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Preface

More and more advanced technological systems rely on sophisticated control
systems to increase their safety and performances. In the event of system
component faults, the conventional feedback control designs may result in
unsatisfactory performances or even instability, especially for complex safety
critical systems, e.g., aircraft, space craft and nuclear power plant, etc. This
has ignited enormous research activities in the search for new design method-
ologies, for accommodating the component failures and maintaining the ac-
ceptable system stability and performances, so that abrupt degradation and
total system failures can be averted. Fault-tolerant control (FTC) is a rela-
tively new field of research addressing the design of feedback controllers that
ensure safe and efficient operations despite the occurrence of faults. Fault-
tolerant design approaches can be broadly classified into two types: passive
approach and active approach.

Traditional reliable control is a kind of passive control approach, in which
a controller with fixed gain is used throughout normal and fault cases, such
that this type of controller is easily implemented. Moreover, several perfor-
mance indexes such as H,, Hz, and cost functions mainly based on algebraic
Riccati equation (ARE) or linear matrix inequality (LMI) methods, can be
used to describe the performances of the closed-loop systems. However, as the
number of possible failures and the degree of system redundancy increase, the
passive reliable controllers with fixed gains become more conservative, and at-
tainable control performance indexes may not necessarily be satisfactory. On
the other hand, adaptive control is an effective method to design fault-tolerant
controllers, too. They rely on the potential of the adjustments of parameters
to assure reliability of closed-loop systems in the presence of a wide range of
unknown faults. Hence, the resultant solvable conditions can be more relaxed
and the corresponding controller gains are variable.

In this book, the aim is to present our recent research results in designing
reliable controllers/filters for linear systems. The main feature of this book is
that adaptive mechanisms are successfully introduced into the traditional re-
liable control/filtering and based on the online estimation of eventual faults,
the proposed adaptive reliable controller/filter parameters are updated au-
tomatically to compensate the fault effects on systems. Moreover, the adap-
tive performances of resultant closed-loop systems in both normal and actua-
tor/sensor faults cases are optimized, and asymptotic stability is guaranteed.
The designed conditions, which are given in the frameworks of linear matrix
inequalities (LMIs), are proven to be less conservative than those of the tradi-

ix



X

tional reliable control/filtering. Designs for linear systems with both actuator
failures and sensor failures are covered, respectively. We also extend the design
idea from linear systems to linear time-delay systems via both memory-less
controllers and memory controllers. Moreover, some more recent results for
the corresponding adaptive reliable control against actuator saturation are
included here. This book provides a coherent approach, and contains valu-
able reference materials for researchers wishing to explore the area of reliable
control. Its contents are also suitable for a one-semester graduate course.

The book focuses exclusively on the issues of reliable control/filtering in
the framework of indirect adaptive method, and LMI techniques, starting
from the development and main research methods in fault-tolerant control,
and offering a systematic presentation of the newly proposed methods for
adaptive reliable control/filtering of linear systems against actuator/sensor
faults. Designs and guidelines provided here may be used to develop advanced
fault-tolerant control techniques to improve reliability, maintainability, and
survivability of complex control systems.

This work was partially supported in part by National 973 Program of
China (Grant No. 2009CB320604), the Funds of National Science of China
(Grant No. 60821063, 60804024, 60974043), China Postdoctoral Science Foun-
dation (Grant No. 20090451276), and 111 Project (B08015).

We would like to thank Dr. Wei Guan for his great help in preparing
Chapters 7 and 8.

Guang-Hong Yang and Dan Ye
Northeastern University, China
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Introduction

In recent years, fault-tolerant control has become a hot research area be-
cause of its importance in practical engineering [5, 54, 113, 121, 124, 134].
Generally, fault-tolerant control methods can be divided into passive fault-
tolerant method [84, 125, 133, 149, 164] and active fault-tolerant method
[8, 9, 10, 11, 30, 46, 72, 94, 79, 130, 162]. A passive fault-tolerant controller
commonly has a simple structure and is easily implemented [108, 117, 126].
The system performances in normal and fault modes can be optimized.
However, as the number of faults increases, the design conservatism in-
creases and even the design requirements cannot be achieved. On the other
hand, an active fault-tolerant controller may readjust controller parameters
or change controller structure to compensate the fault effects on systems
[6, 19, 128, 131, 130, 129]. Many active fault-tolerant control methods are
based on fault detection and diagnosis (FDD) mechanisms. Without FDD
mechanisms, some methods have been developed to design fault-tolerant con-
trollers using indirect adaptive method or direct adaptive method, based on
the potentially adjustable capacity of adaptive method. The resultant closed-
loop system can be guaranteed to be stable, but the system performance in
different modes cannot be optimized [8, 9, 10, 11, 130].

The main contribution of this book is that linear matrix inequality tech-
niques in robust control and adaptive methods have been successfully com-
bined to establish a set of new fault-tolerant control methods [152, 153, 155,
156]. Due to the successful introduction of adaptive mechanisms, the proposed
method can optimize the closed-loop system performances under different op-
eration modes and reduce the inherent conservatism in the traditional reliable
control. Main results are applied to the simulations about F-16/F-18 aircraft
models, river pollution model and the F-404 engine model, which show intu-
itively the feasibility and superiority of the newly proposed methods.

A summary of the rest of the chapters of this monograph is given below.

Chapter 2 presents some classical results about linear matrix inequality
(LMI), and Hy control. Some lemmas to be used to derive the main results
of this book are also given.

Chapter 3 investigates the adaptive reliable H, control problem for linear
time-invariant system against actuator faults via state feedback and dynamic
output feedback, respectively, where linear matrix inequality technique and
adaptive method are combined successfully. The adaptive Hoo performance
inder is exploited to describe the disturbance attenuation performances of
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closed-loop systems. Based on the online estimation of actuator faults, an
adjustable control law is designed to automatically compensate the effect of
faults on systems. In the framework of LMI method, the adaptive H., per-
formances of resultant closed-loop systems in both normal and actuator fault
cases are optimized, and asymptotic stability is guaranteed. It is worth not-
ing that the design conditions for the reliable H., controllers with adaptive
mechanisms are more relaxed than those for the reliable H, controllers with
fixed controller gains. The simulation examples have shown the effectiveness
of the proposed adaptive method.

Chapter 4 and Chapter 5 deal with the corresponding adaptive reliable con-
troller and filter design problems against sensor faults, respectively. Besides
LMI approach, adaptive method is also used to improve H,, performances of
systems in both normal and sensor failure cases. An adjustable dynamic out-
put feedback controller /filter is constructed based on the online estimations of
sensor faults, which is obtained by adaptive laws. More relaxed design condi-
tions than those for designing traditional reliable controller/filter are given to
guarantee the asymptotic stability and Lo-gain. In sensor failure cases, only
the state vector of dynamic output feedback controller/filter and the mea-
sured output can be used to construct the adaptive laws, which brings more
challenges for dealing with the adaptive controller or adaptive filter design
problem against sensor failures.

Based on the results in Chapter 3, Chapter 6 extends the adaptive reli-
able controller design problem to linear time-delay systems via both memory-
less controllers and memory controllers. Moreover, both state feedback and
dynamic output feedback designs are considered. Due to the introduction of
adaptive mechanisms, more relaxed controller design conditions than those for
the traditional controller with fixed gains are derived. Some simulation results
have demonstrated the superiority of the newly proposed design methods.

Chapter 7 and Chapter 8 consider the problem of designing adaptive reli-
able controllers for linear time-invariant systems with actuator saturation. In
Chapter 7, a new method for designing indirect adaptive reliable controllers
via state feedback is presented for actuator fault compensations. The design is
developed in the framework of linear matrix inequality (LMI) approach, which
can enlarge the domain of asymptotic stability of closed-loop systems in the
cases of actuator saturation and actuator failures. The corresponding H, con-
trol problem is addressed in Chapter 8. The disturbance tolerance ability of
the closed-loop system is measured by an optimal index. Some examples are
given to illustrate the efficiency of the design methods.

In Chapter 9, the reliable tracking problem of linear time-invariant sys-
tems in the presence of actuator faults is studied. The type of fault considered
here is loss of actuator effectiveness, which is a special case of those in the
previous chapters. Moreover, we design a novel adaptive reliable controller
without using fault detection and isolation (FDI) mechanism. The newly pro-
posed method is based on the online estimation of an eventual fault and the
addition of a new control law to the normal control law for reducing the fault
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effect automatically. It should be noted that the normal tracking performance
of the resultant closed-loop system is optimized without any conservativeness
and the states of fault modes asymptotically track those of the normal mode.
Since systems are operating under the normal condition most of time, this
contribution is very important in actual control systems design. The proposed
results are applied to a linearized F-16 aircraft model to demonstrate its ef-
fectiveness and superiority.

Based on the theory of Chapter 9, Chapter 10 is devoted to the adap-
tive reliable control problem of a class of nonlinear time-delay systems with
disturbance. The considered actuator fault is loss of effectiveness. The perfor-
mance index in normal cases is optimized in the framework of LMIs. And new
delay-dependent adaptive laws are designed to compensate the fault effects
on systems and to guarantee the system stability in normal and fault cases.
Moreover, the state vectors of normal and fault cases with disturbance can
track that of the normal case without disturbance, which has the designed
optimal performance.
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Preliminaries

In this monograph, reliable control and filtering problems for systems are in-
vestigated under both H., and guaranteed cost performance indez, using lin-
ear matriz inequality technique and adaptive method. For the convenience of
discussion in the rest of monograph, some preliminaries including a few of
definitions, notions and lemmas are presented in this chapter.

2.1 Linear Matrix Inequalities

Linear Matrix Inequality (LMI) techniques have emerged as powerful design
tools in areas ranging from control engineering to system identification and
structural design, since the resulting optimization problems can be solved
numerically very efficiently. In recent years, LMI method has been applied to
almost every branch of control theory. The following brief description of the
LMI method is given to prepare for use in later chapters.

A linear matrix inequality (LMI) is any constraint of the form

Flay=Fh+xz1F1 4+ +xn,F, <0 (2.1)
where x = [z1,-++ , 2|7 is a vector of unknown scalars (the decision or op-
timization wvariables), Fy,--- , F,, are given symmetric matrices. F(x) < 0

stands for “negative definite,” i.e., the largest eigenvalue of F(x) is negative.

If “<” has replaced “<” in (2.1), then the corresponding matrix inequal-
ities becomes non-strict linear matrix inequalities. Note that the constraints
F(z) > 0 and F(z) < G(z) are special cases of (2.1) since they can be rewrit-
ten as —F(x) < 0 and F(z) — G(z) < 0, respectively.

Denote ® = {x|F(x) < 0}, it is easy to prove ® is a convez set. This fact
makes it possible to apply the interior point method of convex optimization
problem to solve the corresponding problems of LMI.

Note that a system of LMI constraints can be regarded as a sin-
gle LMI since Fi(z) < 0,---,Fi(x) < 0 is equivalent to F(z) =
diag{F1(z), -, Fr(x)}. Hence, multiple LMI constraints can be imposed on
the vector of decision variables x without destroying convexity.

The following lemma is one of the most fundamental and commonly results
of matrix theory in LMI methods.
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Lemma 2.1 [14] (Schur Complement Lemma) For any given symmelric ma-

triz S = [?Tl gu], where S11 € R™*". Then the following three conditions
12 22
are equivalent
(1)) S<0

(ZZ) S < 0, Sog — SES;IISQ <0

(Z’LZ) Sog < 0,511 — 51252_215?2 <0
The following three generic optimization problems can be solved by using
MATLAB LMI Toolbox.

Here x denotes the vector of decision variables, i.e., of the free entries of
the matrix variables X, -+ Xg:

(i) Feasibility problem
Find z € RN (or equivalently matrices X7, --- X with prescribed structure)
that satisfies the LMI system

A(z) < B(x)

The corresponding solver is called feasp.
(ii) Minimization of a linear objective under LMI constraints

Minimizec” z over z € RY subject to A(z) < B(x)

The corresponding solver is called mincx.
(iii) Generalized eigenvalue minimization problem

Minimize v over z € RY subject to
C(z) < D(z)

0 < B(x)

A(x) < vB(z)

The corresponding solver is called gevp.

2.2 H, Control Problem

2.2.1 H,, Performance Index

A popular performance measure of a stable linear time-invariant system is the
H, norm of its transfer function. It is defined as follows.

Definition 2.1 [165] Consider a linear time-invariant continuous-time sys-
tem

z(t) = Az(t) + Biw(t)
2(t) = Cx(t) + Diw(t) (2.2)
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where x(t) € R™ is the state, w(t) € R® is an exogenous disturbance in
L]0, 00], that is,

()2 = / T T (bt < oo

and z(t) € R"is the regulated output, respectively. A, B1,C,Dy are known
constant matrices of appropriate dimensions.

Let v > 0 be a given constant, then the system (2.2) is said to be with an
H, performance index no larger than -y, if the following conditions hold
(1) System (2.2) is asymptotically stable
(2) Subject to initial conditions x(0) = 0, the transfer function matriz T,,,(s)
satisfies,

[Twz2(8)lloc == sup <7z (2.3)

(2.3) is equivalent to

/ T T (W) (t)dt < A2 / T TWwtdt, Vet) € Laf0,00)  (2.4)
0 0

It is easy to see that the inequality (2.4) describes the restraint disturbance
ability. Moreover, the system performance is better as - is smaller.

The LMI conditions for the Hy, control problem for system (2.2) is given
as follows.

Lemma 2.2 [119] For given constant v > 0, the system (2.2) is asymptoti-
cally stable and the transfer function matriz T,.(s) satisfies ||Tw2(8)]co < 7
if and only if there exists a positive symmetric matrix P such that

ATP+PA PB, C7T
* -1 DT | <o (2.5)
* * —y2I

Next, the H, control problems via state feedback and dynamic output feed-
back are considered, respectively.

2.2.2 State Feedback H,, Control

Consider the following system

x(t) = Ax(t) + Biw(t) + Bu(t)

z(t) = Chx(t) + D1iw(t) + Digu(t)

y(t) = Coz(t) + Dayw(t) + Dagu(t) (2.6)
where z(t) € R™ is the state, u(t) € R™ is the control input, y(t) € RP is

the measured output, z(t) € R? is the regulated output and w(t) € R® is an
exogenous disturbance in Lo[0, 0o], respectively.
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First assume the state of system is available at every instant, here we will
design a state feedback controller u = Kx such that the resultant closed-loop
system

z(t) = Az(t) + BKx(t) + Biw(t) (2.7)

is asymptotically stable and the transfer function from w to z satisfying
|1Tez(8) oo = (C1 + Di2K)[sI — (A+ BK)]"'Bi+ Duiflc <7 (28)
By some matrix transformation, the following conclusion can be easily ob-

tained from Lemma 2.2.

Lemma 2.3 [14] The closed-loop system (2.6) is asymptotically stable and
satisfies performance index (2.8) if and only if there exist a positive matriz
X >0 and matriz Y such that

AX + BY +(AX + BY)TA By (C1X + DpY)T

* -1 DY <0 (2.9)
k *k —72_[

Proof 2.1 From Lemma 2.2, it is easy to see that the closed-loop system
(2.6) is asymptotically stable and satisfies performance index (2.8) if and only
if there exists a positive matrix P > 0 such that

(A+ BK)TP+ P(A+ BK) PB, (Ci+ DppK)T

* —1I DL <0 (2.10)
* * —2I

Since in (2.10) the two unknown variables K and P are existing in nonlinear
form, it is difficult to solve inequality (2.10) and obtain the corresponding
variables.

Thus, we multiply (2.10) by diag{P~, 1,1} on the left and the right, re-
spectively. It follows that (2.10) is equivalent to the following inequality

A—FAT By (Clp_l —|—D12KP_1)T

* -1 DT <0 (2.11)
* * —~2T

where A = AP~ + BKP~!.
Denote X = P71 and W = KX, then the inequality (2.24) can be obtained.
The proof is completed.

2.2.3 Dynamic Output Feedback H.,, Control

In many practical problems, system state information is often not directly
measured. Thus, it is difficult to apply the state feedback to control the system.
Sometimes, even if the system state can be measured directly, but taking
into account the implementation of the control of cost and reliability of the
system and other factors, output feedback is usually used to achieve closed-
loop system performance requirements.
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Assumption 2.1 (A, B,Cy) is stabilizable and detectable.
Assumption 2.2 Dy =0

Assumption 2.1 is necessary and sufficient to guarantee the stability of closed-
loop system via dynamic output feedback. As for Assumption 2.1, it incurs
no loss of generality while considerably simplifying calculations.

Consider the following dynamic output feedback controller

2(t) = Ari(t) + Bry(t)
u(t) = Crei(t) + Dicy(t) (2.12)

where Z(t) is the state of controller (2.12), Ak, Bi,Ck, Dk are the controller
parameters to be designed. Then the resulting closed-loop system is

f(t) = Aclf(t) + Bclw(t)
2(t) = Cul(t) + Duw(t) (2.13)

where

z B Cs Ak o By Doy

Co = [C1+ D12DkCs  D15Ck|, Dg = D11+ D12Dg Do

¢ = m A= {A—FBDKC'Q BCK] By = {Bl+BDKD21}

From Lemma 2.2, we know that the controller (2.12) renders the closed-loop
system (2.13) asymptotically stable and ||T,,.($)|lcc < 7 if and only if there
exists a positive matrix X such that

AZ;XCl + XclAcl Xcchl Cg;
* -1 DL | <o (2.14)
2
* * —y I

It is easy to see that in (2.14) the matrix variable X, and the controller
parameters Ay, Bi,Ck, Dg are existing in nonlinear forms, which will bring
more difficulty to the dynamic output feedback controller design.

Next, the two results in the framework of LMIs are presented to deal with
the dynamic output feedback controller design problem.
Variable elimination method

The first method is the variable elimination method, which is based on the
well known projection lemma.

Lemma 2.4 (Projection Lemma) [/2, 71] Given a symmetric matric H €
R™*™ and two matrices P and Q of column dimension m, considering the
problem of finding some matriz X of compatible dimension such that

H+P'XTQ+Q"XP <0 (2.15)

Denote by Np and Ng some matrices whose columns form a basis for the null
spaces of P and Q, respectively. Then (2.15) is solvable if and only if

NEHNp <0, NbHNqg <0 (2.16)
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Gathering all the controller parameters into a single variable

- AK Bk
=l

and introducing the following short-hands:

A0 B
A0_|:O 0:|7 B0_|:01:|; CO:[Cl 0}

= 0 B = 0 I = = 0
O O N R P R ) I

then the closed-loop matrices A, Be, Cer, Doy can be written as

Ac = Ay + BKC, B = By+ BKDy
Co = Co+ D12KC, By = D11+ D12K Do (2.18)
Note that (2.17) involves only plant data and they depend affinely on the

controller data K.
Denote

AT X0+ XaAo XaBo CF

HX = * —I DT
* * —72_[

Px,=[BTXy 0 DL],Q=1[C D 0

Hence, (2.14) can be described as

Hx, + P, KQ+Q"K"Px, <0 (2.19)
Let
_ X X -1 |Y Yo
X = L XJ, X' = [* YJ (2.20)

Lemma 2.5 [42, 71] The closed-loop system (2.18) is asymptotically stable
and has a dynamic output feedback H.ocontroller if and only if there exist a
positive definite matric X >0 and Y such that

i C[ATX+XA XxB, cr"
No 0 * -1 DT [NO O}<0 (2.21)
Ea 3 . 27 x 1
L Y
i - [ATY +vA vo, BFY T
Ne 0 . 1 Df [NC O}<0 (2.22)
Ea 3 . 2T * 1
L 0
=0 (2.23)

where No and N. denote any matrices whose columns form basis of
Ker([Cy Dai]) and Ker(BI DI, respectively.
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A design procedure of dynamic output feedback controller (2.13) is given
as follows.
Step 1. Solve the conditions in Lemma 2.5 to obtain X and Y.
Step 2. Solve X5 € R™ "™ to satisfy X — Y1 = Xy XTI where nj can be
chosen as the rank of X — Y ~!. And let X5 = I, then it follows

X X
Xcl_|:* 12:|

Step 3. Apply the obtained X; into
Hx, + Py, KQ+Q"K"Px, <0

which is linear matrix inequality including only one matrix variable K. Then
the controller parameter variable K can be obtained.

Lemma 2.6 [118] The closed-loop system (2.6) is asymptotically stable and
satisfies performance index (2.8) if and only if there exist a positive definite
matric X > 0 and matriz Y such that

AX +BY + (AX 4+ BY)TA By, (CiX +Dpp)Y7T

* -1 DL <0 (2.24)
* * —2I

Variable transformation method
Next, another method to deal with the dynamic output feedback H, con-
troller design problem is presented, that is the so-called “variable transforma-
tion method.”
Denote
Y N 1 X M
xo= [ a] =[]
where X,Y € R™ ™ are symmetric matrices. From XClchl = I, we infer

X I .
Xa {MT] = {O]’ which lead to

X I I Y . X I I Y
Xl o] =[o wr] = {]m=ly
Then X F; = Fy, and after a short calculation it follows
A YA+ BCy

AX +BC A+ BDyC
FIX AqF = Ff AgFy = [ : K 2}

B, + BDD
F Xaba = [DF P00
CuFi = [C1X + D12C Cy + D13DCy]

X I
FI'XyF =Fl'F = {1 Y]
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where

A=Y (A4 BDgCy)X + NBgCoX + YBCxkMT + NAgMT
B =YBDg + NBg
C =DgCsyX +CxMT

D =Dy (2.25)

If M and N have full row rank, and if A, B,C, D, X and Y are given, we can
always compute controller matrices Ax, Bx,Ck and Dy satisfying (2.25). If
M and N are square (i.e., k = n) and invertible matrices, then Ay, Bg,Ck
and Dy are unique.

On the other hand, if we multiply (2.14) by diag{F{,I,I} on the left and
the right, respectively, it follows that (2.14) is equivalent to

AX + XAT + BC + (BO)T AT + (A4 BDGy)
* ATY + YA+ BCy + (BCy)T
* *
* *

Bi+BDDy  (C1X + D1oCT)

Y B, + BDo; (C1 + DlQPCQ)T
-1 (D11 + D12DDoy)T
* —72_[

<0 (2.26)

It is easy to see that the inequality (2.26) is linear matrix inequality about
matrix variables A, B, C’, b, X and Y. Thus, a feasible solutions of (2.26) can
be obtained by using the LMI Toolbox. Moreover, we have proved that the
solvability of the LMI (2.26) is necessary for the existence of a stabilizing
controller rendering ||7,,2($)|lcc < 7.

Assume that we have found solutions to the LMI (2.26). First we need to
construct M and N.

From the equation XCTlXcl =1, it follows

MNT =1 - XY (2.27)
By X > 0, we infer
X I
{I Y] >0 (2.28)

which implies I — XY > 0 is nonsingular. Hence, after getting the values of
X and Y, one can always find square and nonsingular M and N satisfying
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(2.27). Then the corresponding controller parameters can be obtained by

Dk =D

Cxg = (C™' = DgCyX)(MT)™!

Bx = N"Y(B - YBDg)

Axg = NHA-Y(A+ BDrCy)X](MT)™' — BLC, X(MT)™! — N~'YBCk

(2.29)

Lemma 2.7 [119] The closed-loop system (2.13) is asymptotically stable and
has a dynamic output feedback Hcontroller if and only if there exist sym-
metric matrices X,Y and matrices A, B,C, D such that the LMIs (2.26) and
(2.28) are feasible. Furthermore, if X, Y and A, B,C, D are the feasible solu-
tions of (2.26) and (2.28), then the matrices M cmd N can be obtained by the
singular value decomposition of I — XY . And so the controller parameters are
given from (2.29).

2.3 Some Other Lemmas

Some other lemmas that will be used in the monograph are presented.

Lemma 2.8 (Fisher’s Lemma) [71] Let matrices Q = QT, G, and a com-
pact subset of real matrices H be given. Then the following statements are
equivalent:

(i) for each HeH ¢TQE <0 for all € #0 such that HGE = 0;
(i1) there exists © = O such that
Q+GTeG <0, NLONy >0 for all H € H.

where Ny denotes a matriz whose columns form a basis for the null space of
H.

Lemma 2.9 [/3] Consider a scalar quadratic function of 0 € R*

f(0r,--- .05 —ao+2aze +> Bijti; +Z%92 (2.30)

1<J
and assume that f(-) is multiconvez, that is

0% f .
2vi = ==5(0) >0, for i=1,---s. (2.31)
00;
Then f(-) is negative in the hyper-rectangle 0; € [0,,0:] if and only if it takes
negative values at the corners of 0; € [0;,0;]; that is, if and only if f(6) < 0
for all 0 in the vertex set Q := {(01,---,05) : 0; € {_1,94}}.
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Let )
Ay ={0=(61---05): 6 € {d;; 0:i}}
where 6; (i =1---s) are unknown constants.

Lemma 2.10 If there exists a symmetric matriz © with

_|©11 O
@[@ﬁ @22]

where ©11, Ogg € R¥*S™ sych that the following inequalities hold:
O204 <0, i =1,---5

with Og2;; € R™™™ is the (i,1) block of Oaa.
For any 0 € A,

O11 + O12A(6) + (012A(8))T + A(6)O22A(5) > 0
and
ET F
then for all §; € [0; 0],

W) =Q+ Z 0, E; + (Z 5:E:)" + Z Z 0;0;Fij
i=1 i=1

{ 9 E] +UTU+GTeG <0 (2.32)

i=1 j=1
+(Uo+ > 6U) (Uo+ Y 6:U3) <0 (2.33)
i=1 i=1
where
Q=Q", Fy=FL A@©)=diag[s] - &),

E=[E, Ey---E;], U=[Uy U;---U,

Fiy Fa - Fig 1

For Py o0 By 10
F=1. ) ., G=1]"
: : : I

Fsl F52 Fss 0 I

Proof 2.2 For any = # 0, (2.83) is equivalent to zTW(5)z < 0,

which further is equivalent for any wvector [:ET yT]T # 0 and y =
T

[51[n><n 6sIn><n] z

I:xT yT] |:_EQT §:| |:;i:| +J3T [Inxn 61-[n><n Tt 5sIn><n:| UT
X U[Inxn 6lIn><n 6sIn><n}Tm

= =" y'] (L(SQT ﬂ +UTU) m <0 (2.34)
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and
"
HG =0 (2.35)
Y]
where H = [—A(&) IsnXSn]], A(0) = diag [51]n><n 5sIan]-
Inxn_
G = 0
Inxn_
O Isnxsn
It is easy to see that
Nuy — Isnxsn (2 36)
21 A©) '

Thus by Lemma 2.8 and (2.34)-(2.56), we have T W (§)x < 0, for any = # 0
if (2.32) holds. So the proof is completed.

Lemma 2.11 For any given constant v > 0, the following statements are
equivalent:
(i) Aey is Hurwitz, and ||T, || < ;
where
T..;w = Cep(sl — Acy) ™' Bey, (2.37)
with
A BCKf Bl
/ {BKfCQ Axy ] ! [BKfDm
Cey = [C1 D12Cky]

(i1) there exists a symmetric matriz X, > 0 such that

1
Al X+ XoAcs + ?XaBefBeTfXa +CLCey <0 (2.38)
(iii) there exist nonsingular matriz Q and symmetric matriz P > 0 with
'n -M
P= [_Nl N, ] (2.39)

such that the following inequality holds

1
AL P+ PA,+ ?PBqueT(JP +CL,Ceq <0, (2.40)

where

W _[ A Bog) 5 _[ B
“ T IBreCa  Agq |7 T |BggDa

Ceqg = [C1 D12Cky¢]
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and

Axq=Q "AxsQ, Brg=-Q 'Bgj, Cry=—CgsQ (2.41)
Proof 2.3 From [165], it is easy to see that (i)< (ii).

Next, we will prove (ii)=(iii). Let X, = XlTl X1z > 0 such that the in-

Xip  Xa2

equality (2.38) holds, then there exists an € > 0 such that

1
AL Xy + XAy + ?XbBefBeTbe +CLCey <0 (2.42)

X1 X2 +el
X1T2 +el X22
In fact, if X129 is nonsingular, then (2.42) holds for e = 0. For the case of X12
being singular, then there exists a sufficiently small € > 0 such that (2.42)
holds and X125 + €l is nonsingular.

Denote Q = XQEI(Xlg-l—EI)T, AKq = QilAKfQ, BKq = —QleKf, CKq =
—CksQ, Y1 = X11 and N1 = (X12 +l)Q
Then by (2.38) and X, > 0, we have

T
pP= {é _OQ} X {é _OQ} = [_3}1 _]\][\17 1] >0 (2.43)

where X, = ] > 0 and X192 + €l is nonsingular.

and

1
AT P+ PA, + ?PBqueT(JP +CLCeq

- {é _OQ}T@ {é _OQ} <0 (2.44)

which imply that (iii) holds, where
1
P = AZbe + XbAef + ?XbBefBZbe + Cg}cef.
(iii)=> (ii): Let

X,,:B _SI]TPB _51] (2.45)

Then by (2.38) and P > 0, it follows that X, > 0 and
1
AT Xy + XAy + ?XbBe rBL Xy + CLiCey

[ s ] e g <o (2.40)
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i.e., (i) holds, where
1
_ AT T T
U=A,,P+PAy+ 2 PBeyB,, P+ C.,Ceq.

Thus, the proof is completed.

Lemma 2.12 [99] For any a € R",b € R®",Zy € R*™*" R € R™"Y €
R™2 7 € R?X2"  the following holds:

T
T a R Y — Zg a
—2b"Fa < M [YT C a7 ) (2.47)

where {R Y

LR

Lemma 2.13 [159] Consider an operator D(-) : Cpq — R™ with D(x;) =
z(t) + Gf:idx(s)ds, where x(t) € R™ and G € R"*™. For a given scalar 0,

where 0 < § < 1, if a positive definite symmetric matric M € R" "™ exists,
such that

(2.48)

—6M dGTM 0
* —-M <

holds, then the operator D(x;) is stable.

Lemma 2.14 [73] For any positive symmetric constant matrizx M € R™*",
scalar v > 0, vector function v : [0,7] — R™ such that the integrations con-
cerned are well defined, then

(/Ov v(s)d8>TM (/0” v(s)ds) <~ </0v UT(S)MU(s)ds> . (2.49)

Lemma 2.15 [160] Let 2(t) € R™ be a vector-valued function with first-order
continuous-derivative entries. Then the following integral inequality holds for
any matrices X = XT > 0,Y1,Ys € R™" and a scalar d > 0

—/tt T (s) X2 (s)ds

—d
Yr+vy -YI+Y Y -
<o |7 T TR e e [Jr X a vl

(2.50)

where n'(t) = [T (t), 2T (t — d)).
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Adaptive Reliable Control against Actuator
Faults

3.1 Introduction

This chapter is devoted to the study of the reliable Hy, control for linear
systems against actuator faults. Here, a general actuator fault model is con-
sidered, which covers the outage cases and the loss of effectiveness cases. It
is well known that the fault-tolerant control problem has been paid more
attention in recent years [74, 105, 145, 161, 136], since unsatisfactory per-
formances or even instability may happen in the event of actuator faults
[114, 126, 128, 133, 151, 164]. Reliable control is a kind of passive control
approach, where the same controller with fixed gain is used throughout nor-
mal and fault cases such that this type of controller is easily implemented and
the performance index can be described. However, as the number of possible
failures and the degree of system redundancy increase, the traditional reliable
controller with fixed gain becomes more conservative and attainable control
performance indexes may not necessarily be satisfactory.

The purpose here is to present a novel reliable controller design approach to
the reliable control problem by introducing an adaptive mechanism [153, 154].
It will show that the advantages of the linear matriz inequality (LMI)approach
and indirect adaptive method can be combined successfully to design new re-
liable H, controllers via state feedback and dynamic output feedback. With
the online estimates of fault values, an adjustable control law can be designed
to maintain satisfactory adaptive H,, performances. Sufficient conditions for
the existence of the above-mentioned adaptive reliable H, controllers are
given, and it is shown that these conditions are more relaxed than those for
the traditional reliable controller with fixed gains. The proposed approach in
this chapter also provides a basis for solving other related problems that are
to be studied in the rest of the monograph.

19
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3.2 Problem Statement

Consider a linear time-invariant model described by

z(t) = Az(t) + Biw(t) + Bu(t)
(t) = Cl$(t) + Dlg’u,(t)
(t) = ng(t) + Dglw(t) (31)
)

where z(t) € R™ is the state, u(t) € R™ is the control input, y(¢) € RP is
the measured output, z(t) € R? is the regulated output and w(t) € R® is an
exogenous disturbance in Ly[0, 00|, respectively. A, By, B, C1,Cs, D12 and Dy
are known constant matrices of appropriate dimensions.

To formulate the reliable control problem, the following actuator fault
model from [133] is adopted in this monograph:

ufi(t) = (1= phui(t), 0<pl <pl <pl,i=1--mj=1---L.  (3.2)
where pg is an unknown constant. Here, the index j denotes the jth fault mode
and L is the total fault modes. Let uf‘; (t) represent the signal from the ith
actuator that has failed in the jth fault mode. For every fault mode, &j and
ol represent the lower and upper bounds of pf , respectively. Note that, when
B{ = p] = 0, there is no fault for the ith actuator u; in the jth fault mode.

When E{ = ﬁg = 1, the ith actuator u; is outage in the jth fault mode. When

0< BZ < p! < 1, in the jth fault mode the type of actuator faults is loss of
effectiveness.

Denote .
uf () = [ug; (), ub; (), - uh (O = (I = p’)u(t)

where p/ = diag[p?, p},---pl], j =1--- L. Considering the lower and upper
bounds (pi?, pi?), the following set can be defined

N, ={p' |¢? = diaglp], p}, - pl], pl = pi? or p = pi?}.

Thus, the set IV,; contains a mazimum of 2™ elements.
For convenience in the following sections, for all possible fault modes L, we
use a uniform actuator fault model

u(t) = (I = p)u(t), pe{p',---,p"} (3.3)

and p can be described by p = diag[p1, p2, - pm).

The design problem under consideration is to find an adaptive reliable
controller such that in both normal operation and fault cases, the resulting
closed-loop system is asymptotically stable and its adaptive H,, performance
bound is minimized.
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3.3 State Feedback Control

In this section, we assume that the state of the system is available at every
instant. Then, we design an adaptive reliable H., controller for the linear
time-invariant system (9.1) via state feedback.

The dynamics with actuator faults (3.3) is described by

z(t) = Az(t) + B(I — p)u(t) + Biw(t)

2(t) = Cra(t) + Dia(l — put). (3.4)
The adaptive reliable controller structure is chosen as

u(t) = K(p(t))z(t) = (Ko + Ka(p(t)) + Kp(p(t))x(t) (3.5)
where p(t) is the estimate of p, K,(p(t)) = Yiv, Kaipi(t) and Ky(p(t)) =
S Kyipi(t).

The closed-loop system is given by

#(t) = Ax(t) + B(I — p)K (p(t))(t) + Bro(t)
= Ax(t) + B(I — p)(Ko + Ka(p(t)) + K (p(t)))z(t) + Biw(t)
z(t) = Cra(t) + D12(1 — p) K (p(t))2(2). (3.6)
Next, based on the definition of the traditional H, performance index, we

give a new definition about an adaptive H,, performance index, which will be
used throughout this monograph.

Definition 3.1 Consider the following systems

i) = Aapt), p)e(t) + Ba(plt), pw(t)
) = Calf(t), p)a(t), 2(0)=0 (3.7)

where x(t) € R" is the state, w(t) € R® is an exogenous disturbance in
L5]0,00], 2(t) € R"is the regulated output, respectively. And p is a param-
eter vector, and p(t) is a time-varying parameter vector to be chosen. Let
~v > 0 be a given constant, then the system (3.7) is said to be with an adaptive
H, performance index no larger than v, if for any € > 0, there exists a p(t)
such that the following conditions hold

(1) System (3.7) is asymptotically stable

(2)
/ Tt < 42 / T T MWt £ e Yw(t) € Lo[0,00) (3.8
0 0

Remark 3.1 By the above definition, for any n > 0, let ¢ = n?, then there
exists a p(t) such that (3.8) holds. Thus, for OOO Wl (tw(t)dt > n, we have

|00 < 07 4y [ o
0 0
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For [[° wT(t)w(t)dt <mn, it follows

/ 2T (t)z(t)dt < v°n+n?
0

which shows that the adaptive Hy performance indez is close to the standard
H, performance index when n is sufficiently small.

We have the following equality

(I = p)u(t) = (I — p)(Ko + Ka(p(t)) + Ko (p(t)))2(t)
= (I = p)(Ko + Ka(p))2(t) + (I = p(£)) K (p())2(t)
+ (I = p)Ka(p)x(t) + pKu(p(t))2(t) (3.9)

where 5(t) = p(t) — p. Though K, (p
deal with them in different ways in (
conservativeness in Theorem 10.1.
Denote

(t) and Kp(p(t) have the same forms, we
9.22), which gives more freedom and less

Ap=1{p= (P pm) : pi € {min{p]}, max{p]}}}.

Theorem 3.1 Let v¢ > v, > 0 be given constants, then the closed-loop sys-
tem (9.5) is asymptotically stable and satisfies, in normal cases, i.e., p =0,

/000 2T (t)z(t)dt < 2 /000 Wl (t)w(t)dt + Z P li(O)’ for z(0) =0 (3.10)

and in actuator failure cases, i.e., p € {p'---pl'}, satisfies

*or o [T = 5:2(0) .
/0 . (t)z(t)dtg'yf/o w (t)w(t)dt—i—; L for s =0 (3.)

where p(t) = diag{p1(t) -+ - pm ()}, pi(t) = pi(t )
If there exist matrices X > O Y0,Y, Yei=1---m (md a symmetric matrix
© with o o
o= |n 12
|:®{2 G)22

and ©11, Og9 € R™M™*™™ such that the following inequalities hold:
B9 <0, i=1,---,m
with Ogg;; € R™*™ is the (i,1) block of Oaa.
O11 + A(P)O12 + (A(p)O12)T + A(p)O2A(p) >0, for p€ A,

|:N0a Zl

T T _
s Z]+U U+G ' 0G <0, forp=0
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{]ZV% ?] +UTU+GTOG <0, forpe {p'---p"},p' € N, (3.12)
1 2

where
m
Noo = AX + B(I — p)Yo + (AX + B(I — p)Yo)' + B ZpiYai
i=1

= 1
+(BY piYa)" + 7—2813?,

i=1 n

No=AX + B(I — p)Yo + (AX + B(I — p)Yo)" + B>  piYai

i1
L 1
+(BY piYai)" + BB},
i=1 Ty
[ —BY, — (B'Y)T -+ —BYWi, — (B™Yn)"
Zy = : : : )
|—B™Yp1 — (BYy)T o+ —=B"™Yi — (B™Yom)T
[ In)(n
G = N
Ian
L 0 TInxmn
Zy=[-BpYar + BYy1 -+ —BpYam + BYppn|
U=[CiX+Dix(I-p)Yo E1 -+ Ep

g = DlQ(I - p)(Yai + }/bi)a A(/;) = diag[/sllnxn T ﬁmlnxn]-
and also p;(t) is determined according to the adaptive law
P = Projiuinyry maxtpi {L1i}
J - J
/51' = m1n{p7} and Lli <0
. J - )
10 i or p; = max{p;} and L1; > 0; (3.13)
J
Ly;, otherwise
where L1; = —L;xT (t)[PB'Ky(p) + PBKyi]x(t) and P = X 1 Ko = Yo X 1,
Ky =YX Yandl; > 00 =1---m) is the adaptive law gain to be chosen ac-

cording to practical applications. Proj{-} denotes the projection operator [70],
whose role is to project the estimates p;(t) to the interval [min{p}, max{p; }].
il J

Then the controller gain is given by

m m
K(p) =YoX '+ pYuX ' +> pi¥eX " (3.14)

i=1 i=1
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Proof 3.1 We choose the following Lyapunov function

V = 27 () Pa(t) + f: ﬁijft) (3.15)

Then from the derivative of V along the closed-loop system, we can get

V(t)+ 2" (t)z(t) — v (Hw(t)
< 2"{PA+ PBI(I — p)(Ko+ Ka(p(t)) + (I — ﬁ)K (p(t)]
O(

1 1 < i
— (ypwT - %xTPBl)('yfw - %BITP:B) +2 Z

+ 22" PB[(I — p)Ka(p) + pEy(p)]a- (3.16)
Let B=[b*---b™] and B =[0---B"...0], then

PBpK(p szPB Ky(p) (3.17)
i=1

PBK,( Z piPBK,; (3.18)
=1

Furthermore, it follows
V() + 2T (0)2(t) — vl (t)w(t)
<a"{PA+ PB[(I — p)Ko + Ka(p) — pKa(p) + (I — p)Ks(p)]
+ (PA+ PBI(I — p)Ko + Ka(p) — pKa(p) + (I — p)E3(p))"

+(C1+ Dia(l = K ()T (C1 + Dis(I - p)K (7)) + %P&B?P}x

+ 20T PB[Ko(p) + Ko (p x+2zpl pil (3.19)

Choose the adaptive law as (9.30), then it is sufficient to show

V() + 2T ()z(t) — v (tw(t)
T [My + Ms + (C1 + D1o(I — p)K ()T (C1 + Di2(I — p)K(p))] 2 < 0
(3.20)

where
T 1 T
M, =PA+A"P+ —2PBlB1 P,
¥
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My =M+ M", M = PBs[(I - p)Ko+ Ka(p) — pKa(p) + (I = p)Kp(p)].
Let X = P_l,YQ = KoX,Yy = Kg; X, Y = Kpi X0 =1---m, iffOT' any
pe{p'--p"},pl € Ny

No + N1(pi) + Na2(pi)

+ (C1X + Di2(I — p)Yo + N3(p;))" (C1.X + Di2(I — p)Yo + N3(p;)) < 0,
(3.21)

then (3.20) is satisfied for any vector x € R™, where

m
No=AX + B(I = p)Yo + (AX + B(I — p)Yo)" + BY _ piYai

i=1

" 1
+ (B ZpiYai)T + ?Blev
i=1 f

m m m m
Ni(pi) = =BpY_ piYai + BY piYoi+ (=BpY_ pi¥ai + B> piVu)",

i=1 i=1 i=1 i=1

m m
Na(pi) =D > pipi(—=B'Ys; — Yy BIT),

By Lemma 2.10 and (3.12), it follows that (3.21) holds for any p €
{pt---pl},pl € N, and p satisfying (9.30). So (8.20) holds for any x # 0,
which further implies that V(t) < 0 for any x # 0. Thus, the closed-loop sys-
tem (9.5) is asymptotically stable for the actuator failure cases. Furthermore,

V() + 2T (t)2(t) — il (t)w(t) < 0.

Integrate the above-mentioned inequalities from 0 to oo on both sides, it follows

oo

V(c0) — V(0) + /OOO 2T ()2 (t)dt < %%/O Wl (t)w(t)dt.

Then

/OO 21 (t)z(t)dt <7 /Oo wl (Hw(t)dt + 2T (0)Pz(0) + f: ﬁiQFO) (3.22)
0 0

which implies that (3.11) holds. The proof for (3.10) and asymptotic stability
of the closed-loop system (9.5) for that normal case is similar, and omitted
here.
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Corollary 3.1 Assume that (3.12) holds for vy > v, > 0, controller gain
and adaptive law are given by (3.14) and (9.30), respectively. Then the closed-
loop system (9.5) is asymptotically stable and with adaptive Ho, performance
indezes no larger than vy, and v¢ for normal and actuator failure cases, re-
spectively.

Proof 3.2 Let F(0) =>_1" ﬁi2fo). Then, by (9.30) and (9.2), it follows that

i=1" 1,
pi(0) < max{ﬁg}—min{pg}. We can choose l; sufficiently large so that F'(0) is
J i

sufficiently small. Thus, from (3.10), (3.11), Definition 3.1 and Remark 3.1,
the adaptive Ho, performance index is close to the standard H, performance
index when l; is chosen to be sufficiently large. Then the conclusion follows.

