kind shown in Figure 2.4. Also, Axel
Brandenburg and I tried putting the on/off process into his dynamo simulation and
this produced a reasonable looking butterfly diagram. (We produced a manuscript
about this that is, or was, on his web page.)

Several (groups of) people, such as Jones et al. (1985), have made dynamical
models designed to mimic the solar activity cycle. In her Laureate thesis, Claudia
Pasquero (1996) assessed their successes in modelling the solar activity cycle. We
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tried to write a paper about this with Provenzale, but found that it is not so easy to
report on such things. However, one of Pasquero’s conclusions that seemed to be
indirect evidence for a secondary dynamo process was that the on/off intermittency
model provides a reasonable qualitative representation of the solar intermittency
(see also Schmitt et al. 1996). Still, as Dirac said, ‘Just because the results happen
to be in agreement with observation does not prove that one’s theory is correct’.

2.5 Into the 1990s

Ocean circulation is thought to be driven by wind stresses on the ocean surface.
There is a thermal boundary layer in the upper ocean below which lies the abyss.
In the Sun, the convection zone pumps fluid into (and out of) a velocity sublayer
that couples the convection zone to the radiative core. Seen in this coarse-grained
manner, the two situations are somewhat analogous (with the convection zone play-
ing an oversized analogue of what the oceanographers call the mixed layer) and,
as mentioned, it is this loose analogy that is behind the naming of the tachocline.
I have spent enough time in Woods Hole to have formed the impression that there
is no generally agreed upon reason why a thermocline in the ocean should remain
thin. I have asked many oceanographers why the thermocline does not spread and,
as often as not, the answers I have received were rebutted by others that I asked.
The different answers I have gotten make me think that few would believe in the
thermocline if one had not been observed. Before its detection by helioseismology
(Brown et al. 1989), there were only indirect reasons for postulating a long-lived,
thin tachocline. Once the tachocline was detected by observation, it was possible
to look at the problem more confidently.

In 1990, Jean-Paul Zahn and I gave a course in stellar fluid dynamics at Woods
Hole. There I learned that Jean-Paul had worked to understand the newly observed
shear layer below the convection zone. In his lectures, he gave his own slant to
the subject of shear dispersal in a stratified medium (Zahn 1990). He and Brian
Chaboyer applied his ideas to the mixing of lithium. In his report on the summer’s
work, Chaboyer (1990) wrote ‘For the youngest clusters [Charbonneau et al. 1989]
studied, no Li depletion is observed, contrary to what would be expected from the
Eddington–Sweet circulation. In order to account for this fact, Charbonneau et al.

stated: “one must investigate mechanisms that could reduce the expected transport

through meridional circulation.” An obvious candidate for such a mechanism is
horizontal diffusion, which hinders the meridional advection’. (Italics not mine.) In
other words, strong horizontal mixing weakens the inhomogeneity and so inhibits
the mixing of elements in the radial direction (Chaboyer & Zahn 1992). This idea
works to inhibit the radial spreading of the thermocline as well (Spiegel & Zahn
1992).
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In fact, anisotropic advection as a result of stratification is also in line with
oceanographic thinking. Pedlosky (1969) had written that ‘In order to consider a
model of geophysical relevance the viscosity and diffusivity of temperature must
be considered as parametrizations of small-scale turbulent mixing processes. It is
natural therefore to allow that the transport coefficients need not be the same for
horizontal as well as vertical fluxes of momentum and heat. The theory will be
developed with the ratio of the horizontal to vertical mixing coefficients as a free
parameter . . . ’. Pedlosky’s model could serve as a reasonable description of the
tachocline, though it was meant to be geophysical. However, since those words
were written, much work has been done on turbulence in thin rotating layers. By
now the words geostrophic (and quasi-geostrophic) turbulence resound through
geophysical fluid dynamics, bringing a more sceptical view of the notions of eddy
viscosity with them. By making the vertical diffusion almost negligible, we may
have been stacking the decks, but the results have provided a useful starting point
for discussion of the place of origin of the solar cycle.

There was also other, indirect evidence of the tachocline’s role in the solar cycle.
Galloway & Weiss (1981) remarked that a strong toroidal field of some thousands
of gauss tucked into a layer some tens of thousands of kilometres thick would carry
as much magnetic flux as protruded out of the Sun during sunspot maximum. This
suggests that the solar cycle is to some extent a sequence of rearrangements of
the field in the tachocline whose stretching compensates for the minor dissipative
losses. Parker (1979) gives a nice description of the basic physics of the breakup
of a magnetic layer and the nonlinear development is vividly demonstrated in the
computations of Cattaneo & Hughes (1988) that give an idea of the nature of such
rearrangements. Weiss and I (1980) invoked such a rearrangement process driven by
instability in the transition layer, and not just for its contribution to the emergence of
the fields that make spots. We suggested that slight variations in the solar constant
could be caused by the roughly decennial disruption of the sublayer. They may do this
but we rather overestimated the strength of the effect (Gough 1981; Gilliland 1982).

Some objected to the idea that global changes in the tachocline could occur in
tens of years when its thermal time is more like a million years. However, a short
timescale is possible if the disturbances are not spherically symmetric. There are
many timescales in the turbulence driving the process and I expect the tachocline
to respond on the timescale that it can most readily accommodate. In setting up
such a thermal impedance match we need to find the characteristic adjustment time
of the tachocline. This is a thermal analogue of the spin-up time that I call the
warm-up time.

In spin-up, the viscous effects operating in the boundary layer and the circulation
in the fluid interior act in series to give a total timescale that is the geometric mean
of the two characteristic times. In warm-up, the vertical passage of a disrupting
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influence, such as a sheet of magnetic field, makes an internal boundary layer that
locally disrupts the hydrostatic equilibrium. This operates in series with thermal
diffusion in the layer and, as in spin-up, the timescale for the process is the geo-
metric mean of the times of the basic contributing mechanisms (Spiegel 1987). The
tachocline is thermally compliant to non-radial disturbances on a timescale of a
decade or two.

So end my discursive recollections of the reasons that led me to believe in the
tachocline before I had any real right to. Fortunately, much of this reasoning is no
longer needed now that we can be confident that the tachocline is there. What we
ought to do now is to better explain why it is there.

2.6 From recollections to reflections

By the time this volume appears, the ideas of the contributors shall certainly have
developed beyond those expressed in the talks (in November 2004) on which their
chapters are supposedly based. Some of the work I shall now mention as desirable
may have already been carried out. So much the better. I will nevertheless risk
superfluity and attempt to carry out my assigned reflections. After all, that is what
such meetings are for. Still, those who do not like standup astrophysics should
perhaps avert their eyes at this point.

I suppose that the foremost issue that we ought to confront is the nature of the
flow that produces the tachocline. The tachocline studies that I am aware of take
the differential rotation of the convection zone as given, say by observation, and
use this as a kinematic boundary condition to compute the resulting flow. This is
like what oceanographers do when they use the curl of the wind stress to induce
motions in the mixed layer and the thermocline. But, just as the oceanographers
are enlarging their view of things, we need to move toward analysis in which the
convection zone, the tachocline and the radiative interior are treated as a single
system. The flow coupling these regions will affect the large-scale motions of all
of them. The motions in the tachocline driven by convective pumping can induce
horizontal temperature inhomogeneity on a large scale. In its turn, the convection
zone may respond to local warming with updrafts that become part of the convective
pumping mechanism. Accurate simulations of such processes may not be possible
in realistic parameter ranges without drastic approximations, yet some reduced
version of this kind of calculation is now possible with the available means and is
likely to be illuminating.

If it is true that the solar cycle originates in the tachocline, there can be little doubt
that the process is hydromagnetic. This is suggested by the observed correlation of
the solar-surface rotation rate with solar activity (Ribes & Nesme-Ribes 1993). The
rough image is that the plunging plumes of large-scale (non-Boussinesq) convection
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at very high Rayleigh numbers bring down magnetic fields from the convection
zone. These torrents may be seen in films such as are shown by Malagoli et al.
(1990). The magnetic fields raining onto the tachocline are stretched out into a
shearing toroidal structure. We then have a magnetic boundary layer reminiscent of
the boundary layers in ordinary shear flow and this analogy may guide us to what
happens next. Horseshoe vortices form in the boundary layers of laboratory shear
flow in a way whose understanding is developing apace (Waleffe 2003). Magnetic
horseshoes (or hairpins, if you prefer) should arise similarly in the tachocline and
float to the solar surface, twisting as they go as in what Elsasser used to call Parker’s
bathtub mechanism. The twisting may help the arches to maintain their discrete
identities rather than being splayed out like the horseshoes in shear turbulence as
they enter the body of the turbulent fluid.

The return of the magnetic field to the convection zone in horseshoe flux tubes
takes place mainly in the spot latitudes while the field rains down in other latitudes.
Why this mechanism leads to a relatively ordered cycle rather than a jumbled
magnetic climatology is not evident and I will not try your patience with reference
to another analogy at this point. I have already strayed beyond what has been learned
from the fluid dynamics equations. My excuse, if one is needed, is that I feel that
we can enhance our understanding of the full process by studying isolated features
such as those I have just described. We can also grasp at clues that seem to have
no obvious explanation. For example, I am subliminally aware of reports that large
spot groups recur at particular longitudes. How can such places be marked? It seems
unlikely that the markers could be the fields themselves since we would see more
or less permanent spots in those places.

Since a rotating, turbulent layer like the tachocline may well be expected to
produce vortices like those that form in the weather layers of planets, might there
be semipermanent vortices like Jupiter’s red spot in the tachocline? Then, every
time the wave of magnetic excitation in the tachocline (Proctor & Spiegel 1991)
passes by, the field would be wrapped up and extruded into the convection zone as in
Weiss’s (1966) flux expulsion calculations or some that Steve Meacham performed
to test these notions. This process does not seem likely to lead directly to spot
groups and I mention it as a possible trigger for a more promising mechanism, like
horseshoes. It also recalls the question that I touched on at the beginning: vortex
formation versus magnetic flux tube formation. The two processes seem mutually
exclusive as we see in Jupiter and the Sun, though there is an occasional solar
exception (Akasofu 1985). We may learn more about this when it becomes possible
to see the differential rotation in the tachocline with some precision. Though the
differential rotation on the solar surface does not at all resemble the analogous
flows in the atmospheres of the giant planets (Dowling & Spiegel 1990), that of
the tachocline may well resemble what we see in those atmospheres. In any case
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there seems to be good reason to simulate the passage from the fluid dynamical
to the MHD case and to study the crossover from vortex formation to flux tube
formation. Observationally, the transition should appear at some intermediate mass
in the brown dwarf sequence.

Another possible transition that I find interesting is the disappearance of obvious
cyclic activity in fully convective stars. For those objects there would be no tacho-
cline and solar-type cyclic activity should not be detected. This is a prediction (by
now, a postdiction Joe Patterson tells me) that we are led to by tachoclinic studies.
Yet, there may be a compensation for this loss.

There is a relatively thin shear layer at the top of the convection zone (Basu
& Antia 2001) that I have discussed with Kumar Chitre. Would stars with larger
convective structures than the sun form deeper shear layers of this kind and produce
spots in them? Such a layer at the top of a convection zone is not fed by plunging
plumes, but it might produce some sort of coherent structures nonetheless.

I must confess that I am much more enthusiastic about the prospects of extending
these considerations to activity in the hottest stars. Here the situation is even more
complicated than is sometimes appreciated. Those stars are rapid rotators and they
have convective cores that are likely to produce convective dynamos. If the issues
raised in this volume have any generality, we may expect to find some kind of
transition layers at the tops of those convective cores. I suspect that this suggestion
will raise no eyebrows, but the situation in the atmospheres of hot stars is even more
difficult to anticipate.

Cassinelli (1985) has summarized the observational evidence for his belief that
spots are formed on hot stars. This is a subject that needs a meeting of its own, but
it is worth mentioning its possible relation to our present concerns. There are many
timescales of variation in hot stars and an interesting case is that of the Hubble–
Sandage variables, a.k.a. LBVs (Humphreys & Davidson 1994). Their various time
scales include tens or hundreds of years. What could produce such characteristic
times? Perhaps the source of this activity can be traced to Struve’s well known
discovery of (what he called) macroturbulence. While those stars do not satisfy
the usual convective instability criterion, there is no shortage of possible instability
mechanisms that one might invoke to rationalize the intense (apparently supersonic)
velocity fields that cause the line broadening Struve reported.

Hot young stars rotate rapidly and they are likely to be subject to baroclinic
instability. They are also subject to instabilities induced by radiative forces (e.g.
Spiegel & Tao 1999). For this, and possibly other reasons, they pulsate as well.
A strong enough pulsation, in its turn, can cause convection through parametric
instability (Poyet & Spiegel 1979) and this will lead to photon bubbles (as briefly
described in Spiegel 2005). We may also go overboard and consider that the conjec-
tured transition layer at the edges of the convective cores could produce magnetic
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bubbles that twist off and rise up to produce photomagnetic cauldrons at the stellar
surfaces. If transition layers form at the bottoms of these turbulent atmospheres,
cycle timescales of variation on the order of decades or perhaps centuries might
seem reasonable to one who does not know precisely how to determine cycle times.

Finally, we should recall that, during its first thirty million years or so on the
Main Sequence, the Sun had a convective core. With a rotation period of a day, a
healthy convective dynamo ought to have operated. What are the consequences?
If we could catch a star in that early state, we might observe large fluctuations in
luminosity and asteroseismologists would certainly have a fine time. I do not expect
us to be so lucky very soon. Still, we may think about the fate of that (presumed)
early magnetic field. Will it survive all this time or will it have found its way out by
some form of instability? If it is still there, it may be just what Gough & McIntyre
(1998) want to render the radiative core rigid. (As I am about to send this off I am
downloading a paper by Brun and Zahn destined for A & A. They rediscuss the
issues raised by Gough and McIntyre, so we shall still have much to discuss even
after reading the present volume.) At any rate, if a large-scale field is still in the
core, we would need to think about whether it can not only keep the tachocline thin
but how the tachocline can reconnect at the rate needed to produce a variation of
11 years. So it seems that in this end is our beginning.

As you have no doubt noticed, many of my reflections are aimed at suggesting
that we look at tachoclinic issues in a wider context that includes other stellar types
and other solar epochs. Both observationally and theoretically, we are likely to
learn the most if the stellar, solar, planetary and geophysical studies are kept in
close touch. In my own case, I have learned much from the many collaborators I
have mentioned here and from a large number of friends and colleagues from many
disciplines who have kindly offered opinions and insights. Above all, it has been a
great pleasure to have editors who actually edit and do it well.
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Observational results and issues concerning
the tachocline

Jørgen Christensen-Dalsgaard & Michael J. Thompson

The region near and just below the solar convection zone is characterized by a
strong shear in rotation rate, between the latitudinally differential rotation in the
convection zone and the nearly uniform rotation of the radiative interior. This so-
called tachocline is also a region of substantial uncertainty in the modelling of solar
structure, where convective overshoot and rotationally induced mixing may affect
the thermal and compositional structure. Helioseismology led to the identification
of the rotational shear and has provided fairly detailed information about the prop-
erties, structure and rotation of the tachocline, although unavoidably at somewhat
limited resolution. Here we briefly discuss the techniques used in the helioseismic
analyses and review the results of such analyses, as a background for the modelling
of the properties of the tachocline and its effects on the generation of the solar
magnetic field.

3.1 Introduction

As will be abundantly evident from other articles in this volume, knowledge of the
solar internal rotation is essential for understanding solar magnetic activity, as it
is for understanding important aspects of solar structure and evolution. Before the
advent of helioseismology little was known about solar rotation below the surface,
beyond the indication, from the surface latitudinal differential rotation, that it was
non-uniform. Modelling of the evolution of solar rotation, from an assumed earlier
state of rapid rotation, indicated that the Sun might still have a rapidly rotating
core, (e.g. Dicke 1964; detailed modelling of the solar spin-down by Pinsonneault
et al. 1989 also obtained a core rotating at several times the surface rate). Some
constraints on the internal rotation were obtained from the observed solar surface
oblateness (Hill & Stebbins 1975). Models of the interaction between rotation and
convection in the convection zone, matching the surface differential rotation (e.g.
Glatzmaier 1985; Gilman & Miller 1986), showed rotation that depended only on
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distance to the rotation axis, i.e. ‘rotation on cylinders’, in accordance with the
Taylor–Proudman theorem (Pedlosky 1987). The resulting radial variation of the
angular velocity within the convection zone appeared difficult to reconcile with
dynamo models of the solar magnetic activity (e.g. Gilman 1986).

Already the first reliable helioseismic inference of solar rotation in much of the
Sun, in the equatorial region (Duvall et al. 1984), showed marked deviations from
these notions. In much of the radiative interior rotation was if anything slightly below

the surface equatorial rate. Rotation of the core was poorly determined, with only
barely significant evidence for a slight speed-up relative to the rest of the radiative
interior. Early inferences of the latitudinal variation of rotation (Brown 1985; Duvall
et al. 1986; Brown & Morrow 1987) indicated that the latitudinal variation was
largely confined to the convection zone. More detailed results obtained from such
analyses (Christensen-Dalsgaard & Schou 1988; Kosovichev 1988; Brown et al.

1989; Dziembowski et al. 1989) strengthened this conclusion and provided the
first evidence that the transition between the latitudinally varying rotation in the
convection zone and the nearly uniform rotation in the radiative interior takes place
in a relatively narrow region, located near the base of the convection zone. Spiegel &
Zahn (1992) presented an initial analysis of the dynamics of this region and named
it the tachocline. Gilman et al. (1989) noted that this new insight into the properties
of the solar internal rotation had important consequences for the understanding of
the solar magnetic activity.

The dynamics of the tachocline is closely linked to the establishment of the
solar internal rotation. It is generally assumed that the envelope rotation rate of
lower-mass stars decreases as they age, owing to the loss of angular momentum in
a magnetic stellar wind (see Mestel 1999); this is confirmed by the observed anti-
correlation between age and rotation rate for solar-like stars (see Skumanich 1972).
The angular-momentum loss presumably directly affects the outer convection zone;
the effect on the radiative interior depends on the coupling of the interior to the
convection zone, through the tachocline. Also, the properties of the tachocline
play an important role in most current dynamo models aiming at explaining the
generation and variation of the solar magnetic field. From the point of view of solar
structure this is an interesting transition region with likely penetration, although to
an unknown extent, of motion below the convection zone. Evidence for such motion
comes from the reduction by a factor of around 150 in the abundance of lithium in the
solar atmosphere, relative to the meteoritic abundance which presumably reflects
the pre-solar nebula from which the Sun was formed (Anders & Grevesse 1989).
This requires mixing, at some stage during solar evolution, from the convection zone
down to a region where the temperature exceeds 2.5 × 106 K, substantially higher
than the temperature at the base of the convection zone during Main-Sequence
evolution (e.g. Christensen-Dalsgaard et al. 1992).
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Although helioseismology is a powerful probe of solar internal properties, the
achievable resolution and precision is unavoidably limited by the properties of the
observed modes and the quality, however excellent, of the observations. As dis-
cussed elsewhere in this volume, modelling of the tachocline and its effects on the
dynamo processes depends sensitively on the details of the thickness of the tacho-
cline and its location relative to the base of the convectively unstable region, at a
level which is barely resolved in current helioseismic inferences. Also, it is of evid-
ent interest to investigate to what extent the properties of the tachocline change with
time, on solar-cycle or other timescales. Addressing these issues requires careful
attention to the properties of the analysis of the data, including the inverse ana-
lysis, and the currently unavoidable limitations in the inferences must be kept in
mind in the use of the results. Our goal with the present chapter is to provide a
brief overview of the techniques used to obtain information about the solar interior,
particularly the tachocline region, and discuss the results obtained so far, emphas-
izing their strengths and weaknesses. More extensive reviews on solar oscillations,
helioseismology and the properties of solar structure and rotation have been given
by, for example, Gough (1993), Christensen-Dalsgaard (2002), Thompson et al.

(2003) and Miesch (2005).

3.2 Helioseismic techniques

The Sun oscillates simultaneously in many global resonant modes; through heli-
oseismic analysis these provide observational constraints on the structure and
dynamics of the solar interior. Because the Sun’s structure is nearly spherical, the
horizontal structure of each global mode is described to a very good approximation
by a spherical harmonic Ym

l
(θ , φ), where θ and φ are respectively the heliocentric

colatitude and longitude. The integers l ≥ 0 and m (−l ≤ m ≤ l) are called the
degree and azimuthal order of the mode. The description of the modes of a spheric-
ally symmetric star is completed by a third integer, the order n: the absolute value of
n is approximately equal to the number of nodes in the radial direction in the mode’s
eigenfunction for, say, the radial displacement. The frequencies ωnlm of the modes
are increasing functions of n at fixed l and m. (We use both the angular frequency ω

and the cyclic frequency ν = ω/2π in this chapter.) Those global modes that have
been unambiguously observed on the Sun are p modes, for which n > 0 and for
which the primary restoring force is pressure, and f modes, for which n = 0 and
which at high degree have the character of surface gravity waves.

The p-mode frequencies are sensitive primarily to conditions in the interior within
an acoustic cavity. This is the region of the Sun in which the waves comprising
the mode have the nature of propagating – as opposed to evanescent – waves. The
acoustic cavity of the observed p modes extends from essentially the surface down to
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the radius r at which the horizontal phase speed ωr/(l+1/2) is equal to the adiabatic
sound speed c(r): this is the location of the lower turning point of the mode. Since
c/r is an increasing function of depth, it follows that low-degree modes (small l)
penetrate more deeply than high-degree modes, for fixed frequency. It is therefore
the observed p modes with degrees smaller than about 40 that have direct sensitivity
to the tachocline region, since it is these modes whose acoustic cavity includes the
region of the tachocline. The f modes, as do deep-water waves, decay with depth
on a scale of roughly R⊙/l and hence the observed f modes, with l � 100, do not
reach the tachocline region; however, they are important in providing constraints
on the near-surface rotation. We note that for both types of modes the cavity has a
latitudinal extent also, from the equator to the heliocentric colatitudes θ at which
sin θ = m/(l + 1/2).

For a spherically symmetric star the frequencies would be independent of the
azimuthal order m. Symmetry-breaking agents such as rotation, magnetic fields
and structural asphericities raise that degeneracy. For the Sun the effect of rota-
tion on the modes is adequately described for the present purpose by a first-order
approximation:

ωnlm = ωnl0 + m

∫ R⊙

0

∫ π

0
Knlm(r, θ)�(r, θ)rdrdθ . (3.1)

This effect is an odd function of m, and hence distinguishable from the effects
of asphericities which do not distinguish between eastward- and westward-
propagating waves and which thus give rise to frequency perturbations that are
even functions of m. Here � is the solar internal angular velocity, radial coordinate
r is the distance from the centre of the Sun, R⊙ is the radius of the photosphere,
and kernels Knlm are functions of the spherically symmetric structure of the Sun.
The kernels are generally assumed to be known functions to adequate accuracy,
so that Equation (3.1) provides observational constraints on the unknown angular
velocity �(r, θ) inside the Sun. The kernels are north–south symmetric about the
solar equatorial plane, so the data

dnlm ≡ 1

2m
(ωnlm − ωnl−m) (3.2)

are sensitive only to the north–south symmetric component of the internal rotation.
The kernels corresponding to different modes (n, l, m) have different sensitivities

to the solar interior, in line with the variation of acoustic cavities between different
modes. This variation in sensitivity permits the use of helioseismic inverse tech-
niques to make inferences about the rotation as a function of position inside the
Sun (see Gough 1985; Kosovichev 1999). One such technique is optimally local-
ized averages (OLA): taking a linear combination of constraints (3.1) for different
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modes gives

∑

nlm

cnlmdnlm =
∫ R⊙

0

∫ π

0

∑

nlm

cnlmKnlm�rdrdθ , (3.3)

where the coefficients cnlm(r0, θ0) are chosen so that the averaging kernel

K(r0, θ0; r, θ) ≡
∑

nlm

cnlm(r0, θ0)Knlm(r, θ) (3.4)

has unit integral and is localized so that it has substantial amplitude near r = r0,
θ = θ0 and is small elsewhere. In this case the left-hand side of Equation (3.3) may
be regarded as an estimate of the localized average �̄(r0, θ0) of the rotation � in
the vicinity of the target location (r0, θ0). The form of that average, often called the
‘solution’, is described by the averaging kernel. There are various ways in which
the OLA coefficients may be chosen: see for example Pijpers & Thompson (1992).

By varying the target location, a map of the rotation rate in the solar interior
can be built up. Its strict interpretation is always best understood in terms of the
averaging kernels. However, a successfully localized averaging kernel generally
has a peak near the target location, and it is possible to define measures of, say, the
radial and latitudinal resolution achieved at that location in terms of the radial and
latitudinal widths of that peak (Schou et al. 1994). Some typical averaging kernels
for a solar rotation inversion are shown in Figure 3.1.

In reality, the data dnlm contain noise: these errors propagate through to �̄. If the
error in each datum is ǫnlm and this has standard deviation σnlm, then the standard
deviation of the error in �̄ is

(∑

nlm

c2
nlmσ 2

nlm

)1/2

.

Since the solutions �̄ at different target locations, (r1, θ1) and (r2, θ2) say, are built
from the same data dnlm, the errors in the solutions at the two locations will be
correlated. The error correlation is in principle straightforward to compute, given
the coefficients cnlm(r1, θ1), cnlm(r2, θ2) and the standard deviations of the data
errors (Howe & Thompson 1996).

The solution of any linear inversion of the rotational splitting data may similarly
be written in the form of Equation (3.3). Likewise, averaging kernels can be defined
as above and error propagation understood in terms of the weights given to the
data. One such inversion technique, also widely used in helioseismic studies, is
regularized least squares (RLS) inversion, in which the data are fitted by finding
a solution function �(r, θ) which minimizes the weighted sum of the chi-squared
misfit to the data and a regularization term which could for example be large if the
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Figure 3.1. A few typical averaging kernels for an RLS inversion (top row) and
for an OLA inversion (bottom row). The target location to which each kernel
corresponds is indicated with a cross. The target locations are at the base of the
convection zone at the equator (left column) and at latitude 60◦ (middle column),
and at radius 0.95R⊙ and latitude 60◦ (right column). Solid curves indicate positive
contour values, broken curves negative contour values.

second derivatives of the solution in the radial or latitudinal directions are large
(Schou et al. 1994, 1998).

Such inversions have succeeded in mapping the rotation throughout much of
the solar interior. However, the finite resolution of the inversions, as evidenced
by the spatial extent of the averaging kernels (Figure 3.1), means that a rather
sharp transition such as the tachocline will appear wider in the results than it is
in reality (e.g. Thompson 1990). This effect is illustrated in Figure 3.2, where
we show the results of inverting splittings data for an artificial rotation profile
possessing a tachocline. The tachocline appears more spread out in the inversion
results than in the original input profile. To correct for this effect of resolution, one
may attempt to ‘deconvolve’ the averaging kernel from the solution in the vicinity
of the tachocline (Charbonneau et al. 1999a), but this means that one must presume
some particular parametrized shape for the rotation profile across the tachocline,
which introduces a prejudice. Similarly, it is possible to fit the frequency splittings
with a highly prescribed shape for the rotation profile: this is sometimes referred
to as forward modelling. Alternatively, Corbard et al. (1998) devised a nonlinear
inversion technique which was better adapted to handling sharp variations in the
underlying rotation profile and did not smear out the tachocline to the same extent
as the linear inversions do.
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Figure 3.2. An illustration of the broadening of the apparent width of the tachocline
caused by the finite resolution of one of our inversion methods. The dashed curve
shows a cut through the latitudinally independent rotation profile used to generate
a set of artificial data (for a mode set similar to that used in the inversion of MDI
data shown in Figure 3.8). The solid curve shows an equatorial cut through a SOLA
inversion of the artificial data.

Linear inversion techniques similar to those used to infer the solar rotation can
be used to make inferences about the Sun’s internal structure, for example the
variation of adiabatic sound speed with radial coordinate. The dependence of the
frequencies on the structure is however inherently nonlinear, and so to use these
techniques one typically poses the problem of determining the solar structure on
the assumption that the structure is a small perturbation about that of a known
reference model. In the simplest but most common case in which one seeks to
determine just the spherically symmetric component of the structure of the solar
interior, the relevant data to use are the mean multiplet frequencies (i.e. averaged
over all m values, for fixed n and l). Using the assumption that the solar interior is
in hydrostatic equilibrium, the relative difference in frequency δω/ω between the
Sun and the reference model can be expressed in terms of differences f1 and f2 in
two seismically relevant properties of the structure, thus:

δω

ω

∣∣∣∣
nl

=
∫ R⊙

0

[
Knl

1 (r)f1(r) + Knl
2 (r)f2(r)

]
dr + Fsurf (3.5)

(e.g. Gough & Kosovichev 1988; Dziembowski et al. 1990; Gough & Thompson
1991). The term Fsurf accounts for near-surface differences between the Sun and
model: this is taken to have the form of a mode-weighted function of frequency. In
Equation (3.5) f1 and f2 may be chosen so that for example (f1, f2) = (δc/c, δρ/ρ),
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where ρ(r) is the density; or (f1, f2) = (δu/u, δγ1/γ1), where u = p/ρ, p(r)

being the pressure, and γ1(r) is the first adiabatic exponent (see Section 3.3). With
additional assumptions, such as that the equation of state of the solar plasma is
known, the inversion may be posed in terms of properties that affect the frequencies
indirectly, for example (f1, f2) = (δc/c, δY), where Y(r) is the fractional abundance
of helium.

The structure inversions are therefore somewhat more complicated conceptually
than the inversions for rotation, since two unknown functions have to be determined
and so too does the function accounting for different surface properties. However,
this does not alter the principles we have discussed above. For details, see Dziem-
bowski et al. (1990), Däppen et al. (1991), Basu et al. (1997), Kosovichev (1999),
Rabello-Soares et al. (1999).

Sharp transitions at some depth in the Sun of some property may give rise to a
characteristic periodic signal in the frequencies of modes that penetrate well beneath
that depth (e.g. Gough & Thompson 1988; Vorontsov 1988; Gough 1990). Such a
transition may occur in the temperature gradient or its derivative at the base of the
adiabatically stratified convective envelope, or in the chemical abundances beneath
the convection zone, and both of these would cause a similar transition in the sound
speed. Specific approaches to detect and interpret such a characteristic signal have
been developed, and are addressed further in Section 3.5.

In order to map the properties of the tachocline it is necessary to use observational
frequencies (for radial structure) and frequency splittings (for rotation) for a set of
modes whose lower turning points span the location of the tachocline and extend
beneath it. Thus the most detailed inferences have used medium-degree data, from
low degree (but not necessarily the lowest degrees) up to l = 60 or higher. The
data have come from the observational instruments that resolve the solar disk and
are thus sensitive to the medium-degree modes. Medium-degree data used to study
the tachocline and the structure of the region include: the mode frequencies and
splittings up to l = 60 observed in the summers of 1986, 1988, 1989 and 1990
from the Big Bear Solar Observatory (Libbrecht et al. 1990); those up to l = 99
measured since early 1994 with the LOWL instrument (Tomczyk et al. 1995); and
data up to even higher l values observed since mid-1995 by the Global Oscillation
Network Group (GONG) (Harvey et al. 1996) and since 1996 by the Michelson
Doppler Imager (MDI) on board the SoHO satellite (Scherrer et al. 1995). Accurate
data on the lowest-degree modes, crucial for constraining the rotation of the deep
solar interior, have been obtained from spatially unresolved observations in the
BiSON (Chaplin et al. 1996) and IRIS (Fossat 1991) ground-based networks and
the GOLF instrument (Gabriel et al. 1995) on SoHO.

The frequency splittings are generally available in the form of so-called a-
coefficients. These come from fitting the m-dependence of the frequencies within
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each multiplet by a polynomial in m:

νnlm = νnl +
∑

j>0

anl
j P

(l)
j (m). (3.6)

The polynomials P
(l)
j have order j and have definite parity. The polynomials gener-

ally used now are those proposed by Ritzwoller & Lavely (1991) – see also Schou
et al. (1994) for a discussion of their properties and their use in inversions.

The odd terms in this expression for the multiplet’s frequencies are sensitive to the
rotation. Thus the inversion for the internal solar rotation can proceed using just the
odd a-coefficients. The a1 coefficient is sensitive only to the spherically symmetric
component of the rotation as a function of radius: the higher-order coefficients are
sensitive to the rotation profile’s latitudinal variations as well. The lowest three odd
a-coefficients as measured by MDI are illustrated in Figure 3.3.

The mean multiplet frequency νnl is sensitive only to the spherically symmetric
Sun, while the even a-coefficients sense structural asphericities (including centrifu-
gal distortion of the Sun), second-order effects of rotation and the non-spherically
symmetric effects of magnetic fields.

3.3 Solar internal structure and rotation

As discussed in Section 3.2, inferences of solar structure are most often obtained
from analyses of differences between observed frequencies and those of a reference
solar model, resulting in determination of averages of structural differences between
the Sun and the model. A commonly used, although by now somewhat dated,
reference model is Model S of Christensen-Dalsgaard et al. (1996). This used
OPAL opacities (Iglesias et al. 1992) and equation of state (Rogers et al. 1996) and
reaction rates predominantly from Bahcall & Pinsonneault (1995); the age of the
present Sun, from the zero-age Main Sequence, is 4.6 Gyr. The model assumed a
ratio Zs/Xs = 0.0245 between the present surface abundances by mass, Xs and Zs, of
hydrogen and elements heavier than helium, respectively (Grevesse & Noels 1993).
Diffusion and settling of helium and heavy elements were treated according to the
formalism of Michaud & Proffitt (1993); helioseismic inferences have demonstrated
the importance of including such effects (e.g. Christensen-Dalsgaard et al. 1993). A
striking result of the settling of helium and heavier elements out of the convection
zone is the establishment of sharp gradients in the abundances just beneath the
convection zone (see Figure 3.4). The outer convection zone of the model extends
to the distance rcz = 0.7115R⊙ from the centre. Within the convection zone the
stratification is essentially adiabatic, while below the convection zone it rapidly
becomes substantially subadiabatic. This is illustrated in Figure 3.5a, in terms of
the logarithmic gradient ∇ = d ln T/d ln p of temperature T . In the convection zone
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(a)

(b)

(c)

Figure 3.3. Odd a-coefficients (a) a1, (b) a3 and (c) a5 from MDI data, with one-
standard-deviation error bars. The bottom axis indicates the value of ν/(l + 1/2)
for the modes, which maps onto the location rt/R⊙ of the lower turning point of
the mode (top axis).

∇ ≃ ∇ad = (∂ ln T/∂ ln p)ad, the derivative being at constant specific entropy; since
matter in the lower parts of the convection zone is well approximated by a fully
ionized ideal gas, ∇ad ≃ 2/5. Of greater relevance to the helioseismic analysis is
the behaviour of the adiabatic sound speed c, given by

c2 = γ1p

ρ
≃ γ1kBT

muµ
, (3.7)



J. Christensen-Dalsgaard & M. J. Thompson 63

Figure 3.4. The mass fractions X of hydrogen and Z of elements heavier than
helium in Model S of the Sun as a function of distance r to the centre, in units
of the surface radius R⊙ of the model. The insert in panel (a) shows a blow-up of
the region near the base of the convection zone. The uniform composition in the
convection zone and the effect of settling beneath the convection zone are evident.

where γ1 = (∂ ln p/∂ ln ρ)ad is the adiabatic compressibility; the second approx-
imation assumes the ideal gas law, kB being Boltzmann’s constant, mu the atomic
mass unit and µ the mean molecular weight. The gradient in c2, corresponding to
∇, is illustrated in Figure 3.5b; in the ideal-gas approximation and neglecting the
derivative of γ1, it is given by

d ln c2

d ln p
≃ ∇ − d ln µ

d ln p
. (3.8)
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Figure 3.5. Temperature gradients ∇ = d ln T/d ln p (panel a) and gradients of
squared sound speed (panel b). The solid curves are for Model S, including settling
of helium and heavier elements, while the dashed curves are for a similar model
but without settling (and with a slightly shallower convection zone).

On comparing Figures 3.5a and 3.5b, it is evident that the gradient in the composi-
tion, reflected in µ, has a strong effect on the gradient in sound speed in this region.
For comparison, the figure also illustrates a corresponding model without settling,
and hence without compositional gradients in this region.

Figure 3.6 shows the relative difference in squared sound speed between the
Sun and Model S, inferred from analysis of differences between a set of observed
oscillation frequencies and those of the model (cf. Section 3.2). Analyses based on
other datasets generally give similar results. Although the overall differences are
relatively small, they are evidently highly significant. Particularly striking is the
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Figure 3.6. Inferred relative differences in squared sound speed against fractional
radius, between the Sun and two solar models, in the sense (Sun) − (model). The
results are based on inversion of a combined BiSON and LOWL dataset (Basu et al.
1997). In panel (a) the reference model is Model S of Christensen-Dalsgaard et al.
(1996), with a surface composition characterized by Zs/Xs = 0.0245. The error
bars indicate one standard deviation in the inferred difference, based on the quoted
errors in the observed frequencies. In panel (b) (Pijpers et al., in preparation) the
filled symbols show the same case as in panel (a), while the open symbols are for
a model computed with reduced abundances of heavy elements (Asplund et al.
2005a), assuming a value of Zs/Xs = 0.0185.

bump in δc2/c2 just beneath the convection zone, in the region of strong variation
in the hydrogen abundance. We discuss this feature in more detail in Section 3.5.

As noted above (cf. Figure 3.5), the base of the convection zone is reflec-
ted in a rapid change in the sound-speed gradient. This was evident already in
the first asymptotic sound-speed inversion by Christensen-Dalsgaard et al. (1985)
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and led to a model-independent estimate of the depth of the convection zone.
Christensen-Dalsgaard et al. (1991) made a careful analysis using various
asymptotic inversion techniques, determining the radius at the base of the convec-
tion zone as rcz = (0.713±0.003)R⊙; a similar value was obtained by Kosovichev
& Fedorova (1991). Subsequent analyses by Basu & Antia (1997) and Basu 1998
have confirmed this result, and substantially increased the precision. It should be
noted, however, that the determination specifically refers to the location where the
gradient begins to deviate substantially from being adiabatic; if, for example, over-
shoot beneath the convection zone, into the convectively stable region, were to
result in a subadiabatic, but nearly adiabatic, zone with sufficiently efficient mixing
to keep it chemically homogeneous1, rcz as inferred here would refer to the base of
that zone.

Recently the determination of the composition of the solar atmosphere has been
revised, resulting in substantial reductions in the inferred abundances of, in par-
ticular, carbon, nitrogen and oxygen (Allende Prieto et al. 2001; Asplund et al.

2004, 2005b; for a review, see Asplund et al. 2005a), and leading to a ratio Zs/Xs

of 0.0165, rather than the value of 0.0245 used in Model S. Since these elements
make substantial contributions to the opacity in the radiative interior, the opacity
is similarly reduced, leading to changes in the structure of the computed models
and, in particular, a general reduction in the sound speed beneath the convection
zone (Turck-Chièze et al. 2004; Bahcall et al. 2005a, b). This has a serious impact
on the comparison with the helioseismic inferences. As an example, Figure 3.6b
shows the inferred difference between the squared sound speed in the Sun and a
model with revised surface composition2. It is evident that the revision has very
substantially increased the discrepancy between the model and solar sound speed;
in particular, the dominant discrepancy is no longer strongly localized near the base
of the convection zone. This is accompanied by a decrease in the depth of the con-
vection zone; for example, in a model with the revised composition Bahcall et al.

(2004) found rcz = 0.726R⊙, which is certainly inconsistent with the helioseismic-
ally inferred value. An obvious, but perhaps aesthetically not very pleasing, way of
reducing the discrepancy relative to helioseismic inferences would be to modify the
intrinsic properties of the opacities in such a way as to compensate for the change
in the composition (Basu & Antia 2004); Bahcall et al. (2005a) noted that an opa-
city increase of around 10% at temperatures between 2 and 5 × 106 K would be
needed. It was pointed out by Antia & Basu (2005) and Bahcall et al. (2005c) that,
rather than implicating the physics of the opacity calculation, the required opacity
increase could be accomplished through an increase in the solar neon abundance by

1 As, for example, in the model of Zahn (1991).
2 Here a slightly earlier version of the revised composition than presented by Asplund et al. was used.
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Figure 3.7. Inferred rotation rate �/2π , based on OLA inversion of 144 days of
MDI observations; some contours are labelled in nanohertz (nHz) and, for clarity,
selected contours use a bolder line. Results are shown in a quadrant of the Sun,
with the equator along the horizontal axis and the pole towards the top; the marks
at the surface are in steps of 15◦ in latitude. The dashed circle marks the base of
the convection zone. In the shaded region no reliable inference could be obtained
from these data. (Adapted from Schou et al. 1998.)

a factor of 2.5–4. It remains to be seen whether such an increase is consistent with
the, admittedly rather weak, observational constraints on the solar neon abundance.
However, it is interesting that Drake & Testa (2005) very recently have found from
X-ray observations that the neon-to-oxygen ratio in stars in the solar neighbourhood
is substantially higher than the normally assumed solar value; if this were indeed to
be representative also of the solar composition, the discrepancy between the solar
models and the helioseismic inferences may well be substantially reduced (Bahcall
et al. 2005c).

Figure 3.7 illustrates the helioseismically inferred rotation rate in the outer parts
of the Sun; also, Figure 3.8 shows cuts at selected latitudes, illustrating the errors
in the inferences. Similar results have been found in several independent analyses;
however, there is some sensitivity, particularly at high latitude, to the choice of data
set and, in particular, to the method used for the time-series analysis (Schou et al.

2002). The sharp distinction between rotation in the convection zone and in the
radiative interior is evident. Within the convection zone there is strong differential
rotation with latitude similar to that observed on the surface. It appears, however,
that the lines of constant angular velocity, at least at low and moderate latitude,
are not in the radial direction but show a roughly constant inclination relative to
the rotation axis (Gilman & Howe 2003; Howe et al. 2005). Near the surface, for
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Figure 3.8. The inferred rotation rate �/2π as a function of fractional radius, at
five solar latitudes: the equator, 30◦, 45◦, 60◦ and 75◦. The vertical bars indicate
one-standard-deviation errors, based on the quoted errors of the observations, while
the horizontal bars provide a measure of the width of the averaging kernels (cf.
Section 3.2) and hence the resolution of the inversion. The vertical dashed line
marks the helioseismically determined base of the convection zone (Christensen-
Dalsgaard et al. 1991). The results are from OLA inversions of MDI data in the
outer region r > 0.45R⊙ (from Schou et al. 1998) and of combined data from the
LOWL instrument and the BiSON network, in the inner region r ≤ 0.45R⊙ (from
Chaplin et al. 1999).

latitudes below ∼ 50◦, there is a thin shear layer with rotation increasing with depth
(e.g. Corbard & Thompson 2002); the maximal rotation rate, (469±3) nHz, is found
at the equator at a depth of roughly 0.06R⊙. Beneath the convection zone rotation
is approximately uniform, at a rate corresponding to the surface value at a latitude
of around 40◦. The transition between these two regimes marks the tachocline.

The rotation rate down to the deep interior is illustrated in Figure 3.8. It is evident
that the determination of the rotation of the deep interior is highly uncertain: very
few modes reach this region; these have low degree and hence less well-determined
rotational splittings dnlm (cf. Equation 3.2); and the sound speed is high, reducing
the time spent by sound waves in this region and hence the impact of the core
rotation on the splitting. It is interesting, if not significant, that the rotation closest
to the centre shows a slight reduction, relative to the bulk of the radiative interior;
a similar trend was observed by Elsworth et al. (1995). Other recent observations
have shown somewhat varying results (e.g. Charbonneau et al. 1998; Eff-Darwich
et al. 2002; Couvidat et al. 2003; Fossat et al. 2003; García et al. 2004; Lazrek et al.

2004), although generally consistent with uniform rotation of the deep interior.
Another large-scale flow that has been invoked in some dynamo models is meri-

dional circulation. This is not accessible to study by global helioseismology to
leading order, but has been investigated using local helioseismic methods. Such



J. Christensen-Dalsgaard & M. J. Thompson 69

studies indicate that the meridional circulation in the near-surface layers is generally
poleward in both hemispheres, but the equatorward return flow has not so far
been unambiguously detected (Giles et al. 1997, 1998; Haber et al. 2002; Zhao
& Kosovichev 2004).

3.4 Dynamical properties of the tachocline

The existence of the tachocline is evident in inversion solutions for the solar internal
rotation such as are shown in Figures 3.7 and 3.8. An early investigation that in effect
sought to locate the tachocline was made by Goode et al. (1991), who performed
a regularized least-squares inversion for rotation in which a discontinuity in the
rotation rate was permitted: they found that the best fit to the data was obtained
when the discontinuity was colocated with the base of the convection zone.

Subsequent investigations have shown that the rotational shear layer that consti-
tutes the tachocline has a finite, non-zero thickness. The first quantitative results on
the tachocline’s location and thickness were obtained by Kosovichev (1996). He
made a fit to the a3 splitting coefficients in the Big Bear data: a3 is the lowest-order
coefficient to be sensitive to latitudinal variation in the rotation rate (cf. Figure 3.3).
Since the rotation in the convection zone displays latitudinal dependence, whilst
that in the radiative interior beneath the tachocline does not, this transition is evident
when the a3 coefficient is fitted with a forward model of the depth dependence of
the latitudinal differential rotation. Kosovichev assumed a functional dependence
�(r) for the transition in depth of the differential rotation of the form

�(r) = 1

2
[1 + erf (2(r − rc)/w)] , (3.9)

where erf is the error function. This continuous step function varies from 0 to 1: it
is centred on radial location r = rc and has a characteristic width w. Quantitatively,
over the width w, �(r) varies from 0.08 to 0.92 (see Figure 3.9). From the variation
of a3, Kosovichev found a fit for the parameters of the tachocline as rc/R⊙ =
0.692 ± 0.05 and w/R⊙ = 0.09 ± 0.04. This places the centre of the tachocline
(and hence most of its extent) beneath the base of the convection zone (which from
helioseismic estimates is at 0.713R⊙; cf. Section 3.3).

The functional form (3.9) introduced by Kosovichev has been adopted by various
other investigators, for example to describe the variation of the rotation rate across
the tachocline as a function of depth, at fixed latitude (e.g. Charbonneau et al.

1999a). Basu (1997) chose a different functional form,

�2(r) =
[
1 + exp (−(r − rc)/wB)

]−1 . (3.10)

Some care is needed in comparing results for the tachocline width when the two
different functional forms have been used. A numerical fit of Equation (3.9) to
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Figure 3.9. The function � introduced by Kosovichev (1996) and defined in Equa-
tion (3.9) (solid curve), together with the locations at a distance ±w/2 either side
of the centre location rc (vertical lines). This region captures 84% of the variation
of �, from 0.08 to 0.92. Also illustrated (dashed curve) is the function used by
Basu and collaborators to characterize the tachocline, defined in Equation (3.10),
where we have adopted wB = w/5. With this identification the two functions
coincide very closely.

Basu’s function (3.10) indicates that the width directly comparable to w can be
obtained by multiplying the value of wB by a factor of 5, so w = 5wB; this is
illustrated in Figure 3.9. Neither functional form is evidently superior, since they
are not physically motivated; but as a measure of width, w captures more of the
transition than does the smaller wB and so w probably accords better with what
theorists might describe as the width of the tachocline.

Basu (1997) obtained values rc/R⊙ = 0.7050±0.0027 and wB/R⊙ = 0.0098±
0.0026 (corresponding to w/R⊙ = 0.049 ± 0.013), based on the behaviour of
a3 as measured by the GONG network. Charbonneau et al. (1998), also following
Kosovichev in modelling a3 but using LOWL data, obtained rc/R⊙ = 0.704±0.003
and w/R⊙ = 0.050 ± 0.012. Corbard et al. (1998), applying a nonlinear inversion
method to LOWL data, obtained rc/R⊙ = 0.695±0.005 and w/R⊙ = 0.05±0.03.
These results all confirmed Kosovichev’s finding that the centre of the tachocline
lies beneath the seismically determined location of the base of the convection zone,
but indicated that the tachocline thickness is at the low end of what Kosovichev
reported.

An extensive analysis of the first two years of LOWL data by Charbonneau
et al. (1999a), using both inversion and forward modelling, sought to quantify also
whether the tachocline properties vary with latitude. At the equator they obtained
rc/R⊙ = 0.693±0.002 andw/R⊙ = 0.039±0.013. At 60◦ they found no significant
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Table 3.1. Location and thickness of

the tachocline at different latitudes

Latitude rc/R⊙ w/R⊙

0◦ (eq) 0.692 ± 0.002 0.033 ± 0.007
15◦ 0.691 ± 0.002 0.039 ± 0.007
45◦ 0.710 ± 0.002 0.052 ± 0.006
60◦ 0.710 ± 0.002 0.076 ± 0.010

Results as determined by Basu & Antia
(2003), but given to lower precision than
quoted in that paper. The values of the width
w here have been obtained by multiplying
the values of wB given by Basu & Antia by
a factor of five.

difference in the width of the tachocline, but found that the central location was
further from the centre of the Sun by an amount �r/R⊙ = 0.024 ± 0.004, a
significant difference. Thus they concluded that the tachocline is prolate. This result
has been confirmed by the work of Antia et al. (1998) and Basu & Antia (2001).

The most extensive investigation of tachocline properties to date, using GONG
and MDI data from 1995 to 2002, is that by Basu & Antia (2003). This essentially
confirmed the results of Charbonneau et al. (1999a) but in addition reported a
significant latitudinal variation of the tachocline width. The results are given in
Table 3.1. They indicate that the tachocline is not only prolate but is also thicker
at higher latitudes. Basu & Antia pointed out that their results are consistent with
the location and thickness taking one value at low latitudes (beneath say 30◦) and
another value at high latitudes with essentially a discontinuity in between, rather
than there being a smooth change in properties as the latitude changes. Of course
it is hard to speak of the tachocline properties at mid-latitudes where the shear
vanishes. The location of the tachocline at low and high latitudes with respect to
the base of the convection zone is illustrated in Figure 3.10.

Attempts have been made to quantify any temporal variations in the solar internal
rotation and in the tachocline properties. There is little evidence over the time
that helioseismic observations have been made for any change in the rotation of
the deep interior. In contrast, there are small but significant changes in the rota-
tion profile in the convection zone on the timescale of the solar cycle. Weak but
apparently coherent bands of faster and slower rotation superimposed on the near-
surface rotation migrate during the solar cycle: these were first discovered in surface
measurements of rotation (Howard & LaBonte 1980) and are termed ‘torsional oscil-
lations’. This is something of a misnomer, and the phenomenon is more likely to have
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Figure 3.10. Schematic diagram showing the tachocline location and thickness
corresponding to the values given in Table 3.1. Where the tachocline properties
have been determined, a region of width w centred on rc is shown shaded. The
spherically symmetric location of the base of the convection zone at r = rcz is
also shown (broken line). The tachocline is unshaded at mid-latitudes where it is
poorly defined because the rotational shear vanishes, and at very high latitudes
where it is not yet determined. The straight line indicates the rotation axis of the
solar envelope.

a magnetohydrodynamic origin (see the discussion by Tobias Weiss in Chapter 13
of this book ). At low and mid-latitudes the zonal bands of faster and slower rotation
migrate toward the equator along with the bands of magnetic activity. These have
been studied seismically by Kosovichev & Schou (1997), Schou et al. (1998) and
Schou (1999). Howe et al. (2000a) quantified that the low-latitude migrating zonal
bands extend down to about 0.92R⊙. There is also a high-latitude branch of the
torsional oscillation which migrates poleward from about 60◦ and at the same time
grows in strength. These flows are illustrated in Figure 3.11. Results of a nonlinear
inversion technique used by Vorontsov et al. (2002) indicate that the high-latitude
torsional oscillation variability extends over much of the depth of the convection
zone and possibly down to its base.

There have also been reported variations of the rotation rate near the tacho-
cline. Howe et al. (2000b), studying rotation inversions of GONG and MDI over
a number of years, found evidence for a quasi-periodic variation of the rotation
rate in equatorial regions above the tachocline at a radius of about 0.72R⊙, and
an oscillation in antiphase with this in the radiative interior at a radius of about
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Figure 3.11. The evolution with time of the zonal flows at 0.99R⊙, inferred from
RLS inversions of data from GONG and from the MDI instrument on SoHO, after
subtraction of the time-averaged rotation rate. The results are presented as a func-
tion of time and latitude, the grey scale at the right giving the signal in nanohertz.
Note that the plot is symmetrical about the equator, since global rotational inver-
sion is sensitive only to the symmetrical component of the rotation rate. (Adapted
from Howe et al. 2000a.)

0.63R⊙ (see Figure 3.12). The amplitude of the oscillation reduces as one moves
to 30◦ latitude. At higher latitudes, there is also evidence of an oscillation with a
one year period, but the results are noisier and such an annual variation is possibly
an artefact in the data. A one-year periodic signal does not explain the low-latitude
1.3-year oscillation, since the two would be clearly out of phase after the 4 years of
observations used in the original Howe et al. (2000b) paper. A signal very like the
1.3-year oscillation has been seen also in analyses by Basu & Antia (2001) but they
concluded that the variation was not significant. The oscillation has been sought by
others in series of datasets that were one-year long but without finding the variation
(Corbard et al. 2001; see also Eff-Darwich & Korzennik 2003); but it is evident
that the amplitude of any 1.3-year variation would be greatly suppressed if sampled
with a one-year cadence. The existence of a 1.3-year variation in the rotation rate
at low latitudes near the tachocline certainly remains disputed.

Various theoretical models predict the existence of prograde zonal jets in the
tachocline region. Firstly, if toroidal magnetic field exists in the region in a band
confined in latitude, then the tendency of the field to slip poleward owing to mag-
netic curvature stress may be at least partially balanced by equatorward Coriolis
forces from a prograde jet inside the magnetic band (Dikpati & Gilman 2001a,
Rempel & Dikpati 2003). Secondly, a two-dimensional instability of the tachocline
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Figure 3.12. Residuals from rotation inversions at the equator and radii r =
0.72R⊙ (top) and r = 0.63R⊙ (bottom) after a temporal mean of the inversions
has been subtracted from each. The results at 0.72R⊙ show some evidence for a
quasi-periodic 1.3-year oscillation (Howe et al. 2000b) with the results at 0.63R⊙
being in antiphase, at least in the earlier part of the time series. Circles denote
GONG results, triangles MDI results, filled symbols are for an RLS inversion,
open symbols are for an OLA inversion.

differential rotation, or a combination of differential rotation and a toroidal field,
can transport angular momentum from low latitudes to a narrow band of high lat-
itudes, thus creating a jet there (Gilman & Fox 1997; Charbonneau et al. 1999b;
Dikpati & Gilman 2001b). A preliminary study by Christensen-Dalsgaard et al.

(2005) looked for such tachocline jets using GONG data from 1996 to 2003, and
reported some evidence from both OLA and RLS inversions for a steady jet feature
at a radius of about 0.72R⊙ and between latitudes 55◦ and 65◦ in all years except
1996. Since the feature does not migrate in latitude, Christensen-Dalsgaard et al.

concluded that it provides some observational support for the second kind of model
prediction discussed above, namely jets caused by a hydrodynamic instability. More
work is, however, required to assess the significance of this observational finding,
particularly in the light of error correlations between neighbouring points which
can lead to the appearance of jet-like features in inversion solutions.

3.5 The structure of the tachocline region

From the point of view of tachocline dynamics, it is important to constrain the
precise location of the region of transition of rotation relative to the base of the
convection zone. The inferred radius rcz = 0.713R⊙ of the base of the convection
zone (cf. Section 3.3) places the centre rc of the transition well below the convection
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zone at the equator, although with some slight overlap between the convectively
unstable layer and the transition. At higher latitudes, assuming that rcz does not
change with latitude, the inferred prolate nature of the rotation transition and the
possibly larger width of the transition at higher latitude (Table 3.1) would indicate
that much of the transition takes place within the convection zone (cf. Figure 3.10).
Of course, it may be wrong to suppose that the base of the convection zone, as
defined by the transition to strong subadiabaticity, is indeed spherically symmetric.

As discussed in Section 3.3, the issues of the depth of the convection zone and the
dynamics of this region are closely tied to the details of the behaviour of convective
motion at the border between convective stability and instability. It is evident that
motion cannot stop abruptly where the stratification becomes convectively stable.
However, the properties and extent of such overshoot is highly uncertain3. Simple
models (e.g. van Ballegooijen 1982; Schmitt et al. 1984; Zahn 1991) generally show
a nearly adiabatic extension of the convection zone, corresponding to a negative
convective flux, and with a transition to no motion and a radiative temperature
gradient in a thin boundary layer. Rempel (2004) made a somewhat more realistic
model in terms of downflows, possibly having a distribution of strengths and hence
potentially providing a more gradual transition to the radiative stratification. More
detailed hydrodynamical simulations are greatly complicated by the huge ratio
between the thermal and dynamical timescales in the lower convection zone (e.g.
Nordlund et al. 1996), although Nordlund et al. developed an interesting ‘toy model’
to elucidate some of the properties of this region. Extensive calculations, although
still quite far from solar conditions, were carried out by Brummell et al. (2002),
modelling convection in a rotating box at various angles between the rotation axis
and the direction of gravity; they found substantial motion into the stable layer,
although of insufficient strength to extend the nearly adiabatic region. Interestingly,
the extent of the overshoot depended significantly on the angle between the rotation
axis and gravity, reflecting the latitude of the corresponding region in the Sun being
modelled (see also Julien et al. 1997). However, the extrapolation of these results
to solar conditions is still somewhat uncertain.

Observationally, the structure of the region near the base of the convection zone
affects the solar oscillation frequencies owing to the sharp variation in the sound-
speed gradient in this region (cf. Figure 3.5). Such sharp variations give rise to
oscillatory signatures in the frequencies whose properties reflect the location and
nature of the sharp feature. Monteiro et al. (1994) expressed the effect of the base
of the convection zone in terms of the variation δωp of the frequencies in the Sun,
relative to a corresponding model where the transition had been smoothed; for

3 Here we use overshoot or penetration indiscriminately for motion beneath the convectively unstable region. We
note, however, that Zahn (1991) recommends the use of penetration for motion sufficiently vigorous to lead to
a nearly adiabatic stratification and overshoot for weaker motion.
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l l

Figure 3.13. Oscillatory signal in observed oscillation frequencies, resulting from
the rapid change in the sound speed at the base of the convection zone; observed
frequencies from MDI were used in the analysis. The solid curve denotes the fit.
The term in γ dl(l+1) corrects for the decreasing depth of penetration of the modes
with increasing degree; for low-degree modes it is negligible.

low-degree modes, this can be approximated by

δωp ∼ A(ω) cos(2ωτ d + 2φ0), (3.11)

where the amplitude can be expressed as

A(ω) = a1

(
ω̃

ω

)2

+ a2

(
ω̃

ω

)
, (3.12)

in terms of a reference frequency ω̃. Also, τ d is essentially the acoustical depth∫ R⊙
rd

dr/c of the sharp feature, rd being its distance from the centre, but including
a correction for near-surface effects, and φ0 is a phase which also depends on the
near-surface structure of the Sun. The parameters a1, a2, τ d and φ0 can be obtained
by fitting an expression of this form to the observed frequencies, after subtracting
a suitable smooth function. An example of the resulting oscillatory signal, for
observed solar data, is shown in Figure 3.13.

In Equation (3.12) the terms in a1 and a2 arise essentially from contributions
to the oscillatory signals from discontinuities in the second and first derivatives
of sound speed, respectively (see also Christensen-Dalsgaard et al. 1995). Thus
determination of the amplitude provides a characterization of the transition between
the convective and radiative regions, which can be calibrated by considering suitable
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solar models. As discussed above, simple models of convective overshoot (e.g. Zahn
1991) predict a slightly subadiabatic extension of the convection zone, followed by
an abrupt change to the radiative gradient, thus essentially causing a discontinuity in
the temperature and sound-speed gradients, and a relatively large amplitude of the
oscillatory signal. From analysis of observations such as those shown in Figure 3.13,
Monteiro et al. (1994) and Christensen-Dalsgaard et al. (1995) concluded that any
overshoot of this nature would have to extend less than 0.1Hp, Hp ≃ 0.08R⊙ being
the pressure scale height at the base of the convection zone. A similar limit was
obtained by Basu et al. (1994), while Roxburgh & Vorontsov (1994) obtained a
somewhat weaker limit using an approximate expression for the dependence of the
amplitude on the extent of overshooting.

These analyses were all calibrated using models with no settling beneath the
convection zone. As shown in Figure 3.5, the gradient in composition caused by
settling has a strong effect on the sound-speed gradient and hence on the amplitude
of the oscillatory signal. It was shown by Basu & Antia (1994) that even in the
absence of any overshooting the signal amplitude in models with settling was sig-
nificantly higher than the observed value. Thus it appears that the actual structure
in the Sun is smoother than in such models.

In assessing these results it should be recalled that in all the analyses the frequen-
cies reflect the spherically averaged structure of the solar interior. Also, since the
frequencies are typically determined by analysing observations extending over sev-
eral weeks or months, they involve substantial temporal averaging, over timescales
comparable with or longer than the expected convective timescales near the base of
the convection zone. Thus, even though individual overshooting convective plumes
may reflect the structure assumed in the simple models with an abrupt braking after
nearly adiabatic motion, the implied spatial and temporal average reflected in the
oscillation frequencies may likely result in a smoother structure. Such averaging
was indeed found in the numerical simulations by, for example, Nordlund et al.

(1996) and Brummell et al. (2002), leading to a relatively smooth mean structure.
Departures from spherical symmetry of the solar structure are reflected in the

even component of the dependence of frequencies ωnlm on m (cf. Section 3.2).
Thus, as pointed out by Monteiro & Thompson (1998), it is possible to make
combinations of frequencies with the same (n, l) but different m that are sensitive
predominantly to the structure at specific latitudes. This in principle enables a search
for possible variations with latitude in the structure of the transition layer between
the convective and radiative regions. Using the techniques of Monteiro et al. (1994)
and Christensen-Dalsgaard et al. (1995) discussed above, Monteiro & Thompson
demonstrated that it was indeed possible to see the effects of an overshoot region
restricted to intermediate latitudes. However, a preliminary application to solar
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observations showed little if any significant variation. Further investigations in this
direction are clearly warranted.

A striking feature of the inferred sound-speed difference shown in Figure 3.6a is
the bump just beneath the convection zone, where the solar sound speed is higher
than that of the model in a relatively restricted region. This essentially coincides
with the region of sharp composition gradients (cf. Figure 3.5). If the abundance
gradients were to be smoothed the hydrogen abundance would be locally increased,
the mean molecular weight decreased, and the sound speed consequently increased
in this region (cf. Equation (3.7)), bringing the model closer to the observations.
A more quantitative determination of this effect can be obtained by inferring the
composition profile from analysis of the oscillation frequencies. Using a tech-
nique developed by Gough & Kosovichev (1990), Kosovichev (1997) carried out
an inversion specifically for the hydrogen abundance. An alternative technique,
developed by Shibahashi & Takata (1996), Antia & Chitre (1998) and Takata &
Shibahashi (1998), is based on inferring the hydrostatic structure of the Sun from
helioseismic analysis and subsequently determining the thermal and composition
profile such that this structure results, given the constraints of the equations of
stellar structure and the observed surface luminosity. In both cases the result-
ing hydrogen profile is significantly smoother beneath the convection zone than
the profile, illustrated in Figure 3.4, resulting from model calculations includ-
ing settling. For both techniques the analysis depends on the assumed physics
of the stellar interior, although in a careful analysis Takata & Shibahashi (2003)
showed that, at least in the case of the latter technique, the result is relatively
robust.

Such smoothing of the composition profile might plausibly result from motion
induced by the rotational gradient in the tachocline region or by circulation or
instabilities associated with the spin-down of the solar interior from an assumed
state of rapid initial rotation. In models of solar evolution following the evolution of
the solar internal rotation, Chaboyer et al. (1995) found in some cases a hydrogen-
abundance profile with a substantially less steep gradient beneath the convection
zone than in the non-rotating model4. Brun et al. (1999, 2002) considered models
without and with rotationally induced mixing in the tachocline region; their mod-
els without mixing yielded sound-speed differences similar to those illustrated in
Figure 3.6a, while with rotational mixing the bump beneath the convection zone
was essentially eliminated. Elliott et al. (1998) and Elliot & Gough (1999) assumed
that the composition was fully mixed in the tachocline region and determined the
width of this region by fitting to the bump in δc2/c2, relative to an underlying

4 However, the resulting rotation profile was quite far from matching the observed rotation rate, as noted above
for the rather similar models of Pinsonneault et al. (1989).
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smooth variation; they noted that the resulting width, w = 0.019R⊙, (Elliott &
Gough 1999) was substantially smaller than the width inferred from the rotational
transition (cf. Section 3.4).

Although mixing in a limited region below the convection zone has a substantial
effect on the inferred sound-speed differences in Figure 3.6a, it would have mod-
est influence on the much larger differences in the bulk of the radiative interior in
Figure 3.6b, resulting when the revised solar surface abundances are used. Even
so, the smoother hydrogen profile inferred from helioseismic estimates of the
composition would probably still be valid in this case, remaining therefore as evid-
ence for partial mixing of this region. Also, it is interesting that, as discussed in
Section 3.3, Bahcall et al. (2005c) found that most of the discrepancy in Figure 3.6b
can be removed through an increase in the solar neon abundance; the remaining
δc2/c2 is fairly similar to the behaviour found in Figure 3.6a and hence can probably
be suppressed through partial mixing.

The light elements lithium, beryllium and boron are destroyed at relatively low
temperature (2.5 × 106 K, 3.5 × 106 K and 5 × 106 K, respectively) over a period
corresponding to the present age of the Sun. As already mentioned, the observed
solar surface lithium abundance, relative to silicon, is reduced by a factor of around
150 relative to the corresponding meteoritic value. This indicates that there has
been substantial mixing to the depth where lithium is destroyed over the evolution
of the Sun. On the other hand, recent analyses of the solar beryllium abundance
(Balachandran & Bell 1998; Asplund 2004) indicate that there has been no signi-
ficant depletion of beryllium, thus limiting the extent to which such mixing has
taken place. The indication that there has similarly been no boron depletion (Cunha
& Smith 1999) is consistent with this constraint. It is evident that the present
solar composition, including also the inferred hydrogen profile, is the result of
the combined effects of settling, mixing and nuclear reactions integrated over the
lifetime of the Sun. Even so, these abundance determinations clearly provide strong
constraints on the motion in the solar interior resulting, for example, from rotational
instabilities (e.g. Brun et al. 2002).

3.6 Outlook

Since discovering the tachocline, helioseismology has pinned down with reasonable
precision its location and thickness in the radial direction, with some latitudinal
resolution (Table 3.1). Helioseismology has also established the location of the
base of the convection zone (more precisely the base of the essentially adiabatically
stratified envelope) to lie at radius rcz = 0.713R⊙ assuming that the structure
is spherically symmetric. Thus we can also make qualitative statements that the
layer of rotational shear at low latitudes is essentially wholly confined beneath the
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convection zone, while at higher latitudes it straddles the base of the convection
zone although it is still mostly located beneath the convection zone (Figure 3.10).

The tachocline is thinner than the intrinsic resolution of present-day inversions,
and so its parameters have been determined by fitting prescribed functional forms,
chosen thus far without physical motivation, either to the results of inversions or via
forward modelling to the frequency splittings data directly. Through a steady but
incremental reduction of the error bars on the frequencies and splittings, through
observation over longer periods of time and through better resolution of future
observations from the Solar Dynamics Observatory satellite, we can expect the
precision with which the dynamical and structural properties of the tachocline
region are determined to improve. It must also be admitted that optimal use has
not yet been made of the observations in hand. In particular, the observations are
typically analysed in chunks of two to three months’ data: for low-frequency modes
with lifetimes longer than this, some improvement in the determination of their
frequencies and splittings can be expected from making coherent peak-fitting of
their spectra from longer observational time series.

Resolution might also be improved by extending the mode-sets currently used
in the analyses reported here. Lower-frequency modes, although they have poorer
intrinsic resolving power because of their larger vertical wavelengths when com-
pared to higher-frequency modes, also live longer and have smaller linewidths
and hence their frequencies can be determined more precisely. Higher-frequency
modes, on the other hand, though more poorly determined, have higher resolving
power. Extending the set of modes used to both lower and higher frequencies may
therefore yield improvements in the seismic probing of the tachocline region.

Given that the tachocline is not properly resolved radially by inversions, there is
little prospect in the foreseeable future that the shape of its radial variation can be
determined from inversion. Similarly, the finite resolution of the inversions in the
latitudinal direction means that one could not tell if the radial profile of the tacho-
cline varied as a function of latitude on scales smaller than the spatial extent of the
averaging kernels, for example if there were such locations where the rotation rate
was a discontinuous function of radius. However, if different candidate theoretical
models for the tachocline shape were forthcoming, these might be discriminated
using forward modelling to the observed frequency splittings.

In the not-too-distant future we may expect time-distance measurements between
points on the surface sufficiently far apart that the ray connecting them extends to
the tachocline and beneath it. Using, say, the Solar Orbiter satellite and the Earth
as two vantage points, such measurements will enable travel times to be measured
along paths that may provide some longitudinal resolution of the tachocline. Thus it
may become possible to look for variations of low azimuthal order in the dynamical
and structural properties of the tachocline region.
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Hydrodynamic models





4

Hydrodynamic models of the tachocline

Jean-Paul Zahn

I recall here how latitude-dependent rotation imposed by the solar convection zone
on the top of the radiation zone would burrow deep into the interior, owing to thermal
diffusion, in any laminar and purely hydrodynamic model. Since helioseismology
has shown that this differential rotation remains confined in a thin boundary layer,
the tachocline, it means that the radiative spread is inhibited by another physical
process; this process may be purely hydrodynamic (non-MHD), which is the scope
of this chapter, or it may involve magnetic fields: those are considered by Garaud
in Chapter 7 of this book. I will show that the confinement of the tachocline can be
achieved through an anisotropic turbulent viscosity, whose cause and plausibility are
discussed. Other hydrodynamic mechanisms are examined, such as internal gravity
waves, which may also play a role in the tachocline. An alternative possibility is that
the tachocline is fully embedded in the layer of penetrative convection, in which
case no differential rotation would be applied on to the radiation zone.

4.1 Introduction

In 1990, I was invited with Ed Spiegel to give the principal lectures at the Woods
Hole summer school. The theme of that year, ‘Stellar Fluid Dynamics’, was covered
extensively by Ed, and I chose to focus on problems related to the rotation of stars.
My last lecture, as it happened, was devoted to ‘flow between the Sun’s convection
and radiation zones and transport of chemicals’. Helioseismology had just shown
that the whole solar convection zone was rotating differentially, much as observed
at the surface, whereas the radiation zone seemed to rotate uniformly (Brown et al.

1989). The transition between these two regimes occurred in a thin layer, too thin to
be resolved by the available data, and the situation has not changed much since (see
Chapter 3 by Christensen-Dalsgaard & Thompson in this book). It thus appeared
that the turbulent convection zone was applying a differential rotation on the stably

The Solar Tachocline, D. W. Hughes, R. Rosner and N. O. Weiss.
Published by Cambridge University Press. © Cambridge University Press 2007.
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stratified radiation zone, and that this would certainly drive a meridional flow in
the boundary layer.

My lecture captured some properties of what we later called the tachocline, but it
did not address the fundamental question, which we are still striving to answer today:

‘Why is the tachocline so thin?’

Ed had a long experience in related matters – he had even coined a name for a similar
boundary layer he encountered when he was engaged in the hot debate concerning
the solar spin-down (Spiegel 1972). We joined our efforts and shared the pleasure
of exploring this new problem: the result was our paper on ‘The Solar Tachocline’
(Spiegel & Zahn 1992), which I shall discuss next. By tachocline we meant that
shallow layer, revealed through helioseismology (Brown et al. 1989), which con-
nects the two regimes of differential rotation above and quasi-uniform rotation
below. Douglas Gough kindly agreed to read our manuscript, and he suggested that
the original name (tachycline) be changed into what it is now. The tachocline is
somewhat similar to the ocean thermocline, a layer where it is the temperature that
changes rapidly with depth.

4.2 Setting the stage

Experts in helioseismology still debate whether the tachocline is located entirely in
the convection zone, or in the radiation zone, or whether it straddles the boundary
between the two. One reason is that the location of the tachocline can be determined
only within 1% or 2%, owing to the limited resolution of the inversion of the rotation
profile. The derivation of the temperature profile is much more precise, but there one
faces another problem: because of convective penetration and overshoot, there is no
sharp transition between the superadiabatic convective region and the subadiabatic
radiative interior below, which would leave a clear seismic signature.

Everybody agrees that one of the main weaknesses of stellar physics remains our
poor description of thermal convection. The widely used mixing-length treatment
permits us to construct models that represent fairly well the gross properties of stars,
but it fails when one attempts to apply it to more subtle features, such as convective
penetration.

The situation is rapidly changing, however. Significant progress has been
achieved through numerical simulations of increasingly ‘turbulent’ convection in a
stratified medium. These have shown that compressible convection is highly inter-
mittent, displaying strong, long-lived, downwards-directed flows, which contrast
with the slower upward motions (e.g. Hurlburt et al. 1986; Cattaneo et al. 1991;
Nordlund et al. 1992; Brummell et al. 1996). These coherent structures are called
plumes, by analogy with those observed in the Earth’s atmosphere. They originate
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Figure 4.1. Schematic structure of the base of a convective envelope as a function
of depth z: A is the superadiabatic convection zone, B is the subadiabatic penetra-
tion region, C is the radiative adjustment layer, and D is the radiative interior (after
Zahn 1991; courtesy A&A).

in the upper boundary layer, where they are initiated by the strong temperature
and density fluctuations, and where they have been detected in the Sun through
time–distance tomography (D’Silva et al. 1996; Duvall et al. 1997).

When these plumes reach the bottom of the unstable region, they still possess a
finite velocity, which enables them to penetrate into the stable, subadiabatic interior,
where they establish a nearly adiabatic stratification by releasing their excess of
heat when they come to rest. A first attempt to estimate the extent of penetration of
such plumes was made by Schmitt et al. (1984). They found empirically that the
penetration depth varies as f 1/2V3/2, where V is the vertical velocity of the plumes
when they enter the stable domain and f their filling factor. This scaling can be
easily explained (Zahn 1991).

The stratification at the base of the convective envelope is sketched in Figure 4.1.
The letter A designates the unstable region, where the temperature gradient is
maintained close to adiabatic by the convective motions. One thus assumes that the
radiative leaks are negligible compared to the advective transport of heat, which is
the case when the Péclet number is much larger than unity:

Pec = vℓ

K
≫ 1, K = χ

ρcp

, (4.1)
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where K is the thermal diffusivity and χ is the radiative conductivity; v and ℓ are
the velocity and size characterizing the convective motions, i.e. here the central
velocity V and the width b of the plumes. At the base of the solar convection zone,
Pec ≈ 106.

Owing to the steady increase with depth of the radiative conductivity χ , the
radiative flux Frad = χ(dT/dz)ad rises until it equals the total flux Ftotal at the
depth z = zi, where also the radiative gradient equals the adiabatic gradient:
(dT/dz)rad = (dT/dz)ad. If there were no convective penetration, this would be
the edge of the convection zone, as predicted by the Schwarzschild criterion, and
the temperature gradient would thereafter decrease as dT/dz = Ftotal/χ . But the
plumes penetrate into the stable region B and they render it nearly adiabatic over
some distance dpen, while being decelerated by the buoyancy force. When the Péclet
number has dropped below unity, the temperature gradient settles from adiabatic to
radiative in a thermal boundary layer (C).

Since the penetration depth is rather small, one may simplify the problem by
ignoring the variation with depth of most quantities (density, width of the plume,
etc.), and by neglecting the kinetic energy flux and the turbulent entrainment (or
detrainment). One keeps of course the variation with z of the conductivity; in the
vicinity of zi, the radiative flux is approximated by

Frad = χ

(
dT

dz

)

ad
= Ftotal

[
1 +

(
dχ

dz

)

i

(z − zi)

]
. (4.2)

Therefore the convective flux varies as

Fconv = −Ftotal

(
dχ

dz

)

i

(z − zi) . (4.3)

This enthalpy flux may be expressed in terms of the vertical velocity V and of the
temperature contrast �T in the plumes:

Fconv = −f ρcpV�T , (4.4)

where we have introduced the filling factor f of the plumes, defined as the fractional
area covered by them.

To estimate the penetration depth, we follow the plumes from z = zi, where their
velocity is Vi, until they stop at z = zi + dpen. Their deceleration is described to
lowest order by

1

2

dV2

dz
= g

�ρ

ρ
= −g

�T

T
. (4.5)
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After elimination of �T with (4.4), the integration of (4.5) yields the following
expression for the penetration depth dpen:

d2
pen = 3

5
HpHχ

{
f

ρV3
i

Ftotal

}
= 3

5
HpHχQ, (4.6)

where Hp is the scale-height of the pressure and Hχ that of the radiative conductivity.
This is the scaling which was obtained empirically by Schmitt et al. (1984).

