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Preface

More and more advanced technological systems rely on sophisticated control
systems to increase their safety and performances. In the event of system
component faults, the conventional feedback control designs may result in
unsatisfactory performances or even instability, especially for complex safety
critical systems, e.g., aircraft, space craft and nuclear power plant, etc. This
has ignited enormous research activities in the search for new design method-
ologies, for accommodating the component failures and maintaining the ac-
ceptable system stability and performances, so that abrupt degradation and
total system failures can be averted. Fault-tolerant control (FTC) is a rela-
tively new field of research addressing the design of feedback controllers that
ensure safe and efficient operations despite the occurrence of faults. Fault-
tolerant design approaches can be broadly classified into two types: passive
approach and active approach.

Traditional reliable control is a kind of passive control approach, in which
a controller with fixed gain is used throughout normal and fault cases, such
that this type of controller is easily implemented. Moreover, several perfor-
mance indexes such as H∞, H2, and cost functions mainly based on algebraic
Riccati equation (ARE) or linear matrix inequality (LMI) methods, can be
used to describe the performances of the closed-loop systems. However, as the
number of possible failures and the degree of system redundancy increase, the
passive reliable controllers with fixed gains become more conservative, and at-
tainable control performance indexes may not necessarily be satisfactory. On
the other hand, adaptive control is an effective method to design fault-tolerant
controllers, too. They rely on the potential of the adjustments of parameters
to assure reliability of closed-loop systems in the presence of a wide range of
unknown faults. Hence, the resultant solvable conditions can be more relaxed
and the corresponding controller gains are variable.

In this book, the aim is to present our recent research results in designing
reliable controllers/filters for linear systems. The main feature of this book is
that adaptive mechanisms are successfully introduced into the traditional re-
liable control/filtering and based on the online estimation of eventual faults,
the proposed adaptive reliable controller/filter parameters are updated au-
tomatically to compensate the fault effects on systems. Moreover, the adap-
tive performances of resultant closed-loop systems in both normal and actua-
tor/sensor faults cases are optimized, and asymptotic stability is guaranteed.
The designed conditions, which are given in the frameworks of linear matrix
inequalities (LMIs), are proven to be less conservative than those of the tradi-

ix



x

tional reliable control/filtering. Designs for linear systems with both actuator
failures and sensor failures are covered, respectively. We also extend the design
idea from linear systems to linear time-delay systems via both memory-less
controllers and memory controllers. Moreover, some more recent results for
the corresponding adaptive reliable control against actuator saturation are
included here. This book provides a coherent approach, and contains valu-
able reference materials for researchers wishing to explore the area of reliable
control. Its contents are also suitable for a one-semester graduate course.

The book focuses exclusively on the issues of reliable control/filtering in
the framework of indirect adaptive method, and LMI techniques, starting
from the development and main research methods in fault-tolerant control,
and offering a systematic presentation of the newly proposed methods for
adaptive reliable control/filtering of linear systems against actuator/sensor
faults. Designs and guidelines provided here may be used to develop advanced
fault-tolerant control techniques to improve reliability, maintainability, and
survivability of complex control systems.

This work was partially supported in part by National 973 Program of
China (Grant No. 2009CB320604), the Funds of National Science of China
(Grant No. 60821063, 60804024, 60974043), China Postdoctoral Science Foun-
dation (Grant No. 20090451276), and 111 Project (B08015).

We would like to thank Dr. Wei Guan for his great help in preparing
Chapters 7 and 8.

Guang-Hong Yang and Dan Ye
Northeastern University, China



Symbol Description

∈ belongs to
R field of real numbers
Rn n-dimensional real Eu-

clidean space
Rn×m set of n×m real matrices
In×m n×m identity matrix
XT transpose of matrix X
P ≥ 0 symmetric positive semidefi-

nite matrix P ∈ Rn×n

P > 0 symmetric positive definite
matrix P ∈ Rn×n

P ≤ 0 symmetric negative semidef-
inite matrix P ∈ Rn×n

P < 0 symmetric negative definite
matrix P ∈ Rn×n

P−1 the inverse of matrix P
rank(·) rank of a matrix
‖ · ‖ Euclidean matrix norm
‖e‖2 L2-norm of signal e
L2[0,∞) space of square integrable

functions on [0,∞)
* symmetric terms in a sym-

metric matrix
Ker Ω the null space of set Ω
Proj projection operator
LMI linear matrix inequality
BLMI bilinear matrix inequality
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1

Introduction

In recent years, fault-tolerant control has become a hot research area be-
cause of its importance in practical engineering [5, 54, 113, 121, 124, 134].
Generally, fault-tolerant control methods can be divided into passive fault-
tolerant method [84, 125, 133, 149, 164] and active fault-tolerant method
[8, 9, 10, 11, 30, 46, 72, 94, 79, 130, 162]. A passive fault-tolerant controller
commonly has a simple structure and is easily implemented [108, 117, 126].
The system performances in normal and fault modes can be optimized.
However, as the number of faults increases, the design conservatism in-
creases and even the design requirements cannot be achieved. On the other
hand, an active fault-tolerant controller may readjust controller parameters
or change controller structure to compensate the fault effects on systems
[6, 19, 128, 131, 130, 129]. Many active fault-tolerant control methods are
based on fault detection and diagnosis (FDD) mechanisms. Without FDD
mechanisms, some methods have been developed to design fault-tolerant con-
trollers using indirect adaptive method or direct adaptive method, based on
the potentially adjustable capacity of adaptive method. The resultant closed-
loop system can be guaranteed to be stable, but the system performance in
different modes cannot be optimized [8, 9, 10, 11, 130].

The main contribution of this book is that linear matrix inequality tech-
niques in robust control and adaptive methods have been successfully com-
bined to establish a set of new fault-tolerant control methods [152, 153, 155,
156]. Due to the successful introduction of adaptive mechanisms, the proposed
method can optimize the closed-loop system performances under different op-
eration modes and reduce the inherent conservatism in the traditional reliable
control. Main results are applied to the simulations about F-16/F-18 aircraft
models, river pollution model and the F-404 engine model, which show intu-
itively the feasibility and superiority of the newly proposed methods.

A summary of the rest of the chapters of this monograph is given below.
Chapter 2 presents some classical results about linear matrix inequality

(LMI), and H∞ control. Some lemmas to be used to derive the main results
of this book are also given.

Chapter 3 investigates the adaptive reliable H∞ control problem for linear
time-invariant system against actuator faults via state feedback and dynamic
output feedback, respectively, where linear matrix inequality technique and
adaptive method are combined successfully. The adaptive H∞ performance
index is exploited to describe the disturbance attenuation performances of

1



2 Reliable Control and Filtering of Linear Systems

closed-loop systems. Based on the online estimation of actuator faults, an
adjustable control law is designed to automatically compensate the effect of
faults on systems. In the framework of LMI method, the adaptive H∞ per-
formances of resultant closed-loop systems in both normal and actuator fault
cases are optimized, and asymptotic stability is guaranteed. It is worth not-
ing that the design conditions for the reliable H∞ controllers with adaptive
mechanisms are more relaxed than those for the reliable H∞ controllers with
fixed controller gains. The simulation examples have shown the effectiveness
of the proposed adaptive method.

Chapter 4 and Chapter 5 deal with the corresponding adaptive reliable con-
troller and filter design problems against sensor faults, respectively. Besides
LMI approach, adaptive method is also used to improve H∞ performances of
systems in both normal and sensor failure cases. An adjustable dynamic out-
put feedback controller/filter is constructed based on the online estimations of
sensor faults, which is obtained by adaptive laws. More relaxed design condi-
tions than those for designing traditional reliable controller/filter are given to
guarantee the asymptotic stability and L2-gain. In sensor failure cases, only
the state vector of dynamic output feedback controller/filter and the mea-
sured output can be used to construct the adaptive laws, which brings more
challenges for dealing with the adaptive controller or adaptive filter design
problem against sensor failures.

Based on the results in Chapter 3, Chapter 6 extends the adaptive reli-
able controller design problem to linear time-delay systems via both memory-
less controllers and memory controllers. Moreover, both state feedback and
dynamic output feedback designs are considered. Due to the introduction of
adaptive mechanisms, more relaxed controller design conditions than those for
the traditional controller with fixed gains are derived. Some simulation results
have demonstrated the superiority of the newly proposed design methods.

Chapter 7 and Chapter 8 consider the problem of designing adaptive reli-
able controllers for linear time-invariant systems with actuator saturation. In
Chapter 7, a new method for designing indirect adaptive reliable controllers
via state feedback is presented for actuator fault compensations. The design is
developed in the framework of linear matrix inequality (LMI) approach, which
can enlarge the domain of asymptotic stability of closed-loop systems in the
cases of actuator saturation and actuator failures. The correspondingH∞ con-
trol problem is addressed in Chapter 8. The disturbance tolerance ability of
the closed-loop system is measured by an optimal index. Some examples are
given to illustrate the efficiency of the design methods.

In Chapter 9, the reliable tracking problem of linear time-invariant sys-
tems in the presence of actuator faults is studied. The type of fault considered
here is loss of actuator effectiveness, which is a special case of those in the
previous chapters. Moreover, we design a novel adaptive reliable controller
without using fault detection and isolation (FDI) mechanism. The newly pro-
posed method is based on the online estimation of an eventual fault and the
addition of a new control law to the normal control law for reducing the fault
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effect automatically. It should be noted that the normal tracking performance
of the resultant closed-loop system is optimized without any conservativeness
and the states of fault modes asymptotically track those of the normal mode.
Since systems are operating under the normal condition most of time, this
contribution is very important in actual control systems design. The proposed
results are applied to a linearized F-16 aircraft model to demonstrate its ef-
fectiveness and superiority.

Based on the theory of Chapter 9, Chapter 10 is devoted to the adap-
tive reliable control problem of a class of nonlinear time-delay systems with
disturbance. The considered actuator fault is loss of effectiveness. The perfor-
mance index in normal cases is optimized in the framework of LMIs. And new
delay-dependent adaptive laws are designed to compensate the fault effects
on systems and to guarantee the system stability in normal and fault cases.
Moreover, the state vectors of normal and fault cases with disturbance can
track that of the normal case without disturbance, which has the designed
optimal performance.



2

Preliminaries

In this monograph, reliable control and filtering problems for systems are in-
vestigated under both H∞ and guaranteed cost performance index, using lin-
ear matrix inequality technique and adaptive method. For the convenience of
discussion in the rest of monograph, some preliminaries including a few of
definitions, notions and lemmas are presented in this chapter.

2.1 Linear Matrix Inequalities

Linear Matrix Inequality (LMI) techniques have emerged as powerful design
tools in areas ranging from control engineering to system identification and
structural design, since the resulting optimization problems can be solved
numerically very efficiently. In recent years, LMI method has been applied to
almost every branch of control theory. The following brief description of the
LMI method is given to prepare for use in later chapters.

A linear matrix inequality (LMI) is any constraint of the form

F (x) = F0 + x1F1 + · · · + xmFm < 0 (2.1)

where x = [x1, · · · , xm]T is a vector of unknown scalars (the decision or op-
timization variables), F0, · · · , Fm are given symmetric matrices. F (x) < 0
stands for “negative definite,” i.e., the largest eigenvalue of F (x) is negative.

If “≤ ” has replaced “<” in (2.1), then the corresponding matrix inequal-
ities becomes non-strict linear matrix inequalities. Note that the constraints
F (x) > 0 and F (x) < G(x) are special cases of (2.1) since they can be rewrit-
ten as −F (x) < 0 and F (x) −G(x) < 0, respectively.

Denote Φ = {x|F (x) < 0}, it is easy to prove Φ is a convex set. This fact
makes it possible to apply the interior point method of convex optimization
problem to solve the corresponding problems of LMI.

Note that a system of LMI constraints can be regarded as a sin-
gle LMI since F1(x) < 0, · · · , Fk(x) < 0 is equivalent to F (x) =
diag{F1(x), · · · , Fk(x)}. Hence, multiple LMI constraints can be imposed on
the vector of decision variables x without destroying convexity.

The following lemma is one of the most fundamental and commonly results
of matrix theory in LMI methods.

5



6 Reliable Control and Filtering of Linear Systems

Lemma 2.1 [14] (Schur Complement Lemma) For any given symmetric ma-

trix S =
[
S11 S12

ST
12 S22

]
, where S11 ∈ Rr×r. Then the following three conditions

are equivalent
(i) S < 0
(ii) S11 < 0, S22 − ST

12S
−1
11 S12 < 0

(iii) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0

The following three generic optimization problems can be solved by using
MATLAB LMI Toolbox.

Here x denotes the vector of decision variables, i.e., of the free entries of
the matrix variables X1, · · ·XK :

(i) Feasibility problem
Find x ∈ RN (or equivalently matrices X1, · · ·XK with prescribed structure)
that satisfies the LMI system

A(x) < B(x)

The corresponding solver is called feasp.
(ii) Minimization of a linear objective under LMI constraints

MinimizecTx over x ∈ RN subject to A(x) < B(x)

The corresponding solver is called mincx.
(iii) Generalized eigenvalue minimization problem

Minimize γ over x ∈ RN subject to
C(x) < D(x)
0 < B(x)
A(x) < γB(x)

The corresponding solver is called gevp.

2.2 H∞ Control Problem

2.2.1 H∞ Performance Index

A popular performance measure of a stable linear time-invariant system is the
H∞ norm of its transfer function. It is defined as follows.

Definition 2.1 [165] Consider a linear time-invariant continuous-time sys-
tem

ẋ(t) = Ax(t) +B1ω(t)
z(t) = Cx(t) +D1ω(t) (2.2)
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where x(t) ∈ Rn is the state, ω(t) ∈ Rs is an exogenous disturbance in
L2[0,∞], that is,

‖ω(t)‖2
2 =

∫ ∞

0

ωT (t)ω(t)dt <∞

and z(t) ∈ Rris the regulated output, respectively. A, B1,C,D1 are known
constant matrices of appropriate dimensions.

Let γ > 0 be a given constant, then the system (2.2) is said to be with an
H∞ performance index no larger than γ, if the following conditions hold
(1) System (2.2) is asymptotically stable
(2) Subject to initial conditions x(0) = 0, the transfer function matrix Tωz(s)
satisfies,

‖Tωz(s)‖∞ := sup
‖ω‖2≤1

‖z‖2

‖ω‖2
≤ γ (2.3)

(2.3) is equivalent to∫ ∞

0

zT (t)z(t)dt ≤ γ2

∫ ∞

0

ωT (t)ω(t)dt, ∀ω(t) ∈ L2[0,∞) (2.4)

It is easy to see that the inequality (2.4) describes the restraint disturbance
ability. Moreover, the system performance is better as γ is smaller.

The LMI conditions for the H∞ control problem for system (2.2) is given
as follows.

Lemma 2.2 [119] For given constant γ > 0, the system (2.2) is asymptoti-
cally stable and the transfer function matrix Tωz(s) satisfies ‖Tωz(s)‖∞ ≤ γ
if and only if there exists a positive symmetric matrix P such that⎡

⎣ATP + PA PB1 CT

∗ −I DT
1

∗ ∗ −γ2I

⎤
⎦ < 0 (2.5)

Next, the H∞ control problems via state feedback and dynamic output feed-
back are considered, respectively.

2.2.2 State Feedback H∞ Control

Consider the following system

ẋ(t) = Ax(t) +B1ω(t) +Bu(t)
z(t) = C1x(t) +D11ω(t) +D12u(t)
y(t) = C2x(t) +D21ω(t) +D22u(t) (2.6)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is
the measured output, z(t) ∈ Rq is the regulated output and ω(t) ∈ Rs is an
exogenous disturbance in L2[0,∞], respectively.
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First assume the state of system is available at every instant, here we will
design a state feedback controller u = Kx such that the resultant closed-loop
system

ẋ(t) = Ax(t) +BKx(t) +B1ω(t) (2.7)

is asymptotically stable and the transfer function from ω to z satisfying

‖Tωz(s)‖∞ = ‖(C1 +D12K)[sI − (A+BK)]−1B1 +D11‖∞ ≤ γ (2.8)

By some matrix transformation, the following conclusion can be easily ob-
tained from Lemma 2.2.

Lemma 2.3 [14] The closed-loop system (2.6) is asymptotically stable and
satisfies performance index (2.8) if and only if there exist a positive matrix
X > 0 and matrix Y such that⎡

⎣AX + BY + (AX +BY )TA B1 (C1X +D12Y )T

∗ −I DT
11

∗ ∗ −γ2I

⎤
⎦ < 0 (2.9)

Proof 2.1 From Lemma 2.2, it is easy to see that the closed-loop system
(2.6) is asymptotically stable and satisfies performance index (2.8) if and only
if there exists a positive matrix P > 0 such that⎡

⎣(A+BK)TP + P (A+BK) PB1 (C1 +D12K)T

∗ −I DT
11

∗ ∗ −γ2I

⎤
⎦ < 0 (2.10)

Since in (2.10) the two unknown variables K and P are existing in nonlinear
form, it is difficult to solve inequality (2.10) and obtain the corresponding
variables.

Thus, we multiply (2.10) by diag{P−1, I, I} on the left and the right, re-
spectively. It follows that (2.10) is equivalent to the following inequality⎡

⎣Δ + ΔT B1 (C1P
−1 +D12KP

−1)T

∗ −I DT
11

∗ ∗ −γ2I

⎤
⎦ < 0 (2.11)

where Δ = AP−1 +BKP−1.
Denote X = P−1 and W = KX, then the inequality (2.24) can be obtained.
The proof is completed.

2.2.3 Dynamic Output Feedback H∞ Control

In many practical problems, system state information is often not directly
measured. Thus, it is difficult to apply the state feedback to control the system.
Sometimes, even if the system state can be measured directly, but taking
into account the implementation of the control of cost and reliability of the
system and other factors, output feedback is usually used to achieve closed-
loop system performance requirements.
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Assumption 2.1 (A,B,C2) is stabilizable and detectable.

Assumption 2.2 D22 = 0

Assumption 2.1 is necessary and sufficient to guarantee the stability of closed-
loop system via dynamic output feedback. As for Assumption 2.1, it incurs
no loss of generality while considerably simplifying calculations.

Consider the following dynamic output feedback controller

˙̂x(t) = AK x̂(t) +BKy(t)
u(t) = CK x̂(t) +DKy(t) (2.12)

where x̂(t) is the state of controller (2.12), AK , BK , CK , DK are the controller
parameters to be designed. Then the resulting closed-loop system is

ξ̇(t) = Aclξ(t) +Bclω(t)
z(t) = Cclξ(t) +Dclω(t) (2.13)

where

ξ =
[
x
x̂

]
, Acl =

[
A+BDKC2 BCK

BKC2 AK

]
, Bcl =

[
B1 +BDKD21

BKD21

]
Ccl =

[
C1 +D12DKC2 D12CK

]
, Dcl = D11 +D12DKD21

From Lemma 2.2, we know that the controller (2.12) renders the closed-loop
system (2.13) asymptotically stable and ‖Tωz(s)‖∞ ≤ γ if and only if there
exists a positive matrix Xcl such that⎡

⎣AT
clXcl +XclAcl XclBcl CT

cl

∗ −I DT
cl

∗ ∗ −γ2I

⎤
⎦ < 0 (2.14)

It is easy to see that in (2.14) the matrix variable Xcl and the controller
parameters AK , BK , CK , DK are existing in nonlinear forms, which will bring
more difficulty to the dynamic output feedback controller design.

Next, the two results in the framework of LMIs are presented to deal with
the dynamic output feedback controller design problem.
Variable elimination method

The first method is the variable elimination method, which is based on the
well known projection lemma.

Lemma 2.4 (Projection Lemma) [42, 71] Given a symmetric matrix H ∈
Rm×m and two matrices P and Q of column dimension m, considering the
problem of finding some matrix X of compatible dimension such that

H + PTXTQ+QTXP < 0 (2.15)

Denote by NP and NQ some matrices whose columns form a basis for the null
spaces of P and Q, respectively. Then (2.15) is solvable if and only if

NT
P HNP < 0, NT

QHNQ < 0 (2.16)
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Gathering all the controller parameters into a single variable

K =
[
AK BK

CK DK

]

and introducing the following short-hands:

A0 =
[
A 0
0 0

]
, B0 =

[
B1

0

]
, C0 =

[
C1 0

]
B̄ =

[
0 B
I 0

]
, C̄ =

[
0 I
C2 0

]
, D̄12 =

[
0 D12

]
, D̄21 =

[
0
D21

]
(2.17)

then the closed-loop matrices Acl, Bcl, Ccl, Dcl can be written as

Acl = A0 + B̄KC̄, Bcl = B0 + B̄KD̄21

Ccl = C0 + D̄12KC̄, Bcl = D11 + D̄12KD̄21 (2.18)

Note that (2.17) involves only plant data and they depend affinely on the
controller data K.

Denote

HXcl
=

⎡
⎣AT

0 Xcl +XclA0 XclB0 CT
0

∗ −I DT
cl

∗ ∗ −γ2I

⎤
⎦

PXcl
=

[
B̄TXcl 0 D̄T

12

]
, Q =

[
C̄ D̄21 0

]
Hence, (2.14) can be described as

HXcl
+ PT

Xcl
KQ+QTKTPXcl

< 0 (2.19)

Let

Xcl =
[
X X2

∗ X3

]
, X−1

cl =
[
Y Y2

∗ Y3

]
(2.20)

Lemma 2.5 [42, 71] The closed-loop system (2.13) is asymptotically stable
and has a dynamic output feedback H∞controller if and only if there exist a
positive definite matrix X > 0 and Y such that

[
N0 0
∗ I

] ⎡
⎣ATX +XA XB1 CT

1

∗ −I DT
11

∗ ∗ −γ2I

⎤
⎦

T [
N0 0
∗ I

]
< 0 (2.21)

[
Nc 0
∗ I

]⎡
⎣ATY + Y A Y C1 BT

1

∗ −I DT
11

∗ ∗ −γ2I

⎤
⎦

T [
Nc 0
∗ I

]
< 0 (2.22)

[
X I
∗ Y

]
≥ 0 (2.23)

where N0 and Nc denote any matrices whose columns form basis of
Ker([C2 D21]) and Ker(BT

2 DT
12], respectively.
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A design procedure of dynamic output feedback controller (2.13) is given
as follows.
Step 1. Solve the conditions in Lemma 2.5 to obtain X and Y .
Step 2. Solve X2 ∈ Rn×nk to satisfy X − Y −1 = X2X

T
2 , where nk can be

chosen as the rank of X − Y −1. And let X3 = I, then it follows

Xcl =
[
X X2

∗ I

]

Step 3. Apply the obtained Xcl into

HXcl
+ PT

Xcl
KQ+QTKTPXcl

< 0

which is linear matrix inequality including only one matrix variable K. Then
the controller parameter variable K can be obtained.

Lemma 2.6 [118] The closed-loop system (2.6) is asymptotically stable and
satisfies performance index (2.8) if and only if there exist a positive definite
matrix X > 0 and matrix Y such that⎡

⎣AX +BY + (AX +BY )TA B1 (C1X +D12)Y T

∗ −I DT
11

∗ ∗ −γ2I

⎤
⎦ < 0 (2.24)

Variable transformation method
Next, another method to deal with the dynamic output feedback H∞ con-

troller design problem is presented, that is the so-called “variable transforma-
tion method.”

Denote

Xcl =
[
Y N
∗ W

]
, X−1

cl =
[
X M
∗ Z

]

where X,Y ∈ Rn×n are symmetric matrices. From XclX
−1
cl = I, we infer

Xcl

[
X
MT

]
=

[
I
0

]
, which lead to

Xcl

[
X I
MT 0

]
=

[
I Y
0 NT

]
with F1 =

[
X I
MT 0

]
, F2 =

[
I Y
0 NT

]

Then XclF1 = F2, and after a short calculation it follows

FT
1 XclAclF1 = FT

2 AclF1 =
[
AX +BĈ A+BD̂KC2

Â Y A+ B̂C2

]

FT
1 XclBcl =

[
B1 +BD̂D21

Y B1 + B̂D21

]

CclF1 =
[
C1X +D12Ĉ C1 +D12D̂C2

]
FT

1 XclF1 = FT
2 F1 =

[
X I
I Y

]
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where

Â = Y (A+BDKC2)X +NBKC2X + Y BCKM
T +NAKM

T

B̂ = Y BDK +NBK

Ĉ = DKC2X + CKM
T

D̂ = DK (2.25)

If M and N have full row rank, and if Â, B̂, Ĉ, D̂,X and Y are given, we can
always compute controller matrices AK , BK , CK and DK satisfying (2.25). If
M and N are square (i.e., k = n) and invertible matrices, then AK , BK , CK

and DK are unique.
On the other hand, if we multiply (2.14) by diag{FT

1 , I, I} on the left and
the right, respectively, it follows that (2.14) is equivalent to

⎡
⎢⎢⎣
AX +XAT +BĈ + (BĈ)T ÂT + (A+BD̂C2)

∗ ATY + Y A+ B̂C2 + (B̂C2)T

∗ ∗
∗ ∗

B1 +BD̂D21 (C1X +D12Ĉ
T )

Y B1 + B̂D21 (C1 +D12D̂C2)T

−I (D11 +D12D̂D21)T

∗ −γ2I

⎤
⎥⎥⎦ < 0 (2.26)

It is easy to see that the inequality (2.26) is linear matrix inequality about
matrix variables Â, B̂, Ĉ, D̂,X and Y . Thus, a feasible solutions of (2.26) can
be obtained by using the LMI Toolbox. Moreover, we have proved that the
solvability of the LMI (2.26) is necessary for the existence of a stabilizing
controller rendering ‖Tωz(s)‖∞ ≤ γ.

Assume that we have found solutions to the LMI (2.26). First we need to
construct M and N .

From the equation XT
clXcl = I, it follows

MNT = I −XY (2.27)

By Xcl > 0, we infer [
X I
I Y

]
> 0 (2.28)

which implies I −XY > 0 is nonsingular. Hence, after getting the values of
X and Y , one can always find square and nonsingular M and N satisfying
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(2.27). Then the corresponding controller parameters can be obtained by

DK = D̂

CK = (C−1 −DKC2X)(MT )−1

BK = N−1(B̂ − Y BDK)

AK = N−1[Â− Y (A+BDKC2)X ](MT )−1 −BkC2X(MT )−1 −N−1Y BCK

(2.29)

Lemma 2.7 [119] The closed-loop system (2.13) is asymptotically stable and
has a dynamic output feedback H∞controller if and only if there exist sym-
metric matrices X,Y and matrices Â, B̂, Ĉ, D̂ such that the LMIs (2.26) and
(2.28) are feasible. Furthermore, if X,Y and Â, B̂, Ĉ, D̂ are the feasible solu-
tions of (2.26) and (2.28), then the matrices M and N can be obtained by the
singular value decomposition of I−XY . And so the controller parameters are
given from (2.29).

2.3 Some Other Lemmas

Some other lemmas that will be used in the monograph are presented.

Lemma 2.8 (Fisher’s Lemma) [71] Let matrices Q = QT , G, and a com-
pact subset of real matrices H be given. Then the following statements are
equivalent:

(i) for each H ∈ H ξTQξ < 0 for all ξ 	= 0 such that HGξ = 0;

(ii) there exists Θ = ΘT such that

Q+GT ΘG < 0, NT
HΘNH ≥ 0 for all H ∈ H.

where NH denotes a matrix whose columns form a basis for the null space of
H.

Lemma 2.9 [43] Consider a scalar quadratic function of θ ∈ Rs

f(θ1, · · · , θs) = α0 +
∑

i

αiθi +
∑
i<j

βijθiθj +
∑

i

γiθ
2
i (2.30)

and assume that f(·) is multiconvex, that is

2γi =
∂2f

∂θ2i
(θ) ≥ 0, for i = 1, · · · s. (2.31)

Then f(·) is negative in the hyper-rectangle θi ∈ [θi, θi] if and only if it takes
negative values at the corners of θi ∈ [θi, θi]; that is, if and only if f(θ) < 0
for all θ in the vertex set Ω := {(θ1, · · · , θs) : θi ∈ {θi, θi}}.
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Let
Δv = {δ = (δ1 · · · δs) : δi ∈ {δi, δ̄i}}

where δi (i = 1 · · · s) are unknown constants.

Lemma 2.10 If there exists a symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]

where Θ11, Θ22 ∈ Rsn×sn such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · s
with Θ22ii ∈ Rn×n is the (i, i) block of Θ22.
For any δ ∈ Δv

Θ11 + Θ12Δ(δ) + (Θ12Δ(δ))T + Δ(δ)Θ22Δ(δ) ≥ 0

and [
Q E
ET F

]
+ UTU +GT ΘG < 0 (2.32)

then for all δi ∈ [δi δ̄i],

W (δ) = Q+
s∑

i=1

δiEi + (
s∑

i=1

δiEi)T +
s∑

i=1

s∑
j=1

δiδjFij

+ (U0 +
s∑

i=1

δiUi)T (U0 +
s∑

i=1

δiUi) < 0 (2.33)

where

Q = QT , Fij = FT
ji , Δ(δ) = diag

[
δ1I · · · δsI

]
,

E = [E1 E2 · · ·Es], U = [U0 U1 · · ·Us],

F =

⎡
⎢⎢⎢⎣
F11 F12 · · · F1s

F21 F22 · · · F2s

...
... · · · ...

Fs1 Fs2 · · · Fss

⎤
⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎣
⎡
⎢⎣
I
...
I

⎤
⎥⎦ 0

0 I

⎤
⎥⎥⎥⎦

Proof 2.2 For any x 	= 0, (2.33) is equivalent to xTW (δ)x < 0,
which further is equivalent for any vector

[
xT yT

]T 	= 0 and y =[
δ1In×n · · · δsIn×n

]T
x

[
xT yT

] [
Q E
ET F

] [
x
y

]
+ xT

[
In×n δ1In×n · · · δsIn×n

]
UT

× U
[
In×n δ1In×n · · · δsIn×n

]T
x

=
[
xT yT

]
(
[
Q E
ET F

]
+ UTU)

[
x
y

]
< 0 (2.34)



Preliminaries 15

and

HG

[
x
y

]
= 0 (2.35)

where H =
[−Δ(δ) Isn×sn]

]
, Δ(δ) = diag

[
δ1In×n · · · δsIn×n

]
.

G =

⎡
⎢⎢⎢⎣
⎡
⎢⎣
In×n

...
In×n

⎤
⎥⎦ 0

0 Isn×sn

⎤
⎥⎥⎥⎦

It is easy to see that

NH =
[
Isn×sn

Δ(δ)

]
(2.36)

Thus by Lemma 2.8 and (2.34)-(2.36), we have xTW (δ)x < 0, for any x 	= 0
if (2.32) holds. So the proof is completed.

Lemma 2.11 For any given constant γ > 0, the following statements are
equivalent:
(i) Aef is Hurwitz, and ‖Tzef ω‖ < γ;
where

Tzef ω = Cef (sI −Aef )−1Bef , (2.37)

with

Aef =
[

A BCKf

BKfC2 AKf

]
, Bef =

[
B1

BKfD21

]
Cef = [C1 D12CKf ]

(ii) there exists a symmetric matrix Xa > 0 such that

AT
efXa +XaAef +

1
γ2
XaBefB

T
efXa + CT

efCef < 0 (2.38)

(iii) there exist nonsingular matrix Q and symmetric matrix P > 0 with

P =
[
Y1 −N1

−N1 N1

]
(2.39)

such that the following inequality holds

AT
eqP + PAeq +

1
γ2
PBeqB

T
eqP + CT

eqCeq < 0, (2.40)

where

Aeq =
[

A BCKq

BKqC2 AKq

]
, Beq =

[
B1

BKqD21

]
Ceq = [C1 D12CKq]
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and

AKq = Q−1AKfQ, BKq = −Q−1BKf , CKq = −CKfQ (2.41)

Proof 2.3 From [165], it is easy to see that (i)⇔(ii).

Next, we will prove (ii)⇒(iii). Let Xa =
[
X11 X12

XT
12 X22

]
> 0 such that the in-

equality (2.38) holds, then there exists an ε ≥ 0 such that

AT
efXb +XbAef +

1
γ2
XbBefB

T
efXb + CT

efCef < 0 (2.42)

where Xb =
[

X11 X12 + εI
XT

12 + εI X22

]
> 0 and X12 + εI is nonsingular.

In fact, if X12 is nonsingular, then (2.42) holds for ε = 0. For the case of X12

being singular, then there exists a sufficiently small ε > 0 such that (2.42)
holds and X12 + εI is nonsingular.
Denote Q = X−1

22 (X12+εI)T , AKq = Q−1AKfQ, BKq = −Q−1BKf , CKq =
−CKfQ, Y1 = X11 and N1 = (X12 + εI)Q
Then by (2.38) and Xb > 0, we have

P =
[
I 0
0 −Q

]T

Xb

[
I 0
0 −Q

]
=

[
Y1 −N1

−N1 N1

]
> 0 (2.43)

and

AT
eqP + PAeq +

1
γ2
PBeqB

T
eqP + CT

eqCeq

=
[
I 0
0 −Q

]T

Φ
[
I 0
0 −Q

]
< 0 (2.44)

which imply that (iii) holds, where

Φ = AT
efXb +XbAef +

1
γ2
XbBefB

T
efXb + CT

efCef .

(iii)⇒(ii): Let

Xb =
[
I 0
0 −Q−1

]T

P

[
I 0
0 −Q−1

]
(2.45)

Then by (2.38) and P > 0, it follows that Xb > 0 and

AT
efXb +XbAef +

1
γ2
XbBefB

T
efXb + CT

efCef

=
[
I 0
0 −Q−1

]T

Ψ
[
I 0
0 −Q−1

]
< 0 (2.46)
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i.e., (ii) holds, where

Ψ = AT
eqP + PAeq +

1
γ2
PBeqB

T
eqP + CT

eqCeq.

Thus, the proof is completed.

Lemma 2.12 [99] For any a ∈ Rn, b ∈ R2n, Z0 ∈ R2n×n,R ∈ Rn×n, Y ∈
Rn×2n, Z ∈ R2n×2n, the following holds:

−2bTFa ≤
[
a
b

]T [
R Y − ZT

0

Y T − Z0 Z

] [
a
b

]
(2.47)

where
[
R Y
Y T Z

]
≥ 0.

Lemma 2.13 [159] Consider an operator D(·) : Cn,d → Rn with D(xt) =
x(t) + G

∫ t

t−d x(s)ds, where x(t) ∈ Rn and G ∈ Rn×n. For a given scalar δ,
where 0 < δ < 1, if a positive definite symmetric matrix M ∈ Rn×n exists,
such that [−δM dGTM

∗ −M
]
< 0 (2.48)

holds, then the operator D(xt) is stable.

Lemma 2.14 [73] For any positive symmetric constant matrix M ∈ Rn×n,
scalar γ > 0, vector function v : [0, γ] → Rn such that the integrations con-
cerned are well defined, then

(∫ γ

0

v(s)ds
)T

M

(∫ γ

0

v(s)ds
)

≤ γ

(∫ γ

0

vT (s)Mv(s)ds
)
. (2.49)

Lemma 2.15 [160] Let x(t) ∈ Rn be a vector-valued function with first-order
continuous-derivative entries. Then the following integral inequality holds for
any matrices X = XT > 0, Y1, Y2 ∈ Rn×n and a scalar d ≥ 0

−
∫ t

t−d

ẋT (s)Xẋ(s)ds

≤ ηT (t)
[
Y T

1 + Y1 −Y T
1 + Y2

∗ −Y T
2 − Y2

]
η(t) + dηT (t)

[
Y T

1

Y T
2

]
X−1

[
Y1 Y2

]
η(t),

(2.50)

where ηT (t) = [xT (t), xT (t− d)].



3

Adaptive Reliable Control against Actuator
Faults

3.1 Introduction

This chapter is devoted to the study of the reliable H∞ control for linear
systems against actuator faults. Here, a general actuator fault model is con-
sidered, which covers the outage cases and the loss of effectiveness cases. It
is well known that the fault-tolerant control problem has been paid more
attention in recent years [74, 105, 145, 161, 136], since unsatisfactory per-
formances or even instability may happen in the event of actuator faults
[114, 126, 128, 133, 151, 164]. Reliable control is a kind of passive control
approach, where the same controller with fixed gain is used throughout nor-
mal and fault cases such that this type of controller is easily implemented and
the performance index can be described. However, as the number of possible
failures and the degree of system redundancy increase, the traditional reliable
controller with fixed gain becomes more conservative and attainable control
performance indexes may not necessarily be satisfactory.

The purpose here is to present a novel reliable controller design approach to
the reliable control problem by introducing an adaptive mechanism [153, 154].
It will show that the advantages of the linear matrix inequality (LMI)approach
and indirect adaptive method can be combined successfully to design new re-
liable H∞ controllers via state feedback and dynamic output feedback. With
the online estimates of fault values, an adjustable control law can be designed
to maintain satisfactory adaptive H∞ performances. Sufficient conditions for
the existence of the above-mentioned adaptive reliable H∞ controllers are
given, and it is shown that these conditions are more relaxed than those for
the traditional reliable controller with fixed gains. The proposed approach in
this chapter also provides a basis for solving other related problems that are
to be studied in the rest of the monograph.

19
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3.2 Problem Statement

Consider a linear time-invariant model described by

ẋ(t) = Ax(t) +B1ω(t) +Bu(t)
z(t) = C1x(t) +D12u(t)
y(t) = C2x(t) +D21ω(t) (3.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is
the measured output, z(t) ∈ Rq is the regulated output and ω(t) ∈ Rs is an
exogenous disturbance in L2[0,∞], respectively. A,B1, B, C1, C2, D12 and D21

are known constant matrices of appropriate dimensions.
To formulate the reliable control problem, the following actuator fault

model from [133] is adopted in this monograph:

uF
ij(t) = (1 − ρj

i )ui(t), 0 ≤ ρj
i ≤ ρj

i ≤ ρ̄j
i , i = 1 · · ·m, j = 1 · · ·L. (3.2)

where ρj
i is an unknown constant. Here, the index j denotes the jth fault mode

and L is the total fault modes. Let uF
ij(t) represent the signal from the ith

actuator that has failed in the jth fault mode. For every fault mode, ρi
j and

ρ̄i
j represent the lower and upper bounds of ρj

i , respectively. Note that, when
ρj

i
= ρ̄j

i = 0, there is no fault for the ith actuator ui in the jth fault mode.
When ρj

i
= ρ̄j

i = 1, the ith actuator ui is outage in the jth fault mode. When
0 < ρj

i
≤ ρ̄j

i < 1, in the jth fault mode the type of actuator faults is loss of
effectiveness.
Denote

uF
j (t) = [uF

1j(t), u
F
2j(t), · · · , uF

mj(t)]
T = (I − ρj)u(t)

where ρj = diag[ρj
1, ρ

j
2, · · · ρj

m], j = 1 · · ·L. Considering the lower and upper
bounds (ρi

j , ρ̄i
j), the following set can be defined

Nρj = {ρj |ρj = diag[ρj
1, ρ

j
2, · · · ρj

m], ρj
i = ρi

j or ρj
i = ρ̄i

j}.
Thus, the set Nρj contains a maximum of 2m elements.
For convenience in the following sections, for all possible fault modes L, we
use a uniform actuator fault model

uF (t) = (I − ρ)u(t), ρ ∈ {ρ1, · · · , ρL} (3.3)

and ρ can be described by ρ = diag[ρ1, ρ2, · · · ρm].
The design problem under consideration is to find an adaptive reliable

controller such that in both normal operation and fault cases, the resulting
closed-loop system is asymptotically stable and its adaptive H∞ performance
bound is minimized.
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3.3 State Feedback Control

In this section, we assume that the state of the system is available at every
instant. Then, we design an adaptive reliable H∞ controller for the linear
time-invariant system (9.1) via state feedback.

The dynamics with actuator faults (3.3) is described by

ẋ(t) = Ax(t) +B(I − ρ)u(t) +B1ω(t)
z(t) = C1x(t) +D12(I − ρ)u(t). (3.4)

The adaptive reliable controller structure is chosen as

u(t) = K(ρ̂(t))x(t) = (K0 +Ka(ρ̂(t)) +Kb(ρ̂(t))x(t) (3.5)

where ρ̂(t) is the estimate of ρ, Ka(ρ̂(t)) =
∑m

i=1Kaiρ̂i(t) and Kb(ρ̂(t)) =∑m
i=1Kbiρ̂i(t).

The closed-loop system is given by

ẋ(t) = Ax(t) +B(I − ρ)K(ρ̂(t))x(t) +B1ω(t)
= Ax(t) +B(I − ρ)(K0 +Ka(ρ̂(t)) +Kb(ρ̂(t)))x(t) +B1ω(t)

z(t) = C1x(t) +D12(I − ρ)K(ρ̂(t))x(t). (3.6)

Next, based on the definition of the traditional H∞ performance index, we
give a new definition about an adaptive H∞ performance index, which will be
used throughout this monograph.

Definition 3.1 Consider the following systems

ẋ(t) = Aa(ρ̂(t), ρ)x(t) +Ba(ρ̂(t), ρ)ω(t)
z(t) = Ca(ρ̂(t), ρ)x(t), x(0) = 0 (3.7)

where x(t) ∈ Rn is the state, ω(t) ∈ Rs is an exogenous disturbance in
L2[0,∞], z(t) ∈ Rris the regulated output, respectively. And ρ is a param-
eter vector, and ρ̂(t) is a time-varying parameter vector to be chosen. Let
γ > 0 be a given constant, then the system (3.7) is said to be with an adaptive
H∞ performance index no larger than γ, if for any ε > 0, there exists a ρ̂(t)
such that the following conditions hold
(1) System (3.7) is asymptotically stable
(2) ∫ ∞

0

zT (t)z(t)dt ≤ γ2

∫ ∞

0

ωT (t)ω(t)dt + ε ∀ω(t) ∈ L2[0,∞) (3.8)

Remark 3.1 By the above definition, for any η > 0, let ε = η2, then there
exists a ρ̂(t) such that (3.8) holds. Thus, for

∫ ∞
0
ωT (t)ω(t)dt > η, we have∫ ∞

0

zT (t)z(t)dt ≤ (γ2 + η)
∫ ∞

0

ωT (t)ω(t)dt
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For
∫ ∞
0
ωT (t)ω(t)dt ≤ η, it follows∫ ∞

0

zT (t)z(t)dt ≤ γ2η + η2

which shows that the adaptive H∞ performance index is close to the standard
H∞ performance index when η is sufficiently small.

We have the following equality

(I − ρ)u(t) = (I − ρ)(K0 +Ka(ρ̂(t)) +Kb(ρ̂(t)))x(t)
= (I − ρ)(K0 +Ka(ρ))x(t) + (I − ρ̂(t))Kb(ρ̂(t))x(t)

+ (I − ρ)Ka(ρ̃)x(t) + ρ̃Kb(ρ̂(t))x(t) (3.9)

where ρ̃(t) = ρ̂(t) − ρ. Though Ka(ρ̂(t) and Kb(ρ̂(t) have the same forms, we
deal with them in different ways in (9.22), which gives more freedom and less
conservativeness in Theorem 10.1.
Denote

Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂i ∈ {min
j

{ρj
i
},max

j
{ρ̄j

i}}}.

Theorem 3.1 Let γf > γn > 0 be given constants, then the closed-loop sys-
tem (9.5) is asymptotically stable and satisfies, in normal cases, i.e., ρ = 0,

∫ ∞

0

zT (t)z(t)dt ≤ γ2
n

∫ ∞

0

ωT (t)ω(t)dt +
m∑

i=1

ρ̃i
2(0)
li

, for x(0) = 0 (3.10)

and in actuator failure cases, i.e., ρ ∈ {ρ1 · · · ρL}, satisfies

∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt+
m∑

i=1

ρ̃i
2(0)
li

, for x(0) = 0 (3.11)

where ρ̃(t) = diag{ρ̃1(t) · · · ρ̃m(t)}, ρ̃i(t) = ρ̂i(t) − ρi.
If there exist matrices X > 0, Y0, Yai, Ybi, i = 1 · · ·m and a symmetric matrix
Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]

and Θ11, Θ22 ∈ Rmn×mn such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · ,m

with Θ22ii ∈ Rn×n is the (i, i) block of Θ22.

Θ11 + Δ(ρ̂)Θ12 + (Δ(ρ̂)Θ12)T + Δ(ρ̂)Θ22Δ(ρ̂) ≥ 0, for ρ̂ ∈ Δρ̂[
N0a Z1

ZT
1 Z2

]
+ UTU +GT ΘG < 0, for ρ = 0
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N0 Z1

ZT
1 Z2

]
+ UTU +GT ΘG < 0, for ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj (3.12)

where

N0a = AX +B(I − ρ)Y0 + (AX +B(I − ρ)Y0)T +B

m∑
i=1

ρiYai

+ (B
m∑

i=1

ρiYai)T +
1
γ2

n

B1B
T
1 ,

N0 = AX +B(I − ρ)Y0 + (AX +B(I − ρ)Y0)T +B

m∑
i=1

ρiYai

+ (B
m∑

i=1

ρiYai)T +
1
γ2

f

B1B
T
1 ,

Z2 =

⎡
⎢⎣
−B1Yb1 − (B1Yb1)T · · · −B1Ybm − (BmYb1)T

...
...

...
−BmYb1 − (B1Ybm)T · · · −BmYbm − (BmYbm)T

⎤
⎥⎦ ,

G =

⎡
⎢⎢⎢⎣
⎡
⎢⎣
In×n

...
In×n

⎤
⎥⎦ 0

0 Imn×mn

⎤
⎥⎥⎥⎦ ,

Z1 =
[−BρYa1 +BYb1 · · · −BρYam +BYbm

]
U =

[
C1X +D12(I − ρ)Y0 Ξ1 · · · Ξm

]
Ξi = D12(I − ρ)(Yai + Ybi), Δ(ρ̂) = diag[ρ̂1In×n · · · ρ̂mIn×n].

and also ρ̂i(t) is determined according to the adaptive law

˙̂ρi = Proj[min
j

{ρj
i},max

j
{ρ̄j

i ]}{L1i}

=

⎧⎪⎪⎨
⎪⎪⎩

0, if
ρ̂i = min

j
{ρj

i
} and L1i ≤ 0

or ρ̂i = max
j

{ρ̄j
i} and L1i ≥ 0;

L1i, otherwise

(3.13)

where L1i = −lixT (t)[PBiKb(ρ̂)+PBKai]x(t) and P = X−1,Kai = YaiX
−1,

Kbi = YbiX
−1 and li > 0(i = 1 · · ·m) is the adaptive law gain to be chosen ac-

cording to practical applications. Proj{·} denotes the projection operator [70],
whose role is to project the estimates ρ̂i(t) to the interval [min

j
{ρj

i
},max

j
{ρ̄j

i}].
Then the controller gain is given by

K(ρ̂) = Y0X
−1 +

m∑
i=1

ρ̂iYaiX
−1 +

m∑
i=1

ρ̂iYbiX
−1. (3.14)
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Proof 3.1 We choose the following Lyapunov function

V = xT (t)Px(t) +
m∑

i=1

ρ̃i
2(t)
li

(3.15)

Then from the derivative of V along the closed-loop system, we can get

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t)

≤ xT {PA+ PB[(I − ρ)(K0 +Ka(ρ(t)) + (I − ρ̂)Kb(ρ̂(t))]

+ (PA+ PB[(I − ρ)(K0 +Ka(ρ(t)) + (I − ρ̂)Kb(ρ̂(t))])T

+ (C1 +D12(I − ρ)K(ρ̂))T (C1 +D12(I − ρ)K(ρ̂)) +
1
γ2

f

PB1B
T
1 P}x

− (γfω
T − 1

γf
xTPB1)(γfω − 1

γf
BT

1 Px) + 2
m∑

i=1

ρ̃i
˙̃ρi

li

+ 2xTPB[(I − ρ)Ka(ρ̃) + ρ̃Kb(ρ̂)]x. (3.16)

Let B = [b1 · · · bm] and Bi = [0 · · ·Bi . . . 0], then

PBρ̃Kb(ρ̂) =
m∑

i=1

ρ̃iPB
iKb(ρ̂) (3.17)

PBKa(ρ̃) =
m∑

i=1

ρ̃iPBKai (3.18)

Furthermore, it follows

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t)

≤ xT {PA+ PB[(I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂)]

+ (PA+ PB[(I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂))T

+ (C1 +D12(I − ρ)K(ρ̂))T (C1 +D12(I − ρ)K(ρ̂)) +
1
γ2

f

PB1B
T
1 P}x

+ 2xTPB[Ka(ρ̃) + ρ̃Kb(ρ̂)]x+ 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

. (3.19)

Choose the adaptive law as (9.30), then it is sufficient to show

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t)

≤ xT
[
M1 +M2 + (C1 +D12(I − ρ)K(ρ̂))T (C1 +D12(I − ρ)K(ρ̂))

]
x < 0
(3.20)

where
M1 = PA+ATP +

1
γ2

f

PB1B
T
1 P,
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M2 = M +MT , M = PB2[(I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂)].

Let X = P−1, Y0 = K0X,Yai = KaiX,Ybi = KbiX, i = 1 · · ·m, if for any
ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

N0 +N1(ρ̂i) +N2(ρ̂i)

+ (C1X +D12(I − ρ)Y0 +N3(ρ̂i))T (C1X +D12(I − ρ)Y0 +N3(ρ̂i)) < 0,
(3.21)

then (3.20) is satisfied for any vector x ∈ Rn, where

N0 = AX +B(I − ρ)Y0 + (AX +B(I − ρ)Y0)T +B

m∑
i=1

ρiYai

+ (B
m∑

i=1

ρiYai)T +
1
γ2

f

B1B
T
1 ,

N1(ρ̂i) = −Bρ
m∑

i=1

ρ̂iYai +B
m∑

i=1

ρ̂iYbi + (−Bρ
m∑

i=1

ρ̂iYai +B
m∑

i=1

ρ̂iYbi)T ,

N2(ρ̂i) =
m∑

i=1

m∑
j=1

ρ̂iρ̂j(−BiYbj − Y T
bi B

jT ),

N3(ρ̂i) =
m∑

i=1

ρ̂iD12(I − ρ)(Yai + Ybi).

By Lemma 2.10 and (3.12), it follows that (3.21) holds for any ρ ∈
{ρ1 · · · ρL}, ρj ∈ Nρj and ρ̂ satisfying (9.30). So (3.20) holds for any x 	= 0,
which further implies that V̇ (t) < 0 for any x 	= 0. Thus, the closed-loop sys-
tem (9.5) is asymptotically stable for the actuator failure cases. Furthermore,

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0.

Integrate the above-mentioned inequalities from 0 to ∞ on both sides, it follows

V (∞) − V (0) +
∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt.

Then∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt + xT (0)Px(0) +
m∑

i=1

ρ̃i
2(0)
li

(3.22)

which implies that (3.11) holds. The proof for (3.10) and asymptotic stability
of the closed-loop system (9.5) for that normal case is similar, and omitted
here.
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Corollary 3.1 Assume that (3.12) holds for γf > γn > 0, controller gain
and adaptive law are given by (3.14) and (9.30), respectively. Then the closed-
loop system (9.5) is asymptotically stable and with adaptive H∞ performance
indexes no larger than γn and γf for normal and actuator failure cases, re-
spectively.

Proof 3.2 Let F (0) =
∑m

i=1
ρ̃i

2(0)
li

. Then, by (9.30) and (9.2), it follows that
ρ̃i(0) ≤ max

j
{ρ̄j

i}−min
j

{ρj
i
}. We can choose li sufficiently large so that F (0) is

sufficiently small. Thus, from (3.10), (3.11), Definition 3.1 and Remark 3.1,
the adaptive H∞ performance index is close to the standard H∞ performance
index when li is chosen to be sufficiently large. Then the conclusion follows.

Remark 3.2 Theorem 10.1 gives a sufficient condition for the existence of
an adaptive reliable H∞ controller via state feedback. In Theorem 10.1, if set
Yai = 0, Ybi = 0, i = 1 · · ·m, then the conditions of Theorem 10.1 reduce to
ρ = 0

AX +B(I − ρ)Y0 + (AX +B(I − ρ)Y0)T +
1
γ2

n

B1B
T
1

+ (C1X +D12(I − ρ)Y0)T (C1X +D12(I − ρ)Y0) < 0, (3.23)

for ρ ∈ {ρ1 · · · ρL}

AX +B(I − ρ)Y0 + (AX +B(I − ρ)Y0)T +
1
γ2

f

B1B
T
1

+ (C1X +D12(I − ρ)Y0)T (C1X +D12(I − ρ)Y0) < 0. (3.24)

From [165], it follows that conditions (3.23) and (3.24) are sufficient for guar-
anteeing the closed-loop system (9.5) with u = K0x,K0 = Y0X

−1 to be asymp-
totically stable and with H∞ performance indexes no larger than γn and γf

for normal and actuator failure cases, respectively, which can also be derived
by using the LMI approach to robust control [14]. This just gives a design
method for traditional reliable H∞ controllers via fixed gains. The above fact
shows that the design condition for adaptive reliable H∞ controllers given in
Theorem 10.1 is more relaxed than that described by (3.23) and (3.24) for the
traditional reliable H∞ controller design with fixed gains.