Remark 3.2 Theorem 10.1 gives a sufficient condition for the existence of
an adaptive reliable Ho, controller via state feedback. In Theorem 10.1, if set
Yii =0,Y = 0,i = 1---m, then the conditions of Theorem 10.1 reduce to
p=0

1
AX 4+ B(I — p)Yo + (AX + B(I — p)Yo)T + 7—2313{

n

+ (C1X + D1a(I — p)Yo)T(C1 X 4 D1o(I — p)Yy) <0, (3.23)
forpe{pt---p"}

1
AX + B(I — p)Yo + (AX 4+ B(I — p)Yo)* + ?BlBlT
!

+(C1X + D1a2(I — p)Yo)' (C1 X + D12(I — p)Yp) < 0. (3.24)

From [165], it follows that conditions (3.23) and (3.24) are sufficient for guar-
anteeing the closed-loop system (9.5) with u = Koz, Ko = Yo X 1 to be asymp-
totically stable and with H performance indexes no larger than v, and vy
for mnormal and actuator failure cases, respectively, which can also be derived
by using the LMI approach to robust control [14]. This just gives a design
method for traditional reliable Ho, controllers via fixed gains. The above fact
shows that the design condition for adaptive reliable Hs, controllers given in
Theorem 10.1 is more relazed than that described by (3.23) and (3.24) for the
traditional reliable Hoo controller design with fixed gains.

Remark 3.3 From Theorem 10.1, it is easy to see that controller gains
Ko, Koiy Kpi(t = 1,--- ;m) are obtained off-line by Algorithm 8.1 while the
estimation p; is automatically updating online according to the designed adap-
tive law (9.30). Thus due to the introduction of adaptive mechanisms, the
resultant controller gain (3.14) is variable, which is different from traditional
controller with fixed gain.

From Theorem 10.1 and Corollary 3.1, we have the following algorithm to
optimize the adaptive H,, performance in normal and fault cases.
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Algorithm 3.1 Let v, and vy denote the adaptive Hy performance bounds
for the normal case and fault cases of the closed-loop system (9.5), respectively.
Then v, and ¢ are minimized if the following optimization problem is solvable

min an, + Bny st (3.12) (3.25)
where 1, = 2, Ny = 'y?, and o« and B are weighting coefficients.

Since systems are operating under the normal condition most of the time,
we can choose @ >  in (3.25).

3.4 Dynamic Output Feedback Control

In this section, the problem of designing an adaptive reliable H,, dynamic
output feedback controller for the linear time-invariant model (9.1) is studied.
The main difficulty in this section is that only the state vector of dynamic
output feedback controller and the measured output can be used to construct
adaptive laws, which brings more challenges here.

The fault model is the same as (3.3) in section 3, that is

u(t) = (I = p)u(t), pe{p'-p"}

with p = diag{p1- - pm}
Consider the traditional dynamic output feedback controller with fixed gains

§(t) = Ak s&(t) + Bryy(t)

WP () = (I - p)CrsE(H) (3.26)
then the resulting closed-loop system with actuator faults (3.3) is
ep(t) = Aepres(t) + Beyw(t)
zp(t) = Cepres(t) (3.27)
where . (t) = [21 (1) €7 (1)),
Aoy = BI:;CQ B(I " IfJ)CCKf] , Bep = [ BKljbm]

Cer =[C1 D12(I = p)Ckyl

Lemma 3.1 Consider the closed-loop system (3.27), and for given constants
Yn > 0, vy, the following statements are equivalent:

(i) there exist symmetric matriz X > 0 and the controller (3.26) such that
in normal case, that is p =0,

1
AT X + XAy + 7—2XBefBeTfX +ClCep <0 (3.28)

n
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in actuator fault case, that is p € {p*---p=},p? € N,

1
AL X + X Acy + TJ%XBefBZfX +CLCey <0 (3.29)

(ii) there exist a nonsingular matriz Q, symmetric matriz P > 0, and the

controller (3.26)
n M
pP= [_ N, ] (3.30)

such that in normal case, that is p = 0,

1
AT P+ PA + ?PBqu;P +CLCeq <0 (3.31)

in actuator fault case, that is p € {p'---pl}, p? € N,

1
AL P+ PA,+ T?PBquZJP +CCeq <0 (3.32)
where
4| A B(I — p)Cxkq4 5 _| B
eq BKqCQ AKq ’ ed BKqD21

Ceq = [Cl Dlg(I — p)CKq] and

Agq=Q 'AksQ, Brkq=-Q 'Bry, Crg=—CksQ
(iii) there exist symmetric matrices Y1 and Ny satisfying 0 < N1 < Y7, and
the controller gains of (3.26) Ax¢ = Arq,Bxf = Brq and Cxy = Cikq such
that
in normal case, that is p =0,

Wo Wi Y1B1 — N1BggDo . ct .
| * Wa —N1B1+ N1Bg¢Dxn CKq(I —p)Di,y
Vaal - = % % _'Y%I 0 <0 (333)
* * * —I
in actuator fault case, that is p € {p'---pl}, p? € N,
Wo Wi YiBy — N1BggDo ct
Wy —N1Bi1+ N1Bg,D CT (I —p)DL
Vari= | © 2 151+ D1 BKg P kel =P} (3.34)
* * -l 0
* * * -1
where

Wo =Y1A — N1 Bg,Co + (Y1 A — N1 Bg,Cs)"
Wi =Y1B(I — p)Cxy — N1Axy + (—N1A+ Ny Bg,C2)T
Wy = —N1B(I — p)Ckq+ Ni1Agy + (—N1B(I — p)Crq + N1Agy)"
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Proof 3.3 From the proof of Lemma 2.11, it is easy to conclude (i) <> (i),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < N1 < Y1,
thus by some simple algebra computation, it follows (ii) <= (iii). The proof
is complete.

Remark 3.4 From Lemma 3.1, it follows that the special form of P with

P = [ };i] —]\][\71] doesn’t bring any conservativeness when we design the
—N 1

dynamic output feedback controller with fized gain.

From Lemma 3.1, we have the following algorithm to optimize the H, perfor-
mances in normal and fault cases for the reliable controller design with fixed
gains.

Algorithm 3.2 Step I Solving the following optimization problem
minon, + Ony st. X >0, (3.23) (3.24) (3.35)

where 1, = 2, Ny = 'yJ%, and «, B are weighting coefficients.
-1

Denote the optimal solution as Xopt and Yoopt, then let Crp = Yoopt X opy-

Step 2 Let NlAKf = AKf, NlBKf = BKf.
minan, + fny s.t. 0< Ny <Yp (3.33) (3.34) (3.36)

Denote the optimal solution as fle = AKfopt, BKf = BKfopt, N1 = Niopt-
Then the resultant dynamic output feedback controller gains can be obtained
by AKf = Nflf_le, BKf = Nfngf, CKf = YOotho;)}f-
Remark 3.5 It should be noted that the conditions (3.33) and (3.34) are non-
convezx, however with Ck ¢ fized, and N1Ak s, N1Bgky are defined as new vari-
ables, the conditions (5.33) and (3.34) are linear matriz inequalities. More-
over, algorithm 3.2 gives a method for the reliable dynamic output controller
design with fized gains by two-step optimizations. Step 1 is to a Cky, which
solves the corresponding design problem via state feedback. With the Ckq fized,
controller parameter matrices Axy and By can be obtained by performing
Step 2.

In order to reduce the conservativeness of the dynamic output feedback
controller with fixed gains, the following dynamic output feedback controller
with variable gains is given

£t) = Ax(p)E) + Br(p)y(t)
u(t) = Ck(p)§) (3.37)

where () is the estimation of p. Denote

Ak (p) = Axo + Aka(p) + Ak (p)
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Bk (p) = Bko + Bka(p) + Bru(p), Cr(p) = Cxo+ Cka(p) + Cru(p)
with

m m m
Ara(p Z piArai, Axs(p Z > hiniAvi; + Y piAksi
i=1 i=1 j=1 i=1
Bka(p Z piBrai, Brb(p Z piBrcbis
i=1

Cra(p Z piCrai, Cru(p Z PiCKbi
i=1

Combining (9.1) and (3.37), the dynamics with actuator faults (3.3) is
described by

z(t) = Cexe(t) (3.38)

A By(I — p)Ck (p) _ B
=B ARp) ] Be = [BK@)DQJ

Ce =[C1 Di2(I — p)Ck(p)]

The following theorem presents a sufficient condition for the solvability of
the reliable control problem via dynamic output feedback in the framework of
LMI approach and adaptive laws.

Theorem 3.2 Assume that Co is of full rank, and let vy > v, > 0 be given
constants, then the closed-loop system (3.38) with the adaptive dynamic output
feedback controller (3.87) is asymptotically stable and satisfies for x(0) = 0,
in normal case, i.e., p =20,

o] o moo~2
/O zT(t)z(t)dtng/O wT(t)w(t)dt—i—szli(o), (3.39)

and in actuator failures cases, i.e., p € {p'---p*}, satisfies for x(0) =0

o o] moo~2
/0 zT(t)z(t)dtS%%/O wT(t)w(t)dtJer’lfO), (3.40)

where p(t) = diag{p1(t) - - pm ()}, pi(t) = pi(t)—pi, if there exist matrices 0 <
N1 < Y1, Ago, Akai, Akvis Axvij, Bro, Brai, Brbi, Cro,Ckai, Ckpiyni,] =
1---m and a symmetric matriz © with

_|©11 O
@—[@a @22]
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and ©11, Oy € RM2nt9)xm2n+s) sych that the following inequalities hold:
O <0, i=1,---,m

with Og9y; € REMH)XCn+3) s the (i,4) block of Ogs.

O11 + A(p)O12 + (A(p)O12)" + A(p)O22A(p) > 0, for pe Ay

{%ﬁ ﬂ + Vi o+ GTOG <0, forp=0

RT S
where N1 < Yy means that Ny — Y, <0, and

[Ql R] + Vo Vo +GTOG <0, forpe{p--p}p) €Ny (341)

[Y1A — NiBgoCs + (Y1A — N1BgoC2)T Tv Ty
Qia = * T3 Ty |,
i * x =2l |
[YiA — NiBgoCs + (Y14 — N1BgoC2)T Ty Ty ]
Q1= * 5 Ty |,
I * * =
RZ[Rl R2 Rm}, S:[Sij],i,jzl---m,

Cy satisfies C2Cy T =0 and C3C3T is nonsingular,

—N1BkiC2 — N1BkaiC2 Tsi Toi

R; = | N1BgpiC2 + N1BkaiCol [CE)QL} T7 Tsi
0 0 0

0 To;j 0,

Sij = |Twij Tiij (YiBICkpi)'T [_321} ,

0 T1244 0
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VO _ [‘/OO %1 .. me] , VOO = [Cl Dlg(I— p)CKO 0} )
Voi = [0 Di2(I — p)(Ckai + Crei) 0],
Ty = Y1B[(I — p)Crxo + Cra(p)] — N1Ako — N1Axa(p)

0
4 (=N1A + N1 BoCh + N1 Bia(p)Ca — [N1 Bica(p)CaT)] [024 T
Cs
Ty =Y1By — N1BgoDai,
T3 = =N B[(I — p)Cxo + Cxa(p)] + (=N B[(I = p)Crko + Cra(p)))"
+ N1Ago + Ni1Aka(p) + (N1Aro + N1Aka(p)7,

T
i [ 0 } I [-Y1BCra(p) + N1Aka(p)]

-D
Ty = —N1 By + N1BkoD21 — N1Bga(p)CoT { 21}

0
+ [-Y1BCka(p) + N1Aka(p))"'T {_10)21] ’

Ty = YlB[—PCKai + CKbi] — N1Axkwi
Cy

Tei = —N1BgpiD21 — N1BraiD21
T7; = NiBpCrai — N1BCkvi + N1Aku,

T
0
+ { ] I Y1 B(Ckai — pCxui) — N1AKkail,

-D
Tsi = (Y1BCkai — YiBpCrkpi — N1Akai)'T [ 21}

0

-D
+ N1BkaiD21 + N1BgpiD2a1 + N1BgaiCol' [ 021} ;

T
T9ij = _YIB’LCKb] - NlAKbij + |: :| FTleiCij

0
Cy

T
Thoij = (=Y1B? Crpi — N1 Agpji + { ] 7Y, B Cperi) 7,

0
Cy
Ti1ij = N1B'Crpj + N1Agpij + (N1 B*Crp; + N1 Agpij) "
Ti2ij = [-D% 0] TTY1B'Cikj,

A(ﬁ) = diag[ﬁll(QnJrS)X(QnJrs) e ﬁml(2n+s)x(2n+s)]7
I(2n+s)><(2n+s)
G= : . T= {
I(2n+s)><(2n+s)
0 Im(2n+s)><m(2n+s)
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and also p;(t) is determined according to the adaptive law
Pi = Profiuinisty masipiyy (L2t}
pi = mjm{;_)i} and Lo; <0

10 i or p; = max{p!} and La; > 0; (3.42)
J

Lo;, otherwise

Cs
Cs-

YlBiCKb(pA) — NlAKai)§+€TNlBKaiCQF |:g:|] and l; >0 (Z =1--- m) 1s the

-T
0 :| (YlBCKai+

T
where Lay; = —1;[€T (N1 Ak ai—BCkai— B Cip(p))é+ [y] [

adaptive law gain to be chosen according to practical applications. Proj{-} de-
notes the projection operator [70], whose role is to project the estimation p;(t)
to the interval [min{p/}, max{p;}].

i = J

Proof 3.4 Choose the following Lyapunov function

m ~9
T p; (1)
V(t) =z, Px. + ;_1 L

By p(t) = p(t) — p, it follows

(I = p)Ck(p) = (I = p)(Cko + Cka(p) + Crb(p))
I —p)Cko+ Ckalp) — pCra(p)
+ (I = p)Cxkb(p) + Cra(p) + pCru(p)
Brka(p) = Bra(p) + Bra(p)
Ara(p) = Aka(p) + Axa(p)

—~

Then A, can be written as
Ae = Ael + Ae2 + AeB

where

A — A Aela
L 7 |[Bko + Bra(p) + Bru(9)]C2 Aro + Axa(p) + Axs(p)

A, — |0 BoCralp) + B2pCrn(p)| 4 0 0
<70 Aka(p) © ST | Bra(p)C2 0

with

Aer = Ba[(I = p)Cro + Cra(p) = pCra(p) + (I — p)Crv(p)]-
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Let P be of the following form

v =M
P—[_Nl Nl] (3.43)

with 0 < N1 < Y7, which implies P > 0. Since Cy is of full rank, and CQL
satisfies CoCyT = 0 and C3-CyT nonsingular, it follows that [gi} is non-
2

singular. From (9.1), we have
CQJ? =Y — D21w

Then it follows

CQ = Yy — Dglw
Cs- Cix
which implies that
Y= Doaw| |y 0 —Doy
x—I‘{ Cia }—T[O}—I—F[CQL}:E—FI‘[ 0 }w (3.44)
]t
Cs| -

Furthermore, we have

where I' = [

PA, — [o Wa}

0 W,

where
Wy = Y1[B2Cka(p) + B2pCrp(p)] — N1Aka(p)
]

Wiy = N1[Aka(p) — B2Cka(p) — B2pCkp(p)
which follows

(27 TP Aea[a™ €77 = 2" W€ + Wi

Thus, by (3.44), we have

T
W = 3] T T Al T T B

where

T
01" ., 0
0 |:CQJ_:| r Wa] , B(Ll = [WTF |:—D21:|
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In the same way, from (3.44) we get
" TP Acs[z™ 7]y
= —2" N1 Bga(p)Cox + €7 N1 Bro(p)Cox

T T
=T, AaZl‘e + Ty Ba2w + Ma2

where
—N1Bka(p)C2 0
Aa2 = ~ 0 ;
NlBKa(p)CQP CL 0
2
T . Yy 0
My = & N1Bga(p)Col! [0} , Baa= [Mb]
with
- -D
Mb = NlBKa(p)CQF |: 021:| .

Then from the derivative of V (t) along the closed-loop system (3.38), it follows
V(t)+ 2T (t)z(t) — v (tw(t)

m ~ t L. t
TP+ B+ 4T CE G, 23 A0
i=1 ¢

= 22! P(Aaze + Bew) + 2l Cl Coxe — 7w w
+22T[Ag1 + Awo|ze + 22T [Bay + Bao]w + 26T W,y
y]" N pi(t)pi(t)

sa U P wag 20y 42 POPO

i=1

T mo o~ L
i(t)p; (T
< 2T Wore + 26TWye + 2 m TTWaE +2M,, +2Y M
i—1 i
where
WO - PAel + Aal + Aa2 + [PAel + Aal + AaQ]T

1
+?(PBE + Bal + Ba2)(PBe + Bal + BaQ)T + CETC&
f

The design condition that V (t) + 2T (t)z(t) — vl (tw(t) < 0 is reduced to
Wy <0 (3.45)

and

T moo :
EWe + m PTI0 + Myo 4 3 OB <

0 > (3.46)
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Since y and & are available online, the adaptive law can be chosen as (3.42)
for rendering (3.46) valid. (3.45) is equivalent to
|:PA61 + Aal + Aa2 + [PAel + Aa + AaQ]T PB + Bal + Ba2:|
* _')/f-[

+ [COT } . o] <o. (3.47)

Notice that

PA, = { YiA = Ni[Bxo + Bra(p) + Brco(p)C Wc}
© —N1A + Ni[Bko + Bka(p) + Brp(p)|Ca - Wy
with
W. =Y1Bs[(I — p)Cko + Ckal(p) — pCra(p)
+ (I - p)Cru(p)] — N1[Ako + Axa(p) + Axp(p)]
Wa = —N1Bz[(I — p)Cro + Cka(p) — pPCra(p)
+ (I = p)Cxu(p)] + Ni[Aro + Axal(p) + Axp(p)]
and

B — [ Y1B1 — Ni[Bko + Bra(p) + Bry ()| Dz }

—N1B1 + Ni[Bko + Bka(p) + Bro(p)]| D21
Furthermore (3.47) can be described by

Wi(p) = Qi+ Y _piRi+ (Y _piRi) ZZM
i=1 i=1 j=1

+ (Voo + > piVos)" (Voo + ZﬁiVm‘) <0
i=1 i=1
where Q1, R;, Sij, Voo and Vy,4,j = 1---m are defined in (3.41). By Lemma
2.10, we can get W1 (p) < 0 if (3.41) holds, which implies Wy < 0. Together
with adaptive law (3.42), it follows that V(t) < 0 for z, # 0, which further
implies that the closed-loop system (3.38) is asymptotically stable.
Furthermore, we have

V(t)+ 2T ()2(t) — il (t)w(t) < 0.

Integrate the above-mentioned inequalities from 0 to oo on both sides, it follows

oo

V(00) — V(0) + /OOO 2T ()2 (t)dt < %%/O Wl (t)w(t)dt.

Then
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which implies that (3.40) holds. The proofs for (3.39) and the asymptotic
stability of the closed-loop system (3.88) for the normal case are similar, and
omitted here.

Corollary 3.2 Assume that the conditions of Theorem 10.2 hold. Then the
closed-loop system (8.38) is asymptotically stable and with adaptive Ho per-
formance indexes no larger than v, and s for normal and actuator failure
cases, respectively.

Proof 3.5 It is similar to that of Corollary 3.1, and omitted here.

Remark 3.6 Theorem 10.2 presents a sufficient condition for adaptive
reliable Hy, controller design via dynamic output feedback. Generally,
(8.41) is not LMIs. But when Cgo, Ckai and Ckp; are given, and
Ni1Ako, N1Agais N1 Akvi, N1Akeij, N1Bro, N1Bgai and N1 Bgy; are defined
as new variables, (3.41) becomes LMIs and linearly depends on uncertain pa-
rameters p and p.

Remark 3.7 It should be noted that Cy satisfying CQC2J_T =0 and CQJ-CQJ‘T
nonsingular is not unique in general, which can be used to requlate Cy- for
obtaining better performance in adaptive reliable Hy, control design.

From Theorem 10.2 and Corollary 3.2, we have the following algorithm to
optimize the adaptive H,, performances in normal and fault cases.

Algorithm 3.3 Let v, and v denote the adaptive Hy performance bounds
for the normal and fault cases of the closed-loop system (3.38), respectively.
Then vy, and vy are minimized by

Step 1 Choose Ck (p) = Cxo with Cko being a solution to the problem of
reliable dynamic output controller design with fized gains via Algorithm 3.2,
or perform Algorithm 3.1 for obtaining state feedback gains Cko, Cgai and
CKbi (z:lm)

Step 2 Let NyAko = Ako, N1Akai = Akai, N1Akvi = Arvi, N1Akpij =
Axkuvij, N1Bro = Bro, N1Bkai = Brai and N1Bgy; = Brupi

minaL, + 8Ly st 0< N1 <Y; and (3.41), (3.48)

where n, =2, ng = ’yJ%, and o and B are weighting coefficients. The resultant
adaptive dynamic output feedback controller gains can be obtained by Axg =
NflfilKo, Arai = Nl_lgle‘; Agpi = Nl_lglei, Axpij = Ny Agpij, Bro =
N, 'Bro, Brai = Ny 'Brkai, Bryi = Ny *Biui.

Remark 3.8 Similar to Algorithm 3.2, Algorithm 3.8 also is composed of
two-step optimizations, where the purpose of Step 1 is to determine state feed-
back gain Cr (p), which is a solution to the problem of reliable state feedback
controller design. By (3.41), it is easy to see that the solvability of the prob-
lem via state feedback is necessary for that of the corresponding problem via
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dynamic output feedback to have a solution. When choosing Ck(p) = Cko
with Ckq being a solution to the problem of reliable dynamic output controller
design with fized gains via Algorithm 3.2, then, by Theorem 3, it follows that
Algorithm 3.8 can give less conservative design than Algorithm 3.2, which will
be illustrated by examples in Section 3.5.

Remark 3.9 From Theorem 10.2, it is easy to see that controller gains
Ako, Akai, Axvi, Akvij, Bro, Brai» Brvi, Cko, Ckai, Crpi(i,j = 1,---,m)
are obtained off-line by Algorithm 3.1 while the estimation p; is automatically
updating online according to the designed adaptive law (8.42). Thus due to
the introduction of adaptive mechanism, the resultant controller gain (3.26) is
variable, which is different from traditional controller with fized gain.

For the comparison between Theorem 10.2 and Lemma 3.1, we have

Theorem 3.3 If the condition in Lemma 3.1 holds for the closed-loop system
(8.27) with fized gain dynamic output feedback controller (3.26), then the con-
dition in Theorem 10.2 holds for the closed-loop system (3.38) with adaptive
dynamic output feedback controller (3.87).

Proof 3.6 Notice that if V1 < 0 and Va1 < 0 for the actuator failure cases
and normal case, then the condition in Theorem 10.2 is feasible with Axg =
Akeo, Bko = Breo,Cko = Ckeo and Agai = Axvi = Axvij = Brai =
Bgpi = Ciai = Crp; = 0,1, = 1---m. The proof is complete.

Remark 3.10 Theorem 10.3 shows that the method for the adaptive reliable
H, control design given in Theorem 10.2 is less conservativeness than that
gwen in Lemma 8.1 for the reliable Hy, control design with fized controller
gains.

3.5 Example

To illustrate the effectiveness of our results, two examples are given. Example
3.1 is for state feedback case and Example 3.2 is for dynamic output feedback
case.

Example 3.1 The decoupled linearized longitudinal dynamical equations of
motion of the F-18 aircraft are given as in [1] to show the effectiveness of our
state feedback case.

« « 5E
= Aion Bion Biw(t
M l g[q% l g{éwv% et
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where
_ Zq Z(I _ ZéE Z(SPTV _ 1
Along* |:Moc Mq:|7 Blong* |:M6E M(SPTV ) Bl* 4]
m 7hia _ |—1.175  0.9871 m 7hia _ [—0.194  —0.03593
tong 7 1-8.458 —0.8776( “Tlmg T 1-19.29 —3.803
and

a = angle of attack, q = pitch rate,

& = angle velocity of attack, ¢ = pitch acceleration,
0g = symmetric elevator position,

dprv = symmetric pitch thrust velocity nozzle position

w = external disturbance.

Following the nomenclature in [1], A}anmu denotes the longitudinal state

matrix at Mach 0.7 and 14-kft altitude.
In this example, the regulated output z(t) is chosen as

0 4] 0 0]
z(t)=00H+2o{E]
00 0 2

to improve the performance of the second state g.
Besides the normal mode, that is,

P =p=0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, that is,

pi=1, 0<py<a, a=08,

which denotes the maximum loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

pa=1, 0<pi<b, b=0.9,

which denotes the maximum loss of effectiveness for the first actuator.

From Algorithm 3.1 with « = 10, 8 = 1 and Remark 3.3, the corresponding
H ., performance indexes of the closed-loop systems with the two controllers
are obtained. See Table 3.1 for more details, which indicates the superiority
of our adaptive method.
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TABLE 3.1 H,, performance index

Adaptive reliable controller Traditional reliable controller

Tn 0.4147 2.1584
r T.0161 3.1303
0.2 T T T T T T T

\ ., e
N\ ,
N /
N
RN /
~ o /
Ty
-0.2F+ -
_04 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

time(s)

FIGURE 3.1

Response curve ¢ in normal case with adaptive state feedback controller (solid)
and state feedback controller with fixed gain (dashed) I; = I3 = 50.
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0.2

o
-0.2
_04 | | | | | | |
1 2 3 4 5 6 7
time(s)
FIGURE 3.2

Response curve ¢ in fault case with adaptive state feedback controller (solid)
and state feedback controller fixed gain (dashed) I; = lo = 50.

In the following simulation, we use the disturbance w(t) = [w1(t) wa(t)] T
is
i) — () = [ b 2SLE306)
=228 70 0 otherwise

and the fault case here is that at 0 second, the first actuator is outage.

Just as the analysis in Definition 1 and Remark 3.2, the adaptive H,
performance index is closed to traditional H., performance index when we
choose I; relatively large to make F(0) = Y_1", m sufficiently small.

Figure 3.1 describes the response curves in pitch rate ¢ in normal case with
adaptive state feedback controller and fixed gain state feedback controller.
The responses in pitch rate ¢ in fault case with the above-mentioned two
controllers are given in Figure 3.2. From Figure 3.1-Figure 3.2, it is easy to
see our adaptive method has more restraint disturbance ability than fixed gain
one in either normal or fault case just as theory has proved.

Next, a numerical example is given for dynamic output feedback case.
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Example 3.2 Consider the following linear system

. -5 2 10 10
z(t) = [_1 _3} x(t) + [1 0] w(t) + {0 1] u(t)
4 0 0 0
z(t)= |0 0| x(t)+ |0.5 0] u(t)
0 0 0 1
yt)=[1 0]z(t)+ [0 1]w(®) (3.49)
Choose C3- = [0 1].
Besides the normal mode, that is,
P =p=0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

p%zl7 OSp%Sal,m:Oﬁ

which denotes the maximal loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, described by

pa=1, 0<p?<by, by =06

which denotes the maximal loss of effectiveness for the first actuator.
By using Algorithm 3.2 and Algorithm 3.3 with o = 10, 5 = 1, we obtain the
corresponding H., performances indexes of the closed-loop system using the
two controllers. See Table 3.2 for more details.

To wverify the effectiveness of the proposed adaptive method, the
simulations are given in the following. Here, the disturbance w(t) =

[wi(t) wa(t) wa(®)] s

1, 4<t<5(s
wi(t) = wa(t) = ws(t) = { 0 otherwise( )

The following fault cases are considered in the simulation

Fault case 1: At 1 second, the first actuator is outage.

Fault case 2: At 0 second, the second actuator is outage, then after ¢ = 2
seconds, the first actuator becomes loss of effectiveness by 50%.

Figure 3.3, Figure 3.4 and Figure 3.5 are the responses curves of the first
state with adaptive and fixed gain dynamic output feedback controller in
normal and the above-mentioned fault cases, respectively. It is easy to see even
in the presence of actuator faults, the proposed adaptive method performs
better than the design with fixed controller gains.
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TABLE 3.2 H, performance index

Adaptive reliable controller Traditional reliable controller

Tn 1.1616 1.1929

o 1.7818 1.9254
X

0.25

02t .
/ - 4’

0.15} / ! .

0.1

0.05

-0.05

FIGURE 3.3

Response curve of the first state in normal case with adaptive dynamic output
feedback controller (solid) and dynamic output feedback controller with fixed
gains (dashed) Iy = I3 = 50.
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0.25

0.2

0.15f

0.1

0.05

time(s)

FIGURE 3.4

Response curve of the first state in fault case 1 with adaptive dynamic output
feedback controller (solid) and dynamic output feedback controller with fixed
gains (dashed) Iy = I3 = 50.

3.6 Conclusion

In this chapter, we have proposed the new reliable controllers design methods
via both state feedback and dynamic output feedback to deal with actua-
tor faults with adaptive mechanisms for linear time-invariant systems. The
adaptive H., performance index is exploited to describe the disturbance at-
tenuation performances of closed-loop systems. Based on the online estima-
tion of actuator faults, an adjustable control law is designed to automatically
compensate the effect of a fault on the system. In the framework of LMI
method, the adaptive H., performances of resultant closed-loop systems in
both normal and actuator failure cases are optimized, and asymptotic stabil-
ity is guaranteed. It is worth noting that the design conditions for the reliable
H ., controllers with adaptive mechanisms are more relaxed than those for the
reliable H,, controllers with fixed controller gains. The simulation examples
have shown the effectiveness of the proposed adaptive method.
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0.3

0.25

0.2

0.15

0.1

0.05

-0.05

-0.1 1 ! ! I
0

time(s)

FIGURE 3.5

Response curve of the first state in fault case 2 with adaptive dynamic output
feedback controller (solid) and dynamic output feedback controller with fixed
gains (dashed) l; = Iy = 50.



4

Adaptive Reliable Control against Sensor
Faults

4.1 Introduction

In Chapter 3, a new reliable control approach for linear systems against ac-
tuator faults is proposed, based on the combination of adaptive method and
linear matrix inequality technique. A control system consists of sensors, com-
pensators and actuators besides a controlled object. In general, sensors are
prone to break down more frequently than actuators or compensators. Fur-
thermore, sensor faults are prone to bring about more serious situations than
actuator of compensator faults. It is because incorrect information from a
failed sensor often makes the total control system in danger. Measures should
be fully taken against sensor faults in many control systems [150, 154]. Cur-
rently, the research about fault-tolerant control against sensor faults has been
paid more attention [83, 87, 88, 150].

In this chapter, sensor faults are considered for linear systems to design
reliable H., dynamic output feedback controllers. Here, the considered sensor
faults are modeled as outages. Besides LMI approach, adaptive method is also
used to improve H, performances of systems in both normal case and sensor
fault cases. An adjustable dynamic output feedback controller is constructed
based on the online estimations of sensor faults, which is obtained by adaptive
laws. More relaxed design conditions than those for designing passive fault-
tolerant H,, controllers with fixed gains are given to guarantee the asymptotic
stability and Lo-gain. In sensor fault cases, only the state vector of the dynamic
output feedback controller and the measured output can be used to construct
the adaptive laws, which brings more challenges for dealing with the adaptive
controller design problem against sensor faults.

47
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4.2 Problem Statement

Consider a linear time-invariant model described by

() = Axz(t)+ Biw(t) + Bu(t)
z(t) = Ciz(t) + Digu(t)
y(f,) = CQJ?(t) + Dglw(t) (41)

where x(t) € R" is the state, u(t) € R™ is the control input, y(¢) € RP is the
measured output, z(t) € R? is the regulated output and w(t) € R® is an ez-
ogenous disturbance in Ls[0, o], respectively. A, By, Ba, C1,Cs, D12 and Doy
are known constant matrices of appropriate dimensions. Since Co € RP*™
and rank(Cy) = p; < p, then there exists a matrix T, € RP'*P gsuch
that rank(7.C2) = p;. Furthermore, there exists a matrix C., such that

-1
T.C T.C - . T
Ccn2 Ccn2:| , C% - |:O o CzQzT -0 ’ where
C?, represents the ith row of C.
The following sensor outage fault model is considered

yh(t) = (1 —pH)yi(t), i=1--pk=1---g. (4.2)

where p¥ is an unknown constant with p¥ = 0 or p¥ = 1, Here, the index k
denotes the jth fault mode and g is the total fault modes. yf}; (t) represents the
signal from the ith sensor that has failed in the kth fault mode. When p¥ = 0,
there is no fault for the ith sensor in the kth fault mode. When p¥ = 1, the
1th sensor is outage in the kth fault mode.

Denote

rank[ ] = n. Denote T,,= [

yk (t) = [y (6), v (), -y (O] = (I = p")y(t)

where p* = diag[p, p5,---pj], k=1---g.

N = {p" |p* = diag{pY, p5,--- pj}, pi =0 or pi = 1}.

Since, all the sensor cannot be outage at the same time, the set N, contains
a mazximum of 2P — 1 elements.

For convenience in the following sections, for all possible fault modes g, we
use a uniform sensor fault model

y ()= (I = p)y(t), pe{p'--p} (4.3)
where p can be described by p = diag{p1, p2,-- - pp}-
Then the dynamic of (4.1) with sensor fault (4.3) is described
() = Ax(t)+ Biw(t) + Bu(t)
z(t) Cyz(t) + Dygul(t)
y"(t) = (I—p)(Cox(t) + Daw(t)) (4.4)
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The traditional dynamic output feedback controller with fixed gains is
given by
&(t) = Ars&(t) + Brypy" (1)
zri(t) = Cks&(t) (4.5)

Applying the dynamic output feedback controller (4.5) to the system (4.4), it
follows

dep(t) = Acsres(t) + Beyw(t)
zep(t) = Copres(t) (4.6)
where x.¢(t) = [z7(t) ¢ ()]

A, — A BCxk¢ B _ B
S Brs(I=p)C: Axy |0 T¢T |Brs(I = p)Dan
Cef = [Cl Dlchf].
Lemma 4.1 Consider the following closed-loop system (4.6), for given con-
stants v, > 0 and vy, the following statements are equivalent:

(i)there exist a symmetric matriz X > 0 and the controller (4.5) such that
in normal case, that is p =0

1
AT X + XAy + ?XBefBeTfX +CLCey <0 (4.7)
n
in sensor fault case, that is p € {p*---pl}, p’ € N,
1
AT X + X Ay + TJ%XBefBZfX +CLCey <0 (4.8)

(it) there exist a nonsingular matriz Q, symmetric matriz P > 0, and the

controller (4.5)
Y —N
P= {—N N } , (4.9)

such that in normal case, that is p =0,

1
AL P+ PA,+ W—QPBqueTth +CL,Ceq <0, (4.10)
n

in sensor fault case, that is p € {p'---p*},p? € N,
1
Al P+ PA, + ?PBqug;P +Cl,Ceq <0, (4.11)
f
where

A BCrgq B _ B
Brg(I = p)C2 Agq |’ “ Bry(I = p)D2y
Ceq = [Cl Dlchq].

Acq =
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and
Axe=Q '"AksQ, Brq=-Q 'Bks, Ckq=—-CksQ (4.12)

(iii) there exist symmetric matrices Y1 and Ny satisfying 0 < Ny < Y1, and
the controller gains of (4.5) Axs = Akq,Brf = Brq and Cxy = Ckq such
that

in normal case, that is p =0,

Vall Va12 Va13
Vao= | * NAge + (NAge1)” + CLyD12D12Cko Va223 <0 (4.13)
ES * - nI

in sensor fault case, that is p € {p'---p*},p! € N,

Vall Va12 Va13
Vo= * NAge + (NAge1)? + CEyD12D12Cko Va223 <0 (4.14)
* * _'YfI

where

Vair = YA = NBge(I — p)Cy + (YA — NBrer(I - p)C3 +CTCy
Va2 = YBCOke1 — NAges — ATN +C (I — p)By oy NT + CT D12Cko
Va3 =Y B1 — NBge1(I — p) D2y
Vazz = =NB1 + NBge1(I — p)Day.
Proof 4.1 From the proof of Lemma 2.11, it is easy to conclude (i) <> (i),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < Ny < Y7,

thus by some simple algebra computation, it follows (ii) <= (iii). The proof
is complete.

Remark 4.1 From Lemma 4.1, we have the following algorithm to optimize
the Ho, performances in normal and fault cases for the traditional reliable
controller design with fixed gains.

The following algorithm is to optimize the H,, performances in normal and
fault cases for the reliable controller design with fixed gains.

Algorithm 4.1 Step 1 Solving the following optimization problem

minan, + By st. X >0 ®<0 (4.15)

where 1, = 2, Ny = 'yJ%, and «, B are weighting coefficients.

1
® =AX + BYy + (AX + BY,)" + — B1BY
gt

n

+(CX 4+ DYy)' (CX + DY) < 0
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Denote the optimal solution as Xopt and Yoop, and let Cxy = YOothopt
Step 2 Let NAky = AKf, NBgy = BKf

minan, + 0ny s.t. 0 <N <Y (4.13) (4.14) (4.16)

Denote the optimal solution as fle = AKfopt, BKf = BKfopt, N = Nigpt.
Then the resultant dynamic output feedback controller gains can be obtained
by Ay = N"'Aky, Bry=N"'Bry, Cxs = YooptXop-

Remark 4.2 It should be noted that the conditions (4.13) and (4.14) are non-
convex, however with Ck ¢ fized, and N1Aky, N1 B¢ are defined as new vari-
ables, the conditions (4.13) and (4.14) are linear matriz inequalities. More-
over, Algorithm 4.1 gives a method for the reliable dynamic output controller
design with fized gains by two-step optimizations. Step 1 is to a Cxy, which
solves the corresponding design problem via state feedback. With the Ckq fized,
controller parameter matrices Axy and Biy can be obtained by performing
Step 2.

In order to reduce the conservativeness of the dynamic output feedback con-
troller with fixed gains, the following dynamic output feedback controller with
variable gains is given

) = Ar(p)E) + Br(p)y” (t)
u(t) = Ckoé(t) (4.17)

where () is the estimation of p. Denote
Ak (p) = Aro + Aka(p) + Axe(p), Br(p) = Bro + Bra(p) + Bro(p)

with

Bka(p Z i Brai, Bru(p szBsz

where Ao, Akais AKbi, AKbij7 Bko, Brai, Brvi, Cko are the controller gains
to be designed.

Combining (4.17) and (4.4), the dynamics with sensor faults (4.3) is described
by

Te(t) = Aexe(t) + Bew(t)
z(t) = Cexe(t) (4.18)



52 Reliable Control and Filtering of Linear Systems

where z.(t) = [zT(¢) 7 (1)]7T,
- A BCko
A= | peaT-nca anty)

B,

be= {BK(PA)(I - p)DQJ , Ce=[C1 D12Cko]

4.3 Adaptive Reliable H,, Dynamic Output Feedback
Controller Design

In this section, the problem of designing an adaptive reliable dynamic output
feedback controller against sensor faults for linear system (4.1) is studied.
Before presenting the main result of the paper, denote

[Ty Tn T To Tv Ty
Qo= | T3 Ty |, Q= |* T3 Ty |,
E —2I * % —'y?[
R:[Rl RQ Rp}7 T:[T’LJ]7 Zaj:1p7
[T5 —NAgy — NI NAg. To
R, = |T7 N Agcp Ts |,
0 0 0
[0 Ty 0
Y= |Tio NAkpij+ (NAgpii)T T
0 Tia 0
with

To=YA— NBgo(I — p)Ca+ (YA — NBgo(I — p)C2)T + CTCy

Ty = YBCro — NAgo — NAga(p) — ATN + C3 (I — p)BjeoN + C3 By, (p)N
+ N3 NAga(p) — N5 C3 Bico(p)N + Cf D12Cko

To =Y By — NBio(I — p)Day

T3 = —NBCgo — (NBCko)" + NAko + NAka(p) + (NAgo + NAga(p))”
+ CkoD1,D12Cko,

Ty = —NB; + NBxo(I — p)D2; — AL ,(p))N N2 + N Bga(p)CaNo,

T5 = (—NBgkpi — NBgai + NBgpip + NBkaip)C2,

Ts = —(NBgpi + NBgai)({ — p) Doy

T7 = (~=NBkaip + NBgkpi)Co + (NBgai — NBrpip)C2 N3

Ts = (NBrkai + NBkwi)(I — p)Da1 + Afeq; NN2 — (NBkai — NBgpip)CaNo
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T ;T
Ty = —-C} B;TQ,J-N — NAguij + N3 C} BITG;J'N
TIO = _NBKb’LC% — A%bij + NBKb’LC%N?)

Nt Te| Ny et [T =p) Do) o1 [TepCo
1 cn ol 2 cn 0 » 4V3 cn Ccn

The following theorem presents a sufficient condition for the solvability of
the reliable control problem via dynamic output feedback in the framework of
LMI approach and adaptive laws, where -y, and ~; are the upper bounds of
the adaptive Ho, performance indexes for systems in normal and sensor fault
cases.

Theorem 4.1 Let v > v, > 0 be given constants, if there exist matrices
0 < N <Y, Ako, Axai, Axvis Arvij, Bro, Bixais Bxvi, Cro,14,j = 1---p and
symmetric matriz © with

_|©11 O12
9—[% @22]

and ©11, O € RPEnHm)xp2ntm) qch that the following inequalities hold:
O304 <0, ¢ =1,---,p

with Og9y; € RZMH)XCn+3) s the (i,4) block of Ogs.
For any 0 € A,

011 + 012A(0) + (012A(6)T + A(6)022A(8) > 0

in normal case, i.e., p =10

Qo1 R T
|:RT T + G OG <0
and in sensor faults cases, i.e., p € {p*---p9},p’ € N,
R
[g} T] +GTeG <o, (4.19)

and also p;(t) is determined according to the adaptive law

pi(t) = PTOj[0,1]{Li}
= ’ or p; =1 and L; > 0; (4.20)
L;, otherwise

where
T N\ i
Li = —L[E" NAgaié —y" " NENAgai€ + €' [NBraiO2 + NBp(p)C4IN1y™

and NBgy(p) = >0 NBrpipi- i > 0(i = 1---m) is the adaptive law gain
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to be chosen according to practical applications. Proj{-} denotes the projec-
tion operator [70], whose role is to project the estimation p;(t) to the interval
[min{p?}, mgX{ﬁi H-

Then the dynamic output feedback controller of the form (4.17) with the
controller parameters Axo, Arai, Axvi, Akvij, Bro, Bxai, Brvi, Cro,4,j =
1--+p and p;(t) determined according to the adaptive law (4.20), renders the
system (4.18) in normal case satisfying for x.(0) =0

/OOO T ()z(b)dt < A2 /Ooo wT (Bw(t)dt + Z P zi(O) (4.21)

and in sensor faults cases satisfying for x.(0) =0

) 00 P ~2
/0 2T () z(t)dt gﬁc/o wT(t)w(t)dt+szli(0) (4.22)

with p(t) = diaglpr(t) - 5D}, 5u(t) = pilt) — ps

Proof 4.2 Choose the following Lyapunov function

V(t) = T (£) Pae (£) + f: P,
=1

li

By p(t) = p(t) — p, it follows

Br(p)(I - p) = [Bro + Bra(p(t)) + Brp(p(t)](I — p)
= Bro(I — p) + Bra(p) — Bra(p(t))p + Bra(p(t))
+ Bro(p(t)(I — p(t)) + Bro(p)p(t) (4.23)

and

AKa(pA) = AKa(p) + AK(L(ﬁ)

A, can be written as

Ae = Aca + Aep
where
I RN W [ LR
Acaz1 Aro+ Axa(p) + Arp(P) ]’ M Agq(p)
with

Acaz1 = [Bro( = p) + Bra(p) — Bra(p)p + Brp(p)(I — p)]Co

My = (Bka(p) + Brb(p)p)Co-
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Let P be of the following form

S

where 0 < N1 < Y7, which implies P > 0. From (4.4), it follows

T.Cox = T.[y" — (I — p)Da1w + pCax] (4.24)
Thus
r=T,"! [TCTC”] = Nyt — Now + N3z (4.25)

where Ny = Tyt { } Ny =T} {TC(I - p)Dﬂ Ny =T} {Tcpcﬂ.
0 0 Cen

Furthermore

PA. — YA—NAeam YBCKO_N(AK0+AKa(p)+AKb(ﬁ))
“ |-NA+ NAco1 —NBCko+ N(Ako + Axa(p) + Axu(p))
and Area(?)
~NM; —NAka(p
PAg = N
b [ NM;  NAg.(p) }
which follows

27 7P A2 7] = =" NMiz — 2" NAka(p)§ + & NMiz + & NAxa(p)E.
From (4.25), it is easy to see

~ ~ T ~ ~
xTNAKa(P)f = xTNgNAKa(P)f + yF NlTNAKa(P)f - WTNQTNAKa(P)f
ETNMyz = =" NMNow + €T NM, Nyz + €T NM N yF

Hence
tTPAyr. = —a'NMz— 2" NINAg,(p)¢ + T NMNsz + €7 Mow + M3
= xeTApexe + xeTBpew + M3
where
A = _NMI _NBTNAKa(ﬁ) B, = 0
pe ™ I NM;Ns 0 »TPe T I M,
with

My = —NM;Ny + A% ,(5))NT N,

N T N
Mz =" NAga(p)6 —y"" N{ NAga(p)€+ " NMNiy".
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Then from the derivative of V(t) along the closed-loop system (4.18), it
follows

V(t) + 27 ()2(t) — viwT (tw(t)
= 207 P(Acuze + Bew) + 27 CTCoxe — 'y?wT(t)w(t)

P ~ <
i (1) i (T
+227 Apere + 227 Bpew + 2M3 + 2 E M

i=1 v

IN

P~ -
i(0)pi(t
xeTWoxe + 2M3 + 2 Z M
pr
where
1
Wo = PAca + Ape + [PAca + Ape]” + ?(PBe + Bpe)(PB. + Bye)T +CTC..
!
The design condition that V (t) + 27 (t)z(t) — 'y]%wT(t)w(t) < 0 is reduced to

Wy <0 (426)
and . )
pi(t)pi(t)
; LN AT .
M; + ; <0 (4.27)

Since y and & are available on line, the adaptive law can be chosen as (4.20),
it is easy to see that

M; = zp: Pil)L: (4.28)

Moreover p; is an unknown constant, so p;(t) = ps(t). If p; =0, and L; <
0 or pi =1, and L; > 0, then pi(t) = 0 and p;(t)L; = (pi(t) — p)L; > 0.
Then together with (4.28) and p;(t) = pi(t), it follows

zp: w —0< —Ms (4.29)
i=1 ¢

If pi(t) is in other cases, from (4.20) it follows pi(t) = pi(t) = Li. Then
together with (4.28) and p;(t) = pi(t), we have

P - L,
) pz(t)léz(t) — M, (4.30)
i=1 v

Then, from (4.29) and (4.30) it follows

zp: ﬁi(t)léi(t) < M. (4.31)
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If the adaptive law is chosen as (4.20), then (4.27) can be achieved.
Notice that (4.26) is equivalent to

T T
|:PAea + Ape + [PAca + Apel” +C2Ce PBe —g Bpe} <0 (4.32)
* _')/f-[
On the other hand,

PB, = { Y By — N[Brko + Bra(p) + BKb(PA)A](I —p)Da }

—NB1 + N[Bko + Bra(p) + Bro(p)|(I — p) D21
(4.82) can be described by

P P p P

Wi(p) =@Qu+ Y _ piRi+ (O piR)"+> ) pip;Ti; <0
i=1 i=1 i=1 j=1

where Q1, R;i, Y35,1,5 = 1---p are defined in (4.19). From Lemma 2.10 it fol-

lows W1(p) < 0 if (4.19) holds, which implies Wy < 0. Together with adaptive

law (4.20), it follows that V(t) < 0, which further implies that the closed-loop

system (4.17) is asymptotically stable.

