
Computer Communications and Networks

Nick Antonopoulos
Lee Gillam Editors

Cloud
Computing
Principles, Systems and Applications

 Second Edition

Computer Communications and Networks

Series editor
A.J. Sammes
Centre for Forensic Computing
Cranfield University, Shrivenham Campus
Swindon, UK

The Computer Communications and Networks series is a range of textbooks,
monographs and handbooks. It sets out to provide students, researchers, and non-
specialists alike with a sure grounding in current knowledge, together with com-
prehensible access to the latest developments in computer communications and
networking.

Emphasis is placed on clear and explanatory styles that support a tutorial
approach, so that even the most complex of topics is presented in a lucid and
intelligible manner.

More information about this series at http://www.springer.com/series/4198

http://www.springer.com/series/4198

Nick Antonopoulos • Lee Gillam
Editors

Cloud Computing
Principles, Systems and Applications

Second Edition

123

Editors
Nick Antonopoulos
University of Derby
Derby, Derbyshire, UK

Lee Gillam
University of Surrey
Guildford, Surrey, UK

ISSN 1617-7975 ISSN 2197-8433 (electronic)
Computer Communications and Networks
ISBN 978-3-319-54644-5 ISBN 978-3-319-54645-2 (eBook)
DOI 10.1007/978-3-319-54645-2

Library of Congress Control Number: 2017942811

1st edition: © Springer-Verlag London Limited 2010
© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Since the first version of this book was published in 2010, with a foreword by my
colleague Mark Baker (University of Reading), considerable developments have
taken place in Cloud computing. Today, Cloud computing is no longer a niche
research area but now closely embedded in our everyday computing environment.
This is the ultimate success of a technology, which initially starts out as a specialist
domain-specific interest, but becomes so successful that it becomes invisible to us as
users. Systems such as Dropbox, Apple iCloud, Microsoft Office 365 and Google
Drive (amongst many others) are now regularly made use of and considered very
much a core fabric of our computing infrastructure. Social media platforms such
as Facebook, Twitter and Instagram all make use of Cloud systems and make use
of novel concepts such as “eventual consistency” (amongst others) as part of their
implementation. A mobile app that does not make use of a Cloud-based back end is
now an anomaly rather than a norm, a considerable change that has taken place since
2010. Early scientific Cloud systems, such as Eucalyptus, Open Cirrus, etc., once
considered the domain of computer science research, are now regularly used within
a variety of other communities, from biological sciences to arts and humanities.

Figure 1 shows change in interest (via Google trends) for the three terms “Cloud
computing” (dashed line, descending), “Internet of Things” (dashed line, slowly
ascending) and “big data” (dotted line) since the first edition of this book was
published in 2010. These three trends are closely related, as many applications
that generate or process large data sizes make use of Cloud-based infrastructure.
Similarly, many IoT devices act as data generators or consumers. It is also
interesting to see that programming models such as MapReduce, featured in the
2010 book, also appear in this version of the book but with a specific focus
on a dynamic Cloud computing environment. This programming model has now
been implemented across a variety of systems, from Hadoop (Cloudera, Apache)
to in-memory systems such as Apache Spark and Mesos (amongst others). This
programming model demonstrates how Cloud computing mechanisms have also
transformed data analysis and processing and has found wide-scale adoption in
industry and academia.

v

vi Foreword

Fig. 1 Google trends for Cloud computing, Internet of Things and big data

With significant commercial interest in Cloud computing due to its transfor-
mative impact on industry, the most prominent example of which is Amazon
Web Services (AWS), understanding how academic research could complement
rather than compete has been difficult. Whereas Cloud computing infrastructure
developers (Google Cloud, AWS, Microsoft Azure, Salesforce, etc.) often make
use of large-scale data centres with a large pool of servers, specialist energy
infrastructure and scalable/configurable networks, the academic community often
has limited access to such resources. Better understanding on how academic
researchers could respond to specialist challenges that may be commercially risky
for commercial vendors has changed since 2010. This book demonstrates many
such challenges that have been chosen by the academic community, such as (1)
Cloud federation, (2) adaptive and elastic resource allocation and (3) reproducibility
supported through Cloud-based systems. Whereas a particular industry vendor
would prefer a user to always make use of a single Cloud system, purchasing
and acquisition of computational infrastructure may not conform to this model,
often requiring a multi-system/Cloud environment. Understanding how commercial
Cloud systems could be “bridged” with private in-house systems, how a sudden
increase in workload could support “bursting” across multiple Cloud systems
and how services which are specialised for deployment over particular types of
infrastructure (such as GPUs) need to be integrated with services hosted on other
platforms (e.g. analytics or database services only available on a given platform)
remains an important challenge. Managing resources and efficient allocation within
such a federation remain important academic research challenges, which often
complement work being carried out in industry.

Foreword vii

The significant growth and capability of edge devices, and how these can be
combined with Cloud-based data centres, has also seen considerable interest over
recent years. In 2010, edge devices generally comprising of sensors were primarily
used as mechanism for data capture. With increasing advances in semiconductor
technologies, edge devices today have significant processing capability (e.g. the use
of Arduino, Raspberry Pi 3, Intel Edison, etc.) enabling data to be preprocessed and
sampled at the network edge, prior to being transmitted to a centralised data centre.
Another significant trend since 2010 has been the wider adoption and availability of
programmable networks through software-defined networks and network function
virtualisation technologies. The availability of a more complex capability at the
network edge, along with in-network programmability, changes the role of a data
centre. This perspective requires researchers to better understand how edge devices
and data centres can be used collectively. Understanding what should be done
at the network edge vs. in the data centre becomes an important consideration.
In 2010, a key requirement was to understand how processing and data could
be “offloaded” from a mobile/edge device to a Cloud data centre (to conserve
battery power of the edge device and avoid the impact of intermittent network
connectivity). Today the focus has shifted to “reverse offloading”, i.e. understanding
how processing to be carried out within a Cloud data centre could be shifted to
edge devices – to limit large data transfer over a public network and avoid latency
due to such transfers. Better and more effective use of edge devices (alongside
the use of a data centre) also leads to useful ways of supporting data security
(i.e. a user can decide what should remain on the devices vs. what to shift to the
data centre). The programming models needed to support this collaborative and
opportunistic use of edge devices and data centres remain in short supply at present.
Recent availability of low-overhead (in terms of memory/storage requirements and
scheduling delay) “container” technologies (such as Docker, Kubernetes, Red Hat
OpenShift) also provides useful mechanisms for supporting edge device/Cloud data
centre integration, enabling services to be migrated (offloaded) from edge devices
to data centres (and vice versa) – Villari et al.1 refer to this as “osmotic computing”.

Virtualisation technologies have also seen a considerable improvement since
2010. The capability to virtualise various parts of our computing infrastructure
(from processors, networks, edge devices, storage, etc.) and services (such as a
firewall) has seen considerable growth. The “virtualised enterprise” vision now
dominates thinking in many resource management systems, aiming to make more
effective use of resources across different applications. Understanding how the
memory requirements and switching overhead of virtual machines (VMs) could be

1M. Villari, M. Fazio, S. Dustdar, O. Rana and R. Ranjan, “Osmotic Computing: A New Paradigm
for Edge/Cloud Integration”, IEEE Cloud Computing, December 2016. IEEE Computer Society
Press.

viii Foreword

reduced has led to interest in container technologies. Some predict that the days
of VM-based deployments are limited, due to benefits observed with containers.
How such approaches can be made multiplatform and support federation remain
important challenges in this context.

The editors of this book have selected an excellent combination of chapters that
cover these emerging themes in Cloud computing – from autonomic resource man-
agement, energy efficiency within such systems and new application requirements
of such technologies. The book will provide valuable reference material for both
academic researchers and those in industry to better gauge current state of the art in
Cloud-based systems.

Professor of Performance Engineering Omer F. Rana
Cardiff University, Cardiff, UK

Preface

1. Introduction

The first edition of this book, back in 2010, started by identifying the relatively
recent emergence of Cloud and the increasing demand for Cloud systems and
services that was apparent. We suggested, back then, that its meaning was hotly
debated and identified specific IT and e-commerce vendors – Amazon, Google,
IBM, Microsoft and Sun – who seemed to be leading the charge in making pay-per-
use access to a wide variety of third-party applications and computational resources
on a massive scale available widely. We also identified how the notion of Clouds
seems to blur the distinctions between grid services, web services and data centres.

In the time that has elapsed between the first edition and this second edition,
it would be fair to say that Cloud has not only emerged but has become a go-
to for both experimental and developmental uses and is variously at the core of
numerous businesses across the globe. For some, the use of Cloud in many of
their activities is either second nature or is otherwise unavoidable. The definitional
debates at a broad level have subsided, with a purportedly final perspective – at the
16th version – offered by the US National Institute of Standards and Technology
(The NIST Definition of Cloud Computing, NIST Special Publication 800–145).2

This is completed by the subsequent production in 2014 of ISO/IEC 17788, Cloud
computing – Overview and vocabulary, although these two are not perfectly aligned,
as well as ISO/IEC 17789, Cloud computing – Reference architecture. Of the
five vendors we had acknowledged before, four remain and would probably now
be considered the biggest Cloud players at this point in time, not least because
their reported Cloud revenues are now in the billions of dollars per quarter: Sun’s
Network.com which had originally appeared to be a well-timed foray is, for most
and perhaps unfortunately, a slightly distant memory following Sun’s acquisition by

2http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf – doi:10.6028/
NIST.SP.800–145.

ix

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://dx.doi.org/10.6028/NIST.SP.800\%E2\%80\%93145

x Preface

Oracle, with the memory of Sun as a company becoming equally distant. And for
these big four, not only is the scale of their Cloud operations substantial, as it needs
to be, but the range of services now available is also substantial and growing. And in
terms of blurred distinctions, Cloud variously supports or subsumes these – running
in, and across, multiple data centres in a large number of geographical jurisdictions
and supporting grid, web and mobile services amongst others.

As the subject has grown, so topic coverage has extended. Many new Cloud-
based services are a commoditisation of decreasingly common computational needs,
albeit with a few with broad application. Given the inherent economies of scale
brought to such commoditisation, this is likely to put further pressure on companies
that are (still) trying to compete in Cloud. And, indeed, this has already led to
some companies who have tried to compete withdrawing their attempts to keep
pace and in one particular large company case closing down their public Cloud
entirely. Various reasons may be cited: one key reason will be the sheer scale of
investment needed to address the inherently high costs of building and running
large new data centres and of continuing to ensure these comprise the latest and
most capable hardware within a highly competitive pricing environment. The result,
of not being able to compete at this level, tends to be that the arena for competition
shifts up the stack, with consultancies and commentators of various hues espousing
the benefits to be gained using multiple, and potentially federated, Clouds (multi-
Cloud). This also adds opportunities in Cloud brokerage, in adding value or getting
the best performance per unit of cost, and also in Cloud orchestration, with the need
to simplify the complexities of using a multiplicity of services simultaneously. And
the continued focus on Cloud security shows no sign of abating at any time soon.

Cloud is also, arguably, the springboard for the emergence of various other
significant topics of interest. The scale of storage and computational capability
available supports the treatment of big data, not only of large static collections but
also of the kinds of streaming sensor data important in the Internet of Things and the
combination of big and streaming data. In turn, Cloud acts as an enabler for activities
in so-called smart cities and in supporting operation of connected and autonomous
vehicles. And although software, platform and infrastructure remain the mainstay of
service models, these also now address containers (e.g. with Docker in Amazon’s
Elastic Container Service, Microsoft Container Service, Google Container Engine
and IBM Containers) and microservices (AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions and IBM OpenWhisk); the latter abstracts away from the
lower levels of the stack, as well as offering pricing based on compute time used
as multiples of milliseconds rather than hours. With the relative maturity of such
offerings, as well as the emergent next generations of mobile telecommunications
related to network function virtualisation and mobile edge Cloud computing,
increased focus on distributed computation and computational offloading may also
be anticipated.

Given the extent described above, any collection such as this can only ever offer
insights into select subsets of what exists – as, indeed, have the paragraphs above.
Research around these areas abounds and will continue to grow, with the growth

Preface xi

in number and diversity of Cloud conferences and workshops and special issues
of very many journals that are variously Cloud flavoured, as a crude but effective
measure of reach, coverage and scope. However, the four cornerstones of quality of
service, embodied in the first edition, remain consistent:

1. Efficiency: The need for execution and coordination of the services to be
optimised in terms of data traffic and latency remains, even with lower-latency
communications, in part due to growth of data and ability to process it. Data
traffic is typically one of the main cost factors in any distributed computing
framework, and thus its reduction is a standard long-term goal of such systems.
Latency is arguably one of the most important factors affecting customer
satisfaction, and therefore it should also be within specified acceptable limits.
And efficiencies in performance per unit cost are of particular importance.

2. Scalability: Cloud service offerings of various kinds continue to need to scale
well to support massive customer bases. They must continue to withstand
demand of a great many bursty applications during peak times and endure the
“flash crowd” phenomenon familiar in overly successful marketing strategies and
provisioning for popular websites at key times. There is evidence to suggest, also,
that great scale can dissipate distributed denial of service attacks, albeit at a price.
However, applications must also be architected to be able to operate at scale.

3. Robustness: Cloud services still need continuously high availability by design,
with effective use of redundancy and graceful failover. With users charged for
the expected successful use of computational facilities, it remains imperative
to understand and address the risk of failure, either to help to mitigate the
probability of failure or to use this information to offer appropriate compensation
schemes. Some high-profile Cloud users are known to make deliberate efforts to
disrupt their own systems in order to prove to themselves that any impact on the
services is minimised, which again relates to appropriate architecting.

4. Security: Appropriate security provisions are now, quite simply, a fundamental
expectation for both data and applications to protect both the providers and
consumers from malicious or fraudulent activities and must recognise the
responsibilities of each with respect to the other.

In respect to various Cloud topics, this edition carries the following key
objectives:

1. To present and explore the principles, techniques, protocols and algorithms that
are used to design, develop and manage Clouds

2. To present current Cloud applications and highlight the use of Cloud technologies
to manage data and scientific analysis

3. To present methods for linking Clouds and optimising their performance

All three objectives are firmly rooted in extant discourse of distributed computing
and a desire to understand the potential of all these technologies in constructing
purpose-specific Cloud solutions that successfully address commercial demand and
shape successful business.

xii Preface

2. Expected Audience

This book should be of particular interest for the following audiences:

• Researchers and doctoral students working on certain aspects of Cloud com-
puting research, implementation and deployment, primarily as a reference
publication. Similarly, this book should be useful to researchers in related or
more general fields, such as distributed computing, software engineering, web
services, modelling of business processes and so on.

• Academics and students engaging in research-informed teaching in the above
fields. This book can serve as a good collection of articles to facilitate a good
understanding of this subject and as such may be useful as a key reference text in
such teaching.

• Professional system architects and developers who could decide to adapt and
apply in practice a number of techniques and processes presented in the book.

• Technical managers and IT consultants who would consider this as a book that
demonstrates the potential applicability of certain methods for delivering efficient
and secure commercial services to customers globally.

These audiences will find this publication appealing as it combines three distinct
scholarly contributions: firstly, it identifies and highlights current techniques and
methods for designing Cloud systems and optimising their performance; secondly,
it presents mechanisms and schemes for developing Clouds to manage data and
produce scientific analysis and economic activities; and thirdly, it provides a
coverage of approaches and technologies used to link Clouds together and manage
heterogeneity.

3. Book Overview

The book contains 14 chapters that were carefully selected based on peer review
by at least two expert and independent reviewers. The chapters are split into five
parts:

Part I: General Principles

This part aims to cover the essential technical characteristics and concepts behind
the new developments in Cloud computing. The chapters included in this part
collectively introduce the reader to essential architectural principles behind the
new developments and how these advances are influencing the applications, how

Preface xiii

to measure the performance of new Cloud architectures and how to do effective
resource management in the emerging Clouds for improved quality of service and
performance.

Chapter 1 provides a taxonomy and survey to highlight the rapid technological
advancements in Cloud computing and how it will transform silos into to the so-
called Internet of Things (IoT). This chapter discusses the principles and taxonomy
behind emerging trends in Cloud computing such as edge computing (Cloudlets and
fog computing), IoT (smart grids, smart cities) and big data.

Chapter 2 describes the resource estimation problem that, if not addressed, will
either overestimate or underestimate the resources, leading to wasted resources or
poor performance. This chapter addresses the problem of dimensioning the amount
of virtual machines (VMs) in Clouds and presents approaches that estimate in a
static or dynamic way the amount of VMs for several types of applications.

Chapter 3 reviews the important approaches for resource monitoring in virtual
machines. Taxonomy is presented that, when applied to different solutions that
use or augment virtual machines, can help in determining their similarities and
differences. The process of classification and comparing systems is detailed, and
several representative state-of-the-art systems are evaluated.

Part II: Science Cloud

This part builds on the principles and approaches of Part I and provides an in-
depth coverage of how Clouds can be designed to produce scientific insights and
analysis. This part describes important aspects of scientific applications such as
agility, reproducibility, consistency and scalability. It includes chapters that propose
novel techniques and systems for making Clouds reproducible, agile and consistent.

