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Preface

This book would not have been written if not for the generosity of the
funding agencies, providing sufficient amounts of monies from 2004 - 2008 to
buy the computer equipment and most significantly, to support two capable
PhD students and two M.Sc graduate students. With one of these recent
PhDs, Dr. Xueru Ding, and another PhD student, Dr. Joseph Nebus, we
now record the results and products of our work over the last four years,
which is informed by several years of earlier works in the subject matter
of the book. We would like to acknowledge therefore the program officers,
Dr. Chris Arney of the Army Research Office, and Dr. Walt Polansky and
Dr. Gary Johnson of the United States Department of Energy.

Many people have contributed to the possibility of this monograph
through their works and through helpful discussions but it is only pos-
sible to name a few here - the others will have to be content with the
knowledge that they and their works are nonetheless appreciated by us.
They are Denis Blackmore, Alexey Borizov, Alexandre Chorin, Peter Con-
stantin, Tony Del Genio, Felix Donohue, La Salle PJ, Weinan E, Joe Fla-
herty, Marty Golubitsky, Tom Hou, Andrew Ingersoll, Joe Keller, Peter
Lax, Chuck Leith, David Liao, La Salle PJ, Lin San of Nanyang Technolog-
ical University, Singapore, Paul Newton, Bob O’'Malley, Don Saari, Leslie
Sage, Lawrence Sirovich, Eugene Stanley, J.B. Taylor, United Kingdom Fu-
sion Research, Roger Temam, Lu Ting, KK Tung, GertJan van Heijst of
Eindhoven, Netherlands, Shouhong Wang, and several anonymous review-
ers of journal articles whose critiques and suggestions have been particularly
useful.

With Dr. Timothy Andersen, we have several fruitful collaborations in
the past and a few exciting on-going projects; with Dr. Junping Shi, we
have published a paper on a related topic; with Rajinder Singh Mavi, we
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have a paper on a topic relevant to chapter 8 in this book and more exciting
on-going projects; with Nuwan Silva Induruwege, we have another paper,
relevant to this book, to be published; and with Syed M. Assad, we have
several papers in this area.

We would also like to acknowledge the support of many in the Depart-
ment of Mathematical Sciences at Rensselaer Polytechnic Institute, espe-
cially, Don Drew, Bill Siegmann, Michele Kronau and Peter Bellamy.

We wish to thank our respective families for their constant support
during the preparation of this monograph.

Finally Ms. Chionh at World Scientific Singapore deserves our thanks
for persistence over the off and on nature of this book project in the last
five years.

The focus of this monograph is a physically sound and rigorous, quali-
tative theory for the end-states or statistically-stationary asymptotic flow
states of the forced-damped rotating shallow water equations, with applica-
tions to the super-rotation of slowly-rotating terrestrial planets and major
moons and the key large-scale features of the Gas Giants in our solar sys-
tem. Emphasizing the self-organized emergence of these astrophysical at-
mospheric structures through first and second order phase transitions, the
spin-lattice models under Gibbs canonical constraint on the Lagrangian
of the underlying dynamics and various microcanonical constraints on to-
tal circulations (sums) and enstrophies (square-norms) of relevant physical
quantities, are simulated by Monte-Carlo methods, analyzed by mean-field
techniques, and rigorously integrated in closed-form where possible by the
non-Gaussian non-mean-field spherical model method. In a 2007 survey
of Venusian atmospheric dynamics [87], the retrograde super-rotation of
its lower atmosphere, up to 100 km, and also that of Titan, is viewed
as a continuing enigma, and all attempts known to the authors of that
survey, have so far failed to explain this phenomenon in simple and rig-
orous physical terms. The Barotropic Vorticity Model which is solved in
closed-form by Lim, motivated by the detailed simulation results of Ding
and discussed in the first part of this book, offers rigorous predictions on
the asymmetry between super-rotation and anti-rotating zonal flows, stat-
ing that a slowly-rotating planet can support a super-rotating vertically-
averaged barotropic atmosphere at high enough energies, but such coupled
atmosphere-planet systems cannot have an anti-rotating barotropic atmo-
sphere unless the planet’s spin-rate is fast enough.

Analyzed by rigorous qualitative methods, based on the shallow water
equations total mechanical energy, theoretical work independently predict
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(and further explain the simulation results) the four key Jovian features,
namely, (a) anticyclonic predominance, (b) north-south asymmetry of the
highest anticyclonic spots, (c) high rim velocity in the circumferential band
of Jupiter’s Red Spot, and (d) the alternating zones-belts or Limaye bands.
In providing this qualitative theory for end-states, by-passing often difficult
and costly dynamical simulations of the underlying initial value problems
at Jovian parameter sets it is oft asked what is the physical meaning of the
statistical models’ temperature. We hope to have given here sufficiently
detailed discussions of the meaning of this notion in the context of macro-
scopic flows where subgrid scales could be 1000 km in wavelengths and
widely-separated in physical effects from molecular notions of temperature.
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Chapter 1

Planets and Inspiration

1.1 Venus

Only two people are known to have observed the transit of Venus across the
sun on the 24th of November, 1639: Jeremiah Horrocks (or Horrox) and his
friend William Crabtree, of Toxtenth, a village near Liverpool, England [5].
Johannes Kepler had predicted the 1631 transit, and thought 1639 would
be a near miss; Horrocks found Kepler was mistaken. (Horrocks’ friend
Christopher Townley gave Horrocks’s prediction of a transit of Mercury for
the 23rd of October, 1651, to Jeremy Shakerley, who moved to Surat, India,
to observe it.)

The transit of June 6, 1761, was different: despite the ongoing Seven
Years’ War making battlegrounds on nearly every continent the major na-
tions of the world launched scientific expeditions which gave many French
and British astronomers and surveyors the chance to experience new in-
tensities of frustration, typically at the weather, interrupted with capture
and parole by the opposite nation. The scientific result from this which im-
pressed everyone was the roughly modern estimate for the distance between
the Earth and the Sun.

But there was another result, one which brings particular inspiration to
us, which came from that transit. It was made by the Russian astronomer
Mikhail Lomonosov, at the Petersburg Observatory, who saw light refracted
around the disc of Venus, indicating there should be an atmosphere. There
was a whole new atmosphere and a new meteorology which could be ex-
plored, at least provided reliable observations could be made.

But Venus is a difficult planet about which to observe details: 1761
was also the final year in which a putative moon of Venus was observed;
observers had seen it, on occasion, since 1645, and even the renowed Gio-
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vanni Cassini spotted this moon. Observations of the planet found what
appeared to be stable enough formations for many estimates of the planet’s
day, the majority of them quite close to 24 hours, to be repeatedly made
and to sometimes agree with one another. Fine points like the refraction
of light around the tiny disc of Venus seen in the precious few moments of
the start or end of a transit, an observation which could be made at best
twice in a century was slender evidence, were difficult to build a compelling
observational history on.

Still, transits are not the only observations that might give evidence for
an atmosphere. The German astronomer Johann Hieronymous Schroter
observed in 1793 that Venus appears slightly concave at a time in its orbit
when it should be exactly half-illuminated. This suggests an atmosphere
must be present, and the observation could well be repeated and confirmed.
But even there difficulties remain: Schréter also in that time observed evi-
dence suggesting a lunar atmosphere. (Schréter was correct in his analysis
of Venus’s atmosphere producing the concavity; it would not be until 1996
that this was proven compellingly, however.)

Chester Smith Lyman observed a ring around the whole planet implying
light refracted through an atmosphere, but beyond that, any conclusive
investigation would have to wait until spectroscopy and photography could
be brought in and to make analysis less dependent on too-short moments
of good seeing by eyes which could be quite trained and sensitive but which
could not be independently checked.

Spectroscopic astronomy could give some suggestions about the content
of the upper atmosphere, its top few kilometers, and that showed a lack
of oxygen and of water. What was principally learned from the ground
was that Venus was very hot, that its rotation was extremely slow. Details
would need to wait for planetary probes.

On February 5, 1974, the NASA probe Mariner 10! began taking pho-
tographs for its flyby of Venus, which began with the photographing of the
atmosphere of Venus to seek evidence of cloud tops or other structures. By
the 13th of February the probe had taken 4,165 images of the planet, and
the atmosphere was finally seen in considerable detail. Among the many
fascinating results was the discovery that, in ultraviolet light, one can see
the lower atmosphere, up to 100 km, rotates around the planet roughly ev-
ery four (Earth) days, compared to the relatively sluggish 243 days Venus
requires to complete a rotation. Verner E Suomi, one of the founders of

IMariner 2 and Mariner 5 had flown by Venus, and the Venera 3 through 8 probes
had impacted or orbited Venus before then, but they did not have cameras.
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satellite meteorology and inventor of the Spin Scan Radiometer, which al-
lowed the Geostationary Operational Environmental Satellite production of
time-lapse motions of cloud images, pointed out cellular structures within
the clouds. These cells could reach two hundred to three hundred kilometers
across.

With the Pioneer Venus orbiter, operating from December 1978 to June
1980 (with new operations begun in 1991) an abundance of photographic
evidence of this super-rotation, and finer information on the structures of
this layer, were available. It also discovered a vortex in the north pole. In
April 2006 the Venus Express mission photographed over the south pole
not only a vortex, but a polar dipole. Polar vortices are known on Earth to
form in the stratosphere and the higher layers of the troposphere, typically
forming for the winter months. Those on Venus are quadruple the size of
Earth’s, and the dipole is an exciting new challenge.

Here the atmosphere is thinning, roughly one-tenth the atmospheric
pressure of Earth at sea level (and near a thousandth that of Venus’s ground
level), with the surprisingly cool temperature of about -30 degrees Celsius.
At this altitude there is virtually no difference between the day and night
temperatures, with the atmosphere’s day temperature being only about one
degree warmer than the night side.

Sutherland’s formula allows us to estimate the dynamic viscosity of an
ideal gas as a function of temperature, with the knowledge of some physical
constants. With 7y the viscosity of the gas at a reference temperature Ty,
and a constant C' unique to each gas, we can estimate the dynamic viscosity
n for any temperature 7T

n=no<:§?ig> (;;) (1.1)

For sulphur dioxide C' is 416 at the reference temperature of 293.65 Kelvin,
while the reference viscosity is 179 = 12.54x 1076 Pa-s. This provides an esti-
mate for the dynamics viscosity at that layer to be around 10.2 x 1076 Pa-s.
In comparison the viscosity of normal Earth air is about 18.27 x 1076 Pa-s.
Since we can accept the treatment of the atmosphere of Earth as an invis-
cid fluid for certain analyses, we can extend this same consideration to the
super-rotating layer of the atmosphere of Venus.

And now we have the makings for our physical model: a slender fluid
layer, in thermal balance, on a rotating planet. These will be assumptions
made which make for straightforward analysis and for numerical simula-
tions. We also have a specific target of the fascinating super-rotation mode
which we would like to reproduce.
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1.2 Titan

The natural next question is are there other atmospheres known to show
super-rotation? This takes us to Titan, largest moon of Saturn, second
largest moon in the solar system, discovered in 1655 by the Dutch as-
tronomer Christiaan Huygens. Like Venus, Titan has a thick, heavy and
opaque atmosphere on a slowly-rotating planet. Unlike Venus which is a
fore-runner of the global-warming that could be earth’s fate as a result of
greenhouse gases such as water-vapor and carbon dioxide, Titan is nearly
a billion km away from the sun, with a surface temperature around 94
kelvin — one of the many reasons why its thick and luxurious atmosphere
has persisted for billions of years — and an atmosphere dominated by ni-
trogen and hydrocarbons such as methane. Although Titan’s atmosphere
did not undergo a run-away greenhouse phenomenon, its methane gas near
the triple-point plays a role similar to water-vapor on earth. It will turn
out from the recent Huygen’s observations that the upper atmosphere has
very high super-rotating winds, not unlike those on Venus. Unfortunately,
Titan and Venus are the only data points in our solar system for clearly
super-rotating or sub-rotating atmospheres. Nonetheless, with the rapid
advancement in telescopy of modern types, the discovery of planets in other
solar systems with significant atmospheres, will quickly increase in numbers
and it is hoped that some of these new data points will further validate the
theories discussed in this book.

Past the fact that it existed, however, there was not much to say defini-
tively about its properties for just short of three hundred years. The moon
is too small, too far away, and too close to a large bright object, at least
for the observations a human eye and optical telescope can easily make.

Gerard Peter Kuiper, working at the Yerkes observatory for the Uni-
versity of Chicago, discovered in 1944 a curious spectrum in the light from
Titan. The absorption bands, at 6190 and 7250 Angstroms, proved to be
those of methane at low pressures. Titan was a most curious moon en-
joying an atmosphere with at least 10 kPa partial pressure of methane.
Kuiper would further learn over the course of a decade that Titan was still
unique: there were no other Saturnian moons to have the same abundance
of methane.

Was there more to the atmosphere? How thick was the atmosphere? By
1975, limb darkening gave evidence for there being a thick atmosphere, and
Laurence Trafton found evidence of absorption which showed that either
the methane atmosphere was at least ten times as thick as that which
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Kuiper observed or else that there was much more to the atmosphere than
just methane. Trafton found tentative evidence of molecular hydrogen, and
later evidence of various hydrocarbons would be added to the understanding
of what makes up this atmosphere.

Pioneer 11 flew by Saturn and Titan September 1, 1979, showing Titan
to be too cold for life as we know it, and leaving unanswered the question
of how there could be hydrocarbons long after energy from the Sun would
suggest they should have been burned off. Voyager 1, flying by in November
1980, was sent to photograph the haze of Titan’s atmosphere (incidentally
sending the probe out of the plane of the solar system, ending its planetary
science mission) which proved to reach as much as 300 to 350 kilometers
above the moon’s surface, and to be rich in nitrogen. Voyager 2, which
would be sent to the outer planets, was unable to closely photograph Titan.

On July 1, 2004, the probe Cassini entered orbit of Saturn, starting a
long and detailed observational campaign for the system. It had its first
close flyby of Titan on October 27 that year. Models built in the 1990s by
Goddard Institute for Space Sciences researchers suggested that it might
be a super-rotating atmosphere — with Titan rotating about once every
16 (Earth) days and having a diameter only slightly larger than Earth’s
moon this does not require an enormous velocity — and Cassini’s sensors
showed exactly this sort of speed, with hurricane-force winds in the lower
atmosphere.

The Huygens probe dropped into Titan winds of around 120 meters per
second at an altitude 120 kilometers above the moon’s surface, with wind
speeds dropping below the altitude of about 60 kilometers. The highest
layers of the atmosphere rotate west-to-east, with a reversal of direction
about seven kilometers above the surface, and another reversal at about
700 meters above ground.

1.3 The Great Red Spot

Any discussion of vortices in planetary atmospheres comes swiftly to the
Great Red Spot of Jupiter. This spot, which might have been observed by
Robert Hooke in May 1664 — and might be the spot observed by Giovanni
Cassini from 1665 to 1713 (initially, in July 1665, near to the shadow of
Ganymede) — has been reliably observed since 1831. These qualifiers are
necessary: Hooke’s observation seems to have been, from his writings, of
something appearing in the North Equatorial Belt. While Cassini’s observa-
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tions are those of a skilled observer over many decades, there is nevertheless
a curious gap in recorded observations from 1713 to 1831.

The Spot fluctuates in most every observable quantity: its size has
shrunk about a third in length from its size in the 1890s. Its color has
varied from the intense red which gave it is name to almost invisibility
against the surrounding South Tropical Zone; it has not been noticeably red,
in visible light, since the 1970s. It is conceivable that the Spots of Hooke
and of Cassini were unrelated to the one now observed; it is conceivable
that Cassini’s at least was the present one and simply faded past detection
for over a century. When the spot was observed again from 1831 it was
seen primarily in its “hollow”, the distortion of the bands of surrounding
clouds. It would be in 1878-1881 that the spot grew dramatically more red
and became famous as the Great Red Spot.

As very nearly the only long-lived object that is not simply a zonal band
on Jupiter the spot has been a natural reference point to use in trying to
define longitudes on the planet. Since 1892 and the establishment of A
Marth’s Invaluable Ephemerides there have several systems for establishing
longitude. System I is used for atmospheric features within ten degrees of
the equator, and is based on the rotation of features around the axis of
the planet every nine hours, 50 minutes, thirty seconds. System II is used
outside that band and its motion is based on the average speed of the Great
Red Spot. Its coordinates rotate around the planet every nine hours, 55
minutes, 40.6 seconds. It is a touch unsettling that the Great Red Spot has
been drifting eastward even in this reference frame. The rotation of the Spot
also appears to be slowing as the spot shrinks. (There is also a longitudinal
System III, tied to the motion of radio-detectable objects within Jupiter,
with a rotation period of nine hours, 55 minutes, 29.7 seconds.)

Its latitude, however, remains reasonably constant, hovering within
about one degree of its average position. This is an interesting physical
property which may be subject to modelling in the statistical mechanics
treatment.

Explaining such a long-lasting anticyclonic structure is a naturally
tempting target for any equilibrium statistical mechanics model and we
will try to form some understanding of it. Frustrating many efforts to
explain the storm as a hurricane-like structure — Kuiper was inspired to
use this to try explaining its structure and survival, and the hurricane is
still used as a shorthand for explaining it — is the Spot’s apparent lack of
much of a hurricane’s structure, most noticeably in the absence of an eye
or eye-wall.
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While the Great Red Spot is the most famous anticyclonic storm it
is far from the only one: large, white ovals appear in the South Tropical
Bounds and in the South-South Tropical Bands, and a long chain of them
formed part of the captivating moving images of Jupiter as reconstructed
from Pioneer and Voyager observations. The ovals in the South Tropical
Band have been observed to last at least half a century, while those in the
South-South Temperate Belt seem to survive — or at least to be detectible
from Earth — for only a few years.

In the northern hemisphere are more anticyclonic white ovals appear in
the North Equatorial Belt, in the North-North Temperate Belt, and in the
North Temperate Belt. Curiously, these are short-lived phenomena com-
pared to their southern counterparts. The North Equatorial Belt storms
rarely last more than one or two years, and the others are shorter-lived still.
Similarly Little Red Spots forming in the region between the North Equa-
torial Belt and the North Tropical Zone — the analogue, it would appear,
to the Great Red Spot’s location — form but typically expire in about a
year.

An exciting recent development has been the forming of the Oval BA
storm. This is roughly half the size of the Great Red Spot, and it was
created from the merger of smaller white ovals in the South Temperate
Belt between 1998 and 2000. Its darkening into the same color as the
Great Red Spot by March 2006 reinforces that the forces which formed and
sustain the Great Red Spot are not unique to that phenomenon, and that
new physical models of it can be tested with current data. The idea of
anticyclonic storms merging into larger structures more reminiscent of the
Great Red Spot has been often explored, as for example in simulations by
Andrew Ingersoll and P G Cuong,.

1.4 Polar Vortices and Other Curiosities

Another interesting large-scale structure known to almost all the bodies
with atmospheres is that of the polar vortex. On Earth there are vortices for
both poles, with a growth or decay in strength corresponding to the season.
These vortices became noteworthy in the popular imagination in the late
1980s and the 1990s in their correspondence to the ozone holes. The coldest
air within the polar vortices allows for the depletion of ozone by sunlight
and by chlorine-bearing compounds, and as there appears to be relatively
little transport of air between the polar vortices and the atmosphere in
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general this produces a considerable depletion of ozone over either pole.

But the conditions which produce a polar vortex are not unique to
Earth. Mariner 10 and then Pioneer Venus found evidence of a major
vortex around the south pole of Venus, and the Venus Expression mission
in 2006 reinforced not just the existence of this structure but indicated the
existence of a dipole there. This feature is yet under investigation.

Mars, too, features a polar vortex, there complicated by the curious
fact that much of the carbon dioxide in its atmosphere will condense out
of the atmosphere and fall on the polar ice caps. In what appears to be
a part of this cycle, atmospheric argon increases in the southern polar
regions in autumn, and dissipate in winter and spring. While these are
fascinating phenomena they require a level of detail to model — particularly
in requiring a change in density and atmospheric composition, as well as
relatively sophisticated ground effects — that put it for now beyond what
we wish to study.

On Saturn, recent study by the Cassini probe suggests the existence
of a super-hurricane, reaching approximately eight thousand kilometers in
diameter and centered on the south pole. This is a storm clearly analogous
to hurricanes on earth: it has the well-defined eye, and it is surrounded by
a ring of clouds between thirty and eighty kilometers taller than the storm’s
center.

The north pole of Saturn meanwhile has a curious hexagonal cloud
surrounding it. This storm was first seen in the images from Voyager 1
and 2, and its rotation period of 10 hours, 39 minutes, 24 seconds matches
that of the variational period for the planet’s radio emissions. Polygonal
shapes are reproducible in spinning fluids in the laboratory, of course, and
it is hard not to think of Thomson rings of vortices when hearing of them.
Of course, a ring of six vortices is stable on the sphere only when the
six vortices are at a pole; even allowing that Saturn’s north pole is a bit
flatter than a sphere would be, the fact that the polygon stretches over ten
thousand kilometers across makes this yet another challenge.

And finally Saturn does have its share of anticyclonic storms reminiscent
of the Great Red Spot, although these appear to be seasonal phenomena,
appearing when the northern hemisphere is tilted sunwards. These Great
White Spots were first observed in 1876 by Asaph Hall, who is also known
to astronomers for his 1877 discovery of the two moons of Mars. He is
also obscure to specialists in Monte Carlo for an 1873 paper in which he
reported the results of performing Buffon’s needle problem to experimen-
tally estimate the value of w. Hall was able to use the Great White Spot
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to provide the first good estimates for the rotation rate of Saturn.

When Voyager 2 flew past Neptune in 1989 it observed a large anticy-
clonic storm in the southern hemisphere, featuring winds blowing as fast as
2400 kilometers per hour. However, by 1994, the storm had disappeared,
according to observations made by the Hubble Space Telescope. It might
be that the storm was a particularly transient phenomenon, a hole in the
methane layer or the like; but a very similar spot, known as the Northern
Great Dark Spot, has appeared in the northern hemisphere and has re-
mained for years. There is also a Small Dark Spot, a southern and cyclonic
spot observed during the Voyager 2 flyby.

One of the astronomical events of the past decades which drew consider-
able scientific and popular interest, the collision of comet Shoemaker-Levy 9
into Jupiter, produced short-lived “scars” on the outer atmosphere, and by
its effects provided information about the structure of the inner atmospheric
layers. However, these spots were small, short-lived, and ultimately lacked
the structure of the cyclonic or anticyclonic spots in which we are inter-
ested. The information about properties such as the location of tropopause
contribute to our numerical modeling, data which lets us more rigorously
test how our model compares to the actual atmosphere.

1.5 Outline

There are two substantially different sorts of planetary atmosphere which
this book attempts to understand: the first is the super-rotating atmo-
sphere like that of Venus and Titan, with slowly rotating planet surfaces
and fast atmosphere layers. For this we construct model based on a thin
layer of a barotropic (non-divergent) fluid on a rotating planet. This model
is informed by earlier work on the non-rotating planet described in some
detail in [64]. The addition of planetary rotation to the model introduces
energy in a way opening new physical considerations. Most noticeably in
the non-rotating planet when superrotation occurs is that it may (as ex-
pected) form an “axis of vorticity” in any arbitrary direction, while on
the rotating planet there are energy considerations encouraging alignment
parallel or antiparallel with the axis of rotation. Furthermore there is evi-
dence of multiple phase transitions as a function of the statistical mechanics
temperature.

Most of the material in this part of the book is based on new results ob-
tained by the senior author and Dr. Xueru Ding, in collaboration with Ra-
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jinder Singh Mavi (chapter 8), Zhu Da and Nuwan Indurugwege. Included
in this part is the exact closed-form solutions for the phase transitions of
the Barotropic Vorticity Model by Lim, motivated by the discoveries, un-
covered by Ding’s simulations, of a significant asymmetry between super-
rotating and anti-rotating vertically-averaged barotropic flows. The state-
ment of this discovery, prediction and theorem is: a slowly-rotating planet
can support a super-rotating barotropic atmosphere at high enough ener-
gies, but not an anti-rotating one; a necessary condition for anti-rotation
of a barotropic atmosphere is sufficiently fast planetary spin. Only a few
important physical quantities are needed as input in this theory, namely,
in addition to planetary parameters such as spin-rate and radius, we need
to input the relative enstrophy of the atmosphere, and a narrow range of
averaged energy-momentum levels of the associated reservoir.

The multi-faceted discussions, mean-field solutions, exact integration by
spherical model method based on the device that the enstrophy constraint is
a higher-dimensional sphere and simulated super-rotating and anti-rotating
end-states, in the first part of this book, goes beyond providing pedagogical
completeness and an easy entry point for the interested reader, especially
planetary astronomers, towards a resolution of a continuing enigma in the
atmospheric dynamics of terrestrial planets and major moons [87].

The Metropolis-Hastings Monte Carlo algorithm proves useful in pro-
ducing statistical equilibrium end-states which allow the gathering of nu-
merical evidence for these transitions. That we want to use a Metropolis-
Hastings procedure will encourage us to look for several quantities which
can be kept microcanonically and a relevant energy function which we can
allow to vary canonically in order to find stable equilibriums in positive
and in negative temperature regions. This will be the topic of chapter 6,
followed by two chapters employing respectively a simple mean-field theory
and the Bragg mean-field theory, on variants of the Barotropic Vorticity
Model where the enstrophy constraint for example might be relaxed to an
inequality. In chapter 9 we return to the Barotropic Vorticity Model with
its microcanonical constraints on total circulation and relative enstrophy,
treating the latter as a spherical constraint in an application of Kac’s spher-
ical model to obtain exact or closed-form solutions for the phase transitions
to super- and sub-rotating barotropic flows on a massive rotating sphere.
This body of calculations will show that the mean-field approach is jus-
tified for the problem of barotropic flows on a rotating sphere although
it should be emphasized that the Monte Carlo simulations and spherical
model method in respectively chapter 6 and 9 are performed without any
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assumptions of mean-field. On the other hand, there is as yet no convincing
evidence that a mean-field approach will do for the more complex divergent
models known as the Shallow Water Models discussed in the second part
of chapter 2 and in chapters 10 and 11.

The second type of planetary atmosphere we mean to model is that of
the Jovian atmospheres, with rapidly-rotating planets where the surface
height of the active fluid layer is dynamic. We have in mind possible sim-
ple explanations for an atmospheric layer divided into alternating zones
and belts of varying vorticity (or velocity, or atmospheric pressure — these
all prove to be relevant quantities) and the appearance of cyclonic or an-
ticyclonic storms. In mind through this model construction will be the
Great Red Spot, serving as an example of a large anticyclonic storm in
the southern hemisphere which has high rim velocities and which also al-
lows for a collection of other, smaller anticyclonic storms which appear in
the same hemisphere. At issue here are the on-going debates about the
anticyclonic predominance and the north-south asymmetry that exists on
Jupiter [24], [46]. Most of the material for this part of the book is based
on the recent work of the senior author and Dr Xueru Ding.

To model the Jovian atmospheres, we will build a Shallow-Water Model,
in which the rapid spinning of the planet and the strong horizontal and non-
quasi-geostrophic nature of the flows will help explain, in terms of simple
physical quantities such as the fluid’s angular momentum and its changing
moment of inertia due to varying surface heights, the key large-scale features
of these atmospheres. In this case we will look for cyclonic and anticyclonic
spots, with size, location, and predominance of cyclonic or anticyclonic
spots proving to be dependent on enstrophies and on the rotation rate of the
planet. And as in the Barotropic Vorticity Model and the super-rotation of
Venus and Titan there is evidence for phase transitions in both the positive
and negative temperature ranges. Once again Metropolis-Hastings proves
to be a good tool for visualizing these states and for finding evidence of
phase transitions, as discussed in chapters 10 and 11. At this point, it is
not known whether a mean-field approach will work for the shallow water
problem. Furthermore, no exact solutions like those for the barotropic
problem are known.

These numerical experiments will in turn indicate that the angular mo-
mentum of the atmosphere — itself a reflection of the energy derived from
the rotation of the planet — is a critical component to the formation of
Great Red Spot-like storms, and for that matter in the formation of the
prominent features which motivated these models. The models also surpris-
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ingly capture details of the planetary atmospheres not explicitly in mind
when the physical models or the numerical simulations for them were con-
structed. This indicates we have constructed robust models with physical
significance that call for more study.

Some background material in the fine points of spin-lattice models and
their analytic implications, as well as the topics in statistical mechanics
most directly relevant to the questions we mean to ask, are included fol-
lowing the introduction of the barotropic and the Shallow-Water Models
which grow to dominate the book.

A point of emphasis of the book is the formulation of a simple and
powerful unified statistical mechanics theory for the modelling of the emer-
gence of large-scale coherent structures in planetary atmospheres through
phase transitions. One significant point is that the general unified theory
encompasses both the Barotropic Vorticity Model for super-rotating and
sub-rotating vertically averaged barotropic flows on slowly-spinning terres-
trial planets and major moons, and the Shallow-Water Model for strongly-
divergent, non-quasi-geostrophic shallow flows on rapidly-rotating Gas Gi-
ants. The reader should keep in mind that, as he explores the many-faceted
aspects of these theories, the powerful methods on which they are based,
and the good qualitative agreement of their theoretical predictions with
recent observations obtained by space missions of NASA and the ESA,
the overall objective of this book’s models is not to replicate with high
fidelity the results of intensive numerical simulations on dynamical rotat-
ing Shallow-Water Equations models. These important works have been
organized and discussed by amongst others, Ingersoll, Del Genio, Salmon,
Shepherd, Schubert, Young and their collaborators in too many seminal
papers to be adequately referenced in this small monograph, and they form
a highly informative and valuable background for the discerning reader.
The reader should also read several excellent texts on the relevant back-
ground on geophysical fluid dynamics, such as Holton [43], Pedlosky, and
more recently Vallis.



Chapter 2

Barotropic and Shallow-Water Models

2.1 The Physical Model

How do we translate these physical inspirations into a model with which
to calculate? The simplest model is to start by supposing an infinitely
massive, rotating rigid sphere, the planet, with radius R around which is
a thin shell of fluid, the atmosphere. The atmosphere we suppose to be
inviscid with respect to itself, but that it has some ability to exchange
angular momentum and kinetic energy with the planet through mountain
torque or topographical stress.

By assuming the planet to be infinitely massive, we avoid the compli-
cation of transferring rotation back from the atmosphere to the planet.
While conservation laws make clear that rotation in the atmosphere must
have some effect on the rotation of the planet, we know from the scales of
the angular momentums involved that the effect is tiny and, for real planets,
considerably smaller than other factors which influence the planet’s spin.

Assume the atmosphere is barotropic, its pressure depending only on its
density; and that the atmosphere is non-divergent, so that the atmosphere
has uniform thickness and density. We therefore do not start with the
complications of gravitational potential energy or an irregular surface to
the top of the atmosphere. Furthermore we assume the atmosphere is in
radiative balance, in the net neither gaining nor losing energy from incoming
solar radiation (insolation). The model is simple, but it is robust enough to
capture the atmospheric super-rotation phenomenon. Phenomena like the
Great Red Spot and similar spots will require we change these assumptions,
however, and those will be explained as we start.

Under what conditions super-rotation happens will depend on the angu-
lar momentum of the atmosphere as well as other parameters. The angular

13
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momentum in turn depends obviously on the rotation of the planet and how
that rotation is transferred to and from the atmosphere. (Already we see
the exchange of a variable quantity with an infinite bath of the quantity
that makes for thermodynamics.) Obviously important physical proper-
ties will be the energy and the enstrophy of the atmosphere, and for the
atmosphere only the kinetic energy is left to study.

As we are interested in the fluid’s kinetic energy and we know the density
to be uniform we can instead study its velocity. This velocity we can look
at as having two components, one the portion due to the planet’s rotation
— the planetary velocity — and then the remainder — the relative velocity.
Let ¢ be the relative velocity stream function on the surface of the sphere;
past experience with inviscid dynamics on the non-rotating sphere and on
the plane suggest that it is useful to look at the vorticity, the curl of the
velocity, which we can study through a spectral analysis (as in section 2.5.3)
or by approximating the vorticity as a set of point particles (as in section
6.4).

Particularly convenient as coordinates is a variation of spherical coordi-
nates in which we track the cosine of the colatitude (angle from the North
pole) 0 as well as the longitude ¢. This pair (cos (6), ¢) has the advantage
of being a sympletic pair of variables which makes Hamiltonian dynamics
for this system easier to write and to manipulate when we do look at the
point particle problem.

Let the planetary spin rate be 2 and assume it to be oriented along
the z-axis. Then the planetary vorticity due to this spin at any colatitude
6 will be 2Q cos (0). If we represent at any time ¢ the total vorticity as g,
then we can decompose this into the relative and the planetary vorticities:

q (t;cos(0),¢) = Ap+ 2Q cos () (2.1)

where w = A will be the relative vorticity. Here A is the operator equal
to negative one times the Laplace-Beltrami operator for the unit sphere S2
which arises naturally in the study of vortices on the sphere.

We have here set up a model for the atmosphere that is distinguished
from that of many other works. The first distinguishing feature is that the
angular momentum of the atmosphere is not conserved in line with a relax-
ational explanation for the super-rotation seen in the atmosphere of Venus
and Titan. On the basis of the standard model for barotropic flows on a ro-
tating sphere that has some nontrivial topography, the inviscid mechanism
known as mountain torque causes the non-conservation of atmospheric an-
gular momentum — unlike the classical energy-enstrophy theories in which
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we do not find any phase transitions in the range of temperatures which
are valid for the resulting Gaussian models [34] [35].

The second distinguishing feature is that we treat the energy and the
angular momentum reservoirs for the atmosphere as a single reservoir quan-
tity. The kinetic energy of the atmosphere is the only way for energy to
be put into or removed from it — there is no gravitational or chemical
potential energy, for example, considered in this model. A change in the
kinetic energy of the atmosphere will be reflected in a change in its angular
momentum and vice-versa, justifying this simplification. After the chapters
on statistical mechanics and Monte Carlo methods, this can be viewed as a
reservoir for the enthalpy. Equivalently we can also view the special combi-
nation of kinetic energy and angular momentum to be the Lagrangian for
the Barotropic Vorticity Equation on a rotating sphere.

The third distinguishing feature of this model is that it fixes the relative
enstrophy,

Q= | dxu? (2.2)
5'2
of the atmosphere which has the important mathematical consequence
of producing an exactly-solvable spherical model that is nonetheless non-
Gaussian. This part of the book is based largely on [20] [21] [22].

In the inviscid barotropic model, we see that the total energy — the
energy as measured from a rest-frame — of the atmosphere and the planet
are conserved. Since we assume the planet to have infinite mass, then all
there is to track is the kinetic energy of the barotropic fluid composing the
atmosphere. Since the atmosphere is non-divergent, there is no gravita-
tional potential energy to track: the atmosphere has a uniform thickness
and density and the upper atmosphere is effectively a lid.

If we study the freely-decaying or forced-damped barotropic problems
under the assumption of small viscosity, then the usual principle of selec-
tive decay for periodic domains, which holds that enstrophy decays at a
faster rate than energy, needs modification in order to apply to the nearly
inviscid quasi-two-dimensional flow in complex boundaries. In this case the
enstrophy and total energy decay considerably slower at small scales — and
somewhat faster through Ekman dissipation at the surface of the planet,
the only significantly viscous portion of the atmosphere, but still slower
— than are energy and angular momentum transferred towards the largest
scales in the problem.

Since the change in enstrophy caused by the atmosphere’s viscosity
against the planetary surface is so slow relative to the fast time-scale trans-



16 Vortex Dynamics, Statistical Mechanics, and Planetary Atmospheres

fer of energy and angular momentum, we can treat the enstrophy as fixed
even in the freely-decaying problems, and much more so in the forced-
damped problems which are the main focus in this text. It is important,
however, to recognize that the forced-damped nature of this class of prob-
lems does not mean that one needs to fix both the total energy and the
enstrophy. To see this, one needs to look no further than the fact that only
in the final asymptotic stage of a damped-driven process, are energy and
enstrophy stationary in a statistical sense. The real questions — of upper-
most significance in this book — is the relationship between the stationary
values of the physical quantities in end-stage damped-driven processes, and
how to calculate them for a range of planetary-atmospheric models.

Furthermore, one can fix the relative enstrophy without fixing the total
mechanical energy, or the Lagrangian of the Barotropic Vorticity Equation,
or the Shallow-Water Equations, since there are many parts to the rest-
frame kinetic energy of the atmosphere. While some of this energy should
be fixed in the forced-damped context, there are other terms — as we
will see — that are naturally allowed to change, that provide convenient
measures of long-range order in the atmosphere, or in other words, they are
order parameters in the statistical mechanics models.

This idea of using the Lagrangian of the underlying dynamical problem,
instead of the Hamiltonian, in the action of the partition function (the path
integral) is one of the main points of departure between our approach and
previous studies.

2.2 Voronoi Cells and the Spin-Lattice Approximation

A regular feature of this book is the numerical approximation of a vorticity
field w (&), which is defined on the surface of the unit sphere. One obvious
numerical treatment is to look to the spectral decomposition of the vorticity,
using the orthonormal set of spherical harmonic functions {¢;., }:

&S] l
w (f) = Z Z O‘l,mwl,m (23)

=1 m=—1

This discretization can be truncated by limiting the maximum [ considered.