Furthermore, we have
V(t)+ 27 (t)z(t) — v  (Hw(t) <0

Integrate the above-mentioned inequalities from 0 to oo on both sides, it follows

oo

V(00) — V(0) + /O O (0t < 72 /O w(t)Tw(t)dt.

which implies that (4.22) holds for x(0) = 0. The proof for the system in the
normal case is similar, so we omit it here.

Corollary 4.1 Assume that the conditions of Theorem 4.1 hold. Then the
closed-loop system (4.18) is asymptotically stable and with adaptive Hoo per-
formance indexes no larger than v, and vy for normal and sensor fault cases,
respectively.

Proof 4.3 Let F,(0) = >1", p",-i(o)' Then, by (4.20) and (4.2), it follows that

pi(0) < max{ﬁ{}—min{pg}. We can choose l; sufficiently large so that F'(0) is
J i
sufficiently small. Thus, from (4.21), (4.22), Definition 8.1 and Remark 1.1,

the adaptive H, performance index is close to the standard H~, performance
index when l; is chosen to be sufficiently large. Then the conclusion follows.

Fa(0) = S, 292

=11
Remark 4.3 Theorem 4.1 presents a sufficient condition for adaptive
reliable Hy, controller design via dynamic output feedback. Generally,
(4.19) is not LMIs. But when Cgo, Ckai and Ckp; are given, and
Ni1Axko, N1Axais N1 Axwi, N1Akvij, N1Bro, N1Bgai and N1 Bgy; are defined
as new variables, (4.19) becomes LMIs and linearly depends on uncertain pa-
rameters p and p.
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Theorem 4.2 If the condition in Lemma 4.1 holds, then the condition in
Theorem 4.1 holds.

Proof 4.4 Notice that if the condition (i) or (ii) in Lemma 4.1 holds, then the
condition in Theorem 4.1 is feasible with Axo = Akeo, Bxko = Bieo, Crxo =
Creo and Arai = Akvi = Akvij = Brai = Brvi = Ckai = Crpi = 0,4,j =
1---m. The proof is complete.

The following algorithm is to optimize the adaptive H., performances
indexes in normal and fault cases.

Algorithm 4.2 Step 1 Choose Cxo = Cky with Cko being a solution to
the problem of reliable dynamic output controller design with fized gains via
Algorithm 4.1

Step 2 Let NAko = Arxo, NAkai = Axai, NAgy = Arvi, NAgpij =
Akvij, NBko = Bko, NBgai = Brai and NBgy; = By,

minan, + Oy s.t. 0<N <Y, and (4.19) (4.33)

where 1, =2, ng = ’yf, and o and [ are weighting coefficients.

Denote the optimal solutions as Ao = AKOopt; Agai = AKawpt, Agpi =
Aszopt; AKb’L] - Asz]opt; BKO - BKOopt; BKG/L - BKazopt; BKb’L - Bwapt;
N = Niopt. The resultant adaptwe dynamic output feedback controller gains
can be obtained by Axo = N~ AKO, Agai = N~ 1AKM, Agpi = N™ 1Asz,
Akpij = N Agpij, Bko = N7 'Bgo, Bkai = N ' Brai, Bxvi = N 7' Biui,
Cko = Cky.

Remark 4.4 Similar to Algorithm 4.1, Algorithm 4.2 is also composed of
two-step optimizations. Moreover, from Theorem 4.2 it follows that Algorithm
4.2 can obtain less conservative design conditions than Algorithm 4.1.

4.4 Example

Example 4.1 Consider the following linear system

-2 2 1 1 0 30
¢t)=1|-1 0 —1|z@)+ |1 O|w(®)+ |0 3| u(?)
|5 1 —6 10 31
[0 1 0 0 0
zE)=10 0 Ofz()+ |1 Of u(t)
0 0 0 0 1
y(t):[‘rl’ 8 8} :c(t)—i—[g _12] w(t) (4.34)
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TABLE 4.1 H_, performance index

Adaptive reliable controller Traditional reliable controller
Yn 0.4537 0.5595
vf 1.4183 1.4673

time(s)

FIGURE 4.1
Response curve of the second state in normal case with adaptive controller
(solid) and controller with fixed gains (dashed).
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X5

FIGURE 4.2
Response curve of the second state in sensor fault 1 with adaptive controller
(solid) and controller with fixed gains (dashed).

From z(t), it is easy to see that the regulated state is the second state in this
example.
Besides the normal mode, that is,

Py =p5 =0,

the following possible fault modes are considered:
Sensor fault mode 1: The first sensor is outage and the second sensor is normal,
that is,
1_ 1

p1=1, p;=0.
Sensor fault mode 2: The first sensor is normal and the second sensor is outage,
that is,

pi=0, ps=1
From Algorithm 4.1 with o = 10,5 = 1 and Remark 4.2, the corresponding
H, performance indexes of the closed-loop systems with the two controllers
are obtained. See Table 4.1 for more details, which indicates the superiority
of our adaptive method.
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X5

1.5

1.5 I I I I

FIGURE 4.3
Response curve of the second state in sensor fault 2 with adaptive controller
(solid) and controller with fixed gains (dashed).

In the simulations, the disturbance w(t) = [wi(t) wg(t)]Tthat used is

2, 2 <t<3 (seconds
wi(t) = wa(t) = { 0 otherwise ( :

The considered sensor fault cases in the simulations are as follows:
The first sensor fault case: At 5 seconds, the first sensor becomes outage.
The second sensor fault case: At 4 seconds, the second sensor is outage.

Figure 4.1-Figure 4.2 are the responses of the second state with adaptive
fault-tolerant controller and fault-tolerant controller with fixed gains in normal
and sensor fault cases for [y = I3 = 50, respectively. It is easy to see even in
the presence of sensor outage, our adaptive method performs better than the
controller with fixed gains as theory has proved.
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4.5 Conclusion

This chapter has studied the adaptive reliable H,, control problem via dy-
namic output feedback for linear continuous-time systems against sensor
faults. The sensor outage faults are considered. The proposed controller pa-
rameters are updated automatically to compensate the effect of sensor faults
on systems based on the online estimations of sensor faults, which are obtained
according to adaptive laws. Using both the adaptive method and LMI ap-
proach, more relaxed design conditions than those for designing fault-tolerant
H ., controllers with fixed controller gains are obtained, which guarantees the
asymptotic stability and Lo-gain in normal and sensor fault cases. A numerical
example is also given to illustrate the design procedures and their effectiveness.



5

Adaptive Reliable Filtering against Sensor
Faults

5.1 Introduction

The problem of H, filtering has been a topic of recurring interest for some
decades. Comparing with Hs filtering, the advantages of H., filtering ap-
proach are twofold. First, the assumption of boundness of the noise variance
is loosened. Second, the H., filter tends to be more robust when there ex-
ist additional uncertainties in systems, such as quantization errors, delays
and unmodeled dynamics [132]. A great number of results on H, filter have
been reported and different approaches have been proposed in the literature
[41, 44, 88, 139, 138, 146].

A common assumption in many filter designs is that the sensors can provide
uninterrupted signal measurements. However, contingent faults are possible
for all sensors in a system in practice. A large degree of filter performances
may degrade and possible hazards may happen. Following the general notation
of “reliable” controllers [54, 126, 134, 150], a filter designed to tolerate sensor
faults while retaining desired properties is called a “reliable” filter in this
chapter.

In this chapter, we propose a new approach to the reliable H., filtering
problem for continuous-time linear systems against sensor faults. Apart from
using fixed filter parameter matrices, the designed filters are allowed to update
filter parameter matrices for tolerating sensor faults. An adaptive H., perfor-
mance index is defined to describe the disturbance attenuation performance
of systems with time-varying parameter estimations. Linear matrix inequal-
ity approach [14] and adaptive method [3, 70] are combined successfully to
solve the adaptive reliable H, filtering problem. Based on the online estima-
tion of an eventual fault, the adaptive reliable H, filter parameter matrices
are updated automatically to compensate the sensor fault effects on systems.
The adaptive H,, performances in both normal and sensor fault cases are
minimized with different weighting constants in optimization indexes in the
LMI framework. It is shown that the design condition for the newly proposed
adaptive reliable H,, filtering is more relaxed than the pure LMI-based de-
sign method from [88] for the traditional reliable filter design without adaptive
mechanisms.

63
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5.2 Problem Statement

Consider a linear time-invariant model described by

#(t) = Az(t) + Biw(t)
z(t) = Cra(t)
y(t) = Coa(t) + Duw(t) (5.1)

where z(t) € R™ is the state, u(t) € R™ is the control input, y(¢) € RP is
the measured output, z(t) € R? is the regulated output and w(t) € R® is an
exogenous disturbance in L2 [0, oo, respectively. A, By, Ba, C1,Ca, D12 and Dy
are known constant matrices of appropriate dimensions. And Cy = [I O].

Denote h; = [0- . hg . ~0}T, where h;; represents the ith row of [I O].

Remark 5.1 In the above system description, the output matriz is assumed to

be Cy = [I 0]. The assumption can be replaced by a more general assumption
that Cy is of full row rank. For such a Cs, let

= [C3 (G0 5] (5:2)

where C3- denotes an orthogonal basis for the null space of Ca, then T is
invertible, and CoT = [I 0]. Thus, the system (5.1) with Ca being of full
row rank can be converted into the one with Cy = [I 0] by letting T = Tx.

In this chapter, the same sensor fault model is considered as Chapter 4,
that is

y )= —pyt), pef{p'-p}

where p can be described by p = diag{p1, p2,- - pp}-
Then the dynamic of (5.1) with sensor fault (4.3) is described

z(t) = Axz(t) + Bw(t)
z2(t) = Chiz(t)
y"(t) = (I =p)([I 0]xz(t)+ Dw(t)) (5-3)

The traditional reliable filter with fixed gains is given by

&G(t) = Aps&(t)+Brp(I - p)y(t)
zrp(t) = Crp&a(t) (5.4)

then apply (5.4) to (5.3), it follows

ief(t) = Aefmef(t) + Befw(t)
Zef(t) CefTey (t) (5.5)
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_ 1.7 T (4\T _ _
where 2.y (1) = [17(8) €7 (D], 27 (1) = 2(t) — 24 (1), and

A 0 B
Bt p 1 0] Ang)s B = s o)
Cey =[C1 —Cryl.

Acs =

Lemma 5.1 Consider the following closed-loop system (5.5), for given con-
stants v, > 0 and vy, the following statements are equivalent:

(i) there exist a symmetric matriz X > 0 and the controller(5.4) such that
in normal case, that is p =0

1
ALX + XAy + ?XBefBeTfX +CLCey <0 (5.6)

n

in sensor fault case, that is p € {p*---pL}, p’ € N,
1
ATX + XAy + ?XBefBeTfX +CLCer <0 (5.7)
f

(ii) there exist a nonsingular matriz Q, symmetric matriz P > 0, and the

controller (5.4)
Y -N
P = [—N N } (5.8)
in normal case, that is p =0,
1
AL P+ PA,+ W—QPBqueTth +CL,Ceq <0, (5.9)
n

in sensor fault case, that is p € {p*---p=}, p’ € N,

1
AL P+ PA, + ?PBqug;P +Cl,Ceq <0, (5.10)
f
where
A 0 B
Ae == Be =
T Brr=p) [1 0] AFf] ! [BFf(I - p)D]
Cer =101 —Cryl
with

Agq=Q 'AksQ, Brq=-Q 'Bry, Crq=—CksQ (5.11)

(iii) there exist symmetric matrices Y and N satisfying 0 < N <Y, and the
controller gains of (5.4) Axy = Akq,Bxf = Brq and Cky = Crgq such that
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in normal case, that is p =0,

Va1 Vai2 . Vais C1TT
_ * NAFq + (NAFq) Va23 _CFq
Vao = N N _%QZI 0 <0 (5.12)
* * * I

in sensor fault case, that is p € {p'---p*},p? € N,

Van Va12 Va13 ClT
NA NAp)T V, -CE
Vo= © ot NArd)™ Vs =Crgl (513
* * -5l 0
* * * I

where

Vair =YA—NBpy(I—p)[I 0] +(YA—=NBpo(I—p)[I 0])7
Vaio = —~NApq — ATN + [T 0]" (I - p)BE,NT

Viis = YB = NBpy(I — p)D

Viass = =NB + NBpy(I — p)D.

Proof 5.1 From the proof of Lemma 2.11, it is easy to conclude (i) <> (i),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < N <Y,
thus by some simple algebra computation, it follows (i) < (iii). The proof
is complete.

Remark 5.2 From Lemma 5.1, we have the following algorithm to optimize
the Ho, performances in normal and fault cases for the traditional reliable
filter design with fized gains.

Remark 5.3 [t should be noted that the conditions (5.12) and (5.13) are
nonconver. However, when N1Aky¢, N1Bgy are defined as new variables, the
conditions (5.12) and (5.13) are linear matriz inequalities and linearly depend
on fault parameters p.

The following algorithm is to optimize the H,, performances in normal
and fault cases for the reliable filter design with fixed gains.

Algorithm 5.1 Let NAgy = AKf, NBgy = BKf,NCKf = C‘Kf, then solv-
ing the following optimization problem

minan, + OBny s.t. (5.12) (5.13) (5.14)

where 1, =2, ng = ’yJ%, and «, 3 are weighting coefficients.

Denote the optimal solution as AFf = AFfopt, Bpf = BFfopt, C‘Ff = C'Ffopt,
N = Niopt. Then the resultant filter gains can be obtained by Apy =
N_lf_lpf, Bpf = N_lépf, CFf = N_lépf.
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In order to reduce the conservativeness of the filter with fixed gains, the fol-
lowing adaptive reliable filter with variable gains is given

) = Ap(p)E(t) + Br(p)y™(t)
2p(t) = Cr(p)(t) (5.15)
)

where p(t) is the estimation of p. £(t) € R™ and zp(t) € RY are the estimated
state and output, respectively. Here, we assume that the filter is of the same
order as the system model. Denote

Ap(p) = Aro + Ara(p) + Aru(p)

Br(p) = Bro + Bra(p) + Bro(p)
Cr(p) = Cro+ Cra(p)
with
P P
Apa(p Z iArai;, Cra(p Z iCFai

p p

Ary(p Z Z iPj Arbij + Z PiAFbi
im1 =1 i=1
p
Bra(p) =Y piBrai» Bro(p Z piBryi
i=1

where Aro, Arai, Arvi, Arvij, Bro, Brai, Brvi, CFO; Cra; are the filter gains
to be designed.
Combining (5.15) and (5.3), it follows

Ze(t) = Ac(p,p)we(t) + Belp, p)w(t)
ze(t) = Ce(p)ze(t) (5.16)

where z.(t) = [27(¢) €7 (¢)]7, and 2.(t) = z(t) — zp(t) is the estimated output
error A ) 0
400 =g o o) sty

Be(p, p) = [BF(A)(?—p)D} , Ce(p)=1[C1 —Cr(p)]:

It should be noted that the filter parameter matrices Ar(p), Br(p) and Cp(p)
are composed of the fixed parameter matrices and the estimation p of the
unknown parameter vector p, which is different from the formulation for the
traditional reliable filtering design problem with only fixed parameter matrices
[88]. Like many other results in filtering design, e.g. [47, 88], we will make the
following assumption throughout this paper:

Assumption 5.1 A is stable.
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The problem under consideration is as follows.
Adaptive reliable H, filter problem: For given constants vy > v, > 0,
find a filter of the form (5.15) such that
(i) the system (5.16) in normal case, i.e., p = 0, is with an adaptive Hoo
performance index no larger than ~,;
(ii) the system (5.16) in sensor fault cases, i.e., p € {p'---p9},p! € N,;, is
with an adaptive Hy, performance index no larger than ~;.
The filter of the form (5.15) satisfying (i) and (ii) is said to be an adaptive
reliable Ho, filter for the system (5.1).

5.3 Adaptive Reliable H,, Filter Design

In this section, the problem of designing an adaptive reliable H, filter against
sensor faults for linear system (5.1) is studied. Before presenting the main
result of the paper, denote

Aﬁ = {pA ﬁi S {mkln{ﬂ,];}a mkax{ﬁf}}a 1= 17 o 'pak = 17 T g}a

Ap) = ding [l - pI], Blp) = diaglp, T},
_TQ T Ts To Ty Ty
Qoi=|* Ty T, |, Qi=|* T3 Ty |,
R —’y%f * % —'y?f
R=[Ri Ry --- Ry, T=[Yy], i,j=1---p,
[Tsi —Apvi — E(p)Arai Toi
Ry = T Afrpi Tsi| »
0 0 0
[0 - Tgij_ 0
Yij = |Twij  Arvij + ALy Tivig |
| 0 T1244 0
Vo=1[Voo Vor -+ Vop)

with
Voo=[C1 —Cro 0], Voi=[0 —Crai 0],
Ty=YA—-Bro(I—p)[I 0]+ (YA—Bro(I—p)[I 0))7
Ty = —Apo — Apa(p) = ATN + [I 0] (I=p)Bhy+[I 0]" BE,(p)
+E(p)Ara(p) = E(p) [I 0] " BL.(p)
T, =Y B — Bro(I — p)D,
T3 = Apo + Apa(p) + (Apo + Ara(p))7,
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= . —(I —p)D
Ty = —NB+ Bpo(I — p)D + AL, (p) { =) ]

0
- s [ o) [TU507).

T5’i = (_BFb’i — BF(”‘ + BF}np_‘_ BF(Llp) [I O] ?
Tei = —(BF‘bi + BFai)(I - p)D,
T7i = [(—Braip + Broi) + (Brai — Broip)E(p)] [I 0]

7 _ — [=(I=p)D
T8i_(BFai'f‘BFbi)(I_P)D_Agm‘|: ( OP) }

+ (BFai — Broip) [I 0] [_(I 6 p)D]

Toij = —h] Bfy; — Arvij + E(p)h] By,
Tvoij = —Brvihj — Afyji + Bruihi E(p),

T
_ (I -p)D (I -p)D|" 2+
Th1i5 = Bruih; { ( 0 2 ] y Tigi5 = [ ( 0 ) ] hz‘TBfT«“bj

where Aro, Arai, Arvi, Arvij, Bro, Brai, Bryi, Cro,Crai(i,j = 1---p) are
decision variables to be designed.

The following theorem presents a sufficient condition for the solvability of
the reliable filtering problem in the framework of LMI approach and adaptive
laws, where 7y, and ¢ are the upper bounds of the adaptive H, performance
indexes for systems in normal and sensor fault cases.

Theorem 5.1 Let v5 > v, > 0 be given constants, if there exist matrices
0 < N <Y, Aro, Arai, Arvi, Arvij, Bro, Brai, Brvi, Cro,Crai,%,j = 1---p
and symmetric matriz © with

©11 O12
@ =
[@1T2 @22]

and ©11, Ogy € RPEHM)IXp2ntm) gych that the following inequalities hold:
622’ii S 0; 1= 17 Y 4 (517)

with g9 € R(2n+s)><(2n+s) is the (Z,Z) block Of O9s.
For any 0 € A,

O11 + O12A(6) + (012A(8))T + A(6)O22A(6) > 0
in normal case, i.e., p =10

{Qm R

BT T] +Vi'Vo + GTOG < 0, (5.18)
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and in sensor fault cases, i.e., p € {p*---pI}, N

[g% ﬂ + ViV + GTea <o. (5.19)

and also p;(t) is determined according to the adaptive law
Pi(t) = Projimingpty, maxipip{li} i=1-pk=1"g
pi =min{p*} L; <0
0 ko
= ’ or p; = mkax{ﬁf} L; > 0; (5.20)
L’L'7

T
where L; = —1;[¢7 Apai€ — {yj] Apai€ + €7 [Brai [ 0] + Bry(p)hi] {y(j]]

and Brpy(p) = P Bryipi, l; > 0(i = 1---m) is the adaptive law gain
to be chosen according to practical applications. Proj{-} denotes the projec-
tion operator [70], whose role is to project the estimation p;(t) to the interval
[mkin{gf}, m]?x{ﬁf], Then the filter gains

Apo = ApoN"', Apai = AraiN"' Apy = Appi N7, Apvij = Appiy N7
Bro = BpoN ™', Brai = BraiN~', Bpyi = BpoiN ', Cpo = CroN ™1,
Crai = CraiN ' i,j=1,---p

and p;(t) determined according to the adaptive law (5.20), renders the system
(5.16) in normal case satisfying for x.(0) =0

* T, > [ T ~ 0:2(0)
| oz <at [T wema 3 0 G

and in sensor fault cases satisfying for x.(0) =0

) 00 P ~2
/0 zeT(t)ze(t)dtg'y]%/o wT(ﬁ)w(t)dﬁJrZ:pz ‘(0) (5.22)

where p(t) = diagl{pi(t) -~ 5D}, 5i(t) = pi(t) — pi.

Proof 5.2 Choose the following Lyapunov function

V(t) =al (t)Pre(t) +

By p(t) = p(t) — p, it follows

Ara(p) = Aka(p) + Aka(p)
CKa(ﬁ) = CKa(p) + CKa(ﬁ)
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with

Br(p)(I — p) = [Bro + Bra(p(t)) + Bro(p(H)|(I — p)
= Bro(I — p) + Bra(p) — Bra(p)p
+ Bra(p) + Bro(p)(I — p) + Bro(p)p (5.23)

Then A.(p, p), briefly denoted as A., can be written as

Ae - Aea + Aeb
where
A 0 0 0
Aea = AR Aep = ~
Acar1 Aro + Ara(p) + Ars(p) My Arpq(p)
with

Acaz1 = [Bro(I = p) + Bra(p) — Bra(p)p + Bro(p)(I — p)] [T 0]
M; = (Bpa(p) + Bro(p)p) [I  0].

Let P be of the following form

pe 5]

with 0 < N <Y, which implies P > 0. Let x = [zl x%_p]T and E(p) =
diag{p, I}, then

Ty =7p —y" +y" = pzy — (I = p)Dw+y".

Hence,
B F
r = E(p)r — (I=p)D w |1 (5.24)
0 0
Furthermore
PA — YA - NA,421 —N(AFO + AFa(P) + AFb(ﬁ))
ea —NA+ NAc21 N(Aro + Ara(p) + Are(p))
and Apa(p)
_NMI -N Fa ﬁ
PA,, = N
b |: NMl NAFa(p) :|
then

(2T eT1PAy 2T €77 = —2TNMx — 2T NApq (p)€ + ETN Mz
+ETNApa(p)E.
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From (5.24), it is easy to see that

2" NApa(p)€ = 2" E(0)NAra () + [y 0|NArpa(p)é
+wT'[—(I = p)DT 0]NApa(p)¢
I-p)D

ETNMyx = €' NM,; [_( 0

] w(t) + EENM E(p)z + €T NM; [y; }

Hence

tP PAgze = —a' NMyz — 27 E(p)N Apo(p)€ + T NME(p)x + €7 Mow + My

= J;eTApeme + xeTBpew + M3

where
Ap. = {N;\i\lflj\g(lp ) —E(p)ZXAFa(ﬁ)] . Bp. = { J\Z]
with
My = NM, {‘(I 5 p)D] —{[=(I = p)D" OINApa(p)}"
My = "N ARa(5) — [y 0] NARa()€ + €T N My [y;’ ] (5.25)

Then from the derivative of V (t) along the closed-loop system (5.16), it follows
V(t)

V() + 2¢ (D)2 (t) — 7T (Hw(t)

=227 P(Acx. + Bew) + 2 CTCox, — 'y]% )T (Hw(t) + 2

'ME
>
—~
~
S
&
—
~
~—

=227 P(Acue + Bew) + 22X CTCox, — 'y?wT(t)w(t)

P~ ;
(L) pi(T
+ 227 Apee + 227 Bpew + 2M5 +2) %

i=1 ’
<zl Woze + 2Ms + 2;: pi (tzif’i (t)
where Be = Be(p, p), Ce = Ce(p), and
Wo = PAca + Ape + [PAca + Ape]" + C¢ C

1
+ ?(PBE + Bp.)(PB. + Bp.)"
f

The design condition that V (t) + 2T (t)z(t) — viwT (tw(t) < 0 is reduced to

Wy <0 (526)
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and

4+ Y M <0, (5.27)

Since y and & are available on line, the adaptive law can be chosen as (5.20),
it is easy to see that

M; = f: ﬁi(tw. (5.28)

Moreover p; is an unknown constant, so p;(t)
If pio= min{gh}k = 1og and L < s
L,---g and L; > 0, thenﬁi(t) =0 and p;(t)L; = (pi(t) — p)L; > 0. Together
with (5.28) and p;i(t) = pi(t), it follows

o= max{pihk =

Ep: pilt 0< —Ms. (5.29)

If pi(t) is in other cases, from (5.20) it follows p;(t) = L;. Then together with
(5.28) and pi(t) = pi(t), we have

pi(t)pi(t)
ls

-

= — M. (5.30)

i=1

Then, from (5.29) and (5.30) it follows

zp: pilt M, (5.31)

If the adaptive law is chosen as (5.20), then (5.27) can be achieved.
Notice that (5.26) is equivalent to

T T
|:PAea + APe + [PAea + APe] PBe —ZBP6:| + |:Ce :| [Ce O} <0 (532)
* -l 0
with
pp. — | YB = N[Bro+ Bra(p) + Br(p)](I = p)D
¢~ |=NB+ N[Bpo + Bra(p) + Bry(p)|(I — p)D

If we let Apo = NApo, Apai = NApai, Arvi = NApyi, Apyi; = N Apsij,
Brpo = NBpo, Brai = NBrai, Bryi = NBpyi, Cro = NCpo Crai = NCrai,
then Wy < 0 will be convex on'Y, N, Aro, Arai, Apb”, Arvi, Bro, Brai,
Cro and Cra;.



74 Reliable Control and Filtering of Linear Systems

Also (5.32) can be described by

P P
+ (Voo + Y piVos)" (Voo + Y piVoi) < 0
i=1 i=1
where Q1, R;, Yij, Voo and Voi,4,5 = 1---p are defined in (5.19).

From Lemma 2.10 it follows W1(p) < 0 if (5.19) holds, which implies
Wo < 0. Together with adaptive law (5.20), it follows that V(t) < 0, which
further implies that the closed-loop system (5.16) is asymptotically stable.
Furthermore, we have

V() + 22 ()7 () — v2" (Hw(t) < 0

Integrate the above-mentioned inequalities from 0 to oo on both sides, it follows

oo

V(o0) =V (0) + /O N ze(t)" ze(t)dt < 77 /0 w(t)Tw(t)dt.

which implies that (5.22) holds for x(0) = 0. The proof for the system in the
normal case is similar, so we omit it here.

Corollary 5.1 Assume that the conditions of Theorem 5.1 hold. Then the
closed-loop system (5.16) is asymptotically stable and with adaptive Ho per-
formance indexes no larger than v, and vy for normal and sensor fault cases,
respectively.

Proof 5.3 Let'Fa(O) =>" %}0). Then, by (5.20) and (4.2), it follows that
pi(0) < max{ﬁf}—min{pg}. We can choose l; sufficiently large so that F'(0) is
J i

sufficiently small. Thus, from (5.21), (5.22), Definition 3.1 and Remark 1.1,
the adaptive Ho, performance index is close to the standard Hs performance
index when l; is chosen to be sufficiently large. Then the conclusion follows.

Remark 5.4 In Theorem 5.1, a sufficient condition for the existence of an
adaptive reliable Hoo filter is given in terms of solutions to a set of LMIs,
which can be effectively solved by using the LMI control toolbox. However, the
LMIs involved in (5.19) could be very complex, which may make the com-
putation very costly. The degree of complexity depends on the dimensions
of the considered system and the system output, and the number of sensor
fault modes. In fact, the largest size of the LMIs in (5.19) is L x L, where
L = (p+1)(2n+m) + q, the number of the LMIs is 2°P(g + 1) + (p + 1)
and the number of the total decision wvariables involved in the LMIs is
n(n+1)+ (p+ 1)%np + (p + )ng + (2n + m)p[2p(2n + m) + 1]. So when
the system is with a higher dimension and more fault modes are considered,
more computation time is needed.
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Next, a theorem is given to show that the condition in Theorem 5.1 for the
adaptive reliable H filter design is more relaxed than that in Lemma 5.1 for
the traditional reliable H, filter design with fixed parameter matrices.

Theorem 5.2 If the condition in Lemma 5.1 holds, then the condition in
Theorem 5.1 holds.

Proof 5.4 Notice that if the condition (i) or (ii) in Lemma 5.1 holds, then the
condition in Theorem 5.1 is feasible with Ao = Akeo, Bxko = Bieo, Crxo =
Creo and Axai = Axvi = Akbvij = Brai = Brvi = Crai = Crpi = 0,4,j =
1---m. The proof is complete.

The following algorithm is to optimize the adaptive H., performances
indexes in normal and fault cases.

Algorithm 5.2 Let NAF() = AF(), NAFM‘ = B AFQZ‘, NAsz_ =
Apyi, NArpvij = Apvij, NBro = Bro, NBrai = Brai, NBryi = Bryi,
NCFO = C(F07 NCFa'L - CFa'L

Solve the following optimization problem:

min an, + Bny s.t. (5.19) (5.33)

where 1, = 2, Ny = 'yf, and o and [ are weighting coefficients.

Denote the optimal solutions as Apy = AFOopt, Apgi = Apawpt Apy =
AszOpt7 AFb’Lj = AFblept7 BFO - BFOopt; Brai = BFa'Lopt7 Bryi = Bszoph
C'FO - CFOopt; CFaz - CFawpt N = Nlopt

Then the resultant adaptive ﬁlter gains can be obtamed by Apo = Ny AFo,
Arai = Ny AFaz; App; = Ny Asz; Apyij = Ny YAy, Bro = Ny 'Bro,
?F(n - N )BFa'u BFb’L - N BFb’L; C(FO = N 1C(FO CF(Ll - N 1Caz
1,j=1-

5.4 Example

The following considered example is a linearized model of an F-404 engine
from [2, 31] to illustrate the superiority of the proposed adaptive reliable filter
design method.

Example 5.1 Consider the system (5.1) with the following parameters

—1.4600 0 2.4280 02 0 0
A= (0.1643+0.56 —04+6 —03788|, B=|08 0 0
0.3107 0 —2.2300 —-02 0 0

1 0 0 0 0 -06

Ci=[0 0 5}’02{0 1 0]’D_[0 0.6 0]

where § = 0.32.
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TABLE 5.1 H, performance index

Adaptive reliable filter Traditional reliable filter
Vn 0.4655 0.5586
o7 1.1081 1.2119

0.2 \

-0.5 : ‘
0 5 10 15 20
time(s)

FIGURE 5.1
Response curve of estimated output error in normal case with adaptive filter
(solid line) and filter with fixed filter gains (dashed line).
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2,0
0.2 \

10 15 20
time(s)

FIGURE 5.2
Response curve of estimated output error in sensor fault case with adaptive
filter (solid line) and filter with fixed filter gains (dashed line).

Besides both of the two sensors are normal, that is p{ = p9 = 0, the following
fault mode is considered: The second sensor is outage and the first sensor is
normal, that is, pi =0, pi=1.

From Algorithm 5.1 and Algorithm 5.2 with a = 10, 8 = 1, the correspond-
ing H., performance indexes of the closed-loop systems with the two filters
are obtained. See Table 5.1 for more details, which indicates the superiority
of our adaptive method. In the simulations, the disturbance w(t)

[ 1, 2<t<3 (seconds)
w(t) { 0 otherwise

The following fault case is considered: At 1 second, the second sensor is
outage.

Figure 5.1-Figure 5.2 are the response curves of estimated output error
ze(t) with the adaptive filter and the reliable filter with fixed gains for normal
and fault case, respectively. It is easy to see even in the presence of sensor
outage, our adaptive method performs better than the filter with fixed gains
as theory has proved.
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5.5 Conclusion

Combining the LMI approach with adaptive mechanisms successfully, this
chapter has investigated the problem of designing adaptive reliable H., fil-
ters for continuous-time linear systems. Based on the online estimations of
eventual faults, the reliable H,, filter parameter matrices are updated auto-
matically to compensate the sensor fault effects on systems. The adaptive Ho
performances in normal and sensor fault cases are minimized with different
weighting constants in optimization indexes in the LMI framework. The de-
sign condition is more relaxed than that for the traditional reliable H, filter
design with fixed filter parameters. An example about a linearized model of
an F-404 engine and its simulation results demonstrated the superiority of the
proposed approach.



6

Adaptive Reliable Control for Time-Delay
Systems

6.1 Introduction

Time-delays are frequently encountered in many practical systems such as
chemical processes, electrical heaters and long transmission lines in pneumatic,
hydraulic and rolling mill systems [12, 13, 29, 55, 76, 80, 103, 111, 116, 157].
Since the existence of a delay in a physical system often induces instability of
poor performance, research on time-delay systems is a topic of great practical
and theoretical importance [35, 36, 37, 39, 40, 45, 49, 50, 52, 53]. During
the last decade, the control problem of systems with time-delay has received
considerable attention [58, 59, 60, 61, 62, 82, 86, 160]. The main methods can
be classified into two types: delay-independent ones [75, 91, 158] and delay-
dependent ones [13, 16, 22, 38, 73, 75, 77, 112, 144, 158, 163]. Usually, delay-
dependent ones can provide less conservative results than delay-independent
ones. Both controllers with or without memory have been proposed for the
study of delay-dependent control synthesis of time-delay systems.

On the other hand, actuator faults may cause severe system performance
deterioration which should be avoided in many critical situations such as flight
control systems, etc. [23, 7, 95, 100, 106, 107, 141]. A control system designed
to tolerate faults of sensors or actuators, while maintaining an acceptable level
of the closed-loop system stability /performance, is called a reliable control sys-
tem [133]. However, the issue of time-delay is often ignored in the design of
fault tolerant control, and there are relatively few works that actually con-
sider the effects of time-delay. In fact, in the presence of time-delay, the design
problems of fault tolerant controllers become more complex and difficult. Us-
ing either the adaptive method or linear matrix inequality (LMI) approach,
some reliable or fault-tolerant controllers are proposed for linear time-delay
systems [21, 98, 135, 158, 159, 163].

In this chapter, based on the results in Chapter 3, we focus on adap-
tive reliable controller design problems for linear time-delay systems via both
memory-less controller and memory controller. Firstly for memory-less case,
both state feedback controller and dynamic output feedback controller are con-
sidered. Here, the designed controller gains are affinely dependent on the online
estimations of fault parameters, which are adjusted according to the proposed

79
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adaptive laws. Being different from Chapter 3, the time-delay information is
included in the designed adaptive laws. Due to the introduction of adaptive
mechanisms, more relaxed controller design conditions than those for the tra-
ditional controllers with fixed gains are derived. Secondly, since a memory
controller with feedback provisions on current states and the past states may
improve the performances of systems, the problem of designing memory feed-
back controllers for linear time-delay systems is also investigated. Both mem-
ory terms and memory-less terms are time-varying and affinely dependent on
the online estimations of actuator faults. Some simulation results are given to
demonstrate the effectiveness and superiority of the designed controllers.

6.2 Adaptive Reliable Memory-Less Controller Design

In this section, we investigate the problem of adaptive reliable controller via
state feedback and dynamic output feedback, respectively for linear time-delay
systems against actuator faults.

6.2.1 Problem Statement

Consider the following system with time-delay:

z(t) = Az(t) + A1z(t — 7(¢)) + Bu(t) + Biw(t)
z(t) = Cz(t) + Du(t)
#(t) = B(1), € [~h,0) (6.1)

where z(t) € R™ and z; is the state at time ¢ defined by x¢(s) = x(t +
s),s € [=h,0], u(t) € R™ is the control input, z(t) € R? is the regulated
output, respectively. w(t) € RP is an exogenous disturbance in Lo[0,00] and h
is an upper-bound on the time-varying delay 7(¢). {¢(t),t € [—h, 0]} is a real-
valued initial function. A, A1, B, B1,C and D are known constant matrices
of appropriate dimensions. For simplicity only, we take single delay 7(¢). The
results of this paper can be easily applied to the case of multiple delays.

As in [38], the following case for time-varying delay 7(t) is considered. That
is, 7(t) is differentiable function

0<7() <h, 7(t) <d<1, satisfying for all ¢>0. (6.2)

where d is an upper bound on the derivative of 7(t).
In this section, the considered actuator faults model is the same as those
in Chapter 3, that is

u(t) = (I = p)ult), pelp*---p"] (6.3)
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where p can be described as p = diag[p1, p2, - pm].
Denote
Ny ={p" | = diaglpl, 03, o), ol = pi’ pl = pi}

It is easy to see that the set N,; contains a mazimum of 2™ elements.

6.2.2 H,, State Feedback Control

In this subsection, an adaptive reliable H,, state feedback controller is de-
signed to guarantee the resulting closed-loop system is asymptotically stable
and its Ho disturbance attenuation performance bound is minimized, in nor-
mal and fault cases.

Then with actuator faults (6.3), the system is described by

z(t) = Ax(t) + Arx(t — 7(t)) + B(I — p)u(t) + Biw(t)
z(t) = Cz(t) + D(I — p)u(t) (6.4)

Representing (6.4) in the descriptor form

&(t) = y(t),
y(t) = (A+ A)z(t) + B(I — p)u(t) + Brw(t) — 43 /t_ o y(s)ds
z(t) = Cz(t) + D(I — p)u(t) (6.5)
and let Z(t) = col{x(¢),y(¢)}.
The controller structure is chosen as
u(t) = K(p(t)x(t) = (Ko + Ka(p(t)) + Kp(p(t))z(t) (6.6)
where K (p(t)) = X7 Kaiti(t), Ko(p() = S Knfi(t), pilt) is the
estimation of p;. Ko, Kgui, Kpi, @ = 1---m are the controller gains to be

designed.

Remark 6.1 Though K,(p(t) and Ky(p(t) have the same forms, we deal with
them in different ways here, which gives more freedom and less conservative-
ness in the resultant design conditions.

The closed-loop system is given by

O = (A4 A)a(0) + BU = K GJatt) + o)~ s [ y(s)ds

2(t) = (C+ DU - p)K(p)z(t) (6.7)
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Before presenting the main result of this paper, denote

Ap={p=(p1pm):pi € {III]ID{BZ}, m]ax{ﬁz}}}a A(p) = diag[p1! -+ pmI]

_|No U T _[Q2+QF +hzy T
W* |:UT T:|+G @G7 NO* % _Q3—Q3T+hZ3 y
U=[Uw Uy - Unl, Vo=[Voo Vor -+ Vom]

T:[Tij]v 2, ]Zlm
where

T1=Qs—Qy +Qu(AT +eA]) +hZo + (I = p)Yy BT + Y] (p) BT,
Voo = [CQ1+ DI — p)Yy 0], Voi=[DUI —p)(Yai + Vi) 0]

I

—oYITRBT L yT BT :
U, = 0 pY i BY +Y, B = 0
0 0
I
0 —BY, -YIB"] o
T = [0 bj . bi } . Ya(p) = ZYaiPi;
i=1

The matrices Qla QQ; Q3a 57 Ra Zh ZQ; 237 @7 Yba Y(L% ?;)% t=1---m
involved in the above notations and definition are decision variables to be
determined.

Let v, and ~f denote the adaptive reliable Hy, performance bounds for
the normal case and fault cases of the closed-loop system (6.4).

Theorem 6.1 Let vy > v, > 0, d and h > 0 are given constants, if for a
diagonal matriz e, there exist matrices Q1 > 0, Q2, @3, S, R, Z1, Z2, Z3, Yo,
Yai, Yoi, i=1---m and a symmetric matric © with

©11 O12
@ =
[@Tz @22]

O11, Ogy € RZMX2mn gych that the following inequalities hold:
O224 <0, i =1,---,m (6.8)

with g9, € R™™™ is the (i, Z) block Of O9s.
for any 6 € A,

O11 + 012A(0) + (012A(8))T 4+ A(5)O2A(8) >0
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for p =0, that is in normal case,

[ 0 0 1 [@] [re3]]
W VOT Bl Al(I — E)S 0 th
0 0 0 0
O 0 0
e 0 0 o | <0 (69
% * —(1-4a)s 0 0
* * * * -5 0
| * * * * * —hR |
forpe{pt---pt}, pl € N,;, that is in fault cases,
i 0 o (@} hQ3 1]
W VE B A (I —¢)S 0 hQT
0 0 0 0
x =1 0 0 0 0
. s —Vf»l 0 0 0 <0 (6.10)
* * * —(1- d)g 0 0
* * * * -5 0
| * * * * * —hR ]
R 0 R{AlT
* Z1 ZQ Z 0 (6.11)
* * 23
and also p; is determined according to the adaptive laws
Pi = Projmin 7} amacct i) Ui}
pi =min{p/} and L; <0
. J i )
1o or p; = max{p’!} and L; > 0; (6.12)
J

L;, otherwise
_ _ 0 0] _ @1 O
where L; = —L;z(t)TQ~T i . z(t), = and
R PR EUSC RS AN
l; > 00 = 1---m) are constants to be chosen according to practical appli-
cations. Proj{-} denotes the projection operator [70], whose role is to project
the estimations p;(t) to the interval [min{pg},max{ﬁg }], then the closed-loop
i J

system (6.4) is asymptotically stable and in normal case, i.e., p =0, satisfies
for z(t) =0,t € [—h,0]

oo e8] mo ~2
/O T ()z(b)dt < A2 /0 wT (Bw(t)dt + Z pi lfo) (6.13)
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and in actuator fault cases, i.e., p € {p*---p*}, p? € N,
0,t € [—h,0]

) 00 mo -2
/O zT(t)z(t)dtgﬁ/o wT(t)w(t)dt+szli(o) (6.14)

where p(t) = diaglpi(t) -+ pm (D)), ilt) = pilt) — pi.
Furthermore, the corresponding controller is given by

satisfies for x(t) =

u(t) = (YoQr " + > piYaiQr ' + > pi¥eiQy a(t) (6.15)

i=1 i=1

Proof 6.1 Consider the following Lyapunov-Krasovskii functional

V=Vi+Va+Vz+V) (6.16)
where
Vi =27 (t)EPZ(t), V= / / s)dsdf
+9
- i p; (t)
vy = / T (s)Sa(s)ds, Vi=3 L
t—r(t) —~ i
and

E= [I 0}, pP= [2 ]23], P =pP'>0
%{J’JT(t)EPJ’:(t)} — 22T () Pri(t) = 227 (1) PT F“)} (6.17)

The following equality holds
(I = plu(t)

(I = p)(Ko+ Ka(p(t)) + Ki(p
(I = p)Ko + Ka(p) — pKa(p(t))
+ (I = pt) Ko(p(1)) + pE(p(t))]z(2) (6.18)

where p(t) = p(t) — p.
From the derivative of V along the closed-loop system (6.7), it follows

V =27 (0)®12(t) + n(t) — (1 — d)aT (t — 7(t))Sz(t — (1))
- /t_h y"(s)Ry(s)ds +2) M + 227 (t)PT BJ w(t)

i=1 v
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where

_ pT T S 0 _ T
& =P Ao+ A P+ [O hR| n(t) = —2 t T(t):c (t)P A y(s)ds

0 I
Bo = {A T A+ B( - p)K (p) —1}
By Lemma 2.12, taking Zo = PT [121] and a = y(s),b = z(t), it follows
' T =T y(s)
0=, e ol ]
= / y” (s)Ry(s)ds —l—/ ' (1) Zz(t)ds
t—7(t) t—7(t)
42 / yT(s)(Y — [0 AT] P)a(t)ds
t—7(t)
- /t VORGS0 Z30)
+ 2/t i"(s)(Y — [0 AT] P)z(t)ds
t—7(t)

< /tih y" (s)Ry(s)ds + 227 (t)(Y — [0 AT] P)z(t)
—2eT(t—7(t))(Y — [0 AT] P)z(t) + hz" (t)Zz(t)

where Wy = R Y- [OZAIT] P

Furthermore, by (6.18) it follows

V42T ()2(t) — viw” (t)w(t)

and R, Y, Z satisfying {lj )Z/] > 0.