Chapter 4 introduces elasticity, which helps in determining the most appropriate
set of resources for running scientific applications whose requirements cannot be
determined in advance. It describes elasticity taxonomy and how this can be used
in running scientific applications. A discussion about good practices as well as an
analysis of the state of the art is described.

Chapter 5 characterises terms and requirements related to scientific repro-
ducibility. Clouds can play a key role by offering the infrastructure for long-term
preservation of programmes and data. This chapter describes how Clouds can aid
the development and selection of reproducibility approaches in science.

Chapter 6 describes the challenges in integrating clinical and genomic data
and producing insights from it. Integration complexity, data inconsistency and
scalability of the underlying data infrastructures have been highlighted as the main
challenges. Cloud approaches to storing huge amounts of clinical and genomic data
and producing value from it are also described.

http://dx.doi.org/10.1007/978-3-319-54645-2_1
http://dx.doi.org/10.1007/978-3-319-54645-2_2
http://dx.doi.org/10.1007/978-3-319-54645-2_3
http://dx.doi.org/10.1007/978-3-319-54645-2_4
http://dx.doi.org/10.1007/978-3-319-54645-2_5
http://dx.doi.org/10.1007/978-3-319-54645-2_6

xiv Preface

Part III: Data Cloud

This part provides an overview of novel approaches in producing scalable, high-
performance and decentralised Cloud systems. This provides an overview of how
emerging technologies such as P2P and graph systems fit with Cloud computing to
enable fault-tolerant, scalable and high-performance data-intensive Clouds.

Chapter 7 describes the challenges of implementing graph-based systems and
frameworks. The focus is on the problem of creating scalable systems for storing
and processing large-scale graph data on HPC Clouds. It highlights a graph
database benchmarking framework and its use in analysing the performance of
graph database servers.

Chapter 8 describes a framework that exploits a peer-to-peer (P2P) model to
manage systems failures of MapReduce and their recovery in a decentralised but
effective way. It describes the architecture and performance results of the proposed
model, which shows a higher level of fault tolerance compared to a centralised
implementation of MapReduce.

Part IV: Multi-clouds

This part presents ideas on achieving federation and interoperability across Clouds
and using autonomic computing and other intelligent approaches to self-manage the
federated Clouds. It includes chapters that propose novel techniques and systems
for making Cloud data and application interoperable as well as achieving data and
compute interoperability through automated means.

Chapter 9 presents an architecture to facilitate federated Clouds for achieving
interoperability between Clouds, especially application and data-level interoperabil-
ity. It describes the design of the architecture, implementation choices and some
practical evaluations for monitoring multiple Cloud deployments to make informed
decisions.

Chapter 10 provides an overview of the concepts that are being used in practice
and theory in order to advance the field of self-managing and self-healing Clouds.
It describes approaches to providing self-managed data- and compute-intensive
services to the users by overcoming heterogeneity in terms of computing resources.

Part V: Performance and Efficiency

This part covers a range of challenging issues associated to Cloud data centres
that, if not addressed properly, may limit its adoption. It includes chapters on

http://dx.doi.org/10.1007/978-3-319-54645-2_7
http://dx.doi.org/10.1007/978-3-319-54645-2_8
http://dx.doi.org/10.1007/978-3-319-54645-2_9
http://dx.doi.org/10.1007/978-3-319-54645-2_10

Preface xv

Cloud operations and Cloud economy offering approaches that can bring down
Cloud operation costs. It also includes chapters on resource management approaches
leading to energy efficiency and predictive workload management.

Chapter 11 presents a Cloud brokering model, which can reduce Cloud cus-
tomers’ costs when compared to traditional on-demand renting costs. It proposes
a number of online and offline heuristics to efficiently manage the resources of
the broker in order to optimise its revenue, as well as the QoS level offered to the
customers.

Chapter 12 proposes a resource management model with the aim of improv-
ing energy efficiency and reliability. The model manages the problem of over-
provisioning of resources and to an underutilisation of the active servers. Using
an evolutionary optimisation algorithm, the model can efficiently map user requests
with the available hardware resources.

Chapter 13 describes an approach to manage Cloud data centres by observing
workload behaviours and server usage patterns in the past. The analysis presented
in this chapter can support Cloud providers for achieving efficient data centre
management and prediction analytics in Cloud data centres.

Chapter 14 presents energy-efficient browsing approach that ranks URL and
web domains based on web page-induced energy consumption. The approach can
achieve substantial resource reduction for CPU and memory usage. It is also able to
reduce bandwidth usage without any degradation to user experience.

http://dx.doi.org/10.1007/978-3-319-54645-2_11
http://dx.doi.org/10.1007/978-3-319-54645-2_12
http://dx.doi.org/10.1007/978-3-319-54645-2_13
http://dx.doi.org/10.1007/978-3-319-54645-2_14

Acknowledgements

The editors are grateful to the peer review panel for supporting this book including
Miyuru Dayarathna, Daniel de Oliveira, Vincent C. Emeakaroha, Teodor-Florin
Fortiş, Imen Ben Fradj, Luiz Manoel Rocha Gadelha Júnior, Guilherme Galante,
Santiago Iturriaga, Sara Kadry, Somnath Mazumdar, Bhaskar Prasad Rimal, José
Simão and Domenico Talia.

The editors are also grateful to their respective families for continuing to afford
them the time to produce works such as this.

The editors wish to thank Springer’s team for their strong and continuous support
throughout the development of this book.

The editors are also deeply apologetic to anyone that they may have forgotten.

Derby, UK Nick Antonopoulos
Guildford, UK Lee Gillam
Winter 2016

xvii

Contents

Part I General Principles

1 The Rise of Cloud Computing in the Era of Emerging
Networked Society . 3
Bhaskar Prasad Rimal and Ian Lumb

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud
After All? . 27
Rafaelli Coutinho, Yuri Frota, Kary Ocaña, Daniel de Oliveira,
and Lúcia M.A. Drummond

3 A Taxonomy of Adaptive Resource Management Mechanisms
in Virtual Machines: Recent Progress and Challenges 59
José Simão and Luís Veiga

Part II Science Cloud

4 Exploring Cloud Elasticity in Scientific Applications 101
Guilherme Galante and Rodrigo da Rosa Righi

5 Clouds and Reproducibility: A Way to Go to Scientific
Experiments?. 127
Ary H. M. de Oliveira, Daniel de Oliveira, and Marta Mattoso

6 Big Data Analytics in Healthcare: A Cloud-Based Framework
for Generating Insights . 153
Ashiq Anjum, Sanna Aizad, Bilal Arshad, Moeez Subhani,
Dominic Davies-Tagg, Tariq Abdullah, and Nikolaos Antonopoulos

Part III Data Cloud

7 High-Performance Graph Data Management and Mining
in Cloud Environments with X10 . 173
Miyuru Dayarathna and Toyotaro Suzumura

xix

xx Contents

8 Implementing MapReduce Applications in Dynamic Cloud
Environments . 211
Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio

Part IV Multi-clouds

9 Facilitating Cloud Federation Management via Data
Interoperability . 227
Vincent C. Emeakaroha, Phillip Healy, and John P. Morrison

10 Applying Self-* Principles in Heterogeneous Cloud Environments . . . 255
Ioan Drăgan, Teodor-Florin Fortiş, Gabriel Iuhasz, Marian Neagul,
and Dana Petcu

Part V Performance and Efficiency

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 277
Santiago Iturriaga, Sergio Nesmachnow, and Bernabé Dorronsoro

12 Adaptive Resource Allocation for Load Balancing in Cloud 301
Somnath Mazumdar, Alberto Scionti, and Anoop S. Kumar

13 Datacentre Event Analysis for Knowledge Discovery
in Large-Scale Cloud Environments . 329
John Panneerselvam, Lu Liu, and Yao Lu

14 Cloud-Supported Certification for Energy-Efficient Web
Browsing and Services . 345
Gonçalo Avelar, José Simão, and Luís Veiga

Author Index . 379

Subject Index . 381

Part I
General Principles

Chapter 1
The Rise of Cloud Computing in the Era
of Emerging Networked Society

Bhaskar Prasad Rimal and Ian Lumb

1.1 Introduction

In 2009, Rimal et al. [1] published a very first taxonomy and survey that defined the
field, described many issues and opportunities, and summarized the developments of
cloud computing up to that point. We refer readers to our original paper [1] to better
understand the fundamentals of cloud computing and the descriptions of potential
applications. Since then, the role and scope of cloud computing has remarkably
changed. In this chapter, our aim is a complement to that taxonomy and survey,
denoting the rapid technological advancements since then. Cloud computing has
been widely deployed and become a major backbone of every other technology –
from cellular phones through to wearables, connected vehicles, and the future
networked society. The networked society is the networks of everything (NoE), that
is, beyond the upcoming 5G networks.

Our vision of networked society is not only about wired/wireless communica-
tions but creating an ecosystem of device vendors, application developers, network
operators, telecom operators, and cloud services/infrastructure providers to create
a foreseeable new business value chain that will not only accelerate every area
but also bring new innovative ideas and services. Those services are accessible
to anyone (e.g., devices, human, robots, automobiles) to connect each other and
share data from anywhere and anytime. However, there is still no well-defined
standard definition and requirements of the networked society. Therefore, there is

B.P. Rimal (�)
University of Québec, INRS, Montŕeal, QC, Canada
e-mail: b.bprimal@gmail.com

I. Lumb
York University, Toronto, ON, Canada
Univa Corporation, Hoffman Estates, IL, USA

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_1

3

mailto:b.bprimal@gmail.com

4 B.P. Rimal and I. Lumb

a need for a taxonomy of enabling technologies of networked society to better
understand the concept and advance the state of the art. This chapter provides a
holistic understanding of networked society.

Furthermore, given the wide variety of communications (e.g., machine-to-
machine communications, human-to-machine communication, human-to-robot
communications) and applications in the networked society, a single communication
technology is likely not able to meet such heterogeneity. We may need a
convergence or integration of different wired/wireless communication technologies
to truly address the complexity of the networked society. Cloud computing
technologies are the major backbone for networked society, where billions of
devices will be connected anytime to each other and access a wide variety of
services anywhere. Toward this end, the focus and contributions of this chapter are
as follows:

• First, we revisit the scope and role of cloud computing and extend them in the
context of networked society, paying particular attention to scope and emerging
areas of cloud computing.

• Second, we propose a taxonomy of enabling technologies of networked society.
This will be an instrument to understand the vision, the overall concept, and
the enabling technologies of networked society. To the best of the authors’
knowledge, this is a first taxonomy of enabling technologies of the networked
society.

• Third, we describe each enabling technology of networked society based on the
proposed taxonomy and pay close attention to some of the particular challenges
and opportunities that may be used by other researchers as a baseline for future
research in the area of networked society.

The remainder of the chapter is structured as follows. Section 1.2 provides an
overview of cloud computing in a nutshell, including cloud service modes and
deployment modes. Section 1.3 introduces a networked society and presents a
proposed taxonomy of enabling technologies of networked society. Further, each
enabling technology is discussed, including issues and opportunities in great detail.
Finally, Sect. 1.4 concludes the chapter.

1.2 Cloud Computing in Nutshell

Cloud computing implements the idea of utility computing, which was first coined
by Professor John McCarthy in 1961, where computing was viewed as a public
utility just as the telephone system. Later, this idea resurfaced in new forms as
cloud computing. There is a plethora of definitions for cloud computing, from both
academia and industry. Among them, Rimal et al. [2] defined cloud computing as,
a model of service delivery and access where dynamically scalable and virtualized
resources are provided as a service over the Internet. Cloud computing provides
a paradigm shift of business and IT, where computing power, data storage, and

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 5

services are outsourced to third parties and made available as commodities to
enterprises and customers. Cloud computing is a center point for the most highly
impactful technologies such as mobile Internet, automation of knowledge work, the
Internet of Things (IoT), and big data. Further, cloud offers tremendous economic
benefits. For example, the total economic impact of cloud technology could be $1.7–
$6.2 trillion annually in 2025, and the proliferation and sophistication of cloud
services could become a major driving force in making entrepreneurship more
feasible in the coming decade [3]. However, there are several challenges to be
addressed. The taxonomy, survey, challenges, and opportunities of cloud computing
are thoroughly studied in [4].

1.2.1 Service Models and Deployment Modes of Cloud
Computing

Cloud service models can be classified into three groups: Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). The
deployment modes can be categorized into three groups: public cloud, private cloud,
and hybrid cloud. We discuss them briefly in the following subsections.

1.2.1.1 Cloud Service Models

(1) Software-as-a-Service (SaaS): SaaS, commonly referred to as the Application
Service Provider model, is heralded by many as the new wave in application
software delivery. Further, SaaS can be view as a multi-tenant cloud platform [5].
It shares common resources and a single instance of both the object code of an
application as well as the underlying database to support multiple customers simul-
taneously. Key examples of SaaS provider include SalesForce.com,1 NetSuite,2

Oracle,3 IBM,4 and Microsoft (e.g., Microsoft Office 3655).

(2) Platform-as-a-Service (PaaS): It is the big idea to provide developers with
a platform including all the systems and environments comprising the end-to-
end life cycle of developing, testing, deploying, and hosting of sophisticated web
applications as a service delivered by a cloud. It provides an easier way to develop
business applications and various services over the Internet. Key examples of

1SalesForce: https://www.salesforce.com/, Accessed Nov. 2016.
2NetSuite: http://www.netsuite.com/, Accessed Nov. 2016.
3Oracle: https://www.oracle.com/cloud/saas.html, Accessed Nov. 2016.
4IBM: https://www.ibm.com/cloud-computing/solutions/, Accessed Nov. 2016.
5Microsoft Office 365: https://products.office.com/en-us/office-online/documents-spreadsheets-
presentations-office-online, Accessed Nov. 2016.

https://www.salesforce.com/
https://www.salesforce.com/
http://www.netsuite.com/
https://www.oracle.com/cloud/saas.html
https://www.ibm.com/cloud-computing/solutions/
https://products.office.com/en-us/office-online/documents-spreadsheets-presentations-office-online
https://products.office.com/en-us/office-online/documents-spreadsheets-presentations-office-online

6 B.P. Rimal and I. Lumb

PaaS are Google AppEngine6 and Microsoft Azure,7 just to name two. PaaS can
slash development time and offer hundreds of readily available tools and services
compared to conventional application development.

(3) Infrastructure-as-a-Service (IaaS): IaaS is the delivery of resources (e.g.,
processing, storage, networks) as a service over Internet. Aside from the higher
flexibility, a key benefit of IaaS is the usage-based payment scheme. This allows
customers to pay as you grow. Key examples are Amazon EC2,8 GoGrid,9 Flexis-
cale,10 Layered Technologies,11 AppNexus,12 Joyent,13 and Mosso/Rackspace.14

1.2.1.2 Cloud Deployment Modes

(1) Public Cloud: It describes the cloud computing in the traditional mainstream
sense, whereby resources are dynamically provisioned on a fine-grained, self-
service basis over the Internet, via web applications/web services, from an off-site
third-party provider who shares resources. Some examples are Zimory,15 Microsoft
Azure, Amazon EC2, GigaSpaces,16 Rackspace, and Flexiscale.17

(2) Private Cloud: Data and processes are managed within the organization
without the restrictions of network bandwidth, security exposures, and legal require-
ments that using public cloud services across open, public networks might entail.
Some examples are Amazon VPC,18 Eucalyptus,19 OpenStack,20 VMWare,21 and
Intalio.22

6Google AppEngine: https://console.cloud.google.com/projectselector/appengine, Accessed Nov.
2016.
7Microsoft Azure: https://azure.microsoft.com/en-us/?b=16.26, Accessed Nov. 2016.
8Amazon EC2: https://aws.amazon.com/ec2/, Accessed Nov. 2016.
9GoGrid: https://www.datapipe.com/gogrid/, Accessed Nov. 2016.
10Flexiscale: http://www.flexiscale.com/, Accessed Nov. 2016.
11Layered Technologies: https://www.datapipe.com/layered_tech/, Accessed Nov. 2016.
12AppNexus: https://www.appnexus.com/en/platform, Accessed Nov. 2016.
13Joyent: https://www.joyent.com/, Accessed Nov. 2016.
14Mosso/Rackspace: https://www.rackspace.com/cloud, Accessed Nov. 2016.
15Zimory: http://www.zimory.com/, Accessed Nov. 2016.
16GigaSpaces: http://www.gigaspaces.com/HP, Accessed Nov. 2016.
17Flexiscale: http://www.flexiscale.com/, Accessed Nov. 2016.
18Amazon VPC: https://aws.amazon.com/vpc/, Accessed Nov. 2016.
19Eucalyptus: http://www8.hp.com/us/en/cloud/helion-eucalyptus.html, Accessed Nov. 2016.
20OpenStack: https://www.openstack.org/, Accessed Nov. 2016.
21VMWare: https://www.vmware.com/, Accessed Nov. 2016.
22Intalio: http://www.intalio.com/, Accessed Nov. 2016.

https://console.cloud.google.com/projectselector/appengine
https://azure.microsoft.com/en-us/?b=16.26
https://aws.amazon.com/ec2/
https://www.datapipe.com/gogrid/
http://www.flexiscale.com/
https://www.datapipe.com/layered_tech/
https://www.appnexus.com/en/platform
https://www.joyent.com/
https://www.rackspace.com/cloud
http://www.zimory.com/
http://www.gigaspaces.com/HP
http://www.flexiscale.com/
https://aws.amazon.com/vpc/
http://www8.hp.com/us/en/cloud/helion-eucalyptus.html
https://www.openstack.org/
https://www.vmware.com/
http://www.intalio.com/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 7

(3) Hybrid Cloud: The environment is consisting of multiple internal and/or exter-
nal providers. Some examples are RightScale,23 Asigra Hybrid Cloud Backup,24

QTS,25 and Skytap.26

1.3 Networked Society

A conventional definition of networked society states that a number of major social,
technological, economic, and cultural transformations came together to give rise
to a new form of society, the so-called networked society. A focal point of the
networked society is the transformation of the realm of communications [6, 7]. In a
broader perspective of information, communications and technologies (ICTs), and
beyond 5G networks (refer Sect. 1.3.1), networked society can be defined as a new
paradigm and is not only about technology, but it creates an ecosystem of device
vendors, application developers, network operators, telecom operators, and cloud
services/infrastructure providers to create a foreseeable new business value chain
that will not only accelerate every area but also brings new innovative ideas and
services. Cloud technologies became a major part of networked society.