Remark 3.3 From Theorem 10.1, it is easy to see that controller gains
K0,Kai,Kbi(i = 1, · · · ,m) are obtained off-line by Algorithm 3.1 while the
estimation ρ̂i is automatically updating online according to the designed adap-
tive law (9.30). Thus due to the introduction of adaptive mechanisms, the
resultant controller gain (3.14) is variable, which is different from traditional
controller with fixed gain.

From Theorem 10.1 and Corollary 3.1, we have the following algorithm to
optimize the adaptive H∞ performance in normal and fault cases.
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Algorithm 3.1 Let γn and γf denote the adaptive H∞ performance bounds
for the normal case and fault cases of the closed-loop system (9.5), respectively.
Then γn and γf are minimized if the following optimization problem is solvable

minαηn + βηf s.t. (3.12) (3.25)

where ηn = γ2
n, ηf = γ2

f , and α and β are weighting coefficients.

Since systems are operating under the normal condition most of the time,
we can choose α > β in (3.25).

3.4 Dynamic Output Feedback Control

In this section, the problem of designing an adaptive reliable H∞ dynamic
output feedback controller for the linear time-invariant model (9.1) is studied.
The main difficulty in this section is that only the state vector of dynamic
output feedback controller and the measured output can be used to construct
adaptive laws, which brings more challenges here.

The fault model is the same as (3.3) in section 3, that is

uF (t) = (I − ρ)u(t), ρ ∈ {ρ1 · · · ρL}
with ρ = diag{ρ1 · · · ρm}.
Consider the traditional dynamic output feedback controller with fixed gains

ξ̇(t) = AKfξ(t) +BKfy(t)

uF (t) = (I − ρ)CKfξ(t) (3.26)

then the resulting closed-loop system with actuator faults (3.3) is

ẋef (t) = Aefxef (t) +Befω(t)
zf(t) = Cefxef (t) (3.27)

where xef (t) = [xT
f (t) ξT (t)]T ,

Aef =
[

A B(I − ρ)CKf

BKfC2 AKf

]
, Bef =

[
B1

BKfD21

]
Cef = [C1 D12(I − ρ)CKf ]

Lemma 3.1 Consider the closed-loop system (3.27), and for given constants
γn > 0, γf , the following statements are equivalent:
(i) there exist symmetric matrix X > 0 and the controller (3.26) such that
in normal case, that is ρ = 0,

AT
efX +XAef +

1
γ2

n

XBefB
T
efX + CT

efCef < 0 (3.28)
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in actuator fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

AT
efX +XAef +

1
γ2

f

XBefB
T
efX + CT

efCef < 0 (3.29)

(ii) there exist a nonsingular matrix Q, symmetric matrix P > 0, and the
controller (3.26)

P =
[
Y1 −N1

−N1 N1

]
(3.30)

such that in normal case, that is ρ = 0,

AT
eqP + PAeq +

1
γ2

n

PBeqB
T
eqP + CT

eqCeq < 0 (3.31)

in actuator fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

AT
eqP + PAeq +

1
γ2

f

PBeqB
T
eqP + CT

eqCeq < 0 (3.32)

where

Aeq =
[

A B(I − ρ)CKq

BKqC2 AKq

]
, Beq =

[
B1

BKqD21

]
Ceq = [C1 D12(I − ρ)CKq] and

AKq = Q−1AKfQ, BKq = −Q−1BKf , CKq = −CKfQ

(iii) there exist symmetric matrices Y1 and N1 satisfying 0 < N1 < Y1, and
the controller gains of (3.26) AKf = AKq,BKf = BKq and CKf = CKq such
that
in normal case, that is ρ = 0,

Vaa1 : =

⎡
⎢⎢⎣
W0 W1 Y1B1 −N1BKqD21 CT

1

∗ W2 −N1B1 +N1BKqD21 CT
Kq(I − ρ)DT

12

∗ ∗ −γ2
nI 0

∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0 (3.33)

in actuator fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

Va1 : =

⎡
⎢⎢⎣
W0 W1 Y1B1 −N1BKqD21 CT

1

∗ W2 −N1B1 +N1BKqD21 CT
Kq(I − ρ)DT

12

∗ ∗ −γ2
fI 0

∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0 (3.34)

where

W0 = Y1A−N1BKqC2 + (Y1A−N1BKqC2)T

W1 = Y1B(I − ρ)CKq −N1AKq + (−N1A+N1BKqC2)T

W2 = −N1B(I − ρ)CKq +N1AKq + (−N1B(I − ρ)CKq +N1AKq)T
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Proof 3.3 From the proof of Lemma 2.11, it is easy to conclude (i) ⇐⇒ (ii),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < N1 < Y1,
thus by some simple algebra computation, it follows (ii) ⇐⇒ (iii). The proof
is complete.

Remark 3.4 From Lemma 3.1, it follows that the special form of P with

P =
[
Y1 −N1

−N1 N1

]
doesn’t bring any conservativeness when we design the

dynamic output feedback controller with fixed gain.

From Lemma 3.1, we have the following algorithm to optimize the H∞ perfor-
mances in normal and fault cases for the reliable controller design with fixed
gains.

Algorithm 3.2 Step 1 Solving the following optimization problem

minαηn + βηf s.t. X > 0, (3.23) (3.24) (3.35)

where ηn = γ2
n, ηf = γ2

f , and α, β are weighting coefficients.
Denote the optimal solution as Xopt and Y0opt, then let CKf = Y0optX

−1
opt.

Step 2 Let N1AKf = ĀKf , N1BKf = B̄Kf .

minαηn + βηf s.t. 0 < N1 < Y1 (3.33) (3.34) (3.36)

Denote the optimal solution as ĀKf = ĀKfopt, B̄Kf = B̄Kfopt, N1 = N1opt.
Then the resultant dynamic output feedback controller gains can be obtained
by AKf = N−1

1 ĀKf , BKf = N−1
1 B̄Kf , CKf = Y0optX

−1
opt.

Remark 3.5 It should be noted that the conditions (3.33) and (3.34) are non-
convex, however with CKf fixed, and N1AKf , N1BKf are defined as new vari-
ables, the conditions (3.33) and (3.34) are linear matrix inequalities. More-
over, algorithm 3.2 gives a method for the reliable dynamic output controller
design with fixed gains by two-step optimizations. Step 1 is to a CKf , which
solves the corresponding design problem via state feedback. With the CK0 fixed,
controller parameter matrices AKf and BKf can be obtained by performing
Step 2.

In order to reduce the conservativeness of the dynamic output feedback
controller with fixed gains, the following dynamic output feedback controller
with variable gains is given

ξ̇(t) = AK(ρ̂)ξ(t) +BK(ρ̂)y(t)
u(t) = CK(ρ̂)ξ(t) (3.37)

where ρ̂(t) is the estimation of ρ. Denote

AK(ρ̂) = AK0 +AKa(ρ̂) +AKb(ρ̂)
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BK(ρ̂) = BK0 +BKa(ρ̂) +BKb(ρ̂), CK(ρ̂) = CK0 + CKa(ρ̂) + CKb(ρ̂)

with

AKa(ρ̂) =
m∑

i=1

ρ̂iAKai, AKb(ρ̂) =
m∑

i=1

m∑
j=1

ρ̂iρ̂jAKbij +
m∑

i=1

ρ̂iAKbi

BKa(ρ̂) =
m∑

i=1

ρ̂iBKai, BKb(ρ̂) =
m∑

i=1

ρ̂iBKbi,

CKa(ρ̂) =
m∑

i=1

ρ̂iCKai, CKb(ρ̂) =
m∑

i=1

ρ̂iCKbi

Combining (9.1) and (3.37), the dynamics with actuator faults (3.3) is
described by

ẋe(t) = Aexe(t) +Beω(t)
z(t) = Cexe(t) (3.38)

where xe(t) = [xT (t) ξT (t)]T ,

Ae =
[

A B2(I − ρ)CK(ρ̂)
BK(ρ̂)C2 AK(ρ̂)

]
, Be =

[
B1

BK(ρ̂)D21

]

Ce = [C1 D12(I − ρ)CK(ρ̂)]

The following theorem presents a sufficient condition for the solvability of
the reliable control problem via dynamic output feedback in the framework of
LMI approach and adaptive laws.

Theorem 3.2 Assume that C2 is of full rank, and let γf > γn > 0 be given
constants, then the closed-loop system (3.38) with the adaptive dynamic output
feedback controller (3.37) is asymptotically stable and satisfies for x(0) = 0,
in normal case, i.e., ρ = 0,∫ ∞

0

zT (t)z(t)dt ≤ γ2
n

∫ ∞

0

ωT (t)ω(t)dt+
m∑

i=1

ρ̃i
2(0)
li

, (3.39)

and in actuator failures cases, i.e., ρ ∈ {ρ1 · · · ρL}, satisfies for x(0) = 0∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt+
m∑

i=1

ρ̃i
2(0)
li

, (3.40)

where ρ̃(t) = diag{ρ̃1(t) · · · ρ̃m(t)}, ρ̃i(t) = ρ̂i(t)−ρi, if there exist matrices 0 <
N1 < Y1, AK0, AKai, AKbi, AKbij , BK0, BKai, BKbi, CK0, CKai, CKbi, i, j =
1 · · ·m and a symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]
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and Θ11, Θ22 ∈ Rm(2n+s)×m(2n+s) such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · ,m

with Θ22ii ∈ R(2n+s)×(2n+s) is the (i, i) block of Θ22.

Θ11 + Δ(ρ̂)Θ12 + (Δ(ρ̂)Θ12)T + Δ(ρ̂)Θ22Δ(ρ̂) ≥ 0, for ρ̂ ∈ Δρ̂[
Q1a R
RT S

]
+ V T

0 V0 +GT ΘG < 0, for ρ = 0

[
Q1 R
RT S

]
+ V T

0 V0 +GT ΘG < 0, for ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj (3.41)

where N1 < Y1 means that N1 − Y1 < 0, and

Q1a =

⎡
⎣Y1A−N1BK0C2 + (Y1A−N1BK0C2)T T1 T2

∗ T3 T4

∗ ∗ −γ2
nI

⎤
⎦ ,

Q1 =

⎡
⎣Y1A−N1BK0C2 + (Y1A−N1BK0C2)T T1 T2

∗ T3 T4

∗ ∗ −γ2
fI

⎤
⎦ ,

R =
[
R1 R2 · · · Rm

]
, S = [Sij ], i, j = 1 · · ·m,

C⊥
2 satisfies C2C

⊥T
2 = 0 and C⊥

2 C
⊥T
2 is nonsingular,

Ri =

⎡
⎢⎢⎣

−N1BKbiC2 −N1BKaiC2 T5i T6i

N1BKbiC2 +N1BKaiC2Γ
[

0
C⊥

2

]
T7i T8i

0 0 0

⎤
⎥⎥⎦ ,

Sij =

⎡
⎢⎢⎣

0 T9ij 0,

T10ij T11ij (Y1B
jCKbi)T Γ

[−D21

0

]
0 T12ij 0

⎤
⎥⎥⎦ ,



32 Reliable Control and Filtering of Linear Systems

V0 =
[
V00 V01 · · · V0m

]
, V00 =

[
C1 D12(I − ρ)CK0 0

]
,

V0i =
[
0 D12(I − ρ)(CKai + CKbi) 0

]
,

T1 = Y1B[(I − ρ)CK0 + CKa(ρ)] −N1AK0 −N1AKa(ρ)

+ (−N1A+N1BK0C2 +N1BKa(ρ)C2 − [N1BKa(ρ)C2Γ)]
[

0
C⊥

2

]
)T

+
[

0
C⊥

2

]T

ΓT [−Y1BCKa(ρ) +N1AKa(ρ)]

T2 = Y1B1 −N1BK0D21,

T3 = −N1B[(I − ρ)CK0 + CKa(ρ)] + (−N1B[(I − ρ)CK0 + CKa(ρ)])T

+N1AK0 +N1AKa(ρ) + (N1AK0 +N1AKa(ρ))T ,

T4 = −N1B1 +N1BK0D21 −N1BKa(ρ)C2Γ
[−D21

0

]

+ [−Y1BCKa(ρ) +N1AKa(ρ)]T Γ
[−D21

0

]
,

T5i = Y1B[−ρCKai + CKbi] −N1AKbi

+
[

0
C⊥

2

]T

ΓT [Y1B(CKai − ρCKbi) −N1AKai],

T6i = −N1BKbiD21 −N1BKaiD21

T7i = N1BρCKai −N1BCKbi +N1AKbi,

T8i = (Y1BCKai − Y1BρCKbi −N1AKai)T Γ
[−D21

0

]

+N1BKaiD21 +N1BKbiD21 +N1BKaiC2Γ
[−D21

0

]
,

T9ij = −Y1B
iCKbj −N1AKbij +

[
0
C⊥

2

]T

ΓTY1B
iCKbj

T10ij = (−Y1B
jCKbi −N1AKbji +

[
0
C⊥

2

]T

ΓTY1B
jCKbi)T ,

T11ij = N1B
iCKbj +N1AKbij + (N1B

iCKbj +N1AKbij)T

T12ij =
[−DT

21 0
]
ΓTY1B

iCKbj ,

Δ(ρ̂) = diag[ρ̂1I(2n+s)×(2n+s) · · · ρ̂mI(2n+s)×(2n+s)],

G =

⎡
⎢⎢⎢⎣
⎡
⎢⎣
I(2n+s)×(2n+s)

...
I(2n+s)×(2n+s)

⎤
⎥⎦ 0

0 Im(2n+s)×m(2n+s)

⎤
⎥⎥⎥⎦ , Γ =

[
C2

C⊥
2

]−1
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and also ρ̂i(t) is determined according to the adaptive law

˙̂ρi = Proj[min
j

{ρj
i},max

j
{ρ̄j

i ]}{L2i}

=

⎧⎪⎪⎨
⎪⎪⎩

0, if
ρ̂i = min

j
{ρj

i
} and L2i ≤ 0

or ρ̂i = max
j

{ρ̄j
i} and L2i ≥ 0;

L2i, otherwise

(3.42)

where L2i = −li[ξT (N1AKai−BCKai−BiCKb(ρ̂))ξ+
[
y
0

]T [
C2

C⊥
2

]−T

(Y1BCKai+

Y1B
iCKb(ρ̂)−N1AKai)ξ+ ξTN1BKaiC2Γ

[
y
0

]
] and li > 0 (i = 1 · · ·m) is the

adaptive law gain to be chosen according to practical applications. Proj{·} de-
notes the projection operator [70], whose role is to project the estimation ρ̂i(t)
to the interval [min

j
{ρj

i
},max

j
{ρ̄j

i}].

Proof 3.4 Choose the following Lyapunov function

V (t) = xT
e Pxe +

m∑
i=1

ρ̃2
i (t)
li

By ρ̃(t) = ρ̂(t) − ρ, it follows

(I − ρ)CK(ρ̂) = (I − ρ)(CK0 + CKa(ρ̂) + CKb(ρ̂))
= (I − ρ)CK0 + CKa(ρ) − ρCKa(ρ̂)

+ (I − ρ̂)CKb(ρ̂) + CKa(ρ̃) + ρ̃CKb(ρ̂)
BKa(ρ̃) = BKa(ρ) +BKa(ρ̂)
AKa(ρ̃) = AKa(ρ) +AKa(ρ̂)

Then Ae can be written as

Ae = Ae1 +Ae2 +Ae3

where

Ae1 =
[

A Ae1a

[BK0 +BKa(ρ) +BKb(ρ̂)]C2 AK0 +AKa(ρ) +AKb(ρ̂)

]

Ae2 =
[
0 B2CKa(ρ̃) +B2ρ̃CKb(ρ̂)
0 AKa(ρ̃)

]
, Ae3 =

[
0 0

BKa(ρ̃)C2 0

]

with

Ae1 = B2[(I − ρ)CK0 + CKa(ρ) − ρCKa(ρ̂) + (I − ρ̂)CKb(ρ̂)].
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Let P be of the following form

P =
[
Y1 −N1

−N1 N1

]
(3.43)

with 0 < N1 < Y1, which implies P > 0. Since C2 is of full rank, and C⊥
2

satisfies C2C
⊥T
2 = 0 and C⊥

2 C
⊥T
2 nonsingular, it follows that

[
C2

C⊥
2

]
is non-

singular. From (9.1), we have

C2x = y −D21ω

Then it follows [
C2

C⊥
2

]
x =

[
y −D21ω
C⊥

2 x

]

which implies that

x = Γ
[
y −D21ω
C⊥

2 x

]
= Γ

[
y
0

]
+ Γ

[
0
C⊥

2

]
x+ Γ

[−D21

0

]
ω (3.44)

where Γ =
[
C2

C⊥
2

]−1

.

Furthermore, we have

PAe2 =
[
0 Wa

0 Wb

]

where
Wa = Y1[B2CKa(ρ̃) +B2ρ̃CKb(ρ̂)] −N1AKa(ρ̃)

Wb = N1[AKa(ρ̃) −B2CKa(ρ̃) −B2ρ̃CKb(ρ̂)]

which follows

[xT ξT ]PAe2[xT ξT ]T = xTWaξ + ξTWbξ

Thus, by (3.44), we have

xTWaξ =
[
y
0

]T

ΓTWaξ + [xT ξT ]Aa1[xT ξT ]T + [xT ξT ]Ba1w.

where

Aa1 =

⎡
⎣0

[
0
C⊥

2

]T

ΓTWa

0 0

⎤
⎦ , Ba1 =

⎡
⎣ 0

WT
a Γ

[−D21

0

]⎤
⎦ .
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In the same way, from (3.44) we get

[xT ξT ]PAe3[xT ξT ]TxT
e

= −xTN1BKa(ρ̃)C2x+ ξTN1BKa(ρ̃)C2x

= xT
e Aa2xe + xT

e Ba2w +Ma2

where

Aa2 =

⎡
⎣ −N1BKa(ρ̃)C2 0

N1BKa(ρ̃)C2Γ
[

0
C⊥

2

]
0

⎤
⎦ ,

Ma2 = ξTN1BKa(ρ̃)C2Γ
[
y
0

]
, Ba2 =

[
0
Mb

]

with

Mb = N1BKa(ρ̃)C2Γ
[−D21

0

]
.

Then from the derivative of V (t) along the closed-loop system (3.38), it follows

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t)

= 2xT
e P (Aexe +Beω) + xT

e C
T
e Cexe − γ2

fω
Tω + 2

m∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

= 2xT
e P (Ae1xe +Beω) + xT

e C
T
e Cexe − γ2

fω
Tω

+2xT
e [Aa1 +Aa2]xe + 2xT

e [Ba1 +Ba2]ω + 2ξTWbξ

+2
[
y
0

]T

ΓTWaξ + 2Ma2 + 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ xT
e W0xe + 2ξTWbξ + 2

[
y
0

]T

ΓTWaξ + 2Ma2 + 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

where

W0 = PAe1 +Aa1 +Aa2 + [PAe1 +Aa1 +Aa2]T

+
1
γ2

f

(PBe +Ba1 +Ba2)(PBe +Ba1 +Ba2)T + CT
e Ce.

The design condition that V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0 is reduced to

W0 < 0 (3.45)

and

ξTWbξ +
[
y
0

]T

ΓTWaξ +Ma2 +
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ 0. (3.46)
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Since y and ξ are available online, the adaptive law can be chosen as (3.42)
for rendering (3.46) valid. (3.45) is equivalent to[

PAe1 +Aa1 +Aa2 + [PAe1 +Aa +Aa2]T PBe +Ba1 +Ba2

∗ −γ2
fI

]

+
[
CT

e

0

] [
Ce 0

]
< 0. (3.47)

Notice that

PAe1 =
[
Y1A−N1[BK0 +BKa(ρ) +BKb(ρ̂)]C2 Wc

−N1A+N1[BK0 +BKa(ρ) +BKb(ρ̂)]C2 Wd

]

with

Wc = Y1B2[(I − ρ)CK0 + CKa(ρ) − ρCKa(ρ̂)
+ (I − ρ̂)CKb(ρ̂)] −N1[AK0 +AKa(ρ) +AKb(ρ̂)]

Wd = −N1B2[(I − ρ)CK0 + CKa(ρ) − ρCKa(ρ̂)
+ (I − ρ̂)CKb(ρ̂)] +N1[AK0 +AKa(ρ) +AKb(ρ̂)]

and

PBe =
[
Y1B1 −N1[BK0 +BKa(ρ̂) +BKb(ρ̂)]D21

−N1B1 +N1[BK0 +BKa(ρ̂) +BKb(ρ̂)]D21

]
.

Furthermore (3.47) can be described by

W1(ρ̂) = Q1 +
m∑

i=1

ρ̂iRi + (
m∑

i=1

ρ̂iRi)T +
m∑

i=1

m∑
j=1

ρ̂iρ̂jSij

+ (V00 +
m∑

i=1

ρ̂iV0i)T (V00 +
m∑

i=1

ρ̂iV0i) < 0

where Q1, Ri, Sij , V00 and V0i, i, j = 1 · · ·m are defined in (3.41). By Lemma
2.10, we can get W1(ρ̂) < 0 if (3.41) holds, which implies W0 < 0. Together
with adaptive law (3.42), it follows that V̇ (t) < 0 for xe 	= 0, which further
implies that the closed-loop system (3.38) is asymptotically stable.
Furthermore, we have

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0.

Integrate the above-mentioned inequalities from 0 to ∞ on both sides, it follows

V (∞) − V (0) +
∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt.

Then ∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt+ xT (0)Px(0)

+
m∑

i=1

ρ̃i
2(0)
li
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which implies that (3.40) holds. The proofs for (3.39) and the asymptotic
stability of the closed-loop system (3.38) for the normal case are similar, and
omitted here.

Corollary 3.2 Assume that the conditions of Theorem 10.2 hold. Then the
closed-loop system (3.38) is asymptotically stable and with adaptive H∞ per-
formance indexes no larger than γn and γf for normal and actuator failure
cases, respectively.

Proof 3.5 It is similar to that of Corollary 3.1, and omitted here.

Remark 3.6 Theorem 10.2 presents a sufficient condition for adaptive
reliable H∞ controller design via dynamic output feedback. Generally,
(3.41) is not LMIs. But when CK0, CKai and CKbi are given, and
N1AK0, N1AKai, N1AKbi, N1AKbij , N1BK0, N1BKai and N1BKbi are defined
as new variables, (3.41) becomes LMIs and linearly depends on uncertain pa-
rameters ρ and ρ̂.

Remark 3.7 It should be noted that C⊥
2 satisfying C2C

⊥T

2 = 0 and C⊥
2 C

⊥T

2

nonsingular is not unique in general, which can be used to regulate C⊥
2 for

obtaining better performance in adaptive reliable H∞ control design.

From Theorem 10.2 and Corollary 3.2, we have the following algorithm to
optimize the adaptive H∞ performances in normal and fault cases.

Algorithm 3.3 Let γn and γf denote the adaptive H∞ performance bounds
for the normal and fault cases of the closed-loop system (3.38), respectively.
Then γn and γf are minimized by

Step 1 Choose CK(ρ̂) = CK0 with CK0 being a solution to the problem of
reliable dynamic output controller design with fixed gains via Algorithm 3.2,
or perform Algorithm 3.1 for obtaining state feedback gains CK0, CKai and
CKbi ( i = 1 · · ·m).

Step 2 Let N1AK0 = ĀK0, N1AKai = ĀKai, N1AKbi = ĀKbi, N1AKbij =
ĀKbij , N1BK0 = B̄K0, N1BKai = B̄Kai and N1BKbi = B̄Kbi

minαLn + βLf s.t. 0 < N1 < Y1 and (3.41), (3.48)

where ηn = γ2
n, ηf = γ2

f , and α and β are weighting coefficients. The resultant
adaptive dynamic output feedback controller gains can be obtained by AK0 =
N−1

1 ĀK0, AKai = N−1
1 ĀKai, AKbi = N−1

1 ĀKbi, AKbij = N−1
1 ĀKbij , BK0 =

N−1
1 B̄K0, BKai = N−1

1 B̄Kai, BKbi = N−1
1 B̄Kbi.

Remark 3.8 Similar to Algorithm 3.2, Algorithm 3.3 also is composed of
two-step optimizations, where the purpose of Step 1 is to determine state feed-
back gain CK(ρ̂), which is a solution to the problem of reliable state feedback
controller design. By (3.41), it is easy to see that the solvability of the prob-
lem via state feedback is necessary for that of the corresponding problem via
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dynamic output feedback to have a solution. When choosing CK(ρ̂) = CK0

with CK0 being a solution to the problem of reliable dynamic output controller
design with fixed gains via Algorithm 3.2, then, by Theorem 3, it follows that
Algorithm 3.3 can give less conservative design than Algorithm 3.2, which will
be illustrated by examples in Section 3.5.

Remark 3.9 From Theorem 10.2, it is easy to see that controller gains
AK0, AKai, AKbi, AKbij , BK0, BKai, BKbi, CK0, CKai, CKbi(i, j = 1, · · · ,m)
are obtained off-line by Algorithm 3.1 while the estimation ρ̂i is automatically
updating online according to the designed adaptive law (3.42). Thus due to
the introduction of adaptive mechanism, the resultant controller gain (3.26) is
variable, which is different from traditional controller with fixed gain.

For the comparison between Theorem 10.2 and Lemma 3.1, we have

Theorem 3.3 If the condition in Lemma 3.1 holds for the closed-loop system
(3.27) with fixed gain dynamic output feedback controller (3.26), then the con-
dition in Theorem 10.2 holds for the closed-loop system (3.38) with adaptive
dynamic output feedback controller (3.37).

Proof 3.6 Notice that if Va1 < 0 and Vaa1 < 0 for the actuator failure cases
and normal case, then the condition in Theorem 10.2 is feasible with AK0 =
AKe0, BK0 = BKe0, CK0 = CKe0 and AKai = AKbi = AKbij = BKai =
BKbi = CKai = CKbi = 0, i, j = 1 · · ·m. The proof is complete.

Remark 3.10 Theorem 10.3 shows that the method for the adaptive reliable
H∞ control design given in Theorem 10.2 is less conservativeness than that
given in Lemma 3.1 for the reliable H∞ control design with fixed controller
gains.

3.5 Example

To illustrate the effectiveness of our results, two examples are given. Example
3.1 is for state feedback case and Example 3.2 is for dynamic output feedback
case.

Example 3.1 The decoupled linearized longitudinal dynamical equations of
motion of the F-18 aircraft are given as in [1] to show the effectiveness of our
state feedback case.[

α̇
q̇

]
= Along

[
α
q

]
+Blong

[
δE
δPTV

]
+B1ω(t)



Adaptive Reliable Control against Actuator Faults 39

where

Along =
[
Zα Zq

Mα Mq

]
, Blong =

[
ZδE ZδPT V

MδE MδPT V

]
, B1 =

[
1
4

]
,

Am
long

7h14 =
[−1.175 0.9871
−8.458 −0.8776

]
, Bm

long
7h14 =

[−0.194 −0.03593
−19.29 −3.803

]

and

α = angle of attack, q = pitch rate,
α̇ = angle velocity of attack, q̇ = pitch acceleration,
δE = symmetric elevator position,
δPTV = symmetric pitch thrust velocity nozzle position
ω = external disturbance.

Following the nomenclature in [1], Am
long

7h14 denotes the longitudinal state
matrix at Mach 0.7 and 14-kft altitude.
In this example, the regulated output z(t) is chosen as

z(t) =

⎡
⎣0 4
0 0
0 0

⎤
⎦ [

α
q

]
+

⎡
⎣0 0
2 0
0 2

⎤
⎦ [

δE
δPTV

]

to improve the performance of the second state q.
Besides the normal mode, that is,

ρ0
1 = ρ0

2 = 0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, that is,

ρ1
1 = 1, 0 ≤ ρ1

2 ≤ a, a = 0.8,

which denotes the maximum loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

ρ2
2 = 1, 0 ≤ ρ2

1 ≤ b, b = 0.9,

which denotes the maximum loss of effectiveness for the first actuator.
From Algorithm 3.1 with α = 10, β = 1 and Remark 3.3, the corresponding

H∞ performance indexes of the closed-loop systems with the two controllers
are obtained. See Table 3.1 for more details, which indicates the superiority
of our adaptive method.
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TABLE 3.1 H∞ performance index
Adaptive reliable controller Traditional reliable controller

γn 0.4147 2.1584
γf 1.0161 3.4393

0 1 2 3 4 5 6 7 8
−0.4

−0.2

0

0.2

time(s)

q

FIGURE 3.1
Response curve q in normal case with adaptive state feedback controller (solid)
and state feedback controller with fixed gain (dashed) l1 = l2 = 50.
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0 1 2 3 4 5 6 7 8
−0.4

−0.2

0

0.2

time(s)

q

FIGURE 3.2
Response curve q in fault case with adaptive state feedback controller (solid)
and state feedback controller fixed gain (dashed) l1 = l2 = 50.

In the following simulation, we use the disturbance ω(t) =
[
ω1(t) ω2(t)

]T

is

ω1(t) = ω2(t) =
{

1, 2 ≤ t ≤ 3(s)
0 otherwise

and the fault case here is that at 0 second, the first actuator is outage.
Just as the analysis in Definition 1 and Remark 3.2, the adaptive H∞

performance index is closed to traditional H∞ performance index when we
choose li relatively large to make F (0) =

∑m
i=1

ρ̃i
2(0)
li

sufficiently small.
Figure 3.1 describes the response curves in pitch rate q in normal case with

adaptive state feedback controller and fixed gain state feedback controller.
The responses in pitch rate q in fault case with the above-mentioned two
controllers are given in Figure 3.2. From Figure 3.1-Figure 3.2, it is easy to
see our adaptive method has more restraint disturbance ability than fixed gain
one in either normal or fault case just as theory has proved.

Next, a numerical example is given for dynamic output feedback case.



42 Reliable Control and Filtering of Linear Systems

Example 3.2 Consider the following linear system

ẋ(t) =
[−5 2
−1 −3

]
x(t) +

[
1 0
1 0

]
ω(t) +

[
1 0
0 1

]
u(t)

z(t) =

⎡
⎣4 0

0 0
0 0

⎤
⎦x(t) +

⎡
⎣ 0 0

0.5 0
0 1

⎤
⎦u(t)

y(t) =
[
1 0

]
x(t) +

[
0 1

]
ω(t) (3.49)

Choose C⊥
2 =

[
0 1

]
.

Besides the normal mode, that is,

ρ0
1 = ρ0

2 = 0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

ρ1
1 = 1, 0 ≤ ρ2

1 ≤ a1, a1 = 0.5

which denotes the maximal loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, described by

ρ2
2 = 1, 0 ≤ ρ2

1 ≤ b1, b1 = 0.6

which denotes the maximal loss of effectiveness for the first actuator.
By using Algorithm 3.2 and Algorithm 3.3 with α = 10, β = 1, we obtain the
corresponding H∞ performances indexes of the closed-loop system using the
two controllers. See Table 3.2 for more details.

To verify the effectiveness of the proposed adaptive method, the
simulations are given in the following. Here, the disturbance ω(t) =[
ω1(t) ω2(t) ω3(t)

]T is

ω1(t) = ω2(t) = ω3(t) =
{

1, 4 ≤ t ≤ 5(s)
0 otherwise

The following fault cases are considered in the simulation
Fault case 1: At 1 second, the first actuator is outage.
Fault case 2: At 0 second, the second actuator is outage, then after t = 2
seconds, the first actuator becomes loss of effectiveness by 50%.

Figure 3.3, Figure 3.4 and Figure 3.5 are the responses curves of the first
state with adaptive and fixed gain dynamic output feedback controller in
normal and the above-mentioned fault cases, respectively. It is easy to see even
in the presence of actuator faults, the proposed adaptive method performs
better than the design with fixed controller gains.
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TABLE 3.2 H∞ performance index
Adaptive reliable controller Traditional reliable controller

γn 1.1616 1.1929
γf 1.7818 1.9254
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FIGURE 3.3
Response curve of the first state in normal case with adaptive dynamic output
feedback controller (solid) and dynamic output feedback controller with fixed
gains (dashed) l1 = l2 = 50.
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FIGURE 3.4
Response curve of the first state in fault case 1 with adaptive dynamic output
feedback controller (solid) and dynamic output feedback controller with fixed
gains (dashed) l1 = l2 = 50.

3.6 Conclusion

In this chapter, we have proposed the new reliable controllers design methods
via both state feedback and dynamic output feedback to deal with actua-
tor faults with adaptive mechanisms for linear time-invariant systems. The
adaptive H∞ performance index is exploited to describe the disturbance at-
tenuation performances of closed-loop systems. Based on the online estima-
tion of actuator faults, an adjustable control law is designed to automatically
compensate the effect of a fault on the system. In the framework of LMI
method, the adaptive H∞ performances of resultant closed-loop systems in
both normal and actuator failure cases are optimized, and asymptotic stabil-
ity is guaranteed. It is worth noting that the design conditions for the reliable
H∞ controllers with adaptive mechanisms are more relaxed than those for the
reliable H∞ controllers with fixed controller gains. The simulation examples
have shown the effectiveness of the proposed adaptive method.



Adaptive Reliable Control against Actuator Faults 45

0 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time(s)

x
1

FIGURE 3.5
Response curve of the first state in fault case 2 with adaptive dynamic output
feedback controller (solid) and dynamic output feedback controller with fixed
gains (dashed) l1 = l2 = 50.
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Adaptive Reliable Control against Sensor
Faults

4.1 Introduction

In Chapter 3, a new reliable control approach for linear systems against ac-
tuator faults is proposed, based on the combination of adaptive method and
linear matrix inequality technique. A control system consists of sensors, com-
pensators and actuators besides a controlled object. In general, sensors are
prone to break down more frequently than actuators or compensators. Fur-
thermore, sensor faults are prone to bring about more serious situations than
actuator of compensator faults. It is because incorrect information from a
failed sensor often makes the total control system in danger. Measures should
be fully taken against sensor faults in many control systems [150, 154]. Cur-
rently, the research about fault-tolerant control against sensor faults has been
paid more attention [83, 87, 88, 150].

In this chapter, sensor faults are considered for linear systems to design
reliable H∞ dynamic output feedback controllers. Here, the considered sensor
faults are modeled as outages. Besides LMI approach, adaptive method is also
used to improve H∞ performances of systems in both normal case and sensor
fault cases. An adjustable dynamic output feedback controller is constructed
based on the online estimations of sensor faults, which is obtained by adaptive
laws. More relaxed design conditions than those for designing passive fault-
tolerant H∞ controllers with fixed gains are given to guarantee the asymptotic
stability and L2-gain. In sensor fault cases, only the state vector of the dynamic
output feedback controller and the measured output can be used to construct
the adaptive laws, which brings more challenges for dealing with the adaptive
controller design problem against sensor faults.

47
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4.2 Problem Statement

Consider a linear time-invariant model described by

ẋ(t) = Ax(t) +B1ω(t) +Bu(t)
z(t) = C1x(t) +D12u(t)
y(t) = C2x(t) +D21ω(t) (4.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is the
measured output, z(t) ∈ Rq is the regulated output and ω(t) ∈ Rs is an ex-
ogenous disturbance in L2[0,∞], respectively. A,B1, B2, C1, C2, D12 and D21

are known constant matrices of appropriate dimensions. Since C2 ∈ Rp×n

and rank(C2) = p1 ≤ p, then there exists a matrix Tc ∈ Rp1×p such
that rank(TcC2) = p1. Furthermore, there exists a matrix Ccn such that

rank
[
TcC2

Ccn

]
= n. Denote Tcn=

[
TcC2

Ccn

]−1

, Ci
2 =

[
0 · · ·Ci

2i
T · · · 0

]T

, where

Ci
2i represents the ith row of C2.

The following sensor outage fault model is considered

yF
ik(t) = (1 − ρk

i )yi(t), i = 1 · · · p, k = 1 · · · g. (4.2)

where ρk
i is an unknown constant with ρk

i = 0 or ρk
i = 1, Here, the index k

denotes the jth fault mode and g is the total fault modes. yF
ik(t) represents the

signal from the ith sensor that has failed in the kth fault mode. When ρk
i = 0,

there is no fault for the ith sensor in the kth fault mode. When ρk
i = 1, the

ith sensor is outage in the kth fault mode.
Denote

yF
k (t) = [yF

1k(t), yF
2k(t), · · · yF

pk(t)]T = (I − ρk)y(t)

where ρk = diag[ρk
1 , ρ

k
2 , · · · ρk

p], k = 1 · · · g.
Nρk = {ρk |ρk = diag{ρk

1 , ρ
k
2 , · · · ρk

p}, ρk
i = 0 or ρk

i = 1}.
Since, all the sensor cannot be outage at the same time, the set Nρk contains
a maximum of 2p − 1 elements.

For convenience in the following sections, for all possible fault modes g, we
use a uniform sensor fault model

yF (t) = (I − ρ)y(t), ρ ∈ {ρ1 · · · ρg} (4.3)

where ρ can be described by ρ = diag{ρ1, ρ2, · · · ρp}.
Then the dynamic of (4.1) with sensor fault (4.3) is described

ẋ(t) = Ax(t) +B1ω(t) +Bu(t)
z(t) = C1x(t) +D12u(t)

yF (t) = (I − ρ)(C2x(t) +D21ω(t)) (4.4)
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The traditional dynamic output feedback controller with fixed gains is
given by

ξ̇1(t) = AKfξ1(t) +BKfy
F (t)

zF1(t) = CKfξ1(t) (4.5)

Applying the dynamic output feedback controller (4.5) to the system (4.4), it
follows

ẋef (t) = Aefxef (t) +Befω(t)
zef (t) = Cefxef (t) (4.6)

where xef (t) = [xT (t) ξT
1 (t)]T

Aef =
[

A BCKf

BKf (I − ρ)C2 AKf

]
, Be =

[
B

BKf (I − ρ)D21

]
Cef = [C1 D12CKf ].

Lemma 4.1 Consider the following closed-loop system (4.6), for given con-
stants γn > 0 and γf , the following statements are equivalent:
(i)there exist a symmetric matrix X > 0 and the controller (4.5) such that
in normal case, that is ρ = 0

AT
efX +XAef +

1
γ2

n

XBefB
T
efX + CT

efCef < 0 (4.7)

in sensor fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

AT
efX +XAef +

1
γ2

f

XBefB
T
efX + CT

efCef < 0 (4.8)

(ii) there exist a nonsingular matrix Q, symmetric matrix P > 0, and the
controller (4.5)

P =
[
Y −N
−N N

]
, (4.9)

such that in normal case, that is ρ = 0,

AT
eqP + PAeq +

1
γ2

n

PBeqB
T
eqP + CT

eqCeq < 0, (4.10)

in sensor fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

AT
eqP + PAeq +

1
γ2

f

PBeqB
T
eqP + CT

eqCeq < 0, (4.11)

where

Aeq =
[

A BCKq

BKq(I − ρ)C2 AKq

]
, Beq =

[
B

BKq(I − ρ)D21

]
Ceq = [C1 D12CKq].
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and

AKq = Q−1AKfQ, BKq = −Q−1BKf , CKq = −CKfQ (4.12)

(iii) there exist symmetric matrices Y1 and N1 satisfying 0 < N1 < Y1, and
the controller gains of (4.5) AKf = AKq,BKf = BKq and CKf = CKq such
that
in normal case, that is ρ = 0,

Va0 =

⎡
⎣Va11 Va12 Va13

∗ NAKe1 + (NAKe1)T + CT
K0D12D12CK0 Va23

∗ ∗ −γ2
nI

⎤
⎦ < 0 (4.13)

in sensor fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

Va =

⎡
⎣Va11 Va12 Va13

∗ NAKe1 + (NAKe1)T + CT
K0D12D12CK0 Va23

∗ ∗ −γ2
fI

⎤
⎦ < 0 (4.14)

where

Va11 = Y A−NBKe1(I − ρ)C2 + (Y A−NBKe1(I − ρ)CT
2 + CT

1 C1

Va12 = Y BCKe1 −NAKe1 −ATN + CT
2 (I − ρ)BT

Ke1N
T + CT

1 D12CK0

Va13 = Y B1 −NBKe1(I − ρ)D21

Va23 = −NB1 +NBKe1(I − ρ)D21.

Proof 4.1 From the proof of Lemma 2.11, it is easy to conclude (i) ⇐⇒ (ii),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < N1 < Y1,
thus by some simple algebra computation, it follows (ii) ⇐⇒ (iii). The proof
is complete.

Remark 4.1 From Lemma 4.1, we have the following algorithm to optimize
the H∞ performances in normal and fault cases for the traditional reliable
controller design with fixed gains.

The following algorithm is to optimize the H∞ performances in normal and
fault cases for the reliable controller design with fixed gains.

Algorithm 4.1 Step 1 Solving the following optimization problem

minαηn + βηf s.t. X > 0 Φ < 0 (4.15)

where ηn = γ2
n, ηf = γ2

f , and α, β are weighting coefficients.

Φ =AX +BY0 + (AX +BY0)T +
1
γ2

n

B1B
T
1

+ (CX +DY0)T (CX +DY0) < 0
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Denote the optimal solution as Xopt and Y0opt, and let CKf = Y0optX
−1
opt.

Step 2 Let NAKf = ĀKf , NBKf = B̄Kf .

minαηn + βηf s.t. 0 < N < Y (4.13) (4.14) (4.16)

Denote the optimal solution as ĀKf = ĀKfopt, B̄Kf = B̄Kfopt, N = N1opt.
Then the resultant dynamic output feedback controller gains can be obtained
by AKf = N−1ĀKf , BKf = N−1B̄Kf , CKf = Y0optX

−1
opt.

Remark 4.2 It should be noted that the conditions (4.13) and (4.14) are non-
convex, however with CKf fixed, and N1AKf , N1BKf are defined as new vari-
ables, the conditions (4.13) and (4.14) are linear matrix inequalities. More-
over, Algorithm 4.1 gives a method for the reliable dynamic output controller
design with fixed gains by two-step optimizations. Step 1 is to a CKf , which
solves the corresponding design problem via state feedback. With the CK0 fixed,
controller parameter matrices AKf and BKf can be obtained by performing
Step 2.

In order to reduce the conservativeness of the dynamic output feedback con-
troller with fixed gains, the following dynamic output feedback controller with
variable gains is given

ξ̇(t) = AK(ρ̂)ξ(t) +BK(ρ̂)yF (t)
u(t) = CK0ξ(t) (4.17)

where ρ̂(t) is the estimation of ρ. Denote

AK(ρ̂) = AK0 +AKa(ρ̂) +AKb(ρ̂), BK(ρ̂) = BK0 +BKa(ρ̂) +BKb(ρ̂)

with

AKa(ρ̂) =
p∑

i=1

ρ̂iAKai

AKb(ρ̂) =
p∑

i=1

p∑
j=1

ρ̂iρ̂jAKbij +
p∑

i=1

ρ̂iAKbi

BKa(ρ̂) =
p∑

i=1

ρ̂iBKai, BKb(ρ̂) =
p∑

i=1

ρ̂iBKbi

where AK0, AKai, AKbi, AKbij , BK0, BKai, BKbi, CK0 are the controller gains
to be designed.
Combining (4.17) and (4.4), the dynamics with sensor faults (4.3) is described
by

ẋe(t) = Aexe(t) +Beω(t)
z(t) = Cexe(t) (4.18)
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where xe(t) = [xT (t) ξT (t)]T ,

Ae =
[

A BCK0

BK(ρ̂)(I − ρ)C2 AK(ρ̂)

]
,

Be =
[

B1

BK(ρ̂)(I − ρ)D21

]
, Ce = [C1 D12CK0]

4.3 Adaptive Reliable H∞ Dynamic Output Feedback
Controller Design

In this section, the problem of designing an adaptive reliable dynamic output
feedback controller against sensor faults for linear system (4.1) is studied.

Before presenting the main result of the paper, denote

Δ(ρ̂) = diag
[
ρ̂1I · · · ρ̂pI

]
, Δρ̂ = {ρ̂ : ρ̂i ∈ {0, 1}, i = 1, · · · , p},

Q01 =

⎡
⎣T0 T1 T2

∗ T3 T4

∗ ∗ −γ2
nI

⎤
⎦ , Q1 =

⎡
⎣T0 T1 T2

∗ T3 T4

∗ ∗ −γ2
fI

⎤
⎦ ,

R =
[
R1 R2 · · · Rp

]
, Υ = [Υij ], i, j = 1 · · · p,

Ri =

⎡
⎣T5 −NAKbi −NT

3 NAKai T6

T7 NAKbi T8

0 0 0

⎤
⎦ ,

Υij =

⎡
⎣ 0 T9 0
T10 NAKbij + (NAKbji)T T11

0 T12 0

⎤
⎦

with

T0 = Y A−NBK0(I − ρ)C2 + (Y A−NBK0(I − ρ)C2)T + CT
1 C1

T1 = Y BCK0 −NAK0 −NAKa(ρ) −ATN + CT
2 (I − ρ)BT

K0N + CT
2 B

T
Ka(ρ)N

+NT
3 NAKa(ρ) −NT

3 C
T
2 B

T
Ka(ρ)N + CT

1 D12CK0

T2 = Y B1 −NBK0(I − ρ)D21

T3 = −NBCK0 − (NBCK0)T +NAK0 +NAKa(ρ) + (NAK0 +NAKa(ρ))T

+ CT
K0D

T
12D12CK0,

T4 = −NB1 +NBK0(I − ρ)D21 −AT
Ka(ρ)NN2 +NBKa(ρ)C2N2,

T5 = (−NBKbi −NBKai +NBKbiρ+NBKaiρ)C2,

T6 = −(NBKbi +NBKai)(I − ρ)D21

T7 = (−NBKaiρ+NBKbi)C2 + (NBKai −NBKbiρ)C2N3

T8 = (NBKai +NBKbi)(I − ρ)D21 +AT
KaiNN2 − (NBKai −NBKbiρ)C2N2
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T9 = −Ci
2
T
BT

KbjN −NAKbij +NT
3 C

i
2
T
BT

KbjN

T10 = −NBKbiC
j
2 −AT

KbjiN +NBKbiC
j
2N3

N1 = T−1
cn

[
Tc

0

]
, N2 = T−1

cn

[
Tc(I − ρ)D21

0

]
, N3 = T−1

cn

[
TcρC2

Ccn

]

The following theorem presents a sufficient condition for the solvability of
the reliable control problem via dynamic output feedback in the framework of
LMI approach and adaptive laws, where γn and γf are the upper bounds of
the adaptive H∞ performance indexes for systems in normal and sensor fault
cases.

Theorem 4.1 Let γf > γn > 0 be given constants, if there exist matrices
0 < N < Y,AK0, AKai, AKbi, AFbij , BK0, BKai, BKbi, CK0, i, j = 1 · · · p and
symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]

and Θ11, Θ22 ∈ Rp(2n+m)×p(2n+m) such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · , p
with Θ22ii ∈ R(2n+s)×(2n+s) is the (i, i) block of Θ22.
For any δ ∈ Δv

Θ11 + Θ12Δ(δ) + (Θ12Δ(δ))T + Δ(δ)Θ22Δ(δ) ≥ 0

in normal case, i.e., ρ = 0[
Q01 R
RT Υ

]
+GT ΘG < 0

and in sensor faults cases, i.e., ρ ∈ {ρ1 · · · ρg}, ρj ∈ Nρj[
Q1 R
RT Υ

]
+GT ΘG < 0, (4.19)

and also ρ̂i(t) is determined according to the adaptive law

˙̂ρi(t) = Proj[0,1]{Li}

=

⎧⎨
⎩ 0, if

ρ̂i = 0 and Li ≤ 0
or ρ̂i = 1 and Li ≥ 0;

Li, otherwise
(4.20)

where

Li = −li[ξTNAKaiξ − yF T
NT

1 NAKaiξ + ξT [NBKaiC2 +NBKb(ρ̂)Ci
2]N1y

F

and NBKb(ρ̂) =
∑p

i=1NBKbiρ̂i. li > 0(i = 1 · · ·m) is the adaptive law gain
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to be chosen according to practical applications. Proj{·} denotes the projec-
tion operator [70], whose role is to project the estimation ρ̂i(t) to the interval
[min

j
{ρj

i
},max

j
{ρ̄j

i}].
Then the dynamic output feedback controller of the form (4.17) with the

controller parameters AK0, AKai, AKbi, AKbij, BK0, BKai, BKbi, CK0, i, j =
1 · · · p and ρ̂i(t) determined according to the adaptive law (4.20), renders the
system (4.18) in normal case satisfying for xe(0) = 0

∫ ∞

0

zT (t)z(t)dt ≤ γ2
n

∫ ∞

0

ωT (t)ω(t)dt +
p∑

i=1

ρ̃i
2(0)
li

(4.21)

and in sensor faults cases satisfying for xe(0) = 0

∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt +
p∑

i=1

ρ̃i
2(0)
li

(4.22)

with ρ̃(t) = diag{ρ̃1(t) · · · ρ̃p(t)}, ρ̃i(t) = ρ̂i(t) − ρi

Proof 4.2 Choose the following Lyapunov function

V (t) = xT
e (t)Pxe(t) +

p∑
i=1

ρ̃2
i (t)
li

.

By ρ̃(t) = ρ̂(t) − ρ, it follows

BF (ρ̂)(I − ρ) = [BK0 +BKa(ρ̂(t)) +BKb(ρ̂(t)](I − ρ)
= BK0(I − ρ) + BKa(ρ) −BKa(ρ̂(t))ρ+BKa(ρ̃(t))

+BKb(ρ̂(t)(I − ρ̂(t)) +BKb(ρ̂)ρ̃(t) (4.23)

and

AKa(ρ̂) = AKa(ρ) +AKa(ρ̃).

Ae can be written as
Ae = Aea +Aeb

where

Aea =
[

A BCK0

Aea21 AK0 +AKa(ρ) +AKb(ρ̂)

]
, Aeb =

[
0 0
M1 AKa(ρ̃)

]

with

Aea21 = [BK0(I − ρ) +BKa(ρ) −BKa(ρ̂)ρ+BKb(ρ̂)(I − ρ̂)]C2

M1 = (BKa(ρ̃) +BKb(ρ̂)ρ̃)C2.
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Let P be of the following form

P =
[
Y −N
−N N

]

where 0 < N1 < Y1, which implies P > 0. From (4.4), it follows

TcC2x = Tc[yF − (I − ρ)D21ω + ρC2x] (4.24)

Thus

x = T−1
cn

[
TcC2x
Tcn

]
= N1y

F −N2ω +N3x (4.25)

where N1 = T−1
cn

[
Tc

0

]
, N2 = T−1

cn

[
Tc(I − ρ)D21

0

]
, N3 = T−1

cn

[
TcρC2

Ccn

]
.

Furthermore

PAea =
[
Y A−NAea21 Y BCK0 −N(AK0 +AKa(ρ) +AKb(ρ̂))
−NA+NAea21 −NBCK0 +N(AK0 +AKa(ρ) +AKb(ρ̂))

]

and

PAeb =
[−NM1 −NAKa(ρ̃)
NM1 NAKa(ρ̃)

]

which follows

[xT ξT ]PAeb[xT ξT ]T = −xTNM1x− xTNAKa(ρ̃)ξ + ξTNM1x+ ξTNAKa(ρ̃)ξ.

From (4.25), it is easy to see

xTNAKa(ρ̃)ξ = xTNT
3 NAKa(ρ̃)ξ + yF T

NT
1 NAKa(ρ̃)ξ − ωTNT

2 NAKa(ρ̃)ξ

ξTNM1x = −ξTNM1N2ω + ξTNM1N3x+ ξTNM1N1y
F

Hence

xT
e PAebxe = −xTNM1x− xTNT

3 NAKa(ρ̃)ξ + ξTNM1N3x+ ξTM2ω +M3

= xT
e Apexe + xT

e Bpeω +M3

where

Ape =
[ −NM1 −NT

3 NAKa(ρ̃)
NM1N3 0

]
, Bpe =

[
0
M2

]

with
M2 = −NM1N2 +AT

Ka(ρ̃)NTN2

M3 = ξTNAKa(ρ̃)ξ − yF T
NT

1 NAKa(ρ̃)ξ + ξTNM1N1y
F .
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Then from the derivative of V (t) along the closed-loop system (4.18), it
follows

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t)

= 2xT
e P (Aeaxe +Beω) + xT

e C
T
e Cexe − γ2

fω
T (t)ω(t)

+2xT
e Apexe + 2xT

e Bpeω + 2M3 + 2
p∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ xT
e W0xe + 2M3 + 2

p∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

where

W0 = PAea +Ape + [PAea +Ape]T +
1
γ2

f

(PBe +Bpe)(PBe +Bpe)T + CT
e Ce.