=z (t)Poz(t) — 22" (t —r(t))(Y — [0 AT P zm:’a z
+ 2" (t)(C+ D(I = p)K(p))" (C + D(I — p)K (p))=(t)
s WP o BT [0 BY) PR()
TF

— (1 =d)zT(t = 7(t))Sz(t — (1))
~ (ypeT - %x%)zﬂ ARG % 0 BIPa)

0 0

T2 OPY gk, ) + pop) 0] 7O
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where
T T S 0 T T T
Py =P A +A] P+ {0 hR} +hZ+[YT 0] +[YT 0
with Ay = [;/32 _II] W2 = A+ B[(I—-p) Ko+ Ka(p)—pKa(p)+—p)Ki(p)]-
Then
V42T (t)2(t) — yFuT (Hw(t)
< 2Tt — ()Y — [0 AT] P)a(t) +2 f: M
I 0 0] _
+E T+ 2 (P {B[Ka (5) + (5] 0} =)
where
®3=PTA; + ATP + [S 0 ] +—=PT[0 BI"[0 BYP+[YT 0
3 ! 1 0 hR 1
+ [YT O}T—l-hZ‘F |:(C+D(IO— P)K(P)T} [(C+D(I—p)K(ﬁ) 0]

Let B=[b*---b™], Bi=[0---b"...0], then we have

PBjK,(p szPB Ky(p) (6.19)
=1

PBK,( Z piPBK 4 (6.20)
=1

In fact, p; is an unknown constant which denotes the loss of effectiveness of
the ith actuator. So from p;(t) = pi(t) — p, it follows p;(t) = pi(t). Now, if the
adaptive laws are chosen as (6.12), then

_ 0 0 pibi
07T pT BIK.(5) + 5Ko(9)] 0} T4 2 Z <0 (6.21)

Let £(t) = col[x(t) y(t) x(t—7(t))], then

V(1) + 27 (0)2(t) —vjw” (Hw(t) < €7 (1) TER) (6.22)
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0
T T
where ¥ = ¢ P [AJ Y .

* —-S(1—d)
Furthermore, the problem V (t) + 27 (t)z(t) — ’yJ%wT(t)w(t) < 0 reduces to
R Y
W <0, L Z} >0 (6.23)

It is obvious from the requirement of 0 < Py and the fact that in (6.23)
—(P3 + PI') must be negative and P is nonsingular.
Defining
Pr=qg=|9 Y| 1=diglQn (6.24)
Q2 Qs]’ ’ '

we multiply ¥ by YT and Y, on the left and the right, respectively. Applying

Lemma_2.8 to the emerging quadratic term in Q, denoting S =817 =

{g% 22} = Q"ZQ, R = R™' and choosing [Y1 Ya| = €Al [P, P,
3 3

where € € R™™ s a diagonal matriz, we obtain the following: ¥ < 0 is

equivalent to

<0 (6.25)

|:Eo +Q15Q1 + thRQQ =1+ thRQ&
* EQ
with
Z0=(CQ1+ DI —pY ()" (CQ1+D(I — pY (p)) + Q2 + Q3 + hZ;
1 =Q3—QF + QAT +eA]) + hZy + (I — p)Y{ B + Y, (p)B"
— oY, (p)B" + (I - p)Y," (p))B”
o =—Q3— Q3 +hZ3+ Qo+ hQ3 RQ3

1
Qo= A1(I, — &)1 —d) (I, — ) AT + ?BlBlT
!
Yo =KoQ1, Yui=KaQ1, Yui=KpnQ1, Yalp)=3X"1Yaipi
Ya(p) = B2\ Yaipi, Yo(p) = X1 Yeipi, Y (p) =Yo +Ya(p) + Ys(p)
Furthermore, (6.25) can be described by

(1]

(1]

m

m m m
M(p) = N1+ ZﬁiUi + (Z piU)" + Z ZﬁiﬁjTij
i=1 =1 j=1

i=1

m m
+ (Voo + Z piVoi)" (Voo + Z piVoi) <0 (6.26)
i=1

i=1
where

o [@i5Qi+ hQERQ: hQTRQ:
M= Ny |PSAEIARG  e ]
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and U;, Yij, Voo, Voi, i =1---m are defined in (6.9).
If we multiply [Jj };} > 0, on the left and on the right, by diag {R~',QT}

R 0 Rs_AlT
and diag {R™1,Q}, then it follows |* 73 Zy > 0. By Lemma 2.10
* % Z3

and Lemma 2.12, it is easy to see if conditions (6.8), (6.10) and (6.11) hold,

R Y
then (6.26) and [* 7

V(t) + 27 (t)2(t) — v3w” (Hw(t) < 0.
Integrate the above-mentioned inequalities from 0 to oo on both sides, it follows

] > 0 satisfy, which implies V(t) < 0. Furthermore,

oo

V(o0) — V(0) + /0 T =0t < 2 /O W7 (Bt dt
then
/OO 2T (t)z(t)dt < 'y]% /OO Wl (H)w(t)dt + V' (0) (6.27)
0 0

which implies that (6.14) holds for the zero initial condition x(t) = 0,t €
[—h,0]. The proofs for (6.13) and asymptotic stability of the closed-loop system
(6.4) for that normal case are similar, and omitted.

Corollary 6.1 Assume that the conditions of Theorem 6.1 hold. Then the
closed-loop system (6.4) is asymptotically stable and with adaptive Hy, per-
formance indexes no larger than vy, and ¢ for normal and actuator fault
cases, respectively.

Proof 6.2 It is similar to that of Corollary 3.1, and omitted here.
Remark 6.2 From (6.12), it is easy to see
Li=—li(z(t)" Py +y" P{)(B'Ky(p) + BK;)x(t) (6.28)

and y(t) = &(t). So the adaptive law (6.12) in this paper is proportional-
integral (PI) adaption algorithms, which appeared in [98], [78] and [122] to
improve system performance.

Remark 6.3 If we choose the same Lyapunov functional candidate as [36],
i.e., V.=V1+Vo+ Vs, where V1, Va, Vs are defined in (6.16), then the following
conditions are sufficient for guaranteeing the closed-loop system (6.4) with
traditional reliable controller with fized gain u(t) = Koz (t), Ko = YoQ1 ", to
be asymptotically stable and with Ho, performance indexes no larger than v,
and vy for normal and actuator fault cases, respectively.
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In normal case, i.e., p=10

T3 B4 Zp 0 0 Q: hQT

* EG 0 Bl A1 (I - 8)5 0 th

* x =1 0 0 0 0

ok % —2T 0 0 0 | <0 (6.29)
¥ %k * —(1-a)S o0 0

* * * * * -S 0

* * * * * * —hR

In actuator fault case, i.c., p € {p'---pl}, p’ € N,y

23 =4 Fj 0 0 Q1 hQTT
* EG 0 Bl Al(I — 8)5 0 th
*  ox =] 0 0 0 0
* ok ox =7l o 0 0 | <0 (6.30)
x ok % * —(1-d)S 0 0
* * * * * -5 0
R * * * x —hR

where

E5=Q2+ Q% +hZy

Ei=Qs— QY + QAT +eAT) + hZy + (I — )Yy BT + Y. (p)B”

S5 =CQ1+ D(I - p)Yy

6 = —Q3— Q3 + hZs,

Notice that if set Yy = 0,Yy; =0,i=1---m in Theorem 6.1, then the condi-
tions of Theorem 1 reduce to (6.29) and (6.30). Thus, the design conditions of
the reliable Hyo controller with adaptive mechanisms in Theorem 1 are more

relazed than conditions (6.29) and (6.30) of the corresponding reliable H
controller with fixed gains.

[1]

From Theorem 6.1, we have the following algorithm to optimize the adap-
tive Hs performances in normal and fault cases.

Algorithm 6.1 Solve the following optimization problem:
min an, + Ony s.t. (6.8) — (6.11) (6.31)

where n, =2, Ny = 'yJ%, and o and B are weighting coefficients. Since systems
are operating under the normal condition most of the time, we often choose
a>f.

Denote the optimal solutions as Q1 = QloptyYO = YOOpt,Yai = 7aiopt,}7bi =
Yhiopt;i = 1---m, then the controller gains (6.6) can be obtained by Ko =
YoQi " Kai = YaiQ1 ' Kui = Vi Q7
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Remark 6.4 From Theorem 6.1, it is easy to see that controller gains
Ko, Koiy Kpi(t = 1,--- ;m) are obtained off-line by Algorithm 6.1 while the
estimation p; is automatically updating online according to the designed adap-
tive law (6.21). Thus due to the introduction of adaptive mechanisms, the re-
sultant controller gain (6.6) is variable, which is different from the traditional
controller with fixed gains.

6.2.3 Guaranteed Cost Dynamic Output Feedback Control

In this subsection, we consider the guaranteed cost control problem via dy-
namic output feedback for the following time-delay system (6.1) with constant
delay, i.e., 7(t) = h

&(t) = Ax(t) + Arx(t — h) + Bu(t)
z(t) = ¢(t), te[—h,0]
y(t) = Cz(t) (6.32)

where z(t) € R", u(t) € R™ is the control input, y(t) € RP is the mea-
sured output, respectively. h is a positive constant delay. {¢(¢),t € [—h,0]}
is a real-valued initial function. A, A; and B are known constant matrices of
appropriate dimensions.

Since C' € RP*™ and rank(C') = p; < p, then there exists a matrix T, €
RPr*P guch that rank(7.C) = p;. Furthermore, there exists a matrix C.,, such

T.C
that rank |
at rank |\ -

The fault model is defined in (6.3).
The traditional dynamic output feedback controller with fixed gains is

§r(t) = Axs&s(t) + Brsy(t)
(I = p)Ck (1) (6.33)
where £ € R™ is the controller state and Ak, By and C'x y are the controller

gains to be designed.
Combining controller (6.33) with system (6.32), we have

= n. Denote T,,, is the inverse matrix of FC%C} .
cn

S
&

—~

=
|

ap(t) = Apzg(t)+ Aypzg(t =) (6.34)
where 74 (1) = [+ (1) €7 (1)),

T A B(I—p)CKf T A1 0
Ap = {BKfC Agy CAr=1g g

The following performance index is considered here:
o T
J= / (27 (H)Qa(t) + uF T (£)SuF (1)) dt (6.35)
0

where Q and S are given positive matrices.
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Lemma 6.1 Consider the closed-loop system described by (6.34). Then the

following statements are equivalent:

(i) there exist a symmetric matrix P, >0, R = [R*n 212
22

troller described by (6.33) such that

] > 0 and a con-

{Qo + Qo+ hAleRAIf +E0 h(Af+ Alf)TPa} <0 (6.36)

* —hR
hold, in normal and actuator fault cases, i.e., p € {p*---p*}, p/ € N,; with

_ - Q 0
Qo= Py(Af+ Aiy) and Zp = [0 C};f(l—p)S(I—P)CKJ

(ii) there exist a nonsingular matrix Q., and symmetric matric R =
{R“ R”} >0, P> 0 with

* RQQ
(v -N
P= [—Nl N, ] (6.37)
and a controller described by (6.33) such that

[Ql + 0 4+ hAT RA, + 21 h(Ag+ Ay)TP
* —hR

] <0 (6.38)
hold, in normal and actuator fault cases, i.e., p € {p*---p*}, p’ € N, with

. [ A BUI-p)Cks 1 _[A 0
Aq - |:BKqC AKq ’ Alq - )

Oy =P(A;+ Ayy), Z1= [ 0 CIT(q(I —p)S(I - P)CKJ

and

Arg= Q. 'AxyQ4, Brq=—-Q,'Brys, Ckq=-CkiQa (6.39)

(i1i) there exist symmetric matrices Y1, Np and 0 < Ny < Y, R =
{R*H 212 > 0, and the controller gains of (6.33) are Axy = Arxq, Brs =
22

Byyq CKf = CKq such that

Ao A1 A3 —h(A + Al)TNl + hCTB};qu
o * A2 A4 —hc;;q(_[ — p)BTN1 + hquNl
Val % " _thl —thg < O, (640)

* % * —hRas
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hold, in normal and actuator fault cases, i.e., p € {p*---p*}, p’ € N, with

Ay =Y1B(I — p)Cry — N1Agy + [-Ni(A+ Ay) + Ny Bk, CO]F
Ay = —N1B(I — p)Ckq+ +Ni1Agy + (—N1B(I — p)Crq + N1Agy)”
+ Ckeg(I = p)S(I = p)Crq
As = h(A+ A1)"Yy — hCT Bje Ny
Ay =hCl, (I — p)BTYy — hA} Ny
Proof 6.3 From the proof of Lemma 2.11, it is easy to conclude (i) < (i),
so we omit it here. On the other hand, P > 0 is equivalent to 0 < Ny < Y7,

thus by some simple algebra computation, it follows (i) <= (iii). The proof
is complete.

Remark 6.5 From Lemma 6.1, it follows that the special form of P with

-N
dynamic output feedback controller with fized gain.

Y1 —-N
P = [ ! N 1] doesn’t bring any conservativeness when we design the
1

The following two-step algorithm is to optimize the guaranteed cost perfor-
mance index for the reliable controller design with fixed gains.

Algorithm 6.2 Step I  Given a fized controller gain Cky, which may be
chosen from a feasible solution for stabilization problem via state feedback
using the same Lyapunov functional

S3 +=21 +hATRA, RX(A+ AT +hY! BT
* —hR

with Z3 = (A + A1)X + BYy and condition (2.48) holds for Ay = Ay. The
feasible solutions are denoted as X = Xfea Yo = Yofea- Let Ckyr =YX~ L
Step 2 Let NyAks = Aks, Ni1Bkf = Biy, solving the following optimization
problem

{a+tr(T1)} st. 0< Ny <Yy, (6.40)

Denote the optimal solution as Ak = A fopt, Brp = BKfopt, N1 = Niopt,
Then the controller gains can be obtained by Ax; = Ni AKf, Biy =
N BKf and CKf YoX 1

Remark 6.6 It should be noted that the condition (6.40) is nonconvex, how-
ever with Cky fized, and N1Agy, N1Bky are defined as new variables, the
condition (6.40) is linear matriz inequality. Moreover, Algorithm 6.2 gives a
method for the reliable dynamic output controller design with fized gains by
two-step optimizations. Step 1 is to a Cky, which solves the corresponding
design problem via state feedback. With the Ckq fized, controller parameter
matrices Ak and Bi ¢ can be obtained by performing Step 2.
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In order to reduce the conservativeness of the dynamic output feedback
controller with fixed gains, the following dynamic output feedback controller
with variable gains is given

&) = Ar(P)E() + Br(p)y(t)
W) = (- p)Crob(t) (6.41)

where £(t) € R™ is the controller state, p(t) is the estimated value of p obtained
by the adaptive laws, which are determined later. Denote

Ak (p) = Ao + Aka(p) + Arp(p)
Bg(p) = Bro + Bra(p) + Brs(p)

where
m m

AKa ZPZAKGXL? AKb( ZZP’LP]AKij + ZP’LAKZ)’L

i=1 =1 j=1 i=1

Bka(p ZP'LBKG,'M B (p ZPZBsz
i=1

Ao, AKaia AKbi; AKbijaBKO; BKaia BKbi and CKO are the controller gains
to be designed.

Applying this controller (6.41) to (6.32) results in the following closed-loop
system

z(t) = Az(t)+ A1 Z(t—h) (6.42)
where @(t) = [¢7(t) €7 (1)]7,
1 A B(pr)CKo T A1 0
A= Bc(p)c Axlp) } Al{o 0}

Consider the following operator defined in Lemma 2.13

D(zy) = z(t) + /tih Arz(s)ds

where x; = z(t + s), s € [~h,0].

The following theorem presents a sufficient condition for the reliable con-
trol problem via dynamic output feedback to optimize the guaranteed cost
performance, in the framework of LMI approach and adaptive laws.

Theorem 6.2 Suppose that the operator D(x:) satisfying the conditions in
Lemma 2.15. If there exist a controller of form (6.41), matrices 0 < Ny <
Y1, Ri1 >0, Ry >0, Ry, Aro, Akai, Akvi, Axvij, Bro, Bkai, Biubi,
Cko, i, j =1---m and symmetric matriz © with

_|©11 O
@—[@a @22]
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©11, Ogp € RIM™X4Mn gych that the following inequalities hold:
O <0, i=1, -+, m
with Og9y; € REM9)XC2n43) s the (i,4) block of Ogs.
for any 6 € A,
O11 + O12A(6) + (012A(6))” + A(6)O22A(6) > 0
in normal and actuator fault cases, i.e., p € {p'---p*}, p’ € N,
[g% ﬂ +G7eG <,
hold, where
E=[E1 Ey -+ En|, F=[Fjl, i j=1---m,

Ao A1 hAg hAs
s Ay hAL hAg
Ql B * * —hR11 —hR12
| * * * —hRayo

[ —N1BgtiC — N1BgqiC Az Ag —Ag
Ni1BgpiC + NiBgaiCMa NiAgy QA9 —Ag

(6.43)

0 0 0 0
I 0 0 0 0
i 0 — N1 Agbij 0
Foo— _ATI;bjiNl N1 Agpij + (N1 Akij)" _hATI;bjiNl hAYI;bjiNl
t 0 _thAKbij 0
L 0 thAKbij 0
Ag=Yi(A+ Ay) — N1BgoC + [Y1(A+ Ay) — N1BgoC|"
+Q+hATR;1 A

Ay = Y1B(I — p)Cko — N1Ako — N1Aka(p) + M3 N1Aga(p)

— MQTCTBKa(p)N1 + [—Nl(A + Al) + N1BgoC + N1BKa(p)C]T

Ay = (A+ A)TY, — CTBE Ny,

Az = —N1B(I — p)Cko + (—N1B(I — p)Cx0)T + N1Ago + N1Axka(p)

+ (N1Ago + N1Aka(p))" + ChoI = p)SI — p)Cro,

Ay =CEy(I—p)BTY, — AL Ny, As=—(A+ AN, +CTBE Ny,
Ag = —Cko(I —p)BT'Ny + AL N1, A7 = —NiAgpi — M Ny Agai,

Ag = —hCT[Brai + Brwi] ' N1, A9 = —h(Agai + Axpi)' Ny

T, 0

A(p) = diaglprI -+ pm], My =T, M Mo =en [C] O

0 I
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and also p;(t) is determined according to the adaptive law
Pi = Produasutyy, matsy (L2}
pi = mm{gﬁ} and Lo; <0
0 i or p; ]: max{ﬁg} and Lo; > 0; (6.44)
Lo, otherwise ’

where Ly; = —Li[§T N1 Ak i —y" M{ Agai€ + T N1 Bk oiC My, 1; >0 (i=
1---m) is the adaptive law gain to be chosen according to practical applica-
tions. Proj{-} denotes the projection operator [70], whose role is to project the
estimates p;(t) to the interval [mjin{;_){}, m]ax{ﬁg -

Then the closed-loop system (6.42) is asymptotically stable and the cost func-
tion (6.35) satisfies the following bound:

0 mo 9
J < DT (0)PD(0) + h/ (s+h)z" (s) AT RA z(s)ds + > pll(o) (6.45)
—h =
. _ | R Ra
with R = [ . Rzz} .
Proof 6.4 Take Lyapunov-Krasovkii functional as
V=Vi+Va+V3 (6.46)

where

t
Vi = DT (2,)PD(z), Va :/ (s — t + h)aT () AT RA, 2(s)ds,
t—h
m =9

V?,:Z”il—gt)
i=1

with P >0, R > 0.
V(t) From the derivative of V along the closed-loop system (6.42), it follows

Vi = 2D (z,)PD(%,)
=2D7(z,)P(A + A))z(t)

=z () P(A+ Ay) + (A+ A)TP)z(t) + 2(/t Az(s)ds)T P(A + Ay)z(t)
t—h

t
Vo = hz’ (t)ATRA,z(t) — / T AT (s)RA Z(s)ds
t—h

—h

7T ATRAx - tifs $)T(h~1 ti@ss
< ha” (t) AT RAz(t) (/HAl (s)ds)™ (h R)(/t Ay (s)ds)
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where Lemma 2.14 is used to get Va.
Here, by using p;(t) = pi(t) — ps, the following equalities are obtained

Aka(p) = Ara(p) + Aka(p); Bra(p) = Bra(p) + Bra(p)

Then A can be written as

where

- A B(I - p)CKO

“ [Bko + Bra(p) + Brv(p)]C Axo+ Axka(p) + Axs(p)

b Bra(p)C Ara(p)|”
Let P be the following form, that is

o -N
pP= [—Nl N, } , (6.47)

with 0 < Ny < Y7y, which implies P > 0.
From (6.32), it follows

T.Cx=T.y
Then
O {gcx] = Myy + Mo (6.48)
cn

it =7, [8], 207 [0 ]

Notice that

PA — Y1A — N1[Bro + Bka(p) + Brio(p)]C Th
@ —N1A+N1[BK0+BKa(p)+BKb(ﬁ)]C Ts

with
Ty =Y1B(I — p)Cko — Ni[Ako + Ara(p) + Ars(p)]
Ty = —N1B(I — p)Cko + Ni[Ako + Aka(p) + Axp(p)]-
and
PA — —N1Bga(p)C  —N1Axka(p)
b NlBKa(ﬁ)C NlAKa(ﬁ)
which follows
T (t)PAyZ(t)

= [z TP Ay[T €17
= —2" NiBga(p)Cx — 2" N Aga(p)§ + &7 N1Bra(p)Cx + £ N1 Aka(p)é
(6.49)
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Thus, by (6.48) it is easy to see
—z" N1Akaq(p)€ = _yTM1TN1AKa(P~)€ - mT]WQTNlAKa( )€

E'N1Bka(p)Cx = €T N1 Bro(p)CMyy + €7 N1 By o(p)C Mo

Thus -
T () PAz(t) = 7 Moz + M,

— M3 Ny Ak (p)
0

)

v — [ ~NiBra(p)C
@~ | NiBga(p)CMs

—y" M{ N1 Aka(p)é + €' N1Bra(p)CMyy + £ N1Aga(p)E

where

My =
Then from the derivative of V (t) along the closed-loop system (6.42), it follows
Vi(t) = 2" (t)[P(Aa + A1) + (Aa + A1)T Pl2(t) + 27 (Mo + M])Z + 2M,
/ s)ds)T P(A + A)Z(t) (6.50)
So
V(t) < XTW0x+2Mb+2§m:w (6.51)
i=1 '
where
Z(t) ® 4+ o7 + hATRA, (A+ A)TP
v L e o= [P EEA
with ® = P(A, + A1) + M,.
Since y and & are available online, we choose the adaptive laws as (6.44)
Then it follows .
My + i %ﬁﬁi(ﬂ < (6.52)
Thus
V(t) < x"Wox (6.53)
Furthermore
Jg/oo(g—cT(t) [Q T o 0 B Z(t) + V)dt + V(0)
0 0 Ckold —p)S(I = p)Cko
(6.54)

S/ X" Waixdt +V(0)
0
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where

o 0 o
o+ &7 + hATRA @ A+ A)TP
Wy = |PFE FPALRA g o (1 S p)Oxo| AT A
* —h 'R
By pre- and post-multiplying inequalities W1 < 0 by diag{I,h}, then W7 <0
s equivalent to

® + &7 + hATRA; + 24

Wy = h(A+A)NTP| <0 (6.55)
* —hR
= _ |@ 0
where 54 = {0 ChkolI = p)SCxo(I = p)]|’

Furthermore (6.55) can be described by

m m m m
Wa(p) = Qu+ Y piEi+ (D _pE)"+Y> > pipiFiy <0,
i=1 i=1 i=1 j=1
where Q1, E;, F;; are defined in (6.43). By Lemma 2.10, we can get Wa(p) < 0
if (6.43) holds, which implies W1 < 0 and Wy < 0. Then the closed-loop system
(6.42) is asymptotically stable in both normal and fault cases. Moreover,

0 m o~ 9
J <V(0) = DT(0)PD(0) + h/ (s + h)z' (s)AT RA,Z(s)ds + Z pzl(O)
—h =1
Remark 6.7 Theorem 6.2 presents sufficient conditions for adaptive
fault-tolerant quaranteed cost controller design via dynamic output feed-
back. Generally, (6.43) is not LMIs. But when Cgo 1is given, and
Ni1Ago, N1Akai, N1Akwi, N1Akbij, N1Bko, N1Brai and N1Bgy; are defined
as new variables, (6.43) becomes LMIs and linearly depends on uncertain pa-
rameters p and p.

Remark 6.8 By (6.3) and (6.44), it follows that (;(0) < max{z’} —min{p’}.
J it

We can choose l; relatively large so that )" |

m ﬁ,:jfc)) is sufficiently small.

Theorem 6.3 Consider the closed-loop system (6.42) with cost function
(6.35). If the following optimization problem

min{«a + (1)}
subject to
(i) LMI (2.48), (6.43)
. —a DT(0)P
(i) [ . —(P) } <0

_ T AT
(iii) [ 51 ngé R} <0 (6.56)
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has a solution set, the controller (6.41) ensures the minimization of the guar-
anteed cost (6.35) for the closed-loop system (6.42) against actuator faults,

where fgh(s + h)z(s)zT (s)ds = VoV .

Proof 6.5 By Theorem 6.2, (i) in (6.56) is clear. Also, it follows from Lemma
(2.8) that (i) and (iii) in (6.56) are equivalent to DT(0)PD(0) < a and
hVF AT RA1Vy < Ty, respectively. On the other hand,

/ ’ (s +h)zT (s)ATRA,Z(s)ds

—h

- /0 tr((s + h)z" (s)AT RA,2(s))ds
—h

= tr(Vo VgL AT RA,) = tr(Vyd AT RAVp) < tr(Ty)

Hence, it follows from (6.54) that

mo o9
JF<a+ tr(I‘l)—i—Z L (0)

Thus, the minimization of a+ tr(['1) implies the minimization of the guaran-
teed cost for the system (6.42).

Remark 6.9 If we choose the Lyapunov functional candidate V- = Vi 4+ Vs,
where V1,V are defined in (6.46), then it is easy to see conditions (6.38) can
guarantee the closed-loop system (6.41) is asymptotically stable and the cost
function (6.35) satisfied the following bound:

J < DT(0)PD(0) + h / " (s 4 T (s) AT RAy2(s)ds
—h

From Lemma 6.1, it follows condition (6.38) is equivalent to (6.40). It should
also be noted that conditions (6.40) are not convex. But when Cky is given,
and N1Ag; and N1Bgy are defined as new variables, they become LMIs. Also
the upper bound of J with fized gains controller can be obtained by solving the
following optimization:

min{a + tr(T'1)}

(i) LMI (2.48) (6.40)
. —a DT(0)P
(i1) [ . —(P) } <0

_ T AT
(iii) [ fl WghAé R} <0 (6.57)
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Theorem 6.4 If the conditions in Lemma 6.1 hold for the closed-loop system
(6.34) with fized gain dynamic output feedback controller (6.33), then the con-
ditions in Theorem 6.2 hold for the closed-loop system (6.42) with adaptive
dynamic output feedback controller (6.41).

Proof 6.6 Notice that if Va1 < 0 for the actuator fault cases and normal case,
then the conditions in Theorem 6.2 are feasible with Axo = Axy, Bxo =
Bry,Cro = Cky and Axe; = Axyi = Axvij = Brai = Bryi = 0,i,j =
1---m. The proof is complete.

Remark 6.10 Theorem 6.4 shows that the method for the adaptive fault-
tolerant gquaranteed cost controllers design given in Theorem 6.2 is less con-
servative than that given in Lemma 6.1 for the fault-tolerant guaranteed cost
controllers design with fized gains.

The following two-step algorithm is to optimize the adaptive fault-tolerant
guaranteed cost performances in normal and fault cases.

Algorithm 6.3 Step 1 Determine Cgo. Chose Cxo = Cky, which can be
obtained by Step 1 in Algorithm 6.2. ~
Step 2 Let NiAko = Axo, NiAkai = Akai, NidAgw =

zf_lei, N1 Agpij = Akpij, N1Brgo = Bko, N1Brkai = Brai and N1Bgpi =
Bk, and solve the following optimization problem

min{a+ tr(T'1)} s.t. 0< Ny <Y, (6.56)

Denote the optimal solutions as Ao = AKOopt; Agai = AKawpt, Agpi =
AKb'Lopt; Asz] = Asz]opt; BKO = BKOopt; BKaz = BKa'Lopt; Bsz = Bszopt7
N, = Nlopt The corresponding adaptive controller gains are obtamed by
Ago = Ny AKO; Arai = Ny 114{((”, Agpi = Ny Asz, Agpij = Ny Aszj7
Bgo = N 'Bro, Brai = Ny 'Bkai, Brvi = Ny'Brpi( i,j = 1---m),
Cko CKf

Remark 6.11 From Theorem 6.2, it is easy to see that controller gains
Ako, Akai, Axvi, Axvij, Bxo, Bxai, Brbi, Cko0,Ckai, Crpi(i,j = 1,--+,m)
are obtained off-line by Algorithm 6.8 while the estimation p; are automati-
cally updating online according to the designed adaptive law (6.44). Thus due
to the introduction of adaptive mechanisms, the resultant controller gain (6.41)
is variable, which is different from traditional controller with fized gains.

6.2.4 Example

To illustrate the effectiveness of our results, two examples are given. Example
6.1 is for state feedback case and Example 6.2 is for dynamic output feedback
case.
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TABLE 6.1 H., performance index

Adaptive reliable controller Traditional reliable controller

T 1.6377 4.1086
o7 2.6652 5.0885
X‘1 X2
0.6 : : 0.6
\
0.5} ! 05 I~

0.4r

0.31

0.2r

0.1¢

-0.1 : : -0.2 s ‘
0 5 10 15 0 5 10 15

time(s) time(s)

FIGURE 6.1
Response curve in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).

Example 6.1 Consider a linear time-delay system with parameters as follows

0.1 0 -1 0 0 1
Sl O B P TR T

1 0 0 0
0.5 0 -1 00

Bl_[0.5]’ “=lo o P=|1 o
0 0 0 3
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X1 X2

0.6 w w 0.6

5 10 15 0 5 10 15

FIGURE 6.2
Response curve in fault case 1 with adaptive controller (solid) and controller
with fixed gains (dashed).

Besides the normal mode, that is,
=p5 =0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, that is,

pi=1, 0<ps<05.

Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

ps=1, 0<p? <04.

Using Algorithm 6.1 with « = 10,8 = 1 and ¢ = 0.9, we obtain the corre-
sponding H., performances indexes of the closed-loop system using the two
controllers. See Table 6.1 for more details. To verify the effectiveness of the
proposed adaptive method, the simulations are given in the following.
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5 10 15 0 5 10 15

FIGURE 6.3
Response curve in fault case 2 with adaptive controller (solid) and controller
with fixed gains (dashed).

In the simulation, the following two fault cases are considered:
Fault case 1: At 2 seconds, the first actuator is outage, then the second actu-
ator becomes loss of 30% effectiveness.
Fault case 2: At 4 seconds, the second actuator is outage.

In order to show the effectiveness of our method more clearly, some simula-
tions are also given. In the following simulation, the time-delay is 7(t) = #
and the disturbance here is

[ 2 2<1t<4 (seconds)
w(t) = { 0 otherwise

Figure 6.1 describes the response curves in normal case with our adaptive
reliable controller and reliable controller with fixed gains, respectively. The
corresponding curves in the above-mentioned two fault cases with these two
controllers are given in Figure 6.2 and Figure 6.3, respectively. From Figure
6.1-Figure 6.3, it is easy to see our adaptive controller has more disturbance
restraint ability than the one with fixed gains in either normal or fault cases
just as theory has proved.
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TABLE 6.2 H_, performance index

Adaptive reliable controller Traditional reliable controller

Upper bound of J 4.4836 5.1858

x,(0) X,()
0.5 w w 0.6

0.45
0.5}
0.4
0.35
0.3f
0.25}
0.2r

0.15¢

0.11

0.05}

FIGURE 6.4
Response curves in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).
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x,(0) X,()
0.5 w w 0.6

0.45
0.5}
0.4
0.35
0.3f
0.25}
0.2r

0.15¢

0.11

0.05}

FIGURE 6.5
Response curves in fault case 1 with adaptive controller (solid) and controller
with fixed gains (dashed).

Example 6.2 A real application ezample about river pollution control [82] is
proposed to show the effectiveness of our approach.

x(t) = Ax(t) + Arx(t — h) + Bu(t)
z(t) = ¢(t), te[-h,0]

y(t) = Cx(t) (6.58)
where
—kio —m —n2 0 n2 0
A= A =
[ —ks3o —kao—m —mz|” ! 0 m)’

B

[%1 ﬂ c=1[0 1]

Here u = [u1(t) UQ(t)}T is the control variable of river pollution. k(i =
1,2,3), 1 and 72 are known constants. The physical meaning of these param-
eters can be found in [82].

In the simulation, we choose h = 0.7, 71 = 2,m2 = 1, k19 = 3,keo = 1,
k3o =2,Cen=[1 0] and T, =1.
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x,(0) X,()
0.5 w w 0.6

0.45
0.5}
0.4
0.35}
0.3f
0.25}
0.2r

0.15¢

0.11

0.05}

FIGURE 6.6
Response curves in fault case 2 with adaptive controller (solid) and controller
with fixed gains (dashed).

05 0

And the matrices in the performance index (6.35) are Q = [ 0 05

1 0
s=|o 13
C . . 0.5
The initial state is ¢(t) = 05l
Besides the normal mode, that is, p) = pJ = 0, the following possible fault
modes are considered:

Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

p%:l, 0§pf§a1,a1:0.4

which denotes the maximal loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, described by

pi=1, 0<p?<b;,by =05
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0.5 0.6

0.45 1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

time(s) time(s)

FIGURE 6.7
Robust response curves in normal case with adaptive controller (solid) and
controller with fixed gains (dashed).
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x,(0) X,()
0.5 w w 0.6

0.45 1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

FIGURE 6.8
Robust response curves in fault case 1 with adaptive controller (solid) and
controller with fixed gains (dashed).

which denotes the maximal loss of effectiveness for the first actuator. By using
Algorithm 6.2 and Algorithm 6.3, we obtain the corresponding cost perfor-
mance indexes, using the adaptive method and traditional method. See Table
6.2 for more details.

The considered fault cases in the following simulations are:
Fault case 1 is at 0 second, the first actuator becomes outage.
Fault case 2 is at 0.5 second, the second actuator becomes outage. Then after
1 second, the first actuator becomes loss of effectiveness of 50%.

Figure 6.4, Figure 6.5 and Figure 6.6 are the state responses with adaptive
and fixed gain dynamic output feedback controllers in normal and fault cases,
respectively. It is easy to see our adaptive fault-tolerant guaranteed cost con-
troller performs better than the one with fixed gains in both normal and fault
cases just as theory has proved.

In the next simulations, some time-varying uncertainties AA(f) =
0.25Asint, AA;(t) = 0.4A;cos3t and AB(t) = 0.5Bsin2¢ are added into the
system matrices A, A; and B, respectively, which aims to demonstrate the
robustness of designed controllers. The corresponding state curves are given
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x,(0) X,()
0.5 w w 0.6

0.45
0.5}
0.4
0.35}
0.3f
0.25}
0.2r

0.15¢

0.11

0.05}

FIGURE 6.9
Robust response curves in fault case 2 with adaptive controller (solid) and
controller with fixed gains (dashed).

in Figure 6.7-Figure 6.9. It is easy to see that the designed controllers are
robust to these uncertainties.

6.3 Adaptive Reliable Memory Controller Design

As is well known, a memory-less controller has an advantage of easy implemen-
tation, but its performance cannot be better than a delay-dependent memory
feedback controller when the information of the size of delay is available [4]
and[110]. Thus, here we investigate the delay-dependent memory controller
design problem for linear time-delay system, based on the adaptive method
and LMI techniques.
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6.3.1 Problem Statement
Consider the following linear time-delay system

z(t) = Az(t) + A1z(t — h) + Bu(t) + Biw(t)

z(t) = Cz(t) + Du(t)
where x(t) € R™ and x; is the state at time ¢ defined by x¢(s) = 2(t + s),s €
[—d,0], u(t) € R™ is the control input, z(t) € R? is the regulated output,
respectively. w(t) € RP is an exogenous disturbance in L2[0,00] and d is a
positive constant time-delay. {¢(¢),t € [—d, 0]} is a real-valued initial function.
A, Ag, B, B1, C and D are known constant matrices of appropriate dimensions.

In this section, the considered actuator faults are the same as those in
Chapter 3, that is

uf(t) = (I = p)u(t), pelp'--p"] (6.60)

where p can be described as p = diag[p1, p2, - pm].
Denote

Ny ={p |7 = diaglpl, b, p2), pl = pid p} = pi’}

Thus, the set IV,; contains a maximum of 2" elements.

6.3.2 H,, State Feedback Control

In this subsection, we deal with the delay-dependent memory H., controller
design problem, such that in normal and fault cases, the resulting closed-loop
system is asymptotically stable and its H., disturbance attenuation perfor-
mance bound is minimized.

With actuator faults, the system (6.59) is described by

z(t) = Az(t) + Arz(t — h) + B(I — p)u(t) + Biw(t)
z(t) = Cz(t) + D(I — p)u(t) (6.61)

Define an operator D(z;) : Cp,, p, — R™ as

t
D(zy) = z(t) + Gz(s)ds = z(t) + f(¢) (6.62)
t—h
where z; = z(t + s),s € [=d,0], f(t) = f:ﬁd Gz(s)ds and G € R"*™ is a
constant matrix which will be chosen.
Now, we are interested in designing a delay-dependent memory state feed-
back controller with the following structure

u(t) = K(p(t))x(t) + Kcf(t) = (Ko + Ka(p(t)) + K (p(t))x(t) + ch((t) )
6.63
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where Ko(p(t) = Y7, Kaifi(t), Ko(p(t)) = S0, Koigi(t) and pi(t) s the
estimate of p;. Ko, Kgi, Kpiyi = 1---m and K. are the control gains to be
designed.

Remark 6.12 Notice that (6.63) has a parameter-dependent gain and p;(t)
is included in an affine fashion, which is a convex problem. Though K,(p(t)
and Ky(p(t) have the same forms, we will deal with them in different ways to
get more relaxed conditions in our main result.

The closed-loop system is given by

#(t) = Aa(t) + Are(t — ) + B(I - p)K (p)a(t) + B(I - p)Kof(t) + Biw
2(t) = (C+ DU — p)K(3)x(t) + D(I — p)K.f (1) (6.64)

Denote
By ={p=(pr-+pn) : pi € {min{pl} max{a}}}, A(p) = diaglpnl -]

N — T+ 17 +Q+ hFyy TT + Fio+ B(I — p)X
o= * ~h Y a-1)X+BI-pX|’

Ty = AX + B((I = p)Yo + Ya(p)) + W, Ya(p) =D Yaipi,
=1

R:[Rl RQ Rm}, T:[Tij],i,j:].'”m,
1
—BpY,; + BYy, —pyTBT + YbTBT : 0
R’L — ar 7 , G — .
0 0 ;
0 I
_Biy.. —yTpiT _yrpgiT
T = [ B }EjBiY}%B Y’”OB ] , Vo=[Voo Vor - Vom],

Voo = [CX + D(I = p)Yo DI —p)Wi], Voi = [DU = p)(Yai + Yei) O]

Theorem 6.5 Let yf > v, >0, a > 1 and d > 0 be given constants, if there
exist positive definite matrices X, Q, F11, Fao, F33 and matrices Yo, Yai, Yoi, W,
W1, Fio, Fi3, Fo3,i = 1---m and a symmetric matriz © with

_|©11 O
9= {@{2 @22]

and ©11, Ogp € R2MMX2M1 sy ch that the following inequalities hold:
O <0, i=1, ---, m (6.65)

with g € R(2n+s)><(2n+s) is the (Z,Z) block Of O9s.
For any 0 € A,

011 + O12A(8) + (012A0)T + A(8)O23A(8) > 0 (6.66)
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for p=0, i.e., in normal case,

N

[R% §]+GT@G Vi
* —1I
* *
* *
* *

forpe{p"---p"},p) € Ny,

N

[R% ﬂJrGT@G 17
—I
*

* ¥k X X

[1]

Bl OéhWT

B, 0

0 0

0 0
—~21 0

* —ahX

* *

i.e., in fault cases,

B: ahWT
B: 0
0 0
0 0
—V;I 0
* —ahX
* *
—X + FQQ <0

_ T
{X hW]<O

* —-X
Fi1 Fia Fis
= | * Fy Fb
ES * F33
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(AlX — W) + hFi3 i

(A1 X — W) + Fog

(A1 X — W) + hF5] ]

(AlX — W) + Fo3

>0

and also p; is determined according to the adaptive laws

ﬁi = PTO][mln{B:}, max{ﬁ”}{Lz}

0,

Liv

pi =min{p’} and L; <0
j L)

or p; = max{p!} and L; > 0;
J

otherwise

<0

(6.67)

<0

(6.68)

(6.69)

(6.70)

(6.71)

(6.72)

where L; = —Li(f(t) + z(t))T X B'Ky(p) + BKyi|z(t), I; > 00 = 1---m)

is the adaptive law gain. Proj{-} denotes the projection operator [70], whose

role is to project the estimates p;(t) to the interval [min{pﬁ},max{ﬁg 1], then
i = J
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the closed-loop system (6.61) is asymptotically stable and in normal case, i.e.,
p = 0, satisfies for x(t) = 0,t € [—d, 0]

oo o) mo -2
/0 2T (t)z(t)dt < ’erz/o Wl (t)w(t)dt + Z pi li(O) (6.73)

and in actuator fault cases, i.e., p € {p'---pP}, satisfies for x(t) = 0,t €
[_da 0]

oo 0 moo~2
/O 2T (t)z(t)dt < 7 /0 wT(t)w(t)dt+Zp . 150) (6.74)

where j(t) = diaglpy () - (D). 5i(t) = pi(t) — pi.
Furthermore, the corresponding controller is given by

u(t) = (YoX '+ piYuX 14> piYe X Na(t) + WaX U f(t)  (6.75)
i=1 i=1

with f(t) j; , Ga(s)ds, G =WX~1.