Figure 1.1 presents a hypothetical scenario that is suggestive of the near future
we hope to create by leveraging the benefits of cloud computing in the networked
society. The networked society is beyond future 5G networks. It is more than more
data and massive end-to-end connectivity of the things. Networked society is not just
incremental research but game changers for the quality and experience of people’s
life that will be more intelligent, more immersive experience enriched by context-
aware services (e.g., mixed augmented and virtual reality) and automated, secure,
sustainable, green, and more knowledgeable society. Furthermore, that will also
create a new scientific concept toward industrial and social innovations.

Jony is 65 years old and medically paralyzed man. One day Jony feels sick and asks personal
assistant robot to call the hospital. The personal assistant robot then calls the hospital emer-
gency number and requests further assistance. The hospital authority then sends self-driving
car to Jony’s home. The personal assistant robot puts Jony into the self-driving car. Then the
self-driving car takes him to the hospital. On the way to hospital doctors were monitoring
Jony’s health status remotely. At the hospital, a specialist doctor performs remote surgery
with actuating robots to save his life.

Fig. 1.1 Hypothetical scenario of the next generation of cloud computing: connecting everything
from everywhere via cloud in the networked society

23http://www.rightscale.com/, Accessed Nov. 2016.
24Asigra: http://www.asigra.com/cloud-backup-software, Accessed Nov. 2016.
25http://www.qtsdatacenters.com/, Accessed Nov. 2016.
26https://www.skytap.com/, Accessed Nov. 2016.

http://www.rightscale.com/
http://www.asigra.com/cloud-backup-software
http://www.qtsdatacenters.com/
https://www.skytap.com/

8 B.P. Rimal and I. Lumb

Network Function
Virtualization (NFV)

Network Slicing

Software-Defined
Networking (SDN)

Tactile Internet

Cloud Computing

Edge Computing
(Cloudlet, MEC,
Fog Coputing)

4G LTE/LTE-Advanced,
5G networks

Internet of Things (IoT)

(Smart Grids, Smart Cities)

Enabling Technologies
for

 Networked Society

Augmented,Virtual,
and Mixed RealityContainerization

Big Data

Fig. 1.2 Proposed taxonomy of enabling technologies of the networked society

1.3.1 Taxonomy of Enabling Technologies of
Networked Society

Pervasiveness and emerging technological trend of cloud computing disrupts indus-
tries across the world, and companies look forward to maximize and implement
cloud as a strategic and integral technology to create value chain and business
agility. This will create a huge opportunity in the networked society era of disruptive
innovation. The proposed taxonomy of enabling technologies of networked society
is shown in Fig. 1.2. In the next section, we provide a more detailed description of
each enabling technology.

1.3.1.1 Edge Computing: Cloudlet, Fog Computing,
and Mobile-Edge Computing

Cloudlet: A cloudlet (also known as edge cloud) is a powerful computer or
computer cluster that can be viewed as a data center in a box whose goal is to
bring the cloud one wireless hop away from the mobile devices, thereby maintaining
logical proximity (low latency, high bandwidth). Further, it can be viewed as a new
architectural element that represents the middle tier of a three-tier hierarchy: mobile
device, cloudlet, and cloud [8]. The cloudlet host runs a hypervisor (e.g., KVM) in
order to host multiple virtual machines (VMs). Those VMs publish information
(e.g., OS and other properties) to the network. The cloudlet client (e.g., smart
phones, PDAs, wearable devices) discovers the cloudlet server through information
(cloudlet server IP address and port) broadcasted by the discovery service residing

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 9

in a cloudlet host. The client then establishes an HTTP connection to the cloudlet
server for VM overlay27 transmission and uploads the overlay [8–10]. The cloudlet
decompresses this overlay and applies it to the baseVM to derive the launchVM and
then creates a VM instance from it. Afterward, the mobile client starts offloading
operation on that instance. The mobile device uses Wi-Fi or cellular data service of
4G LTE depending on the deployment scenarios of cloudlet to reach Internet and
then remote cloud (e.g., Amazon EC2).

Cloudlet supports resource-intensive and interactive mobile applications by
providing computing resources to mobile devices with low latency. Key features of
cloudlets include near-real-time, just-in-time provisioning of applications to edge
nodes and handoff of virtual machines seamlessly from one node to another once a
user has moved away from its first node.

Potential application areas of cloudlet are enormous. More specifically, the appli-
cations (e.g., video streaming, speech processing, cognitive assistance applications,
augmented and virtual reality, edge analytics in IoT, new automotive services, drone,
just to name a few) which have stringent QoS requirements, such as low latency and
real time, can all benefit from cloudlets.

Fog Computing: Cisco envisioned the concept of Fog computing in 2012. Fog
computing is a highly virtualized platform, which extends the cloud computing
to the edge of networks, thereby enabling applications and services on billions of
connected devices, especially, in the Internet of Things (IoT) [11]. Example includes
Cisco IOx that combines IoT application execution within the fog computing and
offers highly secure connectivity with Cisco IOS technology. Some of the major
characteristics of Fog computing are listed below:

• Fog nodes (i.e., provide compute, storage, and network capabilities) are typically
located away from the main cloud data centers.

• Fog nodes provide applications with awareness of device geographical location
and device context.

• Fog nodes offer special services that may only be required in the IoT context
(e.g., translation between IP and non-IP transport).

• Support for online analytics and interplay with the cloud

Fog computing may have a wide range of applications such as connected vehicle,
smart grid, smart cities, pipeline monitoring, connected rail, smart traffic light sys-
tems, machine-to-machine (M2M) communications, or human-machine interaction
(HMI), just to name a few.

Mobile-Edge Computing: The European Telecommunications Standards Institute
(ETSI) launched an industry specification for mobile-edge computing (MEC) in
September 2014. The ETSI defined MEC as: Mobile-edge Computing transforms

27The compressed binary difference between the baseVM (i.e., a VM with a minimally configured
guest operating system installed) image and the launchVM (i.e., VM image used for offloading)
image is known a VM overlay [8, 9].

10 B.P. Rimal and I. Lumb

base stations (e.g., 2G/3G/4G/5G) into intelligent service hubs that are capable
of delivering highly personalized services (IT and cloud computing capabilities)
directly from the very edge of the network within the radio access network (RAN)
while providing the best possible performance in mobile networks [12]. Some
typical use cases of MEC are as follows:

• Intelligent video acceleration service
• Active location-aware application services
• Video stream analysis and video delivery optimization using data caching
• Augmented and virtual reality services
• RAN intelligence for customer experience
• Mobile PBX for large enterprises
• Connected vehicles and IoT gateway services

Examples of some leading MEC solution providers include the Vasona Smart
AIR platform, Saguna Open-RAN, Brocade MEC Platform Services, Nokia Liquid
Radio Applications Cloud Server, and Intel’s Network Edge Virtualization (NEV)
SDK MEC application and services.

The major components of the ETSI-MEC architecture [13] are summarized in
Table 1.1.

1.3.1.2 Internet of Things: Smart Grids and Smart Cities

Internet of Things: The Internet of Things (IoT) is the network of networks where
billions of devices/objects connect to each other and create new opportunities and
challenges. IoT ecosystem includes any type of devices/technology (smartphones,
connected cars, wearables, robots, vertical applications) that can connect to the
Internet. The International Telecommunication Union (ITU) Telecommunication

Table 1.1 The major components and its functionalities of the ETSI-MEC reference architecture

Components Description

Mobile-edge
platform

Sets the policy and configuration rules (e.g., traffic rules) for forwarding user
plane traffic to MEC applications. It also provides a set of services and access
to persistent storage

Mobile-edge
orchestrator

Maintains an overall view of the deployed mobile-edge hosts, validates
applications rules and requirements, and selects appropriate mobile-edge hosts
for instantiating a MEC application

Mobile-edge
platform
manager

Responsible for life cycle management of applications and provides element
management functions to the mobile-edge platform

Virtualized
infrastructure
manager

Responsible for managing, allocating, and releasing the resources of the
virtualized infrastructure and also does rapid provisioning of applications

Mobile-edge
applications

Runs on the top of the virtualized infrastructure provided by the mobile-edge
host and also interacts with mobile-edge platform to provide services

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 11

Table 1.2 Overview of functional requirements of the IoT

Functional requirements Description

Application support
requirements

Programmable interfaces, group management, time synchronization,
collaboration, authentication, authorization, and accounting

Service requirements Service level agreements (SLAs), autonomic service provisioning,
service composition, service mobility, user mobility and device
mobility, virtual storage, and processing capabilities

Communication
requirements

Heterogeneous communications (wired or/and wireless technologies,
such as controller area network (CAN) bus, ZigBee (IEEE 802.15.4),
Bluetooth (IEEE 802.15.1), Wi-Fi (IEEE 802.11a/b/g/n/ac), 4G
LTE/LTE-Advanced, 5G), Low power Wireless Personal Area
Networks (IEEE 802.15.4/6LoWPA), communication modes
(event-based, periodic, and automatic communication modes),
autonomic networking (self-configuring, self-healing,
self-optimizing, and self-protecting capabilities), and context- and
location-aware communications

Device requirements Remote monitoring, control and configuration of devices, monitoring
of things, and device mobility

Data management
requirements

Integrity checking and life cycle management of data; storing,
aggregating, transferring, and processing the data; access control of
data; and high availability and reliability of data of things

Security and privacy
protection requirements

Trust and privacy, mutual authentication and authorization between
the devices, integration of security policies and techniques, and
security audit

Standardization Sector (ITU-T) in Recommendation ITU-T Y.2066 [14] defined
the IoT as a global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies. IoT has an
enormous potential to bring innovations to new business. For instance, McKinsey
report shows that the IoT has the potential to create economic impact of $2.7–
$6.2 trillion annually by 2025. Some of the most promising uses are in healthcare,
infrastructure, and public sector services [3].

Tables 1.2 and 1.3 summarize the IoT functional (related to the IoT actors28) and
nonfunctional requirements (related to the implementation and operation of the IoT)
[14]. Even though cloud computing and IoT are two very different technologies,
both can be converged, giving rise to so-called IoT-cloud computing – a novel
paradigm and enabler for vast majority of large-scale application deployments.
Indeed, the convergence of cloud computing and IoT enables ubiquitous sensing
services and powerful computing platforms with large-scale computing and storage
capabilities, thus stimulating new innovations in the area of IoT.

28Actors are external to the IoT and interact with the IoT.

12 B.P. Rimal and I. Lumb

Table 1.3 Overview of nonfunctional requirements of the IoT

Nonfunctional requirements

Interoperability

Scalability to handle a large number of devices, applications, and user

Reliability in communication, service, and data management capabilities of IoT

Service provisioning, data management, communication, sensing, and actuating

Adaptability to new technologies

Manageability – device state and connectivity management and energy consumption
management

Cisco predicted that 50 billion devices will be connected to the Internet by 2020
[15]. These devices will produce huge amounts of data. Moving all these data to
the cloud for analysis would require vast amounts of bandwidth. Cloud computing
is certainly a better way of addressing these requirements. Despite achieving low-
latency and ultrahigh reliability (carrier-grade reliability, i.e., 99.999% availability)
for mission critical IoT applications (e.g., smart transportation, remote surgery,
industrial process automation), designing novel cloud-based sensing algorithms,
cloud-based IoT mobility management, and energy-aware communication protocols
for IoT are among the important research avenues. However, it is very challenging
due to network integration, heterogeneity (of devices, platforms, operating systems,
communication protocols), interoperability, and coexistence of human-to-human
(H2H) and machine-to-machine (M2M) communications.

Smart Grids: Cloud computing also offers opportunities for significant efficiency
savings and for making a huge contribution toward institutional carbon-saving tar-
gets, such as smart grids. IEEE Standard 2030 Guide for Smart Grid Interoperability
of Energy Technology and Information Technology operation with the Electric
Power System (EPS) and End-Use Applications and Loads [16] defines smart
grids as the “integration of power, communications, and information technologies
for an improved electric power infrastructure serving loads while providing for
an ongoing evolution of end-use applications.” Ensuring the reliable bidirectional
information flow between heterogeneous entities is a key requirement of smart
grids. In particular, the integration of IT into smart grids eventually increases the
complexity in network design, which motivates large scalable infrastructures for
computing and storage.

IEEE P2030 [16] aims at providing interoperability between power and energy
technologies, ICT, and customer side applications. Its main objectives include
the integration of energy technologies and ICT, seamless data transfer, reliable
power delivery, and end-use benefits. Furthermore, IEEE P2030 spans three
distinct architectural perspectives: power systems, communication technology,
and information technology. The objective of those perspectives is to deal with
interoperability among the elements of smart grids. The expected benefits of smart
grids are as follows:

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 13

• With the help of integrated ICT, smart grids will be able to optimize the system
reliability and allow prosumers to adjust their demand during peak hours in order
to save money.

• Reduce carbon footprint with the deployment of smart grid-enabled electrical
vehicles and efficient use of renewable energy sources that reduce the depen-
dency on fossil fuels.

Besides these advantages, smart grids face some challenges, such as to reduce
the capital and operational costs, handling big data, security of cyber and power
infrastructures, and regulatory frameworks, among others.

Furthermore, the concepts of smart grids are applicable not only to electrical
power grids but are also essential to develop a sustainable high-quality life of
citizens in cities. In particular, future smart grids will be intertwined with smart
cities to interconnect ICT, energy, water, healthcare, citizens, and governments, as
explained shortly.

Smart Cities: The global changes affecting climate, population, urbanization, and
advances in urban technology put forward the concept of “Smart Cities” as a new
dimension in urban development. There are many definitions of smart cities [17].
The author in [18] defined a smart city as follows: “a smarter city is connecting
the physical infrastructure, the IT infrastructure, the social infrastructure, and the
business infrastructure to leverage the collective intelligence of the city.” Note that
no consensus has been reached on what the term smart cities exactly means.

Smart grids can be one of the major domains of smart cities that will address
the growing energy demand by integrating renewable resources through demand
response and reduce the carbon footprint in the cities. On the other hand, other
technologies like cloud computing can provide IT infrastructures to the cities for
analyzing, controlling, and monitoring of city council data and applications. Early
examples of smart cities include the European Platform for Intelligent Cities,
IBM Smarter Cities, Microsoft’s CityNext, and Amsterdam Smart City. Among
them, the IBM Smarter Cities project promotes the deployment of instrumented,
interconnected, and intelligent systems to improve social progress from smart grids
and transportation to water management and healthcare. Some of the anticipated
benefits of smart cities are as follows:

• Provide city-scale ICT-enabled infrastructures along with unified information
and control systems for data collection, analysis, and simulation in order to
provide efficient governance and engagement of citizens for planning and
decision-making activities of sustainable cities.

• Stimulating the use of sustainable energy efficiency systems to lower carbon
emissions.

The research on cloud-based smart cities has started only recently. The authors
in [19] proposed a cloud-based architecture for context-aware citizen services for
smart cities. Similarly, the Scallop4SC platform [20] was designed to store and

14 B.P. Rimal and I. Lumb

process large-scale house data in smart cities. However, there still exist open
challenges in realizing smart cities:

• Network edges are becoming themselves complex networks because of increas-
ing data diversity and heterogeneity. Mathematical analysis and modeling of
intrinsic network dynamics on the large scale are a complex issue, e.g., dis-
tributed demand and supply and destabilized power grid operations, due to
integration of renewables and new transmission lines.

• Designing a unified information model that is capable of safely sharing infor-
mation between applications and services at a city scale is often challenging.
It should be based on semantically well-designed information models, which
capture data from disparate sources, each having its own attributes, i.e., sampling
frequency, latency characteristics, and semantics [21].