The design condition that V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0 is reduced to

W0 < 0 (4.26)

and

M3 +
p∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ 0 (4.27)

Since y and ξ are available on line, the adaptive law can be chosen as (4.20),
it is easy to see that

M3 =
p∑

i=1

ρ̃i(t)Li

−li . (4.28)

Moreover ρi is an unknown constant, so ˙̂ρi(t) = ˙̃ρi(t). If ρ̂i = 0, and Li ≤
0 or ρ̂i = 1, and Li ≥ 0, then ρ̂i(t) = 0 and ρ̂i(t)Li = (ρ̂i(t) − ρ)Li ≥ 0.
Then together with (4.28) and ˙̂ρi(t) = ˙̃ρi(t), it follows

p∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

= 0 ≤ −M3 (4.29)

If ρ̂i(t) is in other cases, from (4.20) it follows ˙̂ρi(t) = ˙̃ρi(t) = Li. Then
together with (4.28) and ˙̂ρi(t) = ˙̃ρi(t), we have

p∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

= −M3. (4.30)

Then, from (4.29) and (4.30) it follows
p∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ −M3. (4.31)
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If the adaptive law is chosen as (4.20), then (4.27) can be achieved.
Notice that (4.26) is equivalent to[

PAea +Ape + [PAea +Ape]T + CT
e Ce PBe +Bpe

∗ −γ2
fI

]
< 0 (4.32)

On the other hand,

PBe =
[
Y B1 −N [BK0 +BKa(ρ̂) +BKb(ρ̂)](I − ρ)D21

−NB1 +N [BK0 +BKa(ρ̂) +BKb(ρ̂)](I − ρ)D21

]

(4.32) can be described by

W1(ρ̂) = Q1 +
p∑

i=1

ρ̂iRi + (
p∑

i=1

ρ̂iRi)T +
p∑

i=1

p∑
j=1

ρ̂iρ̂jΥij < 0

where Q1, Ri,Υij , i, j = 1 · · · p are defined in (4.19). From Lemma 2.10 it fol-
lows W1(ρ̂) < 0 if (4.19) holds, which implies W0 < 0. Together with adaptive
law (4.20), it follows that V̇ (t) ≤ 0, which further implies that the closed-loop
system (4.17) is asymptotically stable.
Furthermore, we have

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0

Integrate the above-mentioned inequalities from 0 to ∞ on both sides, it follows

V (∞) − V (0) +
∫ ∞

0

z(t)T z(t)dt ≤ γ2
f

∫ ∞

0

ω(t)Tω(t)dt.

which implies that (4.22) holds for x(0) = 0. The proof for the system in the
normal case is similar, so we omit it here.

Corollary 4.1 Assume that the conditions of Theorem 4.1 hold. Then the
closed-loop system (4.18) is asymptotically stable and with adaptive H∞ per-
formance indexes no larger than γn and γf for normal and sensor fault cases,
respectively.

Proof 4.3 Let Fa(0) =
∑m

i=1
ρ̃i

2(0)
li

. Then, by (4.20) and (4.2), it follows that
ρ̃i(0) ≤ max

j
{ρ̄j

i}−min
j

{ρj
i
}. We can choose li sufficiently large so that F (0) is

sufficiently small. Thus, from (4.21), (4.22), Definition 3.1 and Remark 1.1,
the adaptive H∞ performance index is close to the standard H∞ performance
index when li is chosen to be sufficiently large. Then the conclusion follows.
Fa(0) =

∑m
i=1

ρ̃i
2(0)
li

.

Remark 4.3 Theorem 4.1 presents a sufficient condition for adaptive
reliable H∞ controller design via dynamic output feedback. Generally,
(4.19) is not LMIs. But when CK0, CKai and CKbi are given, and
N1AK0, N1AKai, N1AKbi, N1AKbij , N1BK0, N1BKai and N1BKbi are defined
as new variables, (4.19) becomes LMIs and linearly depends on uncertain pa-
rameters ρ and ρ̂.
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Theorem 4.2 If the condition in Lemma 4.1 holds, then the condition in
Theorem 4.1 holds.

Proof 4.4 Notice that if the condition (i) or (ii) in Lemma 4.1 holds, then the
condition in Theorem 4.1 is feasible with AK0 = AKe0, BK0 = BKe0, CK0 =
CKe0 and AKai = AKbi = AKbij = BKai = BKbi = CKai = CKbi = 0, i, j =
1 · · ·m. The proof is complete.

The following algorithm is to optimize the adaptive H∞ performances
indexes in normal and fault cases.

Algorithm 4.2 Step 1 Choose CK0 = CKf with CK0 being a solution to
the problem of reliable dynamic output controller design with fixed gains via
Algorithm 4.1

Step 2 Let NAK0 = ĀK0, NAKai = ĀKai, NAKbi = ĀKbi, NAKbij =
ĀKbij , NBK0 = B̄K0, NBKai = B̄Kai and NBKbi = B̄Kbi

minαηn + βηf s.t. 0 < N < Y, and (4.19) (4.33)

where ηn = γ2
n, ηf = γ2

f , and α and β are weighting coefficients.
Denote the optimal solutions as ĀK0 = ĀK0opt, ĀKai = ĀKaiopt, ĀKbi =
ĀKbiopt, ĀKbij = ĀKbijopt, B̄K0 = B̄K0opt, B̄Kai = B̄Kaiopt, B̄Kbi = B̄Kbiopt,
N = N1opt. The resultant adaptive dynamic output feedback controller gains
can be obtained by AK0 = N−1ĀK0, AKai = N−1ĀKai, AKbi = N−1ĀKbi,
AKbij = N−1ĀKbij , BK0 = N−1B̄K0, BKai = N−1B̄Kai, BKbi = N−1B̄Kbi,
CK0 = CKf .

Remark 4.4 Similar to Algorithm 4.1, Algorithm 4.2 is also composed of
two-step optimizations. Moreover, from Theorem 4.2 it follows that Algorithm
4.2 can obtain less conservative design conditions than Algorithm 4.1.

4.4 Example

Example 4.1 Consider the following linear system

ẋ(t) =

⎡
⎣−2 2 1
−1 0 −1
5 1 −6

⎤
⎦ x(t) +

⎡
⎣1 0
1 0
1 0

⎤
⎦ω(t) +

⎡
⎣3 0

0 3
3 1

⎤
⎦u(t)

z(t) =

⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦x(t) +

⎡
⎣0 0
1 0
0 1

⎤
⎦u(t)

y(t) =
[
5 0 0
1 0 0

]
x(t) +

[
0 1
0 −2

]
ω(t) (4.34)
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TABLE 4.1 H∞ performance index
Adaptive reliable controller Traditional reliable controller

γn 0.4537 0.5595
γf 1.4183 1.4673
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FIGURE 4.1
Response curve of the second state in normal case with adaptive controller
(solid) and controller with fixed gains (dashed).
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FIGURE 4.2
Response curve of the second state in sensor fault 1 with adaptive controller
(solid) and controller with fixed gains (dashed).

From z(t), it is easy to see that the regulated state is the second state in this
example.

Besides the normal mode, that is,

ρ0
1 = ρ0

2 = 0,

the following possible fault modes are considered:
Sensor fault mode 1: The first sensor is outage and the second sensor is normal,
that is,

ρ1
1 = 1, ρ1

2 = 0.

Sensor fault mode 2: The first sensor is normal and the second sensor is outage,
that is,

ρ2
1 = 0, ρ2

2 = 1.

From Algorithm 4.1 with α = 10, β = 1 and Remark 4.2, the corresponding
H∞ performance indexes of the closed-loop systems with the two controllers
are obtained. See Table 4.1 for more details, which indicates the superiority
of our adaptive method.
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FIGURE 4.3
Response curve of the second state in sensor fault 2 with adaptive controller
(solid) and controller with fixed gains (dashed).

In the simulations, the disturbance ω(t) =
[
ω1(t) ω2(t)

]T that used is

ω1(t) = ω2(t) =
{

2, 2 ≤ t ≤ 3 (seconds)
0 otherwise

The considered sensor fault cases in the simulations are as follows:
The first sensor fault case: At 5 seconds, the first sensor becomes outage.
The second sensor fault case: At 4 seconds, the second sensor is outage.

Figure 4.1-Figure 4.2 are the responses of the second state with adaptive
fault-tolerant controller and fault-tolerant controller with fixed gains in normal
and sensor fault cases for l1 = l2 = 50, respectively. It is easy to see even in
the presence of sensor outage, our adaptive method performs better than the
controller with fixed gains as theory has proved.
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4.5 Conclusion

This chapter has studied the adaptive reliable H∞ control problem via dy-
namic output feedback for linear continuous-time systems against sensor
faults. The sensor outage faults are considered. The proposed controller pa-
rameters are updated automatically to compensate the effect of sensor faults
on systems based on the online estimations of sensor faults, which are obtained
according to adaptive laws. Using both the adaptive method and LMI ap-
proach, more relaxed design conditions than those for designing fault-tolerant
H∞ controllers with fixed controller gains are obtained, which guarantees the
asymptotic stability and L2-gain in normal and sensor fault cases. A numerical
example is also given to illustrate the design procedures and their effectiveness.



5

Adaptive Reliable Filtering against Sensor
Faults

5.1 Introduction

The problem of H∞ filtering has been a topic of recurring interest for some
decades. Comparing with H2 filtering, the advantages of H∞ filtering ap-
proach are twofold. First, the assumption of boundness of the noise variance
is loosened. Second, the H∞ filter tends to be more robust when there ex-
ist additional uncertainties in systems, such as quantization errors, delays
and unmodeled dynamics [132]. A great number of results on H∞ filter have
been reported and different approaches have been proposed in the literature
[41, 44, 88, 139, 138, 146].

A common assumption in many filter designs is that the sensors can provide
uninterrupted signal measurements. However, contingent faults are possible
for all sensors in a system in practice. A large degree of filter performances
may degrade and possible hazards may happen. Following the general notation
of “reliable” controllers [54, 126, 134, 150], a filter designed to tolerate sensor
faults while retaining desired properties is called a “reliable” filter in this
chapter.

In this chapter, we propose a new approach to the reliable H∞ filtering
problem for continuous-time linear systems against sensor faults. Apart from
using fixed filter parameter matrices, the designed filters are allowed to update
filter parameter matrices for tolerating sensor faults. An adaptive H∞ perfor-
mance index is defined to describe the disturbance attenuation performance
of systems with time-varying parameter estimations. Linear matrix inequal-
ity approach [14] and adaptive method [3, 70] are combined successfully to
solve the adaptive reliable H∞ filtering problem. Based on the online estima-
tion of an eventual fault, the adaptive reliable H∞ filter parameter matrices
are updated automatically to compensate the sensor fault effects on systems.
The adaptive H∞ performances in both normal and sensor fault cases are
minimized with different weighting constants in optimization indexes in the
LMI framework. It is shown that the design condition for the newly proposed
adaptive reliable H∞ filtering is more relaxed than the pure LMI-based de-
sign method from [88] for the traditional reliable filter design without adaptive
mechanisms.

63
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5.2 Problem Statement

Consider a linear time-invariant model described by

ẋ(t) = Ax(t) +B1ω(t)
z(t) = C1x(t)
y(t) = C2x(t) +Dω(t) (5.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is
the measured output, z(t) ∈ Rq is the regulated output and ω(t) ∈ Rs is an
exogenous disturbance in L2[0,∞], respectively.A,B1, B2, C1, C2,D12 andD21

are known constant matrices of appropriate dimensions. And C2 =
[
I 0

]
.

Denote hi =
[
0 · · ·hT

ii · · · 0
]T , where hii represents the ith row of

[
I 0

]
.

Remark 5.1 In the above system description, the output matrix is assumed to
be C2 =

[
I 0

]
. The assumption can be replaced by a more general assumption

that C2 is of full row rank. For such a C2, let

T =
[
CT

2 (C2C
T
2 )−1 C⊥

2

]
(5.2)

where C⊥
2 denotes an orthogonal basis for the null space of C2, then T is

invertible, and C2T =
[
I 0

]
. Thus, the system (5.1) with C2 being of full

row rank can be converted into the one with C2 =
[
I 0

]
by letting x̄ = Tx.

In this chapter, the same sensor fault model is considered as Chapter 4,
that is

yF (t) = (I − ρ)y(t), ρ ∈ {ρ1 · · · ρg}
where ρ can be described by ρ = diag{ρ1, ρ2, · · · ρp}.

Then the dynamic of (5.1) with sensor fault (4.3) is described

ẋ(t) = Ax(t) +Bω(t)
z(t) = C1x(t)

yF (t) = (I − ρ)(
[
I 0

]
x(t) +Dω(t)) (5.3)

The traditional reliable filter with fixed gains is given by

ξ̇1(t) = AFfξ1(t) +BFf (I − ρ)y(t)
zFf (t) = CFf ξ1(t) (5.4)

then apply (5.4) to (5.3), it follows

ẋef (t) = Aefxef (t) +Befω(t)
zef (t) = Cefxef (t) (5.5)
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where xef (t) = [xT (t) ξT
1 (t)]T , zef (t) = z(t) − zFf (t), and

Aef =
[

A 0
BFf (I − ρ)

[
I 0

]
AFf

]
, Bef =

[
B

BFf (I − ρ)D

]
,

Cef = [C1 − CFf ].

Lemma 5.1 Consider the following closed-loop system (5.5), for given con-
stants γn > 0 and γf , the following statements are equivalent:
(i) there exist a symmetric matrix X > 0 and the controller(5.4) such that
in normal case, that is ρ = 0

AT
efX +XAef +

1
γ2

n

XBefB
T
efX + CT

efCef < 0 (5.6)

in sensor fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

AT
efX +XAef +

1
γ2

f

XBefB
T
efX + CT

efCef < 0 (5.7)

(ii) there exist a nonsingular matrix Q, symmetric matrix P > 0, and the
controller (5.4)

P =
[
Y −N
−N N

]
(5.8)

in normal case, that is ρ = 0,

AT
eqP + PAeq +

1
γ2

n

PBeqB
T
eqP + CT

eqCeq < 0, (5.9)

in sensor fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

AT
eqP + PAeq +

1
γ2

f

PBeqB
T
eqP + CT

eqCeq < 0, (5.10)

where

Aef =
[

A 0
BFf (I − ρ)

[
I 0

]
AFf

]
Bef =

[
B

BFf (I − ρ)D

]
Cef = [C1 − CFf ]

with

AKq = Q−1AKfQ, BKq = −Q−1BKf , CKq = −CKfQ (5.11)

(iii) there exist symmetric matrices Y and N satisfying 0 < N < Y , and the
controller gains of (5.4) AKf = AKq,BKf = BKq and CKf = CKq such that
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in normal case, that is ρ = 0,

Va0 =

⎡
⎢⎢⎣
Va11 Va12 Va13 CT

1

∗ NAFq + (NAFq)T Va23 −CT
Fq

∗ ∗ −γ2
nI 0

∗ ∗ ∗ I

⎤
⎥⎥⎦ < 0 (5.12)

in sensor fault case, that is ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj

Va =

⎡
⎢⎢⎣
Va11 Va12 Va13 CT

1

∗ NAFq + (NAFq)T Va23 −CT
Fq

∗ ∗ −γ2
fI 0

∗ ∗ ∗ I

⎤
⎥⎥⎦ < 0 (5.13)

where

Va11 = Y A−NBFq(I − ρ)
[
I 0

]
+ (Y A−NBFq(I − ρ)

[
I 0

]
)T

Va12 = −NAFq −ATN +
[
I 0

]T (I − ρ)BT
FqN

T

Va13 = Y B −NBFq(I − ρ)D
Va23 = −NB +NBFq(I − ρ)D.

Proof 5.1 From the proof of Lemma 2.11, it is easy to conclude (i) ⇐⇒ (ii),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < N < Y ,
thus by some simple algebra computation, it follows (ii) ⇐⇒ (iii). The proof
is complete.

Remark 5.2 From Lemma 5.1, we have the following algorithm to optimize
the H∞ performances in normal and fault cases for the traditional reliable
filter design with fixed gains.

Remark 5.3 It should be noted that the conditions (5.12) and (5.13) are
nonconvex. However, when N1AKf , N1BKf are defined as new variables, the
conditions (5.12) and (5.13) are linear matrix inequalities and linearly depend
on fault parameters ρ.

The following algorithm is to optimize the H∞ performances in normal
and fault cases for the reliable filter design with fixed gains.

Algorithm 5.1 Let NAKf = ĀKf , NBKf = B̄Kf ,NCKf = C̄Kf , then solv-
ing the following optimization problem

minαηn + βηf s.t. (5.12) (5.13) (5.14)

where ηn = γ2
n, ηf = γ2

f , and α, β are weighting coefficients.
Denote the optimal solution as ĀFf = ĀFfopt, B̄Ff = B̄Ffopt, C̄Ff = C̄Ffopt,
N = N1opt. Then the resultant filter gains can be obtained by AFf =
N−1ĀFf , BFf = N−1B̄Ff , CFf = N−1C̄Ff .



Adaptive Reliable Filtering against Sensor Faults 67

In order to reduce the conservativeness of the filter with fixed gains, the fol-
lowing adaptive reliable filter with variable gains is given

ξ̇(t) = AF (ρ̂)ξ(t) +BF (ρ̂)yF (t)
zF (t) = CF (ρ̂)ξ(t) (5.15)

where ρ̂(t) is the estimation of ρ. ξ(t) ∈ Rn and zF (t) ∈ Rq are the estimated
state and output, respectively. Here, we assume that the filter is of the same
order as the system model. Denote

AF (ρ̂) = AF0 +AFa(ρ̂) +AFb(ρ̂)

BF (ρ̂) = BF0 +BFa(ρ̂) +BFb(ρ̂)

CF (ρ̂) = CF0 + CFa(ρ̂)

with

AFa(ρ̂) =
p∑

i=1

ρ̂iAFai, CFa(ρ̂) =
p∑

i=1

ρ̂iCFai

AFb(ρ̂) =
p∑

i=1

p∑
j=1

ρ̂iρ̂jAFbij +
p∑

i=1

ρ̂iAFbi

BFa(ρ̂) =
p∑

i=1

ρ̂iBFai, BFb(ρ̂) =
p∑

i=1

ρ̂iBFbi

where AF0, AFai, AFbi, AFbij , BF0, BFai, BFbi, CF0, CFai are the filter gains
to be designed.

Combining (5.15) and (5.3), it follows

ẋe(t) = Ae(ρ̂, ρ)xe(t) +Be(ρ̂, ρ)ω(t)
ze(t) = Ce(ρ̂)xe(t) (5.16)

where xe(t) = [xT (t) ξT (t)]T , and ze(t) = z(t)− zF (t) is the estimated output
error

Ae(ρ̂, ρ) =
[

A 0
BF (ρ̂)(I − ρ)

[
I 0

]
AF (ρ̂)

]

Be(ρ̂, ρ) =
[

B
BF (ρ̂)(I − ρ)D

]
, Ce(ρ̂) = [C1 − CF (ρ̂)].

It should be noted that the filter parameter matrices AF (ρ̂), BF (ρ̂) and CF (ρ̂)
are composed of the fixed parameter matrices and the estimation ρ̂ of the
unknown parameter vector ρ, which is different from the formulation for the
traditional reliable filtering design problem with only fixed parameter matrices
[88]. Like many other results in filtering design, e.g. [47, 88], we will make the
following assumption throughout this paper:

Assumption 5.1 A is stable.
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The problem under consideration is as follows.
Adaptive reliable H∞ filter problem: For given constants γf > γn > 0,
find a filter of the form (5.15) such that
(i) the system (5.16) in normal case, i.e., ρ = 0, is with an adaptive H∞
performance index no larger than γn;
(ii) the system (5.16) in sensor fault cases, i.e., ρ ∈ {ρ1 · · · ρg}, ρj ∈ Nρj , is
with an adaptive H∞ performance index no larger than γf .
The filter of the form (5.15) satisfying (i) and (ii) is said to be an adaptive
reliable H∞ filter for the system (5.1).

5.3 Adaptive Reliable H∞ Filter Design

In this section, the problem of designing an adaptive reliable H∞ filter against
sensor faults for linear system (5.1) is studied. Before presenting the main
result of the paper, denote

Δρ̂ = {ρ̂ : ρ̂i ∈ {min
k

{ρk
i
}, max

k
{ρ̄k

i }}, i = 1, · · · p, k = 1, · · · g},
Δ(ρ̂) = diag

[
ρ̂1I · · · ρ̂pI

]
, E(ρ) = diag{ρ, I},

Q01 =

⎡
⎣T0 T1 T2

∗ T3 T4

∗ ∗ −γ2
nI

⎤
⎦ , Q1 =

⎡
⎣T0 T1 T2

∗ T3 T4

∗ ∗ −γ2
fI

⎤
⎦ ,

R =
[
R1 R2 · · · Rp

]
, Υ = [Υij ], i, j = 1 · · · p,

Ri =

⎡
⎣T5i −ĀFbi − E(ρ)ĀFai T6i

T7i ĀFbi T8i

0 0 0

⎤
⎦ ,

Υij =

⎡
⎣ 0 T9ij 0
T10ij ĀFbij + ĀT

Fbji T11ij

0 T12ij 0

⎤
⎦ ,

V0 =
[
V00 V01 · · · V0p

]
with

V00 =
[
C1 −CF0 0

]
, V0i =

[
0 −CFai 0

]
,

T0 = Y A− B̄F0(I − ρ)
[
I 0

]
+ (Y A− B̄F0(I − ρ)

[
I 0

]
)T

T1 = −ĀF0 − ĀFa(ρ) −ATN +
[
I 0

]T (I − ρ)B̄T
F0 +

[
I 0

]T
B̄T

Fa(ρ)

+ E(ρ)ĀFa(ρ) − E(ρ)
[
I 0

]T
B̄T

Fa(ρ)
T2 = Y B − B̄F0(I − ρ)D,

T3 = ĀF0 + ĀFa(ρ) + (ĀF0 + ĀFa(ρ))T ,
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T4 = −NB + B̄F0(I − ρ)D + ĀT
Fa(ρ)

[−(I − ρ)D
0

]

− B̄Fa(ρ)
[
I 0

] [−(I − ρ)D
0

]
,

T5i = (−B̄Fbi − B̄Fai + B̄Fbiρ+ B̄Faiρ)
[
I 0

]
,

T6i = −(B̄Fbi + B̄Fai)(I − ρ)D,

T7i = [(−B̄Faiρ+ B̄Fbi) + (B̄Fai − B̄Fbiρ)E(ρ)]
[
I 0

]
T8i = (B̄Fai + B̄Fbi)(I − ρ)D − ĀT

Fai

[−(I − ρ)D
0

]

+ (B̄Fai − B̄Fbiρ)
[
I 0

] [−(I − ρ)D
0

]
T9ij = −hT

i B̄
T
Fbj − ĀFbij + E(ρ)hT

i B̄
T
Fbj ,

T10ij = −B̄Fbihj − ĀT
Fbji + B̄FbihjE(ρ),

T11ij = B̄Fbihj

[−(I − ρ)D
0

]
, T12ij =

[−(I − ρ)D
0

]T

hT
i B̄

T
Fbj

where ĀF0, ĀFai, ĀFbi, ĀFbij , B̄F0, B̄Fai, B̄Fbi, C̄F0, C̄Fai(i, j = 1 · · · p) are
decision variables to be designed.

The following theorem presents a sufficient condition for the solvability of
the reliable filtering problem in the framework of LMI approach and adaptive
laws, where γn and γf are the upper bounds of the adaptive H∞ performance
indexes for systems in normal and sensor fault cases.

Theorem 5.1 Let γf > γn > 0 be given constants, if there exist matrices
0 < N < Y, ĀF0, ĀFai, ĀFbi, ĀFbij , B̄F0, B̄Fai, B̄Fbi, C̄F0, C̄Fai, i, j = 1 · · · p
and symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]

and Θ11, Θ22 ∈ Rp(2n+m)×p(2n+m) such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · , p (5.17)

with Θ22ii ∈ R(2n+s)×(2n+s) is the (i, i) block of Θ22.
For any δ ∈ Δv

Θ11 + Θ12Δ(δ) + (Θ12Δ(δ))T + Δ(δ)Θ22Δ(δ) ≥ 0

in normal case, i.e., ρ = 0[
Q01 R
RT Υ

]
+ V T

0 V0 +GT ΘG < 0, (5.18)
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and in sensor fault cases, i.e., ρ ∈ {ρ1 · · · ρg}, Nρj[
Q1 R
RT Υ

]
+ V T

0 V0 +GT ΘG < 0. (5.19)

and also ρ̂i(t) is determined according to the adaptive law

˙̂ρi(t) = Proj[min
k

{ρk
i
}, max

k
{ρ̄k

i }]{Li}, i = 1 · · · p, k = 1 · · · g

=

⎧⎪⎨
⎪⎩

0,
ρ̂i = min

k
{ρk

i
} Li ≤ 0

or ρ̂i = max
k

{ρ̄k
i } Li ≥ 0;

Li,

(5.20)

where Li = −li[ξT ĀFaiξ −
[
yF

0

]T

ĀFaiξ + ξT [B̄Fai

[
I 0

]
+ B̄Fb(ρ̂)hi]

[
yF

0

]
]

and B̄Fb(ρ̂) =
∑p

i=1 B̄Fbiρ̂i, li > 0(i = 1 · · ·m) is the adaptive law gain
to be chosen according to practical applications. Proj{·} denotes the projec-
tion operator [70], whose role is to project the estimation ρ̂i(t) to the interval
[min

k
{ρk

i
},max

k
{ρ̄k

i ]. Then the filter gains

AF0 = ĀF0N
−1, AFai = ĀFaiN

−1, AFbi = ĀFbiN
−1, AFbij = ĀFbijN

−1,

BF0 = B̄F0N
−1, BFai = B̄FaiN

−1, BFbi = B̄FbiN
−1, CF0 = C̄F0N

−1,

CFai = C̄FaiN
−1, i, j = 1, · · · p

and ρ̂i(t) determined according to the adaptive law (5.20), renders the system
(5.16) in normal case satisfying for xe(0) = 0∫ ∞

0

zT
e (t)ze(t)dt ≤ γ2

n

∫ ∞

0

ωT (t)ω(t)dt +
p∑

i=1

ρ̃i
2(0)
li

(5.21)

and in sensor fault cases satisfying for xe(0) = 0∫ ∞

0

zT
e (t)ze(t)dt ≤ γ2

f

∫ ∞

0

ωT (t)ω(t)dt +
p∑

i=1

ρ̃i
2(0)
li

(5.22)

where ρ̃(t) = diag{ρ̃1(t) · · · ρ̃p(t)}, ρ̃i(t) = ρ̂i(t) − ρi.

Proof 5.2 Choose the following Lyapunov function

V (t) = xT
e (t)Pxe(t) +

p∑
i=1

ρ̃2
i (t)
li

.

By ρ̃(t) = ρ̂(t) − ρ, it follows

AKa(ρ̃) = AKa(ρ) +AKa(ρ̂)
CKa(ρ̃) = CKa(ρ) + CKa(ρ̂)
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with

BF (ρ̂)(I − ρ) = [BF0 +BFa(ρ̂(t)) +BFb(ρ̂(t)](I − ρ)
= BF0(I − ρ) +BFa(ρ) −BFa(ρ̂)ρ

+BFa(ρ̃) +BFb(ρ̂)(I − ρ̂) +BFb(ρ̂)ρ̃ (5.23)

Then Ae(ρ̂, ρ), briefly denoted as Ae, can be written as

Ae = Aea +Aeb

where

Aea =
[

A 0
Aea21 AF0 +AFa(ρ) +AFb(ρ̂)

]
, Aeb =

[
0 0
M1 AFa(ρ̃)

]

with

Aea21 = [BF0(I − ρ) +BFa(ρ) −BFa(ρ̂)ρ+BFb(ρ̂)(I − ρ̂)]
[
I 0

]
M1 = (BFa(ρ̃) +BFb(ρ̂)ρ̃)

[
I 0

]
.

Let P be of the following form

P =
[
Y −N
−N N

]

with 0 < N < Y ,, which implies P > 0. Let x =
[
xT

p xT
n−p

]T
and E(ρ) =

diag{ρ, I}, then

x̄p = x̄p − yF + yF = ρx̄p − (I − ρ)Dω + yF .

Hence,

x = E(ρ)x−
[
(I − ρ)D

0

]
ω +

[
yF

0

]
. (5.24)

Furthermore

PAea =
[
Y A−NAea21 −N(AF0 +AFa(ρ) +AFb(ρ̂))
−NA+NAea21 N(AF0 +AFa(ρ) +AFb(ρ̂))

]

and

PAeb =
[−NM1 −NAFa(ρ̃)
NM1 NAFa(ρ̃)

]
then

[xT ξT ]PAeb[xT ξT ]T = −xTNM1x− xTNAFa(ρ̃)ξ + ξTNM1x

+ ξTNAFa(ρ̃)ξ.
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From (5.24), it is easy to see that

xTNAFa(ρ̃)ξ = xTE(ρ)NAFa(ρ̃)ξ + [yF T
0]NAFa(ρ̃)ξ

+ ωT [−(I − ρ)DT 0]NAFa(ρ̃)ξ

ξTNM1x = ξTNM1

[−(I − ρ)D
0

]
ω(t) + ξTNM1E(ρ)x+ ξTNM1

[
yF

0

]

Hence

xT
e PAebxe = −xTNM1x− xTE(ρ)NAFa(ρ̃)ξ + ξTNM1E(ρ)x+ ξTM2ω +M3

= xT
e APexe + xT

e BPeω +M3

where

APe =
[ −NM1 −E(ρ)NAFa(ρ̃)
NM1E(ρ) 0

]
, BPe =

[
0
M2

]

with

M2 = NM1

[−(I − ρ)D
0

]
− {[−(I − ρ)DT 0]NAFa(ρ̃)}T

M3 = ξTNAFa(ρ̃)ξ −
[
yF T 0

]
NAFa(ρ̃)ξ + ξTNM1

[
yF

0

]
(5.25)

Then from the derivative of V (t) along the closed-loop system (5.16), it follows
V (t)

V̇ (t) + zT
e (t)ze(t) − γ2

fω
T (t)ω(t)

= 2xT
e P (Aexe +Beω) + xT

e C
T
e Cexe − γ2

f (t)ωT (t)ω(t) + 2
p∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

= 2xT
e P (Aeaxe +Beω) + xT

e C
T
e Cexe − γ2

fω
T (t)ω(t)

+ 2xT
e APexe + 2xT

e BPeω + 2M3 + 2
p∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ xT
e W0xe + 2M3 + 2

p∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

where Be = Be(ρ̂, ρ), Ce = Ce(ρ̂), and

W0 = PAea +APe + [PAea +APe]T + CT
e Ce

+
1
γ2

f

(PBe +BPe)(PBe +BPe)T

The design condition that V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0 is reduced to

W0 < 0 (5.26)
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and

M3 +
p∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ 0. (5.27)

Since y and ξ are available on line, the adaptive law can be chosen as (5.20),
it is easy to see that

M3 =
p∑

i=1

ρ̃i(t)Li

−li . (5.28)

Moreover ρi is an unknown constant, so ˙̂ρi(t) = ˙̃ρi(t).
If ρ̂i = min

k
{ρk

i
}, k = 1, · · · g and Li ≤ 0 or ρ̂i = max

k
{ρ̄k

i }, k =

1, · · · g and Li ≥ 0, then ˙̂ρi(t) = 0 and ρ̂i(t)Li = (ρ̂i(t) − ρ)Li ≥ 0. Together
with (5.28) and ˙̂ρi(t) = ˙̃ρi(t), it follows

p∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

= 0 ≤ −M3. (5.29)

If ρ̂i(t) is in other cases, from (5.20) it follows ˙̃ρi(t) = Li. Then together with
(5.28) and ˙̂ρi(t) = ˙̃ρi(t), we have

p∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

= −M3. (5.30)

Then, from (5.29) and (5.30) it follows

p∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ −M3 (5.31)

If the adaptive law is chosen as (5.20), then (5.27) can be achieved.
Notice that (5.26) is equivalent to[
PAea +APe + [PAea +APe]T PBe +BPe

∗ −γ2
fI

]
+

[
CT

e

0

] [
Ce 0

]
< 0 (5.32)

with

PBe =
[
Y B −N [BF0 +BFa(ρ̂) +BFb(ρ̂)](I − ρ)D
−NB +N [BF0 +BFa(ρ̂) +BFb(ρ̂)](I − ρ)D

]

If we let ĀF0 = NAF0, ĀFai = NAFai, ĀFbi = NAFbi, ĀFbij = NAFbij ,
B̄F0 = NBF0, B̄Fai = NBFai, B̄Fbi = NBFbi, C̄F0 = NCF0 C̄Fai = NCFai,
then W0 < 0 will be convex on Y , N , ĀF0, ĀFai, ĀFbij , ĀFbi, B̄F0, B̄Fai,
CF0 and CFai.
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Also (5.32) can be described by

W1(ρ̂) = Q1 +
p∑

i=1

ρ̂iRi + (
p∑

i=1

ρ̂iRi)T +
p∑

i=1

p∑
j=1

ρ̂iρ̂jΥij

+ (V00 +
p∑

i=1

ρ̂iV0i)T (V00 +
p∑

i=1

ρ̂iV0i) < 0

where Q1, Ri,Υij , V00 and V0i, i, j = 1 · · · p are defined in (5.19).
From Lemma 2.10 it follows W1(ρ̂) < 0 if (5.19) holds, which implies

W0 < 0. Together with adaptive law (5.20), it follows that V̇ (t) ≤ 0, which
further implies that the closed-loop system (5.16) is asymptotically stable.
Furthermore, we have

V̇ (t) + zT
e (t)ze(t) − γ2

fω
T (t)ω(t) ≤ 0

Integrate the above-mentioned inequalities from 0 to ∞ on both sides, it follows

V (∞) − V (0) +
∫ ∞

0

ze(t)T ze(t)dt ≤ γ2
f

∫ ∞

0

ω(t)Tω(t)dt.

which implies that (5.22) holds for x(0) = 0. The proof for the system in the
normal case is similar, so we omit it here.

Corollary 5.1 Assume that the conditions of Theorem 5.1 hold. Then the
closed-loop system (5.16) is asymptotically stable and with adaptive H∞ per-
formance indexes no larger than γn and γf for normal and sensor fault cases,
respectively.

Proof 5.3 Let Fa(0) =
∑m

i=1
ρ̃i

2(0)
li

. Then, by (5.20) and (4.2), it follows that
ρ̃i(0) ≤ max

j
{ρ̄j

i}−min
j

{ρj
i
}. We can choose li sufficiently large so that F (0) is

sufficiently small. Thus, from (5.21), (5.22), Definition 3.1 and Remark 1.1,
the adaptive H∞ performance index is close to the standard H∞ performance
index when li is chosen to be sufficiently large. Then the conclusion follows.

Remark 5.4 In Theorem 5.1, a sufficient condition for the existence of an
adaptive reliable H∞ filter is given in terms of solutions to a set of LMIs,
which can be effectively solved by using the LMI control toolbox. However, the
LMIs involved in (5.19) could be very complex, which may make the com-
putation very costly. The degree of complexity depends on the dimensions
of the considered system and the system output, and the number of sensor
fault modes. In fact, the largest size of the LMIs in (5.19) is L × L, where
L = (p + 1)(2n + m) + q, the number of the LMIs is 2p(g + 1) + (p + 1)
and the number of the total decision variables involved in the LMIs is
n(n + 1) + (p + 1)2np + (p + 1)nq + (2n + m)p[2p(2n + m) + 1]. So when
the system is with a higher dimension and more fault modes are considered,
more computation time is needed.
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Next, a theorem is given to show that the condition in Theorem 5.1 for the
adaptive reliable H∞ filter design is more relaxed than that in Lemma 5.1 for
the traditional reliable H∞ filter design with fixed parameter matrices.

Theorem 5.2 If the condition in Lemma 5.1 holds, then the condition in
Theorem 5.1 holds.

Proof 5.4 Notice that if the condition (i) or (ii) in Lemma 5.1 holds, then the
condition in Theorem 5.1 is feasible with AK0 = AKe0, BK0 = BKe0, CK0 =
CKe0 and AKai = AKbi = AKbij = BKai = BKbi = CKai = CKbi = 0, i, j =
1 · · ·m. The proof is complete.

The following algorithm is to optimize the adaptive H∞ performances
indexes in normal and fault cases.

Algorithm 5.2 Let NAF0 = ĀF0, NAFai = ĀFai, NAFbi =
ĀFbi, NAFbij = ĀFbij , NBF0 = B̄F0, NBFai = B̄Fai, NBFbi = B̄Fbi,
NCF0 = C̄F0, NCFai = C̄Fai

Solve the following optimization problem:

minαηn + βηf s.t. (5.19) (5.33)

where ηn = γ2
n, ηf = γ2

f , and α and β are weighting coefficients.
Denote the optimal solutions as ĀF0 = ĀF0opt, ĀFai = ĀFaiopt ĀFbi =
ĀFbiopt, ĀFbij = ĀFbijopt, B̄F0 = B̄F0opt, B̄Fai = B̄Faiopt, B̄Fbi = B̄Fbiopt,
C̄F0 = C̄F0opt, C̄Fai = C̄Faiopt N = N1opt.
Then the resultant adaptive filter gains can be obtained by AF0 = N−1

1 ĀF0,
AFai = N−1

1 ĀFai, AFbi = N−1
1 ĀFbi, AFbij = N−1

1 ĀFbij , BF0 = N−1
1 B̄F0,

BFai = N−1
1 B̄Fai, BFbi = N−1

1 B̄Fbi, CF0 = N−1C̄F0 CFai = N−1C̄ai

(i, j = 1 · · · p).

5.4 Example

The following considered example is a linearized model of an F-404 engine
from [2, 31] to illustrate the superiority of the proposed adaptive reliable filter
design method.

Example 5.1 Consider the system (5.1) with the following parameters

A =

⎡
⎣ −1.4600 0 2.4280

0.1643 + 0.5δ −0.4 + δ −0.3788
0.3107 0 −2.2300

⎤
⎦ , B =

⎡
⎣ 0.2 0 0

0.8 0 0
−0.2 0 0

⎤
⎦

C1 =
[
0 0 5

]
, C2 =

[
1 0 0
0 1 0

]
, D =

[
0 0 −0.6
0 0.6 0

]

where δ = 0.32.
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TABLE 5.1 H∞ performance index
Adaptive reliable filter Traditional reliable filter

γn 0.4655 0.5586
γf 1.1081 1.2119
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e
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FIGURE 5.1
Response curve of estimated output error in normal case with adaptive filter
(solid line) and filter with fixed filter gains (dashed line).
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FIGURE 5.2
Response curve of estimated output error in sensor fault case with adaptive
filter (solid line) and filter with fixed filter gains (dashed line).

Besides both of the two sensors are normal, that is ρ0
1 = ρ0

2 = 0, the following
fault mode is considered: The second sensor is outage and the first sensor is
normal, that is, ρ1

1 = 0, ρ1
2 = 1.

From Algorithm 5.1 and Algorithm 5.2 with α = 10, β = 1, the correspond-
ing H∞ performance indexes of the closed-loop systems with the two filters
are obtained. See Table 5.1 for more details, which indicates the superiority
of our adaptive method. In the simulations, the disturbance ω(t)

ω(t) =
{

1, 2 ≤ t ≤ 3 (seconds)
0 otherwise

The following fault case is considered: At 1 second, the second sensor is
outage.

Figure 5.1-Figure 5.2 are the response curves of estimated output error
ze(t) with the adaptive filter and the reliable filter with fixed gains for normal
and fault case, respectively. It is easy to see even in the presence of sensor
outage, our adaptive method performs better than the filter with fixed gains
as theory has proved.
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5.5 Conclusion

Combining the LMI approach with adaptive mechanisms successfully, this
chapter has investigated the problem of designing adaptive reliable H∞ fil-
ters for continuous-time linear systems. Based on the online estimations of
eventual faults, the reliable H∞ filter parameter matrices are updated auto-
matically to compensate the sensor fault effects on systems. The adaptive H∞
performances in normal and sensor fault cases are minimized with different
weighting constants in optimization indexes in the LMI framework. The de-
sign condition is more relaxed than that for the traditional reliable H∞ filter
design with fixed filter parameters. An example about a linearized model of
an F-404 engine and its simulation results demonstrated the superiority of the
proposed approach.



6

Adaptive Reliable Control for Time-Delay
Systems

6.1 Introduction

Time-delays are frequently encountered in many practical systems such as
chemical processes, electrical heaters and long transmission lines in pneumatic,
hydraulic and rolling mill systems [12, 13, 29, 55, 76, 80, 103, 111, 116, 157].
Since the existence of a delay in a physical system often induces instability of
poor performance, research on time-delay systems is a topic of great practical
and theoretical importance [35, 36, 37, 39, 40, 45, 49, 50, 52, 53]. During
the last decade, the control problem of systems with time-delay has received
considerable attention [58, 59, 60, 61, 62, 82, 86, 160]. The main methods can
be classified into two types: delay-independent ones [75, 91, 158] and delay-
dependent ones [13, 16, 22, 38, 73, 75, 77, 112, 144, 158, 163]. Usually, delay-
dependent ones can provide less conservative results than delay-independent
ones. Both controllers with or without memory have been proposed for the
study of delay-dependent control synthesis of time-delay systems.

On the other hand, actuator faults may cause severe system performance
deterioration which should be avoided in many critical situations such as flight
control systems, etc. [23, 7, 95, 100, 106, 107, 141]. A control system designed
to tolerate faults of sensors or actuators, while maintaining an acceptable level
of the closed-loop system stability/performance, is called a reliable control sys-
tem [133]. However, the issue of time-delay is often ignored in the design of
fault tolerant control, and there are relatively few works that actually con-
sider the effects of time-delay. In fact, in the presence of time-delay, the design
problems of fault tolerant controllers become more complex and difficult. Us-
ing either the adaptive method or linear matrix inequality (LMI) approach,
some reliable or fault-tolerant controllers are proposed for linear time-delay
systems [21, 98, 135, 158, 159, 163].

In this chapter, based on the results in Chapter 3, we focus on adap-
tive reliable controller design problems for linear time-delay systems via both
memory-less controller and memory controller. Firstly for memory-less case,
both state feedback controller and dynamic output feedback controller are con-
sidered. Here, the designed controller gains are affinely dependent on the online
estimations of fault parameters, which are adjusted according to the proposed

79
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adaptive laws. Being different from Chapter 3, the time-delay information is
included in the designed adaptive laws. Due to the introduction of adaptive
mechanisms, more relaxed controller design conditions than those for the tra-
ditional controllers with fixed gains are derived. Secondly, since a memory
controller with feedback provisions on current states and the past states may
improve the performances of systems, the problem of designing memory feed-
back controllers for linear time-delay systems is also investigated. Both mem-
ory terms and memory-less terms are time-varying and affinely dependent on
the online estimations of actuator faults. Some simulation results are given to
demonstrate the effectiveness and superiority of the designed controllers.

6.2 Adaptive Reliable Memory-Less Controller Design

In this section, we investigate the problem of adaptive reliable controller via
state feedback and dynamic output feedback, respectively for linear time-delay
systems against actuator faults.

6.2.1 Problem Statement

Consider the following system with time-delay:

ẋ(t) = Ax(t) +A1x(t− τ(t)) +Bu(t) +B1ω(t)
z(t) = Cx(t) +Du(t)
x(t) = φ(t), t ∈ [−h, 0] (6.1)

where x(t) ∈ Rn and xt is the state at time t defined by xt(s) = x(t +
s), s ∈ [−h, 0], u(t) ∈ Rm is the control input, z(t) ∈ Rq is the regulated
output, respectively. ω(t) ∈ Rp is an exogenous disturbance in L2[0,∞] and h
is an upper-bound on the time-varying delay τ(t). {φ(t), t ∈ [−h, 0]} is a real-
valued initial function. A,A1, B,B1, C and D are known constant matrices
of appropriate dimensions. For simplicity only, we take single delay τ(t). The
results of this paper can be easily applied to the case of multiple delays.
As in [38], the following case for time-varying delay τ(t) is considered. That
is, τ(t) is differentiable function

0 ≤ τ(t) ≤ h, τ̇(t) ≤ d < 1, satisfying for all t ≥ 0. (6.2)

where d is an upper bound on the derivative of τ(t).
In this section, the considered actuator faults model is the same as those

in Chapter 3, that is

uF (t) = (I − ρ)u(t), ρ ∈ [ρ1 · · · ρL] (6.3)
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where ρ can be described as ρ = diag[ρ1, ρ2, · · · ρm].
Denote

Nρj = {ρj |ρj = diag[ρj
1, ρ

j
2, · · · ρj

m], ρj
i = ρi

j ρj
i = ρ̄i

j}

It is easy to see that the set Nρj contains a maximum of 2m elements.

6.2.2 H∞ State Feedback Control

In this subsection, an adaptive reliable H∞ state feedback controller is de-
signed to guarantee the resulting closed-loop system is asymptotically stable
and its H∞ disturbance attenuation performance bound is minimized, in nor-
mal and fault cases.

Then with actuator faults (6.3), the system is described by

ẋ(t) = Ax(t) +A1x(t− τ(t)) +B(I − ρ)u(t) +B1ω(t)
z(t) = Cx(t) +D(I − ρ)u(t) (6.4)

Representing (6.4) in the descriptor form

ẋ(t) = y(t),

y(t) = (A+A1)x(t) +B(I − ρ)u(t) +B1ω(t) −A1

∫ t

t−τ(t)

y(s)ds

z(t) = Cx(t) +D(I − ρ)u(t) (6.5)

and let x̄(t) = col{x(t), y(t)}.
The controller structure is chosen as

u(t) = K(ρ̂(t))x(t) = (K0 +Ka(ρ̂(t)) +Kb(ρ̂(t))x(t) (6.6)

where Ka(ρ̂(t)) =
∑m

i=1Kaiρ̂i(t),Kb(ρ̂(t)) =
∑m

i=1Kbiρ̂i(t), ρ̂i(t) is the
estimation of ρi. K0, Kai, Kbi, i = 1 · · ·m are the controller gains to be
designed.

Remark 6.1 Though Ka(ρ̂(t) and Kb(ρ̂(t) have the same forms, we deal with
them in different ways here, which gives more freedom and less conservative-
ness in the resultant design conditions.

The closed-loop system is given by

ẋ(t) = y(t),

y(t) = (A+A1)x(t) +B(I − ρ)K(ρ̂)x(t) +B1ω(t) − A1

∫ t

t−τ(t)

y(s)ds

z(t) = (C +D(I − ρ)K(ρ̂))x(t) (6.7)
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Before presenting the main result of this paper, denote

Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂i ∈ {min
j

{ρj
i
}, max

j
{ρ̄j

i}}}, Δ(ρ̂) = diag[ρ̂1I · · · ρ̂mI]

W =
[
N0 U
UT Υ

]
+GT ΘG, N0 =

[
Q2 +QT

2 + hZ̄1 T1

∗ −Q3 −QT
3 + hZ̄3

]
,

U =
[
U1 U2 · · · Um

]
, V0 =

[
V00 V01 · · · V0m

]
Υ = [Υij ], i, j = 1 · · ·m.

where

T1 = Q3 −QT
2 +Q1(AT + εAT

1 ) + hZ̄2 + (I − ρ)Ȳ T
0 B

T + Ȳ T
a (ρ)BT ,

V00 =
[
CQ1 +D(I − ρ)Ȳ0 0

]
, V0i =

[
D(I − ρ)(Ȳai + Ȳbi) 0

]

Ui =
[
0 −ρȲ T

aiB
T + Ȳ T

bi B
T

0 0

]
, G =

⎡
⎢⎢⎢⎣
⎡
⎢⎣
I
...
I

⎤
⎥⎦ 0

0 I

⎤
⎥⎥⎥⎦

Υij =
[
0 −BiȲbj − Ȳ T

bi B
jT

0 0

]
, Ȳa(ρ) =

m∑
i=1

Ȳaiρi,

The matrices Q1, Q2, Q3, S̄, R̄, Z̄1, Z̄2, Z̄3, Θ, Ȳ0, Ȳai, Ȳbi, i = 1 · · ·m
involved in the above notations and definition are decision variables to be
determined.

Let γn and γf denote the adaptive reliable H∞ performance bounds for
the normal case and fault cases of the closed-loop system (6.4).

Theorem 6.1 Let γf > γn > 0, d and h > 0 are given constants, if for a
diagonal matrix ε, there exist matrices Q1 > 0, Q2, Q3, S̄, R̄, Z̄1, Z̄2, Z̄3, Ȳ0,
Ȳai, Ȳbi, i = 1 · · ·m and a symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]

Θ11, Θ22 ∈ R2mn×2mn such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · ,m (6.8)

with Θ22ii ∈ Rn×n is the (i, i) block of Θ22.
for any δ ∈ Δv

Θ11 + Θ12Δ(δ) + (Θ12Δ(δ))T + Δ(δ)Θ22Δ(δ) ≥ 0
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for ρ = 0, that is in normal case,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W V T
0

⎡
⎣ 0
B1

0

⎤
⎦

⎡
⎣ 0
A1(I − ε)S̄

0

⎤
⎦

⎡
⎣Q1

0
0

⎤
⎦

⎡
⎣hQT

2

hQT
3

0

⎤
⎦

∗ −I 0 0 0 0
∗ ∗ −γ2

nI 0 0 0
∗ ∗ ∗ −(1 − d)S̄ 0 0
∗ ∗ ∗ ∗ −S̄ 0
∗ ∗ ∗ ∗ ∗ −hR̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (6.9)

for ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj , that is in fault cases,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W V T
0

⎡
⎣ 0
B1

0

⎤
⎦

⎡
⎣ 0
A1(I − ε)S̄

0

⎤
⎦

⎡
⎣Q1

0
0

⎤
⎦

⎡
⎣hQT

2

hQT
3

0

⎤
⎦

∗ −I 0 0 0 0
∗ ∗ −γ2

fI 0 0 0
∗ ∗ ∗ −(1 − d)S̄ 0 0
∗ ∗ ∗ ∗ −S̄ 0
∗ ∗ ∗ ∗ ∗ −hR̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (6.10)

⎡
⎣R̄ 0 R̄εAT

1

∗ Z̄1 Z̄2

∗ ∗ Z̄3

⎤
⎦ ≥ 0 (6.11)

and also ρ̂i is determined according to the adaptive laws

˙̂ρi = Proj[min
j

{ρj
i},max

j
{ρ̄j

i ]}{Li}

=

⎧⎪⎪⎨
⎪⎪⎩

0, if
ρ̂i = min

j
{ρj

i
} and Li ≤ 0

or ρ̂i = max
j

{ρ̄j
i} and Li ≥ 0;

Li, otherwise

(6.12)

where Li = −lix̄(t)TQ−T

[
0 0

BiKb(ρ̂) +BKai 0

]
x̄(t), Q =

[
Q1 0
Q2 Q3

]
and

li > 0(i = 1 · · ·m) are constants to be chosen according to practical appli-
cations. Proj{·} denotes the projection operator [70], whose role is to project
the estimations ρ̂i(t) to the interval [min

j
{ρj

i
},max

j
{ρ̄j

i}], then the closed-loop

system (6.4) is asymptotically stable and in normal case, i.e., ρ = 0, satisfies
for x(t) = 0, t ∈ [−h, 0]

∫ ∞

0

zT (t)z(t)dt ≤ γ2
n

∫ ∞

0

ωT (t)ω(t)dt +
m∑

i=1

ρ̃i
2(0)
li

(6.13)
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and in actuator fault cases, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj , satisfies for x(t) =
0, t ∈ [−h, 0]

∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt +
m∑

i=1

ρ̃i
2(0)
li

(6.14)

where ρ̃(t) = diag[ρ̃1(t) · · · ρ̃m(t)], ρ̃i(t) = ρ̂i(t) − ρi.
Furthermore, the corresponding controller is given by

u(t) = (Ȳ0Q
−1
1 +

m∑
i=1

ρ̂iȲaiQ
−1
1 +

m∑
i=1

ρ̂iȲbiQ
−1
1 )x(t) (6.15)

Proof 6.1 Consider the following Lyapunov-Krasovskii functional

V = V1 + V2 + V3 + V4 (6.16)

where

V1 = x̄T (t)EPx̄(t), V2 =
∫ 0

h

∫ t

t+θ

yT (s)Ry(s)dsdθ

V3 =
∫ t

t−τ(t)

xT (s)Sx(s)ds, V4 =
m∑

i=1

ρ̃2
i (t)
li

and

E =
[
I 0
0 0

]
, P =

[
P1 0
P2 P3

]
, P1 = PT

1 > 0

Since x̄T (t)EPx̄(t) = xT (t)P1x(t), then

d

dt
{x̄T (t)EPx̄(t)} = 2xT (t)P1ẋ(t) = 2x̄T (t)PT

[
ẋ(t)
0

]
(6.17)

The following equality holds

(I − ρ)u(t) = (I − ρ)(K0 +Ka(ρ̂(t)) +Kb(ρ̂(t)))x(t)
= [(I − ρ)K0 +Ka(ρ) − ρKa(ρ̂(t)) +Ka(ρ̃(t))

+ (I − ρ̂(t))Kb(ρ̂(t)) + ρ̃Kb(ρ̂(t))]x(t) (6.18)

where ρ̃(t) = ρ̂(t) − ρ.
From the derivative of V along the closed-loop system (6.7), it follows

V̇ = x̄T (t)Φ1x̄(t) + η(t) − (1 − d)xT (t− τ(t))Sx(t − τ(t))

−
∫ t

t−h

yT (s)Ry(s)ds+ 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

+ 2x̄T (t)PT

[
0
B1

]
ω(t)
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where

Φ1 = PT Δ0 + ΔT
0 P +

[
S 0
0 hR

]
, η(t) = −2

∫ t

t−τ(t)

x̄T (t)PT

[
0
A1

]
y(s)ds

Δ0 =
[

0 I
A+ A1 +B(I − ρ)K(ρ̂) −I

]

By Lemma 2.12, taking Z0 = PT

[
0
A1

]
and a = y(s), b = x̄(t), it follows

η(t) ≤
∫ t

t−τ(t)

[
yT (s) x̄T (s)

]
W1

[
y(s)
x̄(s)

]
ds

=
∫ t

t−τ(t)

yT (s)Ry(s)ds+
∫ t

t−τ(t)

x̄T (t)Zx̄(t)ds

+ 2
∫ t

t−τ(t)

yT (s)(Y − [
0 AT

1

]
P )x̄(t)ds

=
∫ t

t−τ(t)

yT (s)Ry(s)ds+ τ(t)x̄T (t)Zx̄(t)

+ 2
∫ t

t−τ(t)

ẋT (s)(Y − [
0 AT

1

]
P )x̄(t)ds

≤
∫ t

t−h

yT (s)Ry(s)ds+ 2xT (t)(Y − [
0 AT

1

]
P )x̄(t)

− 2xT (t− τ(t))(Y − [
0 AT

1

]
P )x̄(t) + hx̄T (t)Zx̄(t)

where W1 =
[
R Y − [

0 AT
1

]
P

∗ Z

]
and R, Y, Z satisfying

[
R Y
∗ Z

]
≥ 0.