Proof 6.7 The following Lyapunov-Krasovkii functional candidate is chosen

V(t) = Vi(t) + Va(t) + Va(t) + Va(t) + Vs(t) (6.76)
where
Vi(t) = DT (2,)PD(x), Valt —a/ / (u)GT PGz (u)duds
t—h
‘/23(15):/1t . 7 (s)Ux(s)ds, // xTQEQxduds,

with x = [27(s), 2T (uw)GT, 2T (s — h)|T, P > 0, Q = diag{ P, P, P}, U > 0.
The following equality is obtained

(I = pu(t) = (I = p)[(Ko + Ka(p(t )) + Ky
= [(I = p)Ko + Ka(p) — pKa(p
+ [Ka(p(t)) + pE3(p

(£(1)))x(t) + K f(1)]
6(0)z(t) + (I = p(8) Ko (p(t))x(t)
(t ))] () + (I = p)Kcf(t) (6.77)

where p(t) = p(t) — p.
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Then from the derivative of V along the closed-loop system, it follows
Vi = 2D" (z)PD(x;)
=z (t)[P(A+ B((I = p)Ko + Ka(p) — pKa(p) + (I = p)K(p)) + G)
+(A+ B((I = p)Ko + Kalp) — pKa(p) + (I = p)K3(p)) + G)T Pla(t)
+2(x(t) + f)T PBiw(t) + 227 () P(A1 — G)x(t — h)
+2fT(t)P(A+ B((I = p)Ko + Ka(p) — pKa(p) + (I = p)Ks(p) + G)(t)
+2f1(O)P(Ar — G)a(t — h) +2(x(t) + (1)) PB[Ka(p) + pKy(p))x(t)
+2(x(t) + f(1))T PB(I — p)f(t)
Vs = 2T (t)Ux(t) — 27 (t — h)Ux(t — h)

t
Vi = haT (£) PP Pa(t) + 227 (1) PPy P () + / 27 (8)GT PFyy PGa(s)ds
t—h
+ 2haT (t)PFi3Px(t — h) + 2f 7 (t)PFas Px(t — h)
+ ha™'(t — h)PF33Px(t — h)

T =2 zm: ﬁi(t)éi(t)

where f(t) ft G (s)ds

Here we use .
frPf(t) < h/ 27 (s)GT PGx(s)ds,
t—h

which is obtained by Lemma2.14 to get Va.

Let B=[b*---b™], B'=[0---b"...0], then
PBjK,(p Z piPBKy(p) (6.78)
=1
PBK,( Z piPBK,; (6.79)
i=1

Furthermore, it follows
V() + 2T (0)2(t) — v (t)w(t)
< 2" (t)[P(A+ B((I - p)Ko + Ka(p) — pKa(p) + (I = p)Kp(p) + G)
+ (A4 B((I - p)Ko + Kalp) — pKa(p) + (I — p)Ki(p) + G)" P
+(C+ DI~ p)K(p))"(C + D(I - p)K(p))}(t)

+ %(x(t) + f)TPBiBY P(x(t) + f(t)) + 2fT(t)P(A; — G)x(t — h)
7

— (yywT = = (a(t) + F(£)TPBy)(vyw — —BTP(a(t) + £(1))
Vf Vf
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+2fT(OP(A+ B(I - p)Ko + Kalp) — pKa(p) + (I — p)Ko(5) + Ga(t)

+2(a(t) + £(1)T PBIKA(5) + pKy(p)]z + 27 (H)P(Ar — G)alt — h)

+227(8)(C + D(I - p)K(3))" DI - p)K.f (1)

+20a(t) + FO) PB(I = p)f() + [T WKL (I~ p)D" DL — p)Kof (1)

+ Val(t) + Va(t) + Va(t) + Vs (t) (6.80)
Then

V() + 2T (8)2(t) — 7T (t)w(t)
<[z 1) xT(t—h)]\If[ f“g }
+2(z + )" PB[Ka(p) + pKs(p))z
+ /tih 27 (s)GT (=P + PFypP)Gx(s)ds + 2 f} M
(6.81)

where

Al AQ P(Al — G) + hPF13P
* Ag P(Al - G) + PF23P
* * —U + hPFjss

v =

Ay = P(A+ B((I — p)Ko + Ka(p) — pKa(p) + (I — p)Ks(p) + G)
+(A+ B((I - p)Ko + Kalp) — pKa(p) + (I — p)Ki(p) + G)' P
+ U + ahGT PG + %%PBlBlTP +hPF; P
+(C+D(I = p)K(p))" (C+ D(I = p)K(p))
A = (A+ B((I — p)Ko + Kalp) — pKa(p) + (I — p)Ky(p) + G)' P + PF12P
+ %%PBlBlTP + PB(I —p)+ (C+ DI - p)K(p))' DI - p)K.

1
Az =—h"Ya—-1)P+ ?PBlBlTP + PB(I — p)
!
+KI(I-p)"DT"D(I - p)K,

In fact, p; is an unknown constant which denotes the loss of effectiveness of
the ith actuator. So from p;(t) = pi(t) — p, it follows p;(t) = ps(t). Now, if the
adaptive laws are chosen as (6.72), then

2(x(t) + f(£))T PB[Ka(p) + pKo(p x—I—ZZ pilt p’ < (6.82)
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Hence, the design problem V (t) + 27 (t)z(t) — 'yJ%wT(t)w(t) < 0 is reduced to
U <0 and —P + PFyP < 0.

Let X = P71, Q=XUX,W=GX, W, =KX, Yy, = KX, Y, =
Ko X Yy = Ky X, i =1---m. By pre- and post-multiplying inequalities ¥ <
0 and —P + PFyP < 0 by diag{X, X, X} and X, respectively, the resulting
inequalities are equivalent to —X + Fas < 0 and

Ay As (AlX - W) + hFi3
s Dg (AX W)+ Py | <0 (6.83)
* * —@Q + hF33

where

A«=MX+ma—mn+n@wwn@+U'mn<wwm+1BwT

¥
+(AX + B((I = p)Yo + Ya(p) — pYa(p) + (I — p)Y5(5) + W) + hFyy
+ahWTPW +Q + (CX + D(I p)Y(ﬁ))T(CX + D(I - p)Y(p))
As = XAT + Y (I = p)B + Y, (p) BT = pY, (p)B" + (I - p)Y, (p)B"

1
+W7T + Fip+ ?BlBlT +B(I-pX
f
+(CX +D(I = p)Y (p))" D(I — p)W1
1
Ag=—h"Ha-1)X+ ?BlBlT +B(I - p)X + Wi (I — p)DTD(I — p)W;
I

Y(pA) =Y+ Ya(pA) + Yb(pA)a Y ZYazpu aiPis Yb Z Yyipi

i=1

By Lemma (2.8), (6.83) changes into
Ay Ag - (AlX—W)+hF13 (—Q+th)71 (Al)(—VV)-F}LF‘L3 T
* AG (AlX—W)+F23 33 (AlX—W)+F23
<0 (6.84)
and —Q+hFs3 < 0. Then the design problem V(t)—i—zT(t)z(t)—'y?wT(t)w(t) <

0 further reduces to (6.84), —Q + hF33 < 0 and —X + Fas < 0.
Now we deal with (6.84). Furthermore, (6.84) can be written as

N N
M(p)=N + ZﬁiRi + (Z piR)" + ZZﬁiﬁjSij
i=1 i—1 ;
N N
+ (Voo + Zﬁivbi)T(VOO + ZﬁiVOi) <0, (6.85)

i=1 i=1
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where
ahWTX='W + LB,Bl LB/ BT
N _ NO + Ty Y
Z

B [(A1X — W) + hFy3 A1 X — W)+ hFi5]" “0

1 (
(A1X—W)+F23}(—Q+hF33) [(AlX—W)—i—Fgg

R;,Yij, Voo, Voi, i = 1---m are defined in (6.67).

By Lemma 2.10, it is easy to see if (6.65), (6.66) and (6.67)-(6.71) hold,
then we have T (t)M(p)x(t) < 0 for any = # 0.
Furthermore, if (6.65), (6.66) and (6.67)-(6.71) hold for p € {p*---p},p’ €
N, , it follows (6.84) and —Q+dFs3 < 0. Then by Lemma (2.8), the inequality
(6.83) holds. Also, the inequality (6.70) is equivalent to

. p (6.86)

[—P hGTP}

<0
by pre- and post-multiplying by diag{ X', X ~1}. If (6.86) holds, then it is
easy to prove that a positive scalar § which is less than one exists such that

{—5P hGT P

o } <0 (6.87)

according to matriz theory. Therefore, from Lemma 2.13, if (6.70) holds, the
operator D(xy) is stable. The inequality (6.71) means that Vy is positive def-
inite. So V (t) is positive definite. According to Theorem 9.8.1 in [55], if the
conditions (6.65), (6.66), (6.69)-(6.71) hold, the closed-loop system (6.61) is
asymptotically stable for the actuator fault cases. Furthermore,

V(t)+ 2T (t)2(t) — il (t)w(t) < 0.

Integrate the above-mentioned inequalities from 0 to oo on both sides, it follows

oo

V(00) — V(0) + /O T W)=yt < A /O W7 (Bt dt
Then
/ T W)=t < 2 / LT ()t + V(0) (6.88)
0 0

which implies that (3.11) holds for the zero initial condition x(t) = 0,t €
[—d, 0]. The proofs for (6.74) and asymptotic stability of the closed-loop system
(9.5) for that normal case are similar, and omitted here.

Corollary 6.2 If the conditions in Theorem 6.5 hold, then the closed-loop sys-
tem (6.61) is asymptotically stable and with adaptive Ho, performance indexes
no larger than vy, and s for normal and actuator fault cases, respectively.
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Proof 6.8 It is similar to that of Corollary 3.1, and omitted here.

Remark 6.13 The newly proposed adaptive laws (6.72) include the term
fit) = ftt_d Gx(s)ds, which indicates how time delay d takes effect on the
adaptive law. Noted that inequality (6.65)-(6.71) are LMIs, which can be solved
efficiently by using the MATLAB LMI control toolbox.

Remark 6.14 If we choose the same Lyapunov functional candidate as [77],
i, V.=V + Vo + V3 +Vy, where V1,V2,V3,Vy are defined in (9.31), then
the following conditions are sufficient for guaranteeing the closed-loop system
(6.61) with delay-dependent memory state feedback reliable controller u(t) =
Kox(t) + K. [}, Ga(s)ds, Ko = YoX ', K. = WiX ' and G = WX~ to
be asymptotically stable and with Ho, performance indexes no larger than -y,
and vy for normal and actuator fault cases, respectively.

For p=0, i.e., in a normal case

To+ Ty +Q+hFyy Ty Ty By ohWT Ty
* TG WIT(I - p)DT Bl 0 T7
* * I 0 0 0
* * * —2I 0 0 <0
* * * * —ahX 0
* * * * * Ty
(6.89)
Forpe{p'---pl},pi e N,i, i.e., in actuator fault cases
To+T4 +Q+hFin Ts T, By ahWT Tj
* Tﬁ WIT(I - p)DT B1 0 T7
* * 1 0 0 0
* * * —'yJ%I 0 0l < 0
* * * * —ahX 0
* * * * * Ts
(6.90)

Ty =AX +B((I-p)Yo)+ W, T3=TJ +Fiz+B(I-p)X,

Ty = XCT + Y (I - p)DT, T5= (A1 X — W)+ hFy3,

To=—hYa—-1)X+B(I-p)X, Tr= (A1 X —W)+ hl,
Notice that if set Yy =0,Yy; =0,i=1---m in Theorem 6.5, then the condi-
tions of Theorem 6.5 reduce to (6.89) and (6.90). Thus, the design conditions
of the reliable Hy controller with adaptive mechanisms in Theorem 6.5 are

more relaxed than conditions (6.89) and (6.90) of the corresponding reliable
H, controller with fized gains.
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The following is an algorithm to optimize the reliable H., performance in
normal and fault cases.

Algorithm 6.4 Solving the following optimization

min B11, + Bony  s.t. (6.65) — (6.71), (6.91)

where 6, =72, §f = 'yJ%, and (1 and B2 are weighting coefficients.

Usually, we can choose 1 > B2 in (3.25) since systems are operating under
the normal condition most of the time.

Denote the optimal solutions as X = Xope, W1 = Wiopt, Yo = Yoopt, Yai =
Yaiopt, Yoi = Ypiopt(i = 1---m), then the controller gains of (6.63) can be
obtained by Ko = Yo X 1 Ko = Yo X 1, Ky = Vi X 1.

6.3.3 Guaranteed Cost State Feedback Control

In this subsection, the guaranteed cost control for linear systems (6.59) against
actuator faults (6.60) is considered.
Then the corresponding system with actuator faults is described by

x(t) = Ax(t) + Arxz(t — h) + B(I — p)u(t)
The problem investigated in this paper is to design a reliable guaranteed
cost controller such that, in normal and fault cases, the resultant closed-loop

system is asymptotically stable and the bound of the following quadratic cost
function J is minimized.

J = /O Oo(ch(t)Qx(t) +u ()T - p)S(I — p)u(t))dt (6.93)

where Q >0 € R**"™ § >0¢€& R™*™,
Define an operator D(x¢) : Cy,, ¢ — R™ as

D(zy) = z(t) + /tih Aqz(s)ds (6.94)

where 2y = z(t + s),s € [—d,0].
Now, the following adaptive memory state feedback controller is chosen,
that is,

ut) = K(p@)(x(t) + | Awx(s)ds) = [Ko + Ko (p(t)) + Ko (p())] D (1)

t—h
(6.95)

where Ko (p(t)) = 2200, Kaipi(t), Kp(p(t)) = 3252, Kpipi(t) and pi(t) is the
estimate of p;. Ko, K4i, Kpi, @ = 1---m are the control gains to be designed.
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Remark 6.15 From (6.95), it is easy to see that the chosen controller struc-
ture is different from traditional memory or memory-less controllers with fixed
gains. That is, the gains of the memory term ftt_h Aqx(s)ds and the memory-
less term x(t) are both time-varying and affinely dependent on the online es-
timates p;(t) of p;.

The closed-loop system is given by

i(t) = Ax(t) + Ava(t — h) + B(I — p)K () D(x1)
z(t) = o(t), te€[-h,0] (6.96)
Denote ) )
By ={p= (A1 pm) : 1 € {min{g)}, max{p/}}}
A(p) = diaglpr] -+ - pra]]

Theorem 6.6 Suppose that the operator D(xz:) satisfies the conditions in
Lemma (2.48). Then, for given Q@ > 0 and S > 0, if there exist matrices
X >0,7Z>0,Yy, Yy, Yo and a symmetric matriz © with

_|©11 O
0= {@{2 @22]

O11, O € R™X™™ gsuch that the following inequalities hold:
B2 <0, 1 =1,---,m (6.97)

with g9 € R™™™ is the (i, Z) block Of O9s.
For any p e A,

011 + 012A(0) + (012A(0)T 4+ A(6)022A(8) > 0 (6.98)

in normal and actuator fault cases, i.e., p € {p*---pF}, pJ € N,

XQ
vl
1Q 0

=

{—(A—i—gh)AlZ] [hg(}

* -7 —hZAlT —ZA

N . _z 0 0 <0 (6.99)
* * * -Q 0

* * * * -1
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where
r_ Ao+ AT FE
~| ET  F
Ao = (A+ A1)X + B[(I — p)Yo + Ya(p)],
E=[E By Ey), U=[UyUy---Upn], F=I[F],
Ei = —BpYui + BYy, Fy=-BYy —Y,IB ij=1--m
Uo=S%(I —p)Yo, Ui=S%(I—p)(Yai+ Yui),
I

: 0 “
G=| |- » Yalp) =D Yaips
i=1

1

] +GTea,

and also p; is determined according to the adaptive laws

P = Projimingply max(pi 1 ik
pi = min{p’/} and L; <0
_ 1o ¥ or pi :J max {7’} and L; > 0; (6.100)
L;, otherwise ’
where L; = —1;DT(x,)X Y BYy(p) + BYy| X 1D(x;) with Yp(p) =
S Yeipi(t), I; > 0(i = 1---m) is the adaptive law gain. Proj{-} de-

notes the projection operator [70], whose role is to project the estimates p;(t)
to the interval [m_in{pg},max{ﬁg}]. Then the closed-loop system (6.96) is
i j

asymptotically stable, the gain matrices of the controller (9.16) are given by
Ko = Yo X VN Ky = Y X LKy = Yy X, and the upper bound of the
quadratic cost function J is

x _ T -1 mpi
T =DT0)X D)+ %

i=1
0
+ h/ (s +h)xT(s)Z ta(s)ds (6.101)
—h
Proof 6.9 The following Lyapunov-Krasovkii functional candidate is chosen
V=Vi+Va+V3 (6.102)

where

(s —t + h)zT (s)Ra(s)ds, Vi = Z ﬁ?zgt)

Vi = DT (2,)PD(x;), Va :/
t—h
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with P >0 and R > 0.
The following equality is obtained

(I = p)u(t) = (I — p)[Ko + Ka(p(t)) + Ku(p())]D(x¢)
= [(I = p)Ko + Ka(p) = pKa(p(t)) + (I = p(1)) K (p(2))] D ()
+ [Ka(p(t)) + pE3(p(1))] D (2:) (6.103)

where (1) = (1) — p.
Then from the derivative of V along the closed-loop system, it follows

Vl = 2DT($t)PD(Z‘t)
— 2D" (2) P{[A+ Ay + B((I — p)Ko + Ka(p) — pKa(p) + (I — ))Ko(5))

« D(x1) — (A+ Ay) /t_h Avz(s)ds}
9D PBIK(7) + pE(D) D)

= ha” (ORa) ~ | tth<s>Rx<s>ds
< ha'' (t)Ra(t) — (/tih x(s)ds)T(fflR)(/1t x(s)ds)

—h

where Lemma 2.14 is used to get V. On the other hand

2T (t)Ra(t) = (D(x¢) — /tih Aqa(s)ds)T R(D(xy) — /tih Aqz(s)ds) (6.104)
Then
% = dd‘; TQx +2D" (2,) PBIKo(p) + pKy (A D (1) + Y U0

i=1 i=1

where

o D(xt) Q Al + AT + hR —P(A + Al)Al hRA1
X= ftt_h x(s)ds * —h™ 'R+ hATRA,

with
Ay = PlA+ Ay + B((I — p)Ko + Ka(p) — pKa(p) + (I = p)I4(p))]
Let B=[b*---b™] and B =[0---b"...0], then it follows

PBjK,(p Z piPBKy(p) (6.106)

i=1
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PBK,( Z piPBK,; (6.107)
i=1

In fact, p; is an unknown constant which denotes the loss of effectiveness of
the ith actuator. So from p;(t) = pi(t) — p, we can obtain p;(t) = p;(t). Now,
if the adaptive laws are chosen as (6.100),

m o~

2D (5) P () + (D) + 23 2020 <o g.108)
that is
<X (0 (6:100)

Furthermore, by (6.94) and (6.95) it follows
2T Qx4+ uT (I — p)S(I — p)u

= (D(xy) —/t hAlx(s)ds)TQ(D(xt) - /t_h Aqz(s)ds)

T DT (@)K (3)(I — p)S(T — p)K (5)D(ar) (6.110)

Thus
P Qu (T = p)S( — phu < X7 (DX(D) ~ T (6.111)

where
o = |~ +A*1T +To _P(fthrf%)Al} + [_iﬂ (hR+Q)[I —Ai] <0

with Yo = KT (p)(I — p)S(I p)K(p). Therefore, if Q1 < 0, there exists the
positive scalar vy such that § —v||x||?. That is, the asymptotic stability of
the closed-loop system (6.96 ) in both normal and fault cases can be guaranteed.
By Lemma (2.8), Q1 < 0 is equivalent to

A+ AT+ —P(A+ ANA hl I
_p—1 _ T AT
Q= i h* i _%1}1 ‘511 <0 (6.112)
* * * _Q*I

Let X = Pil,YO = K()X,Ym‘ = Km‘X, Ybi = KbiX,Z' =1---m and Z =
hR~1. By pre- and post-multiplying inequalities Qo < 0 by diag{ X, Z,1,Q},
then Qo < 0 is equivalent to

Ay + AT+, —(A+A)AZ KX XQ
_ _ T _ T
Qs — ' 7 hEAL ZgllQ <0 (6.113)

* * * —-Q
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where Ay = (A+ A1) X + B[(I — p)Yo + Ya(p) — pYa(p) + (I = p)Ys(p)] Y1 =
YT(3)(I - p)SU - p)Y (7).
Furthermore, applying Lemma (2.8), Q3 < 0 is equivalent to

Q=00 + AT + 71+ W2XZ7IX + XQX — A3A'AT <0 (6.114)

and Ay <0

where
As=—(A+ANAZ - W*XZ A7 - XQA Z
Ay=—Z+hZATZ27 A2 + ZATQA Z

So Q1 < 0 is equivalent to Uy < 0 and A4 < 0.
Also, Q4 can be written as €y

m m m
0y = No + Z piEi + (Z piE)" + Z pip;iFij
i=1 i=1 ;
m m
+ (Uo+ Y o))" (Uo+ Y pilli) <0, (6.115)
i=1 i=1

with
No=A¢+AF +1*XZ7'X + XQX — AzA'AT
E; = —BpYa; + BYy, Fy; =—B'Yy; —Y,IB/"
Up=S7(I —p)Yo, Ui=S82(I—p)(Yai + Yei)

1
2
and Ag is defined below (6.99).

On the other hand, by Lemma (2.8), if the condition (6.99) holds then we
have

Ny, E
ET F

] +UTU +GTeG <0 (6.116)

and Ay < 0. Here E, F,U are defined below inequality (6.99).

Furthermore by Lemma 2.10, it is easy to see if (6.97)-(6.99) hold then
Q4 < 0 and Ay < 0. Thus if the conditions (6.97)-(6.99) hold, it follows
Oy < 0. So from (6.111), it follows

2T Qx +uT (I — p)S(I — p)u < —C;—‘t/ (6.117)
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Integrating both sides of the above inequality from 0 to oo, it follows

/0 T @T QT — p)SU — plu)dt

<V(0) — V()
< V(0) = DT (0)PD(0) + /O (s + h)a™ (s)Rx(s)ds + zm: ﬁij(o)
—h =1
== D OXTDO) +h [ (s W97 a(s)is + 30 0
—h i=1 "
(6.118)

The proof is completed.

Remark 6.16 Denote F,(0) = -7 20@ Then, by (6.60) and (6.100), it

follows that (;(0) < max{p!} — min{p?}. We can choose l; relatively large
J i ot

so that F,(0) is sufficiently small. The newly proposed adaptive laws (6.100)
include the term D(x;) = x(t)—i—fih Aqx(s)ds, which indicates how time-delay
h takes effect on the adaptive law.

Theorem 6.6 presents the method of designing a reliable guaranteed cost con-
troller via adaptive memory state feedback. The following theorem is to select
the reliable controller, which can minimize the upper bound of the guaranteed
cost (6.93).

Theorem 6.7 Consider the closed-loop system (6.96) with cost function
(6.93). If the following optimization problem

min {a+ tr(T'1)}
X>0, T1>0, Z>0, Yo, Yai, Ypi,a>0

such that
(i) LMI (6.97) — (6.99) (6.119)
(ii) [_*O‘ D_T)(?)] <0 (6.120)
(iii) {_fl ﬁ]}\g] <0 (6.121)

has a solution set (X,T'1, Z, Yo, Yai, Yui, @), the controller (6.95) is an optimal
reliable guaranteed cost control law, which ensures the minimization of the
guaranteed cost (6.93) for the closed-loop system (6.96) against actuator faults,

where fgh(s + h)x(s)xT (s)ds = Ny N{ .
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Proof 6.10 By Theorem 6.6, (i) in (6.119) is clear. Also, it follows from
Lemma 2.8 that (ii) and (i) in (6.119) are equivalent to DT(0)X~1D(0) < «
and hN{ Z=1Ny < T'1, respectively. On the other hand,

0 0
h/ (s + h)zT (s)Z 'a(s)ds = / tr((s + h)xT (s)hZ 1x(s))ds

—h —h
= tr(N\N{ hZ™Y) = tr(N{ hZ 71 Ny) < tr(Ty)

Hence, it follows from (6.101) that

m -2
2(0
T <attr(T)+> 2 ©

Thus, the minimization of a+ tr(I'1) implies the minimization of the guaran-
teed cost for the system (6.96).

Remark 6.17 If we choose the Lyapunov functional candidate V = V; + Vs,
where Vi,V are defined in (6.102), then the following conditions (6.128) can
guarantee the closed loop system (6. 92) with reliable memory state feedback
controller u(t) = t)+ ft Arx(s)ds), Ko = Yo X! to be asymptotically
stable and the upper bound of J 18 J*

For normal and actuator faults cases, i.e., p € {p*---pF},p’ € N,

ST A+ ANAZ RX XQ YI(I-p)sSz
* -7 ~hZAT —ZATQ 0
* * -7 0 0 <0
* * * -Q 0
* * * * -1

(6.122)

where Y | = (A+A1)X+B(I—p)Yy. The conditions (6.128) are just the result
of Theorem 6.6 in [110] with Ay = 0 when the actuator faults are considered.
Notice that if set Yy = 0,Yy; = 0,4 = 1---m in Theorem 6.6, then the
conditions of Theorem 6.6 reduce to (6.128). Thus, the design conditions of
the reliable guaranteed cost controller with adaptive mechanisms in Theorem
6.6 are more relaxed than the conditions of the traditional reliable guaranteed
cost controller with fixed gains (6.128). Also the upper bound of J with fized
gains controller can be obtained by solving the following optimization:

i tr(I"
x50, Tis0 2 o, asol® T T}

(i) LMI (6.101)
g —-a DT(0
(i1) { . _)(( )} <0

. [-Ty AN
) [ . —hZ} <0
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One can easily extend Theorem 6.6 or Theorem 6.7 to robust reliable
guaranteed cost control for the following polytopic uncertain systems

z(t) = AN)z(t) + A1z(t — h) + Bu(t)
z(t) = o(t), t € [—h,0] (6.123)
with . .
AN =D AN, D> A=1 and A >0
Then the corresponding CI;sed—loop s;stem is
z(t) = A(N)x(t) + Arz(t — h) + B(I — p)K(p)D(z+)
z(t) = ¢(t), t € [—h,0] (6.124)

From the proof of Theorem 6.6 and Theorem 6.7, the following corollary can
be easily obtained.

Corollary 6.3 Consider the closed-loop system (6.124) with cost function
(6.93). If the following optimization problem

i tr(T
X0, T1>0, 2500 Yo, Yar, Y, a>0{a+ r(I'1)}

subject to
(i) LMI (6.97)-6.98)
and for any p € {p*---p*}, p? € N,

—(Ai +A)ALZ hX XQ T
® [ 0 0 0 v
* -7 —hZAlT —ZAITQ
N _ 0 0 <0 (6.125)
* * —Q 0
* * * -1

with

Ag = (A" + A1) X + B[(I — p)Yo + Ya(p)]

Here, the other symbols and the adaptive laws are defined below (6.99) and
(6.100).

(ii) ho‘ D_T)((O)}<o (6.126)

o T
(iii) [ *Fl EJZIZ} <0 (6.127)
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has a solution set (X,T'1,Z, Yo, Yai, Yui, @), the controller (6.95) is an optimal
robust reliable guaranteed cost control law, which ensures the minimization of
the guaranteed cost (6.93) for the closed-loop system (6.124) against actuator

faults, where f?h(s +h)x(s)xT (s)ds = Ny N{ .

Remark 6.18 The corresponding condition of the robust reliable guaranteed
cost controller with fixed gains is similar to condition (6.128), that is for

pe{p'---p"},pr € Ny

S ST AT+ ANAZ BX XQ YI(I-p)Sz
* -7 ~hZAT —ZATQ 0
* * -7 0 0 <0
* * * -Q 0
* * * * -1
(6.128)

where Y, = (A' + A1) X + B(I — p)Yp.

6.3.4 Example

To illustrate the effectiveness of our results, two examples are given. Example
6.3 is for H,, control case and Example 6.4 is for guaranteed cost control case

Example 6.3 Consider a linear time-delay system (6.59) with parameters as

follows
-2 1 05 0 11 1
A_[—l —5}’ Al_{ 0 0.5]’ B [—08 1}’ Bl_[oz]’
5 1 0 0 0
C=10 0|, D= |01 0, qs(t):M, h=3
0 0 0 1

Besides the normal mode, that is,
Py =p5 =0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, that is,

pi=1, 0<py<a, a=05,

which denotes the maximum loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

p3=1, 0<pi <b, b=05,



Adaptive Reliable Control for Time-Delay Systems 129

TABLE 6.3 H,, performance index

Adaptive reliable controller Traditional reliable controller

e 0.1447 0.2260

vy 0.2596

x1

0.4 T T

0.3

!

10
time(s)

o
o+

FIGURE 6.10

Response curve in normal case with adaptive controller (solid) and controller

with fixed gains (dashed).
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x1 x2

05 . . . 2 . .
0 5 10 15 20 0 5 10 15
time(s) time(s)

FIGURE 6.11
Response curve in normal case with adaptive controller (solid) and controller
with fixed gains (dashed).

which denotes the maximum loss of effectiveness for the first actuator. From
Algorithm 6.4 with 6, = 5, 2 = 1, the corresponding H., performance in-
dexes of the closed-loop systems with the two controllers are obtained after
search for a from 1.1 to 500. See Table 6.3 for more details, which indicates
the superiority of our adaptive method.

In the following simulation, we use the disturbance

[ 2 2<t<4 (seconds)
w(t) = { 0 otherwise

and the fault case here is that at 3 seconds, the second actuator is outage.

Figure 6.10 describes the response curves in normal case with our adaptive
delay-dependent memory controller and delay-dependent memory controller
with fixed gains, respectively. The corresponding curves in fault case with
these two controllers are given in Figure 6.11. From Figure 6.10-Figure 6.11,
it is easy to see our adaptive controller has more disturbance restraint ability
than the one with fixed gains in either normal or fault cases just as theory
has proved.

20



Adaptive Reliable Control for Time-Delay Systems 131
TABLE 6.4 Cost performance index

Adaptive reliable controller Traditional reliable controller

Upper bound of J 1.3026 3.4035

0.5 w 1.2

0.4r

0 5 10 ) 5 10

FIGURE 6.12
Response curve in normal case with adaptive controller (solid) and controller

with fixed gains (dashed).

Example 6.4 Consider a linear time-delay system (6.59) with parameters as

follows
11 01 0.5 31
A= {—2.5 —1} A= {0 —0.2] , B= [1 0.5} ’

(1) = {Oﬂ, h=05, Q= diag{1,2}, S=1

Besides the normal mode, that is,
Pt =p3=0,

the following possible fault modes are considered:
Fault mode 1: The first actuator is outage and the second actuator may be
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X1 X2

0.5 w 1

0.8} 1

0.2f 1

01t 1

5 10 5 10

FIGURE 6.13
Response curve in fault case 1 with adaptive controller (solid) and controller
with fixed gains (dashed).

normal or loss of effectiveness, that is,
pi=1, 0<pi<a, a=0.5,

which denotes the maximum loss of effectiveness for the second actuator.
Fault mode 2: The second actuator is outage and the first actuator may be
normal or loss of effectiveness, that is,

p3=1, 0<p; <b, b=04,

which denotes the maximum loss of effectiveness for the first actuator.

By using Theorem 6.7 and the conditions (6.128), we obtain the corre-
sponding cost performance indexes, using the adaptive method and traditional
method. See Table 6.4 for more details.

In the following simulation, two fault cases are considered.

Fault case 1: At 0 second, the second actuator is outage, then after 2 seconds
the first actuator becomes loss of 40% effectiveness.
Fault case 2: At 5 seconds, the first actuator is outage.

Figure 6.12 describes the response curves in normal case with our adaptive

reliable memory controller and reliable memory controller with fixed gains.
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X1 X2

0.5 w 1.2

0.4r

5 10 ) 5 10

FIGURE 6.14
Response curve in fault case 2 with adaptive controller (solid) and controller
with fixed gains (dashed).

The corresponding curves in the two considered fault cases with these two
controllers are given in Figure 6.13-Figure 6.14, respectively. From Figure
6.12-Figure 6.14, it is easy to see our adaptive reliable memory controller
performs better than the one with fixed gains in either normal or fault cases
just as theory has proved.

In order to show the effectiveness of the proposed method for polytopic
uncertain system, another numerical example is also given.

Example 6.5 Consider a linear time-delay system (6.123) with parameters
as follows

AN = AN+ 420 AL A >0 M+ =1

o111l [0
where 4 _[—2.5 1) A= 05 -0

The other parameters and the possible fault modes are the same as those
in Example 6.3.
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TABLE 6.5 Cost performance index

Adaptive reliable controller Traditional reliable controller

Upper bound of J 1.4383 3.5900

0.5 w w w 1.2

0.3 1

0.2} 1

|
o
a
— T ———
AN
L

FIGURE 6.15
Response curves in normal case with adaptive robust reliable memory con-
troller (solid) and robust reliable memory controller with fixed gains (dashed).

Using Collorary 6.3, the corresponding cost performance indexes can be
obtained, using the adaptive method and traditional method. See Table 6.5
for more details.

In the following simulations, the chosen uncertain parameters are Ay = 0.1
and Ay = 0.9. The considered fault cases in this example are as follows:
Fault case 1: At 0 second, the second actuator is outage, and the first actuator
becomes loss of 40% effectiveness.

Fault case 2: At 1 second, the first actuator is outage.

Figure 6.15-Figure 6.17 describe the response curves in normal and fault
cases with our adaptive robust reliable memory controller and robust reliable
memory controller with fixed gains, respectively. It is easy to see our adaptive
robust reliable memory controller performs better than the one with fixed
gains in either normal or fault cases just as theory has proved.
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0.5 1
0.9t 1
0.4} 1

0.3 E

0.2} T

\

—0.2k—— : ‘
0

time(s) time(s)

FIGURE 6.16
Response curves in fault case 1 with adaptive robust reliable memory con-
troller (solid) and robust reliable memory controller with fixed gains (dashed).
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0.5 w w w 1.2

0.4 1 1t

-0.3 ‘ : : -0.2
0 0

time(s) time(s)

FIGURE 6.17
Response curves in fault case 2 with adaptive robust reliable memory con-
troller (solid) and robust reliable memory controller with fixed gains (dashed).
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6.4 Conclusion

In this chapter, we have investigated the new adaptive reliable memory-less
controller and memory controller design methods for linear time-delay sys-
tems. The newly proposed controllers are all established in a parameter-
dependent form, in which fault parameters are adjusted online based on the
adaptive method to automatically compensate the fault effect on systems. In
the framework of linear matrix inequality (LMI) technique, the stability and
performance indexes of the closed-loop systems are guaranteed in normal and
fault cases. The effectiveness of the proposed design method is illustrated via
some numerical examples and their simulation results.
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Adaptive Reliable Control with Actuator
Saturation

7.1 Introduction

Control systems with actuator saturation are often encountered in practice.
When actuator saturation occurs, in general global stability of an otherwise
stable linear closed-loop system cannot be ensured. And the problem of es-
timating the domain of attraction for a system with a saturated linear feed-
back has been studied by many researchers in the last few years and vari-
ous methods have appeared (see, [24, 140]). Model predictive control (MPC)
is an effective control algorithm for dealing with actuator saturation. Many
formulations have been developed for the stability of MPC (see, [18, 96]).
Enlargement of the domain of attraction is achieved in [20, 28, 85, 90].
Anti-windup has been largely discussed and many constructive design algo-
rithms have been formally proved to induce suitable stability properties (see,
[25, 26, 27, 48, 68, 143]). Many of these constructive approaches rely on sector
condition and S-procedure techniques and provide LMIs for the anti-windup
compensator design. In some papers, notion of invariant set and LMI-based
optimization approaches were proposed to estimate the stability regions by
using quadratic Lyapunov functions and the Lur’e-type Lyapunov functions.
In [17] and [142], the modeling of the nonlinear behavior of the system under
saturation is made by using a polytopic differential inclusion and quadratic
Lyapunov functions. For determining if a given ellipsoid is contractively in-
variant, [66] described a condition which is based on the circle criterion or the
vertex analysis.

As we all know, in practice, actuator saturation and actuator faults are the
common phenomena, and they always happen at the same time, especially for
complex systems such as aircrafts, space crafts, nuclear power plants. For a
flying aircraft its rudder may be damnified which can lead to the fault of the
actuator. On the other hand, the rudder (actuator) of the aircraft can only give
a bounded input which can be seen as an actuator saturation phenomenon. In
this chapter, both actuator saturation and actuator faults are considered at
the same time for a class of linear time-invariant systems. Here, an LMI-based
method is presented to deal with the fault-tolerant and saturation problem.

139
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7.2 State Feedback
7.2.1 Problem Statement
Consider an LTI plant described by

& = Ax(t) + Bo(u), (7.1)

where x(t) € R" is the plant state, o(u) € R™ is the saturated control input.
A, B are known constant matrices of appropriate dimensions.

Definition 7.1 The actuator mnonlinearity with the consideration of a
piecewise-linear saturation is described as

N Uj, |’LL]| é u;naz’
J(u]) - { Sign(uj)u;nax, |’Uz3| > u;n(mc7 (72)

for j € I[1,m]. Here we have slightly abused the notation by using o to denote
both the scalar valued and the vector valued saturation functions. We note that
max

it is without loss of generality to assume u7*** =1, as level of saturation can

always be scaled to unity by scaling B and u.

To formulate the fault-tolerant control problem, the considered actuator
failures are the same as those in Chapter 3, that is

ul (1) = (L= pho(us(1), 0<p? < pt <7,
jeTm], g1, L], (73)

For convenience in the following sections, for all possible fault modes L,
the following uniform actuator fault model is exploited:

WF(t) = (1 = po(u(t), p e {p* - p*} (7.4)
and p can be described by p = diag[p1, p2, ‘- pm]-
Denote
Npo = {p"|p" =diaglp{, p3, - -pf], pj = p or pj =P} (7.5)

Thus, the set N, contains a mazimum of 2™ elements.

Remark 7.1 Here we note that any fault model formulated by

uly (1) = o[(1 = phuy(1)], 0 < pt < pl <7,
jeIl,m], g €11, L], (7.6)
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can be formulated by (7.8). We need only to prove that for any pg- satisfying
(7.6) there must exist a p§, satisfying

(1= pf)olu; ()] = o(1 = pf)u; ()] (7.7)

and
q —q
0 < pl, <pl. <7

In fact if pg* is given as follows

¢ _q_ ol —pu®)]
Pie ol (0]

then equality (7.7) is satisfied, and we have 0 = /_);1.* < pl, <P, =7i by
Definition 7.1 and (7.3).

Definition 7.2 For a matriz C,; € R™*", denote the jth row of Cey as Ceyj,
define

p(Ca) ={z € R": |[Cujz[ <1, jelll,m]},

then p(Cep) is the region in the state space where saturation does not occur.
For (0) = x9 € R™, denote the state trajectory of systems as ¥(t,xo).
Then the domain of attraction of the origin is

{:= {Z‘Q e R": llmtﬁoow(ta%) = O}

Definition 7.3 Let D be a set of m x m diagonal matrices whose diagonal
elements are either 1 or 0. There are 2™ elements in D and we denote its
elements as D;, i € 1[0,2™ —1], where fori = z12™ 14+ Z32m "2 4.+ 2, with
zj € {0, 1}, the diagonal elements of D; are {1—z1,1—29,---,1—2zpn}. Denote
D; =1-D;. It is easy to see that D; € D. As an illustration, we consider the
case of m = 2. Fori =0, it is easy to see that i = 0x 21 4+0x2°. Thus, z; = 0,

29 =0 and Dy = [1

0 ?].Forizl, it is easy to see that i = 0 x 21 +1 x 20,

Thus, z1 =0, z0 =1 and D, = [1 0} . Denote D, = I—D;. It is easy to see

0 0
that D; € D. The following propositions will be useful for the development of
the main results of this section.

Lemma 7.1 [65] Let u, v € R™ with u = [ug,ug,....un]’ and v =
[V1,V2, ..., vm| L. Suppose that |v;| <1 for all j € I[1,m].
Then,
o(u) € co{D;u+ D;v:iel0,2™ —1]}, (7.8)

where co denotes the convex hull.
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Problem 7.1 The design problem under consideration is to find an adaptive
controller such that in both normal operation and fault cases, the domain of
asymptotic stability is enlarged as much as possible for closed-loop system with
actuator saturation.

Remark 7.2 For the above problem to be solvable, it is necessary for the pair
(A, B(I — p)) to be stabilizable for each p € {p*--- p}.

7.2.2 A Condition for Set Invariance

The dynamics with actuator faults (7.4) and saturation is described by
&(t) = Az(t) + B(I — p)o(u(t)) (7.9)

The controller structure is chosen as

u(t) = K(p(t)x(t) = (Ko + Ka(p(t)) + Kp(p(t)))2(t) (7.10)

where p(t) is the estimation of p,

5(0) = Y Kaghs (8), Kop(t) = Y- Kugiy (1)

By Lemma 7.1, the saturated linear feedback, with x € p(H(p(t))), can
be expressed as

2m—1

o(K(pt)a(t) =Y m[DiK(p(t)) + D H(p(t)))(t) (7.11)

i=0
for some scalars 0 < n; <1, ¢ € I|0,2™ — 1], such that 22 ' =1, and the
following equality holds

om _ 1

(1= p)o(u(t) =" wl(I ~ p)DiKo + DiKa(p)
— PDiK(p) + (I = () DiE((1)) + DiKa((1)

+ PDiE(p(t)) + (I = p)D; Ho+ Dy Ha(p)
— pD; Ho(p) + (I - p(t)) Dy Hy(p(t)) + D; Ha(3(t))
+ D Hy(p(0)]2 (1) (7.12)

where p(t) = p(t) — p. Though K,(5(t)) and K(p(t)) have the same forms,
we deal with them in different ways in (7.12), which gives more freedom and
less conservativeness.

Denote

By ={p= (o1 pm) + py € {min{pt}, max{pl}}, q €101, ]}

and BJ =[0--- b/ -+ 0] with B = [b! - - - b™)].
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Definition 7.4 Let P € R™*" be a positive-define matriz. Denote
e(P6)={z e R": z"Px<s}.
e (Po)={xeR": z"Px<s}.
p3(t)
Lj

S(Po)={reR: TPr+Y <5}
-

ﬁ?(t)}.

J

Assume l; > 0 is given, we denote 6* = (5+max{2§n:1

~2

Let V(1) = 27 Px+ Y7, 2 1 V(1) < 0 for all @ € £*(P,6)\{0}, the
domain *(P,§) is contractively invariant. Clearly, if ¢*(P,d) is contractively
invariant, then it is inside the domain of attraction.

We note that the scalars n;’s are functions of x and p and their values are
available in real-time. These scalars in a way reflect the severity of control
saturation. In general, there are multiple choices of 7;’s satisfying the same
constraint, leading to nonunique representation of (7.11). In the following
lemma, we provide one choice of such 7;’s, which are Lipschitzian functions in
x and p and thus are particularly useful in our controller design.

Lemma 7.2 [142] Let x € p(H(p(t))). For each j € I[1,m], let

Aj(2(t), p(t))

y if K(p(t))(t)
_ — H(p(0));(t)

o (K (p(1)) () H(p(1)) (1) -
R, — TG, )e otherwise

and for each i € 1[0,2™ —1], let z; € {0,1} be such that i = 212™ 1 +292™ 2+
o+ zZm, and define

i H zi(L =X (@(8), p(1) + (L= 25)X; (=(), ()] (7.13)

Then, n;’s are functions Lipschitz in x and p, such that, 22 P n =1,
0<mn <1,i€e€ll0,2™ — 1]. Moreover, they satisfy relation (7.11).

By using the functions n; (x(t), 4(t))’s and the controller (7.10), plant (7.9)
can be written in a quasi-LPV form as follows:
. 2771171 ~
#(t) =Aa(t) + BY . mll - p)DilKo + Ku(p(1))
+ Ku(p(t))) + (I — p)D; (Ho + Ha(p(t)) + Hp(p(1)))]2(t)  (7.14)

By using (7.13) we consider the following auxiliary LPV system, of which
the closed-loop system comprising of (7.9) and (7.10) is a special case, if
e*(P,0) C p(H(p)) is an invariant set
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i(t) = A(m)z(t), nel (7.15)

where 1 = [n9, n1, - -, m2m_1], and

— 2™, -t R . 1 m _
' ={neR¥: Z L, m=10<n <1 i€l 2" 1]}
A+BZ (I — p)DiKo + D;K,(p)
— pDiKo(p) + (I - P( )DiKy(p(1)) + DiKa(p(1))
+ PDiE(p(1)) + (I — p)D; Ho + Dy Ho(p)
— D Ha(p) + (I = p(1)) Dy Hy(p(t)) + D;” Ha(p(1))
+ pD; Hy(p(1))]
The following theorem establishes conditions on the state-feedback con-

troller coefficient matrices under which the LPV system (7.15) is asymptoti-
cally stable with Lyapunov function.