• Crowdsourcing can be used for semantic modeling of information from a crowd
of people related to a targeted issue and predicting the real-time behavior
of traffic. Crowdsourcing has been emerging in smart city applications, e.g.,
OpenStreetMap,29 Cyclopath,30 and Waze.31 Waze is a crowdsourcing traffic
application that uses each driver as a sensor for data acquisition. At the downside,
there is no best practice of characterizing crowdsourcing systems. For instance,
it is hard to predict the number of influential users, quantifying their range of
contributions, and integration of results.

Necessity of Cloud Computing for Smart Grids/Cities

Most of the power grid applications (e.g., SCADA, customer relation management
(CRM)) are based on traditional IT models that run over dedicated control centers.
They are expensive and rigid, but the scalability of such models in the context of
smart grids and smart cities is a major concern. Therefore, instead of deploying
such applications in traditional data centers, leveraging existing public computing
infrastructures such as cloud computing appears to be a promising solution, e.g., by
using an on-demand pricing model of cloud computing for demand response man-
agement. Further, virtualized cloud resources and virtualized smart grid resources
can be integrated in the form of a unified virtualization layer to decouple smart grid
applications from underlying smart grid monitoring and communications physical
infrastructures [22]. Some major roles of cloud computing in smart grids and smart
cities are as follows:

29OpenStreetMap Community: https://www.openstreetmap.org, Accessed Nov. 2016.
30Cyclopath: http://cyclopath.org/, Accessed Nov. 2016.
31Waze: https://www.waze.com/, Accessed Nov. 2016.

https://www.openstreetmap.org
http://cyclopath.org/
https://www.waze.com/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 15

• Managing large numbers of events and updating each state of distributed
energy resources create scalability issues. In addition, data generated from smart
meters, sensors, CRM, electric vehicles, and home appliances are massive and
heterogeneous. Due to poor scalability and high cost, traditional data warehouse
technologies may not be a viable option for smart grids and smart cities. For
instance, for a frequency of 5 min, 1 KB data per power usage reading with
one million smart meters generates 2.68 TB/day data. This requires intensive
resources to be processed, analyzed, and stored. Cloud computing can satisfy
such requirements, as it offers scalable infrastructures. In addition, smart grid
data are time series data that can be stored in a distributed structure made up
of key-value pairs, which enable the distributed management and horizontal
scaling [23].

• The computational workload of smart grid and smart city applications can be
spread across geographically distributed cloud data centers, where electricity
supply is available at low cost. Redundant instances of smart grid and smart city
applications minimize service outages and prevent disaster recovery. The authors
in [24] discussed a grid-aware routing algorithm, which improves load balancing
in smart grids and renders power grids more robust and reliable with regard to
demand variations.

• Simulations of smart grids and smart cities include contingency analysis,
dynamic behavior of power systems, load forecasting, and climate and crime
models. To perform those tasks, large scalable parallel computing infrastructures
are required, which are not easy to realize at low cost with traditional
infrastructures. Conversely, cloud computing offers such resources on-demand
at low cost.

1.3.1.3 Big Data

The big data scenario includes the collection of many data sets. In the past, typically
the source of big data is considered as remote sensors and satellite imaging and
scientific visualization [25]. However, the horizon of data sources is not limited.
Many of the most important sources of big data are relatively new [26]. The big
data scenarios are like conventional data analytics before it. However, there are four
major differences:

Volume: The amount of all types of data generated from different sources. For
instance, Walmart collects more than 2.5 petabytes of data every hour from its
customer transactions [26].
Velocity: The speed of data transfer matters for many applications. For example,
real-time information and batch processing.
Variety: The huge amounts of information are generated from different sources
such as mobile phones, online shopping, social networks (e.g., Facebook,
Twitter), and GPS, just to name a few.
Veracity: It refers to the uncertainty of the data and its value.

16 B.P. Rimal and I. Lumb

There are several tools and frameworks (e.g., Hadoop,32 MapReduce [27],
Spark,33 Flink,34 Storm,35 Samza36) available to handle the volume, velocity, and
variety of big data. Cloud computing plays a vital role for big data not only
providing scalable infrastructures and on-demand high-performance computing and
distributed storage to process and manage big data but also providing a new business
model, for example, big data as a service – a cloud service that allows users to
collect, store, analyze, visualize, and manage their big data. On the other hand,
there are open issues in big data such as real-time big data analytics, coordination
between database systems, and large-scale visualization.

1.3.2 5G Networks: Technology Requirements and Potential
Use Cases

Recently, the fifth generation of mobile technology (5G) has received enormous
attention from both academia and industry (e.g., METIS37 [28], 5G-Crosshaul [29],
5GNOW38). There is no common understanding about what 5G will be. Many
different visions and requirements can be found in the literature and industry
white papers. For instance, the telecommunications industry alliance NGMN’s 5G
vision states that “5G is an end-to-end ecosystem to enable a fully mobile and
connected society. It empowers value creation towards customers and partners,
through existing and emerging use cases, delivered with consistent experience,
and enabled by sustainable business models” [30]. In fact, 5G will be intertwined
communications, computing, and control communities.

The requirements for a 5G system are as follows [31, 32]: (a) aggregate data rate
should be 1000x from 4G to 5G, (b) 5G will need to support an end-to-end round-
trip latency of about 1 ms, (c) massive device connectivity (10–100x), (d) Joules/bit
and cost/bit of data will need to fall by at least 100x, (e) (Perception of) 99.999%
availability, (f) (Perception of) 100% coverage, and (g) up to 10-year battery life for
low-power, machine-type devices. An important question may arise at this point:
What could users do on a network, which meets the 5G requirements mentioned
above that is not currently possible on an existing 3G/4G/4.5G networks? To find

32Apache Hadoop. http://hadoop.apache.org/, Accessed Oct. 2016.
33Apache Spark. http://spark.apache.org/, Accessed Oct. 2016.
34Apache Flink. https://flink.apache.org/, Accessed Oct. 2016.
35Apache Storm. http://storm.apache.org/, Accessed Oct. 2016.
36Apache Samza. http://samza.apache.org/, Accessed Oct. 2016.
37FP7 European Project – Mobile and wireless communications Enablers for the Twenty-twenty
Information Society (METIS).
38FP7 European Project – 5th Generation Non-Orthogonal Waveforms for Asynchronous Sig-
nalling (5GNOW), http://www.5gnow.eu/

http://hadoop.apache.org/
http://spark.apache.org/
https://flink.apache.org/
http://storm.apache.org/
http://samza.apache.org/
http://www.5gnow.eu/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 17

Delay

1ms

10ms

100ms

1000ms

<1 Mbps 1 Mbps 10 Mbps 100 Mbps > 1 Gbps

Bandwith
throughput

Fixed
Autonomous

driving
Augmented

reality
Tactile
internet

Virtual
reality

Multi-person
video call

Real time
gaming

Bi-directional
remote controlling

First responder
connectivity

Personal
cloudMonitoring

sensor networks Video
streaming

Wireless cloud
based office

Disaster
alert

Automotive
ecall Device

remote
controlling

Nomadic

On the go

Services that can
be delivered by
legacy networks
Services that could
be enabled by 5G
M2M connectivity

Fig. 1.3 Latency and bandwidth/data rate requirements for generic applications (Source: GSMA
Intelligence [32])

the answer of this question, potential use cases should be identified. Some of the
requirements identified for 5G can be enabled by existing 4G and/or other networks.
Figure 1.3 illustrates the latency and bandwidth/data rate requirements of the various
applications, which have been discussed in the context of 5G.

The emerging technologies such as cloud radio access network (C-RAN),
software-defined networking (SDN), network functions virtualization (NFV), and
edge computing (mobile-edge computing (MEC), fog computing) are the building
block for 5G, described in detail in the following.

1.3.2.1 Cloud Radio Access Network (C-RAN)

Cloud computing technology can be beneficial to radio access networks (RANs),
e.g., moving RAN functionality to the cloud computing infrastructure. In order
to provide mobile broadband Internet access to wireless users with high spectral
and energy efficiency, a cloud-based radio access network was envisioned, so-called
cloud radio access network (C-RAN) [33]. C-RAN is a mobile network architecture
where baseband resources are pooled from multiple base stations into centralized
baseband units (BBUs) pool. In fact, a C-RAN architecture exploits a combination
of virtualization, centralization, and coordination (radio coordination between cells
and bands) techniques, all of which interact with each other within the network.
Based on the functional splits between BBU and remote radio head (RRH), C-RAN
can be fully centralized or partial centralized [33].

18 B.P. Rimal and I. Lumb

Some of the major benefits of the C-RAN are as follows: reduce the network
deployment, energy consumption, and operation cost due to centralized maintenance
and sharing of infrastructure; improve system, mobility, and coverage performance
because of coordinated signal processing techniques (e.g., Coordinated Multi-Point
(CoMP) in LTE-Advanced (LTE-A) [34]); reduce backhaul traffic by offloading;
and enable better load balancing. As a result, mobile operators are able to deliver
rich wireless services in a cost-effective manner.

On the other hand, there are several open research issues to address in C-RAN
including high bandwidth requirement for fronthaul (link between BBU and RRH),
strict latency and jitter, low-cost transport network, techniques on BBU cooperation
(e.g., signal processing algorithms), virtualization techniques for baseband process-
ing pool, and utilization of computing resources (e.g., dynamic resource allocation)
in the cloud, just to name a few. Interested readers may refer to [33] and [35] for the
details on C-RAN.

1.3.2.2 Tactile Internet

The Tactile Internet enables precise haptic interaction not only machine-to-machine
but also human-to-machine relying on 1 ms round-trip latency combining with high
availability, ultra-reliability, and high security [36, 37]. Tactile Internet architecture
facilitates abstracting and virtualizing sensor/actuator functionalities as well as
network resources. The Tactile Internet brings together many disciplines such
as healthcare, education, robotics (e.g., industrial robots, service robots, remote-
controlled humanoid robots), manufacturing, industrial automation, sports, serious
games, and augmented and virtual reality, just to name a few.

Since light travels 300 km within 1 ms, the distance between a control server
and the point of tactile interaction can be 150 km, at most [38]. Therefore, to meet
the ultralow end-to-end latency and real-time response, Tactile Internet should rely
on edge computing (e.g., cloudlets, MEC, Fog computing), and content servers
should be located very close to the end users. Possibly such servers are deployed
at the base station of every cell, including many small cells (in heterogeneous
networks (HetNets)), and importantly any service requiring 1 ms latency has a need
for interconnection between operators; this interoperator interconnectivity must also
occur within 1 km of the end users [32]. This will likely require a substantial increase
in capital expenditure (CAPEX) spent on infrastructure for content distribution
and servers [32]. It is worth noting that existing interconnectivity points between
operators in 3G/4G networks are very sparse. Meeting 1 ms latency requirement of
the Tactile Internet in the era of 5G, there would be also a need of interconnection
between base stations (interconnectivity may work in urban areas, but what happens
in the case of rural areas?), which not only impact on the CAPEX as mentioned
above but also the topology of core network; especially existing mobility model
should be revisited.

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 19

1.3.2.3 Software-Defined Networking (SDN)

It is a new paradigm in networking (programmable networks), which advocates
separating the data plane and the control plane, and facilitates the design, delivery,
and operation of network services in a dynamic and scalable manner [39]. Since
SDN introduces a centralized approach to network configuration, network operators
do not have to configure all network devices individually. Key benefits of the
SDN include centralized control, simplified algorithms, commoditizing network
hardware, and standard application programming interfaces (APIs). OpenFlow
defined by Open Networking Forum39 is the main southbound API in SDN. Note
that there is no currently standardized API for the northbound interactions. A
detailed description of the SDN architecture is beyond the scope of this chapter,
and interested readers are referred to [39, 40].

SDN has applications in a wide range of networked environments. Importantly,
SDN is expected to reduce both capital expenditure and operational expenditures of
cloud service providers, enterprise networks, and data centers.

An overview of SDN and some important future research directions are summa-
rized in [41] as follows: controller and switch design, scalability and performance in
SDNs, controller-service interfacing, virtualization and cloud service applications,
information centric networking, and enabling heterogeneous networking with SDN.

1.3.2.4 Network Function Virtualization (NFV)

Network Function Virtualization (NFV) group of the ETSI [42] defined NFV
as follows: “NFV aims to transform the way that network operators architect
networks by evolving standard IT virtualization technology to consolidate many
network equipment types onto industry standard high volume servers, switches
and storage, which could be located in data centers, network nodes and in the
end user premises.” NFV is applicable to data plane and control plane in both
mobile and fixed networks. Some use cases of NFV include security functions, NGN
signaling, SLA monitoring functions, gateways, switching functions, and mobile
network functions (base station, mobility management entity (MME), radio network
controller (RNC), home subscribe server (HSS), packet data network gateway
(PDN-GW), serving gateway (SGW), carrier-grade network address translator
(CGNAT), and so on). Cloud technologies are the major driving force for NVF,
for instance, hardware virtualization (e.g., vSwitch). Indeed, NFV brings several
benefits to the telecommunications industry along with cloud computing. More
specifically key advantages of NFV are as follows:

• Reduced equipment costs and power consumption
• Availability of network appliance multi-version and multi-tenancy

39Open Network Foundation. https://www.opennetworking.org, Accessed Oct. 2016.

https://www.opennetworking.org

20 B.P. Rimal and I. Lumb

• Enables a wide variety of ecosystems and fosters openness.
• Enable network operators to reduce the maturation cycle
• Supports multi-tenancy

The building block of NFV architecture mainly consists of virtualized network
functions (VNFs – software implementation of network functions), NFV infrastruc-
ture (NFVI – virtual compute, storage, and network), and NFV management and
orchestration (life cycle management of resources and VNFs). The details of the
NFV reference architecture are beyond the scope of this chapter. Interested readers
are referred to [43].

Besides these benefits, there are some technical challenges that need to be
addressed, such as scalability, seamless integration of different appliances from
different vendors, resilience, orchestration of legacy and virtual network appliances,
network stability, and so on.

1.3.2.5 Augmented Reality, Virtual Reality, and Mixed Reality

An augmented reality is a system (e.g., Google Glass) that combines the real
world with computer-generated virtual objects and appears to coexist in the same
space as the real world. AR system registers real and virtual objects to each other
[44]. In virtual reality (VR) system, user is immersed in the computer-generated
virtual environments. The first VR device called head-mounted display (HMD) was
developed by Ivan Sutherland and his team in 1968 (also see his paper “The Ultimate
Display” [45]). The examples of recent VR devices include Google Cardboard,
Samsung Gear VR, Oculus Rift, HTC Vive, Sony PlayStation VR, Razer OSVR
HDK 2, and so on. Mixed reality is the combination of both AR and VR systems
(e.g., Microsoft’s HoloLens) that means the MR combines real and virtual objects
and information.

The AR, VR, and MR systems has a wide range of applications. For instance,
AR devices can help improve safety and efficiency in customer service and can be
used by doctors, while the VR devices are mainly designed for gaming. However,
application areas can be expanded from academic research through to engineering,
design, business, gaming (e.g., Pokémon Go), and entertainment. Since AR/VR/MR
devices have low computing, processing, and storage capabilities, the best way to
achieve good performance of the AR/VR/MR applications is to offload compute-
intensive tasks to the remote cloud or edge cloud.

There are several research directions in the AR/VR/MR systems. Among them,
performance benchmarking is very important. For instance, finding the relationships
among independent variables including field of view, image resolution, scene
content, and interactive control, using the presence and performance as dependent
variables, is still an open issue [46].

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 21

1.3.2.6 Network Slicing

Network slice is an end-to-end logically isolated network, where each slice owns
its control plane and data path. The slicing layer provides an abstraction between
the control and data plane as well as enforces strong isolation between slices. Users
pick which slice controls their traffic [47]. Indeed, slicing policy specifies resource
(bandwidth, topology, forwarding rules, etc.) limits for each slice. FlowVisor (i.e.,
OpenFlow controller) [48] is one of the examples of network slicing. 5G network
architecture is expected to provide network slicing feature – so-called 5G slice –
a 5G slice consists of 5G network functions and specific radio access technology
settings that are combined together for the specific use case [30].

Network slicing helps operators to manage and operate multiple virtual networks
over a shared physical network infrastructure. Since 5G network slicing may
involve the combination of different conventional and emerging network technolo-
gies (e.g., wired/wireless, different radio access networks, SDN, NFV), network
slicing poses new challenges in service instantiation and orchestration and resource
allocation/sharing.

1.3.2.7 Containerization

Although it was in principle possible to predict the disruptive impact of containers
5 years ago, it is not clear that anyone actually did. And that is not entirely
surprising, as the concept realized with significant success in Solaris Zones,40

for example, required various enhancements in the Linux kernel (e.g., cgroups,
namespaces) as implementation prerequisites. Interestingly in the context of this
chapter and indeed this book, the contemporary notion of containers was spun off an
internal project from within PaaS company dotCloud in France. Ultimately released
to open source in 2013, Docker immediately gained interest, especially following
the development of its libcontainer library written in the Go programming language,
which replaced the LXC execution environment about a year later. As even a cursory
search of Google Trends data emphatically demonstrates, interest in Docker41 has
seen nothing short of a meteoric rise over the past few years and, indeed, since the
publication of the first edition of this book. This interest is warranted and can be
substantiated on tactical as well as strategic grounds.