Furthermore, by (6.18) it follows

V̇ + zT (t)z(t) − γ2
fw

T (t)w(t)

= x̄T (t)Φ2x̄(t) − 2xT (t− τ(t))(Y − [
0 AT

1

]
P )x̄(t) + 2

m∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

+ xT (t)(C +D(I − ρ)K(ρ̂))T (C +D(I − ρ)K(ρ̂))x(t)

+
1
γ2

f

x̄T (t)PT
[
0 BT

1

]T [
0 BT

1

]
P x̄(t)

− (1 − d)xT (t− τ(t))Sx(t − τ(t))

− (γfω
T − 1

γf
x̄T (t)PT

[
0 BT

1

]T )(γfω − 1
γf

[
0 BT

1

]
P x̄)

+ 2x̄T (t)PT

[
0 0

B[Ka(ρ̃) + ρ̃Kb(ρ̂)] 0

]
x̄(t)



86 Reliable Control and Filtering of Linear Systems

where

Φ2 = PT Δ1 + ΔT
1 P +

[
S 0
0 hR

]
+ hZ +

[
Y T 0

]T +
[
Y T 0

]

with Δ1 =
[

0 I
W2 −I

]
, W2 = A+B[(I−ρ)K0+Ka(ρ)−ρKa(ρ̂)+(I−ρ)Kb(ρ̂)].

Then

V̇ + zT (t)z(t) − γ2
fw

T (t)w(t)

≤ −2xT (t− τ(t))(Y − [
0 AT

1

]
P )x̄(t) + 2

m∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

+ x̄T Φ3x̄+ 2x̄T (t)PT

[
0 0

B[Ka(ρ̃) + ρ̃Kb(ρ̂)] 0

]
x̄(t)

where

Φ3 = PT Δ1 + ΔT
1 P +

[
S 0
0 hR

]
+

1
γ2

f

PT
[
0 BT

1

]T [
0 BT

1

]
P +

[
Y T 0

]

+
[
Y T 0

]T + hZ +
[
(C +D(I − ρ)K(ρ̂)T

0

] [
(C +D(I − ρ)K(ρ̂) 0

]

Let B = [b1 · · · bm], Bi = [0 · · · bi . . . 0], then we have

PBρ̃Kb(ρ̂) =
m∑

i=1

ρ̃iPB
iKb(ρ̂) (6.19)

PBKa(ρ̃) =
m∑

i=1

ρ̃iPBKai (6.20)

In fact, ρi is an unknown constant which denotes the loss of effectiveness of
the ith actuator. So from ρ̃i(t) = ρ̂i(t)− ρ, it follows ˙̃ρi(t) = ˙̂ρi(t). Now, if the
adaptive laws are chosen as (6.12), then

2x̄TPT

[
0 0

B[Ka(ρ̃) + ρ̃Kb(ρ̂)] 0

]
x̄+ 2

m∑
i=1

ρ̃i
˙̃ρi

li
≤ 0 (6.21)

Let ξ(t) = col
[
x(t) y(t) x(t− τ(t))

]
, then

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ ξT (t)Ψξ(t) (6.22)
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where Ψ =

⎡
⎣Φ3 PT

[
0
A1

]
− Y T

∗ −S(1 − d)

⎤
⎦.

Furthermore, the problem V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0 reduces to

Ψ < 0,
[
R Y
∗ Z

]
≥ 0 (6.23)

It is obvious from the requirement of 0 < P1 and the fact that in (6.23)
−(P3 + PT

3 ) must be negative and P is nonsingular.
Defining

P−1 = Q =
[
Q1 0
Q2 Q3

]
, Π = diag{Q, I} (6.24)

we multiply Ψ by ΥT and Υ, on the left and the right, respectively. Applying
Lemma 2.8 to the emerging quadratic term in Q, denoting S̄ = S−1, Z̄ =[
Z̄1 Z̄2

Z̄T
2 Z̄3

]
= QTZQ, R̄ = R−1 and choosing

[
Y1 Y2

]
= εAT

1

[
P2 P3

]
,

where ε ∈ Rn×n is a diagonal matrix, we obtain the following: Ψ < 0 is
equivalent to [

Ξ0 +Q1SQ1 + hQT
2 RQ2 Ξ1 + hQT

2 RQ3

∗ Ξ2

]
< 0 (6.25)

with

Ξ0 = (CQ1 +D(I − ρȲ (ρ̂))T (CQ1 +D(I − ρȲ (ρ̂)) +Q2 +QT
2 + hZ̄1

Ξ1 = Q3 −QT
2 +Q1(AT + εAT

1 ) + hZ̄2 + (I − ρ)Ȳ T
0 B

T + Ȳ T
a (ρ)BT

− ρȲ T
a (ρ̂)BT + (I − ρ̂)Ȳ T

b (ρ̂))BT

Ξ2 = −Q3 −QT
3 + hZ̄3 + Ω0 + hQT

3RQ3

Ω0 = A1(In − ε)(1 − d)−1(In − ε)AT
1 +

1
γ2

f

B1B
T
1

Ȳ0 = K0Q1, Ȳai = KaiQ1, Ȳbi = KbiQ1, Ȳa(ρ) = Σm
i=1Ȳaiρi

Ȳa(ρ̂) = Σm
i=1Ȳaiρ̂i, Ȳb(ρ̂) = Σm

i=1Ȳbiρ̂i, Ȳ (ρ̂) = Ȳ0 + Ȳa(ρ̂) + Ȳb(ρ̂)

Furthermore, (6.25) can be described by

M(ρ̂) = N1 +
m∑

i=1

ρ̂iUi + (
m∑

i=1

ρ̂iUi)T +
m∑

i=1

m∑
j=1

ρ̂iρ̂jΥij

+ (V00 +
m∑

i=1

ρ̂iV0i)T (V00 +
m∑

i=1

ρ̂iV0i) < 0 (6.26)

where

N1 = N0 +
[
Q1SQ1 + hQT

2 RQ2 hQT
2 RQ3

∗ Ω0 + hQT
3 RQ3

]
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and Ui, Υij , V00, V0i, i = 1 · · ·m are defined in (6.9).

If we multiply
[
R Y
∗ Z

]
≥ 0, on the left and on the right, by diag {R−1, QT }

and diag {R−1, Q}, then it follows

⎡
⎣R̄ 0 R̄εAT

1

∗ Z̄1 Z̄2

∗ ∗ Z̄3

⎤
⎦ ≥ 0. By Lemma 2.10

and Lemma 2.12, it is easy to see if conditions (6.8), (6.10) and (6.11) hold,

then (6.26) and
[
R Y
∗ Z

]
≥ 0 satisfy, which implies V̇ (t) ≤ 0. Furthermore,

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0.
Integrate the above-mentioned inequalities from 0 to ∞ on both sides, it follows

V (∞) − V (0) +
∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt

then ∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt+ V (0) (6.27)

which implies that (6.14) holds for the zero initial condition x(t) = 0, t ∈
[−h, 0]. The proofs for (6.13) and asymptotic stability of the closed-loop system
(6.4) for that normal case are similar, and omitted.

Corollary 6.1 Assume that the conditions of Theorem 6.1 hold. Then the
closed-loop system (6.4) is asymptotically stable and with adaptive H∞ per-
formance indexes no larger than γn and γf for normal and actuator fault
cases, respectively.

Proof 6.2 It is similar to that of Corollary 3.1, and omitted here.

Remark 6.2 From (6.12), it is easy to see

Li = −li(x(t)TPT
2 + yTPT

3 )(BiKb(ρ̂) +BKai)x(t) (6.28)

and y(t) = ẋ(t). So the adaptive law (6.12) in this paper is proportional-
integral (PI) adaption algorithms, which appeared in [98], [78] and [122] to
improve system performance.

Remark 6.3 If we choose the same Lyapunov functional candidate as [36],
i.e., V = V1+V2+V3, where V1, V2, V3 are defined in (6.16), then the following
conditions are sufficient for guaranteeing the closed-loop system (6.4) with
traditional reliable controller with fixed gain u(t) = K0x(t), K0 = Ȳ0Q

−1
1 , to

be asymptotically stable and with H∞ performance indexes no larger than γn

and γf for normal and actuator fault cases, respectively.
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In normal case, i.e., ρ = 0⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ3 Ξ4 Ξ5 0 0 Q1 hQT
2

∗ Ξ6 0 B1 A1(I − ε)S̄ 0 hQT
3

∗ ∗ −I 0 0 0 0
∗ ∗ ∗ −γ2

nI 0 0 0
∗ ∗ ∗ ∗ −(1 − d)S̄ 0 0
∗ ∗ ∗ ∗ ∗ −S̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −hR̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (6.29)

In actuator fault case, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ3 Ξ4 Ξ5 0 0 Q1 hQT
2

∗ Ξ6 0 B1 A1(I − ε)S̄ 0 hQT
3

∗ ∗ −I 0 0 0 0
∗ ∗ ∗ −γ2

fI 0 0 0
∗ ∗ ∗ ∗ −(1 − d)S̄ 0 0
∗ ∗ ∗ ∗ ∗ −S̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −hR̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (6.30)

where

Ξ3 = Q2 +QT
2 + hZ̄1

Ξ4 = Q3 −QT
2 +Q1(AT + εAT

1 ) + hZ̄2 + (I − ρ)Ȳ T
0 B

T + Ȳ T
a (ρ)BT

Ξ5 = CQ1 +D(I − ρ)Ȳ0

Ξ6 = −Q3 −QT
3 + hZ̄3,

Notice that if set Yai = 0, Ybi = 0, i = 1 · · ·m in Theorem 6.1, then the condi-
tions of Theorem 1 reduce to (6.29) and (6.30). Thus, the design conditions of
the reliable H∞ controller with adaptive mechanisms in Theorem 1 are more
relaxed than conditions (6.29) and (6.30) of the corresponding reliable H∞
controller with fixed gains.

From Theorem 6.1, we have the following algorithm to optimize the adap-
tive H∞ performances in normal and fault cases.

Algorithm 6.1 Solve the following optimization problem:

minαηn + βηf s.t. (6.8) − (6.11) (6.31)

where ηn = γ2
n, ηf = γ2

f , and α and β are weighting coefficients. Since systems
are operating under the normal condition most of the time, we often choose
α > β.
Denote the optimal solutions as Q1 = Q1opt, Ȳ0 = Ȳ0opt, Ȳai = Ȳaiopt, Ȳbi =
Ȳbiopt, i = 1 · · ·m, then the controller gains (6.6) can be obtained by K0 =
Ȳ0Q

−1
1 ,Kai = ȲaiQ

−1
1 ,Kbi = ȲbiQ

−1
1 .
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Remark 6.4 From Theorem 6.1, it is easy to see that controller gains
K0,Kai,Kbi(i = 1, · · · ,m) are obtained off-line by Algorithm 6.1 while the
estimation ρ̂i is automatically updating online according to the designed adap-
tive law (6.21). Thus due to the introduction of adaptive mechanisms, the re-
sultant controller gain (6.6) is variable, which is different from the traditional
controller with fixed gains.

6.2.3 Guaranteed Cost Dynamic Output Feedback Control

In this subsection, we consider the guaranteed cost control problem via dy-
namic output feedback for the following time-delay system (6.1) with constant
delay, i.e., τ(t) = h

ẋ(t) = Ax(t) +A1x(t− h) +Bu(t)
x(t) = φ(t), t ∈ [−h, 0]
y(t) = Cx(t) (6.32)

where x(t) ∈ Rn, u(t) ∈ Rm is the control input, y(t) ∈ Rp is the mea-
sured output, respectively. h is a positive constant delay. {φ(t), t ∈ [−h, 0]}
is a real-valued initial function. A,A1 and B are known constant matrices of
appropriate dimensions.

Since C ∈ Rp×n and rank(C) = p1 ≤ p, then there exists a matrix Tc ∈
Rp1×p such that rank(TcC) = p1. Furthermore, there exists a matrix Ccn such

that rank
[
TcC
Ccn

]
= n. Denote Tcn is the inverse matrix of

[
TcC
Ccn

]
.

The fault model is defined in (6.3).
The traditional dynamic output feedback controller with fixed gains is

ξ̇f (t) = AKf ξf (t) +BKfy(t)
uF (t) = (I − ρ)CKf ξ(t) (6.33)

where ξf ∈ Rn is the controller state and AKf , BKf and CKf are the controller
gains to be designed.
Combining controller (6.33) with system (6.32), we have

˙̄xf (t) = Āf x̄f (t) + Ā1f x̄f (t− h) (6.34)

where x̄f (t) = [xT
f (t) ξT (t)]T ,

Āf =
[

A B(I − ρ)CKf

BKfC AKf

]
, Ā1f =

[
A1 0
0 0

]

The following performance index is considered here:

J =
∫ ∞

0

(xT (t)Qx(t) + uF T
(t)SuF (t))dt (6.35)

where Q and S are given positive matrices.
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Lemma 6.1 Consider the closed-loop system described by (6.34). Then the
following statements are equivalent:

(i) there exist a symmetric matrix Pa > 0, R =
[
R11 R12

∗ R22

]
> 0 and a con-

troller described by (6.33) such that[
Ω0 + Ω0 + hĀT

1fRĀ1f + Ξ0 h(Āf + Ā1f )TPa

∗ −hR
]
< 0 (6.36)

hold, in normal and actuator fault cases, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj with

Ω0 = Pa(Āf + Ā1f ) and Ξ0 =
[
Q 0
0 CT

Kf (I − ρ)S(I − ρ)CKf

]
(ii) there exist a nonsingular matrix Qa, and symmetric matrix R =[
R11 R12

∗ R22

]
> 0, P > 0 with

P =
[
Y1 −N1

−N1 N1

]
(6.37)

and a controller described by (6.33) such that[
Ω1 + Ω1 + hĀT

1qRĀ1q + Ξ1 h(Āq + Ā1q)TP
∗ −hR

]
< 0 (6.38)

hold, in normal and actuator fault cases, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj with

Āq =
[

A B(I − ρ)CKq

BKqC AKq

]
, Ā1q =

[
A1 0
0 0

]
,

Ω1 = P (Āq +A1q), Ξ1 =
[
Qa 0
0 CT

Kq(I − ρ)S(I − ρ)CKq

]

and

AKq = Q−1
a AKfQa, BKq = −Q−1

a BKf , CKq = −CKfQa (6.39)

(iii) there exist symmetric matrices Y1, N1 and 0 < N1 < Y1, R =[
R11 R12

∗ R22

]
> 0 , and the controller gains of (6.33) are AKf = AKq, BKf =

BKq CKf = CKq such that

Va1 :=

⎡
⎢⎢⎣
Λ0 Λ1 Λ3 −h(A+A1)TN1 + hCTBT

KqN1

∗ Λ2 Λ4 −hCT
Kq(I − ρ)BTN1 + hAT

KqN1

∗ ∗ −hR11 −hR12

∗ ∗ ∗ −hR22

⎤
⎥⎥⎦ < 0, (6.40)
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hold, in normal and actuator fault cases, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj with

Λ1 = Y1B(I − ρ)CKq −N1AKq + [−N1(A+A1) +N1BKqC]T

Λ2 = −N1B(I − ρ)CKq + +N1AKq + (−N1B(I − ρ)CKq +N1AKq)T

+ CT
Kq(I − ρ)S(I − ρ)CKq

Λ3 = h(A+A1)TY1 − hCTBT
KqN1

Λ4 = hCT
Kq(I − ρ)BTY1 − hAT

KqN1

Proof 6.3 From the proof of Lemma 2.11, it is easy to conclude (i) ⇐⇒ (ii),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < N1 < Y1,
thus by some simple algebra computation, it follows (ii) ⇐⇒ (iii). The proof
is complete.

Remark 6.5 From Lemma 6.1, it follows that the special form of P with

P =
[
Y1 −N1

−N1 N1

]
doesn’t bring any conservativeness when we design the

dynamic output feedback controller with fixed gain.

The following two-step algorithm is to optimize the guaranteed cost perfor-
mance index for the reliable controller design with fixed gains.

Algorithm 6.2 Step 1 Given a fixed controller gain CKf , which may be
chosen from a feasible solution for stabilization problem via state feedback
using the same Lyapunov functional[

Ξ3 + ΞT
3 + hAT

1 RA1 hX(A+A1)T + hY T
0 B

T

∗ −hR
]

with Ξ3 = (A + A1)X + BY0 and condition (2.48) holds for Ā1 = A1. The
feasible solutions are denoted as X = Xfea Y0 = Y0fea. Let CKf = Y0X

−1.
Step 2 Let N1AKf = ĀKf , N1BKf = B̄Kf , solving the following optimization
problem

{α+ tr(Γ1)} s.t. 0 < N1 < Y1, (6.40)

Denote the optimal solution as ĀKf = ĀKfopt, B̄Kf = B̄Kfopt, N1 = N1opt,
Then the controller gains can be obtained by AKf = N−1

1 ĀKf , BKf =
N−1

1 B̄Kf and CKf = Y0X
−1.

Remark 6.6 It should be noted that the condition (6.40) is nonconvex, how-
ever with CKf fixed, and N1AKf , N1BKf are defined as new variables, the
condition (6.40) is linear matrix inequality. Moreover, Algorithm 6.2 gives a
method for the reliable dynamic output controller design with fixed gains by
two-step optimizations. Step 1 is to a CKf , which solves the corresponding
design problem via state feedback. With the CK0 fixed, controller parameter
matrices AKf and BKf can be obtained by performing Step 2.
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In order to reduce the conservativeness of the dynamic output feedback
controller with fixed gains, the following dynamic output feedback controller
with variable gains is given

ξ̇(t) = AK(ρ̂)ξ(t) +BK(ρ̂)y(t)
uF (t) = (I − ρ)CK0ξ(t) (6.41)

where ξ(t) ∈ Rn is the controller state, ρ̂(t) is the estimated value of ρ obtained
by the adaptive laws, which are determined later. Denote

AK(ρ̂) = AK0 +AKa(ρ̂) +AKb(ρ̂)

BK(ρ̂) = BK0 +BKa(ρ̂) +BKb(ρ̂)

where

AKa(ρ̂) =
m∑

i=1

ρ̂iAKai, AKb(ρ̂) =
m∑

i=1

m∑
j=1

ρ̂iρ̂jAKbij +
m∑

i=1

ρ̂iAKbi

BKa(ρ̂) =
m∑

i=1

ρ̂iBKai, BKb(ρ̂) =
m∑

i=1

ρ̂iBKbi

A0, AKai, AKbi, AKbij , BK0, BKai, BKbi and CK0 are the controller gains
to be designed.
Applying this controller (6.41) to (6.32) results in the following closed-loop
system

˙̄x(t) = Āx̄(t) + Ā1x̄(t− h) (6.42)

where x̄(t) = [xT (t) ξT (t)]T ,

Ā =
[

A B(I − ρ)CK0

BK(ρ̂)C AK(ρ̂)

]
, Ā1 =

[
A1 0
0 0

]
.

Consider the following operator defined in Lemma 2.13

D(xt) = x(t) +
∫ t

t−h

A1x(s)ds

where xt = x(t + s), s ∈ [−h, 0].
The following theorem presents a sufficient condition for the reliable con-

trol problem via dynamic output feedback to optimize the guaranteed cost
performance, in the framework of LMI approach and adaptive laws.

Theorem 6.2 Suppose that the operator D(xt) satisfying the conditions in
Lemma 2.13. If there exist a controller of form (6.41), matrices 0 < N1 <
Y1, R11 > 0, R22 > 0, R12, AK0, AKai, AKbi, AKbij , BK0, BKai, BKbi,
CK0, i, j = 1 · · ·m and symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]
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Θ11, Θ22 ∈ R4mn×4mn such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · , m
with Θ22ii ∈ R(2n+s)×(2n+s) is the (i, i) block of Θ22.
for any δ ∈ Δv

Θ11 + Θ12Δ(δ) + (Θ12Δ(δ))T + Δ(δ)Θ22Δ(δ) ≥ 0

in normal and actuator fault cases, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj[
Q1 E
ET F

]
+GT ΘG < 0, (6.43)

hold, where

E =
[
E1 E2 · · · Em

]
, F = [Fij ], i, j = 1 · · ·m,

Q1 =

⎡
⎢⎢⎣
Δ0 Δ1 hΔ2 hΔ5

∗ Δ3 hΔ4 hΔ6

∗ ∗ −hR11 −hR12

∗ ∗ ∗ −hR22

⎤
⎥⎥⎦

Ei =

⎡
⎢⎢⎣
−N1BKbiC −N1BKaiC Δ7 Δ8 −Δ8

N1BKbiC +N1BKaiCM2 N1AKbi Δ9 −Δ9

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Fij =

⎡
⎢⎢⎣

0 −N1AKbij 0 0
−AT

KbjiN1 N1AKbij + (N1AKbij)T −hAT
KbjiN1 hAT

KbjiN1

0 −hN1AKbij 0 0
0 hN1AKbij 0 0

⎤
⎥⎥⎦

Δ0 = Y1(A+A1) −N1BK0C + [Y1(A+A1) −N1BK0C]T

+Q+ hAT
1 R11A1

Δ1 = Y1B(I − ρ)CK0 −N1AK0 −N1AKa(ρ) +MT
2 N1AKa(ρ)

−MT
2 C

TBKa(ρ)N1 + [−N1(A+A1) +N1BK0C +N1BKa(ρ)C]T

Δ2 = (A+A1)TY1 − CTBT
K0N1,

Δ3 = −N1B(I − ρ)CK0 + (−N1B(I − ρ)CK0)T +N1AK0 +N1AKa(ρ)

+ (N1AK0 +N1AKa(ρ))T + CT
K0(I − ρ)S(I − ρ)CK0,

Δ4 = CT
K0(I − ρ)BTY1 −AT

K0N1, Δ5 = −(A+A1)TN1 + CTBT
K0N1,

Δ6 = −CT
K0(I − ρ)BTN1 +AT

K0N1, Δ7 = −N1AKbi −MT
2 N1AKai,

Δ8 = −hCT [BKai +BKbi]TN1, Δ9 = −h(AKai +AKbi)TN1

Δ(ρ̂) = diag[ρ̂1I · · · ρ̂m], M1 = Tcn

[
Tc

0

]
, M2 = Tcn

[
0
Ccn

]
, G =

⎡
⎢⎢⎢⎣
⎡
⎢⎣
I
...
I

⎤
⎥⎦ 0

0 I

⎤
⎥⎥⎥⎦
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and also ρ̂i(t) is determined according to the adaptive law

˙̂ρi = Proj[min
j

{ρj
i}, max

j
{ρ̄j

i ]}{L2i}

=

⎧⎪⎪⎨
⎪⎪⎩

0, if
ρ̂i = min

j
{ρj

i
} and L2i ≤ 0

or ρ̂i = max
j

{ρ̄j
i} and L2i ≥ 0;

L2i, otherwise

(6.44)

where L2i = −li[ξTN1AKaiξ− yTMT
1 AKaiξ+ ξTN1BKaiCM1y], li > 0 (i =

1 · · ·m) is the adaptive law gain to be chosen according to practical applica-
tions. Proj{·} denotes the projection operator [70], whose role is to project the
estimates ρ̂i(t) to the interval [min

j
{ρj

i
},max

j
{ρ̄j

i}].
Then the closed-loop system (6.42) is asymptotically stable and the cost func-
tion (6.35) satisfies the following bound:

J ≤ DT (0)PD(0) + h

∫ 0

−h

(s+ h)x̄T (s)ĀT
1 RĀ1x̄(s)ds+

m∑
i=1

ρ̃i
2(0)
li

(6.45)

with R =
[
R11 R12

∗ R22

]
.

Proof 6.4 Take Lyapunov-Krasovkii functional as

V = V1 + V2 + V3 (6.46)

where

V1 = DT (x̄t)PD(x̄t), V2 =
∫ t

t−h

(s− t+ h)x̄T (s)ĀT
1 RĀ1x̄(s)ds,

V3 =
m∑

i=1

ρ̃2
i (t)
li

with P > 0, R > 0.
V (t) From the derivative of V along the closed-loop system (6.42), it follows

V̇1 = 2DT (x̄t)PḊ(x̄t)

= 2DT (x̄t)P (Ā+ Ā1)x̄(t)

= x̄T (t)[P (Ā + Ā1) + (Ā+ Ā1)TP ]x̄(t) + 2(
∫ t

t−h

Ā1x̄(s)ds)TP (Ā+ Ā1)x̄(t)

V̇2 = hx̄T (t)ĀT
1 RĀ1x̄(t) −

∫ t

t−h

x̄T ĀT
1 (s)RĀ1x̄(s)ds

≤ hx̄T (t)ĀT
1 RĀ1x̄(t) − (

∫ t

t−h

Ā1x̄(s)ds)T (h−1R)(
∫ t

t−h

Ā1x̄(s)ds)

V̇3 =
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li
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where Lemma 2.14 is used to get V̇2.
Here, by using ρ̃i(t) = ρ̂i(t) − ρi, the following equalities are obtained

AKa(ρ̃) = AKa(ρ) +AKa(ρ̂), BKa(ρ̃) = BKa(ρ) +BKa(ρ̂)

Then Ā can be written as
Ā = Āa + Āb

where

Āa =
[

A B(I − ρ)CK0

[BK0 +BKa(ρ) +BKb(ρ̂)]C AK0 +AKa(ρ) +AKb(ρ̂)

]

Āb =
[

0 0
BKa(ρ̃)C AKa(ρ̃)

]
.

Let P be the following form, that is

P =
[
Y1 −N1

−N1 N1

]
, (6.47)

with 0 < N1 < Y1, which implies P > 0.
From (6.32), it follows

TcCx = Tcy

Then

x = Tcn

[
TcCx
Ccnx

]
= M1y +M2x (6.48)

with M1 = Tcn

[
Tc

0

]
, M2 = Tcn

[
0
Ccn

]
.

Notice that

PĀa =
[
Y1A−N1[BK0 +BKa(ρ) +BKb(ρ̂)]C T1

−N1A+N1[BK0 +BKa(ρ) +BKb(ρ̂)]C T2

]

with
T1 = Y1B(I − ρ)CK0 −N1[AK0 +AKa(ρ) +AKb(ρ̂)]

T2 = −N1B(I − ρ)CK0 +N1[AK0 +AKa(ρ) +AKb(ρ̂)].

and

PĀb =
[−N1BKa(ρ̃)C −N1AKa(ρ̃)
N1BKa(ρ̃)C N1AKa(ρ̃)

]
which follows

x̄T (t)PĀbx̄(t)

= [xT ξT ]PĀb[xT ξT ]T

= −xTN1BKa(ρ̃)Cx − xTN1AKa(ρ̃)ξ + ξTN1BKa(ρ̃)Cx+ ξTN1AKa(ρ̃)ξ
(6.49)
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Thus, by (6.48) it is easy to see

−xTN1AKa(ρ̃)ξ = −yTMT
1 N1AKa(ρ̃)ξ − xTMT

2 N1AKa(ρ̃)ξ

ξTN1BKa(ρ̃)Cx = ξTN1BKa(ρ̃)CM1y + ξTN1BKa(ρ̃)CM2x

Thus
x̄T (t)PĀbx̄(t) = x̄TMax̄+Mb

where

Ma =
[ −N1BKa(ρ̃)C −MT

2 N1AKa(ρ̃)
N1BKa(ρ̃)CM2 0

]
,

Mb = −yTMT
1 N1AKa(ρ̃)ξ + ξTN1BKa(ρ̃)CM1y + ξTN1AKa(ρ̃)ξ

Then from the derivative of V (t) along the closed-loop system (6.42), it follows

V̇1(t) = x̄T (t)[P (Āa + Ā1) + (Āa + Ā1)TP ]x̄(t) + x̄T (Ma +MT
a )x̄+ 2Mb

+ 2(
∫ t

t−h

Ā1x̄(s)ds)TP (Ā+ Ā1)x̄(t) (6.50)

So

V̇ (t) ≤ χTW0χ+ 2Mb + 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

(6.51)

where

χ =
[

x̄(t)∫ t

t−h
Ā1x̄(s)ds

]
, W0 =

[
Φ + ΦT + hĀT

1 RĀ1 (Ā+ Ā1)TP
∗ −h−1R

]

with Φ = P (Āa + Ā1) +Ma.
Since y and ξ are available online, we choose the adaptive laws as (6.44).
Then it follows

Mb +
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ 0 (6.52)

Thus

V̇ (t) ≤ χTW0χ (6.53)

Furthermore

J ≤
∫ ∞

0

(x̄T (t)
[
Q 0
0 CT

K0(I − ρ)S(I − ρ)CK0

]
x̄(t) + V̇ )dt+ V (0)

≤
∫ ∞

0

χTW1χdt+ V (0) (6.54)
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where

W1 =

⎡
⎣Φ + ΦT + hĀT

1 RĀ1 +
[
Q 0
0 CT

K0(I − ρ)S(I − ρ)CK0

]
(Ā+ Ā1)TP

∗ −h−1R

⎤
⎦

By pre- and post-multiplying inequalities W1 < 0 by diag{I, h}, then W1 < 0
is equivalent to

W2 =

⎡
⎣Φ + ΦT + hĀT

1 RĀ1 + Ξ4

h(Ā+ Ā1)TP
∗ −hR

⎤
⎦ < 0 (6.55)

where Ξ4 =
[
Q 0
0 CT

K0(I − ρ)SCK0(I − ρ)

]
.

Furthermore (6.55) can be described by

W2(ρ̂) = Q1 +
m∑

i=1

ρ̂iEi + (
m∑

i=1

ρ̂iEi)T +
m∑

i=1

m∑
j=1

ρ̂iρ̂jFij < 0,

where Q1, Ei, Fij are defined in (6.43). By Lemma 2.10, we can get W2(ρ̂) < 0
if (6.43) holds, which implies W1 < 0 and W0 < 0. Then the closed-loop system
(6.42) is asymptotically stable in both normal and fault cases. Moreover,

J ≤ V (0) = DT (0)PD(0) + h

∫ 0

−h

(s+ h)x̄T (s)ĀT
1 RĀ1x̄(s)ds+

m∑
i=1

ρ̃i
2(0)
li

Remark 6.7 Theorem 6.2 presents sufficient conditions for adaptive
fault-tolerant guaranteed cost controller design via dynamic output feed-
back. Generally, (6.43) is not LMIs. But when CK0 is given, and
N1AK0, N1AKai, N1AKbi, N1AKbij , N1BK0, N1BKai and N1BKbi are defined
as new variables, (6.43) becomes LMIs and linearly depends on uncertain pa-
rameters ρ and ρ̂.

Remark 6.8 By (6.3) and (6.44), it follows that ρ̃i(0) ≤ max
j

{ρ̄j
i}−min

j
{ρj

i
}.

We can choose li relatively large so that
∑m

i=1
ρ̃i

2(0)
li

is sufficiently small.

Theorem 6.3 Consider the closed-loop system (6.42) with cost function
(6.35). If the following optimization problem

min{α+ tr(Γ1)}
subject to

(i) LMI (2.48), (6.43)

(ii)
[−α DT (0)P
∗ −P

]
< 0

(iii)
[−Γ1 hV T

0 Ā
T
1 R

∗ −hR
]
< 0 (6.56)
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has a solution set, the controller (6.41) ensures the minimization of the guar-
anteed cost (6.35) for the closed-loop system (6.42) against actuator faults,
where

∫ 0

−h(s+ h)x̄(s)x̄T (s)ds = V0V
T
0 .

Proof 6.5 By Theorem 6.2, (i) in (6.56) is clear. Also, it follows from Lemma
(2.8) that (ii) and (iii) in (6.56) are equivalent to DT (0)PD(0) < α and
hV T

0 Ā
T
1 RĀ1V0 ≤ Γ1, respectively. On the other hand,

∫ 0

−h

(s+ h)x̄T (s)ĀT
1 RĀ1x̄(s)ds

=
∫ 0

−h

tr((s+ h)x̄T (s)ĀT
1 RĀ1x̄(s))ds

= tr(V0V
T
0 Ā

T
1 RĀ1) = tr(V T

0 Ā
T
1 RĀ1V0) < tr(Γ1)

Hence, it follows from (6.54) that

J∗ < α+ tr(Γ1) +
m∑

i=1

ρ̃i
2(0)
li

.

Thus, the minimization of α+ tr(Γ1) implies the minimization of the guaran-
teed cost for the system (6.42).

Remark 6.9 If we choose the Lyapunov functional candidate V = V1 + V2,
where V1, V2 are defined in (6.46), then it is easy to see conditions (6.38) can
guarantee the closed-loop system (6.41) is asymptotically stable and the cost
function (6.35) satisfied the following bound:

J ≤ DT (0)PD(0) + h

∫ 0

−h

(s+ h)x̄T (s)ĀT
1 RĀ1x̄(s)ds

From Lemma 6.1, it follows condition (6.38) is equivalent to (6.40). It should
also be noted that conditions (6.40) are not convex. But when CKf is given,
and N1AKf and N1BKf are defined as new variables, they become LMIs. Also
the upper bound of J with fixed gains controller can be obtained by solving the
following optimization:

min{α+ tr(Γ1)}

(i) LMI (2.48) (6.40)

(ii)
[−α DT (0)P
∗ −P

]
< 0

(iii)
[−Γ1 hV T

0 Ā
T
1 R

∗ −hR
]
< 0 (6.57)
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Theorem 6.4 If the conditions in Lemma 6.1 hold for the closed-loop system
(6.34) with fixed gain dynamic output feedback controller (6.33), then the con-
ditions in Theorem 6.2 hold for the closed-loop system (6.42) with adaptive
dynamic output feedback controller (6.41).

Proof 6.6 Notice that if Va1 < 0 for the actuator fault cases and normal case,
then the conditions in Theorem 6.2 are feasible with AK0 = AKf , BK0 =
BKf , CK0 = CKf and AKai = AKbi = AKbij = BKai = BKbi = 0, i, j =
1 · · ·m. The proof is complete.

Remark 6.10 Theorem 6.4 shows that the method for the adaptive fault-
tolerant guaranteed cost controllers design given in Theorem 6.2 is less con-
servative than that given in Lemma 6.1 for the fault-tolerant guaranteed cost
controllers design with fixed gains.

The following two-step algorithm is to optimize the adaptive fault-tolerant
guaranteed cost performances in normal and fault cases.

Algorithm 6.3 Step 1 Determine CK0. Chose CK0 = CKf , which can be
obtained by Step 1 in Algorithm 6.2.

Step 2 Let N1AK0 = ĀK0, N1AKai = ĀKai, N1AKbi =
ĀKbi, N1AKbij = ĀKbij , N1BK0 = B̄K0, N1BKai = B̄Kai and N1BKbi =
B̄Kbi, and solve the following optimization problem

min{α+ tr(Γ1)} s.t. 0 < N1 < Y1, (6.56)

Denote the optimal solutions as ĀK0 = ĀK0opt, ĀKai = ĀKaiopt, ĀKbi =
ĀKbiopt, ĀKbij = ĀKbijopt, B̄K0 = B̄K0opt, B̄Kai = B̄Kaiopt, B̄Kbi = B̄Kbiopt,
N1 = N1opt. The corresponding adaptive controller gains are obtained by
AK0 = N−1

1 ĀK0, AKai = N−1
1 ĀKai, AKbi = N−1

1 ĀKbi, AKbij = N−1
1 ĀKbij ,

BK0 = N−1
1 B̄K0, BKai = N−1

1 B̄Kai, BKbi = N−1
1 B̄Kbi( i, j = 1 · · ·m),

CK0 = CKf .

Remark 6.11 From Theorem 6.2, it is easy to see that controller gains
AK0, AKai, AKbi, AKbij , BK0, BKai, BKbi, CK0, CKai, CKbi(i, j = 1, · · · ,m)
are obtained off-line by Algorithm 6.3 while the estimation ρ̂i are automati-
cally updating online according to the designed adaptive law (6.44). Thus due
to the introduction of adaptive mechanisms, the resultant controller gain (6.41)
is variable, which is different from traditional controller with fixed gains.

6.2.4 Example

To illustrate the effectiveness of our results, two examples are given. Example
6.1 is for state feedback case and Example 6.2 is for dynamic output feedback
case.
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TABLE 6.1 H∞ performance index
Adaptive reliable controller Traditional reliable controller

γn 1.6377 4.1086
γf 2.6652 5.0885
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FIGURE 6.1
Response curve in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).

Example 6.1 Consider a linear time-delay system with parameters as follows

A =
[
0.1 0
0 1

]
, A1 =

[−1 0
0 −2

]
, B =

[
0 1
1 1

]
,

B1 =
[
0.5
0.5

]
, C =

⎡
⎢⎢⎣
1 0
0 −1
0 0
0 0

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣
0 0
0 0
1 0
0 3

⎤
⎥⎥⎦ ,

φ(t) =
[
0
0

]
, h = 0.5, d = 0.25.
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FIGURE 6.2
Response curve in fault case 1 with adaptive controller (solid) and controller
with fixed gains (dashed).

Besides the normal mode, that is,

ρ0
1 = ρ0

2 = 0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, that is,

ρ1
1 = 1, 0 ≤ ρ1

2 ≤ 0.5.

Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

ρ2
2 = 1, 0 ≤ ρ2

1 ≤ 0.4.

Using Algorithm 6.1 with α = 10, β = 1 and ε = 0.9, we obtain the corre-
sponding H∞ performances indexes of the closed-loop system using the two
controllers. See Table 6.1 for more details. To verify the effectiveness of the
proposed adaptive method, the simulations are given in the following.
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FIGURE 6.3
Response curve in fault case 2 with adaptive controller (solid) and controller
with fixed gains (dashed).

In the simulation, the following two fault cases are considered:
Fault case 1: At 2 seconds, the first actuator is outage, then the second actu-
ator becomes loss of 30% effectiveness.
Fault case 2: At 4 seconds, the second actuator is outage.

In order to show the effectiveness of our method more clearly, some simula-
tions are also given. In the following simulation, the time-delay is τ(t) = 1+sin t

4
and the disturbance here is

ω(t) =
{

2 2 ≤ t ≤ 4 (seconds)
0 otherwise

Figure 6.1 describes the response curves in normal case with our adaptive
reliable controller and reliable controller with fixed gains, respectively. The
corresponding curves in the above-mentioned two fault cases with these two
controllers are given in Figure 6.2 and Figure 6.3, respectively. From Figure
6.1-Figure 6.3, it is easy to see our adaptive controller has more disturbance
restraint ability than the one with fixed gains in either normal or fault cases
just as theory has proved.
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TABLE 6.2 H∞ performance index
Adaptive reliable controller Traditional reliable controller

Upper bound of J 4.4836 5.1858
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FIGURE 6.4
Response curves in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).
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FIGURE 6.5
Response curves in fault case 1 with adaptive controller (solid) and controller
with fixed gains (dashed).

Example 6.2 A real application example about river pollution control [82] is
proposed to show the effectiveness of our approach.

ẋ(t) = Ax(t) +A1x(t− h) +Bu(t)
x(t) = φ(t), t ∈ [−h, 0]
y(t) = Cx(t) (6.58)

where

A =
[−k10 − η1 − η2 0

−k30 −k20 − η1 − η2

]
, A1 =

[
η2 0
0 η2

]
,

B =
[
η1 0
0 1

]
, C =

[
0 1

]
Here u =

[
u1(t) u2(t)

]T is the control variable of river pollution. ki0(i =
1, 2, 3), η1 and η2 are known constants. The physical meaning of these param-
eters can be found in [82].

In the simulation, we choose h = 0.7, η1 = 2, η2 = 1, k10 = 3, k20 = 1,
k30 = 2, Ccn =

[
1 0

]
and Tc = I.
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FIGURE 6.6
Response curves in fault case 2 with adaptive controller (solid) and controller
with fixed gains (dashed).

And the matrices in the performance index (6.35) are Q =
[
0.5 0
0 0.5

]
and

S =
[
1 0
0 1.5

]
.

The initial state is φ(t) =
[
0.5
0.5

]
.

Besides the normal mode, that is, ρ0
1 = ρ0

2 = 0, the following possible fault
modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

ρ1
1 = 1, 0 ≤ ρ2

1 ≤ a1, a1 = 0.4

which denotes the maximal loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, described by

ρ2
2 = 1, 0 ≤ ρ2

1 ≤ b1, b1 = 0.5
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FIGURE 6.7
Robust response curves in normal case with adaptive controller (solid) and
controller with fixed gains (dashed).
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FIGURE 6.8
Robust response curves in fault case 1 with adaptive controller (solid) and
controller with fixed gains (dashed).

which denotes the maximal loss of effectiveness for the first actuator. By using
Algorithm 6.2 and Algorithm 6.3, we obtain the corresponding cost perfor-
mance indexes, using the adaptive method and traditional method. See Table
6.2 for more details.

The considered fault cases in the following simulations are:
Fault case 1 is at 0 second, the first actuator becomes outage.
Fault case 2 is at 0.5 second, the second actuator becomes outage. Then after
1 second, the first actuator becomes loss of effectiveness of 50%.

Figure 6.4, Figure 6.5 and Figure 6.6 are the state responses with adaptive
and fixed gain dynamic output feedback controllers in normal and fault cases,
respectively. It is easy to see our adaptive fault-tolerant guaranteed cost con-
troller performs better than the one with fixed gains in both normal and fault
cases just as theory has proved.

In the next simulations, some time-varying uncertainties ΔA(t) =
0.25Asint, ΔA1(t) = 0.4A1cos3t and ΔB(t) = 0.5Bsin2t are added into the
system matrices A,A1 and B, respectively, which aims to demonstrate the
robustness of designed controllers. The corresponding state curves are given
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FIGURE 6.9
Robust response curves in fault case 2 with adaptive controller (solid) and
controller with fixed gains (dashed).

in Figure 6.7-Figure 6.9. It is easy to see that the designed controllers are
robust to these uncertainties.

6.3 Adaptive Reliable Memory Controller Design

As is well known, a memory-less controller has an advantage of easy implemen-
tation, but its performance cannot be better than a delay-dependent memory
feedback controller when the information of the size of delay is available [4]
and[110]. Thus, here we investigate the delay-dependent memory controller
design problem for linear time-delay system, based on the adaptive method
and LMI techniques.
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6.3.1 Problem Statement

Consider the following linear time-delay system

ẋ(t) = Ax(t) +A1x(t − h) +Bu(t) +B1ω(t)
z(t) = Cx(t) +Du(t)
x(t) = φ(t), t ∈ [−h, 0] (6.59)

where x(t) ∈ Rn and xt is the state at time t defined by xt(s) = x(t+ s), s ∈
[−d, 0], u(t) ∈ Rm is the control input, z(t) ∈ Rq is the regulated output,
respectively. ω(t) ∈ Rp is an exogenous disturbance in L2[0,∞] and d is a
positive constant time-delay. {φ(t), t ∈ [−d, 0]} is a real-valued initial function.
A,Ad, B,B1, C andD are known constant matrices of appropriate dimensions.

In this section, the considered actuator faults are the same as those in
Chapter 3, that is

uF (t) = (I − ρ)u(t), ρ ∈ [ρ1 · · · ρL] (6.60)

where ρ can be described as ρ = diag[ρ1, ρ2, · · · ρm].
Denote

Nρj = {ρj |ρj = diag[ρj
1, ρ

j
2, · · · ρj

m], ρj
i = ρi

j ρj
i = ρ̄i

j}
Thus, the set Nρj contains a maximum of 2m elements.

6.3.2 H∞ State Feedback Control

In this subsection, we deal with the delay-dependent memory H∞ controller
design problem, such that in normal and fault cases, the resulting closed-loop
system is asymptotically stable and its H∞ disturbance attenuation perfor-
mance bound is minimized.

With actuator faults, the system (6.59) is described by

ẋ(t) = Ax(t) +A1x(t − h) +B(I − ρ)u(t) +B1ω(t)
z(t) = Cx(t) +D(I − ρ)u(t) (6.61)

Define an operator D(xt) : Cn, h → Rn as

D(xt) = x(t) +
∫ t

t−h

Gx(s)ds = x(t) + f(t) (6.62)

where xt = x(t + s), s ∈ [−d, 0], f(t) =
∫ t

t−dGx(s)ds and G ∈ Rn×n is a
constant matrix which will be chosen.

Now, we are interested in designing a delay-dependent memory state feed-
back controller with the following structure

u(t) = K(ρ̂(t))x(t) +Kcf(t) = (K0 +Ka(ρ̂(t)) +Kb(ρ̂(t))x(t) +Kcf(t)
(6.63)
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where Ka(ρ̂(t)) =
∑m

i=1Kaiρ̂i(t),Kb(ρ̂(t)) =
∑m

i=1Kbiρ̂i(t) and ρ̂i(t) is the
estimate of ρi. K0,Kai,Kbi, i = 1 · · ·m and Kc are the control gains to be
designed.

Remark 6.12 Notice that (6.63) has a parameter-dependent gain and ρ̂i(t)
is included in an affine fashion, which is a convex problem. Though Ka(ρ̂(t)
and Kb(ρ̂(t) have the same forms, we will deal with them in different ways to
get more relaxed conditions in our main result.

The closed-loop system is given by

ẋ(t) = Ax(t) +A1x(t− h) +B(I − ρ)K(ρ̂)x(t) +B(I − ρ)Kcf(t) +B1ω

z(t) = (C +D(I − ρ)K(ρ̂))x(t) +D(I − ρ)Kcf(t) (6.64)

Denote

Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂N ) : ρ̂i ∈ {min
j

{ρj
i
},max

j
{ρ̄j

i}}}, Δ(ρ̂) = diag[ρ̂1I · · · ρ̂mI]

N0 =
[
T1 + T T

1 +Q+ hF11 T T
1 + F12 +B(I − ρ)X

∗ −h−1(α− 1)X +B(I − ρ)X

]
,

T1 = AX +B((I − ρ)Y0 + Ya(ρ)) +W, Ya(ρ) =
m∑

i=1

Yaiρi,

R =
[
R1 R2 · · · Rm

]
, Υ = [Υij ], i, j = 1 · · ·m,

Ri =
[−BρYai +BYbi −ρY T

aiB
T + Y T

bi B
T

0 0

]
, G =

⎡
⎢⎢⎢⎣

⎡
⎢⎣
I
...
I

⎤
⎥⎦ 0

0 I

⎤
⎥⎥⎥⎦

Υij =
[
−BiYbj − Y T

bi B
jT −Y T

biB
jT

−BiYbj 0

]
, V0 =

[
V00 V01 · · · V0m

]
,

V00 =
[
CX +D(I − ρ)Y0 D(I − ρ)W1

]
, V0i =

[
D(I − ρ)(Yai + Ybi) 0

]
Theorem 6.5 Let γf > γn > 0, α > 1 and d > 0 be given constants, if there
exist positive definite matrices X,Q, F11, F22, F33 and matrices Y0, Yai, Ybi,W ,
W1, F12, F13, F23, i = 1 · · ·m and a symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]

and Θ11, Θ22 ∈ R2mn×2mn such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · , m (6.65)

with Θ22ii ∈ R(2n+s)×(2n+s) is the (i, i) block of Θ22.
For any δ ∈ Δv

Θ11 + Θ12Δ(δ) + (Θ12Δ(δ))T + Δ(δ)Θ22Δ(δ) ≥ 0 (6.66)



112 Reliable Control and Filtering of Linear Systems

for ρ = 0, i.e., in normal case,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
N0 R
RT Υ

]
+GT ΘG V T

0

⎡
⎣B1

B1

0

⎤
⎦

⎡
⎣αhWT

0
0

⎤
⎦

⎡
⎣(A1X −W ) + hF13

(A1X −W ) + F23

0

⎤
⎦

∗ −I 0 0 0
∗ ∗ −γ2

nI 0 0
∗ ∗ ∗ −αhX 0
∗ ∗ ∗ ∗ −Q+ hF33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(6.67)

for ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj , i.e., in fault cases,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
N0 R
RT Υ

]
+GT ΘG V T

0

⎡
⎣B1

B1

0

⎤
⎦

⎡
⎣αhWT

0
0

⎤
⎦

⎡
⎣(A1X −W ) + hF13

(A1X −W ) + F23

0

⎤
⎦

∗ −I 0 0 0
∗ ∗ −γ2

fI 0 0
∗ ∗ ∗ −αhX 0
∗ ∗ ∗ ∗ −Q+ hF33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(6.68)

−X + F22 < 0 (6.69)

[−X hWT

∗ −X
]
< 0 (6.70)

Ξ =

⎡
⎣F11 F12 F13

∗ F22 F23

∗ ∗ F33

⎤
⎦ > 0 (6.71)

and also ρ̂i is determined according to the adaptive laws

˙̂ρi = Proj[min
j

{ρj
i}, max

j
{ρ̄j

i ]}{Li}

=

⎧⎪⎪⎨
⎪⎪⎩

0, if
ρ̂i = min

j
{ρj

i
} and Li ≤ 0

or ρ̂i = max
j

{ρ̄j
i} and Li ≥ 0;

Li, otherwise

(6.72)

where Li = −li(f(t) + x(t))TX−1[BiKb(ρ̂) + BKai]x(t), li > 0(i = 1 · · ·m)
is the adaptive law gain. Proj{·} denotes the projection operator [70], whose
role is to project the estimates ρ̂i(t) to the interval [min

j
{ρj

i
},max

j
{ρ̄j

i}], then
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the closed-loop system (6.61) is asymptotically stable and in normal case, i.e.,
ρ = 0, satisfies for x(t) = 0, t ∈ [−d, 0]

∫ ∞

0

zT (t)z(t)dt ≤ γ2
n

∫ ∞

0

ωT (t)ω(t)dt +
m∑

i=1

ρ̃i
2(0)
li

(6.73)

and in actuator fault cases, i.e., ρ ∈ {ρ1 · · · ρL}, satisfies for x(t) = 0, t ∈
[−d, 0]

∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt +
m∑

i=1

ρ̃i
2(0)
li

(6.74)

where ρ̃(t) = diag[ρ̃1(t) · · · ρ̃m(t)], ρ̃i(t) = ρ̂i(t) − ρi.
Furthermore, the corresponding controller is given by

u(t) = (Y0X
−1 +

m∑
i=1

ρ̂iYaiX
−1 +

m∑
i=1

ρ̂iYbiX
−1)x(t) +W1X

−1f(t) (6.75)

with f(t) =
∫ t

t−hGx(s)ds, G = WX−1.