The other obvious numerical treatment is the lattice model: build a
discrete approximation ¢ (Z) to the original w (). We will need to show
that this model satisfies two essential requirements, based on the size or
the order of the approximation, understanding that as the size of the ap-
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proximation grows infinitely large, the approximation itself must become
indistinguishable from the continuous fluid flow that we mean to study.

The first requirement is that the resulting family of finite-dimensional
models must converge to the correct energy-functional and constraints of
the problem. We will show that in this section.

The second requirement is that the thermodynamic limit — in this
case, the non-extensive continuum limit — of the family of models must
exist. This requirement turns out to be true if the exact solutions to the
spherical models themselves yield valid free energy expressions, in terms of
the associated saddle points in the non-extensive continuum limit. These
solutions can be obtained by the Kac-Berlin method of steepest descent,
as shown in [59]. For now, we will let the validity of this assumption be
subsumed under the assumption that the mean-field theory for this class of
problems is asymptotically exact for coupled barotropic flows on a rotating
sphere.

We start by selecting a mesh M, consisting of a set of N fixed mesh
sites #; distributed reasonably uniformly over the surface of the sphere S2.
From this mesh on the surface of the sphere we build the Voronoi diagram
by partitioning the sphere into N convex polygons D;. The criterion for the
polygons is that every point within the polygon D; is nearer to the mesh
site #; than it is to any other mesh site . (This leaves the boundary lines
out of consideration, but as this is a set of measure zero it does not impair
our approximation.)

Next define the indicator functions H; (&), which are equal to 1 if the
point & is within the polygon D; and is zero otherwise. Given the fixed
mesh points Z; for j =1,2,3,---, N, we define a set of site strengths s; for
the same 7 =1,2,3,---, N.

Then we can approximate the relative vorticity with the piecewise level

function
N
(@) =Y s, H; (@) (2.4)
j=1
where the spin
s; =w(&;) € (—00,00) (2.5)

and where H; is the indicator function on the Voronoi cell D; centered at
Z;, that is,
1 for & e D;
H, (&) = (2.6)
0 forz¢ D,



18 Vortex Dynamics, Statistical Mechanics, and Planetary Atmospheres

An obvious question is what to regard the discrete s; values as repre-
senting — are they the vorticity of the continuous flow just at the point &,
or are they mean vorticities over the Voronoi cell D;, or some other form
of discretizing the continuous flow? We can — and will — view them as
the coarse-grained or block-averaged vorticity, the result from a single-step
renormalization procedure outlined in [61] — which is conveniently suited
to a mean field approach. (Another viewpoint, treating the real-valued spin
states {s;} as macrostates, is in the book [64].)

As the Voronoi cell Dj is all the points in S? which are nearer to ; than
to any other point in the mesh M, these cells have the essential property
of being a disjoint cover for S2, that is:

D;j () Dx = 0 when j # k (2.7)
N
D=5 (2.8)
j=1

(except for a set of measure zero, the boundary lines of the Voronoi cells).
Because the mesh M is uniform, we have another essential property:
the areas A; of the cells are equal,

_Am

A;=1Djl =

(2.9)

Now, we will look at the rest-frame kinetic energy, given in terms of
variables in the frame which is rotating at the same fixed angular velocity
Q of the planet. In that frame, as seen in the previous chapter, that kinetic
energy is

I = 1 dx g (2.10)
2 /g
= _% /32 dz (w+ 2Qcos (0)) G [w] (2.11)

making use of the fundamental solution of the Laplace-Beltrami operator
on S2,

w(f):G[w]:/Sgdx/ log‘l—f-f/‘w<f/) (2.12)

We can find the truncated, or lattice approximate, energy Ly by putting
into the above formula for rest-frame kinetic energy our approximation to



Barotropic and Shallow- Water Models 19

the relative vorticity w. From this,

1 al 5
LN:fi/Sczix ;SJHJ( Z) 4 2Q cos (0 Zska x} (2.13)
1 X )
= _gjz::lkz::l {/S{zdxHJ( )G [Hy, (x)]] 578k
N
,9; { /S  da cos (0) G [H) (f)]} S (2.14)
— Las N — o0 (2.15)

following the rules of Lebesgue integration.
By defining the interactions

Tk = / o Hy ()G [Hi (7) (2.16)
s
and the external fields

F,=Q . dx cos (0) G [Hy, (Z)] (2.17)

then the truncated energy takes on the form of a spin-lattice model:

=—*ZZJJ ksgsk_ZFkSk (2.18)

J=1k#j

The interactions Jj are logarithmic in terms of the distance between
points &; and &} and they are, therefore, long-range. The external fields
F}, are non-uniform and they are linear in the planetary rotation 2 > 0.
These represent the coupling between the local relative vorticity, or spin, s;
and the planetary vorticity field € cos (6). This external field energy is zero
for the single-layer inviscid vortex dynamics on the non-rotating sphere; it
is this inhomogenous term when € > 0 that produces the more abundant
mathematical and physical properties of the coupled barotropic flow on a
rotating sphere.

When we evaluate the interaction strengths J; ;, we find

Jin :/ dz H; (f)/ dz’ log‘l—a'c’m?/‘Hk (7) (2.19)
SZ

167T

—

5~ log |1 — @ - Tp| as N — oo (2.20)
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The external fields meanwhile are

F = Q/ dz cos (9)/ dz’ 10g’1 fﬁa‘s"’Hk (f) (2.21)
S2 S2

:Q/ dx/Hk<f')/ d:ccos(é))log‘lff~f'
52 52

from the symmetry of G, the inverse Laplace-Beltrami operator on S2.
Following this,

F. = Q| cos (6) ||2/dx’ H, (f) /dww (@) logllff-f/’ (2.23)
S2 S2
]. ’ _’I _’/
= —5% cos (0) ||2/52 dz H, (z)ipl,o (x) (2.24)

2
N —N”Qn cos (6) |l2t1.0 (Z5) as N — oo (2.25)

(2.22)

using as in section 2.5.3 the L norm for the function cos (#) and the spher-
ical harmonic function 11 o which is also the relative vorticity of solid-body
rotation.
The truncated relative enstrophy is given again by evaluating the en-
strophy with our approximation as in equation (2.4):
2

N
= rw (%) = x s, H; (& .
tx = [ deo@’= [ 35 (@ (2.26)

N
47
ZWZS?—)FE‘LSN—)O@ (2.27)
j=1
And finally the truncated total circulation is also given by putting the
approximation of equation (2.4) into the integral for circulation:

N
Oy = [ dew (@) = / dr S s;H, () (2.98)
2 2 =
Ar &
ZFZSJ‘HTCaSN—)OO (2.29)
j=1

2.3 The Solid Sphere Model

In developing the variational method to be discussed in detail in the follow-
ing chapter as a prelude to the statistical models that form the backbone of
this book, we build up from the basic model of the thin and nearly inviscid
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atmosphere on a rotating planet described in section 2.1. In this chapter
we decompose the relative vorticity w into its spectral components. One
question which comes immediately to mind is in what space of functions
should we consider w to be? There are some physical properties of the rela-
tive vorticity which drive our choice. In particular we know the circulation
and the enstrophy of the atmosphere are properties we want to measure.
The circulation — which is equivalent to the integral, over the sphere, of w
— is zero. This is required by the Stokes Theorem: there are no boundaries
on the atmospheric layer in the problems we wish to do and therefore the
integral of the circulation over the entire domain must be zero.

The other physical property that we know we will want to include in
our models is the enstrophy of the atmosphere. This is the integral over
the sphere of the square of the vorticity, indicating directly that we want
a square-integrable vorticity w. And therefore we want a function space
which is at least square-integrable on the unit sphere. And as square-
integrable functions are analytically familiar and useful we make L? (S’ 2),
the square-integrable functions on the unit sphere, our function space.

We will want to decompose the relative vorticity into spectral compo-
nents; this requires a suitable basis set. The obvious choice is the spherical
harmonic functions.

The operator A referred to in equation (2.1) is (—1) times the Laplace-
Beltrami operator for the unit sphere S2, and it is one of the critical opera-
tors of this book. It naturally guides much of our thinking. The eigenfunc-
tions of the Laplace-Beltrami operator on the unit sphere are the spherical
harmonics

Yim form=—-0, -1 +1,-14+2,---,1-2,1-1,1 (2.30)
with eigenvalues equal to
Ao =1(1+1) (2.31)
A will naturally have the same eigenfunctions and eigenvalues which are
(—1) times those of the Laplace-Beltrami operator. The spherical harmon-
ics are mutually orthonormal, and so will form a convenient set of basis
functions for L? (S?).

Now, consider any function f defined on the unit sphere S2, and make

use of the inverse G to the operator A:

Gl ()] :/ ar g1~ 77| 1 (¥) (2.32)
5'2
With this operator we can give as the solution to the problem

A = £ (@) (2.33)
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G () = AL (f) = GIf (@)] = /S dz’ 1og’1 —f-f’(f (f) (2.34)

and therefore we can work with the vorticity distribution. This is conve-
nient analytically and numerically, and then convert that vorticity distri-
bution back into a fluid velocity field and therefore a kinetic energy for the
atmosphere.

Since G is the inverse of the Laplace-Beltrami operator A on the unit
sphere, we know that the eigenfunctions of the operator G are the eigen-
functions of the Laplace-Beltrami operator [9] [97], the spherical harmonics

Yim form=—-0, -1 +1,-14+2,---,1-2,1-1,1 (2.35)

Its eigenvalues will equally be

1
Aoy = —————— 2.36
b [(I+1) (2.36)
This is therefore a convenient orthonormal basis set for L? (5’2)7 the set of
square-integrable functions defined on the unit sphere. We can expand the

relative vorticity in the spherical harmonics:

9] l
w (f) = Z Z ahmwl,m (f> (237)
1>1 m=—1
In the frame rotating with the planet we can see that the aj g1, mode
contains all of the angular momentum in the relative flow parallel to the
planet’s spin. However, the “rest-frame” is the reference frame which we
will use to measure the kinetic energy:

1
Lt q] = 3 /52 dx ((u, +up)2 + vf) (2.38)
1 1
= f/ dz (u? + v} + 2upup) + 7/ da u? (2.39)
2 S2 2 S2
1 1
=—-/ d — | dxu? 2.40

where u, is the zonal or latitudinal component of the relative velocity, v,
is the meridional or longitudinal component of the relative vorticity, w,
is the zonal component of the planetary vorticity. Since the planetary
vorticity, representing the planet’s rotation, is necessarily zonal, it follows
that meridional component of the planetary vorticity is zero. 1 is the
relative velocity’s stream function as above.



Barotropic and Shallow- Water Models 23

But the second term of equation (2.40) is fixed given that the planetary
spin rate (2 is fixed: we assume the vorticity in the atmosphere does nothing
to alter the planet’s rotation. So it is convenient to work with a pseudo-
energy which omits this planetary rotation term and treats what remains
as the energy functional:

L] = —%/S dz g (2.41)

_ 1 / da ) (&) [w (7) + 202 cos (0)] (2.42)

_ _7/dw @) w (7) — /dw cos()  (2.43)

= —5 (w,Gw]) = QC (Y10, G [w]) (2.44)

where C = [[cos (8) [l2. (In section 3.2 one will find that it is more conve-

nient to rewrite this again, in a form which makes it positive-definite in the
Fourier coefficients of the spectral expansion in spherical harmonics of the
relative vorticity w.)

The integral operator G is a self-adjoint operator. Because of this, and
since we know the eigenvalues of GG, we can find the net angular momen-
tum associated with the relative vorticity w (Z). We make an additional
assumption, without loss of generality, that the fluid density is a uniform
1:

—C(¢r0,Gw]) = =C(G[Y10],w) (2.45)
1 1
= iC (Y1,0,w) = 3 /s2 drw (Z)cos(d)  (2.46)
which gives as net angular momentum:
Afw] = ~C (910, G ]} = 5 Cang (2.47)

In this approach we have not fixed the angular momentum A [w]. Neither
have we fixed the kinetic energy H. The coefficient o o is unfixed.
Since the kinetic energy of relative motion can be written as the operator
1 1
Elw] = ~3 (w,Gw]) = —3 /dam/) (@) w (Z) (2.48)
an obvious — although not useful for our immediate purposes — way to
rewrite the pseudo-energy is to put it in the form

Llq] = f% /S dx g (2.49)
= E[w] + QA [w] (2.50)
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which suggests the energy-momentum functional that other variational
methods would use in rotational problems.
From the Stokes Theorem on the surface of the sphere we have the

consequence
/qu:/dxwzo (2.51)

so that total circulation is zero. The circulation being zero has nothing to
do with the inviscid nature of the barotropic flow.

The kinetic energy functional H however cannot be well-defined without
some constraint on its argument w (). An obvious constraint is that it
have a finite square norm, or relative enstrophy, which lets a variational
analysis be done wholly within the L? (52) Hilbert space. But — is there
a better constraint possible, or is there a better reason than computational
convenience that could be brought to it?

Consider the total enstrophy for the flow ¢:

I[g] = / da ¢? (2.52)
S2
:/ dz [w + 2Q cos (0))° (2.53)
S2
= / drw? +4Q [ drwcos(9) +49Q2C? (2.54)
52 52

The last term in equation (2.54) is fixed: it is the square of the L? norm of
the fixed planetary vorticity. The second term in equation (2.54) is propor-
tional to the potentially varying net angular momentum of the atmosphere
relative to the rotating frame. The first term in equation (2.54) is the
relative enstrophy. In the Barotropic Vorticity Equation both the total en-
strophy and relative enstrophy can — depending on the particular context
of the problems — in principle be conserved in the coupled fluid-sphere
model. Are they?

From equation (2.54), in this model, no: we are not forced to suppose
they are both conserved. We can assume one or the other is fixed, but then
the other is forced to change with the net angular momentum. In fact, so
far we have found no grounds for saying that either the relative or the total
enstrophy is conserved. They could both vary along with the net angular
momentum in the event the bottom topography is nontrivial, such as in the
presence of mountain torque.

Choosing the relative enstrophy as a constraint is natural, and it is
necessary to complete the analysis we mean to do in this chapter, but
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it is a new assumption and not one based on any constraints previously
introduced. So how do we justify this?

Consider the principle of minimum enstrophy. Under this rule, neither
the enstrophy nor the energy are directly relevant to our analysis of a quasi-
steady-state two-dimensional fluid flow. What is important is the ratio of
enstrophy to energy. And this ratio we find tends toward whatever is the
minimum value needed to satisfy a particular geometry. So if we limit the
relative enstrophy, then we can trust our statistical equilibrium will have
an energy appropriate to minimizing the ratio. This useful principle is dual
to the way that flows in two dimensions can be characterized by iso-energy
manifolds.

On the other hand, in the class of forced-damped problems which we
focus on in this text, the above principle of selective decay is not as relevant.
This is because instead of the enstrophy decaying somewhat faster in inverse
cascades, we face the situation of having to fix the relative enstrophy and
suitable components of the kinetic energy.

In equation (2.54) the second term is equal to 49 times the variable
angular momentum density of the relative fluid motion. (Its value has
units of %4) Assuming that the fluid density is a constant p, then the
fluid’s angular momentum is

p | drxwcos(f) = p{w,cos(0)) (2.55)
SZ
As a result of this, the only mode in the eigenfunction expansion of w that
contributes to the net angular momentum is o 01,0, the component that
is the first nontrivial spherical harmonic. This movement is the form of
solid-body rotation’s vorticity.

What of the higher-order moments of the vorticity, [ dz ¢" for n greater
than two? These are typically found in many physical theories of fluid mo-
tions to be less important than circulation and enstrophy are. In the ab-
solute equilibrium statistical mechanics model and in variational problems
they are relatively less importance than circulation and enstrophy. They
are not irrelevant, though [65].

2.4 The Shallow-Water Equations on the Rotating Sphere

The model which is at the center of this monograph is based on the total
mechanical energy of the Shallow-Water Equations on a rotating sphere.
This model, the Shallow-Water Model will hopefully provide interesting
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results about anticyclonic storms — those like the Great Red Spot of Jupiter
—and the zonal bands in Monte Carlo simulation. This is a generalization
of the statistical Barotropic Vorticity Model [35] [101] [20] to the class of
rotating flows for a single layer of fluid undergoing divergent flows [21] [22].

The non-divergent Barotropic Vorticity Model describes an inviscid fluid
layer with, effectively, a rigid lid. This model we will see is successful [58]
[20] in predicting aspects of the super-rotation of planetary atmospheres
and can be checked against the atmospheres of Venus and of Titan [37]
[36]. In particular they succeed in showing why slowly-rotating planetary
atmospheres may super-rotate but are not expected to anti-rotate, and in
explaining why a rapid planetary spin is necessary but not sufficient for
atmospheric anti-rotation. But it does not represent the formation of giant
coherent spots in an atmosphere such as appear in Jupiter’s atmosphere
[70] [24] — and for obvious reasons, as these atmospheric structures involve
substantial variations in the height of the fluid’s surface.

So the Shallow-Water Flows [24] modelled here will be familiar enough
quasi-two-dimensional, weakly damped-driven or freely-decaying systems,
with energy and enstrophies injected at intermediate scales, as a result of
non-uniform insolation and the resulting baroclinic instability, except that
the bottom topography is trivial here.

Because this model will be quasi-two-dimensional we expect that it sup-
ports some sort of (truncated) inverse cascades of energy and enstrophy into
self-organized flows, and possibly forward cascades of energy and enstro-
phy, as will be shown to be the case in chapter 11 for the low energy,
large-enstrophy, strongly-divergent flows. These flows we may expect to
have scales significant in comparison to the planetary scale, where that
scale is represented by the planetary radius R. These sorts of cascades,
and the coherent structures which result from them, we see in many nu-
merical studies of the dynamical Barotropic Vorticity Equation and of the
Shallow-Water Equation models [13] [48].

We begin formulating the Shallow-Water Equation model by supposing
the atmosphere is a thin, homogenous layer of an incompressible fluid, with
a free surface, and which moves under the influences of gravity and of
Coriolis forces [18]. In the rotating frame, the inviscid, unforced Shallow-
Water Equations have the form

D

Zi=—gVh— fExa 2.
D gVh— fkxu (2.56)

D .
Bl = —hV i (2.57)
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where 4 = (uw)t is the horizontal velocity field relative to the rotating
frame and u and v are the zonal and the meridional components of the
velocity, and h is the height of the fluid wrapping the planetary sphere.
This height h <« R where R is the planetary radius. The gravitational
constant is g, while f is the Coriolis parameter, representing the effect of
the planet’s spin. Finally

Dﬂt:%Jﬂ?V (2.58)
is the material time derivative, and k (Z) is the unit normal at Z.

From [18] — and from earlier works to which that refers — we know
that the inviscid, unforced Shallow-Water Equation on a rotating sphere,
with nontrivial topography can be derived from Hamilton’s Principle of
Least Action. In that we use, as Lagrangian L (equations 70-71 in [18])
the total or absolute mechanical energy (KFE + PE), kinetic energy plus
potential energy, in the rotating frame variables, seen in equation (2.85).

It is possible to modify the gravity component g to include the centrifu-
gal forces, which we will not do. One advantage of this is that it fits more
naturally with the spherical geometry of the problem; another is that it
makes the terms of equation (2.85) similar to the traditional form for the
rotating Shallow-Water Equation Lagrangian.

The Shallow-Water Equations which are the Euler-Lagrange equations
for L themselves conserve potential vorticity and a reduced energy, H =
(KE, + PE), instead of the total mechanical energy L in equation (2.85).
KFE, is the kinetic energy due purely to relative motions of the fluid, the
4 -4 term in equation (2.60). This is true even when the topography is not
trivial [18].

This is an important point: the angular momentum around the plan-
etary spin axis — this is equivalent to the zonal component of linear mo-
mentum in [18] — is not generally conserved. Since the reduced energy
(KE, + PE) is conserved this tells us the traditional Shallow-Water Equa-
tions on a rotating sphere with a nontrivial topography will not conserve
the mechanical energy L, and therefore when we look to the statistical me-
chanics models we should not use a microcanonical constraint on L. The
part of the mechanical energy L which varies in time is the sum of the
fluid’s moment of inertia and its angular momentum, IM + AM =L — H.

In the Shallow-Water Equation model we have two forms of mechanical
energy: kinetic energy and potential energy. We describe the kinetic energy
first. If we accept that the fluid density p is constant and that the fluid’s
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motion is described by its horizontal velocity, then the total kinetic energy
K FE in the rotating-frame variables is

1 2] (M
KE fp/ dz [(u—&—up) }/ dz (2.59)
2" Js2m) hi
1
5p/ 47 (h(F) — hp) -+ 2 - @y + @, - @) (2.60)
S2(R)

where S? (R) is the surface of the sphere with radius R, where hp is the
height of the bottom of the atmosphere — and for our use here we will
model the bottom of the atmosphere as flat and therefore set hg = 0 —
and where 4, is the planetary velocity.

This planetary velocity i, has only the zonal component, of size
QRsin (0), where Q is the spin rate of the planet, where 6 is the colati-
tude, and therefore Rsin (0) is the perpendicular distance from any given
point on the sphere to the axis of rotation.

We can use Helmholtz’s Theorem to decompose the relative velocity into
a purely rotational part and a purely divergent part, so that @ = iy, + Us.
Here V- @y = 0 and V X g = 0. This further allows us to set the relative
vorticity ¢ and , which we write as ( = V x4 = V x @y = Ay and
0=V -u=V-up = Ad, where ¢ is the stream function and where ® is
the velocity potential. And all this allows us to write the relative velocity
in terms of the stream function v and the velocity potential ®:

G=FkxVi+ Vo (2.61)

The Shallow-Water Equation energy function is cubic: the integrand is
quadratic in the velocities (or equivalently in the gradients of the stream
function and the velocity potential), and is linear in the height h.

Since we are going to represent this model with a spatial lattice for-
mation where the generalized spins are relative vorticity, horizontal, and
surface height, we will integrate by parts the kinetic energy expression in
order to get cubic terms that are linear in the stream function or in the
velocity potential, linear in the Laplacian of these potentials — the relative
vorticity ¢ and the horizontal 6 — and linear in h. How do we know that?

Consider constructing K, the kinetic energy per unit mass, without
planetary rotation; provided we know the stream function ¢ and the veloc-
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ity potential ®:

1.,

K = 5“ Ny (2.62)
- % {(Ewi+v¢>) : (Exv@quﬂ (2.63)
- % [V - Vi + VO - VO] + k- (Vi x VD) (2.64)
= AV (V) — ) + [V - (V) — @3]

+k - (Vi) x V) (2.65)

Integrate by parts once. This provides the kinetic energy of the Shallow-
Water Equation without planetary rotation, and it is uniquely given in
terms that are linear in h and those that are linear in Vh:

KE, =p / di h (%) K (2.66)
S2(R)

_ %p/ A7 h (7) {V - (V) — ¢ + V - (V)
S2(R)

— & + 2k - (Vo) x VO)} (2.67)
1

- —5/)/ Az [ (%) Avh (F) + ¥ (F) Vb - Vi + & (7) AD ()
S2(R)

+® () VP - Vh + 20 (7) Vi) - V] (2.68)

From this we conclude that we can rewrite the total kinetic energy from
equation (2.60) as

KE = KEr+p/ dZ h (Z) i - i,
$2(R)

1
+*p/ i h (%) i, - @, (2.69)
2 S2(R)

The second term in equation (2.69) — dub it KFE; — we can rewrite
uniquely in stream function-velocity potential form, using terms which are
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linear in h and terms which are linear in Vh, by

KE, :p/ dZ h (Z) U - Uy (2.70)
S2(R)

- p/ dzh (7) (K x Vi + v<1>) @, (2.71)
s2(R)

— = [ @t (@7, + @), T
S*(R)

+1 (£) h (£) Q cos ()] (2.74)
The simplifications of the last line follow because V - k x i, = Q cos (0)
and V -1, = 0.
The last term in equation (2.69), which we dub K Ej, is
1
KEs = 1p / dZh (31, - @, (2.75)
2 S2(R)
1
= 5P / dZ h (¥) Q*R? sin? (0) (2.76)
S2(R)

by similar reasoning.
As a result the total kinetic energy in the rotating-frame variables can
now be described in unique terms linear in h and in Vh:

1
KE = —fp/ dx
2 S2(R)

(@) VY + D (E) VD 428 (D) V'
( +2(6 (@) Gy + @ (7)) ) vh

b (7) A + @ (7) AD
+ +2¢ (2 )Qcos (9) h (Z) (2.77)
—Q%R?sin? (0)
We can simplify this, and we can arrive at a locally exact expression
for the Shallow-Water Equation Lagrangian, in view of the results in [66].
Provided the Shallow-Water Equation flows satisfy the condition that

/ dZ Ve - Vh # 0 (2.78)
S2(R)
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there will exist a suitable choice of the stream function such that the surface
integral of all the terms containing VA will vanish identically.

This condition holds for the planetary atmospheres which we find inter-
esting such as the Jovian atmospheres. Consider:

/ da?Vz/J-Vh:/ dx Avh (2.79)
S2(R) S2(R)
:/ dz Ch (2.80)
S2(R)

We can find, a posteriori, that this integral will not be zero for the class
of Shallow-Water Equation flows which are hemispherically or north-south
asymmetric. And this quantity is conserved dynamically by the Shallow-
Water Equation since it is equivalent to the potential vorticity.

Therefore we can write the kinetic energy, in terms of the appropriate
stream function and the velocity potential, as

KE =5 [ d5v@¢@n @)

2(R)

—pQ | dZ (Z)cos (0) h (T)
S2(R)

—lp/dm(f)amh@
2" Jsm)
+1pQ2R2 / dz sin® (0) h () (2.81)
The four terms here have distinct physical meanings. The first term we
can label KE;: it represents the part of the kinetic energy which comes
from the relative vorticity. The second term is proportional to the fluid’s
excess angular momentum, past what it has from the rotation of the planet,
and therefore we can dub it AM. The third term is the part of the kinetic
energy which comes from the fluid, and therefore fits the label K F5. The
final term, labelled IM, is related to the moment of inertia of the fluid
within the rotating system. These separate labels will be convenient. The
potential energy in the Shallow-Water Equation is given by

h(Z)
PE = p/ dfg/ dz z (2.82)
S2(R) 0
1
=59 / dz h? (%) (2.83)
S?(R)

where the flat bottom of the atmosphere is taken to be the zero-reference
level for the potential energy. For solid planets we generically lack enough
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information to justify using any particular topography for the bottom. For
gas giants we make the assumption that beneath the topmost, active, layer
of weather modelled by the Shallow-Water Equation is a quiescent higher-
density fluid which provides a locally flat bottom. Other approaches based
on one-and-one-half layer models require a special procedure to parameter-
ize the flow in the deep layer from observations of the surface of the upper
layer [24], and are therefore less predictive of some of the zonal features
such as the Limaye bands on Jupiter. Nonetheless, if the main aim of the
project does not include predicting the Limaye zonal velocity profile, then
the procedure in [24] yielded a reduced gravity Shallow-Water Model with
zonal bottom topography which produced an internal velocity distribution
for the Red Spot that is more accurate than the trivial topography models.
Finally, the total mechanical energy L, in terms of the velocity potential,
and a suitable choice of the stream function which served to eliminate the
energy terms in equation (2.77) that are linear in Vh, has the form

L=KE+PE (2.84)
— 50 [0 @@ (@)~ o [ d5v (@) cos ()1 @

2 2(R) S2(R)
1 1
——p | dZ® (D)6 (2)h(Z) + =pQ2R? | dZ sin® () h (Z)
S?(R) 2 S2(R)

1
+§pg/ di h? (%) (2.85)
S?(R)

— KE; + AM + KEs + IM + PE (2.86)

Since we treat the fluid as incompressible we may assume for convenience
that p =1 and allow that to factor out.

2.5 The Spin-Lattice Shallow-Water Model

The equilibrium statistical mechanics model for the Shallow-Water Equa-
tion, the Shallow-Water Model, which we develop in this book is based
on a Gibbs ensemble that will be canonical in energy and microcanonical
in several of the circulations and enstrophies. This updates and extends
classical energy-enstrophy theories [50] for planar and inviscid fluids to the
more complicated quasi-two-dimensional flow in a bounded domain [92] [41]
without falling prey to the Gaussian low-temperature defect [64].

Part of transforming equation (2.85) into a spin-lattice model requires
the choice of further constraints, guided by the physics being modelled, and
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partially based on what is computationally convenient. The choices made
for computational convenience or technical ease we can justify by comparing
the results of numerical models to the actual behavior of planetary atmo-
spheres. Further support for our specific constraints will therefore come
from work on the non-quasi-geostrophic and the anticyclonic aspects of the
model which resemble key Jovian features.

We also will justify a posteriori the selection of a model that is canonical-
in-L, microcanonical-in-circulations, and microcanonical-in-enstrophies by
considering the stability of the mean values of several key order parameters,
particularly H and potential vorticity, in the equilibrated portion of the
Monte Carlo simulations. An a priori motivation for this formulation comes
from the path-integral method for deriving Gibbs partition functions, where
the action is based on the corresponding Lagrangian in the problem [82].

There is an obvious alternative, a model which was microcanonical in
H, in circulations, and in potential vorticities. This we avoid due to the
technical difficulties and the computational costs in simulating it, and this
aversion will be justified in the study of the order parameters mentioned
above.

Accepting for the moment that we choose an ensemble canonical in L
without constraints on the potential vorticity: how do we justify other
constraints on the model?

The first and easiest constraint to justify is the microcanonical, or fixed
constraint which sets the circulations of relative vorticity to be zero. This
we can conclude from the spherical geometry of the flow domain: Stokes’
Theorem given this domain implies both circulations will be zero.

How do we justify the microcanonical constraint on the total height of
the fluid layer? The fluid is incompressible by one of our original assump-
tions. The mass of the fluid is also conserved, an assumption which has a
strong basis in physics considerations. The fixed nature of the total height
of the fluid layer follows from both.

It is the microcanonical constraints based on enstrophies which require
less obvious motivations. Suppose we placed no constraint on enstrophy:
then the Lagrangian L could be made to take on arbitrarily large values in
the space of functions (¢, d, k), which would give us a variational problem
that was not well-defined.

But we do not need to specifically constrain the height of the fluid layer
(as opposed to the total height): the gravitational potential energy term
in the Lagrangian, itself canonically constrained, will serve as a canonical
constraint on square-norm of the height field.
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Also justifying to us these microcanonical constraints is our desire to
have a unified statistical mechanics theory which is able to predict phase
transitions. In particular we want to be able to observe phase transitions
at arbitrarily low statistical temperatures. That desire discourages us from
using Gaussian models, based on canonical constraints, because we know
these cease to be well-defined at low temperatures.

There is one other point. We assume that there exist fast-dissipation and
slow-dissipation time scales. We know these exist in the damped-driven and
freely-decaying Shallow-Water Equation, where there is Ekman damping at
the boundary of the domain and viscous dissipation on the interior. The
viscous dissipation on the interior takes place on a slower time-scale than
does the relatively fast relaxation of energy toward large spatial scales in
the quasi-two-dimensional flow. Therefore we allow ourselves to fix the
enstrophies because we assume we are looking at the equilibrium after a
short interval on the slow-dissipation time-scale.

The potential vorticity ¢ we define as the height-average of the relative
vorticity of the fluid and the vorticity of the planetary rotation projected
on the local unit normal: ¢ = %((j + f). If there is no dissipation, then
this is a conserved quantity while following the motion of fluid parcels. The
potential vorticity can be treated as an invariant quantity therefore — [48]
does — but we will not constrain it for the Shallow-Water Model.

One reason for this decision is convenience: it is difficult to describe this
particular conservation in the spin-lattice model. Another reason is that we
already have microcanonical constraints on circulation and enstrophy of the
relative vorticity. Adding a further microcanonical constraint on potential
vorticity seems to risk overdetermining the system. And simulation will
reveal that the potential vorticity turns out to be a stable quantity even
if we do not explicitly conserve it, providing us with confidence that the
choice was reasonable.

So this model has canonical constraints on mechanical energy, which
allow the angular momentum of the fluid to change in response to inviscid
topographical stresses, and is microcanonical in the relative vorticity circu-
lation, in the circulation, in the total fluid height, in the relative vorticity
enstrophy, and in the enstrophy.

Background experience in the selective decay of enstrophy and on mul-
tiple time-scales in the Shallow-Water Equations suggest that all of the
enstrophies — including the higher vorticity moments and the reduced
energy H — are dissipated by viscosity in the freely-decaying and the
forced-damped systems. But we also know that only the quadratic en-
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strophies will be nearly constant in the fast time-scale, that of the inverse
cascade of total mechanical energy towards longer wavelengths in which we
work. Therefore we treat the higher vorticity moments as irrelevant in the
forced-damped and freely-decaying Shallow-Water System. This supports
the choice of fixing just the linear circulations and the quadratic enstrophies
microcanonically in this Shallow-Water Model.

Directly calculating the partition function for the Shallow-Water Model
is daunting and therefore we introduce a lattice approximation to the
Shallow-Water Equation’s Lagrangian. As described in section 2.2 we will
decompose the surface of the planet S? (R) into a set of N domains, and
approximate each of the continuous fields for the relative vorticity ¢, the
field §, and the fluid height ~A with functions that are piecewise continuous
over each specific domain [64] [63] [20] [21] [22].

Using the notation (; for the value of our piecewise approximation to ¢
for all points within Voronoi cell j, and similarly ¢; for the discretized field
and h; for the fluid height, and the base stream function with standard
long-range logarithmic kernel, we construct a spin-lattice model for the
total mechanical energy or Lagrangian of the Shallow-Water Equation that

holds when the potential vorticity, |, g2(g) 4% Ch, does not vanish:

(R)

1 iRt X
Ly = —gjz];Jj,khjCjCkﬂL N Q;COS(%)%Q

1 2w R* N
-5 > Jjkhidiok + 0 sin® (0)
j=1

- N
7,k
2rgR? al 9 /
+ hi+c dz Ch (2.87)
N ]ZI T Usamy
where the interactions term J; 5, has the form
1672 R* 9o L 9
Jik =~ (log|R? — &; - @] — log (R?)) (2.88)

and either the double summation skips the terms where k£ = j or we set
Jj.; = 0. The last term comes from further fixing the gauge to remove the
terms in the energy equation (2.77) that are linear in Vh from the Shallow-
Water Equations Lagrangian L, as discussed above. It appears here because
the choice of the suitable stream function needed to eliminate these Vh
terms has been partially fixed by the use of the desired logarithmic kernel
in the last equation, leading to a final, remaining freedom of an arbitrary
constant ¢ in front of the last integral which is essentially the potential
vorticity that is dynamically conserved by the Shallow-Water Equations.
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2.5.1 Circulation Constraints

Stokes’s Theorem dictates that the circulation of relative vorticity must be

/ dz ¢ (Z) =0 (2.89)
S2(R)

The truncated discretization of relative vorticity, where we have divided the

Zero:

domain into subdomains D; and where H; (Z) is the characteristic function
for the domain D; is

N
F) = GH; (%) (2.90)
J=1

and therefore the truncated circulation of relative vorticity has the form

Lzcn=[L g3 cm

ArR?
- Zngj = %Zgj =0 (2.91)
=1 =1

where A; is the area of the subdomain D;. As noted by equation (2.9),
given the way we have chosen to construct subdomains each of these areas
will be approximately 4’TR

The circulation of it is constructed similarly. The theorem itself tells us

/ 45 (7) = / d (V- i) = 0 (2.92)
S2(R) S2(R)

and the truncated circulation of it is

dzé (% / dz 8, H; (
/5‘2( R) SQ(R);

N N
47 R?
j=1 j=1
The linear constraint of the total depth of the fluid layer
/ dEh (%) = Qn > 0 (2.94)
52(R)

which as noted is equivalent to the conservation of mass of the incompress-
ible fluid we truncate using a similar approach again:

2 N
/ dih (7) = B
S2(R)

hi=Qn>0 (h;>0) (2.95)
j=1
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2.5.2 FEnstrophy Constraints

Merely having these three constraints does not suffice to make the total
energy functional, our discretized mechanical energy, Ly have a bounded
value [64] [67] [20]. We also need to fix the relative vorticity enstrophy and
the enstrophy, and as discussed in the main section we mean the quadratic
enstrophy.

The relative vorticity enstrophy Q.» we discretize is as follows:

2

/SdfCQ(f :/ dz ngj

2(R)

N 2
> = Zc =Qe  (299)

By a perfectly similar construction the enstrophy Qs is discretized:

2

d 6 () /de Z(SH ()

52(R) 2(r) \ 4
N N
47 R?
= 03A; = N > 67 =Qs (2.97)
j=1 j=1

When we get to consider the formation of Great Red Spot-like structures
in gas giants, and particularly when we try to understand the predominance
of anticyclonic vorticity in them we will need to understand the effects of
the relative vorticity enstrophy Q¢» and the enstrophy (Qs2 on the self-
organization of large-scale structures.

2.5.3 Gibbs Ensemble

Looking ahead to the chapter on statistical mechanics and Monte Carlo
methods, the Gibbsian statistics of our Shallow-Water Model are completely
described by sampling the system according to the Gibbs probability. In
our discretized form this probability at the inverse statistical mechanics
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temperature 3 is

1
PG = 7 exp (*/BLN)
N

N N N
S| 0—4nR*Y ¢ | 6(0—47R*D> 5j | 6 | NQuw — 47R*) by

j=1 j=1 j=1

N N
S| NQe —4mR*> (7 | 6 | NQs> — 4wR* > 67 (2.98)
j=1 j=1
where the functions ¢ (-) represent the microcanonical constraints. The
Gibbs partition function Zy is

ZN = ZGXp (—ﬁLN)

N N N
S(0—47R?Y ¢ | 6 [0—4nR*> 55 | 6 | NQp — 47R* D by
j=1

j=1 j=1

N N
S| NQe —4nR*Y 2| 6 [ NQs» — 47R* Y 67 (2.99)
j=1 j=1
for a sum taken over the entire phase space of lattice spin. The lattice spin
vector § has the components (¢, d, h).