Theorem 7.1 £*(P,0) is a contractively invariant set for normal and actu-
ator failure cases, if there exist matrices X > 0, Og, Oq;, Ovj, Yo, Yaj, Yo,
j € I[1,m] and symmetric matrizes ©;, i € I[0,2™ — 1] with

Qi — 11 112 ]

{ O1; O
and ©%,, O, € RM™*Mn gych that the following inequalities hold for all D; €
D and *(P,6) C p(H(p)), i.e.,|H(p);x| <1 for all x € e*(P,9),j € I[1,m].

Ohy,; <0, jelIll,ml,ieI0,2™ —1]
01, + O1,A(D) + (01,A(p)" + A(p)OL,A() >0, p€ A,

[ No; 215

T )t . mo_
7T ZQJJFG ©'G <0, i€I]0,2 1],

pe{p' - p"}, p? € Ny (7.16)

where
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N()i =AX + B(I - p)D1Y0 + (AX + B(I - p)D1Y0)T
+B ijl piDiYaj + (B ijl pjDiYa;)"
+B(I —p)D; Og+ (B(I — p)D;Oo)T
+BY 0D 0w+ (BY. " piD; Ouy)”

I’an
0
G = ,
ITLX'!’L
L 0 Imnxcmn
Zh‘ = —BpDiYa + BDJ/b - B[JD;OQ + BD;Ob,
[ —B'D; —B'D;
Zoi = Y, + ( v)?
| —B™D; —B™D;
—B'D; —B'D;
=+ Ob —|—( Ob)T,
—-B™D; —-B™D;
Yo = [Ya1 Ya2...Yam|, Yo = [Yi1 Yoo....Yom],

Oa = [Oal Oa2----0am]7 Ob = [Obl Ob2----0bm]a
A(pA) = diafg[pAllnxn T pAmInxn]-

and also p;(t) is determined according to the adaptive law

pj = PTOj[m;n{B;%}, mqax{ﬁ;}]{Llj}
. Pi=min{pl} and L1; <0
_ 0T, pj = max{p]} and L1; >0 (7.17)
q
Ly, otherwise

where

— o
Lyj=— ijT(t)[PB(ZiZO n:Di) Kaj + PBJ(Zi:o 1 D) K (p)
m_y m_

+ PR D Ha + PBIY. D] Hy(p)la ()

P = (5X71, Ko = Y()Xfl, Kaj = Yanil, ij = ijXfl, Hy = OoXﬁl,
H,j = 04X~ ', Hy; = Op; X 1 1; > 0(j € I[1,m]) and § > 0 are the
adaptive law gains to be chosen according to practical applications. Then the
controller gain is given by

m m
K(p) =YoX '+ ijl piYas X1+ ijl piYe XL,
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Proof 7.1 Choose the following Lyapunov function
=2
— T m o p5(t)
V=a®) Pa(t)+) L (7.18)

then from the derivative of V(t) along the closed-loop system, it follows

am 1
+ 2$TPBZ. o MDiKa(p) + pDiEy(p)

+ D; Hap) + pD; Hy()le +23 M

where

C = PA+ PB[(I - p)DiKo + DiKa(p) — pDiKa(p) + (I — p(£) DiKo(p)
+ (I = p)D; Ho + D; Ha(p) — pD; Ha(p) + (I — p(£)) Dy Hy(p).
Let B=[b*---b™] and BI =1[0---b---0], then
PBpDKY(p) =Y 0;PB Diki(p).
)= 5PB Dy Hyp).
PBDK.(p) =Y | p;PBDiKa;.
)

= ijl p;PBD; H,;.

PBD; Hy(p

PBD; H,(p

Let X = (£)71, Yy = KoX, Yy = Ko X, Yoy = Ky X, Oy = HoX,
Ouj = Ho; X, Op; = Hyj X, j € I[1,m]. Choose the adaptive laws as (7.17),

then it is sufficient to show that V < 0 if for any pe{pt-- pt}, ple Ny,

om_1
D ilNoi + Nii(pg) + Nai(p;)] < 0,
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where
N()i =AX + B(I - p)DiYO + (AX + B(I - p)DiYO)T
+ B ijl piDiYaj + (B ijl piDiYa;)"
+ B(I = p)D; Op + (B(I = p)D; O)"
m _ m _
+B Z _ piD; Ouj + (B ZFI p;iD; 04;)7
m
Nii(pj) = —BpD:; Z L PiYaj +BZ, P DiYe;
+ B Z ijinj BPD Z P] aj
— BpD; Z PJ aj +BZ PjDz' O,
m
+(B Z_ piD7On = BpD} 3, $i0ui)"
Nai(p Zj 1 Z Pjpp BjDinp - ngDinT
— B'D; Oy, — Oy; Dy BPT).

By Lemma 2.10 and (7.16), it follows that V < 0 for any = € p(H(p)),
p€{pt - pl}, p? € Ny and p satisfying (7.17).

7.2.3 Controller Design

From Theorem 7.1, we can obtain various controller gains and domains sat-
isfying the set invariance condition. So, how to choose the “largest” one of
them becomes an interesting problem. In this section, we will give a method
to find the “largest” domain.

Definition 7.5 Define Xgr is a prescribed bounded convex set. Xp =
(R, 1) ={z € R": 2TRx <1}, R >0 or Xg = co{w1,2a,....,31}.
For a set S € R", ar(S) =sup{a>0: aXrCS}.

In Theorem 7.1, a condition for the set £*(P,d) to be inside the domain
of attraction is given. With the above shape reference sets, we can choose
from all the e*(P, §)’s that satisfy the condition of Theorem 7.1 such that the
quantity ag(e*(P,0)) is maximized. The problem can be formulated as follows

sup «
st. (a) aXg Ce*(P,9),
(b) (7.16),

()

c) e (P0) Cp(H(p)) (7.19)

However, by Definition 7.4, we have that (a) and (¢) can not be shown as
LMIs directly. Then the following proposition will solve this problem.
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Proposition 7.1 Obviously, e*(P,d) C e(P,d), which implies that (c) holds
if (c1) holds, where

(c1) e(P,0) C p(H(p)), (7.20)

Proposition 7.2 By Definition 7.4, we have

~2 ~2
T m Pj(t) TE m Pj(t)
xPx—f—Ej:l <d&sx (5x+2j:1—(5lj <1

Let F(t) = E;”:l ﬁf;l(:)- Then, by (7.17) and (7.3), it follows that p;(t) <

mjax{ﬁ?} - m]m{gg} We can choose l; and § sufficiently large so that F(t) is
sufficiently small. Then the conclusion can be drawn as follows:

For system (7.9) and controller (7.10) there must exist 6 > 0 and l; > 0
such that the closed-loop system (7.15) is asymptotically stable in domain
e~ (P,9d) if (b) and (c1) hold. That is to say, if ; and & are chosen sufficiently
large, then the set €*(P,0) will approach the set e(P,J), so we can mazimize
the set €*(P,0) indirectly by mazimizing the set (P,d). Thus, we have that
(a) can be replaced with (al).

Then, by Proposition 7.1 and Proposition 7.2 we can get the “largest”
domain of asymptotic stability by solving the following optimization problem

sup o
st. (al) aXg Ce(P,9),

(v),

(cl). (7.21)

If the given shape reference set X is a polyhedron as defined in Definition
7.5, then Constraint (al) is equivalent to

P 1/a? T
aneT(g)xe <l& [ /ﬂl?e (%3_1 } >0, (7.22)

for all e € I[1,1]. If Xg is an ellipsoid ¢(R, 1), then (al) is equivalent to

R _P (1/a®>)R 1
— > — > 0. .
oﬂ—(s@[ Py |20 (7.23)
Condition (c1) is equivalent to
N pelp(a 1 h(p)(5)~t
Sh(p); P ()T <1e [ . (p()ﬂg()é_)l ] > 0. (7.24)
5



Adaptive Reliable Control with Actuator Saturation 149

for all j € I[1, m], where h(p); be the jth row of H(p). We have that (7.24) is
equivalent to the following inequalities.

—1 —Ops [0 —Ouis — Ouis .
@ |7 a0 | <0nea,

where Og;s is the sth row of O,j, s € I[1,m].
If X is a polyhedron, then from (7.22) and (7.24), the optimization prob-
lem (7.21) is equivalent to

inf 5y
st. (a2) [ ; x; ] >0, ecIfl, I,
(b), (c2), (7.25)

where v = 1/a2.
If Xg is an ellipsoid, we need only to replace (a2) with

(a3) { 7? g( } >0. (7.26)

It is easy to see that all constraints are given in LMIs.

Remark 7.3 Theorem 7.1 gives a sufficient condition for the existence of
an adaptive fault tolerant controller via state feedback. Note that inequalities
described by (7.16) are of LMIs. In Theorem 7.1, if set Yo; = 0, Y3; = 0,
04 =0, Op; =0, j € I[1,m], then the conditions of Theorem 7.1 reduce to

AX + B(I - p)DiYO + (AX + B(I - p)D1Y0)T
+B(I = p)D; Oo + (B(I = p)D; O)" <0,
i€ 10,2 —1], pe{p" -+ p*}, p? € Ny (7.27)

From [66], it follows that e(P, ) is a contractively invariant set for closed-
loop system (7.9) with v = Koz, Ko = YoX ', if there exist matrices
X > 0, Oy, Yo, such that the inequalities (7.27) hold for all D; € D and
e(P,8) C p(Hp), where P = 6X ', Hy = OgX 1. This just gives a design
method for traditional fault tolerant controllers via fized gains. The above fact
shows that the design condition for adaptive fault tolerant controllers given in
Theorem 7.1 is more relazed than that described by (7.27) for the traditional
fault tolerant controller design with fized gains.

7.2.4 Example

In this section, two examples are given to illustrate that the Algorithm 7.21
describes a larger domain of attraction than the traditional fault tolerant
controller design with fixed gains.
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FIGURE 7.1
e(Py,1) and (P35, 1).

Example 7.1 Consider the system of form (7.9) with
3 2 40 0
A= {3 40}’ B= {0 40]
and the following two possible fault modes:

Fault mode 1: Both of the two actuators are normal, that is,

pi=p5=0

Fault mode 2: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

pi=1, 0<ps<a,
where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor. Let

_ [75.5284  11.3861

R= 11.3861 6.2969 |
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FIGURE 7.2
Trajectories of closed-loop systems with adaptive controller in normal case.



152 Reliable Control and Filtering of Linear Systems

)(104

—x
V)

4 | | | | | | |
0 005 01 015 02 02 03 03 04
t

FIGURE 7.3
Trajectories of closed-loop systems with fixed gains controller in normal case.

When the fixed controller gains design method is given, we have that
~v* = 1. By solving the optimization problem (7.25), we obtain v* = 0.8757.
Obviously, the optimal index + is smaller for optimization problem (7.25).

We plot in Figure 7.1 the two ellipsoids ¢(P;,1) (dot line) and e(Pj,1)
(solid line) where Py is given by fixed controller gains design method and
Py is given by solving optimization problem (7.25). As a comparison, we also
plot the trajectories of closed-loop systems with adaptive controller and fixed
gains controller, respectively. Figure 7.2 and Figure 7.3 show the trajectories
of closed-loop system in normal case for (0) = (—0.7 0.8). Figure 7.4 and
Figure 7.5 show the trajectories of the closed-loop system in fault case for
xz(0) = (0.3 0.01).

The fault case considered in the following simulation is: At 0 seconds, the
first actuator is outage and the second actuator becomes loss of effectiveness
by 50%.

In order to let the method of this section be more convincing, the following
engineering example is given.

Example 7.2 Consider a kind of aircraft system borrowed from the literature
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FIGURE 7.4
Trajectories of closed-loop systems with adaptive controller in fault case.
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25 I
—x

FIGURE 7.5
Trajectories of closed-loop systems with fixed gains controller in fault case.

[15]. The dynamical description is given as (7.9) with

A= 0.4559 0.2114 B —14.0539 —0.3462
~1—0.4359 4.0080|" T | —1.0385 —13.1539

and the fault modes are the same as the ones of Fxample 7.1.
Let

R= 43.4145  2.1555
~ | 2.1555 0.5534]|

By using the fixed controller gains design method, the optimal index is
obtained as v* = 1. Correspondingly, by solving the optimization problem
(7.25), the optimal index is obtained as v* = 0.8638. Obviously, the optimal
index + is improved by using our optimal method.
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7.3 Output Feedback
7.3.1 Problem Statement
Consider an LTI plant described by

z(t) = Axz(t) + Bo(u(t))
y(t) = Cux(t) (7.28)
where z(t) € R" is the plant state, o(u) € R™ is the saturated control input.

A, B, C are known constant matrices of appropriate dimensions.
Then, the following problem will be considered in this section.

Problem 7.2 Find an adaptive controller such that in both normal operation
and fault cases, the domain of asymptotic stability is enlarged as much as
possible for a closed-loop system with actuator saturation.

Remark 7.4 For the above problem to be solved, it is necessary for the pair
(A, B(I — p)) to be stabilizable for each p € {p*--- p*}.

7.3.2 A Condition for Set Invariance
The dynamics with actuator faults (7.4) and saturation is described by

z(t) = Az(t) + B(I — p)o(u(t))
y(t) = Cz(t) (7.29)

The controller structure is chosen as

) =fEw®).y

), &(t) € R"
ut) = Cr(p(t)&(t)

(7.30)
with
u(t) = Cx (p(t)E(t) = (Cro + Cra(p(t)) + Crp(p(t)))&(t) (7.31)

where p(t) is the estimation of p, Ck.(p(t)) = 27:1 Crka;pi(t) and

Crp(p(t)) = 251 Crwip;(t)-
By Lemma 7.1, the saturated linear feedback, with £(t) € p(H(p(t))), can
be expressed as

2m—1

o (Cr(p)ED) = 30 DOk (p(0) + Dy Hpe)E(t)  (7.32)

for some scalars 0 < n; <1, ¢ € I|0,2™ — 1], such that ZQ e n; = 1, and the
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following equality holds

(- po(u(t) =3 "l pDiCro+ DiCralp)
~pDiCralp) + (I = p0)D:Crco(p(1)) + DiCrcal5(1))
+0DiCro(p(t)) + (I — p)D; Hxo + D Hia(p)
—pD; Hra(p) + (I = p(t)) D;” Hro(p(t))
+D; Hyca(p(1)) + 5D; Hico (1) J€(1) (7.33)

where p(t) = p(t) — p. It should be noted that though Cr,(4(t)) and Ckp(5(t))
have the same forms, we deal with them in different ways in (7.33), which gives
more freedom and 1ess conservatlveness

Let V(t) = TPz + Y7 & - /(t) < 0 for all z € e*(P,8)\{0}, the
domain *(P,§) is contractively invariant. Clearly, if ¢*(P,d) is contractively
invariant, then it is inside the domain of attraction.

We note that the scalars 7;’s are functions of £ and p and their values are
available in real-time. These scalars in a way reflect the severity of control
saturation. In general, there are multiple choices of 7;’s satisfying the same
constraint, leading to nonunique representation of (7.32).

Now, by Lemma 7.2 we provide one choice of such 7;’s, which are Lips-
chitzian functions in € and p and thus are particularly useful in our controller
design.

m(€0), ) = 11 [0 = A (60, p0)) + (1= )X, (0, p)] (7.34)

By using the functions n;(£(¢), p(t))’s, the output feedback controller
(7.30) can be parameterized as

= mANEW + (X mBrip)u()
u(t) = —p)o(Ck(p)E(t)) (7.35)
where
AKZ( ) AK10+AKza( )+Abi( )
Bri(p) = Brio + Bria(p) + Briv(p)
Ck(p) = Cko + Cka(p) + Crp(p)
Brcia(p) = Z:; PiBriaj, Brin(p) = Z;il PiBrcivj

Cra(p) = Zj:1 piCraj, Crv(p) = ijl piCrvj
Axia(p) = Zj PjAKiaj

Agin(p Z ZS . PiPsAkivjs + Z ﬁjAKibj
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Motivated by the quasi-LPV structure of both the plant and the controller,
we consider the following auxiliary LPV system, if (P, §) C p([0 H(p)]) is
an invariant set.

Te(t) = Ac(n)ze(t) = Z

2m—1

i=0 ni(Aeixe(t))a ner (736)

where z. = [z7(t) £ ()", n = [no, m, -+, pam_1), and

m 2m—1
I={neR?: Zi:@ =1, 0<mn <1, iel, 2™ —1]}

A By (I = p)[DiCk (p) + Dy H(p)]

Aei = [ Bii(p)C Axki(p)

The following theorem establishes conditions on the output-feedback con-
troller coefficient matrices under which the LPV system (7.36) is asymptoti-
cally stable with Lyapunov function.

Denote

Ap={p=1(p1-pm) : pj € {rnqin{/_)?}7 mgx{ﬁ?}}, qelIll, L]}
and BI = [0--- b ---0] with B =[b - - b™].

Theorem 7.2 £*(P,6) is a contractively invariant set for normal and ac-
tuator failure cases, if there exist matrices 0 < N1 < Y1, Akio, AKxiaj,
Akivjs, Brio, Briaj, Brivi, Cro, Ckaj, Crvj, Hro, Hiaj, Hioj, § € I[1,m],
s € I[1,m] and symmetric matrizes ©, i € I[0,2™ — 1] with

' 1 O
o= 3t o]
and ©%,, O, € R™ZM)XmE) sych that the following inequalities hold for
all D; € D and €*(P,6) C ([0 H(p)]), i.e.,|[0 H(p)jze] < 1 for all z. €
e*(P,0),j € I[1,m].

©f,; <0, j€I[l,m],i€I0,2™ —1]
Of1 + O1,A(D) + (01,A(0)" + A(p)ORA(P) >0, pe A,

[g} J;? } +GTe'G <0, ieI0,2™ —1],

pe{pt - pt}, p? € Ny (7.37)
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where
Ri=[Ra Rix -+ Rim |
Q‘ . YlA—NlBKi()C'F(YlA—NlBKZ‘()C)T AY;
v * TQ,L'
—N1BkipjC — N1Bkgia;C T3,
Ry = 0
“ NlBKibjC“‘NlBKiajCS[ oL ] Ty
. 0 T
S’i: Si’s; ) 6117 ) Si’sz
[Sigal, g s € IlLm], S { Tei Tmi ]
with

Ti; = Y1B[(I — p)(D;Cko + D; Hio) + DiCka(p) + D; Hra(p))

T
0
— N1Agkio — NMiAkio(p) + [ oL } ST[-Y1Ba(D;Cxal(p)

+ D; Hia(p)) + N1Akia(p)] + (—N1A + N1BgioC + N1Bkia(p)C
0
- iBralo)cs]| b |

Ty; = —N1B[(I — p)(D;Cko + D; Hio) + DiCka(p) + D; Hro(p)]
+ (=NiB[(I = p)(DiCxo + D; Hio) + DiCia(p) + D; Hrca(p))"
+ N1 Akio + NiAkia(p) + (N1 Akio + N1Akia(p)”

T3; = Y1 B[—p(DiCraj + D; Hgaj) + DiCrpj + D; Hgujl

T
0 _
— N1Agip; + [ oL } STY1B((DiCxaj + Dj Hrcaj)

— p(DiCxpj + D; Hipj)) — N1Akiaj]
Ty; = NiBp(D;Ckqj + D; Hiaj) — N1B(D;Crkyj + D; Hipy) + N1Akivg
Tsi = —Y1BY(D;Cxps + D; Hrcps) — N1 Axivjs

CL
Tei = (=Y1B*(D;Cxp; + D] Hrcvj) — N1Axivsj

T
+ [ 0 ] STlej(DiCKbs +D;HKbs)

T
0 _
+ [ oL ] STY1B*(D;Cxy; + Dy Hrepj))*

Tri = N1BY(D;Ckyps + D Hrcos) + N1Axcivgs
+ [N1BY(D;Ckps + D Hips) + N1Agcinis)”
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T(2n)x (2n)

G =
T2y % (2n)
0

Im(Qn) xm(2n)

A(p) = diag[prlianyx2n) *+* Pml(2n)x2n))-

and also p;(t) is determined according to the adaptive law

ﬁj = Proj[mqin{ﬁ?}, mgx{ﬁ?}]{Llj}
ﬁj = min{pq_} and Llj <0
o,if . 1 7
= * orpy = mgx{ﬁ?} and L1; >0 (7.38)

Ly, otherwise

where
om_1 - . X B
Li; =1, Zz':o ni{€" O1[Akiaj — BDiCka; — B’ DiCrky(p) — BD; Hkq,

T
— B'D; Hi(p))€ + [ g } ST[M1(BD;Cka; + B’ D;Ciy(p)

+ BD;HKQJ‘ + BjD;HKb(pA)) - O1AKiaj]£ +§T01BKiajCS [ g :|},

My =6Y1, O1 =0N:. l; > 0(j € I[1,m]) and 6 > 0 are the adaptive law gains
to be chosen according to practical applications.

Proof 7.2 Choose the following Lyapunov function

m o pA(t
V =Pz, + Zj_l pjlé ) , (7.39)
- J

By p(t) =p(t) — p and
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Then A.; can be written as
Aci = Acit + Aeio + Aciz

A I A Aeila
7| [Bkio + Bria(p) + Brin(p)]C  Acitp

Acita = B[(I = p)DiCko + DiCka(p) — pDiCka(p)
(= )DiCr(p) + (T — p)Di Hico + Dy Hicalp)
—pD; Hia(p) + (I — p)D; Hiv(p)]

Acity = Akio + Aka(p) + Arin(p)

0 AeiQa 0 0
Aei = ~ 7Aei = ~
’ [ 0 Axia(p) ] ’ [ Bria(p)C 0 ]

Aeiza = BDiCra(p) + BpDiCky(p) + BD; Hra(p) + BpD; Hrcp(p)
Let P be of the following form

[ M -0
Sy

with 0 < O1 < My, which implies P > 0. Since C is of full rank, and C
satisfies COT =0 and C+C+T nonsingular, it follows that [ CCJ_ ] s mon-

singular. From (7.28), we have

Cr=vy, Cta=Ctz, =25 [ Cgix } (7.40)
c 1! 0 Wul .
where S = [ oL ] . Then, we have PAgis = [ 0 W } with
Wai = Mi[BD;Cra(p) + BpD:iCr(p) + BD; Hia(p) + BpD; Hi(p)]
— O1Akia(p)

Whi = O1[Akia(p) — BDiCka(p) — BpDiCri(p) — BD; Hica(p)
— BpD; Hi(p)]
which follows
(27 TP Acig[z” €717 = 2" Wil + €T Wiié
Thus, by (7.40), we have

T
T Wyi€ = [ g } STWai€ + a7 €M Agn 27 €77

where
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In the same way, from (7.40) we get

[2" TP Acsla” €77 = =27 O1Bkia(p)Cx + €7 O1Bria (p)Ca
=2l Agiome + Myso
where
—O1Bkia(p)C 0

Agin = N 0
2 OlBKia(p)CS[ oL ] 0

Mo = §T013Km(5)05[ g ]

Then from the derivative of V(t) along the closed-loop system (7.56), it
follows

om_1 m 0 ) .

_ o, T . . p;i()p; (t)

t) = 2z, E i—0 niPAcize + 2 E =1 7lj
= 2! Woze + W1

where

2m—1
Wo = Zi_o mi[PAeit + (PAein)"]

+ Zz_ ’L azl + AazQ + (Aail + AaiQ)T]
T 2m 1 y T T 2m 1
Wi =2¢ Zi:o mWul+2| o | S Zi:o NiWai§

+ 2Zj: 771 ai2 T 22 =1 t)?)j

The design condition that V (t) < 0 is reduced to

W < 0, (7.41)

Wy <0 (7.42)

Since y and & are available on line, the adaptive laws can be chosen as (7.38)
for rendering (7.42) valid. (7.41) is equivalent to

gm
Zi:o nl{XAeﬂ + Aazl + AazQ

[XAS’Ll + Aazl az2] } <0 (743)

X = |: n M :| = ?a Al = lAAailv wiz = 1140/£2
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Notice that
Y1A — Ni[Brkio + Bkia(p) + Brin(p)]C We

—N1A + N1[Bkio + Bria(p) + Brin(p)]C Wy

We =Y1B[(I — p)DiCro + DiCka(p) — pDiCra(p)

+ (I = p)DiCks(p) + (I — p)D; Hro + D; Hrca(p)
— pD; Hia(p) + (I — p)D; Hicv(p)]
— N1[Akio + Ara(p) + Axin(P)]

W4 = —N1B[(I — p)DiCko + DiCra(p) — pD:iCxa(p)
+ (I = p)DiCks(p) + (I — p)D; Hro + D; Ha(p)
—pD; Hia(p) + (I — p)D; Hrv(p)]

+ N1[Axio + Axa(p) + Axin ()]

XAein =

Furthermore (7.43) can be described by

om _ 1

Wa(p) = Zi:o ni{Qi + Z;nzl pjRij + (Z;nzl piRi;)T
+ Z;n:l Z:n:l PjPsSijst <0

where Q;, Rij, Sijs, J,s € I[1,m] are defined in (7.37). By Lemma 1, we can
get Wa(p) < 0 if (7.37) holds, which implies Wy < 0. Together with adaptive
laws (7.38), it follows that V (t) < 0 for any x. € p([0 H(p)]), p € {p* - p*},
p? € Nya and p satisfying (7.38).

If we take the following output-feedback controller with fixed parameter
matrices AKi07 BKi07 CK(), 1€ I[O, 2m — ].]

om _ 1 om _ 1

£ = (Zizo niArkio)§(t) + (Zizo i Brcio)y(t)
ult) = (- p)o(Crrot(®)) (7.44)
then combining (7.44) with (7.28), it follows:
j:el (t) - Ael (n)xel (t) (745)
Aea(n) = EZJI Ni(Ae1ize1(t)), merl (7.46)

where z.1 = [27(t) ¢T(1)]7T,

A By(I — p)[DiCko + D; Ho)

Ae i =
! BkioCa Akio

Based on system (7.45), the following lemma is presented.
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Lemma 7.3 Consider the closed-loop system described by (7.45), we have
that the following statements are equivalent:

(i) there exist a symmetric matric X > 0 and controller K described by
(7.44) such that
X+ XA, <0

(2

T
Ael

holds for p € {p* -+ pl}, p? € Ny

(ii) there exist symmetric matrices Y1 and Ny with 0 < N1 < Y1, and
a controller described by (7.44) with Axio = Akeio, Brio = Bkeio, Cro =
Ckeo, Ho = Heo, @ € I[0,2™ — 1] such that

Y1A — N1BgioC + (Y1A — N1BkioC)T  To

. T <0 (7.47)

with

To =Y1B2(I — p)[DiCro + D; Ho] — N1Akio
+ (=N1A + Ny BgioC)*
Ty = —N1By(I — p)[DiCro + D; Ho] + N1Akio
+ (=N1Bs(I — p)[DiCro + D; Ho] + N1 Agio)”

Proof 7.3 The proof is similar to the proof of Theorem 5.2. To avoid overlap,
it is omitted.

Next, a theorem is given to show that the condition in Theorem 7.2 for the
adaptive controller design is more relaxed than that in Lemma 7.3 for the
traditional controller design with fixed parameter matrices.

Theorem 7.3 If condition (i) or (ii) in Lemma 7.3 holds, then the condition
of Theorem 7.2 holds.

Proof 7.4 If condition (i) or (ii) in Lemma 7.3 holds, then it is easy to see
that the condition in Theorem 7.2 is feasible with Axiaj = Akivj = Axibjs =
Bkiaj = Bkivy = Ckaj = Cryj = Hrgaj = Hgp; = 0, 1 € I[0,2™ — 1],
Jj €I[1,m], s € I[1,m]. The proof is completed.

7.3.3 Controller Design

From Theorem 7.2, we can obtain various controller gains and domains sat-
isfying the set invariance condition. So, how to choose the “largest” one of
them becomes an interesting problem. In this section, we will give a method
to find the “largest” domain.

In Theorem 7.2, a condition for the set ¢*(P,d) to be inside the domain
of attraction is given. With the above shape reference sets, we can choose
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from all the *(P, §)’s that satisfy the condition of Theorem 7.2 such that the
quantity ag(e*(P,0)) is maximized. The problem can be formulated as follows

sup et
s.t. (a) aXp C e"(P,9),

(b) (7.37),

(©) e"(P,0) ([0 H(p)))- (7.48)

However, by Definition 7.4, we know that (a) and (c) cannot be shown as
LMIs directly. Then the following proposition will solve this problem.

Proposition 7.3 Obviously, €*(P,6) C (P, 0), which implies that (c) holds
if (c1) holds, where

(c1) e(P,0) C p([0 H(p)))- (7.49)

By Definition 7.4, we have
~2
T m. P (t)
z, Pz, + ijl

- P m p3(t)
<Ses g, UrASar
o SOeelGret) T S
~2
Let F(t) = Z;n:l pgl(:). Then, by (7.38) and (7.3), it follows that p;(t) <
mjax{ﬁ‘;-} - mjin{;_)?}. We can choose [; and ¢ sufficiently large so that F(t) is

sufficiently small. Then the conclusion can be drawn as follows:

For system (7.29) and controller (7.30) there must exist 6 > 0 and I; > 0
such that the closed-loop system (7.36) is asymptotically stable in domain
e~ (P,d) if (b) and (c1) hold.

Then we can get the “largest” domain of asymptotic stability by solving
the following optimization problem

sup et
st. (al) aXp C e(P,0),
(b)
(c1) (7.50)

If the given shape reference set Xg is a polyhedron as defined in Definition
7.5, then Constraint (al) is equivalent to

anTEx 1/a? xT(B)
A i S e (751

for all ¢ € I[1,1]. If X g is a ellipsoid (R, 1), then (al) is equivalent to

R P _[ ()R (§)
25 2 R S D 722
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Condition (cl) is equivalent to
LA <1e | L BP0 > (753)

for all j € I[1,m], where [0 h(p)]; is the jth row of [0 H(p)]. We have that
(7.52) is equivalent to the following inequalities.

-1 —[0 HKOs S — Hiajs — Hrnjs) .
(2) | ] ZP A <0,peN,
where Hyqjs is the sth row of Hgqj, s € I[1,m].
If Xp is a polyhedron, then from (7.49) and (7.52), the optimization prob-
lem (7.49) is equivalent to

inf ¥
st @) [ Y, ¥Y |20 gemn,
(b), (c2), (7.54)

where v = 1/a2.
If Xg is an ellipsoid, we need only to replace (a2) with

(a3) { 7)]? § } >0. (7.55)

It should be noted that condition (7.37) is not convex. But when
Cko,Ckaj, Crbjs Hro, Hraj, Hivj are given, they become LMIs.

From Theorem 7.2, we have the following algorithm to design the adaptive
output feedback controller.

Algorithm 7.1

Step 1 Suppose that all states of system (7.28) can be measured. Minimize the
index v to design the state-feedback controller.

Then, the matrices Cro, Ckaj, Crvj, Hro, Hraj, Hrpj can be given.
Step 2 Solve the following optimization problem

inf ¥
st (a2), (), (2) (7.56)
Then the resulting Ario0, Axiajs Axivjs, Brios Biiaj, Brivj, Ckos Craj,

Crkupj, © € 10,2 — 1], j € I[1,m], s € I[1,m] will form the dynamic output
feedback controller gains.
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Remark 7.5 Step 1 is to determine matrices Cko, Ckaj, Crbj, Hxo, Hraj,
Hyeyj, which solves the corresponding adaptive controller design problem via
state feedback. This procedure is adopted from the last section, and convex
conditions are described. To avoid overlap, the conditions appearing in Step 1
will be omitted.

From Lemma 7.3, we have the following algorithm to design the fault-
tolerant controller with fixed gains.

Algorithm 7.2

Step 1 Suppose that all states of system (7.28) can be measured. Minimize the
index v to design the state-feedback controller.

Then, the matrices Cko, Hxo can be given.
Step 2 Solve the following optimization problem

inf ~
s.t. (a2), (7.47), (c2) (7.57)

Then the resulting Ak io, Brio, Cko, @ € I[0,2™ —1] will form the dynamic
output feedback controller gains.

Remark 7.6 Step 1 is to determine matrices Cko, Hgqo, which solves the
corresponding controller design problem via state feedback.

Remark 7.7 In Step 1, for some cases, the magnitude of the designed gains
Crko (Ckaj and Crp;) may be too large to be applied in Step 2. For solving the
problem, by adding the following constraints, where Q and Yo are variables
in conditions of Step 1

Q> al, YroYi, <pl, (7.58)

then the magnitude of Cko can be reduced. In fact, by Cxo = YroQ ™! and
(7.58), it follows that

| Cxo |I< V/B/a.

The similar method can be used for the gains Ckq; and Cku;.

7.3.4 Example
Example 7.3 Consider the system of form (7.29) with

0.01 0.1 10 0
A_[OJ mn]’B_[o m},C—UW

and the following two possible fault modes:
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Fault mode 1: Both of the two actuators are normal, that is,
pr=py=0

Fault mode 2: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

pi=1, 0<p3 <aq,

where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor.
Let

After implementing Algorithm 7.2, we have that v* = 1.9669. When Algo-
rithm 7.1 is used to design adaptive output-feedback controller, the optimal
index is given as v* = 0.7648. Obviously, the optimal index « is smaller
for Algorithm 7.1. The phenomenon indicates the superiority of our adaptive
method.

7.4 Conclusion

In this chapter, an adaptive fault-tolerant controllers design method has been
presented for linear time-invariant systems with actuator saturation. The de-
sign is developed in the framework of linear matriz inequality (LMI) approach,
which can enlarge the domain of asymptotic stability of closed-loop systems
in the cases of actuator saturation and actuator failures. Two examples have
been given to illustrate the efficiency of the design method.



8

ARC with Actuator Saturation and
Lo-Disturbances

8.1 Introduction

The problem of disturbance rejection for linear systems subject to actuator
saturation has been addressed by many authors ([63, 66, 97, 102, 142]). Un-
der the boundedness assumption on the magnitude of the disturbances and in
the absence of initial condition, the Ls-gain analysis and minimization in the
context of both state and output feedback were carried out in [101, 102]. In
[66], a method for analysis and mazimization of an ellipsoid, which is invari-
ant under magnitude bounded, but persistent disturbances, is proposed. The
works of [63, 97, 109, 120, 127] all consider the situation where disturbances
are bounded in energy. The works of [63, 109, 120] formulated and solved the
problem of stability analysis and design as an optimization problem with LMI
or BMI constraints. In [67, 68], authors presented LMI-based synthesis tools
for regional stability and performance of linear anti-windup compensators for
linear control systems. [32] presents a method for the analysis and control
design of linear systems in the presence of actuator saturation and Lo distur-
bances.

This chapter deals with the problem of designing adaptive reliable H.,
controllers (ARC). The actuator fault model, which covers the outage cases and
the possibility of partial faults, is considered. The disturbance tolerance ability
of the closed-loop system is measured by an optimal index. Based on the online
estimation of eventual faults, the adaptive fault-tolerant controller parameters
are updating automatically to compensate the fault effects on systems. The
designs are developed in the framework of linear matrix inequality (LMI)
approach, which can guarantee the disturbance tolerance ability and adaptive
H, performances of closed-loop systems in the cases of actuator saturation
and actuator failures.

169
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8.2 State Feedback
8.2.1 Problem Statement
Consider an LTI plant described by

z(t) = Ax(t) + Biw(t) + Bao(u),

z(t) = Cx(t) + Do(u), (8.1)
where x(t) € R" is the plant state, o(u) € R™ is the saturated control input,
2(t) € R® is the regulated output and w(t) € R? is an exogenous disturbance
in Ly[0, 00], respectively. A, By, Ba, C, D, are known constant matrices of
appropriate dimensions.

To formulate the fault-tolerant control problem, the considered actuator
failures are the same as those in Chapter 3, that is

ulfy (1) = (1= pholu;(t),  0<p! < pl <7,
jeIl,m], ¢ €I[1, L], (8:2)

For convenience in the following sections, for all possible fault modes L,
the following uniform actuator fault model is exploited:

u(t) = (I = p)a(u(t), pe{p* - p"} (8.3)
and p can be described by p = diag[p1, p2, ‘- pm]-
Denote
Npa = {p?lp? =diaglpi, p3, - -pi], pj = pl or pf =77} (8.4)

Thus, the set Ny« contains a mazimum of 2™ elements.

For a linear system, the disturbance rejection capability can be measured
by the Lo gain, the largest ratio between the Ly norms of the output and
the disturbance. However, this gain may not be well defined for closed-loop
system and the state feedback, since a sufficiently large disturbance may drive
the state and the output of the system unbounded. For this reason, we need
to restrict our attention to the class of disturbances whose energy is bounded
by a given value, i.e.,

Ws = {w : Ry - R%: /Ooo wl (Hw(t)dt < 5}. (8.5)

The following problem will be considered in this section: The first question
that needs to be answered is, what is the maximal value of § such that the
state will be bounded for all w € 25?7 Here we will consider the situation,
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zero initial state. The problem related to this question is referred to as dis-
turbance tolerance. The disturbance rejection capability can be measured by
the restricted Lo gain over 2s. In this section we will consider Lo gain and
s at the same time.

Remark 8.1 For the above problem to be solvable, it is necessary for the pair
(A, Bo(I — p)) to be stabilizable for each p € {p*--- pt}.

8.2.2 ARC Controller Design

The dynamics with actuator faults (8.3) and saturation is described by
z(t) = Az(t) + Biw + Ba(I — p)o(u(t)),
z(t) = Cz(t) + D(I — p)o(u(t)). (8.6)
The controller structure is chosen as
u(t) = K(p(t))x(t)
= (Ko + Ka(p(t)) + Ky (p(1)))2(1), (8.7)

where p(t) is the estimation of p,

(1) = 2 Kaghs (8), Kop() = 3. Kugiy (1)

Remark 8.2 From (8.7), we have that different from the fixed gain con-
troller u(t) = Kox(t), controller (8.7) has two additional terms K,(p(t)) and
Kyp(p(t)) which are functions of p and their values are available in real-time.
Through the estimation of p, controller gains can be adjusted online, which
gives more freedom and less conservativeness.

By Lemma 7.1, the saturated linear feedback, with x € p(H(p)), can be
expressed as

m—1
o(K(pM)a(t) = mlIDiK(p(t) + D H(p(1))]x(t) (8.8)
for some scalars 0 < n; <1, 4 € I|0,2™ — 1], such that 22 ' =1, and the

following equality holds

(= pou(®) =" " nl(I ~ p)DiKo + DiKa(p)

— pDiKa(p) + (I = p(t)) DiKo(p(t)) + DiKa(p(1))

+ pDiKy(p(t)) + (I — p)D; Ho + Dy Ha(p)

— pD; Ha(p) + (I = p(t)) Di Hy(p(t)) + D;” Ha(p(1))

+ pD; Hy(p(t))]2(t), (8.9)
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where p(t) = p(t) — p. Though K,(5(t)) and K(p(t)) have the same forms,
we deal with them in different ways in (8.9), which gives more freedom and
less conservativeness.

Denote

Bp={p=(pr-+pm) : fy € (min{p"), max(pl}}. ¢ €11, L]}

and B/ =[0---b -.-0] with B =[b!---b™].

We note that the scalars n;’s are functions of x and p and their values are
available in real-time. These scalars in a way reflect the severity of control
saturation. In general, there are multiple choices of 7;’s satisfying the same
constraint, leading to nonunique representation of (8.8).

Now, by Lemma 7.2 we provide one choice of such 7;’s, which are Lips-
chitzian functions in € and p and thus are particularly useful in our controller
design.

b>

"71'

H zj(L=Ai(&(), p(1))) + (1= 2)A;(€(), p(1))]  (8.10)

Then, n;’s are functions Lipschitz in = and p, such that, Zf:gl n = 1,
0<n <1,iel]0,2™ — 1]. Moreover, they satisfy relation (8.8).

By using the functions n;(z(t), p(t))’s and controller (8.7), plant (8.6) can
be written in a quasi-LPV form as follows:

B(1) = Ax(t) + B2 Y mil(I — p)Du(Ko + Ka(p(1)
+ Ko(p(1))) + (I = p)D; (Ho + Ha(5(1))
+ Hy(p(1)))]z(t) + Biw. (8.11)

In addition, we consider the following auxiliary LPV system, of which
the closed-loop system comprising of (8.6) and (8.7) is a special case, for

Vx(t) € e7(P,0%) C p(H(p))
z(t) = A(n)x(t) + Biw, nerT (8.12)

where 1 = [no, n1, -+, N2m_1], and

m 2mM—1
I={ne R : Zi:o ni=1,0<mn<1,ielo, 2" —1]},

A+BQZ (I - p)D; Ko + D;K,(p)
— pDiKo(p) + (I - p( )D;iKy(p(t)) + DiKa(p(t))
+ pDiKo(p(t)) + (I = p) Dy Ho + Dy Ha(p)
— pDi Ha(p) + (I = p(t)) Dy Hy(p(t)) + D Ha(p(1))
+pD; Hy(p(t))]-
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Before presenting the main result of this section, denote

Noi = AX + Bo(I — p)D; Yy + (AX 4+ Bo(I — P)DiYO)T
+ By Zj:l piDiYq; + (B2 Zj=1 ijiYaj)T
+ By(I — p)D; Og + (Ba2(I — p)D; Op)"
T B2 D7 Ouj+ (B2 Y 907 Ouy)" + BiBY.

In><’n
. 0
=1 L !
O Imnxmn

Z1i = —BypD;Y, + Ba DYy, — BopD; Oy + Ba D, Oy,
U, = [CX + D(I - p)D;Yo + D(I — p)D; Oq
D(I = p)(Di(Ya +Yp) + D; (Oq + Ob))],

—BiD; —BiD;
Zo; = Yy + ( vy)?
—-By'D; —-By'D;
—ByD; ~ByD;
+ Ob+( Ob)T,
~By'D; ~By'D;

Y, = [Yal Ya2----Yam]; Y, = [Ybl Y;)Q----}/bm]v
Oq = [O41 Oa2....0am], Op = [Op1 Opz....0pn),
A(ﬁ) = diag[ﬁllnxn te ﬁmInxn]~

and the adaptive law is defined by

ﬁj = Proj[mqin{ﬁg}, mgx{ﬁ?}]{Llj}

pj = min{p?} and L1; <0

. q .

_ ) 0 pj = max{p;} and Ly; >0 (8.13)
q

Ly;, otherwise

with

Ly = 12" O[PBY

i=

m m

—1 L X
niDi)Kaj + PBQ(ZiZO D) Ko (p)

2Mm—1 . 2m _q1
+PBy(Y miD;)Ha; +PBY(Y Dy ) Hy(p)a(t),
P=X 1K, =YX Ky =Yy X ' Hyj = 04 X ' Hyj = Op X °

where [; > 0(j € I[1,m]) are the adaptive law gain to be chosen according
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to practical applications. The matrices X, Yo, Yuj, Y5, Oo, Oaj, O, j €
I[1, m], involved in above notations and definition are decision variables to
be determined.

Theorem 8.1 Let ry > 0,7, > 0 and 6§ > 0 be given constants, then the
following two conditions are satisfied

(I) The trajectories of the closed-loop system that start from the origin will
remain inside the domain e*(P,§*) for every w € 2Ws.