The term Q in curly brackets is determined by the dynamics in the convection
zone; probably it does not depend much on its size, provided it is large enough,
compared to the scale-height. In the mixing-length treatment, Q = (1/10) 	/Hp in
the bulk of the convection zone. This value, with 	/Hp ≈ 1.5 and Hχ ≈ Hp/2,
would yield a penetration depth of the order of 1/5 of the pressure scale-height at
the base of the solar convection zone.

However, the vertical velocity must vary from plume to plume, and so also does
the extent of their penetration. Therefore the horizontal average of the temper-
ature gradient is probably a smooth function of depth, changing gradually from
adiabatic to radiative, a property which is not captured by the crude model above,
which predicts a jump in the temperature gradient that depends on the amount of
penetration.

What we have called convective penetration is that part of the excursion of
convective motions into the stable region where they enforce an almost adiabatic
stratification (∇ad −∇ ≪ 1). It corresponds to region B in Figure 4.1, in which the
Péclet number is substantially larger than unity (we recall that at the base of the
solar convection zone, Pec ≈ 106). In comparison, the thermal adjustment layer C
is extremely thin: about 1 km in the Sun; it is this layer that we suggest should be
called overshoot.

This is not just a semantic point. For lack of spatial resolution, present day
simulations are unable to achieve a Péclet number which would realistically describe
convective penetration. Even in the very-high-resolution calculations performed by
Brummell et al. (2002) heat leaks too fast from the plumes: this was pointed out
by Rempel (2004), who recently developed a more sophisticated version of Zahn’s
semi-analytical model. The two-dimensional simulations by Rogers & Glatzmaier
(2005) seem to suffer from the same shortcoming. Thus we will have to wait until
the numerical simulations reach sufficient resolution to represent this convective
penetration in a realistic way.

4.3 The tachocline: governing equations and simplifying assumptions

From now on, I shall ignore the possible complexity of that transition layer, and
I shall assume that some amount of differential rotation is applied on to the top
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of the radiation zone, in other words that at least part of the tachocline is stably
stratified, with negligible transport of heat through penetrative convection. There,
the dynamics is governed by the continuity equation

∂ρ

∂t
+ ∇ · (ρV) = 0, (4.7)

the momentum equation

ρ

[
∂V

∂t
+ (V · ∇)V + 2� × V

]
= −∇P + ρg + ∇ · T, (4.8)

and by the heat equation

ρT
∂S

∂t
+ ρTV · ∇S = ∇ · (χ∇T), (4.9)

where we have deliberately ignored the possible effect of a magnetic field. The usual
notations have been taken for density ρ, pressure P, temperature T , specific entropy

S and gravity g; χ is the radiative conductivity and T is the viscous stress tensor. We
neglect the time variation of the angular velocity �, which is that of the reference
frame, and thus we do not address here the spin-down problem. Using spherical
coordinates (r, θ , φ) centred on the star, we look only for axisymmetric solutions;
then the velocity field contains both a meridional and an azimuthal component:
V = (u, v, r sin θ �̂), where �̂(r, θ) is the differential rotation.

We linearize the governing equations by assuming that the perturbations of
pressure, etc. are small; thus P(r, θ , t) → P(r, t) + P̂(r, θ , t), and likewise for tem-
perature and entropy. We use the perfect gas equation of state P̂/P = ρ̂/ρ + T̂/T ,
and assume that the velocity |V| is small compared to the rotational velocity r�. A

fortiori |V| is then small compared to the sound speed, and we may use the anelastic
approximation; we thus neglect the time derivative of ρ in Equation (4.7), which
allows us to write the mass flux in terms of a stream function �̂(r, θ , t):

r2ρu = ∂�̂

∂µ
, r(1 − µ2)

1
2 ρv = ∂�̂

∂r
, (4.10)

with µ = cos θ . Furthermore, we assume that the centrifugal force is small
compared to gravity, so that we may neglect the oblateness of the level surfaces.

Our final assumption is that the layer we are dealing with is very thin compared
to its radius, and thus that the vertical variation scale of all perturbation functions
(P̂, T̂ , �̂) is much shorter than both the radius r and the scale-height of the structure
functions (P, ρ, T) which describe the unperturbed model.
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In this thin-layer limit, the governing equations take the following form:

− 1

ρ

∂P̂

∂r
+ g

T̂

T
= 0, (4.11)

− 2�µr�̂ = 1

ρr

∂P̂

∂µ
, (4.12)

∂�̂

∂t
+ 2�µ

(1 − µ2)

1

ρr2

∂�̂

∂r
= ν

∂2�̂

∂r2
, (4.13)

∂T̂

∂t
+ N2

g

T

ρr2

∂�̂

∂µ
= K

∂2T̂

∂r2
. (4.14)

We have introduced here the viscosity ν, the thermal diffusivity K = χ/ρCp and
the square of the buoyancy frequency, N2 = (g/Hp)(∇ad − ∇), where Hp is the
pressure scale-height and where ∇ = ∂ ln T/∂ ln P designates the logarithmic tem-
perature gradient. Note that we have filtered out the fastest times, which characterize
the hydrostatic and baroclinic (or geostrophic) adjustments, and thus that we have
eliminated the gravity and inertial waves.

To integrate this system one has to impose four boundary conditions. One
specifies the latitude-dependent angular velocity �̂(θ) which is applied by the
convection zone at r = rcz. Another imposes the continuity of the vertical gradient
of �̂(r, θ), which ensures the continuity of the temperature fluctuation T̂ ; since
according to helioseismology the differential rotation varies little with depth in the
convection zone, we may assume that ∂r�̂(r, θ) = 0 at r = rcz. Finally the differ-
ential rotation must vanish deep enough in the star: hence �̂, ∂r�̂ → 0 as r → 0.
The top boundary is permeable to the meridional flow; therefore no Ekman layer
is required to match there the interior solution.

4.4 Laminar penetration

The differential system above admits solutions which separate in radius and
colatitude, if the perturbation functions are expanded as

P̂(r, µ, t) =
∑

i>0

P̃i(r, t)fi(µ), (4.15)

and likewise for T̂ , while

�̂ =
∑

i>0

�̃i(r, t)

∫ µ

0
fi(µ

′)dµ′, (4.16)
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and

µ�̂ =
∑

i>0

�̃i(r, t)
dfi(µ)

dµ
. (4.17)

One readily finds that the horizontal functions fi(µ) obey the second-order
differential equation

d

dµ

[
(1 − µ2)

µ2

dfi

dµ

]
+ λ2

i fi = 0. (4.18)

The solutions obtained by imposing that they be regular at the poles µ = ±1
constitute a set of orthogonal eigenfunctions with l nodes in µ, much like the
Legendre functions.

The mode amplitudes are solutions of the following differential system:

− 1

ρ

∂P̃i

∂r
+ g

T̃i

T
= 0, (4.19)

− 2ρr2��̃i = P̃i, (4.20)

∂�̃i

∂t
− 2�

λ2
i ρr2

cz

∂�̃i

∂r
= ν

∂2�̃i

∂r2
, (4.21)

∂T̃i

∂t
+ N2

g

T

ρr2
cz

�̃i = K
∂2T̃

∂r2
. (4.22)

Let us examine the solutions of this system, starting with an unperturbed interior
and applying the differential rotation �̂ =

∑
i �̃i(rcz)µ

−1dfi/dµ at t = 0 on the
top of the radiation zone. After a quick dynamical adjustment, geostrophic balance
is achieved: from Equations (4.19) and (4.20) one has

T̃i

T
= −2

(
r2

cz�
2

g

)
∂

∂r

(
�̃i

�

)
, (4.23)

a relation which tightly couples the temperature perturbation with the differential
rotation. Likewise, before the effects of diffusion are felt, the vertical advection of
heat is linked to the horizontal advection of angular momentum, as can be seen by
eliminating �̃i between (4.21) and (4.22), and integrating in time:

�̃i

�
= − 2

λ2
i

g

N2

∂

∂r

(
T̃i

T

)
. (4.24)

These two equations, (4.23) and (4.24), are readily combined and solved to yield a
boundary layer whose scale-height is the Rossby height

hRo = rcz

λi

(
2�

N

)
. (4.25)
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This layer is well-known in stratified spin-down theory and before that in the
theory of stratospheric disturbances (Rossby 1938; Holton 1965; Sakurai 1966;
Walin 1969; Clark et al. 1971; Spiegel 1972): over its range rotation overpowers
stratification to locally establish a Taylor–Proudman regime. With the parameters
characterizing the present Sun hRo ≈ 1000 km, a value which was larger in the
past, when the Sun was a fast rotator. However, this layer plays little role in the
present problem: it is extremely short-lived because it does not fulfil the boundary
conditions, and promptly thermal and viscous diffusion begin to operate.

By some straightforward eliminations, the full system (4.19)–(4.22) can be cast
into the following evolution equation for the modal amplitudes of the differential
rotation:

[
∂

∂t
− ν

∂2

∂r2

]
�̃i −

(
2�

N

)2 (
rcz

λi

)2 [
∂

∂t
− K

∂2

∂r2

]
∂2�̃i

∂r2
= 0. (4.26)

It describes how a differential rotation which is imposed at the top of the radiation
zone (r = rcz) propagates inwards. After a rapid thermal relaxation this equation
reduces to

∂�̃i

∂t
+
(

2�

N

)2 (
rcz

λi

)2

K
∂4�̃i

∂r4
− ν

∂2�̃i

∂r2
= 0. (4.27)

In the Sun, owing to the smallness of the Prandtl number (ν/K ≈ 10−6), the spread
of the tachocline is governed mainly by thermal diffusion – or rather by ‘hyper-
diffusion’.1 To understand this process, we must keep in mind that the differential
rotation and the temperature perturbation are coupled through the geostrophic bal-
ance (4.23). If a latitude-dependent rotation is applied at the top of the radiation
zone, the temperature fluctuation associated with it tends to spread inwards through
radiative diffusion, as allowed by Equation (4.22). In contrast, since the viscosity is
very low, the differential rotation can be modified only by advection, hence through
a meridional circulation. This circulation works against the diffusion of heat, and
this is why the whole process is turned into a hyper-diffusion, which at long time
operates much slower than diffusion: the spread evolves as t1/4.

Taking into account that the Sun was rotating faster in the past, by assuming for
instance that the rotation rate followed the law �(t) ∝ t−1/2 (Skumanich 1972),
one can estimate that the tachocline would at present stretch down to r = 0.3R⊙.2

Since such a rotation profile is clearly ruled out by acoustic sounding (Kosovichev
1996; Basu 1997; Antia et al. 1998; Charbonneau et al. 1999a,b; Corbard et al.

1 This is not the case in most numerical simulations so far, where viscous diffusion dominates.
2 Gilman & Miesch (2004) reach a different conclusion: according to them, an upper limit to the extent of

penetration is given by the buoyancy-diffusion layer, whose thickness is derived from their Equation (5) by
equating the first and third terms. Actually, the dominant terms are the second and third, and it can be shown
that they do not allow for a stationary solution that satisfies the boundary conditions imposed on the angular
velocity. This and related points are discussed in detail by M. E. McIntyre in Chapter 8 of this volume.
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1999), we must conclude that another physical process – at least – interferes with
the radiative diffusion of the tachocline.

Thus a model of the tachocline can claim to be consistent only if it identifies that
process, and if it proves its efficacy in preventing the spread of the tachocline.

4.5 A hydrodynamic remedy against the spread of the tachocline:

anisotropic turbulence

The mechanism that was invoked in Spiegel & Zahn (1992) to account for the thin-
ness of the tachocline was a mild, but strongly anisotropic, turbulent viscosity, such
as one may expect from shear instabilities generated by the latitudinal differential
rotation in this stratified medium (its plausibility will be discussed later on). If the
degree of anisotropy is high enough, we may neglect the vertical diffusion of angu-
lar momentum compared to its horizontal diffusion, and the equation describing
the transport of angular momentum becomes, instead of Equation (4.13):

ρr2(1 − µ2)
∂�̂

∂t
+ 2�µ

∂�̂

∂r
= ρ

∂

∂µ

[
νh(1 − µ2)2 ∂�̂

∂µ

]
, (4.28)

where νh is the horizontal component of the turbulent viscosity. The problem no
longer separates into (r, t) and µ, as it did in the former case, except in the stationary
regime, where one can again expand the perturbations as in Equations (4.15), (4.16)
and (4.17), but where the horizontal functions Fi now are the solutions of the
following fourth-order differential equation:

d

dµ

{
1

µ

d

dµ

[
(1 − µ2)2 d

dµ

(
1

µ

dFi

dµ

)]}
− (µi)

4Fi = 0. (4.29)

With regularity conditions applied at the poles µ = ±1, these eigenfunctions form
an orthogonal set, and (µi)

4 ≥ 0.
The modal amplitude of the differential rotation here obeys the fourth-order

differential equation:
(

2�

N

)2
K

νh

(
rcz

µi

)4
∂4�̃i

∂r4
+ �̃i = 0. (4.30)

It is the lowest-order mode (i = 4) that penetrates the deepest, and its first node
may be taken to define the thickness of the tachocline:

h ≈ rcz

(
�

N

)1/2 (
K

νh

)1/4

. (4.31)

This result was established in the thin-layer limit; it was later confirmed
through complete two-dimensional calculations performed by Elliott (1997) – see
Figure 4.2.
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Figure 4.2. Stationary tachocline model, obtained through anisotropic turbulent
viscosity, with νh/νv = 1000 and νh = 5 × 104 cm2 s−1 (Elliott 1997, courtesy
A&A). The left panel displays the angular velocity, the right panel a sample of
meridional streamlines.

We thus conclude that anisotropic turbulence is capable of halting the spread
of the tachocline, by smoothing out the differential rotation in latitude. If this
mechanism operates in the present Sun, the horizontal component of the turbulent
viscosity must exceed νh ≈ 105 cm2 s−1 to ensure a tachocline thickness of less than
5%, which appears to be the upper limit derived from helioseismology (Corbard
et al. 1999).

One may be tempted also to invoke a stable composition gradient as another
remedy against the spread; such a gradient certainly exists below the convection
zone, owing to the gravitational settling of helium (Noerdlinger & Arigo 1980;
Stringfellow et al. 1983). At closer inspection, however, this gradient would
contribute to the spread by adding a diffusivity

Dµ = K

(
g

rzcN2

)
d ln µ

d ln r
, (4.32)

a somewhat paradoxical result which has been derived in Spiegel & Zahn (1992).

4.6 Which turbulence?

In our 1992 paper, Spiegel and I declared from the onset that we didn’t want to
‘go into the details of the linear and nonlinear instability mechanisms that may
produce the turbulence, except to remark that it is to be expected on account of
the large Reynolds number of the horizontal shear’. This statement was admittedly
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somewhat cavalier, and our assumption, that of an anisotropic turbulence acting such
as to restore uniform rotation, has since come under criticism – quite deservedly.

One objection raised against our model was that the tachocline may not be tur-
bulent at all. The linear stability of a latitude-dependent rotation profile has been
widely discussed, starting with Watson (1981), who derived a criterion similar
to Rayleigh’s famous inflection point theorem, for horizontal, two-dimensional
perturbations, in spherical geometry. He applied it to a rotation law of the form
� = s0 − s2µ

2, and concluded that it would be unstable provided the differ-
ence of angular velocity between equator and pole exceeds 29%. But later it was
found that the stability threshold is very sensitive to the presence of a quartic
term: � = s0 − s2µ

2 − s4µ
4 (Dziembowski & Kosovichev 1987; Charbonneau

et al. 1999a,b). Thus, depending on the results of helioseismic inversions, the solar
profile turned out to be either stable (Charbonneau et al. 1999a,b) or marginally
unstable (Garaud 2001). The investigation was extended by Dikpati & Gilman
(2001) to three-dimensional perturbations, in the shallow-water approximation;
they confirmed the two-dimensional results in the presence of strong stratification,
and discovered a new type of unstable mode in the case of weak stratification.
Very recently Arlt et al. (2005) apparently settled the case: considering unrestricted
three-dimensional perturbations, they showed that the pole-equator difference of
angular velocity can be as large as 52% before instability sets in.

But such turbulence could well be caused by nonlinear processes. Indeed, rotat-
ing shear flows that are linearly stable are observed to become turbulent in the
laboratory, above a critical Reynolds number which is largely exceeded in the Sun
(see Richard & Zahn 1999; Dubrulle et al. 2005). The question is thus less that
of which instability causes the turbulence, rather than what are the properties of
developed turbulence in stratified rotating shearing flows.

A crucial assumption made in the Spiegel–Zahn model is that the turbulence
is anisotropic, and that it acts to suppress the latitudinal shear. The postulated
anisotropy seems plausible, given the strong stratification in the solar radiation
zone, and the fact that no restoring force opposes the horizontal displacements;
such turbulence was conjectured already in Zahn (1975). But the second property
is far from guaranteed, although it is displayed in laboratory flows, as we shall
recall below. Michael McIntyre (1994, 2003b) discussed the question in detail,
based on his experience of the Earth’s stratosphere and on theories of potential
vorticity inversion: he argues that two-dimensional layered turbulence tends to
transport potential vorticity, and that its effect would tend to be anti-frictional, as
observed in the Earth’s atmosphere, rather than eddy-viscosity like, as assumed in
Equation (4.28) (see his Chapter 8 in this book).

How can one reconcile the behaviour of the laboratory experiment with that of
the Earth’s atmosphere? Presumably the determining factor is what produces the
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Figure 4.3. Angular velocity profiles in a Couette–Taylor experiment, with the
axial distance as abscissa (in metres). The inner cylinder is at rest, the Reynolds
number characterizing the angular velocity �0 of the outer cylinder is 7×104. The
laminar (linearly stable) profile is drawn as a continuous line, the dotted line joins
the experimental points. The effect of turbulence is to reduce the angular velocity
gradient, thus to suppress the cause of turbulence, which here is the shear (Richard
2001).

turbulence. If it is the latitudinal shear, in other words the barotropic instability, tur-
bulence will act to suppress its cause, namely the differential rotation. This property
is observed in the classical Couette–Taylor experiment (cf. Richard & Zahn 1999).
When the outer cylinder is rotating and the inner is at rest, the angular velocity profile
is linearly stable; then turbulence is caused by nonlinear shear instabilities, which
are still not well understood yet, but which clearly tend to reduce the shear, and hence
to flatten the angular velocity profile (see Figure 4.3). On the contrary, when the
inner cylinder is rotating and the outer is at rest, turbulence results from the Rayleigh
instability, which occurs when angular momentum decreases outwards; turbulence
acts then to smooth out the angular momentum profile (at least at a moderate Reyn-
olds number – fully developed turbulence tends again to suppress the shear). In
both cases, the turbulent stresses are tuned to suppress the cause of turbulence.

However, it is quite possible that the turbulence in the tachocline is not due to
a local instability, but that it is linked to the much more vigorous turbulence in
the convection zone. This aspect has been explored by Mark Miesch (2003), with
global-scale, three-dimensional simulations of stably stratified turbulence driven
by penetrative convection, with imposed differential rotation. They are described
by him in Chapter 5 of this book, and it suffices here to give the salient results. The
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Reynolds stresses are such that they carry momentum poleward and outward, thus
implying diffusive latitudinal transport and anti-diffusive vertical transport, much
like in the Spiegel–Zahn model. Surprisingly, this is achieved with mildly aniso-
tropic turbulence, and it is not the differential rotation which causes the turbulence.

4.7 Ventilation time and mixing

Once the stationary regime is established, the ventilation time of the tachocline
through its meridional flow is given by

1

tvent
≈ u

h
≈ K

r2

(
�

N

)2 (rcz

h

)4 δ�

�
, (4.33)

where δ� measures the differential rotation in latitude. This expression makes no
reference to the process which opposes the spread of the tachocline, but it does
so implicitly, through the value of the tachocline thickness h. In the Sun, taking
h/rcz = 0.05, �/N = 10−4 and δ�/� = 0.1, we estimate the ventilation time to
be tvent ≈ 2.5 × 106 yr.

This time is very short compared to the nuclear evolution time, and it conveys the
impression that the tachocline is very well mixed. In fact, this property was used
by Elliott (1997) to calculate the helium profile below the solar convection zone,
which in his model resulted from the competition between gravitational settling
and advection by the tachocline circulation. In their discussion of lithium depletion,
Elliott & Gough (1999) again assumed that the tachocline is completely mixed.

However, this is not necessarily the case. In the presence of anisotropic turbu-
lence the advection of chemicals is severely eroded by the horizontal diffusion,
and it is turned into a weak vertical diffusion. This was shown by Chaboyer &
Zahn (1992), who derived the following expression for the resulting effective dif-
fusivity, when the vertical circulation velocity is expanded in spherical functions
u =

∑
Un(r)Pn(cos θ):

Deff = r2

Dh

∑

n

U2
n (r)

n(n + 1)(2n + 1)
(4.34)

(Dh ≈ νh is the horizontal turbulent diffusivity). Since the dominant term in the
tachocline is the octupolar component n = 4, the time characterizing this effective
diffusion is substantially longer than the ventilation time:

tdiff

tvent
= 180

(
δ�

�

)−1

. (4.35)

Even so, in spite of its reduced efficiency due to the strong horizontal transport, mix-
ing in the tachocline contributes to shaping the helium distribution and to depleting
lithium. This was demonstrated by Brun et al. (1999, 2002); the result is displayed
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Figure 4.4. Radial profiles of the 7Li and 9Be composition, normalized to their
initial values, for a model of the present Sun including only microscopic diffu-
sion (solid line) and for two models where macroscopic mixing has been added,
according to Spiegel & Zahn’s model (Brun et al. 1999, courtesy ApJ).

in Figure 4.4, where it is shown that although lithium is depleted by such local
mixing, beryllium is preserved.

4.8 Internal gravity waves

Internal gravity waves are certainly emitted at the base of the convection zone
and, since they transport angular momentum, they may well play a role in the
dynamics of the tachocline. Owing to radiative damping, these waves deposit in the
tachocline some of their momentum flux, whose sign depends on the vertical shear,
and therefore on latitude. The effect of such waves has been described by Fritts et al.

(1998), assuming that the mean shear was maintained by an extra mechanism, which
they did not mention or identify. In other words, uniform rotation was imposed

at some arbitrary depth. Under those conditions, the body force exerted by the
waves induces a stationary meridional circulation, whose ventilation time is of order
105 yr, thus shorter than that driven by thermal hyper-diffusion, which has been
discussed above. This suggests that internal gravity waves may indeed contribute
to the dynamics of the tachocline, although that model cannot claim to be self-
consistent, as it stands, since it ignores the feedback of the waves on the differential
rotation and since it lacks the ingredient which prevents the spread of the tachocline.
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As Gough & McIntyre (1998) reminded us, geophysicists know well that
broadband internal waves can act as another anti-frictional process, tending to
increase the ambient shear, because prograde waves (in the sense of mean relative
velocity) are more damped than retrograde waves, since they are Doppler-shifted to
lower frequency. Once the flow becomes shear-unstable, turbulence sets in to sup-
press the shear, and a new shear layer builds up, which is of opposite direction, and
so on, leading to periodic oscillations. This phenomenon is observed in the Earth’s
atmosphere, where it is called the quasi-biennial oscillation (QBO; see McIntyre
2003b).

Such an oscillation presumably operates below the solar convection zone, and
thus in the tachocline. It has been described by Kim & MacGregor (2001), who
considered a pair of waves of the same frequency (one prograde and one retrograde).
They found that the behaviour of the shear layer depends on the value of the (turbu-
lent) viscosity: at high enough viscosity, the shear is stationary; as the viscosity is
lowered an oscillation appears, first with a single period, next quasi-periodic, etc.,
until the regime is chaotic.

Similar conclusions were reached by Talon et al. (2002), who included a whole
(albeit sparse) spectrum of waves. The chosen parameters (frequencies, turbulent
viscosity) were meant to represent the solar conditions. The rotation profile was
then found to oscillate periodically around a mean value, in a very thin shear layer,
owing to the damping of the high-order, short-period waves. This shear layer is
transparent to the low-order, long-period waves, and these are able to extract or
to deposit angular momentum in the core of the Sun, depending on whether the
mean angular velocity increases or decreases just below the convection zone, and
hence in the oscillating shear layer. More recently, Charbonnel & Talon (2005; see
also Talon & Charbonnel 2005) succeeded in demonstrating that these low-period
internal waves are efficient enough to enforce uniform rotation in the solar radiative
interior, when they are coupled with thermally driven meridional circulation and
shear induced turbulence.

Let us stress, however, that both teams ignored the differential rotation in latitude,
and considered only the radial dependence of the angular velocity; therefore these
works are hardly relevant to the dynamics of the tachocline as such. In particular,
they give no clue on whether internal gravity waves are able or not to confine the
tachocline.

4.9 Conclusion

The editors of this book assigned me the task of discussing the purely hydro-
dynamic (non-MHD) models of the tachocline. Although I proposed the first of
such models with Ed Spiegel, this does not mean that we necessarily believe that
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the ultimate model of the tachocline will be purely hydrodynamical. But it ought
to be self-consistent, and therefore it must explain how the radiative spread of the
tachocline is prevented. What we have shown is that, in the strict frame of hydro-
dynamics, this can be achieved through anisotropic turbulence, which could be due
either to a local shear instability or to the convection zone above.

We know well that the tachocline could also be confined by magnetic fields, either
by a fossil field anchored in the deep interior, as described by Gough & McIntyre
(1998), or by the cyclic dynamo field imposed from above, as was suggested recently
by Forgács-Dajka & Petrovay (2002). These possibilities are discussed by Pascale
Garaud in Chapter 7 of this volume.

In our model, as in most models so far, the convection zone plays a passive role:
it is just invoked to provide the upper boundary conditions for the tachocline, i.e. to
enforce the latitude dependent rotation. However, as McIntyre (2003a,b) points out,
the tachocline circulation could well be driven by turbulent stresses in the convection
zone. He goes even further in claiming that, ‘in order to predict the Sun’s differential
rotation in the convection zone, even qualitatively, a convection zone model must
be fully coupled with a tachocline model’. This has been undertaken by Miesch
(2003, Miesch et al. 2006; see also his Chapter 5 in this book), and the picture he
draws is that of a tachocline fully embedded in the layer of penetrative convection.

Obviously, the time has come where we have to go beyond the semi-analytical
models used in the first exploration of the problem. Its solution probably depends on
the high-resolution three-dimensional simulations which are now being performed
by several teams.

Thus I wouldn’t be too surprised if our 1992 model were quoted as merely a
curiosity, in the next meeting devoted to the solar tachocline.
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Turbulence in the tachocline

Mark S. Miesch

Helioseismic inversions suggest that the tachocline straddles the base of the convec-
tion zone, incorporating the overshoot region and extending into the stably stratified
radiative interior. Thus, the upper tachocline is dominated by penetrative convec-
tion while the lower tachocline is a stably stratified shear flow under the influence
of rotation and magnetism. We review the nature of the turbulence that is likely to
exist in these two disparate regions, focusing on the interaction between turbulence
and differential rotation. It is argued that turbulent angular momentum transport
is likely to be poleward throughout the tachocline, tending to suppress the latitud-
inal differential rotation maintained by turbulent stresses in the overlying convective
envelope. Meanwhile, vertical angular momentum transport in the lower tachocline
may be anti-diffusive, tending to amplify the vertical shear. The turbulent alignment
of convective plumes may also drive an equatorward meridional circulation in the
upper tachocline where it overlaps with the overshoot region.

5.1 Introduction

The solar tachocline lies near the base of the solar convection zone. This is a
well-known result of course, but it is essential to establish precisely what near

means in this context. Helioseismic structure inversions reveal a stiff transition
between the nearly adiabatic stratification of the convection zone and the strongly
subadiabatic stratification of the radiative interior, mediated by only a narrow region
of convective overshoot. As others have argued in this volume, tachocline dynamics
is very sensitive to where the rotational shear occurs relative to this structural
transition.

Rotational inversions are subject to artificial smoothing arising from the finite
width of the inversion kernels so they may overestimate the extent of the tachocline.
Still, recent estimates do suggest that the tachocline overlaps with the overshoot
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region and may extend further into the convection zone at high latitudes. As an
illustration we consider the recent work of Charbonneau et al. (1999). By using
several inversion techniques, they estimated the location rt and width �t (defined
in terms of an error function parameterization) to be rt/R⊙ = 0.693 ± 0.002 and
�t/R⊙ = 0.039 ± 0.013 at the equator and rt/R⊙ = 0.717 ± 0.003 and �t/R⊙ =
0.042±0.013 at a latitude of 60◦. Thus, the tachocline appears to be prolate in shape
and somewhat wider at high latitudes. Similar results were reported by Basu &
Antia (2001) who furthermore investigated the base of the convection zone rb by
using structure inversions. According to their estimates, rb = 0.7134±0.0002 with
no detectable latitudinal variation and no significant evidence for overshoot. This
is consistent with earlier estimates of rb by Christensen-Dalsgaard et al. (1991).
For further elaboration on these and other helioseismic results, see Chapter 3 by
Christensen-Dalsgaard & Thompson in this volume.

Thus the tachocline apparently spans a diverse range of physical conditions. The
upper portion overlaps with the overshoot region and possibly with the convection
zone. Motions are highly turbulent and the dynamical timescales are weeks to
months. Here be dinosaurs. By contrast, vertical motions in the lower tachocline
are suppressed by the strongly subadiabatic stratification. However, intermittent or
sustained turbulence may still exist, driven by breaking gravity waves, magnetic
buoyancy, and shear instabilities (see Chapter 10 by Gilman & Cally and Chapter 11
by Hughes).

In this chapter we’ll discuss the distinct nature of turbulence in the upper and
lower tachocline. Since rotational inversions currently provide the most reliable
observational insight into tachocline dynamics, we’ll focus throughout on the
interaction between turbulence and differential rotation.

5.2 The upper tachocline: penetrative convection

5.2.1 Turbulent plumes

In the past few decades, numerical simulations and laboratory experiments have
demonstrated conclusively that plumes are the dominant coherent structures in tur-
bulent convection (e.g. Cattaneo et al. 1991; Siggia 1994; Brummell et al. 1996;
Julien et al. 1996; Stein & Nordlund 1998; Porter & Woodward 2000). Intermit-
tent, vortical plumes originate in the boundary layers and penetrate well into the
interior of the domain, transporting heat, mass and momentum. Density strati-
fication induces an asymmetry such that downflow lanes form an interconnected
network near the top of the domain which fragments into isolated plumes deeper in
the convection zone (Cattaneo et al. 1991; Brummell et al. 1996; Stein & Nordlund
1998; Miesch et al. 2000; Brun & Toomre 2002). Individual plumes may remain
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Figure 5.1. Schematic diagram of the behaviour of turbulent plumes in rotating
spherical shells. The process of turbulent alignment (see text) causes downflow
plumes to tilt toward the rotation axis relative to the vertical (indicated by the dashed
line). These plumes are fed by converging fluid in the upper convection zone which
acquires cyclonic vorticity due to the Coriolis force. As this fluid moves downward
and enters the overshoot region, it diverges and acquires anticyclonic vorticity.
Buoyancy removes the plume’s vertical momentum, causing it to veer equatorward.
The equatorward advection of anticyclonic vorticity produces poleward angular
momentum transport via the Reynolds stress, FRS (Equation (5.2)). Advection of
retrograde differential rotation by the equatorward meridional circulation, FDR

(Equation (5.4)), enhances this poleward angular momentum transport.

coherent over multiple density scale heights and, if a stable layer is incorporated
below the convection zone, they dominate the convective overshoot (Brummell
et al. 2002).

Downflow plumes in turbulent compressible convection are profoundly influ-
enced by rotation (Julien et al. 1996; Brummell et al. 1996). Unless the plume is
located at one of the poles, its downward velocity will have a component that is
perpendicular to the rotation axis. The Coriolis force deflects this velocity compon-
ent while motion parallel to the rotation axis proceeds unimpeded. The net effect
is to tilt downward plumes away from the vertical toward the rotation axis in a
process known as turbulent alignment (Brummell et al. 1996). Turbulent alignment
can decrease the vertical transport efficiency of plumes and can inhibit convective
penetration (Brummell et al. 2002).

In a spherical shell, the turbulent alignment of plumes has important implications
with regard to the maintenance of mean flows, as illustrated in Figure 5.1. In the
upper convection zone, the Coriolis force induces cyclonic vorticity as fluid con-
verges into the plume, tending to conserve angular momentum locally. If the plume
remains coherent throughout the convection zone it will continue to converge due
to the density stratification although this may be offset to a large extent by turbulent
entrainment. When the plume reaches the overshoot region it will be decelerated
by buoyancy and will diverge as fluid circulates back up to the convection zone.
As it diverges, the Coriolis force will induce anticyclonic vorticity. Although
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the plume will no longer possess vertical momentum it will still have latitudinal
momentum as a consequence of turbulent alignment, driving an equatorward
circulation.

5.2.2 Angular momentum transport induced by overshooting plumes

What effect do turbulent plumes have on the differential rotation in the tachocline?
To address this question we consider the angular momentum flux due to advection
of the differential rotation by meridional circulation FMC and due to the Reynolds
stress FRS (Brun et al. 2004; Miesch 2005):

FMC = 〈ρvM〉 L, (5.1)

FRS = ρr sin θ
(〈

v
′
rv

′
φ

〉
r̂ +

〈
v

′
θv

′
φ

〉
θ̂
)

, (5.2)

where ρ is the density of the spherically symmetric background state under the
anelastic approximation, vM = vr r̂ + vθ θ̂ is the velocity in the meridional plane,
and L is the specific angular momentum, defined as follows:

L ≡ r sin θ
(
�0r sin θ +

〈
vφ

〉)
≡ (r sin θ)2 �. (5.3)

These expressions correspond to a spherical polar coordinate system (r, θ , φ) rotat-
ing at an angular velocity of �0, with unit vectors r̂, θ̂ , φ̂ and velocity components
vr , vθ , vφ . Angular brackets denote longitudinal averages and primes indicate that
the longitudinal average has been removed.

Under the anelastic approximation, the uniform rotation component of FMC can-
not produce any net angular momentum transport across surfaces aligned with the
rotation axis (Elliott et al. 2000; Miesch 2005). Thus, any global redistribution of
angular momentum between the equator and poles by meridional circulation must
be caused solely by the differential rotation component of FMC:

FDR = r sin θ 〈ρvM〉
〈
vφ

〉
= FMC − (r sin θ)2 〈ρvM〉 �0. (5.4)

In the convection zone, the net angular momentum transport must be equator-
ward in order to maintain a solar-like rotation profile, with a relatively fast equator
and slow poles. According to Equation (5.4), a persistent equatorward circulation
in the overshoot region (positive vθ in the northern hemisphere) would oppose
this, producing a poleward angular momentum transport at high latitudes where〈
vφ

〉
is negative. An equatorward circulation in the tachocline has been proposed

in the context of flux-transport solar dynamo models where it plays an essential
role in setting the pace and the nature of the solar activity cycle (e.g. Dikpati &
Charbonneau 1999). If present, an equatorward circulation in the overshoot
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region may also contribute to tachocline confinement by suppressing latitudinal
shear.

We now turn to the Reynolds stress. If the vertical momentum of a plume in the
overshoot region is suppressed by buoyancy, then the vertical component of FRS

may be neglected and the Reynolds stress divergence may be approximated as

∇·FRS ∼ −ρr sin θ
〈
v

′
θω

′
r

〉
, (5.5)

where ωr is the radial component of the fluid vorticity relative to the rotating frame.
This implies the following maintenance equation for the angular velocity:

∂�

∂t
∼ − 1

r sin θ

〈
v

′
θω

′
r

〉
+ · · · . (5.6)

Thus, the equatorward advection of anticyclonic radial vorticity in plumes implies
a convergence of angular momentum which would tend to accelerate the local
rotation rate. Other contributions to the right-hand-side of Equation (5.6) may arise
from the meridional circulation flux FMC, the Lorentz force, and viscous diffusion
(although the latter is negligible in the Sun).

The turbulent alignment process is most efficient at high and mid-latitudes where
the rotation vector is nearly vertical. At low latitudes, convection can minimize
the inhibiting effects of the Coriolis force in a different way, by forming quasi-
two-dimensional rolls or downflow lanes oriented in a north–south direction with
motions perpendicular to the rotation axis (Miesch et al. 2000; Brummell et al. 2002;
Brun & Toomre 2002; Miesch 2005). Thus, turbulent alignment may be expected
to produce a convergence of angular momentum at high latitudes in the overshoot
region which would spin up the poles relative to lower latitudes.

In summary, the angular momentum transport by the Reynolds stress FRS and the
meridional circulation FDR may both be poleward in the overshoot region owing to
the turbulent alignment of downflow plumes. This of course assumes that plumes
dominate the turbulent transport, which is justified if they are the principal coherent
structures in an otherwise chaotic flow. However, there is no guarantee that the
surrounding flow is truly chaotic. Systematic velocity correlations in the broad
and relatively laminar upflow lanes may oppose the Reynolds stress exerted by
plumes, particularly at high Reynolds numbers where the filling factor of plumes is
small.

5.2.3 Convection simulations

There is reason to believe that the processes illustrated in Figure 5.1 are indeed
playing a significant role in global-scale numerical simulations of penetrative con-
vection. Figures 5.2 and 5.3 show results from a numerical simulation of penetrative
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Figure 5.2. Snapshots of the radial velocity (left), horizontal divergence (middle)
and vertical vorticity (right) are shown at a level within the overshoot region in a
simulation of penetrative convection. Upper frames show orthographic projections
tilted 30◦ toward the observer and lower frames show zoomed-in perspectives
of selected areas as indicated. The equator is indicated by a solid line. Bright
tones denote outward velocities, horizontal divergence, and outward vorticity as
indicated by the grey scales.

convection in a rotating spherical shell carried out using the anelastic spherical har-
monic (ASH) code described by Clune et al. (1999) (see also Brun et al. 2004).
The simulation shown is a variation of Case TUR, described in detail by Miesch
et al. (2000), with a higher horizontal resolution and lower dissipation. The resolu-
tion in this case is Nθ × Nφ × Nr = 512 × 1024 × 98 and the viscosity and thermal
diffusivity at the top of the shell are νtop = 2.5 × 1012 cm2 s−1 and κtop = 1012

cm2 s−1 respectively. The ASH code uses cgs units and the background state is
obtained from a solar structure model. The viscosity ν and thermal diffusivity κ

vary with depth as ρ −1/2 where ρ is the background density. Solar values are
used for the luminosity and mean angular velocity �0. The computational domain
is from 0.62R⊙ to 0.96R⊙. Above ∼ 0.98R⊙ the anelastic approximation breaks
down and the density and pressure scale heights decrease dramatically, driving rel-
atively small-scale motions which cannot presently be resolved in a global model.
For further details see Miesch et al. (2000).

Downflow plumes in the overshoot region are visible as dark patches in the
radial velocity images shown in the left column of Figure 5.2. These downflow
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Figure 5.3. The meridional circulation (a) and angular velocity (b) are shown for
the same simulation as in Figure 5.2, averaged over longitude and time (143 days).
In (a), dark tones and bright contours denote counter-clockwise circulation while
bright tones and dark contours denote clockwise circulation. Angular velocity
contours in (b) range from −20 to 190 nHz relative to the rotating coordinate frame,
in intervals of 10 nHz. Solid and dotted contours denote positive and negative
angular velocities respectively and the bold solid line marks the zero contour.
Dashed lines in (a) and (b) denote the base of the convection zone. The insets in
(a) and (b) illustrate the mean meridional velocity 〈vθ 〉 and angular velocity �
as a function of latitude in the overshoot region (at the same level as shown in
Figure 5.2). Positive values indicate southward and prograde flow, respectively.

sites correlate well with regions of horizontal divergence and anticyclonic vorticity
as is apparent from the centre and right columns of Figure 5.2. This is consistent
with the picture put forth in Figure 5.1 in which downflow plumes diverge and
spin down as they encounter the stably-stratified overshoot region. The turbulent
alignment of these plumes helps drive a persistent equatorward circulation in the
overshoot region of a few metres per second, as demonstrated in Figure 5.3a. Time-
averaged statistics verify that the

〈
v

′
θv

′
r

〉
correlation in regions of strong downflow

is indeed negative (positive) in the northern (southern) hemisphere as would be
expected from turbulent alignment (Miesch et al. 2000).

The local v′
θω

′
r correlation in each individual plume acts to accelerate higher latit-

udes through the Reynolds stress (Equation (5.6)) while the collective contribution
from ensembles of plumes drives an equatorward circulation which enhances the
poleward angular momentum transport (Equation (5.4)). Both processes contribute
to the relatively rapid polar rotation evident in Figure 5.3b.

The equatorward circulation near the base of the convection zone extends to
latitudes of about ±70◦, which coincides well with the boundary of the prograde
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polar vortex in each hemisphere. Above this the circulation is weakly poleward
on average. Thus the latitudinal angular momentum transport by meridional circu-
lation, proportional to 〈vθ 〉〈vφ〉 (see Equation (5.4)) is generally poleward in the
overshoot region above latitudes of about 20◦. The Reynolds stress contribution
FRS fluctuates substantially but consistently produces a convergence of angular
momentum in downward plumes.

Thus, to some extent, the rapid polar rotation can be attributed to the turbu-
lent nature of the fluid motions; laminar convection does not generally possess
plumes and therefore does not exhibit turbulent alignment (Brummell et al. 1996).
Relatively laminar simulations of penetrative convection in spherical shells do
not exhibit a persistent equatorward circulation in the overshoot region com-
parable to that seen in Figure 5.3a (Miesch et al. 2000). However, laminar
convection simulations can still exhibit a polar vortex resulting from a Coriolis-
induced Reynolds stress in low-azimuthal-wavenumber convection cells which
are the preferred linear modes at high latitudes, inside the cylinder which is
aligned with the rotation axis and tangent to the base of the convection zone
(Busse & Cuong 1977; Gilman 1979). Both turbulent and laminar processes likely
contribute to the polar vortex seen in Figure 5.3b and in other spherical shell
simulations.

Many spherical convection simulations do not exhibit a polar vortex. In the
laminar case, this typically occurs for relatively deep convection zones such that
the columnar convection cells which are the preferred modes outside the tangent
cylinder can extend to high latitudes and transport angular momentum away from
the poles (Gilman 1979). When applied to the Sun, simulations are constrained by
solar structure models and helioseismic inversions so the convection zone depth
is not a free parameter. Here the common thread among simulations which do not
exhibit a polar vortex is the absence of large-scale meridional circulation cells which
extend from low to high latitudes (Brun & Toomre 2002). Such global circulations
tend to conserve angular momentum, spinning up the polar regions as they converge
on the rotation axis.

A localized vortex within 10–15◦ of the pole cannot be ruled out by helioseis-
mic inversions or surface Doppler measurements. However, at least in the upper
convection zone, rotational inversions suggest the opposite; the poles appear to be
rotating relatively slowly (Schou et al. 1998; Thompson et al. 2003). A polar vortex
would be more consistent with helioseismic measurements if it were confined to the
tachocline where it may be maintained by penetrative convection (Section 5.2.2)
or by stably-stratified turbulence (Section 5.3). If present, a polar vortex would
have important implications for the structure of the tachocline and chemical mix-
ing between the convective envelope and the radiative interior, as discussed by
McIntyre in Chapter 8.
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5.2.4 Solar implications

To date, non-penetrative simulations of convection in rotating spherical shells have
yielded more solar-like differential rotation profiles than those which incorporate
penetration into an underlying stable layer (see Miesch 2005 for references). Penet-
rative simulations tend to be plagued by fast polar rotation throughout the convection
zone, which is not consistent with helioseismic inversions. This may be attributed
at least in part to the processes discussed here in connection with Figure 5.1. Global
simulations cannot currently resolve the stiff transition from superadiabatic to sub-
adiabatic stratification at the base of the solar convection zone (see Section 5.1).
This transition is softened by artificially decreasing the subadiabatic stratification
and thus increasing the extent of the overshoot region.

Poleward angular momentum transport in the upper tachocline induced by the
turbulent alignment of plumes probably also occurs in the Sun, but we appear
to be overestimating it in numerical simulations which have an artificially wide
overshoot region. The relatively gentle deceleration of plumes in such simulations
as they encounter the stable zone permits a relatively laminar spreading and spin-
down. In non-penetrative simulations the deceleration of plumes is more abrupt
and more violent. Vorticity of all orientations is generated as plumes strike the
impermeable lower boundary, reducing the net

〈
v

′
θω

′
r

〉
correlation and therefore

reducing the Reynolds stress. Turbulent alignment still occurs but plumes are less
efficient at driving an equatorward circulation near the base of the convection zone,
possibly because of the turbulent entrainment of fluid as they splash against the
boundary.

The Sun is probably somewhere between these two extremes. The absence of
a polar vortex suggests that it might correspond better to non-penetrative simu-
lations than to current simulations which possess an artificially wide overshoot
region. However, other dynamics may also contribute which is not currently cap-
tured by global simulations. For example, the much higher Péclet numbers1 in
the Sun relative to simulations may permit downflow plumes to carry low-entropy
fluid equatorward more efficiently. This may establish a latitudinal entropy gradient
(warm poles, cool equator) and a corresponding thermal wind differential rotation
(e.g. Miesch 2005; see also Chapter 8 by McIntyre in this volume). In any case, it
is clear that the complex dynamics occurring near the base of the convection zone
must play an important role in maintaining the global rotation profile in the solar
interior. This poses yet another challenge to numerical modelling efforts: accurately
reproducing the solar internal rotation profile may require a more realistic depiction
of convective penetration.

1 The Péclet number is defined as UL/κ , where U and L are characteristic velocity and length scales for the flow
and κ is the thermal diffusivity.



118 Turbulence in the tachocline

As promised in Section 5.1, we have focused on how penetrative convection may
drive mean flows in the upper tachocline. There are many other aspects of penetrative
convection which we have left untouched for the sake of brevity. In particular, there
have been innumerable investigations of how the penetration depth varies with the
stiffness of the subadiabatic–superadiabatic transition, with the Reynolds and Péclet
numbers, with the rotation rate, and with latitude. There is also some current debate
on whether overshooting convection in the Sun is efficient enough to establish
a nearly adiabatic penetration region as described by Zahn (1991). Furthermore,
penetrative convection excites gravity waves which have important implications
for helioseismology as well as for the exchange of chemical tracers and angular
momentum between the convective envelope and the radiative interior. For a review
of these issues and many more references, see the online article by Miesch (2005).
Many of these issues are also discussed by Brummell et al. (2002).

Thus far in our discussion we have neglected magnetic fields; the simulation
shown in Figures 5.2 and 5.3 is non-magnetic. In comparable magnetic simula-
tions with self-sustained dynamo action the field never becomes strong enough
to substantially alter the structure of the convection (Brun et al. 2004). Thus, the
arguments put forth in this section should still be valid in the presence of magnet-
ism. This is in contrast to the lower tachocline where the presence or absence of
magnetism has a substantial influence on the dynamics (Section 5.3.4).

Although magnetism should not greatly alter the convective structure, it intro-
duces new dynamical phenomena of great relevance to solar dynamo theory.
Numerical simulations of penetrative MHD convection in spherical shells promise
to shed new light on the turbulent pumping of fields into the overshoot region,
the amplification of these fields due to differential rotation in the tachocline, and
the subsequent rise of toroidal flux due to magnetic buoyancy. Such simulations
are now underway.

5.3 The lower tachocline: stably-stratified turbulence and shear

5.3.1 Overview

The lower tachocline is a stably-stratified shear flow. Global motions are con-
fined to a thin shell by buoyancy and are sufficiently slow that the Coriolis force
plays a dominant role (small Froude and Rossby numbers). In these respects, the
lower tachocline has more in common dynamically with the Earth’s atmosphere and
oceans than it does with the highly turbulent solar envelope. However, magnetism
still sets tachocline dynamics apart from geophysical applications.

The stabilizing effect of buoyancy on vertical shear is quantified by the
Richardson number Ri = (N/du/dz)2, where N is the Brunt–Väisälä frequency
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and du/dz is the mean strain rate. In the solar tachocline Ri ≫ 1, so the vertical
shear is thought to be hydrodynamically stable (Schatzman et al. 2000). How-
ever, the latitudinal shear is thought to be unstable, particularly in the presence of
magnetic fields (see Chapter 10 by Gilman & Cally). Furthermore, gravity waves
generated by penetrative convection propagate into the lower tachocline and dis-
sipate by nonlinear breaking or radiative diffusion, redistributing momentum in
the process. Other instabilities may also occur, driven by magnetism, buoyancy
and shear (see, for example, Chapter 11 by Hughes). In light of the small molecu-
lar viscosity, any global-scale motions that exist in the lower tachocline will be
characterized by very high Reynolds numbers (>1010), implying turbulent flow.

How might turbulence and waves in the lower tachocline interact with dif-
ferential rotation? Specifically, will they tend to suppress the mean radial and
latitudinal shear via down-gradient angular momentum transport as in turbulence
models which employ eddy diffusion? Or, alternatively, might turbulent transport be
counter-gradient (anti-diffusive), tending to drive mean flows rather than dissipate
them?

Down-gradient transport might be expected under two particular circumstances.
First; if the turbulence is driven by hydrodynamic shear instabilities then it will
extract energy from the mean flow, tending to reduce its amplitude. Second; if the
turbulence is approximately homogeneous and isotropic and occurs on small scales
relative to the mean flow (scale separation) then turbulent mixing will be local and
diffusive in nature. In this case, an effective eddy viscosity may be defined under
the framework of mean-field theory.

The alternative, counter-gradient transport, might be expected if the flow field
is dominated by waves. Waves induce long-range momentum transport between
regions of excitation and dissipation which is inherently non-diffusive. This has
been argued at length by McIntyre (1994, 1998, 2003; see also Miesch 2005).

5.3.2 Angular momentum transport in stably-stratified shear flows

Numerical simulations of stably-stratified turbulence in the presence of vertical
shear exhibit a transition from diffusive to anti-diffusive transport as the stratific-
ation is increased. This is demonstrated in Figure 5.4, which is reproduced from
the work of Galmiche et al. (2002). Three realizations of freely-evolving turbulent
shear flow are shown. In all cases, the initial conditions consist of a non-divergent,
random velocity field which is isotropic and homogeneous and which possesses
a Gaussian energy spectrum peaked at intermediate wavenumbers (kp ∼ 30/L,
where L is the linear extent of the cubical domain). This random velocity field is
superposed on a background horizontal flow with vertical shear u(z) and the system
is then allowed to evolve freely with no additional forcing.
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Figure 5.4. The kinetic energy in the mean zonal flow component is shown as a
function of time for three realizations of decaying stably-stratified turbulence with
vertical shear. Each realization is an ensemble average of six numerical simulations.
Results are shown for neutral (ANS), moderate (AMS), and strong stratification
(ASS) as indicated. The straight line indicates viscous decay of the mean shear in
the absence of turbulence. All curves are normalized with respect to the kinetic
energy at the initial time, t0, and time is normalized with respect to the advective
time scale of the turbulent flow component, τ0. (From Galmiche et al. 2002.)

The three realizations differ only in the strength of the background stratification.
This is quantified by the Froude number Fr = (Nτ0)

−1, where τ0 is the advective
or turnover timescale of the turbulence. If Fr ≪ 1 then buoyancy dominates over
nonlinear advection in the vertical momentum equation. In the neutrally-stratified
case ANS (Fr = ∞) the mean shear decays within a few turnover timescales, much
more rapidly than the viscous decay in the absence of turbulence. Thus, turbulent
mixing can be characterized by means of an effective eddy viscosity which is much
larger than the molecular viscosity. Moderate stratification inhibits vertical mixing,
resulting in a slower decay rate in case AMS (Fr = 1.2).

In the strongly-stratified case ASS (Fr = 0.12) the behaviour is qualitatively
different. The mean flow initially begins to decay at a rate comparable to cases
ANS and AMS but the momentum flux soon reverses, becoming counter-gradient
after a time t − t0 ∼ 1.7N−1. The mean zonal kinetic energy begins to grow in
an oscillatory manner, implying an acceleration of the background shear flow u(z).
Most of this energy remains in the fundamental mode kz = 1 so the transfer of
energy from the turbulence to the mean flow may be characterized by means of
a negative eddy viscosity. At long times (t − t0 > 4τ0), the turbulent angular
momentum flux decreases and the mean flow decays at the viscous rate.
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Other researchers have similarly reported an oscillatory but persistently counter-
gradient momentum flux in numerical simulations of freely-evolving stably-
stratified turbulence with vertical shear (Holt et al. 1992; Jacobitz 2002). The
turbulent transport associated with the fluctuating density field is also oscillatory
and counter-gradient for small Froude numbers, implying a negative eddy dif-
fusivity. This counter-gradient momentum and density transport arises from the
linear distortion of the initial turbulent flow field by buoyancy and shear and can
be understood within the context of Rapid Distortion Theory (Galmiche & Hunt
2002; Hanazaki & Hunt 2004). As the Froude number is progressively decreased,
the flow possesses a more wave-like character and the transport can no longer be
described by means of turbulent diffusion.

The stably-stratified simulations we have discussed thus far and their interpret-
ation in terms of Rapid Distortion Theory are concerned with freely-evolving
turbulence. By contrast, turbulence in the solar tachocline may be continually
maintained by penetrative convection and shear instabilities. Furthermore, the solar
tachocline is a rotating system and possesses latitudinal as well as vertical shear.
How do the results discussed above apply to more complex systems?

Horizontal shear was investigated by Jacobitz (2002) in freely evolving numerical
simulations similar to those illustrated in Figure 5.4. He found that the horizontal
momentum transport remained diffusive (down-gradient) even for strong strati-
fication but the efficiency of the transport (i.e. the magnitude of the effective
eddy viscosity) decreased with decreasing Fr. Further correspondence with the
solar tachocline was achieved by Miesch (2003), who considered stably-stratified
turbulence in rotating spherical shells. These simulations included random high-
wavenumber forcing which was homogeneous and isotropic in horizontal planes
but concentrated near the top of the shell in order to crudely approximate the
influence of sustained penetrative convection. They also included an imposed differ-
ential rotation possessing both latitudinal and vertical shear which was maintained
against viscous diffusion by an additional drag force. Some results are illustrated
in Figure 5.5.

The latitudinal angular momentum transport due to the Reynolds stress in
Miesch’s (2003) simulations was found to be down-gradient, in the same sense
as the viscous diffusion (Figure 5.5a). Both contributions tended to suppress the
differential rotation maintained by external forcing. Since the imposed differential
rotation was chosen to have a solar-like profile, this corresponds to poleward angu-
lar momentum transport. By contrast, the vertical transport of angular momentum
by Reynolds stresses was found to be outward, opposing the inward diffusive flux
(Figure 5.5b). Thus the vertical transport was counter-gradient, tending to enhance
the vertical shear as in the freely-evolving, non-rotating, Cartesian simulations
illustrated in Figure 5.4.
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Figure 5.5. The angular momentum flux is shown for a simulation of stably-
stratified turbulence in a rotating spherical shell with imposed shear. Here (a) is
the latitudinal angular momentum flux integrated over depth and (b) is the vertical
angular momentum flux integrated over latitude. All curves are integrated over
longitude and time. The temporal integration spans ten advective timescales after
the shear was introduced. Solid, dotted, and dashed lines indicate contributions
from the Reynolds stress, viscous diffusion, and meridional circulation respect-
ively. All quantities are non-dimensional, normalized with respect to the velocity
scale of the imposed forcing, the background density, and the radius and thickness
of the shell. (From Miesch 2003.)

5.3.3 Self-organization in quasi-two-dimensional turbulence

Stable stratification inhibits vertical motions and rotation induces vertical coher-
ence, both effects tending to make the dynamics quasi-two-dimensional. Although it
is dangerous to take the analogy too far, much insight into rotating, stably-stratified
turbulence can be obtained by considering strictly two-dimensional turbulence on
horizontal surfaces. It is well known that two-dimensional turbulence exhibits self-
organization: smaller vortices merge into progressively larger vortices, giving rise to
an inverse cascade of kinetic energy from small to large scales (e.g. Lesieur 1997).
This may be regarded as another example of counter-gradient momentum trans-
port, implying a negative eddy viscosity. Meanwhile, enstrophy (vorticity squared)
undergoes a forward cascade from large to small scales where it is dissipated by
viscous diffusion.

As the inverse cascade proceeds to larger scales, the characteristic turnover
timescales of eddies increase and they become more influenced by rotation. Even-
tually, if the rotation is rapid enough, the Rossby phase speed will exceed the
advection velocity2 and eddies will disperse as Rossby wave packets before they
merge. This suppression of the inverse cascade by Rossby wave dispersion is
inherently anisotropic; nonlinear energy transfer toward large latitudinal scales is
inhibited but the cascade can proceed toward large longitudinal scales (Rhines 1975;

2 The phase speed of two-dimensional Rossby–Haurwitz waves in spherical shells scales as �/(ℓ(ℓ+ 1)), where
ℓ is the spherical harmonic degree (see e.g. Miesch 2005).
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Vallis & Maltrud 1993). The net result is banded zonal flows: alternating eastward
and westward jets of fluid with a latitudinal extent determined by the effective
Rossby number Ro = (2�τ0)

−1.
The emergence of banded zonal flows from rotating turbulence in two-

dimensional and quasi-two-dimensional (shallow-water, two-layer) spherical sys-
tems has been observed in both freely-evolving and randomly-forced numerical
simulations (Williams 1978; Cho & Polvani 1996; Huang & Robinson 1998; Peltier
& Stuhne 2002; Kitamura & Matsuda 2004). Related dynamics have also been stud-
ied under the β-plane approximation (Rhines 1975; Vallis & Maltrud 1993; Panetta
1993). Perhaps the most familiar and well-studied observational manifestation of
persistent banded zonal flows in rotating turbulence occurs in the atmospheres of
the Jovian planets (Ingersoll 1990; Vasavada & Showman 2005).

Similar dynamics may occur in the solar tachocline but, more likely, it may be
suppressed by shear and magnetism. Differential rotation is maintained in the tacho-
cline by large-scale stresses from the convective envelope and radiative interior.
Deformation of eddies by an imposed shear such as this fundamentally alters the
nonlinear transfer of energy and enstrophy among spectral modes, favouring non-
local interactions between the mean flow and disturbance modes possessing the
same azimuthal wavenumber. This was investigated by Shepherd (1987) who con-
sidered two-dimensional turbulence on a β-plane in the presence of an imposed
zonal flow with latitudinal shear. His analytical and numerical results indicate that
shear-induced transfer operating on the large-scale Rossby wave field tends to
accelerate the mean flow, implying counter-gradient momentum transport. How-
ever, turbulent isotropization on smaller scales disrupts this process and tends to
extract energy from the mean flow. The sense and magnitude of the net energy
exchange between the mean flow and the fluctuations is sensitive to the details of
the problem such as the Rossby number, the forcing mechanism, and the amplitude
and profile of the imposed shear.

5.3.4 The profound influence of magnetism

In the presence of magnetism the enstrophy is no longer an ideal invariant and an
inverse cascade of kinetic energy no longer occurs, not even in two-dimensional
flows (Biskamp 1993). Instead, there is an inverse cascade of a new ideal invariant,
the squared magnetic vector potential. These results apply to homogeneous, iso-
tropic, two-dimensional, MHD turbulence. More complex circumstances may yet
exhibit counter-gradient momentum transport. Kim & Dubrulle (2002) have made
analytic estimates of the transport coefficients in two-dimensional MHD turbulence
in the presence of a background shear and toroidal field, under the assumptions
of scale separation and quasi-linearity (first-order smoothing). They find that the
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effective eddy viscosity is generally positive in the presence of magnetic fields
(down-gradient transport) but it can become negative if the mean field is strong rel-
ative to the fluctuations and if highly anisotropic forcing (elongated perpendicular
to the mean flow) is applied to the magnetic potential. In the purely hydrodynamic
case their analysis indicates that the eddy viscosity is always negative, regardless
of the forcing.

In an MHD system, both the Reynolds and Maxwell stresses contribute to the
net momentum transport and both may be incorporated into the definition of the
‘eddy’ or ‘turbulent’ viscosity. If left to evolve freely in the presence of a mean
background field, the fluctuating velocity and magnetic fields in MHD turbulence
tend to align such that v′ = ±B′ in what is known as the Alfvén effect (Biskamp
1993). If this occurs, Reynolds and Maxwell stresses will tend to cancel and the
turbulent angular momentum transport 〈v′

iv
′
j − B′

iB
′
j〉 will decrease substantially.

In Kim & Dubrulle’s (2002) analysis the Alfvén effect leads to a suppression of
turbulent transport as the strength of the background field B0 is increased, yielding
an effective eddy viscosity which scales as B−2

0 (see also Kim et al. 2001).
This raises the more general issue of transport barriers in magnetized plasmas

which is addressed by Diamond et al. in Chapter 9. Briefly, shear and magnetic
fields can suppress turbulent transport perpendicular to the flow or field direction
by distorting turbulent eddies and by dissipating or deflecting gravity and Rossby
waves. In a solar context, this implies that the vertical shear and strong toroidal fields
thought to be present in the tachocline may act to decouple the radiative interior and
convective envelope. The positive nonlinear feedback may help maintain the tacho-
cline; radial shear and the toroidal fields it generates suppresses vertical transport
which may further enhance the shear and produce stronger toroidal fields. Alternat-
ively, poloidal field components and motions induced by magnetic buoyancy may
tend to increase the vertical coherence relative to non-magnetized stratified flows,
which would suppress vertical shear. In short, vertical angular momentum trans-
port in the lower tachocline is complex and remains enigmatic. Much more work
is needed to clarify the dominant processes.

By contrast, latitudinal angular momentum transport in the tachocline is better
understood. Magnetic fields are likely to induce down-gradient angular momentum
transport by destabilizing the latitudinal differential rotation. There are two classes
of MHD shear instabilities which are probably operating in the lower tachocline.
The first is the magneto-rotational instability (MRI), which operates wherever the
angular velocity decreases outward, perpendicular to the rotation axis. The ver-
tical shear in the lower tachocline is stabilized in this respect by the subadiabatic
stratification but MRI can still proceed on horizontal surfaces and would tend to sup-
press positive latitudinal angular velocity gradients on a shear timescale (Balbus &
Hawley 1994). However, the latitudinal angular velocity gradient in the tachocline
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is negative so it is not subject to MRI in a global sense, although local regions may
still become unstable. For a more thorough discussion of MRI see Chapter 12 by
Ogilvie.

The second type of MHD shear instability which is probably occurring in the
lower tachocline is a global one. As first demonstrated by Gilman & Fox (1997),
the latitudinal differential rotation in the solar tachocline is unstable in the presence
of a toroidal field with a variety of possible amplitudes and profiles. The most
unstable modes are generally those with azimuthal wavenumber m = 1 and have
the character of tipping instabilities whereby rings of toroidal field evolve such that
their central axis tilts away from the rotation axis. The resulting Maxwell stresses
induce poleward angular momentum transport but not in a uniform manner. Rather,
angular momentum converges near latitudes which represent singular points in the
linear perturbation equations or which coincide with imposed toroidal field bands,
producing localized zonal jets. Many subsequent papers have further clarified these
mechanisms. The reader is referred to Chapter 10 by Gilman & Cally for an up-
to-date review. These global MHD shear instabilities as well as the MRI may also
operate in the upper tachocline where their growth rates are generally larger owing
to the weaker subadiabatic stratification.

5.4 Summary

If the tachocline overlaps with the convection zone as helioseismic inversions sug-
gest (Section 5.1), then the upper and lower portions must be dramatically different
in terms of their dynamics. Turbulent penetrative convection dominates the upper
tachocline, efficiently exchanging mass, momentum, and magnetic flux with the
overlying convective envelope. By contrast, vertical transport is much less efficient
in the lower tachocline where the strong subadiabatic stratification and rotational
influence makes the dynamics quasi-two-dimensional.

In Section 5.2 it was argued that the turbulent alignment of convective plumes
in the solar convection zone will induce an equatorward circulation and a pole-
ward angular momentum transport in the overshoot region. The simulations and
theoretical arguments reviewed in Section 5.3 in the context of stably-stratified tur-
bulence and MHD shear instabilities furthermore suggest that the latitudinal angular
momentum in the lower tachocline is probably poleward (down-gradient) as well,
although inverse cascades and wave-induced momentum and energy fluxes may
tend to drive mean flows such as zonal jets.

Poleward angular momentum transport by anisotropic turbulence in the tacho-
cline was first proposed by Spiegel & Zahn (1992) as a mechanism for suppressing
the downward spread of the convection zone differential rotation into the radi-
ative interior via a thermally-driven meridional circulation. This turbulence was
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attributed to a nonlinear hydrodynamic instability of the latitudinal shear, but other
mechanisms which produce poleward transport have similar implications with
regard to tachocline confinement. Turbulent alignment, MHD shear instabilities,
and stably-stratified turbulence driven by penetrative convection may all contribute
to suppress radiative spreading and thus keep the tachocline thin. This may result in
an angular momentum cycle such as that proposed by Gilman et al. (1989) whereby
equatorward angular momentum transport in the bulk of the convection zone is bal-
anced by poleward transport in the tachocline and possibly in the near-surface shear
layer.

The strong stable stratification in the lower tachocline may further contribute
to tachocline confinement by inducing counter-gradient angular momentum trans-
port in the vertical direction which would maintain or even enhance the vertical
shear. Moreover, interactions between gravity waves and differential rotation in the
lower tachocline may drive oscillatory zonal flows analogous to the Quasi-Biennial
Oscillation (QBO) in the Earth’s stratosphere (Kim & MacGregor 2001; Talon
et al. 2002). Such interactions may lie at the root of tachocline oscillations detected
in helioseismic inversions by Howe et al. (2000).

Below the tachocline, wave-induced transport dominates over turbulent transport
and the angular momentum redistribution is likely to be non-local and non-diffusive.
As argued by Gough & McIntyre (1998), gravity waves alone cannot maintain
the nearly uniform rotation of the radiative interior inferred from helioseismology.
Other mechanisms are necessary, the most plausible being large-scale torques from a
fossil magnetic field as reviewed in Chapter 7 of this book by Garaud. Thus, although
turbulent transport in the tachocline may help prevent the downward spread of the
differential rotation in the convection zone, it is not the final word on tachocline
confinement.

Despite recent progress, much uncertainty remains regarding vertical transport
in the lower tachocline and the coupling between the radiative interior and the
convective envelope. Further numerical and theoretical modelling is needed to sort
out the dominant forcing mechanisms, the subtleties of wave-induced transport,
and the role of magnetic fields.
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6

Mean field modelling of differential rotation

Günther Rüdiger & Leonid L. Kitchatinov

Analytical expressions for the 	-effect and the heat conductivity tensor for rotating
turbulent convection are compared with current results of box simulations with
the NIRVANA code. With these results the large-scale flow pattern (rotation plus
meridional circulation) in the convection zone is computed in good agreement with
the observations. The penetration of the meridional flow into the subadiabatic layer
beneath the convection zone (with viscosity νcore) appears to vary with

√
νcore so

that in a non-turbulent tachocline the penetration would be extremely small. New
mean field model calculations are also presented for the rotation laws in F stars and
M dwarfs and finally the question is discussed whether mean field models may also
lead to ‘antisolar’ rotation, i.e. to rotation laws with a decelerated equator.

6.1 Introduction

In order to explain the internal rotation of solar/stellar convection zones, the theory
of the 	-effect has been developed. It describes the angular momentum transport
in rigidly rotating anisotropic fields of free turbulence. The preferred direction
is radial, owing to the stratification of both the density and the intensity of the
turbulence.

The cross-correlations 〈u′
ru′

φ〉 and 〈u′
θu′

φ〉 of the one-point-correlation tensor
Qij = 〈u′

i(x, t)u′
j(x, t)〉 provide the radial and latitudinal turbulent transport of

angular momentum. For those terms the general formulation

Qij = · · · + λijkωk (6.1)

has been introduced, or, in more detail,

Qrφ = νTVω sin θ , Qθφ = νTHω cos θ , (6.2)

with νT as the eddy viscosity. The dimensionless functions V and H are normalized
expressions for the vertical and horizontal cross-correlations. A quasi-linear theory

The Solar Tachocline, D. W. Hughes, R. Rosner and N. O. Weiss.
Published by Cambridge University Press. © Cambridge University Press 2007.
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for a special turbulence model has been given by Kitchatinov & Rüdiger (1993) to
reveal the dependence on the basic angular velocity � and the colatitude θ . The
main result of such analytical calculations for the case of rapid rotation can be
summarized in the form

Qrφ ≃ −Ĥ cos2 θ sin θ , Qθφ ≃ Ĥ sin2 θ cos θ , (6.3)

with positive Ĥ . The vanishing of Qθφ at the equator is a simple consequence of
the prevailing symmetries, but the vanishing of Qrφ at the equator of a rapid rotator
is a surprising and non-trivial result. Also, the signs of the cross-correlations are
non-trivial results of the calculations. The resulting angular momentum transport
is always inwards (V < 0) and equatorwards (H > 0). By a direct inspection of
the results of helioseismology one finds an increase of angular velocity with depth
in the uppermost layers of the solar convection zone, which means that the angular
momentum is transported inwards, V < 0 (Section 6.4). Also, almost all of the
presented numerical simulations lead to V < 0 for both slow and fast rotation (see
below).

6.2 The 	-effect

Quasi-linear analytical derivations of the angular momentum transport by rotating
turbulence in stratified fluids result in the expressions

V = V (0)
(
�∗)− H(1)

(
�∗) cos2 θ ,

H = H(1)
(
�∗) sin2 θ , (6.4)

for the normalized fluxes. The coefficients V (0) and H(1) depend on the Coriolis
number �∗ = 2τcorr� (see Figure 6.1 derived from an actual model of the solar
convection zone). The usual concept to determine the correlation tensor of density-
stratified rotating turbulence is to prescribe the turbulence field without rotation and
then to derive the influence of rotation on the original turbulence. As the first step
in this procedure an anelastic flow (∇ · (ρu(0)) = 0) in a non-rotating fluid must be
considered. The spectral tensor of the momentum density for such a non-uniform
original turbulence is

M̂ij = Ê(k, ω, κ)

16πk2

(
δij −

(
1 + κ2

4k2

)
kikj

k2
+ 1

2k2
(κikj − κjki) + κiκj

4k2

)

+ Ê1(k, ω, κ)

16πk4

(
(k · κ)

k2
(κikj + κjki) − (k · κ)2

k2
δij − κiκj

+ 1

2

(
κ2 + (k · κ)2

k2

)
(δij − kikj/k2)

)
, (6.5)
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Figure 6.1. Radial profile of the Coriolis number �∗ for our solar model. The
turbulence must be considered as fast (slowly) rotating at the bottom (top) of the
convection zone.

where k and κ are the wave-vectors for the small scales of turbulence and for the
scale of variation of its mean characteristics (Kitchatinov & Rüdiger 2005).

The 	-effect is derived in the mixing-length approximation, which will be under-
stood as the dominance of one scale (the mixing-length) in the turbulence spectra.
In this case, the spectral functions Ê and Ê1 can formally be written as

E = 2ρ2〈u(0)2〉 δ
(

k − ℓ−1
corr

)
δ (ω) , E1 = aE/4, (6.6)

with the proportionality coefficient a. The spectral functions can be transformed
from wave space to real space, for example

E(k, ω, x) =
∫

Ê(k, ω, κ)exp(ix · κ)dκ . (6.7)

The anisotropy parameter a is not completely free. It is restricted by the condition
that in the one-point-correlation tensor for the original turbulence the radial and
horizontal intensities must be positive. This yields

−
5H2

ρ

2ℓ2
corr

≤ a ≤ 15

2
+

5H2
ρ

ℓ2
corr

, (6.8)

where Hρ is the density scale height. It is assumed that the density stratification is
the dominant spatial inhomogeneity.

Following the procedure described in Kitchatinov & Rüdiger (1993) we arrive
at the expression

Q	
ij = νT�kgl

(
V (0)

(
�∗) (giǫjkl + gjǫikl

)

− H(1)
(
�∗) (g · �)

�2

(
�iǫjkl + �jǫikl

))
, (6.9)
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for the 	-effect, with g as the radial unit vector. The two parameters are

V (0) =
(

ℓcorr

Hρ

)2 (
J0
(
�∗)+ aI0

(
�∗)) ,

H(1) =
(

ℓcorr

Hρ

)2 (
J1
(
�∗)+ aI1

(
�∗)) , (6.10)

where the functions J0 and J1 are the same as in Kitchatinov & Rüdiger (1993), but

I0
(
�∗) = 1

4�∗4

(
−19 − 5

1 + �∗2
+ 3�∗2 + 24

�∗ arctan �∗
)

,

I1
(
�∗) = 3

4�∗4

(
−15 + 2�∗2

1 + �∗2
+ 3�∗2 + 15

�∗ arctan �∗
)

(6.11)

are new. In the slow rotation case (�∗ ≪ 1), only the radial flux of angular
momentum survives, i.e.

J0 ≃ 4

15
, I0 ≃ − 3

10
, J1 ≃ I1 ≃ O

(
�∗2

)
; (6.12)

hence V (0) is negative with a > 8/9 for slow rotation.1 For fast rotation (�∗ ≫ 1),
J1 is much larger than all other functions,

J1 ≃ π

4�∗ , J0 ≃ I0 ≃ I1 ≃ O
(
�∗−3

)
, (6.13)

so that V < 0 and H > 0 results in this case (see Figure 6.2). Any uncertainty in
the 	-effect related to the unknown free a parameter of Equations (6.6) and (6.10)
disappears for the most relevant application, i.e. for fast rotation.

Our box simulations confirm the above findings (Figures 6.3 and 6.4). The aspect
ratio of the box is 1:4, it is discretized with 1003 grid points (Rüdiger et al. 2005b).
For Ta = 106 the quantity V is always negative and becomes very small at the
equator. The maximal values are reached in the middle of the box. The situation
for the horizontal 	-effect is more complicated. As first found by Pulkkinen et al.

(1993), averaged over the entire box it is positive. In our simulation it dominates
close to the equator and is large and positive in the top domain and small and
negative in the lower half of the box.

The results of the quasi-linear analytical calculations and those of the numerical
simulations of the 	-effect are rather close together. Though the analytical results
are quasi-linear and though they are only valid for a simplified turbulence model,
the differences from the fully consistent nonlinear box simulations are rather small.
The strong concentration of the horizontal angular momentum transport towards the
equator, however, is not yet fully understood (see also Käpylä et al. 2004; Hupfer
et al. 2005).

1 Opposite to the case of a = 0 considered by Kitchatinov & Rüdiger (1993).



G. Rüdiger & L. L. Kitchatinov 133

0.00
0.00

0.15

H

0.10

0.05

0.00

−0.05

−0.10

−0.15

10

3
1

0.3
0.3

10

3
1

−0.20

−0.25

−0.30

−50 0 50
Latitude

−50 0 50
Latitude

V
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Figure 6.3. Box simulations with NIRVANA for rotating convection. Here Qrφ is
shown as a function of depth, normalized with the square of the sound speed at the
surface of the unstable domain. Ta = 106, Pr = 0.1.

6.3 Turbulent heat transport

In rotating turbulent fluids the relation between the turbulent heat flux F =
ρCp〈u′T ′〉 and the superadiabatic temperature gradient β = g/Cp −∇T (g gravity)
is tensorial, i.e.

Fi = ρCpχijβj. (6.14)
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Figure 6.4. As Figure 6.3, but for Qθφ .

In the simplest case without rotation it is χij = χTδij so that the well-known
expression F = ρCpχTβ results for non-rotating fluids.

There is a close relation between the heat-flux tensor and the one-point correlation
tensor. We start from the quasi-linear connection

χij =
∫∫

χk2Q̂ij(k, ω)

ω2 + χ2k4
dkdω (6.15)

between the spectral tensor Q̂ij of the turbulence and the heat-conductivity tensor
χij. For vanishing microscopic heat conduction (χ → 0) a Dirac δ-function appears
so that

χij = π

∫
Q̂ij(k, 0)dk ≡ 1

2

∫
Qij(0, τ)dτ (6.16)

results. If the τ -integral is approximated by τcorr then χij ≃ 0.5τcorrQij. We have
thus to expect that the radial heat flux follows the behaviour of the radial turbu-
lence intensity resulting from the box simulations (Figure 6.5). In the bulk of the
convection box 〈u′2

r 〉 at the equator dominates 〈u′2
r 〉 at the poles. The same is indeed

true for the radial heat flux derived with NIRVANA and shown in Figure 6.6 (see
Rüdiger et al. 2005a).