Applying equilibrium statistical mechanics to vortex flows depends on
the minimization of the free energy F' = U — T'S which is given in terms
of the internal energy U and the information-theoretical entropy S. Monte
Carlo simulations based on the Metropolis-Hastings algorithm [63] [20] effi-
ciently sample this probability distribution and its equilibrated macrostates
after a large number of sweeps are done, and so can find at least local min-
imums or maximums of the free energy. The free energy can be minimized
through making the internal energy small, or making the entropy large, or
both.

The internal energy is essentially an averaged total mechanical energy
of the underlying dynamical PDEs and is resolved only for lattice scales.
In other words, quantities of the macroscopic flow that varies on scales
smaller than the UV-cutoff of the lattice are not resolved, and for 1000
lattice points on Venus, this could be 100 km in wavelength, way above the
molecular scales of the traditional applications of equilibrium statistical
mechanics. Thus, the temperature of such a Gibbs canonical ensemble is
more an averaged energy-momentum level of the corresponding reservoir,
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which consists of the sub-grid scales, the baroclinic scales for injection of
mechanical energy into the shallow flows due to convection, insolation and
the planet’s internal heat sources, and the bulk angular momentum of the
massive planet, rather than any notion related to molecular kinetic energies.

The Shannon or information-theoretic entropy is mainly an expression
of the degeneracy or number of re-arrangements of the piecewise constant
values of the relative vorticity, surface height and horizontal consistent with
given values of the bulk or macrostate variables, such as energy, moment
of inertia, various total circulations, enstrophies and angular momentum of
the fluid [22].
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Chapter 3

Dynamic Equilibria of the Barotropic
Model — Variational Approach

3.1 Energy-Relative Enstrophy Variational Theory

In this chapter, we begin the variational analyses of the Barotropic Vor-
ticity Model. It provides through the Direct Method of the Calculus of
Variations, existence and stability of the relative equilibria in the dynam-
ical Barotropic Vorticity Equation. We will show that these dynamical
equilibria of extremal total kinetic energy have maximal angular momen-
tum on iso-enstrophy manifolds. Signifiantly, this variational analysis of
the dynamical barotropic partial differential equation already show the
asymmetry between the (maximal energy) super-rotating and sub-rotating
states, with the type of the dynamical equilibria changing from minimal
to saddle-point in the sub-rotating case. This asymmetry and the com-
plexity that belongs to it is inherited by the energy-enstrophy statistical
mechanics model for the barotropic partial differential equation, namely
the Barotropic Vorticity Model, and will be further examined in the follow-
ing chapters. The methods discussed here can be extended directly to the
Shallow-Water Equations total mechanical energy functional under suitable
constraints on total circulations and enstrophies or square-norms.

What vorticity field w (z) makes the atmosphere’s rest-frame kinetic
energy an extremal, if we add the constraint that the relative enstrophy,
the square-norm of w (z), is fixed? It turns out that the answer is physically
relevant. The relative vorticity field wq () which finds an extremum of H [g]
will also maximize the net angular momentum A [g]. This means that the
extremal states under this constraint will be either super-rotating or sub-
rotating states, as according to the sign of a; o in the expansion of equation
(2.37).

We already know something for the special case when the planet does

41
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not rotate, that is, when € = 0. An analysis similar to this one shows the
kinetic energy H [w] = E [w] is maximized for a fixed relative enstrophy
by a pro-rotating solid-body flow. That is, one where wq (z) = aq,0t%1,0 ()
where a9 > 0. This is also the state that maximizes the net angular
momentum, A [w]. This gives the first proposition:

Proposition 3.1. For a fized planetary rotation Q2 > 0, the kinetic energy
H [q] is mazimized under o fived relative enstrophy by the solid-body flow
wg (z) which also mazimizes the relative or the met angular momentum
A [UJQ] .

Not obvious and requiring considerable study is showing there is an
asymmetry between the relative vorticity states which minimize and which
maximize the energy. The minimum angular momentum state corresponds
to the counter-rotating solid body flow, wq (z) = a1,0%1,0 () where a1 9 <
0, which also maximizes the energy E [w] (the energy operator is even in w),
will be a minimizer of H [g] when the relative enstrophy is small compared
to the planetary rotation 2. But when the relative enstrophy is larger this
state will become a saddle point.

In setting up the variational treatment we will ignore the higher vor-
ticity moments, [ dxq¢™ where n > 2, as might be expected from earlier
variational problems. But in addition to this we will not constrain the
total enstrophy

/ dmw2+4ﬂ/ dx w cos () (3.1)
S2

52
nor will we constrain the angular momentum

dx w cos (0) (3.2)
S2
What we do constrain are the circulation, set (as necessary) to zero,

/32 drw =20 (3.3)

and the relative enstrophy @Q,¢;, set to a positive value:

dzw? = Qe > 0 (3.4)

52
What are the effects of constraining the circulation and the relative
enstrophy? With these constraints we will look for extremal vorticity flows

w within the subspace V,..; which is defined by

Viel = {w eL? (52) Tre [w] = w2 = Qret > 0; / drw = 0} (3.5)
S2
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An extremum for w in V. leaves the angular momentum, as defined in-
equation (3.2), as something constrained only by an inequality. With the
relative enstrophy and the relative circulation fixed the result is, in prin-
ciple, a model in which energy extrema have their super- or sub-rotations
bounded above.

Lemma 3.1. Given w € L? (5’2), with the circulation of w constrained
as in equation (3.8), and the relative enstrophy constrained as in equation
(3.4). Then the angular momentum as in equation (3.2) is constrained by
an inequality, specifically,

/52 dx w cos (9)’ < C\Qra (3.6)

where C' > 0 is a constant which does not depend on w.

Proof. Let
C? E/ dz (cos (0))* (3.7)
S2

The result follows from the Cauchy-Schwarz inequality.

Lemma 3.2. The upper bound on the angular momentum given by equation
(3.6) will be achieved only for the relative vorticity field

w = kcos (6) (3.8)
for a constant k.

Proof. Let w = kcos (). Then

/dmwcos(ﬂ)‘|k|‘/ dx cosz(G)‘|k|C'2 (3.9)
5'2 S2

and
] = / dzu? = K20 = Qe (3.10)
SQ

and therefore

dchos(@)’ = C\/Qral (3.11)

S2
So this state is the upper bound for equation (3.6). What remains to be
shown is that the upper bound for equation (3.6) must be satisfied by
equation (3.8).
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Suppose that
w = kcos (0) + atym (3.12)
where a # 0, and where (I,m) # (1,0). In that case

/ dx w cos (0)‘ < C|lwl| (3.13)
S2

so an upper bound must be the relative vorticity field of equation (3.8).
|

When we look for constrained extremals in the form of Euler-Lagrange
equations we have [21] available the tools of the Lagrange multiplier method
for a Hilbert space. This gives us the necessary conditions for such an ex-
tremal. In explicit forms the Lagrange multipliers provide the physical
relationships we would like to have to find the spin, energy, and relative en-
strophy. More, the Lagrange multiplier method can be extended to geomet-
rically prove both the existence and the nonlinear stability of constrained
energy extremals when the constraint is fixed relative enstrophy.

In trying to construct an augmented energy-relative enstrophy func-
tional that follows the Lagrange multiplier method for an unconstrained op-
timization problem we find the necessary conditions to find the extremals to
the constrained optimization problem. These necessary conditions are well-
expressed in terms of their Euler-Lagrange equations or Gateaux derivative.

The Gateaux derivative is a generalized form of the directional deriva-
tive, defined on locally convex topological vector spaces, and it has the
unusual property of being nonlinear: Given a function F' defined at a point
u and a direction v, the Gateaux derivative is
Flutm)=Fw) _ d g,y (3.14)

T Cdr

dF (u,v) = lim
=0 7=0
provided the limit exists.

The necessary conditions for the extremals of the augmented functions
will take on the form of inhomogenous linear equations built around G,
the inverse of the Laplace-Beltrami operator. The extremals of the aug-
mented energy functional will generally take on different types in different
regimes of the Lagrange multiplier values, and the borders of these values
will be marked by bifurcation values of the Lagrange multipliers. From
the spectrum of G we will be able to read off the bifurcation values of the
multipliers.

The constraint on relativeenstrophy means that we will have the con-
strained optimization problem — and it is convenient for later reference to
put it on its own equation line —
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Constraint 1.

to extremize H [w] in the space V. defined in equation (3.5). (3.15)

Through the Lagrange multiplier method then the energy-relative
enstrophy-functional

Erer [w; Q, R] = H [w] + ATyg; [w] (3.16)

becomes the augmented objective functional for the unconstrained opti-

mization problem corresponding to the constrained optimization problem.
According to the Euler-Lagrange multiplier theorem, if we let wg € V.

be an extremal of H [w] then at least one of these conditions must hold:

(1) 6T yer (wo) =0
(2) 6Byt (wo) = 6H (wo) + AT yeq (wp) = 0

This is how we apply the Euler-Lagrange multiplier theorem: first, find
a set of relative vorticity w € V,.¢; that satisfies 0T.¢; (w) = 0. Next, find a
second set of relative vorticity w € V. that satisfies 0H (w) + AdT ;¢ (w) =
0 for some multiplier \. Now the set of constrained extremals of H [w] will
be contained in the union of this first and second sets. The value of A will
be determined from the value of the fixed, constant Ty [w] = Qe > 0.

To do this requires first computing the variational or Gateaux derivative

Ol er (w, Aw) = 2/ dx wAw (3.17)
S2

By selecting Aw = w we can see that this variation does not vanish for any

w, that is,

0T et (w) # 0 (3.18)

Therefore, the Euler-Lagrange multiplier theorem requires that any ex-
tremal wq of the constrained variational problem of equation 1 must satisfy
the second condition,

OF ¢ (’wo) =0H (wo) + AL, (’wo) =0 (319)

for some value of \.

Solving for the vanishing of the Gateaux derivative of the augmented
functional FE,..; will give the Euler-Lagrange equation for the unconstrained
problem, and this is solved in the next section.
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3.2 The Augmented Energy Functional

We want here to characterize the conditions under which extremal vortici-
ties occur in the atmosphere of a rotating planet, and also to identify when
these are solid-body rotations. This we do by taking the augmented energy
functional and decomposing the relative vorticity of the atmosphere using
the set of spherical harmonics as basis functions. The Lagrange multiplier
method, looking for extremals based on a fixed relative enstrophy for the
atmosphere, leads to the characterization we want.

The spherical harmonics are eigenfunctions of the Laplace-Beltrami op-
erator on the sphere and therefore also of the inverse Laplace-Beltrami op-
erator so important in translating a vorticity field back into fluid velocities,
which makes their use as basis set difficult to resist. One particular eigen-
function, 11 o = acos (6), with the eigenvalue A\; o = —2 will be particularly
important in describing the zonal steady states.

Since the inverse Laplace-Beltrami operator G is linear and since we can
expand the relative vorticity w as

l
w=> > amibim (3.20)

1>1 m=—1

when we have the total circulation |, g2 dzw = 0, then the Lagrangian func-
tional we can expand in the spherical harmonics to the form

1
H = ~5 (w, Gw]) = QC (1,0, G [w]) (3.21)
1 Fy 1
=3 gl:m N +59Cany (3.22)

with the double sum over [ and then m now written, as is common, as a
single summation.

Written this way it is easy to see coupling between the planetary vor-
ticity and the relative vorticity will happen through the eigenfunction ;o
mode, which is after all the one that matches solid-body rotational flow.

It is convenient to have a Lagrangian written in a quadratic form, and
so we will change it by a constant with loss of generality:

Lemma 3.3. For a fized spin Q2 > 0, the energy H for relative vorticity w
which satisfies

drw(x)=0 (3.23)
52
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is modulo the constant
1
Hy = —19202 (3.24)
equal to the positive definite quadratic form — again denoted by H —
1 1 1 a?
H =7l - (—QO)7 + 1 [of +af 4] =5 > ™ (3.25)

2
I>1;m Lm

Proof. This is shown simply by completing the square:

1 ai, 1
H = 75 /\7 + 5900&170 (326)
I>1; l,m
1, 1
= 4@1 0 + 5900[1’0 Z )\ (3'27)
l>1 l,m
1
= 1 [Oé% ot ZQCCVLO + 9202} + 1 [Oéil + O[i,l]
1
_z Z )\ 19202 (3.28)
l>1 m
1
= 1 [o10 — (—QC)]° + 1 [af +af 4]
Oé
_Z Z /\ZJ _ 79202 (3.29)
l>1 m bm
|

All of the extremals w® have the form of solid-body rotations, that is,
they are of the form
w’ = kb g (3.30)
for the appropriate k. So the following result — simple enough that the
proof is left to the reader — is useful to state; figures showing equations
(3.32) and (3.33) are also included.

Lemma 3.4. The energy and the relative enstrophy of the extremals w® =
aq,0%1,0 take the form

1
H [aLowLo] = Z (041,0 + QC)2 (331)
Qret = Trer [01,0%10] = 04%,0 (3.32)
Furthermore, for a fized H,
Qrel £ 290/ Qrer + Q2C?* = 4H (3.33)

with the solutions

Qra = (£02C + @)2 (3.34)



48 Vortex Dynamics, Statistical Mechanics, and Planetary Atmospheres
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Fig. 3.1 Graph of energy H versus coordinates k = a1,0 of extremals as in equations
(3.31) and (3.32).

Now we are ready to build the constrained variational model based on
a fixed relative enstrophy constraint of V... By a theorem from [91], we
know that the variational problem of equation 1 can be reformed in terms
of the extremals of the augmented functional:

Erel [w§ Q} =H [w] + Aretl'rel [w] (3'35)

e [w] = /32 dx w? (3.36)

Expanding the relative enstrophy I';..; [w] in its spherical harmonic com-
ponents as in equation (3.20) and using equation (3.25) yields

Erel [w; Q] = i [O‘LO - (_QO)]2 + i [

1 «
_52

>1;m

ail + 04%,—1]
i
LA W Z alg’m (3.37)

Lym I>1;m

The Géateaux derivative of E,..; [w; ] taken with respect to w gives us
the Euler-Lagrange equation:

(G — 2Arel] (w°) = %chw (3.38)
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1.5

H/Q%c?

0.5

/Q°C

rel

Fig. 3.2 Energy H-relative enstrophy Q,.; space. The black region denotes un- permit-
ted values. The gray region denotes non-extremal permitted values. The curves denote
values at extremals as in equation (3.33).

giving us a linear inverse-operator problem.

The Fredholm alternative dictates that equation (3.38) either (a) has
solutions for all values of the right-hand side; or (b) has infinitely many so-
lutions when the right-hand side is orthogonal to the kernel of the operator
[G - 2)‘rel} .

We know that all the eigenvalues of G are negative and form an in-
creasing sequence )\l m . These will be divisible into three interesting cases:
case (1), When Arel € (—oo,—i); case (2), when A, € (—%,oo) and

Aref # — 51T l+1) for any [; and case (3), when Ao = _2l(ll+l) [—%,0).
These cases are themselves divided by the broader classes of whether the
kernel of [G — 2\,¢] is trivial.

Since the Euler-Lagrange equation (3.38) is linear the results of this
theorem will be easy to demonstrate, and equations (3.39) and (3.42) are
plotted as well. The results also have clear physical interpretations and
significance. The value of k as used in equation (3.30) is also plotted.
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<\~

-1.5

Ql/z/QC

rel

Fig. 3.3 Graph of Lagrange Multipliers ’\;tel versus the square root of the relative en-
strophy, Qe, for a fixed spin > 0, as in equations (3.47) and (3.48).

Theorem 3.1.

(1) Only when Ao € (—oo, —%) can extremal vorticity in the form of
solid-body rotation in the same direction of planetary vorticity — prograde
— arise.

(2) For Ao € (%,oo) with Ape; # —m, the extremal vorticity — if
it exists — is solid-body rotation in the opposite — retrograde — direction
of planetary vorticity.

(8) Only when Ao = —ﬁ € [%,O) can the spherical harmonics
im for (I, m) # (1,0) contribute to the extremal vorticity.

The proof is most easily done in the two subcases, first where the kernel of
(G — 2)\per) is empty as it is in parts (1) and (2) of the theorem, and second
where this kernel is nonempty, as in part (3).

(i) Aret € (—o0,—1).

In this regime, the kernel of [G — 2),.¢;] is necessarily empty. As a result
we can find the extremal vorticity easily, as this is a familiar sort of inverse
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operator problem. This implies for A,.; within these bounds:

w’ = z(éizgrel)mp (3.39)
and therefore: as A\, — —00

w® = kapy o with k — 0T (3.40)
while as \,o; — —i,

w® = kapy o with k — oo (3.41)
That is, there is a pole-like singularity at A,..; = f%. This proves part (1)

of the theorem.

Part (2) of the theorem is most conveniently proved by splitting the
range of \,..; at zero and considering a negative \,..; and positive one sep-
arately.

(ii-negative) ¢ € (—i,O) with Ay # —m .

In this case, given the range in which \,..; appears and that it is not the
reciprocal of any eigenvalue then

QcC
0
W = ——- 3.42
2 (5 2n) 42
(ii-positive) Ay > 0.

Since all of the eigenvalues of G are negative, it follows that the kernel
of [G — 2)\,¢;) must be empty when A..; > 0. So to equation (3.38) set

wd = k11,0, and we find that

k= —(1_:20)\%0 (3.43)
This implies, then, that as A,..; — oo then
w® = kapy o with k — 0~ (3.44)
and also that as A\re; — 0T then
w® — —QC; o (3.45)
The special solution w® = —QCY1 0 holds when the constraint on V.

is not applied and we look only at the unconstrained optimization of the
energy H.

And so between the cases of (ii-negative) and (ii-positive) we have
proved part (2) of the theorem.

(i) Arer € [—4,0) and Aot = — 3775
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For | = 2,3,4,--- the values of \.¢ = fm will form bifurcation

values. We can have an extremal relative vorticity for which

l
QcC
0 _
W= —2<1_1>¢1,0 + Z U mPlm (3.46)
2 I+
That is, this is the only case in which higher spherical harmonics than the

mode (I, m) = (1,0) are able to contribute to the extremal vorticity.

m=—I

|

So far, we have formed a variational problem to find extremal relative

vorticity states for the atmosphere around a planet, and we have shown that

using the Euler-Lagrange multiplier method implies certain physical prop-

erties about any extremals that do exist. What we have not yet done is to

show that these extremal states do exist, nor have we found the multipliers
Arel for which they appear. This is the objective of the next section.

3.3 Extremals: Existence and Properties

We have a fixed relative enstrophy Q..; > 0 as part of our atmospheric
model. By using this we can find the value of the Euler-Lagrange multiplier
Arer discussed so much above. One of the consequences of finding this
multiplier is that we will become able to determine the physical properties
of the extremal relative vorticity w® and describe them in terms of the
relative enstrophy Q.. and the planetary spin rate Q. Equations (3.47)
and (3.48) are plotted to show the dependence of the Lagrange multipliers
on the relative enstrophy.

Lemma 3.5. The Lagrange multipliers \..; of the extremals of the varia-
tional problem 1 are given in terms of the planetary spin rate Q > 0 and of
the relative enstrophy Qe > 0 by

A, = % [1 + \/%%} (3.47)
and
_ 1 QcC
)\rel - _Z |:]. - m:| (348)

Proof. We start with the solution, given in equation (3.39), for the
Euler-Lagrange equation. Put this into the constraint in Vi.e;:

02C?
OHZ = 5 = Qrel >0 (349)

Il = e
4(3+2)a)
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k=-QC/ (1+4}__ )
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Fig. 3.4 A graph of extremal coordinates k versus Lagrange Multipliers )\;tel for a fixed
spin 2 > 0 as in equations (3.39) and (3.42).

Solve this for )\fel.
The special solutions given in equation (3.46) correspond to a countable
set of bifurcation values.

|
The next lemma is given without proof, but the evaluation necessary is
straightforward.

Lemma 3.6. The first branch of solutions described in Lemma 3.5, where
A< —= (3.50)

with a corresponding extremal relative vorticity

w?%aa: =V Qrel¢1,0 (351)
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are associated with solid-body rotation in the direction of spin Q. In terms
of the original kinetic energy

14 8A%
Htag [0 ,0%1,0] = —9202% (3.52)
16 (5 4+ 2\1,)
1 1
= {Qrat + 320V Qra (3.53)
The second branch of solutions described in Lemma 3.5, where
1
A —— hile A ———1=23,4,--- 3.54
rele( 4700> wne rel# 21(1-’-1)’ 99y Ty ( )

with a corresponding extremal relative vorticity

Wnin = =V Qretth10 (3.55)

are associated with solid-body rotation opposite the direction of spin Q. In
the terms of the original kinetic energy

148\
Hypin [o,091,0] = —9202M (3.56)
091, 1 — 2
16 (5 + 2)\T€l)
1 1
= EQTel - 590\/ Qrel (357)

all for a given relative enstrophy Qe and spin €.

The Euler-Lagrange multiplier method gives necessary conditions for
an extremal to exist; it does not give sufficient conditions. The traditional
method to show this sufficiency is the direct method of the calculus of varia-
tions, and it follows in two steps. First, show the unconstrained extremals of
an augmented objective functional exist; second, show these unconstrained
extremals are the constrained extremals of the original objective functional.
We will show this later on. In this section, we mean to show the sufficiency
by an argument in the geometry of the energy and relative enstrophy man-
ifolds, an infinite-dimensional geometric argument which is no less rigorous
but which may be more intuitive.

Suppose one means to find an extremal of H subject to the constraint
I". This extremal must be within the set of points p which share common
tangent spaces on some level curve of H and of I' simultaneously. But it
is only the points in p where one level curve remains on the same side of
the other level curve within a neighborhood of the point that can be a
constrained energy maximizer or minimizer.

Let parqaz be the slightly leading name for one of these points where the
level curves share a tangent space and where both curves locally stay on the
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same side of the other within the neighborhood. If the level curve of H is
on the outside of the curve of I' in a full neighborhood of pjs4., measuring
inside and outside with respect to the point py = (—C,0,0,0,---,0) in
the subspace of L? (,5'2) which is defined by equation (3.20), then pasq. is
a constrained energy maximizer. Similarly, for another leadingly named
point ppin, if the level curve of H is on the inside of the level curve of
I" in a full neighborhood of ppn, again with respect to the same point
po = (—9C,0,0,0,---,0) in the same subspace of L? (52), then p,,;n, must
be a constrained energy minimizer.

The lemmas and theorems established above support the necessary
conditions. These facts and Lemma 3.3 will come together to form an
existence proof, giving sufficient conditions for the constrained extremals
we want in terms of the geometry of the objective and of the constraint
functionals.
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Fig. 3.5 Projections of the energy ellipsoid and the enstrophy sphere showing the com-
mon tangent at global maximizer w?waz when energy exceeds H.
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Fig. 3.6 Projections of energy ellipsoid and enstrophy sphere showing the common

tangent at local minimizer w®; when equation (3.60) holds.

Theorem 3.2.

(1) The first branch of solutions wS;,, = v/Qreit1,0 in Lemmas 3.5 and
3.6 are global energy mazimizers for any relative enstrophy Q..; and any
spin €.

(2) For the second branch of solutions w0, = —/Qreith1,0 in Lemmas
3.5 and 3.6 these statements hold:

(1) If the relative enstrophy is large compared to the spin, i.e.,
Qret > 40°C? (3.58)

O is a special saddle point: it is a local energy mazximum in all

min
eigendirections except for span {11 11}, in which it is a local minimum.

(2) If the relative enstrophy satisfies
V?C?% < Qe < 4Q%C7 (3.59)

is a constrained energy saddle point.

then w

0

then w,,;,

(8) If the relative enstrophy is small compared to the spin, i.e.,
Qrer < *C? (3.60)
0

then wy,;, is a constrained energy minimum.
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Fig. 3.7 Projections of an energy ellipsoid and enstrophy sphere showing the saddle

point w?, as a local minimum when equation (3.59) or (3.58) hold.

Proof.

For part (1), we know from the eigenvalues \; ,, = —I (I 4+ 1) and the fact
that the spherical harmonics 1) ,,, diagonalize the energy H and furthermore
from Lemma 3.3 — cf. equation (3.25) — that H must be positive definite in
L? (52). Furthermore, its level surfaces are infinite-dimensional ellipsoids
centered at pg = (—QC,0,0,0,---,0) with the properties that

the shortest semi-major axes of equal lengths are in

span {11,0,%1,-1,%1,1} (3.61)
and

all other semi-major axes —
associated with azimuthal wave number [ > 1
— have lengths L (I) quadratic in !

and independent of the wave number m (3.62)
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Fig. 3.8 Projections of an energy ellipsoid and enstrophy sphere showing the saddle

. 0 .
point wy . as a local maximum.

The level surfaces of relative enstrophy are noncompact but concentric
spheres centered on 0 in L? (52),

HwH% = Za%,m =Qre1 >0 (363)
Im

Taken together, this implies that the level surface of H is on the outside —
with respect to pg — of the relative enstrophy level surface for a fixed Q¢
in the neighborhood of the point w9,,, (Qret) = +vQreitb1,0. Therefore,
WY, (Qrer) is a global constrained energy maximizer.

Part (2) we will take in three segments, as the statement of the theorem
suggests we should. The first is part C, where the relative enstrophy is
small compared to the planetary spin,

Qre < Q2C? (3.64)

In this case at the common point w?,;, = —v/Qyet01,0 the relative enstro-
phy level surface hypersphere is on the outside of the energy level surface
ellipsoid with respect to the point p,. (Both surfaces are locally convex
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0 .
min 1S @

with respect to their individual centers.) Therefore, in this case w
constrained energy minimum.
Now to the first case, where the relative enstrophy is large compared to

the spin,
Qrel > 49202 (365)

Here it becomes convenient to split the common tangent space of the energy

level-surface ellipsoid and the enstrophy level-surface hypersphere at w?, ;.

into two orthogonal components,

(a)span {1y 41}, and (b) span{¢im,},l>1 (3.66)

From what we know through equation (3.61) and equation (3.58), we
know the semi-major axes in span {11 0,%1,1,%1,—1} of the energy ellipsoid
at w? . will have equal lengths:

L= ‘—\/@Hzc] > QC (3.67)

Meanwhile, the enstrophy hypersphere at the same point has radii of equal
lengths

Lrel = ’7 V Qrel

The center of the energy level-surface ellipsoid is at pg = —Q2C; 9. The
center of the enstrophy level-surface hypersphere is at the origin. Therefore,

L <Ly (3.69)

> 200 (3.68)

Consequently, in case (a), then inside span {11 +1} of the common tan-
gent space (3.66) at wl,;

enstrophy hypersphere with respect to py and therefore w? .
energy minimum within this subspace.

it follows that the energy ellipsoid is inside the

, 1S a local
However, using equation (3.62), we conclude that the ellipsoid is outside

the sphere with respect to pg, which implies that w2,

maximum within this subspace. Therefore, w2,

in the case of (3.58), a local maximum except within the span {1 +1}.
Finally, in the intermediate case where

Q%C? < Qrar < 4Q°C? (3.70)

» 1s a local energy

is a special saddle point

it follows from property (3.61) and the unboundedness property (3.62) of
the energy level-surface ellipsoid that there is a critical value of the az-
imuthal wave number, l..;;, such that part (a),

span {wl,mJ < lcrit} (371)
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of the common tangent space at w2 . has the energy ellipsoid within the en-
strophy hypersphere with respect to p,; but in the orthogonal complement
of part (b),

span {wl,mJ > lcrit} (372)

the energy ellipsoid is outside the enstrophy hypersphere with respect to

Po. Therefore, w? . is a constrained saddle point in the case (3.59).

n

|
The variational analyses discussed in some detail in this chapter can be
extended to the total mechanical energy functional of the Shallow-Water
Equations given in chapter 2, the only changes being the choice of con-
straints. In this case, it is natural to fix the two square norms — relative
and enstrophies — and three total circulations for relative vorticity, hori-
zontal and surface height, making the technicalities in the corresponding
variational analyses, substantial. Another possible set of constraints — al-
though unlikely to change the physical outcome of the associated variational
problem — is to enforce a fixed total potential vorticity as well as potential
vorticity enstrophy or square-norm, and relax the two prior constraints on
relative vorticity.



Chapter 4

Statistical Mechanics

4.1 Introduction

Statistical mechanics is a formalism in which we aim to explain the physical
properties of matter, in bulk, on the basis of the dynamical behavior of its
components, the microscopic quantities [94], [64], [14]. In the context here
of forced-damped and freely-decaying bounded quasi-two-dimensional flows
in single-layer fluids with multiple time and spatial scales, the bulk refers
precisely to the symmetry-breaking in order parameters such as net angular
momentum, moment of inertia of the fluid, gravitational potential energy
amongst several other physical quantities. For us, the microscopic quanti-
ties are —in the Eulerian or lattice picture — patches of vorticity, horizontal
divergence and fluid height — in other words, the local spatial-temporal dis-
tributions of the dynamical variables in the shallow water equations given in
chapter 2 that are governed by the microscopic dynamical equations (2.56,
2.57).

Being able to make macroscopic predictions based on microscopic prop-
erties is one of the primary advantages to the statistical mechanics ap-
proach over a thermodynamic one. Both approaches are governed, most
importantly, by the study of entropy. However, from the thermodynamic
approach we know entropy only as an empirically measured quantity. From
a statistical mechanics point of view the entropy is a function, known from
the distribution of a system into its microstates.

Our fundamental postulate for statistical mechanics is based on an iso-
lated system which is in thermal equilibrium. Our fundamental assumption
is that this system will be found, with an equal probability, in each of its
accessible microstates. That is to say, a system in equilibrium has no pref-
erence for any of its available microstates.

61
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What the postulate allows us to do is to conclude that given a system
at equilibrium, the thermodynamically observed state which corresponds to
the greatest number of microstates will be the most probable macrostate.
This is the microcanonical picture which forms the basis of the other en-
sembles such as canonical and grand-canonical ones, modulo possible non-
equivalences between them.

The picture that is most useful in this book is the canonical one of a
two-dimensional lattice of vectorial spins interacting self-consistently with
other spins and with unresolved degrees of freedom / spins relegated to the
energy-momentum reservoir. For instance, in the shallow water model, the
energy-momentum reservoir consists of subgrid scales information in the
form of relative vorticity, horizontal divergence and surface heights modes
that changes spatially at wavelengths smaller than the lattice cutoff. For
a grid of 10000 points on the Jupiter, 2000 km could already be subgrid.
Furthermore, the energy-momentum reservoir consists significantly of the
unresolved and unmodelled angular momentum and other forms of mechan-
ical energy residing within the massive planet. The main physical mecha-
nisms transferring energy and momentum between the fluid and the massive
planet reside in the planetary boundary or Ekman layer - it could also be
at the interface between the active upper layer and the deep lower layer
in two-layer models [24]- and comprise inviscid ones such as topographi-
cal stresses or mountain torques which act through pressure difference and
viscous ones such as the relatively thin shear layers. Other ways of transfer-
ring energy and momentum are through the energy injection mechanisms
which operate at intermediate scales through baroclinic or convective in-
stability and insolation or the planet’s internal heat. Between the lattice
scales and the subgrid scales, the main mechanisms at work for exchang-
ing energy and enstrophies are the well-known forward enstrophy cascade
in many quasi-two-dimensional flows and the less well-known direct energy
cascade that operates in tandem with the inverse energy cascade to intensify
small-scales turbulence even as the large-scale coherent structures emerge.
Indeed we will discuss a new link between the statistical mechanics picture
of most probable statistical equilibria and of asymptotic statistically sta-
tionary flow states in damped-driven quasi-two-dimensional bounded flows
which demonstrates this dual cascade indirectly— the discovery of first order
phase transitions at the heart of self-organization of long-range and large-
scale order means that significant amounts of mechanical energy is dumped
into the energy-momentum reservoir at subgrid scales through the known
latent heat effect [94].
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4.2 Microstates and Macrostates

As we have already used the terms microstate and macrostate casually
to describe properties about a statistical equilibrium it is important to
pause and to give these more precise definitions. A microstate is a finely
detailed description of the state of a system, one in which we list all of the
relevant component values. The macrostate is a coarser description in
which we describe the aggregate totals of properties such as energy for the
entire system but refrain from specifying the component variables. These
components are for a single macrostate allowed to take any configuration
which satisfies the specific aggregate or bulk variables.

The macrostate is, logically, composed of multiple microstates. The
number of microstates consistent with any specific value of energy (or for
any number of fixed quantities) is the degeneracy. For a fixed energy F we
denote this degeneracy as W (E). If the probability that the system will be
in one of the microstates with energy E is itself P (F), then the probability
of observing the system to have energy E will be W (E) x P (E) [64].

4.3 Entropy

Entropy is one of the greatest concepts of statistical mechanics, one of the
scientific notions to have captured the public fancy. For our needs entropy is
a function of the state of the system, and it is dependent on the degeneracy
of the system’s macrostate. Ludwig Boltzman established in the study of
gases a working definition for the entropy S which we still rely on:

S = kg log (W (E)) (4.1)

where kp is the Boltzmann constant, approximately 1.38066 x 10723 JK 1.
W (E) is the degeneracy of the macrostate as introduced above.

Claude Shannon, in his definitive papers on Information Theory, pro-
posed a definition of entropy which was based on the probability of encoun-
tering a system in each of its possible configurations. Letting P; represent
the probability that we will find the system in state j and given a complete
roster of all possible configurations we can say the entropy of the system is:

S=> Pjlog(P)) (4.2)

where the logarithm is taken with respect to a convenient base. In the case
of digital electronics the desire to represent information by binary digits
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drives the use of base two logarithms. However, the definition is as valid
for any convenient base, and is equivalent — up to a multiplicative constant
— to the Boltzmann definition for the entropy.

Therefore we will find it convenient to often rely on the Shannon
information-theory entropy definition, using the natural logarithm rather
than base-two logarithm.

4.4 Partition Functions

Suppose a macroscopic system is in thermal equilibrium with its environ-

ment. Then the probability P; that the system will be in the microstate j,

with energy Ej;, will be given by the Boltzmann distribution:
p. o _XP (—BE;j)

T Ypexp (—BER)

where the summation is taken over all the possible microstates, and where

(4.3)

[ is the inverse temperature: § = where T' is the temperature of

T
the gas (in Kelvin) and kp the Boltzmann constant.

While we are not interested in the measurement of heat in our work,
we are certainly interested in the entropy and in the internal energy of our
systems. Since we can measure the change in entropy with respect to the
internal energy, we can calculate a quantity identical to the temperature
encountered in the dynamics of gas particles, and therefore we continue
talking about temperature and inverse temperature [64].

In order for this probability P; to be meaningfully defined, the sum of
all the probabilities of the various microstates must add to 1. This sum,
the normalization factor in the probability, is the canonical partition
function:

Z = exp(—BEy) (4.4)
k

where E}, is the energy of state k. The partition function measures, in its
way, the number of states accessible to a system at a given temperature T’
through its inverse temperature 3.

We must use the canonical partition function Z as a normalization factor
in evaluating the probabilities of various states appearing, and so we will
see notations such as defining the probability of finding a system at inverse
temperature 8 to be in a state with energy E; as

Py = o exp(~0E)) (4.5)
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We can use the partition function to find the expectation values, the
averages, for bulk property of the system. As an example, the expected
value for the energy E we can view as the microscopic definition of the
thermodynamic internal energy U, and we can find that by taking the
derivative of the partition function with respect to the temperature. In
fact,

Zj exp (—8E;)
A

1dz

(E) = (4.6)

implies, if we interpret (E) as U, this microscopic definition of the internal
energy:
dlog (Z)
dp
The entropy of the system we can calculate using the Shannon
information-theory definition of entropy:

U= (4.8)

S =—kp_Pjlog(P)) (4.9)
=15 Y 2B (55, 4 108 (2) (@.10)
= kg (log (2) + BU) (4.11)
which implies
—IO%Z) —U-TS=F (4.12)

is the free energy of the system. Or, in other words,

Z =exp (—0F) (4.13)

4.5 Free Energies

The entropy of an isolated system cannot decrease. From this we can con-
clude the entropy of an isolated system in equilibrium must be a maximum.
However, there is not much experimental interest in an isolated system: we
want to consider a more typical case in which the system is connected to a
heat bath which has properties not changing significantly.
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The Helmholtz free energy, the amount of thermodynamic energy in
system which at a constant temperature can be converted into work, is
given by

F=U-TS (4.14)

where F' is the Helmholtz free energy, and U is the internal energy of the
system, with T the temperature and S the entropy.

The approach we use of applying equilibrium statistical mechanics prin-
ciples to the study of two-dimensional flows centers on finding extremal
values of the free energy. Because we are interested in exploring the
whole range of possible flow mechanical energies we needed the extension
of Planck’s Theorem (theorem 4.1) to cover negative temperatures.

4.6 Planck’s Theorem in Negative Temperatures

When a system has a maximum possible energy, we will generally see the
degeneracy W (E) decreasing as the system’s energy approaches that max-
imum. So there must be some energy, below the maximum possible energy,
at which the degeneracy and therefore the entropy is maximized.