Tactically, containers allow applications and all of their dependencies to be
packaged, distributed, and executed on any modern Linux server. And although
containers have much in common with the virtual machines introduced earlier in this
chapter, they also have some significant differences. As Fig. 1.4 indicates, containers
share the host’s operating system, rather than require their own. Needing only the

40Solaris Zones: https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#
OPCUG426, Accessed Oct. 2016.
41Docker: https://www.docker.com/, Accessed Oct. 2016.

https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://www.docker.com/

22 B.P. Rimal and I. Lumb

Fig. 1.4 Architectural similarities and differences between containers and virtual machines

runtime provided by the Docker Engine,42 for example, lighter-weight containers
can be instantiated much more efficiently than can a VM that relies on its own
OS. Not only is this efficiency appealing in highly dynamic environments, lighter-
weight containers are also appealing from a resource management perspective – as
a given server can support many isolated containers – as opposed to just a few VMs.
Finally, the convenience of containers is responsible for increased portability from
development through to deployment and is thus considered significant enablers of
the DevOps movement.

From a strategic perspective, containerization is a key enabler for the develop-
ment of cloud-native applications. Along with an orientation around microservices
as well as dynamic scheduling, containerization permits cloud nativity to be
architected in at the outset, as opposed to being grafted on as some afterthought.
Under the auspices of the Cloud Native Computing Foundation (CNCF),43 container
clusters are already making use of open-source Kubernetes44 as “seed technology.”
CNCF is currently incubating a number of projects and promises to further make
tangible a number of cloud-native applications.

Although Docker in particular, and containers in general, continue to receive
a tremendous amount of interest and attention, it is important to temper this
enthusiasm through consideration of a number of concerns. Most importantly, and
as is often the case with disruptive technologies, security remains a concern when it
comes to containers – so much so – that some organizations run containers within
VMs! Security and networking challenges notwithstanding, there is also a degree

42Docker Engine: https://www.docker.com/products/docker-engine, Accessed Oct. 2016.
43Cloud Native Computing Foundation: https://cncf.io/, Accessed Oct. 2016.
44Kubernetes: http://kubernetes.io/, Accessed Oct. 2016.

https://www.docker.com/products/docker-engine
https://cncf.io/
http://kubernetes.io/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 23

of tension between some proponents of Docker and those who seek to establish
standards for containers (e.g., the Open Container Initiative (OCI).45 Finally, the
rapidly evolving ecosystem around containers is both broad and deep, and this
certainly creates challenges for those seeking to make future-proofed decisions for
enterprise adoption. And that’s quite an achievement for a technology that did not
really exist, in any significant way, when the previous edition of this book was
released some 7 years ago.

1.4 Conclusions

A networked society is a big vision of future information and communications
technology world, where everything will be connected and services and application
can be accessed anytime from anywhere. Indeed, the networked society is the
networks of everything (NoE), that is, beyond the upcoming 5G networks. That
will enhance the quality of people’s lives not only for information access but in
the wide range of sectors including healthcare, education, transportation, education,
and entertainment, just to name a few. This chapter has highlighted the new role
and scope of cloud computing for the networked society. A taxonomy of enabling
technologies of networked society was proposed, and each of them discussed in
a great detail. Many technical challenges and opportunities were identified. In
order to achieve a full spectrum of benefits of networked society, there is a long
journey that may also need new fixed/wireless technologies for long-term realization
of networked society. We may need a convergence or combination of different
technologies, shown in the proposed taxonomy that can support a wide variety of
applications and services. We hope that this chapter will help to understand a long
journey toward a networked society.

References

1. Rimal BP, Choi E, Lumb I (2009) A taxonomy and survey of cloud computing systems. In:
Proceedings of IEEE fifth international joint conference on INC, IMS and IDC, Aug 2009,
pp 44–51

2. Rimal BP, Jukan A, Katsaros D, Goeleven Y (2011) Architectural requirements for cloud
computing systems: an enterprise cloud approach. J Grid Comput 9(1):3–26

3. Manyika J, Chui M, Bughin J, Dobbs R, Bisson P, Marrs A (2013) Disruptive technologies:
advances that will transform life, business, and the global economy. McKinsey Global Institute,
report, May 2013

4. Rimal BP, Choi E (2012) A service-oriented taxonomical spectrum, cloudy challenges and
opportunities of cloud computing. Int J Commun Syst 25(6):796–819

45Open Container Initiative: https://www.opencontainers.org/, Accessed Oct. 2016.

https://www.opencontainers.org/

24 B.P. Rimal and I. Lumb

5. Rimal BP, El-Refaey MA (2010) A framework of scientific workflow management systems for
multi-tenant cloud orchestration environment. In: Proceedings of the 19th IEEE international
workshop on enabling technologies: infrastructures for collaborative enterprises (WETICE),
Larissa, June 2010, pp 88–93

6. Castells M (2000) Materials for an exploratory theory of the network society. Br J Soc 51(1):
5–24

7. Castells M (2011) The rise of the network society: the information age: economy, society, and
culture, vol 1. Wiley, Somerset

8. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for vm-based cloudlets in
mobile computing. IEEE Pervasive Comput 8(4):14–23

9. Ha K, Pillai P, Richter W, Abe Y, Satyanarayanan M (2013) Just-in-time provisioning for
cyber foraging. In: Proceedings of the 11th annual international conference on mobile systems,
applications, and services, MobiSys ’13, Taipei, June 2013, pp 153–166

10. Simanta S, Lewis GA, Morris E, Ha K, Satyanarayanan M (2012) A reference architecture
for mobile code offload in hostile environments. In: Proceedings of the IEEE/IFIP conference
on software architecture (WICSA) and European conference on software architecture (ECSA),
Helsinki, Aug 2012, pp 282–286

11. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the Internet of
things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing,
Helsinki, Aug 2012, pp 13–16

12. ETSI Industry Specification Group (ISG) (2014) Mobile-edge computing – introductory
technical white paper. In: ETSI, Sept 2014, pp 1–36

13. ETSI Industry Specification Group (ISG) (2016) Mobile edge computing (MEC); framework
and reference architecture, ETSI GS MEC 003 V1.1.1, Mar 2016, pp 1–36

14. International Telecommunication Union (2014) Common requirements of the Internet of
Things. Recommendation ITU-T Y.2066, June 2014

15. Evans D (2011) The Internet of Things how the next evolution of the Internet is changing
everything. In: Cisco Internet Business Solutions Group (IBSG) white paper, Apr 2011,
pp 1–11

16. IEEE (2011) IEEE guide for smart grid interoperability of energy technology and information
technology operation with the electric power system (EPS), end-use applications, and loads.
IEEE Std 2030-2011, Sept 2011, pp 1–126

17. Chourabi H, Nam T, Walker S, Gil-Garcia JR, Mellouli S, Nahon K, Pardo TA, Scholl HJ
(2012) Understanding smart cities: an integrative framework. In: Proceedings of 45th Hawaii
international conference on system science (HICSS), Maui, Jan 2012, pp 2289–2297

18. Harrison C, Eckman B, Hamilton R, Hartswick P, Kalagnanam J, Paraszczak J, Williams P
(2010) Foundations for smarter cities. IBM J Res Dev 54(4):1–16

19. Khan Z, Kiani SL (2012) A cloud-based architecture for citizen services in smart cities. In:
Proceedings of IEEE fifth international conference on utility and cloud computing (UCC),
Chicago, Nov 2012, pp 315–320

20. Yamamoto S, Matsumoto S, Nakamura M (2012) Using cloud technologies for large-scale
house data in smart city. In: Proceedings of the IEEE 4th international conference on cloud
computing technology and science (CloudCom), Taipei, Dec 2012, pp 141–148

21. Naphade M, Banavar G, Harrison C, Paraszczak J, Morris R (2011) Smarter cities and their
innovation challenges. Computer 44(6):32–39

22. Yufeng X, Baldine I, Chase J, Beyene T, Parkhurst B, Chakrabortty A (2011) Virtual smart grid
architecture and control framework. In: Proceedings of the IEEE international conference on
smart grid communications (SmartGridComm), Brussels, Oct 2011, pp 1–6

23. Rusitschka S, Eger K, Gerdes C (2010) Smart grid data cloud: a model for utilizing cloud
computing in the smart grid domain. In: Proceedings of the first IEEE international conference
on smart grid communications (SmartGridComm), Gaithersburg, Oct 2010, pp 483–488

24. Mohsenian-Rad A-H, Leon-Garcia A (2010) Coordination of cloud computing and smart
power grids. In: Proceedings of the first IEEE international conference on smart grid
communications (SmartGridComm), Gaithersburg, Oct 2010, pp 368–372

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 25

25. Cox M, Ellsworth D (1997) Managing big data for scientific visualization. In: ACM Siggraph,
Los Angeles, Aug 1997

26. McAfee A, Brynjolfsson E (2012) Big data. Harv Bus Rev 90(10):61–67
27. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun

ACM 51(1):107–113
28. Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M, Queseth O, Schellmann

M, Schotten H, Taoka H, Tullberg H, Uusitalo MA, Timus B, Fallgren M (2014) Scenarios
for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun
Mag 52(5):26–35

29. La Oliva AD, Perez XC, Azcorra A, Giglio AD, Cavaliere F, Tiegelbekkers D, Lessmann
J, Haustein T, Mourad A, Iovanna P (2015) Xhaul: toward an integrated fronthaul/backhaul
architecture in 5G networks. IEEE Wirel Commun 22(5):32–40

30. NGMN Alliance (2015) NGMN 5G white paper, Feb 2015, pp 1–125
31. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will

5G be? IEEE J Sel Areas Commun 32(6):1065–1082
32. GSMA Intelligence (2014) Understanding 5G: perspective on future technological advance-

ment in mobile. White paper, Dec 2014, pp 1–26
33. China Mobile Research Institute (2011) C-RAN: the road towards green RAN. White paper,

Oct 2011
34. Lee D, Seo H, Clerckx B, Hardouin E, Mazzarese D, Nagata S, Sayana K (2012) Coordinated

multipoint transmission and reception in LTE-advanced: deployment scenarios and operational
challenges. IEEE Commun Mag 50(2):148–155

35. Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2015)
Cloud ran for mobile networks – a technology overview. IEEE Commun Surv Tutor 17(1):405–
426. Firstquarter 2015

36. Fettweis G, Alamouti S (2014) 5G: personal mobile Internet beyond what cellular did to
telephony. IEEE Commun Mag 52(2):140–145

37. Fettweis GP (2014) The tactile Internet: applications and challenges. IEEE Veh Technol Mag
9(1):64–70

38. ITU (2014) The tactile Internet. ITU-T technology watch report, pp 1–24
39. Kim H, Feamster N (2013) Improving network management with software defined networking.

IEEE Commun Mag 51(2):114–119
40. Sezer S, Scott-Hayward S, Chouhan PK, Fraser B, Lake D, Finnegan J, Viljoen N, Miller

M, Rao N (2013) Are we ready for SDN? Implementation challenges for software-defined
networks. IEEE Commun Mag 51(7):36–43

41. Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti T (2014) A survey of software-
defined networking: past, present, and future of programmable networks. IEEE Commun Surv
Tutor 16(3):1617–1634. Third Quarter 2014.

42. ETSI Industry Specification Group (ISG) (2012) Network functions virtualisation (NFV),
white paper, Oct 2012, pp 1–16

43. ETSI Industry Specification Group (ISG) (2012) Network functions virtualisation (NFV);
architectural framework, ETSI GS NFV 002 V1.1.1, Aug 2012, pp 1–21

44. Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, MacIntyre B (2001) Recent advances in
augmented reality. IEEE Comput Graph Appl 21(6):34–47

45. Sutherland IE (1965) The ultimate display. In: Proceedings of the IFIP congress, New York
City, Aug 1965, pp 506–508

46. Duh HB-L, Lin JJW, Kenyon RV, Parker DE, Furness TA (2002) Effects of characteristics
of image quality in an immersive environment. J Presence: Teleoper Virtual Environ 11(3):
324–332

47. Feamster N, Motiwala M, Vempala S (2007) Path splicing with network slicing. In: Proceed-
ings of the ACM SIGCOMM HotNets, Nov 2007

48. Sherwood R, Gibb G, Yap K-K, Appenzeller G, Casado M, McKeown N, Parulkar G (2009)
Flowvisor: a network virtualization layer. OpenFlow switch consortium, technical report, TR-
2009-1, Oct 2009, pp 1–15

Chapter 2
Mirror Mirror on the Wall, How Do I Dimension
My Cloud After All?

Rafaelli Coutinho, Yuri Frota, Kary Ocaña, Daniel de Oliveira,
and Lúcia M.A. Drummond

2.1 Introduction

Clouds have already proven their utility and importance in commercial and scientific
domains over this decade [58]. Although most of its huge success is mainly due to
existing commercial providers (e.g., Amazon AWS,1 Google Cloud,2 IBM Cloud,3

Rackspace4 and Microsoft Azure5) and frameworks such as Hadoop [22, 32] and
Apache Spark [52], it opened a new dimension of possibilities for building complex
scientific applications that demand high performance computing (HPC) capabilities
to process large sets of scientific data and combinations of parameters based on
distributed resources [30, 58]. Until 2010, there was still a lot of questioning
whether clouds were suitable for HPC scientific applications, but several researches

1https://aws.amazon.com/
2cloud.google.com/
3http://www.ibm.com/cloud-computing/
4https://www.rackspace.com/
5https://azure.microsoft.com/

R. Coutinho (�)
Federal Center of Technological Education, Nova Iguaçu, Brazil
e-mail: rafaelli.coutinho@cefet-rj.br

Y. Frota • D. de Oliveira • L.M.A. Drummond
Fluminense Federal University, Niterói, Brazil
e-mail: yuri@ic.uff.br; danielcmo@ic.uff.br; lucia@ic.uff.br

K. Ocaña
National Laboratory of Scientific Computing, Petrópolis, Brazil
e-mail: karyann@lncc.br

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_2

27

https://aws.amazon.com/
cloud.google.com/
http://www.ibm.com/cloud-computing/
https://www.rackspace.com/
https://azure.microsoft.com/
mailto:rafaelli.coutinho@cefet-rj.br
mailto:yuri@ic.uff.br
mailto:danielcmo@ic.uff.br
mailto:lucia@ic.uff.br
mailto:karyann@lncc.br

28 R. Coutinho et al.

showed the advantages of cloud computing for science [2, 17, 30, 33]. In addition,
some approaches such as Magellan6 and Nebula7 offer to the scientific community
HPC-optimized Clouds.

Currently, traditional HPC resources are already available in cloud offerings
[47]. Applications from different domains of science can take advantage from these
resources since scientists commonly need to execute large-scale experiments that
require high processing power, memory, storage capacity, etc. to run [56]. Many
existing experiments are executed through a single application that encapsulates all
the computational steps of the experiment. On the other hand, many experiments
have a more complex structure, being composed of a set of programs and the data
dependencies among them, thus forming a scientific workflow [42, 56]. Scientific
workflows may be defined as an abstraction that models the experiment in terms
of activities (steps of the scientific process) connected by a dataflow. Scientific
workflows are managed by scientific workflow management systems, and they are
at the interface of scientists and computing infrastructures.

Standalone HPC applications are commonly executed by creating several parallel
jobs using a HPC scheduler such as PBS/TORQUE [23] or Condor [26]. On the
other hand, scientific workflows are managed by complex engines called Scientific
Workflow Management Systems (SWfMS) [56] that provide parallel capabilities for
managing and executing workflows in HPC environments. Both application types
(standalone and workflows) commonly rely on traditional HPC environments such
as clusters and grids [24] but many of them have already migrated to clouds [58].

One interesting example of scientific application migrated to clouds is found
in the genomic bioinformatics domain: The BLAST application [1]. BLAST is a
suite of programs that aims at finding regions of local similarity among biological
sequences (DNA or protein). It is used to generate alignments among a sequence,
referred to as a “query,” and sequences within a database, referred to as “subject.” In
fact, BLAST serves as basis for many bioinformatics protocols, scripts, pipelines,
and workflows [3, 36, 43, 45, 51, 54, 59], and much effort was spent in the last years
on optimizing this tool. One of the most interesting optimizations of BLAST is a
cloud-based version named CloudBLAST [41], which encapsulates in a VM (or in
a set of VMs) the parallelized BLAST using MapReduce [13] model. Experiments
showed that CloudBLAST presented speedups of 57 compared with 52.4 of its MPI
version running on 64 processors [41].

Although CloudBLAST proved that scientific applications that demand HPC
capabilities could benefit from clouds, there is a tricky factor that must be considered
before to start using CloudBLAST (or any other scientific application that needs to
execute in parallel in the cloud): what is the most suitable type and the amount
of resources that “fits” with my scientific problem? Differently from clusters and
grids, clouds are based on an “on demand” model, where resources are not available
a priori. They need to be deployed only when the user needs them. Also, since

6http://magellan.alcf.anl.gov
7http://nebula.nasa.gov

http://magellan.alcf.anl.gov
http://nebula.nasa.gov

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 29

the cloud follows a pay-as-you-go model, over- or underestimations of resources
can produce a negative impact in the scientific experiment both in terms of total
execution time and financial costs. However, it is not simple to estimate the
necessary amount of resources for a specific application.