Figure 6.6 (left-hand plot) shows the depth-profile of the correlation 〈u′
rT ′〉 for

various latitudes. Owing to the rotation, the values differ between poles and the
equator. The pole–equator difference in the radial heat-flux depends, however, on
the radius. Except for the top layer, the eddy heat-flux at the equator exceeds the
eddy heat-flux at the poles. In the top layers, where the turbulence is horizontally
dominated, the polar heat-flux dominates that at the equator. This is a characteristic
but unexpected result.
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Rieutord et al. (1994, their Figure 8a), Käpylä et al. (2004, their Figure 7) and
Hupfer et al. (2005) found similar results. We are led to the conclusion that a cross-
over exists of the pole–equator difference in the radial eddy heat-flux almost at the
same depth where the vertically dominated turbulence changes to a horizontally
dominated turbulence. As we have demonstrated with Equation (6.16), the beha-
viour of the radial heat-flux is a direct reflection of the rotation-influenced radial
turbulence intensity 〈u′2

r 〉. It is shown in Figure 6.5 that in the box (except in the
outermost layer) 〈u′2

r 〉 at the equator exceeds the value at the poles.
A similar crossover does not exist for the latitudinal eddy heat-flux 〈u′

θT ′〉 plotted
in Figure 6.6 (right-hand plot). It generally vanishes at the poles and at the equator.
Between these extrema the heat flows towards the pole in the convection zone and
towards the equator in the lower overshoot region. This is because of the action of
the Coriolis force.
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Figure 6.7. Left: The internal solar rotation law as determined by helioseismology.
(Courtesy NSF National Solar Observatory, see also Kosovichev et al. 1997.)
Right: The rotation law from the mean-field model with a rotation period of 25 days
and a = 2. The curves are marked with the latitude (= 90◦ − θ ).

6.4 Solar models

Differential rotation and meridional flow within the convection zone are the res-
ults of the simultaneous solution of the steady axisymmetric equations for the
momentum and the mean entropy. The models involve the 	-effect defined by
Equations (6.9)–(6.11), which involve the only free parameter, a, while the entropy
equation involves the rotation-induced anisotropic heat-flux tensor (see, however,
Rempel 2005). Recent models combine the numerical simulation of the differential
rotation in the convection zone with computations of the tachocline resulting from
a weak internal magnetic field within the solar radiative core (details given by
Kitchatinov & Rüdiger 2005). This combination of mean field hydrodynamics and
magnetohydrodynamics leads to the results shown in Figures 6.7 (right-hand plot)
and 6.8.

In the simulations the anisotropy parameter is a = 2 (enhanced dominance of the
radial turbulence intensity), resulting in a considerably improved agreement with
helioseismological results of the rotation law in the outer supergranulation layer.
Our old models were computed with a = 0 because there were no data for slow
rotation domains to restrict its value. Now we have both better observations and the
results of the numerical box simulations. The rotation laws of Figure 6.7 show a
clear subsurface inward increase of the angular velocity, which may be important
for the solar dynamo (Brandenburg 2005).

Even more significant may be the meridional (‘Kippenhahn’) flow as a principal
ingredient of the advection-dominated dynamo models (Choudhuri et al. 1995;
Dikpati & Gilman 2001; Bonanno et al. 2002). The resulting meridional flow is
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shown in Figure 6.8. It consists of a single circulation cell with poleward flow on the
top – opposite to the result of Kippenhahn (1963). This direction of the surface flow
complies with direct Doppler measurements (Komm et al. 1993). Helioseismology
also indicates that this direction of the flow prevails to a depth of at least 12 Mm
(Zhao & Kosovichev 2004). The flow reverses to the return equatorward direction
somewhere deeper down. The computed return flow in Figure 6.8 has a velocity
of <∼ 10 m s−1 at the base of the convection zone. This value suffices to transport
magnetic fields towards the equator during the 11 year cycle as required by the
advection-dominated dynamo models.

Not only the flow amplitude but also the depth of its penetration into the radiative
zone beneath the convection zone is important. The extent to which the penetration
exists in the Sun is currently debated (Nandy & Choudhuri 2002; Gilman & Miesch
2004). Its value can be computed with the mean-field model if the bottom boundary
of the simulation domain is placed inside the region of stable subadiabatic strati-
fication. Our model applies a local mixing-length approximation. The base of the
superadiabatically stratified shell, therefore, coincides with the bottom of the con-
vection zone. A finite effective viscosity should be prescribed for the radiative core
below the convection zone. The effective viscosity, νcore, can be quite small com-
pared to the turbulent viscosity of the convection zone but must be larger than its
microscopic value.

The penetration depth computed with such an approach is shown in Figure 6.9.
The dependence on νcore is close to

√
νcore, in accordance with the finding of

Gilman & Miesch (2004) that the penetration under solar conditions belongs to the
Ekman regime. This penetration results from viscous drag imposed by meridional
flow at the base of the convection zone on the fluid beneath. The standard Ekman
depth is Dpen ∼ √

νcore/�. Such a penetration cannot play any role in a dynamo
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process because the time of magnetic field diffusion across the penetration layer,
τd ∼ D2

pen/ηcore, is very small compared to the advection time, τadv ∼ R⊙/um,
since τd/τadv ∼ Pm um/(�R⊙) ≪ 1, except for the case of unrealistically large
magnetic Prandtl numbers, Pm = νcore/ηcore (Kitchatinov & Rüdiger 2005).

Estimation of penetration by the Ekman depth is further supported by the finding
that a variation of thermal conductivity, χcore, for constant νcore does not change
Dpen. Our computations, however, do not reproduce the Ekman relation Dpen ∼
�−0.5. The slope of the dependence is not constant and is slightly larger than −0.5.
The rotation rate dependence is better represented by a relation

Dpen ∝
(

�2 + �
tanθ

2

∂�

∂θ

)−0.25

. (6.17)

Whether the viscosity νcore is large or small beneath the convection zone depends
strongly on the stability of the solar tachocline. If the latter is unstable then the
viscosity is large and the penetration is deep. If, however, it is stable then the
viscosity is small and the penetration is only very weak. In the hydrodynamical
regime our calculations favour the small-viscosity case. If the solar tachocline is
considered as a shear flow then for high enough Reynolds numbers of the rotation
it is unstable for sufficiently high equator–pole differences of the angular velocity
at its upper boundary.

The hydrodynamical stability/instability of the solar tachocline has been probed
with the Hollerbach code for a shallow spherical shell subject to differential rota-
tion (Arlt et al. 2005). If the shear is formed only by latitudinal gradients of �

(the Watson case) then the onset of the instability starts at about 30% of rotational
shear. If, however, the radial profile of the rotation law (known from helioseismo-
logy) also enters the model then a stronger latitudinal shear results for the onset
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Figure 6.10. Bifurcation map for the hydrodynamic shear instability of the solar
tachocline. Dashed line: only latitudinal shear, solid line: rotation law � = �(r, θ)
taken from the helioseismology (Figure 6.7, left-hand plot). Note that the real solar
tachocline is not unstable in the hydrodynamical regime.

of the instability (Figure 6.10). We, therefore, assume the viscosity as small in the
solar tachocline and the penetration of the meridional flow as weak. Of course,
a final statement about this problem only depends on the solution of the stability
problem in the magnetohydrodynamic regime.

6.5 Stellar models

Hall (1991) found differential rotation for a number of magnetically active stars
from the variation of spot rotation periods over the stellar activity cycle. Messina &
Guinan (2003) derived surface rotation laws from photometric data of a monitoring
programme of stars resembling the Sun in earlier states of its evolution (Sun in
time).

Unfortunately, the number of single main-sequence stars to which Doppler
imaging has been successfully applied is still small (see Strassmeier 2002). For suf-
ficiently fast rotators, surface differential rotation can be detected, however, from
the broadening of spectral lines. Reiners & Schmitt (2003a,b) and Reiners (2006)
carried out measurements for F stars with moderate and short rotation periods.
They found differential rotation to be much more common for stars with moderate
rotation rates than for very rapid rotators.

A model has been developed for the differential rotation of a Main Sequence
(MS) star of spectral type F8 (Küker & Rüdiger 2005). The star represents the
upper end of the lower MS in the context of differential rotation and stellar activity.
With a convection zone depth of 160 Mm and a surface gravity roughly equal to the
solar value the main difference from the Sun is the luminosity, which is 1.7 times
the solar value.
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Figure 6.11. Normalized rotation rate as a function of the stellar radius for the
latitudes 0◦(equator), 15, 30, 45, 60, 75, and 90◦(poles) (from top to bottom) for
rotation periods of 4 days (left) and 14 days (right).

In Figure 6.11 the rotation rate is plotted vs. the radius. In all cases the equator
rotates faster than the poles but the amplitude of the relative shear varies with the
rotation rate. The model with the fastest rotation yields the most rigid rotation law.
Note also that for fast rotation all lines are rather horizontal, i.e. there is almost
no radial shear. While the isocontours are mainly radial for fast rotation the slow
rotation case shows a disc-shaped pattern at high latitudes.

Figure 6.12 shows the total horizontal shear, δ�, as a function of the rotation
period for various stellar models. For both F and G stars the rotation becomes more
rigid for faster rotation. Between the two limiting cases the total horizontal shear
has a maximum value. The period at which the maximum is reached is about 1
month in the case of the Sun, and 10 days for the F star. None of the curves for
stars later than G shows a sharp peak. There is mostly a broad range of nearly
constant shear around the maximum. The distinct maximum of the surface shear
for F stars has recently been seen by Reiners (2006). Also the very clear run of the
differential rotation with the effective temperature shown by the theory appears in
his observational results (his Figure 6.5).

The model presented here predicts that the equatorial acceleration of lower MS
stars should depend more on the luminosity rather than on the rotation rate. A
possible empirical trend of the stellar differential rotation with mass and/or the
rotation rate has been studied by Barnes et al. (2005). They found that the differential
rotation decreases rapidly with decreasing mass but varies only slightly with the
rotation period for a given spectral type, in general agreement with our theoretical
findings.

Also AB Dor and PZ Tel, though rotating much faster than the Sun, show surface
differential rotation very similar to the Sun. AB Dor and PZ Tel are PMS stars of
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Figure 6.13. Lap time as a function of the rotation period for the F star (solid) and
the solar-type star (dashed).

spectral type K0 and G0 with rotation periods of 0.5 day and 1 day, respectively.
With δ� = 0.056 day−1 (AB Dor) and δ� = 0.075 day−1 (PZ Tel) the surface
shear values of these stars lie close to the solar value, with the more luminous AB
Dor also showing more surface shear.

Reiners & Schmitt (2003a,b) found values between 10 and 30 days for the lap
time 2π/δ�. Figure 6.13 shows the lap time vs. the rotation period for the F and
G stars. For both types of stars there is little variation except for very long periods
where the lap time strongly increases. The value for the solar-type star is about
100 days at the period of maximum shear. In Figure 6.14 the maximum flow speed
at the bottom of the convection zone of the F star is shown. A positive sign means
that the flow is toward the equator, negative values indicate poleward flow. For the
F8 star the value of the drift decreases from 10 m s−1 for Prot = 4 days to very
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to gas motion toward the equator. Solid line: F8 star. Dashed line: G star. (From
Küker & Rüdiger 2005.)

small values for P = 30 days. A possible change of the flow direction at the bottom
of the convection zone should have dramatic consequences for the stellar dynamo
if indeed the form of the butterfly diagram is dominated by the meridional flow at
the bottom of the convection zone.

6.6 Antisolar rotation?

Hydrodynamical models of stellar rotation always lead to solar-type rotation with
an accelerated equator. Observations confirm that it is indeed the typical case (Petit
et al. 2004). However, observational indications of antisolar rotation are numerous
enough to demand a consideration of its possible origin.

The clearest possibility for a faster rotation of high latitudes is a rapid meridional
flow um. The flow provides a uniform angular momentum along the streamlines
when the Reynolds number

Re = umR⊙
νT

(6.18)

is sufficiently large, thus ensuring antisolar rotation (Rüdiger 1989). A polar vortex
results for both directions of the meridional flow. The required Reynolds number
depends on the sense of the flow. A faster polar rotation is easier to produce by a
flow that is poleward on the top. A moderate Re <∼ 100 can be sufficient in this case.

However, the meridional flow computed with the mean-field models is not fast
enough. The Reynolds number for the solar model of Section 6.4 is <∼ 10. An
additional driver of meridional circulation is thus required for antisolar rotation.
Baroclinic forcing from magnetic-induced large-scale thermal inhomogeneities (or
tidal forcing by a close companion) is the possible driver (Kitchatinov & Rüdiger
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Figure 6.15. A characteristic rotation law resulting under the presence of a poloidal
magnetic field with an amplitude of 200 G on a giant star. The angular velocity
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2004). Figure 6.15 shows the resulting rotation law for a magnetic field involved
through the boundary condition of a steady radial field penetrating the convection
zone at the inner boundary from the radiative core. The bottom field is prescribed by
a steady potential at the inner boundary, which can be understood as the penetration
of a relic field stored in the radiative core into the convection zone.

This concept is favoured by the observations (Strassmeier 2004). Among nine
examples of antisolar rotation he reports six belonging to close binaries and two to
giant stars with large dark spots on their surfaces. The remaining star is LQ Hya
for which different observations disagree about the sense of its differential rotation
(perhaps, because it strongly varies with time, see Donati et al. (2003)). Recently
Weber et al. (2005) suggest that antisolar rotation on giant stars may indeed be
accompanied by a fast (∼1000 m s−1) poleward surface flow.
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Hydromagnetic properties
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Magnetic confinement of the solar tachocline

Pascale Garaud

Two distinct classes of magnetic confinement models exist for the solar tachocline.
The ‘slow tachocline’ models are associated with a large-scale primordial field
embedded in the radiative zone. The ‘fast tachocline’ models are associated with
an overlying dynamo field. I describe the results obtained in each case, their pros and
cons, and compare them with existing solar observations. I conclude by discussing
new lines of investigation that should be pursued, as well as some means by which
these models could be unified or reconciled.

7.1 Introduction

7.1.1 Magnetic fields in the tachocline

Two distinct possible origins for solar magnetic fields in the tachocline region can
be identified. The Ohmic decay timescale of a large-scale dipolar field embedded
in the radiative interior is much larger than the estimated age of the Sun (Cowling
1945; Garaud 1999), so that a fraction of the magnetic flux initially frozen within
the accreting protostellar gas is likely to persist today. In parallel, according to the
standard dynamo field theory, small-scale magnetic fields are thought to be con-
stantly generated by fluid motions within the solar interior. Optimal conditions for
the generation of large-scale fields require the combination of large-scale azimuthal
shear and small-scale helical motion, which are both naturally found in the region
of the tachocline (Parker 1993; Ossendrijver 2003; Tobias 2005).

The fundamental differences between primordial and dynamo-generated fields –
see the discussion by Tobias & Weiss in Chapter 13 of this book – have naturally
led to two distinct classes of tachocline confinement models: a slow tachocline,
interacting on secular timescales with an underlying large-scale primordial field
and slow meridional flows, and a fast tachocline, interacting on dynamical times-
cales with small-scale turbulent flows and an overlapping or overlying dynamo

The Solar Tachocline, D. W. Hughes, R. Rosner and N. O. Weiss.
Published by Cambridge University Press. © Cambridge University Press 2007.
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Table 7.1. Properties at the base of the

convection zone

Quantity Value Quantity Value

ρ 0.2 η 4.3 × 102

T 2.2 × 106 ν 27
g 5.3 × 104 κ 1.3 × 107

N 9 × 10−4 rcz 5 × 1010

Numerical values (in cgs units) of typical values
of the density ρ, temperature T , gravity g, the
buoyancy frequency N , the molecular magnetic dif-
fusivity η, viscosity ν, thermal diffusivity κ and the
radius rcz.

field. This chapter strives to provide a fairly complete overview of the state of this
rapidly evolving topic, and presents the two alternative confinement models that
were considered at the time of the workshop. Since historically these two types
of models have remained clearly separated, I shall take the same path and present
them independently in Sections 7.2 and 7.3. Whether the true tachocline genuinely
does fall into one category or another was widely debated during the meeting, and
is discussed in Section 7.4 (see also Chapter 1 by Gough). A first attempt at con-
structing a global tachocline model that includes both fast and slow dynamics has
been developed since then by McIntyre and is presented in Chapter 8; reader should
bear this new development in mind when reading this chapter.

7.1.2 Characteristic numbers in the tachocline

In order to compare models and observations of the tachocline, I adopt characteristic
values for certain quantities in that region as listed in Table 7.1 (see also Table 1.1 in
Chapter 1). For consistency, these values are used throughout this review; in some
cases, however, they differ from those adopted by various other authors by factors
of order unity.

7.2 Primordial field confinement: the slow tachocline

7.2.1 First models

With tremendous insight into today’s debate, Mestel (1953) realised early on that
even a very weak large-scale primordial field within the solar interior would have
a significant impact on the solar angular velocity profile. Indeed, Alfvén waves are
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possibly the most efficient transporter of angular momentum in a rotating magnet-
ized fluid. They propagate unimpeded along poloidal field lines with a characteristic
velocity that depends on the local field amplitude and the local fluid density. Both
the field geometry and the density stratification result in spatial inhomogeneities of
the Alfvén velocity and the consequent phase mixing and damping of the waves.
Angular momentum is then redistributed along (and across) the field lines, leading
to a rotation profile satisfying Ferraro’s (1937) isorotation law:

B · ∇� = 0, (7.1)

or in other words, with � constant along magnetic field lines. It has been argued
that field amplitudes as low as 10−2 G are capable of enforcing uniform rotation to
the entire radiative interior (Mestel 1953; Cowling 1957; Mestel & Weiss 1987).

The first model to study quantitatively the effect of an internal primordial
field on the solar radiative zone rotation profile, and in particular its potential
role in confining the tachocline, was proposed by Rüdiger & Kitchatinov (1997).
Shortly afterward, MacGregor & Charbonneau (1999) complemented their work
by studying the effects of different internal field geometries.

Both investigations evaluate the steady-state outcome of the interaction between
a primordial field and the latitudinal shear diffusing from the convection zone.
Meridional flows are assumed to be negligible, on the grounds that the strong local
stratification effectively reduces their amplitude to a few centimetres per second
(Gough & McIntyre 1998); given this assumption, the poloidal component of the
field decouples from the governing equations and can be chosen arbitrarily. While
Rüdiger & Kitchatinov consider only poloidal fields entirely confined within the
radiative zone, MacGregor & Charbonneau also study various cases in which at
least some field lines overlap the convective zone. The steady-state structure of the
toroidal field Bφ and angular velocity of the fluid � is then obtained by solving
the azimuthal component of the momentum equation (here, cast in the form of a
conservation equation for angular momentum) and of the induction equation:

∇ · (ρνr2 sin2 θ∇�) + 1

µ0
Bp · ∇(r sin θBφ) = 0, (7.2)

r sin θBp · ∇� + η

(
∇2Bφ − Bφ

r2 sin2 θ

)
= 0, (7.3)

where the poloidal component of the field, Bp, is fixed. These equations are subject
to the boundary conditions at the interface with the convective zone,

�(rcz, θ) = �eq(1 − a2 cos2 θ − a4 cos4 θ), (7.4)

Bφ(rcz, θ) = 0, (7.5)
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Figure 7.1. Steady-state solutions obtained by MacGregor & Charbonneau (1999)
for the open and confined field configurations (top and bottom row respectively), for
increasing Reynolds numbers. For this figure, the Reynolds numbers are defined as
Rν = B0rcz/(ν

√
µ0ρ) and Rm = B0rcz/(η

√
µ0ρ), so that increasing the Reynolds

numbers can be interpreted as increasing B0 or decreasing ν and η. The left quadrant
shows the poloidal field lines, whereas the right quadrants show the rotation profile
(solid lines) and the toroidal field amplitude (dashed and dotted lines correspond
to positive and negative Bφ).

where �eq, a2 and a4 are derived from helioseismic inversions of the rotation
profile in the convective zone; typically, �eq/2π = 460 nHz, a2 = 0.14 and a4 =
0.15 (Charbonneau et al. 1999a). Adequate regularity conditions are applied on
the polar axis and at the centre. The boundary condition on the toroidal field is
related to the assumption that any toroidal field at the interface with the convection
zone is promptly removed through buoyancy instabilities. An alternative boundary
condition that is sometimes also used assumes the convection zone to be an excellent
insulator (with η → ∞), and matches the interior field to a potential field. These two
possibilities result in different quantitative estimates for the confining field strength
and toroidal field amplitudes, but have otherwise qualitatively similar associated
solutions.

The numerical solutions reveal a striking difference in angular velocity profile
between the confined field and open field cases (see Figure 7.1). While the former
results in a more-or-less uniformly rotating radiative zone, with a thin shear layer
effecting the smooth diffusive transition to the differentially rotating convective
zone, the latter results in a latitudinally sheared state close to Ferraro isorotation, as
field lines connected to the differentially rotating convection zone provide a support
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for the inward propagation of Alfvén waves. Helioseismic observations appear to
set empirical constraints on the geometry of an embedded primordial field.

The angular momentum equation (7.2) illustrates the balance between viscous
transport and magnetic transport near the outer boundary. A boundary analysis
provides useful quantitative estimates of the tachocline properties in both open and
confined geometries: viscous effects are only important in a thin Ekman–Hartmann
boundary layer (see the review by Acheson & Hide 1973) of width

δ‖ =
(

µ0ρνη

B2
0r2

cz

)1/4

rcz =
(

EνEη

	

)1/4

rcz ∼ 4 × 10−5B
−1/2
0 rcz, (7.6)

where the field of amplitude B0 is assumed to be mostly parallel to the outer bound-
ary (as in the case of the confined field) and is measured in gauss. The usual Ekman
numbers are defined as

Eν = ν

r2
cz�0

, Eη = η

r2
cz�0

, (7.7)

and a new parameter 	 is defined as

	 =
v

2
A

v
2
�

, (7.8)

where v� = rcz�0 and vA is the Alfvén velocity vA = B0/
√

µ0ρ. Here, �0 is a
mean angular velocity of the system. Equation (7.6) provides the first of many
estimates of the relation between the internal field strength and the tachocline
thickness. If the poloidal field is given by

Bp = ∇ ×
(

A

r sin θ
êφ

)
, with A = Bin

r2

2

(
1 − r

rcz

)q

, (7.9)

where the index q controls the field concentration towards the interior, and Bin is
the amplitude of the field deep in the interior, then a field of amplitude B0 in a
tachocline of thickness � corresponds to

Bin ≃ q

2
B0

(rcz

�

)q−1
. (7.10)

Combining all of the above estimates suggests that a field strength of 2 × 10−6 G
near the edge of the convective zone (which corresponds to an interior field of about
6G for q = 5) would confine the tachocline to its observed width of 0.03rcz (Elliott
& Gough 1999).

In a very interesting remark, MacGregor & Charbonneau (1999) point out that
even in a laminar tachocline, angular momentum transport between the convective
and radiative zones would not, in fact, proceed through viscous effects only; as
Spiegel & Zahn (1992) (see also Chapter 4 by Zahn) had shown, the tachocline
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spread is aided by meridional flows, which act approximately as a hyperdiffusion
of the kind

∂�

∂t
∼ r4

cz

tES

∂4�

∂r4
, where tES = 1

4

N2

�2
0

r2
cz

κ
∼ 2 × 1011 yr, (7.11)

where N is the local buoyancy frequency in the tachocline. In that case an equivalent
boundary layer analysis reveals a different relation between the tachocline thickness
and the field strength:

δ =
(

µ0ρη

B2
0tES

)1/6

rcz =
(

Eη

	�0tES

)1/6

rcz ∼ 0.0001B
−1/3
0 rcz. (7.12)

The local poloidal field required to confine the tachocline is now of the order of
B0 ∼ 6×10−4 G, and the resulting toroidal field has a typical amplitude of the order
of 105 G, which (as MacGregor & Charbonneau point out) is interestingly close to
the estimated upper limit for field storage against magnetic buoyancy within the
tachocline (Schüssler et al. 1994).

7.2.2 Towards a self-consistent model: the governing equations

Despite the great degree of simplification inherent in the model just described,
one essential result is of profound generality: Alfvénic angular momentum trans-
port occurs on a very rapid timescale, and does not permit large deviations from
isorotation anywhere in the radiative zone. Observed sheared regions (such as the
tachocline) must be relatively free of poloidal field. The magnetic confinement
problem takes an alternative but equivalent meaning: there must exist some mech-
anisms that confine the primordial field within the radiative zone in such a way as to
be largely disjoint from the convective zone. Very little overlap between the internal
field and the convective region is allowed by the upper limits set from observations
of the sunspot parity throughout the cycles (Boyer & Levy 1984; Boruta 1996).

The microscopic magnetic diffusivity in the radiative zone does not exceed
∼500 cm2 s−1. Consequently, even apparently slow flows have a large magnetic
Reynolds number. Radial motions in the tachocline are heavily suppressed by the
strong local stratification, the flow speed for a steady-state system being controlled
by the thermal diffusion time. Across the tachocline, the upper limit for the radial
flow velocities is ur ∼ 10−4 cm s−1, with a corresponding magnetic Reynolds num-
ber of a few hundred, which is sufficient to have significant nonlinear interactions
with the poloidal field, contrary to the assumptions of the studies described in the
previous section.

Gough & McIntyre (1998) realized the importance of meridional flows in the
dynamics of the tachocline. They proposed a model in which gyroscopic pumping
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Figure 7.2. Schematic representation of the Gough & McIntyre model. The outer
convection zone is differentially rotating, and generates meridional flows (black
lines) through gyroscopic pumping. These confine the underlying field (thick grey
lines) to the radiative interior, while leaving the tachocline virtually magnetic free.
See Gough & McIntyre (1998) for full colour figure.

near the convective–radiative interface drives flows whose role is to confine the
interior field, thereby completing the missing piece of the tachocline puzzle.

Their model consists of four radially distinct regions (see Figure 7.2). In the
convection zone (extended, if necessary, by a few tens of megametres to include
the overshoot region, and a corresponding fast tachocline), angular momentum
balance is achieved between anisotropic Reynolds or Maxwell stresses, and
large-scale advection by meridional flows (zone 1). The flow geometry near the
convective-radiative interface is dictated by the steady-state thermal wind and
thermal energy balance. The flows burrow into the stably stratified, mostly lam-
inar region directly underneath (zone 2) and interact with the deeply embedded
magnetic field within a thin magnetic boundary layer (zone 3). This conveniently
results in the simultaneous confinement of the underlying field to the lower part
of the radiative zone, and that of the meridional flows within a well-ventilated but
mostly magnetic free upper part of the radiative zone. Below the magnetic boundary
layer, the confined field imposes uniform rotation to the bulk of the radiative zone
(zone 4).

It is perhaps worth pointing out here that the notion of a tachocline has signi-
ficantly evolved in recent years. Within the well-ventilated, magnetic-free region
(zone 2) angular momentum is roughly conserved along the meridional flow lines
and the latitudinal shear imposed by the convective zone is not so much suppressed



154 Magnetic confinement of the solar tachocline

as ‘reshuffled’. As a result, given the strict definition of tachocline as ‘a strong shear
layer beneath the convective region’ one could argue that the Gough & McIntyre
tachocline is in fact limited to the magnetic diffusion layer. On the other hand,
a more modern interpretation of the tachocline as ‘the region which operates the
dynamical transition between the convection zone and the radiative zone’ would
then encompass both the magnetic diffusion layer and the magnetic-free region dir-
ectly above. This distinction will be useful when comparing the various predictions
for the tachocline thickness proposed in the literature. Moreover, a third meaning of
tachocline confinement now emerges in relation to the tachocline meridional flows.
Observations of surface abundances of light elements and helioseismic observation
of the sound speed profile in the tachocline suggest that the depth of the mixed
layer beneath the convection zone is of the order of a few percent of the solar radius
(see Chapter 3 by Christensen-Dalsgaard & Thompson for more detail; Rüdiger
& Pipin 2001; Elliott & Gough 1999). Given that the upper limits on the depth
of the overshoot region have been recently estimated to be significantly smaller
than the tachocline depth (Brummell et al. 2002; Rogers & Glatzmaier 2005), these
observations can be related with reasonable confidence to the tachocline ventilation
depth (zones 2 and 3).

The equations governing laminar fluid motions in the radiative zone consist
of the momentum equation, the mass conservation equation, the thermal energy
conservation equation, the field advection–diffusion equation, the equation of state
and, finally, a solenoidal condition for the field. When considering slow meridional
flows in a slowly rotating star like the Sun, one can linearize the equations around a
uniformly rotating, spherically symmetric background hydrostatic equilibrium and
use the anelastic approximation. The complete set of equations representing the
secular laminar dynamics of the radiative interior is then

ρ
∂u

∂t
+ 2ρ�0 × u = −∇p̃ − ρ̃g + j × B + ∇ · π , (7.13)

∇ · (ρu) = 0, (7.14)

ρT
∂s

∂t
+ ρTu · ∇s = ∇ · (k∇T), (7.15)

p̃

p
= ρ̃

ρ
+ T̃

T
, (7.16)

∂B

∂t
= ∇ × (u × B) + ∇ × (η∇ × B), (7.17)

∇ · B = 0, (7.18)

where tildes denote perturbations from hydrostatic equilibrium, s is the entropy,
π is the viscous stress tensor, k = ρcpκ is the thermal conductivity, and all other
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quantities have their usual meaning. This complete system of equations cannot
yet be solved exactly for realistic solar values of the background state quantities.
Numerical solutions have difficulties reaching simultaneously the correct thermal,
viscous and magnetic diffusivities, while analytical solutions struggle to cope with
the complex geometry and the intrinsic nonlinearity of the problem. What follows
describes the various attempts at treating the problem that have been proposed
so far.

7.2.3 The Gough & McIntyre boundary layer analysis

The insight of Gough & McIntyre’s seminal work (1998) is to reduce the above
system of equations to a boundary layer analysis, by considering from the outset
the thin nature of the tachocline, and retaining in each zone identified only the
dominant terms in the dynamical balance.

Thermal-wind balance in the upper region of the tachocline (zone 2). In this
region, Gough & McIntyre assume that the amplitude of the confined internal
magnetic field is too low to have any significant effect on the flow dynamics. In that
case, thermal-wind balance is achieved: the azimuthal component of the vorticity
equation reduces to

2�0r sin θ
∂�̃

∂z
= g

rT

∂T̃

∂θ
, (7.19)

where the pressure fluctuations in the equation of state have been neglected in
accordance with the anelastic approximation. Maintaining the thermal-wind bal-
ance against diffusion requires heat and momentum advection by meridional flows;
within a thin tachocline this is equivalent to:

N2Tur

g
= 1

ρcpr2

∂

∂r

(
r2k

∂T̃

∂r

)
, (7.20)

where k is the thermal conductivity (κ = k/ρc).
Additional information on the flow geometry related to the tachocline shear can

be deduced qualitatively from Equations (7.19) and (7.20). The observed angular
velocity profile in the tachocline, as given by Equation (7.4), corresponds to a
significant latitudinal entropy perturbation, positive near the poles and equator,
and negative at mid-latitudes. In order to maintain this gradient against diffusion
(specifically in the radial direction, since the overlying convective zone is largely
isentropic) meridional flows are required, with downwelling near the poles and
upwelling in mid-latitudes. This geometry favours the internal field confinement
only if the upwelling region is sufficiently narrow.
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Advection–diffusion balance in the magnetic diffusion layer (the tachopause,

zone 3). In the downwelling regions, the tachocline flow meets the underlying field
and confines it to the radiative interior. In a steady state, the system is in equilibrium
when the downward advection exactly compensates the outward diffusion of the
field. Within a thin diffusion layer, the dominant terms of the advection–diffusion
balance are extracted to yield

2�0uθ cos θ = B0

µ0ρr sin θ

∂

∂θ
(Bφ sin θ), (7.21)

− B0 sin θ
∂�̃

∂θ
= η

∂2Bφ

∂r2
, (7.22)

from the angular momentum equation and the azimuthal component of the induction
equation, respectively. Here, B0 is the amplitude of the meridional component of
the primordial field in the region of the tachocline. In addition, a rough estimate of
the radial flow velocity required to balance the diffusion of the field in the boundary
layer of thickness δ3 is

ur ∼ η

δ3
, (7.23)

which can be combined with the anelastic mass conservation equation to obtain an
estimate of the latitudinal velocity:

1

r2

∂

∂r
(r2ρur) + 1

r sin θ

∂

∂θ
(ρ sin θuθ ) = 0. (7.24)

Boundary layer scaling. Boundary layer scalings are easily derived using the
approximations ∂/∂r ∼ 1/δ2 in zone 2, ∂/∂r ∼ 1/δ3 in zone 3 and sin θ ∼
cos θ ∼ 1/

√
2 with ∂/∂θ ∼ iL, where L is a latitudinal wavenumber.

Before outlining the results obtained by Gough & McIntyre, it should be noted
that in the limit where the magnetic diffusion layer is of similar width to the whole
tachocline (in that case, there is no magnetic-free region – zones 2 and 3 are com-
bined) δ2 = δ3 and the combination of Equations (7.19) to (7.24) with ∂/∂r = 1/δ

yields (as expected) exactly the estimate of the tachocline thickness (7.12) derived
by MacGregor & Charbonneau (1999). For this scaling to hold, it is important
to verify that the Lorentz force in the vorticity equation can be neglected com-
pared with the thermal-wind balance. This is indeed the case for the field amplitude
corresponding to the observed tachocline width.

The Gough & McIntyre model suggests that a different force balance can occur
when the magnetic diffusion layer is significantly thinner than the magnetic-free
region. In zone 2, a unique expression relating the flow amplitude and the thickness
of the region δ2 can be derived from the thermal-wind balance and the thermal
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energy equations, namely (7.19) and (7.20):
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cz�0

)(
rcz
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�̃

�0

)
r�0. (7.25)

Note that if δ2 is fixed, this equation provides a stringent relation between the
imposed shear and the meridional flows permitted within the tachocline.

Two scenarios may then occur depending on the strength of the internal field.
The Gough & McIntyre model assumes that the magnetic field amplitude within
the tachopause is sufficiently small for the thermal wind relation to hold there as
well. Thus, Equations (7.19) and (7.20) complement Equations (7.21) to (7.24) in
zone 3 to yield the scaling:
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Note that the Gough & McIntyre tachopause is exactly the boundary layer studied by
MacGregor & Charbonneau (1999) – see Equation (7.12). Matching the tachopause
dynamics with the overlying flow from zone 2, by combining (7.26) with (7.23)
and (7.25), yields a unique relation between δ2 and B0:
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Comparing the expression for δ2 to the observed tachocline ventilation depth as
measured by Elliott & Gough (1999), Gough & McIntyre deduce that the internal
field strength (in the tachocline region) is of the order of 1 G, corresponding to a
primordial field strength in the deep interior of the Sun of the order of 104 G. As
assumed, the thickness of the tachopause is only a few percent of the thickness
of the whole tachocline. The tachocline ventilation time is of the order of 3 ×
106 yr; while being slow, it provides sufficient mixing of light elements beneath the
convective zone to explain the observed abundances of Li and Be. This ventilation
timescale is still significantly smaller than the solar spin-down timescale, which
accounts for the fact that the interior angular velocity is close to that of the surface
layers.

Given this estimate for the field amplitude in the tachopause, it appears that
neglecting the Lorentz force in the vorticity equation is only marginally justified.
In fact, Gough & McIntyre themselves acknowledge that the thermal-wind rela-
tion may not hold in the lower regions of the magnetic boundary layer, where
the nonlinear interaction between the field and the flow is maximal. What hap-
pens in the alternative case has not yet been evaluated in detail; however, dropping
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Equations (7.19) and (7.20) plausibly describes the right balance, and reveals a new
boundary layer scaling
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which, when combined with Equation (7.23) from the poloidal advection–diffusion
balance, and Equation (7.25) from thermal-wind balance in zone 2, reveals yet
another possible relation between the tachocline thickness, the imposed shear and
the magnetic field:
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The main difference between this boundary layer analysis and the one proposed by
Gough & McIntyre is the non-thermal nature of the boundary layer1.

So which (if any) of the above scalings really correspond to the solar tachocline?
This question is difficult to answer without a careful quantitative estimate of the
force balance in the tachopause, which can only be done through numerical sim-
ulations. Moreover, since the Coriolis force and the field geometry vary strongly
with latitude, the force balance and the nature of the boundary layer is very likely
to differ between the equator, mid-latitudes and the poles.

7.2.4 Numerical solutions of the Gough & McIntyre model

To obtain a more precise view of the geometry of the tachocline dynamics, as well
as quantitative predictions for the internal rotation rate, the light element depletion
timescale and the amount of overlap between the interior field and the convective
zone, one must resort to numerical simulations. Two approaches have recently been
considered. Douglas Gough and I have been interested in studying the steady-state
tachocline balance, while Brun & Zahn (2006) are looking at its temporal evolution
for a given initial poloidal field configuration. While the former is able to bypass
the various numerical problems caused by the wide range of timescales inherent
in the physics of the system, the latter is ideally suited to the study of potential
multiple equilibria, and naturally eliminates from the force balance any processes
occurring on a timescale longer than the stellar evolution timescale.

1 The tachopause in the Gough & McIntyre model is also a thermal boundary layer.
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7.2.4.1 Steady-state calculations

Axially symmetric steady-state calculations can be performed by an expansion
of all governing equations on a suitably selected basis of orthogonal polynomi-
als in the latitudinal direction, and then by solving the remaining ODEs using a
Newton–Raphson relaxation procedure. Note that other methods also exist (expan-
sion in spherical harmonics or finite differences in all directions), but have not been
implemented for the steady-state problem.

In 2002, I presented a preliminary numerical study of the nonlinear interac-
tion between the primordial field and the meridional flows, in an idealized setup
where the solar tachocline and radiative zone are assumed to be composed of an
incompressible, homogeneous and isentropic fluid (Garaud 2002). This assumption
largely simplifies the set of governing equations since all thermodynamical quant-
ities decouple from the system; however, it also eliminates the crucial baroclinicity
that is thought to drive meridional flows. These must then be artificially replaced
by Ekman flows driven by viscous forces on a no-slip impermeable boundary. The
latitudinal variation of the Coriolis force implied by the imposed shear from the
convection zone (for the Gough & McIntyre model) and in a viscous Ekman layer
(in the simplified model) provides gyroscopic pumping with a similar geometry,
but of different amplitude. This simplified model clearly could not provide any
quantitative estimates of the tachocline dynamics, but the geometrical similarities
with the correct model provide an interesting complement to the Gough & McIntyre
(1998) boundary layer analysis.

In this simplified model, the equations solved are the following:

2�0 × u = −∇p + j × B + ν∇2u, (7.30)

∇ · u = 0, (7.31)

∇ × (u × B) = η∇ × (∇ × B), (7.32)

∇ · B = 0, (7.33)

with a fiducial density ρ = 1. No-slip, impermeable boundary conditions are
assumed for the meridional flows, and on the upper boundary the rotation profile is
given by the convection zone profile (see Equation (7.4)). The lower boundary is a
stress-free solid conducting core. The field is matched onto a potential field decay-
ing exponentially outside the radiative zone, and matching on to a point dipole of
given amplitude Bin located at the centre of the inner core.

The dynamical connection between the interior flow and the top boundary
operates through Ekman and Hartmann layers, which have typical scalings of the
order of

δν = E1/2
ν rcz, (7.34)
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for a purely viscous Ekman layer, and

δ‖ =
(

EνEη

	

)1/4

rcz and δ⊥ =
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)1/2

rcz, (7.35)

for Hartmann layers when a magnetic field of amplitude B0 is respectively parallel
and perpendicular to the outer boundary. Ekman numbers of the order of 10−5 or
less are therefore required to model structures on the scale of the tachocline.

In what follows, it is important to remember that the induction equation is linear
in the field amplitude; thus, the ability of the flow to confine the field2 depends
not so much on the field amplitude as on the meridional flow velocity and corres-
ponding magnetic Reynolds number Rm = urδ/η. Gyroscopic pumping (of the
Ekman, or Ekman–Hartmann type) on the outer boundary implies that the latitud-
inal component of the flow uθ has amplitude comparable to the azimuthal velocity
of the outer boundary uφ , whereas the radial component of the flow is given by
ur ∼ δuθ/rcz, where δ is the thickness of the relevant boundary layer. This simple
estimate has two important consequences. Since δ is naturally smaller for larger
field strengths, the stronger the field, the smaller the effective magnetic Reynolds
number. Moreover, for a given field strength δ‖ ≫ δ⊥, so that the Ekman–Hartmann
flow is much stronger in the confined field case (i.e. parallel to the outer boundary)
than for the open field case (i.e. perpendicular to the outer boundary). The sys-
tem is therefore subject to a strong positive feedback effect: when and where the
field lines are confined because of an initially large flow amplitude, the resulting
field geometry permits large flow amplitudes. The converse is true for the open field
case, with weak flows as a cause and consequence of the radial field geometry on
the boundary. Such dual dynamics with positive feedback in both limits is likely
to harbour multiple equilibria. Unfortunately, the numerical algorithm I use is not
ideally suited for the search for co-existing steady states; this could however be the
subject of an interesting investigation.

The following results are the only steady states found for a given set of parameters.
Varying the internal field strength (through 	) for fixed Ekman numbers reveals
three possible dynamical structures. Note that the physical interpretation of the
numerical results given here differs from that of the original paper (Garaud 2002),
and should be preferred.

For low field strengths (	 ≪ 1), the internal flow is dominated by Coriolis
forces, with a more-or-less cylindrical angular velocity profile (commonly referred
to as Taylor–Proudman rotation). Meridional flows are of Ekman type (with ur ∼
E

1/2
ν rcz�̃), penetrate deep into the radiative zone, and confine the field to the interior

(except in the polar regions).

2 Note that there is, in this simulation, an indirect dependence on the field strength through Ekman–Hartmann
pumping.
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For very high field strengths (	 ≫ 1), the internal flow is dominated by Lorentz
forces, and the angular velocity is in a state of isorotation with the field. In con-
trast with the previous case, the driven flows are particularly weak (ur ∼ δ⊥�̃, so
that Rm ∼ Eν/	 ≪ 1 ), and do not have significant effects on the field, which
retains a mostly dipolar structure throughout the computational domain. The field
lines freely connect with the convective zone, and the shear is propagated inwards
accordingly. In this limit, it is in fact possible to linearize the equations around a
state of isorotation, which was successfully done by Dormy et al. (1998, 2002).

For intermediate field strength, the nonlinear interaction between the internal
field and the meridional flows dominates the dynamics of the interior. Two separate
regions can be identified. The essentially radial geometry of the flow in the polar
regions, as suspected by Gough & McIntyre, provides only weak coupling with the
underlying (mostly radial) field. Polar field lines are connected to the convection
zone, which results in slowly rotating, strongly sheared polar regions. On the other
hand, the downwelling flow near the equator is able to confine the internal field
over a broad range of latitudes, which results in a uniform rotation profile below.
In this region, a Hartmann layer is observed with flow amplitudes scaling as ur ∼
δ‖�̃ and corresponding to a magnetic Reynolds number Rm ∼ (Eν/Eη)

1/2	−1 =
Pm1/2/	 (where Pm = ν/η is the magnetic Prandtl number). The meridional flows
themselves are deflected by the underlying field and the resulting radial mixing is
strongly suppressed. There is a marginal hint of the type of nested boundary layer
structure predicted by Gough & McIntyre (1998), with a largely magnetic-free
region overlying a thin diffusion layer. However, this result needs to be confirmed
with lower diffusivity simulations.

The intermediate field strength case appears to approach qualitatively the dynam-
ical structure that we may expect to see in the solar tachocline. However, the
incompressible and isentropic nature of the fluid is an intrinsic flaw of this prelim-
inary work which needs to be addressed. New results obtained by Douglas Gough
and me on the steady-state structure of the Gough & McIntyre tachocline includ-
ing stratification and thermal diffusion were presented at the workshop. This time,
the complete set of Equations (7.13)–(7.18) are solved for a steady-state solution.
The boundary conditions are similar to the ones used in the incompressible case for
the magnetic field, but the assumption of ‘impermeability’ of the base of the con-
vection zone to flows was dropped in favour of one which assumes the continuity of
Reynolds stresses across the boundary. Several Reynolds stress prescriptions in the
convection zone are currently being explored, and the preliminary results presented
in Figure 7.3 correspond to a simplistic stress-free assumption (although, as before,
the observed rotation profile of the convection zone is still imposed at the top of
the computational domain). Finally, we assume that the convection zone acts as a
perfect conductor, so our numerical solution is matched to a ‘potential solution’
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Figure 7.3. Numerical results of Equations (7.13)–(7.18) in a steady-state calcu-
lation for fν = fκ = 5 × 108 and fη = 5 × 106. Each quadrant shows the solution
in the radiative zone only, and the dotted line represents the edge of the convection
zone. The rotation rate contours (from darker to lighter shading) range from 0.6�eq
to �eq. The streamlines are shown with dotted lines for clockwise flows and solid
lines for anti-clockwise flows. The temperature perturbations range from 0 K to
+50 K.

∇2T = 0 at the outer boundary. The main consequence of this new set of boundary
conditions is to eliminate spurious Ekman flows and let the force balance within
the tachocline dictate the flow amplitude and geometry.

The background state used was derived from a realistic solar model (Christensen-
Dalsgaard et al. 1991) where, for numerical purposes, the thermal conductivity,
viscosity and magnetic diffusivity are artificially increased by the factors fk , fν and
fη respectively; this is necessary, since viscous and magnetic diffusion layers on
the artificial outer boundary are otherwise too thin to be resolved. Typical values of
f achieved in preliminary simulations are of the order of 107, with corresponding
Ekman numbers of the order of 10−6; when fν = fη = fκ the solar values of the
magnetic and thermal Prandtl numbers are respected.

In the absence of strong magnetic fields the amplitude and geometry of the
meridional flow satisfy the expectations from the Gough & McIntyre model: the
steady-state solutions appear to depend on the thermal conductivity only, confirming
that the weak flows that may be driven by the artificial stresses on the outer boundary
are negligible compared to the baroclinic flows. These numerical results do therefore
provide a good insight into the slow tachocline dynamics.
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A thorough quantitative study of the numerical solutions is currently being per-
formed, but preliminary qualitative results are found to be very sensitive to the
thermal and magnetic diffusion parameters fk and fη. According to the scalings
obtained in Section 7.2.3, the magnetic Reynolds number corresponding to the
tachocline ventilation flow is

Rm ∼ κ

η

�2
0

N2

r2
cz

�2

�̃

�0
∼ 0.01

r2
cz

�2
, (7.36)

for solar values of the diffusion and rotation parameters. Hence provided there exists
a confining mechanism for the tachocline and � ≪ r then Rm ≫ 1, confirming the
nonlinear interaction between the field and the flow; on the other hand, Rm ≪ 1
if the tachocline is not confined. Again, this dual structure suggests either a very
strong sensitivity of the equilibrium solution to the input parameters, or even the
existence of multiple equilibria.

For most parameter values (in the low-diffusivity limit) numerical simulations
show that the internal field retains a mainly dipolar structure with field lines con-
necting to the convective region. The interior rotation profile is close to a state of
isorotation, and no tachocline is observed in this limit.

For carefully chosen parameters, however, it is possible to obtain solutions that
are encouragingly close to what may be expected from a slow tachocline (see
Figure 7.3). Meridional flows burrow into the radiative zone and confine the field
to the interior except within the upwelling region. The width of the upwelling
region is always of the order of the depth of the tachocline, and the flow direction
within the upwelling region is roughly parallel to the rotation axis. Contrary to
the incompressible simulations, field confinement also occurs in the polar regions.
Interestingly, a thermal boundary layer appears to be present in the polar regions,
but not in the equatorial regions.

7.2.4.2 Time-dependent calculations

The first numerical time-dependent simulations of a slow solar tachocline following
the idea of Gough & McIntyre were presented by Sacha Brun and Jean-Paul Zahn
at the workshop. The numerical algorithm used is the ASH code (Glatzmaier 1984;
Clune et al. 1999; Miesch et al. 2000; Brun et al. 2004), which performs a spectral
decomposition of the governing MHD anelastic equations into spherical harmonics
and Chebyshev polynomials in the horizontal and vertical directions respectively.
The massively parallel numerical algorithm achieves significant resolution in all
three directions. It is ideally suited for studying the radiative–convective interface.

Brun & Zahn (2006) study numerically the dynamical evolution of the radiative
zone when subject to shearing from the overlying convective region, and in the
presence of a large-scale embedded primordial field. Their computational domain
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includes the radiative zone only, and they model the radiative–convective interface
as an impermeable, electrically and thermally conducting, sheared boundary. Vari-
ous initial magnetic field configurations are studied, ranging from deeply embedded
fields to open field configurations. Furthermore, the assumption of axial symmetry
is dropped, which enables them to study the emergence of all the possible non-
axisymmetric MHD and baroclinic instabilities that have recently been discussed
(see Chapter 10, by Gilman & Cally, and Chapter 11, by Hughes, in this book), as
well as the angular momentum transport from the associated Reynolds and turbulent
Maxwell stresses (see Section 7.2.5.1).

The numerical values of the viscous, thermal and magnetic transport coefficients
(ν, η and κ) used in the ASH code are far greater than the microscopic solar
values; however, by respecting their hierarchy (i.e. by respecting the hierarchy of all
expected boundary layer widths and all dynamical timescales), Brun & Zahn attempt
to capture the essential dynamical balance in the tachocline, if not quantitatively at
least qualitatively.

Their main result could reshape our view of the slow tachocline: none of the
simulations appears to reach the steady-state balance suggested by the Gough &
McIntyre model. Instead, the system is observed to evolve in time following the dif-
fusion of the magnetic field out of the radiative zone. In consequence, the dynamical
evolution of the interior depends crucially on the initial magnetic configuration.

For initially open field lines, isorotation is rapidly achieved, as suspected from
the results of MacGregor & Charbonneau (1999). The meridional flows are strongly
suppressed by the Lorentz force exerted by the mostly radial field lines, and fail
to confine the field (the magnetic Reynolds number associated with their flows is
of order of unity). After a rapid transient period (roughly, one Alfvén time), the
system continues evolving as a result of the slow global field dissipation, whilst
remaining in a Ferraro state. There is no evidence for the presence of a tachocline
in this case.

When the field is initially in a configuration close to what one may expect from
the Gough & McIntyre steady state (corresponding to the marginally confined field
configuration of Rüdiger & Kitchatinov 1997), one could expect that the meridional
flows, not being hindered by the field, would act in such a way as to confine it (see the
incompressible analogue discussed in the Section 7.2.4.1). However, Brun & Zahn
find that in this case also, the field lines quickly diffuse across the initially existing
tachocline, connect to the convection zone and from there ensues Ferraro isorotation
within a short Alfvénic timescale. It appears that although meridional flows of the
kind predicted by Gough & McIntyre are indeed observed in the simulation, they
do not have enough time to achieve dynamical balance in the magnetic diffusion
layer before the field diffuses and connects with the convective zone.
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Only for a deeply confined initial field does the outward diffusion occur slowly
enough to allow for the formation of the tachopause. In that case, magnetic field
lines are indeed seen to be confined to the radiative interior by the meridional flows,
except in the polar regions which retain a modest amount of latitudinal shear. This
simulation appears to reproduce the Gough & McIntyre view of the slow tachocline,
save for a very important difference: the Ohmic diffusion of the internal field is only
partially reduced by the tachocline dynamics, so that the field amplitude steadily
decreases on a magnetic diffusion timescale. As this happens, the position and
width of the tachocline and tachopause slowly change (the tachopause rises, and
the tachocline becomes correspondingly thinner).

The absence of a stable steady state implies a direct relationship between the
observed tachocline structure and the initial field configuration. This result, should
it be confirmed, has important implications for dynamo action during the pre-Main
Sequence phase of solar evolution. A primordial centrally condensed magnetic
field configuration can presumably only be achieved by a timely switch from a
steady-state or largely irregular dynamo to a cyclic dynamo, which must happen
before the convection zone has entirely retreated to its present radius. This idea is
plausible given that the timescale for the evolution of the convective–radiative inter-
face (∼107 yr) is much shorter than the magnetic diffusion timescale (∼1010 yr).
In addition, the Mount Wilson Ca II program has found strong observational evid-
ence for a transition from irregular dynamo action in very young stars to periodic
dynamos for older stars (Saar et al. 1994). This trend has been associated with
the transition between young, very rapid rotators and older, slower rotators, and
interestingly, the timescale for magnetic braking of very young stars is also of the
order of 107 yr. Schüssler (1975), Parker (1981) and Mestel & Weiss (1987) studied
the typical magnetic fields that are likely to remain from dynamo action during the
pre-Main Sequence stage; perhaps it is time to revisit their results in the light of
Brun & Zahn’s simulations using modern dynamo models, numerical algorithms
and recent observations.

However, the numerical results obtained by Brun & Zahn pose another important
problem. In all simulations, even for the most centrally condensed initial field
configurations, the tachopause eventually reaches the outer boundary and, as field
lines connect with the convective region, the system switches to the usual Ferraro
state of isorotation. Using a rough scaling argument to compensate for the large
diffusivities used in the simulations, Brun & Zahn estimate that this state is likely
to be achieved before the present solar age regardless of the initial conditions. This
striking result is difficult to reconcile with helioseismic observations; if confirmed,
it could shed serious doubts on the relevance of the current slow tachocline model
to the solar radiative zone. However, I will discuss in Section 7.2.5.3 how a better
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understanding of the outer boundary conditions to be applied to the slow tachocline
model may rescue the situation.

7.2.5 Discussion and prospects for slow tachocline models

In recent years, slow tachocline models have come under increased scrutiny and
criticism. By design, they ignore phenomena occurring on rapid timescales, con-
centrating instead on the secular dynamical interaction between slow meridional
flows and the internal field. As such, they neglect three important effects that are
likely to have a significant impact on the fragile balance described above: the poten-
tial axisymmetric and non-axisymmetric instabilities of the calculated equilibria,
the combined effects of all possible rapid-timescale angular-momentum transport-
ers known to exist in the tachocline, and the effect of an overlying dynamo field.
In addition, the typical boundary conditions used to model the interface with the
convective zone are highly idealized and may distort our view of the tachocline.
I shall now discuss briefly the consequences of these effects on our understanding
of the tachocline dynamics.

7.2.5.1 Stability of the slow tachocline models

Slow tachocline models may be subject to a wide variety of instabilities, including
purely hydrodynamical shear and baroclinic instabilities, MHD instabilities of the
large-scale primordial field, magnetic buoyancy instabilities, magneto-rotational
instabilities and magneto-shear instabilities. Detailed investigations in the context
of the slow tachocline model are only just beginning.

Linear and weakly nonlinear stability analyses of an idealized purely hydro-
dynamical tachocline shear flow in the non-diffusive limit have been performed by
Watson (1981), Charbonneau et al. (1999b), Dikpati & Gilman (2001) and myself
(Garaud 2001). The tachocline latitudinal shear is found to be close to marginal
stability. The observed radial shear is stabilized by the very strong stratification (the
typical Richardson number is of the order of a thousand). However, as Schatzman
et al. (2000) point out, the standard Richardson criterion for stratified shear instabil-
ity must be corrected to account for thermal diffusion in the tachocline; in that case,
the radial shear is again close to marginal stability. In addition, Petrovay (2003)
suggests that independent shellular fluid motions create much stronger small-scale
radial shear layers, which could lead to secondary shear instabilities in the tacho-
cline. This interesting proposal has not been confirmed numerically yet, but would
correspond to a scenario close to that proposed by Spiegel & Zahn (1992), and have
important consequences for all slow and fast tachocline models alike.

In any case, the addition of magnetic fields changes the nature and stability of
non-axisymmetric perturbations; reviews of the stability of tachocline flows in the
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presence of strong fields and of the effects of magnetic buoyancy are given in
Chapters 10 and 11. The magneto-rotational instability (see Chapter 12 by Ogilvie)
could operate in regions of the Sun where angular velocity decreases outward from
the rotation axis (as it does in the polar regions). Balbus & Hawley (1994) showed
that the strong local stratification of the tachocline limits displacements to horizontal
surfaces, as expected; this could provide a source of latitudinal momentum mixing
in the polar regions.

Even more problematic for slow tachocline models are the well-known non-
axisymmetric field instabilities of a mostly dipolar field in stellar interiors. Early
works by Wright (1973), Markey & Tayler (1973, 1974) and Pitts & Tayler (1985)
already suggested that a purely dipolar structure deep in the interior (as assumed
in the above slow tachocline models) was subject to adiabatic perturbations near
its neutral points (any confined field structure necessarily has such points). These
are known to be stabilized by the presence of toroidal fields, but the current slow
tachocline field structures are indeed found to be unstable (Brun & Zahn 2006).
A new method for finding possible stable field structures in stellar interiors was
developed by Braithwaite & Spruit (2004). It would be interesting to see how
the slow tachocline models may be modified by the additional constraint that the
underlying primordial field should be in a stable configuration.

Self-consistent studies of the model and of its stability have tentatively been
performed. The Newton–Raphson relaxation algorithm I have used to calculate
steady-state solutions of the slow tachocline equations cannot find unstable equi-
libria. Therefore the solutions found for the range of diffusion parameters studied
are known to be stable to all axisymmetric perturbations. However, it provides no
information on the evolution of non-axisymmetric perturbations. The numerical
algorithm used by Brun & Zahn (2006), on the other hand, is ideally suited for
the study of three-dimensional instabilities of all kinds. They observe the growth
of non-axisymmetric instabilities associated with the primordial dipolar field, but
do not detect any other intrinsic instabilities in the tachocline region. This result is
interesting in the light of the local and global analyses mentioned above, but could
be consistent with instabilities that only develop at high Reynolds and magnetic
Reynolds numbers.

In conclusion, there are clear signs that the slow tachocline model might be
unstable to a variety of non-axisymmetric instabilities. These could play an import-
ant role in redistributing chemical species, angular momentum and thermal energy
within the tachocline, and must therefore be analysed. Various clues to the relative
lack of mixing below the tachocline also suggest that any derived model should
be constructed in such a way as to maximize stability below the tachocline; this
constrains the geometry of the assumed primordial field.
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7.2.5.2 Gravity waves as angular momentum transporters

The tachocline is known to host a wide spectrum of gravity waves, excited by
overshooting convective plumes pounding on the stably stratified interior. These
waves transport and deposit angular momentum further down in the radiative
zone; the differential damping between prograde and retrograde waves is known
to accentuate shearing flows and can be likened to some kind of anti-diffusion
mechanism (McIntyre 2003, and Chapter 8 of this book; Kumar et al. 1999; Kim
& MacGregor 2001, 2003; Talon & Charbonnel 2005). Quantitative estimates
for the amplitude of the gravity waves thus generated, as well as their damping
rate as a result of nonlinear interactions (mode–mode interaction or critical layer
interaction) are difficult to obtain, although numerical simulations provide a new
promising route for resolving this problem (Rogers & Glatzmaier 2006a). To com-
plicate matters, dynamical interactions between the gravity waves and magnetic
fields in the tachocline transfer energy into a wider spectrum of Alfvén waves,
with correspondingly different propagation and damping mechanisms (Kim &
MacGregor 2003). The global action of gravity and Alfvén waves on the back-
ground fluid generates large-scale dynamical structures that can have a radial
extent much larger than the overshoot layer. Moreover, although the total flux
of angular momentum transported is small, it is nonetheless important on the
secular timescales considered for the slow tachocline models. Thus in this case
again, significant modifications to the existing slow tachocline models could be
required.

7.2.5.3 Boundary conditions

One of the most difficult problems faced by all tachocline models (including the fast
tachocline, see Section 7.3) is the choice of boundary conditions used to describe the
convective-radiative interface. The problem is exacerbated in the case of the slow
tachocline, where meridional flows play an important role in redistributing angular
momentum, preserving the thermal-wind balance and confining the internal field.
Indeed, artificial flows generated on the boundary of the computational domain are
an inevitable consequence of any attempt to impose stresses locally. Two situations
may arise.

If the boundary is assumed to be impermeable, Ekman and Ekman–Hartmann
layers form (the layer structure is modified for stress-free boundaries, but does
not disappear); numerical models must monitor the amplitude of these boundary
layer flows and ensure that they are only a small perturbation to the baroclinic
flows of interest. This constraint places upper limits on the values of the Prandtl
(ν/κ) and inverse Roberts (η/κ) numbers. However, even in a limit where Ekman
flows can be neglected, the presence of an impermeable outer boundary constrains
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the geometrical structure of the meridional flow cells by limiting their upper radial
extent, and by mass conservation, their latitudinal geometry. This numerical artefact
is inevitable in the case of impermeable boundaries, and will affect the latitudinal
force balance within the tachocline.

Another option is to relax the condition of impermeability. In that case, con-
tinuity of radial stresses replaces the condition of impermeability, but the problem
is then merely transposed into a Reynolds stress modelling problem for turbulent
convection. In addition, associated with the thought that it is possible to approx-
imate the radiative–convective interface with simple ‘boundary conditions’ is the
underlying assumption that the structure and dynamics of the convective region
are independent of the tachocline dynamics. However, the recent works of Miesch
(2003) and Rempel (2005) refute this hypothesis. The differential rotation near the
convective–radiative interface is related to the differential rotation in the convect-
ive region, which results from the angular momentum balance between Reynolds
stresses and large-scale meridional flows; these flows burrow into the tachocline and
advect entropy to create a latitudinal entropy gradient which strongly constrains dif-
ferential rotation through the thermal-wind balance. Thus the radiative–convective
system is inseparably coupled. It is to be hoped that in the next few years, models
will pay particular attention to modelling the convective zone and the tachocline
simultaneously.

The role of the convection zone as a boundary condition on the magnetic field is
even more ambiguous. Even while leaving aside the possible presence of a dynamo
field in the outer layers of the tachocline (see Section 7.3 for a review of the effect of
the dynamo field on the tachocline dynamics), currently used boundary conditions
could be warping our conclusions on the slow tachocline dynamics. All models
thus far assume the convective zone to be nearly perfectly insulating (η → ∞) and
match a potential field to the internal field. By assumption, field lines are smoothly
anchored to the convective zone (i.e. to the outer boundary). However, we know
that this is very far from the true situation: overshooting plumes interact with the
magnetic field lines, stirring and shaking them, advecting them into large horizontal
excursions, promoting reconnection as well as regeneration (the dynamo effect). In
fact, it is more likely that the combined effect of convection is to confine the interior
field (at least, its long-term averaged component) somewhat below the overshoot
region. Indeed, flux expulsion and magnetic pumping by the convective plumes
(Tobias et al. 2001; Dorch & Nordlund 2001) is sometimes thought of as being
the principal reason for the lack of overlap between the internal primordial field
and the dynamo field (as discussed by Boruta 1996). By contrast, the underlying
assumption that field lines can be smoothly anchored into the convective zone leads
to the ubiquitous emergence of a Ferraro state of isorotation in most numerical
simulations of the slow tachocline. It will be interesting to know whether this
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conclusion holds should a more realistic model of the effect of the overshooting
plumes on the primordial field be used.

In any case, the presence of a dynamo field may entirely change our view of the
solar tachocline; the next section reviews recent models that explicitly involve the
solar dynamo in the tachocline dynamics.

7.3 Dynamo field confinement: the fast tachocline

The solar dynamo field is observed through the regular emergence of strong flux
concentrations at the solar surface, which appear in the form of active regions
composed of dark sunspots and bright faculae. In Chapter 13, Tobias & Weiss
review current observational knowledge of the solar dynamo and the potential role
of the tachocline in its generation. Some important models favour the radiative–
convective interface as the optimal location for the solar dynamo (Parker 1993):
field stretching by the strong shear in the azimuthal flow can generate large-scale
toroidal fields, accumulating in the tachocline until buoyancy instabilities trigger
their rise into the convective region. From there, part of the flux emerges coherently
through the surface, while the rest is promptly distorted into small-scale fields in
all directions. Non-zero mean flow helicity results in non-zero mean poloidal flux
generation, which is then pumped back down into the tachocline by convective
overshooting. Many alternative models of the solar dynamo exist (see the review
by Ossendrijver 2003), in some of which dynamo action is independent of the
tachocline shear and relies only on turbulent and large-scale motions within the
convective zone (Glatzmaier 1984; Brun et al. 2004; Brandenburg 2005). In reality,
however, magnetic flux is necessarily pumped into the tachocline by overshooting
convective plumes (Tobias et al. 2001).

The inevitable presence of strong dynamo-generated magnetic fields in the tacho-
cline naturally raises many questions. What are the consequences for the tachocline
dynamics? How far down into the tachocline does the dynamo field penetrate? Could
the dynamo field be entirely, or partly, responsible for the observed rotation profile
below the convective zone?

Contrary to the primordial field confinement models described above, the dynam-
ics arising from the interaction of the tachocline shear with the dynamo field occurs
on much shorter timescales. The intrinsic field variability is of the order of 11 yr,
with a much larger amplitude than the assumed primordial field (and a correspond-
ingly much shorter Alfvén time). Shear and magneto-shear instabilities operate
on timescales typical of the rotation rate and Alfvén timescales (see Chapter 10).
Finally, where overshoot is implied, the flow turnover timescale is of the order of
a month. For obvious reasons, this new view of the tachocline was loosely called
the fast tachocline (Gilman 2000).
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7.3.1 Fast tachocline diffusion models

How deep is the fast tachocline? A quick answer associates the thickness of the fast
tachocline with the dynamo field penetration depth. The dynamo field is pumped
into the overshoot layer by downward penetrating plumes (Tobias et al. 2001)
and diffuses downward into the radiative zone. However, the regular field polarity
reversal plays an important role in limiting the field diffusion, since each cycle
nearly cancels out the previous one (Mestel & Weiss 1987); as a result the field
is strongly suppressed within a skin depth δSD ∼ (τD/τη)

1/2rcz (assuming the
dynamo is exactly periodic with a period τD and where τη = r2

cz/η is the Ohmic
diffusion timescale). For a laminar tachocline with microscopic diffusivity η ∼
400 cm2 s−1 the skin depth is less than a few kilometres. This figure can be increased
to a few megametres should one consider eddy diffusion in a turbulent tachocline
with ηt ∼ 1010 cm2 s−1 (Forgács-Dajka & Petrovay 2001). Whether turbulence
in the tachocline does indeed act as an ‘eddy diffusivity’ should be kept in mind
throughout the following section, and is discussed in more detail in Section 7.3.2
and by Diamond et al. in Chapter 9.

A promising way of confining the tachocline was first suggested and later
developed by Forgács-Dajka & Petrovay (2001, 2002; Forgács-Dajka 2004). They
consider the structure of a turbulent tachocline pervaded by an oscillatory dynamo
field. The field diffuses downward into the radiative zone and interacts with the
tachocline shear. By construction, within the dynamo skin depth the magnetic dif-
fusion timescale is of the order of the dynamo period. The Alfvén crossing time,
on the other hand, depends on the imposed field amplitude and can be assumed
to be much smaller than the dynamo period for fields of the order of several kilo-
gauss or larger. Ferraro isorotation along the poloidal field lines is therefore rapidly
achieved.

In their first paper on the dynamics of the fast tachocline, Forgács-Dajka &
Petrovay assume a given poloidal field structure within the dynamo skin-depth and
impose a sheared angular velocity profile at the interface with the convective zone
(see Equation (7.4)). These are equivalent to the assumption that all meridional
motions are negligible within the tachocline; indeed, in that case the equations
governing the poloidal and toroidal components of the field decouple. The poloidal
component satisfies a simple diffusion equation with periodic forcing, which has
a spatially damped oscillatory solution. Here for simplicity the poloidal field Bp is
assumed to have the functional form

Bp(r, θ , t) = Bp(r, θ) cos(ωDt), (7.37)

where 2π/ωD = τD = 22 yr. Under those conditions, the azimuthal component of
the momentum and induction equations can be integrated to obtain the profiles of
angular velocity and toroidal field as functions of time.
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An approximate analytical solution to the governing equations can be derived
in the limit of large poloidal field strength (i.e. in the limit where there is a clear
separation between the Alfvén time and the dynamo period), and thin tachocline. Let
vA be the typical Alfvén velocity of the imposed poloidal field; then by assumption
ǫ = rωD/vA ≪ 1. Following Forgács-Dajka & Petrovay (2001), the equations are
for simplicity written in a local Cartesian system (with θ ↔ x and r ↔ z). In units
of the Alfvén timescale and the radius of the convective zone the non-dimensional
governing equations are

∂tuφ = cos(2πǫt)∂xBφ + τA

τν

∇2uφ , (7.38)

∂tBφ = cos(2πǫt)∂xuφ + τA

τη

∇2Bφ . (7.39)

In the limit ǫ ≪ 1 it is possible to perform a two-timescale analysis and seek
solutions on the slow timescale τ = ǫt (which evolves on the timescale of the
cyclic dynamo field). The slow solutions satisfy the reduced equation

cos(2πτ)∂xBφ = −τA

τν

∇2uφ , (7.40)

cos(2πτ)∂xuφ = −τA

τν

∇2Bφ , (7.41)

and, should one assume that ∂z ≫ ∂x, can be found analytically; they display an
oscillatory temporal structure with the timescale of the imposed field τD, and an
oscillatory spatially damped structure below the convective–radiative interface on
a typical lengthscale δD, where

δD

r
=
(

4τ 2
A

τντη cos2(2πτ)L2

)1/4

(7.42)

and L is the latitudinal wavenumber of the imposed poloidal field. Not surprisingly,
this estimate is equivalent to the depth of a Hartmann layer for an imposed field
with field lines parallel to the boundary and amplitude B0 cos(2π t/τD). This fast
tachocline model therefore predicts the same tachocline thickness scalings as a
function of the imposed field as had been obtained by Rüdiger & Kitchatinov
(1997).3 By extension, there is a natural generalization of the result should the
imposed dynamo field have a strong radial component.

For the model assumptions to be consistent, it is important to verify that δSD ≫
δD. This places lower limits on the imposed field strength for a given turbulent

3 Forgács-Dajka & Petrovay (2001) derive other scaling laws between the confining field strength and the tacho-
cline thickness in the limit where the dynamo frequency is higher (which could be applicable for stars other
than the Sun).
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diffusivity. In addition, if the field is much weaker than about a kilogauss, the
simple two-timescale analysis fails and interactions between the dynamo forcing
and the Alfvén waves could lead to the excitation of modes with new frequencies.
This has not been investigated yet.

Numerical solutions have been computed by Forgács-Dajka & Petrovay (2001)
for a dipolar poloidal field of varying amplitude. They show a clear confinement
of the imposed latitudinal shear for large enough field strength (typically, |Bp| ∼
0.2T for ηt ∼ 106 m2 s−1). The latitudinal variation of the field amplitude leads
to a significant latitudinal variation of the tachocline depth, which is consistent
with the above estimates. Observations, however, reveal only a weak latitudinal
variation of the tachocline position and width (Charbonneau et al. 1999a) which
could in principle set strong constraints on the poloidal field geometry diffusing
from the overlying dynamo. As expected also from the analysis, there is a significant
temporal variability of the depth and aspect of the tachocline on a period of 11 years
(the differential rotation is independent of the field polarity). Both results confirm
and quantify common expectations that there must exist some variability in the
tachocline angular velocity profile on the dynamo timescale. However, precise
helioseismic observations by MDI/SOI on board SoHO have only been available
for slightly less than one solar cycle, and little to no tachocline variability on the
dynamo timescale has yet been detected (Corbard et al. 2001). Definite answers
on this topic are impatiently awaited: so far, only 1.3 yr torsional oscillations have
been found (Howe et al. 2000).

In following works, Forgács-Dajka & Petrovay (2002) and Forgács-Dajka (2004)
study various improvements to the model, including the effects of a large-scale
(imposed) meridional flow, of a radially varying magnetic diffusivity and vary-
ing magnetic Prandtl number. The background state is derived from the solar
model of Guenther et al. (1992). They also calculate the poloidal component of
the dynamo field self-consistently from the poloidal component of the advection–
diffusion equation: in these new simulations the poloidal field is advected by the
imposed meridional flows in addition to diffusion. Finally, they impose a realistic
description of latitudinal and temporal variation of the migrating dynamo field as a
boundary condition, which is derived from the observations of Stenflo (1994). The
modelled meridional flows are poleward near the solar surface with a velocity of
about 10–20 m s−1, in accordance with direct observations of the motion of small
magnetic features (e.g. Komm et al. 1993) or inferences from local helioseismo-
logy (Giles et al. 1997). Two geometries are studied: a single-cell structure with
an equatorward return flow in the tachocline, and a double-cell structure with a
poleward return flow in the tachocline and a null node at about r = 0.85R⊙. Note
that numerical simulations of turbulent convection do not appear to favour the view
of stable long-lived circulation cells deep in the convective zone; meridional flows
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Figure 7.4. Numerical solutions for the fast tachocline model of Forgács-Dajka
& Petrovay. This simulation includes a realistic representation of the poloidal
field extracted from the butterfly diagram, but neglects meridional motions. Upper
panels: resulting differential rotation spreading into the radiative interior in two
cases. In the left panel η = ν = 106 m2 s−1 throughout the domain (in which case
Pm = ν/η = 1). In the right panel Pm is varied with depth between 0.024 and 0.1.
In this case the variations of η and ν are: log10 η = 3.5 − 6 and log10 ν = 2 − 5.
Bottom panels: corresponding latitudinal variation (left) and temporal variation
(right) of the tachocline thickness.

are instead very intermittent, with strongly variable geometries (Brun & Toomre
2002).

The results, illustrated in Figure 7.4, can be summarized as follows. The role of the
meridional flows as transporters of angular momentum naturally aids the tachocline
confinement process in the case of the modelled two-cell circulation pattern (by
transporting angular momentum poleward) and hinders it in the case of the single-
cell circulation pattern. The numerical simulations confirm these expectations, and
suggest that flows as slow as a few centimetres per second in the tachocline have a
significant impact on the observed differential rotation profile.
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A strong decrease in turbulent magnetic diffusivity with depth beneath the tacho-
cline is expected from the steep increase in the background stratification. Note that
the decrease in turbulent mixing below the tachocline is clearly constrained by
independent observations of the light element depletion fraction (see Chapter 3). In
that case again, the imposed convection zone shear is still easily quenched by the
fast tachocline fields. However, across the turbulent/laminar transition the dynamo
field penetration is abruptly suppressed and is therefore not able to reduce any
deep-seated residual shear related to solar spin-down; this is an intrinsic problem
of all fast tachocline models. One possible solution stems from the fact that the
solar dynamo cycle is not exactly periodic. Mestel & Weiss (1987) suggested that
the (apparently) random component of the dynamo field could diffuse much deeper
into the radiative zone than its periodic counterpart. I investigated this possibility
in detail (Garaud 1999), and found that an internal field with an rms value of about
10−4B0 (where B0 is the amplitude of the poloidal component of the dynamo field)
could build up deeper in the interior.

7.3.2 Discussions and prospect for the dynamo confinement model

In comparison with slow tachocline models, the idea proposed by Forgács-Dajka
& Petrovay has the advantage of being based on a robust balance of forces,
which holds even in the presence of instabilities (it does in fact rely on the
presence of instabilities), and can be tuned to compensate any additional angu-
lar momentum transport from convective plumes, gravity waves or meridional
flows. The spatial variation of the tachocline depth observed in the numerical
simulations can be reconciled with observations for specific poloidal field struc-
tures, and the strong temporal variation observed could still be consistent with
observations should the tachocline be in fact a little bit shallower than cur-
rent estimates (this statement is mostly based on the resolution of helioseismic
inversions).

One must nonetheless bear in mind the three assumptions inherent in the model:
the tachocline is turbulent, the turbulence leads to an eddy diffusivity greater than
109 cm2 s−1 in the tachocline and, finally, the dynamo generation mechanism does
not rely on the detailed tachocline structure.

If we assume that the tachocline has a width ∼ 0.02R⊙, then turbulent motions
at the level required by the fast tachocline model cannot result from overshooting
plumes only. The stability of the tachocline to hydrodynamic and magneto-
hydrodynamic instabilities was discussed in Section 7.2.5.1 and is reviewed in
Chapters 10 and 11; magneto-shear instabilities offer a promising route for the main-
tenance of turbulent motions. In fact, these instabilities are so ubiquitous that the
maintenance of large-scale fields in the tachocline appears to be the more relevant
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problem. Nonetheless, the first of the three governing assumptions is not much
under dispute.

However, the role of turbulent motions in ‘diffusing’ large-scale fields is a far
more difficult issue. Although very commonly used in astrophysical MHD models,
the physical basis for turbulent diffusivity, as well as its parametrization, is still
ambiguous. The concept of turbulent diffusion is typically derived from heuristic
arguments on the vectorial form of the averaged electromotive force due to small-
scale fields and flows (see Chapter 13):

(u × b)i = αijBj − βijk∂jBk . . . (7.43)

This expression naturally emphasizes the tensorial nature of the turbulent diffusivity
β; assuming that β ∼ ηt is a scalar is a largely unjustified (but commonly used)
simplification.