When the system energy exceeds this maximum energy, then, further
increases in energy will decrease the entropy and therefore the temperature
becomes negative [64]. A system with a negative temperature is a hotter
one than a system with positive temperature, which in this case means that
were we to connect a system at negative temperatures to one with positive
temperatures, heat would flow from the negative-temperature system to
the positive-temperature one.

These highly energetic systems we will see correspond to many interest-
ing and highly structured systems.

In these analyses we will very often rely on a representation of vorticity,
and with a fixed relative enstrophy this means we will have a phase space
for possible vorticity distributions among the points which is bounded in
the square-norm measure. As a result, we can expect that at the highest
possible kinetic energies we will see the phenomenon of negative tempera-
tures: an increase in energy will see a decrease in the entropy of the system.
Ever since Lars Onsager’s seminal 1949 paper [80] we have known that two-
dimensional vortex statistics are characterized by the existence of negative
temperatures at the highest values of the flow’s kinetic energy. And there-
fore we know we will need to consider the extension of Planck’s Theorem
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extended to cover negative temperatures 7', as we rely on this to find the
most probable configuration of vorticity on a given isotherm.

Theorem 4.1. Extended Planck’s Theorem. The most probable (ther-
modynamically stable) state at a negative [ positive | temperature T corre-
sponds to mazima [ minima | of the Gibbs free energy per site

F=U-TS (4.15)
where
U=(L) (4.16)

is the internal energy per site (L representing the Lagrangian describing the
system) and where

S =—kn [ dsp(s)1og(p() (4.17)

is the mizing entropy per site, given in terms of the probability distribution
p(s) for the site value s. kg is the Boltzmann constant.

Remark 4.1. It follows that the most probable state — also a thermody-
namically stable state — is not necessarily the state m’ which maximizes

W = exp (éS)

Instead it will be the state which maximizes the product W exp (—pU)
where (G = kibT.

However, at temperatures T where |T'| is small, it becomes likely that
the state extremizing the Gibbs free energy per site F' is close to the state
m which maximizes U, rather than the state m  which maximizes S. At
temperatures T where |T'| is large, it is likely the state which extremizes F'
is closer to the m’ that maximizes S rather than the state m that maximizes
U. This immediately foreshadows a feature of section 6.4, namely, can we
characterize the differences between states that maximize S compared to
those that maximize U, and will there be obvious transitions between those
states?

Another significant property is that, for systems which support the ex-
istence of negative temperatures, in particular barotropic flows, the specific
heat will be positive even when the temperature is negative.
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4.7 Latent Heat and Orders of Phase Transitions

The models in this book will be shown to support both first and second
order phase transitions. Ising and Heisenberg models for the Barotropic
Vorticity problem have well-defined second order phase transitions, many
aspects of which have been rigorously worked out by the exact solutions
of the corresponding Kac’s spherical models. The newer class of lattice
Shallow-Water Models discussed in chapters 2, 10 and 11 are essentially
Potts models and are well-known to have first order phase transitions where
latent heat is either absorbed or given out. In the case of the Shallow-Water
Model at positive temperatures, most suitable for modelling the Jovian at-
mospheres, the emergence of organized coherent structures with long-range
order through a first order transition, ejects latent heat in the form of me-
chanical energy and entropy into the canonical reservoir comprising the
small eddies below the lattice ultraviolet-cutoff. This phenomemon pro-
vides a new and significant link between the statistical mechanics approach
highlighted in this book and the energy cascades, long known to be central
to stationary forced-damped quasi-two-dimensional flows, in the form of
dual energy cascades between intermediate scales on one hand, and large-
scales through the self-organization of large coherent structures and also
sub-grid scales through a forward energy cascade that intensifies the turbu-
lence at small-scales even as the large-scales are organized. The reader can
find out more about phase transitions and their long history in scientific
applications in Stanley’s book, [94].

As predicted by the extension of Planck’s theorem to negative temper-
atures, phase transitions in systems that exhibit negative temperatures are
anomalous in several key aspects. In the case of the first-order transition
at negative T, in the Shallow-Water Model, a sharp decrease in the en-
tropy occurs in passing to the high energy phase. In standard latent heat
calculations such as in the case of boiling water, the high energy phase —
vapor in this case — is associated with a higher entropy. By this anomaly,
a first-order phase transition at negative temperatures is therefore shown
to increase the long-range order even as the associated energy increases.

The verification of a first-order transition indicated in the numerical
results in chapters 10 will be based on an extension of Planck’s theorem
to negative temperatures [64]. Unlike the standard minimization of free
energy in the traditional statement of Planck’s theorem which holds for
positive temperatures, the equivalent result for negative temperatures is the
maximization of free energy. It is interesting to note that in both versions
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- applicable to canonical and grand-canonical Gibbs statistical mechanics
— the free energy F' = U —T'S does not usually have a jump discontinuity
at a first-order transition point denoted herein by T.. It is customary to
see a cusp-type singularity at which the free energy remains continuous
across the transition. The internal energy U of the preferred macrostate,
on the other hand, displays a clear and significant jump discontinuity at
the transition. In passing from a more negative temperature through 7T, to
a less negative temperature, corresponding to an increase  in energy, the
entropy is expected - as is easily shown in greater detail below - to decrease
by the amount § / T..
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Chapter 5

The Monte Carlo Approach

5.1 Introduction

What do we find if we measure the energy of a system? This relatively
simple question provides the motive for introducing the numerical technique
of the Metropolis-Hastings, Markov Chain, Monte Carlo simulation, and
this is a computationally simple yet powerful tool for finding statistical
equilibrium configurations of the sorts of spin-lattice problems which are a
focus of this book.

In this chapter we start by considering the expectation value of any
random variable. This may be the energy or may be another property. But
we start with the energy, since much of what we will want to study is either
the Hamiltonian or the Lagrangian of a system.

We expect that a measurement of energy should find the most probable
energy. And we know the probability of state j appearing as it derives from
the partition function:

exp (—SE;)
>, exp (—BE;)
Since the denominator is constant we can maximize P (E) by minimizing
BE. Assuming that § is positive, then the maximum probability is found
by minimizing the energy.

The solution is simple, direct, and almost useless. The first flaw is that
we need a more exact definition of what it is to be in a state; do we mean
the microstate or the macrostate? This affects what the expectation value
of the energy is.

We need to represent fairly all the states of a system, and to find a way
to select representative slate of these states for a numerical estimate.

For an analytically simple enough system we can write out its parti-

P(E;) = (5.1)

71
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tion function and degeneracy and calculate them exactly. But few inter-
esting systems are simple enough to be understood this way. The three-
dimensional Ising model is a fine example of an interesting and simply
described system, yet it is one not yet analytically solved.

So we resort to the numerical techniques. We can identify all the N pos-
sible states for the system, calculate their energies, and take the expectation
value.

(B) = S E(s) (52)

This algorithm enjoys simplicity of design, but it is impractical; there
are too many states for any interesting system to ever complete. But the
essence of numerical simulation is that we do not need to calculate all of
them. The law of large numbers indicates that the system will almost
certainly be in one peak of most probable configurations, and anything too
far from that peak may be ignored without making an intolerable error.

Yet if we knew the most probable states we would not need to estimate
the most probable states. What we want is a representative sampling of the
various states, chosen so that the expectation value for this sampling also
equals the expectation value for the universe of all possible states. How
do we create this representative sample? We begin, as many numerical
methods do, by taking a wild guess.

5.2 Markov Chains

This initial guess serves the same role the first guess at a root in Newton-
Raphson iterations does: it is an arbitrary starting point for a process which
eventually reaches the desired solution. In fact, unlike Newton-Raphson
iterative methods we do not look particularly for a single solution, but
rather look for a chain of states which are around the statistical equilibrium
of whatever system we mean to study. Once we have reached a statistical
equilibrium we can sample a number of these equilibrium states and find
whatever system property we mean to study. From our starting state we
will generate a Markov chain of new states, which will cluster around the
most probable states.

We explore the set of all possible states of a system by a stochastic
process, one which relies on a certain randomness in how it will evolve.
In a Markov chain the probability of moving to another state depends
only on the current state, and not on any other factors. Note that this
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decision means we are not attempting to represent the evolution in time of
any system; the only mechanical properties we find interesting are the total
energy or whatever other property it is we use to construct the Markov chain
or the terms describing how to move from one configuration to another,
which we will describe shortly.

We represent this with a transition matrix. This is a square matrix of
size N — where N is the number of possible states — and in which the
entry at row j, column k is the probability of the system moving from the
state j to the state k in one iteration. The sum of the terms in any one
column must be 1 — the system must be in some state at the end of the
iteration. Each entry in this transition matrix must be nonnegative, and
must be at most 1.

Let &y be the probability vector, a vector with N dimensions, represent-
ing the starting point for our set of configurations. Each state is represented
by a different component of this vector, and the value of element j in the
vector is the probability the system is in state j. Each term is necessarily
between zero and one inclusive, and the sum of all components is one.

We can represent the effect on a probability vector of of running our
stochastic process by left-multiplication the vector by the the transition
matrix M. As a consequence the probability of being in the various possible
states after each of the first several iterations is

Tj = Mi; = M7, (5.6)

The probability of getting from microstate j to microstate k in a single
step is M; ;. The chance of making it in two steps is M j%k, and the chance
of making it in n steps is M[",. The chance of ever getting from j to k is
Y, My

State j is called a recurrent state if > - | M ;i equals one — that is,
if the system run long enough has probability one of returning. If M7, is
nonzero only when n is a whole multiple of some integer p, then state j has
the period p. If p is 1 the state is aperiodic.

If it is always possible, given enough time, to get from any j to any k
and back again — there are some p and ¢ so that Mp > 0 and Mq
— then M is an irreducible Markov chain. An 1rredu01ble aperiodic chaln
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will justify Markov chain Monte Carlo in section 5.6.

After a great many iterations, the system settles to a statistical equilib-
rium, with the components no longer significantly changing. This equilib-
rium is the vector for which

= lim M'%, (5.7)
1— 00
which ought to be reached independently of whatever the initial vector Ty
is.

Another interpretation of the statistical equilibrium vector is that it is
the eigenvector of M with eigenvalue 1. If the vector Z from (5.7) exists,
then

7= M7 (5.8)

Note that the method of picking an arbitrary starting point and repeating
matrix multiplication is one numerical method for finding a matrix’s largest
eigenvalue and its eigenvector.

The random walk is probably the best-known example of a Markov chain
(though the self-avoiding random walk is not — its moves depend on its
previous states), and we can view our Markov chains as a form of random
walk through all possible states. Assuming that the phase space of possible
states of a system does not have any traps, it should be possible to get from
any one state to any other state eventually.

Using these iterative or eigenvector methods seems to make the problem
worse. Now we need not justify all the states but the chance of transferring
between them — and finding eigenvalues and eigenvectors of large, mostly
nonzero, matrices is extremely computationally costly. We need to reduce
this overhead.

5.3 Detailed Balance

We know something about the statistical equilibrium of a system. In equi-
librium the probability of being in the state j has to be

7 () = 5 exp (~HE;) (59)

with Z the partition function and a normalizing factor, so that ;T () =1.

Detailed balance, a principle holding for any time-reversible system,
holds that at statistical equilibrium the rate at which any process occurs
equals the rate at which its inverse occurs. The chance of the transition
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from state A to B equals the chance of the transition from B to A occurring.
In chemical reactions — which may offer an intuitive guide to the property
— it means the rate at which the components combine to form the product
equals the rate at which some of the product breaks back down to its
components.

Let P4, p represent the probability of state A evolving to B. The chance
of observing A turning to B is the product m(A) x P4 g — the probability
we began in A and changed to B. To be in detailed balance means for all
A and B

W(A)PA)B :W(B)PB“A (510)

From equation (5.10) and from the probability of states occurring from
equation (5.9) we can find the probability of observing the transition from
A to B, in terms of the probability of observing the transition from B to
A. The challenge is then to construct a Markov chain of states which reach
this detailed balance.

7(A)Psp = 7(B)Pp 4 (5.11)
Pap = Pp,a ngg (5.12)

Lexp (-BE(B
Pap = Ppa?
% exp (—0E(A

Pap = Pp.aexp (—B(E(B) — E(A))) (5.14)

;; (5.13)

5.4 The Metropolis Rule

The term Monte Carlo describes a collection of probability-based methods.
The name is meant to evoke gambling: any one event is unpredictable, but
the averages over many events are certain. The use of statistical methods to
find exact results goes back centuries at least. Likely the best-known and
startling example is Buffon’s needle problem, in which short needles are
dropped across an array of parallel straight lines. The chance of a needle
intersecting one of the lines is proportional to the width of the lines, the
length of the needle, and 7, which provides an experimental (but inefficient)
way to calculate .

Modern Monte Carlo studies problems from numerical quadrature, to
random walks, to polymer and crystal growth, to neutral network growth
and decay. Some techniques allow the solution of differential equations
by these methods. Monte Carlo methods — and the name— came about
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after 1944, in the effort to simulate the diffusion of neutrons in fissionable
materials [39].

There are many techniques, but the typical approach starts with an arbi-
trary state. We experimentally adjust that solution, making small changes
at random. Steps that improve the solution are accepted, and steps which
worsen it are rejected with a probability that depends on how much worse
the change would be. This process continues until the detailed balance is
met.

The Metropolis Rule for Monte Carlo, introduced by Nicholas Metropo-
lis, A W Rosenbluth, M N Rosenbluth, A H Teller, and Edward Teller in a
1953 paper, “Equations of state calculations by fast computing machines,”
(J. Chem. Phys. 21, 1087-1092) is one of the great algorithms of the 20th
century.

The algorithm is powerful and flexible; it can be used for problems
from the absorption of neutrons by atomic nuclei to the growth of crystals
to the travelling salesman problem. To customize it to the needs of the
vortex problems we address here we fill in only a few details. What we will
use is the Hastingsrule, and so this particular method is often called the
Metropolis-Hastings algorithm.

We begin with state A. Typically Monte Carlo programs will try to
change as few components as possible, for example by moving one parti-
cle. The desire to change as few variables as possible is a computational
convenience. We need to calculate the difference in energy (and other quan-
tities) between the new state and the old, and fewer changes make those
calculations faster.

So we find a modified state B. We then determine whether to ac-
cept or reject it. The probability of moving from state A to state B is
exp (=0 (Ep — E4)), so we find AE = Ep — E4 and our inverse temper-
ature #. Draw a random number r from a uniform distribution on the
interval [0,1]; if r < exp (—8AEFE) then the experiment is accepted. Repeat
the process until an equilibrium is reached. (Note that if SAE < 0 then
the change is always accepted. The interpretation that in this case the
probability of moving from A to B is greater than one is quietly ignored;
the probability cannot be more than one.)

That this rule obeys the detailed balance principle is clear: the chance
of the process moving the system from state A to state B in one iterate is
m(A) - exp (3 (E (B) — E (A))).

The thermodynamic origins of statistical mechanics give us a metaphor,
of placing the system into a heat reservoir at inverse temperature 5. The
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Metropolis-Hastings algorithm simulates what happens if a system is given
access to an unlimited reservoir from which to draw, or into which to dump,
heat. For the system of gas particles, the average kinetic energy at detailed
balance equals to the average kinetic energy at the temperature T' = ﬁ
(with kp the Boltzmann constant). Reaching a statistical equilibrium may
be referred to as reaching thermal equilibrium.

There are other criteria that may be applied: the detailed balance is
satisfied if experiments are approved whenever the r drawn from [0, 1] is less
than [exp (BAE) + 1]71 instead. While this alternate acceptance criteria
will accept and reject slightly different states than the above rule does, they
will produce a Markov chain with similar properties.

The Markov chain settles around a few states around the peak where the
product of the probability and degeneracy reaches a maximum. Assuming 3
is positive, then if we start from a state with higher than the most-probable
energy we will see any states lowering energy approved, while few states
increasing it are permitted. Thus we get a chain of states with, usually,
decreasing energy whenever we are above the most-probable energy.

If we begin from below the most-probable energy, while the Metropolis-
Hastings process would try to decrease the energy, the degeneracy of these
lower-energy states is small enough the algorithm cannot find many. More
moves increasing the energy are approved. The only energy at which the
number of moves increasing the energy will equal the number decreasing
is that most-probable energy state — which is another way of saying the
system settles at the energy where detailed balance is satisfied.

5.5 Multiple Canonical Constraints

We have looked at systems in which several quantities, such as energy and
circulation, affect the probability of a microstate appearing. When the
probability depended only on its energy, its probability of appearing at a
particular 3 was % exp (—0F). With several quantities, such as energy E
and enstrophy I', we had an inverse temperature 8 and a chemical potential
1, and the probability of microstate A was

exp (—BEa — pl'a)

m4) = >, exp (=BE; — ul'y)

(5.15)

with Z the partition function, the sum of exp (—=8E (j) — uI' (§)) over all
possible microstates j.
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The kinetic theory of gases defines the enthalpy of a system to be the
sum of the energy and of the pressure times the volume. We will appropriate
the name enthalpy and modify it to be

Hpo=E4+ %FA (5.16)

with I'4 the new canonically constrained quantity. The Metropolis-Hastings
algorithm we rewrite with enthalpy in place of energy.

Given the current microstate j, we generate a new microstate k, and
calculate the change in enthalpy AH = AFE + %AF. We draw a random
number r uniformly from the interval (0, 1) and accept the move whenever

r <exp(—BAH) =exp(—SAE — uAT) (5.17)

and reject the move otherwise.

(Some books and articles introduce enthalpy as H = E + uI', which is
a different scaling of . Whether to use this definition or that of (5.16) is
a personal preference.)

This enthalpy can be extended. Each new conserved quantity = requires
its own chemical potential, but the algorithm remains the same, with

Ha :EAJr%FAJr%EA (5.18)

and the decision to accept or reject a proposed move being based on whether
or not the randomly drawn number r satisfies

r <exp(—FAH) =exp (—fAE — AT — pAE) (5.19)

As with the metaphor of Metropolis-Hastings simulation as placing the
system in a heat reservoir at inverse temperature 3, we can regard multiple
canonical constraints as giving a system access to several reservoirs from
which to draw or into which to dump energy, enstrophy, or whatever is
interesting.

5.6 Ensemble Averages
We use the Markov chain of Metropolis-Hastings produced sequences to find

an average of the property . With M such states, and « (j) the property
measured at state number j, the mean value of x is

T= J\l/[;x(j) (5.20)
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This number will approximate the expectation value of x, the average over
all possible states. Given the probability of any state j occurring at inverse
temperature 3 is % exp (—(0H (j)) then this expectation value, if there are
a discrete set of N possible states, will be

SN () exp (—BH (7))

= (5.21)
TSN e (61 )
or, if there is a continuum of possible states,
(z) = f z(5) exp (—BH (5))d5 (5.22)

T exp (—AH(5)d5

The ergodic hypothesis says if one takes a single system and constructs
a long enough chain of microstates, then the averages of any measured
quantity taken over these microstates will approximate the average the
quantity would have over all of phase space. The fraction of “time” spent
in any macrostate consisting of a certain energy range will be proportional
to the fraction of the volume of phase space that is in that energy range
macrostate.

Consider an irreducible aperiodic Markov chain. This sequence of states
can explore all phase space without becoming trapped forever in one region
— it is irreducible, so the chance of getting from one microstate to another
is never zero. It can concentrate on the most probable microstates — an
aperiodic chain may repeat its position. A long enough chain should explore
phase space and spend approximately as much “time” — have as many links
— in each macrostate as the whole phase space does.

Given an irreducible aperiodic Markov chain, 7 (j) the probability the
current microstate is j, and M, the probability of moving to & then

™ (k) = 3 M () (5.23)

when the steady state distribution has been found, and the summation
is taken over all microstates. (If we have a continuum of states, rather
than a discrete set, this becomes an integral.) If we satisfy this (and the
requirements 7 (k) > 0 and 3 m (k) = 1) then
lim M}, =7 (k) (5.24)
n—oo
The choice of j is irrelevant: the statistical equilibrium does not depend
on the initial state. We can find an equilibrium even by multiplying M
by itself repeatedly. Every column of M™ approaches the equilibrium (if it
exists).
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The approach of Metropolis et al — well-presented by J M Hammersley
and D C Handscomb [39] — is to build a transition matrix P with elements
P;j , that will eventually satisfy the equilibrium distribution. Assume P;j >
0 for all j and k, and that P is a regular transition matrix: ), Pj, = 1
and P, = P ;. We know the relative probability :—i at equilibrium:
exp (=0 (H; — Hy)). From this we build the elements of the transition
matrix M.

Define M; j, by the rule:

P mk) g k) g
M = I () (g if § £k 5.25
e { LS b (.25

!
m (k)
Mj;=Pii+> Pis(l——) (5.26)
- 7 (j)
where Z;C means a summation over all states & for which % > 1. As
one last bit of notation let Eg represent the summation over all k # j for
which % > 1, which will let us conveniently find M; x:

;MM =P+ Ek: P i (1 - 77:((;“;)

+2Pj,kjrgﬂf; +Y P (5.27)
k

k

’ "
=rj;+ Z P+ Z Py (5.28)
k k

=P+ Z Pjk (5.29)
ki
=> Pk (5.30)
J
=1 (5.31)

which means the matrix M is a regular matrix with nonzero terms as de-
manded. We have remaining only to show that equation (5.23) holds and
the Markov chain Monte Carlo will be fully justified.

The assumption of detailed balance means the chance of observing
a move from j to k is equal to the chance of observing the reverse:
7w (j) M, = w(k)My,;. We claim this is satisfied by this matrix. Sup-
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pose for the states j and k, 7 (§) = 7 (k). From equation (5.25) then

M= Pjr=Pr; =My (5.32)
T () Mj e = 7 (k) My, (5.33)

which satisfies the balance if 7 (j) = 7 (k). If they are not equal, then —
taking without loss of generality — suppose 7 (k) < 7 (j). Then, again
from (5.25) and our assumption that P;j = Py ; we have
M; = j,leﬂ(kf) = Pk,jﬂ-(k.;) = Mk,jﬂ-(k.;)

7 (7) 7 (4) ™ (4)

7w (j) M =7 (k) My ; (5.35)

(5.34)

and a similar argument will hold if 7 (§) < 7 (k). Finally,

S ow() My =Y (k) My, (5.36)

= (k)Y M, (5.37)
= (k) x1 (5.38)

which is equation (5.23).

And this explains finally the method of the Metropolis-Hastings rule.
From any microstate j some new microstate k is picked. We accept or reject
that move, with probability %, which number! can be calculated knowing
only microstates j and k. The resulting chain of states are distributed as
the entire phase space is. Ensemble averages over a long enough chain will
approximate averages over the whole of phase space [39].

We have the question of how long is a long enough chain. The expecta-

tion value of the difference between the ensemble average and the Markov

chain average for N states is proportional to \/% . What that proportion is
depends on a constant called the correlation time, a measure of how many
attempted changes have to be made before we have two independent states.
Its value is not obvious before calculations are done, though. Worse, crit-
ical slowing down occurs: the correlation time grows longer if 3 is close
to the inverse temperature of a phase transition. We will return to this
phenomenon.

By tracking the expectation values of the quantity f (7) and of the quan-
tity f2 (i) we can estimate the correlation time and from that the error

1 . 1s . . (k)
Properly, the probability is min ( = ) )
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margin of any measurement. If f(NV) is the value of the measured quantity
after N links and f(IV + t) is its value after ¢ more links are created, then

YN+
02— () b ( T> (539

with 7 the correlation time. The estimate of the error in f after NV links is

Af ~(f7) = <f>2\/§ (5.40)

[39] [81]. 1/(f2) — (f)? is sometimes called the spread of f.

Often good practice is running several examples for as long a time as
possible, with the energy (and other interesting properties) measured often,
to examine their evolution. This provides some feel for the correlation time,
and how long simulations need to be for fluctuations to grow sufficiently
small.

5.7 Metropolis-Hastings Monte Carlo Algorithm

Throughout this book we will see Metropolis-Hastings Monte Carlo ap-
proaches used to approximate the equilibrium for a system at a particular
temperature for both the barotropic flow model and for the Shallow-Water
Model. In these cases we start with a set of some convenient number
of mesh sites distributed approximately uniformly over the surface of the
sphere. They are only approximately uniformly distributed, in part because
we do wish to reduce the possibility of mesh artifacts. More critically, there
is no general solution for how to uniformly distribute an arbitrary number
of points on the surface of the sphere. There are solutions for some select
numbers of points only. Conveniently, another Metropolis-Hastings Monte
Carlo algorithm allows for the convenient generation of nearly uniform mesh
sites on a closed domain: the mesh sites can be treated as the locations of
uniform-strength point-particle vortices in the vortex gas problem [64].

With a mesh site provided for we initially assign site values arbitrar-
ily, taking care only to satisfy whatever microcanonical constraints on our
model should be. Most often this will be the circulation — the sum of mesh
sites — being zero and the enstrophy — the sum of squares of mesh sites
— being a convenient constant.

Starting from a particular initial state A we wish to vary site values
to explore all possible configurations which preserve the circulation and
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relative enstrophy. In general, Monte Carlo algorithms change as few com-
ponents as possible at once for the computational convenience this offers.
The smallest changes which do anything more than swapping site values
(site swaps of course preserve circulation and relative enstrophy, but are
unsatisfying ways to explore all possible configurations) involve three mesh
sites.

So from the mesh site A we will choose three distinct sites, and attempt
to change the site strengths s1, so, and s3 to new values sll, 5/2, and s;, by
the formula:

/

S =81 —0—¢ (5.41)
S =Sy +0 (5.42)
Sy =53+¢€ (5.43)

with the requirement that

(K+1)-81—82— K -s3
K2+ K+1

e=K-§ (5.45)

6:

(5.44)

for a value of K chosen at random from [—1, 1] [64].

With the site values changed we have a new configuration B. Whether
to accept these changes, making the next state in the Markov Chain B, or to
reject them, making the next state A, depends on the inverse temperature
[ and on the change in system energy AE = Eg — E4.

Should SAE be less than zero (which is not equivalent to the change in
energy being negative, since the temperature may also be negative) then
the new configuration B is always accepted. Should SAE be greater than
zero, then the new configuration B will be accepted with a probability
exp (—BAE). (We draw a random number r uniformly from (0, 1), and
accept the change if r < exp (—SAE).) Otherwise, we take configuration
A as the next state in the Markov Chain.

And we repeat these experiments and selections of mesh sites until an
equilibrium is finally reached. These simulations are convenient and rapid
ways to find equilibrium configurations for a given mesh over a wide selec-
tion of parameters.
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Chapter 6

Phase Transitions of the
Energy-Relative Enstrophy Theory
for the Barotropic Vorticity Model on
a Rotating Sphere

6.1 Introduction

In this chapter we set about finding phase transitions for the atmospheric
flow by numerically simulating a version of Kac’s spherical model, one which
is microcanonically constrained in the total circulation and in the relative
enstrophy of the fluid. But we also know about such models as that of
Kraichnan [50], which for two-dimensional macroscopic flows are based on
a Gibbs partition function canonical both in energy and in enstrophy. One
can also examine a doubly canonical energy-enstrophy theory for barotropic
flows, as per Frederiksen and Sawford [35], on a rotating sphere that is set
to conserve both relative enstrophy and angular momentum separately.
However, this canonical constraint on relative enstrophy and on angular
momentum does not support phase transitions.

In this chapter’s energy-relative enstrophy theory, we relax the
constraint on angular momentum, and apply the relative enstrophy con-
straint microcanonically instead. This lets us see that treating the coupled
barotropic fluid-massive rotating sphere system, and the relaxation of the
angular momentum constraint, has significant physical consequences. In
particular, we now find two phase transitions between disordered, or mixed,
vorticity states and organized, or unmixed, flows in both super-rotating and
sub-rotating patterns, with physically significant asymmetry between the
two.

The equilibrium statistical mechanics of barotropic vorticity dynamics
on a rotating sphere are formed on the basis of a canonical constraint in

85
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the total kinetic energy, a microcanonical constraint on the relative enstro-
phy, and the setting of the total circulation to zero. This microcanonical
constraint on the relative enstrophy means we have a spherical model, as
per Berlin and Kac’s ferromagnetic models [8]. At small absolute values of
the statistical temperature for the macroscopic flow the free energy of this
model is closely approximated by the internal energy, which was studied by
a variational approach in chapter 3.

The partition function for the energy-relative enstrophy spherical model
is

N N
Iy = / [Idsi | 6| NI —4n) " s3 | exp(—BHy) (6.1)
j=1 j=1
where Hy is the spin-lattice Lagrangian, not the usual Hamiltonian in
ferromagnetism, but the total kinetic energy of the Barotropic Vorticity
Equations, where I'y is the relative enstrophy, where s; is the vorticity
for site j, N is the number of mesh sites distributed uniformly over the
sphere, (8 is the inverse temperature, and § is the Dirac delta function, all
of which is in line with the spin-lattice model we have set up previously.
Using the Lagrangian instead of the Barotropic Vorticity Equation’s con-
served Hamiltonian is a point of departure for the models in this book from
previous statistical mechanics models of macroscopic atmosphere dynamics.
However, it is not new, having been used in the context of a Feynman path-
integral approach for the partition function. After all, the Lagrangian of
the Barotropic Vorticity Equation is just the enthalpy discussed in chapter
5 on Markov Chain Monte Carlo simulations.
The Gibbs canonical-microcanonical probability for any particular con-
figuration s is
N

Po (3) = %exp (-BHN @8 [NTx x> 2] (62)

6.2 Classical and Recent Energy-Enstrophy Theories

The Gibbs canonical ensemble and the corresponding partition function
for the spherical model of energy-enstrophy theory for barotropic vorticity
dynamics on a rotating sphere (which is discussed below and in chapter 9)
are closely related to path integrals and they are difficult expressions to
evaluate in closed form. The spin-lattice approximations allow us to obtain
both analytic and numeric solutions.
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To provide context and perspective for the Monte Carlo simulations in
this chapter, the mean-field theories in chapters 7 and 8, and the exact
solution of the energy-enstrophy theory by Kac’s spherical model methods
in chapter 9, it is worth taking time to review the main theories used to
investigate the statistical relationships between energy, angular momentum
and enstrophy in macroscopic flows. Both of these theories derive from
Kac’s inventions around 1952. The first is the Gaussian model, in which
enstrophy is held as a canonical constraint, which forms the basis of all the
classical energy-enstrophy theories. The second is the spherical model, in
which enstrophy is a microcanonical constraint, versions of which are in
the energy-enstrophy-circulation models Lim first introduced in 2000, and
which is detailed in [64]. Several papers and conference proceedings have
been devoted to the formulation, solutions and applications of these models
to atmospheric problems; the interested reader will find them under Lim
and co-authors in the references and online.

6.2.1 Gaussian Model

Most early papers on the Gaussian model use a spectral formulation, estab-
lishing a truncated set of orthonormal eigenfunctions on the flow domain.
Many of the authors using this approach present results on the applica-
tions of this theory which cover a wide range of topics in geophysical flows,
including two-layer flows over nontrivial bottom topographies, and quasi-
geostrophic f-plane and (-plane flows. We will present a spatial lattice
formulation instead.

The classical energy-enstrophy theory is identical to the well-known
Gaussian model for ferromagnetism introduced by Berlin and Kac [8] and
which is exactly solvable.

The classical energy-enstrophy theory, written using a spatial discretiza-
tion, is given in terms of the truncated energy Hy (equation (2.18)) and the
relative enstrophy I'y (equation (2.27)) by the Gaussian partition function

b\ [ -
ZN<27T) / Edsj exp 71);53 oxp (—0H, [5;9]) (6.3)

in terms of the spin (vorticity) state

S = {s1,82,83, ", SN} (6.4)

s; € (—00,00)
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In this model, the standard deviation of the above Gaussian distribution
is given in terms of the parameter

_ dm
N

where p is the chemical potential, or Lagrange multiplier, associated with

the relative enstrophy constraint. The factor (i) 2 is needed in order to

N
vin- (2)

a probability distribution.

The exact solution of this Gaussian model — where it is well-defined
— is the base for much work on statistical equilibrium in geophysical flows
(cf Salmon, Holloway, and Hendershott [86]; Frederiksen and Sawford [35];
and Carnevale and Frederiksen [12] among others).

The Gaussian model, however, does suffer from a low-temperature de-
fect: it is not defined for certain temperatures. One approach which avoids

b (6.6)

make
N
2

N
exp —sz? (6.7)
j=1

this problem is the spherical model, which is well-defined for all tempera-
tures, positive and negative.

6.2.2 Spherical Model for Coupled Barotropic Flows

The choice of a canonical constraint on the total kinetic energy H [q] and a
microcanonical constraint on the relative enstrophy I' results in the spher-
ical model formulation, which is difficult to solve analytically, but is quite
amenable to numerical simulations and to mean-field methods.

The change of the canonical constraint on relative enstrophy to a micro-
canonical constraint yields a version of Kac’s spherical model for the spin-
lattice model. The spherical model formulation of an equilibrium statistical
energy-enstrophy theory for the barotropic flows on a rotating sphere starts
with the spin-lattice partition function

N N
ZN:/ [Idsi |6 | NQ- = s3 | exp(—BHn) (6.8)
j=1 j=1

where Hy, Jj i, and the external fields F are as given in equations (2.18),
(2.20), and (2.25). Q, is the desired value of the relative enstrophy, and §
is the Dirac delta function.



Phase Transitions in Energy-Relative Enstrophy Models 89

In the Laplace integral form the microcanonical enstrophy constraint
can be written

47?2 H ds;

a-+100 1 1 N
T an give. - i) ew [5Y B | 09

100 =
in terms of the matrix

Kir=n—0Jx (6.10)
and the spin vector

52{817827837'“181\[} (611)

6.3 Monte Carlo Simulations of the Energy-Relative En-
strophy Model

We want here to perform numerical simulations to find relative equilibriums
at different inverse temperatures. One tool which is quite useful and almost
irresistible for this sort of problem — in which we have an enormous con-
figuration space of possible site vorticity distributions § and a complicated
function Hy which we want to extremize — is that of Markov Chain Monte
Carlo simulation, based on the Metropolis-Hastings algorithm [64] [39] dis-
cussed in chapter 5.

The Monte Carlo simulation which provides the equilibriums we want
will begin with a mesh of N points distributed uniformly over the surface of
the sphere. Producing that mesh we will discuss shortly, after we describe
what we do with it. We initialize the site values s; for each mesh site Z;
by assigning to the sites a randomly assigned value, with the assignments
adjusted so as to satisfy the circulation constraint (this is easily done by
finding the mean of the initial set and then subtracting this mean from all
the sites s;), and then to satisfy the enstrophy constraint (this is easily
done by taking the sum of squares of the adjusted site values, and finding
the constant by which they must all be multiplied so as to set the proper
enstrophy).

Now that we have a distribution of site vorticities which satisfies the
circulation and the enstrophy constraints we begin a set of many, many
experiments in altering them. From the existing configuration, we attempt
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changing several of the site vorticities — in practice, this is conveniently
done by changing three at a time, which allows for the conservation of
circulation and enstrophy without restricting us to simply permuting site
vorticity assignments — and allowing these experimental changes to be
accepted or rejected on the basis of the Metropolis-Hastings rule. That is,
we accept changes which reduce the value of —GHy, and accept changes
which increase —3Hy only if another randomly selected number r drawn
uniformly from the range (0, 1), is less than exp (—FAHy).

These Monte Carlo simulations are a convenient and rapid way to find
statistical equilibriums for the lattice system over a wide range of values
for the inverse temperature 3, for the relative enstrophy I'y, and for the
planetary rotation €.

There are a variety of diagnostic tools which allow us to find evidence
of phase transitions from these Monte Carlo simulations. One useful tool is
to find a set of spherical harmonic amplitudes which interpolate the mesh
site vorticities we derive. This will let us support the claim that states are
super-rotating and sub-rotating flows with more or with less (respectively)
angular momentum than the same fluid shell rotating at the planetary spin
rate.

It was mentioned that we need a mesh site of N points uniformly dis-
tributed on the surface of the sphere. In general of course we do not know
of a uniform distribution or a most-nearly-uniform distribution, but conve-
niently, a preliminary round of Markov chain Monte Carlo simulation lets
us find a good distribution.

In this mesh-generating round we use the vortex gas problem: we scatter
a set of NV points Z; on the surface of the sphere with no regard for anything
other than that we wish no points to overlap. Treat each of these points
as a vortex with uniform strength 1; there is therefore an energy which we
can evaluate as

1 N N
= ZZZ log |1 — @; - | (6.12)
=1 k#j

although in practice we do not care about the scale of the energy, merely
its size.

This vortex gas problem is unrelated to the atmospheric flows in which
we are actually interested (which is something obvious in considering that
the total circulation of this problem is N rather than zero).

For in this mesh-generating Monte Carlo step we will not vary vortex
strength but rather vortex position: we pick a site at random, and move it
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a bit. With a positive statistical mechanics temperature 3, then, we find
whether we have decreased the value of — (), Hyy — in which case we accept
the move of this one vortex position — or else we see whether a number
drawn at random and uniformly from (0, 1) is less than exp (—SpAH)r).
If it is, we accept the move; if it is not, we reject the move.

By repeating this experiment with any positive 3y, we find the collec-
tion of mesh sites to spread out over the surface of the sphere. With a larger
M the spreading to a uniform distribution is faster, requiring fewer experi-
ments, and the uniformity appears to be slightly better. In any case we get
for any desired mesh size N a reasonably uniformly distributed mesh.