Still considering CloudBLAST example, for each execution of the application,
the scientist firstly needs to estimate the necessary computing power based on the
provided input data (biological sequences) and parameters and then choose one (or
more) VM types to deploy based on a (commonly huge) set of VM types. This ad
hoc estimation can be tedious and error prone especially because cloud providers
such as Amazon AWS offer more than 30 VM types to be deployed, some of them
provide high parallel processing capability, others provide high storage capacity,
etc. Choosing the right type and the amount of VMs to deploy is a top priority for
scientists since under- or overestimations can made the experiment unviable, and/or
financial costs can spiral out of control if scientists make the wrong VM type choice.

This chapter addresses the problem of dimensioning the amount of VMs in
clouds for executing scientific applications that demand HPC and parallel capa-
bilities. The aim of this chapter is to present existing approaches that estimate in
a static or dynamic way the amount of VMs for several types of applications from
stand-alone applications to complex simulations modeled as scientific workflows.

This chapter is organized in five sections besides this introduction. Section 2.2
discusses about scientific applications, scientific workflows, and their HPC require-
ments. Section 2.3 presents the static cloud dimensioning and Sect. 2.4 the dynamic
dimensioning approach. Section 2.5 brings a survey on existing approaches for
cloud dimensioning, and, finally, Sect. 2.6 concludes this chapter and points some
future work.

2.2 Desiderata for HPC Applications and Scientific
Workflows

This section presents the main definitions regarding scientific applications and
scientific workflow concepts, which will be used along this chapter.

2.2.1 Scientific Applications

Many of the existing scientific applications are compute intensive and/or data
intensive [28]. This means that these applications demand HPC capabilities to
produce results in a timely manner. Even when scientists have access to HPC
environments such as HPC VMs, the execution of some applications may last for
several hours or days. Thus, it is fundamental to understand the HPC requirements of
scientific applications in order to discover if the chosen resource in the cloud is able
to offer the necessary computational power to execute the application. However, it

30 R. Coutinho et al.

is not trivial to generalize the HPC requirements for scientific applications since
there are several different types of applications and their categorization is very
complex.

One of the prominent solutions to categorize scientific applications is proposed
by Colella [7], which categorized seven computational methods that he believed to
be the basis of most scientific applications in science and engineering. In [7] the
“Seven Dwarfs” of scientific computing is proposed. Each Dwarf is associated to
one type of scientific applications. They represented entire families of applications
with common computational properties. After the work of Collela, the parallel
computing team at the University of California at Berkeley extended the list for
13 Dwarfs, as follows:

1. Dense linear algebra
2. Combinational logic
3. Sparse linear algebra
4. Graph traversal
5. Spectral methods
6. Dynamic programming
7. N-body methods
8. Backtrack and branch-and-bound
9. Structured grids

10. Graphical models
11. Unstructured grids
12. Finite state machines
13. MapReduce

Some works use the Dwarfs characterization to check if they are suitable for
cloud computing environments. Examples using Dwarfs to predict performance and
analyze cloud suitability are [21, 40, 48]. These papers showed that clouds provide
a suitable environment for executing applications that demand HPC capabilities,
since they provide the necessary processing power and storage that are required by
those categories of applications. However, how to choose the right type of resource
and the amount to deploy for those applications remains an open, yet fundamental,
challenge.

2.2.2 Computer-Based Scientific Experiments

Computer-based scientific experiments are composed of complex scientific appli-
cations that consume and produce large datasets and allocate huge amounts of
computational resources [42]. A computer-based scientific experiment follows a
specific life cycle [42], which presents three main phases that describe the exper-
iment from its conception, implementation until its final results, where provenance
[25] is a key issue to promote the integration: (i) composition - deals with the
experiment configuration steps as defining the activity scope, choosing the adequate

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 31

scientific application; (ii) execution - focuses on the distribution and monitoring
programs and data in a computational environment; and (iii) analysis - focuses
on evaluating results from scientific experiments as whole, including steps as data
visualization, mining results, or querying provenance databases. These computer-
based experiments are commonly modeled as scientific workflows, which are
explained in the next subsection.

2.2.3 Scientific Workflows

A scientific workflow is an abstraction that models a set of activities (i.e., program
invocations) connected through a dataflow. Scientific workflows are commonly
represented as a graph where each node is associated to the invocation of a program
and the edges are data dependencies among programs [14, 56]. Scientific workflows
can be managed by Scientific Workflow Management Systems (SWfMSs), such
as Kepler [37], Taverna [61], Pegasus [14], SciCumulus [16], and Swift/T [62].
SWfMSs allow for defining, executing, and monitoring workflow execution. Most
of existing SWfMSs also collect provenance [25], that is, the historical information
about the experiment and can be used for reproducibility and data curation. SWfMSs
have been successfully used in several domains of science such as chemistry,
physics, bioinformatics, oil & gas, and astronomy. Nowadays, several scientific
workflows are large scale, since they may process many TBs of data [28], thus
requiring parallel execution in HPC or HTC environments, such as clouds. Also,
since these workflows are composed of applications that demand HPC capabilities,
they also demand HPC environments to run in a timely manner. Thus, the problem
of dimensioning the amount of resources in the cloud is also fundamental for cloud-
based scientific workflows.

2.3 Static Cloud Dimensioning

Vaquero et al. [58] cite various different objectives for cloud computing. Despite
the fact that most of these objectives are important, the focus of this chapter is on
the infrastructure-as-a-service model (IaaS), where scientist that wants to run large-
scale applications needs computing resources (VMs) for a specific amount of time
and pays only what they use. However, deploying the exact number of VMs for a
scientific application execution is a hard task because it is not trivial for scientists to
estimate the time needed for an application to execute, the size of the files generated,
and the associated transfer times. As a matter of fact, if the amount of resources to
be deployed is overestimated or underestimated, it may produce a high financial
cost of the execution or a negative impact on the performance of applications. This
deployment is a complex task because cloud providers commonly have a great
number of VM types (e.g., computer and GPU clusters, micro, high performance

32 R. Coutinho et al.

Time
constraints

Financial
constraints

Scientific workflow
specification

Cloud
Provider

VM

VM

VM

VM

VM

VM

Fig. 2.1 VM allocation scenario [8]

CPU, etc.), where each resource is associated with a performance characteristic and
a financial cost, designed to reach the requirements of all kind of users. In this
scenario, clients (users/scientists) have to decide the type and the amount of VMs
they should deploy with the objective to minimize financial cost or execution time
(or both). Figure 2.1 illustrates this scenario, where users pay for a specific set of
VMs to a cloud provider, in order to execute their application. On the other hand, the
provider offers a group of VM types to users. To prevent a cloud environment with
an over- or an under-dimensioning, the user needs to use some strategy to allocate
the VMs in an optimal or at least a near-optimal configuration. One type of strategy
is the static dimensioning. In this type of dimensioning, all the deployment plan
is produced before the execution of the application or the workflow. It allows for
optimizing the deployment plan, but it is susceptible to performance variations in
the cloud VMs.

2.3.1 Mathematical Formulation

The VM allocation problem described in the last section can be described as the
following mathematical formulation. Let P be the set of available VM types. A set
of users’ requirements such as the maximum execution time TM , memory capacity
MC, maximum financial cost CM , disk storage, DS and a processing demand of Gf

Gflops are defined. Similarly, each VM type p 2 P has a financial cost cp (per period
of time) and a set of characteristics such as storage capacity dp, amount of memory,

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 33

Table 2.1 Clouds
environment notations [10]

Notation Description

P The set of available VM types

CM The maximum user financial cost

TM The maximum user execution time

DS The disk storage required by the user

MC The amount of memory required by the
user

Gf The processing power required by the user

cp The financial cost of hiring the VM of
type p for one period of time

dp The disk storage available in VM of type p

mp The amount of memory available in VM
of type p

gp The processing power available in VM of
type p

NM The limit of allocated VM that a single

user can hire in each period of time

mp and a processing power of gp Gflop per period of time (Gflopt). Furthermore,
cloud providers limit the number of VMs that each user can allocate per period of
time. Table 2.1 describes the used notation for the problem.

A binary variable xpit is defined for each p 2 P, i 2 f1; : : : ; NMg and t 2 T D

f1; : : : ; TMg, such that xpit D 1 if and only if VM i of type p is allocated (hired) at
time t, otherwise xpit D 0. Also, consider makespan variable tm as the last time that
a VM was allocated by the user. This scenario can be formulated as following:

(CC-IP) min

0
@˛1

X
p2P

NMX
iD1

X
t2T

cpxpit C ˛2tm

1
A (2.1)

subject to
X
p2P

NMX
iD1

X
t2T

cpxpit � CM (2.2)

X
p2P

NMX
iD1

dp xpit � DS xp0i0t; 8t 2 T; 8p0 2 P;

8i0 2 f1; : : : ; NMg (2.3)

X
p2P

NMX
iD1

mp xpit � MC xp0i0t; 8t 2 T; 8p0 2 P;

8i0 2 f1; : : : ; NMg (2.4)

34 R. Coutinho et al.

X
p2P

NMX
iD1

X
t2T

gpxpit � Gf (2.5)

X
p2P

NMX
iD1

xpit � NM; 8t 2 T (2.6)

tm � t xpit; 8t 2 T; 8p 2 P;

8i 2 f1; : : : ; NMg (2.7)

xpitC1 � xpit; 8t 2 T; 8p 2 P;

8i 2 f1; : : : ; NMg (2.8)

xpiC1t � xpit; 8t 2 T; 8p 2 P;

8i 2 f1; : : : ; NM � 1g (2.9)

xpit 2 f0; 1g; 8t 2 T; 8p 2 P;

8i 2 f1; : : : ; NMg (2.10)

tm 2 Z (2.11)

where .˛1 C ˛2/ D 1.
The objective function (2.1) pursues both the minimization of financial costs and

total execution time (makespan). The parameters ˛1 and ˛2 define the weight of
each one of the objectives (defined by the user). Constraints (2.2) express that the
maximum user financial cost should not be exceeded. Inequalities (2.3) and (2.4)
state that there is enough memory and disk storage to meet the user requirements in
each time quantum. In a similar way, inequalities (2.5) enforce that the processing
power of the hired VMs is large enough to satisfy the user application. Constraints
(2.6) rule that the number of hired VMs is bound by the cloud providers limit while
inequalities (2.7) ensure that makespan variable tm is limited by the last time a VM
was hired. Constraints (2.8) guarantee continuous hiring periods (i.e., if a VM is
hired at time t C 1, then it must also be hired at time t). Furthermore, inequalities
(2.9) are responsible to eliminate symmetrical solutions. Finally, inequalities (2.10)
and (2.11) define the variables domain.

2.3.2 Federated Clouds Scenario

Besides executing stand-alone applications or workflows in single provider compute
clouds, we can also explore federated cloud scenario. A federated cloud is a group
of several clouds that are put together to meet the user needs. According to Buyya
et al. [4], cloud providers have covered many regions of the planet with data centers

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 35

in order to provide reliability and redundancy for the users. Especially for users
interested in executing their applications in parallel, the scenario of federated clouds
is interesting in at least three main points: (i) when the user reaches the limit of VMs
that can be allocated in just one provider, (ii) to avoid costly data transfers between
regions, and (iii) when the hired provider does not have any more available VMs
and then needs to rent the resources from another provider.

In this new scenario, in order to take into account the execution of parallel
applications in federated clouds, we extended formulation (CC-IP) to consider new
characteristics such as communication costs between different providers. In order to
represent this new scenario, some additional notation is needed.

Let q be the number of cloud providers and Pj be the set of available VM types
by provider j, such P D P1 [P2 [: : : [Pq is the family of all VM types from
all providers. In this new environment, each VM has a new communication cost
�!c pip0i0 representing the transfer cost from VM i of type p to another VM i0 of type
p0. We consider that �!c pip0i0 D .ucp C dcp0 C sc/ � s, if p and p0 belong to different
providers, or �!c pip0i0 D csp � sizedata, otherwise, where ucp is the cost to upload
data from a VM of type p, dcp0 is the cost to download data to a VM of type p0, sc
is the cost to store the transferred data, csp is the communication cost between VMs
of the same type in the same provider, and s is the average size of the transmitted
data. Furthermore, let Nj

M be the limit of VMs that a single user can hire in each
provider j and in each quantum of time. We also define that Pr.p/ stands for the
provider index of VM p 2 P. Therefore, two new binary variables are presented: ypi

for each p 2 P, i 2 f1; : : : ; NPr.p/
M g , such that ypi D 1 if and only if VM i of type

p is hired, or ypi D 0, otherwise, and �!z pip0i0 for each p; p0 2 P, i 2 f1; : : : ; NPr.p/
M g,

i0 2 f1; : : : ; NPr.p0/
M g, such that �!z pip0i0 D 1 if and only if ypi�yp0i0 D 1, or �!z pip0i0 D 0,

otherwise. Table 2.2 expand the notation used in (CC-IP).

Table 2.2 Notations for federated clouds environment [10]

Notation Description

Pj The set of available VM types offered by provider j

P P D fP1 [P2 [: : :[Pqg

Nj
M The limit of allocated VM that a single user can hire in each period of time in

provider j

Pr.p/ Provider index of VM p 2 P
�!c pip0 i0 The communication cost from a VM i of type p. To another VM i0 of type p0

ucp The upload cost from a VM p

dcp The download cost to a VM p

sc The storage cost of the transmitted data

s The average size of the transmitted data

csp The communication cost of VM type p with other. VM types of the same cloud
provider

36 R. Coutinho et al.

Thus, we increase the previous formulation (CC-IP) by adding
X
p2P

X
p02P

N
Pr.p/
MX
iD1

N
Pr.p0/
MX
i0D1

�!c pip0i0
�!z pip0i0 to the objective function (2.1), dropping constraint (2.6), and inserting

the following inequalities to (CC-IP):

X
p2Pj

N
Pr.p/
MX
iD1

xpit � NPr.p/
M ; 8j D 1 : : : q; 8t 2 T (2.12)

ypi � �!z pip0i0 ; 8p; p0 2 P;

8i 2
n
1; : : : ; NPr.p/

M

o
; and i0 2

n
1; : : : ; NPr.p0/

M

o
(2.13)

yp0i0 � �!z pip0i0 ; 8p; p0 2 P;

8i 2
n
1; : : : ; NPr.p/

M

o
; and i0 2

n
1; : : : ; NPr.p0/

M

o
(2.14)

ypi C yp0i0 � 1 � �!z pip0i0 ; 8p; p0 2 P;

8i 2
n
1; : : : ; NPr.p/

M

o
; and i0 2

n
1; : : : ; NPr.p0/

M

o
(2.15)

X
t2T

xpit � ypijTj; 8p 2 P;

8i 2
n
1; : : : ; NPr.p/

M

o
(2.16)

In this generalized formulation, denoted as CC-IP-fed, inequalities (2.12) ensure
that the number of hired VMs is bound by each cloud providers limit (equivalent
to constraint (2.6)). The constraints (2.13), (2.14), (2.15), and (2.16) rule that
the financial cost derive from the communication between different providers is
considered. Note that by constraints (2.13), (2.14), and (2.15), whenever xpit D 1

for some t, this means that ypi D 1.

2.3.3 A Heuristic Approach

In [10], a greedy randomized adaptive search procedure (GRASP), named GraspCC
[8], is introduced to tackle the problem of VM allocation in federated clouds. Each

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 37

GraspCC iteration consists of constructing an initial solution by method coCC and
then applying a local search procedure, denoted lsCC, to find a local optimum.

We define a solution f.p1; i1; t1/; .p2; i2; t2/; : : :g as a set of 3�tuples .p; i; t/
indicating that VM i of type p was hired on period t. We denote S the set of all
feasible solutions (i.e., solutions that respect the user’s requirements). We also define
tm.s/ D max.p;i;t/2s t as the last time period that a VM was hired in a feasible solution
s 2 S. Furthermore, we define a cost function F W S ! R, which define the solution
quality. Note that function F tries to minimize financial and time costs (2.17), while
(2.18) penalizes the infeasibility regarding maximum time and maximum financial
cost. The terms �1 and �2 are coefficients of penalty related to the violation of time
and cost requirements, respectively.