The turbulent diffusivity is known to be quenched when the magnetic fields start
having a strong effect on the turbulent flow (near energy equipartition); at the largest
scales in the tachocline, this effect is relevant for fields upward of a few thousand
gauss, which already has implications for fast tachocline models. But the situation
may in fact be much worse. In the tachocline, the magnetic Prandtl number is of the
order of ν/η ∼ 10−2; if a small-scale dynamo indeed operates at these values of the
magnetic Prandtl number (Boldyrev & Cattaneo 2004) magnetic energy accumu-
lates somewhere on the turbulent inertial range and reaches equipartition well before
the larger scale field does. This process could quench the turbulent magnetic dif-
fusivity for much lower field strengths (Cattaneo & Vainshtein 1991). Catastrophic
η-quenching is shown to occur in two-dimensional flows through numerical simu-
lations (Cattaneo 1994) and quasi-linear closure (Gruzinov & Diamond 1995). The
situation is still unclear in the case of three-dimensional flows. The η-quenching
process could pose serious threats to the fast tachocline models: using the scalings
proposed by Cattaneo & Vainshtein (1991), large-scale fields as low as a few gauss
would suffice to quench the turbulent diffusivity of the fast tachocline by several
orders of magnitude. This creates an intrinsic contradiction within the model.

In any case, the current fast tachocline model neglects all effects of the turbulent
motions except for their role in enhancing the magnetic diffusivity. However, other
macroscopic effects are known to occur and are likely to play an important role
in the tachocline dynamics. Turbulent flux expulsion has been observed in a wide
variety of systems where turbulent and laminar regions coexist (Tao et al. 1998;
Tobias et al. 2001). Field generation by small-scale turbulent motions, the α-effect,
has also been predicted by turbulence closure models (Krause & Rädler 1980) and
observed in numerical simulations (e.g. Brandenburg et al. 1990). Finally, non-
isotropic Reynolds stresses and turbulent Maxwell stresses may be as important
as the large-scale Lorentz forces in reducing the imposed shear. In other words,
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a consistent model for the fast tachocline will require a consistent description of
the effects of turbulent motions on the large-scale flows and fields.

Building on this idea, another natural step in the study of fast tachocline confine-
ment models is to calculate self-consistently the temporal evolution of the field and
the flow, using for instance a mean-field dynamo model. Indeed, current mean-field
models calculate the field evolution assuming a given angular velocity profile in the
tachocline, whereas current tachocline confinement models study the effect of an
assumed dynamo field on the shear. In an integrated model, can dynamo action be
sustained if the radial shear is quenched by the dynamo itself? This could indeed
happen should dynamo action rely more on the latitudinal shear than the radial
shear, or if the solar dynamo is more of an α2-dynamo than an α�-dynamo. Repro-
ducing simultaneously the tachocline profile and the solar cycle is an interesting
challenge which could provide much insight into the correct parametrization of the
α- and β-effects.

7.4 Discussion and prospects

We have now reached a stage in the process of studying the tachocline dynamics
where there exists a large enough variety of studies, models and observations to
support critical discussions. What are the next steps in the study of the tachocline
magnetohydrodynamics? The few points that I believe will have a significant impact
on our understanding of the tachocline in the next few years are the following.

Coexisting ‘fast’ and ‘slow’ tachoclines? In the light of the discussions outlined in
Sections7.2 and 7.3, is it still possible to consider the idea of coexisting ‘fast’ and
‘slow’ tachoclines? The only way to do this would be to construct a complex layered
structure starting from the bottom of the convective zone with a turbulent, magnetic
overshoot region, which gradually quietens downward to give way to a more lam-
inar region where the large-scale (dynamo) fields are pumped, stored and stretched.
Slightly further down, the low magnetic diffusivity forbids the oscillating field
from penetrating very far down and thus appear successively the well-ventilated,
magnetic free region of the Gough & McIntyre tachocline, the magnetic diffusion
layer and finally the magnetically constrained interior. And most of the above must
be packed, according to observations, within a total width spanning no more than
2%–4% of the solar radius. This scenario can only work if fluid motions in the
tachocline are to a very large degree two-dimensional. However, there are doubts
that this may be the case at all times despite the strong stratification. Numerical
simulations suggest there are occasional very strong overshooting events with large
radial extent. Can the slow tachocline balance survive these mixing events? More
precisely if, as suspected, the Gough & McIntyre model indeed harbours multiple
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equilibria, mixing events extending between the interior and the overshoot region
could dredge out interior field lines and drag them into the convective region, trig-
gering the transition from a confined interior field to the open field configuration.
Should this happen, there is no simple mechanism capable of returning the sys-
tem to the confined field configuration of the Gough & McIntyre model within
the typical timescale of occurrence of the mixing events. Furthermore, magnetic
buoyancy and other instabilities (see the discussions in Chapters 10, 11 and 12) are
intrinsically three-dimensional. In particular, the ‘tipping’ instabilities discussed by
Spruit (1999, 2002; Braithwaite & Spruit 2004) may change the picture drastically,
as explained by McIntyre in Chapter 8.

The role of the interaction between overshooting plumes and an internal primordial

field. As discussed elsewhere, this interaction is likely to play a dominant role in the
tachocline dynamics. Tamara Rogers and I have begun studying this phenomenon to
determine whether this may indeed be a sufficient, self-consistent way of confining
an internal field while bypassing the need for baroclinic meridional flows. We hope
to show for instance that the ubiquitous emergence of Ferraro rotation in laminar
models is in fact an artefact of the simplified interface conditions; in fact, we believe
that the interaction between overshoot and an internal field may form the basis for
a minimalist model of the tachocline and the radiative interior.

The role of gravity waves. Talon & Charbonnel (2005) have recently claimed that
the continuous adjustment of the angular velocity of the radiative core to that of
the convection zone could in fact be entirely attributed to gravity wave mixing.
This would suppress the need for an internal primordial field. An important task
for the near future is to test the Talon & Charbonnel model for angular momentum
transport against direct numerical simulations of gravity waves in the solar interior
(Rogers & Glatzmaier 2006b), and to investigate ways in which observations (com-
bining asteroseismology, surface light-element abundances and magnetic activity
measurements) may help distinguish between the magnetic and non-magnetic
scenarios.

The early evolution of the Sun and its relation to the internal primordial field. Given
its likely dominant role in the interior dynamics, it is perhaps disappointing that we
know so little about the interior field. How much of the collapsing cloud’s magnetic
flux survives the fully convective phase of stellar evolution? What happens to this
flux as the convective zone finally retreats? The Mount Wilson observations of the
magnetic activity of very young solar type stars now permit a more comprehensive
study of the correlation between dynamo action, rotation and internal structure: can
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we construct a model of the early solar magnetism that would include these new
data and enable us to predict the current internal field strength and geometry?

Self-consistent mean-field hydrodynamics and dynamo models. Current mean-field
dynamo models assume a given differential rotation profile, while current fast tacho-
cline models assume a given magnetic field profile. Rempel (2005) showed that it
is now possible to use mean-field hydrodynamics to model simultaneously the
tachocline and the convection zone; the extension of this work to include mag-
netic stresses as well as mean-field dynamo processes might provide a model of
rotation and dynamo action in the Sun. This would be a significant advance in the
field, since the self-consistent determination of rotation (which can be measured by
helioseismology) and meridional flows (which appear to constrain the equatorward
sunspot drift throughout the cycle in many types of dynamos) may help distinguish
between various competing dynamo models. Comparison with the rotation profile
and magnetic activities of other stars would also help refine our understanding of
this exceedingly complex system. In fact, such an approach may be the only route
towards a better understanding of interior dynamics: it is becoming increasingly
clear that we have very little hope of reaching the asymptotic values of the Reyn-
olds and Rayleigh numbers in three-dimensional simulations of the whole Sun that
would permit a trustworthy study of the convection zone and the tachocline. How-
ever, numerical simulations in a local box are on the other hand much closer to
solar values, and may help constrain the parametrizations to be used in mean-field
models.
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Magnetic confinement and the sharp tachopause

Michael E. McIntyre

The discovery by Spruit of a new small-scale turbulent dynamo has signific-
antly changed the tachocline model proposed by Gough & McIntyre (1998). The
small-scale dynamo is shear driven, is characteristic of stably stratified flows,
and is mediated by the kink or ‘tipping’ instability elucidated for such flows
by R. J. Tayler. The dynamo works best in high latitudes and supports turbu-
lent Maxwell stresses large enough to dominate the angular momentum transport,
taking over from the pure mean meridional circulation (MMC) proposed by
Gough & McIntyre (1998). What survives from the Gough & McIntyre pro-
posal is the laminar thermomagnetic boundary layer at the tachopause, essential
for the confinement of the interior field Bi by high-latitude downwelling. That
downwelling is, however, itself confined within a double boundary layer at the
tachopause. The thermomagnetic boundary layer sits just underneath a modified
Ekman layer, in which the turbulent Maxwell stress of the small-scale dynamo
diverges.

The effects of compositional stratification in the helium settling layer under
the tachopause are considered. It is concluded that Gough & McIntyre’s (1998)
‘polar pits’ to burn lithium are dynamically impossible and that the tachopause
is not only sharp but globally horizontal. That is, the tachopause, as marked by
the top of the helium settling layer, follows a single heliopotential to within a
very tiny fraction of a megametre from equator to pole. Therefore the stably strat-
ified tachocline, defined in high latitudes as the layer of dynamically significant
shear beneath the convection zone, must be thick enough to burn lithium. This
is consistent with the helioseismic evidence because the high-latitude shear, even
though crucial to the maintenance of the dynamo action, is held down in mag-
nitude, by the dynamo’s turbulent Maxwell stresses, to values too small to be
visible.

The Solar Tachocline, D. W. Hughes, R. Rosner and N. O. Weiss.
Published by Cambridge University Press. © Cambridge University Press 2007.
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8.1 Introduction

Following Spiegel & Zahn (1992) and others, I start from the assumption that the
fluid dynamics of the tachocline is a multi-timescale problem. Specifically, in order
to understand the structure of the present tachocline I assume, and will argue in what
follows, that one has to consider fluid-dynamical processes over the full range of
timescales from the gigayear or secular timescale of solar evolution to the months
and years of convection-zone overshoot and upper-tachocline MHD instabilities
and turbulence, all touched on in other chapters in this book. That many timescales
are important should hardly need saying, but does, perhaps, need saying here if
only to counter the false dichotomy ‘slow versus fast’ that seems to have taken hold
in the literature. Indeed it seems possible, now, that even so basic a quantity as the
tachocline thickness � may depend on the gigayear-timescale history, as well as
on a variety of turbulent processes over a large range of timescales.

In what follows I assume it unnecessary to repeat my old arguments (1994, 2003a)
against the Spiegel–Zahn horizontal-eddy-viscosity hypothesis – which arguments,
in turn, point toward the inevitable existence of a global-scale magnetic field Bi

in the radiative interior, whether of fossil or dynamo origin (Gough & McIntyre
1998), as the only way to account not only for the interior’s solid rotation but also
for the smallness of �, at most several tens of megametres according to helio-
seismology (see Chapter 3 by Christensen-Dalsgaard & Thompson). The argument
for inevitability still seems significant in itself, given the far greater uncertainties
about the origin, and the viability, of magnetic fields in the radiative interior. There,
the gigayear-timescale escapology of magnetic fields has Houdini-like possibilit-
ies (see Chapter 11 by Hughes) involving the nonlinear effects of instabilities and
Parker flux-tube buoyancy in combination.

The argument for inevitability of a magnetic interior can be summarized in two
parts. First, a non-magnetic interior cannot be held in solid rotation by real stratified,
layerwise-two-dimensional turbulence. Such turbulence, if it were to be excited,
would tend to be ‘anti-frictional’ – to drive the system away from solid rotation
and not toward it (McIntyre 1994, 2003a,b and references therein). The effect
would be qualitatively unlike that of the hypothesized horizontal eddy viscosity.
Second, a non-magnetic interior would be incapable of withstanding another fluid-
dynamical process that would also drive it away from solid rotation and that would,
furthermore, as originally pointed out by Spiegel & Zahn (1992), make � values
significantly larger than permitted by the helioseismic evidence. That process –
the downward ‘radiative spreading’ or ‘Haynes–Spiegel–Zahn burrowing’, into
a non-magnetic interior, of mean meridional circulations (MMCs) and differential
rotation – will be revisited here together with the concomitant notion of ‘gyroscopic
pumping’. As well as making � values too large, the downward-burrowing MMCs
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would prevent a helium settling layer from forming at the top of the interior, as well
as probably burning too much beryllium.

The arguments against non-magnetic horizontal eddy viscosity will prove robust,
I believe (a) because of their clearcut basis in the fundamental principles of
non-magnetic, stratification-constrained eddy motion, especially potential-vorticity
conservation and invertibility (see McIntyre 2003a,b and references therein), and
(b) because of the comprehensive testing and vindication of those fundamental
principles by high-resolution observations and modelling of, especially, the Earth’s
stratosphere.1 So the main focus of this chapter will not be on those arguments,
but rather on how, if the existence of the global-scale interior Bi is accepted as
practically certain, the scenario of Gough & McIntyre (1998) (already discussed
by Garaud in Chapter 7) now needs to be modified in the light of advances in our
knowledge of MHD turbulence. The focus is not now on asking whether it is a
global-scale Bi that limits �, but on understanding more clearly how it does so.
The MHD-turbulent aspects will force a re-examination of how azimuthal stresses
are supported between the interior and the overlying turbulent layers, and how they
fit in with the contributions of MMCs to angular momentum exchange.

Despite radical changes, one important feature of the Gough & McIntyre (1998)
scenario seems to have survived so far, with a little help from Occam’s razor. This
is the prediction of a ventilated (helium-poor) tachocline terminated by a sharp
tachopause, across which there is a strong jump in compositional or heavy-element
abundance gradients, from zero in the tachocline to a finite value in the helium
settling layer just beneath, corresponding to a contribution N2

µ to the buoyancy

frequency squared that is a significant fraction of the typical thermal value N2 ∼
10−6 s−2. This points toward the validity of helioseismic calibrations of the kind
attempted in Elliott & Gough (1999).

A feature that does not, on the other hand, survive from Gough & McIntyre
(1998) in any form at all is the large-scale, laminar, field-free (B ≡ 0) down-
welling throughout high latitudes, occupying a substantial fraction of the thickness
of the tachocline. The original Gough & McIntyre (1998) scenario relied entirely
on Reynolds and Maxwell stresses in the convection zone to produce (by gyroscop-
ic pumping) the downwelling MMC needed (a) to confine the interior field Bi in
high latitudes as well as (b) to transfer angular momentum as necessary and (c) to
ventilate the tachocline. But the hypothesis of large-scale field-free downwelling
in high latitudes, pumped entirely by convection-zone stresses, is now untenable –
whether or not we include overshoot-layer stresses – because it has been convin-
cingly shown by Spruit (1999, 2002), building on the classic work of R. J. Tayler

1 A striking observational example, illustrating the detail in which the stratosphere is now observed, can be quickly
found by googling "gyroscopic pump in action". There is also a vast literature of published papers
in leading journals; see, for example, Manney et al. (1994) and Riese et al. (2002).
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in the 1970s, that most if not all of the high-latitude downwelling region, even if
initially field-free, could not remain so. Because of its vertical shear, the region
would be MHD-unstable in such a way as to evolve into a small-scale dynamo.

The dynamo action is mediated by what Spruit (1999, 2002) conveniently calls
a ‘Tayler instability’ – a stratification-modified pinch or kink-type (‘tipping’)
instability – of the toroidal field wound up by the shear, on large horizontal scales
but on radial scales small enough for thermal diffusion to counteract the stable strat-
ification. The ability of the Tayler instability to close the dynamo loop has been
verified by numerical experiments (Braithwaite & Spruit 2006). This small-scale
dynamo seems likely to be most effective in latitudes within the poleward half of
the range, and possibly also in some lower-latitude band or bands not too close to
the equator.

The implication (see Section 8.4) turns out to be that the MMC, or at least the high-
latitude downwelling branch most critically needed to confine Bi, is gyroscopically
pumped by turbulent Maxwell stresses that diverge not in the convection zone but,
rather, near the base of an MHD-turbulent tachocline. This region will be referred
to as the lowermost tachocline in high latitudes. The orders of magnitude dictate
that the stress divergence and consequent MMC are confined to within a fraction
of a megametre of the tachopause, where a double boundary-layer structure must
exist. The turbulence and gyroscopic pumping could be continuous or intermittent,
depending on |Bi| values.

Before developing these ideas it is necessary to deal with one fundamental ques-
tion that was raised at the workshop. Gough & McIntyre’s (1998) inevitability
argument and its further developments just sketched rely, of course, on the physical
reality of the gyroscopic-pumping and burrowing mechanisms for MMCs penet-
rating a non-magnetic interior. Those mechanisms are well understood and have
been carefully studied. They show up most plainly in thought-experiments in which
the Reynolds and Maxwell stress divergences in the overlying turbulent layers are
replaced by an artificially prescribed, azimuthally symmetric, azimuthally direc-
ted force field F̄ (Haynes et al. 1991). If that force field pushes fluid retrogradely,
for instance, then the Coriolis effect tries to turn the fluid poleward. As detailed
analysis confirms, this amounts to a systematic mechanical pumping action that
drives MMCs. Ekman pumping is the special case in which the force happens
to be frictional. But any azimuthal force will do, hence the generic term ‘gyro-
scopic pumping’. Persistent gyroscopic pumping in some layer of any stratified,
rotating, thermally relaxing and non-magnetic system with a finite pressure scale
height generates MMCs that continually burrow downward. This was first clearly
shown in the detailed, and complementary, independent investigations by Haynes
et al. (1991) and Spiegel & Zahn (1992). The burrowing mechanism is so funda-
mental – to any attempt to understand the tachocline and to assess magnetic versus
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non-magnetic scenarios – that I find it convenient to give the mechanism a dis-
tinctive name, ‘Haynes–Spiegel–Zahn burrowing’ or ‘HSZ burrowing’ for brevity,
whenever verbal precision is necessary.2

The question raised at the workshop was whether HSZ burrowing is a real phys-
ical phenomenon. It was claimed, in effect, that the two studies just cited are
qualitatively in error and that there is no such thing as HSZ burrowing, even in
the absence of the interior magnetic field Bi. The claim was based on a recent study
of MMCs using non-magnetic equations (Gilman & Miesch 2004) whose results
appear to imply that MMCs driven from above cannot penetrate downward more
than a negligible distance, probably less than the vertical resolution of helioseismic
inversions. If that were correct then most of the arguments in this chapter, and in
its predecessors including Gough & McIntyre (1998), would fail utterly. There-
fore Section 8.2 revisits the problem studied in Gilman & Miesch (2004), using
the same formulation and notation. It turns out that through a quirk of formulation
the solutions obtained by Gilman & Miesch make up an incomplete set. They are
a special subset of solutions, for each of which the gyroscopic pumping exactly

vanishes at each latitude. No gyroscopic pumping implies no burrowing! There is,
after all, no conflict. Indeed the analysis in Section 8.2, based on an idealized slab
model, provides the simplest possible illustration of the pumping and burrowing
mechanisms, supplementing the original analytical and numerical work of Haynes
et al. (1991) and Spiegel & Zahn (1992).

Section 8.3 goes on to argue that turbulence in the interior, below the tachopause,
must be exceedingly sporadic. Thus, within the gigayear perspective a random
snapshot of the Sun is almost certain to show an interior that is entirely laminar or
very nearly so. Broadly speaking this is consistent with the standard solar modelling
assumption of a microscopically diffusive helium settling layer, though it remains
possible that the layer is somewhat thickened, and indeed its heavy-element contrast
somewhat increased, by the sporadic interior mixing.

Section 8.4 examines what Spruit’s (2002) arguments then imply about tachocline
and tachopause structure and high-latitude downwelling. As already mentioned,
such downwelling is critical to the confinement of Bi, a point underlined by recent
numerical studies (Garaud 2002; Braithwaite & Spruit 2004; Brun & Zahn 2006)
showing the tendency for the dipolar poloidal part of an internal field to diffuse its
lines upward and outward through a substantial high-latitude region. That tendency
is, however, easily held in check by the downwelling within the double-boundary-
layer structure of the lowermost tachocline. Thus the double boundary layer appears
well able to confine Bi in high latitudes.

2 As already mentioned, it has also been called ‘spreading’ but, with the Sun’s gravitational field pulling hard on
my imagination, I prefer ‘burrowing’ because it unambiguously connotes downwardness.
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Intriguingly, if frustratingly, the mean shears within the double boundary layer
turn out to be far too small to be helioseismically visible. Moreover, the same
appears true of shears throughout the bulk of the high-latitude, stably stratified ta-
chocline. Therefore the visible shear must, in high latitudes, reside wholly in the
lower convection zone and overshoot layer. As will be seen shortly this is consistent
with the helioseismic evidence. A similar situation may be expected in any low-
latitude band that goes turbulent via the shear driven, Tayler-mediated small-scale
dynamo action, though, even if such a band exists, the properties of the Tayler
instability – favoured by a poleward decrease in the toroidal field wound up by the
shear – suggest that the band would have limited latitudinal extent. It might also
exhibit unsteady behaviour, such as a life cycle involving poleward migration on
timescales perhaps ∼106 yr or more.

Section 8.5 extends the idealized analysis of Section 8.2 to allow for composi-
tional gradients in the underlying helium settling layer, in order to reassess Gough
& McIntyre’s (1998) ‘lithium-burning polar pit’ hypothesis. It appears that Nµ val-
ues, acting in concert with the surrounding Bi, are more than enough to inhibit the
formation of such pits and, indeed, to constrain the tachopause – defined as the
bottom of the ventilated layer, equivalently the top of the helium settling layer – to
be very close to the horizontal.

Moreover, this constraint on tachopause slope holds tightly even on a global scale.
It appears that the tachocline, assuming it is sufficiently ventilated, must have not
only an approximately constant chemical composition but also constant depth over
all latitudes. More precisely, the tachopause has to follow an effective gravitational–
centrifugal potential, globally, to within a very tiny fraction of a megametre.

If this picture is anywhere near correct then the only way to burn lithium is simply
for �, defined in terms of tachopause depth, to be large enough. A careful lithium-
burning modelling study by Christensen-Dalsgaard et al. (1992) suggests a need
for � values close to 65 Mm measured downwards from the helioseismic bottom
of the convection zone at 0.713R⊙ . This puts the tachopause at 0.62R⊙ . If one
superposes the 0.62R⊙ circle on to Figure 3.7 of Chapter 3, then especially in high
latitudes one sees what looks like a substantial shear-free region beneath the over-
shoot layer, consistent with the earlier statement that the visible shear must, in high
latitudes, reside wholly in the lower convection zone and overshoot layer. This of
course is very different from the scenario of Gough & McIntyre (1998). Section 8.6
offers some concluding remarks, mainly on some uncertainties regarding tachocline
ventilation.

It might be thought that the terminology should be changed if, as I am now sug-
gesting, the ventilated tachocline is distinctly deeper than the tachocline defined by
shears visible in a helioseismic inversion. But observational invisibility does not
imply dynamical insignificance. And indeed, in the scenario to be developed, the
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invisible shear has a crucial role in the high-latitude dynamics and ventilation of the
tachocline, all the way down to the tachopause – defined, as here, to mean the ventil-
ated layer and its lower boundary, or equivalently the top of the helium settling layer.

8.2 Gyroscopic pumping and HSZ burrowing

Consider the thought experiment of Haynes et al. (1991), performed on Gilman &
Miesch’s (2004) non-magnetic, linearized Cartesian slab model. We take coordin-
ates (x, y, z) respectively eastward, northward and upward as in Gilman & Miesch,
with corresponding velocity components (u, v, w) and Coriolis vector idealized as
(0, 0, 2�). For definiteness the top of the model, z = ztop say, is taken to be iso-
thermal, stress-free, and impermeable to mass. The prescribed azimuthal force field
{F̄(y, z), 0, 0} is applied to an upper layer zf < z < ztop. The force F̄ is assumed
weak enough for linearization to remain valid. We ask to what extent the response
to F̄ penetrates downward into the unforced region z < zf , where we take the buoy-
ancy frequency N of the stratification to be constant as in Gilman & Miesch (2004).
As in that work we ignore compositional gradients, as would be an appropriate
idealization if the interior were non-magnetic and HSZ burrowing active over the
gigayear timescale. For then no helium settling layer would have a chance to form
(further discussion in Section 8.5), and the thermal stratification would dominate.
Steady-state solutions of the type found by Gilman & Miesch (2004) should, of
course, be valid in the unforced region.

The profile of N within the forcing layer zf < z < ztop will be left unspecified.
In the original scenario of Gough & McIntyre (1998), in which the forcing layer
was identified as the convection zone, we would have N ≡ 0 for zf < z < ztop.
But there is no difficulty in including the overshoot layer, and indeed an entire
turbulent tachocline, as part of the forcing layer. The thought experiment is meant
to imitate the effect of any overlying layer, stratified in any way, in which the
turbulent Reynolds and Maxwell stresses in an x-averaged description diverge to
give the force field F̄(y, z). Any such force field, arising from internal stresses, must
have a domain integral that vanishes,

∫∫
F̄(y, z)dydz = 0, (8.1)

even though its vertical integral F̄(y) =
∫ ztop

zf
F̄(y, z)dz need not vanish.

Again following Gilman & Miesch (2004) we use the Boussinesq equations and
describe thermal relaxation toward radiative equilibrium by a constant thermal dif-
fusivity κ ≈ 107 cm2 s−1. Some aspects of the problem depend on non-Boussinesq
effects, which in a doubly infinite domain select downward penetration at the



190 Magnetic confinement and the sharp tachopause

expense of upward, as illustrated by Haynes et al.’s analysis. Here we have replaced
those effects by the artifice of cutting off the fluid domain at z = ztop.

Defining the buoyancy–acceleration anomaly ϑ in the standard way as gravity
times the fractional temperature anomaly on a pressure surface, ϑ = gT/T̄ in
Gilman & Miesch’s notation, we have, for axisymmetric dynamics ∂/∂x = 0,

∂v

∂y
+ ∂w

∂z
= 0, (8.2a)

∂u

∂t
− 2�v − ν

∂2u

∂z2
= F̄(y, z), (8.2b)

∂2
v

∂z∂t
+ 2�

∂u

∂z
+ ∂ϑ

∂y
− ν

∂3
v

∂z3
= 0, (8.2c)

∂ϑ

∂t
+ N2

w − κ
∂2ϑ

∂z2
= 0. (8.2d)

As in Gilman & Miesch (2004), we have included viscous terms, with constant
momentum diffusivity ν. The third equation, (8.2c), may be called the generalized
thermal-wind equation. It is formed by eliminating the pressure between the hydro-
static equation and the vertical derivative of the meridional momentum equation.
As is realistic for the solar tachocline we assume that � is effectively large (rap-
idly rotating system, small Rossby number), so that in (8.2c) there is a powerful
tendency toward thermal-wind balance, 2� ∂u/∂z ≈ −∂ϑ/∂y.

If a system like this is started from an undisturbed initial state with u, v, w, and ϑ

all zero then, as Haynes et al. showed in an essentially similar problem, the typical
behaviour within the forcing layer is robustly as follows. First, u accelerates in
response to F̄, followed by Coriolis turning of (u, v). The system then approaches
a locally steady or nearly steady state in which thermal-wind balance prevails, and
in which −2�v has come into approximate balance with F̄ in Equation (8.2b). The
effect of the ν term in (8.2b) is equivalent to a slight redistribution of F̄, leaving
the qualitative picture unaffected. The balance

−2�v ≈ F̄ (8.3)

describes the persistent gyroscopic pumping of meridional flow v by the steady
azimuthal force field F̄. Note that F̄ < 0 implies v > 0, confirming that a retrograde
force pumps fluid poleward.

Now Gilman & Miesch’s results should apply to the unforced region z < zf .
They assume a steady state with F̄ ≡ 0, leading to a single equation that applies in
the unforced region,

∂6
v

∂z6
+ 4�2

ν2

∂2
v

∂z2
+ N2

νκ

∂2
v

∂y2
= 0. (8.4)
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(This comes from assuming N constant, taking ∂3/∂z3 of (8.2c), then successively
eliminating u, ϑ and w.) Gilman & Miesch (2004) consider solutions of the form
v ∝ ekz sin(y/ℓ), where ℓ is a suitable latitudinal lengthscale and k is a complex
constant satisfying the characteristic equation

k6 + 4�2

ν2
k2 − N2

νκ
ℓ−2 = 0, (8.5)

of whose six roots three correspond to downward evanescence. Consideration of the
scale (Rek)−1 for evanescence when the latitudinal lengthscale ℓ takes reasonable
values ∼102 Mm gives vertical scales of the order of a few tens of megametres at
most, even when ν and κ are both taken to have large eddy values ∼1012 cm2 s−1.
Microscopic values give a small fraction of a megametre. If these were the only
possible solutions then they would certainly imply what was claimed at the work-
shop, namely that there is no such thing as HSZ burrowing into a non-magnetic
interior. Gough & McIntyre’s (1998) inevitability argument would then fail.

Let us ask, however, what a boundary-layer solution of this kind in the unforced
region z < zf would imply about the forcing function F̄(y, z) in the layer above.
All variables are downward evanescent. Therefore, by integrating (8.2a) over all z

and invoking the assumption that the upper boundary z = ztop is impermeable to
mass, we may deduce that the y derivative of

∫ ztop
−∞ v dz vanishes, so that

∫ ztop

−∞
v dz = C, (8.6)

where C is a constant, provided also that the upper boundary is stress-free, i.e. that
ν ∂(u, v)/∂z = 0. So integrating (8.2b) for the steady state gives

F̄(y) =
∫ ztop

zf

F̄(y, z)dz = −2�

∫ ztop

−∞
v dz = −2�C. (8.7)

Now this is compatible with (8.1) only if C = 0; therefore

F̄(y) = −2�

∫ ztop

−∞
v dz = 0 (8.8)

at each y. In other words, there is no net gyroscopic pumping – no vertically integ-
rated azimuthal force, and no vertically integrated meridional mass flux and volume
flux in the boundary layer – at any y. Gilman & Miesch’s solutions are all solutions
for which the net gyroscopic pumping exactly vanishes at each y.

That fact is not obvious from Gilman & Miesch’s perspective, in which only the
unforced layer z � zf is considered. We may note, however, that all of their solu-
tions satisfy the special relation ν∂2u/∂y∂z = 2�w. This can be straightforwardly
verified either from the solutions, or from the variant of (8.8) obtained by integrat-
ing (8.2b) from −∞ to any z � zf , noting that F̄ = 0. Even though it might appear
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that w is being arbitrarily prescribed at the top – and should therefore represent
any gyroscopic pumping from above – the u field, invisible in Gilman & Miesch’s
formulation, has cunningly organized itself in such a way that the boundary z = zf

exerts an azimuthal viscous stress on the fluid beneath that just cancels3 the pumping
effect of the prescribed w.

To double-check this we look at an explicit solution that includes the upper
forcing layer zf < z < ztop. For simplicity we set N ≡ 0 and F̄ ∝ sin(y/ℓ),
independent of z within the forcing layer. Then within that layer we see that Equa-
tions (8.2) admit a simple solution of the form v = −F̄/2�, with u ∝ sin(y/ℓ),
both independent of z, the remaining variables being given by ϑ ≡ 0 and
w = −(ztop − z)(dF̄/dy)/2� ∝ (ztop − z) cos(y/ℓ). But a boundary-layer solution
in which u is a continuous function of z satisfies (8.2b) at z = zf only if (con-
sistently with ν∂2u/∂y∂z = 2�w for z � zf ) we add a delta function to F̄ whose
strength is precisely −(ztop − zf)F̄. That is, to get a solution of Gilman & Miesch’s
boundary-layer form we must choose this extra contribution to F̄ such that the total
force integrates to zero, F̄(y) = 0, as already seen from (8.8). For this particular
solution we also need a delta-function heat source and sink ∝ cos(y/ℓ) at z = zf ,
that is, where N2 is discontinuous, but such an artifice does not affect the issue of
gyroscopic pumping.

For the generic case in which F̄(y) does not, by contrast, vanish, we must expect
to find additional solutions that do not have the boundary-layer character implied
by (8.5). Even within the steady-state framework, we do not have to look far to
find them. In place of (8.4) consider the corresponding equation for u. Substituting
v ∝ ∂2u/∂z2 from (8.2b), we have

∂8u

∂z8
+ 4�2

ν2

∂4u

∂z4
+ N2

νκ

∂4u

∂y2∂z2
= 0, (8.9)

with characteristic equation

k8 + 4�2

ν2
k4 − N2

νκ
ℓ−2k2 = 0. (8.10)

This has two more roots, both zero, signalling the existence of two extra solutions,
u = constant and u ∝ z. So if we leave the y-origin arbitrary the general solution
in the unforced region is

u =
(

6∑

1

Cj e
kj z + C7 + C8 z

)
sin(y/ℓ), (8.11)

3 The Spiegel–Zahn eddy viscosity similarly cancels the pumping from above, through horizontal rather than
vertical transmission of azimuthal stress. In effect one has two gyroscopic pumps, an upper pump producing a
certain mass flux, and a lower one negating it by producing an equal and opposite mass flux.
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where the kj are the six roots of (8.5) and the Cj are arbitrary constants. Such
solutions are applicable when, for instance, we take

F̄(y) = F0 sin(y/ℓ) (8.12)

with constant F0.
To see what (8.11) means physically, it is simplest to consider first a problem

with an artificial lower boundary, say z = 0, far beneath the forcing layer, where
far means many evanescence height scales (Rek)−1. On z = 0 we impose u =
v = w = 0 (impermeable and no-slip) and κ ∂ϑ/∂z = 0 (heat flux held to its
background value). Then with F̄(y) = F0 sin(y/ℓ) it is a straightforward exercise
to prove that C7 = 0 and C8 = ν−1

F0, with exponentially small error, and that the
solution in the unforced region is

u =

⎛
⎝

3∑

j=1

Cj e
kj z + ν−1

F0 z

⎞
⎠ sin(y/ℓ), (8.13)

where k1, k2, k3 are the downward-evanescent roots of (8.5). They are needed to
describe details within a thin layer near the top. Beneath that layer, we have v = w =
0 and ϑ = 2� ℓν−1

F0 cos(y/ℓ). The upward-evanescent roots k4, k5, k6 are absent
because the solution just described satisfies the four lower boundary conditions
as it stands, with exponentially small error. The coefficient of z, C8 = ν−1

F0, is
determined regardless of details near the top, because in the steady state (8.8) is
replaced by

F̄(y) = ν
∂u

∂z

∣∣∣∣
z=0

. (8.14)

This comes from integrating (8.2a) and (8.2b) from z = 0 to ztop, then using (8.1)
and the bottom boundary conditions. In order to have a steady state in this linear
model, the net applied force F̄ must be balanced at each y by the stress on the bottom.
This pins down the coefficient of z. The existence of the steady-state solution (8.13)
is an easy way to see that, in the original time-dependent thought experiment, the
influence of F̄ must have burrowed all the way to the bottom – regardless of how
far down the bottom may be. If we take the bottom down toward z = −∞ then the
time to reach the steady state increases without bound.

Notice that this solution describes another situation in which the gyroscopic
pumping has been cancelled by a viscous stress. Before that, as the burrowing
proceeds, the pumping drives an MMC whose Coriolis force accelerates u values
up to such extremes, ∝ ν−1 when ν is considered small, that the viscous stress
spanning the entire depth 0 < z < zf comes into balance with the force applied to
the overlying layer zf < z < ztop. Of course such extremes could violate the original
linearization. But the real significance of the foregoing is that the response to F̄(y)
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in the absence of an artificial lower boundary must be inherently time-dependent,
as originally shown by HSZ.

On the long timescale of the burrowing process, and when κ ≫ ν, the time
derivative in (8.2d) may be neglected as well as that in (8.2c), where, moreover,
thermal-wind balance is an excellent approximation. So by taking ∂2/∂y2 of (8.2b)
and then successively eliminating v through (8.2a), w through (8.2d) with ∂/∂t

neglected, then finally ϑ through thermal-wind balance ∂ϑ/∂y = −2� ∂u/∂z in
place of (8.2c), we get

(
∂

∂t
− ν

∂2

∂z2

)
∂2u

∂y2
− 4�2κ

N2

∂4u

∂z4
= ∂2F̄

∂y2
, (8.15)

recovering Spiegel & Zahn’s result that when thermal relaxation is diffusive and ν

sufficiently small then the burrowing behaviour is hyperdiffusive, with hyperdiffus-
ivity 4�2ℓ2κ/N2 for latitudinal lengthscale ℓ. This may be compared with Haynes
et al.’s result in the Boussinesq limit, H → ∞ in their notation: when the thermal
relaxation is Newtonian with timescale κ−1

Newt then the burrowing behaviour is dif-
fusive with diffusivity 4�2ℓ2κNewt/N2. Notice that the timescale for burrowing is
sensitive to the latitudinal scale ℓ, behaving as ℓ−2.

Before leaving this topic we note for completeness the steady-state solution of
(8.2a)–(8.2d) that idealizes the laminar-downwelling scenario of Gough & McIntyre
(1998), within a non-magnetic tachocline of nominal thickness � = zf at the
bottom of which, z = 0, there is a thermomagnetic boundary layer able to accept
a certain volume flux −w0 cos(y/ℓ), say, per unit area. That flux is governed by
the magnitude of the global-scale interior field Bi, and so the overlying layers
must adjust themselves so as to pump exactly that much flux, which flux Gough &
McIntyre estimated to scale as |Bi|1/3.

With microscopic values of ν and κ we may take � ≫ (Rek)−1. Then, apart
from details near z = zf = �, the solution in 0 < z < � is as follows. It confirms
the Gough & McIntyre (1998) result that, for given u|z=�, w0 ∝ �−3 implying
� ∝ |Bi|−1/9 :

u = N2
w0

24 �ℓκ
z2(3� − 2z) sin(y/ℓ), (8.16a)

v = 0, (8.16b)

w = −w0 cos(y/ℓ), (8.16c)

ϑ = N2
w0

2κ
z(� − z) cos(y/ℓ). (8.16d)

The relation w0 ∝ �−3 follows from (8.16a) with z = �. Also F0 = 2�ℓw0 in
(8.12), from integrating (8.2a) and (8.2b) as before. Following Gough & McIntyre
(1998), we have assumed isothermal conditions ϑ = 0 at z = 0 as well as at z = ztop,
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and N ≡ 0 in the forcing layer zf < z < ztop to make it into an idealized convec-
tion zone. The model tachocline described by (8.16) is frictionless, with angular
momentum exchange across it mediated solely by the MMC and handed over to
the Maxwell stress in the thermomagnetic boundary layer. Gough & McIntyre
estimated that w ∼ −10−5 cm s−1, more than enough to ventilate the tachocline
and to confine Bi in high latitudes.

8.3 The nearly laminar magnetic interior

Following Gough & McIntyre’s (1998) inevitability argument we now take for
granted the existence of the global-scale interior field Bi, and expand our timeframe
to the gigayear perspective of solar spin-down. Let us accept, in particular, that the
present-day interior is close to solid rotation essentially because spin-down was,
and presumably still is, Ferraro-constrained – in other words constrained by the
Alfvénic elasticity of a sufficiently strong poloidal component of Bi.

This is almost the same thing as saying that Bi was, and is, strong enough to stop
HSZ burrowing, allowing a helium settling layer to form. The burrowing depends
on the sustained gyroscopic pumping of an MMC, whose Coriolis force accelerates
a deepening layer of differential rotation in thermal-wind balance. It is the resulting
baroclinicity, together with thermal diffusion, that allows the MMC to persist and to
continue burrowing. If the Ferraro constraint is strong enough to stop the differential
rotation (with the help of MHD shear instabilities as necessary, see below), then it
also stops the baroclinicity4 and therefore the burrowing. In other words it impedes
the response to the pumping, almost as if the interior were solid. Thus the response is
limited to being an MMC such that its entire mass flux can be accepted by the therm-
omagnetic boundary layer at the top of the interior, as in Gough & McIntyre (1998).

The estimates of Mestel & Weiss (1987) and the detailed numerical experiments
of Charbonneau & MacGregor (1993) suggest that the order of magnitude required
to impose the Ferraro constraint is |Bi| � 10−2 G. The inevitability argument of
Gough & McIntyre (1998) then implies that Bi must be at least this strong, in
reality, and furthermore, as already mentioned, that in high latitudes Bi must be
largely confined to the interior by the gyroscopic pumping from above, as required
in spin-down scenarios like those of Charbonneau & MacGregor (1993). If the
poloidal field were not so confined then its lines would diffuse upward and outward
through a substantial high-latitude region, such that the Sun’s differential rotation

4 I use the term ‘baroclinicity’ in its most fundamental sense, meaning the non-vanishing of the ∇p × ∇ρ term
in the three-dimensional vorticity equation, where ρ is density and p is total pressure including the hydrostatic
background. In the case of thermal-wind balance this in turn implies the non-vanishing of the axial derivative
of angular velocity � and hence, usually, violation of the Ferraro constraint. In a perfect gas the non-vanishing
of ∇p × ∇ρ is equivalent to the non-vanishing of ∇p × ∇ϑ and of ∇p × ∇T , where T is temperature, and is
therefore equivalent to having non-vanishing isobaric gradients of T .



196 Magnetic confinement and the sharp tachopause

would differ from that observed. Such scenarios are illustrated in various ways
by the numerical experiments of Garaud (2002), Braithwaite & Spruit (2004), and
Brun & Zahn (2006) mentioned earlier.

In spin-down scenarios like those of Charbonneau & MacGregor (1993) there
are poloidal-field tori within the interior, surrounding the neutral ring, that do not
thread the convection zone or tachocline. In order to spin those tori down, avoiding a
‘dead zone’ of super-rotation surrounding the neutral ring and hence a contradiction
with the helioseismic evidence, Charbonneau & MacGregor (1993) had to use an
artificial viscosity ν far greater than the actual microscopic viscosity. In the real
Sun, therefore, some kind of turbulent eddy viscosity must be involved.

Now Spruit (1992, 2002) cogently argues that, when shear develops in the interior,
the first turbulent process to kick in will be a small-scale dynamo mediated by Tayler
instabilities – stratification-modified pinch or kink-type (‘tipping’) instabilities –
of the toroidal field wound up by the shear. See also the numerical verification
of dynamo action by Braithwaite & Spruit (2006). The dynamo is shear-driven
and, arguably, has the robustness of an interchange instability. One may therefore
reasonably assume that it will act to reduce shear through the Maxwell stresses
produced by windup. In this respect it is somewhat like the better-known magneto-
rotational instability in hot accretion disks (see Chapter 12 by Ogilvie), which,
however, has a much higher shear threshold (Spruit 1999). Therefore the Tayler-
mediated small-scale dynamo appears likely to be the main mechanism inhibiting
the formation of super-rotating ‘dead zones’ in the real Sun.

The existence of the Ferraro constraint, aided by the rapid damping of global
torsional oscillations by phase mixing, implies that instability need only occur at
one location on each torus. This point is significant since, unlike the magneto-
rotational instability, the Tayler instability tends to be ineffective near the equator
and so needs the help of the Ferraro constraint, if it is to bring about uniform
spin-down. Without the Ferraro constraint, there would be nothing to stop global-
scale sub-threshold shears from building up. Near the equator, above the neutral
ring, magnetorotational instability may have a role as well. Recall that by adopting
sufficiently small scales the instabilities can make use of thermal diffusivity, κ ,
to release the constraint due to thermal stratification (e.g. Townsend 1958; Fricke
1969; Zahn 1974; Acheson 1978).

Now because spin-down is so slow, we may expect the instabilities to kick in
very sporadically in space and time, and certainly not uniformly throughout the
interior. The Ferraro constraint is needed for that reason as well. Such sporadic or
intermittent behaviour is generic for any high-Reynolds-number fluid system whose
coarse-grain shear is well below all instability thresholds. In this respect the Sun’s
interior must be somewhat like sheared, stably stratified terrestrial fluid systems
at high Richardson number. In all such systems it is well known that turbulence
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occurs sporadically, the more so the higher the Richardson number. The terrestrial
lower stratosphere is a case in point. The sporadic occurrence of turbulence there is
familiar to everyone in these days of universal air travel. Most of the time the seat
belt sign is off, and the ride almost perfectly smooth. Since coarse-grain Richardson
numbers Ri are large, shear-instability thresholds Ri � 1

4 cannot be exceeded over
large volumes.

We are forced to conclude – because of the extreme slowness of spin-down – that
the Sun’s interior, even more than the terrestrial stratosphere, must be laminar at
most times and locations. And, as already remarked, the whole picture is consistent
with the presence of a distinct helium settling layer in perhaps the top 100 Mm
or so of the radiative envelope, for which there is some helioseismic support (see
Section 3.5 in this book).

Corresponding estimates for the stably stratified tachocline (Spruit 2002) point
toward the opposite conclusion. A coarse-grain view of the tachocline puts it well
above threshold, in high latitudes at least (see Equations (8.26)–(8.28) below). The
high-latitude tachocline seems therefore likely to be in some sense much more
turbulent than the interior. For a turbulent tachocline we need to consider how con-
vection-zone stresses are handed over to the interior. This involves understanding
how an MHD-turbulent flow goes over into a laminar, Ferraro-constrained flow. It
is this problem that is considered next.

8.4 The high-latitude tachocline and its invisible shear

How then is the stress handed over? More precisely, what is the pattern of angular
momentum transport, from some combination of MMCs and turbulent stresses, that
transmits to each latitude of the mostly laminar, Ferraro-constrained interior any
torque that arises from the convection zone’s propensity to rotate differentially?
And could that pattern include an MMC capable of confining Bi in a band of high
latitudes – let us say something like latitudes 50◦–80◦ or colatitudes 10◦–40◦ –
holding the field lines of Bi nearly horizontal there against magnetic diffusion, as
required to bring about Ferraro-constrained spin-down in most of the interior?

Now it happens that the Tayler instability is likely to be effective in something
like the same latitude band, as well as in the neighbourhood of the pole. To assess
this more closely one would need to consider the latitudinal gradients of the actual
toroidal field produced by the small-scale dynamo – which is why a low-latitude
band might also be unstable, from time to time at least – and one would need to
consider the possible shear-induced modifications of the Tayler instability itself
(see Chapter 10 by Gilman & Cally).

For the moment, however, I simply assume that there is an ‘active band’ of high
latitudes, probably something like the nominal 50◦–80◦, where the vertical shear
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is enough to drive the Tayler-mediated small-scale dynamo and for Spruit’s (2002)
order-of-magnitude estimates to apply. I ignore horizontal shear, in effect supposing
that the tachocline is in shellular solid rotation in the active band of latitudes. The
angular-velocity contours in Figure 3.7 of Chapter 3 hint that this may not be too
bad an approximation.5 Thus the focus is on the vertical structure. I further simplify
by assuming a single latitudinal scale ℓ ∼ 102 Mm, in a formal sense staying with
slab-model thinking for the moment. It will be convenient to stay with the slab-
model notation as well; thus, z will still be the upward, i.e. radial, coordinate, and
∂u/∂z will be the vertical shear of the mean azimuthal velocity. (Strictly it is ∂/∂z

of the mean angular velocity that is relevant, but the difference is unimportant for
present purposes.) It will be convenient to define a non-dimensional shear

q = �−1∂u/∂z (8.17)

(Spruit’s (2002) notation); the threshold value of |q| will be denoted by qcrit. Its
order of magnitude is given by (8.26) below.

The key points are listed next, followed by the order-of-magnitude relations
that underpin them. It will emerge that the processes involved cover practically
the entire range of timescales from gigayears down to the months and years of
convective overshoot and the solar-cycle dynamo. The latter, being self-evidently a
large-scale, low-latitude dynamo as well as a relatively fast one, is a different beast
altogether from the small-scale, stably stratified dynamo presently under discussion.
The small-scale dynamo will turn out to be vastly slower, yet still fast in comparison
with gigayears. To avoid confusion it will need to be remembered that ‘small-scale’
refers not to horizontal scales but only to the vertical scale of the eddy motion.

(i) The small-scale dynamo has plenty of headroom, given any of the current estimates
of tachocline thickness �. This would be so even if the real high-latitude tachocline
were as thin as the � ≈ 13 Mm ≈ 0.019R⊙ estimated by Elliott & Gough (1999),
let alone the � ≈ 65 Mm ≈ 0.09R⊙ now anticipated in connection with lithium
burning. The vertical scale δκ of the eddy motion, governed here by the thermal
diffusivity κ acting to release the stratification constraint, is of the order of 10−1 Mm,
see Equation (8.25) below.

(ii) The dominant azimuthal stress across horizontal area elements is the turbulent Max-
well stress. Its mean value is proportional to the local vertical shear ∂u/∂z with

5 Shellular solid rotation in the active band is plausible, in any case, because of the shear-reducing propensities of
the Tayler-mediated small-scale dynamo pointed out by Spruit (2002). Indeed, unlike non-magnetic turbulence,
the small-scale dynamo could have taken on the role of the Spiegel–Zahn horizontal eddy viscosity had it not
been for the dependence on the latitudinal gradients of toroidal field. That dependence precludes the small-scale
dynamo from being effective across all latitude bands, implying that the inevitability argument of Gough &
McIntyre (1998) still holds good. In order to enforce solid rotation in the manner of the Spiegel–Zahn theory,
a horizontal eddy viscosity would need to support a stress that transmits azimuthal torques horizontally across
all latitudes. It would need to produce, respectively, prograde and retrograde torques in high and low latitudes,
in just such a way as to cancel the gyroscopic pumping from above.
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a proportionality coefficient νe , see Equation (8.24) below, that is approximately
constant like an ordinary viscosity. In particular, νe is independent of shear for any
supercritical shear |∂u/∂z| > �qcrit. This shear-independence of νe is remarkable
for a fully developed turbulent flow. Spruit (2002) aptly calls it a ‘coincidence’. For
the stably stratified tachocline, νe ∼ 1.6 × 108 cm2 s−1.

(iii) So powerful is the Maxwell stress that it dominates the angular momentum transport
in the bulk of the high-latitude, stably stratified tachocline. This statement holds over
a vast range of possible |Bi| values. It dominates even when |∂u/∂z| is much smaller
than typical coarse-grain shear values estimated from helioseismology. That is part of
why the shear |∂u/∂z| in the lower, stably stratified portion of a 65 Mm deep ventilated
tachocline may be expected to be helioseismically invisible in high latitudes. We shall
see that the magnitude of νe is large enough to bring |∂u/∂z| down to values close to
threshold, �qcrit, in high latitudes. Such values are about an order of magnitude less
than the visible shear.

(iv) The simplest version of the implied scenario is for |∂u/∂z| to stay just above threshold,
|∂u/∂z| ∼ �qcrit. We shall see that this is possible if tachopause |Bi| values are large
enough, �102 G. There are other possible versions, for lower |Bi| values, in which
time-averaged |∂u/∂z| values are sub-threshold and the dynamo action intermittent.
In such cases νe takes |∂u/∂z| below threshold and switches off, |∂u/∂z| then builds up
through gyroscopic pumping (temporarily like an unsteady version of the scenario in
Gough & McIntyre (1998)), then νe switches on again, and so on cyclically. Possible
cycle times could be anywhere in the range from ∼106 yr upward, depending on |Bi|.

(v) In the bulk of the stably stratified tachocline, thermal-wind balance holds robustly.
There, the weak vertical shear constrains baroclinicity qua latitudinal buoyancy
gradients |∂ϑ/∂y| to be weak as well. Furthermore, the dynamo turbulence leaves
unaffected both the N value of the subadiabatic thermal stratification itself and the
value of κ felt by mean motions (H. C. Spruit, private communication). This is because
of the way the turbulent motion depends on κ to release the stratification constraint.
So MMCs are still tied to |∂ϑ/∂y| via the microscopic κ value, ∼107 cm2 s−1, just
as if the turbulence were absent, i.e. in just the same way as in Gough & McIntyre
(1998). The upshot is that in the bulk of the stably stratified tachocline there is no
MMC, to a first approximation, and that even with the weakened |∂u/∂z| the angular
momentum transport, there, is mediated predominantly by νe. To a higher approxim-
ation, one might expect an MMC like that of Gough & McIntyre except that there is
now no impediment to weak equatorial downwelling.

(vi) One peculiar consequence is that, in stark contrast with Gough & McIntyre (1998),
the present scenario, as developed so far, appears to leave � values almost completely
unconstrained. This opens the possibility already mentioned that � is large enough,
≈ 65 Mm, to explain lithium burning, even with no ‘polar pits’. It seems that �

is determined in a rather subtle and delicate way, not amenable to simple order-of-
magnitude analysis. Indeed it may well be that � is not determined by quasi-steady
dynamics but, rather, depends on the history of convection-zone retreat and helium set-
tling layer formation, as well as on |Bi| values. (Thus the scatter in lithium abundance
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found in samples of solar-type stars might be related to a scatter in |Bi| values as well
as to rotation histories.)

(vii) The dynamo begins to lose headroom in a lowermost turbulent layer of thickness
∼ δκ ∼ 10−1 Mm. Notice from Equation (8.25) below that the scale δκ is, like νe,
independent of shear, as long as the dynamo is switched on. As we enter the lowermost
turbulent layer, vertical eddy scales and νe values must decrease downward. Shear
values |∂u/∂z| increase, but not enough to stop the turbulent Maxwell stress from
diverging and giving rise to an azimuthal force F̄, hence gyroscopic pumping.

(viii) A slight extension of Spruit’s (2002) arguments suggests that νe ∝ z2 within the
lowermost turbulent layer, joining continuously to the constant value νe ∼ 1.6 ×
108 cm2 s−1in the bulk of the tachocline, where z is measured from some virtual
origin near the bottom of the lowermost layer. Further analysis suggests that the
azimuthal and meridional turbulent Maxwell stress components

νe

(
∂u

∂z
,
∂v

∂z

)
= (σ , τ), (8.18)

say, take on a modified Ekman-layer structure, breaking the thermal-wind con-
straint as well as gyroscopically pumping an MMC in the form of a poleward
Ekman mass flux. Note that this pumping is entirely due to the fluctuating Max-
well stresses described by the eddy viscosity νe, and nothing whatever to do with
the sort of quasi-steady Maxwell stresses that would characterize a laminar Hart-
mann or Ekman–Hartmann layer, or the thermomagnetic boundary layer of Gough
& McIntyre (1998).

(ix) To the extent that we have shellular solid rotation �(z) in the active band of latitudes,
and the dynamo is switched on, the poleward Ekman mass flux must converge so
as to produce an approximately uniform downwelling, w

Ek
< 0. To see this one

has to depart from slab-model geometry and substitute spherical or polar cylindrical
geometry. The vertically integrated mass-flux convergence is approximately uniform
for the same reasons as in ordinary laminar spin-down in a laboratory cylinder. It is
only the vertical structure, not the vertically integrated mass flux, that is changed by
the vertically variable eddy viscosity within the modified Ekman layer. Indeed we
have the simple formula

w
Ek

= νe
d(ln �)

dz

∣∣∣∣
bulk

, (8.19)

implying w
Ek

< 0 since d(ln �)/dz |bulk < 0 in the high-latitude tachocline. The value
of νe in (8.19) is just the constant bulk value νe ∼ 1.6×108 cm2 s−1 outside the layer.
The formula is readily derived by assuming incompressible flow together with the
gyroscopic-pumping relation (8.3), setting F̄ = ∂σ/∂z in (8.3), then integrating across
the modified Ekman layer and computing the horizontal volume-flux convergence in
polar geometry. So (8.19) depends only on the fact that σ(z) drops from νe∂u/∂z|bulk

down to zero across the modified Ekman layer, as the small-scale dynamo finally runs
out of headroom. It does not depend at all on the detailed vertical structure within the
modified Ekman layer.
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(x) The downwelling described by (8.19) is prevented by Bi from burrowing into the
interior, as noted in Section 8.3. Having nowhere else to go, the mass flux must
recirculate through a laminar thermomagnetic boundary layer of thickness δκη, say,
like that proposed by Gough & McIntyre (1998), lying immediately beneath the
modified Ekman layer and forming with it a tight double-boundary-layer structure.
Values of δκη , from Equation (8.30) below, go like |Bi|−1/3 but are typically a fraction
of a megametre. Thus we have convergent poleward flow in the lowermost turbulent
layer, and divergent equatorward flow in the laminar thermomagnetic boundary layer
just beneath. It is in this way that the stress transmitted by νe, i.e. by the averaged
fluctuating Maxwell stress in the bulk of the stably stratified tachocline, is handed
over via the MMC in the lowermost tachocline to the quasi-steady Maxwell stress
in the outermost fringe of the laminar interior – which fringe is just the thermomag-
netic boundary layer. That boundary layer therefore has a dual role: it serves both as
the laminar sublayer of the turbulent lowermost tachocline, and also as the outermost
fringe of the laminar, Ferraro-constrained interior. It is here that the Ferraro constraint
begins to make itself felt directly, through the downwelling and advective-diffusive
balance in the boundary layer as discussed by Gough & McIntyre (1998). And it is this
same downwelling and advective–diffusive balance that brings about the high-latitude
confinement of Bi, in the same way as in Gough & McIntyre’s work.

The order-of-magnitude relations on which the foregoing statements are based are
now summarized. The relations are equivalent to those in Spruit (2002) except that
I revert to formal slab-model thinking and use ℓ ∼ 102 Mm as the latitudinal scale
instead of the tachocline radius r used by Spruit; the scale ℓ roughly corresponds to
what Gough & McIntyre (1998) called r/L. Like Spruit (2002) I also ignore factors
like 2 cos θ in front of �, where θ is colatitude, and factors like π .

The formal assumption of a single latitudinal scale ℓ may not be as bad as it
sounds, despite the importance of the real polar geometry for the pattern of mass
transport in the MMC, as noted in point (ix) above. The Tayler instability, as such,
has a large horizontal reach because of its kink or tipping-type kinematics dominated
by azimuthal wavenumber m = 1 . It is certainly able to reach across the pole –
one might say more aptly ‘slide across the pole’, as suggested in Figure 1 of Spruit
(1999) – and will probably do so even though the mean shear defined by azimuthal
averaging must, technically speaking, vanish at the pole. The instability is a physical
process with no respect for coordinate singularities. Indeed, it tends to use as much
horizontal space as is available to it, and Spruit’s (2002) estimates assume that it
does so. As in Gough & McIntyre (1998), the scale ℓ is meant to be no more than
a rough way of characterizing the magnitudes of horizontal derivatives constrained
by the available horizontal space.

Let η be the microscopic magnetic (Ohmic) diffusivity and �A the typical tor-
oidal field strength produced by the small-scale dynamo within the tachocline,
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measured as angular Alfvén speed, i.e. as the number of radians of longitude per
unit time travelled by the phase of an Alfvén wave. We assume that the microscopic
diffusivities satisfy

κ ≫ η ≫ ν, (8.20)

consistent with typical numerical orders of magnitude κ ∼ 1.4 × 107 cm2 s−1,
η ∼ 4×102 cm2 s−1, ν ∼ 3×101 cm2 s−1 near the top of the tachocline, at 0.7R⊙,
and κ ∼ 1 × 107 cm2 s−1 and η ∼ 3 × 102 cm2 s−1 at 0.62R⊙ (see the estimates
of Gough in Chapter 1, particularly Table 1.1). Following Spruit (1999, 2002) we
assume

N ≫ � ≫ �A, (8.21)

the first of which is well satisfied with thermal buoyancy frequency N ∼ 10−3 s−1,
and � ∼ 3 × 10−6 s−1. The second is also well satisfied because, defining the
dimensionless thermal diffusivity and Prandtl–Rossby ratio by

K = κ/Nℓ2 ∼ 10−10, P = �/N ∼ 3 × 10−3, (8.22)

with κ = 1×107 cm2 s−1 and ℓ = 102 Mm = 1010 cm, we have6 from Equation (19)
of Spruit (2002) that

�A/� = q1/2(KP)1/8 ≪ 1, (8.23)

since the dimensionless shear q � 1 even with extreme assumptions, as will emerge
shortly. Now a slight rearrangement of Equations (10) and (32) of Spruit (2002)
produces7

νe = ℓ2�(KP)1/2 = � δ2
κ ∼ 1.6 × 108 cm2 s−1, (8.24)

where

δκ = ℓ(KP)1/4 ∼ 0.7 × 10−1 Mm. (8.25)

The second formula for νe in (8.24) shows at once why the lowermost turbulent
layer of thickness ∼ δκ will have the characteristics of an Ekman layer, point (vii) ff.

6 As long as the small-scale dynamo’s toroidal magnetic field is expressed as the Alfvén angular velocity �A,
the spherical and cylindrical radii, as such, do not enter any of the formulae being quoted from Spruit (2002).
The significance of the symbol r in Spruit (2002) is always that of the available latitudinal lengthscale. That is
why the formulae are written here using ℓ in place of r.

7 All these expressions depend on Equation (49) of Spruit (1999), after correcting a typographic error: the last
occurrence of N should be �; see Equation (A29) of Spruit (1999) and the footnote on p. 927 of Spruit (2002).
We may note also that the statement on p. 194b of Spruit (1999) that ‘rotation does not by itself remove the
instability’ is made in the wrong context, that of zero diffusivities. The statement is correct for the real-world
diffusive problems of interest here, but incorrect for a diffusionless problem. This latter point is illustrated by
Equation (10.15) in Chapter 10, which is for the kink or tipping mode, azimuthal wavenumber m = 1, of a
diffusionless Tayler instability in the case of solid background kinetic rotation � and Alfvénic rotation �A. In
that diffusionless case, � � �A implies stability.
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above, since not only is δκ independent of q, the ‘coincidence’ mentioned in point
(ii) above, but also, by a further coincidence, δκ is the same as the Ekman thickness
scale (νe/�)1/2.

The dimensionless shear threshold or critical shear for the small-scale dynamo
to operate is, from Equation (27) of Spruit (2002),

qcrit = K1/4P −7/4(η/κ) ∼ 2.5 × 10−3 (8.26)

at 0.62R⊙. Reading�values from the horizontal contours in Figure 3.7 of Chapter 3,
we see that � goes from about 390 to 430 nHz, corresponding to a fractional change

α = (430 − 390)/410 = 1 × 10−1, (8.27)

from which we may derive a nominal q value, with the conservative choice � =
65 Mm,

q = αℓ/� ∼ 1.5 × 10−1. (8.28)

Even with such a large � this nominal shear is nearly two orders of magnitude
greater than qcrit. However, as already noted, the stress and therefore the actual
shear, in the bulk of the stably stratified tachocline, is tightly linked by (8.19) to the
downwelling velocity w

Ek
, which must equal the downwelling velocity wκη that can

be accepted by the thermomagnetic boundary layer. That is why the actual shear, in
the stably stratified tachocline, is likely to be far smaller than the nominal shear just
computed – though still dynamically significant, sharply distinguishing the tacho-
cline from the interior – and why a tachocline 65 Mm deep could be consistent with
the high-latitude � contours in Figure 3.7 of Chapter 3, despite appearances.

We assume that the estimate of wκη by Gough & McIntyre (1998) is correct in
order of magnitude:

|wκη| ∼ η/δκη ∝ |Bi|1/3 ∝ V
1/3

Ai , (8.29)

whereVAi is the interior Alfvén speed corresponding to |Bi|, about 0.4 cm s−1 per
gauss near 0.62R⊙, with density ρ ∼ 0.42 g cm−3, and where the boundary-layer
thickness scale is

δκη = K1/3
(η

κ

)1/6
(

� ℓ

VAi

)1/3

ℓ, ∝ (κη)1/6. (8.30)

Equating w
Ek

to wκη and using (8.17) and (8.19), with ∂u/∂z ∼ ℓ ∂�/∂z, we have

q ∼ ℓ
d(ln �)

dz

∣∣∣∣
bulk

= ℓ
w

Ek

νe
∼ K−1/3

(
η

νe

) (
κ

η

)1/6 (
VAi

� ℓ

)1/3

, (8.31)

equivalently

VAi ∼ � ℓ q3K

(
νe

η

)3 (
η

κ

)1/2

. (8.32)
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For an extreme value |q| ∼ 1 this would imply an impossibly large |Bi| of the order
of thousands of megagauss, again suggesting that |q| ≪ 1 and further support-
ing our earlier assumption (8.23). It should be cautioned, however, that Gough &
McIntyre’s (1998) scaling relation (8.29) has yet to be verified by a full analysis of
the boundary-layer structure, and indeed δκη and therefore Equations (8.31)–(8.32)
might well change at high |Bi| values, because Maxwell stresses then modify the
meridional momentum balance assumed by Gough & McIntyre (see also Chapter 7).
For |q| = qcrit we have a more reasonable valueVAi =VAi(crit), say, corresponding
to |Bi| ∼ 102 G. This follows from (8.24), (8.26) and (8.32):

VAi(crit) = �4ℓ7K13/4P −15/4η1/2κ−7/2

= � ℓK1/4P −3/4(η/κ)1/2 ∼ 0.4 × 102 cm2 s−1, (8.33)

implying in turn that δκη ∼ 0.7 × 10−1 Mm and wκη = w
Ek

∼ −4 × 10−5 cm s−1.
This magnitudeVAi(crit) ∼ 0.4 × 102 cm2 s−1 or |Bi| ∼ 102 G represents the critical
order of magnitude of Bi above which the stably stratified, high-latitude tachocline
can continuously sustain small-scale dynamo action and below which the dynamo
action would have to be intermittent, point (iv) above.

A curious aspect of the scaling (8.33) is the implication that VAi(crit) = ℓ �A

at threshold. One may see this by substituting (8.26) into (8.23). Therefore the
critical magnitude of Bi – whose most important component for this purpose is
the poloidal component, as explained by Gough & McIntyre (1998) – coincides
with the order of magnitude of the Tayler-unstable eddy toroidal field of the small-
scale dynamo. Furthermore, we see from (8.30) and (8.33) that VAi = VAi(crit)

implies δκη ∼ δκ . It seems that, just above threshold, the scaling for the small-scale
dynamo eddies is the same as Gough & McIntyre’s scaling for the thermomag-
netic boundary layer. This is perhaps not unreasonable since both structures have
shallow aspect ratios δκ/ℓ, δκη/ℓ and both, at threshold, feel not only a strong
Coriolis effect but also the magnetic as well as the thermal diffusivity. We may
also note from Equation (3) of Spruit (2002) that, under these threshold conditions,
the eddy timescale for the small-scale dynamo, i.e. the growth time for the Tayler
instability, is �/�A

2 ∼ 104 yr – fast from some viewpoints and slow from others.
A full analysis of the double-boundary-layer structure is beyond our scope here,

and awaits further investigation. However, in the lower portion of the modified
Ekman layer, where we are provisionally supposing that the eddy viscosity falls
off like z2 as the small-scale dynamo runs out of headroom, points (vii) and (viii)
above, the Ekman-layer equations have complex power-law solutions that give
some idea of the structure. Figure 8.1 shows some possible profiles of σ , u, τ and v.
These satisfy Equation (8.18) with νe ∝ z2 together with the standard Ekman-layer
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Figure 8.1. Solutions of Equations (8.18) and (8.34) regarded as an idealized
model of the lower portion of the modified Ekman layer where the eddy viscosity
∝ z2. Somewhat arbitrarily, this lower portion is assumed to occupy a layer of
thickness δκ , in dimensionless coordinates 0 � z � 1. Again somewhat arbit-
rarily, the eddy viscosity in (8.18) is taken to have reached the value 1

2νe∞ at
z = 1, where νe∞ denotes the asymptotic value ∼ 1.6 × 108 cm2 s−1 in the bulk
of the stably stratified tachocline above. The solutions finite at z = 0 are then
(u, v) = (Re, Im) e3iπ/4za and (σ , τ) = z2∂(u, v)/∂z = (Re, Im) ae3iπ/4za+1 ,
in dimensionless units, where a = 1

2 {−1 + √
(1 + 16i)} = 0.9591 + 1.3707i. In

fact there is a one-parameter family of solutions with a = 1
2 {−1 + √

(1 + 4iC)},
where C = 4z2

1/2 with z1/2 the dimensionless altitude at which the eddy viscosity

reaches the value 1
2νe∞ . Such solutions cannot describe the upper portion of the

layer where the viscosity profile approaches its asymptotic value νe∞ , nor can
they correctly describe the fine details near the bottom of the real modified Ekman
layer where it interfaces with the thermomagnetic boundary layer. This is because
the dynamo runs out of headroom somewhere above z = 0, depending on |Bi|
values. The saving grace, however, is that the mass-flux relation (8.19) depends
only on σ going to zero somehow, and not on the detailed vertical structure.

equations

−2�v = ∂σ/∂z, 2�u = ∂τ/∂z; (8.34)

see caption for further details. The profiles give what seems to be a qualitatively
reasonable description of the lower portion of the modified Ekman layer, showing
how the shears can stay finite and the stresses go to zero as z → 0. There is another
set of complex power-law solutions, rejected as unphysical, for which the shears
and stresses go to infinity as z → 0.
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In the upper portion of the layer, not shown, where the power-law solutions cease
to apply, as the eddy–viscosity profile departs from its z2 dependence and begins
to approach its asymptotic value νe∞ ∼ 1.6 × 108 cm2 s−1 in the bulk of the stably
stratified tachocline above, we can imagine the profiles being smoothly continued
upward with τ and v making an oscillatory approach to zero in the usual manner of
Ekman profiles. The azimuthal stress σ must continue toward its asymptotic neg-
ative value νe∞∂u/∂z|bulk, and the azimuthal shear ∂u/∂z toward a corresponding
negative value, smaller in magnitude than in the portion of the u profile visible in
Figure 8.1, point (vii) above. Again one expects an oscillatory approach toward
these asymptotes. A consistent description of the upward continuation requires the
second of (8.34) to be replaced by an equation corresponding to a steady, variable-
viscosity version of (8.2c) with a small but significant thermal-wind term, as already
hinted by the scaling relation δκη ∼ δκ . That is a further sense in which the Ekman
layer is ‘modified’. The v profile and its upward continuation describe, of course,
the gyroscopically-pumped poleward flow.

The issue of tachocline ventilation turns out to involve subtleties that depend on
the effects of compositional stratification Nµ. So we discuss the latter first.

8.5 The effects of compositional stratification Nµ

As already emphasized, the helium settling layer just beneath the tachocline owes
its existence to the suppression of global-scale HSZ burrowing by the interior field
Bi. Once the settling layer has formed, the vertical gradient of mean molecular
weight µ adds a contribution

N2
µ = −g ∂ ln µ/∂z (8.35)

to the buoyancy frequency squared that is a significant fraction of the typical thermal
value N2 ∼ 10−6 s−2. For instance, a standard solar model (Figure 3.4 of Chapter 3)
gives a fractional contrast d ln µ = 0.014 across the settling layer and a corres-
ponding reduced gravity g′ = 0.014g ∼ 1 × 103 cm s−2. Measuring the slope
shown in the inset to Figure 3.4a, one gets ∂/∂z ∼ (0.05R⊙)−1 ∼ (35 Mm)−1; so
N2

µ ∼ g′/0.05R⊙ ∼ 0.3 × 10−6 s−2, or Nµ ∼ 0.5 × 10−3 s−1. However, neither

d ln µ nor N2
µ can really be said to be known precisely, because the helioseismic

evidence is undergoing revision, as discussed in Chapter 3, though still generally
supporting the existence of the settling layer. It is possible that the real settling
layer may be somewhat deepened, with ∂/∂z perhaps more like (100 Mm)−1, by
the weak and highly sporadic interior turbulent mixing discussed in Section 8.3.
Furthermore, the overall µ contrast across the layer could be somewhat bigger than
indicated by the number d ln µ = 0.014, if the same weak mixing were even slightly
effective in bringing up helium-rich gas from the core, on the gigayear timescale.
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Fortunately, however, the following arguments depend only on very rough orders
of magnitude for d ln µ and N2

µ.
The main issue is whether HSZ burrowing can penetrate the interior near the

polar weak spots in Bi, as speculated by Gough & McIntyre (1998). These are the
zero points or ‘hairy-sphere defects’ of the vector field formed by the horizontal
projection of Bi. If such burrowing were possible, then it could create ‘polar pits’
or ‘cauldrons’, in which lithium could be burned even if � were less than 65 Mm.
The most favourable conditions for such burrowing would be that |Bi| is altogether
negligible near the poles. We ask whether, in that most favourable case, the bur-
rowing could locally penetrate the helium settling layer in those neighbourhoods.
It will appear that the answer is a clear ‘no’.

The non-magnetic slab model of Section 8.2 is sufficient to reveal the essential
effects, which turn out to be insensitive to the choice of horizontal scale ℓ. The only
changes needed are to replace the thermal buoyancy acceleration ϑ by the total
buoyancy acceleration ϑ + ϑµ in (8.2c), and to append an equation for the com-
positional buoyancy acceleration ϑµ. In the latter equation we may safely neglect
all diffusive effects, which are tiny.8 By analogy with the thermal buoyancy accel-
eration we define ϑµ as g times the fractional departure of µ from its background
stratification, so that the equation for ϑµ is

∂ϑµ

∂t
+ N2

µw = 0, (8.36)

in which we idealize by taking Nµ = constant. Simplifying (8.2c) as before, we
have the appropriate form of the thermal-wind equation,

2�
∂u

∂z
+ ∂(ϑ + ϑµ)

∂y
= 0, (8.37)

and readily find that (8.15) is replaced by
{(

∂

∂t
− κµ

∂2

∂z2

)
∂2

∂y2
− 4�2κ

N2

∂4

∂z4

}
∂u

∂t
=

(
∂

∂t
− κµ

∂2

∂z2

)
∂2F̄

∂y2
, (8.38)

where κµ = κN2
µ/N2. The microscopic viscosity ν has been neglected, since it is

nearly as small as the helium self-diffusivity, χ ∼ 101 cm2 s−1, which has already
been neglected in (8.36).

Now the key point is that (8.38) is an equation for ∂u/∂t and not for u. The ∂/∂t is
a crucial and essential feature, coming from the need to eliminate ϑµ between (8.36)
and (8.37). By contrast, ϑ is eliminated as in the derivation of (8.15), via (8.2d)
with its ∂/∂t neglected. That is appropriate because of the enormous magnitude of
κ ∼ 107 cm2 s−1 relative to χ .

8 For instance χ ∼ 101 cm2 s−1, where χ is the self-diffusivity of helium anomalies in the appropriate hydrogen–
helium mixture (see Chapter 1, Table 1.1).
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With a relatively small horizontal scale ℓ – as before, we consider slab-model
solutions sinusoidal in y/ℓ – one might think at first that the new quasi-diffusive
term in κµ signals the possibility of burrowing straight down into the helium settling
layer. But appearances are deceptive here.

Consider a thought-experiment in which the forcing is switched on at time zero.
The time-dependent solutions of (8.38) below the forcing layer, right-hand side
zero, describe burrowing that commences in just the same way as with the Spiegel–
Zahn equation (8.15). The hyperdiffusive term dominates the new quasi-diffusive
term in the earliest stages, in which the vertical scale increases from zero. As the
disturbance penetrates more deeply, however, the quasi-diffusive term comes into
balance with the hyperdiffusive term. Thus ∂u/∂t reaches a steady state with vertical
structure exp(z/h), where the vertical scale h is given by h = (2�ℓ/N)(κ/κµ)1/2 =
2�ℓ/Nµ. This is just the (non-diffusive) Rossby height belonging to the horizontal
scale ℓ, and the response, from then onward, is nothing but the well-known Eliassen
response to gyroscopic pumping in a non-diffusive stratified fluid. Its most important
feature, for our purposes, is that ∂u/∂t and ∂ϑµ/∂t are steady, not u and ϑµ. The
other variables ϑ , v and w are all steady. The response consists of perpetual spin-
down, with u and ϑµ asymptotically proportional to t.

This means, of course, that the response is self-limiting, in one of two possible
ways. The first way is for the spin-down to continue – with the u and ϑµ terms
in (8.37) asymptotically proportional to t – until the compositional stratification
surfaces are overturned and the stratification is wiped out. That is what would have
taken place on a global scale, preventing the helium settling layer from forming at
all, had there been no Bi and no Ferraro constraint. Such a response is a nonlinear
response, outside the scope of our linearized equations.

The second way, which is the one relevant here, is well within the scope of the
equations. If, as here, the gyroscopic pumping is ultimately the result of the convec-
tion zone’s propensity to rotate differentially, then there is a saturation value beyond
which the spin-down cannot proceed, having taken up all the available differential
rotation and thus killed off the gyroscopic pumping. We may say that the underlying
layers are fully spun-down. Just what the final saturation value might be is difficult
to say, but one may reasonably suppose that spin-down cannot proceed beyond
limits governed by the value of α in Equation (8.27), α ∼ 10−1, the fractional
angular-velocity increment across the whole tachocline. It is easy to verify (see
the Margules slope estimate below) that such limits are essentially zero for present
purposes. They tell us that the self-limiting of the Eliassen response would take
place with hardly any tilting of the compositional isopleths.

In other words, for realistic α the helium settling layer spanning the poles presents
an almost perfect barrier against HSZ burrowing. That is why the polar pits cannot
be dug.



M. E. McIntyre 209

Two further points need comment. The first is that Equation (8.38) also admits
perpetual-spin-down solutions with a linear dependence on z, such as u ∝ t sin(y/ℓ)

and u ∝ zt sin(y/ℓ). These, however, fail to satisfy physically reasonable boundary
conditions. For instance the first of them requires both |ϑ | and |κ∂ϑ/∂z| to increase
like t at the top boundary, if w = 0 at some bottom boundary. This is because ϑ has
to be asymptotically proportional to zt cos(y/ℓ) in order to avoid violating (8.37),
in which ∂u/∂z = 0 despite the perpetual tilting of µ-surfaces, implying ϑ = −ϑµ.
The second solution has a similar pathology and, furthermore, does not even permit
w = 0 at the bottom, since it can be shown to imply a z-independent contribution
to w, ∝ t cos(y/ℓ). Also, both types of solution would disappear if any horizontal
heat diffusion were allowed. So we need not consider them further.