Proof 6.7 The following Lyapunov-Krasovkii functional candidate is chosen

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) (6.76)

where

V1(t) = DT (xt)PD(xt), V2(t) = α

∫ t

t−h

∫ t

s

xT (u)GTPGx(u)duds

V3(t) =
∫ t

t−h

xT (s)Ux(s)ds, V4(t) =
∫ t

0

∫ s

s−h

χT ΩΞΩχduds,

V5(t) =
m∑

i=1

ρ̃2
i (t)
li

with χ = [xT (s), xT (u)GT , xT (s− h)]T , P > 0, Ω = diag{P, P, P}, U > 0.
The following equality is obtained

(I − ρ)u(t) = (I − ρ)[(K0 +Ka(ρ̂(t)) +Kb(ρ̂(t)))x(t) +Kcf(t)]
= [(I − ρ)K0 +Ka(ρ̂) − ρKa(ρ̂(t))]x(t) + (I − ρ̂(t))Kb(ρ̂(t))x(t)

+ [Ka(ρ̂(t)) + ρ̃Kb(ρ̂(t))]x(t) + (I − ρ)Kcf(t) (6.77)

where ρ̃(t) = ρ̂(t) − ρ.
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Then from the derivative of V along the closed-loop system, it follows

V̇1 = 2DT (xt)PḊ(xt)

= xT (t)[P (A +B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂)) +G)

+ (A+B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂)) +G)TP ]x(t)

+ 2(x(t) + f(t))TPB1ω(t) + 2xT (t)P (A1 −G)x(t− h)

+ 2fT (t)P (A +B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂) +G)x(t)

+ 2fT (t)P (A1 −G)x(t − h) + 2(x(t) + f(t))TPB[Ka(ρ̃) + ρ̃Kb(ρ̂)]x(t)

+ 2(x(t) + f(t))TPB(I − ρ)f(t)

V̇3 = xT (t)Ux(t) − xT (t− h)Ux(t− h)

V̇4 = hxT (t)PF11Px(t) + 2xT (t)PF12Pf(t) +
∫ t

t−h

xT (s)GTPF22PGx(s)ds

+ 2hxT (t)PF13Px(t− h) + 2fT (t)PF23Px(t− h)

+ hxT (t− h)PF33Px(t− h)

V̇5 = 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

where f(t) =
∫ t

t−hGx(s)ds.
Here we use

fT (t)Pf(t) ≤ h

∫ t

t−h

xT (s)GTPGx(s)ds,

which is obtained by Lemma2.14 to get V̇2.
Let B = [b1 · · · bm], Bi = [0 · · · bi . . . 0], then

PBρ̃Kb(ρ̂) =
m∑

i=1

ρ̃iPB
iKb(ρ̂) (6.78)

PBKa(ρ̃) =
m∑

i=1

ρ̃iPBKai (6.79)

Furthermore, it follows

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t)

≤ xT (t)[P (A+B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂) +G)

+ (A+B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂) +G)TP

+ (C +D(I − ρ)K(ρ̂))T (C +D(I − ρ)K(ρ̂))}x(t)
+

1
γ2

f

(x(t) + f(t))TPB1B
T
1 P (x(t) + f(t)) + 2fT (t)P (A1 −G)x(t − h)

− (γfω
T − 1

γf
(x(t) + f(t))TPB1)(γfω − 1

γf
BT

1 P (x(t) + f(t)))
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+ 2fT (t)P (A +B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂) +G)x(t)

+ 2(x(t) + f(t))TPB[Ka(ρ̃) + ρ̃Kb(ρ̂)]x+ 2xT (t)P (A1 −G)x(t − h)

+ 2xT (t)(C +D(I − ρ)K(ρ̂))TD(I − ρ)Kcf(t)

+ 2(x(t) + f(t))TPB(I − ρ)f(t) + fT (t)KT
c (I − ρ)DTD(I − ρ)Kcf(t)

+ V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) (6.80)

Then

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t)

≤ [
xT (t) fT (t) xT (t− h)

]
Ψ

⎡
⎣ x(t)

f(t)
x(t− h)

⎤
⎦

+ 2(x+ f)TPB[Ka(ρ̃) + ρ̃Kb(ρ̂)]x

+
∫ t

t−h

xT (s)GT (−P + PF22P )Gx(s)ds + 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

(6.81)

where

Ψ =

⎡
⎣Δ1 Δ2 P (A1 −G) + hPF13P

∗ Δ3 P (A1 −G) + PF23P
∗ ∗ −U + hPF33

⎤
⎦

Δ1 = P (A+B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂) +G)

+ (A+B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂) +G)TP

+ U + αhGTPG+
1
γ2

f

PB1B
T
1 P + hPF11P

+ (C +D(I − ρ)K(ρ̂))T (C +D(I − ρ)K(ρ̂))

Δ2 = (A+B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂) +G)TP + PF12P

+
1
γ2

f

PB1B
T
1 P + PB(I − ρ) + (C +D(I − ρ)K(ρ̂))TD(I − ρ)Kc

Δ3 = −h−1(α− 1)P +
1
γ2

f

PB1B
T
1 P + PB(I − ρ)

+KT
c (I − ρ)TDTD(I − ρ)Kc

In fact, ρi is an unknown constant which denotes the loss of effectiveness of
the ith actuator. So from ρ̃i(t) = ρ̂i(t)− ρ, it follows ˙̃ρi(t) = ˙̂ρi(t). Now, if the
adaptive laws are chosen as (6.72), then

2(x(t) + f(t))TPB[Ka(ρ̃) + ρ̃Kb(ρ̂)]x+ 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ 0 (6.82)
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Hence, the design problem V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0 is reduced to
Ψ < 0 and −P + PF22P < 0.

Let X = P−1, Q = XUX, W = GX, W1 = KcX, Y0 = K0X, Yai =
KaiX,Ybi = KbiX, i = 1 · · ·m. By pre- and post-multiplying inequalities Ψ <
0 and −P + PF22P < 0 by diag{X,X,X} and X, respectively, the resulting
inequalities are equivalent to −X + F22 < 0 and⎡

⎣Δ4 Δ5 (A1X −W ) + hF13

∗ Δ6 (A1X −W ) + F23

∗ ∗ −Q+ hF33

⎤
⎦ < 0 (6.83)

where

Δ4 = (AX +B((I − ρ)Y0 + Ya(ρ) − ρYa(ρ̂) + (I − ρ̂)Yb(ρ̂) +W ) +
1
γ2

f

B1B
T
1

+ (AX +B((I − ρ)Y0 + Ya(ρ) − ρYa(ρ̂) + (I − ρ̂)Yb(ρ̂) +W )T + hF11

+ αhWTPW +Q+ (CX +D(I − ρ)Y (ρ̂))T (CX +D(I − ρ)Y (ρ̂))

Δ5 = XAT + Y T
0 (I − ρ)BT + Y T

a (ρ)BT − ρY T
a (ρ̂)BT + (I − ρ̂)Y T

b (ρ̂)BT

+WT + F12 +
1
γ2

f

B1B
T
1 +B(I − ρ)X

+ (CX +D(I − ρ)Y (ρ̂))TD(I − ρ)W1

Δ6 = −h−1(α − 1)X +
1
γ2

f

B1B
T
1 +B(I − ρ)X +WT

1 (I − ρ)DTD(I − ρ)W1

Y (ρ̂) = Y0 + Ya(ρ̂) + Yb(ρ̂), Ya(ρ) =
m∑

i=1

Yaiρi, Yaiρ̂i, Yb(ρ̂) =
m∑

i=1

Ybiρ̂i

By Lemma (2.8), (6.83) changes into

[
Δ4 Δ5

∗ Δ6

]
−

[
(A1X −W ) + hF13

(A1X −W ) + F23

]
(−Q+ hF33)−1

[
(A1X −W ) + hF13

(A1X −W ) + F23

]T

< 0 (6.84)

and −Q+hF33 < 0. Then the design problem V̇ (t)+zT (t)z(t)−γ2
fω

T (t)ω(t) ≤
0 further reduces to (6.84), −Q+ hF33 < 0 and −X + F22 < 0.

Now we deal with (6.84). Furthermore, (6.84) can be written as

M(ρ̂) = N +
N∑

i=1

ρ̂iRi + (
N∑

i=1

ρ̂iRi)T +
N∑

i=1

N∑
j=1

ρ̂iρ̂jSij

+ (V00 +
N∑

i=1

ρ̂iV0i)T (V00 +
N∑

i=1

ρ̂iV0i) < 0, (6.85)
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where

N = N0 +

[
αhWTX−1W + 1

γ2
f
B1B

T
1

1
γ2

f
B1B

T
1

∗ 1
γ2

f
B1B

T
1

]

−
[
(A1X −W ) + hF13

(A1X −W ) + F23

]
(−Q+ hF33)−1

[
(A1X −W ) + hF13

(A1X −W ) + F23

]T

< 0

Ri,Υij , V00, V0i, i = 1 · · ·m are defined in (6.67).
By Lemma 2.10, it is easy to see if (6.65), (6.66) and (6.67)-(6.71) hold,

then we have xT (t)M(ρ̂)x(t) < 0 for any x 	= 0.
Furthermore, if (6.65), (6.66) and (6.67)-(6.71) hold for ρ ∈ {ρ1 · · · ρL}, ρj ∈
Nρj , it follows (6.84) and −Q+dF33 < 0. Then by Lemma (2.8), the inequality
(6.83) holds. Also, the inequality (6.70) is equivalent to[−P hGTP

∗ −P
]
< 0 (6.86)

by pre- and post-multiplying by diag{X−1, X−1}. If (6.86) holds, then it is
easy to prove that a positive scalar δ which is less than one exists such that[−δP hGTP

∗ −P
]
< 0 (6.87)

according to matrix theory. Therefore, from Lemma 2.13, if (6.70) holds, the
operator D(xt) is stable. The inequality (6.71) means that V4 is positive def-
inite. So V̇ (t) is positive definite. According to Theorem 9.8.1 in [55], if the
conditions (6.65), (6.66), (6.69)-(6.71) hold, the closed-loop system (6.61) is
asymptotically stable for the actuator fault cases. Furthermore,

V̇ (t) + zT (t)z(t) − γ2
fω

T (t)ω(t) ≤ 0.

Integrate the above-mentioned inequalities from 0 to ∞ on both sides, it follows

V (∞) − V (0) +
∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt

Then ∫ ∞

0

zT (t)z(t)dt ≤ γ2
f

∫ ∞

0

ωT (t)ω(t)dt+ V (0) (6.88)

which implies that (3.11) holds for the zero initial condition x(t) = 0, t ∈
[−d, 0]. The proofs for (6.74) and asymptotic stability of the closed-loop system
(9.5) for that normal case are similar, and omitted here.

Corollary 6.2 If the conditions in Theorem 6.5 hold, then the closed-loop sys-
tem (6.61) is asymptotically stable and with adaptive H∞ performance indexes
no larger than γn and γf for normal and actuator fault cases, respectively.



118 Reliable Control and Filtering of Linear Systems

Proof 6.8 It is similar to that of Corollary 3.1, and omitted here.

Remark 6.13 The newly proposed adaptive laws (6.72) include the term
f(t) =

∫ t

t−d Gx(s)ds, which indicates how time delay d takes effect on the
adaptive law. Noted that inequality (6.65)-(6.71) are LMIs, which can be solved
efficiently by using the MATLAB LMI control toolbox.

Remark 6.14 If we choose the same Lyapunov functional candidate as [77],
i.e., V = V1 + V2 + V3 + V4, where V1, V2, V3, V4 are defined in (9.31), then
the following conditions are sufficient for guaranteeing the closed-loop system
(6.61) with delay-dependent memory state feedback reliable controller u(t) =
K0x(t) + Kc

∫ t

t−dGx(s)ds, K0 = Y0X
−1, Kc = W1X

−1 and G = WX−1 to
be asymptotically stable and with H∞ performance indexes no larger than γn

and γf for normal and actuator fault cases, respectively.
For ρ = 0, i.e., in a normal case⎡

⎢⎢⎢⎢⎢⎢⎣

T2 + T T
2 +Q+ hF11 T3 T4 B1 αhWT T5

∗ T6 WT
1 (I − ρ)DT B1 0 T7

∗ ∗ I 0 0 0
∗ ∗ ∗ −γ2

nI 0 0
∗ ∗ ∗ ∗ −αhX 0
∗ ∗ ∗ ∗ ∗ T8

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0

(6.89)

For ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj , i.e., in actuator fault cases⎡
⎢⎢⎢⎢⎢⎢⎣

T2 + T T
2 +Q+ hF11 T3 T4 B1 αhWT T5

∗ T6 WT
1 (I − ρ)DT B1 0 T7

∗ ∗ I 0 0 0
∗ ∗ ∗ −γ2

fI 0 0
∗ ∗ ∗ ∗ −αhX 0
∗ ∗ ∗ ∗ ∗ T8

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0

(6.90)

T2 = AX +B((I − ρ)Y0) +W, T3 = T T
2 + F12 +B(I − ρ)X,

T4 = XCT + Y T
0 (I − ρ)DT , T5 = (A1X −W ) + hF13,

T6 = −h−1(α− 1)X +B(I − ρ)X, T7 = (A1X −W ) + hF23,

T8 = −Q+ hF33.

Notice that if set Yai = 0, Ybi = 0, i = 1 · · ·m in Theorem 6.5, then the condi-
tions of Theorem 6.5 reduce to (6.89) and (6.90). Thus, the design conditions
of the reliable H∞ controller with adaptive mechanisms in Theorem 6.5 are
more relaxed than conditions (6.89) and (6.90) of the corresponding reliable
H∞ controller with fixed gains.
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The following is an algorithm to optimize the reliable H∞ performance in
normal and fault cases.

Algorithm 6.4 Solving the following optimization

min β1ηn + β2ηf s.t. (6.65) − (6.71), (6.91)

where δn = γ2
n, δf = γ2

f , and β1 and β2 are weighting coefficients.
Usually, we can choose β1 > β2 in (3.25) since systems are operating under
the normal condition most of the time.
Denote the optimal solutions as X = Xopt,W1 = W1opt, Y0 = Y0opt, Yai =
Yaiopt, Ybi = Ybiopt(i = 1 · · ·m), then the controller gains of (6.63) can be
obtained by K0 = Y0X

−1,Kai = YaiX
−1,Kbi = YbiX

−1.

6.3.3 Guaranteed Cost State Feedback Control

In this subsection, the guaranteed cost control for linear systems (6.59) against
actuator faults (6.60) is considered.

Then the corresponding system with actuator faults is described by

ẋ(t) = Ax(t) +A1x(t− h) +B(I − ρ)u(t)
x(t) = φ(t), t ∈ [−h, 0] (6.92)

The problem investigated in this paper is to design a reliable guaranteed
cost controller such that, in normal and fault cases, the resultant closed-loop
system is asymptotically stable and the bound of the following quadratic cost
function J is minimized.

J =
∫ ∞

0

(xT (t)Qx(t) + uT (t)(I − ρ)S(I − ρ)u(t))dt (6.93)

where Q > 0 ∈ Rn×n, S > 0 ∈ Rm×m.
Define an operator D(xt) : Cn, d → Rn as

D(xt) = x(t) +
∫ t

t−h

A1x(s)ds (6.94)

where xt = x(t + s), s ∈ [−d, 0].
Now, the following adaptive memory state feedback controller is chosen,

that is,

u(t) = K(ρ̂(t))(x(t) +
∫ t

t−h

A1x(s)ds) = [K0 +Ka(ρ̂(t)) +Kb(ρ̂(t))]D(xt)

(6.95)

where Ka(ρ̂(t)) =
∑m

i=1Kaiρ̂i(t),Kb(ρ̂(t)) =
∑m

i=1Kbiρ̂i(t) and ρ̂i(t) is the
estimate of ρi. K0,Kai,Kbi, i = 1 · · ·m are the control gains to be designed.



120 Reliable Control and Filtering of Linear Systems

Remark 6.15 From (6.95), it is easy to see that the chosen controller struc-
ture is different from traditional memory or memory-less controllers with fixed
gains. That is, the gains of the memory term

∫ t

t−h
A1x(s)ds and the memory-

less term x(t) are both time-varying and affinely dependent on the online es-
timates ρ̂i(t) of ρi.

The closed-loop system is given by

ẋ(t) = Ax(t) +A1x(t− h) +B(I − ρ)K(ρ̂)D(xt)
x(t) = φ(t), t ∈ [−h, 0] (6.96)

Denote
Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂i ∈ {min

j
{ρj

i
},max

j
{ρ̄j

i}}}

Δ(ρ̂) = diag[ρ̂1I · · · ρ̂mI]

Theorem 6.6 Suppose that the operator D(xt) satisfies the conditions in
Lemma (2.48). Then, for given Q > 0 and S > 0, if there exist matrices
X > 0, Z > 0, Y0, Yai, Ybi and a symmetric matrix Θ with

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]

Θ11, Θ22 ∈ Rmn×mn such that the following inequalities hold:

Θ22ii ≤ 0, i = 1, · · · ,m (6.97)

with Θ22ii ∈ Rn×n is the (i, i) block of Θ22.
For any ρ̂ ∈ Δρ̂

Θ11 + Θ12Δ(δ) + (Θ12Δ(δ))T + Δ(δ)Θ22Δ(δ) ≥ 0 (6.98)

in normal and actuator fault cases, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj⎡
⎢⎢⎢⎢⎢⎢⎣

Υ
[−(A+A1)A1Z

0

] [
hX
0

] [
XQ
0

]
UT

∗ −Z −hZAT
1 −ZAT

1Q 0
∗ ∗ −Z 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 (6.99)
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where

Υ =
[
Δ0 + ΔT

0 E
ET F

]
+GT ΘG,

Δ0 = (A+A1)X +B[(I − ρ)Y0 + Ya(ρ)],
E = [E1 E2 · · ·Em], U = [U0 U1 · · ·Um], F = [Fij ] ,

Ei = −BρYai +BYbi, Fij = −BiYbj − Y T
bi B

jT
, i, j = 1 · · ·m

U0 = S
1
2 (I − ρ)Y0, Ui = S

1
2 (I − ρ)(Yai + Ybi),

G =

⎡
⎢⎢⎢⎣

⎡
⎢⎣
I
...
I

⎤
⎥⎦ 0

0 I

⎤
⎥⎥⎥⎦ , Ya(ρ) =

m∑
i=1

Yaiρi

and also ρ̂i is determined according to the adaptive laws

˙̂ρi = Proj[min
j

{ρj
i},max

j
{ρ̄j

i ]}{Li}

=

⎧⎪⎪⎨
⎪⎪⎩

0, if
ρ̂i = min

j
{ρj

i
} and Li ≤ 0

or ρ̂i = max
j

{ρ̄j
i} and Li ≥ 0;

Li, otherwise

(6.100)

where Li = −liDT (xt)X−1[BiYb(ρ̂) + BYai]X−1D(xt) with Yb(ρ̂) =∑m
i=1 Ybiρ̂i(t), li > 0(i = 1 · · ·m) is the adaptive law gain. Proj{·} de-

notes the projection operator [70], whose role is to project the estimates ρ̂i(t)
to the interval [min

j
{ρj

i
},max

j
{ρ̄j

i}]. Then the closed-loop system (6.96) is

asymptotically stable, the gain matrices of the controller (9.16) are given by
K0 = Y0X

−1,Kai = YaiX
−1,Kbi = YbiX

−1, and the upper bound of the
quadratic cost function J is

J∗ = DT (0)X−1D(0) +
m∑

i=1

ρ̃i
2(0)
li

+ h

∫ 0

−h

(s+ h)xT (s)Z−1x(s)ds (6.101)

Proof 6.9 The following Lyapunov-Krasovkii functional candidate is chosen

V = V1 + V2 + V3 (6.102)

where

V1 = DT (xt)PD(xt), V2 =
∫ t

t−h

(s− t+ h)xT (s)Rx(s)ds, V3 =
m∑

i=1

ρ̃2
i (t)
li
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with P > 0 and R > 0.
The following equality is obtained

(I − ρ)u(t) = (I − ρ)[K0 +Ka(ρ̂(t)) +Kb(ρ̂(t))]D(xt)
= [(I − ρ)K0 +Ka(ρ) − ρKa(ρ̂(t)) + (I − ρ̂(t))Kb(ρ̂(t))]D(xt)

+ [Ka(ρ̃(t)) + ρ̃Kb(ρ̂(t))]D(xt) (6.103)

where ρ̃(t) = ρ̂(t) − ρ.
Then from the derivative of V along the closed-loop system, it follows

V̇1 = 2DT (xt)PḊ(xt)

= 2DT (xt)P{[A+A1 +B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂))]

×D(xt) − (A+ A1)
∫ t

t−h

A1x(s)ds}

+ 2D(xt)TPB[Ka(ρ̃) + ρ̃Kb(ρ̂)]D(xt)

V̇2 = hxT (t)Rx(t) −
∫ t

t−h

xT (s)Rx(s)ds

≤ hxT (t)Rx(t) − (
∫ t

t−h

x(s)ds)T (h−1R)(
∫ t

t−h

x(s)ds)

V̇3 =
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

where Lemma 2.14 is used to get V̇2. On the other hand

xT (t)Rx(t) = (D(xt) −
∫ t

t−h

A1x(s)ds)TR(D(xt) −
∫ t

t−h

A1x(s)ds) (6.104)

Then

dV

dt
=

3∑
i=1

dVi

dt
≤ χT Ωχ+ 2DT (xt)PB[Ka(ρ̃) + ρ̃Kb(ρ̂)]D(xt) +

m∑
i=1

ρ̃i(t) ˙̃ρi(t)
li

(6.105)

where

χ =
[

D(xt)∫ t

t−h x(s)ds

]
, Ω =

[
Δ1 + ΔT

1 + hR −P (A+A1)A1 − hRA1

∗ −h−1R + hAT
1 RA1

]

with

Δ1 = P [A+A1 +B((I − ρ)K0 +Ka(ρ) − ρKa(ρ̂) + (I − ρ̂)Kb(ρ̂))]

Let B = [b1 · · · bm] and Bi = [0 · · · bi . . . 0], then it follows

PBρ̃Kb(ρ̂) =
m∑

i=1

ρ̃iPB
iKb(ρ̂) (6.106)
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PBKa(ρ̃) =
m∑

i=1

ρ̃iPBKai (6.107)

In fact, ρi is an unknown constant which denotes the loss of effectiveness of
the ith actuator. So from ρ̃i(t) = ρ̂i(t) − ρ, we can obtain ˙̃ρi(t) = ˙̂ρi(t). Now,
if the adaptive laws are chosen as (6.100),

2DT (xt)PB[Ka(ρ̃) + ρ̃Kb(ρ̂)]D(xt) + 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

≤ 0 (6.108)

that is

dV

dt
≤ χT (t)Ωχ(t) (6.109)

Furthermore, by (6.94) and (6.95) it follows

xTQx+ uT (I − ρ)S(I − ρ)u

= (D(xt) −
∫ t

t−h

A1x(s)ds)TQ(D(xt) −
∫ t

t−h

A1x(s)ds)

+DT (xt)KT (ρ̂)(I − ρ)S(I − ρ)K(ρ̂)D(xt) (6.110)

Thus

xTQx+ uT (I − ρ)S(I − ρ)u ≤ χT (t)Ω1χ(t) − dV

dt
(6.111)

where

Ω1 =
[
Δ1 + ΔT

1 + Υ0 −P (A+A1)A1

∗ −h−1R

]
+

[
I

−AT
1

]
(hR+Q)

[
I −A1

]
< 0

with Υ0 = KT (ρ̂)(I − ρ)S(I − ρ)K(ρ̂). Therefore, if Ω1 < 0, there exists the
positive scalar γ such that dV

dt ≤ −γ‖x‖2. That is, the asymptotic stability of
the closed-loop system (6.96) in both normal and fault cases can be guaranteed.
By Lemma (2.8), Ω1 < 0 is equivalent to

Ω2 =

⎡
⎢⎢⎣
Δ1 + ΔT

1 + Υ0 −P (A+A1)A1 hI I
∗ −h−1R −hAT

1 −AT
1

∗ ∗ −hR−1 0
∗ ∗ ∗ −Q−1

⎤
⎥⎥⎦ < 0 (6.112)

Let X = P−1, Y0 = K0X,Yai = KaiX, Ybi = KbiX, i = 1 · · ·m and Z =
hR−1. By pre- and post-multiplying inequalities Ω2 < 0 by diag{X,Z, I,Q},
then Ω2 < 0 is equivalent to

Ω3 =

⎡
⎢⎢⎣
Δ2 + ΔT

2 + Υ1 −(A+A1)A1Z hX XQ
∗ −Z −hZAT

1 −ZAT
1Q

∗ ∗ −Z 0
∗ ∗ ∗ −Q

⎤
⎥⎥⎦ < 0 (6.113)
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where Δ2 = (A+A1)X +B[(I − ρ)Y0 + Ya(ρ) − ρYa(ρ̂) + (I − ρ̂)Yb(ρ̂)] Υ1 =
Y T (ρ̂)(I − ρ)S(I − ρ)Y (ρ̂).

Furthermore, applying Lemma (2.8), Ω3 < 0 is equivalent to

Ω4 = Δ2 + ΔT
2 + Υ1 + h2XZ−1X +XQX − Δ3Δ−1

4 ΔT
3 < 0 (6.114)

and Δ4 < 0
where

Δ3 = −(A+A1)A1Z − h2XZ−1A1Z −XQA1Z

Δ4 = −Z + h2ZAT
1 Z

−1A1Z + ZAT
1QA1Z

So Ω1 < 0 is equivalent to Ω4 < 0 and Δ4 < 0.
Also, Ω4 can be written as Ω4

Ω4 = N0 +
m∑

i=1

ρ̂iEi + (
m∑

i=1

ρ̂iEi)T +
m∑

i=1

m∑
j=1

ρ̂iρ̂jFij

+ (U0 +
m∑

i=1

ρ̂iUi)T (U0 +
m∑

i=1

ρ̂iUi) < 0, (6.115)

with

N0 = Δ0 + ΔT
0 + h2XZ−1X +XQX − Δ3Δ−1

4 ΔT
3

Ei = −BρYai +BYbi, Fij = −BiYbj − Y T
bi B

jT

U0 = S
1
2 (I − ρ)Y0, Ui = S

1
2 (I − ρ)(Yai + Ybi)

and Δ0 is defined below (6.99).
On the other hand, by Lemma (2.8), if the condition (6.99) holds then we

have [
N0 E
ET F

]
+ UTU +GT ΘG < 0 (6.116)

and Δ4 < 0. Here E,F, U are defined below inequality (6.99).
Furthermore by Lemma 2.10, it is easy to see if (6.97)-(6.99) hold then

Ω4 < 0 and Δ4 < 0. Thus if the conditions (6.97)-(6.99) hold, it follows
Ω1 < 0. So from (6.111), it follows

xTQx+ uT (I − ρ)S(I − ρ)u ≤ −dV
dt

(6.117)
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Integrating both sides of the above inequality from 0 to ∞, it follows∫ ∞

0

(xTQx+ uT (I − ρ)S(I − ρ)u)dt

≤ V (0) − V (∞)

≤ V (0) = DT (0)PD(0) +
∫ 0

−h

(s+ h)xT (s)Rx(s)ds +
m∑

i=1

ρ̃i
2(0)
li

= J∗ = DT (0)X−1D(0) + h

∫ 0

−h

(s+ h)xT (s)Z−1x(s)ds +
m∑

i=1

ρ̃i
2(0)
li

(6.118)

The proof is completed.

Remark 6.16 Denote Fa(0) =
∑m

i=1
ρ̃i

2(0)
li

. Then, by (6.60) and (6.100), it
follows that ρ̃i(0) ≤ max

j
{ρ̄j

i} − min
j

{ρj
i
}. We can choose li relatively large

so that Fa(0) is sufficiently small. The newly proposed adaptive laws (6.100)
include the term D(xt) = x(t)+

∫ t

t−h
A1x(s)ds, which indicates how time-delay

h takes effect on the adaptive law.

Theorem 6.6 presents the method of designing a reliable guaranteed cost con-
troller via adaptive memory state feedback. The following theorem is to select
the reliable controller, which can minimize the upper bound of the guaranteed
cost (6.93).

Theorem 6.7 Consider the closed-loop system (6.96) with cost function
(6.93). If the following optimization problem

min
X>0, Γ1>0, Z>0, Y0, Yai, Ybi,α>0

{α+ tr(Γ1)}

such that

(i) LMI (6.97) − (6.99) (6.119)

(ii)
[−α DT (0)
∗ −X

]
< 0 (6.120)

(iii)
[−Γ1 hNT

1

∗ −hZ
]
< 0 (6.121)

has a solution set (X,Γ1, Z, Y0, Yai, Ybi, α), the controller (6.95) is an optimal
reliable guaranteed cost control law, which ensures the minimization of the
guaranteed cost (6.93) for the closed-loop system (6.96) against actuator faults,
where

∫ 0

−h(s+ h)x(s)xT (s)ds = N1N
T
1 .
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Proof 6.10 By Theorem 6.6, (i) in (6.119) is clear. Also, it follows from
Lemma 2.8 that (ii) and (iii) in (6.119) are equivalent to DT (0)X−1D(0) < α
and hNT

1 Z
−1N1 < Γ1, respectively. On the other hand,

h

∫ 0

−h

(s+ h)xT (s)Z−1x(s)ds =
∫ 0

−h

tr((s+ h)xT (s)hZ−1x(s))ds

= tr(N1N
T
1 hZ

−1) = tr(NT
1 hZ

−1N1) < tr(Γ1)

Hence, it follows from (6.101) that

J∗ < α+ tr(Γ1) +
m∑

i=1

ρ̃i
2(0)
li

.

Thus, the minimization of α+ tr(Γ1) implies the minimization of the guaran-
teed cost for the system (6.96).

Remark 6.17 If we choose the Lyapunov functional candidate V = V1 + V2,
where V1, V2 are defined in (6.102), then the following conditions (6.128) can
guarantee the closed-loop system (6.92) with reliable memory state feedback
controller u(t) = K0(x(t)+

∫ t

t−hA1x(s)ds), K0 = Y0X
−1 to be asymptotically

stable and the upper bound of J is J∗.
For normal and actuator faults cases, i.e., ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj⎡

⎢⎢⎢⎢⎣

∑
1 +

∑T
1 −(A+A1)A1Z hX XQ Y T

0 (I − ρ)S
1
2

∗ −Z −hZAT
1 −ZAT

1Q 0
∗ ∗ −Z 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0

(6.122)

where
∑

1 = (A+A1)X+B(I−ρ)Y0. The conditions (6.128) are just the result
of Theorem 6.6 in [110] with A2 = 0 when the actuator faults are considered.
Notice that if set Yai = 0, Ybi = 0, i = 1 · · ·m in Theorem 6.6, then the
conditions of Theorem 6.6 reduce to (6.128). Thus, the design conditions of
the reliable guaranteed cost controller with adaptive mechanisms in Theorem
6.6 are more relaxed than the conditions of the traditional reliable guaranteed
cost controller with fixed gains (6.128). Also the upper bound of J with fixed
gains controller can be obtained by solving the following optimization:

min
X>0, Γ1>0, Z>0, Y0, α>0

{α+ tr(Γ1)}

(i) LMI (6.101)

(ii)
[−α DT (0)
∗ −X

]
< 0

(iii)
[−Γ1 hNT

1

∗ −hZ
]
< 0
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One can easily extend Theorem 6.6 or Theorem 6.7 to robust reliable
guaranteed cost control for the following polytopic uncertain systems

ẋ(t) = A(λ)x(t) +A1x(t− h) +Bu(t)
x(t) = φ(t), t ∈ [−h, 0] (6.123)

with

A(λ) =
q∑

i=1

Aiλi,

q∑
i=1

λi = 1 and λi ≥ 0

Then the corresponding closed-loop system is

ẋ(t) = A(λ)x(t) +A1x(t− h) +B(I − ρ)K(ρ̂)D(xt)
x(t) = φ(t), t ∈ [−h, 0] (6.124)

From the proof of Theorem 6.6 and Theorem 6.7, the following corollary can
be easily obtained.

Corollary 6.3 Consider the closed-loop system (6.124) with cost function
(6.93). If the following optimization problem

min
X>0, Γ1>0, Z>0, Y0, Yai, Ybi, α>0

{α+ tr(Γ1)}

subject to
(i) LMI (6.97)-6.98)
and for any ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj⎡

⎢⎢⎢⎢⎢⎢⎣

Φ
[−(Ai +A1)A1Z

0

] [
hX
0

] [
XQ
0

]
UT

∗ −Z −hZAT
1 −ZAT

1Q 0
∗ ∗ −Z 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 (6.125)

with

Φ =
[
Δ̄0 + Δ̄T

0 E
ET F

]
+GT ΘG,

Δ̄0 = (Ai +A1)X +B[(I − ρ)Y0 + Ya(ρ)]

Here, the other symbols and the adaptive laws are defined below (6.99) and
(6.100).

(ii)
[−α DT (0)
∗ −X

]
< 0 (6.126)

(iii)
[−Γ1 hNT

1

∗ −hZ
]
< 0 (6.127)
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has a solution set (X,Γ1, Z, Y0, Yai, Ybi, α), the controller (6.95) is an optimal
robust reliable guaranteed cost control law, which ensures the minimization of
the guaranteed cost (6.93) for the closed-loop system (6.124) against actuator
faults, where

∫ 0

−h
(s+ h)x(s)xT (s)ds = N1N

T
1 .

Remark 6.18 The corresponding condition of the robust reliable guaranteed
cost controller with fixed gains is similar to condition (6.128), that is for
ρ ∈ {ρ1 · · · ρL}, ρj ∈ Nρj⎡

⎢⎢⎢⎢⎣

∑
1 +

∑T
1 −(Ai +A1)A1Z hX XQ Y T

0 (I − ρ)S
1
2

∗ −Z −hZAT
1 −ZAT

1Q 0
∗ ∗ −Z 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0

(6.128)

where
∑

2 = (Ai +A1)X +B(I − ρ)Y0.

6.3.4 Example

To illustrate the effectiveness of our results, two examples are given. Example
6.3 is for H∞ control case and Example 6.4 is for guaranteed cost control case

Example 6.3 Consider a linear time-delay system (6.59) with parameters as
follows

A =
[−2 1
−1 −5

]
, A1 =

[−0.5 0
0 0.5

]
, B =

[
1 1

−0.8 1

]
, B1 =

[
1

0.2

]
,

C =

⎡
⎣5 1
0 0
0 0

⎤
⎦ , D =

⎡
⎣ 0 0

0.1 0
0 1

⎤
⎦ , φ(t) =

[
0
0

]
, h = 3

Besides the normal mode, that is,

ρ0
1 = ρ0

2 = 0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, that is,

ρ1
1 = 1, 0 ≤ ρ1

2 ≤ a, a = 0.5,

which denotes the maximum loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

ρ2
2 = 1, 0 ≤ ρ2

1 ≤ b, b = 0.5,
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TABLE 6.3 H∞ performance index
Adaptive reliable controller Traditional reliable controller

γn 0.1447 0.2260
γf 0.2596 0.8756
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FIGURE 6.10
Response curve in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).
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FIGURE 6.11
Response curve in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).

which denotes the maximum loss of effectiveness for the first actuator. From
Algorithm 6.4 with β1 = 5, β2 = 1, the corresponding H∞ performance in-
dexes of the closed-loop systems with the two controllers are obtained after
search for α from 1.1 to 500. See Table 6.3 for more details, which indicates
the superiority of our adaptive method.

In the following simulation, we use the disturbance

ω(t) =
{

2 2 ≤ t ≤ 4 (seconds)
0 otherwise

and the fault case here is that at 3 seconds, the second actuator is outage.
Figure 6.10 describes the response curves in normal case with our adaptive

delay-dependent memory controller and delay-dependent memory controller
with fixed gains, respectively. The corresponding curves in fault case with
these two controllers are given in Figure 6.11. From Figure 6.10-Figure 6.11,
it is easy to see our adaptive controller has more disturbance restraint ability
than the one with fixed gains in either normal or fault cases just as theory
has proved.
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TABLE 6.4 Cost performance index
Adaptive reliable controller Traditional reliable controller

Upper bound of J 1.3026 3.4035

0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time(s)

x
1

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(s)

x
2

FIGURE 6.12
Response curve in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).

Example 6.4 Consider a linear time-delay system (6.59) with parameters as
follows

A =
[

1 1
−2.5 −1

]
, A1 =

[
0.1 0.5
0 −0.2

]
, B =

[
3 1
1 0.5

]
,

φ(t) =
[
0.5
1

]
, h = 0.5, Q = diag{1, 2}, S = I

Besides the normal mode, that is,

ρ0
1 = ρ0

2 = 0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
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FIGURE 6.13
Response curve in fault case 1 with adaptive controller (solid) and controller
with fixed gains (dashed).

normal or loss of effectiveness, that is,

ρ1
1 = 1, 0 ≤ ρ1

2 ≤ a, a = 0.5,

which denotes the maximum loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

ρ2
2 = 1, 0 ≤ ρ2

1 ≤ b, b = 0.4,

which denotes the maximum loss of effectiveness for the first actuator.
By using Theorem 6.7 and the conditions (6.128), we obtain the corre-

sponding cost performance indexes, using the adaptive method and traditional
method. See Table 6.4 for more details.

In the following simulation, two fault cases are considered.
Fault case 1: At 0 second, the second actuator is outage, then after 2 seconds
the first actuator becomes loss of 40% effectiveness.
Fault case 2: At 5 seconds, the first actuator is outage.

Figure 6.12 describes the response curves in normal case with our adaptive
reliable memory controller and reliable memory controller with fixed gains.
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FIGURE 6.14
Response curve in fault case 2 with adaptive controller (solid) and controller
with fixed gains (dashed).

The corresponding curves in the two considered fault cases with these two
controllers are given in Figure 6.13-Figure 6.14, respectively. From Figure
6.12-Figure 6.14, it is easy to see our adaptive reliable memory controller
performs better than the one with fixed gains in either normal or fault cases
just as theory has proved.

In order to show the effectiveness of the proposed method for polytopic
uncertain system, another numerical example is also given.

Example 6.5 Consider a linear time-delay system (6.123) with parameters
as follows

A(λ) = A1λ1 +A2λ2 λ1, λ2 ≥ 0, λ1 + λ2 = 1

where A1 =
[

1 1
−2.5 −1

]
, A2 =

[ −1 0
−0.5 −0.5

]
.

The other parameters and the possible fault modes are the same as those
in Example 6.3.
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TABLE 6.5 Cost performance index
Adaptive reliable controller Traditional reliable controller

Upper bound of J 1.4383 3.5900
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FIGURE 6.15
Response curves in normal case with adaptive robust reliable memory con-
troller (solid) and robust reliable memory controller with fixed gains (dashed).

Using Collorary 6.3, the corresponding cost performance indexes can be
obtained, using the adaptive method and traditional method. See Table 6.5
for more details.

In the following simulations, the chosen uncertain parameters are λ1 = 0.1
and λ2 = 0.9. The considered fault cases in this example are as follows:
Fault case 1: At 0 second, the second actuator is outage, and the first actuator
becomes loss of 40% effectiveness.
Fault case 2: At 1 second, the first actuator is outage.

Figure 6.15-Figure 6.17 describe the response curves in normal and fault
cases with our adaptive robust reliable memory controller and robust reliable
memory controller with fixed gains, respectively. It is easy to see our adaptive
robust reliable memory controller performs better than the one with fixed
gains in either normal or fault cases just as theory has proved.



Adaptive Reliable Control for Time-Delay Systems 135

0 1 2 3 4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time(s)

x
1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(s)

x
2

FIGURE 6.16
Response curves in fault case 1 with adaptive robust reliable memory con-
troller (solid) and robust reliable memory controller with fixed gains (dashed).
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FIGURE 6.17
Response curves in fault case 2 with adaptive robust reliable memory con-
troller (solid) and robust reliable memory controller with fixed gains (dashed).
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6.4 Conclusion

In this chapter, we have investigated the new adaptive reliable memory-less
controller and memory controller design methods for linear time-delay sys-
tems. The newly proposed controllers are all established in a parameter-
dependent form, in which fault parameters are adjusted online based on the
adaptive method to automatically compensate the fault effect on systems. In
the framework of linear matrix inequality (LMI) technique, the stability and
performance indexes of the closed-loop systems are guaranteed in normal and
fault cases. The effectiveness of the proposed design method is illustrated via
some numerical examples and their simulation results.



7

Adaptive Reliable Control with Actuator
Saturation

7.1 Introduction

Control systems with actuator saturation are often encountered in practice.
When actuator saturation occurs, in general global stability of an otherwise
stable linear closed-loop system cannot be ensured. And the problem of es-
timating the domain of attraction for a system with a saturated linear feed-
back has been studied by many researchers in the last few years and vari-
ous methods have appeared (see, [24, 140]). Model predictive control (MPC)
is an effective control algorithm for dealing with actuator saturation. Many
formulations have been developed for the stability of MPC (see, [18, 96]).
Enlargement of the domain of attraction is achieved in [20, 28, 85, 90].
Anti-windup has been largely discussed and many constructive design algo-
rithms have been formally proved to induce suitable stability properties (see,
[25, 26, 27, 48, 68, 143]). Many of these constructive approaches rely on sector
condition and S-procedure techniques and provide LMIs for the anti-windup
compensator design. In some papers, notion of invariant set and LMI-based
optimization approaches were proposed to estimate the stability regions by
using quadratic Lyapunov functions and the Lur’e-type Lyapunov functions.
In [17] and [142], the modeling of the nonlinear behavior of the system under
saturation is made by using a polytopic differential inclusion and quadratic
Lyapunov functions. For determining if a given ellipsoid is contractively in-
variant, [66] described a condition which is based on the circle criterion or the
vertex analysis.

As we all know, in practice, actuator saturation and actuator faults are the
common phenomena, and they always happen at the same time, especially for
complex systems such as aircrafts, space crafts, nuclear power plants. For a
flying aircraft its rudder may be damnified which can lead to the fault of the
actuator. On the other hand, the rudder (actuator) of the aircraft can only give
a bounded input which can be seen as an actuator saturation phenomenon. In
this chapter, both actuator saturation and actuator faults are considered at
the same time for a class of linear time-invariant systems. Here, an LMI-based
method is presented to deal with the fault-tolerant and saturation problem.

139
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7.2 State Feedback

7.2.1 Problem Statement

Consider an LTI plant described by

ẋ = Ax(t) +Bσ(u), (7.1)

where x(t) ∈ Rn is the plant state, σ(u) ∈ Rm is the saturated control input.
A, B are known constant matrices of appropriate dimensions.

Definition 7.1 The actuator nonlinearity with the consideration of a
piecewise-linear saturation is described as

σ(uj) =
{
uj , |uj| ≤ umax

j ,
sign(uj)umax

j , |uj | > umax
j ,

(7.2)

for j ∈ I[1,m]. Here we have slightly abused the notation by using σ to denote
both the scalar valued and the vector valued saturation functions. We note that
it is without loss of generality to assume umax

j = 1, as level of saturation can
always be scaled to unity by scaling B and u.

To formulate the fault-tolerant control problem, the considered actuator
failures are the same as those in Chapter 3, that is

uF
jq(t) = (1 − ρq

j)σ(uj(t)), 0 ≤ ρq
j
≤ ρq

j ≤ ρq
j ,

j ∈ I[1,m], q ∈ I[1, L], (7.3)

For convenience in the following sections, for all possible fault modes L,
the following uniform actuator fault model is exploited:

uF (t) = (I − ρ)σ(u(t)), ρ ∈ {ρ1 · · · ρL} (7.4)

and ρ can be described by ρ = diag[ρ1, ρ2, · · ·ρm].
Denote

Nρq = {ρq|ρq =diag[ρq
1, ρ

q
2, · · ·ρq

m], ρq
j = ρq

j
or ρq

j = ρq
j}. (7.5)

Thus, the set Nρq contains a maximum of 2m elements.

Remark 7.1 Here we note that any fault model formulated by

uF
jq(t) = σ[(1 − ρq

j)uj(t)], 0 ≤ ρq
j
≤ ρq

j ≤ ρq
j ,

j ∈ I[1,m], q ∈ I[1, L], (7.6)
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can be formulated by (7.3). We need only to prove that for any ρq
j satisfying

(7.6) there must exist a ρq
j∗ satisfying

(1 − ρq
j∗)σ[uj(t)] = σ[(1 − ρq

j)uj(t)] (7.7)

and
0 ≤ ρq

j∗ ≤ ρq
j∗ ≤ ρq

j∗

In fact if ρq
j∗ is given as follows

ρq
j∗ = 1 − σ[(1 − ρq

j)uj(t)]
σ[uj(t)]

,

then equality (7.7) is satisfied, and we have 0 = ρq
j∗ ≤ ρq

j∗ ≤ ρq
j∗ = ρq

j by
Definition 7.1 and (7.3).

Definition 7.2 For a matrix Ccl ∈ Rm×n, denote the jth row of Ccl as Cclj,
define

℘(Ccl) = {x ∈ Rn : |Ccljx| ≤ 1, j ∈ I[1,m]},
then ℘(Ccl) is the region in the state space where saturation does not occur.

For x(0) = x0 ∈ Rn, denote the state trajectory of systems as ψ(t, x0).
Then the domain of attraction of the origin is

� := {x0 ∈ Rn : limt→∞ψ(t, x0) = 0}.
Definition 7.3 Let D be a set of m × m diagonal matrices whose diagonal
elements are either 1 or 0. There are 2m elements in D and we denote its
elements as Di, i ∈ I[0, 2m−1], where for i = z12m−1+Z22m−2+ · · ·+zm with
zj ∈ {0, 1}, the diagonal elements of Di are {1−z1, 1−z2, · · ·, 1−zm}. Denote
D−

i = I−Di. It is easy to see that D−
i ∈ D. As an illustration, we consider the

case of m = 2. For i = 0, it is easy to see that i = 0×21+0×20. Thus, z1 = 0,

z2 = 0 and D0 =
[
1 0
0 1

]
. For i = 1, it is easy to see that i = 0 × 21 + 1 × 20.

Thus, z1 = 0, z2 = 1 and D1 =
[
1 0
0 0

]
. Denote D−

i = I−Di. It is easy to see

that D−
i ∈ D. The following propositions will be useful for the development of

the main results of this section.

Lemma 7.1 [65] Let u, v ∈ Rm with u = [u1, u2, ..., um]T and v =
[v1, v2, ..., vm]T . Suppose that |vj | ≤ 1 for all j ∈ I[1,m].

Then,

σ(u) ∈ co{Diu+D−
i v : i ∈ I[0, 2m − 1]}, (7.8)

where co denotes the convex hull.
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Problem 7.1 The design problem under consideration is to find an adaptive
controller such that in both normal operation and fault cases, the domain of
asymptotic stability is enlarged as much as possible for closed-loop system with
actuator saturation.

Remark 7.2 For the above problem to be solvable, it is necessary for the pair
(A,B(I − ρ)) to be stabilizable for each ρ ∈ {ρ1 · · · ρL}.

7.2.2 A Condition for Set Invariance

The dynamics with actuator faults (7.4) and saturation is described by

ẋ(t) = Ax(t) +B(I − ρ)σ(u(t)) (7.9)

The controller structure is chosen as

u(t) = K(ρ̂(t))x(t) = (K0 +Ka(ρ̂(t)) +Kb(ρ̂(t)))x(t) (7.10)

where ρ̂(t) is the estimation of ρ,

Ka(ρ̂(t)) =
∑m

j=1
Kaj ρ̂j(t), Kb(ρ̂(t)) =

∑m

j=1
Kbj ρ̂j(t).

By Lemma 7.1, the saturated linear feedback, with x ∈ ℘(H(ρ̂(t))), can
be expressed as

σ(K(ρ̂(t))x(t)) =
∑2m−1

i=0
ηi[DiK(ρ̂(t)) +D−

i H(ρ̂(t))]x(t) (7.11)

for some scalars 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1], such that
∑2m−1

i=0 ηi = 1, and the
following equality holds

(I − ρ)σ(u(t)) =
∑2m−1

i=0
ηi[(I − ρ)DiK0 +DiKa(ρ)

− ρDiKa(ρ̂) + (I − ρ̂(t))DiKb(ρ̂(t)) +DiKa(ρ̃(t))

+ ρ̃DiKb(ρ̂(t)) + (I − ρ)D−
i H0 +D−

i Ha(ρ)

− ρD−
i Ha(ρ̂) + (I − ρ̂(t))D−

i Hb(ρ̂(t)) +D−
i Ha(ρ̃(t))

+ ρ̃D−
i Hb(ρ̂(t))]x(t) (7.12)

where ρ̃(t) = ρ̂(t) − ρ. Though Ka(ρ̂(t)) and Kb(ρ̂(t)) have the same forms,
we deal with them in different ways in (7.12), which gives more freedom and
less conservativeness.

Denote

Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂j ∈ {min
q

{ρq
j
}, max

q
{ρq

j}}, q ∈ I[1, L]}

and Bj = [0 · · · bj · · · 0] with B = [b1 · · · bm].
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Definition 7.4 Let P ∈ Rn×n be a positive-define matrix. Denote

ε(P, δ) = {x ∈ Rn : xTPx ≤ δ}.
ε−(P, δ) = {x ∈ Rn : xTPx < δ}.

ε∗(P, δ) = {x ∈ Rn : xTPx+
∑m

j=1

ρ̃2
j(t)
lj

≤ δ}.

Assume lj > 0 is given, we denote δ∗ = δ+max{∑m
j=1

ρ̃2
j (t)

lj
}.

Let V (t) = xTPx +
∑m

j=1

ρ̃2
j (t)

lj
. If V̇ (t) < 0 for all x ∈ ε∗(P, δ)\{0}, the

domain ε∗(P, δ) is contractively invariant. Clearly, if ε∗(P, δ) is contractively
invariant, then it is inside the domain of attraction.

We note that the scalars ηi’s are functions of x and ρ̂ and their values are
available in real-time. These scalars in a way reflect the severity of control
saturation. In general, there are multiple choices of ηi’s satisfying the same
constraint, leading to nonunique representation of (7.11). In the following
lemma, we provide one choice of such ηi’s, which are Lipschitzian functions in
x and ρ̂ and thus are particularly useful in our controller design.

Lemma 7.2 [142] Let x ∈ ℘(H(ρ̂(t))). For each j ∈ I[1,m], let

λj(x(t), ρ̂(t))

=

⎧⎨
⎩

1, if K(ρ̂(t))jx(t)
= H(ρ̂(t))jx(t)

σ(K(ρ̂(t))jx(t))−H(ρ̂(t))jx(t)
(K(ρ̂(t))j−H(ρ̂(t))j)x(t) , otherwise

and for each i ∈ I[0, 2m−1], let zj ∈ {0, 1} be such that i = z12m−1+z22m−2+
...+ zm, and define

ηi(x(t), ρ̂(t)) =
m∏

j=1

[zj(1 − λj(x(t), ρ̂(t))) + (1 − zj)λj(x(t), ρ̂(t))] (7.13)

Then, ηi’s are functions Lipschitz in x and ρ̂, such that,
∑2m−1

i=0 ηi = 1,
0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1]. Moreover, they satisfy relation (7.11).

By using the functions ηi(x(t), ρ̂(t))’s and the controller (7.10), plant (7.9)
can be written in a quasi-LPV form as follows:

ẋ(t) =Ax(t) +B
∑2m−1

i=0
ηi[(I − ρ)Di(K0 +Ka(ρ̂(t))

+Kb(ρ̂(t))) + (I − ρ)D−
i (H0 +Ha(ρ̂(t)) +Hb(ρ̂(t)))]x(t) (7.14)

By using (7.13) we consider the following auxiliary LPV system, of which
the closed-loop system comprising of (7.9) and (7.10) is a special case, if
ε∗(P, δ) ⊂ ℘(H(ρ̂)) is an invariant set



144 Reliable Control and Filtering of Linear Systems

ẋ(t) = A(η)x(t), η ∈ Γ (7.15)

where η = [η0, η1, · · ·, η2m−1], and

Γ = {η ∈ R2m

:
∑2m−1

i=0
ηi = 1, 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1]}

A(η) = A+B
∑2m−1

i=0
ηi[(I − ρ)DiK0 +DiKa(ρ)

− ρDiKa(ρ̂) + (I − ρ̂(t))DiKb(ρ̂(t)) +DiKa(ρ̃(t))

+ ρ̃DiKb(ρ̂(t)) + (I − ρ)D−
i H0 +D−

i Ha(ρ)

− ρD−
i Ha(ρ̂) + (I − ρ̂(t))D−

i Hb(ρ̂(t)) +D−
i Ha(ρ̃(t))

+ ρ̃D−
i Hb(ρ̂(t))]

The following theorem establishes conditions on the state-feedback con-
troller coefficient matrices under which the LPV system (7.15) is asymptoti-
cally stable with Lyapunov function.

Theorem 7.1 ε∗(P, δ) is a contractively invariant set for normal and actu-
ator failure cases, if there exist matrices X > 0, O0, Oaj , Obj , Y0, Yaj , Ybj ,
j ∈ I[1,m] and symmetric matrixes Θi, i ∈ I[0, 2m − 1] with

Θi =
[

Θi
11 Θi

12

ΘiT
12 Θi

22

]

and Θi
11, Θi

22 ∈ Rmn×mn such that the following inequalities hold for all Di ∈
D and ε∗(P, δ) ⊂ ℘(H(ρ̂)), i.e., |H(ρ̂)jx| ≤ 1 for all x ∈ ε∗(P, δ), j ∈ I[1,m].