(A negative By is of no obvious practical use here as it produces a
clustering of mesh sites around a few points.)

Note that the mesh-generating inverse temperature 3y, has absolutely
no connection to the inverse temperature § for our simulations. (s is
simply a convenient tool in the event one has not already got a mesh to use,
and it is discarded once one begins the process of generating a statistical
equilibrium. Indeed, although the simulations discussed here do not use it,
further applications of the mesh-generation or particle Monte Carlo moves,
alternating with the lattice Monte Carlo moves, will be the basis of a spin-
glass lattice model for the Barotropic Vorticity Equation on a rotating
sphere. This is in the realm of current and future cutting-edge methods
for Monte Carlo simulations that could possibly speed up the traditional
Metropolis-Hastings algorithm and avoid the classic critical slowdown.

Super-rotation

When do we expect to see super-rotation, or any organized states? We can
start by considering the spin-lattice Lagrangian or total kinetic energy of
the Barotropic Vorticity Equation,

gr2 NN
HN[q]:—WZZIOgH—fj-kaﬁk
j=1 k=1

270 &
+T ZCOS (Qj)Sj (613)

j=1
The first term of equation (6.13) suggests that vortices surrounded by
vortices of the same sign will have a higher energy than vortices surrounded
by vortices of the opposite sign. The second term suggests that sites near
the north pole should have the most positive values in order to maximize
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the energy, while sites near the south pole will maximize energy when they
are the most negative. This suggests what we already suspected from the
mean-field theories, that negative temperatures should see these unmixed or
highly organized states, while they will be unlikely in positive temperatures.
More, to maximize the energy, this solid-body rotation should be super-
rotating, that is, going in the direction of the planet’s rotation.

In Monte Carlo simulations we find the most probable vorticity distri-
butions generated do indeed have the form, as in Figure 6.10, suggested
by this heuristic argument. The unmixed is a high energy state, and the
form of these macrostates are close to those of the unique global energy
maximizer [55]. The most probable state for negative 3 is, as pictured in
the example of Figure 6.10, one with super-rotating solid-body flow.

We have mentioned the use of spectral analysis to determine in what
state a system is. For these solid-body rotations we expect that there should
be a considerable energy within the ground state modes, the various 1
components. So, let us calculate the spherical harmonic components «;
for a field which interpolates these mesh points, which we can do thanks
to the harmonics 1 ,, themselves forming an orthonormal basis set for the
space of square-integrable functions defined on the unit sphere:

alm =< (z ) Y (2)) (6.14)
ZW ) Y1m (Z5) (6.15)

The components for one typlcal equlhbrlum are plotted in Figure 6.10b.
What we see is that in the super-rotating flow the spherical harmonic with
the largest amplitude is the one corresponding to the o state. In fact
its amplitude approaches /Ty, the square root of the relative enstrophy
and thus nearly the entire enstrophy of the equilibrium. And this is as we
projected: solid-body rotation is one of the [ = 1 modes, and the super-
rotating state is one with m = 0.

Sub-Rotation

What about sub-rotation, that is, the case when most of the energy of the
system will be found in a solid-body state, and yet the direction of the
solid-body rotation is opposite that of the planet? Solid-body rotation is a
high energy state, but the sub-rotation mode is of lower energy than super-
rotation would be. This implies that we should look in high energy states
that fall short of the highest possible energies, and that we will probably
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want to look where the planetary rotation is fast so that there is a significant
difference between super-rotation and sub-rotation energies.

When the inverse temperature (3 is large and positive, while the relative
enstrophy I'y is less than Q2C?, the numerically generated relative vorticity
distribution is one as in Figure 6.11. As a specific example plotted there is
the selection of B =2, Q = 60, and I'y = 128, so that I'y < Q2C?. This
combination produces the statistical equilibrium state of the figure.

The macrostate is largely a counter-rotating flow. We see it associated
with a nonlinearly stable state that achieves a local minimum energy. In the
variational theory discussed in chapter 3, we see w2, (I'n) = —vTn?1,0
for this state [55]. The largest component of the sub-rotating relative vor-
ticity is, again, the harmonic 9 0 — it is a spherical harmonic — but the
amplitude is negative — it rotates opposite the planetary spin.

Phase transitions

So we have seen different modes predominating at different inverse temper-
atures. Naturally the expectation is that we might find phase transitions,
and that these transitions may depend on properties such as the planetary
rotation and the relative enstrophy. We look ahead to chapters 7 and 8
where two versions of mean-field analyses will be discussed on variants of
the energy-enstrophy theory for the Barotropic Vorticity Equation, to pro-
vide points of comparison with the Monte Carlo simulations results here
and also to provide enough pedagogical details of the important class of
mean-field methods. The mean-field analyses in these chapters suggested
there exist phase transitions to sub-rotation, allowed only when planetary
rotation is large enough, and which provides logical grounds to search for
the same consequence numerically.

And in fact simulations on a wide range of these parameters suggest
that there are two phase transitions. One of them is at a negative critical
temperature regardless of the planetary rotation. The other is in a positive
temperature but only when the planetary rotation is large enough, where
“large enough” itself depends on the relative enstrophy.

We can show this numerically by trying a planetary rotation set at
Q0 = 60 and relative enstrophy I'y = 128. With the number of lattice sites
N = 512 equal to that used in finding super-rotation and sub-rotation we
can experiment with various § values and seek phase transitions.

Figure 6.12 shows examples of equilibrium states with § = —0.01 and
with 8 = 0.02. The energies in these cases do not settle, and in fact fluctuate
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Fig. 6.1 The energy of the distributions producing most probable states when 3 =
—0.01 and B = 0.02 for 512 mesh points on a Monte Carlo run of 10,000 sweeps.

wildly during simulation runs. Comparing these energy results with those
of Figures 6.10 and 6.11 suggest the state of the equilibrium changes, for
these parameters, between = —0.01 and 8 = —2 and between 8 = 0.02
and 0 = 2.

So here we invoke a tool [64] useful in identifying possible phase transi-
tions. As suggested by examining equation (6.13) an important property of
the energy is likely to be whether sites are more likely to be surrounded by
sites of the same or of the opposite sign. We saw this in the Bragg-Williams
approximations as the order parameter within a domain; here, though, we
have not introduced any domains or partitioning of the sphere and we are
not going to start.
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N 128 256 512 1024
ct 042 0.34 0.26 0.20
c- 084 0.82 0.75 0.60
- 0.15 0.22 0.35 0.45
52 00012 000086  0.00068  0.00044
~ —0.07 —0.13 —0.18 ~0.35
B _0.00055 —0.00051 —0.00035 —0.00034

What we do instead is to construct a new descriptive variable which
corresponds to the likeliness of neighboring sites sharing the same orienta-
tion. Start by defining the parity of any pair of sites to be the product of
the signs of the vorticities of the sites: that is, it will be +1 if both sites
are positive or both negative; it will be —1 if one site is positive and the
other negative; it will be 0 if at least one site has zero vorticity.

For each site j there is some site k nearer to it than any other site is.
The nearest-neighbor parity is the parity of site j with its nearest neighbor
k.

Let the mean nearest-neighbor parity be the arithmetic mean of the
nearest-neighbor parities for all nearest-neighbor pairs.

This simple-to-calculate property provides an excellent measure of the
structure of site vorticities. When site vorticities are strongly organized,
the magnitude of the mean nearest-neighbor parity is close to 1. When the
sites are mixed, the parity is close to 0. Now we can search for evidence
suggesting phase transitions as the temperature changes.

Figure 6.2 shows one experiment, in which we fix the relative enstrophy
I'y and the planetary rotation €2, but allow the mesh size N to vary. For
this we see the mean nearest neighbor parity drop to zero both in negative
and positive inverse temperatures. This leads us to suspect two phase
transitions, with one in both the positive and the negative temperature
domains.

If we allow that the mean nearest neighbor parity at a given tempera-
ture (and fixed other parameters) is a measure of the phase, then we can
plot the dependence of this measure as a function of temperature, m ().
Rapid changes in the mean nearest neighbor parity as 8 changes are then
suggestive of phase transitions.

So, let us take the mean nearest neighbor parity at various temperatures,
and attempt to interpolate a curve through these points. Since we expect
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Fig. 6.2 These plots are of the mean nearest neighbor parity, used as a measure of
organization, versus the inverse temperature 3 for different mesh sizes on a range from
B = —2-..2 with relative enstrophy fixed to @Q,.; = 128 and planetary rotation 2 = 60.

a phase transition we will assume the function m (§) will have the form

m(B) = C* <1 — (f))a (6.16)

where part of the interpolation will be determining the constants C*. Table
6.1 contains examples of estimated values for these curves for a variety of
mesh sizes.

In all these cases we find that o = 1 fits well as an exponent, as seen in
Figure 6.4. This fit suggests that the mean-field theory should be exact for
this sort of problem [94] [73].
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Fig. 6.3 These plots are of the mean nearest neighbor parity, used as a measure of
organization, versus the inverse temperature 3 for different mesh sizes on a range from
B = —2---2 with relative enstrophy fixed to Q,¢; = 128 and planetary rotation 2 = 60.

But we have another and a more classically familiar parameter to in-
dicate phase transitions, and that is the specific heat. While there is no
specific heat in the molecular sense relevant to our problems any more than
there is a molecular-sense temperature, the statistical mechanics definition
of temperature obviously applies, and it is from that which we draw the spe-
cific heat. The specific heat can be estimated by a numerical differentiation
of the internal energy with respect to the temperature:

o (F8Tus = kpTo\ _ U (kpTos) = U (kpTh) (6.17)
2 k}BTn+1 - kBTn

where U (kgT,,) is the internal energy at the temperature kgT,.
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Fig. 6.4 The mean nearest neighbor parity versus inverse temperature along with the
fitting curves for different mesh sizes N.

Figure 6.6 shows the internal energy and the specific heat as functions
of temperature for the cases where NV = 512 and where N = 1024. The
dashed lines of Figures 6.6b and 6.6d show there appear to be disconti-
nuities in the first derivative of specific heat with respect to temperature.
This corresponds to two phase transitions, as expected from above one
at positive and one at negative temperatures. These results, as in Table
6.2, agree very well with the inverse critical temperatures 3F shown in
Table 6.1.
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Fig. 6.5 The mean nearest neighbor parity versus inverse temperature along with the
fitting curves for different mesh sizes N.

6.4 Free Energy

N 512 1024
k/’BTj 2.8 2.2
kBTc_ —-5.7 —-2.8

The Monte Carlo method is an algorithm quite capable of the numerical
estimation of any quantity writable as the average of a state function. Es-
timating the entropy is more difficult: there is no state function whose
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1200
+
1000 # 1
/
800 * 4
+
600 f J
f/
o 400f v 1
A
200 + J
|+
ol J
-t Hor
-200f P 1
o
—400 L L L
-10 -5 0 5 10
a
Specific heat vs. temperture (N=512)
300 ! ! :
250 4 4
<]
o,
200(- 8 1
s
£
o 150 G/)/ 1
I
A
1
100 s 1
/é
>
50 v Qi@ J
06 o
0> oo
0 ) O=~e~0g
-10 -5 0 5 10
b

Fig. 6.6 The internal energy U and the specific heat C, plotted against temperature
kpT for a mesh of 512 points.

average is the entropy. A similar problem therefore extends to the free
energy, much as we would like to calculate that. We overcome this by in-
troducing a method which estimates the entropy of the spin-lattice system
by a Monte Carlo simulation.

Consider the probability distribution of states, where the probability of
occurrence of a configuration with energy E is proportional to exp (—SE).
As per the normal Metropolis-Hastings Monte Carlo procedure, the prob-
ability of moving from state A, with energy E4, to state B, with energy
Ep, is defined as exp (=3 (Ep — E4)).

But when we set 8 = 0 the probability of moving from state A to
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Fig. 6.7 The internal energy U and the specific heat C, plotted against temperature
kpT for a mesh of 1,024 points.

state B is equal to 1 regardless of the magnitude or sign of the change
in energy (Ep — E4). All new states will be invariably accepted. So this
simulates the system with the same probability for all states. And therefore
after enough sweeps this 3 = 0 Monte Carlo simulation is a random walk
through all regions of the system’s energy space.

Now consider indexing the different states of the system by their en-
ergy. We divide the range of energy into 20 levels between the lowest and
the highest possible values, and count how many of the possible config-
urations fit into each band. (There is nothing particularly special about
20; it is simply a convenient number of bands with which to work. The
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reasoning applies to any number of such bands.) The entropy S (E) is pro-
portional to the logarithm of the degeneracy of the energy macrostate, as
per Boltzmann’s entropy equation:

S(E) = kg log (W) (6.18)

where W is the degeneracy of a given macrostate, or, as we have set it up,
a given band of energy.

In Figure 6.8 we see the degeneracy and entropy (taking for convenience
kp = 1), which both decline as the energy approaches the maximum. This
confirms numerically the existence of negative temperature states: these
are the domains where the derivative of entropy with respect to energy is
negative.

Figure 6.9 shows Helmholtz’s free energy formula FF = U — T'S and this
entropy estimation method used to yield an estimate to the free energy.
We have seen in Monte Carlo simulations a super-rotating most-probable
state with extremely high energy and low entropy. We have also seen a
projection of a sub-rotating most-probable state with very low energy and
low entropy when the relative enstrophy is small in comparison to the plan-
etary rotation. This suggests the maximal kinetic energy steady-state from
two zero-temperature variational theory [55] should be related to the most-
probable flow state predicted by Monte Carlo simulation at hot enough
negative temperatures.

Similarly the minimal kinetic energy steady-states from that theory
are related to the most-probable flow state at low positive temperatures.
At temperatures with sufficiently small absolute values and provided the
entropy-energy reltionship in this problem is as depicted in Figure 6.9 this
correspondence between the variational theory and the statistical equilib-
rium theory follows directly from the form of the Helmholtz free energy
F=U-TS~U.
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Fig. 6.9 The free energy F and the internal energy U plotted against the inverse

temperature.
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Spherical Harmonics (B=-2,Q=60,Q _=128,N=512)
Super-Rotation (B=-2,Q0=60,Q,,=128,N=512)
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Fig. 6.10 Negative 3 — a super-rotating state. In this example there are 512 points, the
inverse temperature § = —2, and the Monte Carlo simulation is run for 10,000 sweeps.
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Fig. 6.11 Positive 8 — a sub-rotating state. In this example there are 512 points, the

inverse temperature 8 = 2, and the Monte Carlo simulation is run for 10,000 sweeps.
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Fig. 6.12 The most probable vorticity distribution, in vorticity and spherical harmonics,
for B = —0.01, with 512 mesh points, on a Monte Carlo run of 10,000 sweeps.
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Fig. 6.13 The most probable vorticity distribution, in vorticity and spherical harmonics,
for 8 = 0.02, with 512 mesh points, on a Monte Carlo run of 10,000 sweeps.



Chapter 7

Extremal Free Energy in the
Mean-Field Theory

7.1 Introduction

In this chapter we again look at the system of a rotating, high-mass planet,
a sphere of radius R, around which is a thin atmosphere of a free barotropic
fluid. The atmosphere is again inviscid, apart from its ability to exchange
angular momentum and energy with the planet. And again we will look at
the relative vorticity of the atmosphere. We present a mean-field approach
this time where one possible viewpoint is to model the coarse-grained rela-
tive vorticity as a distribution or count of point vortices with fixed strengths
in fixed mesh cells. The detailed pairwise particle interactions are subsumed
under a coarse-grained or renormalized cell-to-cell interaction in a mean-
field theory, from which we can study the phase transitions of the fluid with
respect to a few key parameters.

Of particular interest is that we will be able to characterize two partic-
ularly special macrostates in the atmosphere, a disordered vorticity state
and then highly ordered state representing a rigidly rotating atmosphere,
and that by examining the difference in the Gibbs free energy between these
states we will become able to find critical temperatures.

Ultimately, in chapter 9, we like to study a spherical model in which
the relative enstrophy of the atmosphere is fixed to a constant, but this is a
difficult problem to solve in closed form, and best postponed until we have
gained some analytical experience using mean-field methods. Thus we take
alternatives: the simple mean-field theory approach used here, for example,
in which we conserve an averaged relative enstrophy. A second alternative
discussed in chapter 6 was what motivated and generated current interest
in these new energy-enstrophy models of the senior author: the problem is
quite amenable to being modeled in a Monte Carlo simulation of the spher-
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ical model, with the relative enstrophy a microcanonical constraint of the
simulation. A third approach, the Bragg mean field model, which is based
on an intermediate mean-field method, will be examined in chapter 8. In
that we get a renormalized expression for the free energy in terms of the
coarse-grained barotropic non-divergent vorticity and do not use a relative
enstrophy constraint. This approximate expression for the free energy pro-
duces values for both the positive and the negative critical temperatures
that are consistent with this chapter’s mean-field methods, and are also
consistent with the Monte Carlo simulations in chapter 6 and as expected,
will be found to be in total agreement with the closed-form solutions given
in chapter 9.

For the statistical mechanics studied here it will be convenient, like be-
fore, to have a temperature and an entropy; we need to have some idea
of what they are as there are no molecules and little resembling the ki-
netic theory of gases present. But the statistical definition of temperature
for macroscopic flows has been well-established and is widely recognized.
The macroscopic flow temperature is a measure, not of the average kinetic
energy of molecular motion, but of the average kinetic energy contained
in eddies of vorticity which potentially vary over a wide range of length
scales. Given a macroscopic flow state or a macrostate vorticity distribu-
tion we have a suitable flow temperature which depends on the average
energy of the eddies in that flow. So we have energy reservoirs instead
of heat baths, and we will see transfers of energy and angular momentum
at complex boundaries producing changes in the kinetic energy and angu-
lar momentums of the large, organized, eddies and changes in the kinetic
energy and entropy of the smaller eddies.

7.2 Equilibrium Statistical Mechanics

Since we are making a lattice representation of the relative enstrophy, and
are using a mean-field theory with the intention of finding most proba-
ble states at different temperatures — and we make the assumption the
entire atmosphere has finite energy and will enjoy the same statistical-
mechanics temperature — we know to expect the existence of negative
statistical-mechanics temperatures and therefore will need the extended
Planck’s Theorem as outlined in section 4.6.

There is a precise correspondence between the statistical equilibrium
properties of barotropic flows and the dynamical properties of barotropic
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flows. We can describe this correspondence by using the Minimum Enstro-
phy Principle — or its equivalent, the Extremal Kinetic Energy Principle
— which form a pair of dual variational principles for the steady-states of
barotropic flows.

What is the maximal-kinetic energy steady-state of a barotropic flow?
What is the minimal-kinetic energy steady-state? Can we see either in the
statistical mechanics models?

Consider the Helmholtz free energy, FF = U — T'S, at a temperature
which is sufficiently close to zero. Then F' ~ U regardless of the sign of 7. In
this case, then, the maximal-kinetic energy steady-state corresponds to the
most probable flow at the hottest negative temperatures, the maximizing
of both U and F', while the minimal-kinetic energy steady-state is the most
probable flow at the coldest positive temperatures.

The Gibbs canonical ensemble consists, in general, of the standard form
for this probability measure:

Po (w) = = exp (~BH [u] - T [w]) (7.1)

13, 1]

where H [w] is the energy and (8 is an inverse temperature; and I' [w] is a
quantity we wish to conserve and p is a chemical potential, or Lagrange
multiplier, conjugate to I' [w]. The partition function, or configurational
integral, Z [, u] provides the normalization required so that Pg (w) will be
a probability measure.

Customarily, we include only the key conserved quantities as the canon-
ical constraints I' [p]. In the case of quasi-two-dimensional turbulence we
have an infinity of conserved quantities to select. All of the higher-order
moments of the relative vorticity [ dazw™ for integer n are conserved. But
we do not need to include all of them as canonical constraints in the Gibbs
probability Pg. In practice we will be interested only in conserving the
circulation and the enstrophy. Analytically this is enough to provide a
model that is tractable and still resembles what we believe the physical
properties being modelled require; numerically, this allows us to use tools
such as Monte Carlo simulation to find equilibriums that do not make too
complicated the constraints we need to put on site vorticity alterations.

7.3 Mean-Field Theory

It is hard to solve the spherical model for the energy-enstrophy theory of
rotating barotropic flows, so we postpone that until chapter 9. We will
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first attempt to use a mean-field method to find thermal properties for the
spin-lattice model:

1NN N
HN = _izzjj’ksjsk_ZFjsj (7.2)
j=1k=1 j=1

This will give us physically significant phase transitions for the energy-
relative enstrophy theory of coupled barotropic flows on the rotating sphere.
The major step in this mean-field theory is to calculate the change in the
free energy per site between the two fundamentally different vorticity states,
which are straightforward to characterize and which can be distinguished
by their distributions.

The first state is the mixed macrostate: in this, the vorticities are ar-
ranged so that a site has equal probability of having positive or negative
sign regardless of its location. It is unlikely to see many large-scale struc-
tures — regions of uniform vorticity sign, for example — and the vorticity
distribution would look mixed or even chaotic to the eye. The second state
is the unmixed macrostate, in which the coarse-grained vorticity is arranged
so that the opposite signs are separated into hemispheres — so that a site
has either probability 0 or probability 1 of being negative — or positive —
entirely dependent of which hemisphere it is in. This is highly organized
and we may consider whole hemispheres — the whole domain, in fact — to
be one large-scale structure.

We will make some simplifications for the convenience of computation.
Assume the coarse-grained site vorticity s (z;) for each mesh site x; will
be one of the pair {sg, —so} for an appropriate sg. We also will suppose
that for every mesh site there are z other sites in its neighborhood. The
neighborhood is the set of sites which have direct influence on the simplified
mean spin value.

For the energy-enstrophy spin-lattice model the actual neighborhood
N (j) of mesh site x; is all the other sites in the mesh. Obviously the entire
globe interacts with each site x;, as we see in the energy function Hy. But
there is still a short-range interaction: the integral of interactions over all
sites is finite. The consequence to this is that the mean-field properties will
not depend on z. This simplification of introducing a neighborhood does
not have an important loss of accuracy or precision in the results which
follow.

Simplifying the mean spin values so they are exactly sy appears to be a
more serious restriction, as it makes our problem more clearly an Ising-type
model. However, the binary spin models developed from this can be shown
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— by a single step of spatial renormalization or by block spin averaging —
to produce a mean-field theory equivalent to the original.

7.3.1 Setting Up Coupled Barotropic Flows

We have these relationships which are satisfied by the coarse-grained spin
or vorticity s (x):

= dr s® (z) = Q (7.3)
S2

0= des(z)=TC (7.4)
S2
For the mean-field theory we will assume the existence of a site-dependent
volume fraction or probability distribution function, v, (s) with the
properties that

M
/ dsvg (s) =1 (7.5)

—M

where M denotes the limiting values of the coarse-grained spin s (z) over
52, and where

/32 dx /]j;dsux (5)s2=0Q (7.6)
/Szdx/:;dsz/z(s)s_o (7.7)

Next, we will set a convenient notation for the mixed state and for the
unmixed field states, as we will need to compare various properties of the
two. Let m denote for the mixed state where the mean spins sg (x) are
independent of their neighbors; and n denote the unmixed state where the
mean spins sg (z) are dependent and, in fact, are equal for an entire hemi-
sphere. Therefore we will write, for example, S,, to describe the entropy
of the mixed state, and S, for the entropy of the unmixed state, and these
subscripts will carry across to all the quantities describing a flow which we
examine. We will also use a notation like v = m to mean describing the
mixed state and v = n the unmixed.

Another useful bit of notation will be to describe the subsets of mesh
sites. Let T represent all the lattice sites which are in the positive hemi-
sphere of the unmixed state n, and let = represent all the lattice sites
which are in the negative hemisphere of the unmixed state. We do not
make the assumption that these hemispheres correspond to any particular
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latitudes: it will be interesting to see if these unmixed hemispheres will or
will not line up with the rotation of the planet.

These two states we can characterize the probability distribution func-
tions v by, for the mixed state m,

1
v (£s0) = B for all z € S? (7.8)

(which is to say that positive and negative vorticities are equally likely
everywhere on the sphere), and for the unmixed state n,

v (so) = 1 for all z* € S? (7.9)
v (s0) = 0 for all z~ € S? (7.10)
v (—s9) = 0 for all z+ € S? (7.11)
v (—sp) = 1 for all 2~ € S? (7.12)

(which is to say in one hemisphere positive vorticities are certain and in
the other negative vorticities are).

By N (j) we signify the neighborhood of site j, that is, all the lattice
sites k which are connected to site j. We are, at least implicitly, supposing
that we can set up a graph with the mesh sites as vertices and edges drawn
to some subset of the entire mesh. Note that this is not the sort of graph
we would draw for a finite element approximation to fluid vorticity: we do
not have any interest in creating elements or in maximizing the isometry
of whatever elements could be derived from this. The edges we draw to
establish the neighborhood of j are simply to the points which we want to
consider short-range interactions. They need not even be exclusively the
nearest mesh sites to j.

We let z = |N (j)| be the common size of neighborhoods N (j), what
is, the coordination number for the lattice. By altering z we are able to
model interactions at different ranges in a variety of spin-lattice models.

Now let € represent the interaction energy scale for Hy. We find
this by averaging J; , over N (j). For energy-enstrophy theories, this € is
negative: it represents an anti-ferromagnetic interaction. This is enough to
give us a spin-lattice approximation for Hy.

The other quantity we will need is a lattice approximation model for
the per-site mixing entropy. Using the approach of equation (2.20) for J;
and of equation (2.25) for F; then we can derive this lattice approximation
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for the total mixing entropy:

M
Slw) = —kpg /52 dx /4\4 ds v, (s)log (vz (8)) (7.13)

N M
~ —kp ;/SQ dz Hj () /_M ds vy (s)log (v (s)) (7.14)

N o M
- 747;\1;3 ]Z L s, ()log (v, (5)) (7.15)

1

We will use this for both the mixed and the unmixed states, and when
rotation of the planet is considered will see three logical ways that the
unmixed state may appear.

7.3.2 Proofs for a Non-Rotating Planet

What are we able to say about the barotropic flows for a non-rotating
planet? Are we able to predict at what temperatures the various configura-
tions will occur, and at what critical temperatures the preferred configura-
tion will change from the unmixed state n to the mixed state m? And does
this guide us in evaluating the similar regions of preferred configurations
and critical temperatures when we move on to rotating planets?

We start by considering the per-site entropy for the mixed state, v = m,
where the sign of vorticity is uncorrelated with position:

Arkp M
Sm = — U5 ds vz log (V) (7.16)
N Jom
4k
= 7;\]3 log (2) (7.17)

The per-site entropy in the unmixed state, v = n, where the vorticity is
divided into two hemispheres of uniform sign is neatly enough

S, =0 (7.18)

since, by definition, neighboring mean values sy are perfectly correlated.
Now, calculate the per-site internal energy for the mixed state v = m:

1 M M ! ! !’
Uy = 756/ ds vy (s)/ ds v, (s ) 88 2 (7.19)

—-M —-M

1 M i
= —5€z l/M dsv, (s) s] (7.20)

=0 (7.21)
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And finally calculate the per-site internal energy in the unmixed state.
There is a key to making this simple. In the unmixed state we know that
neighboring mean spins s, satisfy

s(zx) = s(x;) = £sp for all k € N (j) (7.22)
IN(j)| =zforall j=1,2,3,--- N (7.23)
Therefore, in this mean-field theory,
lez M
Un = 5% /52 dz /_M dsq V3 (7.24)
ez M
=—— dso vy sh (7.25)
2 J-m
€z
= —— 7.26
“0 (7.26)

For a given enstrophy @ > 0 and a given temperature T', and treating
as if they were free parameters the state v = m, n as well as the mean spin
distribution v,, then we can calculate the isothermal per-site free energy
difference between the mixed and unmixed states:

Af = fm - fn (727)
= (Um — up) =T (S — S)n (7.28)

ez drkpT
= gQ i log (2) (7.29)

Equivalently,
fm =um =TS, (7.30)
- f”f\fT log (2) (7.31)
while
- Z0 (7.33)
8T

This, together, comes to nearly prove a mean-field result for the non-
rotating barotropic flows. Using the extension of Planck’s theorem for
negative temperatures T' < 0, which tells us that thermodynamically stable
statistical equilibriums correspond to maximizers of the free energy, and a
maximum mean spin entropy S,,s, and the interaction energy scale e:

Theorem 7.1. If € <0, then:
(i) For oll T > 0 the mized state v =m is preferred.
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For e <0 and T < 0 there is a finite N-dependent critical temperature
ezN

T.(N) = <0 7.34
(V)= g5 @ (7:34)
such that
(ii) if
0>T>T.(N) (7.35)
then the unmized state v = n is preferred, and
(iii) if
T<T.(N)<O0 (7.36)
then the mixed state v = m is preferred, with mazimum mean spin entropy
Sms = 4mkplog (2) (7.37)
(iv) In the non-extensive continuum limit — assumed to exist — as
N — oo, then T. (N) tends to a finite negative critical temperature:
1 7 ’ !
T.(Q) = Q dx¢170(x)/ dx Y0 (z)log’l—x-x‘
Sims 2 Jg2 §2
(7.38)
I (Q
5|5 [ dwvioe(@) G (Vo) (@) (7.39)
ms S2
1 Q 2
= - d 4
o (-2 [ asvtow) (7.40)
Q
= — 0 7.41
L8ms (7.41)
such that if
0>T>T1T, (7.42)

then the unmized state v = n is preferred and if
T<T.<0 (7.43)

then the mized state v = m is preferred.

Proof.

The proof of part (i) follows directly from the calculations done leading
to it: what are the maximizers of the Gibbs probability function?

To prove parts (ii) and (iii), compare the per-site free energy in the
mixed state v =m

fm (max) = _%Sms >0 (744)
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with the per-site free energy in the unmixed state v =n

frn (Mmazx) = —%Q >0 (7.45)
When
T €z
_NS”” < ~ % (7.46)

— that is, when 0 > T > T, (N) — then (ii) v = n the unmixed state
is preferred, and vice-versa for (iii). Since the interaction energy scale e
is negative (due to the positive-termperature antiferromagnetic nature of
the logarithm interaction at short ranges), and the enstrophy @ is positive,
and by definition the maximum mean spin entropy Sp,s is positive, then
the critical temperature 7, (N) must be negative.

The proof of part (iv) follows by considering the free energy under the
non-extensive continuum limit:

N ’ ’ 7
E;T Q— % o dx 1,0 () /52 dz 10 (:v ) log ’1 -z ‘ (7.47)
_Q
=-7< 0 (7.48)
1

Remark 7.1. When the interaction energy scale € is negative, there is a
negative-temperature transition between the mixed state at the hot tem-
peratures T' < T, < 0 and the unmixed state at extremely hot temperatures
T.<T <NO.

Remark 7.2. The mixed state per-site free energy f,, is entirely entropic.
The unmixed state per-site free energy f,, is purely an internal energy term,
and it is linear in the enstrophy Q.

7.3.3 Mean-Field Theory on a Rotating Sphere

While the non-rotating case provides some experience in the sorts of cal-
culations we wish to do, it is the rotating planet which we want to study
here. Since the energy function for the rotating planet can be written as
a pairwise particle interaction added to an interaction between points and
the rotating planet, we have reason to expect that the decomposition of
energy into the pairwise interactions and into the planetary interactions
will be likely to provide the answers we want. The pairwise particle inter-
actions will produce internal energy and free energy and other quantities
which look like those of the non-rotating planet; the new features come in
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from the particle-planet interaction. Again we will look for where the most
probable state changes from an unmixed to a mixed state. And further-
more we have the interesting question of whether, in an unmixed state, the
positive hemisphere will correspond with the north, or the south, or with
no particular rotational hemisphere of the planet.

We decompose the energy Hpy into the pairwise particle interactions
H](Vl) and the interaction of particles with the rotating sphere H](Vz), which
we describe as

Hy=H{ +HY (7.49)
1 X
H = -3 SN Jisise (7.50)
j=1k=1
N
2 271
HY = ~ > sjcos (6)) (7.51)
j=1
This suggests a similar natural decomposition of the internal energies:
Uy, = ulH) + u? (7.52)
uy, = ' + u® (7.53)

for the different states which we have designated m and n. We know, from
equations (7.21) and (7.26) some of these internal energy components —
specifically, that

ull) =0 (7.54)
€Z
u) = —=Qs (7.55)

We have previously introduced the mixed state denoted by v = m,
and the unmixed mean field state denoted by v = n. We will also be
able to divide the unmixed states into two particular cases: v = n, in
which the steady-state rotation is prograde, moving with the rotation of
the planet; and v = ng, in which the steady-state rotation is retrograde,
moving opposite the rotation of the planet. Each of these states, mixed and
unmixed, can be characterized by the correlations between sites and their
neighboring site spins, s (z) = s (x/) € {sgt}

In the unmixed states v = n, v = n,, and v = ng, the correlations are
by hemispheres: opposite sides of the globe hold the equal values 83 and
Sy , Where

s§+sg =0 (7.56)
27 ((s3)" + (50)") = @r (7.57)
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These equations imply

=—5; =1\ — (7.58)

The prograde and retrograde unmixed states v = n, and v = ny4 are
also characterized by the hemispherical correlations of the spins soi which
will turn out to satisfy equations (7.80) and (7.81) respectively: they are
aligned and anti-aligned with the northern and southern hemispheres as
defined by the rotation of the planet Q > 0.

Entropy is calculated the same way as it is when the planetary spin
is zero because the entropies S,, and S, depend only on the statistical
distribution v, (sg) of the mean field relative vorticity so. The planetary
rotation does not directly contribute to the atmosphere’s entropy.

What are the per-site internal energies uﬁ,zl) and ug) which result from
the nonzero planetary rotation €2 > 0?7

For the mixed state v = m by its definition:

(2) 2’/TQ N
U = 3 Zsj cos (6;) (7.59)

J=1
N
2mQ)
=Nz Z cos (0;) (s;) (7.60)
j=1
270 [ M al
= LQ (/ ds vy () s) Zcos (65) (7.61)
-M =
=0 (7.62)
since, in the mixed state,
1
vt (£sg) = 3 (7.63)

For the unmixed state v = n it will be convenient to use our notation
xji for lattice sites which fall within the positive hemisphere and which
in the negative, and to establish a similar one for the co-latitudes in each
vorticity hemisphere. (These vorticity hemispheres, we reiterate, are not

necessarily aligned with the hemispheres of the planet’s rotation.) For the
+
J
S hemisphere we use z; and ¢ for sites and for co-latitudes. From this

53' hemisphere we will use 7 and 0;‘ for sites and for co-latitude. For the
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we calculate:

(2) 2702 N
Uy = oy Z s;cos (0;) (7.64)
j=1

270
= % (s;) cos (6;) (7.65)
j=1
N N
27 2 2 _ _
= Nz Z >cos 9+) + <s (xk )> cos (Gk )
j=1 k=1
(7.66)
= 2;7? sg cos (0F) + so Zcos (7.67)

Now, what are the per-site free energies for the mixed and the unmixed
states? Going back to definitions:

Jfm = um — TSy (7.68)
o 47TkBT
N

for the mixed state; for the unmixed state,

log (2) (7.69)

= —%QT. + 2;\1/:7? sg ) cos (9;‘) + 55 cos (6;) (7.71)

=1

'Mw\z

1

=

J

This allows us to calculate the per-site change in free energy in going from
the unmixed to the mixed states at a constant temperature, which is given
by:

Af = fm - fn (772)
drkpgT €z 27Q) [ 2. n <
- — log (2) + 8—7TQT ~ N %0 ;cos (9]- ) + s Z: cos (6,)
(7.73)

Remark 7.3. To apply this formulation to the non-rotating barotropic
flows on the sphere at both positive and negative temperatures requires the
consideration of the non-extensive continuum limit. Under this limit,
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=e(N)z(N)=O0 (N ") <0 (7.74)
2

ZSO cos ( ] Z sg cos (0;,) — O (N71) (7.75)

So we know per-site free-energies. What are the preferred states at
different temperatures, then, and what are the critical temperatures, in
both the positive and negative temperature ranges? We start in positive
temperatures.

7.3.4 Positive Temperatures

For T' > 0 we need to compare the minimum free energy per site for the
mixed state v = m with that of the unmixed state v = n. These are:

. T AwkpgT
fon (min) = —==Sms = TB log (2) (7.76)
for the maximum mean spin entropy S,,s, and
N
) €z 270 ki 2 _
frn (min) = —8—71_62 Nz Z cos (07) + so Z cos (6;,)

k=1

(7.77)

The extreme value of f,, (min) we will find at the most negative values
of

sa Z cos (G;F) + 55 Z cos (6;,) (7.78)
j k=1

j=1

which we will find when the hemispheres associated with the correlated
means soi are anti-correlated with those corresponding to the planetary
rotation €2 > 0, that is, when the greatest positive vorticity is also where
the planetary spin is most negative.

Whenever the temperature is positive, if

N
277(2 5 2 €z T
Zcos + So ZCOS (9;) > —Qr — —=Sm,s (7.79)
— 8w N

then the mixed state v = m is preferred. Should the inequality be reversed
then the unmixed state v = n is preferred.