F.s/ D

0
@˛1

0
@ X

.p;i;t/2s

cp C
X

.p;i;t/2s

X
.p0;i0;t0/2s

cpip0i0

1
A C ˛2tm.s/

1
A (2.17)

C �1.maxf0; tm.s/ � TMg/ C �2

0
@max

8<
:0;

X
.p;i;t/2s

cp � CM

9=
;

1
A (2.18)

Algorithm 1: GraspCC

1 Input: P; CM ; TM ; DS; MC; Gf ; ˛1; ˛2; �1; �2

2 Output: solution s�;
3 s� D ;; F.s�/ D1; i D 0;
4 while i � iter
5 s D coCC.P; CM ; TM ; DS; MC; Gf ; ˛1; ˛2; �1; �2/;
6 s D lsCC.s; P; CM ; TM ; DS; MC; Gf ; ˛1; ˛2; �1; �2/I
7 if .F.s/ < F.s�// and .s is feasible/

8 s� D s; i D 0;
9 end if

10 i D iC 1I
11 end while
12 return s�I

The GraspCC algorithm is presented in algorithm 1. The value iter represents the
maximum number of iterations without improvement. First, the construction phase
is performed by algorithm coCC in a random and greedy way (Algorithm 2). In
this method, a solution is constructed by adding tuples, in each iteration, to the first
period of time. The tuples are built from the ordered set LP where VMs p 2 P
appears in descending order of financial cost and processing power (˛1cp C ˛2gp).
The algorithm randomly chooses VM p from the ˇ first VMs in LP until the current
solution satisfies the disk and memory requirements for t D 1. Furthermore, in lines
(9)–(12), the solution is replicated in all remaining time periods until the demand for
processing power is satisfied. Note that the maximum time and maximum financial

38 R. Coutinho et al.

cost requirements are not necessarily met in this initial solution, but this strategy is
important to achieve diversity in the initial solution.

Algorithm 2: coCC

1 Input: P; CM ; TM ; DS; MC; Gf ; ˛1; ˛2; �1; �2

2 Output: solution s;
3 s D ;; LP D Order.P/;
4 while .

P
pj.p;i;1/2s dp < DS/ or .

P
pj.p;i;1/2s mp < MC/

5 Choose VM p (index i) randomly among the first ˇ elements of LP

6 s D s[f.p; i; 1/gI
7 end while
8 t D 2I
9 while .

P
pj.p;i;t/2s gp < Gf /

10 s D
S

.p;i;1/2s.p; i; t/ [sI
11 t D tC 1I
12 end while
13 return s

The initial solution s, provided by coCC, may be improved by a local search
procedure denoted lsCC (Algorithm 3). First, we define neighborhood Nr.s/ as the
set of solutions reached by exchanging r tuples in solution s by another r tuples
that does not belong to s. These movements are executed extensively with the first
improvement strategy. The lsCC method, at each iteration, replaces the current
solution s by that with minimum cost function F in its neighborhood Nr.s/. This
improving phase leads to a sequence of movements toward a local optimum solution,
until no better solution is reached by the neighborhood. A neighborhood of r � 2

was used in this work, since the complexity of neighborhoods for values of r > 2 is
impractical.

Algorithm 3: lsCC

1 Input: s; P; CM ; TM ; DS; MC; Gf ; ˛1; ˛2; �1; �2

2 Output: solution s;
3 while (s improving)
4 for all s 2 .N1.s/[N2.s//
5 if F.s/ < F.s/
6 s D s
7 end if
8 end for
9 end while

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 39

2.3.4 Experimental Results for Static Cloud Dimensioning

Coutinho et al. [10] previously compared the GraspCC-fed and the CC-IP-fed
in terms of quality of the solution and total execution time using simulation. In
these experiments, CPLEX 12.4 [29] was the chosen optimization software package
to solve the CC-IP-fed formulation. The input data of the experiments was real
performance data from a large range of applications as stated in [10] and VM types
available in commercial clouds such as Amazon EC2, Google Cloud Platform, and
Microsoft Azure (small, medium, large, xlarge, and 2xlarge [10]).

All results are presented in Table 2.3. In this experiment we used the following
parameter values: �1 D 1000 and �2 D 1000, ˇ D maxp2P.Nj

M/, and iter D 40.
The chosen ˛1 and ˛2 represent the cases where variables are removed from the
objective function (˛1 D 0 or ˛2 D 0) and when all variables are considered
(˛1 ¤ 0 and ˛2 ¤ 0). The maximum number of VMs Nj

M in each provider j is
the same defined by Amazon EC2.8 The values of other parameters ˇ, �1, �2, and
iter were empirically obtained as it is usually done in the parameter settings of
metaheuristics. Both objectives of the cost function were normalized due to their
distinct range values. In Table 2.3, the first column represents the application name.
The next four columns represent the best feasible solution found by CC-IP-fed
and its associated costs (not normalized): financial costs for VM deployment and
communication and its execution time, respectively. The sixth column presents the
execution time in seconds for CC-IP-fed to solve the problem. Analogously, the
next five columns represent the same characteristics for the best solution found by
GraspCC-fed. Finally, the last two columns present the chosen values for ˛1 and ˛2

in the cost function.
For some instances, a considerable time for CC-IP-fed to prove the optimality

of the solution was necessary. It is worth noticing that in these experiments, we set
a maximum execution time restriction of 24 h. The exact method was not able to
find the optimal solution in instances marked with (*) in Table 2.3 following this
time restriction. Note that GraspCC-fed presented an improvement of the execution
time, in average 99:35% less than the execution time of CC-IP-fed. Furthermore,
the GraspCC-fed heuristic found a better or equal solution than the CC-IP-fed
formulation in most instances (which are highlighted in the Table 2.3), presenting a
percentage difference from the best feasible solution found by CC-IP-fed of 5:43%,
in average.

Despite the GraspCC-fed does not find a better solution than the CC-IP-fed for
some instances, the needed time to execute it is always smaller than presented by
the CC-IP-fed. For example, in terms of quality of the solution, GraspCC-fed found
a solution 46:67% far from the formulation for the instance cms-1000 with ˛1 D 0

and ˛2 D 1. However, in terms of execution time, GraspCC-fed needed only 57 s to
obtain this solution, while the formulation needed 7.7 h. If this execution time was

8https://aws.amazon.com/ec2/faqs/

https://aws.amazon.com/ec2/faqs/

40 R. Coutinho et al.

Ta
bl

e
2.

3
R

es
ul

ts
of

G
ra

sp
C

C
-f

ed
m

et
ah

eu
ri

st
ic

an
d

C
C

-I
P-

fe
d

m
at

he
m

at
ic

al
fo

rm
ul

at
io

n
us

in
g

C
PL

E
X

[1
0]

In
st

an
ce

s

C
C

-I
P-

fe
d

G
ra

sp
C

C
-f

ed

˛
1

˛
2

So
lu

tio
n

va
lu

e
So

lu
tio

n
va

lu
e

Fu
nc

tio
n

Fi
na

nc
ia

lc
os

ts
T

im
e

To
ta

l
Fu

nc
tio

n
Fi

na
nc

ia
lc

os
ts

T
im

e
To

ta
l

C
os

t
H

ir
in

g
C

om
m

un
ic

at
io

n
tim

e
(s

)
C

os
t

H
ir

in
g

C
om

m
un

ic
at

io
n

tim
e(

s)

nu
g2

2-
sb

b
0.

00
41

3.
52

0.
21

1
82

5.
00

0.
00

41
3.

52
0.

21
1

62
.5

2
1

0

nu
g2

4-
sb

b
*0

.0
03

0
9.

73
1.

06
1

86
,4

45
.0

0
0.

00
30

9.
67

1.
06

1
25

5.
97

1
0

nu
g2

5-
sb

b
0.

00
39

17
.1

0
0.

15
1

21
,5

09
.0

0
0.

00
39

17
.1

0
0.

15
1

53
2.

68
1

0

nu
g2

8-
sb

b
*0

.0
08

5
38

.7
5

6.
46

1
86

,4
93

.0
0

0.
00

78
40

.8
0

0.
60

1
59

2.
98

1
0

nu
g3

0-
sb

b
*0

.0
15

0
81

.0
8

11
.8

6
2

86
,4

69
.0

0
0.

01
50

81
.8

3
10

.8
6

2
46

6.
43

1
0

cm
s-

10
00

0.
09

62
16

9.
56

0.
00

3
10

,5
94

.0
0

0.
13

16
23

2.
02

0.
00

4
12

0.
92

1
0

cm
s-

12
50

0.
17

82
31

4.
02

0.
00

5
80

,4
72

.0
0

0.
20

78
36

6.
34

0.
00

6
10

0.
16

1
0

cm
s-

15
00

*0
.4

51
9

79
6.

58
0.

00
11

86
,4

38
.0

0
0.

38
76

68
3.

20
0.

00
10

14
.6

1
1

0

m
od

ge
n-

re
al

0.
00

28
1.

98
0.

01
3

44
.0

0
0.

00
28

1.
98

0.
01

2
6.

03
1

0

ra
xm

l-
re

al
0.

00
28

1.
98

0.
00

4
44

.0
0

0.
00

28
1.

98
0.

00
4

7.
07

1
0

nu
g2

4-
sb

b
0.

02
08

37
.1

7
18

.9
1

1
36

37
.0

0
0.

02
08

16
.8

3
6.

65
1

12
2.

69
0

1

nu
g2

5-
sb

b
0.

01
67

36
.1

2
28

.9
7

1
49

20
.0

0
0.

02
00

24
.7

1
9.

62
1

18
2.

51
0

1

nu
g2

8-
sb

b
0.

01
39

49
.1

4
27

62
.9

5
1

72
,3

59
.0

0
0.

01
39

42
.5

8
4.

88
1

22
4.

87
0

1

nu
g3

0-
sb

b
0.

02
38

10
4.

24
23

.7
2

2
72

,4
28

.0
0

0.
02

38
10

2.
20

11
.7

2
2

23
9.

63
0

1

cm
s-

10
00

0.
12

50
18

2.
22

0.
00

3
27

,5
58

.0
0

0.
18

33
25

6.
61

0.
00

4
56

.9
7

0
1

cm
s-

12
50

0.
20

83
34

3.
42

0.
00

5
20

,0
81

.0
0

0.
24

17
37

1.
83

0.
00

6
52

.3
2

0
1

cm
s-

15
00

0.
41

67
68

3.
20

0.
00

10
31

,8
15

.0
0

0.
41

67
68

3.
20

0.
00

10
14

.5
4

0
1

m
od

ge
n-

re
al

0.
04

17
2.

88
0.

05
1

61
.0

0
0.

04
17

2.
49

0.
09

1
3.

24
0

1

ra
xm

l-
re

al
0.

04
17

5.
76

45
.7

0
1

61
.0

0
0.

04
17

2.
54

0.
05

1
3.

26
0

1

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 41

nu
g2

2-
sb

b
0.

04
37

3.
52

0.
21

1
62

1.
00

0.
04

37
3.

52
0.

21
1

74
.6

0
0.

5
0.

5

nu
g2

4-
sb

b
0.

01
19

9.
67

1.
06

1
90

9.
00

0.
01

19
9.

67
1.

06
1

30
8.

15
0.

5
0.

5

nu
g2

5-
sb

b
0.

01
03

17
.1

0
0.

15
1

81
8.

00
0.

01
03

17
.1

0
0.

15
1

70
9.

39
0.

5
0.

5

nu
g2

8-
sb

b
0.

01
08

40
.8

0
0.

60
1

12
,5

25
.0

0
0.

01
08

40
.8

0
0.

60
1

98
8.

12
0.

5
0.

5

nu
g3

0-
sb

b
*0

.0
19

3
81

.0
8

11
.0

6
2

86
,5

23
.0

0
0.

01
95

84
.0

6
10

.2
5

2
85

7.
82

0.
5

0.
5

cm
s-

10
00

0.
11

06
16

9.
56

0.
00

3
56

,8
79

.0
0

0.
14

13
21

1.
65

0.
00

4
20

0.
12

0.
5

0.
5

cm
s-

12
50

*0
.1

97
5

32
9.

00
0.

00
5

86
,4

22
.0

0
0.

22
81

36
3.

34
0.

00
6

10
8.

70
0.

5
0.

5

cm
s-

15
00

0.
40

21
68

3.
20

0.
00

10
64

,9
28

.0
0

0.
40

21
68

3.
20

0.
00

10
14

.6
9

0.
5

0.
5

m
od

ge
n-

re
al

0.
02

22
1.

98
0.

01
1

72
.0

0
0.

02
22

1.
98

0.
01

1
7.

37
0.

5
0.

5

ra
xm

l-
re

al
0.

02
22

1.
98

0.
01

1
80

.0
0

0.
02

22
1.

98
0.

01
1

7.
66

0.
5

0.
5

A
ve

ra
ge

0.
07

78
12

1.
81

83
.4

2
2.

66
28

,7
20

.6
3

0.
08

23
12

5.
20

1.
70

3.
01

18
6.

90

42 R. Coutinho et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

A
m

ou
nt

 o
f C

lo
ud

 A
ct

iv
iti

es

Time (minutes)

ModelGenerator and RAxML

ModelGenerator and RAxML

Fig. 2.2 Execution of ModelGenerator and RAxML (from SciPhylomics) in the Amazon EC2 and
the Microsoft Azure using VMs given by the GraspCC-fed [10]

added to the overall needed time to find a solution, the total time using GraspCC-fed
and CC-IP-fed would be 4:02 and 10:7 h, respectively. Thus, even when GraspCC-
fed does not find the optimal solution, it can be considered an attractive alternative
to solve the VM allocation problem in federated clouds.

Next, we present the results of a real execution of a workflow in a federated
cloud scenario dimensioned using GraspCC-fed. In order to study the feasibility
of this approach in federated cloud scenarios, we consider two commercial clouds
(Amazon EC2 and Microsoft Azure) in the execution of the bioinformatics work-
flow SciPhylomics [46]. We also use the scientific workflow system SciCumulus
[16], adapted to work with federated clouds (SciCumulus-fed [10]).

Figure 2.2 presents the SciPhylomics executions using the GraspCC-fed solu-
tions of the instances modgen-real and raxml-real of the Table 2.3 with ˛1 D 0:5

and ˛2 D 0:5. These values were used because it is more fair to define the same
weights for time and financial costs. These executions suggested that 1 xlarge VM
and 1 2xlarge VM from Amazon and 1 xlarge VM from Azure should be allocated
per 1 h for each application, Model Generator and RAxML. Figure 2.2 presents the
amount of tasks (axis Y) executing in a given period of time (X axis). We can state
that GraspCC-fed indicated that three VMs are needed (47 virtual cores) for 1 h
with financial cost of $1:99 for each application, totaling 2 h and a financial cost of
$3:98, but the real execution using 3 VMs lasted for around 4 h (100% more) with an
approximated financial cost of $7:96. This behavior was due to problems identified
in the adapted version of the workflow engine (SciCumulus-fed). Although we have
47 virtual cores available for execution, SciCumulus was not able to benefit from
the entire set of available VMs during the entire execution course of the workflow.
This happened because we are using S3fs9, and we face a severe delay when the

9https://github.com/s3fs-fuse/s3fs-fuse

https://github.com/s3fs-fuse/s3fs-fuse

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 43

data files are being synchronized among all VMs in the virtual cluster. This way,
in the beginning of the workflow execution, several tasks were not ready to be
executed since input data files were not available to be processed. SciCumulus-
fed then waits until each data file is available in all VMs before starting a specific
task.

This way, the number of tasks that are executing until 80 min is reduced, and
many cores remain idle. Another problem was related to the scheduling mechanism
of SciCumulus. SciCumulus is based on a cost model to distribute tasks in the
several VMs. This cost model considers performance issues, financial cost, and
reliability, but it was designed for a single-provider cloud. Since we are executing
in different clouds, communication issues impact more than execution time of the
task for several tasks. This way, SciCumulus scheduled tasks without taking into
account the locality of these VMs, which requested more messages to be exchanged
and impacted on the overall performance.

2.4 Dynamic Cloud Dimensioning

Static dimensioning of VMs may provide good estimations of the types and number
of VMs to be used, but, in some cases, the corresponding estimated execution time
and memory usage are not close to the real ones. Some applications may demand
different computing power and memory usage along their executions, and the a
priori estimation of the amount of VMs can be not suitable for them. Generally,
the static dimensioning considers only the total demand of the application, not
treating those usual variations during its execution. Moreover, clouds can be
considered changing environments, where processing capacity and network speed,
for example, can suffer performance variations along the application execution.
Thus, the estimated amount of VMs may be not suitable when those performance
and can lead to efficiency losses of applications. Then, it is important that the VM
dimensioning approach monitors all those changes in the cloud environment and
adapts it when necessary.

In order to solve that problem, several works propose the dynamic dimensioning
of cloud computing. Dynamic dimensioning involves typically two phases. The
first one is the monitoring of VMs, when data related to VM usage are collected.
In the second phase, if the application or the environment suffers changes, that
can impact application performance negatively or result in VM time waste; some
actions are triggered to improve the application efficiency with the best usage
of VMs. Those actions include the redimensioning of the number (or types) of
VMs and the balancing of tasks not yet executed in that new scenario. In case
of redimensioning, new VMs can be instantiated or eliminated, considering the
demands of the application and the attendance quality given by the current cloud
configuration.

In the last section, it was shown that the static dimensioning GraspCC provided
good estimations of VMs and the corresponding time executions in average.
However, in some cases, the obtained real execution time was not close to the

44 R. Coutinho et al.

estimated one. Particularly, the SciPhylomics workflow presented a real execution
time 100% higher than the estimated one. In this case, the estimation was not
suitable for the entire workflow because the number of parallel activities varied a
lot and there was a particular activity that has to be executed before several others,
limiting the parallelism during the execution a lot.