Θi
22jj ≤ 0, j ∈ I[1,m], i ∈ I[0, 2m − 1]

Θi
11 + Θi

12Δ(ρ̂) + (Θi
12Δ(ρ̂))T + Δ(ρ̂)Θi

22Δ(ρ̂) ≥ 0, ρ̂ ∈ Δρ̂[
N0i Z1i

ZT
1i Z2i

]
+GT ΘiG < 0, i ∈ I[0, 2m − 1],

ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq (7.16)

where
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N0i = AX +B(I − ρ)DiY0 + (AX +B(I − ρ)DiY0)T

+B
∑m

j=1
ρjDiYaj + (B

∑m

j=1
ρjDiYaj)T

+B(I − ρ)D−
i O0 + (B(I − ρ)D−

i O0)T

+B
∑m

j=1
ρjD

−
i Oaj + (B

∑m

j=1
ρjD

−
i Oaj)T ,

G =

⎡
⎢⎢⎣

⎡
⎣ In×n

· · ·
In×n

⎤
⎦ 0

0 Imn×mn

⎤
⎥⎥⎦ ,

Z1i = −BρDiYa +BDiYb −BρD−
i Oa +BD−

i Ob,

Z2i =

⎡
⎣ −B1Di

...
−BmDi

⎤
⎦Yb + (

⎡
⎣ −B1Di

...
−BmDi

⎤
⎦Yb)T

+

⎡
⎣ −B1D−

i

...
−BmD−

i

⎤
⎦Ob + (

⎡
⎣ −B1D−

i

...
−BmD−

i

⎤
⎦Ob)T ,

Ya = [Ya1 Ya2....Yam], Yb = [Yb1 Yb2....Ybm],
Oa = [Oa1 Oa2....Oam], Ob = [Ob1 Ob2....Obm],

Δ(ρ̂) = diag[ρ̂1In×n · · · ρ̂mIn×n].

and also ρ̂j(t) is determined according to the adaptive law

˙̂ρj = Proj[min
q

{ρq
j}, max

q
{ρq

j}]{L1j}

=

⎧⎪⎨
⎪⎩

0, if
ρ̂j = min

q
{ρq

j
} and L1j ≤ 0

or ρ̂j = max
q

{ρq
j} and L1j ≥ 0

L1j , otherwise

(7.17)

where

L1j = − ljx
T (t)[PB(

∑2m−1

i=0
ηiDi)Kaj + PBj(

∑2m−1

i=0
ηiDi)Kb(ρ̂)

+ PB(
∑2m−1

i=0
ηiD

−
i )Haj + PBj(

∑2m−1

i=0
ηiD

−
i )Hb(ρ̂)]x(t),

P = δX−1, K0 = Y0X
−1, Kaj = YajX

−1, Kbj = YbjX
−1, H0 = O0X

−1,
Haj = OajX

−1, Hbj = ObjX
−1. lj > 0(j ∈ I[1,m]) and δ > 0 are the

adaptive law gains to be chosen according to practical applications. Then the
controller gain is given by

K(ρ̂) = Y0X
−1 +

∑m

j=1
ρ̂jYajX

−1 +
∑m

j=1
ρ̂jYbjX

−1.
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Proof 7.1 Choose the following Lyapunov function

V = x(t)TPx(t) +
∑m

j=1

ρ̃2
j (t)
lj

, (7.18)

then from the derivative of V (t) along the closed-loop system, it follows

V̇ (t) ≤ xT
∑2m−1

i=0
ηi(C + CT )x

+ 2xTPB
∑2m−1

i=0
ηi[DiKa(ρ̃) + ρ̃DiKb(ρ̂)

+D−
i Ha(ρ̃) + ρ̃D−

i Hb(ρ̂)]x + 2
∑m

j=1

ρ̃j(t)̇̃ρj(t)
lj

,

where

C = PA+ PB[(I − ρ)DiK0 +DiKa(ρ) − ρDiKa(ρ̂) + (I − ρ̂(t))DiKb(ρ̂)

+ (I − ρ)D−
i H0 +D−

i Ha(ρ) − ρD−
i Ha(ρ̂) + (I − ρ̂(t))D−

i Hb(ρ̂)].

Let B = [b1 · · · bm] and Bj = [0 · · · bj · · · 0], then

PBρ̃DiKb(ρ̂) =
∑m

j=1
ρ̃jPB

jDiKb(ρ̂),

PBρ̃D−
i Hb(ρ̂) =

∑m

j=1
ρ̃jPB

jD−
i Hb(ρ̂),

PBDiKa(ρ̃) =
∑m

j=1
ρ̃jPBDiKaj ,

PBD−
i Ha(ρ̃) =

∑m

j=1
ρ̃jPBD

−
i Haj .

Let X = (P
δ )−1, Y0 = K0X, Yaj = KajX, Ybj = KbjX, O0 = H0X,

Oaj = HajX, Obj = HbjX, j ∈ I[1,m]. Choose the adaptive laws as (7.17),
then it is sufficient to show that V̇ < 0 if for any ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq ,

∑2m−1

i=0
ηi[N0i +N1i(ρ̂j) +N2i(ρ̂j)] < 0,
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where

N0i = AX +B(I − ρ)DiY0 + (AX +B(I − ρ)DiY0)T

+B
∑m

j=1
ρjDiYaj + (B

∑m

j=1
ρjDiYaj)T

+B(I − ρ)D−
i O0 + (B(I − ρ)D−

i O0)T

+B
∑m

j=1
ρjD

−
i Oaj + (B

∑m

j=1
ρjD

−
i Oaj)T ,

N1i(ρ̂j) = −BρDi

∑m

j=1
ρ̂jYaj +B

∑m

j=1
ρ̂jDiYbj

+ (B
∑m

j=1
ρ̂jDiYbj −BρDi

∑m

j=1
ρ̂jYaj)T

−BρD−
i

∑m

j=1
ρ̂jOaj +B

∑m

j=1
ρ̂jD

−
i Obj

+ (B
∑m

j=1
ρ̂jD

−
i Obj −BρD−

i

∑m

j=1
ρ̂jOaj)T ,

N2i(ρ̂j) =
∑m

j=1

∑m

p=1
ρ̂j ρ̂p(−BjDiYbp − Y T

bjDiB
pT

−BjD−
i Obp −OT

bjD
−
i B

pT ).

By Lemma 2.10 and (7.16), it follows that V̇ < 0 for any x ∈ ℘(H(ρ̂)),
ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq and ρ̂ satisfying (7.17).

7.2.3 Controller Design

From Theorem 7.1, we can obtain various controller gains and domains sat-
isfying the set invariance condition. So, how to choose the “largest” one of
them becomes an interesting problem. In this section, we will give a method
to find the “largest” domain.

Definition 7.5 Define XR is a prescribed bounded convex set. XR =
ε(R, 1) = {x ∈ Rn×n : xTRx ≤ 1}, R > 0 or XR = co{x1, x2, ..., xl}.
For a set S ∈ Rn, αR(S) = sup{α > 0 : αXR ⊂ S}.

In Theorem 7.1, a condition for the set ε∗(P, δ) to be inside the domain
of attraction is given. With the above shape reference sets, we can choose
from all the ε∗(P, δ)’s that satisfy the condition of Theorem 7.1 such that the
quantity αR(ε∗(P, δ)) is maximized. The problem can be formulated as follows

sup α

s.t. (a) αXR ⊂ ε∗(P, δ),
(b) (7.16),
(c) ε∗(P, δ) ⊂ ℘(H(ρ̂)). (7.19)

However, by Definition 7.4, we have that (a) and (c) can not be shown as
LMIs directly. Then the following proposition will solve this problem.
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Proposition 7.1 Obviously, ε∗(P, δ) ⊂ ε(P, δ), which implies that (c) holds
if (c1) holds, where

(c1) ε(P, δ) ⊂ ℘(H(ρ̂)), (7.20)

Proposition 7.2 By Definition 7.4, we have

xTPx+
∑m

j=1

ρ̃2
j(t)
lj

≤ δ ⇔ xT P

δ
x+

∑m

j=1

ρ̃2
j(t)
δlj

≤ 1

⇔ xTX−1x+
∑m

j=1

ρ̃2
j(t)
δlj

≤ 1.

Let F (t) =
∑m

j=1

ρ̃2
j (t)

δlj
. Then, by (7.17) and (7.3), it follows that ρ̃j(t) ≤

max
j

{ρq
j} −min

j
{ρq

j
}. We can choose lj and δ sufficiently large so that F (t) is

sufficiently small. Then the conclusion can be drawn as follows:
For system (7.9) and controller (7.10) there must exist δ > 0 and li > 0

such that the closed-loop system (7.15) is asymptotically stable in domain
ε−(P, δ) if (b) and (c1) hold. That is to say, if lj and δ are chosen sufficiently
large, then the set ε∗(P, δ) will approach the set ε(P, δ), so we can maximize
the set ε∗(P, δ) indirectly by maximizing the set ε(P, δ). Thus, we have that
(a) can be replaced with (a1).

Then, by Proposition 7.1 and Proposition 7.2 we can get the “largest”
domain of asymptotic stability by solving the following optimization problem

sup α

s.t. (a1) αXR ⊂ ε(P, δ),
(b),

(c1). (7.21)

If the given shape reference set XR is a polyhedron as defined in Definition
7.5, then Constraint (a1) is equivalent to

α2xT
e (
P

δ
)xe ≤ 1 ⇔

[
1/α2 xT

e

xe (P
δ )−1

]
≥ 0, (7.22)

for all e ∈ I[1, l]. If XR is an ellipsoid ε(R, 1), then (a1) is equivalent to

R

α2
≥ P

δ
⇔

[
(1/α2)R I

I (P
δ )−1

]
≥ 0. (7.23)

Condition (c1) is equivalent to

δh(ρ̂)jP
−1h(ρ̂)T

j ≤ 1 ⇔
[

1 h(ρ̂)j(P
δ )−1

∗ (P
δ )−1

]
≥ 0. (7.24)
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for all j ∈ I[1,m], where h(ρ̂)j be the jth row of H(ρ̂). We have that (7.24) is
equivalent to the following inequalities.

(c2)
[ −1 −O0s

∗ −X
]

+
m∑

j=1

ρ̂j

[
0 −Oajs −Objs

∗ 0

]
≤ 0, ρ̂ ∈ Δρ̂

where Oajs is the sth row of Oaj , s ∈ I[1,m].
If XR is a polyhedron, then from (7.22) and (7.24), the optimization prob-

lem (7.21) is equivalent to

inf γ

s.t. (a2)
[
γ xT

e

xe X

]
≥ 0, e ∈ I[1, l],

(b), (c2), (7.25)

where γ = 1/α2.
If XR is an ellipsoid, we need only to replace (a2) with

(a3)
[
γR I
I X

]
≥ 0. (7.26)

It is easy to see that all constraints are given in LMIs.

Remark 7.3 Theorem 7.1 gives a sufficient condition for the existence of
an adaptive fault tolerant controller via state feedback. Note that inequalities
described by (7.16) are of LMIs. In Theorem 7.1, if set Yaj = 0, Ybj = 0,
Oaj = 0, Obj = 0, j ∈ I[1,m], then the conditions of Theorem 7.1 reduce to

AX +B(I − ρ)DiY0 + (AX +B(I − ρ)DiY0)T

+B(I − ρ)D−
i O0 + (B(I − ρ)D−

i O0)T < 0,
i ∈ I[0, 2m − 1], ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq (7.27)

From [66], it follows that ε(P, δ) is a contractively invariant set for closed-
loop system (7.9) with u = K0x, K0 = Y0X

−1, if there exist matrices
X > 0, O0, Y0, such that the inequalities (7.27) hold for all Di ∈ D and
ε(P, δ) ⊂ ℘(H0), where P = δX−1, H0 = O0X

−1. This just gives a design
method for traditional fault tolerant controllers via fixed gains. The above fact
shows that the design condition for adaptive fault tolerant controllers given in
Theorem 7.1 is more relaxed than that described by (7.27) for the traditional
fault tolerant controller design with fixed gains.

7.2.4 Example

In this section, two examples are given to illustrate that the Algorithm 7.21
describes a larger domain of attraction than the traditional fault tolerant
controller design with fixed gains.
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FIGURE 7.1
ε(P ∗

1 , 1) and ε(P ∗
2 , 1).

Example 7.1 Consider the system of form (7.9) with

A =
[
3 2
3 40

]
, B =

[
40 0
0 40

]

and the following two possible fault modes:

Fault mode 1: Both of the two actuators are normal, that is,

ρ1
1 = ρ1

2 = 0

Fault mode 2: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

ρ2
1 = 1, 0 ≤ ρ2

2 ≤ a,

where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor. Let

R =
[
75.5284 11.3861
11.3861 6.2969

]
.
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Trajectories of closed-loop systems with adaptive controller in normal case.
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FIGURE 7.3
Trajectories of closed-loop systems with fixed gains controller in normal case.

When the fixed controller gains design method is given, we have that
γ∗ = 1. By solving the optimization problem (7.25), we obtain γ∗ = 0.8757.
Obviously, the optimal index γ is smaller for optimization problem (7.25).

We plot in Figure 7.1 the two ellipsoids ε(P ∗
1 , 1) (dot line) and ε(P ∗

2 , 1)
(solid line) where P ∗

1 is given by fixed controller gains design method and
P ∗

2 is given by solving optimization problem (7.25). As a comparison, we also
plot the trajectories of closed-loop systems with adaptive controller and fixed
gains controller, respectively. Figure 7.2 and Figure 7.3 show the trajectories
of closed-loop system in normal case for x(0) = (−0.7 0.8). Figure 7.4 and
Figure 7.5 show the trajectories of the closed-loop system in fault case for
x(0) = (0.3 0.01).

The fault case considered in the following simulation is: At 0 seconds, the
first actuator is outage and the second actuator becomes loss of effectiveness
by 50%.

In order to let the method of this section be more convincing, the following
engineering example is given.

Example 7.2 Consider a kind of aircraft system borrowed from the literature
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Trajectories of closed-loop systems with adaptive controller in fault case.
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Trajectories of closed-loop systems with fixed gains controller in fault case.

[15]. The dynamical description is given as (7.9) with

A =
[

0.4559 0.2114
−0.4359 4.0080

]
, B =

[−14.0539 −0.3462
−1.0385 −13.1539

]

and the fault modes are the same as the ones of Example 7.1.

Let

R =
[
43.4145 2.1555
2.1555 0.5534

]
.

By using the fixed controller gains design method, the optimal index is
obtained as γ∗ = 1. Correspondingly, by solving the optimization problem
(7.25), the optimal index is obtained as γ∗ = 0.8638. Obviously, the optimal
index γ is improved by using our optimal method.
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7.3 Output Feedback

7.3.1 Problem Statement

Consider an LTI plant described by

ẋ(t) = Ax(t) +Bσ(u(t))
y(t) = Cx(t) (7.28)

where x(t) ∈ Rn is the plant state, σ(u) ∈ Rm is the saturated control input.
A, B, C are known constant matrices of appropriate dimensions.

Then, the following problem will be considered in this section.

Problem 7.2 Find an adaptive controller such that in both normal operation
and fault cases, the domain of asymptotic stability is enlarged as much as
possible for a closed-loop system with actuator saturation.

Remark 7.4 For the above problem to be solved, it is necessary for the pair
(A,B(I − ρ)) to be stabilizable for each ρ ∈ {ρ1 · · · ρL}.

7.3.2 A Condition for Set Invariance

The dynamics with actuator faults (7.4) and saturation is described by

ẋ(t) = Ax(t) +B(I − ρ)σ(u(t))
y(t) = Cx(t) (7.29)

The controller structure is chosen as

ξ̇(t) = f(ξ(t), y), ξ(t) ∈ Rn

u(t) = CK(ρ̂(t))ξ(t) (7.30)

with

u(t) = CK(ρ̂(t))ξ(t) = (CK0 + CKa(ρ̂(t)) + CKb(ρ̂(t)))ξ(t) (7.31)

where ρ̂(t) is the estimation of ρ, CKa(ρ̂(t)) =
∑m

j=1 CKaj ρ̂j(t) and
CKb(ρ̂(t)) =

∑m
j=1 CKbj ρ̂j(t).

By Lemma 7.1, the saturated linear feedback, with ξ(t) ∈ ℘(H(ρ̂(t))), can
be expressed as

σ(CK(ρ̂(t))ξ(t)) =
∑2m−1

i=0
ηi[DiCK(ρ̂(t)) +D−

i H(ρ̂(t))]ξ(t) (7.32)

for some scalars 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1], such that
∑2m−1

i=0 ηi = 1, and the
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following equality holds

(I − ρ)σ(u(t)) =
∑2m−1

i=0
ηi[(I − ρ)DiCK0 +DiCKa(ρ)

−ρDiCKa(ρ̂) + (I − ρ̂(t))DiCKb(ρ̂(t)) +DiCKa(ρ̃(t))
+ρ̃DiCKb(ρ̂(t)) + (I − ρ)D−

i HK0 +D−
i HKa(ρ)

−ρD−
i HKa(ρ̂) + (I − ρ̂(t))D−

i HKb(ρ̂(t))
+D−

i HKa(ρ̃(t)) + ρ̃D−
i HKb(ρ̂(t))]ξ(t) (7.33)

where ρ̃(t) = ρ̂(t)−ρ. It should be noted that though CKa(ρ̂(t)) and CKb(ρ̂(t))
have the same forms, we deal with them in different ways in (7.33), which gives
more freedom and less conservativeness.

Let V (t) = xTPx +
∑m

j=1

ρ̃2
j (t)

lj
. If V̇ (t) < 0 for all x ∈ ε∗(P, δ)\{0}, the

domain ε∗(P, δ) is contractively invariant. Clearly, if ε∗(P, δ) is contractively
invariant, then it is inside the domain of attraction.

We note that the scalars ηi’s are functions of ξ and ρ̂ and their values are
available in real-time. These scalars in a way reflect the severity of control
saturation. In general, there are multiple choices of ηi’s satisfying the same
constraint, leading to nonunique representation of (7.32).

Now, by Lemma 7.2 we provide one choice of such ηi’s, which are Lips-
chitzian functions in ξ and ρ̂ and thus are particularly useful in our controller
design.

ηi(ξ(t), ρ̂(t)) =
m∏

j=1

[zj(1 − λj(ξ(t), ρ̂(t))) + (1 − zj)λj(ξ(t), ρ̂(t))](7.34)

By using the functions ηi(ξ(t), ρ̂(t))′s, the output feedback controller
(7.30) can be parameterized as

ξ̇(t) = (
∑2m−1

i=0
ηiAKi(ρ̂))ξ(t) + (

∑2m−1

i=0
ηiBKi(ρ̂))y(t)

u(t) = (I − ρ)σ(CK(ρ̂)ξ(t)) (7.35)

where

AKi(ρ̂) = AKi0 +AKia(ρ̂) +AKib(ρ̂)
BKi(ρ̂) = BKi0 +BKia(ρ̂) +BKib(ρ̂)
CK(ρ̂) = CK0 + CKa(ρ̂) + CKb(ρ̂)

BKia(ρ̂) =
∑m

j=1
ρ̂jBKiaj , BKib(ρ̂) =

∑m

j=1
ρ̂jBKibj

CKa(ρ̂) =
∑m

j=1
ρ̂jCKaj , CKb(ρ̂) =

∑m

j=1
ρ̂jCKbj

AKia(ρ̂) =
∑m

j=1
ρ̂jAKiaj

AKib(ρ̂) =
∑m

j=1

∑m

s=1
ρ̂j ρ̂sAKibjs +

∑m

j=1
ρ̂jAKibj
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Motivated by the quasi-LPV structure of both the plant and the controller,
we consider the following auxiliary LPV system, if ε(P, δ) ⊂ ℘([0 H(ρ̂)]) is
an invariant set.

ẋe(t) = Ae(η)xe(t) =
∑2m−1

i=0
ηi(Aeixe(t)), η ∈ Γ (7.36)

where xe = [xT (t) ξT (t)]T , η = [η0, η1, · · ·, η2m−1], and

Γ = {η ∈ R2m

:
∑2m−1

i=0
ηi = 1, 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1]}

Aei =
[

A B2(I − ρ)[DiCK(ρ̂) +D−
i H(ρ̂)]

BKi(ρ̂)C AKi(ρ̂)

]

The following theorem establishes conditions on the output-feedback con-
troller coefficient matrices under which the LPV system (7.36) is asymptoti-
cally stable with Lyapunov function.

Denote

Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂j ∈ {min
q

{ρq
j
}, max

q
{ρq

j}}, q ∈ I[1, L]}

and Bj = [0 · · · bj · · · 0] with B = [b1 · · · bm].

Theorem 7.2 ε∗(P, δ) is a contractively invariant set for normal and ac-
tuator failure cases, if there exist matrices 0 < N1 < Y1, AKi0, AKiaj ,
AKibjs, BKi0, BKiaj , BKibj , CK0, CKaj , CKbj , HK0, HKaj, HKbj , j ∈ I[1,m],
s ∈ I[1,m] and symmetric matrixes Θi, i ∈ I[0, 2m − 1] with

Θi =
[

Θi
11 Θi

12

ΘiT
12 Θi

22

]

and Θi
11, Θi

22 ∈ Rm(2n)×m(2n) such that the following inequalities hold for
all Di ∈ D and ε∗(P, δ) ⊂ ℘([0 H(ρ̂)]), i.e., |[0 H(ρ̂)]jxe| ≤ 1 for all xe ∈
ε∗(P, δ), j ∈ I[1,m].

Θi
22jj ≤ 0, j ∈ I[1,m], i ∈ I[0, 2m − 1]

Θi
11 + Θi

12Δ(ρ̂) + (Θi
12Δ(ρ̂))T + Δ(ρ̂)Θi

22Δ(ρ̂) ≥ 0, ρ̂ ∈ Δρ̂

[
Qi Ri

RT
i Si

]
+GT ΘiG < 0, i ∈ I[0, 2m − 1],

ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq (7.37)
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where

Ri =
[
Ri1 Ri2 · · · Rim

]
Qi =

[
Y1A−N1BKi0C + (Y1A−N1BKi0C)T T1i

∗ T2i

]

Rij =

⎡
⎣ −N1BKibjC −N1BKiajC T3i

N1BKibjC +N1BKiajCS

[
0
C⊥

]
T4i

⎤
⎦

Si = [Sijs], j, s ∈ I[1,m], Sijs =
[

0 T5i

T6i T7i

]

with

T1i = Y1B[(I − ρ)(DiCK0 +D−
i HK0) +DiCKa(ρ) +D−

i HKa(ρ)]

−N1AKi0 −N1AKia(ρ) +
[

0
C⊥

]T

ST [−Y1B2(DiCKa(ρ)

+D−
i HKa(ρ)) +N1AKia(ρ)] + (−N1A+N1BKi0C +N1BKia(ρ)C

− [N1BKia(ρ)CS]
[

0
C⊥

]
)T

T2i = −N1B[(I − ρ)(DiCK0 +D−
i HK0) +DiCKa(ρ) +D−

i HKa(ρ)]

+ (−N1B[(I − ρ)(DiCK0 +D−
i HK0) +DiCKa(ρ) +D−

i HKa(ρ)])T

+N1AKi0 +N1AKia(ρ) + (N1AKi0 +N1AKia(ρ))T

T3i = Y1B[−ρ(DiCKaj +D−
i HKaj) +DiCKbj +D−

i HKbj ]

−N1AKibj +
[

0
C⊥

]T

ST [Y1B((DiCKaj +D−
i HKaj)

− ρ(DiCKbj +D−
i HKbj)) −N1AKiaj ]

T4i = N1Bρ(DiCKaj +D−
i HKaj) −N1B(DiCKbj +D−

i HKbj) +N1AKibj

T5i = −Y1B
j(DiCKbs +D−

i HKbs) −N1AKibjs

+
[

0
C⊥

]T

STY1B
j(DiCKbs +D−

i HKbs)

T6i = (−Y1B
s(DiCKbj +D−

i HKbj) −N1AKibsj

+
[

0
C⊥

]T

STY1B
s(DiCKbj +D−

i HKbj))T

T7i = N1B
j(DiCKbs +D−

i HKbs) +N1AKibjs

+ [N1B
j(DiCKbs +D−

i HKbs) +N1AKibjs]T
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G =

⎡
⎢⎢⎣

⎡
⎣ I(2n)×(2n)

· · ·
I(2n)×(2n)

⎤
⎦ 0

0 Im(2n)×m(2n)

⎤
⎥⎥⎦

Δ(ρ̂) = diag[ρ̂1I(2n)×(2n) · · · ρ̂mI(2n)×(2n)].

and also ρ̂j(t) is determined according to the adaptive law

˙̂ρj = Proj[min
q

{ρq
j}, max

q
{ρq

j}]{L1j}

=

⎧⎪⎨
⎪⎩

0, if
ρ̂j = min

q
{ρq

j
} and L1j ≤ 0

or ρ̂j = max
q

{ρq
j} and L1j ≥ 0

L1j, otherwise

(7.38)

where

L1j = lj
∑2m−1

i=0
ηi{ξTO1[AKiaj −BDiCKaj −BjDiCKb(ρ̂) −BD−

i HKaj

−BjD−
i HKb(ρ̂)]ξ +

[
y
0

]T

ST [M1(BDiCKaj +BjDiCKb(ρ̂)

+BD−
i HKaj +BjD−

i HKb(ρ̂)) −O1AKiaj ]ξ + ξTO1BKiajCS

[
y
0

]
},

M1 = δY1, O1 = δN1. lj > 0(j ∈ I[1,m]) and δ > 0 are the adaptive law gains
to be chosen according to practical applications.

Proof 7.2 Choose the following Lyapunov function

V = xT
e Pxe +

∑m

j=1

ρ̃2
j(t)
lj

, (7.39)

By ρ̃(t) =ρ̂(t) − ρ and

BKia(ρ̃) = BKia(ρ̂) −BKia(ρ)
AKia(ρ̃) = AKia(ρ̂) −AKia(ρ)
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Then Aei can be written as

Aei = Aei1 +Aei2 +Aei3

Aei1 =
[

A Aei1a

[BKi0 +BKia(ρ) +BKib(ρ̂)]C Aei1b

]
Aei1a = B[(I − ρ)DiCK0 +DiCKa(ρ) − ρDiCKa(ρ̂)

+ (I − ρ̂)DiCKb(ρ̂) + (I − ρ)D−
i HK0 +D−

i HKa(ρ)

− ρD−
i HKa(ρ̂) + (I − ρ̂)D−

i HKb(ρ̂)]
Aei1b = AKi0 +AKa(ρ) +AKib(ρ̂)

Aei2 =
[

0 Aei2a

0 AKia(ρ̃)

]
, Aei3 =

[
0 0

BKia(ρ̃)C 0

]
Aei2a = BDiCKa(ρ̃) +Bρ̃DiCKb(ρ̂) +BD−

i HKa(ρ̃) +Bρ̃D−
i HKb(ρ̂)

Let P be of the following form

P =
[

M1 −O1

−O1 O1

]

with 0 < O1 < M1, which implies P > 0. Since C is of full rank, and C

satisfies CC⊥T = 0 and C⊥C⊥T nonsingular, it follows that
[

C
C⊥

]
is non-

singular. From (7.28), we have

Cx = y, C⊥x = C⊥x, x = S

[
y

C⊥x

]
(7.40)

where S =
[

C
C⊥

]−1

. Then, we have PAei2 =
[

0 Wai

0 Wbi

]
with

Wai = M1[BDiCKa(ρ̃) +Bρ̃DiCKb(ρ̂) +BD−
i HKa(ρ̃) +Bρ̃D−

i HKb(ρ̂)]
−O1AKia(ρ̃)

Wbi = O1[AKia(ρ̃) −BDiCKa(ρ̃) −Bρ̃DiCKb(ρ̂) −BD−
i HKa(ρ̃)

−Bρ̃D−
i HKb(ρ̂)]

which follows

[xT ξT ]PAei2[xT ξT ]T = xTWaiξ + ξTWbiξ

Thus, by (7.40), we have

xTWaiξ =
[
y
0

]T

STWaiξ + [xT ξT ]Aai1[xT ξT ]T

where

Aai1 =

⎡
⎣ 0

[
0
C⊥

]T

STWai

0 0

⎤
⎦ ,
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In the same way, from (7.40) we get

[xT ξT ]PAei3[xT ξT ]T = −xTO1BKia(ρ̃)Cx+ ξTO1BKia(ρ̃)Cx

= xT
e Aai2xe +Mai2

where

Aai2 =

⎡
⎣ −O1BKia(ρ̃)C 0

O1BKia(ρ̃)CS
[

0
C⊥

]
0

⎤
⎦

Mai2 = ξTO1BKia(ρ̃)CS
[
y
0

]

Then from the derivative of V (t) along the closed-loop system (7.36), it
follows

V̇ (t) = 2xT
e

∑2m−1

i=0
ηiPAeixe + 2

∑m

j=1

ρ̃j(t)̇̃ρj(t)
lj

= xT
e W0xe +W1

where

W0 =
∑2m−1

i=0
ηi[PAei1 + (PAei1)T ]

+
∑2m−1

i=0
ηi[Aai1 +Aai2 + (Aai1 +Aai2)T ]

W1 = 2ξT
∑2m−1

i=0
ηiWbiξ + 2

[
y
0

]T

ST
∑2m−1

i=0
ηiWaiξ

+ 2
∑2m−1

i=0
ηiMai2 + 2

∑m

j=1

ρ̃j(t)̇̃ρj(t)
lj

The design condition that V̇ (t) ≤ 0 is reduced to

W0 < 0, (7.41)

W1 ≤ 0 (7.42)

Since y and ξ are available on line, the adaptive laws can be chosen as (7.38)
for rendering (7.42) valid. (7.41) is equivalent to

∑2m−1

i=0
ηi{XAei1 +A∗

ai1 +A∗
ai2

+ [XAei1 +A∗
ai1 +A∗

ai2]
T } < 0 (7.43)

where

X =
[

Y1 −N1

−N1 N1

]
=
P

δ
, A∗

ai1 =
1
δ
Aai1, A

∗
ai2 =

1
δ
Aai2
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Notice that

XAei1 =
[

Y1A−N1[BKi0 +BKia(ρ) +BKib(ρ̂)]C Wc

−N1A+N1[BKi0 +BKia(ρ) +BKib(ρ̂)]C Wd

]
Wc = Y1B[(I − ρ)DiCK0 +DiCKa(ρ) − ρDiCKa(ρ̂)

+ (I − ρ̂)DiCKb(ρ̂) + (I − ρ)D−
i HK0 +D−

i HKa(ρ)

− ρD−
i HKa(ρ̂) + (I − ρ̂)D−

i HKb(ρ̂)]
−N1[AKi0 +AKa(ρ) +AKib(ρ̂)]

Wd = −N1B[(I − ρ)DiCK0 +DiCKa(ρ) − ρDiCKa(ρ̂)

+ (I − ρ̂)DiCKb(ρ̂) + (I − ρ)D−
i HK0 +D−

i HKa(ρ)

− ρD−
i HKa(ρ̂) + (I − ρ̂)D−

i HKb(ρ̂)]
+N1[AKi0 +AKa(ρ) +AKib(ρ̂)]

Furthermore (7.43) can be described by

W2(ρ̂) =
∑2m−1

i=0
ηi{Qi +

∑m

j=1
ρ̂jRij + (

∑m

j=1
ρ̂jRij)T

+
∑m

j=1

∑m

s=1
ρ̂j ρ̂sSijs} < 0

where Qi, Rij , Sijs, j, s ∈ I[1,m] are defined in (7.37). By Lemma 1, we can
get W2(ρ̂) < 0 if (7.37) holds, which implies W0 < 0. Together with adaptive
laws (7.38), it follows that V̇ (t) < 0 for any xe ∈ ℘([0 H(ρ̂)]), ρ ∈ {ρ1 · · · ρL},
ρq ∈ Nρq and ρ̂ satisfying (7.38).

If we take the following output-feedback controller with fixed parameter
matrices AKi0, BKi0, CK0, i ∈ I[0, 2m − 1]

ξ̇(t) = (
∑2m−1

i=0
ηiAKi0)ξ(t) + (

∑2m−1

i=0
ηiBKi0)y(t)

u(t) = (I − ρ)σ(CK0ξ(t)) (7.44)

then combining (7.44) with (7.28), it follows:

ẋe1(t) = Ae1(η)xe1(t) (7.45)

Ae1(η) =
∑2m−1

i=0 ηi(Ae1ixe1(t)), η ∈ Γ (7.46)

where xe1 = [xT (t) ξT (t)]T ,

Ae1i =
[

A B2(I − ρ)[DiCK0 +D−
i H0]

BKi0C2 AKi0

]

Based on system (7.45), the following lemma is presented.
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Lemma 7.3 Consider the closed-loop system described by (7.45), we have
that the following statements are equivalent:

(i) there exist a symmetric matrix X > 0 and controller K described by
(7.44) such that

AT
e1iX +XAe1i < 0

holds for ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq

(ii) there exist symmetric matrices Y1 and N1 with 0 < N1 < Y1, and
a controller described by (7.44) with AKi0 = AKei0, BKi0 = BKei0, CK0 =
CKe0, H0 = He0, i ∈ I[0, 2m − 1] such that[

Y1A−N1BKi0C + (Y1A−N1BKi0C)T T0

∗ T1

]
< 0 (7.47)

with

T0 = Y1B2(I − ρ)[DiCK0 +D−
i H0] −N1AKi0

+ (−N1A+N1BKi0C)T

T1 = −N1B2(I − ρ)[DiCK0 +D−
i H0] +N1AKi0

+ (−N1B2(I − ρ)[DiCK0 +D−
i H0] +N1AKi0)T

Proof 7.3 The proof is similar to the proof of Theorem 5.2. To avoid overlap,
it is omitted.

Next, a theorem is given to show that the condition in Theorem 7.2 for the
adaptive controller design is more relaxed than that in Lemma 7.3 for the
traditional controller design with fixed parameter matrices.

Theorem 7.3 If condition (i) or (ii) in Lemma 7.3 holds, then the condition
of Theorem 7.2 holds.

Proof 7.4 If condition (i) or (ii) in Lemma 7.3 holds, then it is easy to see
that the condition in Theorem 7.2 is feasible with AKiaj = AKibj = AKibjs =
BKiaj = BKibj = CKaj = CKbj = HKaj = HKbj = 0, i ∈ I[0, 2m − 1],
j ∈ I[1,m], s ∈ I[1,m]. The proof is completed.

7.3.3 Controller Design

From Theorem 7.2, we can obtain various controller gains and domains sat-
isfying the set invariance condition. So, how to choose the “largest” one of
them becomes an interesting problem. In this section, we will give a method
to find the “largest” domain.

In Theorem 7.2, a condition for the set ε∗(P, δ) to be inside the domain
of attraction is given. With the above shape reference sets, we can choose
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from all the ε∗(P, δ)’s that satisfy the condition of Theorem 7.2 such that the
quantity αR(ε∗(P, δ)) is maximized. The problem can be formulated as follows

sup α

s.t. (a) αXR ⊂ ε∗(P, δ),
(b) (7.37),
(c) ε∗(P, δ) ⊂ ℘([0 H(ρ̂)]). (7.48)

However, by Definition 7.4, we know that (a) and (c) cannot be shown as
LMIs directly. Then the following proposition will solve this problem.

Proposition 7.3 Obviously, ε∗(P, δ) ⊂ ε(P, δ), which implies that (c) holds
if (c1) holds, where

(c1) ε(P, δ) ⊂ ℘([0 H(ρ̂)]). (7.49)

By Definition 7.4, we have

xT
e Pxe +

∑m

j=1

ρ̃2
j(t)
lj

≤ δ ⇔ xT
e

P

δ
xe +

∑m

j=1

ρ̃2
j(t)
δlj

≤ 1.

Let F (t) =
∑m

j=1

ρ̃2
j (t)

δlj
. Then, by (7.38) and (7.3), it follows that ρ̃j(t) ≤

max
j

{ρq
j} − min

j
{ρq

j
}. We can choose lj and δ sufficiently large so that F (t) is

sufficiently small. Then the conclusion can be drawn as follows:
For system (7.29) and controller (7.30) there must exist δ > 0 and li > 0

such that the closed-loop system (7.36) is asymptotically stable in domain
ε−(P, δ) if (b) and (c1) hold.

Then we can get the “largest” domain of asymptotic stability by solving
the following optimization problem

sup α

s.t. (a1) αXR ⊂ ε(P, δ),
(b)

(c1) (7.50)

If the given shape reference set XR is a polyhedron as defined in Definition
7.5, then Constraint (a1) is equivalent to

α2xT
q (
P

δ
)xq ≤ 1 ⇔

[
1/α2 xT

q (P
δ )

(P
δ )xq (P

δ )

]
≥ 0, (7.51)

for all q ∈ I[1, l]. If XR is a ellipsoid ε(R, 1), then (a1) is equivalent to

R

α2
≥ P

δ
⇔

[
(1/α2)R (P

δ )
(P

δ ) (P
δ )

]
≥ 0. (7.52)
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Condition (c1) is equivalent to

δ[0 h(ρ̂)]jP−1[0 h(ρ̂)]Tj ≤ 1 ⇔
[

1 [0 h(ρ̂)]j
∗ (P

δ )

]
≥ 0. (7.53)

for all j ∈ I[1,m], where [0 h(ρ̂)]j is the jth row of [0 H(ρ̂)]. We have that
(7.52) is equivalent to the following inequalities.

(c2)
[ −1 −[0 HK0s]

∗ −X
]

+
m∑

j=1

ρ̂j

[
0 [0 −HKajs −HKbjs]
∗ 0

]
≤ 0, ρ̂ ∈ Δρ̂

where HKajs is the sth row of HKaj , s ∈ I[1,m].
If XR is a polyhedron, then from (7.49) and (7.52), the optimization prob-

lem (7.49) is equivalent to

inf γ

s.t. (a2)
[
γ xT

q X
Xxq X

]
≥ 0, q ∈ I[1, l],

(b), (c2), (7.54)

where γ = 1/α2.
If XR is an ellipsoid, we need only to replace (a2) with

(a3)
[
γR X
X X

]
≥ 0. (7.55)

It should be noted that condition (7.37) is not convex. But when
CK0, CKaj , CKbj , HK0, HKaj , HKbj are given, they become LMIs.

From Theorem 7.2, we have the following algorithm to design the adaptive
output feedback controller.

Algorithm 7.1

Step 1 Suppose that all states of system (7.28) can be measured. Minimize the
index γ to design the state-feedback controller.

Then, the matrices CK0, CKaj , CKbj , HK0, HKaj, HKbj can be given.
Step 2 Solve the following optimization problem

inf γ

s.t. (a2), (b), (c2) (7.56)

Then the resulting AKi0, AKiaj , AKibjs, BKi0, BKiaj , BKibj , CK0, CKaj ,
CKbj , i ∈ I[0, 2m − 1], j ∈ I[1,m], s ∈ I[1,m] will form the dynamic output
feedback controller gains.
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Remark 7.5 Step 1 is to determine matrices CK0, CKaj , CKbj , HK0, HKaj ,
HKbj, which solves the corresponding adaptive controller design problem via
state feedback. This procedure is adopted from the last section, and convex
conditions are described. To avoid overlap, the conditions appearing in Step 1
will be omitted.

From Lemma 7.3, we have the following algorithm to design the fault-
tolerant controller with fixed gains.

Algorithm 7.2

Step 1 Suppose that all states of system (7.28) can be measured. Minimize the
index γ to design the state-feedback controller.

Then, the matrices CK0, HK0 can be given.
Step 2 Solve the following optimization problem

inf γ

s.t. (a2), (7.47), (c2) (7.57)

Then the resulting AKi0, BKi0, CK0, i ∈ I[0, 2m−1] will form the dynamic
output feedback controller gains.

Remark 7.6 Step 1 is to determine matrices CK0, HK0, which solves the
corresponding controller design problem via state feedback.

Remark 7.7 In Step 1, for some cases, the magnitude of the designed gains
CK0 (CKaj and CKbj) may be too large to be applied in Step 2. For solving the
problem, by adding the following constraints, where Q and YK0 are variables
in conditions of Step 1

Q > αI, YK0Y
T
K0 < βI, (7.58)

then the magnitude of CK0 can be reduced. In fact, by CK0 = YK0Q
−1 and

(7.58), it follows that
‖ CK0 ‖<

√
β/α.

The similar method can be used for the gains CKaj and CKbj .

7.3.4 Example

Example 7.3 Consider the system of form (7.29) with

A =
[

0.01 0.1
0.1 0.01

]
, B =

[
10 0
0 10

]
, C = [1 0]

and the following two possible fault modes:
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Fault mode 1: Both of the two actuators are normal, that is,

ρ1
1 = ρ1

2 = 0

Fault mode 2: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

ρ2
1 = 1, 0 ≤ ρ2

2 ≤ a,

where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor.

Let

R =

⎡
⎢⎢⎣

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

⎤
⎥⎥⎦

After implementing Algorithm 7.2, we have that γ∗ = 1.9669. When Algo-
rithm 7.1 is used to design adaptive output-feedback controller, the optimal
index is given as γ∗ = 0.7648. Obviously, the optimal index γ is smaller
for Algorithm 7.1. The phenomenon indicates the superiority of our adaptive
method.

7.4 Conclusion

In this chapter, an adaptive fault-tolerant controllers design method has been
presented for linear time-invariant systems with actuator saturation. The de-
sign is developed in the framework of linear matrix inequality (LMI) approach,
which can enlarge the domain of asymptotic stability of closed-loop systems
in the cases of actuator saturation and actuator failures. Two examples have
been given to illustrate the efficiency of the design method.



8

ARC with Actuator Saturation and
L2-Disturbances

8.1 Introduction

The problem of disturbance rejection for linear systems subject to actuator
saturation has been addressed by many authors ([63, 66, 97, 102, 142]). Un-
der the boundedness assumption on the magnitude of the disturbances and in
the absence of initial condition, the L2-gain analysis and minimization in the
context of both state and output feedback were carried out in [101, 102]. In
[66], a method for analysis and maximization of an ellipsoid, which is invari-
ant under magnitude bounded, but persistent disturbances, is proposed. The
works of [63, 97, 109, 120, 127] all consider the situation where disturbances
are bounded in energy. The works of [63, 109, 120] formulated and solved the
problem of stability analysis and design as an optimization problem with LMI
or BMI constraints. In [67, 68], authors presented LMI-based synthesis tools
for regional stability and performance of linear anti-windup compensators for
linear control systems. [32] presents a method for the analysis and control
design of linear systems in the presence of actuator saturation and L2 distur-
bances.

This chapter deals with the problem of designing adaptive reliable H∞
controllers (ARC). The actuator fault model, which covers the outage cases and
the possibility of partial faults, is considered. The disturbance tolerance ability
of the closed-loop system is measured by an optimal index. Based on the online
estimation of eventual faults, the adaptive fault-tolerant controller parameters
are updating automatically to compensate the fault effects on systems. The
designs are developed in the framework of linear matrix inequality (LMI)
approach, which can guarantee the disturbance tolerance ability and adaptive
H∞ performances of closed-loop systems in the cases of actuator saturation
and actuator failures.

169
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8.2 State Feedback

8.2.1 Problem Statement

Consider an LTI plant described by

ẋ(t) = Ax(t) +B1ω(t) +B2σ(u),
z(t) = Cx(t) +Dσ(u), (8.1)

where x(t) ∈ Rn is the plant state, σ(u) ∈ Rm is the saturated control input,
z(t) ∈ Rs is the regulated output and ω(t) ∈ Rd is an exogenous disturbance
in L2[0,∞], respectively. A, B1, B2, C, D, are known constant matrices of
appropriate dimensions.

To formulate the fault-tolerant control problem, the considered actuator
failures are the same as those in Chapter 3, that is

uF
jq(t) = (1 − ρq

j)σ(uj(t)), 0 ≤ ρq
j
≤ ρq

j ≤ ρq
j ,

j ∈ I[1,m], q ∈ I[1, L], (8.2)

For convenience in the following sections, for all possible fault modes L,
the following uniform actuator fault model is exploited:

uF (t) = (I − ρ)σ(u(t)), ρ ∈ {ρ1 · · · ρL} (8.3)

and ρ can be described by ρ = diag[ρ1, ρ2, · · ·ρm].
Denote

Nρq = {ρq|ρq =diag[ρq
1, ρ

q
2, · · ·ρq

m], ρq
j = ρq

j
or ρq

j = ρq
j}. (8.4)

Thus, the set Nρq contains a maximum of 2m elements.
For a linear system, the disturbance rejection capability can be measured

by the L2 gain, the largest ratio between the L2 norms of the output and
the disturbance. However, this gain may not be well defined for closed-loop
system and the state feedback, since a sufficiently large disturbance may drive
the state and the output of the system unbounded. For this reason, we need
to restrict our attention to the class of disturbances whose energy is bounded
by a given value, i.e.,

Wδ :=
{
ω : R+ → Rd :

∫ ∞

0

ωT (t)ω(t)dt ≤ δ

}
. (8.5)

The following problem will be considered in this section: The first question
that needs to be answered is, what is the maximal value of δ such that the
state will be bounded for all ω ∈ Wδ? Here we will consider the situation,
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zero initial state. The problem related to this question is referred to as dis-
turbance tolerance. The disturbance rejection capability can be measured by
the restricted L2 gain over Wδ. In this section we will consider L2 gain and
Wδ at the same time.

Remark 8.1 For the above problem to be solvable, it is necessary for the pair
(A,B2(I − ρ)) to be stabilizable for each ρ ∈ {ρ1 · · · ρL}.

8.2.2 ARC Controller Design

The dynamics with actuator faults (8.3) and saturation is described by

ẋ(t) = Ax(t) +B1ω +B2(I − ρ)σ(u(t)),
z(t) = Cx(t) +D(I − ρ)σ(u(t)). (8.6)

The controller structure is chosen as

u(t) = K(ρ̂(t))x(t)
= (K0 +Ka(ρ̂(t)) +Kb(ρ̂(t)))x(t), (8.7)

where ρ̂(t) is the estimation of ρ,

Ka(ρ̂(t)) =
∑m

j=1
Kaj ρ̂j(t), Kb(ρ̂(t)) =

∑m

j=1
Kbj ρ̂j(t).

Remark 8.2 From (8.7), we have that different from the fixed gain con-
troller u(t) = K0x(t), controller (8.7) has two additional terms Ka(ρ̂(t)) and
Kb(ρ̂(t)) which are functions of ρ̂ and their values are available in real-time.
Through the estimation of ρ, controller gains can be adjusted online, which
gives more freedom and less conservativeness.

By Lemma 7.1, the saturated linear feedback, with x ∈ ℘(H(ρ̂)), can be
expressed as

σ(K(ρ̂(t))x(t)) =
∑2m−1

i=0
ηi[DiK(ρ̂(t)) +D−

i H(ρ̂(t))]x(t) (8.8)

for some scalars 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1], such that
∑2m−1

i=0 ηi = 1, and the
following equality holds

(I − ρ)σ(u(t)) =
∑2m−1

i=0
ηi[(I − ρ)DiK0 +DiKa(ρ)

− ρDiKa(ρ̂) + (I − ρ̂(t))DiKb(ρ̂(t)) +DiKa(ρ̃(t))

+ ρ̃DiKb(ρ̂(t)) + (I − ρ)D−
i H0 +D−

i Ha(ρ)

− ρD−
i Ha(ρ̂) + (I − ρ̂(t))D−

i Hb(ρ̂(t)) +D−
i Ha(ρ̃(t))

+ ρ̃D−
i Hb(ρ̂(t))]x(t), (8.9)
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where ρ̃(t) = ρ̂(t) − ρ. Though Ka(ρ̂(t)) and Kb(ρ̂(t)) have the same forms,
we deal with them in different ways in (8.9), which gives more freedom and
less conservativeness.

Denote

Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂j ∈ {min
q

{ρq
j
}, max

q
{ρq

j}}, q ∈ I[1, L]}

and Bj = [0 · · · bj · · · 0] with B = [b1 · · · bm].
We note that the scalars ηi’s are functions of x and ρ̂ and their values are

available in real-time. These scalars in a way reflect the severity of control
saturation. In general, there are multiple choices of ηi’s satisfying the same
constraint, leading to nonunique representation of (8.8).

Now, by Lemma 7.2 we provide one choice of such ηi’s, which are Lips-
chitzian functions in ξ and ρ̂ and thus are particularly useful in our controller
design.

ηi(ξ(t), ρ̂(t)) =
m∏

j=1

[zj(1 − λj(ξ(t), ρ̂(t))) + (1 − zj)λj(ξ(t), ρ̂(t))] (8.10)

Then, ηi’s are functions Lipschitz in x and ρ̂, such that,
∑2m−1

i=0 ηi = 1,
0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1]. Moreover, they satisfy relation (8.8).

By using the functions ηi(x(t), ρ̂(t))’s and controller (8.7), plant (8.6) can
be written in a quasi-LPV form as follows:

ẋ(t) = Ax(t) +B2

∑2m−1

i=0
ηi[(I − ρ)Di(K0 +Ka(ρ̂(t))

+Kb(ρ̂(t))) + (I − ρ)D−
i (H0 +Ha(ρ̂(t))

+Hb(ρ̂(t)))]x(t) +B1ω. (8.11)

In addition, we consider the following auxiliary LPV system, of which
the closed-loop system comprising of (8.6) and (8.7) is a special case, for
∀ x(t) ∈ ε∗(P, δ∗) ⊂ ℘(H(ρ̂))

ẋ(t) = A(η)x(t) +B1ω, η ∈ Γ (8.12)

where η = [η0, η1, · · ·, η2m−1], and

Γ = {η ∈ R2m

:
∑2m−1

i=0
ηi = 1, 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1]},

A(η) = A+B2

∑2m−1

i=0
ηi[(I − ρ)DiK0 +DiKa(ρ)

− ρDiKa(ρ̂) + (I − ρ̂(t))DiKb(ρ̂(t)) +DiKa(ρ̃(t))

+ ρ̃DiKb(ρ̂(t)) + (I − ρ)D−
i H0 +D−

i Ha(ρ)

− ρD−
i Ha(ρ̂) + (I − ρ̂(t))D−

i Hb(ρ̂(t)) +D−
i Ha(ρ̃(t))

+ ρ̃D−
i Hb(ρ̂(t))].
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Before presenting the main result of this section, denote

N0i = AX +B2(I − ρ)DiY0 + (AX +B2(I − ρ)DiY0)T

+B2

∑m

j=1
ρjDiYaj + (B2

∑m

j=1
ρjDiYaj)T

+B2(I − ρ)D−
i O0 + (B2(I − ρ)D−

i O0)T

+B2

∑m

j=1
ρjD

−
i Oaj + (B2

∑m

j=1
ρjD

−
i Oaj)T +B1B

T
1 ,

G =

⎡
⎢⎢⎣

⎡
⎣ In×n

· · ·
In×n

⎤
⎦ 0

0 Imn×mn

⎤
⎥⎥⎦ ,

Z1i = −B2ρDiYa +B2DiYb −B2ρD
−
i Oa +B2D

−
i Ob,

Ui = [CX +D(I − ρ)DiY0 +D(I − ρ)D−
i O0

D(I − ρ)(Di(Ya + Yb) +D−
i (Oa +Ob))],

Z2i =

⎡
⎣ −B1

2Di

...
−Bm

2 Di

⎤
⎦Yb + (

⎡
⎣ −B1

2Di

...
−Bm

2 Di

⎤
⎦Yb)T

+

⎡
⎣ −B1

2D
−
i

...
−Bm

2 D
−
i

⎤
⎦Ob + (

⎡
⎣ −B1

2D
−
i

...
−Bm

2 D
−
i

⎤
⎦Ob)T ,

Ya = [Ya1 Ya2....Yam], Yb = [Yb1 Yb2....Ybm],
Oa = [Oa1 Oa2....Oam], Ob = [Ob1 Ob2....Obm],

Δ(ρ̂) = diag[ρ̂1In×n · · · ρ̂mIn×n].

and the adaptive law is defined by

˙̂ρj = Proj[min
q

{ρq
j}, max

q
{ρq

j}]{L1j}

=

⎧⎪⎨
⎪⎩

0, if
ρ̂j = min

q
{ρq

j
} and L1j ≤ 0

or ρ̂j = max
q

{ρq
j} and L1j ≥ 0

L1j, otherwise

(8.13)

with

L1j = −ljxT (t)[PB2(
∑2m−1

i=0
ηiDi)Kaj + PBj

2(
∑2m−1

i=0
ηiDi)Kb(ρ̂)

+ PB2(
∑2m−1

i=0
ηiD

−
i )Haj + PBj

2(
∑2m−1

i=0
ηiD

−
i )Hb(ρ̂)]x(t),

P = X−1,Kaj = YajX
−1,Kbj = YbjX

−1, Haj = OajX
−1, Hbj = ObjX

−1

where lj > 0(j ∈ I[1,m]) are the adaptive law gain to be chosen according
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to practical applications. The matrices X, Y0, Yaj , Ybj , O0, Oaj , Obj , j ∈
I[1, m], involved in above notations and definition are decision variables to
be determined.

Theorem 8.1 Let rf > 0, rn > 0 and δ > 0 be given constants, then the
following two conditions are satisfied

(I) The trajectories of the closed-loop system that start from the origin will
remain inside the domain ε∗(P, δ∗) for every ω ∈ Wδ.

(II) In normal case, i.e., ρ = 0,

∫ ∞

0

zT (t)z(t)dt ≤ r2n

∫ ∞

0

ωT (t)ω(t)dt+ r2n
∑m

j=1

ρ̃2
j(0)
lj

, for x(0) = 0

and in actuator failures cases, i.e., ρ ∈ {ρ1 · · · ρL},
∫ ∞

0

zT (t)z(t)dt ≤ r2f

∫ ∞

0

ωT (t)ω(t)dt+ r2f
∑m

j=1

ρ̃2
j(0)
lj

, for x(0) = 0

whereρ̃(t) = diag{ρ̃1(t) · · · ρ̃m(t)}, ρ̃j(t) = ρ̂j(t) − ρj, if there exist matrices
X > 0, O0, Oaj , Obj , Y0, Yaj , Ybj , j ∈ I[1,m] and symmetric matrices Θi,
i ∈ I[0, 2m − 1], with

Θi =
[

Θi
11 Θi

12

ΘiT
12 Θi

22

]

and Θi
11, Θi

22 ∈ Rmn×mn such that the following inequalities (8.15) hold for
all Di ∈ D, ε∗(P, δ∗) ⊂ ℘(H(ρ̂)), and the controller gain is given by

K(ρ̂) = K0 +
∑m

j=1
ρ̂jKaj +

∑m

j=1
ρ̂jKbj . (8.14)

where ρ̂j is determined according to the adaptive law (8.13), K0 = Y0X
−1,

Kaj = YajX
−1, Kbj = YbjX

−1.