The second point is that the tilting of compositional isopleths or stratification
surfaces is so small, in fact, that it tightly constrains vertical displacements of the
tachopause even on a global scale. We have just found that HSZ burrowing is
ineffective even at the polar weak spots of Bi. Still less is it effective in the rest
of the interior where the Ferraro constraint has control. There is no MMC to tilt
the thermal, or overturn the compositional, stratification surfaces. The implication
is that those surfaces must be accurately horizontal, in the sense that they accurately
follow the gravitational–centrifugal heliopotentials.

As a check on that assertion, and to get some idea of its error bar, let us calculate
the tilting of compositional stratification surfaces that would occur if they alone were
tilted and if the Ferraro constraint were artificially relaxed, to permit a thermal-wind
shear across the helium settling layer of the same order as the shear across the whole
of the high-latitude tachocline. The slope can be obtained from the thermal-wind
equation (8.37) evaluated with ϑµ alone, or equivalently and more directly from the
Margules slope formula 2�U/g′, where U ∼ �αℓ, the velocity increment across
the layer, and α is the fractional angular-velocity increment as before. Even with
the extreme value α ∼ 10−1 we have U ∼ 3 × 103 cm s−1 and a Margules slope
2�2αℓ/g′ ∼ 2×10−5. The nominal elevation change over a distance r ∼ 500 Mm
is only 10−2 Mm. The real elevation change from pole to equator, with the Ferraro
constraint brought back into play, is therefore far, far smaller still – a very tiny
fraction of a megametre indeed.

8.6 Concluding remarks

The main issue not yet addressed is that of the tachocline’s ventilation timescale.
This turns out to be by far the most delicate issue, and crude order-of-magnitude
arguments are unable to decide it directly. Taken at face value, the threshold numbers
used in Section 8.4 imply gigayear ventilation times. This is because the main
ventilation mechanism is now turbulent mixing by the small-scale dynamo. From
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Equations (15) and (19) or the first of (43) in Spruit (2002), we have an eddy
diffusivity D for vertical material transport of the order of

D ∼ q � ℓ2 P3/4K3/4, (8.39)

in the notation of Section 8.4. If q is close to its threshold, qcrit , then one may verify
by substitution from (8.26) that D is of the same order as the microscopic magnetic
diffusivity η ∼ 300–400 cm2 s−1. With � ∼ 65 Mm the nominal ventilation time
�2/η is then about the same as the Sun’s Main Sequence lifetime, ∼4 Gyr. Perhaps
this is not an accident: could it be that the thickness of the tachocline is such that it
can only just stay ventilated?

One can imagine playing games with factors like π2 or taking one or two tens
of megametres off the � value by assuming a deep overshoot layer, or one could
suppose that the small-scale dynamo in the stably stratified tachocline is well above
threshold, with the implication from (8.32) that |Bi| ≫ 102 G. And when a full
analysis of the double-boundary-layer structure becomes available, including a
quantitative numerical model, then the net effect of the numerical factors might
go one way or the other. As regards large |Bi|, there seems no reason why the Sun
should not have an interior field as strong as that of ordinary (non-neutron) magnetic
stars, which should allow us to consider |Bi| values perhaps into the hundreds of
kilogauss, magnetic escapology permitting. If, despite the cautionary remark below
(8.32), the 1/3 power in (8.31) were to apply over the whole range of |Bi| and |VAi|
values, then we would be able to use D ∼ 10η.

However, we may also invoke Occam’s razor, appealing to the effects of compos-
itional stratification discussed in Section 8.5. The key point is again the dynamical
impossibility of significantly tilting the compositional isopleths in the helium set-
tling layer. This presents a powerful barrier not only against the burrowing of
MMCs but also against the turbulent erosion of heavy elements into the tachocline.
Erosion rates must be severely limited by that circumstance alone. They will be
further limited by the diffusive leakage of Bi across the tachopause, and into the
tachocline, in those latitude bands equatorward of the active high-latitude band
where there is either no confining downwelling, or very weak downwelling such as
might occur over the equator (point (v) in Section 8.4). In such latitude bands the
Ferraro constraint will reach across the tachopause, now defined as the top of the
helium settling layer, and will tend to suppress shear across it and protect it from
any kind of erosion. So the tachocline could be helium-poor, therefore, not so much
because of fast ventilation from above, as in the scenario of Gough & McIntyre
(1998), but because of minuscule erosion rates of heavy elements across such a
heavily protected compositional tachopause.

There remains, however, the lithium problem, which of itself still argues for sub-
stantial ventilation. Further discussion must await detailed solutions of the nonlinear
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equations for the double-boundary-layer structure, as well as a more quantitative
description of the small-scale dynamo.

One final twist in the tail of this tale. The visible shear at the top of the high-latitude
tachocline – visible, for instance, in Figure 3.7 of Chapter 3 and already indicated by
helioseismology to occupy mainly the lower convection zone and its overshoot lay-
er (see Chapters 1 and 3) – would be dynamically impossible in the presence of the
small-scale dynamo. That is very clear from Spruit’s order-of-magnitude relations
as used in Section 8.4, to the extent that Equation (8.29) correctly indicates the
thermomagnetic boundary layer’s mass-carrying capability. At first sight it might
seem paradoxical: ‘surely the lower convection zone and overshoot layer are much
more turbulent?’ But that would be to underestimate the power of the Maxwell
stresses in the small vertical scale dynamo, arising from the large horizontal reach
of its eddy structures via the Tayler instability’s kink or tipping-type kinematics,
dominated by azimuthal wavenumber m = 1 , and reflected in the large vertical
eddy viscosity νe . So the suggestion must be that the convective plumes break up
that horizontal structure, disconnecting and reconnecting the wound-up field lines
in such a way as to drastically reduce the eddy viscosity and permit much larger
shears.
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β-Plane MHD turbulence and dissipation in
the solar tachocline

Patrick H. Diamond, Sanae-I. Itoh, Kimitaka Itoh & Lara J. Silvers

The physical processes causing the turbulent dissipation and mixing of momentum
and magnetic fields in the solar tachocline are discussed in the context of a simple
model of two-dimensional MHD turbulence on a β-plane. The mean turbulent
resistivity and viscosity for this model are calculated. Special attention is given to
the enhanced dynamical memory induced by small scale magnetic fields and to the
effects of magnetic fluctuations on nonlinear energy transfer. The analogue of the
Rhines scale for β-plane MHD is identified. The implications of the results for
models of the solar tachocline structure are discussed.

9.1 Introduction

The tachocline is a thin, stably stratified layer of the solar interior situated in the
radiative zone, immediately below the convection zone (Miesch 2005; Tobias 2005).
This layer connects the latitudinal differential rotation of the solar convection zone
to the expected solid body rotation of the solar interior (Schou et al. 1998; see
also Chapter 3 in this book by Christensen-Dalsgaard & Thompson). Thus, flows
in the tachocline are sheared (both poloidally and radially), with the predominant
structure being that of a radially sheared toroidal flow. The stratification of the
tachocline is strongly stable (with Richardson number Ri ≫ 1), and the magnetic
field strength is significant, though magnetic pressure is still much smaller than
thermal pressure, consistent with hydrostatic equilibrium, i.e. B2/8π ≪ p.

In addition to its intrinsic interest, the tachocline has received considerable atten-
tion recently on account of its pivotal role in the proposed interface dynamo of the
Sun (Parker 1993; see also Chapter 13 by Tobias & Weiss). Interest in the interface
dynamo has been sparked by the many fundamental questions recently raised con-
cerning the mean field αω theory of the solar dynamo and its traditional constituents,

The Solar Tachocline, D. W. Hughes, R. Rosner and N. O. Weiss.
Published by Cambridge University Press. © Cambridge University Press 2007.
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Figure 9.1. A schematic of the interface dynamo cycle, which operates near the
boundary of the convection and radiation zones. In this cartoon the tachocline sits
just below the convection zone. Magnetic field is amplified by an α-effect in the
convection zone, ‘pumped’ into the tachocline by convective overshoot, amplified
by shearing in the tachocline, and returned to the convection zone by magnetic
buoyancy.

the alpha (α) and turbulent diffusivity (ηT) effects.1 In this regard, possible quench-
ing of ηT and α in inverse proportion to the product of magnetic Reynolds number
(Rm) and mean magnetic field intensity (B2

0), (i.e. ∼(1+RmB2
0)

−1), is a particularly
strong motivation to consider alternative dynamo scenarios (Cattaneo & Vainshtein
1991; Gruzinov & Diamond 1994; Diamond et al. 2005a). The interface dynamo
concept proposes an escape from quenching by separating the location of cyclonic
turbulence (which drives the α-effect) from the site of shearing (ω-effect) and the
consequent strong magnetic field build-up. In the interface dynamo, weak poloidal
fields are amplified by α in the convection zone, then transported to the tachocline
by either turbulent diffusion or entrainment by convectively overshooting plumes
(a process referred to as ‘magnetic flux pumping’; Tobias et al. 2001). Once in
the tachocline, the magnetic field is amplified by flow shearing to form strong tor-
oidal loops. A cartoon of the interface dynamo scenario is shown in Figure 9.1.
The toroidal field remains stored below the convection zone, until it erupts upward
into the convection zone, and eventually into the solar atmosphere (Parker 1966;
Hughes 1991). Also, the nature of field amplification in the interface dynamo is
such that the overall sensitivity to the value of α is reduced. In the interface scenario
α is required only to convert toroidal field to poloidal, while toroidal field is actu-
ally amplified by tachocline shear. This state brings to mind the familiar contrast
between α2 and αω dynamos. In α2 dynamos, the field growth rate γ ∼ α while for
αω dynamos γ ∼

√
α� with the reduced sensitivity to α evident. Given the many

attractive features of the interface dynamo, it is no stretch to say that understanding

1 Note that the latter is often denoted by β. To avoid confusion in this chapter we use ηT.



P. H. Diamond, S.-I. Itoh, K. Itoh & L. J. Silvers 215

the tachocline is an important prerequisite for a theory of the solar dynamo, solar
cycle, etc.

Perhaps the most basic and important questions concerning the tachocline are:

(i) why does it exist?
(ii) where is it located and why is it so sharply localized?

Regarding existence, the tachocline is formed by the penetration of a shear into
the stably stratified radiation zone. This process of sheared flow penetration is
ultimately driven by solar spin-down, i.e. the loss of angular momentum from the
Sun on account of its coupling to the outgoing, rotating, solar wind (Bretherton &
Spiegel 1968; Spiegel & Zahn 1992), or, alternatively, by the stresses maintaining
latitudinal differential rotation in the convection zone (see Chapter 1 in this volume
by Gough). Spin-down or stresses in turn generate meridional circulation cells,
which drive the inward penetration of shear. Alternatively put, approximate thermal

wind balance tightly links radiative heat transport-driven baroclinic torques to the
vertical variation of the centrifugal force (Mestel 1999). Any small deviation from
exact thermal wind balance necessarily implies meridional circulation, which must
exist to balance the torque budget. Thus, it may be said that meridional cells are
spawned by the competition between stratification (N2) and rotation (�2), in the
sense that these two effects directly compete against one another in the thermal
wind balance. This process of meridional flow-driven ‘burrowing’ is sometimes
referred to as gyroscopic pumping (McIntyre 2000, 2003), and is similar to the well-
known mechanism of the Eddington–Sweet circulation in convectively stable stellar
interiors (Eddington 1926; Sweet 1950). Indeed, the basic timescale of tachocline
penetration is the Eddington–Sweet time scale τES = (N/2�)2r2

0/κ , where r0 is the
radius of the tachocline boundary, κ is the thermal diffusivity, N is the Brunt–Väisälä
frequency and � is the rotation frequency.

The second question above, i.e. what limits or localizes the tachocline, is the
more challenging one, by far. Radial mixing is ineffective, on account of the
severe limitation imposed on it by the strong stable stratification in the solar
radiation zone. It would just slightly enhance the Eddington–Sweet penetration
rate, so making little or no difference in the outcome of that theory. Thus, one
must turn to turbulent viscous mixing, as in the Spiegel–Zahn scenario (Spiegel &
Zahn 1992), in which tachocline burrowing is balanced by ‘horizontal’ turbulent
momentum transport, or to magnetic field effects, as in the Gough–McIntyre scen-
ario (Gough & McIntyre 1998). In the latter scenario, tachocline penetration is
opposed by a hypothetical fossil dipolar magnetic field in the solar radiation zone.
The fossil dipole field is separated from the tachocline and convection zone by
a magnetic separatrix or ‘tachopause’, at which nonlinear dissipative MHD pro-
cesses (i.e. magnetic reconnection) are both crucially important and excruciatingly
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difficult to calculate. One key element in determining the tachocline thickness
according to the Gough–McIntyre model is the balance of shearing of poloidal
fields with resistive dissipation of toroidal magnetic fields. This magnetic dissipa-
tion can be either resistive (i.e. related to radial diffusion, as actually assumed by
Gough & McIntyre) or turbulent, and so related to poloidal transport and mixing
of magnetic fields. Thus, it is interesting to note that in both tachocline formation

scenarios, turbulent transport and dissipation play central roles. Finally, we note
here that other tachocline models exist but are beyond the scope of this discus-
sion (see Chapter 7 by Garaud). For an alternative magnetic model see Rüdiger &
Kitchatinov (1977).

Tachocline turbulence is quasi-geostrophic turbulence in a spherical shell, and is
excited primarily by forcing due to convective overshoot. The forcing may also be
thought of as a surrogate for the input of energy to smaller scales as a result of large
scale instability. As we argue below, tachocline turbulence almost certainly has a
strong magnetic component and thus should be thought of as quasi-geostrophic
MHD turbulence, the simplest incarnation of which is β-plane MHD turbulence.
Here, we consider the β-plane model, rather than a spherical surface or spher-
ical shell model, for reasons of simplicity. Predictive understanding of turbulent
transport and dissipation of both momentum (closely related to vorticity in two
dimensions) and magnetic fields in β-plane MHD turbulence is necessary in order
to construct tachocline formation models. Such turbulent transport provides the key

element of dissipation, which limits or offsets the meridional cell-driven ‘burrowing’

(McIntyre 2003). This chapter discusses the physics of transport and dissipation in
β-plane MHD. Both momentum and magnetic field transport are considered.

There are at least three specific reasons why understanding β-plane MHD
turbulence is an interesting and challenging task. These are as follows.

(i) The simultaneous presence and coexistence of eddies, Rossby waves and Alfvén waves
at different scales.

(ii) The freezing of magnetic potential and field into the fluid at high magnetic Reynolds
number Rm. ‘Freezing in’ has been shown to severely limit turbulent diffusion of
magnetic fields in two dimensions.

(iii) The tendency of even two-dimensional turbulence to stretch magnetic fields and thus to
‘Alfvénize’ the turbulence, producing a high intensity spectrum of small scale magnetic
fields. Also, in two-dimensional MHD, energy forward cascades, rather than inverse
cascades as in a two-dimensional fluid, once the magnetic field intensity exceeds a
weak minimal level (Kraichnan 1965; Pouquet 1978).

These three observations in turn suggest the following.

(i) As in the case of ordinary geostrophic turbulence, a scale emerges in β-plane MHD
turbulence that demarks the boundary between an ‘eddy turbulence’ range of scales
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Table 9.1. Elements of Tachocline Formation Scenarios

Element Spiegel–Zahn model Gough–McIntyre model

Drive of tachocline Spin-down, meridional Spin-down, meridional
formation circulation cells circulation cells

Tachocline limiter Horizontal viscosity and Fossil poloidal magnetic field in
momentum mixing radiative core

Turbulent dissipation Turbulent viscosity in Turbulent resistivity in
mechanism quasi-geostrophic fluid quasi-geostrophic

or MHD two-dimensional MHD

Critical balance νh∇2
h v vs. ‘burrowing’ (η∂2

r + ηh∂
2
h )Bφ vs. shearing

of tachocline of Bp into Bφ

Critical issues in (1) Cascade direction (1) Turbulent resistivity, quenching
turbulence physics (2) Rhines scale in of ηT in β-plane MHD

β-plane MHD
(3) Momentum transport (2) 〈A2〉 spectral transport direction

and a ‘wave turbulence’ range. We shall show that in β-plane MHD, this analogue of

the well-known Rhines scale can be Rm dependent (Rhines 1975).
(ii) For scales ℓ < ℓRM, where ℓRM is the β-plane MHD ‘Rhines scale’, the dyna-

mics is essentially that of two-dimensional MHD turbulence. So, turbulence tends to
‘Alfvénize’, thus enhancing memory and quenching turbulent diffusion and dissipation
of both momentum and field. Moreover, energy forward cascades, even in two-
dimensional MHD.

(iii) For scales ℓ > ℓRM, the dynamics is that of a gas of Rossby waves. In particular,
turbulent transport is controlled by wave interaction, so the simplified conventional
wisdom about two-dimensional MHD turbulence is not applicable.

The upshot of all this is that the actual dynamics of turbulent mixing of momentum
and magnetic field in the tachocline is quite unclear, and that horizontal turbulent
viscosity (νh) and resistivity (ηh) are either quenched or significantly reduced! This
discussion indicates the need to seriously consider the micro-physics of turbulent
transport in the tachocline environment when constructing models of tachocline
formation (see Table 9.1).

The remainder of this chapter is organized as follows. Section 9.2 introduces the
model and discusses some basic aspects of β-plane MHD, including the important
Zeldovich theorem. The effective Rhines scale for β-plane MHD is discussed in
Section 9.3. In particular, we show that in β-plane MHD at high Rm, the effective
Rhines scale ℓRM increases with Rm. Spectral transfer and turbulent dissipation
are discussed in Section 9.4. The eddy and Alfvén wave forward cascade range at
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scales ℓ < ℓRM and the Rossby wave dominated range at ℓ > ℓRM are dealt with
separately. We show that for ℓ < ℓRM, both νh and ηh are significantly reduced
by the effects of small scale magnetic fields. We also discuss the effects of Rossby
wave interactions on turbulent transport at larger scales. Section 9.5 discusses the
implications of these results for tachocline structure formation scenarios.

9.2 Some basic aspects of two-dimensional MHD turbulence on a β-plane

Though virtually all previous studies of turbulence and turbulent transport in the
tachocline have been in the context of neutral fluid models, tachocline turbulence
is very likely MHD turbulence, or turbulence with a substantial magnetic com-
ponent. This assumption is natural, given the strong toroidal magnetic field of the
tachocline and the presence of magnetic field sources both above and below the
tachocline. Specifically, the tachocline magnetic field is fuelled from above by
overshooting plumes, which originate in the convection zone and which entrain
convection zone magnetic fields while they fall into the stably stratified tachocline
below the convection zone. Likewise, small elements or loops of the fossil field
thought to reside in the solar radiation zone (as in the Gough–McIntyre scenario)
may enter the tachocline following reconnection events, which occur at the tacho-
pause, and which thus fuel the tachocline magnetic field from below. Thus, the
readily available sources of magnetic field as well as the stable stratification and
apparent minute thickness of the layer suggest that turbulence in the tachocline
is ‘shellular’ MHD turbulence, which is two-dimensional in character. Here we
make the simplest of approximations and neglect the thickness of the shell, thus
taking the dynamics to be two-dimensional. Since shellular turbulence in a layer of
finite thickness can exhibit complex vertical couplings (as in multi-layer models;
Pedlosky 1987), further simplification is desirable. Thus, we focus on the absolutely

minimal model of such shellular MHD turbulence, namely two-dimensional MHD

turbulence on a β-plane (Bracco et al. 1998). This system includes constituents
of both geostrophic turbulence (i.e. Rossby waves, vortices) and two-dimensional
MHD turbulence (i.e. Alfvén waves etc). Despite the simplicity of this minim-
alist model, developing a theory of β-plane MHD turbulence is still useful for
tachocline modelling, since such a theory can constrain and elucidate the phys-
ics of the turbulent transport and dissipation coefficients (i.e. turbulent viscosity
and resistivity) which (partially) determine the structure and the thickness of the
tachocline in either the Spiegel–Zahn or the Gough–McIntyre scenario. In particu-
lar, both horizontal turbulent viscosity νh and horizontal turbulent resistivity ηh are
set by β-plane MHD turbulence. The former is central to the Spiegel–Zahn scen-
ario, as discussed earlier. Horizontal resistivity is important to the Gough–McIntyre
scenario since, in this model, shearing of poloidal, radiation-zone magnetic fields
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is presumed to be balanced by resistive dissipation of the toroidal, tachocline field.
Up until now, only Ohmic, vertical diffusion of magnetic fields has been considered
by Gough & McIntyre. Turbulent horizontal diffusion is also possible and is, very
likely, a stronger effect (i.e. −B0 sin θ∂�̄/∂θ ∼ (η∂2

r +ηT∂
2
h )Bφ , with ηT dominant).

The model of β-plane MHD turbulence that we employ is simply two-
dimensional MHD with the β effect added to the vorticity equation. Using B =
∇A × ẑ and V = ∇ψ × ẑ, the governing equations can be written as:

∂t∇2ψ + ∇ψ × ẑ · ∇∇2ψ + β∂xψ = ∇A × ẑ · ∇∇2A + ν∇2∇2ψ + f̃ , (9.1)

∂tA + ∇ψ × ẑ · ∇A = η∇2A + f̃a. (9.2)

In this model the magnetic flux function is of the form

A = B0y + Ã, (9.3)

so

B = B0̂x + B̃. (9.4)

As is the case in β-plane models, β corresponds to the horizontal gradient of the
Coriolis parameter, i.e. β = (2�/r0) cos θ0, where r0 is the radius of the shell, � is
the rotation rate and θ0 is the latitude at which the β-plane is tangent to the spherical
surface.

In this work, x̂ corresponds to the azimuthal direction, and is the direction of the
mean toroidal field; ŷ corresponds to the polar direction and ẑ to the radial direction,
in which the system is stably stratified. Thus, Rossby waves propagate in the −x̂

direction, i.e. westward, along B0. For simplicity we take B0 to be uniform. Note
that in the unforced (̃f → 0, f̃a → 0), inviscid, ideal limit (i.e. ν, η → 0), β-plane
MHD conserves:

(i) total energy, E = 〈(∇ψ)2 + (∇A)2〉/2;
(ii) total A-squared, H = 〈A2〉;

(iii) total cross helicity, Hc = 〈∇ψ · ∇A〉.

Of course, inclusion of the Lorentz force breaks enstrophy conservation, so two-
dimensional MHD dynamics is quite different from that of two-dimensional
hydrodynamics.

It is interesting to note that even a straightforward linearization of Equations (9.1)
and (9.2) reveals certain fundamental trends in the system. Assuming plane
wave solutions and neglecting forcing and dissipation gives the dispersion
relation

ω2 + ωRk
ω − ω2

Ak
= 0, (9.5)
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where

ωRk
= −βkx

k2
(9.6)

is the Rossby wave frequency, and

ωAk
= kxVA0 (9.7)

is the Alfvén wave frequency. In β-plane MHD, these two wave branches are
coupled. Hence, we note that for k2 < β/VA0 (i.e. ωAk

< ωRk
), the Rossby

wave character is dominant, while for k2 > β/VA0 (i.e. ωRk
< ωAk

) the Alfvénic
character dominates. Thus, the wavenumber kLR = (β/VA0)

1/2 defines a scale
which demarks the boundary between Alfvénic and Rossby dominated ranges. For
k < kLR, the wave spectrum may be thought of as a gas or ensemble of strongly
dispersive Rossby waves, while for k > kLR, the waves are Alfvén waves. It is well
known that even in two dimensions, Alfvén wave turbulence supports a forward,
rather than inverse cascade, so ‘negative viscosity phenomena’, such as zonal flow
formation, must occur on scales ℓ > ℓLR, and are thus likely driven by Rossby wave
interaction, rather than by turbulence. Note that ℓLR constitutes a scale which is
somewhat reminiscent of the Rhines scale, familiar from discussions of geostrophic
turbulence, and so is called the ‘linearized Rhines scale’ ℓLR here.

At this point, the critical reader is no doubt motivated to ask: since B0 flips

every 11 years while tachocline formation proceeds over 106 years, why doesn’t B0

simply ‘average out’ on dynamically interesting time scales, allowing us to ignore

B0 in consideration of the formation of the tachocline? This sentiment was more
eloquently espoused in the 1998 paper by Gough & McIntyre, who suggested the
following.

Any field from a putative dynamo in the convection zone could be “dredged” into the
tachocline by the meridional flow and thereby influence the dynamics, but it seems
unlikely that the rapidly oscillating field associated with the solar cycle would contrib-
ute significantly to the dynamics in the radiative zone, particularly in view of the 106 year
tachocline ventilation time τv .

Here we argue that while this timescale separation may justify ignoring the effects
of B0, it does not justify the neglect of MHD effects! The reason is simple – in high-

Rm two-dimensional MHD turbulence, 〈̃B2〉 ≫ 〈B〉2, so mean square magnetic

fluctuation levels in the system are large, even if the mean field is weak. This is
a direct consequence of the Zeldovich theorem for 2D MHD, which is directly
applicable to β-plane MHD (Zeldovich 1957; Diamond et al. 2005a; Tobias 2005).
Below, we discuss the Zeldovich theorem and its implications.

It is now well known that in two-dimensional high-Rm MHD turbulence, the
magnetic fluctuation intensity usually exceeds the mean field intensity by a large
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factor. This is a consequence of the stretching of magnetic fields by turbulence, and
is encapsulated by the Zeldovich theorem, which follows from the conservation
(up to resistive diffusion) of magnetic potential along fluid trajectories in two-
dimensional incompressible flow. Here we generalize the Zeldovich theorem to
account for direct forcing of the magnetic potential. Note that the presence or
absence of β has no explicit impact upon the 〈A2〉 budget. Though we usually
do not think of the magnetic field as being stirred, such forcing is quite relevant
to tachocline physics, since overshooting plumes naturally entrain convection zone
magnetic fields while they plunge into the tachocline from above. During the course
of this discussion, we also address and clarify some basic aspects of the Zeldovich
theorem.

In two-dimensional incompressible β-plane MHD, the magnetic potential
fluctuation satisfies

∂Ã

∂t
+ ∇ψ × ẑ · ∇Ã = −Ṽy〈B〉 + η∇2Ã + f̃a, (9.8)

where we have assumed 〈A〉 = 〈A(y)〉. Here 〈B〉 is the mean field and Ṽy = −∂xψ .
Multiplying by Ã, taking the fluctuation correlation length to be smaller than the
scale of 〈B〉 variation, and integrating over space (denoted by 〈 〉) we find

∂ 〈̃A2〉
∂t

+ 〈∇ · VÃ2〉 = 2
[
− 〈ṼyÃ〉〈B〉 + η〈̃A∇2Ã〉 + 〈̃A f̃a〉

]
. (9.9)

For stationary, homogeneous systems with periodic boundary conditions and no
outflow (i.e. keep in mind that a spherical surface constitutes a closed system), the
left-hand side of Equation (9.9) vanishes. Integrating once by parts on the right-hand
side then gives the relation

〈̃B2〉 = −〈ṼyÃ〉〈B〉 + 〈̃A f̃a〉
η

. (9.10)

Note that either inhomogeneity or an in/out flow of magnetic potential can signific-
antly alter the balance expressed by Equation (9.10). Finally, writing 〈ṼyÃ〉 in the
form of a Fick’s law (i.e. 〈V̂yÃ〉 = −ηT∂〈A〉/∂y = −ηT〈B〉, where ηT is a turbulent
resistivity) and noting dÃ/dt = f̃a on inertial scales yields

〈̃B2〉 = ηT〈B〉2 + 〈̃f 2
a 〉τa

η
. (9.11)

Here τa is the auto-correlation time of the (random) magnetic stirring force f̃a.
Equation (9.11) extends the usual Zeldovich theorem balance (〈̃B2〉 =

(ηT/η)〈B〉2) to include the additional effect of random stirring of A. Note that
writing 〈B〉2 = (∂〈A〉/∂y)2 in Equation (9.11) suggests that the total magnetic
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fluctuation intensity is fed by both:

(i) turbulent mixing of gradients in 〈A〉 by ambient MHD turbulence, as parametrized by
ηT(∂〈A〉/∂y)2;

(ii) external stirring by overshoot, as parametrized by 〈 f̃ 2
a 〉τa.

These two stochastic processes are independent, so their contributions to 〈̃B2〉 are
additive. As ηT ≫ η, Equation (9.11) confirms that 〈̃B2〉 ≫ 〈B〉2, even in the
absence of direct stirring of Ã. Strictly speaking, the Zeldovich theorem balance
may be written as

〈̃B2〉
〈B〉2

= Nu,m + 〈̃f 2
a 〉τa

η
, (9.12)

where Nu,m is the ‘magnetic Nusselt number’, ηT/η, and τa is the forcing correlation
time. In practice, for two-dimensional MHD, Nu,m exhibits a strong scaling with
magnetic Reynolds number Rm, consistent with both numerical calculations and
theoretical expectations (Cattaneo & Vainshtein 1991; Diamond et al. 2005a). Note
that while ηT is quenched, relative to kinematic based expectations, it still greatly
exceeds the collisional resistivity η and so ηT quenching is indeed compatible with
〈̃B〉2 ≫ B2

0.
Frequently, Nu,m ∼ Rm, though the universality of this putative scaling requires

further study and documentation. However, it seems indisputable that in the turbu-
lent tachocline, the β-plane MHD turbulence has Rm ≫ 1 and so 〈̃B2〉 ≫ 〈B〉2.
Thus, the magnetic fluctuations and turbulence dominate the mean magnetic field,
rendering the rapid reversals (on tachocline formation timescales) of the mean field
direction a moot point. More succinctly put, while 〈B〉 may ‘average out’ over long
timescales on account of frequent reversals, 〈̃B2〉 will most certainly persist, albeit
in different realizations, and in fact be the dominant repository of magnetic energy.
Of course, B̃ has no systematic directionality. Hence, one should think of the tacho-
cline as magnetized by layers of thin, quasi-two-dimensional stochastic magnetic
networks (see Figure 9.2), which support the propagation of Alfvén waves and so
‘elasticize’ the tachocline layer.

9.3 The Rhines scale for MHD turbulence on a β-plane

A key element in our mental picture of hydrodynamic turbulence on a β-plane is
the Rhines scale, which is of significance because it demarks the boundary between
small-scale two-dimensional turbulence, composed of eddies and vortices, etc., and
larger-scale Rossby wave turbulence. The physics of the Rhines scale is explained
heuristically below. We then proceed to discuss the modifications of the Rhines scale
introduced by coupling to stochastic magnetic fields in two-dimensional MHD on
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Figure 9.2. A sketch of turbulent magnetic field structure in the tachocline. The
magnetic field is stochastic but organized into thin, quasi-two-dimensional layers
or shells, on account of the strong, stable stratification. The mean magnetic field
(not shown here) is primarily in the x̂ direction.

the β-plane. We especially focus on possible Rm dependence of the Rhines scale
and on its role in separating the region of forward MHD energy cascade from that
of transfer of Rossby wave energy by nonlinear wave interaction.

In brief, the Rhines scale of quasi-geostrophic turbulence (Rhines 1975; Diamond
et al. 2005b) is based on two facts, which are as follows.

(i) Each k or scale is characterized by a real frequency ωk and a self-decorrelation rate�ωk.
Here �ω−1

k may be thought of as an effective self-coherence time for the fluctuation
with wavevector k. In geostrophic turbulence, the real frequency is approximately the
Rossby wave frequency ωk

∼= ωRk
= −βkx/k2.

(ii) At long wavelengths, Rossby waves are strongly dispersive, so it is extremely difficult
to satisfy the three wave resonance condition for energy transfer unless either:

(a) one member of the triad has kx = 0 and so is a zonal flow,
(b) �ωk > ωk, so turbulence interaction effectively smears out wave resonance.

Thus, the scale at which ωk = �ωk naturally forms a boundary or dividing line

between ranges of scales in which the nonlinear energy transfer is controlled by tur-

bulent inverse cascade and resonant wave–wave interaction. This scale is referred
to as the Rhines scale. Since for (strongly dispersive) Rossby waves, resonant
wave interaction occurs only via scattering off an azimuthally symmetric zonal
flow mode, the Rhines scale also sets the characteristic width of zonal flows. On
dimensional grounds, the Rhines scale is usually estimated by taking �ωk ∼ kṼ , so

ωk ≈ kṼ (9.13)

implies that the Rhines wave number kR is given by

k2
R = β

Ṽ
, (9.14)
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and so the Rhines scale ℓR ∼ (Ṽ/β)1/2. Here Ṽ is a ‘typical’ eddy velocity, so ℓR

exhibits some sensitivity to the structure of the spectrum. Moreover, concerns about
Galilean invariance have motivated reconsideration of the definition of ℓR in terms
of the local eddy strain rate (Vallis & Maltrud 1993). The resulting departures from
the simple result of Equation (9.14) are, however, quite small (Nozawa & Yoden
1997). Thus, the Rhines scale ℓR is well established as a useful concept in, and as
an element of, descriptions of geostrophic turbulence.

In two-dimensional β-plane MHD at large Rm, 〈̃B2〉 ≥ Rm〈B〉2 (i.e. for simplicity
we now take Nu,m ∼ Rm) so the decorrelation rate �ωk is simply kṼA, where
Ṽ2

A = 〈̃B2〉/4πρ0 ≥ RmV2
A0

. Here ṼA may be thought of as an effective Alfvén
or elastic velocity for propagation in the network of stochastic small-scale fields.
Such stochastic fields are the principal agents of decorrelation here. Note that since
the magnetic field allows large scales to damp small scales by Alfvénic coupling,
concerns pertaining to Galilean invariance of the turbulence theory are moot in
MHD (Moffatt 1978). Then, since ṼA ≫ VA0 , the effective boundary between
turbulence and Rossby wave ranges in β-plane MHD is given by

βkx

k2
∼= kṼA, (9.15)

so the MHD Rhines wavenumber kRM is given by

k2
RM

∼=
β

ṼA
, (9.16)

and the effective Rhines scale for β-plane MHD is just ℓRM ∼ (ṼA/β)1/2. As we
will see, ℓRM is an important scale for the dynamics of β-plane MHD turbulence.

Several comments are appropriate here. First, note that ℓRM is similar to ℓLR from
Section 9.2, the difference being that ℓRM ∼ (ṼA/β)1/2 while ℓLR ∼ (VA0/β)1/2,
so ℓRM/ℓLR � Rm1/4. This once again reminds us that coupling to the stochastic
small scale magnetic field B̃ is much stronger than the coupling to the mean field
〈B〉, so the dynamically dominant Alfvén wave propagation is along the stochastic
field. This appears in the theory as a decorrelation rate, rather than as a wave fre-
quency, on account of the stochasticity of B̃. Second, note that ℓRM is manifestly
Rm dependent, and ∼Rm1/4 for the usual scaling of ηT/η ∼ Rm. Thus, the range
of MHD turbulence (i.e. all scales ℓ such that ℓd < ℓ < ℓRM) increases with Rm.
Third, it is very important to keep in mind that the presence of magnetic fields
breaks enstrophy conservation, so that MHD turbulence cascades to small scales,
even in two dimensions! In the case where the characteristic forcing scale ℓf < ℓRM,
energy will forward cascade to small scale dissipation, while (non-scale-invariant)
stochastic backscatter will gradually fill in ℓf < ℓ < ℓRM. For ℓf > ℓRM, energy
will be transferred forward, though wave interactions will play a role – see
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Figure 9.3. A cartoon contrasting the energy flow in two-dimensional hydro-
dynamic turbulence on a β-plane with that for two-dimensional MHD turbulence
on a β-plane. A large-scale stochastic magnetic field lies in the plane.
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Figure 9.4. Cartoon of the energy spectrum for geostrophic turbulence. Note that
ℓ decreases to the right.
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Figure 9.5. Cartoon of the energy spectrum for β-plane MHD turbulence. Note
that ℓ decreases to the right.

Figures 9.3–9.5 for pertinent diagrams. Thus, any energy reaching ℓRM will even-
tually be coupled to small-scale dissipation. No inverse cascade of energy occurs.
Thus, unlike the corresponding case in geostrophic turbulence, there is no reason to
expect zonal flow formation at ℓRM, as energy does not inverse cascade toward ℓRM

in turbulent β-plane MHD. Here, the effective Rhines scale ℓRM merely separates

the range of forward cascading MHD turbulence from the range dominated by wave
interaction.
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Table 9.2. Comparison of Rhines scales for HD and MHD β-Plane turbulence

β-Plane HD β-Plane MHD

Rhines scale ℓR = (Ṽ/β)1/2 ℓRM = (ṼA/β)1/2

Ṽ2
A = 〈̃B2〉/4πρ0

Fluctuation ℓ < ℓR – eddies ℓ < ℓRM – Alfvén waves, eddies
constituents ℓ > ℓR – Rossby waves, ℓ > ℓRM – Rossby waves, zonal

zonal flows flows, fields

Spectral ℓ < ℓR → INVERSE cascade ℓ < ℓRM → FORWARD MHD
energy flow toward ℓR cascade

ℓ > ℓR → transfer by ℓ > ℓRM → transfer by wave–wave,
wave–zonal flow interaction wave–zonal structure interaction

Structure Strong zonal flows on ℓ ∼ ℓR Weak zonal flows and fields on
fed by inverse cascade from scales ℓ > ℓRM fed by wave
ℓ < ℓR interaction from scales ℓ > ℓRM

To summarize this discussion and to understand and gain some perspective on the
role of the MHD Rhines scale ℓRM in β-plane MHD, it is useful to systematically
compare and contrast the physics of the Rhines scale ℓR familiar from neutral quasi-
geostrophic turbulence with that of the MHD Rhines scale ℓRM for β-plane MHD.
Table 9.2 summarizes this comparison. In the case of a neutral geostrophic fluid,
the Rhines scale ℓR = (Ṽ/β)1/2 separates eddy interaction dominated (ℓ < ℓR)
and wave–zonal flow interaction dominated ranges (ℓ > ℓR). For β-plane MHD,
the MHD Rhines scale ℓRM = (ṼA/β)1/2, where Ṽ2

A = 〈̃B2〉/4πρ0, separates an
MHD turbulence range (ℓ < ℓRM) composed of eddies and Alfvén waves from
a range with ℓ > ℓRM, which is dominated by Rossby waves, with some zonal
flows and fields present too. In the case of a geostrophic fluid, energy inverse

cascades toward ℓR from all smaller scales, i.e. ℓ < ℓR. The strong dispersion of
Rossby waves then forces further interaction to proceed primarily via wave–zonal
flow scattering, thus generating zonal flows of characteristic scale ℓR. In this case,
nearly all energy generated on scales with ℓ < ℓR is ultimately fed into large-
scale zonal flows. Thus, it is no surprise that zonal flows are a prominent feature of
such systems. In the case of β-plane MHD, energy in the turbulent range on ℓ <

ℓRM forward cascades, toward small-scale dissipation. Energy contained on scales
ℓ > ℓRM participates in wave–wave and wave–zonal structure (i.e. flow and field)
interaction. Note that in the case of β-plane MHD, most of the energy generated
on scales ℓ < ℓRM does not flow to large scales (ℓ > ℓRM). Such scales are fed
only by (non-self-similar) stochastic back-scatter from smaller scales. Thus, we can
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expect zonal structures to be significantly less prominent features in β-plane MHD
turbulence than in neutral geostrophic turbulence (Kim et al. 2001; Naulin et al.

2005).

9.4 Spectral transfer and turbulent dissipation in β-plane MHD

In this section, we examine the dynamics of interactions, spectral transfer and tur-
bulent dissipation (ηh and νh) in β-plane MHD. Such a study necessarily builds
upon existing understanding of two-dimensional MHD and Rossby wave turbu-
lence, both of which have been extensively studied (Pouquet 1978; Horton 1999).
This section should be construed only as an introduction to this large and com-
plex subject, and thus should be viewed as a survey of tachocline-relevant issues
in β-plane MHD. Some selected topics are pursued in depth here, but a complete
discussion is far beyond the scope of this short article. Here, we shall discuss:

(i) spectral transfer of 〈̃A2〉k and the turbulent diffusion of magnetic fields;
(ii) the turbulent transport of momentum and turbulent viscosity;

(iii) interactions of an ambient Rossby wave spectrum with a large-scale shear flow.

Other aspects of the problem are left for future publications. Throughout this sec-
tion, we ignore any possible cross-correlation between fluid and magnetic forcing
(i.e. we take 〈̃f f̃a〉 = 0), so cross helicity may be zeroed ab initio. We emphasize,
though, that this is only a crude approximation and that the relative coherence of f̃

and f̃a is an important element of the physics of tachocline turbulence which should
be considered carefully (Bracco et al. 1998).

Turbulent magnetic dissipation is best addressed by examining the spectral
dynamics of 〈̃A2〉. The variance of the magnetic potential evolves according to

∂

∂t

〈̃A2〉
2

+ 〈∇ψ × ẑ · ∇Ã2〉
2

= −η〈̃B2〉 + 〈B〉〈̃A∂xψ〉 + 〈̃A f̃a〉, (9.17)

or, equivalently, in k space

∂

∂t
〈̃A2〉k + Tk = 2

[
ηTk

(
∂〈A〉
∂y

)2

+ 〈̃f 2
a 〉kτak − η〈̃B2〉k

]
, (9.18)

where the nonlinear transfer term Tk is:

Tk = 〈∇ψ × ẑ · ∇Ã2〉k. (9.19)

Note the terms on the right-hand side of Equation (9.18) are precisely those which
determine the Zeldovich theorem relation. Hereafter we refer to the right-hand
side of Equation (9.18) as Sk, the net source for the time evolution of 〈̃A2〉k. The
Zeldovich theorem, then, is merely a statement that

∑
k Sk = 0, so that there is a

net balance of inflow and outflow of 〈̃A2〉.
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We now calculate Tk via closure theory (Orszag 1970; Yoshizawa et al. 2003).
Before proceeding to grind the crank, some general comments on 〈̃A2〉k transfer
are in order. It is well known that, in two-dimensional MHD, magnetic potential
isocontours:

(i) tend to be ‘chopped up’ by the turbulent flow until reaching small-scale dissipation, or
until Lorentz force back-reaction becomes significant;

(ii) tend to coalesce and aggregate on large scales, on account of the mutual attraction of
like-signed current filaments.

The competition between these two processes determines the net effective magnetic
dissipation. Since ‘chopping up’ tends to win if 〈Ṽ2〉 ≫ 〈̃B2〉 while coalescence
tends to win if 〈̃B2〉 ≫ 〈Ṽ2〉, the net turbulent magnetic dissipation tends to scale as

ηT ∼ (〈Ṽ2〉 − 〈Ṽ2
A〉)τc, (9.20)

where τc is a correlation time. Such a form for ηT has indeed been recovered
from the results of renormalized closure theory (Pouquet 1978). Subsequent use
of the Zeldovich theorem balance then gives the form of the ‘quenched’ magnetic
diffusivity in two-dimensional MHD:

ηT ∼ ηk

1 + RmV2
A0

/〈Ṽ2〉
, (9.21)

where ηk is the familiar kinematic diffusivity ηk ∼ 〈Ṽ2〉τc (Pouquet et al.

1976). In the interesting limit where RmV2
A0

/〈Ṽ2〉 ≫ 1, the corresponding
limit of Equation (9.21) can be obtained directly from the Zeldovich theorem,
with the additional reasonable assumption of approximate equipartition, so that
ηT ∼ η〈Ṽ2〉/〈B〉2.

The main issues to be addressed here are:

(i) just what exactly is τc and how is it determined?
(ii) what are the effects of Rossby wave coupling on spectral transfer of 〈̃A2〉?

Regarding (i), we have previously discussed the physics of τc, which is Alfvénic
propagation along a fluctuating network of stochastic magnetic fields, so 1/τck =
�ωk = kṼA. Note that τc is itself necessarily slowly time-dependent. To assess the
effects of Rossby coupling (i.e. item (ii)), a closure calculation is necessary.

Here, we present an eddy-damped quasi-normal Markovian (EDQNM) closure
calculation of Tk for β-plane MHD. The EDQNM closure develops a set of coupled
spectra equations from the assumption of weakly non-Gaussian mode amplitude
statistics and from physically motivated choices (further details can be found in
Orszag 1970; Pouquet 1978).
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Writing Tk as

Tk =
〈∑

k′
(k · k′ × ẑ)(̃A−kψ̃−k′Ã

(2)

k+k′ + Ã−kÃ−k′ψ̃
(2)

k+k′)

−
∑

p,q
p+q=k

(p · q × ẑ)ψ̃−pÃ−qÂ
(2)
p+q

〉
, (9.22)

we seek to calculate Ã
(2)

k+k′ and ψ̃
(2)

k+k′ such that Tk is independent of fluctuation
phase. The calculation is simplified by taking 〈V·B〉 = 0 and ignoring 〈B〉 relative to
B̃rms, which amounts to neglecting linear Alfvén wave propagation in comparison to
stochastic Alfvénic decorrelation (i.e. since kVA0 < �ωk). Thus, Ã

(2)

k+k′ and ψ̃
(2)

k+k′

are written as:

Ã
(2)

k+k′ =
∫ t

−∞
dt′e−�ωk+k′ (t−t′)(k · k′ × ẑ)ψ̃k′(t′)̃Ak(t′), (9.23)

ψ̃
(2)

k+k′ =
∫ t

−∞
dt′e−(iωk+k′+�ωk+k′ )(t−t′)(k · k′ × ẑ)

(k2 − k′2)

k′′2 Ãk′(t′)̃Ak(t′).

(9.24)

Note that Ã
(2)
p+q is identical to Ã

(2)

k+k′ , up to a re-labelling. The two-time correlators

for ψ̃ and Ã (here written for some generic field F) are taken to have the approximate
structure:

〈F∗
k(t)Fk(t′)〉 = |Fk(t)|2e−(iωk+�ωk)|t−t′|. (9.25)

Here, rapid decay on the (�ωk)−1 timescale accounts for decorrelation of reson-
ant triads due to nonlinear scrambling, while the slower envelope behaviour (i.e.
|Fk(t)|2) accounts for evolution of the spectrum in time. Given all this, it follows
that the renormalized 〈̃A2〉k transfer rate Tk is given by:

Tk =
∑

k′
(k · k′ × ẑ)2θA

k,k′,k+k′ |ψ̃k′(t)|2 |̃Ak(t)|2

+
∑

k′
(k · k′ × ẑ)2θ

ψ

k,k′,k+k′

(
k2 − k′2

k′′2

)
|̃Ak′(t)|2 |̃Ak(t)|2

−
∑

p,q
p+q=k

(p · q × ẑ)2θA
p,q,k′ |ψ̃p(t)|2 |̃Aq(t)|2, (9.26)
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where k′′2 = (k + k′)2 and

θA
k,k′,k+k′ = ℜ

{
i

((ωk + ωk′) + i(�ωk + �ωk′ + �ωk+k′))

}
, (9.27)

θ
ψ

k,k′,k+k′ = ℜ
{

i

((ωk + ωk′ − ωk+k′) + i(�ωk + �ωk′ + �ωk+k′))

}
. (9.28)

Here θA represents the triad coherence time for the first and third terms in the
expression for Tk while θψ represents that for the second. Equations (9.26), (9.27)
and (9.28) then give the full result for the renormalized 〈̃A2〉k transfer rate, Tk.

Several aspects of Equations (9.26)–(9.28) merit discussion at this point. First,
note that Tk has the usual structure of coherent damping terms (i.e. the first two)
competing against incoherent emission (i.e. the third; Kraichnan 1959). The coher-
ent damping terms determine the effective turbulent magnetic dissipation. Thus,
we have the turbulent magnetic diffusivity:

ηT
∼=
∑

k′
k′2[θA

k,k′,k+k′ |ψ̃k′(t)|2 − θ
ψ

k,k′,k+k′ |̃Ak′(t)|2]. (9.29)

Here we have taken |k| ≪ |k′| (i.e. we consider the dissipation of larger scales
than the scale on which the system is forced), so (k2 − k′2)/k′′2 → −1. It is not
surprising to see that ηT for β-plane MHD is quite similar to its counterpart for two-
dimensional MHD, apart from the triad coherence factors θA and θψ , which contain
the wave frequency contributions. Note that there is a slight difference between
the frequency dependencies of θA and θψ . In particular, θψ is considerably more
sensitive to Rossby wave dispersion, in that ωk + ωk′ ≃ 0 is easily satisfied but
triad resonance, as in θψ , is not. A detailed quantitative study of the implication of
θA �= θψ is beyond the scope of this chapter.

Several aspects of Equation (9.29) merit further discussion, as well. First, and
most important, it is easy to see that for �ω > ωk + ωk′ , �ω > ωk + ωk′ − ωk+k′

(where �ω refers to the sum of the three model decorrelation rates in θA and θψ )
Equation (9.29) passes smoothly to results previously obtained for two-dimensional
MHD with β = 0 (Diamond et al. 2005a). This limit corresponds to length scales
ℓ < ℓRM. Thus, existing results from the theory of turbulent diffusion of magnetic
fields in two-dimensional MHD predict that the horizontal turbulent resistivity ηT

is (strongly) quenched, in comparison to kinematic turbulence predictions, i.e.

ηT = ηk

1 + RmV2
A0

/〈Ṽ2〉
. (9.30)

For RmV2
A0

/〈Ṽ2〉 > 1, ηT is well approximated by ηT ≈ η〈̃B2〉/〈B〉2. For

〈Ṽ2〉 ∼ 〈Ṽ2
A〉, these are equivalent to ηT ≈ η〈Ṽ2〉/V2

A0
. The reader should take
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note, however, that while ηh is quenched relative to the standard kinematic estim-

ates, it still greatly exceeds the collisional magnetic diffusivity η, since 〈̃B2〉 ≫ 〈B〉2

etc. Thus, turbulent horizontal diffusion of magnetic fields may still be a significant
mechanism for dissipating magnetic energy in the solar tachocline. We will discuss
this issue further in the concluding section.

Having addressed the question of turbulent resistivity, we now consider the phys-
ics of turbulent viscosity and turbulent momentum transport in β-plane MHD.
Recall that, in the Spiegel–Zahn scenario of tachocline formation, the tachocline
location in the solar core is determined by the balance of burrowing with horizontal
transport (in latitude) of momentum. In β-plane MHD, the mean azimuthal flow
evolves according to

∂

∂t
〈Vx〉 = −∂

∂y

{
〈ṼyṼx〉 − 〈̃ByB̃x〉

4πρ0

}
, (9.31)

where we have ignored molecular viscosity and the momentum source related to
burrowing. Also, here ρ0 is taken as a constant as we consider incompressible two-
dimensional dynamics. Note that in MHD, the net flux transport is determined by the
difference between fluid and magnetic stresses. Thus, in a perfectly Alfvénized state
the total momentum flux vanishes. Of course, the traditionally invoked turbulent
horizontal viscosity νh is based upon a ‘mixing length’ approximation to the fluid
stress 〈ṼyṼx〉, which is constructed by asserting that fluctuations in Ṽy occur via
mixing of 〈Vx〉, i.e.

Ṽy = 〈Vx(y − ℓ)〉 − 〈Vx(y)〉

∼= −ℓ
∂〈Vx〉
∂y

, (9.32)

so

〈ṼyṼx〉 = −(Ṽxℓ)
∂〈Vx〉
∂y

≡ −νh
∂〈Vx〉
∂y

. (9.33)

Here ℓ is the mixing length. Note that the main novel feature in the case of MHD
is the competition between the two stresses. Thus, we focus our attention on this
competition. It is useful to split the integration over scales (implicit in the averages
in Equation (9.31)) into ranges of k< and k>, where the k<-range includes all k such
that |k| < kRM = 2π/ℓRM and the k>-range includes all k such that |k| > kRM.
Thus, the k>-range corresponds to the range of forward cascading of energy in two-
dimensional MHD turbulence for which wave interactions are subdominant, while
the k<-range is the range where nonlinear transfer etc. are controlled by Rossby–

Alfvén wave interactions (see Figure 9.5). Denoting the total momentum flux by
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Ŵv, we thus can write:

∂〈Vx〉
∂t

= − ∂

∂y
Ŵv

= − ∂

∂y

(∑

k<

Ŵvk +
∑

k>

Ŵvk

)
, (9.34)

where

Ŵvk
= −kxky(|ψk|2 − |Ak|2) (9.35)

and the y-dependence of Ŵv is, by definition, ‘slow’, as it corresponds to variation
on scales larger than those typical of the turbulence.

We now discuss the contributions to the momentum flux coming from the k> and
k<-ranges. The k>-range exhibits two-dimensional MHD-like turbulence dynam-
ics. One of the most robust features of two-dimensional MHD is the trend toward
approximate equipartition between hydrodynamic and magnetic energy on inertial
range scales, i.e. |Ṽk|2 ≃ |B̃k|2 (Pouquet 1978). This is yet another manifestation of
‘Alfvénization’, a ubiquitous feature of MHD turbulence. Apart from a small ‘resid-
ual energy’, significant departure from equipartition is due only to those effects
which force an imbalance between fluid and field, such as deviation of the mag-
netic Prandtl number from unity (i.e. Pm �= 1), differences between 〈̃f 2〉k, 〈̃f 2

a 〉k,
etc. In the tachocline Pm ≤ 1 but not drastically so, and 〈̃f 2〉k, 〈̃f 2

a 〉k must have finite
correlation, as both are due to convective overshoot and its consequent entrainment
of convection zone magnetic fields. Thus, it seems eminently reasonable to expect
significant competition and cancellation between fluid and magnetic stresses in the
k>-range, resulting in a substantial shortfall in turbulent momentum transport, rel-
ative to expectations. This tendency toward cancellation is a trivial consequence
of the fluid and magnetic stresses tending toward equality and entering Ŵv with
opposite sign. Thus, we can write Ŵv> , the momentum flux due to fluctuations in
the k>-range, as

Ŵv> =
∑

k>

−kxkyrk|ψk|2 ≃ r〈ṼyṼx〉, (9.36)

where rk ≪ 1, and is the ‘residual’ factor, dependent upon the quantities causing
imbalances, so that,

rk = rk(Pm, 〈̃f 2〉, 〈̃f 2
a 〉, . . . ) ≪ 1, (9.37)

means that the mean flow is effectively ‘laminarized’, and the turbulent viscosity
(due to |k| > kRM) is effectively ‘quenched’ (note that the sign of rk may vary
with k). The reduction of momentum transport due to Alfvénization of turbulence
is well known in the context of the theory of ‘ω-quenching’ (Craddock & Diamond
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1991; Küker et al. 1993; Kim & Dubrulle 2001; Kim et al. 2001) and in relation
to the reduction of the rate of zonal flow generation as drift-Alfvén turbulence
becomes more Alfvénic in character (Naulin et al. 2005). The upshot of this trend
is that the contribution of the k>-range to νh will likely be feeble in the absence of
some mechanism which feeds the imbalance between fluid and magnetic energies,
such as the magneto-rotational instability.

On scales |k| < kRM (i.e. in the k<-range), the fluctuation characteristics are pre-
dominantly those of Rossby waves, with quite modest magnetic perturbations. The
wave turbulence nature of the k<-range fluctuations precludes direct application of
the ‘conventional wisdom’ of strong hydrodynamic turbulence in two dimensions.
Here, we explore the interaction of an ambient Rossby wave spectrum with a weak,
large scale ‘test’ shear spectrum as a means to ascertain the nature of the effective
viscosity of a Rossby wave gas. Specifically, should the waves gain energy from the
shear, the effective viscosity is positive, while if the waves lose energy to the shear,
the effective viscosity is negative. Therefore, we proceed by examining the modu-

lational stability of an ambient spectrum or gas of Rossby waves to a large-scale
shear-flow perturbation (Diamond et al. 2005b).

Noting that large scale magnetic fluctuations are weak, that the Rossby wave
energy density Ek = k2|ψk|2, and considering a weak, large scale test flow δVx, we
have, from Equation (9.31),

∂

∂t
δVx = ∂

∂y

∑

k<

kxky

k2
Ẽk, (9.38)

where Ẽk indicates the modulation in the wave energy induced by δVx. Since the
Rossby wave population density N is simply the enstrophy density (Dubrulle &
Nazarenko 1997), we can re-write Equation (9.38) as

∂

∂t
δVx = ∂

∂y

∑

k<

kxky

k4
Ñk, (9.39)

where

∂Ñ

∂t
+ vg · ∇Ñ + δωkÑ = ∂(kxδVx)

∂y

∂〈N〉
∂ky

(9.40)

is the linearized wave kinetic equation for Ñ . The wave kinetic equation simply
states that wave population density is an adiabatic invariant for slowly varying, large
scale shear flows and is conserved along rays, up to scrambling. The population
perturbation varies adiabatically with the large-scale flow perturbation. Here δωk

accounts for the finite lifetime of a wave packet induced by nonlinear scrambling, vg

is the packet group velocity, and 〈N〉 is the mean Rossby wave enstrophy spectrum.
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�d�f�RM

Forward 
energy cascade  
of two-dimensional MHD

Backscatter 
to large scale

Rossby wave 
turbulence

t = t1

t = t3

t2

Figure 9.6. A cartoon showing the development in time of the large-scale portion
of the energy spectrum for β-plane MHD turbulence. Note that since the Rossby
wave scales satisfy ℓR < ℓRM < ℓf and since the MHD energy cascade is forward
from ℓf , the spectral slope is non-negative in the Rossby wave dominated range of
scales. Note that scale decreases towards the right.

Note that Equation (9.40) determines the modulation in N induced by the weak
‘test’ shear flow. Writing

δVx =
∑

q,�

Ṽq,�ei(q·x−�t), (9.41)

a straightforward calculation gives

ℑ{�q} = −q2
y

∑

k

(
k2

x ky

k4

)(
δωk

(� − q.vgr)2 + δω2
k

)
∂〈N〉
∂ky

, (9.42)

as the rate of growth of the test shear. Thus, for ∂〈N〉/∂ky < 0 the shear is amplified,
hence indicating a negative viscosity. Note this is the case for the forward enstrophy
cascade range, for which ∂〈N〉/∂k < 0. However, if ∂〈N〉/∂ky > 0, the shear gives

energy to the turbulence (i.e. the shear is damped), so the effective viscosity is
positive. In the likely event that the forcing spectrum 〈̃f 2〉k peaks on small scales,
i.e. on ℓ < ℓRM, the k<-range is energized by the backscatter of energy toward large
scale Rossby waves, as shown in Figure 9.6. The enstrophy is thus necessarily
increasing with k in the k<-range, so ∂〈N〉/∂ky > 0 is possible there and the
effective viscosity would therefore be positive. The value of νh departs considerably
from simplistic expectations and is smaller than standard estimates by the factor
(δω/q · vgr)

2 < 1.
At this point it seems fair to say that the nature of the effective turbulent viscosity

of β-plane MHD turbulence is a subtle question, indeed! Having divided the set
of scales available to excitation into two classes, the k<-range and the k>-range,
we have seen that the (directly excited) k>-range contributes little to the turbulent
viscosity, on account of the process of Alfvénization and the consequent near-
cancellation of fluid and magnetic stresses. Rossby wave turbulence in the k<-range
generates a positive viscosity, but one which is small in (δω/q · vgr)

2. Thus, the
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effective turbulent viscosity is substantially reduced or quenched, in comparison to
expectations. It is also amusing to note that our predictions concerning νh disagree
with those of both Spiegel & Zahn and Gough & McIntyre! Recall that Spiegel
& Zahn assume a positive viscosity, linked to tachocline excitation by plumes and
to various large scale flow profile-driven instabilities, which were subsequently
investigated in some detail (Chaboyer & Zahn 1992; Zahn 1992). Building upon the
conventional intuition for two-dimensional quasi-geostrophic turbulence, Gough &
McIntyre argue that hydrodynamic turbulence will produce a negative viscosity, and
will drive potential vorticity homogenization (Rhines & Young 1982). Gough &
McIntyre then use this argument to further claim that hydrodynamic turbulence
cannot sustain a stationary tachocline against spin-down driven ‘burrowing’, thus
bolstering their argument that a magnetic field must exist in the radiative core of the
Sun in order to restrict tachocline penetration. We argue, however, that most scales
(ℓ � ℓRM) contribute essentially nothing to turbulent viscosity, since Alfvénization
of the β-plane MHD turbulence results in near-cancellation of fluid and magnetic
stresses, as in the case of ω-quenching. We do suggest the possibility that energy
exchange between the large scale Rossby wave spectrum and the mean flow may
persist. This interaction may be (loosely) thought of as a ‘viscosity’. However, in
contrast to the standard simple mixing models, such wave-flow interaction is quite
sensitive to the structure of the Rossby wave spectrum at large (ℓ > ℓRM) scales.
The wave spectrum structure in this range emerges from stochastic backscatter from
smaller scales.

9.5 Discussion and conclusions

This chapter has discussed the physics of turbulent dissipation in the solar tacho-
cline. We have identified β-plane MHD as the ‘minimal model’ of tachocline
turbulence, and have investigated the mechanisms of energy transfer, turbulent
transport and dissipation of mechanical and magnetic energy according to this
model. The principal results are as follows.

(i) A key scale, ℓRM, that demarks the boundary between two-dimensional MHD dynamics
and Rossby wave dynamics was identified. This scale is somewhat analogous to the
Rhines scale, familiar from hydrodynamic geostrophic turbulence. However, for ℓ <

ℓRM, a forward cascade of energy occurs in β-plane MHD. Moreover, ℓRM depends
upon magnetic Reynolds number Rm.

(ii) Turbulence on scales ℓ < ℓRM tends to ‘Alfvénize’, and thus will not substantially mix
and transport momentum. These scales do not contribute to νh. This is a consequence
of close competition between fluid and magnetic stresses. Some momentum transport
due to the nonlinear interaction of large scale Rossby waves may occur.
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(iii) Turbulent resistivity is quenched in β-plane MHD, as in two-dimensional MHD. How-
ever, even the ‘quenched’ ηh greatly exceeds the collisional resistivity. Thus, turbulent
horizontal diffusive dissipation (ηh) of magnetic fields in the tachocline may pose a
significant limitation on tachocline penetration.

The implications of these results for tachocline formation models require some
discussion. Indeed, the results and ideas presented here may not be a welcome
addition to the theory of the solar tachocline! The ‘turbulent horizontal viscosity’
invoked in the Spiegel–Zahn scenario is problematic. ‘Generic’ turbulence on scales
ℓ < ℓRM will not significantly mix or transport momentum to a large extent. Rossby
waves on scales ℓ > ℓRM may drive some transport, but this process is very sensitive
to the structure of the Rossby wave spectrum and depends upon the large-scale, low-
energy tail of the spectrum, about which very little is known. Alternatively, some
flow profile-driven instability may produce a νh, but despite extensive study, the
specific mechanism involved has yet to be identified. Also, proponents of this type
of viscosity mechanism must explain why such an instability will not simply hover
near marginality, producing a state of ‘self-organized criticality’ rather than steady
viscous dissipation (Diamond & Hahm 1995). Work on simple systems has shown
that transport and relaxation in a continuum SOC are not well modelled by simple
diffusion (Hwa & Kardar 1992). Thus, considerable clarification of the dynam-
ics underlying the ‘horizontal viscosity’ invoked in the Spiegel–Zahn scenario is
necessary in order to solidify the foundations of that model.

In the Gough–McIntyre scenario, the principal effect of turbulence is to introduce
turbulent horizontal diffusion of magnetic fields, so that the balance of shearing of
poloidal field B0 with dissipation of toroidal field Bψ now becomes

−B0 sin θ
∂�̄

∂θ
=
(
η∂2

r + ηT∂
2
h

)
Bψ , (9.43)

where ∂h refers to a horizontal derivative. Here ηT/η ≈ 〈̃B2〉/〈B〉2 ∼ Rm, so even
the ‘quenched’ turbulent resistivity greatly exceeds the collisional value. The ‘bot-
tom line’ here is that for ηT/η ∼ Rm > r2

0/�2
T, where r0 is the tachocline radius

and �T its thickness, turbulent horizontal diffusion of magnetic fields will dissipate

magnetic energy faster than radial collisional resistive diffusion does, as assumed

in the Gough–McIntyre scenario. Since r0 ∼ 0.7R⊙ and �T ∼ 0.03R⊙, in prac-
tice this means that for Rm � 500 (probably satisfied in the solar tachocline!)
horizontal turbulent diffusion is the dissipation process that limits tachocline bur-
rowing. Here Rm is, of course, the Reynolds number for the horizontal motion,
i.e. Rm = vhl/η. Hence, the scaling of the tachocline thickness and its dependence
on B0 (predicted by Gough & McIntyre) should be reconsidered in the light of this
observation.
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This chapter poses more questions than it answers. Indeed, it should be viewed
only as an introduction to the problem of β-plane MHD turbulence in the tachocline.
Several future investigations are strongly suggested. These include, but are not
limited to, the following.

(i) Completion of a rigorous analysis in the vein begun here, and accompanied by related
numerical simulations which test the theory.

(ii) Examining the effects of 〈̃f f̃a〉 �= 0 correlations and finite cross helicity on the
turbulent dissipation processes (Bracco et al. 1998).

(iii) Study of a two-layer β-plane MHD model, in which only the upper layer is forced
by convective overshoot.

(iv) Extension of this study to geostrophic MHD turbulence on a sphere and in a spherical
shell. In this regard, we note that the existing large scale numerical calculations of
tachocline dynamics are purely hydrodynamic (Miesch 2001, 2003 and Chapter 5 of
this book).

(v) Consideration of large scale flow structure and its coupling to tachocline turbulence
dynamics (Gilman & Fox 1997).

(vi) Study of the types and physics of coherent magnetic structures formed in tachocline
turbulence. Such structures may have the form of magnetic vortices (Kinney et al.

1995; Gruzinov et al. 2002) or zonal magnetic fields (Gruzinov et al. 2002). It has been
suggested that magnetic structures formed in the tachocline may leave an ‘imprint’
on the magnetic fields ultimately observed in the photosphere (E. A. Spiegel, private
communication).

(vii) Consideration of the effects of tachocline turbulence and flow structure on the solar
differential rotation (Itoh et al. 2005).

(viii) Study of the dissipation of magnetic fields by vertical mixing in the stably stratified
tachocline. Internal wave interaction is a possible agent of such mixing.

Of course, more consideration should also be given to the physics of vertical mixing
in the strong, stable stratification environment of the tachocline. In particular, the
effects of wave interactions on vertical transport of magnetic fields and on vertical
momentum transport (including possible ‘negative viscosity effects’) merit further
investigation. We hope that such studies will help elucidate the structure of the solar
tachocline.
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Instabilities
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Global MHD instabilities of the tachocline

Peter A. Gilman & Paul S. Cally

The combination of differential rotation and toroidal fields believed to exist in the
solar tachocline should be unstable to global MHD modes, typically dominated by
longitudinal wavenumber m = 1 modes for toroidal fields of peak value 30 kG and
higher, and a broader range of low m values for weaker fields. For toroidal field
bands, the high field instability takes the form of a ‘tipping’ of the band away from
coincidence with circles of latitude. For a wide range of toroidal fields and differ-
ential rotations, and in both the overshoot and radiative parts of the tachocline, the
unstable modes grow in a time short compared to a solar cycle, and are therefore of
interest for the solar dynamo problem, as well as for creation of longitude-dependent
magnetic patterns seen at the solar surface. The latitudinal momentum transport by
Reynolds and Maxwell stresses associated with unstable modes provides a way to
mix angular momentum in latitude, and help limit the thickness of the tachocline.

10.1 Introduction

The study of global MHD instabilities of differential rotation and toroidal fields that
might be present in the solar tachocline began with Gilman & Fox (1997). Their
original motivation was to see whether the magnetic field could destabilize the
differential rotation of the tachocline, estimated to be stable to hydrodynamical
disturbances by itself. Spiegel & Zahn (1992) had argued that anisotropic, quasi-
two-dimensional turbulence was needed in the tachocline to transport angular
momentum from low latitudes to high, and thereby prevent the spread of the tacho-
cline into the deep interior of the Sun during its lifetime. They speculated that this
anisotropic turbulence could come from a hydrodynamic instability of the latitudinal
differential rotation there. However, it is well established that the helioseismically
determined latitudinal rotation gradient is in fact hydrodynamically stable, at least
to global two-dimensional disturbances (Charbonneau et al. 1999b), or at most
very weakly unstable (Garaud 2001), in the sense of saturating nonlinearly at very
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low levels. Gilman & Fox’s basic result is that latitudinal differential rotation is
virtually always unstable to two-dimensional global MHD disturbances, even for
very weak toroidal fields. The unstable modes transmit angular momentum to high
latitudes from low, but mainly via the Maxwell stress rather than the Reynolds
stress. We explore and summarize the details of this instability in the sections that
follow.

A global MHD instability of the tachocline is of much interest for the Sun beyond
explaining the existence and thickness of the solar tachocline. The Sun has a ‘solar
cycle’, with complex magnetic field patterns that show field reversals about every
11 years. These patterns are almost certainly maintained by dynamo action, and
there are strong reasons for assuming that as part of this dynamo the solar tachocline
contains strong (∼100 kG) toroidal magnetic fields. Thus a global MHD instability
in the tachocline should contribute to the solar dynamo. We discuss properties of
the instability that could be important for the solar dynamo in later sections.

Beyond the differential rotation of the tachocline (discussed in detail in Chapter 3
by Christensen-Dalsgaard & Thompson) its most important property for consider-
ing global instabilities is its stratification and, in particular, whether the stratification
is subadiabatic, and if so, by how much. Helioseismology tells us that the bottom of
the convection zone, defined as the place where the temperature gradient changes
from being nearly adiabatic to substantially subadiabatic in radiative equilibrium,
occurs at a radius r = 0.713R⊙ (Christensen-Dalsgaard et al. 1991). Charbonneau
et al. (1999a) show that the tachocline straddles this radius, with roughly one third
above it and two-thirds below it. More refined helioseismic measurements may
change this result, but it indicates that both the overshoot layer at the bottom of
the convection zone, and the much more subadiabatic radiative core, are contained
within the tachocline.

Helioseismology cannot tell us, but within the overshoot layer we expect the strat-
ification to be slightly subadiabatic, of order 10−4 to 10−6 of the adiabatic gradient
(Rempel 2004, and references therein), while within the radiative layer below, the
subadiabaticity rapidly approaches 10−1 with increasing depth. This subadiabatic
stratification favours motions that are nearly horizontal in spherical shells, since
vertical motions, particularly of global scale, have to work against the subadiabatic
gradient. This property justifies the study of two-dimensional global MHD instabil-
ities for the tachocline (see also the discussion of the Miles–Howard theorem in
Section 10.2), though we will see in Section 10.4 that even small departures from
two dimensions can be quite important in numerous ways. In our description below,
we first focus on the strictly two-dimensional case, into which the subadiabatic strat-
ification does not explicitly enter, and then consider its simplest generalization to
three dimensions, namely an MHD generalization (Gilman 2000a) of the so-called
‘shallow water’ equations, widely used in geophysical fluid dynamics.
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In order to do a rigorous calculation of an instability, say as an eigenvalue prob-
lem, one must start from a steady equilibrium of forces that is to be perturbed. In the
solar tachocline, such equilibria should be possible with both toroidal fields and dif-
ferential rotation present. The radial force balance should be magnetohydrostatic.
In latitude in such a spherical shell, there is a magnetic curvature stress from the
toroidal field that, if not opposed, will pull the field and attached material toward the
poles. For toroidal fields of broad latitudinal profile, the curvature stress is most eas-
ily balanced by an equatorward hydrostatic pressure gradient. For narrow toroidal
bands, this still works, but may be supplemented or replaced by an equatorward
directed Coriolis force from a prograde fluid jet inside the toroidal ring (Rempel
et al. 2000; Dikpati et al. 2003). In our analysis below, we consider both kinds of
equilibria.

The instability we study here comes from a general class of ideal fluid shear
flow instabilities for which so-called singular points of the system are important
for determining properties of the instability and the structure of unstable modes. In
the hydrodynamic system, the singular point occurs where the longitudinal phase
velocity of an unstable mode equals the local rotation rate of the system. There is
a large literature on this type of instability (see for example the discussion of the
inviscid Orr–Sommerfeld equation in Drazin & Reid 1981, chapter 4). In the two-
dimensional MHD case, this point is no longer singular, but it is replaced by other
points where the difference between the mode phase speed and the local rotation
rate equals the local Alfvén speed of the toroidal field. There is a much smaller
literature for this case. This singular point remains the critical one in the MHD
shallow water system, but the hydrodynamic singular point reappears, as well as a
third one, involving the gravity wave speed as well as the phase velocity, rotation
and Alfvén speeds.

Another point to keep in mind for this class of instability is that there is a signi-
ficant difference between the unstable modes allowed in, say, an infinite channel,
a very common configuration studied in both the HD and MHD cases, and in a
spherical shell such as the solar tachocline. The difference is that in the channel
all disturbance wavelengths along the channel are, in principle, excitable, while in
the spherical shell the wavelengths are discrete, defined by the integer longitudinal
wavenumber m. In the two-dimensional case, the lowest longitudinal wavenumber
allowed is m = 1, so shear flow configurations that might be unstable to long-wave
modes in a channel may be stable to discrete modes in the spherical shell.

The Alfvénic singular points in the shell defined above separate latitudinal
domains where energy conversions, from the background state to the perturbations,
are occurring, from other domains where the perturbations have amplitude but are
energetically neutral, that is, no energy conversions are taking place. This means
that in all specific cases, the energy conversions in part are maintaining neutral
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Figure 10.1. Example of profile of Reynolds (RS) and Maxwell (MS) stresses from
a typical global MHD unstable mode, showing the transport of angular momentum
from the equatorward side to the poleward side of a toroidal band of full width at
half maximum 16◦ in latitude, which extracts kinetic energy from the differential
rotation (taken from Dikpati & Gilman 1999). There is also energy extracted from
the toroidal field itself by the ‘mixed’ stress associated with the same disturbances.
Vertical marks on the horizontal axis show the location of the two singular points
in the domain, illustrating how the stresses are organized about these points. Both
stresses are essentially zero outside the latitude band defined by these points,
even though there is substantial flow amplitude there (not shown). These flows
are therefore energetically inactive (no stresses or transports), while the flow and
magnetic perturbations between the singular points are energetically active.

wavelike structures by latitudinal work through pressure forces. For broad toroidal
profiles, examples are given in Gilman & Fox (1999a,b). For narrow toroidal bands,
the picture is simpler, because the two Alfvénic singular points in each hemisphere
are always found on the shoulders of the toroidal profile. All of the energy con-
versions to drive the instability are going on between these two points, or inside
the toroidal band. Everything outside is energetically neutral, and of course the
perturbation magnetic fields are confined to the neighbourhood of the band, since
there is a virtually field free domain away from the band.

An example of the organization of the energy conversion processes according to
the singular points is given in Figure 10.1, which depicts the Reynolds and Maxwell
stresses for an unstable disturbance of a toroidal band of 16◦ latitudinal half width,
placed at 45◦ latitude. The vertical marks on the horizontal axis at about 39◦ and
54◦ are the location of the two singular points for this case. Clearly both Maxwell
and Reynolds stress profiles change abruptly in their neighbourhood, and together
lead to a smooth profile of transport of angular momentum from low latitudes to
high across the toroidal band. Outside these latitudes both stresses are essentially
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Angular momentum
transport by

Maxwell stress

Figure 10.2. Schematic of how a longitudinally periodic disturbance in the toroidal
magnetic field, interacting with the ambient differential rotation, creates a Maxwell
stress by tilting the perturbation field lines, which extracts kinetic energy from the
differential rotation and transports angular momentum from low latitudes to high
(from Gilman 2005).

zero, in the domain where the disturbances are energetically neutral. Dikpati &
Gilman (1999) give numerous other examples, including the structure of the mixed
stress, determined also by the singular points, that extracts magnetic energy from
the toroidal band itself.

Without even doing a formal perturbation analysis, we can demonstrate heurist-
ically that combinations of differential rotation and toroidal field should be unstable
when perturbed by a longitudinally periodic disturbance. Figure 10.2 shows schem-
atically how this works. If the toroidal band shown in the left-hand schematic is
perturbed, as in the centre schematic, the differential rotation will tilt the field lines
as shown in the right-hand schematic. This tilt immediately implies a Maxwell
stress that transports angular momentum down the rotation gradient, in this case
toward higher latitudes. This extracts kinetic energy out of the differential rotation
to drive the instability. By contrast, a velocity perturbation shaped like the wavy
arrows in the right-hand schematic, which represents the hydrodynamic case, would
yield angular momentum transport up the gradient, which would suck energy out
of the disturbance and render it stable. This picture is qualitatively correct so long
as the toroidal field is not so strong as to resist being tilted and deformed.