If the interaction energy scale € < 0, then for all positive temperatures
T > 0 and for all positive relative entrophies ), > 0 the right-hand side
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of equation (7.79) is negative. This implies that the mixed state v = m
therefore will be preferred over the v = n, state, where the hemispheres
associated with the means 53: are correlated with those of the planetary

rotation 2 > 0 — that is, when

[ s3> cos (6F) + 55 D> cos (6;) | >0 (7.80)

=1

<
Il
Ja
ol

How do the energies of the mixed state v = m compare with those of
the unmixed state v = ny where the means si are anti-correlated with the

planetary rotation, that is, where

N
El
% sa Zcos (9;') + 55 Zcos (6;) | <o (7.81)

instead? With again € < 0 and the fixed relative enstrophy @, > 0 then
there is some positive finite critical temperature, which depends also on {2
and on Q.. for each IV,

200, — ENQ,

T.(2,0,: N) = >0 7.82
( ) 5 (00) (7.82)
where
N N
—co< I = nsljinﬁ s z;cos (07) + 50 ;COS (6;) | <0 (7.83)
J: =

provided the planetary rotation € is large enough compared to the relative
vorticity — specifically, that
€z
Q>0 = —
+ (@) = o

This converges to a finite limit as N — oo.
The minimum I_ introduced in equation (7.83) is the minimum over

NQ, (7.84)

all possible orientations of the hemispheres associated with s(ﬂf, and from
equation (7.58),

I =0 (\/5) (7.85)

In summary: when 7' > T, (N) > 0, the mixed state v = m will be
preferred over any unmixed state v = n, or v = ng. When 0 < T < T, (N),
the unmixed state v = ng satisfying equation (7.81) is preferred over the
mixed state v = m.
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In the non-extensive continuum limit as N — oo, the positive finite size
N critical temperature

T. (Q, Qr; N) — T, (Qa Qr) < o0 (786)
and furthermore if
€z
Q>0 (Qr) = WNQT (7.87)
holds true then
T. (2, Qr) >0 (7.88)

Remark 7.4. There is a positive-temperature phase transition provided
the planetary rotation is large enough.

As there is no positive-temperature phase transition when the planet is
not rotating, it is reassuring to see that very slight rotations would agree
with this lack of a phase transition.

7.3.5 Negative Temperatures

We know from the extension of Planck’s theorem to negative temperatures
that when T < 0 we will see as most probable a state in which the free
energy is maximized. So we again compare the per-site free energies of the
mixed state v = m and for the unmixed states v = n, and v = ng:

T
S (7.89)

N N
2 Q 2 2
fn (mazx) = —;—iQr + % st Z cos (0;“) + 5o Z cos (6;,)
=1

fm (mazx) = —

k=1
(7.90)
For T' < 0,
N N
€z 218} 2 & 3 T
_gQT + Nz sa Zcos (Q;F) + s Zcos (Qk) > _NSm’S >0
Jj=1 k=1
(7.91)

which implies that the unmixed states will be preferred. The inequality can
be solved for the finite size N critical temperature. This yields:
2 — £ NQ,
ch (Q7Q’I"7N) _ + S 8w Q <

)

0 (7.92)
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where
N N
L[ v + S —
oo > Iy EH;;XN EN ;COS (Gj )+ s ,;COS(Qk) =—-1_>0
(7.93)
and

I, =0 (\/67) (7.94)

In this case, then T' < T, (N), the mixed state v = m will be preferred
over any aligned unmixed state v = n,, and so also over any anti-aligned
unmixed state v = ng as well. The left-hand side of equation (7.91), evalu-
ated in the retrograde unmixed state v = ng and in the prograde unmixed
state v = n,,, satisfies

N N
270 £ 2
_%QT + % s§ Y cos (0F) +s5 > cos (0;) || (na)
j=1 k=1
- N ~ -
€z 2 [ L C i RS _

< ngT e EN Z cos (Gj ) + 5 Z cos (Hk ) (ny)

L Jj=1 k=1 i
- _%SW (7.95)

When T, (N) < T < 0, the aligned unmixed state v = n,, will be
preferred over the mixed state v = m. Notice that a negative finite size N
critical temperature T, (2, @,; N) < 0 exists for every planetary rotation
Q > 0. This is quite unlike the positive finite size critical temperature
T, (N), which exists only for rapid enough planetary rotations, those that
satisfy equation (7.84).

Remark 7.5. Under the non-extensive continuum limit N — oo,

T (9,Qm:N) = T, (2,Q,) < 0o (7.96)
T, (2,Q:) <0 (7.97)

because in equation (7.92), the denominator is negative (by definition) and
does not depend on N, while the numerator tends to a finite positive limit
due to Remark 7.3. In consequence, there is a negative temperature phase
transition for all values of the planetary rotation.
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Since the numerator of equation (7.92) contains the positive term
— 5= NQ, (positive, assuming € < 0), we can define a second negative criti-
cal temperature:

2(mQI_ — ENQ,
T=(Q,Qm; N) = = " @ .

provided the planetary rotation £ > 0 is small enough. Small enough is

0 (7.98)

when

Q<04 Q) = 157 NQ- (7.99)

Notice that T, = (Q,Q,;N) < 0 and T.(N) > 0 in equation (7.82)
are the same expression, corresponding to the two sides of the equality in
equation (7.99).

When T < T~ (N) < 0, the mixed state v = m will be preferred to
the anti-aligned unmixed state v = ngq.

When T~ (N) < T < 0, the anti-aligned unmixed state v = ng is
preferred to the mixed state v = m.

Comparing equation (7.92) to equation (7.98) we can conclude that
when the planetary rotation 2 satisfies equation (7.99),

T, (N)<T; = (N) <0 (7.100)

C

By comparing the per-site free energies of unmixed states v = n, and
v = ng when the temperature is negative (and, specifically, when T <
T<T;” <0and when T, <T.;~ <T <0):

270
£ (maz) = —%QT + %u (7.101)
i mar) = ~ .0, + T2 (7.102)

In consequence, the aligned unmixed state v = n, will always be preferred
over the anti-aligned unmixed state v = ng4 for negative temperatures.

Remark 7.6. Under the non-extensive continuum limit N — oo,

T (N) = T7~ < 0 (7.103)

c
and

T <T;” <0 (7.104)
provided the planetary spin is small enough, that is,

€z
Q<Qy (Qr) = WNQT (7105)
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We can collect the above calculations and summarize the phase transi-
tions they imply for this simple mean-field theory into a convenient form:

Theorem 7.2. (A) For large enough planetary rotations > 0, the anti-
aligned unmized state v = mng changes into the mized state v = m at
T.(2,Q,) > 0.

(B) This mized state v =m will then be preferred for positive tempera-
tures T' > T, as well as for negative temperatures T < T, changing to the
aligned unmized state v =mn, at T, (Q,Q,) <O0.

(C) (i) For large enough rotations 2, the unmized state v = n,, persists
for all temperatures such that T, <T < 0.

(i1) For small enough spins Q < Q4 (Qy) the state v = n,, persists as the
preferred state for temperatures where T, < T < 0; but for temperatures
where T~ <T < 0 the anti-aligned state v = ng will be preferred over the
mized state v =m but not the aligned unmixed state v = ny,.

In the non-extensive continuum limit the mean-field critical tempera-
tures of the energy-relative enstrophy theory for this problem are

2Ol — ENQ,

00> Te(®,Qr) = fim ———5 (7.106)
1 , o

=5 (1131(31 . dz QCYP10G {w (a: )} + 4Q,.> (7.107)

- 51 GQC\/@— i@) >0 (7.108)

precisely when

V@Qr

Q>0 Q) =55 (7.109)
>0 (7.110)

and for all planetary rotations > 0

QI — £NQ,
o < T (,0)) = lim 2~ 5 NC (7.111)
N—o0 _Sm,s

maxy,,q, [q. dzQcos (6 (x)) G [w (Jcl)} + 3Qr 19
a 7Sm,s ( ' )

_lQC r 1 r
T R i (7.113)

Sm,s
where I are given by equations (7.83) and (7.93), where C =

[z dzx cos? (0), the minimum (or mazimum) is taken over all relative
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vorticity distributions w (x) with the same fized relative enstrophy Q,, and
the total entropy is

Sm,s = —4nkplog (2) > 0 (7.114)

Proof. We have the definitions of the interaction energy scale € (INV),
and of the size of the interaction neighborhood z (IV). So the term —g= NQ,.
which appears in the numerator of T, (N), which is the finite-dimensional
representation of the per-site spin-spin interaction energy in the unmixed
states v = n,, and v = ng4 (as opposed to being the spin-rotation Q interac-
tion energy), will tend to

—&/ dmwlo(x)/ dx/wlo(x/>log‘1—x~x/‘ ==1>0 (7.115)
2 Jg2 ’ 52 ’ 4

So, from the definition of the minimum 7/_, and the derivation of the spin-
lattice models Hy from the rest frame pseudo-kinetic energy H of the
coupled barotropic flows, the finite NV critical temperature

N +
21 mil’ls(:)t % ( Soizjil o8 (gj) ) - = NQ-
+s5 D72, cos (6;)

T.(Q,QN) = 5.
7 (7.116)
- min, g, (f52 dx Qcos (0 (z)) G [w (x/)D —1Q:
S
(7.117)

where the denominator has no dependence on N.

The minimum in the numerator is taken over all relative vorticities w ()
with the desired fixed relative enstrophy @), and is a well-defined, finite,
negative quantity that is proportional to Q and to /@,

min ( [ 4000106 [w (a:)]) = |, w9006 [\/@mo}
(7.118)

= JQO\/@/ dey?, (7.119)
2 g2 ’
= —EQC\/@ (7.120)

2

Since
04 Q) = 16;72]_1\1@ (7.121)
- Q0 (Q,) = —Q >0 (7.122)

ming, g, ([ dz4Cy1 G [w (2)))
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when © > Q% (Q,), the mean-field critical temperature
T.(9,Q:) >0 (7.123)
We similarly prove the existence of the continuum limit of 7 on the

basis
max( dz QO oG [w (a:)D - / dz Q0¥ oG [—\/Qrwm] (7.124)
w,Qr S2 S2
1
= §QCN/QT (7.125)
This completes the proof.
|

So now let us restate and reorganize the various phase transitions into
two categories, based on the planetary rotation.

Theorem 7.3. When the planetary spin Q < Q4 (Q.),

(i) there is no positive temperature phase transition and the mized state
v =m is preferred for all T > 0.

(i) There is a negative temperature phase transition at T, < 0 —
which exists irrespective of the value of the planetary rotation — where the
preferred mized state v =m for all T < T < 0 changes into the aligned
unmized state v = n,,, which is preferred over both the mized state v =m
and the anti-aligned unmized state v =mng for all T, < T < 0.

(i1i) There is a secondary transition at the hotter temperature T, ~ < 0
(where T < T. ~ ) where the intermediate state v = ng changes place with
v =m in order of thermal preference. Letting the symbol < represent “has

smaller free energy than”, we can summarize the state preference for the
state < Q4 (Qr):

ng <ny, <m forT <T. <0 (7.126)
ng<m-=<n, forT, <T<T.~ (7.127)
m=<ng=<n, forT,”<T <0 (7.128)

When the planetary spin Q > Q4 (Q,), (iv) there is a positive critical
temperature T, (2, Q) given by equation (7.82) at which the preferred state
changes from v = ng for 0 <T < T, tov =m for all T > T, and for all
negative T' < T, < 0.

(v) There is a negative critical temperature T, < 0, that exists irre-
spective of the value of the planetary rotation, at which the preferred state
changes from v =m to v = n, for all negative T' > T, . We can summarize
the state preference for the case > Q4 (Q,):

ng <Ny, <=m forT <T; <0 (7.129)

ng <=m=<ny, forT. <T <0 (7.130)
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Chapter 8

Phase Transitions of Barotropic Flow

8.1 Introduction

We saw in section 6.4 a model for the barotropic flow on a rotating sphere
in which phase transitions are detected by Monte Carlo simulations. In
that model we allow the angular momentum of the atmosphere to change
while holding fixed the values of the total circulation and of the relative
enstrophy of the atmosphere. The result is, as we see, a set of sub-rotational
and super-rotational macrostates which have different ranges in which they
are preferred.

In this chapter we will look at the same problem but develop it by
the Bragg mean-field theory. In this model, we continue to allow angular
momentum of the atmosphere to change. More than that, we now have
the relative enstrophy constrained only by an inequality, although the to-
tal circulation is still held fixed at zero. The results of this change can
be numerically validated in Monte Carlo simulations on the logarithmic-
potential spherical model, and have been for both the non-rotating case
and the rotating case.

Previously we have had a spherical model, in that the microcanonical
constraint on the relative enstrophy becomes a spherical constraint in the
style introduced by Berlin and Kac [8]. Here, we use instead a simplified
model in which the possible values of vortex spins are discretized, and
this allows us to use the Bragg method to approximate the free energy.
In turn this lets us find an analytic solution to the coarse-grained stream
function in the resulting mean field theory. Closed form solutions of the
partition function in the spherical model required considerable analytical
effort, which we can sidestep for now.

Qualitatively, this model is not very different from the circulation-
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relative enstrophy spherical model, or from the simple mean-field model.
There do remain differences in the detailed predictions of these models,
however. Looking to the atmosphere of Venus for inspiration shows little
reason to select one over another: the current state of observational data is
not refined enough to distinguish between these physical models. One will
need to perform detailed, direct numerical simulations of coupled geophys-
ical flows in order to gather enough data to allow for selection among the
three models. They are included here for pedagogical reasons.

Our discretized vorticity model is a set X = {Z;} of some 2N sites
randomly distributed on the sphere with a uniform distribution. Each site
has a spin s; € {4+1,—1}, and each site has an interaction energy with
every other site as a function of distance. Each spin further interacts with
the planetary rotation, which again serves a role analogous to that of the
external magnetic field from the Ising model. The sum of this interaction
between spin and planetary rotation is proportional to the (potentially
variable) net angular momentum of the fluid in the frame of reference of
the planety’s daily rotation.

The contribution to the kinetic energy of the atmosphere from the plan-
etary spin varies zonally, so that this “external field” is inhomogeneous and
so is difficult to treat analytically. Bragg and Williams [44] used a one-step
renormalization to allow them to examine properties of order and disor-
der in the Ising model of a ferromagnetic. Since the discretized model for
barotropic flows coupled to a rotating sphere is similar to the Ising model
of a ferromagnet in an inhomogeneous external field we can use the Bragg-
Williams technique and from this infer the order-disorder properties of the
atmosphere.

We have already seen that systems of constrained vortices may have
both positive and negative-temperatures. This model has them as well. By
using the simplest two-domains partition of the surface of the sphere we
find a positive temperature continuous phase transition to the sub-rotating
ordered state for decreasing temperatures if the planetary spin is large
enough. If there is no rotation then we find no phase transition in positive
temperatures. There is a transition to a super-rotating ordered state when
the temperature is negative and has a small absolute value: these are the
very highest energies.
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8.2 Statistical Mechanics of Macroscopic Flows

What are some important properties in the application of a statistical
equilibrium approach to macroscopic flows? The atmospheric flows which
we deal with here — largely two-dimensional flows — are in reality non-
equilibrium phenomena even when the fluid is nearly inviscid, an assump-
tion which is mainly correct for the interior of geophysical flows. So how is
it we can apply equilibrium statistical mechanics methods?

The main reason is that we have two separate time scales in the mi-
crodynamics of two-dimensional vorticities, which is best formulated as the
well-known physical principle of selective decay, at least for freely-decaying
flows. This principle states that the slow time scale, given by the overall
decay rates of enstrophy and of kinetic energy in damped and unforced fluid
flows, is sufficiently different from the fast time scale, given by the inverse
cascade relaxation of kinetic energy from small to large spatial scales. So
several relaxation periods fit within a unit of slow time. Therefore, the
total kinetic energy — and enstrophy — may be considered fixed in the
time which it takes for the eddies to reach statistical equilibrium.

Furthermore, the principle of selective decay states the asymptotic prop-
erties of the damped two-dimensional flow will be characterized by a min-
imal enstrophy-toenergy ratio, which depends on the geometry of the flow
domain. One of the key properties of the enstrophy, known as the square-
norm of the vorticity field, then implies that these minimum enstrophy
states are associated with large-scale ordered structures, such as domain
scale vorticities. In this model, these coherent structures are the super-
and the sub-rotating solid-body flows.

The specific properties of a given flow problem [69] will decide which
of the many statistical equilibrium models [50] [68] [74] [84] [80] is most
suitable. Since we have a coupled flow, in which angular momentum and
energy are transferred between the atmosphere and the rotating planet, all
the particle and vortex gas models [68] [80] on the surface of the sphere S?
are not suitable because they conserve angular momentum, as dictated by
Noether’s theorem.

In general, none of the vorticity moments are conserved in the coupled
flows, other than the total circulation which is fixed at zero (by the Stokes
Theorem), independently of the coupling between the atmosphere and the
rotating planet.

So we start with the classical Kraichnan models, also known as absolute
equilibrium models, and their variants such as those used in [35]. But there
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are two sets of problems: first, they model a two-dimensional fluid flow
which is uncoupled to any boundary or which has periodic boundaries and
therefore a fixed angular momentum, unsuitable for our needs. Second,
they are equivalent to the Gaussian models and therefore can be shown
easily not to have a well-defined partition function at low temperatures.

One solution, taken up in [58] [59], is to replace the canonical enstrophy
constraint with a microcanonical one, which results in a version of Kac’s
spherical model. Combined with the total circulation fixed at zero and
allowing the angular momentum to fluctuate — that is, the coupling of
the barotropic fluid to an infinitely-massive rotating solid sphere — this
approach yields exact partition functions and closed-form expressions for
phase transitions to self-organized or condensed super- and sub-rotating
flows. These results agree perfectly with Monte Carlo simulations of the
spherical model in [19] [20] [63].

It demands an argument similar in style to the above discussion of the
Principle of Selective Decay to justify the choice of a microcanonical (and
therefore spherical) constraint on relative enstrophy in this class of coupled
flows, while the zero-total-circulation constraint requires none since it is
implied by topological arguments: it follows from the Stokes Theorem on
the sphere. The spherical model, unlike the Bragg model used in this
chapter, is not based on a mean field assumption.

Instead, one of the objectives in this chapter is to study the effects on so-
lutions by relaxing the enstrophy constraint. We impose neither a canonical
enstrophy constraint as in [50] nor a microcanonical enstrophy constraint
as in [19] [20] [58] [59] [63] and then derive a physically sound mean-field
theory for a relatively simple geophysical problem. The relative enstrophy
in the Bragg mean-field theory, we will show, is constrained instead by an
upper bound.

One more objective in this chapter is to show the Bragg method ex-
tends to this coupled flow where the kinetic energy is a Lagrangian func-
tional but not a Hamiltonian of the barotropic flow. The original Bragg
method formed for the Ising model of ferromagnetism was developed for a
Hamiltonian. Lim reported in [19] [20] [59] that the kinetic energy of the
atmosphere component of the coupled fluid-rotating sphere system cannot
be a Hamiltonian for the evolution of the vorticity field. If it were, then its
SO (2) symmetry — a property which is easy to demonstrate holds — would
imply the conservation of the angular momentum of the fluid component.



Phase Transitions of Barotropic Flow 133

8.3 Bragg-Williams Approximation

The Bragg-Williams approximation to the Barotropic Vorticity Equation
begins with a discrete approximation to the pseudo-kinetic energy, one
which looks very much like what we have used before, except that here
we suppose there are 2V sites on the mesh, NV of them with positive spin
and N of them with negative spin:
2N 2N
:—fZZijsjsk—QZF 55 (8.1)
j=1k=1

where the 2N mesh sites & are distributed unlformly over the sphere, where
Q is the planet’s rotation, and where

1672 N
Tin = gz log (1 = 75 - 75) (8.2)
2 .
F; = — 5y cos (0(%5)) (8.3)

with the notes that J; ; = 0 for all j, and where 6 (Z;) is the co-latitude for
the mesh site Z;. Furthermore, each mesh site vorticity s; is either positive
or negative one, the direction of the spin of the node.

We want to replace the internal energy of a state with its long-range
order.

This is central to the Bragg-Williams approximation [44]. This is a
familiar sort of problem to study, however: the ferromagnetism models
which inform our treatment adapt naturally to this problem, and were part
of what inspired our discrete model with its uniform magnitude for the
vorticity and its separation into equal numbers of positive and negative
signs.

In the Bragg-Williams model of a ferromagnet, in a flat, square lat-
tice with uniform spacing between “rows” and “columns” of mesh sites, we
consider the division of a lattice into two regions, and the length of the
“wall” separating the upward from the downward spins. The energy of this
domain wall will be proportional to the length of the wall and the energy
required to flip any one lattice site from one orientation to the other. The
entropy for a domain wall is proportional also to the length of the wall, and
a wall might start from any lattice site. From this, we can derive the free
energy associated with the division of a lattice into two domains. Having
that free energy lets us predict at what statistical mechanics temperature
it becomes energetically favorable to allow domain formation, or what tem-
peratures resist this formation. This will not be invariably correct, but it
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gives us guidance to what phase transitions to expect and where they might
be found with an analysis that remains straightforward for the information
derived.

Some adaptations are required to go from a uniform square lattice on
a flat surface to the uniform yet non-columnar mesh on the surface of the
sphere. The energy of the domain walls is a particularly more complicated
expression, no longer simply linearly proportional to its length. The plane-
tary rotation we can treat as an external magnetic field, but it is necessarily
an inhomogeneous one. What we must do is estimate the internal energy
based on the local order as seen on the domains of the sphere.

We have to define a partition of the sphere into domains, or blocks,
which we label {{}. Within each domain there are, at least in principle,
many of the original lattice sites. In the thermodynamic limit for lattice
models we typically take the number of sites to grow infinitely large. This
we must do on the surface of the sphere.

We are not, however, making the assumption right now that these do-
mains are of uniform vorticity: they may be expected to have a combination
of some positive and some negative sites. For each of these domains we de-
fine Ng‘ to be the number of sites within domain £ which have positive
vorticity, and N¢ to be the number of sites within domain £ which have
negative vorticity. Obviously, N¢ = Ngr + Ng -

For each domain £ we define the local order parameter o¢:

N&
g =2— — (8.4)

There are many important quantities we want to know, or at least to
estimate. We are going to approximate them by replacing the original
discrete spin values with the local probability for the spin values. This
probability is itself based on the local order parameter, how probable it
is that a particular sign will be observed for the vortex. This is precisely
the sort of substitution which allows the Bragg-Williams approximation
for ferromagnetism to be as useful as it is, and so it is no surprise that it
appears here.

The probability of any particular spin s within the domain ¢ being
positive is
1+o0¢

PF=Prob{s=+1[sc(}= 5 (8.5)
while the probability of the spin being negative is
_ l1-0
P EPY‘Ob{S:—l‘SEC}:TC (8.6)
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These definitions characterize the macrostate, defining it by the local order.

The energy is the coupling of the spin domains. The entropy we can
calculate through the Shannon information entropy over the local orders,
and will do so shortly.

Since we have made all the vortex magnitudes uniform in strength there
are only three types of pairwise interaction. In any pair of sites both sites
may be positive (++), both may be negative (——), or one may be positive
and the other negative (+—). The probabilities of spin distribution, our
coarse-grained variables, are what we use to provide the probabilities of the
different spin interactions. These probabilities themselves will depend on
the respective domains of the interacting sites.

Consider the edge which divides the domains £ and & ". The probabilities
of the pairwise interactions across this edge, with one site in £ and the other
in & ', are therefore by definition

Pgrg,' = Prob{sj =+lsp, =41 | & € &0 € fl } (8.7)
pg—’g = Prob {Sj = —1§3k = —1 fj S g;fk S 5/} (88)
P;g, = Prob{s; = +1;5, = -1 or

Sj:—l;sk:+1 :Ej Gf;fkefl} (8'9)

And it follows — since we have identified all the possible alternatives
— that
++ ——— +-

PC,C' + PC,C’ + PC,C’ =1 (8.10)

or, equivalently,

++ ——— _pt—_1 _9pt-

LA Pro=1=2P", (8.11)
We will see the left-hand side of equation (8.11) again in equation (8.27):

it will be the sole contribution of the pairwise order to the free energy.
What remains to calculate is the order probability Pf{' This must be

done in two cases: in the first, we take (/ 2% (. Then
Nt
Pt = 8.12
6,6 NCNC' ( )

+ N — AT+
NS Ne  Ne N

= — —_— 8.13
Ne¢ NC' * N¢ NC' ( )
1—‘,—0’C170'C/ 1+UC/1_UC

= 8.14

2 2 + 2 2 ( )
1—o0c0o

_ %% (8.15)

2
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It turns out to be useful that this gives us the relationship

1- QPZC’, = o¢oy (8.16)
In the other case we take C/ = (, and so have
Nt~
P =—5 (8.17)
T INC(Ne - 1)
N++
~ 15\4]“2 (8.18)
2°%¢
Nt N-
¢ ¢
=2—— (8.19)
N¢ Ne
1+ o¢ 1-— o¢
=2——— 2
3 5 (8.20)
t— o 8.21
-5 (3.21)

provided that INV¢ is sufficiently large. Notice that we made this assumption
at the start of this section.

Now we can estimate interesting properties — like the internal energy
or the free energy — in terms of the system’s Bragg coarse-grained order.
In the coarse-graining, we have made the enstrophy now merely an upper
bound rather than a fixed value: we hold that 052 < 1. Other models
have constrained the enstrophy microcanonically, but we know from the
Principle of Selective Decay for two-dimensional flows that any bound on
the relative enstrophy is enough to allow a statistical mechanics model to
be a well-defined model.

8.3.1 Internal Energy

The discrete approximation to the pseudo energy, as seen in equation (8.1),
we can rewrite in a form in which we take the sums over pairs of domains
and then over the sets of points within each of those domain pairs. This
is equivalent, of course — we are still taking a sum over all the pairs of
particles — but by rearranging things to pairs of domains as the first con-
sideration we are taking advantage of our partitioning of the surface into
domains and into our consideration of the boundaries between domains. In
this form we have the pseudo energy as

HN:_%Z 3 Tinsise — QY Y Fis; (8.22)

Lm (5,k)[(Z5,8%) €6 X Em Uojlzje&
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We have not overlooked the edges which were described to great fanfare
previously. They are simply already subsumed in the sums: each edge is
already part of some particle pairs within the appropriate domain pair.
We have made the assumption that the distribution of the positive and
negative sites within a single partition are homogeneous, that is, that we
can describe the likelihood of each sign by the order parameters introduced
already. Let {o¢} be the vector which represents all the order parameters.
Then the Bragg internal energy we can write in terms of that vector:

Hﬁ:_;z< Z Jj7k8j8k> —QZ< Z Fj8j> (823)
Lm \(Gk)(Z5,2k) €6 XEm B o \jlzjeg B

where by the symbol ( ), we mean a Bragg averaging. What we mean
by a Bragg averaging will become clear in the next few paragraphs as we
evaluate it in terms of the probabilities of different distributions of pairs
and of area-averaged internal energies to a domain.

The mean energy of an edge, whether it connects two domains, or
whether it is simply of a domain by itself, we can define in terms of the
area average, thanks to the assumption we made that the domain will be
homogeneous, or uniform, throughout:

Koo = <log (1 _z. 5) ’(:z::z:) €€ x §’> (8.24)

This mean is an average over the relevant domains: there is implicitly an
area integral within this.

We will start calculating the pairwise interaction terms in the Bragg
internal energy, HZ, and we will start that by considering the interactions
between different domains, that is, where & # ¢

Useful in simplifying the calculation of pairwise interactions is the Dirac
delta function. Since we have taken each s; to be either positive or nega-
tive 1, this means that 6 (1 — s;s;) will be 0 if they are of opposite sign.
Meanwhile 6 (1 + s;js5) will be 0 when both sites j and k are of the same
sign.

We will use the Dirac delta function within this area-averaging bracket
( ) to pick out the values of pairwise interactions. As mentioned above
because this is an area integral our use of the Dirac delta is analytically
justified; and, as we would hope for a particle-based discretization only the
mesh sites will contribute to the internal energy.

So we add together the scale of the pairwise interaction J;; when the
sites are of the same sign which are picked out by ¢ (1 — s;s;), and subtract
that when they are of opposite sign, which are picked out by 0 (1 + s;s).
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P++
¢
being both positive, the probability ng* of both being negative, and the

This will then let us find the energy in terms of the probability of pairs

probability PZ{' of opposite signs:

< Z J‘7k8j8k> (8.25)

(3,k)|(#; 8 €€xE 5

= < Z Jj k0 (1 — sjsk) — Z Jj k0 (1+ sjsk)> (8.26)

(k) [(@5,7) €€ %€’ (G k)|(75,7x) €6 x¢€’ B

_ (P;g, +P - ng) < > JM> (8.27)

(3:k)|(Z; ,8x) €€ xE

=o0e0p VeV Ke ¢ (8.28)

Equation (8.27) contains the coarse-graining approximation over the
edges in € x £ . Equation (8.28) uses the relationship between the proba-
bilities of the various pairs and the order parameters outlined in equations
(8.11) and (8.16). V¢ is the area of the domain ¢ and it should not be sur-
prising that an expression based on the area-average interaction between
two domains and the order parameters within each domain requires multi-
plication by the domain areas to approximate the internal energy.

The other case which we needed to consider was the interaction of a
domain ¢ with itself. The approach for this is going to be essentially iden-
tical: we will write out the Bragg average for this internal energy, and then
break up the sum this implies in terms of the interactions between pairs
of the same sign, picked out by the Dirac delta function ¢ (1 — s;s;) again,
and those of the opposite sign, once more marked by 6 (1 + s;s%).

The only substantial difference between the interaction of a domain with
itself and the interaction of a domain with another, from our perspective, is
a multiplied factor of % This difference accounts for what would otherwise
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be a double-counting of each pair. Keeping that in mind, then:

< Z Jj7k8j8k> (829)

GRI@E Feexe | g

- % < D Tikb (1= sysi) — S L1+ sjsk)> (8.30)

(4:,k) (5, 2K)EEXE GR)(Z;,Zk)€EXE B

1 I
= (Pe+ P = PiC) < 3 Jj7k> (8.31)

(G:R) (%5, 7% ) €€ x€’

1
SO VEKe (8.32)

This has given us the pairwise particle interactions among the various
domains and for a non-rotating planet would be all that contributes to the
pseudo energy. What remains to be considered is the external interaction,
the component of the energy reflecting the interaction of the domains with
the planetary rotation.

We need to introduce an area-weighted mean coupling of a site with an
external field. This will allow us to perform the sort of averaging which
we did for pairwise particles with the planetary rotation instead and still
allow for the rotation being, on average, of different strengths in different
domains. Once again using Ve to represent the area of the domain ¢, and
using 6 (Z;) to represent the colatitude of the mesh site Z; this area-weighted
mean coupling is:

1 —
L. = /Cdx v, cos (0 (Z)) (8.33)

This now allows us to estimate the mean coupling. That term, as written
at the end of equation (8.22), we can evaluate:

Z< 2 Fj3j>

=Y Ne(s; 1T € Q) (Fylaye¢)  (8:34)
! VIEZISS! ¢

B

= Z o¢ /C dx % cos (6 (Z)) (8.35)
¢
¢

That the energy of this mean coupling amounts to the volume of the domain
times the mean point-rotation energy interaction times the order parameter,
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that is, the mean site value, is on reflection not surprising. This looks like
what it would have to be.

So between the pairwise interactions and the particle-rotation interac-
tion we can form a simple expression for the Bragg internal energy:

U=-3 Z 0¢; 06, Ve, Ve, Ke; 0 — 2 Z o¢,; Ve, L, (8.37)
Jik j

8.3.2 FEntropy

The entropy we will calculate from the Shannon information-theory defini-
tion of entropy, that is, the definition based on the probability distribution
function of the spins. We are forced into this definition, in a sense: our
mesh is based on a sphere of constant size and a fixed mesh on it. We do
not have any extensive quantities, only intensive ones.

Since we have divided the sphere into domains §; each of which has a
homogeneous probability distribution function within, we need only take
sums over the separate domains, with a weighting based on the area of
each of these domains. Since we have taken the site vorticities to be either
positive or negative a constant value, as well, the probability distributions
amount to just the probabilities PZ; PE ¢ S, and P o which we know
from equations (8.5) and (8.6) can be written in terms of the order param-
eters pc.

1 ) 1+ o¢. 1— o 1— o,
S=—kp >V, [ +2% log < 2‘7@) n 2% log < 2% )] (8.38)

J

Now we have the internal energy and the entropy components required
for calculating the Helmholtz free energy and the identification of phase
transitions which we want.
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8.3.3 Helmholtz Free Energy

The Helmholtz free energy is by definition

VU TS (8.39)
1
- 2 ZgijgkaEjVikKEjék - ng‘fjv&jL&J
ik I
1+ 0, L+og\ | 1-og 1-o,
he SV [ . 3 log( . £.7> = & 1Og< . 5)]
7
(8.40)

for the set of o, which satisfy the constraint
> Veoe, =0 (8.41)
J

What we look for are critical points of the free energy with respect
to the set of order parameters {Ugj};nzl for the m domains within the
sphere. Notice that this can be written as a vector, and that this vector is
constrained to fit on the surface curve described by equation (8.41).

This means we have a problem amenable to solution by Lagrange mul-
tipliers. We need the critical points given by the simultaneous solution of
the m equations

AV, {V,,Ej Za&} = {Vo, v} (8.42)
l
= _VEj QL&;‘ - Z O¢; ng Ve, Kfj,ij
l

1 1+ o0,

5 . 1-— Ufj
(8.43)
along with the constraint equation (8.41).
Equivalently, we write for all j =1,2,3,---,m that
o¢; = tanh |3 (Qng + )\) + BZ oe, Ve, K@,&} (8.44)
l

This is an m-dimensional fixed-point problem for {JE]. };n:l The challenge
is to show that a well-defined continuum limit for this equation exists in
the form of a fixed-point equation in the Hilbert space Lo (Sg).
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8.4 Polar State Criteria

The preceding section has given us the framework for the Bragg-Williams
approximations. What we do now is to implement it, with a two-domain
partition on the sphere, which is as simple a division as we can provide but
which nevertheless allows interesting results.

What we find by this partitioning is that the order of the system varies
continuously as function of the statistical mechanics temperature and of
the planetary rotation. When the planet is not rotating, there will be a
continuous phase transition of the second order at a critical temperature
which proves to be negative. When the planetary rotation is large, we
will find a continuous phase transition, between a weakly counter-rotating
ordered or unmixed state and a mixed state, at a critical temperature that
is positive.

Our partitioning will be into the northern and southern hemispheres,
with the northern hemisphere labelled domain 1 and the southern hemi-
sphere labelled 2. So we have only the order parameters o7 and o9, for the
northern and the southern hemispheres respectively. Furthermore, since
by the Stokes Theorem the net circulation must be zero, we know that
09 = —o7. The result of this is that the expression for the Helmholtz free
energy becomes rather simple and so do the equations for critical points
or fixed points already introduced. Making use of this partitioning for the
free energy we find:

U =0fV2 (K9 — Ki1) +2Q0,
1 1-
+ky T2 [(1+01)log( —;Ul> —|—(1—01)log( 201>} (8.45)

To find the extremal values we need to solve the fixed point equations

o1 =tanh [B (L1 + ) + Bo1 Vi (K11 — K1.2)] (8.46)
—o1 =tanh [~ (QLy — A\) — for V1 (K11 — K1,2)] (8.47)

which reduces to a fixed point equation in one variable:
o1 = tanh [BQLy 4+ Bo1 V1 (K11 — K1,2)] (8.48)

In this case, L; = —1, and V; = 27.

Finally we need an estimate for K; ; and Kj o, that is, the mean energy
of an edge. The precise value of this we know will depend on the number
of mesh sites. It also depends a bit on the precise configuration of the
mesh sites, but since we have assumed the mesh sites are uniform or nearly
uniform on the sphere that will be a minor effect.
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What is less dependent on the mesh size and is more closely what we
find actually interesting is to look at Vi% (K71 — Kj2), which appears in
equation (8.48). We can estimate this, among other approaches, by using
a Monte Carlo integrator, which finds that

= -V2 (K11 — Ky ) ~ 120 (8.49)

This K we will use in the following subsections to consider first the case
of a non-rotating planet and then the planet with rotation.

8.4.1 The Non-Rotating Case

The non-rotating case is addressed just as one might imagine, by setting
the planetary rotation  to zero in equation (8.48):

o1 = tanh [ﬂO’lvl (K171 — KLQ)] (850)
~ tanh [—120801] (8.51)
The free energy, with planetary rotation set to zero, becomes

U =0iV{ (K12 — K1)

T2 [(1 +01)log (1 201> +(1—01)log (1 2“)} (8.52)

There exists at least one solution to equation (8.50), and that is the

obvious one: o1 = 0. This is the state in which the probability of any given
mesh site in domain 1 being positive is % and being negative is equally %

That is, the state is mixed. And as we have a two-domain problem and
known o1, we also know 09 = —o; = 0 and therefore positive and negative

sites are equally probable in domain 2; thus, the mixed state is seen over
the entire sphere.

The question is, is there another solution? For a positive temperature,
which corresponds to positive 3, we can answer this right away by con-
sidering the two sides of equation (8.50) as oy is allowed to increase. The
right-hand side of equation (8.50) decreases with increasing o1, while obvi-
ously the left-hand side increases. The conclusion is that the solution must
be unique. In positive temperatures, then, we will see only the mixed state.

Now what of negative-temperatures, where 5 < 07 We still have, obvi-
ously, the solution o; = 0 which is still the mixed state and will be seen
in both domains. But are there other solutions, and if there are, then
do they have a higher or lower free energy? We need that answer since in
negative-temperatures the observed state is more likely to be the one which
maximizes the free energy.
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Fig. 8.1 On the left are the left-hand side and the right-hand sides of equations (8.48)
for several values of 3. On the right are the corresponding plots for the free energy. For
all of these plots 2 = 0.