Θi
22jj ≤ 0, j ∈ I[1,m], i ∈ I[0, 2m − 1]

Θi
11 + Θi

12Δ(ρ̂) + (Θi
12Δ(ρ̂))T + Δ(ρ̂)Θi

22Δ(ρ̂) ≥ 0, ρ̂ ∈ Δρ̂

[
N0i Z1i

ZT
1i Z2i

]
+

1
r2n
UT

i Ui +GT ΘiG < 0, i ∈ I[0, 2m − 1],

ρ = 0[
N0i Z1i

ZT
1i Z2i

]
+

1
r2f
UT

i Ui +GT ΘiG < 0, i ∈ I[0, 2m − 1],

ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq (8.15)
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Proof 8.1 We will prove (II) firstly. Choose the following Lyapunov function

V (t) = x(t)TPx(t) +
∑m

j=1

ρ̃2
j(t)
lj

, (8.16)

then from the derivative of V (t) along the closed-loop system, it follows

V̇ (t) +
1
r2f
zT (t)z(t) − ωT (t)ω(t)

≤M + xT (PB1B
T
1 P )x+

1
r2f
NTN − (ωT − xTPB1)(ω −BT

1 Px),

where

M = xT
∑2m−1

i=0
ηi(M1 +MT

1 )x+ 2xTPB2

∑2m−1

i=0
ηi[DiKa(ρ̃) + ρ̃DiKb(ρ̂)

+D−
i Ha(ρ̃) + ρ̃D−

i Hb(ρ̂)]x+ 2
∑m

j=1

ρ̃j(t)̇̃ρj(t)
lj

,

M1 = PA+ PB2[(I − ρ)DiK0 +DiKa(ρ) − ρDiKa(ρ̂) + (I − ρ̂(t))DiKb(ρ̂)

+ (I − ρ)D−
i H0 +D−

i Ha(ρ) − ρD−
i Ha(ρ̂) + (I − ρ̂(t))D−

i Hb(ρ̂)],

N =
∑2m−1

i=0
ηi{C +D(I − ρ)[DiK(ρ̂(t)) +D−

i H(ρ̂(t))]}x

Let B = [b1 · · · bm] and Bj = [0 · · · bj · · · 0], then

PB2ρ̃DiKb(ρ̂) =
∑m

j=1
ρ̃jPB

j
2DiKb(ρ̂),

PB2ρ̃D
−
i Hb(ρ̂) =

∑m

j=1
ρ̃jPB

j
2D

−
i Hb(ρ̂),

PB2DiKa(ρ̃) =
∑m

j=1
ρ̃jPB2DiKaj,

PB2D
−
i Ha(ρ̃) =

∑m

j=1
ρ̃jPB2D

−
i Haj .

Furthermore, we have

V̇ (t) +
1
r2f
zT (t)z(t) − ωT (t)ω(t)

≤M + xT (PB1B
T
1 P )x+

1
r2f
NTN.

Let X = P−1, Y0 = K0X, Yaj = KajX, Ybj = KbjX, O0 = H0X, Oaj =
HajX, Obj = HbjX, j ∈ I[1,m]. Choose the adaptive laws as (8.13), then it
is sufficient to show that

V̇ (t) +
1
r2f
zT (t)z(t) − ωT (t)ω(t) < 0, (8.17)
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if for any ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq ,

∑2m−1

i=0
ηi[N0i +N1i(ρ̂j) +N2i(ρ̂j)] +

1
r2f
WTW < 0,

where

W =
∑2m−1

i=0
ηi[CX +D(I − ρ)DiY0 +D(I − ρ)D−

i O0 +N3i(ρ̂j)],

N0i = AX +B2(I − ρ)DiY0 + (AX +B2(I − ρ)DiY0)T

+B2

∑m

j=1
ρjDiYaj + (B2

∑m

j=1
ρjDiYaj)T

+B2(I − ρ)D−
i O0 + (B2(I − ρ)D−

i O0)T

+B2

∑m

j=1
ρjD

−
i Oaj + (B2

∑m

j=1
ρjD

−
i Oaj)T +B1B

T
1 ,

N1i(ρ̂j) = −B2ρDi

∑m

j=1
ρ̂jYaj +B2

∑m

j=1
ρ̂jDiYbj

+ (B2

∑m

j=1
ρ̂jDiYbj −B2ρDi

∑m

j=1
ρ̂jYaj)T

−B2ρD
−
i

∑m

j=1
ρ̂jOaj +B2

∑m

j=1
ρ̂jD

−
i Obj

+ (B2

∑m

j=1
ρ̂jD

−
i Obj −B2ρD

−
i

∑m

j=1
ρ̂jOaj)T ,

N2i(ρ̂j) =
∑m

j=1

∑m

p=1
ρ̂j ρ̂p(−Bj

2DiYbp − Y T
bjDiB

pT
2

−Bj
2D

−
i Obp −OT

bjD
−
i B

pT
2 ),

N3i(ρ̂j) =
∑m

j=1
ρ̂jD(I − ρ)[Di(Yaj + Ybj) +D−

i (Oaj +Obj)].

By Lemma 2.10 and (8.15), it follows that (8.17) holds for any x ∈
℘(H(ρ̂)), ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq and ρ̂ satisfying (8.13). The proofs for
the normal case of closed-loop system (8.11) are similar, and omitted here.

To prove item (I):

V̇ (t) ≤M + xTPB1ω + ωTBT
1 Px.

Noting that

xTPB1ω + ωTBT
1 Px ≤ xTPB1B

T
1 Px+ ωTω,

we have

V̇ (t) ≤M + xTPB1B
T
1 Px+ ωTω.

Then by the proof of item (II), we have

V̇ ≤ ωTω
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which implies that

V (x(t)) ≤
∫ ∞

0

ωT (t)ω(t)dt+
∑m

j=1

ρ̃2
j(0)
lj

≤ δ∗

for x(0) = 0.
Then, the conclusion can be drawn that trajectories of the closed-loop sys-

tem that start from the origin will remain inside ε∗(P, δ∗) for every ω ∈ Wδ.

Corollary 8.1 The adaptive H∞ performance indexes are no larger than rn
and rf in normal and actuator failure cases for closed-loop system (8.11), if
(8.15) holds for rf > rn > 0, correspondingly, the controller gain and adaptive
law are given by (8.13) and (8.14), respectively.

Proof 8.2 Let F (0) =
∑m

j=1

ρ̃2
j (0)

lj
. Then, by (8.13) and (8.2), it follows that

ρ̃j(0) ≤ max
j

{ρq
j} − min

j
{ρq

j
}. We can choose lj sufficiently large so that F (0)

is sufficiently small. Thus the conclusion follows from the item (II) and Defi-
nition 3.1.

From Theorem 8.1, we can optimize the adaptive H∞ performance in normal
and fault cases and the disturbance tolerance level δ.

Let rn and rf denote the adaptive H∞ performance bounds for the nor-
mal case and fault cases of the closed-loop system (8.12). Let δ denote the
disturbance tolerance level. Then rn, rf are minimized and δ is maximized if
the following optimization problem is solvable

min η = αηn + βηf + γηδ

s.t. (a) (8.15),
(b) ε∗(P, δ∗) ⊂ ℘(H(ρ̂)), (8.18)

where ηn = r2n, ηf = r2f , ηδ = 1
δ∗ = 1

δ+max{P
m
j=1

ρ̃2
j
(t)

lj
}

and α, β, γ are

weighting coefficients.
However, by Definition 7.2, we have that (b) can not be shown as LMIs

directly. Obviously, ε∗(P, δ∗) ⊂ ε(P, δ∗), which implies that (b) can be replaced
with (b1).

(b1) ε(P, δ∗) ⊂ ℘(H(ρ̂)). (8.19)

Condition (b1) is equivalent to

δ∗h(ρ̂)jP
−1h(ρ̂)T

j ≤ 1 ⇔
[

1
δ∗ h(ρ̂)jP

−1

∗ P−1

]
≥ 0. (8.20)

for all j ∈ I[1,m], where h(ρ̂)j is the jth row of H(ρ̂). We have that (8.20) is
equivalent to the following inequalities.

(b2)
[ −ηδ −O0s

∗ −X
]

+
m∑

j=1

ρ̂j

[
0 −Oajs −Objs

∗ 0

]
≤ 0, ρ̂ ∈ Δρ̂
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where Oajs is the sth row of Oaj , s ∈ I[1,m].
The following algorithm is given to design adaptive H∞ controller

Algorithm 8.1

Step 1 Solve the following optimization problem:

min η = αηn + βηf + γηδ

s.t. (8.15), (b2) (8.21)

Then, with optimal solutions ηn, ηf , ηδ, X, Y0, Yaj , Ybj , O0, Oaj , Obj , j ∈
I[1, m], go to Step 2.
Step 2 Determine the controller parameter matrices K0, Kaj , Kbj , j ∈ I[1, m],
by (8.14).
Step 3 Determine the adaptive laws (8.13).

Then an adaptive fault-tolerant controller is designed.

Remark 8.3 Theorem 8.1 gives a sufficient condition for the existence of an
adaptive fault tolerant H∞ controller via state feedback. In Theorem 8.1, if set
Yaj = 0, Ybj = 0, Oaj = 0, Obj = 0, j ∈ I[1,m], the condition of Theorem 8.1
reduces to

Qi +
1
r2n
JT

i Ji < 0, i ∈ I[0, 2m − 1], ρ = 0 (8.22)

Qi +
1
r2f
JT

i Ji < 0, i ∈ I[0, 2m − 1],

ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq (8.23)

where

Qi = AX +B2(I − ρ)DiY0 + (AX +B2(I − ρ)DiY0)T

+B2(I − ρ)D−
i O0 + (B2(I − ρ)D−

i O0)T +B1B
T
1

Ji = CX +D(I − ρ)DiY0 +D(I − ρ)D−
i O0.

From [66], we have that the following two conditions are satisfied
(i) The trajectories of the closed-loop system (8.6) with u = K0x, K0 =

Y0X
−1, that start from the origin will remain inside the domain ε(P, δ) for

every ω ∈ Wδ

(ii) The H∞ performance indexes are no larger than rn and rf for normal
and actuator failure cases, respectively, if there exist matrices X > 0, O0,
Y0, such that the inequalities (8.22) and (8.23) hold for all Di ∈ D and
ε(P, δ) ⊂ ℘(H0), where P = X−1, H0 = O0X

−1. This just gives a design
method for traditional fault tolerantH∞ controllers via fixed gains. The above
fact shows that the design condition for adaptive fault tolerantH∞ controllers
given in Theorem 8.1 is more relaxed than that described by (8.22) and (8.23)
for the traditional fault tolerant H∞ controller design with fixed gains.
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FIGURE 8.1
Response curve of the first state in normal case with adaptive controller (solid)
and the fixed gain controller (dashed).

8.2.3 Example

Example 8.1 Consider the system of the form (8.1) with

A =
[
3 2
3 40

]
, B1 =

[
1 0
1 0

]
, B2 =

[
40 0
0 40

]
,

C =
[
4 0 0
0 0 0

]T

, D =
[
0 0.5 0
0 0 1

]T

and the following two possible fault modes:

Fault mode 1: Both of the two actuators are normal, that is,

ρ1
1 = ρ1

2 = 0.

Fault mode 2: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

ρ2
1 = 1, 0 ≤ ρ2

2 ≤ a,
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FIGURE 8.2
Response curve of the first state in fault case with adaptive controller (solid)
and the fixed gain controller (dashed).
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FIGURE 8.3
Response curves of the states with adaptive controller in normal case.

where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor.

Let α = 10, β = 1, γ = 10, the optimal indexes with fixed controller gains
are ηn = 0.1963, ηf = 9.8933, ηδ = 20.5385, η = 217.2408. By solving the
optimization problem (8.21), the optimal indexes can be given as ηn = 0.5881,
ηf = 9.1236, ηδ = 9.6701, η = 111.7048. In order to get the smaller number
for every optimal index, we choose α = 110, β = 0.2, γ = 0.5. Then we get
ηn = 0.1676, ηf = 7.1242, ηδ = 18.6399. This phenomenon indicates that
the three indexes are smaller when Algorithm 8.1 is used, which indicates the
superiority of our adaptive method.

To illustrate the effectiveness of the proposed adaptive method, we give
the following simulations.

The fault case considered in the following simulation is : At 0 second, the
first actuator is outage. Here, we choose l1 = l2 = 100.

Firstly, we consider the H∞ performance. The disturbance is given as

ω1(t) = ω2(t) =
{

cos(t), 4.2 ≤ t ≤ 6.9
0, otherwise
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FIGURE 8.4
Response curves of the states with fixed gain controller in normal case.

Figure 8.1 and Figure 8.2 show the response curves of the first state with
the adaptive and fixed gain controller in normal and fault case, respectively.
It is easy to see our adaptive H∞ controller can achieve better responses than
the traditional controller with fixed gains in both normal case and fault case
just as theoretic results have proved.

Then, we consider the disturb tolerance problem. The disturbance is given
as

ω1(t) = ω2(t) =
{

21.8, 4 ≤ t ≤ 5
0, otherwise (8.24)

Figure 8.3 shows the response curves of the states with the adaptive controller
in normal case, Figure 8.4 shows the responses curves of the states with the
fixed gain controller in normal case. Obviously, under the disturbance (8.24),
the closed-loop system with the adaptive H∞ controller is still stable. How-
ever, the closed-loop system with the fixed gains controller is unstable. This
phenomenon indicates the superiority of our adaptive method.
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8.3 Output Feedback

8.3.1 Problem Statement

Consider an LTI plant described by

ẋ(t) = Ax(t) +B1ω(t) +B2σ(u)
z(t) = C1x(t) +D12σ(u)
y(t) = C2x(t) +D21ω(t) (8.25)

where x(t) ∈ Rn is the plant state, σ(u) ∈ Rm is the saturated control input,
y(t) ∈ Rp is the measured output, z(t) ∈ Rs is the regulated output and
ω(t) ∈ Rd is an exogenous disturbance in L2[0,∞], respectively. A, B1, B2,
C1, C2, D12, and D21 are known constant matrices of appropriate dimensions.

The following problem will be considered in this section: The first question
that needs to be answered is, what is the maximal value of δ such that the
state will be bounded for all ω ∈ Wδ? Here we will consider the situation,
zero initial state. The problem related to this question is referred to as dis-
turbance tolerance. The disturbance rejection capability can be measured by
the restricted L2 gain over Wδ. In this section we will consider L2 gain and
Wδ at the same time.

Remark 8.4 For the above problem to be solvable, it is necessary for the pair
(A,B2(I − ρ)) to be stabilizable for each ρ ∈ {ρ1 · · · ρL}.

8.3.2 ARC Controller Design

The dynamics with actuator faults (8.3) and saturation is described by

ẋ(t) = Ax(t) +B1ω(t) +B2(I − ρ)σ(u(t))
z(t) = C1x(t) +D12(I − ρ)σ(u(t))
y(t) = C2x(t) +D21ω(t) (8.26)

The controller structure is chosen as

ξ̇(t) = f(ξ(t), y), ξ(t) ∈ Rn

u(t) = CK(ρ̂(t))ξ(t) (8.27)

where

u(t) = CK(ρ̂(t))ξ(t) = (CK0 + CKa(ρ̂(t)) + CKb(ρ̂(t)))ξ(t) (8.28)

and ρ̂(t) is the estimation of ρ,

CKa(ρ̂(t)) =
∑m

j=1
CKaj ρ̂j(t), CKb(ρ̂(t)) =

∑m

j=1
CKbj ρ̂j(t).
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By Lemma 7.1, the saturated linear feedback, with ξ(t) ∈ ℘([0 H(ρ̂(t))]),
can be expressed as

σ(CK(ρ̂(t))ξ(t)) =
∑2m−1

i=0
ηi[DiCK(ρ̂(t)) +D−

i H(ρ̂(t))]ξ(t) (8.29)

for some scalars 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1], such that
∑2m−1

i=0 ηi = 1, and
the following equality holds

(I − ρ)σ(u(t)) =
∑2m−1

i=0
ηi[(I − ρ)DiCK0 +DiCKa(ρ)

− ρDiCKa(ρ̂) + (I − ρ̂(t))DiCKb(ρ̂(t)) +DiCKa(ρ̃(t))

+ ρ̃DiCKb(ρ̂(t)) + (I − ρ)D−
i HK0 +D−

i HKa(ρ)

− ρD−
i HKa(ρ̂) + (I − ρ̂(t))D−

i HKb(ρ̂(t))

+D−
i HKa(ρ̃(t)) + ρ̃D−

i HKb(ρ̂(t))]ξ(t) (8.30)

where ρ̃(t) = ρ̂(t) − ρ.
Now, by Lemma 7.2 we provide one choice of such ηi’s, which are Lips-

chitzian functions in ξ and ρ̂.

ηi(ξ(t), ρ̂(t)) =
m∏

j=1

[zj(1 − λj(ξ(t), ρ̂(t))) + (1 − zj)λj(ξ(t), ρ̂(t))] (8.31)

By using the functions ηi(ξ(t), ρ̂(t))’s, the output feedback controller
(8.28) can be parameterized as

ξ̇(t) = (
∑2m−1

i=0
ηiAKi(ρ̂))ξ(t) + (

∑2m−1

i=0
ηiBKi(ρ̂))y(t)

u(t) = (I − ρ)σ(CK(ρ̂)ξ(t)) (8.32)

where

AKi(ρ̂) = AKi0 +AKia(ρ̂) +AKib(ρ̂)
BKi(ρ̂) = BKi0 +BKia(ρ̂) +BKib(ρ̂)
CK(ρ̂) = CK0 + CKa(ρ̂) + CKb(ρ̂)

BKia(ρ̂) =
∑m

j=1
ρ̂jBKiaj , BKib(ρ̂) =

∑m

j=1
ρ̂jBKibj

CKa(ρ̂) =
∑m

j=1
ρ̂jCKaj , CKb(ρ̂) =

∑m

j=1
ρ̂jCKbj

AKia(ρ̂) =
∑m

j=1
ρ̂jAKiaj

AKib(ρ̂) =
∑m

j=1

∑m

s=1
ρ̂j ρ̂sAKibjs +

∑m

j=1
ρ̂jAKibj

Motivated by the quasi-LPV structure of both the plant and the controller,
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we consider the following auxiliary LPV system, if ε(P, δ) ⊂ ℘([0 H(ρ̂)]) is
an invariant set.

ẋe(t) = Ae(η)xe(t) +Be(η)ω(t)
z(t) = Ce(η)xe(t) (8.33)

Ae(η) =
∑2m−1

i=0
ηi(Aeixe(t)), η ∈ Γ

Be(η) =
∑2m−1

i=0
ηi(Beixe(t)), η ∈ Γ

Ce(η) =
∑2m−1

i=0
ηi(Ceixe(t)), η ∈ Γ (8.34)

where xe = [xT (t) ξT (t)]T , η = [η0, η1, · · ·, η2m−1], and

Γ = {η ∈ R2m

:
∑2m−1

i=0
ηi = 1, 0 ≤ ηi ≤ 1, i ∈ I[0, 2m − 1]},

Aei =
[

A B2(I − ρ)[DiCK(ρ̂) +D−
i H(ρ̂)]

BKi(ρ̂)C2 AKi(ρ̂)

]
,

Bei =
[

B1

BKi(ρ̂)D21

]
,

Cei = [C1 D12(I − ρ)(DiCK(ρ̂) +D−
i H(ρ̂))].

The following theorem presents a sufficient condition for the solvability of
the fault-tolerant control problem via dynamic output feedback in the frame-
work of LMI and adaptive laws.

Denote

Δρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂j ∈ {min
q

{ρq
j
}, max

q
{ρq

j}}, q ∈ I[1, L]}

and Bj = [0 · · · bj · · · 0] with B = [b1 · · · bm].

Theorem 8.2 Let rf > 0, rn > 0 and δ > 0 be given constants, then the
following two conditions are satisfied

(I) The trajectories of the closed-loop system that start from the origin will
remain inside the domain ε∗(P, δ∗) for every ω ∈ Wδ.

(II) In normal case, i.e., ρ = 0,

∫ ∞

0

zT (t)z(t)dt ≤ r2n

∫ ∞

0

ωT (t)ω(t)dt+r2n
∑m

j=1

ρ̃2
j(0)
lj

, for x(0) = 0

and in actuator failures cases, i.e., ρ ∈ {ρ1 · · · ρL},
∫ ∞

0

zT (t)z(t)dt ≤ r2f

∫ ∞

0

ωT (t)ω(t)dt+r2f
∑m

j=1

ρ̃2
j(0)
lj

, for x(0) = 0
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where ρ̃(t) = diag{ρ̃1(t) · · · ρ̃m(t)}, ρ̃j(t) = ρ̂j(t)− ρj, if there exist matrices
0 < N1 < Y1, AKi0, AKiaj , AKibjs, BKi0, BKiaj , BKibj , CK0, CKaj , CKbj ,
HK0, HKaj , HKbj , j ∈ I[1,m], s ∈ I[1,m] and symmetric matrices Θi, i ∈
I[0, 2m − 1], with

Θi =
[

Θi
11 Θi

12

ΘiT
12 Θi

22

]

and Θi
11, Θi

22 ∈ Rm(2n+d)×m(2n+d) such that the following inequalities hold
for all Di ∈ D and ε∗(P, δ∗) ⊂ ℘([0 H(ρ̂)]), i.e., |[0 H(ρ̂)]jx| ≤ 1 for all
x ∈ ε∗(P, δ∗), j ∈ I[1,m].

Θi
22jj ≤ 0, j ∈ I[1,m], i ∈ I[0, 2m − 1]

Θi
11 + Θi

12Δ(ρ̂) + (Θi
12Δ(ρ̂))T + Δ(ρ̂)Θi

22Δ(ρ̂) ≥ 0, ρ̂ ∈ Δρ̂[
N0i Z1i

ZT
1i Z2i

]
+

1
r2n
UT

i Ui +GT ΘiG < 0, i ∈ I[0, 2m − 1], ρ = 0[
N0i Z1i

ZT
1i Z2i

]
+

1
r2f
UT

i Ui +GT ΘiG < 0, i ∈ I[0, 2m − 1],

ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq (8.35)

where

N0i =

⎡
⎣ T0i T1i T2i

∗ T3i T4i

∗ ∗ −I

⎤
⎦

Z1i = [Z1i1 Z1i2 . . . Z1im], Z2i = [Z2ijs], j, s ∈ I[1,m]

Z1ij =

⎡
⎣ T5i T6i T7i

T8i T9i T10i

0 0 0

⎤
⎦ , Z2ijs =

⎡
⎣ 0 T11i 0
T12i T13i T14i

0 T15i 0

⎤
⎦

Ui = [Ui0 Ui1 · · · Uim], Uij =
[

0 T16i 0
]

Ui0 =
[
C1 D12(I − ρ)(DiCK0 +D−

i HK0) 0
]
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T0i = Y1A−N1BKi0C2 + (Y1A−N1BKi0C2)T

T1i = Y1B2[(I − ρ)(DiCK0 +D−
i HK0) +DiCKa(ρ)

+D−
i HKa(ρ)] −N1AKi0 −N1AKia(ρ)

+
[

0
C⊥

2

]T

ST [−Y1B2(DiCKa(ρ) +D−
i HKa(ρ))

+N1AKia(ρ)] + (−N1A+N1BKi0C2

+N1BKia(ρ)C2 − [N1BKia(ρ)C2S]
[

0
C⊥

2

]
)T

T2i = Y1B1 −N1BKi0D21

T3i = −N1B2[(I − ρ)(DiCK0 +D−
i HK0) +DiCKa(ρ)

+D−
i HKa(ρ)] + (−N1B2[(I − ρ)(DiCK0 +D−

i HK0)

+DiCKa(ρ) +D−
i HKa(ρ)])T +N1AKi0

+N1AKia(ρ) + (N1AKi0 +N1AKia(ρ))T

T4i = −N1B1 +N1BKi0D21 + [−Y1B2(DiCKa(ρ)

+D−
i HKa(ρ)) +N1AKia(ρ)]TS

[ −D21

0

]

−N1BKia(ρ)C2S

[ −D21

0

]
T5i = −N1BKibjC2 −N1BKiajC2

T6i = Y1B2[−ρ(DiCKaj +D−
i HKaj) +DiCKbj +D−

i HKbj ]

−N1AKibj +
[

0
C⊥

2

]T

ST [Y1B2((DiCKaj +D−
i HKaj)

− ρ(DiCKbj +D−
i HKbj)) −N1AKiaj ]

T7i = −N1BKibjD21 −N1BKiajD21

T8i = N1BKibjC2 +N1BKiajC2S

[
0
C⊥

2

]
T9i = N1B2ρ(DiCKaj +D−

i HKaj)

−N1B2(DiCKbj +D−
i HKbj) +N1AKibj

T10i = [Y1B2(DiCKaj +D−
i HKaj) − Y1B2ρ(DiCKbj

+D−
i HKbj) −N1AKiaj ]TS

[ −D21

0

]

+N1BKiajD21 +N1BKibjD21 +N1BKiajC2S

[ −D21

0

]
T11i = −Y1B

j
2(DiCKbs +D−

i HKbs) −N1AKibjs

+
[

0
C⊥

2

]T

STY1B
j
2(DiCKbs +D−

i HKbs)
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T12i = (−Y1B
s
2(DiCKbj +D−

i HKbj) −N1AKibsj

+
[

0
C⊥

2

]T

STY1B
s
2(DiCKbj +D−

i HKbj))T

T13i = N1B
j
2(DiCKbs +D−

i HKbs) +N1AKibjs

+ [N1B
j
2(DiCKbs +D−

i HKbs) +N1AKibjs]T

T14i = (Y1B
s
2(DiCKbj +D−

i HKbj))TS

[ −D21

0

]
T15i = [−DT

21 0]STY1B
j
2(DiCKbs +D−

i HKbs)

T16i = D12(I − ρ)(DiCKaj +D−
i HKaj +DiCKbj +D−

i HKbj)

G =

⎡
⎢⎢⎣

⎡
⎣ I(2n+d)×(2n+d)

· · ·
I(2n+d)×(2n+d)

⎤
⎦ 0

0 Im(2n+d)×m(2n+d)

⎤
⎥⎥⎦ ,

Δ(ρ̂) = diag[ρ̂1I(2n+d)×(2n+d) · · · ρ̂mI(2n+d)×(2n+d)].

and also ρ̂j(t) is determined according to the adaptive law

˙̂ρj = Proj[min
q

{ρq
j}, max

q
{ρq

j}]{L1j}

=

⎧⎪⎨
⎪⎩

0, if
ρ̂j = min

q
{ρq

j
} and L1j ≤ 0

or ρ̂j = max
q

{ρq
j} and L1j ≥ 0

L1j , otherwise

(8.36)

where

L1j = lj
∑2m−1

i=0
ηi{ξTN1[AKiaj −B2DiCKaj −Bj

2DiCKb(ρ̂) −B2D
−
i HKaj

−Bj
2D

−
i HKb(ρ̂)]ξ +

[
y
0

]T

ST [Y1(B2DiCKaj +Bj
2DiCKb(ρ̂)

+B2D
−
i HKaj +Bj

2D
−
i HKb(ρ̂)) −N1AKiaj ]ξ

+ ξTN1BKiajC2S

[
y
0

]
},

lj > 0(j ∈ I[1,m]) and δ > 0 are the adaptive law gains to be chosen according
to practical applications.

Proof 8.3 Choose the following Lyapunov function

V (t) = xT
e Pxe +

∑m

j=1

ρ̃2
j(t)
lj

, (8.37)

By ρ̃(t) =ρ̂(t) − ρ and

BKia(ρ̃) = BKia(ρ̂) −BKia(ρ)
AKia(ρ̃) = AKia(ρ̂) −AKia(ρ)
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Aei can be written as

Aei = Aei1 +Aei2 +Aei3

Aei1 =
[

A Aei1a

[BKi0 +BKia(ρ) +BKib(ρ̂)]C2 Aei1b

]
Aei1a = B2[(I − ρ)DiCK0 +DiCKa(ρ) − ρDiCKa(ρ̂)

+ (I − ρ̂)DiCKb(ρ̂) + (I − ρ)D−
i HK0

+D−
i HKa(ρ) − ρD−

i HKa(ρ̂) + (I − ρ̂)D−
i HKb(ρ̂)]

Aei1b = AKi0 +AKa(ρ) +AKib(ρ̂)

Aei2 =
[

0 Aei2a

0 AKia(ρ̃)

]
Aei3 =

[
0 0

BKia(ρ̃)C2 0

]
Aei2a = B2DiCKa(ρ̃) +B2ρ̃DiCKb(ρ̂) +B2D

−
i HKa(ρ̃) +B2ρ̃D

−
i HKb(ρ̂)

Let P be of the following form

P =
[

Y1 −N1

−N1 N1

]

with 0 < N1 < Y1, which implies P > 0. Since C is of full rank, and C2

satisfies C2C
⊥T
2 = 0 and C⊥

2 C
⊥T
2 nonsingular, it follows that

[
C2

C⊥
2

]
is non-

singular. From (8.25), we have

C2x = y, C⊥
2 x = C⊥

2 x, x = S

[
y

C⊥
2 x

]
(8.38)

where S =
[
C2

C⊥
2

]−1

. Then, we have PAei2 =
[

0 Wai

0 Wbi

]
with

Wai = Y1[B2DiCKa(ρ̃) +B2ρ̃DiCKb(ρ̂)

+B2D
−
i HKa(ρ̃) +B2ρ̃D

−
i HKb(ρ̂)] −N1AKia(ρ̃)

Wbi = N1[AKia(ρ̃) −B2DiCKa(ρ̃) −B2ρ̃DiCKb(ρ̂)

−B2D
−
i HKa(ρ̃) −B2ρ̃D

−
i HKb(ρ̂)]

which follows

[xT ξT ]PAei2[xT ξT ]T = xTWaiξ + ξTWbiξ

Thus, by (8.38), we have

xTWaiξ =
[
y
0

]T

STWaiξ + [xT ξT ]Aai1[xT ξT ]T + [xT ξT ]Bai1ω
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where

Aai1 =

⎡
⎣ 0

[
0
C⊥

2

]T

STWai

0 0

⎤
⎦ , Bai1 =

⎡
⎣ 0

WT
aiS

[ −D21

0

] ⎤
⎦

In the same way, from (8.38) we get

[xT ξT ]PAei3[xT ξT ]T = −xTN1BKia(ρ̃)C2x+ ξTN1BKia(ρ̃)C2x

= xT
e Aai2xe + xT

e Bai2ω +Mai2

where

Aai2 =

⎡
⎣ −N1BKia(ρ̃)C2 0

N1BKia(ρ̃)C2S

[
0
C⊥

2

]
0

⎤
⎦

Bai2 =
[

0
Mbi

]

Mai2 = ξTN1BKia(ρ̃)C2S

[
y
0

]

Mbi = N1BKia(ρ̃)C2S

[ −D21

0

]

Then from the derivative of V (t) along the closed-loop system (8.33), it
follows

V̇ (t) +
1
r2f
zT (t)z(t) − ωT (t)ω(t)

= 2xT
e

∑2m−1

i=0
ηiP (Aeixe +Beiω) + 2

∑m

j=1

ρ̃j(t)̇̃ρj(t)
lj

+
1
r2f
xT

e [
∑2m−1

i=0
ηiC

T
ei][

∑2m−1

i=0
ηiCei]xe − ωTω

= 2xT
e

∑2m−1

i=0
ηiP (Aei1xe +Beiω) − ωTω

+
1
r2f
xT

e [
∑2m−1

i=0
ηiC

T
ei][

∑2m−1

i=0
ηiCei]xe

+ 2xT
e

∑2m−1

i=0
ηi(Aai1 +Aai2)xe + 2xT

e

∑2m−1

i=0
ηi(Bai1 +Bai2)ω +W1

≤ xT
e W0xe +W1
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where

W0 = W01 +
1
r2f

[
∑2m−1

i=0
ηiC

T
ei][

∑2m−1

i=0
ηiCei]

W01 =
∑2m−1

i=0
ηi[PAei1 +Aai1 +Aai2 + (PAei1 +Aai1 +Aai2)T ]

+ [
∑2m−1

i=0
ηi(PBei +Bai1 +Bai2)]

[
∑2m−1

i=0
ηi(PBei +Bai1 +Bai2)]T

W1 = 2ξT
∑2m−1

i=0
ηiWbiξ + 2

[
y
0

]T

ST
∑2m−1

i=0
ηiWaiξ

+ 2
∑2m−1

i=0
ηiMai2 + 2

∑m

j=1

ρ̃j(t)̇̃ρj(t)
lj

The design condition that V̇ (t) ≤ 0 is reduced to

W0 < 0, (8.39)

W1 ≤ 0 (8.40)

Since y and ξ are available online, the adaptive laws can be chosen as (8.36)
for rendering (8.40) valid. (8.39) is equivalent to

∑2m−1

i=0
ηi

[
He(PAei1 +Aai1 +Aai2) ∗
(PBei +Bai1 +Bai2)T −I

]

+
1
r2f

[ ∑2m−1
i=0 ηiC

T
ei

0

] [ ∑2m−1
i=0 ηiCei 0

]
< 0 (8.41)

Notice that

PAei1 =
[

Y1A−N1[BKi0 +BKia(ρ) +BKib(ρ̂)]C Wc

−N1A+N1[BKi0 +BKia(ρ) +BKib(ρ̂)]C Wd

]

PBei =
[

Y1B1 −N1[BKi0 +BKia(ρ̂) +BKib(ρ̂)]D21

−N1B1 +N1[BKi0 +BKia(ρ̂) +BKib(ρ̂)]D21

]
Wc = Y1B2[(I − ρ)DiCK0 +DiCKa(ρ) − ρDiCKa(ρ̂)

+ (I − ρ̂)DiCKb(ρ̂) + (I − ρ)D−
i HK0 +D−

i HKa(ρ)

− ρD−
i HKa(ρ̂) + (I − ρ̂)D−

i HKb(ρ̂)]
−N1[AKi0 +AKa(ρ) +AKib(ρ̂)]

Wd = −N1B2[(I − ρ)DiCK0 +DiCKa(ρ) − ρDiCKa(ρ̂)

+ (I − ρ̂)DiCKb(ρ̂) + (I − ρ)D−
i HK0 +D−

i HKa(ρ)

− ρD−
i HKa(ρ̂) + (I − ρ̂)D−

i HKb(ρ̂)]
+N1[AKi0 +AKa(ρ) +AKib(ρ̂)]
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Furthermore (8.41) can be described by

W (ρ̂) =
∑2m−1

i=0
ηiW2i(ρ̂) +

1
r2f

(
∑2m−1

i=0
ηiW3i)T (

∑2m−1

i=0
ηiW3i) < 0

W2i(ρ̂) = N0i +
∑m

j=1
ρ̂jZ1ij + (

∑m

j=1
ρ̂jZ1ij)T +

∑m

j=1

∑m

s=1
ρ̂j ρ̂sZ2ijs

W3i(ρ̂) = Ui0 +
∑m

j=1
ρ̂jUij

where N0i, Z1ij , Z2ijs, j, s ∈ I[1,m] are defined in (8.35).
Let

Qi(ρ̂) = W2i(ρ̂) +
1
r2f

(W3i(ρ̂))T (W3i(ρ̂))

By Lemma 2.10, we can get Qi(ρ̂) < 0 if (8.35) holds, which implies W0 <
0 by Schur complement. Together with adaptive laws (8.36), it follows that the
following inequality (8.42) holds for any xe ∈ ℘([0 H(ρ̂)]), ρ ∈ {ρ1 · · · ρL},
ρq ∈ Nρq and ρ̂ satisfying (8.30). The proofs for the normal case of closed-loop
system (8.33) are similar, and omitted here.

V̇ (t) +
1
r2f
zT (t)z(t) − ωT (t)ω(t) < 0, (8.42)

To prove item (I):

V̇ (t) ≤ xT
e W01xe +W1 + ωTω.

Then by the proof of item (II), we have

V̇ ≤ ωTω

which implies that

V (xe(t)) ≤
∫ ∞

0

ωT (t)ω(t)dt+
∑m

j=1

ρ̃2
j(0)
lj

≤ δ∗

for x(0) = 0.
Then, the conclusion can be drawn that trajectories of the closed-loop sys-

tem that start from the origin will remain inside ε∗(P, δ∗) for every ω ∈ Wδ.

Corollary 8.2 The adaptive H∞ performance indexes are no larger than rn
and rf in normal and actuator failure cases for closed-loop system (8.33), if
(8.35) holds for rf > rn > 0, correspondingly, the controller gain and adaptive
law are given by (8.35) and (8.36), respectively.

Proof 8.4 Let F (0) =
∑m

j=1

ρ̃2
j (0)

lj
. Then, by (8.36), it follows that ρ̃j(0) ≤

max
j

{ρq
j} − min

j
{ρq

j
}. We can choose lj sufficiently large so that F (0) is suf-

ficiently small. Thus the conclusion follows from the item (II) and Definition
3.1.
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If we take the following reliable H∞ controller with fixed parameter matrices
AKi0, BKi0, CK0, i ∈ I[0, 2m − 1]

ξ̇(t) = (
∑2m−1

i=0
ηiAKi0)ξ(t) + (

∑2m−1

i=0
ηiBKi0)y(t)

u(t) = (I − ρ)σ(CK0ξ(t)) (8.43)

then combining (8.43) with (8.25), it follows:

ẋe1(t) = Ae1(η)xe1(t) +Be1(η)ω(t)
ze1(t) = Ce1(η)xe(t) (8.44)

Ae1(η) =
∑2m−1

i=0
ηi(Ae1ixe1(t)), η ∈ Γ

Be1(η) =
∑2m−1

i=0
ηi(Be1ixe1(t)), η ∈ Γ

Ce1(η) =
∑2m−1

i=0
ηi(Ce1ixe1(t)), η ∈ Γ (8.45)

where xe1 = [xT (t) ξT (t)]T ,

Ae1i =
[

A B2(I − ρ)[DiCK0 +D−
i H0]

BKi0C2 AKi0

]
,

Be1i =
[

B1

BKi0D21

]
,

Ce1i = [C1 D12(I − ρ)(DiCK0 +D−
i H0)]

The following lemma presents a condition for the system (8.44) to have
performance bounds.

Lemma 8.1 Consider the closed-loop system described by (8.44), and let rn >
0 and rf > 0 be given constants. Then the following statements are equivalent:

(i) there exist a symmetric matrix X > 0 and controller K described by
(8.43) such that

AT
e1iX +XAe1i +XBe1iB

T
e1iX +

1
r2n
CT

e1iCe1i < 0

holds for ρ = 0, and

AT
e1iX +XAe1i +XBe1iB

T
e1iX +

1
r2f
CT

e1iCe1i < 0

holds for ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq

(ii) there exist symmetric matrices Y1 and N1 with 0 < N1 < Y1, and
a controller described by (8.43) with AKi0 = AKei0, BKi0 = BKei0, CK0 =
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CKe0, H0 = He0, i ∈ I[0, 2m − 1] such that V1(rn) < 0 holds for ρ = 0, and
V1(rf ) < 0 holds for ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq , where we define

V1(r) =

⎡
⎢⎢⎣
T10 T11 Y1B1 −N1BKei0D21 CT

1

∗ T12 −N1B1 +N1BKei0D21 T13

∗ ∗ −I 0
∗ ∗ ∗ −r2I

⎤
⎥⎥⎦

with

T10 = Y1A−N1BKei0C2 + (Y1A−N1BKei0C2)T

T11 = Y1B2(I − ρ)(DiCKe0 +D−
i He0) −N1AKei0

+ (−N1A+N1BKei0C2)T

T12 = −N1B2(I − ρ)(DiCKe0 +D−
i He0) +N1AKei0

− [N1B2(I − ρ)(DiCKe0 +D−
i He0) −N1AKei0]T

T13 = (DiC
T
Ke0 +D−

i He0)(I − ρ)DT
12

Proof 8.5 The proof is similar to the proof of Lemma 5.1. To avoid overlap,
the proof is omitted.

Next, a theorem is given to show that the condition in Theorem 8.1 for the
adaptive controller design is more relaxed than that in Lemma 8.1 for the
traditional controller design with fixed parameter matrices.

Theorem 8.3 If condition (i) or (ii) in Lemma 4 holds, then the condition
of Theorem 1 holds.

Proof 8.6 If condition (i) or (ii) in Lemma 4 holds, then it is easy to see
that the condition in Theorem 8.1 is feasible with AKiaj = AKibj = AKibjs =
BKiaj = BKibj = CKaj = CKbj = HKaj = HKbj = 0, i ∈ I[0, 2m − 1],
j ∈ I[1,m], s ∈ I[1,m]. The proof is completed.

From Theorem 8.1, we have the following algorithm to optimize the adap-
tive H∞ performance in normal and fault cases and the disturbance tolerance
level δ.

Let rn and rf denote the adaptive H∞ performance bounds for the nor-
mal case and fault cases of the closed-loop system (8.32). Let δ denote the
disturbance tolerance level. Then rn, rf are minimized and δ is maximized if
the following optimization problem is solvable

min η = αηn + βηf + γηδ

s.t.(a) (8.35),
(b) ε∗(P, δ∗) ⊂ ℘([0 H(ρ̂)]), (8.46)

where ηn = r2n, ηf = r2f , ηδ = 1
δ∗ = 1

δ+max{P
m
j=1

ρ̃2
j
(t)

lj
}

and α, β, γ are

weighting coefficients.
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However, there are two problems as follows, which should be considered.
(1) By Definition 7.4, we have that (b) can not be shown as LMIs directly,
Obviously, ε∗(P, δ∗) ⊂ ε(P, δ∗), which implies that (b) can be replaced

with (b1).

(b1) ε(P, δ∗) ⊂ ℘([0 H(ρ̂)]). (8.47)

Condition (b1) is equivalent to

δ∗[0 h(ρ̂)]jP−1[0 h(ρ̂)]Tj ≤ 1 ⇔
[

1
δ∗ [0 h(ρ̂)]j
∗ P

]
≥ 0. (8.48)

for all j ∈ I[1,m], where [0 h(ρ̂)]j is the jth row of [0 H(ρ̂)]. We have that
(8.35) is equivalent to the following inequalities.

(b2)
[ −ηδ −[0 HK0s]

∗ −P
]

+
m∑

j=1

ρ̂j

[
0 [0 −HKajs −HKbjs]
∗ 0

]
≤ 0, ρ̂ ∈ Δρ̂

where HKajs is the sth row of HKaj , s ∈ I[1,m].
(2) It should be noted that condition (8.35) is not convex. But when

CK0, CKaj , CKbj , HK0, HKaj , HKbj are given, they become LMIs.
From Theorem 8.1, we have the following algorithm to design the adaptive

output feedback controller.

Algorithm 8.2

Step 1 Suppose that all states of system (8.25) can be measured. Minimize the
following index to design the state-feedback controller.

η = αηn + βηf + γηδ

Then, the matrices CK0, CKaj , CKbj , HK0, HKaj , HKbj can be given.
Step 2 Solve the following optimization problem

min η = αηn + βηf + γηδ

s.t.(a), (b2)

Remark 8.5 Step 1 is to determine matrices CK0, CKaj , CKbj , HK0, HKaj ,
HKbj, which solves the corresponding adaptive controller design problem via
state feedback. This procedure is adapted from the last section, and convex
conditions are described. To avoid overlap, the conditions appearing in Step 1
will be omitted.

From Lemma 8.1, we have the following algorithm to design the fault-
tolerant controller with fixed gains.
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Algorithm 8.3 Step 1: Suppose that all states of system (8.25) can be mea-
sured. Minimize the following index to design the state-feedback controller.

η = αηn + βηf + γηδ

Then, the matrices CK0, HK0, can be given.
Step 2: Solve the following optimization problem

min η = αηn + βηf + γηδ

s.t.(a), (b2)

Remark 8.6 Step 1 is to determine matrices CK0, HK0, which solves the
corresponding adaptive controller design problem via state feedback.

Remark 8.7 In Step 1, for some cases, the magnitude of the designed gains
CK0 (CKaj and CKbj) may be too large to be applied in Step 2. For solving the
problem, by adding the following constraints, where Q and YK0 are variables
in conditions of Step 1

Q > αI, YK0Y
T
K0 < βI, (8.49)

then the magnitude of CK0 can be reduced. In fact, by CK0 = YK0Q
−1 and

(8.49), it follows that
‖ CK0 ‖<

√
β/α.

The similar method can be used for the gains CKaj and CKbj .

8.3.3 Example

Example 8.2 Consider the system of the form (8.25) with

A =
[
0.01 0.1
0.6 0.01

]
, B1 =

[
0.1 0
0.01 0

]
, B2 =

[
20 0
0 20

]
,

C1 =

⎡
⎣0.01 0

0 0
0 0

⎤
⎦ , C2 =

[
1 0

]
, D12 =

⎡
⎣ 0 0
0.5 0
0 0.1

⎤
⎦ , D21 =

[
0 0.1

]

and the following two possible fault modes:

Fault mode 1: Both of the two actuators are normal, that is,

ρ1
1 = ρ1

2 = 0.

Fault mode 2: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

ρ2
1 = 1, 0 ≤ ρ2

2 ≤ a,
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where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor.

Let α = 10, β = 1, γ = 10, the optimal indexes with fixed controller
gains are ηn = 0.0134, ηf = 0.1581, ηδ = 0.0866, η = 1.1588. By using
Algorithm 8.2, the optimal indexes can be given as ηn = 0.0027, ηf = 0.0079,
ηδ = 0.0212, η = 0.2473. This phenomenon indicates the superiority of our
adaptive method.

8.4 Conclusion

In this chapter, an adaptive fault-tolerant H∞ controllers design method is
proposed for linear time-invariant systems with actuator saturation. The resul-
tant design guarantees the adaptive H∞ performances of closed-loop systems
in the cases of actuator saturation and actuator failures. An example has been
given to illustrate the effectiveness of the design method.



9

Adaptive Reliable Tracking Control

9.1 Introduction

Recently, there are also several approaches developed to solve tracking prob-
lems [64, 81, 82, 84, 123, 148, 149, 164]. The classical approach for LTI systems
has been to design a closed-loop system that achieves the desired transfer func-
tion as close as possible [64]. The inherent shortcoming is over-design. Game
theory [123] is most suitable to finite time control of time-varying systems. The
linear quadratic (LQ) control theory method [82] requires a prior knowledge
of dynamics of the reference signal. The H∞ optimal tracking solution [148]
is suitable for cases where the tracking signal is measured online and it can
hardly deal with the case where a prior knowledge on this signal is available or
when it can be previewed. However, there are only a limited number of papers
devoted to reliable or fault-tolerant tracking control problems. In order to re-
alize the reliable tracking control in the presence of actuator faults, a method
based on robust pole region assignment techniques [164] and a method based
on iterative LMI [84, 149] have been proposed. The latter is a multi-objective
optimization methodology, which is used to ensure the designed tracking con-
troller guarantees the stability of the closed-loop system and optimal tracking
performance during normal system and maintains an acceptable lower level of
tracking performance in fault modes.

In this chapter, we shall investigate the reliable tracking control problem
of linear time-invariant systems in the presence of actuator faults. The type
of fault under consideration here is loss of actuator effectiveness, which is
different from those in the previous chapters. Combining LMI approach with
adaptive methods successfully, we design a novel adaptive reliable controller
without using an FDI mechanism. The newly proposed method is based on
the online estimation of an eventual fault and the addition of a new control
law to the normal control law in order to reduce the fault effect automatically.
The main contribution of this chapter is that the normal tracking performance
of the resultant closed-loop system is optimized without any conservativeness
and the states of fault modes asymptotically track those of the normal mode.
Since systems are operating under the normal condition most of the time, this
contribution is very important in actual control system design. A numerical
example of a linearized F-16 aircraft model and its simulation results are given
to demonstrate the effectiveness and superiority of the proposed method.
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9.2 Problem Statement

Consider a linear time-invariant system described by

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) (9.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input and y(t) ∈ Rp is
the output, respectively. A and B are known constant matrixes of appropriate
dimensions.
To formulate the reliable tracking control problem, the actuator fault model
must be established first. Here, the type of the faults under consideration is
loss of actuator effectiveness [133, 164].

uF
i (t) = ρiui(t), ρi ∈ [ρ

i
, ρ̄i], 0 < ρ

i
≤ 1, ρ̄i ≥ 1 (9.2)

where uF
i (t) represent the signal from the actuator that has failed. ρi is an

unknown constant and ρi and ρ̄i represent the lower and upper bounds of ρi,
respectively. Note that, when ρi = ρ̄i = 1, there is no fault for the ith actuator
ui.
Denote

uF (t) = [uF
1 (t), uF

2 (t), · · ·uF
m(t)]T = ρu(t) (9.3)

where ρ = diag[ρ1, ρ2, · · · ρm] and

Δ = {ρ : ρ = diag[ρ1, ρ2, · · · ρm], ρi ∈ [ρ
i
, ρ̄i], i = 1, 2, · · · ,m} (9.4)

Hence, the dynamics with actuator faults (9.2) is described by

ẋ(t) = Ax(t) +Bρu(t)
y(t) = Cx(t) (9.5)

Considering the lower and upper bounds (ρi, ρ̄i), the following set can be
defined

Nρ = {ρ : ρ = diag[ρ1, ρ2, · · · ρm], ρi = ρ
i
ρi = ρ̄i, i = 1, 2, · · · ,m}

(9.6)

Thus, the set Nρ contains a maximum of 2m elements.

Consider the system described by (9.5) with actuator faults (9.2). The
design problem under consideration is to find an adaptive controller such that
(i) During normal operation, the closed-loop system is asymptotically stable
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and the output Sy(t) tracks the reference signal yr(t) without steady-state
error, that is

lim
t→∞ ε(t) = 0, ε(t) = yr(t) − Sy(t) (9.7)

where S ∈ Rl×p is a known constant matrix used to form the output required
to track the reference signal. Moreover, the controller also minimizes the upper
bound of the performance index

Jt =
∫ t

0

[
ηT (t)Q1η(t) + xT (t)Q2x(t) + uT (t)Ru(t)

]
dt (9.8)

where η =
∫ t

0 ε(τ)dτ , Q1 ∈ Rl×l, Q2 ∈ Rn×n are positive semi-definite matri-
ces and R ∈ Rm×m is positive definite matrix.
(ii) In the event of actuator faults, the closed-loop system is still asymptot-
ically stable and the output Sy(t) tracks the reference signal yr(t) without
steady-state error. Moreover the state vector of post fault case asymptotically
tracks that of the normal case, which has the designed performance.
It is well known that the tracking error integral action of a controller can effec-
tively eliminate the steady-state tracking error. In order to obtain an adaptive
reliable tracking controller with tracking error integral, we combine equation
(9.1) and (9.7) and have the following augmented system[

η̇(t)
ẋ(t)

]
=

[
0 −SC
0 A

] [
η(t)
x(t)

]
+

[
0
B

]
u(t) +

[
I
0

]
yr(t) (9.9)

Let x̄ =
[
ηT (t) xT (t)

]T
, then the augmented system can be changed into

˙̄x(t) = Āx̄(t) + B̄u(t) +Gyr(t) (9.10)

where

Ā =
[
0 −SC
0 A

]
, B̄ =

[
0
B

]
, G =

[
I
0

]

Moreover, the augmented system with actuator faults (9.2) is described by

˙̄x(t) = Āx̄(t) + B̄ρu(t) +Gyr(t) (9.11)

where Ā, B̄ and G are the same as (9.10).

9.3 Adaptive Reliable Tracking Controller Design

In this section, a sufficient condition for the optimization of normal tracking
performance problem is first given. Secondly, based on the normal controller,
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we add a new control law to the normal law in order to reduce the fault effect
on the system and achieve the desired control objective by using adaptive
method.

Now we design the normal controller uN (t) for the augmented system
(9.10) with the following state feedback tracking controller

uN (t) = KN x̄(t) =
[
Kη Kx

] [
η(t)
x(t)

]
(9.12)

The closed-loop augmented normal system is given by

˙̄x(t) = (Ā+ B̄KN )x̄(t) +Gyr(t) (9.13)

A linear matrix inequality (LMI) condition for the optimization of the guaran-
teed cost control problem of the augmented normal system (9.13) is presented.