Before going into the formal instability analysis, it is helpful to consider qualit-
atively the type of disturbances to the toroidal field, particularly toroidal bands, we
can expect. Figure 10.3 shows three different types of disturbance of a toroidal band,
for longitudinal wave numbers m = 0, 1, and 2. The m = 0 mode is impossible to
realize in two dimensions, because there is no place for the mass on the poleward
side to go. It can be realized in the MHD shallow water case, but generally only
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m = 0

This mode is excluded in 2D
Toroidal ring tips but remains same circumference
Fluid in ring keeps same speed but flow tips

Toroidal ring deforms creating Maxwell Stress
Fluid flow inside ring deforms but does not spin up

m = 1 m = 2

Figure 10.3. Schematic of displacement and deformation of a toroidal ring by
periodic disturbances of differing longitudinal wavenumber m. Left-hand panel:
m = 0 modes do not exist in the two-dimensional (2D) case, but do in shallow water
and three-dimensional (3D) cases; ring can be displaced and shrunk or expanded.
Centre: for m = 1 modes, which are most common for strong magnetic field,
the ring tips. Right: for m = 2 (and higher) modes are deformed but not tipped.
(Adapted from Dikpati et al. 2004a.)

for toroidal fields orders of magnitude larger than for m > 0 modes, and so is of
relatively little interest.

We will find that the m = 1 mode is the one most commonly unstable, and the
only one unstable for high toroidal fields (cf. Tayler 1973). As seen in Figure 10.2,
it represents a ‘tipping’ of the toroidal field, with no deformation (or stretching or
shrinking, as it turns out). Modes with m = 2 or higher all represent deformations
of the toroidal ring about its original latitude, with more lobes for higher m. These
modes are generally unstable only for small and moderate toroidal field. When the
field is stronger, it resists such deformations, and therefore resists being unstable.
The m = 1 tipping mode is not deforming, so strong field is no barrier to becoming
unstable by tipping.

Differential rotation and toroidal fields present in the equilibrium state provide
two reservoirs of energy to drive the instability; these will produce two forms of
perturbation energy – kinetic and magnetic. Therefore we can expect fairly intricate
flows of energy when the system is unstable. As usual, the unstable modes alter the
differential rotation and toroidal fields to draw energy from them, thereby eventually
bounding their own growth. The connections among the various energy reservoirs
of this MHD system are illustrated schematically in Figure 10.4 below.

10.2 Classical shear and magneto-shear instabilities

Before embarking upon a discussion of possible shear instabilities in the solar tacho-
cline, we briefly review the now classical literature on shear and magneto-shear
instabilities, beginning with the simplest case of incompressible hydrodynamic
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Figure 10.4. Schematic energy diagram for all the possible energy flows from
growing unstable MHD modes. K represents kinetic energy and M magnetic.
Energy flow directions shown are commonly found, but reversed flows are possible
in some cases, so long as at least one is from a reference state reservoir. Overbars
denote unperturbed state energies, primes perturbation energies; dk and dm are
respectively kinetic and magnetic drag (see Section 10.3.4). Square boxes on the
left denote processes that restore energy to the reference state. (From Dikpati et al.
2004a.)

shear flow, before adding magnetic fields. Ideal (dissipationless) systems are
assumed throughout.

Two notable general results on inviscid hydrodynamic shear instabilities for flows
of the form u(z)x̂ are (i) the Miles–Howard theorem (Miles 1961; Howard 1961):
a necessary condition for instability is that the Richardson number Ri = N2/u′2 is

somewhere less than 1
4 , where N is the Brunt–Väisälä frequency, and furthermore,

the growth rate ωi of any instability is limited by ω2
i � supz(

1
4 u′2 − N2); and

(ii) Howard’s semicircle theorem (Howard 1961): the complex phase speeds ω/k

associated with instability in a parallel shear flow with flow speed range �u =
supz u − infz u lie in the semicircle of radius 1

2�u centred on ū = 1
2 (supz u+

infz u), i.e. |ω/k − ū|2 < 1
4(�u)2. These are discussed at length by Drazin & Reid

(1981). In the radiative part of the tachocline, the Brunt–Väisälä frequency is easily
large enough for the Miles–Howard theorem to guarantee stability of the radial shear
profile, at least in the absence of magnetic field. The Miles–Howard and semicircle
theorems have been generalized to compressible shear flows by Chimonas (1970)
and Eckart (1963), respectively.

The Miles–Howard theorem depends on shear profile, and supplies both a neces-
sary instability criterion and a growth rate bound. The hydrodynamic semicircle
theorem on the other hand relates to the total shear �u, and gives information
only on unstable eigenvalues. Various attempts have been made to generalize
each to shear flows with velocity-aligned magnetic field added (e.g. Adam 1980),
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though most have not been very practical. One easily applicable sufficient cri-
terion for stability is (Cally 2000): an incompressible parallel shear flow with

aligned magnetic field is stable if there exists a Galilean frame in which the flow

is nowhere super-Alfvénic.1 Hughes & Tobias (2001) extend this further to yield
the very satisfying generalization of Howard’s semicircle theorem to MHD flow:
unstable phase speeds lie in the semicircle defined by |ω/k−ū|2 < 1

4(�u)2−infz a2,
where a(z) is the Alfvén speed. The Hughes–Tobias theorem is easily shown to sub-
sume Cally’s result. On the basis of these results, Cally (2000) argues that a toroidal
magnetic field of several kilogauss in the solar tachocline is sufficient to stabilize the
radial shear against local shear instabilities, even without the stabilizing influence
of stratification.

However, the topic of this chapter is global instabilities, not local. By this we
mean instabilities at low longitudinal wavenumber m that are dependent on the
spherical geometry. As discussed in Section 10.1, the m = 1 ‘tipping mode’ plays
a particularly important role. Tayler (1973) found that m = 1 instabilities in non-
rotating stars with toroidal magnetic field may be dominant, and are preferentially
located near the axis of symmetry. This is apparently equivalent to the ‘polar kink’
instability of Cally (2003) (see Section 10.4.2), which is stabilized by rotation
speeds in excess of the Alfvén speed. In any case, it is certainly not driven by
rotation.

On the other hand, Acheson (1978) notes that the m = 1 instability is also most
readily excited in rapidly rotating stars with toroidal magnetic field in the regime
a2 ≪ �2̟ 2 ≪ c2 � g̟ , where � is angular velocity and ̟ = r sin θ is the
cylindrical radius. In the convection zone, this occurs if −̟ 3 ∂�2/∂̟ > a2. In
the core though, where the stratification is strongly subadiabatic, the instability
is associated with almost horizontal motions, and sets in (again most strongly
at m = 1) if −∂�2/∂θ > 2a2̟−2 csc 2θ . However, with anticipated field
strengths of up to 105 G, it follows that a � �̟ in the solar tachocline,
and so this analysis, though suggestive, is not strictly relevant to strong-field
latitudes.

The most famous magneto-rotational instability in astrophysics is the MRI of
Balbus & Hawley (1991) (see also Ogilvie & Pringle 1996 and the discussion by
Ogilvie in Chapter 12 of this book; Kitchatinov & Rüdiger 1997) – first applied to
weakly magnetized accretion discs. The MRI is local in nature, and depends on an
interplay between centrifugal force and the magnetic tension of poloidal magnetic
field lines which thread the disc. It is unrelated to any stellar instabilities involving
toroidal field.

1 This also applies to compressible flow with gravity neglected, but with the Alfvén speed replaced by the cusp

speed cT = ac/
√

a2 + c2.
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10.3 Two-dimensional shell models

10.3.1 Basic equations: nonlinear and linear

The nonlinear equations for incompressible two-dimensional magneto-shell oscil-
lations are most conveniently written in terms of the streamfunction ψ and magnetic
streamfunction χ , from which the fluid velocity v = v êθ +w êφ and vector Alfvén
velocity a = B/

√
µρ = aθ êθ + aφ êφ may be derived (spherical coordinates

(r, θ , φ) are used here, where θ is colatitude and φ is longitude):

(−w, v) = ∇ψ , (−aφ , aθ ) = ∇χ . (10.1)

In terms of the radial vorticity � = −∇2ψ and the scaled electric current density
J = −∇2χ , the evolution equations may be written in a concise form derived in
Cally (2001):

D�

Dt
= a ·∇J + ηk

(
∇2� + 2

r2
�

)
, (10.2)

Dχ

Dt
= ηm∇2χ , (10.3)

where kinetic and magnetic diffusivities ηk and ηm have been retained. This
system exactly conserves angular momentum. In the absence of the kinetic and
magnetic diffusivities, it also conserves total energy 1

2

∫ ∫
S

(
|∇ψ |2 + |∇χ |2

)
dS,

cross helicity
∫ ∫

S
�χ dS =

∫ ∫
S

v·a dS, and mean square magnetic potential
1
2

∫ ∫
S
χ2 dS, where the integrals are over the whole spherical surface S (Cally

2001).
The most convenient way to derive the equations governing linear instabilities

in the two-dimensional shell is to directly linearize Equations (10.2) and (10.3).
Setting ψ(µ, φ, t) = ψ0(µ)+ψ1(µ, φ, t) and χ(µ, φ, t) = χ0(µ)+χ1(µ, φ, t), the
equations may be linearized in ψ1 and χ1. If furthermore, a φ and t dependence of
the form exp[im(φ − ct)] is assumed, where c = cr + ici is the (generally complex)
longitudinal phase speed and m is an integer, then it is easily found that

(ω0 − c)Lψ1 − ψ1
d2

dµ2
[(1 − µ2)ω0] − α0Lχ1 + χ1

d2

dµ2
[(1 − µ2)α0] = 0,

(10.4)

and

(ω0 − c)χ1 = α0ψ1. (10.5)

Here

L = d

dµ

[
(1 − µ2)

d

dµ

]
− m2

1 − µ2
(10.6)
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is the Legendre operator, ω0 = dψ0/dµ is the rotational angular frequency, and
α0 = dχ0/dµ is the analogous Alfvén frequency. Since ψ1 and χ1 must vanish
at the poles, Equations (10.4) and (10.5) may be solved numerically for specific
rotational and Alfvén profiles to obtain eigenvalues c and eigenfunctions ψ1 and
χ1. This has been done in several papers, starting with Gilman & Fox (1997).

When the underlying rotational and magnetic profiles display the expected
symmetry about the equator, namely v symmetric (i.e. ψ0 antisymmetric) and a

antisymmetric (χ0 symmetric), the eigenfunctions may be either symmetric (ψ1

even in µ, χ1 odd) or antisymmetric (ψ1 odd, χ1 even). Depending on the specific
model, either one or the other may dominate as regards linear growth rate. This car-
ries over to the nonlinear regime only partially though. Equations (10.2) and (10.3)
clearly maintain antisymmetric structure if it is imposed as an initial condition, but
a symmetric perturbation ψ1 breaks the antisymmetry of ψ , and conversely for χ .
Consequently, an initially antisymmetric perturbation will remain forever antisym-
metric, but a symmetric perturbation ψ1 to the antisymmetric ψ0 (antisymmetric
χ1, symmetric χ0) will see both the symmetric and antisymmetric parts evolve, to
first and second order in perturbations respectively.

The schematic diagram Figure 10.4 shows how kinetic and magnetic mean
energies K̄ and M̄, which are supplied from the convection zone and dynamo
respectively, in turn supply energy to the kinetic and magnetic perturbations K ′

and M ′ through various stresses, and then possibly back to their original sources
through drag (see Section 10.3.4). Details will be discussed in following sections.

10.3.2 Ideal fluid linear MHD instabilities

Based on Equations (10.4) and (10.5), Gilman & Fox (1997) deduced several gen-
eral properties of unstable modes for the two-dimensional MHD case. Perhaps the
most important of these is that the eigenvalue of unstable modes satisfies the semi-
circle theorem, originally proved for HD channel flow by Howard (1961). This
theorem puts limits on both the growth rates and longitudinal phase velocities of
unstable modes. Most remarkably, these limits are independent of the toroidal field
strength or profile. Unstable modes must have phase velocities essentially between
the minimum and maximum rotation rates of the system, and the growth rates are
also bounded by the amount of differential rotation present.

We interpret this result as saying that the unstable modes have no properties
resembling an Alfvén wave. Such waves are present in the system, but they are
neutral waves with much different phase velocities than the unstable modes. It
should follow that in the limit of vanishing differential rotation, there should be
no instability, no matter what the toroidal field amplitude or profile is, and that is
indeed what is found. Having a phase velocity between the minimum and maximum
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rotation of the system ensures that the magnetic patterns can be sheared as shown
in Figure 10.1, and thereby extract energy from the differential rotation for the
instability. The much faster Alfvén waves will not be sheared in this way, because
the displacement of fluid particles and associated field lines oscillates so fast that
little shearing can occur.

A second general result found by Gilman & Fox (1997) is that the necessary
condition for instability, namely that the latitude gradient of total vorticity of the
unperturbed state must change sign in the domain, no longer applies as soon as a
magnetic field is added. The reason is simply that with any magnetic field present,
vorticity is no longer conserved in the system. This result suggests the possibility of
instability occurring even for weak magnetic fields, and that is what has been found.

To focus on MHD instabilities of the tachocline in detail, we start with differential
rotation profiles that Charbonneau et al. (1999b) showed were stable there, namely
profiles of the form ω0 = s0−s2µ

2, the same as used by Watson (1981). In that case,
to be hydrodynamically unstable s2 must exceed about 0.29, measured in units of
the equatorial rotation, far above tachocline values. They also showed that if a term
of the form −s4µ

4 is added, the profile is unstable for considerably smaller total
differential rotations, but for amplitudes of s2 and s4 deduced from helioseismic
measurements, the tachocline differential rotation is still stable, at least marginally,
to two-dimensional hydrodynamic disturbances.

There is very little observational or theoretical evidence to guide us in a choice
of toroidal field profiles to assume for the instability calculations. Current solar
dynamo models (Dikpati et al. 2004b, and references therein) rely upon assuming
a low magnetic diffusivity below the solar convection zone in order to generate
toroidal fields as large as 50–100 kG, needed to produce rising loops that lead to
emergence of sunspots at low latitudes. These models generally generate broad
poloidal fields, which differential rotation in the tachocline and above shear into
latitudinally broad toroidal fields.

On the other hand, at any given time in a sunspot cycle, spots emerge only in
a rather narrow latitudinal range (the width of one wing in the classical ‘butterfly
diagram’), which can be interpreted as caused by a tachocline toroidal field band
no greater in latitudinal extent than 10◦–15◦. Given these uncertainties, we have
looked at the instability for both broad and narrow profiles. Broad profiles are
covered in Gilman & Fox (1997, 1999a,b), narrow profiles in Dikpati & Gilman
(1999) and Gilman & Dikpati (2000). Broad profiles include those that have no node
within a hemisphere, and those that change sign at one latitude in each hemisphere.
Only toroidal fields that are antisymmetric about the equator have been studied
in detail, since it is known that the Sun’s toroidal field, by Hale’s polarity laws,
is predominantly antisymmetric. But there is no doubt this assumption is not a
requirement for instability.
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In addition to the general properties of the MHD instability described above,
the instability results for broad and narrow toroidal profiles have certain other
characteristics in common. First, the instability occurs for virtually all magnetic
field amplitudes and profiles, and for all differential rotations considered, which
includes total differential rotation from above tachocline values, down to essentially
zero. The only exception is that the instability ceases if the toroidal band is narrow
enough, generally only 3◦ half width in latitude. For differential rotation typical of
the tachocline, unstable mode e-folding growth times for both broad and narrow
profiles range from several months to a few years, short enough to be of interest in
considering the evolution of a solar cycle.

Consistent with the semicircle theorem, phase velocities for longitudinal
propagation depend rather little on the strength of the toroidal field (confirming
again their lack of Alfvén wave-like character), but within the range of speeds
defined by the range of differential rotation, they depend sensitively on the profile
of toroidal field with latitude. For narrow toroidal bands, the speed is that of the
rotation of the latitude where the toroidal band is centred. The picture is more com-
plex for broad toroidal fields, especially those with a node or change of sign within
each hemisphere. Details are found in Gilman & Fox (1999a,b).

Which symmetry of disturbance about the equator is unstable, or more unstable,
depends sensitively on the placement in latitude of a toroidal band (Gilman &
Dikpati 2000) or the location in latitude of the node (if any) in a broad toroidal field
(Gilman & Fox 1997, 1999a,b). Since as a solar cycle advances, the toroidal field in
the tachocline, broad or narrow, advances toward the equator, we should expect the
dominant symmetry of the instability about the equator to change, perhaps abruptly.
If patterns of field associated with this instability have any effect on magnetic fields
seen in the photosphere, we might expect to see evidence of such sudden shifts in
symmetry. So far as we know, this has not been tried systematically.

In general, the lower the differential rotation, the lower the growth rate, even
when, at high assumed toroidal field, most of the energy is coming from the toroidal
field rather than the differential rotation. Lower differential rotation leads to less
shearing of the perturbation magnetic field, so the Maxwell stress is smaller and less
energy is extracted from the differential rotation (and smaller differential rotation
means there is less energy available to extract). These observations are illustrated in
Figure 10.5 for the simplest differential rotation ω0 = 1−s2µ

2 and broad magnetic
profile, α0 = aµ, where a = 1 corresponds to a peak field of 100 kG. On the other
hand, sufficiently narrow toroidal bands are stable because, for a given differential
rotation, they feel less shear across the latitude range where there is any field.

Whether they contain a node in each hemisphere or not, for broad toroidal fields
generally only m = 1 or tipping modes are unstable, for all field strengths. But as
the toroidal field is narrowed, higher m’s start to become unstable, unless the field
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Figure 10.5. Linear growth rates ci and phase speeds cr as a function of magnetic
field strength parameter a, where α0 = aµ and ω0 = 1 − s2µ

2, for the m = 1
instabilities. Full curves: antisymmetric modes; dashed curves: symmetric modes.
Left-hand panel: s2 = 0.12, 0.15, 0.18, from bottom to top. Right-hand panel:
s2 = 0.12, 0.15, 0.18, from top to bottom.

is very strong (Dikpati & Gilman 1999). For example, for toroidal bands placed at
45◦ latitude, m = 2 is excited for bands less than 29◦ full width, half maximum,
m = 3 below 17◦, and m = 4 below 7◦, with a toroidal field of maximum value
of 10 kG in the tachocline. The m = 2 mode is also the most unstable for bands
between 15◦ and 5◦ latitude width.

But all these higher modes stabilize for peak toroidal fields of 20 kG and above,
as the toroidal ring becomes too rigid to deform, for differential rotations found in
the tachocline.

In terms of energetics and the energy flow diagram shown in Figure 10.4, for
toroidal fields up to about equipartition with the differential rotation, the dominant
energy flow is from the differential rotation to perturbation magnetic energy by
means of the Maxwell stress, thence to perturbation kinetic energy by means of
the perturbation j×B force, and sometimes even back into the differential rotation
via the Reynolds stress. For higher toroidal fields, the flow is from toroidal field
energy into perturbation kinetic energy via the ‘mixed stress’ or cross correlation
between perturbation magnetic and velocity fields, whence by the perturbation j×B

force into perturbation magnetic energy. For low toroidal fields, perturbation kinetic
and magnetic energies are in near equipartition, while for high toroidal fields the
perturbation magnetic energy dominates. When only m = 1 modes are unstable
with high toroidal field, the tipping simply converts m = 0 magnetic energy to
m = 1 magnetic energy, with no change in the total magnetic energy of the system.
This is discussed in more detail in the next section on nonlinear effects.

10.3.3 Ideal fluid nonlinear MHD instabilities

Linear eigenvalue analyses reveal the presence and initial growth rates of instabil-
ities, and something of their physical nature. However, in view of the requirement
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0.00 75.00 125.00

Figure 10.6. Snapshots of the development of the clam instability for shear profile
ω0 = 1 − 0.18µ2 and magnetic profile α0 = µ (Figure 1 from Cally et al. 2003).
In traditional dimensionless units, angular velocity ω0 is set to unity at the equator.
The labels indicate dimensionless time, where t = 90 corresponds to about 1 year.
The initial broad magnetic field has a maximum strength of about 105 G at ±45◦

latitude.

to test the Spiegel & Zahn (1992) hypothesis that the latitudinal differential shear
profile can give rise to two-dimensional turbulence, it is necessary to extend mod-
elling to the nonlinear regime. This was first carried out by Garaud (2001) in the
hydrodynamic weakly nonlinear case, finding that the instabilities saturate at a low
level, and do not appear to generate turbulence.

The first fully nonlinear simulations were presented by Cally (2001), and exten-
ded by Cally et al. (2003), who used a two-dimensional spherical harmonic spectral
MHD code to re-examine many of the cases treated linearly before. Specifically,
they examined solar-like differential rotation profiles coupled with both broad
toroidal magnetic field patterns and banded patterns.

The results for strong broad magnetic profiles were spectacular and surprising.
The dominant antisymmetric m = 1 instabilities discovered in the linear regime
by Gilman & Fox (1997) are found to ‘open up’ the toroidal field like a clam shell
(Figure 10.6), typically in little over a year. This is very characteristic of ∼100 kG
broad fields combined with solar-type differential rotation. Such radical behaviour,
for which there is no observational evidence, argues against such magnetic profiles
existing in the solar tachocline. It may instead be that toroidal field is (i) much
weaker than 100 kG in general; (ii) concentrated in bands, as suggested by sunspot
emergence latitudes, or (iii) that the field has significant three-dimensional structure
not accounted for in the shell model.2

In further support of option (i), broad toroidal field of 100 kG may be a problem
for solar dynamo theory when j×B feedbacks are included, because they would tend
to suppress the differential rotation; however, there is no helioseismic evidence that
this happens in the Sun. Although rising flux tube considerations suggest that the

2 However, the 3D ‘polar kink instability’ (Section 10.4.2) may also beset broad magnetic profiles and is even
faster than the clam. It only exists for strong magnetic fields though.
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Figure 10.7. Two views of the nonlinear development of the axisymmetric m = 1
instability for ω0 = 1 − 0.18µ, α0 = 0.07µ after dimensionless time 200. Left:
from directly above the north pole. Right: from directly above the equator, which
is horizontal on the image.

progenitor flux elements of active regions must have strengths around 100 kG when
they detach from the tachocline, it is difficult to understand how such a strongly
superequipartition field could be generated broadly in the tachocline. Field strengths
of 10 kG are more plausible. Figure 10.5 indicates that a ∼10 kG broad toroidal
field is far less unstable. As suggested by cr (right frame), the instability at low field
strengths a is associated predominantly with the polar regions, where the rotation
speed is a minimum, 1 − s2. Nonlinear simulations at a = 0.07 (7 kG), s2 = 0.18,
show that in fact the toroidal field ‘slips off’ the poles at high latitude during the
m = 1 antisymmetric instability, leaving low latitude field relatively unchanged
(Figure 10.7). There is no ‘clam’ runaway. The maximally unstable symmetric
mode (a ≈ 0.1) behaves similarly.

Option (ii) has led to detailed consideration of banded toroidal fields. Once again,
m = 1 instabilities dominate at high (100 kG) field strengths, because of the dif-
ficulty in bending such strong field lines. The instabilities, as for the clam, are
essentially tipping instabilities. Figures 10.8, 10.9 and 10.10 illustrate a variety of
behaviours. In all cases, tipping settles towards a limiting value dependent predom-
inantly on latitude and band width: wide bands tip further than narrow bands, and
mid-latitude bands tip further than those at low latitude. Field strength affects the
approach to the new equilibrium, but seemingly not its ultimate tip. Weaker bands
of around 10 kG do not develop significant tip, but instead are significantly distorted
by, and distort, the differential rotation. This happens because m > 1 modes tend to
dominate, allowed because for weaker toroidal fields the ring deforms more easily.

The mechanism by which strong magnetic bands limit their tip is to develop
prograde velocity jets, or at least shoulders, at the band latitudes (Figure 10.9). The
added angular momentum resists further tipping.

Norton & Gilman (2005) have now found observational evidence of tipped
toroidal fields from the location patterns of sunspots.
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Figure 10.8. Magnetic tip angles for toroidal bands of various latitudes, widths
and strengths (as labelled) combined with differential rotation ω0 = 1 − 0.18µ2

(Figure 7 of Cally et al. 2003). The Gaussian magnetic field profiles of Dikpati &
Gilman (1999) are used throughout.
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Figure 10.9. Left-hand panel: magnetic tip angles for 10◦ bands at ±30◦ latitude
and various field strengths (labelled). The lighter curves indicate linear growth.
Right-hand panel: longitudinally averaged angular velocity for the a = 1 (100 kG)
case at dimensionless times t = 0 (parabola) and 500 (Figures 8 and 9 of Cally
et al. 2003).

10.3.4 Effects of drag

A rudimentary way to account for the possible tendency of neighbouring shells
to diffusively limit the development of two-dimensional instabilities is to incor-
porate a ‘Newton’s cooling’ drag into both the vorticity and induction equations
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Figure 10.10. Nonlinear development of a 10◦ ‘weak’ band (a = 0.1, i.e. 10 kG)
at ±30◦ initial latitude. Left: antisymmetric initial perturbation. Right: symmetric
initial perturbation. These much weaker bands cannot resist the bending influences
of the flow. As expected, the initial symmetry of the perturbation in the right-hand
frame does not survive nonlinear evolution.
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Figure 10.11. Linear growth rates for a = 1 bands of 10◦ width at three latitudes
(labelled). The lower row corresponds to the symmetric modes, and the upper row
corresponds to the antisymmetric. The white regions are stable, and successively
darker shading corresponds to faster growth rates. The contours of ci are 0.0, 0.002,
0.004, etc.

(Dikpati et al. 2004a):
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Dχ

Dt
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(
χ − χeq

)
, (10.8)

where �eq and χeq are the steady toroidal equilibrium solutions, and dk and dm

are the kinetic and magnetic drag coefficients respectively. Figure 10.11 indic-
ates schematically how kinetic and magnetic perturbation energies are ultimately
removed from the system by drag.

The linear stability of this system is remarkably straightforward in the case dk =
dm = d. It is easily seen that then the complex eigenvalues (phase speed) c are
simply replaced by c − id. Consequently, any d greater than the maximum ci

stabilizes the system. Not surprisingly, d less than this leaves the system unstable,
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but with a reduced growth rate. However, this special case gives no clue to the
much richer range of behaviours when dk �= dm, both linearly and nonlinearly. As
an example, Figure 10.11 depicts the instability regions and growth rates in the
dk–dm plane for 10◦ banded profiles of 100 kG strength at three different latitudes.
For the most part, it is clear that magnetic drag is far more potent than kinetic drag
in slowing or eliminating instability. The reason for this is that in vorticity terms the
MHD instability is driven by the j×B force acting as a source of vorticity. Magnetic
damping of the perturbation fields directly reduces this source and weakens the
instability. Conversely, particularly for strong unperturbed toroidal fields, the kinetic
drag that damps vorticity must be quite large to compete with the strong magnetic
source.

In the nonlinear regime, (Dikpati et al. 2004a) find that drag can suppress the
clam instability in broad magnetic profiles. It can also greatly slow the development
of tip in banded profiles, but generally does not greatly reduce the ultimate degree
of tip.

10.4 Towards three dimensions

Since the tachocline straddles the base of the convection zone, its stiffness to radial
motions varies over many orders of magnitude. Within the convection zone it is
effectively neutrally stable, whilst in the radiative core, buoyancy periods of only
a few hours are much faster than any of the instabilities discussed in this chapter.
The nature and thickness of the intervening overshoot layer is very much an open
question, so we can only suppose that there may be a layer of non-negligible thick-
ness in which buoyancy and the instabilities operate on similar timescales, and may
therefore interact.

Several questions arise when considering the three-dimensional tachocline. One
consequence of the two-dimensional shell model is that plasma cannot cross field
lines (in the absence of magnetic diffusion), leading to significant constraints on
allowable evolution. For example, the polar slip instability is ruled out. On the
other hand, in three dimensions, unmagnetized plasma may of course pass over or
under a flux tube or field concentration, or even through it by splitting it apart. One
task for three-dimensional modelling therefore is to determine the extent to which
two-dimensional-like plasma isolation actually occurs. If the field actually exists
as flux tubes of ∼100 kG strength, their magnetic energy density is well in excess
of the available kinetic energy associated with shear, so the tubes should be able to
maintain their integrity, and indeed be quite rigid in the face of flows. In that case,
if plasma is to cross from one side of the tube to the other, it must go over or under.
In the radiative tachocline, the relevant criterion then involves the Froude number
F = V/hN , where h is the tube height, N is the Brunt–Väisälä frequency, and V is
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the typical two-dimensional flow speed relative to the tube. If F is less than about 1,
the flow has insufficient available kinetic energy to supply the required potential
energy jump, and plasma isolation is maintained (assuming no siphon mechanism
is operating). On the other hand, a 10 kG flux tube is unlikely to be able to maintain
its identity, perhaps unless it is significantly twisted (which may be the case), and
the isolating property of two-dimensional shell models will not be replicated in
three dimensions. In the convective tachocline, there is little reason to believe that
plasma cannot cross from one side of a tube to the other, whatever its strength.

As yet, there is no fully nonlinear theory of magneto-shear instabilities in the
three-dimensional tachocline. However, there are at least two partial treatments. The
first adopts the ‘shallow water’ formalism used to great effect in geophysical fluid
dynamics, in which vertical structure is assumed linear and hydrostatic. The other
is in a sense exactly opposite to this: it looks for solutions with fine scale oscillatory
structure radially. Both are reviewed in this section. Since each currently assumes
that the equilibrium field is uniform throughout the layer, neither addresses the
issue of plasma isolation. Nevertheless, each predicts novel behaviour, which a full
three-dimensional treatment should address.

10.4.1 Shallow ‘water’ theory

10.4.1.1 Equations

In its hydrodynamic form, ‘shallow water’ theory dates from the late nineteenth
century. It was first formulated to deal with global ocean tides, and is described
in Hough (1898). In its simplest form for the sphere, it applies to a single incom-
pressible shell of fluid whose inner boundary is fixed, and whose outer boundary
is allowed to deform. Gravity is included, and the fluid disturbances are assumed
to be large in longitude and latitude compared to the thickness of the shell. In that
case the pressure field is hydrostatic, determined at every point by the weight and
therefore the thickness of the fluid above it. This hydrodynamic version has been
applied to the problem of the instability of latitudinal differential rotation of the
tachocline by Dikpati & Gilman (2001a).

Unlike the strictly two-dimensional system we have discussed above, the shallow
water generalization allows for vertical motions that are tied to the deformation of
the ‘free surface’ at the outer boundary of the shell. The horizontal motions remain
independent of height, but they can have horizontal divergence, consistent with
vertical motions that are linear functions of height, zero at the bottom, maximum
at the top.

Gilman (2000a) generalized these classical shallow water equations to the MHD
case, to apply to the solar tachocline. The key additional assumption he made is
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that the upper surface is a material surface, with no magnetic flux crossing it. This
leads to a modified continuity equation for the magnetic field that states that the
horizontal divergence of the total magnetic flux (as opposed to magnetic field, as in
the two-dimensional case) vanishes. In this system, horizontal flows and magnetic
fields are both independent of height, while both vertical flows and fields are linear
functions of height. The modified magnetic field continuity equation is

∇· [(1 + h)B] = 0. (10.9)

In Equation (10.9), 1+h is the local shell thickness, measured relative to the average
thickness, and B is the (scaled) horizontal vector magnetic field.

In this approximation, the induction equation becomes

∂B

∂t
= ∇× (v×B) + (∇·v)B − (∇·B)v, (10.10)

in which we see the added horizontal divergence terms, absent in the strictly
two-dimensional case.

In the MHD case, the hydrodynamic shallow water relation between the pressure
and the thickness is modified to

∇p = gH∇(1 + h) − ∇

(
1
2 B·B

)
, (10.11)

in which g is the dimensional gravity. We see that the magnetic field presence
reduces the hydrostatic pressure from the non-magnetic case, since across the top
boundary the total pressure must be continuous. Equation (10.11) then leads to a
modified horizontal vector equation of motion, given by

∂v

∂t
= ∇

(
1
2 B·B − 1

2 v·v
)

− (k̂×v) k̂·∇×v + (k̂×B) k̂·∇×B − gH∇(1 + h),

(10.12)

in which k̂ is the local vertical unit vector.
The MHD shallow water system is completed by the inclusion of the usual

shallow water equation for continuity of mass:

∂(1 + h)

∂t
+ ∇· [(1 + h)v] = 0. (10.13)

Equations (10.9)–(10.13) have many interesting solutions, for equilibrium states,
linear and nonlinear waves, and HD and MHD instabilities. MHD shocks and solit-
ary waves are possible in this system. These equations have also recently received
more theoretical attention (Dellar 2002, and references therein).

The original hydrodynamic shallow water equations assumed an air–water inter-
face at the outer boundary, so the gravity felt is essentially the full value, given the
large density difference. But it is possible to relate this system to a continuously
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stratified shell by means of a ‘reduced’ gravity, proportional to the fractional dif-
ference between the actual radial temperature gradient and the adiabatic gradient.
This correspondence is demonstrated in detail in the Appendix of Dikpati et al.
(2003). This reduced gravity is conveniently defined as a dimensionless parameter
G, given by

G = 1

2

g⊙ |∇ − ∇ad|
r2

0ω2
c

H2

Hp
= H2|N2|

2r2
0ω2

c

, (10.14)

in which g⊙ is the dimensional gravity at tachocline depths, |∇ − ∇ad| is the
fractional departure from the adiabatic gradient, H is the shell thickness, Hp is
the local pressure scale height, r0 is the shell radius, ωc is the rotation rate of the
shell, and N is the Brunt–Väisälä or buoyancy frequency. If we evaluate G for the
tachocline, we find 10 < G < 103 for the radiative part, and 10−2 < G < 1 for
the overshoot layer. If we apply the shallow water model to the radiative part of the
tachocline, then its top surface corresponds to the overshoot layer, which is certainly
easier to deform than the even more subadiabatic domain below the radiative part of
the tachocline. Similarly, if we apply the shallow water model to the overshoot layer,
its top is the unstable convection zone, which offers no resistance to deformation,
compared to the radiative part of the tachocline below. Thus the simple shallow
water system we have chosen can plausibly apply to both parts of the tachocline. In
addition, of course, both layers could be included in the same model by generalizing
it to be a two-layer shallow water system, with different effective gravities in the
two layers. That more complex system has yet to be studied in the MHD case.

10.4.1.2 Reference states

There are a variety of ways to define unperturbed equilibrium states for the MHD
shallow water system. If we specify the differential rotation and toroidal field as we
have done in the two-dimensional system, then we must solve for the equilibrium
thickness they imply, by integrating the latitudinal equation of motion, and applying
appropriate constraints, such as that the total mass of the shell remains constant
whatever the configuration of its outer boundary. Solutions for the hydrodynamic
case are shown in Dikpati & Gilman (2001a). These indicate that for tachocline
amplitude differential rotations, the shell thickness is a minimum in mid-latitudes
(relative to the oblate figure from the constant interior rotation of the Sun) increasing
toward both the poles and the equator (see Figure 2 of Dikpati & Gilman 2001a).

Not surprisingly, the amplitude of this deformation is inversely proportional to
G. For smaller G, a larger deformation is needed to create a large enough latitud-
inal pressure gradient to balance the Coriolis force associated with the differential
rotation. For a G of 0.1, typical of the overshoot layer, the shell thickness variations
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with latitude can be as large as a few tens of percent of the average thickness. By
contrast, in the radiative layer the deformations are very small.

Equilibrium states for the MHD case are computed in Dikpati & Gilman (2001b),
Gilman & Dikpati (2002) and Dikpati et al. (2003). Just as in the hydrodynamic
case, for a given toroidal field profile assumed, the thickness variations are again
proportional to G−1, and so are much larger in the overshoot layer. For both broad
and narrow toroidal field profiles, the shell must be thicker on the poleward side of
the peak fields than on the equatorward side. The narrower is the profile the steeper
is the height gradient in the neighbourhood of the peak field. For peak fields as
large as 100 kG, the deformation of the overshoot layer can be such as to make the
shell thickness nearly vanish in low latitudes. Thus there is a limit to the strength
of field that can be kept in equilibrium.

One way the system can equilibrate when there are strong, narrow toroidal fields
without having such large thickness variations is to have a prograde fluid jet inside
the toroidal band, so that the resulting equatorward Coriolis force takes the place of
the hydrostatic pressure gradient in achieving balance (see Rempel et al. 2000 and
Dikpati et al. 2003 for examples). The jet required can be large: for a peak field of
100 kG at 45◦ latitude, the linear velocity of the jet relative to the interior rotation
is ∼200 m s−1. Clearly, the Sun can choose any combination of latitudinal pressure
gradient and jet amplitude the physics allows to achieve this balance.

10.4.1.3 Hydrodynamic instabilities

In the shallow water system, both hydrodynamic and MHD instabilities are possible,
and may occur together, so we examine each in turn. For the Sun, hydrodynamic
instabilities have been considered almost exclusively in Dikpati & Gilman (2001a).
They show that, for high G, the instability is virtually identical to that of the
two-dimensional case. Not surprisingly, with high effective gravity the vertical
displacements and velocities are particularly small compared to their horizontal
counterparts, leading to essentially two-dimensional conditions.

By contrast, for low G, an additional regime of instability appears, occurring
for lower differential rotation than is unstable with two dimensions, actually lower
than observed tachocline values. Thus, in the overshoot layer of the tachocline, the
theory says we should find this instability, to longitudinal wavenumbers m = 1 and
2. But with still lower G, the instability vanishes.

The approximate explanation for these results is as follows. The domain of inter-
mediate G with stronger instability arises because, in the shallow water case,
instability occurs when the latitudinal gradient of potential vorticity (vorticity
divided by thickness) changes sign in the domain, or where the potential vorticity
has an inflection point. For small enough G, the shell thickness vanishes where this
inflection point is found, dividing the fluid shell into polar and equatorial domains,
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neither one of which has an inflection point. Then the instability stops. When the
system is unstable, the dynamics, in terms of transport of angular momentum by
Reynolds stresses, the formation of high latitude jets, etc., is very similar to the
two-dimensional case.

Unstable modes in the hydrodynamic shallow water case have some particularly
interesting properties from the perspective of solar dynamo theory. They generally
contain kinetic helicity, which in dynamo models gives rise to an ‘alpha-effect’
which lifts and twists toroidal fields into poloidal fields. Since this instability would
occur within the solar tachocline, it would provide an additional source of generation
of poloidal fields there from the strong toroidal fields there. But to determine the
range of toroidal fields over which this instability can be expected to occur requires
solution of the MHD instability problem. Strong toroidal fields may radically alter
or suppress this hydrodynamic instability. On the other hand, if the tachocline is
host to narrow isolated toroidal bands, there is no reason why the hydrodynamic
instability cannot occur away from the band. Both types of behaviour have been
found.

10.4.1.4 Magnetohydrodynamic instabilities

Global instabilities of the MHD shallow water system are analysed principally
in Gilman & Dikpati (2002) for broad toroidal field profiles, and in Dikpati et al.

(2003) for narrow toroidal bands. In both cases, for high G the MHD instabilities are
virtually the same as their two-dimensional counterparts. For broad toroidal fields,
this similarity holds for all G greater than unity, greatly extending the applicability
of the two-dimensional results. For banded profiles the situation is more complex,
depending on the strength of the band and its placement in latitude.

We show representative domains of instability and growth rates for MHD dis-
turbances in Figures 10.12 and 10.13. In both we have chosen to display results that
could best apply respectively to the overshoot and radiative tachoclines, for which
we take G = 0.2 (broad) or 0.1 (banded) for the overshoot case, and G = 100 for
the radiative case.

In Figure 10.12 (left-hand panel) we see that the hydrodynamic shallow water
instability found by Dikpati & Gilman (2001a) carries over into the MHD case for
broad toroidal fields up to several kilogauss. Above that, these modes are damped
and eventually suppressed with increasing field amplitude, but replaced by purely
MHD instability modes of similar growth rates, which peak in the neighbourhood
of peak toroidal fields of about 100 kG. At these high fields, only the tipping mode
is excited, and only the mode that is antisymmetric about the equator. From the
right-hand panel of Figure 10.12, we see that in the radiative tachocline there is no
hydrodynamic instability, only MHD unstable modes. These occur only for peak
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(a) (b)

Figure 10.12. Disturbance growth rates for broad toroidal fields of peak amplitude
shown on the horizontal axis, for overshoot and radiative parts of the tachocline;
e-folding growth times are shown in years on the right-hand vertical axes. (Adapted
from Gilman & Dikpati 2002.)

Figure 10.13. Domains of instability and growth rate contours for toroidal bands
of width 10◦ placed at the latitudes shown on the vertical axes. Left-hand panels are
for overshoot tachocline stratification, right-hand panels are for radiative tacho-
cline stratification. Upper panels show results when the reference state contains no
prograde fluid jet inside the toroidal band, lower panels are for the case for which
the whole poleward magnetic curvature stress is balanced by the equatorward
Coriolis force of such a jet. (Adapted from Dikpati et al. 2003.)

fields near 10 kG and above, with by far the strongest instability for peak fields of
order 100 kG. Here again, only m = 1, the tipping mode, is unstable.

In Figure 10.13, we show growth rates and domains of instability as func-
tions of latitude placement of bands of 10◦ half width, and peak field strength.
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Overshoot layer results are on the left, radiative layer results on the right. Upper
panels are for reference states with no prograde jet inside the band, lower panels
include a ‘full’ jet, full in the sense that the Coriolis force completely replaces
the latitudinal hydrostatic pressure gradient in the latitudinal force balance. In the
overshoot layer, without jets bands are unstable at virtually all latitudes, for peak
fields up to several tens of kilogauss, and in sunspot latitudes for fields up to sev-
eral hundred kilogauss. Which mode-symmetry dominates depends on the latitude
of band placement, as in the two-dimensional case described earlier. Comparing
upper and lower panels, we see that a jet makes the system much less unstable,
cutting off instability well below 100 kG at all latitudes except the very lowest
and highest. This is because the jet resists tipping, which amounts to a change
of axis of the angular momentum contained in the jet, much as happens in a
gyroscope.

In the radiative layer, the range of latitudes of toroidal band placement that lead
to instability is somewhat narrower, but without jets instability is found up to much
higher field strengths. This is because in the radiative layer case, the shell thickness
varies very little with latitude, while in the corresponding overshoot case, it goes
to zero along the nearly vertical curve shown near the right-hand edge of the upper
left-hand panel. The radiative tachocline also shows that which mode-symmetry is
preferred depends on latitude placement of the band. In addition, in the radiative
tachocline, m = 2 is also unstable for peak fields up to ∼10 kG. Notice also that
while the jet suppresses m = 1 instability above several tens of kilogauss peak
fields, it has almost no effect on m = 2. This is because at these field strengths the
equilibrium jet is weaker, but also because m = 1 does not represent a change in
the orientation of the angular momentum axis, so there is no gyroscopic effect.

Associated with each unstable MHD mode there is also a pattern of kinetic
helicity that could contribute to dynamo action in the solar tachocline. The details
are discussed in the references cited above. In the MHD case, these kinetic helicity
patterns are particularly interesting because they are found in the neighbourhood
of the toroidal band, and depend in part on the field strength. This would add a new
nonlinearity to the dynamo problem. In the case of banded toroidal fields, examples
have been found where kinetic helicity patterns of both hydrodynamic and MHD
origin are found coexisting.

To sum up, in the MHD shallow water system, both broad and banded toroidal
fields are commonly found to be unstable to longitudinal wavenumber m = 1,
and sometimes m = 2, under both overshoot and radiative layer type subadiabatic
stratifications. Thus if the shallow water model has some applicability to the solar
tachocline, the results predict that under most conditions, and most phases of the
solar cycle, the toroidal field should be tipped with respect to latitude, and the
instability should contribute to the workings of the solar dynamo.
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10.4.2 Fine radial structure instabilities

Cally (2003) examines the linear stability of a Boussinesq (thin layer) shell. The
equilibrium state is assumed toroidal and independent of radius r, but both toroidal
and poloidal perturbations are allowed in velocity and magnetic field. A uniform
Brunt–Väisälä frequency N is assumed throughout, characterizing the departure
from an adiabatic temperature gradient (see Equation (10.14) for the relationship
between N and the shallow water reduced gravity G). It is supposed that the per-
turbed poloidal and toroidal kinetic and magnetic stream functions, and the entropy
perturbation, may be Fourier expanded in radius r across the thin layer, with each
proportional to sin k(r − r0) or cos k(r − r0) as appropriate, where the inner radius
r0 is taken to be rigid. The radial wavenumber k is a free parameter. Horizontal
and time dependence are assumed to be of the form exp[im(φ − c t)] as in the two-
dimensional linear calculations of Gilman & Fox (1997). If a rigid or free upper
boundary condition were imposed it would restrict k to certain discrete values, but
this was left open and k unspecified.

The instabilities found through this analysis generalize both the two-dimensional
results, and the three-dimensional instabilities discovered by Tayler (1973) in non-
rotating stars. They appear in the opposite regime to ‘shallow water’, since they
exhibit short-scale oscillatory radial behaviour rather than a simple linear profile.
In that sense, this approach complements rather than overlaps the shallow water
studies. Exploring the middle ground between the two will require more detailed
numerical modelling.

As for the two-dimensional linear calculations, the aim is to calculate the eigen-
values c = cr + ici. The instability growth rate is then mci. With k set to zero
the two-dimensional case is recovered, but with k > 0 it is possible to explore
the growth of ‘radially local’ three-dimensional modes for various choices of mag-
netic field, latitudinal shear, and N . The question asked is: are the two-dimensional
(or near-two-dimensional) instabilities dominant, or do distinct three-dimensional
instabilities arise and take over? And in particular, what role does the Brunt–Väisälä
frequency play?

As an example, consider the broad magnetic profile α0 = µ discussed earlier
(see Figures 10.5 and 10.6). To maximize the potential for interaction with buoy-
ancy, a Brunt–Väisälä frequency of N = 1 is adopted in Figure 10.14, measured
in dimensionless units in which the equatorial rotational frequency ω0(0) is also 1.
The figure shows the two-dimensional growth rate ci = 0.016 is recovered at
k = 0 as expected, and a slightly faster three-dimensional version at k = 2
(this may not be physically relevant if a top boundary condition restricts k to a
discrete spectrum). However, most significantly, a new completely unrelated and
very much faster three-dimensional instability sets in for k > 7, with maximal
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Figure 10.14. The growth rate as a function of radial wavenumber k for antisym-
metric modes with m = 1, N = 1, ω0 = 1 − 0.18µ2, and α0 = µ. The curve
represents results obtained using the shooting method, whereas the points are from
a Galerkin method (Figure 1 of Cally 2003).

growth rate

ci ∼
√

α2
p − ω2

p as k → ∞. (10.15)

Here ωp = ω0(1) is the rotational angular velocity at the pole µ = 1, and αp is the
equivalent polar Alfvén angular speed. The growth rate (10.15) and the consequent
instability criterion α2

p > ω2
p are rigorously derived (Cally 2003), and shown to only

apply for m = 1. This ‘polar kink instability’, as its name suggests, corresponds
to a kink instability in the magnetic loops about the poles first identified by Tayler
(1973) in non-rotating stars. If the rotational plasma speed exceeds the Alfvén
speed, the angular momentum is sufficient to stabilize the kink through the action
of centrifugal force; the flow speeds up on the in-kink side of the tube owing to
field line compression, and so tends to move the field lines back outward.

As the Brunt–Väisälä frequency N is increased, the polar kink instability is
pushed to higher and higher onset wavenumbers kcrit; in fact, the critical wavenum-
ber scales approximately with N , and the asymptotic growth rate (10.15) remains
unchanged. Consequently, it is clear that a large subadiabaticity (large N) does not
actually suppress three-dimensional instabilities on its own; rather, it pushes them
to smaller radial scales (higher k), compressing them to a ‘pancake’. This makes
physical sense, since a three-dimensional instability is less able to move plasma
radially against buoyancy as N increases. Conceivably, diffusive effects might be
able to restrict instabilities at high k, though Cally (2003) finds that thermal diffu-
sion does not destroy or even slow down the polar kink, which is predominantly
magnetic in nature rather than thermal.

Although it is unlikely that strong fields are present near the poles in the tacho-
cline, similar instabilities are found at lower latitudes, though their mathematical
analysis is much more difficult. In particular, no simple stability criterion or growth
rate is known.
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Recently, Gilman et al. (2004) presented some preliminary results based on the
Boussinesq thin layer hydrostatic primitive equations (HPE) of Miesch & Gilman
(2004). This approach differs from the radially local analysis of Cally (2003) in
that it is applied across a finite (though thin) layer with, in this case, rigid boundary
conditions applied top and bottom. Nevertheless, qualitatively similar results were
obtained. In particular, by examining fixed vertical wavenumbers n, very rapid,
fine radial scale, tipping instabilities are found to develop at sufficiently high mag-
netic field strengths (of order 100 kG) and low reduced gravity G. As G (i.e. N)
is increased, only higher n instabilities are excited, just as in Cally (2003). The
correspondence between the two techniques has yet to be fully explored, but seems
close. Three dimensional instabilities of toroidal fields in deep, uniformly rotating,
spherical shells such as stellar interiors have been studied by Zhang et al. (2003).
These may be related in a ‘thin shell’ limit to those discussed here, but this also has
not been explored yet.

The lesson to be learned from these analyses is that the argument that the
highly stable gravitational stratification of the lower tachocline will suppress three-
dimensional instabilities, leading us to consider only the two-dimensional shell,
is potentially misleading. In fact, three-dimensional instabilities that do not exist
in strict two dimensions, such as the polar kink, are possible at arbitrarily large
N . However, they will be very ‘flat’, thus appearing two-dimensional despite their
intrinsic reliance on the radial direction. In the (many) cases, though, where the
polar kink or similar instabilities do not exist, the two-dimensional shell model is
a particularly useful indicator.

10.5 Conclusions: implications for the Sun

The results described in this chapter indicate clearly that any significant toroidal
fields within the solar tachocline should render it unstable to global MHD disturb-
ances. Even if toroidal fields there are concentrated into narrow bands, migration of
the zone where sunspots are found toward the equator with the advance of each solar
cycle ensures that a wide range of latitudes is affected by this instability. Indeed, tor-
oidal bands may first occur at latitudes that are higher than the spot zones, with little
signature of them seen at the visible surface. Since the instability efficiently trans-
ports angular momentum from low latitudes to high, its presence can easily prevent
the tachocline thickness from growing into the deeper interior. The more vigorous is
the transport, the thinner the tachocline can be. This transport occurs on a timescale
of the solar cycle, many orders of magnitude shorter than other angular momentum
transfer rates estimated for either the solar radiative interior or the solar wind.

All of the instability analysis discussed above was applied to the solar tachocline
where there is known to be latitudinal differential rotation. Gilman (2000b) first
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made the explicit distinction between a ‘fast’ tachocline, where physical processes
on time scales of months and years predominate, and a ‘slow’ tachocline, where
processes act on vastly longer time scales. Gough & McIntyre (1998), among others,
have argued that the radiative part of the tachocline, even though it is quite thin and
immediately adjacent to the overshoot tachocline above (which everyone agrees is
fast) is nevertheless a slow domain.

But this radiative part undeniably has latitudinal differential rotation, so to be
slow, despite its latitudinal differential rotation, there must be virtually no toroidal
field there. The instability results cited above show clearly that even toroidal fields
of a few hundred gauss are enough to trigger the MHD instability, with growth
rates that might be as long or longer than a solar cycle, but still very fast compared
to the ‘slow’ times Gough & McIntyre assume to prevail there. It does not matter
whether the toroidal field has its origins in the convection zone dynamo above, or
comes from below by shearing of a global poloidal field there. Furthermore, weak
toroidal fields lead not just to the simple tipping of a rigid toroidal ring, but to the
excitation of other non-zero longitudinal wave numbers as well, and most likely
to a more general mixing in latitude. We conclude that any part of the tachocline
that has toroidal field in it must be ‘fast’. Dikpati et al. (2006) have recently shown
that flux transport dynamos that correctly simulate many features of the solar cycle
also generate strong toroidal fields throughout the solar tachocline, if the magnetic
diffusivity in the lower part of the tachocline is less than ∼106 cm2 s−1, much
lower than the convection zone, but still much higher than molecular diffusivities
characteristic of the radiative interior.

It is still possible, perhaps probable, that there is some domain of the solar interior
below the tachocline (by definition, below the latitudinal and radial differential
rotation) that is slow in the sense assumed by Gough & McIntyre (1998). But if
there is any significant toroidal field in the radiative part of the tachocline, then
the dynamics and MHD of this slow deep interior does not extend its influence
significantly into the tachocline, and all of the tachocline is ‘fast’. If this slow
interior domain has no differential rotation, then the global MHD instability we
have reviewed does not occur there, even if there are toroidal fields, so it can be
slow. Gough & McIntyre’s model is known generally to contain some toroidal field,
and does not produce the global MHD instability. That is because their model is
axisymmetric about the rotation axis, so all m > 0 modes, which are characteristic
of the instability, are excluded by assumption.

In addition to limiting tachocline thickness, the global MHD instability may
contribute several effects to the workings of the solar dynamo. It can create patterns
of field with longitudinal wavenumber m > 0 that might be seen at the surface but
also may make the whole global solar dynamo fundamentally non-axisymmetric.
It may be possible to see traces of m = 1 ‘tipping’ modes in the pattern of locations
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of sunspots, and m = 1 and 2 may be related to the so-called sector structure seen
in the heliosphere. The growth rates of unstable modes, with e-folding times of
several months to a few years, are short enough for the dominant patterns produced
to adjust to the dynamo advancing the tachocline toroidal field toward the equator.
The longitudinal phase velocities of these modes, being intermediate between the
minimum and maximum rotation of the system, and for toroidal bands at the rotation
rate of the latitude of the band, ensure that the phase speeds are never very far from
the commonly used ‘Carrington rate’ (rotation rate at ∼18◦ latitude at the solar
surface), a benchmark for constructing synoptic maps of solar fields.

Since both unstable hydrodynamic and MHD modes contain kinetic helicity, this
instability can also provide additional means of generating poloidal from toroidal
fields at tachocline depths. Dikpati & Gilman (2001c) have shown that a source of
poloidal field in the tachocline is very important for producing the correct symmetry
of axisymmetric solar fields about the equator. In addition, the instability can also
determine the equatorial symmetry of m > 0 fields, which can even switch at certain
points in a solar cycle.

Both the hydrodynamic and MHD instabilities typically lead to the formation of
fluid jets, particularly prograde jets, either at fixed latitudes or migrating with the
toroidal field as a solar cycle progresses. Christensen-Dalsgaard et al. (2005) have
found helioseismic evidence of persistent prograde jets near 60◦ latitude, that last
through most of a solar cycle.

One of the most important solar properties left out of the analysis of this instabil-
ity so far is the radial gradient of rotation, that of course defines the existence
of the tachocline. Its inclusion into the instability problem makes the calculation
much more difficult, turning it into a non-separable two-dimensional eigenvalue
problem from a one-dimensional problem. But from Figure 10.2, we can sur-
mise that with radial shear in the MHD case the instability might be enhanced,
because a wavy magnetic pattern in the longitude-radius surface, sheared by the
radial differential rotation, would extract kinetic energy and angular momentum
from the radial gradient. The dominant longitudinal wavenumber for instability
might change, but it is difficult to see how such a process would actually damp
the instability. This effect of radial shear could damp the hydrodynamic instability
however.

Similarly, the neglect of radial magnetic structure in the shallow water and radi-
ally local analyses means that the equilibrium field forms a ‘wall’ across the whole
tachocline, thereby stopping flow of plasma from one side to the other. The ques-
tions raised in the prelude to Section 10.4 concerning the ability of magnetic bands
to prevent flows across their latitudes are therefore unanswered. Future modelling
must allow for both radially as well as latitudinally compact magnetic bands, lying
wholly within the computational domain, to address these concerns.
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The analyses described here provide insight into the kinds of MHD instabilities
that should be expected to occur in global three-dimensional convection models for
the solar convection zone and tachocline. A significant limitation of such models
to date is their inability to deal with a tachocline with a realistic subadiabatic
stratification. Until this limitation is overcome by much larger computer power,
tractable models confined to the tachocline will remain useful.
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Magnetic buoyancy instabilities in the tachocline

David W. Hughes

It is natural to associate the tachocline with the region of generation of a strong
toroidal field by the winding-up of a weaker poloidal component. Here I discuss the
break-up and subsequent escape of such a field via magnetic buoyancy instabilities.
I consider the different modelling approaches that have been employed and discuss
which have the most relevance in a solar context.

11.1 Introduction

For many years, a controversial issue of solar magnetism has been that of the loc-
ation of the site (or sites) of the generation and storage of the Sun’s predominantly
toroidal magnetic field, which eventually escapes and rises to the surface, leading to
active regions and, ultimately, to much of the exotic magnetic behaviour observed
in the photosphere, chromosphere and corona. For two rather different reasons, the
idea had been put forward that the bulk of the toroidal field must be stored either at
the base of, or just beneath, the convection zone. From estimates of the rise times
of magnetic flux tubes through the convection zone, Parker (1975) argued that the
dynamo must operate only in the ‘very lowest levels of the convective zone’. Golub
et al. (1981) (see also Spiegel & Weiss 1980) proposed a similarly deep-seated layer
of toroidal field, but from arguments based instead on the expulsion of magnetic
fields by convective motions. The discovery of the tachocline by helioseismology
provides probably the most compelling evidence for pinning down the location of
the solar toroidal field. Although there is no consensus on how the solar dynamo
operates (see, for example, the discussion in Chapter 13 by Tobias & Weiss), it is

generally agreed that toroidal field is wound up from a relatively weak poloidal
ingredient via strong differential rotation (the ω-effect of mean field dynamo the-
ory). Consequently, the tachocline becomes the natural location for a deep-seated,
predominantly toroidal magnetic field.

The Solar Tachocline, D. W. Hughes, R. Rosner and N. O. Weiss.
Published by Cambridge University Press. © Cambridge University Press 2007.
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The large-scale magnetic features observed at the solar surface, such as sunspots,
which must originate from a global magnetic field, must therefore be manifestations
of the instability and subsequent escape of magnetic field from the tachocline. The
mechanism responsible is known as magnetic buoyancy. Although the tachocline
may play host to a number of different types of hydrodynamic and hydromagnetic
instabilities (some of which are reviewed by Gilman & Cally in Chapter 10), the
only one with readily observable consequences is that due to magnetic buoyancy.

It is worth explaining, at this early stage, that the term ‘magnetic buoyancy’ is
used within astrophysics (and, indeed, more pertinently, within solar physics) to
refer to three related, but different, physical mechanisms. The idea of magnetic
buoyancy was conceived by Parker (1955) and, coincidentally, by Jensen (1955),
who considered the rise of isolated tubes of magnetic flux. The essential physics
is captured by considering an isolated horizontal flux tube in pressure equilibrium
with its non-magnetic surroundings; thus

pi + B2

2µ0
= pe, (11.1)

where the tube has field strength B, and the internal and external gas pressures are
denoted by pi and pe. Hence pi < pe. If, for example, the tube is in thermal equi-
librium with its surroundings then it follows from the gas law that ρi < ρe; i.e. that
the tube is less dense than its surroundings and will thus rise under the influence
of gravity. For what follows, it is worth stressing that this is not an instability but,
rather, a lack of equilibrium.

The buoyant tendency of magnetic fields can though act as an instability mech-
anism of magnetized atmospheres in equilibrium, the simplest such case being that
of an atmosphere with a horizontal field dependent only on height. This was first
addressed by Newcomb (1961) and, in an astrophysical context, by Parker (1966),
although Kruskal & Schwarzschild (1954) had previously considered the related
instability of a discontinuous field.

The third usage of the term ‘magnetic buoyancy’ refers to the instability of
isolated flux tubes. From the arguments advanced above, it can be seen that, in
general, isolated flux tubes will not be in mechanical equilibrium. However, for one
specific temperature difference between the tube and its surroundings, the internal
and external densities will be equal. In such circumstances one may address the
stability of such a tube (Spruit & van Ballegooijen 1982), any instability thereof
also carrying the name ‘magnetic buoyancy’.

These three magnetic buoyancy mechanisms, although clearly related through
the principal role of the magnetic pressure, possess significant differences in
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their underlying physics and in their astrophysical implications. (Also, somewhat
confusingly, in the astrophysical literature all three are, on occasion, referred to
as the ‘Parker instability’.) All three have been advanced as playing an important
role in the instability of the magnetic field in the tachocline and its subsequent
rise through the convection zone. Thus in this review I shall first consider each
of these in turn, concentrating on the most important physical attributes of each,
before discussing in Section 11.5 their role in the evolution of the Sun’s large-scale
magnetic field. I shall discuss them not, as above, in the chronological order of
their formulation, but instead will first consider the two instability mechanisms,
which are of potential relevance to the disruption of any field in the tachocline, and
then consider the rise of magnetic flux tubes, the subsequent stage in the field’s
evolution.

11.2 The magnetic buoyancy instability of a large-scale field

Any astrophysical magnetic field will, in reality, vary in all directions. However,
from the point of view of instabilities driven by magnetic buoyancy it is clearly the
vertical variation that is most influential; therefore the simplest problem to consider
is the instability of a magnetohydrostatic equilibrium in which all quantities vary
only with height z. For the most part we shall consider equilibria with uni-directional
fields; for such cases we shall suppose that the imposed magnetic field is in the
x-direction. We shall denote the wavenumber vector by k = (kx, ky, kz) and the
(possibly complex) growth rate of linear perturbations by s.

11.2.1 Linear considerations

11.2.1.1 The instability mechanism

The essence of the magnetic buoyancy instability can be understood in terms of a
simple ‘parcel’ argument (e.g. Tayler 1973; Moffatt 1978; Acheson 1979). Consider
an atmosphere in equilibrium containing a horizontal magnetic field. Imagine that
a parcel of gas is raised, with no bending of the magnetic field lines, from a height
z to a height z + dz; all diffusive effects are, for the moment, neglected. Suppose
that the properties of the tube change from φ to φ + δφ and that the variable φ

takes the value φ + dφ at height z + dz. Since the mass and magnetic flux of the
parcel are conserved, and the parcel moves adiabatically, we have the following
relations:

δB

B
= δρ

ρ
,

δp

p
= γ

δρ

ρ
. (11.2)
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Assuming that the parcel moves sufficiently slowly that it maintains total pressure
equilibrium with its surroundings gives the relation

δp + BδB

µ0
= dp + BdB

µ0
. (11.3)

The displaced parcel will be unstable and continue to rise if δρ < dρ. Manipulation
of expressions (11.2) and (11.3) then leads to the following criterion for instability:

−ga2

c2

d

dz
ln

(
B

ρ

)
> N2, (11.4)

where a is the Alfvén speed, c is the adiabatic sound speed and N is the Brunt–
Väisälä (or buoyancy) frequency, defined by:

a2 = B2

µ0ρ
, c2 = γ p

ρ
, N2 = g

γ

d

dz
ln
(
pρ−γ

)
. (11.5)

Inequality (11.4) may be regarded as the modification by a stratified magnetic
field of the Schwarzschild criterion. Of particular significance is that a horizontal
magnetic field that decreases sufficiently rapidly with height can destabilize a
convectively stable atmosphere (i.e. one with N2 > 0). Clearly, magnetic buoy-
ancy instability is of most significance when it is the sole instability mechanism
available; it is therefore natural, in general, to consider sub-adiabatically strati-
fied atmospheres. This is particularly true for the tachocline, where it is envisaged
that magnetic buoyancy is responsible for the disruption of the magnetic field in a
convectively stable region.

The problem of the ideal (diffusionless), linear instability of a stratified horizontal
field was first solved by Newcomb (1961), in full generality, using the energy
principle of Bernstein et al. (1958). Newcomb showed that instability to modes
that do not bend the field lines (interchange modes) occurs if and only if (11.4) is
satisfied somewhere in the fluid. More specifically, he expressed the criterion as

dρ

dz
> − ρg

a2 + c2
. (11.6)

Expressions (11.4) and (11.6) are equivalent, using the equation of magneto-
hydrostatic equilibrium; whereas the latter resembles a slight modification to the
non-magnetic criterion, it is the former that brings out most clearly the destabilizing
influence of the field gradient.

Although (11.4) captures the essential physics of the magnetic buoyancy instabi-
lity of a stratified magnetic field there are clearly many crucial effects that are
neglected, particularly three-dimensional perturbations, diffusion and rotation. One
of the most surprising aspects of magnetic buoyancy instability is that three-
dimensional perturbations, despite having to do work against magnetic tension, can
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be more readily destabilized than interchange modes, which do not bend the field
lines. Newcomb (1961) showed that the most readily destabilized three-dimensional
perturbations are those with kx → 0, and that a necessary and sufficient condition
for their instability is that the inequality

dρ

dz
> − ρg

c2
(11.7)

is satisfied somewhere in the plasma. At least in this guise, this expression is
unchanged from its non-magnetic counterpart. The crucial role of the field was how-
ever elucidated by Thomas & Nye (1975), who showed (essentially) that criterion
(11.7) can be expressed in the alternative form:

− ga2

c2

d

dz
ln B > N2. (11.8)

Comparison of (11.4) with (11.8) shows that whereas the instability of interchange
modes requires a sufficiently rapid decrease with height of B/ρ, that of three-
dimensional modes requires the less stringent criterion of an equivalent decrease
with height only of B. The physics underlying the instability mechanism was
explored by Hughes & Cattaneo (1987). For interchange modes, the necessary
work that must be done against gas pressure in order to create density perturba-
tions is accompanied by unavoidable – but non-beneficial – work against magnetic
pressure. Three-dimensional perturbations, however, with a long variation in the
direction of the field, do work against gas pressure whilst minimizing that against
magnetic pressure; the stabilizing effects of tension are negligible for such perturb-
ations. It should though be noted that the beneficial feature of undulatory modes
(i.e. modes with bent field lines) occurs only for three-dimensional motions; two-
dimensional undulatory perturbations (ky = 0) are unable to escape work against
magnetic pressure. Although expression (11.7) is a necessary condition for the
instability of such two-dimensional perturbations, it is by no means sufficient (see
Hughes & Cattaneo 1987); in general much more severe field gradients are needed
to drive any such instability.

The most extreme manifestation of magnetic buoyancy instability – and one
whose nonlinear evolution we shall consider in Section 11.2.2 – is that arising
from a discontinuity with height of the magnetic field. Such an equilibrium has a
discontinuity in the gas pressure and, for continuous temperature profiles, a discon-
tinuity in the density, with lighter gas supporting heavier gas. Such an equilibrium
is thus susceptible to a Rayleigh–Taylor instability. This was first investigated by
Kruskal & Schwarzschild (1954), who considered the stability of a plasma suppor-
ted above a vacuum by a magnetic field. A local analysis (e.g. Parker 1979) yields
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the following dispersion relation governing the growth rate s:

s2 =
g�ρ(k2

x + k2
y )1/2 − ρa2k2

x

2ρ + �ρ
, (11.9)

where �ρ denotes the jump in density at the interface. It is noteworthy that for this
Rayleigh–Taylor type of instability – and in contrast to the instability of a smoothly
varying field – the most readily destabilized modes are interchanges (kx = 0), the
effects of bending the field lines here being entirely penalizing.

11.2.1.2 The role of diffusion

So far we have considered only ideal (i.e. diffusionless) magnetic buoyancy instabil-
ities. However, as with many instability mechanisms, the incorporation of diffusive
effects can lead to significant qualitative and quantitative changes to the nature of
the instability. From the simple parcel argument outlined above it is readily seen
that it is beneficial to the instability if the magnetic diffusivity η is small (thus
maintaining the destabilizing field gradient) and the thermal diffusivity κ is large
(thereby eroding the stabilizing entropy gradient). A formal analysis (Gilman 1970;
Acheson 1979) leads to the following instability criterion (neglecting viscosity and
in the limit of kx → 0), which should be regarded as the diffusive modification
to (11.8):

− ga2

c2

d

dz
ln B >

η

κ
N2. (11.10)

(The full criterion, for non-zero viscosity and finite wavenumbers, can be found
in Acheson (1979).) In stellar interiors, the laminar values of η and κ satisfy the
inequality η ≪ κ; with these values the stabilizing influence of the entropy gradient
(N2 > 0) is dramatically reduced. On the other hand, if one were to argue that
laminar values are inappropriate and that all diffusivity ratios are O(1) then the
influence of any stabilizing entropy gradient is undiminished. This is possibly an
important issue in the triggering of magnetic buoyancy instabilities in the tachocline,
and one to which we shall return in Section 11.5.

In addition to important modifications to the instability criteria (11.4) and (11.8),
which describe direct instabilities (i.e. Re(s) > 0, Im(s) = 0), diffusive effects
can lead to the onset of oscillatory instabilities (Re(s) > 0, Im(s) �= 0; sometimes
referred to as overstability). Interestingly, the equations for interchange instabil-
ities in the presence of diffusion can be transformed into those of thermosolutal
convection (Spiegel & Weiss 1982; Hughes & Proctor 1988), the most extensively
studied double-diffusive system (see, for example, Turner 1973). The transform-
ation, although mathematically straightforward, is not what one might naïvely
imagine on physical grounds (with the entropy gradient mapped to the thermal
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gradient, and the gradient of magnetic field mapped to that of salinity), but instead
maps the thermal gradient of thermosolutal convection into a linear combination of
the entropy and magnetic field gradients. This leads to the following criterion for
the onset of overstability:

− ga2

c2 (η + ν − κ(γ − 1))
d

dz
ln

(
B

ρ

)

> (κ + ν)(κ + η)(ν + η)
k6

k2
x

+ (κ + ν)N2, (11.11)

where k2 = k2
x + k2

z (recall ky = 0 here). Criterion (11.11) describes two rather
different types of instability depending on the sign of η + ν − κ(γ − 1).

If η + ν > κ(γ − 1) (which is typically not the case in stellar interiors) then
overstability can occur only for ‘top-heavy’ field gradients (i.e. B/ρ decreasing
with height). The instability mechanism may be understood qualitatively in terms
of a parcel argument of the type first proposed by Cowling (1957) in the context of
magnetoconvection. For the sake of simplicity let us here assume that κ is extremely
small such that we can neglect thermal considerations. Suppose a parcel (or flux
tube) is displaced upwards and is denser than its surroundings. It will then fall and,
as a consequence of mixing with adjacent gas of a weaker field strength during its
voyage, will return to its original level with a weaker field – and hence a higher
density – than it had initially. The parcel will then ‘overshoot’ on the downward
side, repetition of this process leading to growing oscillations.

If, on the other hand, η+ν < κ(γ −1) then criterion (11.11) describes oscillatory
instability for ‘bottom-heavy’ field gradients (i.e. B/ρ increasing with height); in
other words, the rather surprising notion of instability when both gradients (field
and entropy) are ‘stabilizing’ (Hughes 1985a) – and in contrast to thermosolutal
convection where no instability can occur when both the thermal and salinity gradi-
ents are stabilizing. The instability mechanism can, however, again be understood in
terms of a parcel argument, where here, for simplicity, we may neglect the effects
of magnetic diffusion. The crucial feature of the instability is that when a flux
tube is raised in an atmosphere in which B increases with height it is squashed
by the stronger external field; if the squashing is sufficiently vigorous, the tube
will be hotter than its surroundings. However, with B/ρ increasing with height the
tube is guaranteed to be denser than its surroundings and hence will fall. Instabil-
ity is then facilitated by thermal diffusion, which transmits heat away from the
squashed (and heated) tube, causing it to return to its original level cooler, and
hence denser, than it was initially. As explained above, this is precisely the recipe for
overstability.
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11.2.1.3 The influence of rotation

The simplest possible order of magnitude estimate for the growth time T of a direct
magnetic buoyancy instability gives T ∼ (c/a)(d/g)1/2 ≈ 30 days, on adopting a
plasma beta of β = 108 and taking d as the depth of the tachocline. Since this is
comparable to the solar rotation period it suggests that rotation will be an important
ingredient in the evolution of the instability. By far the most comprehensive study
of magnetic buoyancy instability influenced by rotation is that of Acheson (1978),
who considered the instability of a toroidal magnetic field in a cylindrical geometry,
not only incorporating differential rotation �(r, z), but also the effects of latitud-
inal variation via radial and axial components of the acceleration due to gravity.
His study covered not only instabilities driven by magnetic buoyancy but also those
resulting from differential rotation (such as Goldreich–Schubert–Fricke instabilit-
ies) and from gradients in the magnetic field (even in the absence of gravity). His
analysis – and indeed that of all studies of the role of rotation on magnetic buoyancy
instabilities – was local, and hence could not capture the influence of velocity shear
on magnetic buoyancy instabilities (or, indeed, shear flow instabilities themselves).

Interchange modes (the plane layer counterpart of axisymmetric modes) are the
most affected by rotation through the angular momentum constraint (although this
can be eased by viscosity); we shall therefore concentrate on undulatory modes.
The full picture is extremely complicated (see Acheson 1978) and so here we
shall focus on the simpler case of the uniform rotation of a plane layer, with the
initial magnetic field, gravity and the rotation vector mutually orthogonal. Even
for this simplified system analytical progress is, in general, not possible. However,
for rapid rotation one may adopt the magnetostrophic approximation (neglecting
inertial terms) and obtain the following criterion for the instability of low-frequency
modes (the plane-layer equivalent of equation (7.11) of Acheson 1978):

−γ g

c2

d

dz
ln

(
B

ρ

)
>

k2
x k2

k2
y

+ 4
η2�2

a4

k4

k2
x

+ (γ − 1)2g2

4c4
+ η

κ

N2

a2

− (γ + 1)2g2

4c4
(
1 + 8ηκ(�2/N2a2)(k4/k2

x )
)2 , (11.12)

where k2 = k2
x +k2

y +k2
z , and where it has also been assumed that thermal diffusion

is suitably fast. Using this expression, Acheson (1978) nicely tied earlier results of
Gilman (1970), who considered a constant Alfvén speed atmosphere (B ∝ ρ1/2)
and infinite thermal and electrical conductivities, together to subsequent extensions
by Acheson & Gibbons (1978), who considered arbitrary field configurations, and
Roberts & Stewartson (1977), who examined the regime of large but finite conduct-
ivities. In particular, Roberts & Stewartson demonstrated that for a constant Alfvén
speed atmosphere, instability could be more easily facilitated for finite (as opposed
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Figure 11.1. Growth rate versus meridional wavenumber for various values of
the azimuthal wavenumber, here denoted by m. The parameters are chosen to
represent conditions in the solar convective overshoot zone. Crosses denote a low-
frequency instability; dots denote a high-frequency instability. (From Schmitt &
Rosner 1983.)

to infinite) values of κ . Expression (11.12) makes clear, at least for the parameter
regime of rapid rotation and fast diffusion, the identical behaviour of N2 and 1/κ .
Thus, from the Roberts & Stewartson result, it follows, possibly somewhat sur-
prisingly initially, that increasing N2 (i.e. increasing the stable stratification of the
background state) can be destabilizing – though ultimately is, of course, stabiliz-
ing. Simply speaking, there is an optimal frequency for oscillatory double-diffusive
instabilities, such that diffusion acting on a displaced fluid element generates the
maximal density shift for a returning parcel; increasing the stable stratification
changes the oscillation frequency of fluid parcels and may act to shift it favourably
for instability. Such behaviour has also been identified in other double-diffusive
systems (e.g. Masuda 1978; Soward 1979; Pearlstein 1981).

The general dispersion relation, incorporating rotation, is a fifth-order complex
equation, which typically can be solved only numerically. This has been performed
by Schmitt & Rosner (1983) and by Hughes (1985b). Schmitt & Rosner focused
their attention on the calculation of growth rates of unstable modes for parameter
values appropriate to the Sun. They found that for a toroidal field whose strength
decreased with radius in a slightly sub-adiabatic region, and assuming molecular
diffusivities, both low and high frequency undulatory modes are unstable, with
comparable growth rates, but very different meridional scales (see Figure 11.1).
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Figure 11.2. The stability boundaries of the various unstable modes plotted sep-
arately in the B′ – τ plane, where τ = η/κ . Plot (a) shows the boundary of the
low-frequency (magnetostrophic), top-heavy mode; plots (b) and (c) depict the
two possible configurations for the unstable regions for the high-frequency modes
(τ2 = (γ −1)/2). Plot (d) shows the boundary of the low-frequency, bottom-heavy
modes. In all the plots τ1 = γ − 1 − ν/κ . (After Hughes 1985b.)

Hughes, on the other hand, concentrated on determining the stability boundaries
of the various modes present in the system. Expression (11.12) gives the stability
boundary for the instability of low frequency modes for ‘top-heavy’ field gradients.
Instability though is also possible for low frequency modes driven by bottom-heavy
field gradients and also for high frequency modes with field gradients of either sign.
The regions of instability are sketched in Figure 11.2.

11.2.1.4 The interaction with a shear flow

A key ingredient missing from any local analysis of the effect of differential rotation
on magnetic buoyancy instability is that of velocity shear. Just as for classical
(hydrodynamical) shear instabilities, these must be captured through an eigenvalue
analysis. The identification of the solar tachocline, and its likely coincidence with
the storage site for the Sun’s toroidal magnetic field, highlights the importance of
examining the interaction between shear flows and magnetic buoyancy instabilities.