(II) In normal case, i.e., p =0,

o S m D2
/0 2T (t)z(t)dt < 7“721/0 wl (Hw(t)dt +r2 ijl pjl—io), for z(0) =0

and in actuator failures cases, i.e., p € {p' --- pL},

7;(0)

/Ooo 2T ()z(t)dt < 72 /000 WT (Bw(t)dt + 12 Z;":l =, for 2(0) =0

wherep(t) = diag{p1(t) --- pm(t)}, p;(t) = pj(t) — pj, if there exist matrices
X >0, Og, Oqj, Opj, Yo, Yaj, Yoj, j € I[1,m] and symmetric matrices ©;,
i € 1[0,2™ — 1), with

T %
612 22

and ©%,, Ok, € R™X™" sych that the following inequalities (8.15) hold for
all D; € D, e*(P,6*) C p(H(p)), and the controller gain is given by

K(p) =Ko+ piej+D _ Pik;. (8:14)
where p; is determined according to the adaptive law (8.13), Ko = YoX 1,
Kaj = Yanil, ij = Y’ijfl.
©h;; <0, jeIll,m],iecI[0,2™ —1]

11+ OLAM) + (OL,A(0)" + A(p)OLA(P) >0, pe A,

) . 1 .
[ Noi  Zu } + Ul Ui+ G'O'G <0, i 10,27 - 1],

7T 7y, >
p=70
Noi  Z Lot | ATqi : m
|:Zl’]; ZQZ:|+¥U’L U1+G ®G<O7'LEI[O,2 —1],

pe{pt - pl},p? € Ny (8.15)
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Proof 8.1 We will prove (II) firstly. Choose the following Lyapunov function

V(t) =a(t)" Px(t) + Z:; ﬁ?(t), (8.16)

5

then from the derivative of V(t) along the closed-loop system, it follows

¥

1
<M+ 2" (PBiB{ P)x + = N"N — (w" — 2" PBy)(w — B{ Pz),
T
f
where
- _—
=27 Zz_ oMy + M)z + 227 PB, Z ni[DiKa(p) + pDi Ky (p)

+ Dy Ha(p) +pD; H()le +2 " %jpm

My = PA+ PBs[(I = p)DiKo + DiKa(p) — pDiKa(p) + (I — p(t)) Di Ky (p)
+ (I = p)D; Ho+ Dy Ha(p) — pD; Ha(p) + (I — p(t)) D; Hy(p)],

N =37 O+ DU - p)[Di (p(1)) + Dy H(p(0)]}
Let B=[b'---b™] and BI =[0--- b ---0], then
PBapDE(p) = Y psPBID:K(p),
PBapD; Hy(p) = Y| psPBID; Hylp),
PByDiKo(p) =Y pPBaDiKa;.
PByD; Ho(p) = ZL p;PBaD; Hyj.
Furthermore, we have

V) + %ZT(t)z(t) — W (Bw(®)

<M + 27 (PB,B{ P)x + — NTN
i

Let X = P71 Yy = KoX, Yo; = Ko X, Yij = Kipj X, Og = HoX, Oy =
H.; X, Oy = Hy; X, j € I[1,m]. Choose the adaptive laws as (8.13), then it
18 sufficient to show that

V(t) + 27 (0)2(t) — w” (Hw(t) < 0, (8.17)
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if for any p € {p' - p"}, p? € Npa,
2m—1
0 [NOz"’le(pJ)"‘N%( )]"’ WTW<O
- f
where
W= Z ni|CX + D(I — p)D;Yo + D(I — p)D; Og + Nai(p;)],
Noi = AX + By(I — p)D;Yy + (AX + By(I — p)D;Yy)"
m m
+ By ZFI p;iDiYaj + (B2 ZFI p;iDiYa;)T
+ By(I — p)D; Og + (Ba(I — p) Dy Op)™
+ B Z , PiDi Oaj + (B2 Z L piDi 0aj)" + B1BY
Nli(p] = _BQpD Z p] aj + Bs Z ijDsz]
+ BQZ ij Yb] BapD; Z a])T
— BopDy Z 7i0a; + Bz Z 5D O;
+ Bzz, piD; O — BapDy- ijl $jO0aj)",
T
Nai(py) =D D bipp(~B4DYe, — Yi DBy
- B2Di Opp — Obj i BgT)v
m

Nsi(p;) = ijl piD(I = p)[Di(Yaj + Yo;) + D; (Oaj + Ov;)]-

By Lemma 2.10 and (8.15), it follows that (8.17) holds for any x €
o(H(p), p € {p' -+ pl}, p? € Ny and p satisfying (8.13). The proofs for
the normal case of closed-loop system (8.11) are similar, and omitted here.

To prove item (I):

V(t) < M+ 2" PByw + wT B Px.
Noting that
2 PBiw + wTBlTPa: < a:TPBlBlTPx + wTw,
we have
V(t) < M+ 2" PB,BI Px 4+ ww.
Then by the proof of item (II), we have

VﬁwTw
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which implies that

V(x(t)) < /0 h wT(t)w(t)dt+Z;n:1 ’ jlio) < 5
for z(0) = 0.

Then, the conclusion can be drawn that trajectories of the closed-loop sys-
tem that start from the origin will remain inside e*(P,§*) for every w € Ws.

Corollary 8.1 The adaptive Ho, performance indexes are no larger than ry,
and r¢ in normal and actuator failure cases for closed-loop system (8.11), if
(8.15) holds forry > r,, > 0, correspondingly, the controller gain and adaptive
law are given by (8.13) and (8.14), respectively.

Proof 8.2 Let F(0) = E;ﬂ 1 P E_O) Then, by (8.13) and (8.2), it follows that
p;(0) < mjax{ﬁ?} - mjin{ﬁ‘;,}. We can choose l; sufficiently large so that F'(0)

is sufficiently small. Thus the conclusion follows from the item (II) and Defi-
nition 3.1.

From Theorem 8.1, we can optimize the adaptive Ho, performance in normal
and fault cases and the disturbance tolerance level 4.

Let r,, and 7y denote the adaptive H,, performance bounds for the nor-
mal case and fault cases of the closed-loop system (8.12). Let ¢ denote the
disturbance tolerance level. Then 7, r¢ are minimized and ¢ is maximized if
the following optimization problem is solvable

min n = amp + By + s
s.t. (a) (8.15),
(b) = (P.6") C p(H(p)), (8.18)
where 7, = r%, ny = r?, Ny = 6% = 1 {0 and «, (3, v are
s+max{> 7L 5 }

weighting coefficients.

However, by Definition 7.2, we have that (b) can not be shown as LMIs
directly. Obviously, e*(P, 6*) C e(P, 6*), which implies that (b) can be replaced
with (bl).

(b1) =(P,6%) C p(H(p)). (3.19)
Condition (bl) is equivalent to

P <1 | w o ML |0 (5.20)

P
for all j € I[1,m], where h(p); is the jth row of H(p). We have that (8.20) is
equivalent to the following inequalities.

(b2) [ —1s 005 ] +Zpﬂ [ ’ _Oajso_ Ovjs } <0,p€eA,

*
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where Og;s is the sth row of Ogj, s € I[1,m].
The following algorithm is given to design adaptive H., controller

Algorithm 8.1

Step 1 Solve the following optimization problem:

min n = ann + BNy +yns
st (8.15), (b2) (8.21)

Then, with optimal solutions ny, n¢, s, X, Yo, Yaj, Ys;, Oo, Oqj, O, J €
I[1, m], go to Step 2.
Step 2 Determine the controller parameter matrices Ko, Koj, Kpj, j € I[1, m],
by (8.14).
Step 3 Determine the adaptive laws (8.13).

Then an adaptive fault-tolerant controller is designed.

Remark 8.3 Theorem 8.1 gives a sufficient condition for the existence of an
adaptive fault tolerant Hoo controller via state feedback. In Theorem 8.1, if set
Yo =0,Y =0, Oq; =0, Op; =0, j €I[1,m], the condition of Theorem 8.1
reduces to

1
Qi"'T_QJiTJi<O, ieI[0,2™ —1], p=0 (8.22)

n

1
Qi+ —JJ; <0, i €I[0,2™ — 1],
T
f

pe{p' - p"}, p1 € Ny (8.23)
where
Qi = AX + By(I — p)D;Yy + (AX + Bo(I — p)D;Yo)"
+ By(I — p)D; Og + (Bo(I — p)D; Op)T + By BY
Ji =CX + D(I — p)D;Yy + D(I — p)D; Oy.

From [66], we have that the following two conditions are satisfied

(i) The trajectories of the closed-loop system (8.6) with v = Koz, Ky =
Yo X!, that start from the origin will remain inside the domain e(P,§) for
every w € 2Ws

(ii) The Hy performance indexes are no larger than r,, and r; for normal
and actuator failure cases, respectively, if there exist matrices X > 0, Oy,
Yy, such that the inequalities (8.22) and (8.23) hold for all D, € D and
e(P,6) C p(Hy), where P = X1, Hy = OgX ~'. This just gives a design
method for traditional fault tolerant H, controllers via fixed gains. The above
fact shows that the design condition for adaptive fault tolerant H., controllers
given in Theorem 8.1 is more relaxed than that described by (8.22) and (8.23)
for the traditional fault tolerant H., controller design with fixed gains.
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FIGURE 8.1
Response curve of the first state in normal case with adaptive controller (solid)
and the fixed gain controller (dashed).

8.2.3 Example
Example 8.1 Consider the system of the form (8.1) with

3 2 1 0 40 0
A_[S 40}’31_[1 0}’B2_{0 40}’
c 4 0 o fo_fo 05 0"
0 0 of > |0 0 1
and the following two possible fault modes:

Fault mode 1: Both of the two actuators are normal, that is,
pi=ps=0.
Fault mode 2: The first actuator is outage and the second actuator may be

normal or loss of effectiveness, described by

pi=1, 0<p}<a,
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FIGURE 8.2
Response curve of the first state in fault case with adaptive controller (solid)
and the fixed gain controller (dashed).
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FIGURE 8.3
Response curves of the states with adaptive controller in normal case.

where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor.

Let « =10, 8 =1, v = 10, the optimal indexes with fixed controller gains
are 0, = 0.1963, ny = 9.8933, ns = 20.5385, n = 217.2408. By solving the
optimization problem (8.21), the optimal indexes can be given as 7,, = 0.5881,
Ny = 9.1236, ns = 9.6701, n = 111.7048. In order to get the smaller number
for every optimal index, we choose a = 110, 8 = 0.2, v = 0.5. Then we get
M = 0.1676, ny = 7.1242, ns = 18.6399. This phenomenon indicates that
the three indexes are smaller when Algorithm 8.1 is used, which indicates the
superiority of our adaptive method.

To illustrate the effectiveness of the proposed adaptive method, we give
the following simulations.

The fault case considered in the following simulation is : At 0 second, the
first actuator is outage. Here, we choose I3 = lo = 100.

Firstly, we consider the H., performance. The disturbance is given as

cos(t), 4.2<t<6.9
0, otherwise

ar(t) = enlt) = {
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FIGURE 8.4
Response curves of the states with fixed gain controller in normal case.

Figure 8.1 and Figure 8.2 show the response curves of the first state with
the adaptive and fixed gain controller in normal and fault case, respectively.
It is easy to see our adaptive H,, controller can achieve better responses than
the traditional controller with fixed gains in both normal case and fault case
just as theoretic results have proved.

Then, we consider the disturb tolerance problem. The disturbance is given
as

218, 4<t<5

0, otherwise (8.24)

ar(®) = wa(t) = {
Figure 8.3 shows the response curves of the states with the adaptive controller
in normal case, Figure 8.4 shows the responses curves of the states with the
fixed gain controller in normal case. Obviously, under the disturbance (8.24),
the closed-loop system with the adaptive Ho, controller is still stable. How-
ever, the closed-loop system with the fixed gains controller is unstable. This
phenomenon indicates the superiority of our adaptive method.
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8.3 Output Feedback
8.3.1 Problem Statement
Consider an LTI plant described by

z(t) = Ax(t) + Biw(t) + Bao(u)
2(t) = C1z(t) + D120 (u)
y(t) = Cox(t) + Da1w(t) (8.25)

where x(t) € R" is the plant state, o(u) € R™ is the saturated control input,
y(t) € RP is the measured output, z(t) € R?® is the regulated output and
w(t) € R? is an exogenous disturbance in Ls[0, oc], respectively. A, By, Ba,
C1, Co, D12, and D2 are known constant matrices of appropriate dimensions.

The following problem will be considered in this section: The first question
that needs to be answered is, what is the maximal value of § such that the
state will be bounded for all w € 2s? Here we will consider the situation,
zero initial state. The problem related to this question is referred to as dis-
turbance tolerance. The disturbance rejection capability can be measured by
the restricted Lo gain over 2s. In this section we will consider Lo gain and
s at the same time.

Remark 8.4 For the above problem to be solvable, it is necessary for the pair

(A, Bo(I — p)) to be stabilizable for each p € {p*--- pl}.

8.3.2 ARC Controller Design

The dynamics with actuator faults (8.3) and saturation is described by

z(t) = Az(t) + Biw(t) + Bo(I — p)o(u(t))
(1) = Cralt) + Dis(I — po(u(t))
y(t) = Cax(t) + Dayw(t) (8.26)

The controller structure is chosen as

£t) = f(&(t), ), &) eR”
u(t) = Cr(p(t))E(t) (8.27)
where
u(t) = Cr (p(t))&(t) = (Cro + Cra(p(t)) + Crp(p(t)))E(t) (8.28)

and p(t) is the estimation of p,

Cralp(®) = .| Cicasby(®): Crn(p() = Y. Crcais ().
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By Lemma 7.1, the saturated linear feedback, with £(¢) € ([0 H(p(¢))]),
can be expressed as

2m—1

o(Cx(pM)EW) = mIDiCx(p(t)) + Di H(p()E(1) (8.29)

for some scalars 0 <n; <1, 7 € I]0,2™ — 1], such that Zf:o_l n; = 1, and
the following equality holds

om_1

(I = plo(u(t)) = Zi:(} mi[(I = p)DiCko + DiCrkal(p)
— pDiCka(p) + (I — p(t)) DiCku(p(t)) + DiCrka(p(t))
+ pDiCru(p(t)) + (I — p)D; Hro + D; Hra(p)
— pD; Hia(p) + (I = p(t)) Dy Hio(p())
+ D} Hica(p(t)) + 5D; Hico(p())IE(0) (8.30)
where p(t) = p(t) — p.
Now, by Lemma 7.2 we provide one choice of such #;’s, which are Lips-
chitzian functions in £ and p.

b)

i (& H [25(1 = ): (1)) + (1= 25)A;(€(), A(2))] (8:31)

By using the functions n;(£(¢), p(t))’s, the output feedback controller
(8.28) can be parameterized as

0= mAkED + (X miBri(p)w(r)
u(t) = (I — p)o(Cr (p)E(t)) (8.32)
where
AK’L( AK10+AKza( )+Abi( )
BKz( BK10+BK1G( )+BK’Lb( )
Cr(p) = Cko + Cra(p) + Cku(p)
BKia(pA ) Zj PiBriv;

Cka(p) = Z;nzl $iCrajs Crb(p) = Z;nzl P Crc;
> hiAki;
Z =1 ZS 1 ijeAbije + Z PjAKibj

Motivated by the quasi-LPV structure of both the plant and the controller,

) =
) =
) =
) = Z;nzl pjBriaj, Briv(p
)
)
() =
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we consider the following auxiliary LPV system, if (P, §) C p([0 H(p)]) is
an tnvariant set.

de(t) = Ac(n)ze(t) + Be(n)w(t)

z2(t) = Ce(n)ze (1) (8.33)
A =Y Aaae(t), merT
Be(n) =Y m(Baze(t). nel
2m_1
Ce(n) = Zz:O ni(ceixe(t))v ne r (834)
where z. = [27(t) 7)), n = [no, M1, -+, Mam_1], and

m 2™ —1
I={neR*": 24_0 ni=1,0<n<1,iell0, 2™ —1]},
A — { A By(I = p)[DiCk (p) + D; H(p)]
“ Bri(p)C2 Ari(p) ’

B
Bei = [ Bri(p) D21 } ’
Cei = [C1 D12(I — p)(DiCk (p) + Dy H(p))].

The following theorem presents a sufficient condition for the solvability of
the fault-tolerant control problem via dynamic output feedback in the frame-
work of LMI and adaptive laws.

Denote

B ={p=(pr+++pm) 5 p5 € {min{pt}, max(p}}, q € T[1, L]}
and B/ = [0 - 0] with B = [b' - - - b™].

Theorem 8.2 Let ry > 0,7, > 0 and 6§ > 0 be given constants, then the
following two conditions are satisfied

(I) The trajectories of the closed-loop system that start from the origin will
remain inside the domain £*(P,6*) for every w € Ws.

(II) In normal case, i.e., p =0,

S o m D2
/O T ()2(t)dt < 2 /O Wiz Y L Jlio) for 2(0) = 0

and in actuator failures cases, i.e., p € {p* --- pL},

/Ooo 2T (t)z(t)dt < r}% /0°° wT(t)w(t)dt—krj% Z:;l ﬁj?—io),for z(0) =0
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where p(t) = diag{p1(t) --- pm(t)}, p;(t) = p;(t) — pj, if there exist matrices
0 < N1 <Y1, Axio, AKiaj, Axibjs, Brio, Briaj, Brivj, Cko:, Crajy Ckjs
Hyko, Hraj, Hivj, 7 € I[1,m], s € I[1,m] and symmetric matrices ©°, i €
I[0,2™ — 1], with
_[ el oL
o' = i i
[ o1 O ]

and O, ©h, € RmEntd)xmCntd) gych that the following inequalities hold
for all D; € D and €*(P,6*) C p([0 H(p)]), i-e.,|[0 H(p)jz| < 1 for all
x€e*(P,6%),j€I[l,m].

Loy <0, jeI[lm]i 10,2 — 1]
Ol + O1,A(5) + (O1,A(5)” + A(P)ORAR) > 0, j e A,

Noi  Zu; 1 7 T A .
U/ U;+G ©'G<0, i€10,2™—-1],p=0
[ Zi;  Za + r2 7’ * iel] lp
Noi  Zy Lo, T i , m
[ZlTi ZQJ”LT;UiUlJFG ©'G <0, 1€1I)0,2 1],
pe{pt - pl}, p? € Ny (8.35)
where
[ Toi T T
No; = T3y Ty
| * x =1
Zvi = [Zvar Zviz - - - Zhim)s Zoi = [Z2ijs), J, s € I[1,m)]
[ Tsi Tei Tw 0 Ty, O
Ziij = | Tsi Toi Throi |,Z2i5s = | Ti2i Tizi Thia
L0 0 0 0 Tiz 0

Ui=[Uio Ui -+ Ui, Uij=1[0 Tig 0]
Uio=[ C1 Di2(I — p)(DiCko + D; Hko) 0 |
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Toi = V1A — N1 BgioCy + (Y1A — N1 BgioCo)”
T, = Y1Ba[(I — p)(DiCko + D; Hio) + DiCrka(p)
+ D;HKa(p)] — M Akio — N1Akia(p)

Cs
+ MAkia(p)] + (—N1A+ N1BkioCs

+ N1Bgia(p)C2 — [N1Bkia(p)C2S)] { CE;- })T

To; = Y1B1 — N1BgioDa1
T3; = —N1Bo[(I — p)(D;Cko + D Hio) + DiCka(p)
+ D; Hio(p)] + (—N1B2[(I — p)(DiCro + D; Hiko)
+ DiCra(p) + Dy Hru(p)])" + N1Akio
+ N1Agia(p) + (N1Agio + N1 Akia(p))”
Ty; = —N1B1 + N1BgioD21 + [~Y1B2(D:Cka(p)
—Do ]

T
+[ 0 :| ST[—YlBQ(DiCKa(p)+D/L'_HKa(p))

+ D7 Hia(p)) + N1 Arcia(p)]TS [ -

-D
_NlBKia(p)CQS|: 021 :|

Ts; = —N1BkipjCo — N1Bkia;Co
Tei = YiBQ[—p(DiCKaj + D;HKaj) + DiCkypj + Di_Hij]

T
— NiAgap; + [ ] STY1B2((DiCraj + D; Hrcaj)

0

Cy

— p(DiCij + D;Hij)) - NlAKiaj]
T7; = —N1Bgkivj D21 — N1Brgiaj Do

0
Tsi = NiBgipjCo + N1Bgia;CoS [ c ]

To; = N1B2p(DiCraj + Di Hicaj)
— N1Bo(D;Cky; + Dy Hipj) + N1 Aking
Thioi = [YlBQ(DiCKaj + D;HKaj) - YIBQp(DiCij

—Dyy
0

S

+ D; Hypj) — N1Akiag])'S [

-D
+ N1Bgiaj D21 + N1BripjDo1 + N1Bgia;j C2S [ >t }

0
Ti1i = —Y1BY(DiCrps + Dy Hicps) — N1 Axcinjs

T

0 ; _

+ [ oL } STY, B} (D;Ckps + D; Hrcps)
3
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Ti9; = (=Y1B5(DiCkpj + D; Hivj) — N1AKkibsj

T
0 _
+ [ - ] STY1B3(D;Ckyj + D; Hrcps))"
Tizi = N1B}(DiCxps + Dy Hicps) + N1 Ascivs

+ [N1By(DiCrkbs + D] Hips) + N1 Agcinjs] "

—Dyy
0

Tisi = [-DI, 0]STY1 BY(D;Creps + D; Hkps)
Ti6i = D12(I — p)(DiCkaj + D; Hiaj + DiCkvj + D; Hiy,)

Tia = (YlB;(DiCij + Di_Hij))TS |:

Iontdyx (2nta)
oo ce |
Izn+d)x (2n+d)

0 Ln(2n-+d) xm(2n+d)

A(p) = diaglprlionta)x(2nt+d) * Pmdantd)x(@2ntd))-
and also p;(t) is determined according to the adaptive law
P5 = Projuintyty. max(py L1}

pj = min{gg_} and L1; <0

_ ] 0 orp; = I(ilax{ﬁ?} and Li; >0 (8.36)
Ly, qotherwz'se

where

- 4
L= Zi:o Ni{¢" Ni[Akiaj — B2DiCraj — ByDiCxy(p) — BaD; Hicoj

0
+ ByD; Hicaj + BID; Hiy(p)) — N1Akias)é

T
— BID; Hrp(p)]€ + [ y ] ST[Y1(BeD;Craj + ByD;Crep(p)

+ ¢ N1 Bkia;CaS [ g }},
l; >0(j € I[1,m]) and § > 0 are the adaptive law gains to be chosen according
to practical applications.
Proof 8.3 Choose the following Lyapunov function

() =afPre+) =7, (8.37)
J

By p(t) =p(t) — p and
Bkia(p) = Bria(p) — Bria(p)
Akia(p) = Akia(p) — Akia(p)
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A; can be written as

Agi = Acit + Acia + Aciz

A A A Aeila
“! 7 | [Bkio + Bria(p) + Bran(p)|Ca Acitp

Acita = B2[(I = p)DiCko + DiCra(p) — pDiCka(p)

+ (I = p)DiCku(p) + (I — p)D; Hio

+ D; Hra(p) — pDy Hica(p) + (I — p)D; Hip(p)]
Acity = Akio + Aka(p) + Arin(p)

0 AeiQa 0 0
Aei = ~ Aei = ~
2 [ 0 Axia(p) } 3 [ Bria(p)C2 0 ]

Aciza = BaDiCka(p) + B2pDiCrci(p) + BaD; Hio(p) + BapDy Hrco(p)

Let P be of the following form

| i =N
P=[ N W

with 0 < Ny < Y1, which implies P > 0. Since C is of full rank, and Cs
satisfies CoC3T = 0 and C5-CyT nonsingular, it follows that { gf_ } is non-
2

singular. From (8.25), we have

Cox =y, Cioz=Coz,xz=25 [ Cé/‘x } (8.38)
cy, 171 0w
_ 2 R at .
where S = [ ck ] . Then, we have PAgis = [ 0 W } with

Wai = Y1[B2D;Cka(p) + B2pDiCr(p)
+ B2D; Hica(p) + B2pD; Hico ()] — N1Axcia(p)
Wi = N1[Akia(p) — B2D;Cko(p) — B2pDiCrp(p)
— BoD; Hia(p) — B2pD; Hip ()]

which follows
[#7 TP Acin[z” €717 = 2" Wil + T Wiié

Thus, by (8.58), we have

T
xTWaig = |: :g :| STWai§ + [xT ET]Aail [xT §T]T + [xT ET]Bailw
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where

T
AR I O
O O ar O
In the same way, from (8.38) we get
(27 T P Acis[z” €77 = —2" N1Bria(p)C2z + €7 N1Brcia (p)Cax
=2l Aginwe + 2L Buiow + Mz
where
—N1Bkia(p)C2 0
Agiz = . 0
NlBKia(p)CQS i 0

0
B(LiQ = |: Mb :|

Myiz = V' N1 Bkia(p)CaS g ]

—Doq
0

Mpy; = N1Bgia(p)C2S {

Then from the derivative of V(t) along the closed-loop system (8.33), it
follows

gm_1 (t
=227 o i P(A¢ite + Beiw) + 2 Z %
= J

1 om_1 om_1
+ T_sz [Zi_o ng][Zi_o NiCeilte — w'w

7 = =

2mM—1

= 2xeT Zz‘:o i P(Aecirte + Beiw) — wTw

1 om_q . om_q
+ _?xe [Zi:O niCei][ZiZO niCei]xe
+ QxT Z ’L Agin + AazQ)xe + 213T Z i Bazl + BazQ)W + Wi
< T, W()(Ee + Wi
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where
2m_1 2m_1

1 T
Wo = Wor + E[Zizo 7iCe;] [Zizo 1iCeil

om _ 1

Wor = Zi:o Ni[PAcit + Aait + Aaiz + (PAcit + Aait + Aui2)” ]

om _ 1

+ [Zizo 0i(PBei + Bai1 + Bai2)]

2m 1
[Zizo 10i(PBei + Bait + Bai2)]"

m

2m 1 T 2m 1
Wy =2¢" Zi:o NiWpi€ + 2 [ g ] st Zi:o NiWai&

2" = t)NPJ
The design condition that V (t) < 0 is reduced to

Wy <0, (8.39)

Wy <0 (8.40)

Since y and & are available online, the adaptive laws can be chosen as (8.36)
for rendering (8.40) valid. (8.39) is equivalent to

ZQ"”fl 4 He(PAeﬂ + Agi1 + Aai?) *
i—=0 (PBei + Bai1 + Bai2)T =1

1 2=1,.0T m_
+E[Ez=00n ez}{z?olmca 0}<0 (8.41)
Notice that
PA,, = Y1A — N1[Bkio + Bria(p) + Brn(p)]C  We
“ —N1A+ Ni[Bgio + Bria(p) + Brin(p)]C Wy

)

Y1B1 — Ni[Brio + Bria(p) + Brin(p)] Doy ]

—N1 By + Ni[Brio + Bria(p) + Briv(p)] D21

W, =Y1Ba[(I — p)DiCko + DiCxa(p) — pDiCrao(p)
+ (I = p)DiCks(p) + (I — p)Di Hro + D; Hica(p)
—pD  Hio(p) + (I — p)D; Hrp(H)]

— Ni[Akio + Ara(p) + Axiv(p)]

Wq = —N1B2[(I — p)DiCko + DiCra(p) — pDiCra(p)
+ (I = p)DiCks(p) + (I — p)Dy Hro + D; Ha(p)
—pD; Hro(p) + (I — p)D; Hro(p)]

+ Ni[Agkio + Axa(p) + Ariv(D)]

PBei:|:
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Furthermore (8.41) can be described by

om_q 1 om _1 om _1

W(p) = Zi:o niWai(p) + —?(Zizo 77¢W3i)T(Zi=0 niWsi) <0

m m m
Wai(p) = Noi + Z PgZug ijl piZ1i5)" + ijl Zs:l PiPsZ2ijs
W3’L = 1,0 + Z

where Noi, Z1ij, Zoijs, 3, € I[1,m] are defined in (8.35).
Let

Qi(p) = Wai(p) + %(Wm ()T (Was(9))

By Lemma 2.10, we can get Q;(p) < 0 if (8.85) holds, which implies Wy <
0 by Schur complement. Together with adaptive laws (8.36), it follows that the
following inequality (8.42) holds for any z. € ([0 H(p)]), p € {p* -+ pL},
p? € Ny and p satisfying (8.30). The proofs for the normal case of closed-loop
system (8.33) are similar, and omitted here.

. 1
V(t) + T—QZT(t)z(t) — W (tw(t) <0, (8.42)
I
To prove item (I):
V(t) < xeTWma:e + W +wlw.
Then by the proof of item (II), we have
1%4 < wlw

which implies that

S m P2
V(. (t)) < /O Wb+ Y Jlio) <

for z(0) = 0.
Then, the conclusion can be drawn that trajectories of the closed-loop sys-
tem that start from the origin will remain inside e*(P,§*) for every w € 2.

Corollary 8.2 The adaptive Ho, performance indexes are no larger than ry,
and r¢ in normal and actuator failure cases for closed-loop system (8.33), if
(8.35) holds forry > r, > 0, correspondingly, the controller gain and adaptive
law are given by (8.35) and (8.56), respectively.

~2
Proof 8.4 Let F(0) = E;n:l p~7l§0). Then, by (8.36), it follows that p;(0) <
mjax{ﬁ?} - m]m{gg} We can choose 1; sufficiently large so that F(0) is suf-

ficiently small. Thus the conclusion follows from the item (II) and Definition
3.1.
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If we take the following reliable H., controller with fixed parameter matrices
Akio, Brio, Cko, i € I[0,2™ — 1]

om _q om _ 1

§0) =0, mAko)st)+ Q. mBrio)y(®)
u(t) = (I = p)o(Croé(t)) (8.43)

then combining (8.43) with (8.25), it follows:

21 (t) = Cor () (1) (.44)
Aa) =Y " nAawa®). el
Bt =Y " n(Bawat), el
2m
Caln) =) m(Cawalt), ner (8.45)

!

where z.1 = [¢7(t) T (1)]7T,

A, — A By (I — p)[DiCko + D; Ho)
o BrioC> Arxio ’

_ By
Bewi = [ BrcioDa1 ] ’

Ce1i = [C1 D12(I — p)(DiCko + D; Hyp)]

The following lemma presents a condition for the system (8.44) to have
performance bounds.

Lemma 8.1 Consider the closed-loop system described by (8.44), and let ry, >
0 and ry > 0 be given constants. Then the following statements are equivalent:

(i) there exist a symmetric matric X > 0 and controller K described by
(8.43) such that

eli eli

1

AL X + X Ao + X B BL, X + r—chTuceM <0
n

holds for p =0, and

T
Aelz eli iCeli <0

1
X + XAe1i + XBey;BL, X + T—QCeTl
f
holds for p € {p* -+ pl}, p? € Ny
(i1) there exist symmetric matrices Y1 and Ny with 0 < Ny < Y1, and
a controller described by (8.43) with Ao = Akeio, Brio = Bkeio, Cro =
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Ckeo, Hy = Heo, @ € 1[0,2™ — 1] such that V1 (r,) < 0 holds for p =0, and
Vi(ry) <0 holds for p € {p* -+ pL}, p? € N,a, where we define

T T Y1Bi1 — Ni1BgeioDoar ct
* T2 —Ni1Bi+ NiBgeioD21 Tis
* * -1 0
* * * —r?]

Vi(r) =

with
Tio = Y1A — N1BreioCo + (Y1 A — N1 BiioC2) ™
T =Y1Bo(I — p)(DiCreo + D; Hep) — N1AKeio
+ (=N1A + N1 BgeioCa)"
Tio = —N1Bo(I — p)(DiCkeo + D; Heo) + N1Akeio
— [N1Ba(I = p)(DiCreo + D; Heo) = N1Agceio]”
Ti3 = (D;iCleo + D; Heo)(I — p) D1,

Proof 8.5 The proof is similar to the proof of Lemma 5.1. To avoid overlap,
the proof is omitted.

Next, a theorem is given to show that the condition in Theorem 8.1 for the
adaptive controller design is more relaxed than that in Lemma 8.1 for the
traditional controller design with fixed parameter matrices.

Theorem 8.3 If condition (i) or (i) in Lemma 4 holds, then the condition
of Theorem 1 holds.

Proof 8.6 If condition (i) or (i) in Lemma 4 holds, then it is easy to see
that the condition in Theorem 8.1 is feasible with Axia; = Akivi = Axibjs =
Briaj = Brij = Ckaj = Ckyj = Hraj = Hip; = 0, 4 € 1[0,2" — 1],
Jj €1I[1,m], s € I[1,m]. The proof is completed.

From Theorem 8.1, we have the following algorithm to optimize the adap-
tive H, performance in normal and fault cases and the disturbance tolerance
level 4.

Let 7, and r denote the adaptive H., performance bounds for the nor-
mal case and fault cases of the closed-loop system (8.32). Let ¢ denote the
disturbance tolerance level. Then r,, ry are minimized and ¢ is maximized if
the following optimization problem is solvable

min 1 = an, + Bny + Yns
s.t.(a) (8.35),
(b) e"(P,6%) C ([0 H(p)]), (8.46)
2 1

1
where n, = r;, ny = r?, N = 3 = =5~ and «, (3, 7 are
s+max{371, —}

L
weighting coefficients.
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However, there are two problems as follows, which should be considered.

(1) By Definition 7.4, we have that (b) can not be shown as LMIs directly,

Obviously, e*(P,0*) C e(P,0*), which implies that (b) can be replaced
with (b1).

(b1) (P.5%) C p([0 H(p)). (8.47)

Condition (b1) is equivalent to

1 5)] -
O O Il ET R
for all j € I[1,m], where [0 h(p)]; is the jth row of [0 H(p)]. We have that
(8.35) is equivalent to the following inequalities.

(b2) [—;75 —[OEDKOs]}

m
+3 4 [ 00 = Hras = Hivisl | o pea,
where Hyqjs is the sth row of Hg,j, s € I[1,m].

(2) Tt should be noted that condition (8.35) is not convex. But when
Cko,CKkaj, Crbj, Hro, Hiaj, Hipj are given, they become LMIs.

From Theorem 8.1, we have the following algorithm to design the adaptive
output feedback controller.

Algorithm 8.2

Step 1 Suppose that all states of system (8.25) can be measured. Minimize the
following index to design the state-feedback controller.

n = an, + By + s

Then, the matrices Cro, Ckaj, Crbvj, Hro, Hiaj, Hipj can be given.
Step 2 Solve the following optimization problem

min N = oan, + BNy + s
s.t.(a), (b2)

Remark 8.5 Step 1 is to determine matrices Cko, Ckaj, Crbjy Hro, Hiaj,
Hpyj, which solves the corresponding adaptive controller design problem via
state feedback. This procedure is adapted from the last section, and convex
conditions are described. To avoid overlap, the conditions appearing in Step 1
will be omitted.

From Lemma 8.1, we have the following algorithm to design the fault-
tolerant controller with fixed gains.
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Algorithm 8.3 Step 1: Suppose that all states of system (8.25) can be mea-
sured. Minimize the following index to design the state-feedback controller.

n = an, + BNy + s

Then, the matrices Cko, Hgo, can be given.
Step 2: Solve the following optimization problem

min N = on, + BNy + s
s.t.(a), (b2)

Remark 8.6 Step 1 is to determine matrices Cko, Hgqo, which solves the
corresponding adaptive controller design problem via state feedback.

Remark 8.7 In Step 1, for some cases, the magnitude of the designed gains
Cro (Ckaj and Crp;) may be too large to be applied in Step 2. For solving the
problem, by adding the following constraints, where Q and Yo are variables
in conditions of Step 1

Q> al, YoV, <pl, (8.49)

then the magnitude of Cko can be reduced. In fact, by Cro = Ygo@ ™' and
(8.49), it follows that

I Cxo lI< v/B/a

The similar method can be used for the gains Ckq; and Cku;.

8.3.3 Example
Example 8.2 Consider the system of the form (8.25) with

A:{o.m 0.1}731:{0.1 0}’32:[20 0}7

0.6 0.01 0.01 0 0 20
0.01 0 0 0

Cl=| 0 0f,C2=[1 0],D12= {05 0 |,D21=[0 0.1]
0 0 0 01

and the following two possible fault modes:
Fault mode 1: Both of the two actuators are normal, that is,
pr=py=0.

Fault mode 2: The first actuator is outage and the second actuator may be
normal or loss of effectiveness, described by

pi=1, 0<p3 <a,



ARC with Actuator Saturation and Lo-Disturbances 197

where a = 0.5 denotes the maximal loss of effectiveness for the second actua-
tor.

Let « = 10, 8 = 1, v = 10, the optimal indexes with fixed controller
gains are 7, = 0.0134, ny = 0.1581, n; = 0.0866, n = 1.1588. By using
Algorithm 8.2, the optimal indexes can be given as 7,, = 0.0027, ny = 0.0079,
ns = 0.0212, n = 0.2473. This phenomenon indicates the superiority of our
adaptive method.

8.4 Conclusion

In this chapter, an adaptive fault-tolerant H., controllers design method is
proposed for linear time-invariant systems with actuator saturation. The resul-
tant design guarantees the adaptive H,, performances of closed-loop systems
in the cases of actuator saturation and actuator failures. An example has been
given to illustrate the effectiveness of the design method.



9

Adaptive Reliable Tracking Control

9.1 Introduction

Recently, there are also several approaches developed to solve tracking prob-
lems [64, 81, 82, 84, 123, 148, 149, 164]. The classical approach for LTI systems
has been to design a closed-loop system that achieves the desired transfer func-
tion as close as possible [64]. The inherent shortcoming is over-design. Game
theory [123] is most suitable to finite time control of time-varying systems. The
linear quadratic (LQ) control theory method [82] requires a prior knowledge
of dynamics of the reference signal. The H, optimal tracking solution [148]
is suitable for cases where the tracking signal is measured online and it can
hardly deal with the case where a prior knowledge on this signal is available or
when it can be previewed. However, there are only a limited number of papers
devoted to reliable or fault-tolerant tracking control problems. In order to re-
alize the reliable tracking control in the presence of actuator faults, a method
based on robust pole region assignment techniques [164] and a method based
on iterative LMI [84, 149] have been proposed. The latter is a multi-objective
optimization methodology, which is used to ensure the designed tracking con-
troller guarantees the stability of the closed-loop system and optimal tracking
performance during normal system and maintains an acceptable lower level of
tracking performance in fault modes.

In this chapter, we shall investigate the reliable tracking control problem
of linear time-invariant systems in the presence of actuator faults. The type
of fault under consideration here is loss of actuator effectiveness, which is
different from those in the previous chapters. Combining LMI approach with
adaptive methods successfully, we design a novel adaptive reliable controller
without using an FDI mechanism. The newly proposed method is based on
the online estimation of an eventual fault and the addition of a new control
law to the normal control law in order to reduce the fault effect automatically.
The main contribution of this chapter is that the normal tracking performance
of the resultant closed-loop system is optimized without any conservativeness
and the states of fault modes asymptotically track those of the normal mode.
Since systems are operating under the normal condition most of the time, this
contribution is very important in actual control system design. A numerical
example of a linearized F-16 aircraft model and its simulation results are given
to demonstrate the effectiveness and superiority of the proposed method.

199
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9.2 Problem Statement

Consider a linear time-invariant system described by

z(t) = Ax(t) + Bu(t)
y(t) = Cu(t) (9.1)

where x(t) € R™ is the state, u(t) € R™ is the control input and y(t) € RP is
the output, respectively. A and B are known constant matrixes of appropriate
dimensions.

To formulate the reliable tracking control problem, the actuator fault model
must be established first. Here, the type of the faults under consideration is
loss of actuator effectiveness [133, 164].

uf (t) = piwi(t), pi€lp,pl, 0<p, <1,p>1 (9:2)
where uf’(t) represent the signal from the actuator that has failed. p; is an

unknown constant and p; and p; represent the lower and upper bounds of p;,
respectively. Note that, when p; = g; = 1, there is no fault for the ith actuator
Uj. o

Denote

uf () = [uf (1), u3 (t), - up, (O] = pu(t) (9:3)
where p = diag[p1, p2, - - - pm] and
A={p :p=diaglpi,p2, - pml, pi € lp;,ps}, i=1,2,---,m} (94)
Hence, the dynamics with actuator faults (9.2) is described by
&(t) = Az(t) + Bpul(t)
y(t) = Ca(t) (9.5)

Considering the lower and upper bounds (p;, p;), the following set can be
defined

N, =A{p : p=diaglps,p2, - pml, pi=p, pi=pi, i=12,---,m}
(9.6)

Thus, the set N, contains a mazimum of 2™ elements.

Consider the system described by (9.5) with actuator faults (9.2). The
design problem under consideration is to find an adaptive controller such that
(i) During normal operation, the closed-loop system is asymptotically stable
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and the output Sy(t) tracks the reference signal y,(t) without steady-state
error, that is
tlim e(t) =0, e(t)=uyr(t)—Sy(t) (9.7)
—00
where S € RY¥? is a known constant matrix used to form the output required

to track the reference signal. Moreover, the controller also minimizes the upper
bound of the performance index

Je = /0 (" ()Qun(t) + =" (£)Qax(t) + u” (t) Ru(t)] dt (9.8)

where 1 = fot e(t)dr, Q1 € R, Qo € R™™ are positive semi-definite matri-
ces and R € R™*™ is positive definite matrix.

(ii) In the event of actuator faults, the closed-loop system is still asymptot-
ically stable and the output Sy(t) tracks the reference signal y,.(t) without
steady-state error. Moreover the state vector of post fault case asymptotically
tracks that of the normal case, which has the designed performance.

It is well known that the tracking error integral action of a controller can effec-
tively eliminate the steady-state tracking error. In order to obtain an adaptive
reliable tracking controller with tracking error integral, we combine equation
(9.1) and (9.7) and have the following augmented system

B0 5P [ [ o
Let # = [n7(t) 7 (t)]", then the augmented system can be changed into

z(t) = Az(t) + Bu(t) + Gy,(t) (9.10)

i< 5 0-[3) -

Moreover, the augmented system with actuator faults (9.2) is described by

where

z(t) = AZ(t) + Bpu(t) + Gy, (t) (9.11)

where A, B and G are the same as (9.10).

9.3 Adaptive Reliable Tracking Controller Design

In this section, a sufficient condition for the optimization of normal tracking
performance problem is first given. Secondly, based on the normal controller,
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we add a new control law to the normal law in order to reduce the fault effect
on the system and achieve the desired control objective by using adaptive
method.

Now we design the normal controller uy(t) for the augmented system
(9.10) with the following state feedback tracking controller

un(t) = Kna(t) = [K, K] {28] (9.12)

The closed-loop augmented normal system is given by
z(t) = (A+ BKN)Z(t) + Gy, (t) (9.13)

A linear matrix inequality (LMI) condition for the optimization of the guaran-
teed cost control problem of the augmented normal system (9.13) is presented.

Lemma 9.1 Consider the closed-loop augmented normal system (9.13) and
the performance index (9.8). For a given positive constant -, if there exist
symmetric matrices Z,T € R"DX0+D) and o matric W € R D sych
that the following linear matriz inequalities hold:

[AZ + BW + (AZ + BW)T G  WTR: ZQ:
. * —~I 0 0
(%) . . o o | <0 (019
L * * * -1
[T I
() Iz >0 (9.15)

where QQ = diag[Q1,Q2] > 0 and R > 0. Then the following controller stabi-
lizes the closed-loop augmented normal system (9.13)

un(t) = Knz(t), Kn = [K,), K] =WZ™! (9.16)
Furthermore, an upper bound of performance index (9.8) is given by

Jp <~ /0 t yI (t)y,(t)dt + 27 (0)Tz(0) (9.17)

Here  corresponds to the Hoo norm || Ty,
input y,(t) to the performance output

of the transfer function from the

2(t) = [Q7,0)7&(t) + [0, R?] u(t) (9.18)

The upper bound of performance index J can be minimized by solving the
following optimization problem with the MATLAB LMI toolbox:

min Trace(T') s.t. (9.14) (9.15) (9.19)
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Proof 9.1 By the Lemma 2.8, (9.14) is equivalent to

AZ + BENZ + (AZ + BExZ)T + %GGT +ZQZ+ ZKLRKNZ <0
(9.20)

Post- and pre-multiplying the inequality (9.39) by P = Z~1, we obtain
- = - = 1
P(A+BKy)+ (A+BKN)TP + ;PGGTP +Q+KLYRKN <0 (9.21)

Since vy >0,Q >0,Q=QT and R>0,R=R", then
P(A+ BKy)+ (A+ BKN)TP <0 (9.22)

According to Lyapunov stability theorem, the controller un(t) = KnZ, which
satisfies (9.14) stabilizes the augmented system (9.10). Furthermore,

Jp < — /t T () {[P(A+ BKy) + (A+ BKy)"' P] + %PGGTP}E(t)dt
0

=- /t{[:b — Gy, ()" Pz + 77 Pl — Gy, (t)] + %JETPGGTP:E}dt
0

t

<- / AT () PE(t)] + / oy (t)yr (£)dt
<~ /O o7 (g, (£)dt + 27(0) PE(0)

<o /0 o7 (#)yr (B)dt + 27 (0)TE(0) 9.23)

The proof is completed.

Now for normal operation, we have designed the normal control law uy (t) =
KNf(t).