Lemma 9.1 Consider the closed-loop augmented normal system (9.13) and
the performance index (9.8). For a given positive constant γ, if there exist
symmetric matrices Z, T ∈ R(n+l)×(n+l) and a matrix W ∈ Rm×(n+l) such
that the following linear matrix inequalities hold:

(i)

⎡
⎢⎢⎣
ĀZ + B̄W + (ĀZ + B̄W )T G WTR

1
2 ZQ

1
2

∗ −γI 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, (9.14)

(ii)
[
T I
I Z

]
> 0 (9.15)

where Q = diag[Q1, Q2] ≥ 0 and R > 0. Then the following controller stabi-
lizes the closed-loop augmented normal system (9.13)

uN (t) = KN x̄(t), KN = [Kη,Kx] = WZ−1 (9.16)

Furthermore, an upper bound of performance index (9.8) is given by

Jt ≤ γ

∫ t

0

yT
r (t)yr(t)dt+ x̄T (0)T x̄(0) (9.17)

Here γ corresponds to the H∞ norm ‖Tzyr‖ of the transfer function from the
input yr(t) to the performance output

z(t) = [Q
1
2 , 0]T x̄(t) + [0, R

1
2 ]Tu(t) (9.18)

The upper bound of performance index J can be minimized by solving the
following optimization problem with the MATLAB LMI toolbox:

min Trace(T ) s.t. (9.14) (9.15) (9.19)
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Proof 9.1 By the Lemma 2.8, (9.14) is equivalent to

ĀZ + B̄KNZ + (ĀZ + B̄KNZ)T +
1
γ
GGT + ZQZ + ZKT

NRKNZ < 0

(9.20)

Post- and pre-multiplying the inequality (9.39) by P = Z−1, we obtain

P (Ā+ B̄KN) + (Ā+ B̄KN)TP +
1
γ
PGGTP +Q+KT

NRKN < 0 (9.21)

Since γ > 0, Q > 0, Q = QT and R > 0, R = RT , then

P (Ā+ B̄KN ) + (Ā+ B̄KN )TP < 0 (9.22)

According to Lyapunov stability theorem, the controller uN (t) = KN x̄, which
satisfies (9.14) stabilizes the augmented system (9.10). Furthermore,

Jt ≤ −
∫ t

0

x̄T (t){[P (Ā+ B̄KN ) + (Ā+ B̄KN)TP ] +
1
γ
PGGTP}x̄(t)dt

= −
∫ t

0

{[ ˙̄x−Gyr(t)]TP x̄+ x̄TP [ ˙̄x−Gyr(t)] +
1
γ
x̄TPGGTP x̄}dt

≤ −
∫ t

0

d[x̄T (t)P x̄(t)] + γ

∫ t

0

yT
r (t)yr(t)dt

≤ γ

∫ t

0

yT
r (t)yr(t)dt + x̄T (0)P x̄(0)

≤ γ

∫ t

0

yT
r (t)yr(t)dt + x̄T (0)T x̄(0) (9.23)

The proof is completed.

Now for normal operation, we have designed the normal control law uN (t) =
KN x̄(t).
Next, we begin to design an adaptive reliable controller based on the normal
control law uN(t) = KN x̄(t). The main controller stricture is to compute a
new control law uad(t) to be added to the normal control law in order to
compensate for the fault effect on the system, that is

u(t) = uN(t) + uad(t) (9.24)

The additive control law uad(t) is zero in the normal case and different from
zero in fault cases. The FTC scheme is summarized in Figure 9.1. In order to
obtain online information on the effectiveness of actuators, we introduce the
following target model described by

˙̂x(t) = Ax̂(t) +Bρ̂(t)r(t)
ŷ(t) = Cx̂(t) (9.25)
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FIGURE 9.1
Reliable control scheme.

where ρ̂(t) = diag{ρ̂1(t) · · · ρ̂m(t)} denotes the estimate of the actuator effi-
ciency factor. The input r(t) ∈ Rm is determined so as to achieve the control
objectives.
The augmented system of the target model (9.25) is

˙̃x(t) = Āx̃(t) + B̄ρ̂(t)r(t) +Gyr(t) (9.26)

where x̃(t) =
[
η̂T (t) x̂T (t)

]T , η̂ =
∫ t

0
ε̂(τ)dτ , ε̂(t) = yr(t) − Sŷ(t) and Ā, B̄,

G are the same as those in normal operation (9.10).
If we define the state error vector of augmented system as e(t) = x̃(t) − x̄(t)
and let the control input u(t) = r(t) − Fe(t), then the augmented state error
equation between (9.11) and (9.26) is written as

ė(t) = Āe(t) + B̄ρFe(t) + B̄(ρ̂(t) − ρ)r(t)
= (Ā+ B̄ρF )e(t) + B̄ρ̃(t)r(t) (9.27)

where ρ̃(t) = ρ̂(t) − ρ = diag{ρ̃1(t) · · · ρ̃m(t)}. Here F is the error feedback
gain to be designed to make the augmented state error equation (9.27) stable.
Let B̄ = [b̄1 · · · b̄m] and r(t) = (r1(t) · · · rm(t))T , then the augmented state
error system (9.27) can be written as

ė(t) = (Ā+ B̄ρF )e(t) +
m∑

i=1

b̄iρ̃i(t)ri(t) (9.28)

Theorem 9.1 The augmented state error system (9.28) is stable if there exist
a symmetric matrix Z1 ∈ R(n+l)×(n+l) > 0 and a matrix W1 ∈ Rm×(n+l) such
that the following linear inequalities hold for all ρ ∈ Nρ

ĀZ1 + Z1Ā
T + B̄ρW1 +WT

1 ρB̄
T < 0 (9.29)
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and also ρ̂i(t) is determined according to the adaptive law

˙̂ρi = Proj[ρ
i
,ρ̄i]{−lieTP b̄iri}

=

⎧⎨
⎩ 0, if

ρ̂i(t) = ρ
i
, and − lie

TP b̄iri ≤ 0 or
ρ̂i(t) = ρ̄i, and − lie

TP b̄iri ≥ 0;
−lieTP b̄iri, otherwise

(9.30)

where li > 0, 0 < ρi ≤ 1 and ρ̄i ≥ 1, i = 1 · · ·m. Proj{·} denotes the projec-
tion operator [70], whose role is to project the estimates ρ̂i(t) to the interval
[ρi, ρ̄i]. Then the error feedback gain F is obtained by F = W1Z

−1
1 .

Proof 9.2 We choose the following Lyapunov function

V = eT (t)Pe(t) +
m∑

i=1

ρ̃i
2(t)
li

(9.31)

where P = Z−1
1 . The derivative of V along the trajectory of the augmented

state error equation (9.28) can be written as

V̇ = eT [P (Ā+ B̄ρF ) + (Ā+ B̄ρF )TP ]e+ 2
m∑

i=1

ρ̃ie
TP b̄iri + 2

m∑
i=1

ρ̃i
˙̃ρi

li

(9.32)

Due to ρi is an unknown constant, we have ˙̂ρi(t) = ˙̃ρi(t).
If the adaptive law is chosen as

˙̂ρi = Proj[ρ
i
,ρ̄i]{−lieTP b̄iri}

=

⎧⎨
⎩ 0, if

ρ̂i(t) = ρ
i
, and − lie

TP b̄iri ≤ 0 or
ρ̂i(t) = ρ̄i, and − lie

TP b̄iri ≥ 0;
−lieTP b̄iri, otherwise

then we have

ρ̃i
˙̃ρi

li
≤ −ρ̃ie

TP b̄iri (9.33)

so

V̇ ≤ eT [P (Ā+ B̄ρF ) + (Ā+ B̄ρF )TP ]e (9.34)

From (9.29) and F = W1Z
−1
1 , Z1 = P−1, we have

P (Ā+ B̄ρF ) + (Ā+ B̄ρF )TP < 0 for all ρ ∈ Nρ.

Furthermore, by the above mentioned LMI, we can obtain

P (Ā+ B̄ρF ) + (Ā+ B̄ρF )TP < 0 for all ρ ∈ Δ,
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that is

V̇ ≤ −α‖e‖2 ≤ 0, (9.35)

where

α := −λmax
ρ∈Δ

[P (Ā+ B̄ρF ) + (Ā+ B̄ρF )TP ] > 0. (9.36)

We can get V ∈ L∞ according to (9.35). It also implies e ∈ L∞ from (9.31),
so the augmented state error (9.28) is stabilized. Furthermore, if we integrate
(9.35) from 0 to ∞ on both sides, we can obtain e(t) ∈ L2. The proof is
completed.

Next, we design r(t) so that the augmented system of target model (9.26)
matches that of the normal model (9.10).
Let r(t) = ρ̂−1(t)KN x̃(t), then (9.26) becomes

˙̃x(t) = Āx̃(t) + B̄KN x̃(t) +Gyr(t) (9.37)

which matches the closed-loop augmented system of normal case (9.13) ex-
actly.
So from the result of Lemma 1, we get x̃(t) ∈ L∞. It also implies r(t) is
bounded. Together with e(t) ∈ L∞, we can obtain the state vector of aug-
mented fault model (9.11) x̄(t) is also bounded. According to the state error
system (9.27), we can obtain ė(t) is bounded. This, along with a fact that
e(t) ∈ L∞ ∩ L2, implies that limt→∞ e(t) = 0 i.e., x̄(∞) = x̃(∞) = x̄N (∞)
where x̄N (t) represents the state vector of the augmented normal system. So
the state vectors in fault cases asymptotically track that of the normal state
and the control objective is achieved.
Here the chosen adaptive controller is

u(t) = r(t) − Fe(t) = ρ̂−1(t)KN x̃(t) − Fe(t) = uN(t) + uad(t) (9.38)

where uN (t) = KN x̄(t), uad(t) = ρ̂−1(t)(I − ρ̂(t))KN x̃(t) + (KN − F )e(t).
Prior to any failures, the error system is at its equilibrium, i.e., e(t) = 0

and ρ̂i(t) = 1 if we choose e(0) = 0 and ρ̂i(0) = 1. At this time, u(t) = uN(t)
since uad(t) = 0. This implies the closed-loop normal system with controller
(9.38) can achieve the optimized tracking performance.
When faults in actuators occur, the corresponding efficiency factor ρi devi-
ates from 1, thus creating a mismatch between x̃(t) and x̄(t); Hence nonzero
state error occurs. At the same time, the adaptive estimates of the actuator
efficiency factor become active. A new control law uad(t) is added to the nor-
mal law. Then the fault cases compensate the fault effect automatically and
asymptotically track the normal case.

Remark 9.1 Using the MATLAB LMI toolbox, we can directly solve (9.29)
for all ρ ∈ Nρ (here Nρ contains a maximum of 2m elements) and get a feasible
solution of Z1 and W1. Then the corresponding error feedback gain F can be
obtained by F = W1Z

−1
1 .
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Remark 9.2 The proposed controller design procedure optimized the normal
tracking performance. This presents an advantage as systems are operating
under the normal condition most of the time. Because KN = WZ−1 in (9.14)
and F = W1Z

−1
1 in (9.29) are irrelative, the performance optimization proce-

dure of the augmented normal system is without any conservativeness.

9.4 Example

Example 9.1 In this section, an example of tracking control for a linearized
F-16 aircraft model is given to demonstrate the proposed methods. After lin-
earization and allowing the left/right control surfaces to move independently,
the aircraft model is described by

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) (9.39)

where x(t) = [u,w, q, v, p, r]T is the state, u(t) = [δhr, δhl, δar, δal, δr]T is the
control input and y(t) = [q, μ̇rot, rstab, α, β]T is the output, respectively. u, v, w
are components of aircraft velocity along X,Y, Z body axes, respectively. p, q, r
are roll rate about X body axis, pitch rate about Y body axis and yaw rate
about Z body axis, respectively. δhl, δar, δal, δr are right horizontal stabilator,
left horizontal stabilator, right aileron, left aileron and rudder, respectively.
μ̇rot is stability-axis roll rate and rstab is stability-axis yaw rate. α is angle of
attack and β is angle of sideslip.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0150 0.0480 −5.9420 0.0020 0 0
−0.0910 −0.9570 138.3610 0.0160 0 0

0 0.0050 −1.0220 −0.0010 0 −0.0030
0 0 0 −0.2800 6.2670 −151.1440
0 0 0 −0.1820 −3.4190 0.6400
0 0 0.0030 0.0450 −0.0300 −0.4540

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0240 0.0240 0.0250 0.0250 0
−0.1720 −0.1720 −0.1800 −0.1800 0
−0.0870 −0.0870 −0.0080 −0.0070 0
−0.3150 0.3150 0.0230 −0.0230 0.1210
−0.1890 0.1890 −0.3460 0.3460 0.1240
−0.1680 0.1680 −0.0150 0.0150 −0.0590

⎤
⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎣

0 0 57.2960 0 0 0
0 0 0 0 57.2470 2.3700
0 0 0 0 −2.3700 57.2470

−0.0160 0.3760 0 0 0 0
0 0 0 0.3760 0 0

⎤
⎥⎥⎥⎥⎦
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FIGURE 9.2
Required output responses in normal case with adaptive controller (solid) and
fixed gain controller (dashed).

A,B and C are given in the appendix, which are the same as those in Example
1 of [84].

Here, each of the five actuators may lose its effectiveness. The lower and upper
bounds of each effectiveness factor are 0.1 and 1, respectively.

The tracking command in the simulation is step of final value 2.
Let γ = 2 and

S =

⎡
⎣0 1 0 0 0

0 0 0 1 0
0 0 0 0 1

⎤
⎦ , Q1 = diag[0.16, 0.09, 0.25], Q2 = diag[0, 0.04, 0, 0, 0, 0].

R = diag[0.25, 0.25, 0.01, 0.01, 0.04],

where the matrix S determines the output required to track, i.e., μ̇rot, α, β.
In order to maintain the conventional control surface movements (i.e., symmet-
ric motion for left and right horizontal stabilator, and antisymmetric motion
for left and right ailerons) under normal operation, we force

KN = [KT
1 ,K

T
1 ,K

T
2 ,−KT

2 ,K
T
3 ]T
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FIGURE 9.3
State vector in normal case with adaptive controller (solid) and fixed gain
controller (dashed).

with K1,K2,K3 ∈ R1×(l+n).
For comparison purpose, our adaptive reliable controller and a traditional

reliable controller with fixed gains are carried out in the following simula-
tion. From Theorem 9.1, we can get the normal controller uN(t) = KNx(t)
with an optimal normal tracking performance of 59.8713. However, if we solve
the reliable tracking problem with a fixed gain controller Kf guaranteeing all
possible cases stabilized and normal tracking performance optimal, instead of
this adaptive reliable tracking controller u(t) = uN(t) + uad(t), the designed
optimal normal tracking performance is 246.1533 with achieved normal perfor-
mance 143.6311. As systems are operating under the normal condition most of
the time, this fact that our adaptive reliable tracking controller improves the
normal tracking performance significantly compared to the fixed gain tracking
controller Kf is more considerable and important.

To verify the superior performance of the proposed adaptive controller,
the following simulations are achieved with the case that actuator fault occurs
while the aircraft is maneuvering. Here angle of attack maneuver is considered.
The initial angle of attack command is 0 degree and after 2 seconds, the
angle of attack command changes into 15 degrees. Then at t = 8 seconds, it
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FIGURE 9.4
Input vector in normal case with adaptive controller (solid) and fixed gain
controller (dashed).

becomes -10 degrees and recovers to 0 degrees at t = 12 seconds. During this
time, stability axis roll rate and angle of sideslip commands remain 0 degree.
Simulation studies are also carried out to verify the superiority of the designed
controller.

Figure 9.2-Figure 9.4 are response curves in normal case. From Figure 9.2,
we find that the proposed adaptive method tracks the command faster. In
Figure 9.3, the state vector convergent rate with adaptive controller is no
worse than the fixed gain controller Kf . Moreover, due to the same tracking
command, those state vectors of the two controllers may converge to the same
values. Figure 9.4 is the control input histories with these two controllers.

Next, the following fault case is considered. At t = 2 (seconds), rudder
actuator loss of effectiveness of 30% has to be tolerated.

Figure 9.5 -Figure 9.7 describe some response curves in fault case. In Fig-
ure 9.5, our adaptive controller performs better even in fault case. It should
be noted that in our adaptive design the required output responses track the
command in fault case indirectly by the augmented state vector of fault case
tracking that of normal case. To verify the characteristic of our adaptive track-
ing controller, the state error between fault case and normal case with these
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FIGURE 9.5
Required output responses in fault case with adaptive controller (solid) and
fixed gain controller (dashed).

two controllers is given in Figure 9.6. From our adaptive controller designed
process, the state error vector can quickly converge to zero. While in fixed
gain controller design, this property cannot be guaranteed. However, state er-
ror may become zero after required output responses track the same tracking
command. The corresponding control input histories are given in Figure 9.7.

Even though the newly proposed adaptive reliable controller works better
in the absences of modeling error, measurement noise and disturbance, it is
also important to show its robust performance in the presence of uncertainty.
Accordingly about 50% modeling error which occurs in the value of system
matrix A, a vertical gust disturbance of 5 m/s and a white Gaussian noise with
variance of 0.01 are introduced into the system and measurement channels,
respectively. Subsequently, the performance of the system is evaluated for the
fault case. The required output responses and input history are shown in
Figure 9.8 and Figure 9.9, where one can clearly see the adaptive controller
still performs better. Summarizing all the cases (normal case and fault cases),
it is noted that the adaptive tracker design method can significantly improve
the normal performance than fixed gain method in both theory and simulation
results. And in fault case, our adaptive reliable tracker has better results than
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FIGURE 9.6
State error between fault case and normal case with adaptive controller (solid)
and fixed gain controller (dashed).

those of fixed gain reliable controller Kf . It can also be observed that as more
and more fault cases are considered in the design, our method gives more
improvement of tracking performance in normal case.

9.5 Conclusion

This chapter has studied the reliable tracking problem for linear systems
against actuator faults using the LMI method and adaptive method. Based
on the online estimation of eventual faults, a new control law is added to the
normal control law to reduce the fault effect on systems without the need for
an FDI mechanism. The proposed controller can make the normal tracking
performance of the closed-loop system optimized without any conservativeness
and make the states of fault modes asymptotically track that of the normal
mode. The simulation results of an example of F-16 have been given to show
the effectiveness of the proposed method.
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Input vector in fault case with adaptive controller (solid) and fixed gain con-
troller (dashed).
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Adaptive Reliable Control for Nonlinear
Time-Delay Systems

10.1 Introduction

Over the last three decades, considerable attention has been paid to analysis
and synthesis of time-delay systems [12, 51, 69, 89, 92, 93, 103, 116, 147]. The
increasing interest about this topic can be understood by the fact that time
delays appear as an important source of instability or performance degrada-
tion in a great number of important engineering problems involving material,
information or energy transportation [23, 33, 34, 56, 57, 98, 104, 130, 135, 137,
144, 158, 159, 163]. In Chapter 9, the adaptive reliable tracking controller de-
sign for linear time-invariant systems is investigated. It should be noted that
the proposed method in Chapter 9 is not suitable for the dynamic systems
with time-delay.

Based on the theory of Chapter 9, we will focus on the adaptive reliable
control problem of a class of nonlinear time-delay systems with disturbance.
Here, the actuator faults are types of loss of effectiveness. Comparing with
other existing results about time-delay systems, the novelty of this chapter
lies in the following aspects. Firstly, the performance index in normal case is
optimized in the framework of linear matrix inequalities. Since systems are
operating under the normal condition most of the time, this phenomenon is
meaningful. Secondly, an appropriate Lyapunov-Krasovskii functional is cho-
sen to design a new delay-dependent adaptive law to compensate the fault
effects on systems and to prove stability in normal and fault cases. Thirdly,
the state vectors of normal and fault cases with disturbance can track that
of the normal case without disturbance, which has the designed optimal per-
formance. Numerical and simulation results are also provided to demonstrate
the effectiveness of the proposed controller.

217
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10.2 Problem Statement

Consider a class of nonlinear time-delay systems described by

ẋ(t) = Ax(t) +Adx(t− d) +A1f(t, x(t), x(t − d)) +Bu(t) +B1ω(t)
x(t) = φ(t), t ∈ [−d, 0] (10.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, respectively.
d is a positive constant delay. ω(t) ∈ L∞

⋂
L2 is the exogenous disturbance,

{φ(t), t ∈ [−d, 0]} is a real-valued initial function, f(t, x(t), x(t−d)) is a known
nonlinearity. Matrices A,Ad, A1, B,B1 are constant matrices with appropriate
dimensions.

Assumption 10.1 For all x1, x2, y1, y2 ∈ Rn, the nonlinear function satisfies

‖f(t, x1, x2) − f(t, y1, y2)‖ ≤
‖M1(x1 − y1)‖ + ‖M2(x2 − y2)‖

where M1,M2 are real constant matrices.

The same actuator fault model as that in Chapter 9 is considered here

uF
i (t) = ρiui(t), ρi ∈ [ρi, ρ̄i], 0 < ρi ≤ 1, ρ̄i ≥ 1 (10.2)

where uF
i (t) represents the signal from the actuator that has failed. ρi and ρ̄i

represent the lower and upper bounds of ρi, respectively. Here, the considered
actuator faults are types of loss of effectiveness. Note that, when ρi = ρ̄i = 1,
there is no fault for the ith actuator ui. Moreover, Δ and Nρ are the same as
those in Chapter 9.

Hence, the dynamic with actuator faults (10.2) is described by

ẋ(t) = Ax(t) +Adx(t− d) +A1f(t, x(t), x(t − d)) +Bρu(t) +B1ω(t)
x(t) = φ(t), t ∈ [−d, 0] (10.3)

When ρ = I, the system (10.3) is the normal model (10.1).
Control objectives: During normal operation and in the event of ac-

tuator faults, the closed-loop system is asymptotically stable and the state
vector of closed-loop asymptotically tracks that of the normal case without
disturbance, which makes the bound of the following quadratic cost function
J optimized

J =
∫ ∞

0

(xT (t)N1x(t) + uT (t)N2u(t))dt (10.4)
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10.3 Adaptive Reliable Controller Design

In this section, a sufficient condition for the optimization of normal tracking
without disturbance is first given. Secondly, based on the normal controller,
we add a new control law to the normal law in order to reduce the fault effect
on the system and achieve the desired control objective by using adaptive
method.

Now we design the normal controller uN(t) for the normal model without
disturbance

ẋ(t) = Ax(t) +Adx(t − d) +A1f(t, x(t), x(t − d)) +BuN (t) (10.5)

with the following state feedback controller

uN (t) = KNx(t) (10.6)

Then the closed-loop system is given by

ẋ(t) = (A+BKN )x(t) +Adx(t− d) +A1f(t, x(t), x(t − d)) (10.7)

Denote

Σ11 = AP̄N + P̄NA
T +BY + Y TBT − λμ−1(AdQ̄N + Q̄NA

T
d ) − λ2μ−2Q̄N ,

Σ12 = μ−1AdQ̄N + P̄N + λμ−1Q̄N + λμ−2Q̄N ,

Σ22 = −2μ−1Q̄N − μ−2Q̄N , Σ13 = −A1, Σ33 = −2I,

Σ14 = d(Y TBT + P̄NA
T − λμ−1Q̄NA

T
d ), Σ24 = dμ−1Q̄NA

T
d ,

Σ34 = −dAT
1 , Σ44 = −dR̄N .

Next, a sufficient condition for the guaranteed cost control problem of the
closed-loop system (10.5) is presented.

Theorem 10.1 For given numbers λ 	= 0 and μ 	= 0, if there exist matrices
P̄N > 0, R̄N > 0, Q̄N > 0, and Y such that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 Σ12 Σ13 Σ14 0 P̄N P̄N Y T P̄NM
T
1 Υ1

∗ Σ22 0 Σ24 dR̄N 0 0 0 0 Υ2

∗ ∗ Σ33 Σ34 0 0 0 0 0 0
∗ ∗ ∗ Σ44 0 0 0 0 0 0
∗ ∗ ∗ ∗ −dR̄N 0 0 0 0 0
∗ ∗ ∗ ∗ 0 −Q 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −N−1

1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −N−1

2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − I

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(10.8)
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where Υ1 = λμ−1Q̄NM
T
2 and Υ2 = −μ−1Q̄NM

T
2 .

Then the following controller stabilizes the closed-loop normal system without
disturbance (10.7)

uN(t) = KNx(t), KN = Y P̄−1
N (10.9)

Furthermore, the performance index (10.4) satisfies

J ≤ φT (0)P̄−1
N φ(0) +

∫ 0

−d

∫ 0

θ

φ̇T (s)R̄−1
N φ̇(s)dsdθ +

∫ 0

−d

φT (s)Q̄−1
N φ(s)ds

(10.10)

Proof 10.1 We choose the following Lyapunov-Krasovskii functional

V = xT (t)PNx(t) +
∫ 0

−d

∫ t

t+θ

ẋT (s)RN ẋ(s)dsdθ +
∫ t

t−d

xT (s)QNx(s)ds

(10.11)

where PN = P̄−1
N , RN = R̄−1

N and QN = Q̄−1
N .

The derivative of V along the trajectory of the state equation (10.7) can be
written as

V̇ = ẋT (t)PNx(t) + x(t)TPN ẋ(t) + x(t)TQNx(t) − xT (t− d)QNx(t− d)

+ dẋT (t)RN ẋ(t) −
∫ t

t−d

ẋT (s)RN ẋ(s)ds

+ fT (t, x, x(t − d))f(t, x, x(t − d)) − fT (t, x, x(t − d))f(t, x, x(t − d))
(10.12)

From Assumption 10.1, we obtain

‖f(t, x(t), x(t− d)‖ ≤ ‖M1x(t)‖ + ‖M2x(t− d)‖ (10.13)

then

‖f(t, x(t), x(t− d)‖2 ≤ 2‖M1x(t)‖2 + 2‖M2x(t− d)‖2 (10.14)

that is

fT (t, x, x(t− d))f(t, x, x(t − d)) ≤
2xT (t)MT

1 M1x(t) + 2xT (t− d)MT
2 M2x(t− d) (10.15)

Applying the integral inequality (2.50) in Lemma 2.15 to the term on the
right-hand side of (10.12) for any Y1, Y2 ∈ Rn×n yields the following integral
inequality

−
∫ t

t−d

ẋT (s)RN ẋ(s)ds ≤ ηT (t)
[
Y T

1 + Y1 −Y T
1 + Y2

∗ −Y T
2 − Y2

]
η(t)

+ dηT (t)
[
Y T

1

Y T
2

]
R−1

N

[
Y1 Y2

]
η(t) (10.16)
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where ηT (t) = [xT (t), xT (t− d)].
Substituting (10.14) and (10.16) into (10.12), carrying out some algebraic

manipulations, and rearranging the terms gives

V̇ ≤ ξT (t)
[
H + dΓT

1 RNΓ1

]
ξ(t) + dξT (t)ΓT

2 R
−1
N Γ2ξ(t) (10.17)

where

ξT = [xT (t), xT (t− d), fT (t, x(t), x(t − d))],

H =

⎡
⎣H11 PNAd − Y T

1 + Y2 PNA1

∗ −QN − Y T
2 − Y2 + 2MT

2 M2 0
∗ ∗ −I

⎤
⎦ ,

H11 = PN (A+BKN ) + (A+BKN)TPN +QN + 2MT
1 M1 + Y1 + Y T

1 ,

Γ1 =
[
(A+BKN) Ad A1

]
, Γ2 =

[
Y1 Y2 0

]
From (10.17), we find that, if the following matrix inequality holds:

Σ =

⎡
⎣H dΓT

1 dΓT
2

∗ −dR−1
N 0

∗ ∗ −dRN

⎤
⎦ < 0 (10.18)

then applying the Schur complement yields V̇ (t) < 0. Thus, by using the
Lyapunov-Krasovskii functional theorem, we can conclude the closed-loop sys-
tem (10.7) is asymptotically stable.

In order to obtain the controller gain, KN , from the nonlinear matrix in-
equality (10.18) the nonlinearities come from

W =

⎡
⎣PN 0 0
Y1 Y2 0
0 0 −I

⎤
⎦ , Ā =

⎡
⎣A+BKN Ad A1

I −I 0
0 0 I

⎤
⎦

Then

H = WT Ā+ ĀTW + diag{QN + 2MT
1 M1,−QN + 2MT

2 M2, 0},
Γ2 =

[
0 I 0

]
W

Now, consider the case in which Y1 = λPN , Y2 = μQN , λ 	= 0 and μ 	= 0. In
this case W is invertible and

W−1 =

⎡
⎣ P−1

N 0 0
−λμ−1Q−1

N μ−1Q−1
N 0

0 0 −I

⎤
⎦

Denote T = diag{W−1, I, R−1
N }

T T ΣT =

⎡
⎣HT dW−T ΓT

1 dHT
1

∗ −dR−1
N 0

∗ ∗ −dR−1
N

⎤
⎦ (10.19)
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with

HT = ĀW−1 +W−T ĀT +W−T diag{QN + 2MT
1 M1,−QN + 2MT

2 M2, 0}W−1

H1 =
[
0 R−1

N 0
]

Setting P̄N = P−1
N , R̄N = R−1

N , Q̄N = Q−1
N , Y = KNP

−1
N = KP̄N and

performing some simple algebraic manipulations, it follows that if (10.8) holds,
then the Schur complement ensures that T T ΣT < 0 and thus Σ < 0. So the
resulting closed-loop system is asymptotically stable and the desired controller
is defined by

J =
∫ ∞

0

(xT (t)N1x(t) + uT (t)N2u(t))dt

≤
∫ ∞

0

(
xT (t)N1x(t) + uT (t)N2u(t) +

dV

dt

)
dt+ V (0)

≤
∫ ∞

0

ξT (t)Υξ(t)dt+ V (0) (10.20)

On the other hand, from (10.8), we can get

Υ =

⎡
⎣H +N1 +KT

NN2KN dΓT
1 dΓT

2

∗ −dR−1
N 0

∗ ∗ −hRN

⎤
⎦ < 0

Thus

J ≤ V (0) = φT (0)P̄−1
N φ(0)+

∫ 0

−d

∫ 0

θ

φ̇T (s)R̄−1
N φ̇(s)dsdθ+

∫ 0

−d

φT (s)Q̄−1
N φ(s)ds

The proof is completed.

Based on the conditions in Theorem 10.1, we propose the following theorem
to give a method of selecting a controller minimizing the upper bound of the
guaranteed cost (10.4).

Theorem 10.2 Consider system (10.5) with cost function (10.4), for given
non-zero numbers λ and μ, if the following optimization problem

min
P̄N ,Q̄N ,R̄N ,Y,Σ1,Σ2,Σ3

Trace(Σ1) + Trace(Σ2) + Trace(Σ3) s.t.

(i) (10.8)

(ii)

[
−Σ1 Π

1
2
1

∗ −P̄N

]
< 0,

(iii)

[
−Σ2 Π

1
2
2

∗ −R̄N

]
< 0,

(iv)

[
−Σ3 Π

1
2
3

∗ −Q̄N

]
< 0, (10.21)
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has a solution P̄N , Q̄N , R̄N , Y,Σ1,Σ2,Σ3, then the control law of form (10.6)
is a suboptimal state feedback guaranteed control law, which ensures the mini-
mization of the guaranteed cost (10.4) for normal system without disturbance
(10.5), where

Π1 = φ(0)φT (0), Π2 =
∫ 0

−d

∫ 0

θ

φ̇(s)φ̇T (s)dsdθ, Π3 =
∫ 0

−d

φ(s)φT (s)ds

Proof 10.2 Theorem 10.1, the control law (10.6) constructed in terms of any
feasible solution P̄N , Q̄N , R̄N , Y,Σ1,Σ2,Σ3 is a guaranteed cost controller of
system (10.5).
Considering Trace(AB) = Trace(BA), we have the following relations

φT (0)P̄−1
N φ(0) = tr(Π1P̄

−1
N ) = tr(Π

1
2
1 P̄

−1
N Π

1
2
1 )∫ 0

−d

∫ 0

θ

φ̇T (s)R̄−1
N φ̇(s)dsdθ = tr(Π2R̄

−1
N ) = tr(Π

1
2
2 R̄

−1
N Π

1
2
2 )

∫ 0

−d

φT (s)Q̄−1
N φ(s)ds = tr(Π3Q̄

−1
N ) = tr(Π

1
2
3 Q̄

−1
N Π

1
2
3 )

It follows from the Schur complement and (10.21) that

Π
1
2
1 P̄

−1
N Π

1
2
1 < Σ1, Π

1
2
2 R̄

−1
N Π

1
2
2 < Σ2, Π

1
2
3 Q̄

−1
N Π

1
2
3 < Σ3

So it follows from (10.10) that

J ≤ Trace(Σ1) + Trace(Σ2) + Trace(Σ3)

The proof is completed.

In order to obtain online information on the effectiveness of actuators, i.e.,
ρ̂i(t), the following target model is introduced

ẋm(t) = Axm(t) +Adxm(t− d) +A1f(t, xm(t), xm(t− d)) +Bρ̂r(t) (10.22)

where ρ̂(t) = diag{ρ̂1(t), · · · , ρ̂m(t)}, ρ̂i(t) denotes the estimate of the effi-
ciency factor. The signal r(t) ∈ Rm is the input, which can be designed to
achieve the control objectives.

If we define the state error vector as e(t) = xm(t)−x(t) and let the control
input u(t) = r(t)−F1e(t)−F2e(t−d), where F1 and F2 are the error feedback
gains to be designed to make the error system stable, then the state error
equation between (10.3) and (10.22) is written as

ė(t) = (A+BρF1)e(t) + (Ad +BρF2)e(t− d) + Bρ̃r(t) −B1ω(t)
+A1(f(t, xm(t), xm(t− d)) − f(t, x(t), x(t − d))) (10.23)
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where ρ̃(t) = ρ̂(t) − ρ(t) = diag{ρ̃1(t), · · · , ρ̃m(t)}
Let B = [b1 · · · bm] ∈ Rn×m, r(t) = (r1(t) · · · rm(t))T ∈ Rm, then the state
error system (10.23) can be written as

ė(t) = (A+BρF1)e(t) + (Ad +BρF2)e(t− d) +
m∑

i=1

biρ̃iri(t) −B1ω(t)

+A1(f(t, xm(t), xm(t− d)) − f(t, x(t), x(t − d))) (10.24)

Denote

Δ11 = AX +BρW1 +W3 +XAT +WT
1 ρB

T +WT
3 + (ε1 + ε2)A1A

T
1

+Q+ dF11 + ε5B1B
T
1

Δ12 = XAT +WT
3 +WT

1 ρB + F12

Δ22 = ε6B1B
T
1 + (ε2 + ε4)A1A

T
1 − d−1(α− 1)X

Δ13 = AdX −W3 + dF13 +BρW2

Δ23 = AdX −W3 +BρW2 + F23

Next, a new delay-dependent adaptive law and the error feedback gains F1,
F2 are designed to make the state error system (10.24) stable.

Theorem 10.3 For given α > 1, the state error system (9.28) is stabilized
and lim

t→∞ e(t) = 0 if there exist positive definite matrices X,Q, F11, F22, F33,

positive scalars εi, (i = 1, . . . 6) and any matrices W1,W2,W3, F12, F13, F23

such that the following inequalities hold for all ρ ∈ Nρ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ11 Δ12 Δ13 XMT
1 XMT

1 αdWT
3 0 0

∗ Δ22 Δ23 0 0 0 0 0
∗ ∗ −Q+ dF33 0 0 0 XMT

2 XMT
2

∗ ∗ ∗ −ε1I 0 0 0 0
∗ ∗ ∗ ∗ −ε3I 0 0 0
∗ ∗ ∗ ∗ 0 −αdX 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(10.25)

−X + F22 < 0 (10.26)

[−X dWT
3

∗ −X
]
< 0 (10.27)

Ξ =

⎡
⎣F11 F12 F13

∗ F22 F23

∗ ∗ F33

⎤
⎦ > 0 (10.28)
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and also ρ̂i(t) is determined according to the adaptive law

˙̂ρi(t) = Proj[ρi, ρ̄i]{−li(e(t) + z(t))TX−1biri} (10.29)

where z(t) =
∫ t

t−dW3X
−1e(s)ds, li > 0, 0 < ρi ≤ 1 and ρ̄i = 1, i = 1 · · ·m.

Proj{·} denotes the projection operator [70] whose role is to project the esti-
mates ρ̂i(t) to the interval [ρi, ρ̄i]. Then the error feedback gains can be ob-
tained by F1 = W1X

−1 and F2 = W2X
−1.Proj{·}

Proof 10.3 Define an operator D(et) : Cn, d → Rn as

D(et) = e(t) +
∫ t

t−d

Ge(s)ds (10.30)

where et = e(t+ s), s ∈ [−d, 0] and G ∈ Rn×n is a constant matrix which will
be chosen.

We choose the following Lyapunov-Krasovskii functional

V = V1 + V2 + V3 + V4 + V5 (10.31)

where

V1 = DT (et)PD(et), V2 = α

∫ t

t−d

∫ t

s

eT (u)GTPGe(u)duds

V3 =
∫ t

t−d

eT (s)Se(s)ds, V4 =
∫ t

0

∫ s

s−d

χT ΩΞΩχduds, V5 =
m∑

i=1

ρ̃i
2

li

with χ = [eT (s), eT (u)GT , eT (s − d)]T , P > 0, Ω = diag{P, P, P}, S > 0,
ρ̃i(t) = ρ̂i(t) − ρi.

The derivative of V along the trajectory of the state error equation (10.24)
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can be written as V (t)

V̇1 = 2DT (et)PḊ(et)

= eT (t)[P (A +BρF1 +G) + (A+BρF1 +G)TP ]e(t)

− 2(e(t) + z(t))TPB1ω + 2(e(t) + z(t))T
m∑

i=1

ρ̃iPbiri

+ 2eT (t)P (Ad +BρF2 −G)e(t− d)

+ 2zT (t)P (A+BρF1 +G)e(t) + 2zT (t)P (Ad +BρF2 −G)e(t− d)

+ 2(e(t) + z(t))T (t)PA1(f(xm(t), xm(t− d(t)) − f(x(t), x(t − d(t))).

V̇2 = αdeT (t)GTPGe(t) − α

∫ t

t−d

eT (s)GTPGe(s)ds

≤ αdeT (t)GTPGe(t) −
∫ t

t−d

eT (s)GTPGe(s)ds− d−1(α− 1)zT (t)Pz(t),

V̇3 = eT (t)Se(t) − eT (t− d)Se(t− d).

V̇4 = deT (t)PF11Pe(t) + 2eTPF12Pz(t) +
∫ t

t−d

eT (s)GTPF22GPe(s)ds

+ 2deTPF13Pe(t− d) + 2zTPF23Pe(t− d) + deT (t− d)PF33Pe(t− d)

V̇5 = 2
m∑

i=1

ρ̃i(t) ˙̃ρi(t)
li

where z(t) =
∫ t

t−d Ge(s)ds and here we use

zT (t)Pz(t) ≤ d

∫ t

t−d

eT (s)GTPGe(s)ds,

which is obtained by Lemma l6.4 to get V̇2. From Assumption 10.1, we obtain

2eT (t)PA1(f(t, xm(t), xm(t− d) − f(t, x(t), x(t− d))

≤ 2‖eT (t)PA1‖‖f(t, xm(t), xm(t− d) − f(t, x(t), x(t− d)‖
≤ 2‖eT (t)PA1‖(‖M1e(t)‖ + ‖M2e(t− d)‖)
≤ ε1e

T (t)PA1A
T
1 Pe(t) + ε−1

1 eT (t)MT
1 M1e(t)

+ ε2e
T (t)PA1A

T
1 Pe(t) + ε−1

2 eT (t− d)MT
2 M2e(t− d) (10.32)

2zT (t)PA1(f(t, xm(t), xm(t− d) − f(t, x(t), x(t − d))

≤ 2‖zT (t)PA1‖‖f(t, xm(t), xm(t− d) − f(t, x(t), x(t − d)‖
≤ 2‖zT (t)PA1‖(‖M1e(t)‖ + ‖M2e(t− d)‖)
≤ ε3z

T (t)PA1A
T
1 Pz(t) + ε−1

3 eT (t)MT
1 M1e(t)

+ ε4z
T (t)PA1A

T
1 Pz(t) + ε−1

4 eT (t− d(t))MT
2 M2e(t− d) (10.33)
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Furthermore, V̇1 can be written as

V̇1 = 2DT (et)PḊ(et)

= eT (t)[P (A+BρF1 +G) + (A+BρF1 +G)TP + (ε1 + ε2)PA1A
T
1

(ε−1
1 + ε−1

3 )MT
1 M1]e(t) − 2(e(t) + z(t))TPB1ω

+ 2eT (t)P (Ad +BρF2 −G)e(t− d) + 2zT (t)P (A+BρF1 +G)e(t)

+ 2zT (t)P (Ad +BρF2 −G)e(t− d) + (ε3 + ε4)zT (t)PA1A
T
1 Pz

T (t)

+ (ε−1
2 + ε−1

4 )eT (t− d)MT
2 M2e(t− d) + 2(e(t) + z(t))T

m∑
i=1

ρ̃iPbiri

If the adaptive law is chosen as

˙̂ρi = Proj[ρi, ρ̄i]{−li(e(t) + z(t))TPbiri}

=

⎧⎨
⎩ 0, if

ρ̂i = ρi and − li(e+ z)TPbiri ≤ 0 or
ρ̂i = ρ̄i and − li(e+ z)TPbiri ≥ 0;

−li(e+ z)TPbiri, otherwise

where z(t) =
∫ t

t−d
Ge(s)ds, then

ρ̃i(t) ˙̃ρi(t)
li

≤ −ρ̃i(t)(e(t) + z(t))TPbiri (10.34)

and ρ̃i(t) = ρ̂i(t) − ρi, ˙̃ρi(t) = ˙̂ρi(t).
On the other hand

−2(e(t) + z(t))TPB1ω ≤ ε5e
T (t)PB1B

T
1 Pe(t) + ε−1

5 ωTω

+ ε6z
T (t)PB1B

T
1 Pz(t) + ε−1

6 ωTω (10.35)

so

V̇ ≤ [
eT (t) zT (t) eT (t− d)

]
Ψ

⎡
⎣ e(t)

z(t)
e(t− d)

⎤
⎦

+
∫ t

t−d

eT (s)GT (−P + PF22P )Ge(s)ds + (ε−1
5 + ε−1

6 )ωTω (10.36)

where

Ψ =

⎡
⎣Δ1 (A+BρF1 +G)TP + PF12P P (Ad +BρF2 −G) + dPF13P

∗ Δ2 P (Ad +BρF2 −G) + PF23P
∗ ∗ Δ3

⎤
⎦

Δ1 = P (A+BρF1 +G) + (A+BρF1 +G)TP + (ε1 + ε2)PA1A
T
1 P

+ (ε−1
1 + ε−1

3 )MT
1 M1 + αdGTPG+ S + ε5PB1B

T
1 P + dPF11P

Δ2 = (ε3 + ε4)PA1A
T
1 P − d−1(α− 1)P + ε6PB1B

T
1 P

Δ3 = (ε−1
2 + ε−1

4 )MT
2 M2 − S + dPF33)
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Hence, if Ψ < 0 and −P + PF22P < 0, then there exists a positive scalar β
satisfying

V̇ ≤ −β‖e‖2 + (ε−1
5 + ε−1

6 )ωTω ≤ −β‖e‖2 +D1 ≤ 0 (10.37)

where D1 = (ε−1
5 + ε−1

6 )a2, 0 ≤ ‖ω‖ ≤ a.
Let X = P−1, Q = XSX,W1 = F1X,W2 = F2X and W3 = GX.

By pre- and post-multiplying inequalities Ψ < 0 and −P + PF22P < 0
by diag{X,X,X} and X, respectively, the resulting inequalities are equiv-
alent to (10.25) and (10.26). Also, the inequality (10.27) is equivalent to
X = P−1, Q = XSX,W1 = F1X,W2 = F2X and W3 = GX.[−P dGTP

∗ −P
]
< 0 (10.38)

by pre- and post-multiplying by diag{X−1, X−1}. If (10.38) holds, according
to matrix theory we can prove that a positive scalar δ which is less than one
exists such that [−δP dGTP

∗ −P
]
< 0 (10.39)

Therefore, from Lemma 2.13, if (10.27) holds, the operator D(et) is stable.
The inequality (10.28) means that V4 is positive definite. So V (t) is positive
definite.

From (10.37), we known V̇ > 0 is possible only for e(t) ∈ S1, where
S1 = {e(t) : ‖e(t)‖ < (D1

β )
1
2 }. Because S1 is compact and contains the point

e(t) = 0, it follows that e(t) ∈ L∞ and V (t) ∈ L∞. Then from Lyapunov
stability theory, it follows the error system (10.23) is stable.

Integrating (10.37) from 0 to ∞ on both sides, we get e(t) ∈ L2 from the
fact ω(t) ∈ L2. From the result of Theorem 10.1, it follows xm(t) ∈ L∞. It
also implies r(t) is bounded. According to the state error system (10.23), it
is easy to see ė(t) ∈ L∞. Now from e(t) ∈ L∞ ∩ L2, ė(t) ∈ L∞ and the
well-known Barbaǎlat’s lemma [115], it follows lim

t→∞ e(t) = 0, i.e., x(∞) =

xm(∞) = xN (∞) where xN represents the state vector of the normal system
without disturbance. Moreover, from e(t) ∈ L∞ and xm(t) ∈ L∞, we can
obtain the state vector of the model (10.3) x(t) is also bounded. Moreover, it
follows lim

t→∞ x(t) = 0 from the fact lim
t→∞xm(t) = lim

t→∞ e(t) = 0. The proof is
completed.

Remark 10.1 In the proof of Theorem 10.3, we modify the new Lyapunov
function which employs free weighting matrices proposed by [77] to get a new
adaptive law and tackle the stabilization of the error system. The newly pro-
posed adaptive laws include the term z(t) =

∫ t

t−d
Ge(s)ds, which indicates how

time delay d takes effect on the adaptive law.
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Then, we design r(t) so that the target model (10.22) matches the normal
model (10.1) without disturbance.

Let r(t) = ρ̂−1(t)KN x̃(t), then(10.22) becomes

ẋm(t) = Axm(t) +Adxm(t− d) +A1f(t, xm(t), xm(t− d)) +BKN (t)xm

(10.40)

It is easy to see (10.22) matches the closed-loop system of normal case without
disturbance (10.5) exactly.

Then an adaptive reliable controller based on the normal control law
uN(t) = KNx(t) is designed. The main controller structure is to compute
a new control law uad(t) to be added to the normal control law in order to
compensate for the faults and disturbance effect on the system, that is

u(t) = uN(t) + uad(t) (10.41)

The additive control law uad(t) is zero in the normal case without disturbance
and different from zero in fault and disturbance cases. The FTC scheme is
summarized in Figure 9.1.

u(t) = ρ̂−1(t)KNxm(t) − F1e(t) − F2e(t− d) = uN (t) + uad(t) (10.42)

where uN(t) = KNx(t), uad(t) = ρ̂−1(t)(I − ρ̂(t))KNxm(t) + (KN −F1)e(t)−
F2e(t− d), F1 = W1X

−1, F2 = W2X
−1.

When the system has no faults and disturbance, the error system is at its
equilibrium, i.e., e(t) = 0 and ρ̂i(t) = 1 if we choose e(0) = 0 and ρ̂i(0) = 1.
At this time, u(t) = uN (t) since uad(t) = 0. This implies the closed-loop
normal system without disturbance using the controller (10.42) can achieve
the optimized performance. When faults in actuators occur or disturbance
exists, the corresponding efficiency factor ρi deviates from 1, thus creating a
mismatch between xm(t) and x(t), hence nonzero state error occurs. At the
same time, the adaptive estimates of the efficiency factor become active. A new
control law uad(t) is added to the normal law. Then the normal and fault cases
with disturbance compensate the fault and disturbance effect automatically
and asymptotically track the normal case without disturbance.

From Theorem 10.1-Theorem 10.3, we know the adaptive controller (9.38)
can stabilize the closed-loop system in both normal and fault cases. Further-
more, the state vector of closed-loop asymptotically tracks that of the normal
case without disturbance, which has the designed performance.

Remark 10.2 The proposed controller design procedure has optimized the
normal performance without disturbance. This presents an advantage as sys-
tems are operating under the normal condition most of the time. Because
KN = Y P−1

N in (10.8) and F1 = W1X
−1, F2 = W2X

−1 in (10.25)-(10.28)
are irrelative, (10.25)-(10.28) don’t add any conservativeness to the perfor-
mance optimization procedure of the normal system without disturbance.
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FIGURE 10.1
Normal state response of nonlinear system without disturbance using the nor-
mal controller KN .

Remark 10.3 This chapter carries on the main idea of Chapter 9, in which
we have studied adaptive reliable tracking problems of linear time-invariant
systems without disturbance. Here, we extend the system to a class of nonlinear
time-delay systems with disturbance. Though in this paper we don’t consider
the tracking problem, it is very easy to extend our result to that problem.

10.4 Example

Example 10.1 To illustrate the effectiveness of our results, a nonlinear time-
delay system with the following parameters matrices is considered

A =

⎡
⎣0 0 0
0 0 0
0 0 1

⎤
⎦ , Ad =

⎡
⎣−2 0.5 0

0 −1 0
0 0 −2

⎤
⎦ , B =

⎡
⎣ 0 0.1 −1
0.7 −0.2 0.6
1 1 1

⎤
⎦ ,
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FIGURE 10.2
Normal state response of nonlinear system without disturbance using adaptive
controller (solid) and fixed gain controller (dashed).

A1 =

⎡
⎣0 −1 0

0 1 0
0 0 1

⎤
⎦ , N1 =

⎡
⎣2 0 0
0 2 0
0 0 1

⎤
⎦ , N2 =

⎡
⎣0.5 0 0

0 0.5 0
0 0 1

⎤
⎦ ,

B1 =

⎡
⎣0.2

1
0.5

⎤
⎦ , φ =

⎡
⎣ 0.2
−0.4
0.3

⎤
⎦

and the time-delay in this example is d = 0.2.

Moreover, the nonlinear function is

f(t, x(t), x(t − d))

=

⎡
⎣ 0.1 sin t (x1(t) + x1(t− d))

0.2 sin t x2(t− d)
0.2 sin t x3(t) + 0.1 sin t x3(t− d)

⎤
⎦

Then it follows

‖f(t, x, x(t− d))‖ ≤ ‖M1x(t)‖ + ‖M2x(t − d)‖
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FIGURE 10.3
State error between normal case with disturbance and that case without dis-
turbance of nonlinear system using adaptive controller (solid) and fixed gain
controller (dashed).

where

M1 =

⎡
⎣0.1 0 0

0 0 0
0 0 0.2

⎤
⎦ , M2 =

⎡
⎣0.1 0 0

0 0.2 0
0 0 0.1

⎤
⎦

Here, we consider the case that only the second and third actuators are
susceptible to faults, that is, ρ

1
= ρ̄1 = 1, ρ

2
= ρ

3
= 0.4 and ρ̄2 = ρ̄3 = 1.

In the following simulation, we use the disturbance

ω(t) =
{

0.5, 20 ≤ t ≤ 25 (seconds)
0 otherwise

The fault case here is that at 0 second, the third actuator becomes loss of
effectiveness of 60%.

For comparison purposes, our adaptive reliable controller and a traditional
reliable controller with fixed gains are carried out in the following simulation.

From Theorem 10.2, we can get the normal controller uN = KNx(t) with a
sub-optimal cost J∗ = 0.2567 with λ∗ = −1.6 and μ∗ = 50, which is obtained
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FIGURE 10.4
Fault state response of nonlinear system with disturbance using adaptive con-
troller (solid) and fixed gain controller (dashed).

by searching for λ (from -0.1 to -10) and μ (from -0.01 to 50). And when we
choose α = 1.5, a feasible solution of Theorem 10.3 can be received. Further-
more, the corresponding adaptive reliable controller is obtained. However, if
we solve the reliable problem with a fixed gain controller Kf guaranteeing
all considered possible cases stabilized and normal case without disturbance
optimal, the obtained locally optimal cost is J∗

f = 0.3713 with λ∗f = −2.8 and
μ∗

f = 50 (the search range is the same as that of controller KN ) using the
corresponding results of Theorem 10.1 and Theorem 10.2. This phenomenon
takes place due to the reason indicated in Remark 10.2. As the system is oper-
ating under the normal condition most of the time, this fact that our adaptive
reliable controller improves the normal performance significantly compared to
the fixed gain controller Kf is more considerable and important.

In Figure 10.1, the state response in normal case without disturbance for
nonlinear systems using the normal controller KN is first given, which de-
scribes the desired performance. Figure 10.2 denotes the normal state response
with disturbance using the adaptive controller and fixed gain controller, re-
spectively. It is obviously that the proposed adaptive controller has much more
ability to restrain disturbance than that of the fixed gain controller. To verify
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FIGURE 10.5
State error between fault case with disturbance and normal case without dis-
turbance of nonlinear system using adaptive controller (solid) and fixed gain
controller (dashed).

the characteristic of our adaptive controller, we simulate the state error be-
tween normal case with disturbance and that case without disturbance using
these two controllers. The result is given in Figure 10.3, from which it can be
seen the state error converge to zero in spite of the existence of disturbance
with the adaptive controller while the fixed gain one can’t have this property.

Figure 10.4-Figure 10.5 describe some response curves of the fault case.
In Figure 10.4, the fault state response using these two controllers is first
given, which denotes the superiority of restraining disturbance of the adaptive
controller compared to the fixed gain one. Figure 10.5 describes the state error
between fault case with disturbance and normal case without disturbance of
nonlinear system using the two controllers. Though the state error deviates
from zero due to the existence of fault and disturbance, it can recover after a
few of seconds using the adaptive controller. But, this property doesn’t exist
in the case of a fixed gain controller.
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10.5 Conclusion

In this chapter, we have investigated the adaptive reliable control problem
against unknown actuator faults for a class of nonlinear time-delay systems
with disturbance. The aim is to find an adaptive reliable controller, such that
the system is not only stabilized, but also the state vectors of normal and fault
cases with disturbances track that of the normal case without disturbance,
which is with the designed performance. A new delay-dependent adaptive law
is proposed to design the adaptive reconfigurable controller, which is excited
to offset the effect of faults and disturbance automatically without the need
for an FDI mechanism. A numerical example shows the effectiveness of the
proposed controller design method when compared with a fixed gain reliable
controller.
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