This problem, though with a different motivation, was first investigated by Adam
(1978), and has recently been extended by Tobias & Hughes (2004), both works
examining the stability of equilibria with aligned field and flow, B = B(z)x̂,
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U = U(z)x̂. The energy principle of Bernstein et al. (1958) may be employed
to investigate ideal (diffusionless) instabilities, for which the profiles of field and
flow can be arbitrary functions of z. However, the presence of a shear flow renders
the linear operator non-self-adjoint (Frieman & Rotenberg 1960) and thus, in con-
trast to the case with no shear flow, it is only possible to derive sufficient conditions
for the stability of the flow. Using the energy principle, Tobias & Hughes (2004)
derived two stability criteria. The first is that stability is assured if there exists any
constant U0 such that everywhere both (U − U0)

2 = Ũ2 < c2
T and

Ũ2 ≤ a2(c2ρ′ − ρg)

(a2 + c2)ρ′ − ρg
, (11.13)

where cT(z) is the tube speed (or cusp speed), defined by

c2
T = a2c2/(a2 + c2). (11.14)

Criterion (11.13) extends the result of Adam (1978), who showed that inequality
(11.13) guaranteed stability for the restricted class of two-dimensional undulatory
modes. The second criterion of Tobias & Hughes (2004), which is somewhat more
involved, involves the derivative of U(z): stability is guaranteed if, everywhere,
Ũ2 < c2

T and

− d
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(k2
x + k2

y )(a2 + c2)(c2
T − Ũ2) + k2

x Ũ4
. (11.15)

The rather complicated expression on the left-hand side of (11.15) may, depending
on the form of U, take either sign. Thus although the right-hand side of (11.15) is, for
Ũ2 < c2

T (the range of validity of the criterion), a monotonically decreasing function
of Ũ2, there remains the interesting possibility that, for fixed values of kx and ky,
an atmosphere that is unstable in the absence of a flow may be stabilized by the
presence of a suitable shear. However, it should be noted that since this potentially
stabilizing term tends to zero as kx → 0, criterion (11.15) can say nothing about
whether overall stability – i.e. stability considering all values of kx and ky – can be
attained by the incorporation of shear.

It is of interest to note that since the criterion (11.15) requires that Ũ2 < c2
T then,

at least via the energy principle, we are unable to say anything (for non-zero U)
about the stability of the non-magnetic case. Thus, unfortunately, expression (11.15)
with a ≡ 0 cannot be interpreted as a Richardson-type criterion for compressible
atmospheres.
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Figure 11.3. Growth rate as a function of the location of the shear (zs) for the flow
U(z) = U0tanh α(z − zs). Here U0 = 7 (measured in terms of the Alfvén speed)
and α = 1 (solid line), 5 (dashed) and 10 (dot-dashed). (From Tobias & Hughes
2004.)

Expressions (11.13) and (11.15) yield important information on the nature of
shear flows for which an atmosphere with a stratified magnetic field remains stable.
However, the analysis reveals nothing about the influence of shear flows on unstable
modes driven by magnetic buoyancy. Such information can be achieved only via
a solution of the linear eigenvalue problem, which, typically, must be performed
numerically. Attention has to be focused on specific choices of the profiles for
U(z) and B(z) and thus it is not possible to obtain results of the same generality
as the sufficient criteria for stability, expressions (11.13) and (11.15). Tobias &
Hughes (2004) considered the influence of two different velocity shear profiles –
one a cubic in z and the other varying as tanh(z) – on atmospheres unstable in the
absence of shear and with a magnetic field decreasing linearly with height. They
found that the shear ultimately has an ‘axisymmetrizing’ and stabilizing effect on
the instability, although for certain modes (with fixed values of the wavenumbers)
the initial effect is to destabilize the instability further. The stabilizing role of the
shear depends crucially on the precise location of the region of strong shear; this is
illustrated clearly in Figure 11.3, which depicts the growth rate for a shear flow of
the form U(z) = U0tanh α(z − zs) for a range of zs and three different values of α.
It can be seen that the shear has its most stabilizing effect when it is localized about
z ≈ 0.75, the value of z about which the eigenfunction for the field in the absence
of shear is peaked.
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Figure 11.4. Snapshots of the evolution of the magnetic field for an interchange
mode at eight different times; the plots are scaled independently. The field is
directed into the page and is initially uniform, occupying the region 0.2 < z < 0.4.
The evolution is controlled by the interaction of vortex pairs. (After Cattaneo &
Hughes 1988; courtesy Evy Kersalé.)

11.2.2 Nonlinear evolution

In terms of the deep-seated solar magnetic field, one of the crucial questions is
whether the nonlinear evolution of the magnetic buoyancy instability of a smoothly
varying field can give rise to concentrated clumps of field (‘flux tubes’) of the form
that eventually protrude through the solar surface. This problem was first addressed
by Cattaneo & Hughes (1988), who considered the nonlinear evolution of the two-
dimensional (interchange) instability of a slab of uniform field embedded in an
otherwise non-magnetic atmosphere. In this case the instability is driven solely by
the density jump at the upper interface of the magnetic slab. As anticipated for a
magnetically driven Rayleigh–Taylor instability, the rising field adopts the form of
magnetic mushrooms. A strong shear along the magnetic interface results which,
via a secondary Kelvin–Helmholtz instability, wraps the gas in the edges of the
mushrooms into strong vortices. The subsequent evolution is then dominated by
the pairwise interaction of neighbouring vortices from different mushrooms, which
act in concert to drag down pockets of strong field despite their inherent buoyancy.
The evolution of the field is portrayed in Figure 11.4. So although this very simple
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(a) (b)

Figure 11.5. Numerical simulations of the nonlinear breakup of a magnetic layer.
The strength of the dominant x-component (into the page) is shown, darker tones
corresponding to stronger fields. In both cases the field is initially horizontal with
a weak By component. In (a) the transverse (y) component vanishes at the upper
interface and increases linearly with depth. In (b) it vanishes near the lower bound-
ary and increases with height. The motions are independent of the x-direction into
the page. In (a) the emerging flux is small scale and a significant fraction of the layer
remains undisturbed, stabilized by the increasing transverse component. In (b) the
whole layer is consumed by the instability; the emerging field retains coherence
by virtue of its helical nature. (From Cattaneo et al. 1990b.)

model, in which the field lines remain straight throughout, does give rise to isolated
regions of strong field, these ‘tubes’ do not rise but, surprisingly, are transported
downwards.

Cattaneo et al. (1990a) extended the model to consider the instability of a weakly
sheared magnetic field B = (Bx(z), By(z), 0) with |By/Bx| small, but still restricted
attention to x-independent motions, thereby distinguishing the x-direction – these
modes may be thought of as the plane layer counterparts of the axisymmetric
evolution of a mixed toroidal/poloidal field. The determining factor for the nonlinear
evolution turns out to to be the location of the resonant layer, namely the height
at which By vanishes. Here the magnetic field is locally untwisted with respect to
x-independent modes, and is thus the place that offers the least resistance to the
instability – which again is driven by a discontinuity in density at the upper interface
of the field. Consequently, as illustrated in Figure 11.5, if the resonant layer is close
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to the upper interface then the instability adopts only a small vertical scale and the
escaping field is essentially untwisted. By contrast, if the resonant layer is deeper-
lying the instability adopts a longer vertical scale, it being energetically worthwhile
to untwist all of the field above the resonant layer in order to feel the benefits of
the untwisted field in the vicinity of the resonant layer. In this case the emerging
field fragments are large scale and, as a result of their strong ‘poloidal’ component,
maintain their coherence as they rise. Cattaneo et al. (1990b) speculated that a
variation in the distribution of a weak poloidal ingredient of the field may account
for the observed variation through the solar cycle in the scale and structure of
emerging flux (e.g. Golub et al. 1981).

Clearly, however, a global magnetic field responsible for the sunspot belts has suc-
cumbed to a non-axisymmetric (undulatory) instability, and it is therefore important
to investigate the unconstrained (three-dimensional) nonlinear evolution. As dis-
cussed above, the preferred mode of a Rayleigh–Taylor instability – i.e. one driven
by a discontinuity in the field rather than by a smooth variation – is two-dimensional.
Any three-dimensionality in this case must then arise either as a purely nonlinear
phenomenon or as a result of a three-dimensional initial perturbation. Matthews
et al. (1995) and Wissink et al. (2000) considered the same equilibrium state as
Cattaneo & Hughes (1988), but allowed for a fully three-dimensional nonlinear
development. The initial evolution is essentially two-dimensional, with the form-
ation of strong, anti-parallel vortices; however, the crucial difference from the
restricted two-dimensional evolution is that such vortex pairs are susceptible to
a three-dimensional instability, which causes a strong arching of the vortices and
hence of their associated magnetic field. The basic instability mechanism is that
first studied by Crow (1970), and which has received considerable attention owing
to its importance in the dynamics of trailing vortices from aircraft wings. The res-
ulting structure of the field is illustrated in Figure 11.6a; it is pleasingly reminiscent
of the notion of a tube of flux buckling and erupting through the solar surface, as
illustrated in Parker’s sketch in Figure 11.6b.

The most recent study to address the nonlinear development of magnetic
buoyancy instabilities from the base of the convection zone is that of Fan (2001),
who considered an initial state with a Gaussian profile for the magnetic field.
The important difference, in comparison with the top hat profiles used in the
work discussed above, is that the equilibrium quantities are such that the pre-
ferred modes are three-dimensional, with interchange modes stable. The evolution
is therefore three-dimensional from the outset. In appearance it is rather similar
to that found by Matthews et al. (1995) and Wissink et al. (2000), with the field
adopting the form of arched structures. However, the three-dimensionality in this
case is due to the initial instability, rather than to any subsequent nonlinear vortical
interactions.
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(a) (b)

Figure 11.6. (a) Isosurface of the magnetic field following the three-dimensional
evolution of an unstable magnetic layer. (From Matthews et al. 1995.) (b) Sketch
of the field erupting through the solar surface to give rise to a bipolar sunspot pair.
(After Parker 1979.)

11.3 The instability of isolated flux tubes

In Section 11.2 we discussed the instability of horizontally homogeneous magnetic
fields, with a view to considering whether a large-scale, global solar field could
give rise to the strong, isolated flux concentrations observed at the surface. A rather
different viewpoint, based on observations of concentrated fields at the surface, is
to suppose that the solar magnetic field exists always in the form of tubes, and to
explore the consequences of this assumption. An isolated tube of flux must have a
gas pressure deficit relative to its surroundings; its relative density will then depend
on the temperature difference (if any) between the tube and its surroundings. As
explained earlier, a tube that is always at the same temperature as its surround-
ings will have a density deficit and will thus be buoyant. If, however, heat transfer
between a tube and its surroundings is weak then one may argue that a tube, even
if initially in thermal equilibrium, will rise only until it attains mechanical equilib-
rium – of necessity at a lower temperature than its surroundings. Whether this occurs
depends both on the heat transfer between the tube and its surroundings and also on
the stratification of the atmosphere. For example, a tube rising adiabatically in an
adiabatic atmosphere will always be buoyant, whereas in an isothermal atmosphere
it will eventually attain mechanical equilibrium. In this section we investigate the
nature of the instability of flux tubes in mechanical equilibrium.

The instability in its simplest form, in which the flux tube is perturbed bodily
(without bending), may be addressed by a parcel argument rather similar to that
employed in Section 11.2.1 for the interchange instability of a diffuse field. Formally
the changes are minor, reflecting the fact that, even in the equilibrium state, the gas
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pressures of the tube and of the surroundings are different, and that external to the
tube there is no magnetic field. Thus (cf. expressions (11.2) and (11.3)) we have
the following conditions

δB

B
= δρ

ρ
,

δp

pi
= γ

δρ

ρ
, δp + BδB

µ0
= dp, (11.16)

where pi refers to the internal gas pressure, related to the external gas pressure pe

via (11.1). Manipulation of these expressions leads to the following criterion for
instability, first obtained, in a more formal manner, by Spruit & van Ballegooijen
(1982):

δ >
2 − γ

γ (2 + γβ)
, (11.17)

where δ = d ln Te/d ln pe − 1 + 1/γ is positive (negative) if the stratification of
the external medium is superadiabatic (subadiabatic), and β denotes the ratio of the
internal gas pressure to the magnetic pressure. There are two points of immediate
note. One is that instability is possible only for convectively unstable atmospheres
(δ > 0), the other is that increasing the field strength (decreasing β) is stabiliz-
ing. These two points highlight the stark difference between the instability of a
magnetized atmosphere in lateral pressure equilibrium, and that of an isolated tube
of magnetic flux. The rather counter-intuitive stabilizing effect of the magnetic
field arises through the very assumption of an initial equilibrium; the stronger the
magnetic field the cooler the tube must be, and consequently the more stable.

For more general motions of a flux tube one clearly has to progress beyond
simple parcel arguments. Spruit (1981) derived the thin flux tube equations, a set
of model equations that assumes the coherence of magnetic flux tubes, and models
their evolution under the influence of buoyancy, magnetic tension and a drag force
between the tube and the external medium. Spruit & van Ballegooijen (1982) found
that instability to wavy modes occurs if

k2
x <

1 + 1/β

2H2
p

(1/γ + βδ) , (11.18)

where Hp is the pressure scale height of the external medium. Thus instability will
occur for sufficiently long wavelengths provided that βδ > −1/γ , which should
be contrasted with inequality (11.17), the instability criterion for modes that raise
the entire tube without bending. Thus flux tubes in convectively stable atmospheres
(δ < 0) can be unstable, instability being facilitated by the flow along the tube,
as envisaged by Parker (1955). It is though worth pointing out that in convectively
unstable atmospheres (δ > 0), increasing the strength of the field is a stabilizing

influence, just as for the interchange modes. For a very weak field (β ≫ 1) the
growth rate of the instability is proportional to δ1/2, whereas for a very strong field
(β ≪ 1) it is reduced to O(β1/2).
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Figure 11.7. Regimes of instability for flux tubes stored in the overshoot region;
m denotes the azimuthal wavenumber. (From Caligari et al. 1995.)

Caligari et al. (1995) have explored the consequences of this instability mech-
anism for flux tubes stored in the convective overshoot region. Their main result
(Figure 11.7) is that fields up to O(105)G (i.e. super-equipartition fields) can be
stored before instability sets in, and that this therefore provides a natural explan-
ation for the production of strong flux tubes that can subsequently rise unscathed
through the convection zone.

11.4 The buoyant rise of isolated flux tubes

The appearance of active regions at the solar surface is certainly suggestive of tubes
of magnetic flux erupting through the photosphere. The simplest model of a bipolar
sunspot pair is of a ‘magnetic sea serpent’ protruding from the Sun. One of the most
difficult problems in solar MHD is to relate the observed surface field to the posited
deep-seated field. It is, in some sense, a ‘post-tachocline’ problem and one that,
despite its importance, strictly lies outside the scope of this volume. That said, it
is so closely linked to the instability mechanisms discussed above that it would be
remiss not to include some discussion here.

The problem has received considerable attention, mostly based on models
employing the thin flux tube approximation (for an extensive list of references
see, for example, the reviews of Moreno-Insertis 1992; Fan 2004; Schüssler 2005).
As discussed above, flux tubes can be unstable to undulatory modes. The nonlinear
development of this instability leads to pronounced arching, with the top of the tube
rising through the convection zone, and with the bottom trapped in the overshoot
zone. There is, however, a serious problem in this description of the field. As the
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tube rises it expands dramatically, with a concomitant reduction in field strength,
leading to what has been termed an ‘explosion’ of the flux tube. Various scenarios
have been advanced for what may happen to the tube after the explosion. However,
one must also consider the possibility that an explosion of the tube signifies the
breakdown of the theory itself.

From surface observations we have a very good knowledge of the field strength
at the solar surface, and how it varies depending on the size of the magnetic ele-
ments. However, we have an extremely limited knowledge of the field strength
at depth. Within the thin flux tube theory a partial answer can be provided by
considering the influence of rotation on rising tubes. Choudhuri & Gilman (1987)
and Choudhuri (1989) have argued that the rise of flux tubes starting from the
base of the convection zone with a field strength �104 G is strongly constrained
by rotation and, consequently, the field emerges in polar regions. Only if the ini-
tial field strength �105 G does the field emerge at low latitudes, as observed on
the Sun. D’Silva & Choudhuri (1993) have used the same thin flux tube model
to investigate the tilt of bipolar magnetic regions, and they conclude that for
consistency with the observed tilt at the solar surface, the field strength at the
base of the convection zone must be in the range 60–160 kG. For these reas-
ons, together with the flux tube stability results discussed in Section 11.3, a field
strength of 105 G at the base of the convection zone has become a widely quoted
figure.

Notwithstanding the ability of the thin flux tube model to be able to deal with the
dynamics of the global solar field, and indeed to make predictions concerning both
flux emergence and the field strength at depth, it is still worthwhile casting a critical
eye on the very roots of the approximation. In particular, even assuming for the
moment that the field does assume the form of flux tubes – isolated concentrations
of field surrounded by a flux surface – is its behaviour well-approximated by the
thin flux tube approximation? This problem has been looked at in different guises
by a number of authors. (e.g. Emonet & Moreno-Insertis 1998; Fan et al. 1998;
Hughes et al. 1998; Hughes & Falle 1998). A common thread to emerge from all
of these calculations is that the internal field structure, measured by its twist for
example, is a crucial ingredient in determining the coherence of any rising tube. A
tube needs to possess a sufficiently twisted field in order to prevent its annihilation
through the incursion of vorticity. The internal dynamics, which is simply neglected
or ‘averaged over’ in the thin flux tube approximation, probably plays a crucial role.
Hughes & Falle (1998), via an adaptive grid, high Reynolds number simulation,
showed also how the interactions between the tube and its surroundings can lead to a
buoyant tube taking a path that is far removed from the vertical, and that, therefore,
the interactions between the tube and its surroundings are far more complicated
than can be modelled by a simple drag force.
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11.5 Implications for the tachocline

Understanding the role of magnetic buoyancy in the evolution of the solar magnetic
field entails two aspects. One is elucidating the various physical processes, such as
instability mechanisms, that may be occurring. The other is deciding which of these
are of relevance. The preceding sections have addressed the former issue; in this
concluding section I shall address the latter. The first nettle to grasp concerns the
very means by which the magnetic field should be treated. One possibility is to argue
that the magnetic field exists only in the form of coherent tubes of flux, to derive
equations for the dynamics of such tubes, and then to evaluate their consequences.
The second approach is to stay more closely attached to the full MHD equations,
though of course this renders progress rather more difficult.

The rationale for adopting the flux tube paradigm is, in the words of Schüssler
(2005), ‘simply because they are there’. Whereas it is undeniably true that obser-
vations of the solar surface reveal concentrations of magnetic field, one needs to be
careful both in the description of these flux concentrations and also in extrapolating
the structure of the magnetic field from the surface to the interior. Working down
from the surface we must first enquire into the nature of the magnetic field in the
convection zone. The flux tube picture essentially ignores the convective motions,
on the grounds that the field is sufficiently strong to resist their influence. Even
if this is so one must nonetheless ask whether the evolution of the field is gov-
erned by the thin flux tube equations. For a flux tube to maintain its coherence it
must, of necessity, be twisted, otherwise it simply falls apart as it rises (Schüssler
1979). However, the internal dynamics – which is neglected in the thin flux tube
approximation – then becomes an important issue. What is beyond doubt is that it
is possible to construct a sequence of flux tubes with differing internal structures,
that are nevertheless equally buoyant – and are thus all equal under the thin flux
tube approximation – but that exhibit a wide variety in their rise as governed by the
full MHD equations. This problem, even of itself, suggests that a certain degree of
caution should be exercised, and raises the question of when, if ever, the thin flux
tube equations are a rigorous approximation to the MHD equations. In reality the
field, even if far from homogeneous, will not be in the form of tubes with a separa-
tion between field and field-free regions. As revealed in all numerical simulations
(e.g. Cattaneo 1999) interactions between the fluid and field will be significant. A
self-consistent model of the field in the convection zone that takes account of these
interactions (but is still considerably simpler than the full MHD equations) would
represent a significant breakthrough.

Describing the earlier stages of the field’s evolution in terms of flux tubes is even
more problematic, since it is much more difficult to argue that the solar field at depth
exists as isolated tubes. Indeed, the global coherence of the solar field, manifested
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through Hale’s polarity laws, is instead suggestive of an underlying large-scale,
predominantly toroidal field. As discussed by Tobias & Weiss in Chapter 13, there
is as yet no satisfactory answer to the problem of generating a sizeable global field.
All the same, whatever the dynamo mechanism turns out to be, it seems almost
inevitable that an important ingredient will be the dragging out of a toroidal field
from a weaker poloidal component. This will immediately lead to a large-scale,
mixed poloidal/toroidal field. Unless the motion is in the form of narrow coherent
jets it will not form narrow tube-like structures in the magnetic field.

Consequently, despite the attractions arising from its simplicity, it seems that
the thin flux tube approximation is not a valid description of the turbulent MHD
processes that occur in stellar interiors. Thus we need to treat with some degree
of caution any estimates of the interior field strength, for example, that arise from
it. We are therefore forced back to the full MHD equations (or, preferably, to seek
an approximation to them that retains the crucial physics). At present we have
some limited knowledge of the separate parts that must eventually be put together
to explain the workings of the solar interior magnetic field; we can construct a
plausible picture of what might be happening, though it would be presumptuous to
believe we can do more than this at the moment.

It seems inescapable, given the smooth meridional dependence of the differential
rotation, that the field is fairly large-scale in the meridional direction (but possibly
of narrow radial extent) and that the field we eventually observe at the surface in
active regions is the result of an instability of this field. Clearly, in the very nature of
a buoyancy-driven instability, motions in the vertical direction are significant. This
obviously has a bearing on the structure of the tachocline and on the role of any
predominantly two-dimensional (horizontal) instabilities, such as those discussed
in Chapter 10; if these latter modes are to be of significance they must occur at a
greater depth than instabilities due to magnetic buoyancy.

As explained in Section 11.2, provided the field decreases sufficiently rapidly
with height it will be susceptible to magnetic buoyancy instability with a preferred
undulatory mode. Indeed, less vigorous instabilities can occur even when the field
increases with height. One criticism that has been levelled at the idea that the relevant
instability is that of a layer of field, rather than that of a tube, is that there is no strong-
field threshold for the instability; in particular, the Rayleigh–Taylor type modes will
occur for any field strength, whereas the Sun certainly has the means of holding back
at least some of its field until it has attained a certain strength. This point certainly
needs addressing, but the answer will presumably lie in the physics so far neglected.
A full explanation of the instability will require an understanding of the effect of a
tangled, rather than unidirectional, field; of the role of convective overshoot; and of
the influence of velocity shear. All of these are potentially stabilizing and may be
responsible for holding fields down until they are of equipartition strength. A further
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topic of considerable interest concerns the role of thermal and magnetic diffusion on
the instability, and their possible dependence on magnetic field strength. Schmitt
& Rosner (1983) put forward the interesting idea that when the field strength is
weak, the diffusivities assume their turbulent values (i.e. what we might think of as
O(1) Prandtl numbers) and instability is suppressed by, essentially, the stabilizing
N2 term on the right-hand side of inequality (11.10). Then, as a strong toroidal
field is wound up by differential rotation, the turbulent diffusivities are suppressed,
laminar values are assumed and the appropriate ordering becomes η ≪ κ; the
stabilizing entropy gradient is thus nullified and instability – of a strong field –
can take place. This appealing idea indeed represents a specific aspect of a broader
class of problems involving the suppression of turbulent transport by the dynamical
feedback of a magnetic field or a shear flow – manifested not only by turbulent
diffusivity but also, for example, by the α-effect of mean field electrodynamics.
This somewhat controversial area is central to a complete understanding of the
tachocline, as discussed by Diamond et al. in Chapter 9 of this book (see also the
review by Diamond et al. 2005).

What about the field that breaks away from this layer? As discussed in detail in
Chapter 13, an intriguing possibility is that, as it escapes, the field may contribute
to its regeneration. Thelen (2000a,b), for example, has considered the nature of the
α-effect driven by magnetic buoyancy and its role in a simplified dynamo model;
Cline et al. (2003), with a rather different model, have shown how a combination
of velocity shear and magnetic buoyancy is sufficient to drive a dynamo. As for
the treatment of the field as it rises through the convection zone, I believe that
modelling it in terms of isolated flux tubes lacks self-consistency, since it predicts a
massive expansion and subsequent ‘explosion’. The truth is probably that the field
is not in the form of tubes with closed flux surfaces, but is instead a complicated
tangled mess, albeit with a strong toroidal component, interacting inextricably with
the fluid motions in the convection zone. To understand this, either via numerical
simulations, or through a new theory that captures the essential physics but is simpler
than the full MHD equations, remains one of the great challenges of solar MHD.

References

Acheson, D. J. (1978). Phil. Trans. R. Soc. Lond., A289, 459.
Acheson, D. J. (1979). Sol. Phys., 62, 23.
Acheson, D. J. & Gibbons, M. P. (1978). J. Fluid Mech., 85, 743.
Adam, J. A. (1978). J. Plasma Phys., 19, 77.
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. (1958). Proc. R. Soc.

Lond., A244, 17.
Caligari, P., Moreno-Insertis, F. & Schüssler, M. (1995). Astrophys. J., 441, 886.
Cattaneo, F. (1999). Astrophys. J., 515, L39.



D. W. Hughes 297

Cattaneo, F. & Hughes, D. W. (1988). J. Fluid Mech., 196, 323.
Cattaneo, F., Chiueh, T. & Hughes, D. W. (1990a). J. Fluid Mech., 219, 1.
Cattaneo, F., Chiueh, T. & Hughes, D. W. (1990b). Mon. Not. Roy. Astron. Soc., 247, 6p.
Choudhuri, A. R. (1989). Sol. Phys., 123, 217.
Choudhuri, A. R. & Gilman, P. A. (1987). Astrophys. J., 316, 788.
Cline, K. S., Brummell, N. H. & Cattaneo, F. (2003). Astrophys. J., 599, 1449.
Cowling, T. G. (1957). Magnetohydrodynamics. Interscience.
Crow, S. C. (1970). AIAA J., 8, 2172.
Diamond, P. H., Hughes, D. W. & Kim, E.-J. (2005). In Fluid Dynamics and Dynamos in

Astrophysics and Geophysics, ed. A. M. Soward, C. A. Jones, D. W. Hughes &
N. O. Weiss. London: CRC Press, p. 145.

D’Silva, S. & Choudhuri, A. R. (1993). Astron. Astrophys., 272, 621.
Emonet, T. & Moreno-Insertis, F. (1998). Astrophys. J., 492, 804.
Fan, Y. (2001). Astrophys. J., 546, 509.
Fan, Y. (2004). Living Rev. Solar Phys., 1, 1 (http://www.livingreviews.org/lrsp-2004-1).
Fan, Y., Zweibel, E. G. & Lantz, S. R. (1998). Astrophys. J., 493, 480.
Frieman, E. & Rotenberg, M. (1960). Rev. Mod. Phys., 32, 898.
Gilman, P. A. (1970). Astrophys. J., 162, 1019.
Golub, L., Rosner, R., Vaiana, G. S. & Weiss, N. O. (1981). Astrophys. J., 243, 309.
Hughes, D. W. (1985a). Geophys. Astrophys. Fluid Dyn., 32, 273.
Hughes, D. W. (1985b). Geophys. Astrophys. Fluid Dyn., 34, 99.
Hughes, D. W. & Cattaneo, F. (1987). Geophys. Astrophys. Fluid Dyn., 39, 65.
Hughes, D. W. & Falle, S. A. E. G. (1998). Astrophys. J., 509, L57.
Hughes, D. W., Falle, S. A. E. G. & Joarder, P. (1998). Mon. Not. Roy. Astron. Soc.,

298, 433.
Hughes, D. W. & Proctor, M. R. E. (1988). Ann. Rev. Fluid Mech., 20, 187.
Jensen, E. (1955). Ann. Astrophys., 18, 127.
Kruskal, M. & Schwarzschild, M. (1954). Proc. R. Soc. Lond., A223, 348.
Matthews, P. C., Hughes, D. W. & Proctor, M. R. E. (1995). Astrophys. J., 448, 938.
Masuda, A. (1978). J. Ocean. Soc. Japan, 34, 8.
Moffatt, H. K. (1978). Magnetic Field Generation in Electrically Conducting Fluids.

Cambridge: Cambridge University Press.
Moreno-Insertis, F. (1992). In Sunspots: Theory and Observations, ed. J. H. Thomas &

N. O. Weiss. Dordrecht: Kluwer, p. 385.
Newcomb, W. A. (1961) Phys. Fluids, 4, 391.
Parker, E. N. (1955). Astrophys. J., 121, 491.
Parker, E. N. (1966). Astrophys. J., 145, 811.
Parker, E. N. (1975). Astrophys. J., 198, 205.
Parker, E. N. (1979). Cosmical Magnetic Fields: Their Origin and Their Activity. Oxford:

Clarendon Press.
Pearlstein, A. J. (1981). J. Fluid Mech., 103, 389.
Roberts, P. H. & Stewartson, K. (1977). Astron. Nachr., 298, 311.
Schmitt, J. H. M. M. & Rosner, R. (1983). Astrophys. J., 265, 901.
Schüssler, M. (1979). Astron. Astrophys., 71, 79.
Schüssler, M. (2005). Astron. Nachr., 326, 194.
Soward, A. M. (1979). J. Fluid Mech., 90, 669.
Spiegel, E. A. & Weiss, N. O. (1980). Nature, 287, 616.
Spiegel, E. A. & Weiss, N. O. (1982). Geophys. Astrophys. Fluid Dyn., 22, 219.
Spruit, H. C. (1981). Astron. Astrophys., 98, 155.
Spruit, H. C. & van Ballegooijen, A. A. (1982). Astron. Astrophys., 106, 58.

http://http://www.livingreviews.org/lrsp-2004-1


298 Magnetic buoyancy instabilities in the tachocline

Tayler, R. J. (1973). Mon. Not. Roy. Astron. Soc., 161, 365.
Thelen, J.-C. (2000a). Mon. Not. Roy. Astron. Soc., 315, 155.
Thelen, J.-C. (2000b). Mon. Not. Roy. Astron. Soc., 315, 165.
Thomas, J. H. & Nye, A. H. (1975). Phys. Fluids, 18, 490.
Tobias, S. M. & Hughes, D. W. (2004). Astrophys. J., 603, 785.
Turner, J. S. (1973). Buoyancy Effects in Fluids. Cambridge: Cambridge University Press.
Wissink, J. G., Hughes, D. W., Matthews, P. C. & Proctor, M. R. E. (2000). Mon. Not. Roy.

Astron. Soc., 318, 501.



12

Instabilities, angular momentum transport and
magnetohydrodynamic turbulence

Gordon I. Ogilvie

The tachocline may be subject to a variety of instabilities leading to turbulent motion
and angular momentum transport. This chapter reviews some approaches that have
been found useful in the study of astrophysical accretion discs and discusses their
possible application to the tachocline.

12.1 Introduction

The solar tachocline is a thin structure characterized by strong differential rotation,
presumably in the presence of a magnetic field. It forms the interface between the
radiative interior and the convective envelope of the Sun, which differ greatly in
their dynamical properties, states of rotation and mechanisms of angular momentum
transport. While the tachocline might have the character of a laminar boundary layer
between these regions, it is more likely to be turbulent, at least in part, as a result
of intrinsic instabilities or possibly because of forcing by the convective motions
above.

Instabilities of the tachocline could derive from kinetic, gravitational or magnetic
sources of free energy. Shear instabilities depend on the free kinetic energy in
differential rotation, and may, as in the case of the magnetorotational instability,
require the assistance of a magnetic field. Gravitational energy may be liberated
through magnetic buoyancy (Parker) instabilities, while magnetic energy in non-
potential configurations may be released in purely magnetic (Tayler) instabilities. To
understand the existence and dynamics of the tachocline requires an appreciation of
such instabilities and the transport effects, especially angular momentum transport,
to which they give rise in a nonlinear regime. The possible role of the tachocline in
the operation of a large-scale magnetic dynamo may also depend on the outcome
of such instabilities.

Similar issues have been encountered in the study of astrophysical accretion
discs (e.g. Pringle 1981; Papaloizou & Lin 1995; Balbus & Hawley 1998), where
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gas rotates in Keplerian orbital motion around a central mass. In these thin struc-
tures the differential rotation is a dominant feature and mechanisms have been
sought that allow an efficient outward transport of angular momentum. It has been
found that, despite the very large Reynolds number of the Keplerian shear flow,
hydrodynamic instability is strongly inhibited by the stabilizing angular momentum
gradient and may be entirely absent, although this remains a controversial
issue. Instead, a magnetohydrodynamic (MHD) instability, the magnetorotational
instability (MRI), has been found to be ideally suited to the outward transport
of angular momentum. Its nonlinear development leads to MHD turbulence with
roughly the desired transport properties (Balbus & Hawley 1998). The possible
occurrence of a large-scale dynamo in discs is also an important and unresolved
issue.

There are certainly major differences between the tachocline and an accretion
disc. While the orbital motion in an accretion disc is highly supersonic and repres-
ents a practically inexhaustible source of free energy, the flows in the tachocline
are highly subsonic and the effects giving rise to differential rotation are much
weaker and more subtle. In addition, the tachocline may have a strong stable
stratification that inhibits vertical motions, something that is relatively weak or
absent in accretion discs. One could remark that both the tachocline and accretion
discs are difficult to resolve observationally at the present time, and are diffi-
cult to simulate numerically owing to the ranges of lengthscales and timescales
involved. Perhaps for these reasons they present serious challenges to the theoretical
astrophysicist.

This chapter focuses on instabilities of differential rotation and magnetic fields
and the angular momentum transport to which they give rise. I review some
approaches that have been found useful in the study of accretion discs and dis-
cuss their possible application to the tachocline. Angular momentum transport is
discussed from a general perspective in Section 12.2, while Section 12.3 describes
the magnetorotational instability and Section 12.4 reviews simple statistical mod-
els of anisotropic MHD turbulence. Section 12.5 describes a useful approach to
instabilities of differential rotation and magnetic fields, and conclusions are given
in Section 12.6.

12.2 Angular momentum transport in general

The equation of momentum conservation for a fluid can be written in the
general form

∂

∂t
(ρu) + ∇ · (ρuu) = ∇ · T, (12.1)
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where ρ and u are the density and velocity fields, while T is a symmetric stress
tensor field. In ideal MHD the stress tensor is

T = −p 1 − 1

4πG

(
gg − 1

2
g2 1

)
+ 1

µ0

(
BB − 1

2
B2 1

)
, (12.2)

where p is the pressure, g is the gravitational acceleration and B is the magnetic
field. The equation for the z-component of angular momentum in cylindrical polar
coordinates (s, φ, z) is

∂

∂t
(ρsuφ) + ∇ · (ρsuφu − sT · eφ) = 0, (12.3)

indicating that angular momentum transport in the meridional plane depends on
either advection by a meridional flow or transport by the stress components Tsφ

and Tzφ . According to Equation (12.2), such an anisotropic stress requires either
non-axisymmetric gravitational fields or a magnetic field with both meridional and
azimuthal components. In the presence of fluctuations associated with waves or
turbulence, an anisotropic Reynolds stress can also arise.

All of these possibilities have been considered in the context of accretion
discs (Papaloizou & Lin 1995). Gravitational, magnetic and Reynolds stresses can
be associated with either large-scale features such as spiral arms, vortices and
magnetized outflows, or small-scale features such as waves and turbulence.

12.3 The magnetorotational instability

The shearing sheet (Goldreich & Lynden-Bell 1965) is a very useful local model
of a thin, differentially rotating disc. By formally separating the rotation and shear
of the disc, straightening the streamlines and removing the horizontal boundaries
to infinity, it creates the simplest realistic environment in which to carry out local
stability analyses or studies of turbulence in discs.

In a differentially rotating disc with angular velocity �(s), the quantity

A(s) = − s

2

d�

ds
(12.4)

measures the shear rate, and is equal to 3�/4 in a Keplerian disc. Consider a
reference point (Figure 12.1), situated in the mid-plane of the disc and orbiting the
central mass in a circular orbit of radius s0 and angular velocity �0 = �(s0). It
is used as the origin of a local, rotating Cartesian coordinate system (x, y, z), with
unit vectors (ex, ey, ez) pointing in the radial, azimuthal and vertical directions,
respectively. The flow is represented locally as a uniform rotation �0 ez plus a
linear shear flow u0 = −2A0x ey, where A0 = A(s0). One subsequently omits the
subscript 0, understanding that � now refers to the uniform angular velocity of the
frame of reference.
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x

y

Figure 12.1. The shearing sheet. The differential rotation of the disc is represented
locally as a uniform rotation plus a linear shear flow.

Perhaps the simplest way to illustrate the magnetorotational instability (MRI)
is by describing the optimal mode in an incompressible shearing sheet, which is
an exact nonlinear solution known as the ‘channel flow’ (Goodman & Xu 1994;
Papaloizou & Lin 1995). Consider an incompressible fluid of uniform density ρ,
kinematic viscosity ν and magnetic diffusivity η. The sheet has an imposed uniform
vertical magnetic field Bz ez corresponding to an Alfvén speed va = (µ0ρ)−1/2Bz.

The channel flow has a very simple form, consisting of a layerwise motion
v(z, t) that is purely horizontal and independent of the horizontal coordinates. The
magnetic perturbation (µ0ρ)1/2b(z, t) has a similar form, while the total pressure
� = p + B2/2µ0 is unperturbed. The equation of motion and induction equation
then give

∂v

∂t
+ v · ∇(−2Ax ey) + 2� ez × v = va

∂b

∂z
+ ν

∂2
v

∂z2
, (12.5)

∂b

∂t
= b · ∇(−2Ax ey) + va

∂v

∂z
+ η

∂2b

∂z2
, (12.6)

in which the nonlinear terms such as v · ∇v vanish. The terms proportional to va

couple the velocity and magnetic perturbations and, by themselves, would lead
to vertically propagating Alfvén waves. Also present, however, are Coriolis and
shear terms that, by themselves, would lead to epicyclic oscillations of the velocity
perturbation and shearing of the magnetic perturbation. It is the coupling between
these effects that leads to the magnetorotational dynamics. When ν = η = 0 and
2� > A > 0, a growing solution of these equations (see Figure 12.2) is

v = (ex + ey)a eAt sin(kz), b = (ex − ey)b eAt cos(kz), (12.7)
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x
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v

b

Figure 12.2. The optimal mode of the MRI in the shearing sheet. The velocity and
magnetic perturbations are aligned at 45◦ to the shear flow; they are orthogonal to
each other and 90◦ out of phase in their vertical structure.

with k2
v

2
a = A(2� − A) and

b2

a2
= 2�

A
− 1 = 5

3
(Keplerian). (12.8)

The coupling of inertial and Alfvénic restoring forces, together with the shear-
ing of the magnetic perturbation, allows a runaway horizontal disturbance whose
energy grows by a factor of exp(3π) ≈ 12 392 per orbit. The instability relies on
the fact that, while the angular velocity of the orbital motion decreases outwards,
the specific angular momentum increases outwards. When two orbiting entities
are connected by a tether (in this case two layers of fluid connected by frozen-in
magnetic field lines), the tension in the tether attempts to bring the entities into
corotation by transferring angular momentum to the one with the smaller angular
velocity. However, the orbital dynamics renders the attempt futile because the addi-
tion of angular momentum to an entity actually decreases its angular velocity after
an adjustment of its orbital radius.

A necessary condition for instability is �A > 0, which is equivalent to
d(�2)/ds < 0 and is satisfied in realistic astrophysical discs, unlike Rayleigh’s
criterion d(s4�2)/ds < 0 for instability in the absence of a magnetic field. In the
presence of viscosity and resistivity, there is a non-trivial criterion to be met for
instability, but it is easily satisfied in the typical situation where the Reynolds and
magnetic Reynolds numbers are very large. Apparently the magnetic field allows
the fluid to be more inventive in releasing shear energy, but only when the angular
velocity decreases outwards.

The nonlinear development of the MRI has been investigated through numerical
simulations of the three-dimensional MHD equations in a shearing box, a version of
the shearing sheet that is truncated with periodic boundary conditions (Hawley et al.
1995; Brandenburg et al. 1995). Although the channel flow is an exact nonlinear
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solution (at least in the case of an incompressible fluid) it undergoes secondary
‘parasitic’ instabilities, for example those that feed off the growing shear between
the layers (Goodman & Xu 1994). The typical outcome appears to be a saturated
state of anisotropic MHD turbulence with well defined and stationary statistical
properties. Although the turbulent intensity undergoes large fluctuations, the ratios
of the various stress components are well defined.

It is of interest to examine the energetics of the MRI. The total energy equation
in an incompressible shearing sheet takes the form

d

dt

〈
1

2
(v2 + b2)

〉
= 2A〈vxvy − bxby〉 − 〈ν|∇ × v|2 + η|∇ × b|2〉, (12.9)

where the angle brackets denote a volume-average. The two terms on the right-
hand side of this equation are the production of energy through the action of a shear
stress on the imposed background shear flow, and the dissipation of energy through
viscosity and resistivity. The shear stress Txy derives from correlations between
the velocity components (Reynolds stress) and between the magnetic components
(Maxwell stress). In either the phase of growing instability or that of saturated
turbulence, the production term must be positive, i.e.

−2A

ρ
Txy = 2A〈vxvy − bxby〉 > 0. (12.10)

This situation corresponds to an outward transport of angular momentum, which
is precisely what is required to allow inward mass transport in an accretion disc.
The optimal MRI mode achieves this by having vx = vy and bx = −by, thereby
maximizing the desired correlations. The saturated turbulence also has correlations
of the desired sign (Txy is dominated by the magnetic contribution).

Indeed, the energetic balance requires that angular momentum transport occurs
down the gradient of angular velocity. In this sense the turbulence acts like a vis-
cosity and an effective viscous coefficient can be defined based on the ratio of the
mean stress Txy and the shear 2A. In contrast, if the turbulence derives from gravit-
ational or magnetic free energy, or is externally forced, it is not necessarily true that
the angular momentum transport occurs down the gradient of angular velocity. In
such cases ‘anti-frictional’ behaviour is possible in principle. On the other hand, a
negative correlation between bx and by is a very natural outcome of imperfect flux
freezing in a shear flow of this kind, and it can be argued on this basis that MHD
turbulence is more likely to lead to ‘frictional’ behaviour.

As discussed in Section 12.5 below, the application of these results to stellar
interiors is not entirely straightforward because the shear energy is subdominant
in that context. Although helioseismic inversions indicate that ∂(�2)/∂s < 0 at
high latitudes in the solar tachocline, other factors have a bearing on stability. The
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nonlinear development of the MRI in stars will also be different and is likely to
reduce or remove the differential rotation that drives the instability.

12.4 Statistical models of anisotropic MHD turbulence

When instabilities develop into turbulent motion, as is typical in astrophysical
situations in which the Reynolds number or similar relevant parameter is very
large, the problem arises of how to model the turbulence. The alternatives range
from direct numerical simulation (DNS) to analytical statistical modelling, with
intermediate options including large-eddy simulation, simulations with unresolved
dissipative scales, and simplified stochastic models. It is perhaps worth noting that
even DNS cannot predict the actual evolution of any turbulent system, because the
dynamics is chaotic and numerical errors are always present at some level even if
the dissipative scales are properly resolved.

In spite of their obvious chaotic variability, turbulent flows in laboratory experi-
ments and DNS appear to have well defined statistical properties that vary smoothly
in time and space and are reproducible. The difficulties of modelling these prop-
erties are well known. While many theories of turbulence focus on the spectral
properties of homogeneous and isotropic turbulence, for the present purposes it is
best to concentrate on the gross properties of the second-order correlations (stress
tensors, entropy flux, etc.) that give rise to transport effects in anisotropic turbulent
flows. A basic turbulence model in this context is one that relates the turbulent stress
tensor to the mean velocity field (or other large-scale properties of the flow).

The simplest starting point is the eddy-viscosity model (Boussinesq 1877) in
which the turbulent stress is proportional to the rate of strain,

Tij = µ(ui,j + uj,i), (12.11)

with an effective coefficient of viscosity µ. The mixing-length theory of Prandtl
(1925) supplies a formula for µ that provides remarkable agreement with the gross
properties of some fully turbulent flows, such as the mean flow rate in turbulent pipe
flow. The eddy-viscosity model was applied to accretion discs by Weizsäcker (1948)
and Lüst (1952), while Shakura & Sunyaev (1973) introduced a new parametrization
of the effective viscosity appropriate for accretion discs.

For certain limited purposes the eddy-viscosity model is probably perfectly
adequate. In particular, the evolution of the surface mass density in a thin accre-
tion disc is controlled by the rate of outward transport of angular momentum, and
therefore depends on a single quantity, the shear-stress coefficient Tsφ (integrated
vertically though the disc, and, if necessary, averaged in azimuth and in time). In
a differentially rotating disc, this quantity can always be parametrized in terms
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of a single effective viscosity coefficient µ; whether µ scales with the local pres-
sure in the disc, as in the model of Shakura & Sunyaev (1973), is a different
question, but it is at least a plausible proposition. The eddy-viscosity model cer-
tainly does not predict the correct anisotropic shape of the stress tensor in MRI
turbulence, nor does it predict the correct dependence on shear rate and angular
velocity.

It is sometimes argued that MHD turbulence has nothing to do with viscosity, and
that an eddy-viscosity model is entirely inappropriate for accretion discs. However,
there is an interesting analogy, both physical and mathematical, between a turbulent
magnetized fluid and a dilute solution of long-chain polymer molecules (Ogilvie
2001; Ogilvie & Proctor 2003). Both the magnetic field lines and the polymer
molecules are advected and stretched by the fluid flow and respond with an elastic
tension force. A polymer solution has a typical relaxation time τ on which the
coiling of the chains returns to a statistically isotropic state. Deformations with a
characteristic timescale T ≪ τ receive an elastic reaction while those with T ≫
τ experience a viscous response. Similarly, a turbulent MHD fluid is expected
to generate elastic or viscous-like stresses in response to rapid deformations and
steady shear, respectively. The simplest viscoelastic model is the (incompressible)
upper-convected Maxwell fluid, for which

Tij,t + ukTij,k − Tikuj,k − Tjkui,k = −1

τ

(
Tij − µ

τ
δij

)
. (12.12)

In the limit T ≪ τ this equation becomes identical to that satisfied by the magnetic
tension BiBj/µ0 in ideal MHD, while in the limit T ≫ τ the Navier–Stokes viscous
stress appears as the deviation from an isotropic pressure.

A more sophisticated approach is based on the exact transport equations for the
Reynolds and Maxwell stress tensors (Kato & Yoshizawa 1993; Ogilvie 2003),
and relates to the widely studied Reynolds-averaged Navier–Stokes models for
hydrodynamic turbulence. The exact transport equations contain some linear terms,
which represent the different ways in which velocity and magnetic fluctuations
interact with the mean flow and can be retained exactly, together with some
nonlinear terms that must be modelled. A simple model of this kind appears to
contain enough physics to capture the basic dynamics of the MRI and its satur-
ation in a state of anisotropic MHD turbulence (Ogilvie 2003). It differentiates
clearly between the behaviour of hydrodynamic and MHD fluctuations in shear-
ing and rotating systems, and seems to offer a reasonable description of how
the saturated stress tensors scale with the various parameters. For application to
the tachocline, this work needs to be generalized to stably stratified systems and the
models may need to be adapted if the turbulence acquires a quasi-two-dimensional
character.
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12.5 Analysis of localized perturbations

12.5.1 Introduction

In studies of the tachocline and of accretion discs the question arises of how best to
analyse the stability of a differentially rotating fluid in the presence of a magnetic
field. Although sometimes successful, the traditional approach of seeking instabil-
ities in the form of exponentially growing normal modes is generally found to be
problematic because, where modes exist, they depend essentially on boundary con-
ditions that may have been imposed artificially. For example, in a homogeneous,
unbounded shearing sheet there are no radially localized non-axisymmetric normal
modes (growing or otherwise), but this does not mean that the system is necessarily
stable in practice. It is also well known that instabilities of parallel shear flows with
boundaries are not well described by a normal-mode analysis because the linear
operator involved is highly ill-conditioned at large Reynolds numbers (Trefethen
et al. 1993).

An alternative approach is to seek spatially localized disturbances with a non-
exponential dependence on time. In parallel shear flows the relevant solutions
undergo transient algebraic growth before the onset of viscous damping (Thomson
1887). This has been found to be a more useful way of describing the transition
to turbulence (e.g. Grossmann 2000). In dynamically richer systems with inertial,
buoyant or magnetic restoring forces the relevant solutions have an exponential
(or sinusoidal) time-dependence to a first approximation, with a growth rate (or
frequency) deriving from a local dispersion relation.

In the context of accretion discs, Terquem & Papaloizou (1996) presented a
linear stability analysis of a differentially rotating fluid with a toroidal mag-
netic field. Assuming ideal MHD, they demonstrated the existence of an unstable
dense or continuous spectrum when certain local criteria are met. Equivalent res-
ults were obtained within the Boussinesq approximation by Friedlander & Vishik
(1995) using an apparently different approach that placed bounds on the spec-
trum of the linear operator. These spectral analyses are somewhat technical ways
of showing the existence of a linear instability even when normal modes may
not exist. Unfortunately the dense or continuous spectrum does not survive the
addition of any dissipative effects. In this Section I present this approach with
a somewhat broader interpretation and discuss its possible application to the
tachocline. It turns out to contain many, although not all, of the most important
instabilities.

The theory of ideal MHD has an attractive mathematical structure. Supplement-
ing the equation of motion of the fluid are three further relations: the equation of
mass conservation, the adiabatic condition and the induction equation. Each of these
relations describes the pure advection of a certain quantity (the mass element ρ dV ,
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the specific entropy s or the magnetic flux element B · dS) and can be integrated
exactly in Lagrangian variables. This property is useful when formulating problems
of stability in ideal MHD.

Consider, as a reference state, an arbitrary solution of the equations of ideal
MHD. Perturbations to the reference state may be described using the Lagrangian
displacement ξ , which is the vector displacement of a fluid element between the
unperturbed and perturbed flows. Specifically, x + ξ(x, t) is the position vector at
time t of the fluid element that is at position x in the unperturbed flow at that time.
Owing to the property of integrability described above, the Lagrangian perturbations
of density, entropy and magnetic field can be expressed exactly in terms of ξ and
∇ξ . The equation of motion then becomes a closed equation for ξ , of second order
in space and time variables, which has the character of a nonlinear Hamiltonian
field theory constructed on the unperturbed flow. In the linear approximation this
equation may be written

ρ
D2ξ

Dt2
= −∇�′ − (∇ · ξ)∇� − ξ · ∇∇� − ρξ · ∇∇� − ρ∇�′

+ 1

µ0
B · ∇[B · ∇ξ − (∇ · ξ)B], (12.13)

where

�′ = −
(

γ p + B2

µ0

)
∇ · ξ − ξ · ∇� + 1

µ0
B · (B · ∇ξ) (12.14)

is the (linearized) Eulerian perturbation of the total pressure, � is the grav-
itational potential and �′ its Eulerian perturbation. The adiabatic exponent is
γ = (∂ ln p/∂ ln ρ)s (named Ŵ1 by Chandrasekhar).

In either the tachocline or an accretion disc one is interested in instabilities of
differential rotation and toroidal magnetic fields. Consider now a basic state that
is steady and axisymmetric, with velocity field u = s�(s, z) eφ and magnetic field
B = B(s, z) eφ . The equilibrium condition is

∇� = ρ

(
g − v

2
a

s
es

)
, (12.15)

where g = −∇� + s�2 es is the effective gravitational acceleration including the
centrifugal term, and va = (µ0ρ)−1/2B is the Alfvén speed.

Solutions of Equation (12.13) may then be sought that have the form of a
normal mode,

ξ = Re
[
ξ̃(s, z) eimφ−iωt

]
, (12.16)
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where m ∈ Z is the azimuthal wavenumber and ω ∈ C is the frequency eigenvalue,
with Im(ω) > 0 implying instability. Substitution of this form into Equation (12.13)
leads to a vector partial differential equation (PDE) for the spatial structure of the
mode in the meridional plane. For frequencies of interest, however, this PDE is
typically hyperbolic and may not have smooth solutions satisfying any specified
boundary conditions.

12.5.2 Local dispersion relation

Consider the possibility of ‘solutions’ of this PDE that are asymptotically localized
and satisfy the equation in an asymptotic sense. These ‘solutions’ have an envelope
that is localized near a single point (s0, z0) in the meridional plane. Within the
envelope the displacement has a plane-wave form with many wavefronts. In the
asymptotic limit of interest, the scale of localization tends to zero, while the number
of wavefronts under the envelope tends to infinity. However, the frequency has a
finite limit and the group velocity tends to zero, so that the solution has the nature
of a frozen wavepacket. Formally, one may write

ξ̃ ∼ ξ̂ eikss+ikzz E

(
s − s0

ℓ
,

z − z0

ℓ

)
, (12.17)

where ξ̂ is a constant complex vector, k = ks es + kz ez is a real wavevector with
k = |k| → ∞, E is an envelope function with a scale of order unity, such as
E(x, y) = exp(−x2 − y2), and ℓ is the localization scale, such that

k−1 ≪ ℓ ≪ L, (12.18)

where L is the characteristic lengthscale of variation of the basic state. Differen-
tiation of the solution with respect to s or z then corresponds at leading order to
multiplication by iks or ikz.

Let the displacement be normalized such that ξ = O(1). In order for
Equation (12.13) to be satisfied asymptotically with m = O(1) and ω = O(1),
one requires that ∇ · ξ = O(1), rather than the natural scaling O(k). This implies
that the poloidal (or meridional) part of the displacement ξp ∼ ξpe, where the
unit vector e satisfies e · k = 0. In other words, ξ is almost transverse and almost
incompressible in order to avoid the potentially large acoustic restoring force. Fur-
thermore, one requires �′ = O(k−1), rather than O(1) or O(k). This condition,
in which the total pressure perturbation is minimized, is typical of the anelastic
approximation or its MHD analogue. The Eulerian perturbation of the gravitational
potential satisfies ∇2�′ = 4πGρ′ and is O(k−2); it therefore makes a negligible
contribution to the equation of motion for localized perturbations.
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The leading approximations to Equations (12.13) and (12.14) are then

− ρ(ω̂2 − ω2
a)ξp + 2iρ

(
ω̂� + vaωa

s

)
ξφ es = −ik�′ − ρ

(
g − 2v

2
a

s
es

)
∇ · ξ

− (ξp · ∇ρ)g − 2ρs�(ξp · ∇�)es + 2B

µ0

[
ξp · ∇

(
B

s

)]
es, (12.19)

− ρ(ω̂2 − ω2
a)ξφ − 2iρ

(
ω̂� + vaωa

s

)
ξp · es = −iρvaωa∇ · ξ , (12.20)

(v2
s + v

2
a )∇ · ξ = −ξp ·

(
g − 2v

2
a

s
es

)
+ ivaωaξφ , (12.21)

where ω̂ = ω − m� is the local Doppler-shifted frequency, ωa = mva/s is the
Alfvén frequency and vs = (γ p/ρ)1/2 is the sound speed. After �′ is eliminated
by projecting Equation (12.19) parallel to e, there remain three linear algebraic
equations for ξp, ξφ and ∇ · ξ , which have a non-trivial solution if and only if the
local dispersion relation
[
ω̂2 − ω2

a − (e · g)e · ∇ ln ρ − 2s�(e · es)e · ∇� + 2B

µ0ρ
(e · es)e · ∇

(
B

s

)

+
(

1

v
2
s + v

2
a

)(
e · g − 2v

2
a

s
e · es

)2][
ω̂2 −

(
v

2
s

v
2
s + v

2
a

)
ω2

a

]

=
[

2�ω̂ e · es +
(

vaωa

v
2
s + v

2
a

)(
e · g + 2v

2
s

s
e · es

)]2

(12.22)

is satisfied.
Terquem & Papaloizou (1996) used trial displacements of this form to show

that the linear operator has a dense or continuous spectrum including the range of
(generally complex) values of ω that satisfy this local dispersion relation at any
point. The frozen wavepackets can also be understood in a more physical way, as
discussed in Section 12.5.7 below.

This remarkable dispersion relation provides sufficient conditions for instability
and merits a detailed analysis. As a quartic equation for ω̂ it is best solved numer-
ically in practice but many of its properties are revealed by considering separately
a number of different limits.

12.5.3 Case of zero magnetic field

In the absence of a magnetic field the local dispersion relation (12.22) has solutions
ω̂2 = 0 and

ω̂2 = M : ee, (12.23)
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where

M = 1

2
(ga + ag + esb + bes) (12.24)

is a symmetric matrix, and

a = ∇ ln ρ − 1

γ
∇ ln p, b = 1

s3
∇(s4�2) (12.25)

are the Schwarzschild and Rayleigh discriminants, proportional to the gradients of
entropy and specific angular momentum, which satisfy the ‘thermal-wind’ equa-
tion g × a + es × b = 0. The unit vector e, corresponding to the direction of
the poloidal displacement, can be chosen at will. For stability one requires that
M have non-negative eigenvalues, equivalent to the well known Høiland criteria,
which are known to be necessary and sufficient for stability with respect to infinites-
imal axisymmetric disturbances (Tassoul 1978). Indeed, the azimuthal wavenumber
appears in Equation (12.23) only as a Doppler shift, so the analysis is effectively
axisymmetric in this case.

12.5.4 Limit of a weak magnetic field

Now consider the limit of a weak magnetic field (B → 0), but let m → ∞ in such a
way that ωa remains a finite and adjustable parameter. This limit provides the best
illustration of the MRI. Equation (12.22) becomes

(ω̂2 − ω2
a)

2 − (ω̂2 − ω2
a)M : ee − 4�2ω2

a(e · es)
2 = 0; (12.26)

regarded as a quadratic equation for ω̂2 −ω2
a , it has two real roots of opposite sign.

The two values of ω̂2 are therefore real and at least one is positive. Instability occurs
if and only if the product of roots of ω̂2 is negative, i.e.

ω2
a

(
M̃ : ee + ω2

a

)
< 0, (12.27)

where

M̃ = M − 4�2eses = 1

2
(ga + ag + esb̃ + b̃es), (12.28)

with

b̃ = s∇(�2) (12.29)

being proportional to the gradient of angular velocity. Since ωa is freely adjustable,
this criterion is most easily satisfied in the limit ωa → 0, and instability is found if
and only if M̃ has a negative eigenvalue. The Høiland criteria are recovered but with
the crucial difference that the angular momentum gradient is replaced with an angu-
lar velocity gradient. This removal of the 4�2 stabilizing term through the effects
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of magnetic tension (which remain in the limit B → 0 because of the increasing
parallel wavenumber) is a characteristic property of the MRI (e.g. Papaloizou &
Szuszkiewicz 1992) and leads to instability of systems with ∂(�2)/∂s < 0 under a
wide range of conditions.

12.5.5 Case of no rotation

The local dispersion relation in a non-rotating system,
[
ω2 − ω2

a − (e · g)e · ∇ ln ρ + 2B

µ0ρ
(e · es)e · ∇

(
B

s

)

+
(

1

v
2
s + v

2
a

)(
e · g − 2v

2
a

s
e · es

)2][
ω2 −

(
v

2
s

v
2
s + v

2
a

)
ω2

a

]

=
(

vaωa

v
2
s + v

2
a

)2 (
e · g + 2v

2
s

s
e · es

)2

, (12.30)

has real roots for ω2. The resulting criteria for instability can be shown to be identical
to those of Tayler (1973), which were deduced from the MHD energy principle and
are known to be necessary and sufficient. (The energy principle does not generally
lead to local stability criteria but does so in the case of an axisymmetric system
with a purely toroidal magnetic field.) Tayler’s analysis shows that only m = 0 and
m = 1 need be considered to determine stability.

12.5.6 Application to the tachocline

The local dispersion relation can readily be applied to any proposed model of the
tachocline within the present framework to test its local stability. To make simple
analytical deductions requires some idea of the relative magnitudes of the various
terms. In the presence of an overwhelming stable stratification (perhaps relevant to
the lower tachocline) the more interesting displacements are very nearly horizontal
and the dispersion relation simplifies to

[
ω̂2 − ω2

a − (e · er)
2N2

r − 2� cos θ sin θ
∂�

∂θ
+ 2B

ρr2
cos θ

∂

∂θ

(
B

sin θ

)]

× (ω̂2 − ω2
a) = 4 cos2 θ

(
�ω̂ + vaωa

s

)2
, (12.31)

where (r, θ , φ) are spherical polar coordinates and Nr = (grar)
1/2 ≫ |�|, |va/s|

is the radial buoyancy frequency. Although the displacement senses only the lat-
itudinal gradients of � and B, the results differ from a strictly two-dimensional
analysis confined to a spherical shell (Gilman & Fox 1997) because the wavevector
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k is almost vertical, rather than horizontal. In the weak-field limit the MRI is present
when

cos θ
∂(�2)

∂θ
< 0, (12.32)

which is not satisfied in the tachocline even though ∂(�2)/∂s < 0 at high latitudes.
In a hypothetical non-rotating situation an m = 1 Tayler instability would occur
when

∂

∂θ
(B2 cos θ sin θ) > 0 (12.33)

(cf. Goossens 1980), which is always satisfied near the poles. Rotation suppresses
the instability at the poles if �2 > v

2
a/s2. This conclusion agrees with that of Cally

(2003), although there is no issue of the existence of confined normal modes in the
present analysis.

These conclusions change if the stable stratification is not very strong. Radial
displacements are then less inhibited and the dispersion relation regains sensitivity
to radial gradients of � and B, allowing the possibilities of MRI and magnetic
buoyancy instabilities, but the general stability criteria are somewhat complicated
to write down.

12.5.7 General remarks

The above analysis has the considerable advantages of being purely algebraic and
also strictly local and independent of boundary conditions. It can deal with realistic
basic states that depend in a non-trivial way on both s and z, which in practice
are not amenable to a normal-mode analysis. Of course, ad hoc local stability
analyses are commonly made in astrophysical fluid dynamics but some care is
required to ensure consistency of the approximations made while eliminating the
stable high-frequency modes. One way to interpret the above analysis is in terms
of an unstable dense or continuous spectrum of the linear operator (Terquem &
Papaloizou 1996). Alternatively, one can proceed to the next order of the asymptotic
approximation and obtain an evolutionary equation for the envelope function E,
which must, in fact, depend also on a slow time coordinate in a non-exponential way
(Ogilvie & Proctor 2003). It is then found that solutions exist that grow according
to the local dispersion relation for asymptotically many e-foldings before being
destroyed by a superexponential cutoff resulting from dispersion and shear. This is
the closest approximation to a classical linear instability in this type of system. Small
diffusivities can also be included in the derivation of this evolutionary equation.

It must be emphasized, however, that some shear instabilities that might apply
to the tachocline, such as those of the inflection-point kind (Watson 1981;
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Garaud 2001) are truly global and are not described by the above analysis. In addi-
tion, double and triple-diffusive instabilities involving viscosity, thermal diffusion
and possibly resistivity are likely to be important in stellar interiors when no dynam-
ical instabilities exist (Acheson 1978; Spruit 1999; Menou et al. 2004). In particular,
the effect of stable stratification in suppressing the MRI when ∂(�2)/∂s < 0 but
cos θ(∂(�2)/∂θ) > 0 can potentially be overcome through the effects of thermal
diffusion.

12.6 Conclusion

The analogies between the tachocline and an accretion disc are imperfect but still of
some value. For energetic reasons, instabilities of the differential rotation must lead
to angular momentum transport down the gradient of angular velocity, something
that is more naturally achieved by MHD instabilities in any case. The magnetoro-
tational instability is optimized for this kind of transport but may be of limited
applicability in the tachocline because of strong stable stratification. Useful meth-
ods have been found for analysing instabilities of differential rotation and toroidal
magnetic fields in situations where normal modes may not be suitable. Statistical
models have also been developed to describe the gross dynamical properties of the
turbulent stress tensors and other transport properties of the MHD turbulence that
may result from such instabilities.
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Part VI

Dynamo action
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The solar dynamo and the tachocline

Steven Tobias & Nigel Weiss

The tachocline is believed to play a crucial role in the dynamo that maintains
magnetic activity in the Sun. We first review the observational properties of the
11-year activity cycle and the 22-year magnetic cycle, as well as of the recur-
rent grand minima, with a characteristic 200-year timescale, that are revealed by
proxy records. Then we discuss dynamo mechanisms, including differential rota-
tion (the ω-effect), the net effect of gyrotropic motions (the α-effect) and flux
transport by both large-scale motions (e.g. meridional flows) and small-scale pro-
cesses (e.g. turbulent transport). Next we consider the location of the solar dynamo,
comparing models with dynamo action distributed throughout the convection zone,
located near the surface or (most likely) concentrated near the interface between
the convective and radiative zones. Local pockets of strong field can then escape
from the vicinity of the tachocline and emerge through the photosphere as active
regions. The nonlinear back-reaction of the magnetic field affects transport coeffi-
cients (both α and the turbulent diffusivity β) and also drives the zonal flows that
are observed. Furthermore, it provides a mechanism for the modulation associ-
ated with grand minima. We conclude with our picture of the relationship between
convection, differential rotation and the dynamo in the tachocline.

13.1 Observations

The Sun exhibits cyclic magnetic activity, as do other slowly rotating stars with
deep convective envelopes. This activity is manifested in the sunspot cycle, which
has an average period of 11 years, as shown in Figure 13.1. Since the field reverses
from one activity cycle to the next, the magnetic cycle actually has a 22-year period,
which is far less than the timescale, of around 1010 years, for ohmic diffusion. It is
now generally accepted that this large-scale field is generated by a hydromagnetic
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Figure 13.1. Cyclic magnetic activity in the Sun (1874–2005). Upper panel: but-
terfly diagram, showing incidence of sunspots as a function of latitude and time.
Lower panel: variation of area covered by sunspots. (Courtesy of D.H. Hathaway.)

dynamo located in, or just below, the convection zone, and that the tachocline
plays a key role in this process (Ossendrijver 2003; Tobias 2005; Charbonneau
2005).

The large-scale magnetic field on the Sun displays a strikingly systematic pattern
that is best represented by sunspots, which are the sites of kilogauss magnetic fields
that inhibit convection at the solar surface (Schrijver & Zwaan 2000; Stix 2002). The
butterfly diagram in Figure 13.1 illustrates the incidence of sunspots as a function of
latitude and time: at the beginning of a new cycle, spots appear at latitudes of ±30◦

and the zones of activity then spread towards the equator, where they decay as the
next cycle begins at higher latitudes. Although this pattern is not strictly periodic,
the mean period is well-defined. Sunspots typically appear as pairs, in active regions
that are oriented approximately parallel to the equator. The two spots in a pair have
opposite magnetic polarities, and the polarity of preceding spots (in the sense of the
Sun’s rotation) is the same in each hemisphere but opposite in the north and south,
as shown by the magnetogram in Figure 13.2. Moreover, this polarity reverses from
one cycle to the next. These properties (Hale’s Law) correspond to the emergence
through the solar surface of a toroidal magnetic field that is antisymmetric about
the equator and reverses at the end of each 11-year cycle. On average, the axes of
sunspot groups are slightly inclined to parallels of latitude, with the preceding spots
closer to the equator, and this tilt increases with increasing latitude (Joy’s Law).
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Figure 13.2. Solar magnetogram obtained by the MDI instrument on SOHO. The
bright and dark patches denote regions with oppositely directed magnetic fields,
and sunspots occur within these regions. The sense of the Sun’s rotation is from left
to right. The polarities of preceding and following regions are consistent in each
hemisphere but antisymmetric about the equator. (Courtesy of Lockheed-Martin
Solar and Astrophysics Laboratory.)

In addition to these toroidal fields, there is also a weak poloidal field with dipolar
symmetry, which can be detected at high latitudes. These polar fields are strongest at
sunspot minimum, when they impart a recognizable large-scale magnetic structure
to the corona, and they reverse around the time of sunspot maximum. Their polarity
is such that they have the same signs as the fields of following spots of the preceding
activity cycle in each hemisphere.

The 11-year activity cycle is modulated on a longer timescale (Tobias 2002;
Weiss & Tobias 2007). Sunspots were first observed through telescopes at the
beginning of the seventeenth century but there was a prolonged dearth of spots
from 1645 to 1715 – the Maunder Minimum – coinciding with the reign of the
Roi Soleil (Ribes & Nesme-Ribes 1993), and a further decline in activity around
1800. Fortunately, the record of solar activity can be extended much further back
by using proxy records. The incidence of galactic cosmic rays, which lead to the
formation of the cosmogenic isotopes 14C and 10Be in the Earth’s atmosphere, is
reduced by magnetic fields in the solar wind. The 14C is absorbed into tree-rings,
which can be precisely dated, while the 10Be is deposited in polar icecaps, and
the abundances of these radioactive isotopes are anti-correlated with solar activity.
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Figure 13.3. Comparison between group sunspot numbers and 10Be concentration
in a Greenland ice core, from 1610 to 1985. The Maunder Minimum (1645–1715)
is clearly shown, though the 11-year cycle persists in the 10Be record. (Courtesy
of J. Beer.)

Figure 13.3 shows a comparison, running from 1610 to 1985, between a direct
measure of solar activity, the group sunspot number (Hoyt & Schatten 1998), and
10Be abundance in the Dye 3 ice core from Greenland (Beer et al. 1994). Note
that the 11-year Schwabe cycle persists throughout the Maunder Minimum in the
10Be record, although there were scarcely any sunspots (Beer et al. 1998). Proxy
records confirm that such grand minima are a regular feature of solar activity.
The 10Be abundances have also been measured in the GRIP ice core over the
interval from 50 000 to 18 000 years BP and the corresponding power spectrum in
Figure 13.4 shows a significant peak at a period of 205 years (Wagner et al. 2001),
which is also present in 14C data for the last 10 000 years (Stuiver & Braziunas
1993). In addition to this ∼200 years periodicity (the de Vries cycle) there is
also evidence of a ∼2000 years modulation (the Hallstatt cycle) in the records of
both isotopes. Minima are now believed to occur in clusters with a well-defined
period of ∼200 years between minima, while the clustering has a mean period of
∼2000 years.

Stellar magnetic activity is closely related to rotation. When a solar-type star
arrives on the main sequence it is spinning rapidly, with a rotation period of a day
or two, and is extremely active, with starspots covering a large fraction of its surface.
As it evolves it spins down, owing to magnetic braking (Mestel 1999), and grows
less active. The Sun, at an age of 4.6 × 109 years, has a (sidereal) rotation period
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Figure 13.4. Power spectrum (after Lomb–Scargle) for the 10Be record from the
GRIP ice core (18 000–50 000 years BP). The significant peak with a period of
205 years corresponds to the de Vries cycle. (Courtesy of J. Beer.)

of 25 days at its equator and a peak spot coverage of about 0.3% (see Figure 13.1).
Other stars of similar mass and angular velocity also exhibit cyclic activity with
periods of around ten years (Baliunas et al. 1995; Saar & Brandenburg 1999).

As has already been explained by Christensen-Dalsgaard & Thompson in
Chapter 3 of this book, the Sun’s rotation is not uniform and the surface angular
velocity decreases by 30% towards the poles (Thompson et al. 2003). Moreover,
magnetic features rotate about 3% more rapidly than the ambient plasma. In addi-
tion, the so-called ‘torsional oscillations’, which have an 11-year period and follow
the sunspot activity zones, are surface manifestations of zonal shear flows that
extend throughout the convection zone (Vorontsov et al. 2002). Thus it seems nat-
ural to suppose that these shear flows are driven by the Lorentz force associated with
the activity cycle, since that force is quadratic in the magnetic field and therefore
independent of its sign.

In what follows, we first review the various physical mechanisms that are involved
in generating and maintaining magnetic fields in the Sun. Next, in Section 13.3,
we discuss the location of the solar dynamo, concluding that it is most likely to
be seated at the tachocline. Then we describe some models of cyclic activity and
present the results of nonlinear mean field dynamo models. Modulation of cyclic
activity is considered in Section 13.5, and in the final section we put forward our
own speculative views on the structure of the tachocline and its role in large-scale
dynamo action.
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13.2 Mechanisms

Unfortunately it is not yet feasible to construct a realistic numerical model of
the solar cycle, though this has been attempted with a degree of success for the
geodynamo (Glatzmaier & Roberts 1995). As of now, the most advanced compu-
tational model of the interactions between convection and magnetic fields in the
outer portion of the Sun (Brun et al. 2004) only functions as a small-scale dynamo,
generating a disordered field with no significant large-scale component. Any dis-
cussion of large-scale stellar dynamos has therefore to rely on simplifications (such
as mean field dynamo theory) or on physical arguments.

13.2.1 Differential rotation

The magnetic field in a highly conducting fluid tends to move with the fluid and
field lines are stretched by flow across them. Hence differential rotation is bound
to have a powerful effect. The evolution of a magnetic field, B, is governed by the
induction equation,

∂B/∂t = ∇ × (u × B) + η∇2B , (13.1)

where u is the fluid velocity and the magnetic diffusivity η is assumed to be uniform.
Consider now the azimuthally averaged magnetic field B, which can be expressed
as the sum of a poloidal field BP = ∇ × Aeφ and a toroidal field BT = Bφeφ ,
referred to cylindrical polar coordinates (s, φ, z). Then

∂

∂t

(
Bφ

s

)
= BP · ∇� − ∇ ·

(
Bφ

s
um

)
+
(η

s

)(
∇2 − 1

s2

)
Bφ , (13.2)

where the velocity is composed of an axisymmetric meridional flow um and dif-
ferential rotation with an angular velocity �(s, z) (i.e. u = um + s�(s, z)eφ). This
equation demonstrates how toroidal fields are generated from poloidal fields by
differential rotation, and transported by meridional flows. It follows that the radial
gradients of angular velocity in the solar tachocline and, to a lesser extent, the latit-
udinal differential rotation in the convection zone are bound to be major contributors
to the generation of the toroidal field in the solar dynamo.

13.2.2 The α-effect

There is no corresponding source term for the poloidal field, since the vector
potential A satisfies the equation

∂

∂t
(sA) = −um · ∇(sA) + sη

(
∇2 − 1

s2

)
A, (13.3)
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and without such a source the poloidal field must decay (Cowling’s Theorem).
In order to maintain the field an extra source term has to be inserted into this
equation, and dynamo theory aspires to plug this gap. Such a source term is provided
by the turbulent α-effect (Parker 1955b; Moffatt 1978; Krause & Rädler 1980;
Roberts 1994; Ossendrijver 2003). The azimuthally averaged interaction between
the (non-axisymmetric) fluctuating velocity u and magnetic field b give rise to an
azimuthally averaged electromotive force E = 〈u × b〉 in the induction equation.
If we assume a separation of scales and ignore small-scale dynamo action then b

is linearly and homogeneously related to B and we can set

Ei = αijBj + βijk

∂Bj

∂xk

; (13.4)

note, however, that these assumptions are unlikely to hold in a stellar convection
zone. Separating out the antisymmetric part of αij and assuming that the remaining
turbulence is pseudo-isotropic, we may then write

Ei = αδijBj + γjǫijkBk + βǫijk

∂Bj

∂xk

(13.5)

or E = αB + γ × B − β∇ × B. Here γ is a turbulent pumping velocity, while
β acts as a turbulent diffusivity, and so, averaging the induction equation (13.1)
azimuthally and inserting this electromotive force, we have

∂B/∂t = ∇ × (αB) + ∇ × [(u + γ ) × B] + η̃∇2B, (13.6)

where η̃ = η + β. Thus the vector potential for the poloidal field acquires a source
term αBφ in Equation (13.3). The corresponding source term for the toroidal field in
(13.2) is frequently omitted, since its contribution is usually small compared with
that from differential rotation (the ω-effect).

Since α is a pseudo-scalar, the α-effect requires turbulence that lacks mirror-
symmetry, typically owing to Coriolis forces. If the turbulent motion has a magnetic
Reynolds number, Rm = v l/η (where v and l are the velocity and length scale,
respectively, of the turbulent eddies), that is small, or a correlation time, τ = l/v,
that is short, it is possible to adopt first-order smoothing (Roberts 1994) and to
derive the relation α = −(1

3)τH, where the kinetic helicity H = 〈u · ∇ × u〉.
Neither of these assumptions is, however, valid in the Sun’s convection zone, and
it can be shown that such a simple dependence of α on helicity breaks down for
flows at high Rm and correlation times of order unity (Courvoisier et al. 2006).
In practice, therefore, the α-effect is best regarded as a useful parametrization that
captures the essential physics of the regeneration process.