Whether there is a second fixed point solution to equation (8.50) will
depend on the slope of its right-hand side. Specifically, if the magnitude of
the slope at its maximum is at least 1 then there will be at least one more
solution, since the tanh function is bounded above and below. This conse-
quence can be shown convincingly by inspecting a graph of the hyperbolic
tangent function compared to the identity function.

The maximum slope, as a function of oy, will be found when o1 = 0,
so that we can determine whether other solutions exist based entirely on
the derivative of the right-hand side of equation (8.50) with respect to
o1 evaluated at 0; = 0. This is the consideration which will give us
a critical temperature and what information about phase transitions we
can derive.

The slope of the right-hand side of equation (8.50) at o1 = 0 will be
BVi (K11 — Ki2). The fixed point must exist when this slope is 1. And
therefore we can find a critical temperature 8°: it must satisfy

BVI (Kig — Ki2) =1 (8.53)
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and so the critical inverse temperature is

2T
g =-= (8.54)

If the inverse temperature [ for our current statistical mechanics tem-
perature is greater than the critical temperature 32, but is still negative,
then the slope of the right-hand side of equation (8.50) will be less than 1,
and there will be no second fixed point. We have only the stationary point
o1 = 0, the mixed state, just as we saw for the case of positive temperatures.

Now what if the inverse temperature (3 is less than the critical inverse
temperature 32?7 In this case the slope of the right-hand side of equation
(8.50) is greater than 1 at its maximum, and therefore there will exist
another fixed point. In fact, there must be two fixed points, a 0 < 0 and
a o4 > 0, each of which will be a non-zero maximizer of the free energy.

We know something further: the tanh function is odd in o1. And there-
fore o~ must equal —o . Furthermore, the free energy as in equation (8.52)
is an even function in o;. Therefore we do not need to consider ¢~ sepa-
rately from o, and all we need to consider are the energies at the fixed
points o and ¢©.

* is positive, this corresponds to a state in which positive vor-

Since o
ticities are more probable than negative vorticities are in domain 1. While
the specific probability of this depends on 3, we can still characterize this
as the unmixed state or ordered state. The question is whether the free
energy for ot is greater or less than the free energy for ¢°.

It is ecasiest to estimate the free energy at o* by looking at the Taylor
series expansion for the free energy as expanded around o7 = 0. In this we

have:
4
& (o) — @ (0) = (K + 21kpT) 0 + gkaa‘* +0(0%) >0 (855)

which indicates that the free energy at o+ will be greater than the free
energy at 0.

Therefore, when 8 < 9 < 0 it is statistically favorable to have the
unmixed, or ordered, state: we expect to see solid-body rotating flow.

As a result we see that a standard symmetry-breaking phase transition
is predicted by the fixed-point equation in the Bragg mean-field. Happily,
this agrees with both the simple mean-field theory prediction [56] and with
the spherical model [19] [20] [58] [59] [63].

So we have overall established the result:

Proposition 8.1. In the non-rotating case of the Bragg model, there is a
negative-temperature phase transition to a solid-body-rotating ordered state
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for B < BY = 727” < 0. For all other values of the temperature, both

positive and negative, the most probable state is a mired-vorticity state.

8.4.2 The Rotating Case

The remaining case is that of the nonzero planetary rotation, and this is
forced to be more complicated because we do not have the symmetries which
reduced the number of cases we had to consider before. Nevertheless, we
can still see that equation (8.48) must have at least one solution, and it
may have as many as three, depending on the slope of its right-hand side.
And the free energy will have a term which is not even in o1, but it is not
seriously more complicated to approximate by a Taylor series expansion
around o1 = 0, and we can still evaluate which of the fixed points will have
the greatest or the least free energies.

So as with the non-rotating case we will look first at positive and then at
negative-temperatures, identifying critical temperatures and then in each of
these temperature regions finding fixed points for ;. With these we then
compare free energies to see whether we may expect the most probable
distribution to have oy at zero, which would be the mixed state; to have
o1 positive, which would be an unmixed solid-body rotation moving in the
same direction as the planetary rotation; or to have o; negative, which
would be an unmixed solid-body rotation moving in the opposite direction
as the planetary rotation.

This difference between the states requires some guiding principle: it is
obvious that if o; is just a little different from zero that we have what is
essentially the mixed state; and if o7 is just slightly less than 1, or slightly
greater than —1, we still have the unmixed state. Where should we put
the dividing line between describing the system as being in the mixed state
from being in the unmixed state if all we have to consider is the order
parameter 01?7 It is arbitrary, but also convenient, to make the dividing
line be where |o1| equals %: if the magnitude of the order parameter is less
than %, we have the mixed state; if the magnitude is greater than % we
have the unmixed state.

Consider the fixed-point equation, equation (8.48), which with nonzero
rotation  will remain

g1 = tanh [ﬂQLl —+ ,60'1‘/1 (K171 - K1,2)} (856)

Regardless of whether the temperature is positive or negative, when
the planetary rotation {2 is positive, the right-hand side of the fixed-point
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equation (8.48) will be zero at the value

272
o1 = N <0 (8.57)
since K > 0. Furthermore, the zero &, satisfies
-1<a1<0 (8.58)

if and only if the planetary rotation €2 satisfies the condition

0<Q<Q= E

27

where Q.. is a critical rotation speed that is independent of the tempera-

ture. The condition is, therefore, that planetary rotation is not too fast.

This condition proves to be significant for determining the fixed points of

equation (8.48) in the rotating case.

When the planetary rotation {2 is positive, the free energy can be ap-

proximated in terms of ¢ by the Taylor series expansion

U7 (0) = —4nkpTlog (2) + 200 + (K + 27kpT) o*

(8.59)

1
+§7rkBTa4 +0 (0% (8.60)

Positive Temperatures

We start by considering positive temperatures and thus 8 > 0. The right-
hand side of equation (8.48) is decreasing in o1, and it is bounded between
—1 and +1, much as we saw in the non-rotating case. This dictates that
there must be a fixed point o7 of equation (8.48), and that it must satisfy

-1<o01<0 (8.61)

Now further consider the shape of the right-hand side of equation (8.48),
which is plotted in Figure 8.1. From it we know the fixed point must also
satisfy

01 <01<0 (862)

And as the inverse temperature 8 — oo, it follows that oy approaches,
decreasing, the maximum of 67 and —1.
Suppose the planetary rotation € is smaller than the threshold value
K
Q.=—>0, 8.63
¢ drx ( )
and furthermore that the zero G, satisfies

1
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What, then, does equation (8.62) tell us about the fixed point? In this case,
it must satisfty

1
—5 <o <0 (8.65)

From the fixed-point equation (8.48) therefore we find a phase transition
where o < —% at the positive critical temperature
A - K
~ 27log (3)

Because (). is independent of the inverse temperature 3 > 0, we have
established this proposition:

T+ (Q) kg (8.66)

Proposition 8.2. (a) The most probable state in the Bragg model is the
mized -vorticity state for all positive temperatures when planetary spins
are smaller than Q.. There are therefore no phase transitions in positive
temperatures in this case. (This is shown in Figure 8.5 where the fixed

points are plotted against temperature T for very small Q < Q..)
(b) On the other hand, for planetary spins that are not small — that is

K

Q>0 = y= (8.67)
— the fized point o1 (8) € (—1,0) has continuously-increasing long-range
order as the temperature decreases (see Figure 8.4) and below T (Q) > 0,
the statistical equilibrium oy < —% s an organized counter-rotating physical

flow.

This matches the results found in the simple mean-field theory in the
case of positive temperatures [56]. The properties of this first threshold
value of the planetary rotation are clearly shown in Figure 8.2 and Figure
8.3 where the fixed points o and the free energy, respectively, are plotted
against temperature T for planetary rotation Q = €.

Transition Between Positive and Negative- Temperatures With Large |T|

For all planetary rotations 2 the most probable state changes smoothly
through mixed states between high positive temperatures 7" > 1 and the
large-absolute-valued negative-temperatures T < —1. At T > 1 the pre-
ferred mixed-state or fixed-point has a small negative angular momentum
— it is a counter-rotating state, although only slightly. For T' <« —1 it
is the reverse: the fixed-point is a mixed state which has a small positive
angular momentum, or pro-rotation bias. These are shown in the plots of
Figures 8.4 and 8.5 for several distinct values of rotation €.



Phase Transitions of Barotropic Flow 149

_17 i

-200 -150 -100 -50 0 50 100 150 200

Fig. 8.2 A graph of o versus kT when Q = Q..

Negative- Temperature

With negative-temperatures we remember how the non-rotating problem
found a critical temperature at which the single fixed point split into three
fixed points. It is reasonable to suppose that this sort of critical temperature
will exist for negative-temperatures when the planet is rotating. Therefore,
we will look for two sub-cases to the negative-temperature case.

The first sub-case supposes that the fixed-point equation has the pos-
sibility of multiple fixed points. In the second sub-case we suppose the
fixed point equation has exactly one fixed point. In both categories, as
the negative T increases — that is, decreases in absolute value, drawing
towards zero — and for all values of the planetary rotation the slightly
pro-rotating mixed state gives way continuously to a strongly pro-rotating
state at 5~ (©2) < 0.

B~ () is chosen to be the value of § for which the fixed point o1 (87) =
%. We see this § depicted in Figures 8.2, 8.4, and 8.5 for several values of
the planetary rotation.
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Fig. 8.3 On the left is a graph of the fixed point when 8 = 0 and 2 = Q.. On the right
is the free energy.

Solving the fixed-point equation (8.48) for kT gives

[ e (8.68)

and so therefore

27 log (3)

Q)= —-——= .
A ) 4+ K (8.69)
But there is another temperature threshold, which we anticipate as a
result of inspecting Figures 8.2, 8.4, and 8.5, at least when the spin is not

too large. This threshold,
B <0 (8.70)

is the value for which multiple fixed points appear when 8 < 3 and when
Q < Q... Both of these terms we will define shortly, so that we will fi-
nally know what to make of the .. asserted above to be important and
independent of temperature.
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We can estimate ($5!. The critical value leading to the appearance of
two more counter-rotating solutions of equation (8.48) is given by

d(yr) K(-o0 )log(H”) +47Q + 02K
do m(1—02) (log(HU))2

and from this it follows

O:

(8.71)

—27
Q _
fe' = K(1-o0?)
Approximating the numerator on the right-hand side of equation (8.71)
by a third-order polynomial in o gives

1
Q 3
o — (37};> (8.73)

(8.72)

o=0%

and so we conclude
Lemma 8.1. The critical temperature TS is increasing in Q.

Its proof follows immediately from equations (8.72) and (8.73): 0% increases
with Q, and 5 is proportional to the inverse of o*?, and of course T is
proportional to the inverse of 35!

One Fized Point

In the case of negative-temperatures the fact that there is a physical bound

|o1| < 1 in the fixed-point equation, equation (8.48), implies that there is

another threshold, this €., on the planetary rotation rate. When

Vi (K1 — Ki2)
Ly

there exist only pro-rotating solutions, o1 > 0, to the fixed-point equation.

Any negative fixed-point o, < 0, if they existed, would have to satisfy

o <01 <0 (8.75)

while the zero 67 must satisfy

Q>0 = =20, (8.74)

o < —1 (876)
to respect equations (8.58) and (8.59). This would lead to the contradiction
1 < —1.
Therefore we have the result:
Proposition 8.3. For large spins > Q.. there is a single negative-

temperature transition at S~ (Q) < 0 between the mized and the strongly
pro-rotating state for |T| < 1.
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Fig. 8.4 A graph of o versus kT when Q > Qcc.

When Q < Q. it is possible for the argument of tanh in equation (8.48)
to be zero at values of &7 within the physical range —1 < &7 < 0. In turn
this makes it possible to have counter-rotating or mixed-state fixed points
which satisfy

—1<01<61<0 (877)
provided that in addition the inverse temperature satisfies the condition
B<BE<0 (8.78)

In the case where Q < Q.. and 3 < 3% there are (generically) three fixed
points, which is to be expected from the shape of the curve of tanh. One of
these fixed states is pro-rotating. In general, there will be two other fixed
points: one which is strongly counter-rotating; and one which is mixed,
with a small counter-rotation. There is a degenerate case: these two will
merge into a single mixed, counter-rotating solution when g = . This
last threshold 3% < 0 follows because the value of —3 determines the slope
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Fig. 8.5 A graph of o versus kg1 when Q. 2 > 0.

of tanh near zero, and we need a large enough slope in order for the graph
of tanh to intersect the line of the identity function.

There is a transition at 5~ (2) < 0 between the mixed state and the
strongly pro-rotating state, and there is another negative-temperature tran-
sition ﬁ? < 0 when Q < Q.. where the additional critical points are as
defined by equation (8.60). The Bragg free energy has a simple form in this
case, which can be used to see that the pro-rotating solution has a greater
free energy than the counter-rotating solution in negative-temperatures
close to zero. This is shown in Figure 8.6 for 3 > 3.

In the two-domain case, 2 > 0 adds a linear term to the free energy
functional:

Urq(o)=TYro(0)+ 200 (8.79)

We found in the non-rotating case that for 0 > T > T the free energy has
two maximizers, which we denote here as 7 and 6~ (we had previously
labelled them o and 7). Since the free energy in the non-rotating case
is even we knew 6~ = —¢T. So from lemma 8.1 and from equation (8.79)
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Fig. 8.6 On the left are plots of fixed points. On the right are plots of the corresponding
free energies. Both plots are for the same value of 8 < ﬂ? < 0.

then
Yro (5'_) <VUrq (U_) <VUrqo (5+) <VUrq (U+) (8.80)

Interestingly, 5~ < 0~ < 0 < 67 < oT. Physically, this implies that
the ordered state af > 0, in which positive relative vorticity determines
the northern hemisphere, is more ordered than the symmetric solutions at
Q) = 0, which is in turn more ordered than the counter-rotating fixed point
o; < 0. Thus we have demonstrated

Proposition 8.4. For rotations not too fast, that is if Q@ < Q.., then for the
hottest inverse temperatures, such that 8 < ,6’? < 0, there are exactly three
fized points in the Bragg model. But the most probable state is pro-rotating
such that oy /" 1.

8.4.3 Summary of Main Results

To sum up: the simple two-domain case of the fixed-point equation predicts
that in the rotating problem there are two critical values of the planetary
rotation. The first is Q. as defined in equation (8.63), and the second
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is Qqe = 2Q.. Below ()., there is no transition at positive temperatures,
and the most probable flow state is mainly a mixed state (per equation
(8.65)), with some small amount of counter-rotation. This counter-rotation
vanishes as the temperature increases. For planetary rotations above €,
there is a continuous positive-temperature transition from mixed states at
T > T+ (Q) to strongly counter-rotating barotropic states at lower positive
temperatures.

For all values of planetary rotation, there is a smooth transition through
mixed states at § = 0 between slightly counter-rotating mixed states for
T > 1 and the slightly pro-rotating mixed states for negative T' with |T'| >
1. Once again, for all values of planetary rotation 2, there is a continuous
transition at 57 (€2) < 0 between mixed states for cooler negative 8 >
87 (Q) and strongly pro-rotating states for hotter § < = (). For the
larger rotations 2 > .. this is the only possible transition at negative-
temperatures.

For intermediate-to-small values of the planetary rotation, Q < Q.,
there is a negative threshold 55 at which we have the possibility of mul-
tiple — and for that matter metastable — thermodynamic equilibriums.
When there are multiple fixed points the pro-rotating branch has the largest
free energy and therefore it continues to be the thermodynamically sta-
ble macrostate. Therefore, for all rotations there is a single negative-
temperature transition at 87 (2) < 0 to the pro-rotating state for the
hottest negative-temperatures (those with the smallest absolute values, cor-
responding to the largest kinetic energy).

8.5 The Infinite-Dimensional Non-Extensive Limit

This model has not got an extensive limit from which we can calculate in-
tensive quantities. However, we have built directly a non-extensive model.
We can support drawing conclusions about a continuum model by conver-
gence theorems. The continuous case will look very much like the analog
case; we need just a few constraints for analytic consideration.

Consider a set of domain systems all of which are built from the Voronoi
cells on a uniform mesh, which allows us to assume that the coarse-
grained domains will be spatially symmetric. What we will describe as a
Bragg process will be the sequence of domain systems and their associated
ensembles.

The limiting ensemble of a Bragg process is the Lo (52) space of func-
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tions o which map the unit sphere S? onto the interval [—1,1]. This en-
semble has a functional for the free energy which is analogous to the free
energy formula in the discrete case:

\II[U]:—%/d:v/dyo(:c)a(y)K(a:,y)—Q/dmo(w)L(m)

Jrk:BT/d:c (

1+o(x 1+o(x
o(a) log( o(a)
+ 1—«;(30)) log 1—2(06))
(8.81)

from which we can recover the analog to the fixed-point equation.

When we look for extremes of the free energy we need to limit our search
to the subspace of functions which are constrained by Stokes’s Theorem,
the space

2:{0:52H[—171]

/32 dro(x) = O} (8.82)

Another physical constraint, the bounded relative enstrophy, is implicit in
the condition that |o| < 1 in the fixed-point equation. The fixed-point
equation can be derived, in the continuous case, in a form that is analogous
to that of the discrete case:

o (z) = tanh [ﬁ (QL(z)+ XN+ | dyo(y) K (z, y)] (8.83)

S2
From the definition of K as per equation (8.24) we recover the inverse
Laplacian G, and so equation (8.83) can be rewritten as

At = tanh [3 (QL (z) + X\ + )] (8.84)

where 1) is the coarse-grained stream function. This form provides, given
the conditions that L (x) is proportional to the first spherical harmonic,
and that (Ay) = 0 we conclude that A = 0. For any v, in fact, A = 0
implies

(tanh [3 (QL (z) + A +)]) = 0 (8.85)

and

2 (b [3 (L () + A+ )

<jA tanh [3 (QL (z) + X + ¢)]> (8.86)

— (Beosh 2 [B(QL () + A+ )]} (8.87)

which must be the same sign as 8 and which therefore shows the average
will be monotonic in A.
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The discrete model was limited in its degrees of freedom. Here, we have
a continuum for the spin as the coarse-grained state is given by a bounded
function, o () in Ly (S?), constrained to zero circulation, [g, dzo (z) = 0.

The Bragg estimation of the interaction energy became a very accurate
one in the continuum model, at the cost — a cost which is common to all
mean-field models — of an artifact in the entropy estimation. However, the
Shannon entropy of a binary variable is what allows the derivation of the
tanh fixed-point equation.

B=-1;w=5 B=-.75; w=.5
0.5 0.5
0
-0.5
0.5 2
0 1
0.5 0
' -1

Fig. 8.7 These are several fixed point solutions.

In Figure 8.7 we have some spin states of some thermodynamic regimes
calculated numerically.
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Chapter 9

Phase Transitions to Super-Rotation
— Exact Closed-Form Solutions

9.1 Introduction

We have been introduced to the mean-field theory approach to identifying
phase transitions and extremal states for the barotropic flow of an inviscid
fluid on a rotating sphere. Along the way, we have mentioned in a few spots
that these models can be addressed by the spherical model, in which we
constrain the enstrophy of the system microcanonically. We know from the
mean-field theory treatment that we can expect to see mixed and organized
states in negative and positive temperatures, with perhaps the critical tem-
peratures between regions dependent on planetary rotation. It is rare and
fortuitous that an exactly-solvable non-Gaussian model can be formulated
for macroscopic flows on a sphere but the coincidence of the notions of rel-
ative enstrophy as square-norm and high-dimensional spherical constraint
provides just such a rare chance to fully solve for and flesh out the details
of the critical phenomena around the transitions to super-rotation and sub-
rotation in a rapidly-spinning sphere. The focus of this chapter is to show
how Kac’s spherical model can be used to solve in closed-form the critical
temperatures of phase transitions for barotropic flows on a non-rotating
sphere, and to show how this approach differs from Gaussian models [58],
leaving the reader to consult [59] for the corresponding exact solutions in
the case of the rotating Barotropic Vorticity Model.

The main statement of the theorems in [59] confirms the MC simu-
lations in [20], discussed in chapter 6, the mean-field results in [56], dis-
cussed in chapter 7 and in [61], discussed in chapter 8: there is a physically
significant asymmetry between super-rotating and sub-rotating vertically-
averaged barotropic, non-divergent flows on a rotating sphere, due chiefly
to an energy gap in the angular momentum part of the energy functional,

159
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Lagrangian of the Barotropic Vorticity Equations, which anticipates the
results in chapters 10 and 11 on the dichotomy between the cyclonic and
anticyclonic flow states of the Shallow Water Model. Specifically, our ex-
act solution of the rotating Barotropic Vorticity Model by Kac’s spheri-
cal model methods, states that, no matter what the spin-rate, there is a
high enough energy-to-relative enstrophy threshold, depending on spin-rate,
above which, the most-probable statistical flow states comprise a largely
super-rotating atmosphere. In contrast, it states that, only when the spin-
rate is large enough, there is an energy-to-enstrophy threshold, below which,
the most-probable state is a chiefly anti- or sub-rotating flow.

In our solar system, there are two data points of super-rotating atmo-
spheres, Titan, the major moon of Saturn and Venus, both of which are
slowly-rotating, in agreement with our rigorous results here, and have thick
heavy aatmospheres that have very high zonal winds exceeding 100m/s.

In the next section, for the sake of completeness, we will give the for-
mulation in terms of the full Barotropic Vorticity Model on a rotating
sphere where the keystone of the model appears as a two-dimensional Ising-
Heisenberg lattice model [58], [59].

9.2 The Rotating Sphere Model

As we have in earlier chapters we begin with spherical coordinates ¢ and
cos () to describe points in the planetary atmosphere, which we assume to
be thin enough not to require a third coordinate, and we let the planetary
rotation be €. So the total vorticity ¢ at any time t is a function

q (t;cos (0),¢) = Ah + 2Q cos (0) (9.1)

for a relative velocity stream function 1, so that the relative vorticity w =
A, and using the negative Laplace-Beltrami operator on the unit sphere
A.

Suppose that we put a mesh of N points &, distributed uniformly on
the surface of the sphere, so that we can use the piecewise constant approx-
imation for the relative vorticity w based on the Voronoi cells on a lattice.
That is, at each mesh site Z; we represent the vorticity in the Voronoi
cell around that point with the single spin s;, as we began the mean-field
theories. With this discretization, the truncated energy or pseudoenergy
— it is not exactly the energy of the continuous flow which we want to
approximate — has a standard form, pairwise interaction and point-planet
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interaction form, for a spin-lattice model:

1NN N
Hy = —§ZZJj,ijSk—ZFij (9.2)
j=1k=1 j=1
where we define the interactions to be
2
Jin = 1}% log |1 — &, - @] (9.3)
(while J; ; = 0) between points and the external fields

Fy = =220 o5 (6) [0 (7)) (94)

to represent the point-planet coupling. In this case || cos(0) ||z is the Lo
norm of the function cos (6), and the spherical harmonic 31 ¢ is the relative
vorticity of solid-body rotation.

The truncated relative enstrophy, reflecting just the mesh sites in our
particular discretization, is

N
— 2 _ 3.3
I‘Nfﬁz:sjfﬁ&s (9.5)

and for the spherical model this is fixed. The vector s is an ordered list of
all the values of the vortex spin at the mesh sites.
The truncated circulation similarly we find by calculating

47 N
TCx =~ Y5, (9.6)

and it is also fixed, at zero. Having established this pairwise-particle in-
teraction, we will shortly be getting rid of it, because it is vastly more
convenient numerically to work with the spectral decomposition of a vor-
ticity field which matches our discretization at the mesh sites.

A relative vorticity field can be expanded in terms of the spherical
harmonics:

00 l
w(r) = Z Z L mWim (T) (9.7)
I>1 m=—1
which will provide our spectral decomposition of the vorticity field. The
spherical harmonics are particularly tempting to us not only because of
their appealing properties as an orthonormal basis set for the set of square-
integrable functions defined on the surface of the sphere, but also because we
know they serve as Green’s functions for the Laplace-Beltrami operator, and
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we therefore expect to see them in the analysis of functions modelling the
vorticity of a fluid flow. Another appealing trait is that they automatically
preserve the total circulation over the sphere at zero, so that we have this
constraint without having to make any further explicit allowance for it.

The eigenvalues of the Green’s function for the Laplace-Beltrami oper-
ator on the unit sphere are

Ay = forl=1,2,3,---;m=-l,—-l+1,---,0,---,1 (9.8)

1
1(1+1)

We will find oy, to be the spectral components so that

l
5 (fj) = Z Z al,m'l/]l,m (fj) (99)
=1 m=—1
for each mesh site Z;.

One of the consequences of this expansion is that the mode a4 01,0 ()
contains all the angular momentum in the relative flow, as measured in
the reference frame rotating at the fixed angular velocity €2, that is, in the
reference frame rotating with the planet.

Another consequence which is not obvious but which greatly simplifies
our taking of the spectral decomposition is that we will want to only look
at mesh sizes N which are perfect squares. In this way we can look at the
spectral decomposition for the first harmonic number [ starting at 1 and
increasing to VN , with the second harmonic number m an index between
—Il up to l. Analytically this is convenient; when running numerical simu-
lations, this simply encourages one to look at even powers of two for the
number of mesh sites.

9.3 Solution of the Spherical Model

What is the exact solution to the spherical model [8] for barotropic flows
in the inertial frame? That is the objective for this section, and further
details are provided in [58] and [59].

The partition function Zy for the spherical model on N mesh sites has
the form

N N
Zch/ng (5)exp (=BHN ()0 | T~ = 58 (9.10)
j=1

where the integral in equation (9.10) is a path integral taken over all the
microstates § where circulation is zero. The Dirac delta function is of course
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the microcanonical constraint on enstrophy. D (§) is the degeneracy of the
microstate §, and exp (—GHy) is the Gibbs factor based on the energy of
the microstate as we might expect.

In the thermodynamic limit, the continuum limit, in which we consider
this integral as N — oo this partition function can be calculated by using
the Laplace integral transformation, which changes the Dirac delta into a
line integral in the complex plane:

N
Zy o [5D @ exp (-BHy ()8 | Tnpe = D5 5| (@)
j=1
— [ 45D (s)exp (-8 ()

1 a+100 N N
X %/ dnexp [ n FNE_ZE}.E}C
a j=1

(9.12)

In order to solve this integral we change our form for writing the site
vorticities 5; away from the explicit mesh-dependent form and into the
form in terms of the spherical harmonics {¢;,,},",, and we use this to
diagonalize the interactions Hy:

N X /D(a) exp <_§Z Z )\z,maim>

=1 m=—1

1 a+100 A l
2
X (27” /aiwo dnexp <77N (1 “ T g E alym>>> (9.13)

=1 m=—1

with A; ., and a;,, as defined in the previous section. For any particular
mesh [ will be taken only up to v/N, but it does not confuse the analysis
here if we simply let the upper bound on [ go unstated in these formulas.

Our next step is to swap the order of integration in equation (9.13). This
is analytically permitted, provided that a is positive and is large enough
for the integrand to be absolutely convergent. What we gain by doing this
is an innermost integral that is the product of a collection of Gaussian
integrals, that is, ones which have the form of integrating the exponential
of a squared quantity, the classic bell curve distribution. We know what
these integrals are, provided that certain constraints on the scaling factors
in the distribution are satisfied. These factors will themselves prove to be
describable as physically significant conditions.
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The next step will be to rescale the inverse temperature, defining the
new ﬂ/N = (. This rescaling, after the change in the order of integration,
yields

oo nm (1 - I‘N D D Zm——l al2,m)

N X — dn exp
T Ja—1o0 B N Z’m* 1 )\1 ma% ,m

ﬁ N)\lm 4i 2
X l>2 exp( Z Z ( NnFN>al’m> (9.14)

=2 m=—1
This inner integral is the promised collection of Gaussian integrals. It
is explicitly solvable despite being the product of many of them:

BNAlm 47 2
«) exp +Nn— | o,
e (<X 3 (P gt o

1=2 m=—1
3
=11 II (9.15)
1= 2ml< "’BN)‘lm)
provided we satisfy this physically important condltlon.
Nom 4w
p 2“ +ig - >0for =234, VNim=—l,—l+1,---,0,---,1
N

(9.16)

Since we have evaluated the innermost integrals, we can rewrite equation
(9.14) in a form which is longer and yet simpler:

4m 1
a+i00 " (1 7, Ty &m=-1 a%’m)
ZN o / dnexp D DD S (9.17)

—100
— 3N D=2 om log(Nn +6N/\zm)

One approach we can use successfully to solve this is the saddle point
method, or the method of steepest descent. To do this we will rewrite
equation (9.17) in a suitable form:

1 a-+100
Z x lim —/ dnexp (NF (n,T'n,3)) (9.18)
N—oo 271 a—100

In the thermodynamic limit, as N — oo, the free energy per site, modulo

a factor of —3, given by

1
F(U,FN,H)—??<1—47T Z a1m>_ Z Almalm

m=—1

l
—%Z > log (N +5lem> (9.19)

=2 m=—1
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with one special note: we have here separated out the ground states 1 g,
¥1,—1, and 111, which are a three-fold degenerate ground state which we
will address shortly.

The saddle point condition, allowing us to find the extremum for this
internal free energy, is

VN 1 -1
OF PP 2 BN
0="=(1-2- Y o >y N——s——/\m
on ( Iy 1 ) l2m_—l< l )

(9.20)

We still have not settled the three ground states, where [ = 1. To resolve
them we need additional constraints. We get these from the equations of
state for m = —1,0, 1:

0= oF <87r77

m m 21
B Ty +6'M )041, (9.21)

These three equations have as their solutions

8
a1, =0 or F7T77 +8' M m = 0 for each m (9.22)
N
In order to have nonzero amplitudes in at least one of the ground, or
condensed, states, we must have that

_— =—— 9.23
T 1 (9.23)

which implies that the inverse temperature must be negative:
g <0 (9.24)

Notice that these are the only states which carry a non-zero angular momen-
tum, which therefore gives us information about the angular momentum of
the atmosphere and how it depends on the temperature.

In the modes where [ = 2 the Gaussian equation, equation (9.16),

’ ’

g B

———>0 9.25

12 4 ( )
can be satisfied only by a negative temperature ﬁl < 0 when there is energy
in the angular momentum containing the ground modes, that is, when

equation (9.23) is satisfied.
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So what does the saddle point condition (9.20) look like at this nonzero
solution? Substitution produces

1 VN . , -1
A o 86N @GN
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The formulation gives us a strong suggestion for what a critical inverse
temperature ought to be.

The critical inverse temperature is negative and has a finite large N
limit, and it is inversely proportional to the relative enstrophy I'y:

. V2 ool 1\t
,oo<ﬂc:FNNZ > (Az,m2> <0 (9.29)

=2 m=—1

The saddle point equation gives a way to compute the equilibrium am-
plitudes for the ground modes for temperatures below the negative critical
inverse temperature 6;. For inverse temperatures § with § < ﬂ; <0

1 ’
> ot (9) = <1 - %) (9:30)

m=-—1

What this means is that at positive temperatures there can not be any
energy in the solid-body rotating modes. Since the solid-body rotating
modes are the [ = 1 ground or condensed states this tells us there is only
the mixed state in positive temperatures, and therefore, there will be no
phase transition in positive temperatures.

This is the spin-lattice representation of the self-organization of
barotropic energy into a large-scale coherent flow in very high energies.
This organization takes the form of symmetry-breaking Goldstone modes.

These extremely high energy ground modes carry with them a non-
zero angular momentum which can be directed along an arbitrary axis, a
problem formulated in the inertial frame with planetary rotation Q = 0.

Another project that simulates and analyzes the statistical equilibriums
of a layer of divergent fluid when coupled to a massive, rotating sphere
using the spin-lattice models, generalizing the results given here, provides
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results which suggest that initially non-divergent flow states are thermo-
dynamically unstable to divergent perturbations [19]. The key fact from
these numerical experiments — that overall divergent statistical equilibri-
ums have been found to have non-divergent parts, the relative vorticity, that
are close to super- and sub-rotating solid-body barotropic flows — appears
to justify the analysis of the spherical model for the coupled barotropic
fluid-sphere system.



This page intentionally left blank



Chapter 10

The Shallow-Water Models — High
Energy, Cyclonic Solutions

10.1 Introduction

The rotating Shallow-Water Equations have long been used as models for
aspects of planetary atmospheres ([13] and its references), and the model
supports the formation of robust large-scale coherent structures in stud-
ies based on forced-damped and freely-decaying dynamics. In sections 2.4
and 2.5 we introduced a Shallow-Water Model [21] based on a statistical
equilibrium spin-lattice model, and in this chapter and the next we in-
tend to discuss Monte Carlo simulations as well as analytical deductions of
significant physical properties pertaining to the Jovian atmospheres from
the form of the energy terms in the Shallow-Water Equation Lagrangian.
These simulations suggest that long-lived, large-scale coherent structures in
rapidly-rotating shallow flows can be formed following a first order phase
transition. In this chapter we will examine the negative temperature do-
main associated with very high mechanical energy to entrophies ratio [21];
in the next chapter, positive temperatures associated with lower energy to
entrophies ratio, with direct applications to the Jovian atmospheres [22].

The Shallow-Water Model as introduced in section 2.4 generalizes the
statistical Barotropic Vorticity Model to rotating flows of a single layer of
horizontally divergent fluid. Through sections 2.4 and 2.5 we became famil-
iar with a model that is based on a canonical constraint on the mechanical
energy L, microcanonical in the relative vorticity circulation ¢, in the cir-
culation J, in the total fluid height A, in the relative vorticity enstrophy
Q¢2, and in the enstrophy Q52. The construction of a Metropolis-Hastings
Monte Carlo algorithm from this is clear, following the procedure for the
Barotropic Vorticity Model.

Simulations of the Gibbs ensemble will require a Lagrange multiplier

169
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known as the inverse temperature J representing the averaged energy level
of the energy-momentum reservoir, and this multiplier is directly related
to the expected value of the total mechanical energy for the equilibrated
system. In two-dimensional vortical problems it is well-known that the
inverse temperature can be a negative quantity, which happens when the
expected energy of a bounded system is very high.

Results in this chapter and the next show the results of performing
many Monte Carlo runs at a range of fixed inverse temperatures [ in par-
allel on a small cluster. The negative and positive inverse temperatures
are run within a narrow range and selected values for the relative vorticity
enstrophy and the enstrophy. Some of the windows of mean total energy
and enstrophy will include evidence for a first-order phase transition be-
tween disorganized and highly-organized end-states. These Monte Carlo
simulations also require fixing the values of the relative vorticity and hor-
izontal enstrophies or square-norms, after the Jovian parameters are set
at Jupiter’s radius, spin-rate, surface gravitational constant, and an av-
erage uppermost weather layer thickness of 20 km. No other inputs are
required in the Shallow-Water Model since the microcanonical constraint
on the total surface height is fixed by the previous entry, and the remaining
two microcanonical constraints on, respectively, the total sums of relative
vorticity and horizontal, are set at zero by Stokes’s theorem on the sphere.

In summary, the key Jovian features we want to be able to predict are
(1) the high velocities in the circumferential bands of the Great Red Spot
as observed by Voyagers 1 and 2 [6]; (2) the predominance of anticyclonic
spots over cyclonic ones in the Jovian weather layer; (3) the north-south
asymmetry locating the Great Red Spot in the southern Jovian hemisphere,
and the latitudes of the Great Red Spot and (4) the Limaye bands. A non-
quasi-geostrophic and strongly divergent aspect of the Shallow Water Model
appears to be necessary to account for all these key features. That is the
capstone of this book, to be discussed in the last chapter where it will be
clear that not only do simulations predict these key features but analytical
deductions from the form of the energy terms of the Shallow-Water Equa-
tions Lagrangian provide sound physical reasons for the presence of these
features in the Jovian atmosphere.

Monte Carlo simulations indicate that the Shallow-Water Model we have
introduced will provide evidence for all these key features in the proper pa-
rameter ranges. In negative temperatures, the highest mechanical energy
range, we expect to see cyclonic structures arise as it is when the plane-
tary spin is large enough that there appears a significant orientation-based
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asymmetry in the free energy of cyclonic compared to anticyclonic end-
states that favors cyclonic states as particular statistically stable states
with maximum free energy [64] [21]. The orientation asymmetry we find
through the angular momentum term (labelled AM) in the Shallow-Water
Equation Lagrangian L (equation (2.85)). With similar reasoning on the
same physical factor of the angular momentum, we can predict that when
the end-states have low energy-to-enstrophy ratios we will see anticyclonic
storms favored as will be apparent in the next chapter and in [22].

It appears that we can characterize the cyclonic/anticyclonic choice for
dominant vortex structures based on the energy-to-enstrophy ratios. In
the quasi-geostrophic regime, corresponding to high energy-to-enstrophy
ratios (and weakly divergent), statistically stationary flows in this model
will generally show cyclonic spots. In the non-quasigeostrophic regions
(intermediate-geostrophic and beyond [100], [70]), with low energy-to-
enstrophy ratios and strongly divergent steady flows, we will see mainly
anticyclonic-vorticity end-states.

And we will also want to predict the detailed velocity or vorticity profiles
within the highest cyclonic vortices predicted by the Shallow-Water Model.
Quasi-geostrophic simulations suggest the largest cyclonic spot will cover a
large part of the hemisphere in which it arises, and, more, that the relative
vorticity inside this vortex will have a nearly-concentric, slowly-decreasing
profile from a peak value at the geometric center to zero at a distance of
approximately one planetary radius.