Next, we begin to design an adaptive reliable controller based on the normal
control law un(t) = KnZ(t). The main controller stricture is to compute a
new control law u.q(t) to be added to the normal control law in order to
compensate for the fault effect on the system, that is

u(t) = un(t) + uqa(t) (9.24)

The additive control law u.q(t) is zero in the normal case and different from
zero in fault cases. The FTC scheme is summarized in Figure 9.1. In order to
obtain online information on the effectiveness of actuators, we introduce the
following target model described by

Ai(t) + Bp(t)r(t)
Ci(t) (9.25)

=
—~

t)
t

<<
—~
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FIGURE 9.1

Reliable control scheme.

where p(t) = diag{p1(t) - pm(t)} denotes the estimate of the actuator effi-
ciency factor. The input r(tf) € R™ is determined so as to achieve the control
objectives.

The augmented system of the target model (9.25) is

#(t) = A% (t) + Bp()r(t) + Gy (t) (9.26)

where Z(t) = [77(t) 27 () ] , = fo T)dT, é(t) = y.(t) — S§(t) and A, B,
G are the same as those in normal operatlon (9.10).

If we define the state error vector of augmented system as e(t) = Z(t) — Z(¢)
and let the control input u(t) = r(t) — Fe(t), then the augmented state error
equation between (9.11) and (9.26) is written as

é(t) = Ae(t) + BpFe(t) + B(p(t) — p)r(t)
= (A + BpF)e(t) + Bp(t)r(t) (9.27)

where p(t) = p(t) — p = diag{p1(t) - - pm(t)}. Here F is the error feedback
gain to be designed to make the augmented state error equation (9.27) stable.

Let B = [by---by) and 7(t) = (r1(t) - 7m(t))T, then the augmented state
error system (9.27) can be written as

é(t) = (A+ BpF)e( i@ﬁ t)rs(t (9.28)

Theorem 9.1 The augmented state error system (9.28) is stable if there exist
a symmetric matriz Z; € RTDX0HD) S 0 and a matric Wy € R0 such
that the following linear inequalities hold for all p € N,

AZy + 2, AT + BpWwy, + W pBT <0 (9.29)
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and also p;(t) is determined according to the adaptive law
ﬁi = P’I"Oj[gv,ﬁi]{—lieTPBiTi}

and —L;eT Pbr; <0 or

O f' ﬁ’b( ) _
' and — l;eT Pbyr; > 0; (9.30)

= B ﬁz( )
—1;eT Pb;r;, otherwise

p;
p

where 1; > 0,0 < p; <1 andp; > 1,i=1---m. Proj{-} denotes the projec-
tion operator [170], whose role is to project the estimates p;(t) to the interval
[pi, pi]. Then the error feedback gain F is obtained by F = Wy 2zt

Proof 9.2 We choose the following Lyapunov function

V=T (0Pe(t) + Y Pt (9.31)

where P = Zfl. The derivative of V along the trajectory of the augmented
state error equation (9.28) can be written as

V =€eT[P(A + BpF) + (A—l—BpF)TPe—i—Zsze Pbm—i—ZZpl :

Z

i=1
(9.32)
Due to p; is an unknown constant, we have p;(t) = py(t).
If the adaptive law is chosen as
pi = ij si—lie Tpbr;}
0 r pi(t) = Py and —1;eTPbyr; <0 or
= ’ - ! pi(t) = pi, and —l;eT Pbir; > 0;
—1;eT Pbir;, otherwise
then we have
p;”l < —pieT Phiri (9.33)
K3
s0
V < eT[P(A+ BpF)+ (A+ BpF)"Ple (9.34)

From (9.29) and F = WlZ ,Z1 = P71 we have
P(A+ BpF)+ (A+ BpF)'P <0 forall p€ N,.
Furthermore, by the above mentioned LMI, we can obtain

P(A+ BpF) + (A+BpF)'P <0 forall pcA,
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that is
V < —ale|* <0, (9.35)
where

@ = — Amax|P(A + BpF) + (A+ BpF)"P] > 0. (9.36)
pEA
We can get V € L™ according to (9.35). It also implies e € L* from (9.581),
so the augmented state error (9.28) is stabilized. Furthermore, if we integrate
(9.85) from 0 to oo on both sides, we can obtain e(t) € L?. The proof is
completed.

Next, we design r(t) so that the augmented system of target model (9.26)
matches that of the normal model (9.10).
Let 7(t) = p~1(t)KnZ(t), then (9.26) becomes

i(t) = AZ(t) + BKyi(t) + Gyr(t) (9.37)

which matches the closed-loop augmented system of normal case (9.13) ex-
actly.

So from the result of Lemma 1, we get Z(t) € L. It also implies r(¢) is
bounded. Together with e(t) € L°, we can obtain the state vector of aug-
mented fault model (9.11) Z(t) is also bounded. According to the state error
system (9.27), we can obtain é(t) is bounded. This, along with a fact that
e(t) € L N L?, implies that lim; o e(t) = 0 i.e., Z(c0) = F(c0) = Zn(c0)
where Ty (t) represents the state vector of the augmented normal system. So
the state vectors in fault cases asymptotically track that of the normal state
and the control objective is achieved.

Here the chosen adaptive controller is

u(t) =r(t) — Fe(t) = p~ () Kni(t) — Fe(t) = un(t) + uqa(t) (9.38)

where un (t) = KnZ(t), uqa(t) = p~ () (I — p(t))KnZ(t) + (KN — F)e(t).
Prior to any failures, the error system is at its equilibrium, i.e., e(t) = 0
and p;(t) = 1 if we choose e(0) = 0 and $;(0) = 1. At this time, u(t) = un(¢)
since uqq(t) = 0. This implies the closed-loop normal system with controller
(9.38) can achieve the optimized tracking performance.
When faults in actuators occur, the corresponding efficiency factor p; devi-
ates from 1, thus creating a mismatch between Z(¢) and Z(t); Hence nonzero
state error occurs. At the same time, the adaptive estimates of the actuator
efficiency factor become active. A new control law wuq4(¢) is added to the nor-
mal law. Then the fault cases compensate the fault effect automatically and
asymptotically track the normal case.

Remark 9.1 Using the MATLAB LMI toolboz, we can directly solve (9.29)
forall p € N, (here N, contains a mazimum of 2™ elements) and get a feasible
solution of Z1 and Wy. Then the corresponding error feedback gain F can be
obtained by F = WlZfl.
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Remark 9.2 The proposed controller design procedure optimized the normal
tracking performance. This presents an advantage as systems are operating
under the normal condition most of the time. Because Kn = WZ~ ' in (9.14)
and FF =Wy Z, Lin (9.29) are irrelative, the performance optimization proce-
dure of the augmented normal system is without any conservativeness.

9.4 Example

Example 9.1 In this section, an example of tracking control for a linearized
F-16 aircraft model is given to demonstrate the proposed methods. After lin-
earization and allowing the left/right control surfaces to move independently,
the aircraft model is described by

#(t) = Ax(t) + Bu(t)
y(t) = Cz(t) (9.39)

where z(t) = [u,w, q,v,p,r|T is the state, u(t) = [Onr, Onis Oar, dat, 6,7 is the
control input and y(t) = [q, firot, Tstab, @, 8] 1 is the output, respectively. u,v, w
are components of aircraft velocity along X, Y, Z body axes, respectively. p,q,r
are roll rate about X body axis, pitch rate about Y body axis and yaw rate
about Z body axis, respectively. Spi, dar, 0al, 0y are Tight horizontal stabilator,
left horizontal stabilator, right aileron, left aileron and rudder, respectively.
[trot 18 stability-azis roll rate and rsiqp s stability-azis yaw rate. a is angle of
attack and B is angle of sideslip.

[—0.0150 0.0480 —5.9420  0.0020 0 0
—0.0910 -0.9570 138.3610 0.0160 0 0
A 0 0.0050 —1.0220 —0.0010 0 —0.0030
0 0 0 —0.2800 6.2670 —151.1440
0 0 0 —0.1820 —3.4190 0.6400
| 0 0 0.0030 0.0450 —0.0300 —0.4540
[ 0.0240  0.0240  0.0250  0.0250 0 ]
—0.1720 —-0.1720 —-0.1800 —0.1800 0
B— —0.0870 —0.0870 —0.0080 —0.0070 0
—-0.3150 0.3150  0.0230 —0.0230 0.1210
—0.1890 0.1890 —0.3460 0.3460  0.1240
|—0.1680  0.1680 —0.0150 0.0150  —0.0590|
[0 0 57.2960 0 0 0
0 0 0 0 57.2470  2.3700
C= 0 0 0 0 —2.3700 57.2470
—0.0160 0.3760 0 0 0 0
| O 0 0 0.3760 0 0
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FIGURE 9.2

Required output responses in normal case with adaptive controller (solid) and
fixed gain controller (dashed).

A, B and C are given in the appendiz, which are the same as those in Example

1 of [84].

Here, each of the five actuators may lose its effectiveness. The lower and upper
bounds of each effectiveness factor are 0.1 and 1, respectively.

The tracking command in the simulation is step of final value 2.
Let v =2 and

01000
S=10 0 0 1 0|,Q: = diag[0.16,0.09,0.25], Q; = diag[0,0.04,0,0,0,0].
0000 1

R = diag[0.25,0.25,0.01,0.01, 0.04],

where the matrix S determines the output required to track, i.e., fi o, @, 3.
In order to maintain the conventional control surface movements (i.e., symmet-
ric motion for left and right horizontal stabilator, and antisymmetric motion
for left and right ailerons) under normal operation, we force

Ky = [KlTvKlTaKga —KQT,K?T]T
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FIGURE 9.3

State vector in normal case with adaptive controller (solid) and fixed gain
controller (dashed).

with K1, K, K3 € RP>(Hn),

For comparison purpose, our adaptive reliable controller and a traditional
reliable controller with fixed gains are carried out in the following simula-
tion. From Theorem 9.1, we can get the normal controller un(t) = Knyz(t)
with an optimal normal tracking performance of 59.8713. However, if we solve
the reliable tracking problem with a fixed gain controller Ky guaranteeing all
possible cases stabilized and normal tracking performance optimal, instead of
this adaptive reliable tracking controller u(t) = upn(t) + uqa(t), the designed
optimal normal tracking performance is 246.1533 with achieved normal perfor-
mance 143.6311. As systems are operating under the normal condition most of
the time, this fact that our adaptive reliable tracking controller improves the
normal tracking performance significantly compared to the fixed gain tracking
controller Ky is more considerable and important.

To verify the superior performance of the proposed adaptive controller,
the following simulations are achieved with the case that actuator fault occurs
while the aircraft is maneuvering. Here angle of attack maneuver is considered.
The initial angle of attack command is 0 degree and after 2 seconds, the
angle of attack command changes into 15 degrees. Then at ¢ = 8 seconds, it
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FIGURE 94

Input vector in normal case with adaptive controller (solid) and fixed gain
controller (dashed).

becomes -10 degrees and recovers to 0 degrees at ¢t = 12 seconds. During this
time, stability axis roll rate and angle of sideslip commands remain 0 degree.
Simulation studies are also carried out to verify the superiority of the designed
controller.

Figure 9.2-Figure 9.4 are response curves in normal case. From Figure 9.2,
we find that the proposed adaptive method tracks the command faster. In
Figure 9.3, the state vector convergent rate with adaptive controller is no
worse than the fixed gain controller K. Moreover, due to the same tracking
command, those state vectors of the two controllers may converge to the same
values. Figure 9.4 is the control input histories with these two controllers.

Next, the following fault case is considered. At ¢ = 2 (seconds), rudder
actuator loss of effectiveness of 30% has to be tolerated.

Figure 9.5 -Figure 9.7 describe some response curves in fault case. In Fig-
ure 9.5, our adaptive controller performs better even in fault case. It should
be noted that in our adaptive design the required output responses track the
command in fault case indirectly by the augmented state vector of fault case
tracking that of normal case. To verify the characteristic of our adaptive track-
ing controller, the state error between fault case and normal case with these
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FIGURE 9.5
Required output responses in fault case with adaptive controller (solid) and
fixed gain controller (dashed).

two controllers is given in Figure 9.6. From our adaptive controller designed
process, the state error vector can quickly converge to zero. While in fixed
gain controller design, this property cannot be guaranteed. However, state er-
ror may become zero after required output responses track the same tracking
command. The corresponding control input histories are given in Figure 9.7.

Even though the newly proposed adaptive reliable controller works better
in the absences of modeling error, measurement noise and disturbance, it is
also important to show its robust performance in the presence of uncertainty.
Accordingly about 50% modeling error which occurs in the value of system
matrix A, a vertical gust disturbance of 5 m/s and a white Gaussian noise with
variance of 0.01 are introduced into the system and measurement channels,
respectively. Subsequently, the performance of the system is evaluated for the
fault case. The required output responses and input history are shown in
Figure 9.8 and Figure 9.9, where one can clearly see the adaptive controller
still performs better. Summarizing all the cases (normal case and fault cases),
it is noted that the adaptive tracker design method can significantly improve
the normal performance than fixed gain method in both theory and simulation
results. And in fault case, our adaptive reliable tracker has better results than
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State error between fault case and normal case with adaptive controller (solid)
and fixed gain controller (dashed).

those of fixed gain reliable controller K. It can also be observed that as more
and more fault cases are considered in the design, our method gives more
improvement of tracking performance in normal case.

9.5 Conclusion

This chapter has studied the reliable tracking problem for linear systems
against actuator faults using the LMI method and adaptive method. Based
on the online estimation of eventual faults, a new control law is added to the
normal control law to reduce the fault effect on systems without the need for
an FDI mechanism. The proposed controller can make the normal tracking
performance of the closed-loop system optimized without any conservativeness
and make the states of fault modes asymptotically track that of the normal
mode. The simulation results of an example of F-16 have been given to show
the effectiveness of the proposed method.
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Input vector in fault case with adaptive controller (solid) and fixed gain con-

troller (dashed).



214 Reliable Control and Filtering of Linear Systems

Stability axis roll rate (deg/s) Angle of attack (deg) Angle of sideslip (deg)
8 T 20 T 8 T
6 151 M 6
4 b
101
5 L
0
2t
-5¢
4t
-10 [ o 1 —6 L
-8 . -15 . -8 -
0 10 20 0 10 20 0 10 20
time(s) time(s) tiem(s)

FIGURE 9.8
Robust required output responses in fault case and uncertainties with adaptive
controller (solid) and fixed gain controller (dashed).
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Robust input vector in fault case and uncertainties with adaptive controller
(solid) and fixed gain controller (dashed).
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Adaptive Reliable Control for Nonlinear
Time-Delay Systems

10.1 Introduction

Over the last three decades, considerable attention has been paid to analysis
and synthesis of time-delay systems [12, 51, 69, 89, 92, 93, 103, 116, 147]. The
increasing interest about this topic can be understood by the fact that time
delays appear as an important source of instability or performance degrada-
tion in a great number of important engineering problems involving material,
information or energy transportation [23, 33, 34, 56, 57, 98, 104, 130, 135, 137,
144, 158, 159, 163]. In Chapter 9, the adaptive reliable tracking controller de-
sign for linear time-invariant systems is investigated. It should be noted that
the proposed method in Chapter 9 is not suitable for the dynamic systems
with time-delay.

Based on the theory of Chapter 9, we will focus on the adaptive reliable
control problem of a class of nonlinear time-delay systems with disturbance.
Here, the actuator faults are types of loss of effectiveness. Comparing with
other existing results about time-delay systems, the novelty of this chapter
lies in the following aspects. Firstly, the performance index in normal case is
optimized in the framework of linear matriz inequalities. Since systems are
operating under the normal condition most of the time, this phenomenon is
meaningful. Secondly, an appropriate Lyapunov-Krasovskii functional is cho-
sen to design a new delay-dependent adaptive law to compensate the fault
effects on systems and to prove stability in normal and fault cases. Thirdly,
the state vectors of normal and fault cases with disturbance can track that
of the normal case without disturbance, which has the designed optimal per-
formance. Numerical and simulation results are also provided to demonstrate
the effectiveness of the proposed controller.

217
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10.2 Problem Statement

Consider a class of nonlinear time-delay systems described by

i(t) = Az(t) + Aaz(t — d) + A1 f(t, 2(t), 2(t — d)) + Bu(t) + Biw(?)
x(t) = ¢(t), te[-d,0] (10.1)

where z(t) € R™ is the state, u(t) € R™ is the control input, respectively.
d is a positive constant delay. w(t) € Lo [ L2 is the exogenous disturbance,
{6(t),t € [—d, 0]} is a real-valued initial function, f (¢, z(t), z(t—d)) is a known
nonlinearity. Matrices A, Ay, A1, B, By are constant matrices with appropriate
dimensions.

Assumption 10.1 For all x1,x2,y1,y2 € R™, the nonlinear function satisfies

Hf(taxth) - f(taylva)” é
[Mi(21 —yo)|| + | M2(22 — y2) ||

where My, My are real constant matrices.

The same actuator fault model as that in Chapter 9 is considered here
ul (t) = piui(t), pi € [pi, pi], 0<pi <1, pi>1 (10.2)

where ul’(t) represents the signal from the actuator that has failed. p; and p;
represent the lower and upper bounds of p;, respectively. Here, the considered
actuator faults are types of loss of effectiveness. Note that, when p; = p; = 1,
there is no fault for the ith actuator u;. Moreover, A and IV, are the same as
those in Chapter 9.

Hence, the dynamic with actuator faults (10.2) is described by

x(t) = Ax(t) + Agx(t — d) + A1 f(t, 2(t), z(t — d)) + Bpu(t) + Biw(t)
£(t) = 9(0), t € [~d,0) (103)

When p = I, the system (10.3) is the normal model (10.1).

Control objectives: During normal operation and in the event of ac-
tuator faults, the closed-loop system is asymptotically stable and the state
vector of closed-loop asymptotically tracks that of the normal case without
disturbance, which makes the bound of the following quadratic cost function
J optimized

J= / () N1z (t) 4+ u” (t) Nou(t))dt (10.4)
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10.3 Adaptive Reliable Controller Design

In this section, a sufficient condition for the optimization of normal tracking
without disturbance is first given. Secondly, based on the normal controller,
we add a new control law to the normal law in order to reduce the fault effect
on the system and achieve the desired control objective by using adaptive
method.

Now we design the normal controller uy(t) for the normal model without
disturbance

z(t) = Ax(t) + Agz(t — d) + A1 f(t,z(t),2(t — d)) + Bun(t) (10.5)

with the following state feedback controller
un(t) = Knzx(t) (10.6)

Then the closed-loop system is given by

(t) = (A+ BKnN)x(t) + Agz(t — d) + A1 f(t, z(t), 2(t — d)) (10.7)
Denote
Y11 = APy + PvAT + BY + YTBT — M7 (AuQn + QnAL) — N2 2Qu,
Y12 = AdQN + Py + AT QN + M2 Q,
Y9 = =2 QN — p?Qn, Y1z = — A1, Tgz = —21,
Y14 =d(YTBT + PyAT — M7 QN ALY, Soy = du QN AT,
Y34 = —dAT, Y44 = —dRy.

Next, a sufficient condition for the guaranteed cost control problem of the
closed-loop system (10.5) is presented.

Theorem 10.1 For given numbers A # 0 and p # 0, if there exist matrices
Py >0,Ry >0,Qn >0, and Y such that

(Y11 X1z X1 Zua 0 Py  Pn Yyt PyM{ Y]
¥ Yoo 0 X9y dRy O 0 0 0 Ty
* * 233 234 0 0 0 0 0 0
* * x Y4 0 0 0 0 0 0
* * * x —dRy O 0 0 0 0
* * * * 0 -Q 0 0 0 ol< 0
* * * * * * —Nl_1 0 0 0
* * * * * * * —N;t 0 0
* * * * * * * * —I 0
| * * * * * * * * * —%_

(10.8)
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where Y1 = A 'QyMI and Yo = —p QN MT .
Then the following controller stabilizes the closed-loop normal system without
disturbance (10.7)

’U,N(t) = KNiL'(t), KN = YPJGI (109)

Furthermore, the performance index (10.4) satisfies

0
J< o7 / / &7 (5) Ry d(s)dsdb + / 67 ()05 B(s)ds
—d
(10.10)
Proof 10.1 We choose the following Lyapunov-Krasovskii functional

t
_ T
V=ua"(t)Pnz(t / /+9 s)Ry(s )dsd9+/t_da: (s)Qnz(s)ds
(10.11)

where Py = ]5];1 , Ry = R;,l and QN = Q;\,l.
The derivative of V along the trajectory of the state equation (10.7) can be
written as

V =& (t)Pyax(t) + z(t)T Pya(t) + ()T Qunz(t) — 27 (t — d)Qna(t — d)
+ diT (t)Rya(t) — / » T (s)Ryi(s)ds

+ fT(ta Z, (E(t - d))f(ta Z, (E(t - d)) - fT(ta Z, (E(t - d))f(ta Z, (E(t - d))

(10.12)
From Assumption 10.1, we obtain
1 (8 x(t), x(t = d)|| < [[Maz()]| + |[Maz(t — d)]| (10.13)
then
1£ (8 2(t), (t — d)|? < 2 Mrz(@)|] + 21| Mo (t - d)? (10.14)
that is
frtz,z(t —d)ft,z,z(t —d) <
ol ()M Myx(t) + 207 (t — d)My Mox(t — d) (10.15)

Applying the integral inequality (2.50) in Lemma 2.15 to the term on the
right-hand side of (10.12) for any Y1,Ys € R™™™ yields the following integral
inequality

t T T
. Y+ Y] + Y
- [ amermitas <ot [ T

+dn’ (1) {g] Ry Y1 Ya]n(t) (10.16)
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where nT'(t) = [T (t), 2T (t — d)).
Substituting (10.14) and (10.16) into (10.12), carrying out some algebraic
manipulations, and rearranging the terms gives

V < €T(t) [H + dTTRNT1] £(t) + €7 (£)TF Ry'To£(t) (10.17)
where
gT = [xT(t)vxT(t - d)v fT(ta (E(t), {E(t - d))]a
Hyy PyAg—Y +Y, Pn Ay
H=| x —-Qn-Yy —Yo+2MIM, 0o |,
* * -1

Hyy = Py(A+ BEKN) + (A+ BEN)" Py +Qn +2M{ My + Y1 + Y,
Fl:[(A-l—BKN) Ag Al}7 FQZ[YI Y5 0}

From (10.17), we find that, if the following matrixz inequality holds:

H dr? dr¥
Y= |* —dRy 0 | <0 (10.18)
* * —dRyn

then applying the Schur complement yields V(t) < 0. Thus, by using the
Lyapunov-Krasovskii functional theorem, we can conclude the closed-loop sys-
tem (10.7) is asymptotically stable.

In order to obtain the controller gain, Ky, from the nonlinear matrix in-
equality (10.18) the nonlinearities come from

Py 0 0  [A+BEy Aq A
W=|vi Y» 0|, A= I -1 0
0 0 -I 0 0 I

Then

H=WTA+ AT™W + diag{Qy + 2M{ My, —Qn + 2MJ M>, 0},
Ly=[0 I 0|W

Now, consider the case in which Y1 = APn,Ys = pQn, A # 0 and pp # 0. In
this case W is invertible and

Py! 0 0
w1 = _)‘M_lQ;vl /J_lQ;Vl 0
0 0 ~I

Denote T = diag{W =, I, Ry'}

Hy aw~Tt? 4ot
TTST = | +  —dRy 0 (10.19)
* * —dR;,l
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with
Hp = AW+ W TAT + W T diag{Qn + 2M{ My, —Qn + 2M3 M, 0}W "
Hi=[0 Ry 0

Setting Py = Py',Ry = Ry', Qn = Qy',Y = KxyPy' = KPy and
performing some simple algebraic manipulations, it follows that if (10.8) holds,
then the Schur complement ensures that TTXT < 0 and thus ¥ < 0. So the

resulting closed-loop system is asymptotically stable and the desired controller

is defined by

J= /O ST (N 2(t) + o () Nou(t))dt

“( r T av
< /0 (.13 (t)N1$(t) +u' (t)Nou(t) + E) dt +V(0)

< /OO ET(B)YE()dt + V(0) (10.20)
0

On the other hand, from (10.8), we can get

H+ N, +KLNKy  dr'? dry
T = * —-dRy' 0 | <0
* * —hRy

Thus
0 0 0
J < V(0) = 67 (0) Py 6(0)+ / d /0 &7 () Ry} b(s)dsdb+ / )@ o)

The proof is completed.
Based on the conditions in Theorem 10.1, we propose the following theorem
to give a method of selecting a controller minimizing the upper bound of the
guaranteed cost (10.4).

Theorem 10.2 Consider system (10.5) with cost function (10.4), for given
non-zero numbers \ and p, if the following optimization problem

__ _min Trace(X1) + Trace(X2) + Trace(Xs3) s.t.
Pn,QnN,RN,Y, 31,302,503

(i) (10.8)
r 1
Gi) |72 | <o,
L * - N
(”Z) % —RN )
B 1
(iv) |~ %32 <0, (10.21)
* —N
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has a solution Px,Qn, Rn,Y, %1, %2, X3, then the control law of form (10.6)
18 a suboptimal state feedback guaranteed control law, which ensures the mini-

mization of the guaranteed cost (10.4) for normal system without disturbance
(10.5), where

I, = ¢(0)¢7(0), II, = //¢ s)dsdf, Tz = /¢ (s)ds

Proof 10.2 Theorem 10.1, the control law (10.6) constructed in terms of any
feasible solution Py,Qn,Rn,Y, 31, 2,33 is a guaranteed cost controller of
system (10.5).

Considering Trace(AB) = Trace(BA), we have the following relations

67 (0) Py ' 6(0) = tr(ITy Py") = tr(IT} Py TI})
/ Od /0 ST (8) R (s)dsdf = tr(TyRY) = tr(TT} RMTI)
[ 6760 otoas = 1@z = k@t
It follows from the Schur complement and (10.21) that
I PMI} < 81, TERGMIE < 8, TEQRMIE < 55
So it follows from (10.10) that
J < Trace(31) + Trace(X2) + Trace(X3)

The proof is completed.

In order to obtain online information on the effectiveness of actuators, i.e.,
pi(t), the following target model is introduced

G (t) = Az (1) + Agm (t — d) + Ay f (8, T (), Tm (t — d) + Bpr(t) (10.22)

where p(t) = diag{p1(t), -, pm(t)}, pi(t) denotes the estimate of the effi-
ciency factor. The signal r(t) € R™ is the input, which can be designed to
achieve the control objectives.

If we define the state error vector as e(t) = x, (t) — 2(¢) and let the control
input u(t) = r(t) — Fre(t) — Fae(t—d), where F; and F; are the error feedback
gains to be designed to make the error system stable, then the state error
equation between (10.3) and (10.22) is written as

é(t) = (A+ BpFy)e(t) + (Aq + BpFy)e(t — d) + Bpr(t) — Biw(t)
+ AL(f(t 2m (b), 2 (E — d)) — f(t, 2(t), 2(t — d))) (10.23)
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whete 4(t) = 4(t) — p(t) = diag{71(8), - , im(1)}
Let B = [by---by] € RY™ r(t) = (ri(t)---rm(t))T € R™, then the state
error system (10.23) can be written as

é(t) = (A+ BpFy)e(t) + (A + BpFa)e(t — d) + Y bipiri(t) — Biw(t)

+ A1 (f (2 (t), 2 (t — d)) — f(¢,2(t), z(t — d))) (10.24)
Denote

Ay = AX + BpWi + Wi + X AT + W pBT + Wi + (e1 + e2) A1 AT
+Q+dF +esB1 B

Ay = XAT + W + WpB + Fis

Aoy = EgBlBlT + (e2+ 54)A1A1T — dil(a -1H)X

A3 = AgX — W3 + dFy13 + BpW,

Agz = AgX — W3 + BpWa + Fas

Next, a new delay-dependent adaptive law and the error feedback gains F7,
F, are designed to make the state error system (10.24) stable.

Theorem 10.3 For given o > 1, the state error system (9.28) is stabilized
and tlim e(t) = 0 if there exist positive definite matrices X, Q, F11, Faa, F3s,
— 00

positive scalars €;,(i = 1,...6) and any matrices W1, Wo, W3, F1a, F13, Fog
such that the following inequalities hold for all p € N,

_All Alg A13 XMIT XMIT OédW?,T 0 0 i
* A Aos 0 0 0 0 0
* * —Q + dF3s3 0 0 0 XMQT XMQT
* * * —e1l 0 0 0 0 <0
* * * * —e3l 0 0 0
* * * * 0 —adX 0 0
* * * * * * —eol 0
| * * * * * * * —eql |
(10.25)
—X 4+ Fyn <0 (10.26)
-X dW?)T
[ . _xX ] <0 (10.27)
i Fo i3
== * Fos Fos| >0 (1028)

* * F33
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and also p;(t) is determined according to the adaptive law
pit) = Projiy, 5 {=li(e(t) + 2(1))" X ~"biri} (10.29)

where z(t ftdW3X1()dsl>0 O<pi<landp =1,i=1--
Prog{-} denotes the projection operator [70] whose role is to project the estz-
mates p;(t) to the interval [pi, p;]. Then the error feedback gains can be ob-
tained by Fy = W1 X1 and Fo = Wo X 1. Proj{-}

Proof 10.3 Define an operator D(e;) : Cy, g — R™ as

D(es) =e(t) + t Ge(s)ds (10.30)
t—d

where e, = e(t + s),s € [=d,0] and G € R"™™ is a constant matric which will
be chosen.
We choose the following Lyapunov-Krasovskii functional

V=Vi+Va+V3+V,+V; (10.31)

where

Vi = D" (e;)PD(ey), 1@7a/ / (u)GT PGe(u)duds
t—d

%_[% m&mw,w_// YT QEQyduds, Vs = Xh

with x = [eT(s),e? (u)GT, el (s — d)]T, P > 0, Q = diag{P, P,P}, S > 0,
pi(t) = pi(t) — ps-
The derivative of V along the trajectory of the state error equation (10.24)
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can be written as V (t)

Vi = 2D%(e,)PD(ey)
= e (t)[P(A+ BpFi + G) + (A + BpF1 + G)" Ple(t)

—2(e(t) + 2(t))T PByw + 2(e( Tiszb T
+ 2eT(t)P(Aq + BpFy — Ge(t — d)
+ 22T (t)P(A + BpFy + G)e(t) + 22T (t)P(Aq + BpFy — Ge(t — d)

+2(e(t) + (1) (O PAL(f (i (8), 2 (t = d(t)) = f(a(t), 2(t — d(1))).
Vo = ade™ (t)GT PGe(t) — a/t el (s)GT PGe(s)ds
t—d

< ade” (H)GT PGe(t) — /1t el (s5)GT PGe(s)ds — d (o — 1)27 (t) Pz (t),
t—d

Vs = el (t)Se(t) — e (t — d)Se(t — d).

t
Vi = de® (t)PFyy Pe(t) + 2¢T PF1, P (t) + / el (s)GT PFpaGPe(s)ds
t—d

+ 2de” PFi3Pe(t — d) + 227 PFy3 Pe(t — d) 4 de” (t — d)PF33Pe(t — d)
~ o~ pi(t)pi(t)

= 2 —_—
Vs ; L

where z(t) = f;d Ge(s)ds and here we use

2T () P2(t) < d/t el (s)GT PGe(s)ds
t—d

which is obtained by Lemma 16.4 to get Va. From Assumption 10.1, we obtain

(O PALf(t,m (), 2 (t —d) — f(t,2(t), 2(t —d))
< 2T (@) PA|f (8, 2 (1), 2 (t = d) = f(t, (1), 2(t = )|
<2[e" () PAL| (| Mie(t)|| + | Mae(t — d)||)
< e1ef (t)PAL AT Pe(t) + ey te™ (1) M Mye(t)

+ e2eT (t)PAL AT Pe(t) + 5 '€ (t — d)M] Mae(t — d)
T (O PALf(t 2m(b), 2 (t — d) — F(t, 2(t), z(t — d))
< 20O PAf(E 2 (8), 2 (t = d) — f (2, 2(t), 2(t = d)|
<227 () PAL|| (| Mre(t)] + || Mae(t — d)])
< e32T(t)PALAT P2(t) + et e (1) M] Mye(t)

+ a1zt () PA AT P2(t) + e e™ (t — d(t)) M3 Mae(t — d)

(10.32)

(10.33)
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Furthermore, Vi can be written as
Vi = 2D"(e;)PD(e;)
=T (t)[P(A+ BpFy + G) 4+ (A+ BpFy + G)TP + (g1 + e2) PA AT
(7 +e3 HMT Mile(t) — 2(e(t) + 2(t))T PBiw
+2eT(t)P(Aq + BpFy — G)e(t — d) + 227 (t)P(A + BpFy + G)e(t)
+ 22T (t)P(Aq + BpFy — G)e(t — d) + (g3 +e4)2T (t)PAL AT P2T(t)

+ (et + e el (t — d)M] Mye(t — d) + 2(e(t) + 2(t)T zm: piPb;r;
i=1

If the adaptive law is chosen as
pi = Proji,, . py{~li(e(t) + 2(t))T Pbyr;}

0 if pi = pi and — li(e + 2)T Pbir; <0 or
= , pi = pi and —l;(e + z)T Pbyr; > 0;
—li(e + 2)T Pb;r;, otherwise

where z(t) = ftt_d Ge(s)ds, then

PP < —pi)(e(t) + (1)) Phirs (10.34)

and pi(t) = pi(t) — pi, pi(t) = pi(t).
On the other hand
—2(e(t) + 2())T PBiw < e5e” (t)PB, BT Pe(t) + e 'wlw
+ 627 (t)PBy BT P2 (t) + 5 'wTw (10.35)
50
e(t)

V< [Tt 2T eT(t—d)}\If[ 2(t) ]
e(t —d)

t

+ / ¢T($)GT (=P + PFyP)Ge(s)ds + (e + 25 o (10.36)
t—d

where

Ay (A+ BpFy +G)TP+ PF,P P(Ag+ BpFy — G) + dPF3P

* AQ P(Ad+BpF2 —G)+PF23P
* * AB

Ay = P(A+ BpFy +G) + (A+ BpF, + G)T'P + (g1 +e2)PALAT P
+ (et + ez YMI M, + adGT PG + S + esPB1B] P + dPFy, P

Ay = (e3+e4)PALATP —d (o —1)P + ePB,BI P

Ag = (5" + e )YMJ My — S + dPFss)

\II:
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Hence, if ¥ < 0 and —P + PFy P < 0, then there exists a positive scalar 3
satisfying

V< —Bllel?+ (e5 ' + e NwTw < —Fle]|? + D1 < 0 (10.37)

where Dy = (55_1 + 56_1)(12, 0 < |lw] £ a.

Let X = P7LQ = XSX, W, = X, Wy = X and W3 = GX.
By pre- and post-multiplying inequalities ¥ < 0 and —P + PFy»P < 0
by diag{X, X, X} and X, respectively, the resulting inequalities are equiv-
alent to (10.25) and (10.26). Also, the inequality (10.27) is equivalent to
X:P_l,Q:XSX,Wl:F1X,W2=F2X and W3 = GX.

{_P dGTP} <0 (10.38)

* -P

by pre- and post-multiplying by diag{ X 1, X ~'}. If (10.38) holds, according
to matrixz theory we can prove that a positive scalar § which is less than one
exists such that

_ T
{ op dG P} <0 (10.39)

* -P

Therefore, from Lemma 2.13, if (10.27) holds, the operator D(e;) is stable.
The inequality (10.28) means that Vy is positive definite. So V (t) is positive
definite.

From (10.87), we known V > 0 is possible only for e(t) € Sy, where
Sy ={e(t) : |le(®)|| < (%)%} Because Sy is compact and contains the point
e(t) = 0, it follows that e(t) € Lo and V(t) € Loo. Then from Lyapunov
stability theory, it follows the error system (10.23) is stable.

Integrating (10.37) from 0 to oo on both sides, we get e(t) € Lo from the
fact w(t) € La. From the result of Theorem 10.1, it follows xpy(t) € Loo. It
also implies r(t) is bounded. According to the state error system (10.23), it
is easy to see é(t) € Loo. Now from e(t) € Lo N Lo, é(t) € Loo and the
well-known Barbadalat’s lemma [115], it follows tli>Holo e(t) = 0, ie., z(c0) =
Tm(00) = xn(00) where x represents the state vector of the normal system
without disturbance. Moreover, from e(t) € Lo and xy,(t) € Lo, we can
obtain the state vector of the model (10.3) x(t) is also bounded. Moreover, it
follows tlirgo z(t) = 0 from the fact tli>nolo T (t) = tli>nolo e(t) = 0. The proof is

completed.

Remark 10.1 In the proof of Theorem 10.3, we modify the new Lyapunov
function which employs free weighting matrices proposed by [77] to get a new
adaptive law and tackle the stabilization of the error system. The newly pro-
posed adaptive laws include the term z(t) = j;tfd Ge(s)ds, which indicates how
time delay d takes effect on the adaptive law.
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Then, we design 7(¢) so that the target model (10.22) matches the normal
model (10.1) without disturbance.
Let 7(t) = p~1(t)Kn7Z(t), then(10.22) becomes

G (t) = Ao (t) + Agm (t — d) + Ay f(t, T (), 2o (t — d)) + BKx (£)2m
(10.40)

It is easy to see (10.22) matches the closed-loop system of normal case without
disturbance (10.5) exactly.

Then an adaptive reliable controller based on the normal control law
un(t) = Knx(t) is designed. The main controller structure is to compute
a new control law u.q(t) to be added to the normal control law in order to
compensate for the faults and disturbance effect on the system, that is

u(t) = un(t) + uqa(t) (10.41)

The additive control law u,4(t) is zero in the normal case without disturbance
and different from zero in fault and disturbance cases. The FTC scheme is
summarized in Figure 9.1.

ut) = p O Knzm(t) — Fre(t) — Foe(t — d) = un(t) + uea(t)  (10.42)

p
where un(t) = Kyx(t), uqa(t) = p~ () (I — p(t)) KN (t) + (Kn — Fy)e(t) —
Fge(t — d), F = Wlel, Fy, = WQXil.

When the system has no faults and disturbance, the error system is at its
equilibrium, i.e., e(t) = 0 and p;(t) = 1 if we choose e(0) = 0 and p;(0) = 1.
At this time, u(t) = un(t) since uqq(t) = 0. This implies the closed-loop
normal system without disturbance using the controller (10.42) can achieve
the optimized performance. When faults in actuators occur or disturbance
exists, the corresponding efficiency factor p; deviates from 1, thus creating a
mismatch between x,,(t) and x(t), hence nonzero state error occurs. At the
same time, the adaptive estimates of the efficiency factor become active. A new
control law uq4(t) is added to the normal law. Then the normal and fault cases
with disturbance compensate the fault and disturbance effect automatically
and asymptotically track the normal case without disturbance.

From Theorem 10.1-Theorem 10.3, we know the adaptive controller (9.38)
can stabilize the closed-loop system in both normal and fault cases. Further-
more, the state vector of closed-loop asymptotically tracks that of the normal
case without disturbance, which has the designed performance.

Remark 10.2 The proposed controller design procedure has optimized the
normal performance without disturbance. This presents an advantage as sys-
tems are operating under the normal condition most of the time. Because
Ky = YPy' in (10.8) and Fy = W1 X1, Fy = Wo X~ in (10.25)-(10.28)
are wrrelative, (10.25)-(10.28) don’t add any conservativeness to the perfor-
mance optimization procedure of the mormal system without disturbance.
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FIGURE 10.1
Normal state response of nonlinear system without disturbance using the nor-
mal controller K.

Remark 10.3 This chapter carries on the main idea of Chapter 9, in which
we have studied adaptive reliable tracking problems of linear time-invariant
systems without disturbance. Here, we extend the system to a class of nonlinear
time-delay systems with disturbance. Though in this paper we don’t consider
the tracking problem, it is very easy to extend our result to that problem.

10.4 Example

Example 10.1 7o illustrate the effectiveness of our results, a nonlinear time-
delay system with the following parameters matrices is considered

0 0O -2 05 0 0 0.1 -1
A=1|0 0 0|, A43=|0 -1 0|, B=|07 =02 06],
0 01 0 0 -2 1 1 1
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0.05
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-0.05} [ |
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‘"' -0.1F I 8
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1
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-0.15 7 -0.3} |
-0.2 ‘ ‘ -0.4 ‘ ‘ -0.3 ‘ ‘
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time(s) time(s) time(s)
FIGURE 10.2
Normal state response of nonlinear system without disturbance using adaptive

controller (solid) and fixed gain controller (dashed).

0 -1 0 2 0 0 05 0 0

Ai=10 1 0|, My=10 2 0|, N,=|0 05 0],
0 0 1 00 1 0 0 1
[0.2 0.2

Bi=|1], ¢=|-04
0.5 0.3

and the time-delay in this example is d = 0.2.
Moreover, the nonlinear function is
f(tvx(t)vx(t - d))
0.1sint (z1(t) + z1(¢t — d))

= 0.2sint x2(t — d)
0.2sint z3(t) + 0.1sint z3(t — d)

Then it follows

1f (2,2t = d)|| < [[Mrz(@)]] + [ Maz(t = d)
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FIGURE 10.3

State error between normal case with disturbance and that case without dis-
turbance of nonlinear system using adaptive controller (solid) and fixed gain
controller (dashed).

where
01 0 O 0.1 0 0
Mi={0 0 0], My=|0 02 0
0 0 0.2 0 0 0.1

Here, we consider the case that only the second and third actuators are
susceptible to faults, that is, py=p=1p,=p =04 and py = p3 = 1.

In the following simulation, we use the disturbance

() = 0.5, 20 <t <25 (seconds)
“W=10 otherwise

The fault case here is that at 0 second, the third actuator becomes loss of
effectiveness of 60%.
For comparison purposes, our adaptive reliable controller and a traditional
reliable controller with fixed gains are carried out in the following simulation.
From Theorem 10.2, we can get the normal controller uy = Kyxz(t) with a
sub-optimal cost J* = 0.2567 with A* = —1.6 and p* = 50, which is obtained
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FIGURE 104
Fault state response of nonlinear system with disturbance using adaptive con-
troller (solid) and fixed gain controller (dashed).

by searching for A (from -0.1 to -10) and p (from -0.01 to 50). And when we
choose a = 1.5, a feasible solution of Theorem 10.3 can be received. Further-
more, the corresponding adaptive reliable controller is obtained. However, if
we solve the reliable problem with a fixed gain controller K, guaranteeing
all considered possible cases stabilized and normal case without disturbance
optimal, the obtained locally optimal cost is J; = 0.3713 with A} = —2.8 and
wy = 50 (the search range is the same as that of controller K ) using the
corresponding results of Theorem 10.1 and Theorem 10.2. This phenomenon
takes place due to the reason indicated in Remark 10.2. As the system is oper-
ating under the normal condition most of the time, this fact that our adaptive
reliable controller improves the normal performance significantly compared to
the fixed gain controller K is more considerable and important.

In Figure 10.1, the state response in normal case without disturbance for
nonlinear systems using the normal controller Ky is first given, which de-
scribes the desired performance. Figure 10.2 denotes the normal state response
with disturbance using the adaptive controller and fixed gain controller, re-
spectively. It is obviously that the proposed adaptive controller has much more
ability to restrain disturbance than that of the fixed gain controller. To verify
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FIGURE 10.5

State error between fault case with disturbance and normal case without dis-
turbance of nonlinear system using adaptive controller (solid) and fixed gain
controller (dashed).

the characteristic of our adaptive controller, we simulate the state error be-
tween normal case with disturbance and that case without disturbance using
these two controllers. The result is given in Figure 10.3, from which it can be
seen the state error converge to zero in spite of the existence of disturbance
with the adaptive controller while the fixed gain one can’t have this property.

Figure 10.4-Figure 10.5 describe some response curves of the fault case.
In Figure 10.4, the fault state response using these two controllers is first
given, which denotes the superiority of restraining disturbance of the adaptive
controller compared to the fixed gain one. Figure 10.5 describes the state error
between fault case with disturbance and normal case without disturbance of
nonlinear system using the two controllers. Though the state error deviates
from zero due to the existence of fault and disturbance, it can recover after a
few of seconds using the adaptive controller. But, this property doesn’t exist
in the case of a fixed gain controller.
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10.5 Conclusion

In this chapter, we have investigated the adaptive reliable control problem
against unknown actuator faults for a class of nonlinear time-delay systems
with disturbance. The aim is to find an adaptive reliable controller, such that
the system is not only stabilized, but also the state vectors of normal and fault
cases with disturbances track that of the normal case without disturbance,
which is with the designed performance. A new delay-dependent adaptive law
is proposed to design the adaptive reconfigurable controller, which is excited
to offset the effect of faults and disturbance automatically without the need
for an FDI mechanism. A numerical example shows the effectiveness of the
proposed controller design method when compared with a fixed gain reliable
controller.
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