There are a number of mechanisms – all involving effects of rotation – that
might give rise to a correlation between u and b and hence an α-effect in the
Sun. Parker (1955b, 1979) originally introduced the idea in the context of cyclonic
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eddies: buoyant fluid elements would rise and expand, lifting a stitch of the toroidal
field, and then spin round owing to the Coriolis force, so creating a meridional
component of the field. Thus α should indeed be related to helicity. Models based
on this concept typically assume that the scale of the turbulent convective eddies is
relatively small and that the α-effect is distributed over a large part of the convection
zone. The difficulty with this picture is that the small-scale field is likely to be much
stronger than the mean field, and able to suppress the α-effect before it has done
much good. Growth of the poloidal field is then limited by nonlinear quenching, so
that α ≪ α0, its value in the linear (kinematic) regime. The formula conventionally
adopted for mean field dynamo models sets

α = α0(1 + B2/B2
0)

−1, (13.7)

where B0 is the equipartition field, such that B2
0 = µ0〈ρv

2〉 (Jepps 1975).
More recent theoretical studies indicate, however, that this expression should be
replaced by

α = α0

1 + RmqB2/B2
0

, (13.8)

with 0 < q ≤ 2 (Vainshtein & Cattaneo 1992; Diamond et al. 2005a; Hughes
2007) – see Section 13.4.2 for more discussion. In the Sun, where Rm ≫ 1,
this would imply that α is quenched when the mean field B is less than 1 G.
Numerical experiments on turbulence driven by helical forcing (Cattaneo & Hughes
1996) and on rotating compressible magnetoconvection (Ossendrijver et al. 2001)
provide support for such catastrophic quenching, with q = 1. More recently,
Cattaneo & Hughes (2006) have investigated turbulent magnetoconvection in a
Boussinesq (i.e. incompressible) rotating layer. This motion is effective as a small-
scale dynamo – as indeed it is even without rotation (Cattaneo 1999) – producing
a disordered magnetic field with 〈B〉 = 0. Surprisingly, however, the α-effect is
found to be extremely weak and collisional (i.e. not turbulent), scaling as α ≈ η/l.
Taken together, these results cast considerable doubt on the viability of any mean
field dynamo model that relies on cyclonic turbulence distributed through a large
part of the Sun’s convection zone.

The alternative is to rely on dynamical processes that are magnetically driven
and contribute to an α-effect that is not subject to catastrophic quenching. For
instance, a stratified magnetic field is liable to instabilities driven by magnetic
buoyancy, as discussed by Hughes in Chapter 11, and these instabilities are influ-
enced by the Coriolis force so as to produce kinetic helicity and an average α-effect
(Brandenburg & Schmitt 1998; Thelen 2000a,b). Three-dimensional calculations
indicate how isolated flux tubes can be formed from a magnetic layer in the non-
linear regime (Matthews et al. 1995; Wissink et al. 2000a; Fan 2004) and then
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released into the convection zone. Adding a velocity shear introduces a further
variety of behaviour (Cally 2000; Hughes & Tobias 2001; Cline et al. 2003; Tobias
& Hughes 2004). Indeed, the combined effects of magnetic fields and a rotational
shear in the tachocline can lead to generation of a large-scale poloidal field from a
large-scale toroidal field without even invoking magnetic buoyancy, as described by
Gilman & Cally in Chapter 10. This effect has been incorporated into some models
as a tachocline-based α-effect, though this interpretation is incorrect, as noted by
Tobias (2005).

If magnetic flux is confined to isolated toroidal flux tubes that encircle the
Sun at the base of the convection zone, then non-axisymmetric instabilities can
develop (Ferriz-Mas & Schüssler 1993) and provide a further contribution to the
α-effect (Ferriz-Mas et al. 1994; Caligari et al. 1995, 1998; Ossendrijver 2000).
The occurrence of active regions suggests that large-scale fields may indeed be
concentrated into flux tubes through much of the convection zone, and their ori-
entation (as described by Joy’s Law) is consistent with the effect of Coriolis forces
on a toroidal field as it rises to the surface. The corresponding tilts then provide a
source of poloidal flux that can be interpreted as an α-effect operating at the solar
surface (Leighton 1969; Stix 1974).

13.2.3 Transport of magnetic flux

The mean field is transported bodily by a large-scale meridional flow um, as can
be seen from Equations (13.2) and (13.3). Observations show that there is in fact
a quadrupolar circulation at the surface of the Sun, with a peak velocity of about
20 m s−1 directed towards the poles, as already explained in Chapter 3 (see also
Thompson et al. 2003). Helioseismic measurements indicate that the poleward flow
may extend downwards through much of the convection zone (e.g. Braun & Fan
1998; Duvall & Kosovichev 2001) though the dependence of the meridional flow
on depth is uncertain and remains a major unsolved problem for helioseismology.
Mass conservation nevertheless requires that there should be a return flow near the
base of that zone – although there is no observational evidence of the number of
layered cells in the meridional flow; after allowing for the increase of density with
depth there could still be an equatorward velocity of 1 m s−1 (Dikpati et al. 2004),
enough to traverse 30◦ within 10 years. This meridional circulation can then act
as a conveyor belt within the turbulent convection zone. Superimposed upon this
motion there is also a shallow flow that converges towards the activity zones near
the surface but apparently reverses direction below about 15 Mm (Beck et al. 2004;
Zhao & Kosovichev 2004).

Dynamo action requires that magnetic field lines should be stretched by the flow
and then allowed to reconnect. Diffusion facilitates reconnection but also permits
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the field lines to slip through the fluid, and so it plays an ambiguous role. If the
motion is turbulent and the field is weak, the total diffusivity η̃ in Equation (13.6)
is dominated by the turbulent contribution β0 ≈ vl. As the field grows, the turbu-
lent diffusivity β, like α, is progressively reduced. In two-dimensional geometry,
Cattaneo & Vainshtein (1991) found that

β ≈
β0(1 + B2

0/B2)

Rmq
, (13.9)

with q = 1; they conjectured that a similar expression might hold in three dimen-
sions but with 1 < q < 2, though this has proved difficult to confirm (Hughes
2007).

There is another type of slippage, caused by magnetic buoyancy, for fields that
are confined to isolated flux tubes (Parker 1955a, 1979). Consider, for simplicity, a
horizontal flux tube in magnetohydrostatic equilibrium with its surroundings. Then
the external gas pressure is balanced by the sum of the internal gas pressure and
magnetic pressure. Thus the internal gas pressure is less than that outside and, if
the tube is in thermal equilibrium with its surroundings, the density will be less too.
Hence the tube is buoyant and will rise. (Note that this is a lack of equilibrium, and
differs fundamentally from the magnetic buoyancy instabilities discussed above; the
effect can only be eliminated if the tube is cooler than its surroundings or, in the case
of a toroidal tube, if there is a retrograde axial flow along it.) The motion of rising
flux tubes has been extensively investigated (Fan 2004), in both two (Emonet &
Moreno-Insertis 1998; Hughes et al. 1998; Fan et al. 1998; Hughes & Falle 1998)
and three dimensions, for atmospheres that are either stably (Wissink et al. 2000b)
or unstably (Cline 2003; Fan et al. 2003; Abbett et al. 2004) stratified. As these flux
tubes rise they generate trailing vortices (see Figure 13.5) which tear them apart
unless the field is strongly twisted. In general, the magnetic field in a turbulent layer
is likely to be highly intermittent.

Magnetic buoyancy competes as a transport mechanism with pumping caused
by inhomogeneity or anisotropy of the turbulent flow, which is represented by the
velocity γ in Equation (13.6). If the turbulence is limited to a finite region then
magnetic flux is expelled down the gradient of turbulent intensity, and the pumping
velocity γ can be calculated (Rädler 1968; Zeldovich et al. 1983; Moffatt 1983). Tao
et al. (1998) have demonstrated this diamagnetic effect for forced two-dimensional
turbulence. Now the up–down symmetry of Boussinesq convection ensures that
magnetic flux is expelled equally towards the top and bottom of a convecting layer
but in a stratified layer this symmetry no longer holds. There is then a topological
distinction between isolated plumes of gently rising fluid and a network of cooler
sinking fluid that splits up into rapidly descending plumes (Spruit et al. 1990). In a
steady state the horizontally averaged mass flux 〈ρw〉 = 0, wherew is the downward
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Figure 13.5. Rise of a buoyant flux tube with a twisted magnetic field. Cross-
sections showing the axial field strength (upper panel) and the axial vorticity (lower
panel) in a two-dimensional model calculation. (After Hughes & Falle 1998.)

vertical velocity, and so, since ρ and w are correlated, 〈w〉 < 0 and there is a net
upward velocity; nevertheless, 〈w3〉 > 0, for the downflows are moving faster
(Weiss et al. 2004). Magnetic flux within the rising plumes is carried outwards
and entrained into the vigorously sinking plumes, which succeed in pumping the
flux preferentially downwards. Figure 13.6 shows the evolution with time of the
vertical profile of 〈By〉 in a numerical experiment where the convecting layer is
contained between rigid, perfectly conducting boundaries, so that no magnetic flux
can escape. Initially a sheet of y-directed field is inserted near the middle of the
turbulent layer and eventually there is a statistically steady state with magnetic flux
pumped towards the upper and (predominantly) the lower boundary. In this case,
with Rm ≈ 75, pumping has only a moderate effect; note, however, that the ratio
〈By〉/〈ρ〉 doubles between the middle and the bottom of the layer, whereas mixing
of a passive scalar, or two-dimensional mixing of a transverse magnetic field, would
lead to a concentration that was proportional to 〈ρ〉.

The flux distribution changes if convection penetrates from the unstable layer
into a stably stratified region below, where magnetic flux can be stored (Nordlund
et al. 1992; Tobias et al. 1998, 2001; Dorch & Nordlund 2001; Ossendrijver
et al. 2002). Figure 13.7 shows the evolution of the profile of 〈By〉 for one such case,
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Figure 13.6. Downward pumping of magnetic flux by compressible convection in
a closed box. Profiles of the horizontally averaged field 〈By〉 at successive times,
starting from a thin sheet. The thick dark line denotes the time-averaged final state,
with the strongest mean field at the lower boundary. (Courtesy of N. H. Brummell.)
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Figure 13.7. Flux pumping with penetration; the upper half of the layer is super-
adiabatically stratified, while the lower half is strongly subadiabatic. As Figure 13.6
but for the pumping phase only of a rundown calculation. In the last state, denoted
by a thick line, the mean magnetic flux is concentrated in the stable region. (After
Tobias et al. 2001, courtesy of N. H. Brummell.)
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(a) (b)

(c) (d)

Figure 13.8. Flux pumping with penetration: volume rendering of the magnetic
energy density, with high values showing up as opaque and bright. The sequence
runs from (a) the initial magnetic field configuration to (d) the field at the end of
the pumping phase. The image is vertically exaggerated for clarity. (After Tobias
et al. 2001, courtesy of N. H. Brummell.)

this time a run-down calculation with By = 0 at the top and bottom boundaries. It
is apparent that most of the flux ends up in the lower, stable half of the box. That
certainly does not mean, however, that no magnetic fields are left in the turbulent
region above. Figure 13.8 shows the magnetic energy density |B|2 at four stages
of the run. While the strongest fields are in the penetrative region, there are still
concentrations of magnetic field in the unstable region above. This process of flux
pumping is obviously likely to be important near the interface between the con-
vective and radiative regions in the Sun – which is precisely where the tachocline
is located.

13.3 Where is the solar dynamo?

The various mechanisms outlined above can be assembled in different ways to
produce models of the solar dynamo with varying degrees of plausibility. The
production of strong toroidal fields by differential rotation is a common feature of
all these models, though they may rely on the radial or latitudinal gradient of �,
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either within the convection zone or at the tachocline. The nature and position of the
process that is represented by an α-effect are much less certain. In this section we
outline the various possibilities and put forward arguments in favour of a dynamo
located near the tachocline.

13.3.1 Distributed dynamos

The classical αω-dynamo relies on cyclonic eddies, caused by the effects of the
Coriolis force on small-scale convection, combined with local differential rota-
tion. As fluid elements rise (or sink) in a stratified layer they expand (or contract)
and develop anticyclonic (or cyclonic) swirling motions, so that their helicity is
antisymmetric about the equator. This leads to an estimate

α ≈ v
2τ 2� cos θ/Hρ ≈ l2� cos θ/Hρ , (13.10)

where Hρ is the density scale-height and θ is the colatitude (Krause & Rädler 1980;
Rüdiger & Hollerbach 2004); Zeldovich et al. (1983) point out, however, that this
formula is valid only in the upper reaches of the convection zone, where the Rossby
number is greater than unity. The obvious attraction of this formalism is that such
an αω (or α2) dynamo would be effective in any rotating star with a convection
zone, even if the star were fully convective and had no tachocline. Given the angular
velocity profile within the Sun, an α-effect distributed throughout the convection
zone would have to interact with the latitudinal gradient in � in order to maintain
a cyclic dynamo. An alternative possibility, presented by Brandenburg (2005), is
to locate the solar dynamo near the top of the convection zone, in the subsurface
shear layer (0.95 ≤ r/R⊙ ≤ 1.00), where ∂�/∂r < 0. This radial velocity shear,
combined with a locally distributed α-effect, might be able to generate a large scale
field.

This picture has two major drawbacks. First of all, any strong localized concen-
trations of magnetic flux will be buoyant and float to the surface before they are
sufficiently amplified, especially if they are generated near the top of the convec-
tion zone. Second, and more importantly, regeneration of the poloidal field will be
halted by catastrophic α-quenching before any significant large-scale field can be
produced.

13.3.2 Flux transport dynamos

Babcock (1961) proposed a phenomenological model of the solar cycle that
explained both Hale’s Law and the newly observed reversal of the polar fields;
this model has provided a template for many subsequent physical discussions. In it,
the poloidal field is wound up by differential rotation within the Sun to produce
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a toroidal field, which is confined to ropes that erupt through the surface to form
active regions. On their way up they are twisted by Coriolis forces in accordance
with Joy’s Law; the bipolar regions then spread out in latitude (as observed) so that
the preceding fields migrate towards the equator, where they can merge and cancel
out, while the following parts migrate to higher latitudes and eventually reverse
the polar fields. Leighton (1969) ascribed the spreading out to turbulent diffusion
caused by supergranular convection, and was able to incorporate these processes
into what was effectively a two-dimensional mean field dynamo operating on the
solar surface. This model was subsequently extended to include a poleward meri-
dional flow at the surface (e.g. Wang & Sheeley 1991) and, later still, the effects of
a much slower counterflow at the base of the convection zone. In the more modern
form of these flux transport models, the meridional conveyor belt transports the
reversed poloidal field down to the neighbourhood of the tachocline, where the
toroidal field for the next activity cycle can be generated (Choudhuri 2003).

Several detailed mean-field models of these processes have been constructed (e.g.
Dikpati & Charbonneau 1999). Their attraction is that they rely, to a great extent, on
observable behaviour at the surface of the Sun and that they can explain the reversal
of the polar fields at sunspot maximum as a consequence of meridional transport
and surface diffusion (Dikpati et al. 2004; Durrant et al. 2004). This requires a
supergranular diffusivity of around 600 km2 s−1 (Schrijver & Zwaan 2000), which
is consistent with estimates derived from kinematic modelling (Simon et al. 1995).
Nevertheless, there are grave difficulties: it is not at all clear how a weak poloidal
field can remain coherent as it passes slowly through the turbulent convection zone
on the meridional conveyor belt; nor is the surface α-effect likely to be adequate
(Dikpati et al. 2002).

13.3.3 Interface dynamos

The scale of sunspot groups and active regions (see Figure 13.2) implies that their
accompanying fields must be deep-seated rather than near-surface features. If such
a strong azimuthal field is confined to a large flux tube within the convection zone
then the tube will float upwards owing to magnetic buoyancy, and escape within
about a month, unless it is held down at its ends (Parker 1975). Weaker fields, on the
other hand, will be expelled from the turbulent region and pumped preferentially
downwards, to accumulate around the interface between the radiative and con-
vective zones (Spiegel & Weiss 1980; Golub et al. 1981; van Ballegooijen 1982).
That is, of course, just where the strong gradient in � can stretch poloidal field
lines to form a strong toroidal field. Taken together, these considerations provide
strong arguments for locating the solar dynamo in, or just above, the tachocline.
Then toroidal fields can be kept submerged until they become unstable and liberate
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�-shaped flux ropes that rise through the convection zone and break through the
surface to form active regions at the photosphere.

Parker (1993) introduced an idealized two-layer model of an interface dynamo, in
Cartesian geometry, with the α-effect provided by turbulent cyclonic eddies in the
upper layer and the ω-effect produced by a velocity shear confined to the lower layer.
Linear solutions then take the form of surface waves at the interface between these
layers. Turbulent diffusion now plays an essential role, for it allows the transfer of
poloidal and toroidal fields between the layers, and is itself reduced in the thin region
of weak convective overshoot, which is where the fields are strong. Parker observed
that the interface dynamo scenario would remain consistent in the nonlinear regime
providing that the turbulent diffusivity is suppressed in inverse proportion to the
mean magnetic energy (Tobias 1996b). This is a delicate balance – see the discussion
by Diamond et al. in Chapter 9.

While the ω-effect can naturally be ascribed to shear in the tachocline, the precise
origin of the α-effect is less immediately obvious. The two-layer configuration
allows a turbulent α to persist in a region where the large-scale field is weak, so
avoiding catastrophic quenching. The poloidal field can then be generated within
the upper layer and pumped downwards. Alternatively, it could be produced by the
nonlinear development of instabilities driven by magnetic buoyancy at or near the
interface, or even by magneto-rotational instabilities within the tachocline itself.

Parker’s linear model has since been extended to describe both nonlinear waves in
spatially periodic systems (Tobias 1997a) and cyclic behaviour in boxes with lateral
boundaries that represent the poles or the equator (Tobias 1996a, 1997b; Phillips
et al. 2002) or spherical domains (Zhang et al. 2003; Chan et al. 2004). Indeed,
mean field (αω) dynamo models readily yield butterfly diagrams with a passing
resemblance to that in Figure 13.1. Adding a significant meridional flow at the
base of the convection zone produces a family of advection-dominated dynamos,
in which the equatorward flow controls the migration of dynamo waves and also
sets the period of the activity cycle.

13.3.4 The role of the tachocline

The tachocline itself plays a key role in both flux transport and interface dynamos,
as the most obvious site of the ω-effect. As we have seen, several possible loca-
tions have been proposed for the α-effect. It seems likely, however, that any α that
is distributed throughout the convection zone will be quenched before it is able
to generate significant poloidal flux. Furthermore, comparisons between dynamo
models with α localized either near the surface (as in flux transport models) or at
the base of the convection zone show that the latter choice is much more effective
(Mason et al. 2002); indeed, Dikpati et al. (2004) found that their flux transport
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model would not function effectively unless it was able to rely on an additional
strong α-effect located near the interface.

Such arguments have led to a general (though far from universal) consensus
that the seat of the solar dynamo is at the tachocline. Strong toroidal fields can
then be created locally by differential rotation and held down by a combination of
turbulent pumping (the γ -effect) and transport by overshooting convection. Thus
they can be safely stored, in a stably stratified region, for times that are comparable
with the cycle period. Samples of these strong fields can then be released through
instabilities, and reach the surface, as envisaged by Parker (1979). This picture can
therefore explain both the horizontal scale of active regions, as observed at the
solar photosphere, and their systematic time-dependent behaviour during the solar
cycle.

13.4 Models of cyclic activity

13.4.1 The form of the magnetic field

In order to construct models of the large-scale solar magnetic field, it is necessary
to make some assumptions about the spatial form of the field in the regions of
generation. The form of the field will then determine its dynamics once it has
been generated (including the important issue of the nonlinear back-reaction of the
magnetic field on the flow) and place restrictions on dynamo models. In particular,
the spatial intermittency of the field in the solar convection zone and tachocline is
a key issue for dynamo modelling. In order to facilitate progress in representing
the solar magnetic field, two extreme models of its structure have been proposed.
In the first of these scenarios (see, for example, Schüssler 2005), the field exists in
the form of isolated flux tubes. These tubes contain all the magnetic flux and each
tube is bounded by a flux surface. The dynamics of the magnetic field can then be
understood as the dynamics of an ensemble of such tubes, without any contribution
from the completely field-free region between them. This is an appealing paradigm
from a modelling perspective – if the dynamics of an isolated tube (and, more
ambitiously, the interactions between tubes) can be understood then the behaviour
of the field as a whole can be predicted. Moreover, the concept of isolated tubes of
magnetic flux is immediately comprehensible. This approach has, however, been
subjected to some criticism – see Chapter 11. The problem is that of the existence
and stability of the flux surfaces that form the boundaries of flux tubes in turbulent
flow at high magnetic Reynolds number (Cattaneo et al. 2006). Moreover, it seems
unlikely that field-free regions exist between the magnetic flux tubes. In the other
extreme scenario the field varies smoothly with position and, at least locally, the field
gradients are small. In this ansatz the large-scale field exists in a smooth layer and
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it is the dynamics of this layer that is of interest. A deeper discussion of the nature
of these two modelling approaches, with particular emphasis on the consequences
for magnetic buoyancy instabilities, is to be found in Chapter 11.

In reality the magnetic field in the solar plasma at high magnetic Reynolds num-
ber is likely to exhibit a highly complicated topology and chaotic field line structure.
Although a large-scale component for the magnetic field will certainly exist, there
will also be extreme fluctuations on many scales down to the diffusive length-scale
for the magnetic field. Of crucial importance to the dynamics of the magnetic field
is then its filling factor, and also the ratio of the large-scale field to the fluctuating
field (see, e.g. Ruzmaikin (1998, 2000) for a discussion). It is likely that these two
measures of the structure of the field will depend on the local level of turbulence,
with turbulent small-scale flows in the convection zone leading to local ampli-
fication of small-scale magnetic fields. In the tachocline, where the shear flow is
predominantly large-scale, one might expect the large-scale field to be more signi-
ficant owing to the enhancement of magnetic diffusion. Here we envisage the field
in the tachocline to have a large-scale component with an average field strength of
around 104 G. We expect that the field strength will peak locally with field strengths
perhaps reaching 105 G. These pockets of strong field may be formed as the result
either of local amplification by small-scale flows, or of an instability such as mag-
netic buoyancy or collapse due to the inhibition of turbulent transport (Kleeorin
et al. 2001). It is presumably this strongest field that makes it to the solar surface
to form active regions, without being distorted by convection or Coriolis forces as
it travels upwards. The rest of the magnetic flux is reprocessed by the convection
zone. In this way the convection zone acts as a filter for the dynamo field (Tobias
et al. 2001). Indeed, if the toroidal field were to drop below a certain threshold then
active regions might no longer be formed, giving the impression that the dynamo
had switched off entirely. We shall return to this theme in Section 13.5.

13.4.2 Dynamics of the magnetic field

Kinematic modelling, described earlier, establishes that the region spanning the base
of the convection zone and tachocline is the most likely seat for the generation of the
large-scale toroidal field that leads to the formation of active regions. However, this
theory, in which the velocity is prescribed, takes no account of the back-reaction of
the magnetic field on the motion. The form of the dynamical interaction between
flow and field is a subtle and contentious issue and a full account of the intricacies
of the suppression of the mean field transport coefficients in the nonlinear regime
is beyond the scope of this review – see Diamond et al. (2005a) or Brandenburg &
Subramanian (2005) for in-depth discussions. Here we briefly discuss the various
mechanisms by which the back-reaction of the Lorentz force may saturate the linear
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dynamo instability and speculate as to which of these mechanisms may be most
appropriate for the solar dynamo.

The most contentious aspect of the nonlinear dynamics of the magnetic field con-
cerns its role in modifying the transport coefficients that are so vital to the mean-field
theory. This is particularly important in the turbulent convection zone, but may also
be of significance in the tachocline where turbulence driven by overshooting convec-
tion or shear-driven instabilities will interact with magnetic fields in a complicated
manner. As discussed earlier, calculation of the transport coefficients of mean-field
theory relies on a parametrization of the small-scale correlations between the tur-
bulent velocity field and the small-scale magnetic field. These correlations are very
sensitive to the precise form and level of the turbulence. It is therefore not surprising
that the transport coefficients are also sensitive to the strength of the local magnetic
field as this will modify the form of the turbulence. The traditional argument is
that the transport coefficients α and β will be quenched when the energy in the
mean field reaches equipartition with the energy in the turbulence, as expressed in
Equation (13.7). As we have already pointed out, this formula for the quenching of
α has been the subject of intense debate. Here we give the physical argument for
amending the formula and again refer the interested reader to the article by Diamond
et al. (2005a), which includes a discussion of such intricacies as the role of mag-
netic helicity conservation in determining the form of the transport coefficients in
the nonlinear regime. Physically, one expects the magnetic field to have a significant
back-reaction on the turbulent motion once its energy reaches equipartition with
the turbulence. However, as noted by Vainshtein & Cattaneo (1992), in a turbulent
environment one expects the small-scale magnetic energy to be significantly lar-
ger than that contained in the large scales. Numerical simulations indicate that the
energy in the small-scale field will be up to Rmq (with 0 < q ≤ 2) larger than that in
the mean field. If this is the case then one would expect the transport coefficients to
be significantly quenched when the energy in the mean field is extremely weak, and
the formula for α should be that shown in Equation (13.8). It should be noted that
these formulae are postulated by using order of magnitude estimates for the level
of saturation and preserving the correct (quadratic) dependence on strength of the
mean field. In these expressions, the magnetic field acts back instantaneously and
locally on the turbulence to suppress the transport coefficients; the same depend-
ence can be obtained from closure models for the turbulence on the assumption that
it is quasi-steady (see for example, Gruzinov & Diamond 1994, 1995). Others have
argued that the static dependence of αij and βijk can only be verified in the limit
of small Rm and that the transport coefficients themselves should be modelled as
time-dependent quantities (see Kleeorin & Ruzmaikin 1982; Kleeorin et al. 2000;
Blackman & Brandenburg 2002) leading to dynamic evolution equations for the
tensors αij and βijk .
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In addition to modifying (possibly significantly and catastrophically) the form
of the transport coefficients of mean-field theory, the magnetic field will also play a
dynamic role in altering the distribution of large-scale solar differential rotation. The
solar differential rotation profile is maintained in the convection zone through the
interaction between rotation and turbulent convection; see Diamond et al. (2005b)
for a review of the generation of zonal flows, and Brummell et al. (1998) or Miesch
(2005, and Chapter 5 of this book) for a discussion of the generation of mean flows
and differential rotation by convection. As noted by these authors, the generation
of mean flows by small-scale Reynolds stresses is sensitive to the precise nature
of the convective flows and cannot easily be determined in terms of large-scale
quantities. Within the mean-field framework this interaction has, however, been
parametrized via the 	-effect – for a full discussion see the account by Rüdi-
ger & Kitchatinov in Chapter 6 or Rüdiger & Hollerbach (2004) – where the
velocity correlation tensor Qij = 〈uiuj〉 is directly related to the local rotation
rate and its spatial derivatives via ‘mean-field hydrodynamic’ transport coefficients
	ijk and νijkl.

The back-reaction of the magnetic field on the turbulent transport of angular
momentum by convection can therefore be understood in terms of the modifica-
tion of turbulent Reynolds stresses owing to the presence of the magnetic Maxwell
stresses. Within the mean-field framework, this back-reaction has been paramet-
rized using a formula for the quenching of the transport coefficient 	ijk . It will be
clear from the discussion above that the nature of ‘	-quenching’, and the concom-
itant modification of angular momentum transport, will be open to the same levels
of uncertainty as the α and β-effects. Of crucial importance is whether the hydro-
dynamic angular momentum transport can be maintained in plasmas with strong
small-scale magnetic fields at high Rm.

Whilst the turbulence is clearly of significance in transporting angular momentum
in the convection zone, other processes may also lead to the generation of zonal
shear flows (i.e. of perturbations in the azimuthal angular velocity profile), and
these may be of greater importance in the stably stratified tachocline. Once the
large-scale magnetic field has been generated by the dynamo, it will drive a flow
via the large-scale Lorentz force (〈 j〉× 〈B〉). This macrodynamic process has been
termed the Malkus–Proctor effect after the pioneering work of Malkus & Proctor
(1975), who were the first to use this saturation mechanism in a mean-field model.
This nonlinearity is likely to be of importance in relatively quiescent regions of
strong mean magnetic field such as the tachocline – in that region the ratio of
small-scale to large-scale magnetic field should be significantly smaller than in the
convection zone above, as demonstrated by Tobias et al. (2001).

Both 	-quenching and the Malkus–Proctor effect allow for the dynamic back-
reaction of the magnetic field on the angular momentum transport. In each case a
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separate partial differential equation for the evolution of the differential rotation
must be coupled to those for the evolution of the large-scale poloidal and toroidal
magnetic fields (e.g. Belvedere et al. 1990; Kitchatinov et al. 1994). This equa-
tion governs the dynamics of the zonal shear flows generated by the presence of
the magnetic field. These zonal flows driven by the Lorentz force may be directly
associated with the ‘torsional oscillations’ seen in helioseismic inversions for the
differential rotation. In the discussion that follows we focus our attention on models
that include the macroscopic Malkus–Proctor mechanism, as we believe that this
nonlinearity plays a key role in driving zonal flows in the tachocline. (The turbulent
Maxwell stresses may be of greater importance in the convection zone; however, the
dynamics of models that use microscopic 	-quenching as the dominant nonlinear-
ity is qualitatively similar.) In dynamos that rely on the Malkus–Proctor effect, the
generation process saturates by driving a zonal flow that diminishes the differential
rotation that causes the field to grow in the first place. As these torsional oscillations
are driven by the Lorentz force, which is quadratic in the magnetic field, they take
the form of oscillations with half the period of the magnetic field. An example of
such a nonlinear solution for a spherical mean-field interface dynamo based in the
tachocline (Bushby 2005) is shown in Figure 13.9a, which shows the latitudinal dis-
tribution of magnetic field as a function of time for a periodic dipolar solution. The
zonal flows driven by the magnetic field are shown in Figure 13.9b. The latitudinal
spatial dependence of these zonal flows for these parameters is manifestly related
to that of the strong toroidal magnetic field of the butterfly diagram, although there
is clearly a phase lag between the generation of the magnetic field and the zonal
shear flow. Note the presence of a weaker polar branch, both for the toroidal field
and (as measured) for the zonal shear. The radial dependence of the zonal shear
flow depends on the level of stratification (Kleeorin & Ruzmaikin 1982; Covas
et al. 2004; Bushby 2005). It is possible for strong magnetic fields generated in
the tachocline to drive zonal shear flows at much larger radii, so that, although the
Lorentz force is strongest at the base of the convection zone, the response of the
velocity perturbations to the magnetic forces is largest closer to the solar surface.
This result is simply understood by an angular momentum argument – a weak
force at larger radii can have a locally large effect owing to the decrease in density
there. Models that include the dynamic nonlinearities discussed above are there-
fore capable of saturating the dynamo growth by driving zonal shear flows. The
dynamo will begin to saturate when the energy of the zonal flows, which is clearly
comparable with that of the large-scale magnetic energy, is of the same order of
magnitude as the flows (turbulent convection and differential rotation) that are caus-
ing the dynamo to grow. The detection of such flows via helioseismic inversions (see
Chapter 3) yields valuable constraints on the amplitude of dynamo-generated zonal
flows.
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Butterfly Diagram

11.435 11.440 11.445 11.450 11.455
Time (dimensionless units)

-50

0

50
L

at
itu

de
 (

de
gr

ee
s)

Torsional Oscillations

11.435 11.440 11.445 11.450 11.455
Time (dimensionless units)

-50

0

50

L
at

itu
de

 (
de

gr
ee

s)

Figure 13.9. Nonlinear cyclic behaviour for a spherical model of an interface
dynamo. Upper panel: butterfly diagram showing toroidal fields of opposite signs
(with dipole symmetry) at the base of the convection zone; note the presence
of a polar branch. Lower panel: the corresponding zonal shear flows (torsional
oscillations) with twice the frequency of the magnetic cycle. (Courtesy of
P. J. Bushby.)

13.5 Modulation

We noted in Section 13.1 that the basic 11-year solar activity cycle is modulated
on timescales of approximately 200 and 2000 years, with grand minima of activity
appearing not only in the sunspot numbers but also recurrently in the proxy ice-core
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and tree-ring data. Although this modulation is very striking in the sunspot record –
the interval of the Maunder minimum in the seventeenth century is characterized
by the almost complete disappearance of sunspots – the level of modulation of
the dynamo generated field in the tachocline is uncertain. As mentioned earlier,
only the peak fields at the base of the convection zone are tough enough to resist
the effects of the convective flows and Coriolis force, so that they can reach the
solar surface and form active regions. Weaker fields are reprocessed and pumped
back down into the tachocline by sinking plumes. It is therefore possible for the
dynamo generated field to be only mildly modulated, but yet to produce significant
modulation of the sunspot cycle – weak modulation may push the peak dynamo field
below the threshold for penetrating the convection zone and stop the formation of
active regions. In that case the dynamo cycle will still continue in the tachocline and
the Sun’s global magnetic field will continue to vary. This filter-effect explains why
the eleven year cycle is still visible in 10Be records during the Maunder minimum,
as can be seen from Figure 13.3, even though there were scarcely any sunspots
(Beer et al. 1998).

Although the level of modulation of the solar dynamo is uncertain, it is certainly
the case that the basic cycle is modulated on a longer timescale and it is natural
to ask what is the origin of this modulation that leads to the occurrence of grand
minima (see, e.g. Tobias (2002) for a fuller discussion of modulation). Two sep-
arate mechanisms have been postulated as natural candidates for modulating the
basic cycle. The first of these is stochastic modulation (see, e.g. Hoyng 1998). In
this paradigm, stochastic fluctuations in the transport coefficients of mean-field the-
ory arise because of small-scale interactions. These stochastic perturbations cause
the dynamo to switch on and off randomly. Here, the period between minima is
a random variable with a distribution that depends on the form of the stochastic
perturbation to the equations. The second paradigm is that of deterministic modu-
lation owing to the presence of nonlinearities in the dynamo equations (Zeldovich
et al. 1983; Tobias 2002; Weiss & Tobias 2007). In this scenario the modulation of
the basic cycle arises as a natural consequence of the quadratic Lorentz force and
occurs with a well-defined mean period. Distinguishing between these paradigms is
not possible using solely the short sunspot record. However the presence of a well-
defined 200 year period for recurrent grand minima in the proxy 10Be and 14C data
is highly suggestive that the modulation is indeed deterministic in origin. In the rest
of this section we explain how deterministic modulation of solar magnetic activity is
a natural consequence of including a dynamic nonlinearity in solar dynamo models.

It has become apparent, through a large number of numerical investigations
of nonlinear solar dynamo models, that there is a robust mechanism that leads
to modulation of basic cyclic activity. This mechanism is found in a wide range
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of models based on different assumptions, and with varying degrees of complex-
ity, as outlined below. Here we first describe the sequence of bifurcations that
underlies the transitions in mean-field dynamo models as the dynamo number D

(a non-dimensional measure of the rotation rate of the star) is increased, eventually
resulting in a transition to chaotically modulated solutions. As already explained,
kinematic solar dynamo models may be constructed where a transition to large-
scale dynamo action occurs at an oscillatory (Hopf) bifurcation as D is increased
past a critical value. It can be shown (see, for example, Knobloch 1994) that in
a rotating system the initial bifurcation to large-scale dynamo action is expected
to be oscillatory. As noted above, for standard mean-field solar dynamo models
the period of the oscillatory mode is set by the values of the turbulent transport
coefficients (α and β) whilst for advection dominated dynamos it is set by the
strength of the meridional flow. This oscillatory dynamo solution remains the pre-
ferred solution until, as D is further increased, it loses stability in a secondary Hopf
bifurcation to a doubly-periodic solution with trajectories that lie on a two-torus
in phase space. As we shall see, this transition is generic and arises owing to non-
linear interactions, either between magnetic dynamo modes of different symmetry
or between dynamo modes and zonal shear flows. As the rotation rate is increased
further the doubly periodic solution can then disappear as the torus breaks down and
there is a transition to chaos. This transition is accompanied by frequency-locking
and the appearance of resonant solutions, and by subsequent period doubling
bifurcations.

This bifurcation structure was first put forward as generic for nonlinear solar and
stellar dynamos by Tobias et al. (1995; see also Wilmot-Smith et al. 2005), who
constructed a third-order dynamo model based on normal form theory. This model
demonstrated that modulation and a transition to chaos arise naturally through
the interaction between the magnetic field and the flows driven by the quadratic
Lorentz force. Here the modulation appears owing to the continual exchange of
energy between the dynamo generated field and the resulting zonal flows. A related
approach based on constructing normal form equations using the underlying sym-
metries of the dynamo equations about the solar equator also led to the construction
of a low-order dynamo model that exhibits a similar sequence of bifurcations
(Knobloch & Landsberg 1996). In that case the energy exchange between modes
with dipole and quadrupole symmetry provides an effective modulational mechan-
ism. The two approaches can be combined to yield a model capable of undergoing
modulation using either (or both) of these mechanisms. The competition between
these two mechanisms has been investigated in detail (Knobloch et al. 1998; see also
Ashwin et al. 2004). Indeed this competition yields an interesting new effect: the
magnetic field may enter a minimum of activity with one symmetry and emerge after
flipping to another. The minimum can therefore act as a potential trigger for a change
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in parity of the magnetic field (Beer et al. 1998). These models, although instruct-
ive, nevertheless leave many questions unanswered: what, for instance, determines
the period of the modulation, or the dependence of the depth of the minimum on
parameters?

The possible modulational processes are best understood by analysing the results
of numerical models of the dynamo process. These range in complexity from low-
order models based on truncations of the appropriate partial differential equations
(Weiss et al. 1983; Jones et al. 1984) to nonlinear mean-field models in Cartesian
and spherical domains (e.g. Brandenburg et al. 1989; Tobias 1996a, 1997b; Küker
et al. 1999; Pipin 1999; Markiel 1999; Brooke et al. 2002; Bushby 2005). Such
models demonstrate that the transition to chaos and the presence of grand min-
ima are always mediated by the presence of a secondary Hopf bifurcation. As
in the low-order models described above, modulation can arise owing either to
the interaction between dynamo modes of different symmetry or to the interac-
tion between a dynamo mode and a zonal flow driven by the Lorentz force. In
the former case the modulation takes the form of changes in the symmetry of the
dynamo solutions about the equator as the two interacting dynamo modes (dipolar
and quadrupolar) move in and out of phase, on a timescale longer than that for the
basic dynamo cycle. For this type of modulation the timescale for the modulation
is associated with a ‘beat frequency’ between the two kinematic frequencies for the
dipole and quadrupole modes (Zeldovich et al. 1983; Brandenburg et al. 1989). That
is not, however, the form of modulation that is observed in solar magnetic activity,
where the amplitude of the dynamo-generated field is modulated with little signi-
ficant change in the symmetry of the solutions (except when the Sun was emerging
from the Maunder minimum, as mentioned earlier). This type of modulation nat-
urally arises when the dynamo modes interact with the zonal flows, as shown by
the example in Figure 13.10 for the spherical interface dynamo model of Bushby
(2005). Here the nonlinear dynamics takes the form of a relaxation oscillation. The
combination of differential rotation and α-effect generates a magnetic field, which
in turn drives a zonal flow via the Lorentz force. This zonal flow then acts so as to
turn off the generating mechanism through modifying the differential rotation and
results in a modulation of the amplitude of the dynamo cycle. The timescale for
the modulation is set by the response time of the zonal shear flow to the driving
by the Lorentz force. In a mean-field model this response time is set by the level
of the angular momentum transport in the model. In particular, for simple models
where the only transport is due to turbulent diffusion (of angular momentum and
magnetic field) the ratio of the period of the modulation to that of the cycle is con-
trolled by the ratio of the turbulent diffusivities (νT/ηT). If the ratio of these two
diffusivities is small then the modulational period can be significantly longer than
the cycle period. More generally, modulation of the basic cycle requires a phase lag
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Figure 13.10. Butterfly diagram showing mildly modulated cyclic activity in a
spherical model of an interface dynamo. (Courtesy of P. J. Bushby.)

between the generation and back-reaction mechanisms (Yoshimura 1978), which
is a natural consequence of models that include dynamic nonlinearities. We claim
that this phase lag is related to the structure of the tachocline.

13.6 Structure of the tachocline

In this section we present our personal opinion as to the nature of the tachocline and
its relation to the solar dynamo. We recognize that our views are speculative and that
there are other possible scenarios (see, for instance, Gilman 2005), some of which
are discussed elsewhere in this book. Our picture is encapsulated in Figure 13.11,
which shows a schematic cross-section of the tachocline, which we define as the
region of strong radial shear in angular velocity. This region, indicated in the figure,
extends from above the base of the adiabatically stratified convection zone down
into the radiative zone with a total thickness of not more than 30 Mm, as determined
by helioseismic inversions (see Chapter 3).

The uppermost layers of the tachocline are characterized by the presence of
turbulent convective motions (as indicated in the diagram) not only in the supera-
diabatically stratified region above R = 0.713R⊙ but also in the underlying layer
of convective overshoot and penetration that is believed to extend downwards for
a fraction of a pressure scale height. Owing to the presence of convective motions,
the dynamics occurs on a fast timescale. Below the tachocline lies the radiative
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Figure 13.11. Sketch indicating the relationship between the dynamo and the
tachocline. The shaded region on the right is the tachocline itself (the layer of
rotational shear). The hexagons on the left denote both the superadiabatically
stratified convection zone and the region of convective overshoot or penetration.
Beneath them is a stably stratified region with weak turbulence driven by MHD
instabilities. Below that is the quasistatic, uniformly rotating, radiative interior,
with a primordial magnetic field. Poloidal fields (BP) are generated near the top
of the tachocline and diffuse downwards, while the alternating toroidal field (BT)
is produced by differential rotation in the upper convecting part of the tachocline
and leaks into the stably stratified region below.

interior with a primordial magnetic field that is strong enough to enforce approxim-
ately solid body rotation on an evolutionary timescale. Sandwiched between these
two regions is a layer that is stably stratified, but liable to MHD instabilities that
develop into non-convective turbulence. In this layer there may also be meridional
flows, as envisaged by Gough & McIntyre (1998). We believe that the tachocline
is magnetically confined, and that its thickness is controlled not by the oscillatory
field generated by the dynamo but by the relatively steady field down below – see
the discussion by Garaud in Chapter 7.

The solar dynamo relies on motion within the tachocline and the convection
zone. Whilst the dynamo itself may be influenced by a meridional circulation in the
convection zone this need not modify the properties of the tachocline. The poloidal
field BP is pumped down towards the base of the region of convective penetration,
as indicated in the figure. The strong radial shear will then generate a toroidal field
BT in the lower convection zone and the penetrative region. This field will also
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leak into the stably stratified layer below. As this field is oscillatory, we expect the
interfaces between these sub-layers to wobble up and down during the solar cycle
(Spiegel & Weiss 1980). In addition the Lorentz force associated with the magnetic
fields in the region where BP and BT coexist will drive zonal shear flows with half
the period of the cycle.

In Section 13.5 above, we ascribed the modulation of the dynamo to a time-lag
between the generation of the magnetic field and the response of the differential
rotation in the tachocline. Our picture provides a natural mechanism for this time-
lag. In addition to the oscillatory component of the shear flow driven by the Lorentz
force, there is a steady component. This magnetically driven zonal flow will leak
into the stably stratified lower layer of the tachocline on a timescale longer than that
of the solar cycle, allowing slow variations in differential rotation. In this context it
appears significant that the Sun’s equatorial rotation rate decreased by 2% during
the Maunder Minimum, while its variation with latitude was enhanced (Ribes &
Nesme-Ribes 1993).

Finally, we should comment on how these considerations relate to magnetic fields
in other late-type stars. Slowly rotating stars with deep convective envelopes may be
expected to have tachoclines and to behave like the Sun, though it does not follow
that their magnetic fields will have dipolar symmetry. For rapidly rotating stars we
should expect a different pattern of non-uniform rotation, with � constrained to be
uniform on cylindrical surfaces in accordance with the Taylor–Proudman theorem;
if there is a tachocline it is likely to be contained within the tangent cylinder that
encloses the radiative core (Bushby 2003). In fully convective stars the dynamo
process must, however, be completely different.
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14

On studying the rotating solar interior

Robert Rosner

14.1 Afterthoughts

Even the most casual of readers of this book will have noticed that the subject of
the solar tachocline is highly controversial, in the best traditions of our science: we
are all well aware that the tachocline constitutes an important physical structure in
the solar interior, but we are not at all in agreement about any of the details. While
this makes for a good deal of excitement – much in evidence both at the workshop
and in this book – I did early on recognize that a straightforward summary of the
workshop was therefore an impossibility; and my strong belief is that it is very
premature for me to act as a ‘referee’ judging the merits of the various points of
view expressed by my co-authors of this volume. This does not mean of course that
I will not venture an opinion when appropriate – but it does mean that, in many
cases, ex cathedra declarations of what is correct, and what is incorrect, are entirely
premature.

For these reasons, I thought it would be more appropriate for me to step back
from the fray, and to discuss some of the larger issues related to the tachocline,
most especially those that I believe will play a key role in further developments of
this subject; and to explain, whenever appropriate, why exactly it is that a definitive
result remains to be obtained. As an aside, I should note the peculiar nature of the
tachocline: as it is a boundary layer, it occupies (in terms of volume) an insignificant
portion of the solar interior; but, precisely because it is a boundary layer, it appears
to be the key to understanding a remarkably broad set of solar physics problems,
from the differential rotation of the solar convection zone proper, and spin-down
of the Sun on stellar evolution timescales, and compositional mixing at the bottom
of the convection zone, to the functioning of the solar magnetic dynamo.

To set the stage, I would like to note that much of what one hears and reads on
this subject reminds me greatly of a wonderful quote attributed to John Kenneth
Galbraith, to wit, ‘Faced with the choice between changing one’s mind and proving
that there is no need to do so, almost everybody gets busy on the proof’.
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Published by Cambridge University Press. © Cambridge University Press 2007.



354 On studying the rotating solar interior

14.2 The key issues

To begin with, I will attempt to summarize briefly what I regard as the main issues
that were uncovered during this workshop; and, as part of this discussion, I will
also focus on the question of how far observations can (and do) seriously constrain
these issues. This latter discussion is not simply a matter of technical detail, but
is rather a problem that is pervasive in astrophysics, namely the challenge flowing
from the fact that in many instances, observational constraints may be insufficient
to distinguish between proposed theoretical alternatives. I make this point not to
denigrate the subject, but in order to point out that there may be instances in which
disputes regarding the physics of the solar interior may not be capable of being
settled – even in principle – by means of solar observations; and that hence resolution
may demand alternative venues, possibly including laboratory experimentation or
large-scale numerical simulations, or (hopefully, in only a very small subset of
instances) may not be capable of being resolved by any means that we are aware
of today. These kinds of uncertainties are among the key distinguishing aspects of
astrophysics (as compared to physics), and they contribute to making the pursuit
of astrophysics enormously exciting and stimulating. My hope is that appreciation
of this fundamental limitation will contribute significantly to avoiding needless (and
pointless) arguments in those cases where no appeal to observations can possibly
resolve a dispute.

14.2.1 How is the tachocline defined, and where is it?

By my count, there are at least six variants of the definition for the tachocline to be
found in this book, not all entirely consistent with one another. A significant source
of this inconsistency is the question of what precisely is the relationship between
the tachocline, the region of convective penetration, and the overshoot region, a topic
to which I will return shortly. Thus, consider the following variations on the theme
of ‘tachocline’.

• The tachocline is ‘a thin boundary layer separating the quiescent radiative region from
the overlying turbulent convective region’ (Chapter 1).

• The tachocline is ‘a transition between convection zone and radiative interior’ (Chapter 3).
• The tachocline is ‘a shallow layer connecting the regimes of differential rotation above

and quasi-uniform rotation below’ (Chapter 4).
• The tachocline is ‘a strong shear layer beneath the convective region’ (Chapter 8).
• The tachocline is ‘a region which operates the dynamical transition between the

convection zone and the radiative zone’ (Chapter 7).
• The tachocline is ‘a region of strong radial shear in angular velocity’ (Chapter 13).
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All of these definitions are clearly closely related and, in addition, sound (grat-
ifyingly) similar – why am I then drawing attention to the slight differences in
wording? The reason is that while some focus on the tachocline as a transition
layer between convection zone and radiative interior, others emphasize its role as
a shear boundary layer (presumably the original intent of Ed Spiegel and his co-
conspirators); and it is this difference in emphasis that has led to some apparent
confusion about the relative position of the tachocline (viewed as a shear boundary
layer) and the thermodynamic radial structuring of the solar interior (e.g. radial pos-
itions of the convective zone proper, the convective penetrative region, the region
of convective overshoot, and the radiative interior proper).

If we could ignore magnetic fields, then the issue is easily settled: the tacho-
cline should then be viewed simply as a velocity shear boundary layer, separating
the differentially rotating convective zone and underlying thermal boundary layer
(the subadiabatic convective overshoot region) from the fundamentally uniformly
rotating radiative interior. It is important to be clear about the basic reason for this
simplicity: under the posited conditions, there is no specific physical mechanism
that provides feedback from the shear flows in the tachocline to the processes that
govern the thermal structure of the convection zone/radiative interior interface. It is
the physical processes that govern energy transport in the convection zone/radiative
interior interface that drive the physics of the shear layer (and not the other way
around).

Unfortunately, we cannot ignore magnetic fields, and this simplicity melts away
as a result. Let’s first ask why we cannot ignore magnetic fields. I see at least two
distinct reasons: first, and most obviously, we know that the solar convection zone
is ‘magnetized’, and it would be a remarkable feat if magnetic fields in this highly
turbulent region managed to be excluded from the tachocline, which presumably
is at least adjacent to, if not overlapping with, the bottom of the convection zone.
Indeed, the work of Nigel Weiss and his collaborators on turbulent pumping of mag-
netic fields suggests strongly that relatively quiescent regions adjacent to turbulent
magnetized flows will inevitably experience intrusion of magnetic fields expelled
from the turbulent regions. Second, virtually all of the discussions in this book of
the radial confinement of the tachocline conclude that suppression of the spread of
this shear layer into the radiative interior on solar evolutionary time scales can only
be understood if the radiative interior has a non-trivial magnetic field. What differ-
ence does the magnetic field make? The key difference follows from the fact that
the Lorentz force can modify the extant velocity fields, thus providing the missing
feedback mechanism connecting the shear boundary layer to the processes govern-
ing energy transport in this region. In other words, the very fields that are called
upon to confine the tachocline may also play a role in modifying energy transport
in the convective overshoot (and possibly the penetrative convection) layer.
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In order to continue the discussion, it is at this point useful to mention a slight com-
plication of the picture sketched by Jean-Paul Zahn of the convection zone/radiative
interior boundary region (Chapter 4). In one-dimensional stellar evolution mod-
els of the solar interior, the position of the base of the convection zone (zi in Zahn’s
notation) is fixed by the criterion that the radiative temperature gradient equals
the adiabatic temperature gradient (the Schwarzschild criterion). Now, if one takes
the resulting one-dimensional model star (i.e. the run of temperature, pressure
and composition with radius) as input to a three-dimensional hydrodynamic code
that models the same physics as the one-dimensional version, one finds that the
radial position of the point at which the radiative flux equals the total flux moves
slightly radially inward; this movement is the result of convective erosion, and
means that the resulting value of zi in the three-dimensional case is not exactly
equal to that in the one-dimensional case. Thus, region A in Figure 4.1 corres-
ponds to a slightly enlarged convectively unstable region (i.e. where d ln T/d ln P

is slightly superadiabatic).
Now, let us compare the descriptions of the convection zone/radiative interior

interface provided by Zahn and by Pascale Garaud (Chapter 7), the latter fun-
damentally based on the description first offered by Gough & McIntyre (1998):
Zahn’s region A is clearly the same as Garaud’s region 1; and region B appears to
be identical to region 2 (this is the stably stratified, but almost adiabatic, convective
penetration region); however, Garaud’s region 3 (her ‘tachopause’, or magnetic field
boundary layer) appears to be quite distinct from Zahn’s very thin region C (this is
the transition region in which buoyancy braking of down-streaming plumes occurs
and the temperature gradient changes from almost adiabatic, or slightly subadia-
batic, to radiative)1; and, finally, Zahn’s region D is clearly the same as Garaud’s
region 4. Now, from the helioseismic perspective, one cannot easily (if at all) dis-
tinguish Zahn’s regions A and B (or Garaud’s regions 1 and 2): hence, as far as
observations are concerned, the base of the convection zone is not at zi, but rather
at the location of the interface between regions B and C.

So, where is the tachocline located? It seems that the answer is very much tied to
the physics that a particular worker is focusing on. Thus, Zahn’s discussion seems to
have the tachocline largely confined to the uppermost region of the radiative interior
and possibly in the overshoot layer, i.e. in the stably stratified regions; there is very
little said about the extent of the tachocline into the overlying almost adiabatic
regions. I suspect the reason is that Zahn’s focus is on anisotropic (largely two-
dimensional) turbulence, which may have the important property of suppressing
latitudinal shear. It seems, however, that Zahn’s model is really a ‘straw-man’
and ‘best effort’ case for a purely hydrodynamic (i.e. non-magnetic) model for

1 This region is what Zahn regards as the overshoot region, a view I fully concur with.
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the tachocline, and thus does not represent his own realistic assessment of the
tachocline structure – indeed, he points out in Chapter 4 that magnetic fields are
clearly likely to have significant effects on tachocline radial confinement.

In contrast, Garaud’s physics focuses on the possibility that magnetic fields in
the radiative interior are responsible for the radial confinement of the tachocline.
This focus has two consequences. First, one needs to explain why the fields in
the radiative interior have not themselves emerged into the convection zone; the
solution to this problem was provided by Gough & McIntyre in the form of large-
scale meridional flows driven by the convection zone, which confine the magnetic
field to the radiative interior. Region 3, the tachopause or magnetic diffusion layer,
is a consequence of this large-scale flow. So where is the tachocline in this model?
The answer appears to be in regions 2 and 3, which are the regions identified with the
tachocline ventilation depth. (I note as an aside that I am uncertain whether Garaud’s
use of the term ‘overshoot region’ is really the same as Zahn’s: the discussion in
Section 7.2.2 suggests that what is meant in that context is what Zahn refers to as
convective penetration.)

Finally, it is instructive to compare all this with the physical picture sketched by
Steven Tobias and Nigel Weiss (Chapter 13), which focuses (unlike the previous
two cases) on the effects of magnetic fields in the overlying convection zone (and
thus makes the critical connection to the solar dynamo). Here again there is a slight
clash of nomenclature – I presume that the region marked ‘overshooting convection’
in Figure 13.11 is identical with the upper portion of Zahn’s region B, i.e. the
convective penetration zone, while Zahn’s overshoot layer is presumably entirely
absent here.2 What about the region marked ‘stably stratified MHD turbulence’?
This region appears to correspond to the lower part of Zahn’s weakly stably stratified
region B, a point that is made explicitly by Tobias & Weiss. Most interesting is the
location of the tachocline in this picture – in this case, the tachocline is mostly
contained within the well-mixed boundary layer at the base of the convection zone,
does not overlap to any significant extent with the strongly stably stratified radiative
interior, and slightly overlaps with the lower part of the convection zone (i.e. its
upper boundary lies slightly above zi in Zahn’s sketch).

Can these various alternatives be distinguished observationally? It would seem
that the answer depends on whether one can measure the relative positions of
(a) the transition from almost adiabatic to strongly subadiabatic (radiative) strat-
ification, and (b) the lower boundary of the shear layer defining the tachocline.

2 This inference is based on the observation that Zahn’s overshoot layer – region C – is extremely thin, and thus
cannot possibly play the role indicated by the ‘overshooting convection’ layer shown in Figure 13.11; indeed,
it is hard to see how that layer would lead to any significant dynamical consequences within the context of the
dynamo model sketched out by Tobias & Weiss, other than to form a rather stiff lower boundary that acts as a
barrier to vertical motions attempting penetration into the radiative interior.
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Based on the error estimates for these two measurements (see immediately below),
I believe that the answer currently is ‘no’; but I confess that I do not have a
firm understanding of how much improvement can yet be made in the helio-
seismic radial position estimates for the tachocline. (There are estimates in the
published literature that suggest that such a comparison is currently feasible, but
given the error estimates discussed in Chapter 3, I am somewhat dubious about these
claims.)

14.2.2 How thin is the tachocline, and why is it thin?

It is clear that the observational upper bound on the radial extent of the tachocline
has been an important constraint on theoretical models of this layer, starting from
the early work of Spiegel and his co-workers. The fundamental physics issue is of
course that a variety of hydrodynamic mechanisms can be put forward that all lead
to what would be today a thickening of this transition layer that should be easily
detected by modern helioseismic measurements – but the measured upper bounds
on the thickness clearly indicate that, whether or not any of these mechanisms are
in fact operating, there is some other process not yet accounted for that limits the
spread of this shear layer.

Now, the alert reader may have noticed a closely related, and intriguing, apparent

contradiction in Jørgen Christensen-Dalsgaard and Michael Thompson’s master-
ful article on helioseismic measurements of the interior rotational structure of
the Sun (Chapter 3): at one point, they rightly point out that ‘Since discover-
ing the tachocline, helioseismology has pinned down with reasonable precision
its location and thickness in the radial direction. . . ’; but shortly following, also
state that the ‘. . . tachocline is thinner than the intrinsic resolution of present-day
inversions. . . ’. How can this be? The answer of course resides in the method(s)
used to constrain the tachocline thickness. That is, the inversion methods used by
helioseismology are designed so as to minimize the number of assumptions required
to obtain sensible solutions – for example, these assumptions may be in the nature
of ‘regularizations’ of the inversions applied to the formal Fredholm integral equa-
tion of the second kind that lies at the heart of the helioseismic problem. Such
assumptions are usually not based on specific expectations regarding the physics,
but rather derive from expectations of ‘natural’ properties of the solar interior rota-
tional profile, such as smoothness of the solution. The practitioners of this art have
wisely used a variety of methods (and hence a variety of regularization techniques)
for these inversions; and the consensus upper bound on the tachocline thickness
derives from comparisons of the results of these various inversion methods – and it
is fortunately gratifying that, by and large, there are no large discrepancies between
these various upper bounds.
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Now, it is useful to recall the key point made by Christensen-Dalsgaard
& Thompson that the maximum spatial resolution obtainable by helioseismic
inversions is fundamentally limited by the functional properties of the acoustic
eigenfunctions, a point that is best illustrated in their discussion of optimally local-
ized averages (OLA). One way of thinking about this process of extracting the spatial
structure of the solar interior rotation rate is from the information-theoretic per-
spective, for the helioseismic inversion problem is subject to the Nyquist–Shannon
sampling theorem. Thus, one can view the inversion process as a functional map-
ping from the space of acoustic eigenfunctions to the space of real-valued functions
�(r, θ , φ) on R

3 (i.e. the solar interior rotation rate as a function of position); and
this theorem defines the conditions under which this transformation preserves all
of the information content of the original (helioseismic) data, so that the reverse
transformation (reconstructing the helioseismic signal) precisely recovers the ori-
ginal input. As a consequence, this theorem prescribes the functional properties
of �, given the information content of the original signal. Thus, ‘optimal’ inver-
sions should be regarded as those inversions that extract the maximum amount of
information available in the data, and therefore any attempts to extract more inform-
ation – for example, to obtain stronger bounds on the radial extent of the tachocline –
must perforce involve the insertion of additional information not contained in the
original helioseismic data to be inverted. More specifically, this additional inform-
ation is inserted in the form of specific choices for the functional radial dependence
of � (cf. Equations (3.9) and (3.10), as well as Figure 3.9). Since these choices
have no physical basis, one can ask to what extent the ‘super-resolution’ radial
information that is then extracted has any veracity, that is, bears any connection
with the likely actual behaviour of the shear layer; and it is my view that the
credibility of these enhanced inversions depends critically on the extent to which
differing functional forms for � yield similar super-resolution results. (As noted
by Christensen-Dalsgaard & Thompson, such comparisons need to take very care-
ful account of the differences in functional parametrization of the assumed radial
profile for �, so that one compares ‘oranges with oranges’.)

Given the preceding discussion, I believe the following basic properties of the
tachocline have a good chance of surviving further scrutiny.

• Radial location: a variety of inversions and ‘forward’ analyses using ad hoc trial functions
give a consistent position for the centre of the tachocline at rc ∼ 0.7R⊙. I would conser-
vatively estimate the error on this position to be of the order of 0.05R⊙, although it is to be
noted that some authors claim errors that are roughly an order of magnitude smaller than
that given here. These latter analyses tend to be based on ‘super-resolution’ methods, and
it is very likely that systematic errors in these analyses are not well-accounted for; I would
therefore tend to be sceptical of any claims for great certainty in tachocline positioning.
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• Radial width: estimates for the tachocline width w are far more uncertain, with estimates
ranging from w ∼ (0.05 − 0.09)R⊙; error estimates are similarly wide-ranging, from
∼20% to 50%. Again, these results are largely obtained via ‘super-resolution’ analyses,
and hence the apparent differences in conclusions very likely reflect systematic uncer-
tainties, especially ones related to the ad hoc assumed radial variation in �; but there is
no doubt about the fact that the tachocline is ‘thin’, so that the ratio w/rc is of order 0.1
or smaller.

• Location vis-à-vis the convection zone and radiative interior. Here it is useful to be
extremely cautious, primarily because there may be, or there may not be, a distinct
latitudinal variation in both the convection zone depth and the tachocline location – the
analyses I have seen to date do not convince me that such variations in convection zone
or tachocline depth are well in hand. For this reason, I am most comfortable with the
approach taken by Tobias & Weiss in their Figure 13.11, i.e. there is good evidence
that the tachocline overlaps significantly with the bottom of the convection zone (the
superadiabiatic region of convective penetration), the almost-adiabatic overshoot region,
and some small fraction of the subadiabatic and weakly (magneto)turbulent top of the
radiative interior.

• Mechanism(s) leading to a thin tachocline: I am totally unconvinced by any of the argu-
ments made in this volume that we understand the physics underlying the thickness of
the tachocline. The reason is as follows: all of the studies to date, including all of the
numerical simulations presented here, are critically constrained in one way or another;
for example, there is typically no back-reaction on the ‘forcing’ of convective motions
in the simulations. Furthermore, the effects of magnetic fields are only beginning to be
understood, and certainly none of the global simulations can currently claim to have
included magnetic field effects in a fully consistent manner. Furthermore, as pointed out
by Zahn (Chapter 4), current simulations of the boundary layer are very diffusive, and
are principally limited by the relatively small dynamic range of spatial scales that can be
simulated in three dimensions. (I will return to this last point in the next section.) Thus,
the problem of accounting for the small radial extent of the tachocline is a very good
example of a research area in which raging arguments are currently beside the point – we
simply do not have the tools available as yet to solve this problem.

14.3 Comments on modelling and simulations

Whereas the practitioners of helioseismic analyses seem to have made enormous
strides in developing a commonly-accepted framework for analysing the data and
interpreting the results – so that at this point there is a very good, and widely
accepted, understanding of what the limits are to our knowledge of tachocline
properties derived from helioseismic measurements – this is decidedly not the case
in the computational arena: successive readings of Chapters 5, 6, 7, 11 and 13
make plain the huge differences in perception of what numerical studies of the solar
interior in general, and of the tachocline more specifically, are all about. Because
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numerical studies are likely to be the dominant tool for understanding tachocline
dynamics in the future, I thought it useful to make an excursion into the realm of
computational fluid dynamics and astrophysics, and to discuss in some detail the
key issues we face.

The first distinction to be made is between ‘modelling’ and ‘simulating’. By and
large, there is a general consensus regarding the physics needed to deal with the
solar interior. That is to say, with the principal exception of the opacities (which
unfortunately remain somewhat uncertain because of remaining uncertainties in
elemental composition of the solar interior as a function of radius, especially
immediately below the convection zone – see Chapter 3), there are no disputes
regarding the equations to be solved, or the constitutive relations and the micro-
scopic (‘molecular’) transport coefficients to be used. However, it is also generally
well-understood that the numerical solution of these equations for spatial domains
that span a significant portion of the solar interior is well beyond our current cap-
abilities, and is likely to remain so for the lifetime of any of the participants in this
workshop. By ‘solution’ I mean the direct integration of the full set of governing
equations, with no appeal to any type of parametrization – such a calculation is
what I will refer to as a ‘direct numerical simulation’, or DNS. The reason DNS
for any significant portion of the Sun is currently impossible is closely related to
the fact that the dynamic range of spatial scales in a fluid (meaning the ratio of
the largest [Lmax] to smallest [Lmin] physically important scales in the problem) is
related to the Reynolds number Re of the velocity field by

Re ∼ 2(Lmax/Lmin)
4/3;

since the Reynolds number for the convection zone is extremely large, the dynamic
range of spatial scales, as measured by the ratio Lmax/Lmin, typically will exceed
109, whereas the largest extant three-dimensional simulations of turbulent flows
struggle to reach a dynamic range of ∼103.5. Since the economies provided by
adaptive gridding cannot be obtained for turbulent flows (because small scale fea-
tures in the velocity field are generated everywhere in the turbulent domain), this
means that while numerical solutions of the equations of motion can currently be
computed on a grid composed of ∼1010.5 grid points, a faithful (DNS) solution of
these same equations for the solar interior would require more than 1027 grid points.
This means that if one insists on solving the exact equations of motion, the size of
the domain in which one can obtain a sensible solution will be a tiny fraction of the
domain of interest; if, for example, the viscous cutoff scale is of order a millimetre,
then the outer scale of a corresponding DNS will have dimensions of order 3 m, i.e.
an outer scale that is totally impossible to observe.

Nevertheless, it is evident that numerical computations for the solar interior are
being conducted – how then should we interpret these calculations? Since the outer
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scales of these calculations are typically a significant fraction of the solar radius,
this means that the inner scale of these calculations must be far larger than the
actual governing dissipative scale (the viscous cutoff scale), and therefore there
must be either an implicit or an explicit ‘sub-grid’ model for the physics that occurs
on the unresolved scales. In this sense, such calculations resemble computational
fluid dynamics (CFD) in the engineering realm, with the critical difference that
whereas the sub-grid models for engineering calculations are typically extremely
well verified and validated, validation is usually not possible in the case of astro-
physical CFD.3 As a consequence, these calculations are really ‘models’ for the
solar interior, in which the adopted sub-grid dynamics must be regarded as an ad

hoc assumption as opposed to being firmly grounded in fundamental physics. In
other words, any conclusions derived from such calculations are subject to the
caveat that they rest on the correctness of the unvalidated astrophysical sub-grid
model.

Now, some would argue that laboratory fluid dynamics (and the related CFD)
provide a hierarchy of sub-grid models with established pedigrees (the Reynolds-
averaged stress models, etc.), so that the actual situation is not as bad as I have made
it sound. I frankly do not agree. The reason is that virtually all extant explicit sub-grid
models have been developed either in the context of incompressible fluids, or in the
context of compressible fluids in which stratification is unimportant. (Simulations
of the terrestrial atmosphere are at the frontier of what can be done in this context,
but unfortunately most global circulation models focus attention on the CFD in the
horizontal, and typically parametrize transport in the vertical – precisely what we
would like to avoid in studying the tachocline.) This does not mean that all such
calculations are rubbish; but it does mean that conclusions drawn from a specific
calculation gain in credibility only to the extent that they can be shown to survive if
alternative sub-grid model assumptions are made, i.e. if one can show explicitly that
the conclusions are not sensitive to the specifics of the sub-grid model used. As a
consequence, there is considerable utility in testing conclusions against drastically
different sub-grid models; and careful practitioners of such calculations tend as a
result to be very conservative regarding the extraction of broad conclusions from
their simulations (see, for example, Chapter 5).

Even more challenging is the realm of magnetohydrodynamics (MHD). Here
the challenge is that there is no good reason to believe that a ‘universal’ sub-grid
model for MHD can be constructed; instead, there is considerable evidence that any
such model will be very sensitive to the details of the problem, such as the specific
boundary conditions, the nature of the forcing, etc. (see, for example, Chapter 9).

3 The reason for the lack of validation is not a lack of effort, but rather the fact that we do not have sufficient
experimental or observational access to velocity fields at the Reynolds numbers characteristic of astrophysical
objects such as the Sun.
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As a consequence, the conservatism I’ve urged on the interpretation of conclusions
drawn from hydrodynamic simulations relying on sub-grid modelling becomes even
more relevant in this case. This is especially so because the typical magnetic Prandtl
number (Pm) of astrophysical numerical calculations is O(1), whereas Pm for the
solar interior is very small (∼10−3 or less). As a result, global MHD calculations
of the solar interior tend to be highly diffusive, and essentially never in a fully
developed MHD turbulent regime.

Some critiques of astrophysical simulations go far beyond my conservative views
and essentially regard all attempts to carry out DNS for turbulent systems as suspect,
whether they are applied to an astrophysical object or not. For example, to quote
one such critic, ‘. . . even DNS cannot predict the actual evolution of any turbulent
system, because the dynamics is chaotic and numerical errors are always present
at some level even if the dissipative scales are properly resolved’ (see Chapter 12).
I do not concur with this view. First, DNS should have the explicit property that
the dissipative scales are resolved, so that is not an issue. Second, while it is most
certainly true that integration of partial differential equations for systems whose
parameters are such that the system dynamics is chaotic cannot (even in principle)
precisely follow the trajectory of every given chaotic fluid parcel, it is generally
believed that integral quantities (such as mean or rms velocities, turbulent transport
coefficients, Nusselt numbers in the case of convecting systems, etc. – the very
quantities that are in fact of interest in the case of the tachocline) are well-defined.
These comforting beliefs are not pulled out of the air, but are in fact buttressed by
detailed convergence studies, as well as by detailed comparisons with experimental
data for turbulent flows (see, for example, DeLuca et al. 1990).

Given all the apparent bad news, where does this leave us? The first point is
that some practitioners of solar CFD do carry out DNS – the question is then, how
should we interpret these? Clearly, such calculations are not meant to be directly
applied to the solar interior since DNS has the property that the dissipative scales
are fully resolved. Instead, these types of calculations are meant to instruct us and
to inform our physical intuition for problems in which highly nonlinear physical
processes operate. As a concrete illustration, this is precisely the sense in which
numerical MHD calculations are approached in Chapter 11 of this volume – the
question at hand there is, can we understand how magnetic buoyancy affects the
physics of magnetic flux transport out from the stably-stratified tachocline. This is
a well-defined question, applied to a well-defined physical system; and while that
system’s physical characteristics (e.g. the non-dimensional parameters that define
it, such as the Reynolds number) bear no resemblance to those of the solar interior,
there is the hope that the ‘workings’ of the nonlinear physical processes in these
two cases are not entirely dissimilar. To be sure, this hoped-for resemblance is not
guaranteed (and may indeed be absent), but past experience indicates that we always
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gain by learning more about the remarkably complex behaviour of fully nonlinear
(MHD) fluid systems.

Second, there is a long and distinguished history of using one’s physical intuition
to build fluid-dynamical models that may or may not be explicitly derived from
the full (exact) set of hydrodynamic (or MHD) equations; and to the extent that
these models faithfully represent (i.e. ‘model’) the most important physics, such
calculations have been an extremely powerful tool for studying astrophysical fluid
dynamics. There are many ways of constructing such models: some rest on powerful
physical intuition, coupled to a terrific sense of how to translate this intuition into
mathematics – the work on mean field hydro- and electrodynamics and the solar
dynamo is characteristic of this approach (cf. Chapter 6); others rest on the notion
of truncated models, for instance considering a Fourier decomposition of all fluid
variables, but then studying only the nonlinear coupling of the lowest-order modes
(see Chapter 13).

14.4 The (possible) role of experiments

As I have already repeatedly mentioned, we as astrophysicists labour under the not
inconsiderable handicap that the physical systems we would like to understand are
characterized by extreme physical conditions that are difficult, if not impossible,
to replicate, whether experimentally or within DNS. My immediately preceding
discussion of numerical computations focused on the possible benefits of using
DNS as a means of learning about the workings of highly nonlinear processes,
without the imposition of ad hoc model assumptions or ‘priors’; and one key point
I wish to make here is that the same obtains for laboratory experiments. Perhaps the
best known example of this sort directly relevant to the question of astrophysical
convection is the work of John Hart, Juri Toomre and collaborators (Hart et al.

1986a,b), who studied electroconvection experiments carried on board the Spacelab
missions, and compared experimental results with numerical simulations of the
experiments. These experiments were notable in that they allowed observations
of convective flows in a geometry in which the effective gravitational force was
radial (difficult, if not impossible, to arrange in terrestrial settings) and in which
the consequences of rotation (and variation of the rotation rate) could be examined.
These studies had an enormous impact on work in planetary atmospheric and stellar
convection; and the lesson to be drawn here is that the effort to design (ingenious)
laboratory proxy experiments turns out to be extremely worthwhile in helping us
understand the complex dynamics of systems such as the solar convection zone.

A second, and equally critical, role played by experimentation is in the val-
idation of numerical simulation codes. Traditionally, verification and validation
(V&V) of numerical codes has been a largely informal activity in computational
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astrophysics, but in computational fluid dynamics, especially as applied in engin-
eering, V&V has been extensively formalized and rigorously applied. An example
of a formal guidance document in the engineering literature is the AIAA Guide

for the Verification and Validation of Computational Fluid Dynamics Simulations;
and a more informal discussion can be obtained at the NPARC Alliance web site
(Slater 2005a), together with a fairly straightforward and informative on-line tutorial
(Slater 2005b). Typically, this difference in rigour and consistency largely reflects
the significant differences in (financial) investments in computational tools in vari-
ous disciplines; thus, given the resources, astrophysics codes can be subjected to
extensive V&V (see, for example, Calder et al. 2002).

What exactly is V&V, and how does ‘verification’ differ from ‘validation’? The
formal definition of ‘verification’ (taken from the AIAA definition document) is
‘the process of determining that a model implementation accurately represents
the developer’s conceptual description of the model and the solution to the model’,
which is a fancy way of saying, ‘are we solving the equations correctly?’. In contrast,
‘validation’ is defined (in the same document) as ‘the process of determining the
degree to which a model is an accurate representation of the real world from the
perspective of the intended uses of the model’, which is in turn a fancy way of
saying, ‘are we solving the correct equations?’. Thus, the process of verification
is largely a matter of applied mathematics, whereas the process of validation is
inherently an experimental process, involving the design of appropriate laboratory
experiments that test whether the numerical code in question is in fact capable
of correctly describing the intended target physical system. Thus, while I earlier
advertised numerical simulations as a guide to understanding complex nonlinear
(fluid) dynamics, I am now cautioning that we do need to ask (and answer!) the
question, ‘to what extent can simulations be viewed as a reliable guide to complex
fluid dynamical behaviour?’.

Lest the reader think that the exercise of answering this last question is a relatively
benign activity, it is useful to point out that recent experience in simulating fluid
mixing problems – which are substantially simpler than the mixing thought to
occur within the tachocline – has shown the great difficulty of actually getting
correct results. One illustrative case in point is the question of interfacial mixing
driven by the Rayleigh–Taylor instability (which arises from placing a heavy fluid
on top of a relatively light fluid, with the two fluids in pressure equilibrium). As
shown by the extensive study by Dimonte et al. (2004), the common ploy of inter-
code comparisons (often done in the absence of readily available experimental
data) can lead to totally incorrect conclusions: in the Rayleigh–Taylor problem, it
turns out that most of the modern compressible hydrodynamics codes tested by
Dimonte et al. produced results that were in very good agreement with one another,
but disagreed entirely with the applicable experimental results. This immediately
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suggested that the code authors had indeed done their homework as far as code
verification was concerned (all of these codes correctly solved the same set of
hydrodynamic equations) but, by the same token, there was clearly something amiss
in the physical description of the problem, as defined by the codes and initial and
boundary conditions used to define the calculations. This result was an object lesson
to many of us contemplating the use of DNS as a guide to solving astrophysical
fluid dynamics problems, and it has led some of us to establish much closer ties
to experimental groups focusing on laboratory experiments that can validate our
codes. Indeed, under the most favourable circumstances, such experiments – if
appropriately designed – can serve both to validate codes and to directly inform
the astrophysical problem under study (i.e. the first role for simulations I discussed
above); an illustration of such experiments, and of the extensive discussions that
have led up to such experiments, can be seen in the proceedings of the recent
conference on magneto-Couette flows (Rosner et al. 2004).

14.5 Comments and conclusions

It is evident that the subject of the Sun’s interior remains one of the most fascinating
areas of modern astrophysics; and the remarkable, intense interplay between helio-
seismic observations and data analysis on the one hand, and theoretical modelling
on the other – which was quite in evidence at the workshop – bodes well for the
future of the subject. To repeat a point made at the beginning: there is no doubt
that part of the fascination derives from the fact that the tachocline – deceptively
modest in volume and mass – is the key to a stunning variety of important solar (and
stellar) physics problems, from rotational spindown to compositional evolution of
the interior and to the mystery of the solar dynamo and solar magnetic activity. My
personal crystal ball predicts that with the advent of computers capable of sustained
petaflop performance levels over the next decade (a target already in sight in the
technology plans for IBM’s Blue Gene technology), there will be an enormous
opportunity to test theoretical ideas by means of targeted laboratory experiments
and closely matched DNS; such opportunities are already in hand in the case of
the closely related magneto-Couette problem (see Chapter 12) – it’s a great time to
enter this field!
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