That distribution complements the Bessel’s function-like properties of
the family of uniform-¢q potential vortices described in [70], which show high
rim velocities and vorticity when the Rossby radius is much less than the
semi-diameter of the vortex, and which have a Gaussian-like interior vortic-
ity distribution indicative of solid-body rotations when the semi-diameter
of the vortex is two to three times the Rossby radius. At lower energy-to-
enstrophy ratios we have evidence suggesting that large coherent vortices
will have velocity-vorticity profiles close to those of the uniform-g potential
vortices.

10.2 First Order Transitions

The Shallow-Water Equation model has a bounded phase space, and a
quasi-two-dimensional nature to its flow. Because of this the Shallow-Water
Model shows negative temperatures, as does the original Onsager Point
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Vortex Model on the plane [80] [68], and extensions [62] [10], and classical
energy-enstrophy models [50] [27]. Temperature here is the derivative of
entropy with respect to energy. As a result when there is a finite maximum
energy or a compact phase space, as shown by Onsager [80] the macrostates
with extremal energies will have the least entropy, while the intermediate
macrostates have maximum entropy. This implies the existence of negative
temperatures, where the energies exceed the threshold value corresponding
to the maximum entropy.

Some of the properties of negative temperatures predicted by Planck’s
theorem have been described but it is worth refreshing one’s memory. In
the case of the first-order phase transition at a negative temperature T, in
the Shallow-Water Model there will be a sharp decrease in the entropy as
the system passes into the high energy phase. In the standard, latent heat
calculation for an example like the boiling of water, the high energy phase —
a vapor, physically — corresponds to the higher entropy. The implication
and the feature which we will look for in the negative temperatures is an
increase in the long-range order as the associated energy increases as we
observe a first-order phase transition.

We will verify the numerical evidence for a first-order phase transi-
tion based on the extension to the Planck’s Theorem in negative temper-
atures [64]. In negative temperatures the equilibrium we observe will be
a maximization of the free energy F' = U — T'S. This free energy will
typically not show a jump discontinuity at a first-order transition tempera-
ture T,. Customarily one sees a cusp-type singularity, with the free energy
continuous across the transition.

It is the internal energy U of the preferred macrostate that shows a
clear, significant jump discontinuity at the transition. In passing from a
more negative temperature through the critical temperature 7, to a less
negative temperature — an increase of ¢ in energy — the entropy can be
expected to decrease by T%.

10.3 Antipodal Symmetry

An important property of the main part of the Shallow-Water Equations
Lagrangian, that is the part of L that does not depend on grad(h) where
h is the surface height, is antipodal symmetry which will be shown next.
Precisely because of this property, this part of the Lagrangian, which is the
basis for the main part of the Monte Carlo algorithm used to obtain the
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simulation results reported in this chapter, cannot distinguish, for example
between an anticyclonic state with a highest southern anticyclonic spot and
its antipodal state - to be defined next - which is again a predominantly
anticyclonic state except that its highest anticyclonic spot is now in the
northern hemisphere, in the antipodal position of the other spot.

It will turn out crucially for the correct prediction of one of the key
Jovian features by the non-quasi-geostrophic, strongly divergent shallow
water model to be discussed in the next chapter, that the part of the total
mechanical energy that is uniquely dependent on the gradient of the surface
height h, and which is represented through judicious choice of the gauge-
freedom in the arbitrary constant of the stream function, by a term that
is a multiple of the potential vorticity — see chapter 2 — is responsible
for the north-south asymmetry that is clearly observed in the form of the
largest and highest anticyclonic spot in the Jovian atmosphere being the
Great Red Spot in the south hemisphere, along with other lower southern
anticyclonic spots such as the White Ovals [22]. Significantly, these energy
terms involving grad(h) do not change the overall qualitative properties
of the main discoveries discussed in this chapter of a robust most-probable
cyclonic-vorticity end-state in the high energy, nearly-quasi-geostrophic and
weakly divergent regime of the Shallow-Water Model.

On the surface of a sphere the point (x;,y;,2;) has an antipodal point
(—zj, —y;,—%;). We can go further: given a state S; which has the site
values (¢, d;, h;) at the point (x;,y;, z;), we can define the antipodal state
S2 which has site values (—(;, d;, h;) at the point (z;,y;,2;). An antipodal
pair — a state and its antipodal state — has this antipodal symmetry
when both states have the same total mechanical energy and free energy.

Figure 10.2 shows the relative vorticity field of a state S; and of its
antipodal state S3. The definition of antipodal symmetry can be worked
out by examining the lattice form of the mechanical energy. The truncated
spin-lattice energy for state S is

N
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Ls, = —3 Ek i CiCr + Q E cos (0;) h; ne;
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1 R,
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while the truncated energy for the antipodal state Sy is

1 anpt I
Ls, =3 > Tikhi (=) (<) + N4 D (—cos (05)) hy (=¢))

Jk j=1
N N

1 2w R

—3 D Tiwhsd0n + Zv Q>3 by sin? (0;)

ik i=1

2rgR? ol 9
N Z hj

j=1
= Lg, (10.2)

The truncated energies for these states are equal apart from the grad(h)
terms. Their entropies are also equal. As a result the probabilities of
occurrence for these antipodal states are equal according to the reduced L
without these terms. The implication is that we should be as likely to see
one as the other — which we observe in the Monte Carlo simulations.

10.4 Monte Carlo Results

That we have a model canonical in mechanical energy and microcanoni-
cal in several circulations and enstrophies means we can easily set up a
Metropolis-Hastings Monte Carlo algorithm. These numerical simulations
are set up much the same as any Ising-type model. The only substantial
difference is that to preserve both circulation and enstrophy it is no longer
enough to select two sites and alter their values; we must select three,
and choose a new set of potential values which stays on both the plane of
constant circulation and the sphere of constant enstrophy [64].

As often happens with this sort of spin-lattice Monte Carlo simulation
the computational requirements are not great: ordinary desktop computers
or work stations are perfectly adequate and Monte Carlo runs of as few as
a million sweeps will provide a satisfactory equilibrium. In this chapter and
the next we will see results based on runs no more numerically intensive
than those are. They will be enough to examine qualitatively the emergence
of coherent spots and to describe the factors of orientation asymmetry in
large enough spins and of the values of the enstrophies. There is also
numerical evidence suggesting a phase transition between disordered lower
energy flow states and self-organized higher energy states which typically
show a large cyclonic vortex in the southern hemisphere.
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Jupiter has a radius R = 7.15x 107m, with rotation Q = 1.76 x 104571,
surface gravity g = 22.9ms~2, and a height of the weather layer, the out-
ermost atmosphere, of about 40 kilometers. We will use an average atmo-
spheric height H = 2.0 x 10*m, the 20 kilometers of the topmost layer,
which represents the cloud tops and omits the quiescent lower layer. With
a negative temperature 0 = kT = —90, a very high energy system, we
can see broad-based cyclonic structures.

These broad-based cyclonic structures form within a narrow range of
very high mechanical energy at relatively low enstrophies, which indicates
that these are results in the quasi-geostrophic, that is, weakly-divergent,
regime.

Figure 10.3 indicates that the zero level-set for the relative vorticity is
more than one planetary radius away from the geometric center of the vor-
ticity distribution. This supports the idea that the internal vorticity profile
of the large cyclonic vortex has a Gaussian-type distribution. And these
are robust simulations, in that the large cyclonic spots appear consistently
over many runs and with similar data. The large cyclonic vortex is as likely
to be in the southern hemisphere as well as the northern, a result of the
antipodal symmetry.

The fact of these cyclonic vortices in negative temperatures is interest-
ing enough. The question to follow is why we do not see an anticyclonic
vorticity distribution. That they consistently do not appear suggests these
anticyclonic storms would be unstable at high values of the mechanical en-
ergy. We need to find a reason the cyclonic vortex state might have the
(preferred) higher free energy than the anticyclonic vortex, and this reason
will be one of the most notable differences between negative temperature
and positive-temperature equilibriums.

Consider the angular momentum AM and the moment of inertia term
IM. The angular momentum term is not symmetric with respect to the sign
of the relative vorticity ¢. In terms of the action 3L of the Gibbs partition
function Zn when the planetary spin is large, the internal energy U — that
is, the mean value of the mechanical energy under the Gibbs probability
measure — of any cyclonic vorticity distribution will be different from that
of an anticyclonic vorticity distribution of the same magnitude.

This “energy gap” is not the full story, of course: but since the entropy
of a cyclonic spot will be equal to that of an anticyclonic storm of the same
magnitude and position their free energies will be different and we have the
ability to select one over the other as a statistical equilibrium. If we are
in a negative temperature domain we expect, through Planck’s theorem in
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negative temperatures, that the thermodynamic stability of a macrostate
implies the more probable or stable state is the one with a higher free
energy.

We will also see in positive temperatures the other predictable conse-
quence: at positive temperatures, that is where mechanical energy is very
low relative to planetary spin, and when the relative vorticity enstrophy
and the enstrophy are large, we will see anticyclonic vortices, like that of
the Great Red Spot [24], [70].

The expression for mechanical energy used in this model indicates that
a necessary condition for a high-pressure vortex to arise against a quiescent
background is a depth-dependent potential energy PFE.

A natural question is where — at least, at what latitude — will a large
coherent vortex appear? This positioning is dependent on the ratio of the
angular momentum AM and the moment of inertia IM terms within the
kinetic energy, in relation to the size of the relative vorticity enstrophy. We
can examine the effects relative vorticity enstrophy has on the emergence
and on the latitude positions of these large coherent vortices Q¢2 as in
Figure 10.4.

Qualitatively, what we observe is that a small Q> permits a single large
coherent vortex, which will be located near the equator. Numerically and
analytically we can observe that the moment of inertia IM and potential
energy PE terms dominate the total mechanical energy when Q¢ and Q52
are small. But both the IM and PFE terms are relatively large when a
single coherent vortex forms at or near the equator. Thus, since we expect
the equilibrium to be one which maximizes or nearly maximizes the free
energy we see the single equatorial spot.

As Q¢2 becomes larger the spot moves away from the equator, again
seen in Figure 10.4. The ratio of angular momentum AM to moment of
inertia JM grows larger with Q.2. To make AM larger the system would
‘prefer’ the spots move away from the equator; but to make the I'M term
larger the system ‘prefers’ spots stay near the equator — thus, we see the
appearance of spots farther from the equator.

When the relative vorticity enstrophy is large enough we see, as in
Figure 10.5, the single spot become replaced with a pair of spots in the
relative vorticity field.
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Fig. 10.1 Phase transition: Energy versus temperature.

10.5 Phase Transitions in Latent Heat

177

We see evidence of phase transitions in these extremely high energy,
relatively-large planetary spin domains. As might be expected these tran-

sitions are different from what we see in the second-order phase transitions

of the non-divergent barotropic model [20]. In a range of negative temper-

atures — remembering that a greater-magnitude negative temperature is
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cooler, that is, less energetic than a lesser-magnitude negative temperature
— we can observe quantities like the energy (total energy, kinetic energy,
or potential energy) as a function of temperature.

This we see in Figure 10.1. There is obviously evidence suggesting a
jump in energy at a critical temperature T, at somewhere around kT =
—85, suggesting that there is a first-order transition.

In Figure 10.6 we see a large coherent spot appearing when the negative
temperature is greater than this critical T, but that there is no coherent
spot in the vorticity field of the equilibrium derived when the temperature
is more negative than T,.. Here we see a “latent heat” of vortex formation.

10.6 Conclusion

With this Shallow-Water Model we have a model which looks likely to
capture some of the interesting features of robust and long-lived vortical
storms in gas giants and to understand why these storms can produce self-
organizing structures in phase transitions. While we have not yet seen the
anticyclonic structures we also have not yet examined positive temperature
regions. We have seen evidence of some phase transitions associated with
these atmospheric phenomena, but we have not built any specifically into
the model proposed here. It is not clear a priori whether this statistical
model will even support any phase transitions related to coherent vortex
phenomena.

What we have identified is a key physical factor, the angular momen-
tum, which seems to provide a way to discriminate between cyclonic and
anticyclonic vorticities, and which explains why numerically we see a pre-
dominance of one over the other when the mechanical energy of the flows
are large in comparison to enstrophy.

Based on a canonical constraint on the Lagrangian for the Shallow-
Water Equation, with microcanonical constraints on the circulations, en-
strophies, and total height, we do see already the Shallow-Water Model sup-
ports equilibriums with a single, broad-based cyclonic vortex at extremely
high values of the total mechanical energy, at least when the planetary
spin is large and when the relative vorticity enstrophy is large compared to
the enstrophy. This indicates the quasi-geostrophic property of these flows.
The formation of these coherent cyclonic spots appears to be associated to
a first-order phase transition with a significant “latent heat”.

Left unexplored yet is the domain in which there are low energy-to-
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enstrophy ratios, and unobserved are sets of parameters in which we see
anticyclonic spots under Jupiter-like physical parameters. But we know
also that we have not yet explored the positive temperature range, and this
provides us with the final research and experiments to conduct.
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Fig. 10.2 Antipodal Symmetry: the relative vorticity field plots for the microstate S
(a) and its antipodal state Sz (b).
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Chapter 11

The Shallow-Water Model —
Strongly Divergent, Anticyclonic, Low
Energy Solutions

11.1 Introduction

We have in the Shallow-Water Model [21] [22], introduced in sections 2.4
and 2.5 and expanded upon in section 9.3, presented a unified statistical
theory on the formation and the robustness of large-scale coherent struc-
tures in planetary atmospheres through phase transitions [64] [67] [20] [94]
which lends itself to straightforward Monte Carlo simulation. Always in
mind in this subject is the continued fascinating existence of the Great Red
Spot, a persistent, anticyclonic spot at about 22 degrees south latitude in
the atmosphere of Jupiter. An anticyclonic spot, meteorologically, is one
moving counterclockwise in the southern hemisphere; it would be clockwise
in the northern hemisphere.

Including the Red Spot, it is widely accepted that the key features
of Jupiter’s atmosphere are (1) the high velocities in the circumferential
bands of the Great Red Spot as observed by Voyagers 1 and 2 [6]; (2) the
predominance of anticyclonic spots over cyclonic ones in the Jovian weather
layer; (3) the north-south asymmetry locating the Red Spot in the southern
Jovian hemisphere, and the latitudes of the Red Spot and (4) the Limaye
bands. A non-quasi-geostrophic model appears to be necessary to account
for all these key features and that is the capstone of this book.

Earlier statistical equilibrium and dynamical theories for large-scale co-
herent structures [70] [25] [46] successfully generate some of the aspects of
the Great Red Spot and of the Limaye zonal bands. A soliton intermediate-
geostrophic theory [100] may predict such a spot’s anticyclonic state, while
a quasi-geostrophic model predicts the internal vorticity distributions well
but also predicts a predominance of cyclonicity [70]. But so far these quasi-
geostrophic and intermediate-geostrophic dynamical and statistical theo-
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ries, including recent one-and-a-half layer models [70] [25] [46] do not cor-
rectly predict all four key features of the Jovian atmosphere without further
inputs.

An important work [24] reported numerical solutions of a rotating
Shallow-Water Equations model that has very accurate comparisons with
the observed internal velocity profile of the Red Spot. However, based on
an inverse procedure to deduce the nontrivial zonal bottom topography of
an effective reduced gravity model that is equivalent to a one-and-one-half
layer model, this model required inputs from the Limaye surface velocity
data, and therefore, cannot predict the Limaye banded structures. It is ex-
plicitly stated in [24] that the physical factors for the unstable zonal surface
velocity profile are largely unknown.

In the region of negative statistical mechanics temperatures we observed
in the last chapter the formation of large cyclonic spots at latitudes de-
pendent on several physical quantities, particularly the relative vorticity
enstrophy and the enstrophy. These are akin to some of the cyclonic spots
found by Sommeria et al [93] experimentally and numerically by Marcus [71]
and Miller. Aspects of these solutions were reported in a series of Nature
articles as possible candidates for the Red Spot but were hotly debated by
Antipov et al [1] and Williams - Yamagata [100], [2] who correctly insisted
that only anticyclonic flow states are suitable candidates for the Great Red
Spot on Jupiter.

The important point is that the Shallow-Water Model presented in chap-
ter 2 supports two main regimes of end-states at the same Jovian parameters
set, namely, the high energy and low enstrophies, nearly quasi-geostrophic
and weakly divergent statistical equilibria discussed in chapter 10, and the
low energy - large enstrophies, non-quasi-geostrophic, strongly divergent
solutions presented in this chapter.

In this chapter, we have obtained robust end-state vorticity distributions
with four key features of the Jovian atmosphere, including those of a storm
resembling the Great Red Spot, or other lesser coherent spots such as the
White Ovals, an anticyclonic vortex with a high rim velocity, in addition
to evidence of a Limaye zone-belt banded structure, all in the same robust
end-state of a single Monte Carlo run.

The Shallow-Water Model is derived from the Shallow-Water Equations
on a rotating sphere: we have not made intermediate-geostrophic or quasi-
geostrophic approximations and therefore this model will include as special
cases the intermediate-geostrophic and the quasi-geostrophic regimes. That
we choose a large enstrophy in these simulations means we are working in a
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non-quasi-geostrophic study. These enstrophies are chosen to model as best
we can observed Jupiter data, particularly in the extrema of the observed
relative vorticity fields in the Great Red Spot and in the zonal bands, which
may have wind speeds near 1007.

With an exploration of positive temperature regimes we will find in the
distinctly non-quasi-geostrophic regime under Jovian parameters that the
preferred macrostate for the Shallow-Water Model shows a large anticy-
clonic, high-pressure vortex placed about twenty degrees south latitude,
with a clear indication of uniformly high velocity in its circumferential
band. There will also be smaller and lower spots, typically anticyclones
in the southern hemisphere and cyclones in the northern, with a banded
zonal structure showing zones or belts in the relative vorticity, and the
height data. This serves as a posteriori justification for the constraints we
made in forming the Shallow-Water Model.

What we have suggested by this is the possibility that the predominance
of anticyclonic spots in Jupiter’s atmosphere results from a combination
of the orientational asymmetry within the Lagrangian, which is therefore
found in the free energy as well, noticeable in the large spin rate of Jupiter
with the low mechanical energy to relative enstrophies ratio. More, the
unique circumferential jet at the rim of the Great Red Spot may be a
result of the alternating radial structure of the eigenfunctions of the relative
kinetic energy operator in the Shallow-Water Equations.

Further evidence that orientational asymmetry in the Lagrangian may
play an important role in the characterization of the self-organized end-
states and the statistically-steady states comes from the non-divergent
Barotropic Vorticity Models explored earlier [64] [20] of this unified theory,
which allowed us to provide simple but cogent explanations for the prefer-
ence for super-rotational atmospheres over sub-rotational atmospheres as
observed at the slowly-rotating Venus and Titan.

11.2 Theoretical Predictions of the Shallow-Water Model

The Shallow-Water Equation Lagrangian [22] describing the mechanical en-
ergy of the atmosphere allows us to make quite a few theoretical predictions
before starting any Monte Carlo experimentation.
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11.2.1 The Energy Gap from Large Planetary Spin and
Anticyclonic Spots

The properties of statistical equilibriums for the Shallow-Water Model, or
any other statistical mechanics model, are determined by the free energy
F = U —TS. Any phase transitions observed will be derived from the
competition between the long-range order ‘favored’ by the term U and the
disorder ‘favored’ by the entropy S. From the form of the Lagrangian,
equation (2.87), and the orientation asymmetry in the angular momentum
AM term noted in section 10.4 we can expect a substantial energy gap
between the anticyclonic state A and its negation, the cyclonic state B.
The anticyclonic state A turns out to have lower energy.

In the free energy F', we know the internal energy U is based on the
expected value of the Lagrangian (L). The information-theoretic entropy
S is dependent, in particular, on the locations of vortex spots, regardless of
the cyclonic or anticyclonic nature of the spots. Therefore if all other factors
are equal — that is if the height and horizontal divergence distributions are
equal in A and B, and the relative vorticity distributions are negative of
each other, and their entropies are equal in value — then the preferred state
in positive temperatures will be A, with an anticyclonic predominance and
a Great-Red-Spot-like, spot, as opposed to its cyclonic counterpart B.

11.2.2 North-south Asymmetry and the Energy Terms in Vh

It will turn out crucially for the correct prediction of one of the key Jovian
features by the non-quasi-geostrophic, strongly divergent Shallow-Water
Model that the part of the total mechanical energy that is uniquely de-
pendent on the gradient of the surface height h, and which is represented,
through judicious choice of the gauge-freedom in the arbitrary constant of
the stream function, by a term that is a multiple of the potential vorticity,
— see chapter 2 — is responsible for the north-south asymmetry that is
clearly observed in the form of the largest and highest anticyclonic spot in
the Jovian atmosphere being the Red Spot in the south hemisphere, along
with other lower southern anticyclonic spots such as the White Ovals [22].
As can be shown directly from the presence of a cosine of co-latitude ex-
pression, the terms linear in Vh in the total kinetic energy (2.77) has the
required north-south asymmetry in the form of an energy gap which, for
a given anticyclonically dominant end-state, favors its main coherent spots
to be located in the southern hemisphere, because the internal energy and



The Shallow-Water Model — Low-Energy Solutions 187

hence the free energy of such a configuration is lower and therefore preferred
— via Planck’s theorem — by the statistical Shallow-Water Model over its
antipodal counterpart which instead has its main anticyclonic spots in the
northern hemisphere.

11.2.3 Large Relative Enstrophies and High Rim Velocities

Jupiter spins rapidly. Therefore its planetary vorticity is quite large. Unless
the relative vorticity contained in structures such as the Great Red Spot
and the Limaye bands are also large then the coherent spots and any bands
will not be observable against the background. Furthermore earlier work
in a non-quasi-geostrophic model suggests that large horizontal divergence
enstrophy will be necessary to predict features of Jupiter’s atmosphere.

This suggests that Monte Carlo trials on the Shallow-Water Model will
not produce a Great Red Spot-like spot unless we have large values for the
relative vorticity enstrophy and the horizontal divergence enstrophy. And
we will examine the role of these enstrophies and the associated kinetic
energy of the relative motions for the self-organization of large coherent
spots. We are interested in the effect of the large relative enstrophy on the
detailed velocity profile of the spot.

As we have large relative enstrophies, the corresponding relative kinetic
energy terms in the Lagrangian — KFE: and KE; — we can expect to
be significant compared to other energy terms. These two terms are cubic
energy functionals as the height of the fluid layer is not separated out of
the energy integral, while the angular momentum AM and the moment of
inertia I M terms are quadratic functionals in the height, relative vorticity
enstrophy, and horizontal divergence fields.

The dominant values of K E: and K Es and the properties of the loga-
rithmic kernel in these functionals combine with the fluid-surface height to
provide a theoretical result which is not proved here:

Conjecture 11.1. Given that there is a high Great Red Spot-like spot —
whether anticyclonic or cyclonic is irrelevant here — in the equilibrium
state, the relative vorticity and horizontal fields of this statistical equilib-
rium consist of nearly concentric rings of opposing signs and decreasing
amplitudes, centered at the unique, highest point of the Great Red Spot-
like spot. The radial distribution of these fields are similar to the Bessel
function, although their detailed form is yet to be worked out.

Suppose we have a Great Red Spot-like structure which is anticyclonic
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in the south. The centermost relative vorticity will be very positive; in the
coloring scheme we use, deep red. The first ring from the center of the spot
will have a very negative relative vorticity, represented as deep blue. The
boundary of the deep red region coincides with the rim of the anticyclonic
spot, and, significantly, there is a large counter-clockwise rim velocity far
exceeding the velocity field in the interior of the spot. And furthermore as
the result on the eigenfunctions of the kinetic energy operator states that
the nearly concentric rings of opposite-signed vorticity will be centered on
the unique focal point of the center of the Great Red Spot, then the minor
coherent spots will not share a similar high rim velocity.

We will see this numerically in the Monte Carlo results of section 11.3.
And the unique high rim velocity has been observed in the Great Red Spot
by Voyager 1 and 2.

11.2.4 Angular Momentum, Moment of Inertia, Entropy,
and the Location of the High Spot

In the previous chapter we saw that the relative angular momentum AM
and moment of inertia IM affected the latitude at which a cyclonic vor-
tex appeared in negative temperatures. We expect similar effects for the
anticyclonic vortex in positive temperatures.

It is the angular momentum term which provides us with the anticy-
clonic predominance of the spots in the end-state. It also affects the latitude
of the highest spot, since the cosine term in AM will be most negative when
the anticyclonic spot is nearest the south pole, where the colatitude is .
The lower free energy and lower internal energy is preferred in the pos-
itive statistical mechanics temperatures and therefore we see the highest
anticyclonic spot driven to the south pole.

Given a southern highest anticyclonic spot the sine-squared term of
IM will have its lowest positive value when the highest spot is nearer the
south pole. Therefore, considering the internal energy, we expect both the
angular momentum and the moment of inertia terms to make more probable
anticyclonic highest spots near the south pole.

A relatively large entropy S has a contrary effect on the statistically
preferable location for the highest spot: the equatorial region has a higher
degeneracy. With positive temperatures the free energy could be minimized
by maximizing entropy and therefore making more probable such spots
nearer the equator.

Therefore between the AM and IM terms and the entropy S we may
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expect the highest spot to be optimally located in some southern latitude,
with the specific location dependent on the temperature or mean energy of
the total mechanical energy reservoir which we derive from the small scales
of the flow and the massive rotating planet.

We will seek therefore a positive temperature not too small in value,
allowing entropy to be large enough to place a Great Red Spot at 20 degrees
south latitude. Lower temperatures may be expected to put their spots
nearer the south pole, and higher temperatures will eventually drive the
Shallow-Water Model to a disorganized end state through what appears to
be a first-order phase transition.

11.3 Monte Carlo Simulations and Results

As in the last chapter we set up a Metropolis-Hastings Monte Carlo ex-
periment, canonical in the mechanical energy while microcanonical in the
circulations, entrophies, and total height. This is computationally costly
although months of continuous runs using ordinary personal computers or
workstations are adequate to do a million sweeps or so, enough to find equi-
librated states. Since we anticipate finding Great Red Spot-like structures
we again use Jupiter parameters for the physical constants: the radius
R = 7.15 x 107m, the spin rate Q = 1.76 x 10~%s~!, the surface grav-
ity g = 22977, and the average height of the active atmospheric later
H =20 x 10*m.

What we will describe here are numerical aspects of the robust end-
state, the equilibrium found, in a narrow window of inverse temperature
0, or the total mechanical energy space. In particular the first feature we
will find are anticyclonic, high-pressure, high-rim velocity properties in the
Great Red Spot-like highest spot in Figures 11.2, 11.3, and 11.4. The sec-
ond feature will be numerical results which suggest the self-organization
of coherent spots at low energy-to-enstrophy ratios in the Jovian atmo-
sphere will occur at a first-order phase transition with latent heat, shown
in Figure 11.1. Third, the banded vorticity profile, with alternating zones
or belts in a Limaye-like structure, Figure 11.6, and multiple smaller and
lower predominantly-anticyclonic spots which appear in Figures 11.3 and
11.4. It cannot be emphasized enough that except for the data used to
show a first-order transition, all the color plots in this chapter, including
those projected onto the zonal harmonics to produce evidence for the Li-
maye bands, are from a single robust end-state of a single long Monte Carlo
run.
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These Metropolis-Hastings routines are done on the spin-lattice model
with a mesh near-uniformly distributed across the sphere. Like before, a
particle Monte Carlo method generated the mesh. Initial randomized dis-
tributions of relative vorticity, height and, satisfying the stated constraints,
are used to start the lattice Monte Carlo simulations. To ease the addi-
tional costs of computing the grad(h) terms, the initial part of the Monte
Carlo simulations are executed without the energy terms that are linear
in grad(h), and with randomized initial states which may have zero total
potential vorticity. After a fairly long run, an intermediate state that have
nonvanishing value of total potential vorticity and also north-south asym-
metric with respect to the full L is continued in the last part of the Monte
Carlo algorithm where the part of L that depends on grad(h) are now in-
cluded in the enthalpy simulated, albeit, at much lower frequency than the
part of L with antipodal symmetry, again to lower computational costs.

There is a special note regarding the visual representation of these re-
sults. To better depict the detailed structure of the relative vorticity and
horizontal fields centered at the peak of the Great Red Spot, these figures
have a mild cutoff filters. The amplitudes at the eleven lattice sites clus-
tered within the Great Red Spot anticyclonic spot are truncated before
plotting Monte Carlo data sets for the same end-state as those in Figures
11.3 and 11.4.

11.3.1 Key Features of the Great Red Spot-like Structure

In Figure 11.3 we see an equilibrium state with a family of nearly concen-
tric rings, alternating in direction, with decreasing amplitudes, centered at
the highest spot in the relative vorticity field. It is presented similarly al-
though not identically in the field. This matches the theoretical prediction
described in section 11.2.3.

At the center of the highest spot the relative vorticity is its largest
positive value. The first ring surrounding the spot has a large negative
value. This lets us understand what is happening at the border of this
Great Red Spot-like storm. The boundary of the red, anticyclonic, spot,
experiences a maximal additive or reinforcing effect in the velocity fields as
the opposite-signed vorticity regions swirl past one another.

The rim of our simulated Great Red Spot has a large counter-clockwise
velocity, which agrees partially with the actual measurements made by
Voyagers 1 and 2 [6], and also in agreement with some members of the family
of uniform-q potential vorticies described in [70]. Specifically the agrement
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is with uniform-q potential vortices in which the vortex semidiameter is only
two to three times the Rossby radius and therefore indicates some solid-
body rotation in the interior of the vortex with highest velocity at the rim.
There are similar vorticity profiles reported by intermediate-geostrophic
models in [100].

Uniform-g potential vortices with a larger radius, where the semidiame-
ters were five to ten times the Rossby radius, would in contrast have nearly
zero vorticity in the interior, with an exponential rise to the peak on the
inside of the circumferential band, dropping to a negative peak value on
the outside edge of the band.

11.3.2 First-Order Phase Transition with Latent Heat

One of the features we hope to capture in proposing a statistical mechanics
model for Shallow-Water Flows at positive temperatures are the robust
and long-lived giant vortical storms found in gas giants as self-organized
structures which arise in phase transitions. We do not know a priori that
there are phase transitions relevant to Great Red Spot-like phenomena in
this model, but we can look in numerical data for evidence of them, and if
we do find such evidence we can try to understand numerically what type
of transition it may be.

In non-divergent barotropic fluids we found evidence for second-order
phase transitions [20]. In the Shallow-Water Model in negative tempera-
tures we found evidence suggesting a first-order phase transition. And in
examining the total energy, the kinetic energy, and the potential energy as
functions of temperature we gather evidence that the formation of anticy-
clonic spots in the Shallow-Water Model in positive temperatures is related
to a first-order phase transition. There is a large amount of energy ex-
change occurring at a constant temperature, presenting us with an energy
gap we can interpret as latent heat.

In Figure 11.1 we see the total energy, kinetic energy, and potential en-
ergy plotted as functions of the statistical mechanics temperature. All these
energies see a jump at a critical temperature T, where kT is approxi-
mately 2400 in the corresponding units for the atmosphere of Jupiter. The
highest coherent spots appear only when the temperature is below T.. The
locations of these spots is near the south pole for temperatures very much
lower than the critical temperature, which is in accord with the theoretical
predictions of section 11.2.4. With a low entropy the minimum free energy
is achieved more by minimizing the kinetic energy plus potential energy,
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Fig. 11.1 Phase transition: energy versus temperature.

and those are minimized for a spot near the south pole.

An interesting side note is that as the inverse temperature 8 becomes
larger — that is, as the temperature kT becomes smaller — the kinetic
energy decreases while the potential energy increases. The total energy
decreases because the increase in kinetic energy is less than the decrease in

potential energy.



The Shallow-Water Model — Low-Energy Solutions 193

11.3.3 Multiple High Spots in the Same Macrostate

One of the interesting results of the Monte Carlo simulations regards the
presence and the types of multiple smaller and lower coherent spots for the
same preferred end-state. These are obscured in the unfiltered data used
to produce Figure 11.2 due to the visualization software’s assignment of a
color range for height data. That we hoped to see these alternate, smaller
spots encouraged the imposing of a cutoff filter for the greatest peak.

In Figures 11.3a and 11.4a the Great Red Spot-like structure appears
as a significant spot in the southern hemisphere, and a handful of other
high spots are also in the nearer hemisphere. In Figures 11.3b and 11.4b
are multiple smaller and lower spots on the hemisphere opposite the Great
Red Spot location. The types of these spots — cyclonic or anticyclonic —
can be read off of the height data.

There are several cyclonic spots on the opposite hemisphere from the
Great Red Spot and in the north. There are also several cyclonic spots on
the hemisphere near the Great Red Spot and in the south. Generally the
anticyclonic spots we see on the Great Red Spot’s hemisphere but in the
north, or opposite the Great Red Spot’s hemisphere and in the south. This
rough distribution of cyclonic and anticyclonic spots matches the observed
predominance in the southern Jupiter atmosphere of these storms.

By comparing the plots of vorticity and locating the anticyclonic small
spots — red spots, in Figure 11.3 — to the plots of atmospheric heights
and locating the high spots of atmospheric pressure — again red spots,
in Figure 11.4 — we find that the small anticyclonic spots are associated
with high-pressure regions, while the small cyclonic spot are associated with
low-pressure regions.

11.3.4 Belts and Zones

The most dominant feature of Jupiter’s visible atmosphere, after the Great
Red Spot, is its alternating banded structures. By convention astronomers
refer to the lighter stripes as zones and the darker stripes as belts and have
a range of names for each long-lasting band along the range of latitudes
[46] [83].

In Figure 11.5 an image of Jupiter’s bands as taken by the Cassini
spacecraft are shown, along with an idealized representation of these belts
and zones.

Can we identify zones and bands in the Monte Carlo -produced spin-
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lattice equilibrium data, even though mesh sites were placed with no regard
for regular latitude placements? In fact, we can, if we start from the Great
Red Spot-like end-state with the peak values of relative vorticity, height,
and at the eleven mesh sites making up the Great Red Spot truncated.
With this truncated set of data we can form the spectral projection of this
set onto the orthogonal set of zonal spherical harmonics ®; o. This gives us
an approximation to the zone and band structure underlying the vorticity,
height, and data.

In Figure 11.6 we see this (partial) spectral projection in each of the
variables. Qualitatively, they are a strong match to the zones and belts
of the actual Jupiter in Figure 11.5, and the number of zones and belts
in the simulation agrees with the total numbers of zones and belts in the
actual model. This model suggests interesting detail in the Limaye-like
belts produced by the Monte Carlo simulation which has yet to be studied
in full.

11.4 Conclusion

We formulated a Shallow-Water Model on the rotating sphere with the in-
tention of constructing and simulating phenomena of Jupiter’s atmosphere.
In the last chapter and this we have used extensive Monte Carlo simula-
tions to understand the typical statistical equilibrium configurations of this
model when using a canonical Lagrangian/total mechanical energy model
for the underlying Shallow-Water Equations and a microcanonical model
for total height, for vorticity and divergence circulations, and for quadratic
enstrophies of relative vorticity and horizontal divergence.

In both negative and positive temperatures we have seen that the an-
gular momentum term in the Lagrangian is one of the physical quantities
leading to interesting features of the Jovian atmosphere. It appears to be
the physical effect determining whether anticyclonic or cyclonic vorticities
are more likely to appear in the atmosphere of a rapidly spinning planet.
In positive statistical mechanics temperatures we see it play an important
role in the anticyclonic nature of the Great Red Spot and predominance of
the anticyclonic spots in the atmosphere of Jupiter, which agree with the
measurements by Voyagers 1 and 2 of actual Jupiter, corroborated by the
information derived from studying the impact of comet Shoemaker-Levy
9 into Jupiter [15]. The angular momentum term is the one opening an
energy gap between cyclonic and anticyclonic dominated flow states.
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By applying a cutoff filter to the relative vorticity and the fluid-surface
height distributions of a particular equilibrated end-state of the Monte
Carlo simulation we find a predominance of small anticyclonic spots in
the southern atmosphere which matches observations of Jupiter. With the
cutoff data as well we can use spherical harmonics to identify evidence for
a zone-belt banded structure that resembles the zones and belts we expect
to see as well. That we have this zonal structure suggests that this model
is deserving of more study as a model of Jupiter.

That the statistical equilibrium of this non-quasi-geostrophic Shallow-
Water Model gives predictions which agree with the key features of Jupiter
as observed by Voyager and Cassini is indicated first by the simulation’s
formation of a unique large anticyclonic spot with a high rim velocity like
the Great Red Spot. Second, we see zonal jets organized in an alternat-
ing zones-and-belts pattern which resembles the Limaye banded structure.
And finally we see multiple, lower coherent spots which reflect the anticy-
clonic predominance observed in the southern atmosphere of Jupiter, with
a significant majority of these southern anticyclonic spots placed on the far
side of the planet from the Great Red Spot.
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Fig. 11.3 High rim-velocity of Great Red Spot and Smaller Spots of the relative vorticity
field: after imposing a filter to cut-off the highest values of the relative vorticity field.
Figure a is from the side with a Great Red Spot; Figure b is from the opposite side.
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Fig. 11.4 Small Spots of the fluid height field: after imposing a filter to cut-off the
highest values of the height field. Figure a is from the side with a Great Red Spot,
Figure b is from the opposite side.
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