In [11], an extension of the previously proposed static approach is introduced.
That approach, named dynamic dimensioning of cloud computing framework
(DDC-F), is composed by two modules: (i) a monitoring module and (ii) a virtual
machine dimensioning module. The first one monitors the VM, collecting data
related to CPU and memory usage. The second module recalculates the number of
VMs necessary to attend the workflow demand satisfactorily. DDC-F interacts with
the workflow engine through a provenance repository that acts as a communication
bridge between them. The workflow engine is responsible for instantiating VMs
for the workflow execution and balancing of tasks among VMs, according to the
obtained information from a provenance repository.

After the instantiation of VMs executed by the workflow engine, DDC-F is
initiated to monitor the deployed VMs. Remark that, at this moment, the workflow
engine can deploy a minimum number of VMs or the number of VMs estimated
statically by GraspCC. The monitoring module executes in a distributed manner,
being composed by a monitor process at each VM. The monitor process records
local data about the CPU and memory usages, periodically, and sends out a message
to all instantiated VMs whenever a significant change of performance occurs locally,
in its own VM. In addition, when the monitor process identifies those changes or
receives a message from another monitor in that state, it sends the last collected data
about VM usage to the virtual machine dimensioning module. This module has a
unique process running on a dedicated VM. It evaluates the need of redimensioning
VMs or executing a load balance procedure, by running GraspCC and considering
data received from all monitor processes. That decision can result in redistributing
the remaining tasks among the already deployed VMs, instantiating or eliminating
VMs, whether the current scenario is not suitable for the new demands of the
workflow.

In order to evaluate the efficiency of the dynamic approach, a comparison
with the static dimensioning, previously introduced, was accomplished considering
two workflows: SciPhy, a well-behaved workflow with no choke point tasks,
and SciPhylomics, the critical case in the static approach, that presented a poor
estimation. Amazon EC2 was adopted as cloud environment with five types of
VMs: small, medium, large, xlarge, and 2xlarge. Programs used in these workflows
were executed with default parameters, but executed over larger input datasets. A
redimensioning was considered in case of CPU or RAM memory usage exceeded
80% or dropped to 20% of the total capacity.

Results of the executions in Amazon EC2 for the SciPhy workflow are presented
in Table 2.4, where the set of used VMs are shown for each time, the initial time t0,
and the others t1, t2 and t3, when DDC-F changed the set of used VMs.

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 45

Table 2.4 Results of SciPhy
execution [11]

Approach Static GraspCC Dynamic DDC-F

Set of VMs 2 small t0: 1 small

8 xlarge t1: 10 xlarge, 1 large,
1 small

t2: 10 xlarge, 1 large,
6 small

t3: 13 xlarge, 1 large,
6 small

Execution time 107 min 55 min

Financial cost U$4:86 U$4:04

 0

 20

 40

 60

 80

 100

0 1 20 30 55

N
um

be
r o

f V
irt

ua
l C

or
es

Workflow Execution Time (in minutes)

Fig. 2.3 The number of virtual cores in each period of time during the SciPhy workflow execution
initiated with a VM [11]

Dynamic dimensioning is more suitable when there are performance variations
in clouds, as occurred aforementioned. As GraspCC considered that VMs would
present fixed processing capacity, and in this case it did not occur, the number of
VMs to execute SciPhy was sub-estimated. Note that with the static dimensioning,
two quanta of 1 h were required to execute the application, resulting in a financial
cost of $4:86, against $4:04 with dynamic dimensioning. The number of virtual
cores at each time along the execution can be seen in Fig. 2.3, and the number of
VMs and their types are shown in Fig. 2.4.

A second experiment was accomplished with the workflow SciPhylomics that
had presented a poor result with GraspCC. SciPhylomics was executed in two
different scenarios. In one of them, the execution started with a virtual cluster
estimated statically by GraspCC: 13 VMs xlarge and 1 VM large for 1 h. In the
other, it started with a minimum quantity of VMs, i.e., 1 large.

Results of the executions are shown in Table 2.5, where the set of used VMs
are also shown for each time, the initial time t0, and the others t1, t2, and t3, when
DDC-F changed the set of used VMs.

In the experiment with SciPhylomics, DDC-F managed to reduce the financial
cost when compared with GraspCC approach, because it adapted the number of

46 R. Coutinho et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

0 1 30 55

N
um

be
r o

f V
irt

ua
l M

ac
hi

ne
s

Workflow Execution Time (in minutes)

small
xlarge

large

Fig. 2.4 The number of VMs according to each type of VMs instantiated during of the SciPhy
workflow execution initiated with a VM [11]

Table 2.5 SciPhylomonics
execution [11]

Approach Static GraspCC Dynamic DDC-F

Set of VMs 13 xlarge t0: 1 large

1 large t1: 11 large, 2 small

t2: 6 xlarge, 1 large

Execution time 137 min 151 min

Financial cost U$10:56 U$5:12

instantiated VMs in accordance with the demand of the moment. By using the static
GraspCC, the large number of VMs initially instantiated remained available even
when they stayed idle for more than 1 h time quantum. GraspCC overestimated
the amount of VMs for this workflow because it assumed that the entire workflow
could be parallelized and executed in 1 h. DDC-F did not manage to improve the
execution time of that workflow, because of the overhead imposed to remove VMs
and instantiate new ones in this case. On the other hand, the financial cost was better,
around 52% less than GraspCC.

The number of virtual cores in each period of time along the execution can be
seen in Fig. 2.5, and the number of VMs and their types can be seen in Fig. 2.6. In
this execution, the total execution time of SciPhylomics was 2:31 h with a financial
cost of U$5:12.

Finally, note that efficient dynamic dimensioning in a federated environment
remains a challenge. Monitoring a federated cloud is not a trivial task because
of high overheads necessary to obtain consistent data of the entire environment.
As seen in this section, collecting consistent data from VMs requires that they
communicate among themselves, what usually is much more expensive in a
federated cloud than in regular cloud environments. So, it remains an open problem
to be investigated in future works.

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 47

 0

 20

 40

 60

 80

 100

N
um

be
r o

f V
irt

ua
l C

or
es

Workflow Execution Time (in minutes)
0 1 51 151

Fig. 2.5 The number of virtual cores in each period of time during the SciPhylomics workflow
execution using DDC-F initiated with 1 m3.large VM [11]

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

0 1 51 151

N
um

be
r o

f V
irt

ua
l M

ac
hi

ne
s

Workflow Execution Time (in minutes)

small
xlarge
large

Fig. 2.6 The number of VMs according to each type of VMs instantiated during of the SciPhy-
lomics workflow execution using DDC-F initiated with 1 m3.large VM [11]

2.5 Survey on Existing Approaches for Cloud Dimensioning

In the previous sections of this chapter, we presented the problem of cloud
dimensioning (static and dynamic) and possible solutions. However, this is a fruitful
research area, and many papers have already been proposed. This section aims at
surveying existing works in the literature. Thus, this section presents a simplified
version of a systematic review of the literature (SRL) in the topic of resource
dimensioning for clouds. It is inspired in the SRL presented in [31].

A SRL is one of the possible ways for designing reviews, since we are focused
at identifying, evaluating, and comparing available published papers associated to
a particular topic area of interest for answering a specific scientific question. As
proposed by Kitchenham et al. [34], a SRL has three main phases: (i) planning, (ii)
conduction, and (iii) analysis of results. In the planning phase, we must have a clear

48 R. Coutinho et al.

goal of our research since a protocol must be defined at this stage. This protocol will
be followed in the conduction phase.

In the context of this chapter, we defined two research questions that should be
answered in our SRL:

1. RQ1: What approaches provide cloud dimensioning?
2. RQ2: Which techniques are used in these approaches?

Therefore, our search strategy consisted of identifying approaches in published
papers that cover main concepts (or terms) related to cloud dimensioning tech-
niques. Here, we define the search string used for conducting our search strategy
in three electronic databases (ACM Digital Library, IEEEXPlore, and Scopus) for
the scientific literature search: “(Cloud Dimensioning OR Cloud Provisioning OR
Cloud Deployment) AND (Static OR Dynamic).”

The logical operator “AND” was used to connect the key terms (i.e., cloud
dimensioning) and the “OR” operator to connect the possible variations derived
from any key terms. Then, the search string was used for querying a set of
existing electronic databases. Three electronic databases were selected based on the
following criteria: (i) the publication of papers is regularly updated, (ii) all papers
are available for download and analysis, and (iii) all papers are reviewed using a
peer-review process.

Since the defined query returns many papers (in some databases, more than 3,000
papers), it is not feasible to read all these papers in a suitable time. Thus, we defined
that the most impact ones should be considered in this SRL. This way, we sorted the
papers using the filters in the databases (by relevance) and analyzed only the top 20
papers in each database.

Although we selected the top 20 papers, many of them may not be directly related
to the topic discussed in this chapter. This way, we defined two additional criteria
(inclusion/exclusion) to include papers in our research. The inclusion criterion refers
to the study presented in the paper, which must involve both dimensioning and
clouds. If two papers present the same research, only the latest published paper
would be considered. For excluding papers (at the exclusion criterion), we consider
the following topics: (i) papers must be available for downloading on the Internet,
(ii) papers must be presented in electronic format, and (iii) papers should be written
in English.

We conducted the simplified SRL between July and August 2016. Twenty-two
papers were selected by our simplified SRL, as presented following. Interestingly,
we observed that those papers were published in the last 7 years (since 2009) as
presented in Fig. 2.7. Following we discuss each of these papers.

Endo et al. [20] highlight the main challenges of the VM provisioning problem
in clouds, offering a detailed view of this problem which comprises from the initial
modeling phase to the optimization phase. These challenges are discussed on four
fundamental points: resource modeling, resource offering and treatment, resource
discovery and monitoring, and resource selection. Although they present special
challenges requiring new research, clouds are promising and may grow to be seen
in various contexts.

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 49

Fig. 2.7 Survey timeline

Several existing approaches focus on optimizing VM allocation statically or
dynamically in terms of application execution time and financial costs [5, 6, 18,
19, 27, 35, 55] while others focus on energy-efficient VM allocation [50, 53, 64].
Some of these approaches can consider or not the concept of scientific workflow in
the moment of cloud dimensioning, and, most of them, performed experiments by
theoretical studies and simulation.

For example, Shen et al. [53], Xu et al. [64], and Rodero et al. [50] treat the
VM allocation problem from the energy savings perspective. Usually they use
virtualization technology, which is a fundamental technique widely employed in
cloud computing for resource sharing. In this context, VM migration is one of
the most common techniques used to alleviate anomalies and reduce load and
server utilization in cloud datacenter. Shen et al. [53] automate the elastic resource
scaling for multi-tenant cloud computing infrastructures through of a system called
CloudScale. This system employs online resource demand prediction without any
a priori knowledge about the applications running inside the cloud. It resolves
scaling conflicts between applications using migration and integrates dynamic CPU
voltage/frequency scaling to save energy with minimal impact on application.
However, CloudScale does not adjust resource pressure threshold dynamically
according to the workload type and only dimension isolated applications in clouds,
not considering the concept of scientific workflow neither data dependencies among
programs. Xu et al. [64] model the energy efficiency virtual resource allocation for
clouds as a multi-objective optimization problem. The problem was solved by one
of the existing evolutionary multi-objective optimization algorithms, non-dominated
sorting genetic algorithm II (NSGA-II). They present through simulations that
the NSGA-II can produce schedules of different numbers of server VMs with
various characteristics in an acceptable time, thus decreasing the total operating
energy of data center. Rodero et al. [50] introduce an autonomic energy-efficient
thermal management while ensuring the QoS delivered to the users in the cloud
infrastructure. They also proposed an application-centric energy-aware strategy for
the problem of VM allocation that arises during VM migrations. The proposed
approach was evaluated through simulations with real production HPC workload
traces.

50 R. Coutinho et al.

In addition to the concern of saving energy, researchers have been interested
in optimizing the application executions in clouds. The purpose is to dimension
the number of VMs aiming at reducing the execution time and financial costs.
Thus, some approaches consider data of previous executions to make decisions
about static dimensioning. The static approaches [5, 18, 27, 55] do not dynamically
adjust the number of VMs; however they already provide good solutions in terms
of time and costs. Chaisiri et al. [5] present an optimal algorithm to provision
resources offered by multiple cloud providers, named OCRP. The OCRP solution
is obtained by formulating and solving a stochastic integer programming model.
The OCRP algorithm considers multiple provisioning stages with demand and price
uncertainties. Different approaches such as deterministic equivalent formulation,
sample-average approximation, and Benders decomposition are considered. The
performance evaluation of the OCRP algorithm has been made only by numerical
studies and simulations. Oliveira et al. [18] aim to optimize VM allocations in clouds
using jointly a multi-objective cost function with genetic algorithms in a service
called SciDim. The SciDim also uses provenance data to set an initial configuration
for the VM allocation respecting budget and deadline constraints given by the users.
Szabo et al. [55] introduce a multi-objective evolutionary algorithm that optimizes
both the workflow runtime and size of transferred data of data-intensive scientific
workflows. The proposed approach was validated using simulations and real
experiments on the Amazon EC2. However, they did not consider heterogeneous
cloud VM types, the optimization of the number of VMs, and the dynamic allocation
of VMs. Heilig et al. [27] propose an efficient biased random-key genetic algorithm
for the VM dimensioning problem in multi-cloud environments that aim to reduce
the financial cost and the runtime of user applications using IaaS of several cloud
providers. The algorithm is based on cloud brokerage mechanism and provides high-
quality solutions. It assists users to select a suitable set of cloud resources from
multiple cloud providers.

The dynamic approaches [6, 19, 35] are capable of adjusting cloud resources
during the application execution. Therefore, they may use monitoring techniques
for capturing data about cloud resources and then to make decisions about the
amount of resources to be instantiated for the application for the completion of the
execution. For example, Lama et al. [35] present a system that enables automated
VM allocation for MapReduce environment in clouds, named AROMA. Even
though MapReduce-like approaches are not similar to SWfMS, they can be used
to model workflows as presented by Nguyen and Halem [44], Wang et al. [60], and
Crawl et al. [12], which applied these approaches in the workflow domain. AROMA
uses vector machines and genetic algorithms to obtain the appropriate resources and
then allocate the VMs. This system shows effectiveness in providing performance
guarantee of diverse Hadoop jobs, but it does not consider financial issues.
Emeakaroha et al. [19] propose a management infrastructure that scales scientific
workflow executions in the cloud while ensuring performance goals and successful
workflow completion. They make decisions on how to dynamically allocate the
necessary amount of resources to complete the workflow execution according to
data originated from monitoring and a knowledge management strategy. However,

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 51

they also do not consider financial issues that are fundamental in commercial clouds.
Chard et al. [6] introduce an approach that elastically provisions cloud resources
on demand in workflows. It monitors a job submission queue and provisions VMs
based on predefined policies. The provisioner is able to appropriately choose VM
types to execute a given application based on application profiles, select the most
cost-effective VM type across availability zones using on-demand and spot prices,
over-provision resources when VMs are highly disputed, and change to stable on-
demand VMs when spot prices are volatile or requests are delayed. They evaluated
the approach using realistic conditions in simulation of execution traces.

Several approaches also provide solutions for resource dynamic dimensioning
in cloud data centers [57, 63]. Tian et al. [57] implement adaptive dimensioning
procedures for cloud data centers that allocate computing resources for variable
workloads meeting QoS requirements. Xiao et al. [63] design a system that uses
virtualization techniques to dynamically allocate resources in data center based on
application requirements. The system supports green computing since the number of
servers in use is optimized. They introduce the concept of “skewness” to measure the
variation in the utilization of server resource. Thus, different types of workloads can
be combined nicely, and the resources utilization can be improved by minimizing
skewness. The experiment results were performed only by trace-driven simulation.

Concerning the scheduling problem in clouds, Prodan et al. [49] present a
scientific applications scheduler and a resource manager for heterogeneous com-
puting infrastructures such as grids and clouds. They identify general behavior
patterns that can be applied by a scheduler to minimize the cost of application
execution. However, they do not consider the impact of time and budget limitations,
and the experiments were performed using only a simulator. Deng et al. [15]
propose an algorithm that selects the best policy from a scheduling policy portfolio.
They studied an abstract algorithm selection model for portfolio scheduling and
introduced a portfolio scheduling framework with various configuration parameters.
The scheduler was evaluated only by trace-based simulation. Malawski et al. [39]
develop several adaptive scheduling algorithms for scientific workflows that dimen-
sion and vertically scale the workflow execution to satisfy the users’ constraints.
They presented experimental results based on simulations of workflow executions.
Although this approach is an important step, it does not optimize the initial VM
configuration, i.e., it does not adjust the number of VMs before the execution of
scientific workflow according to the user’s constraints. If this VM allocation was
optimized before the workflow execution, the performance of these adaptive VM
configurations could be improved. Maheshwari et al. [38] use a multisite workflow
scheduling technique to predict the execution time on resources and to identify the
achievable network throughput between sites. In the experimental evaluation of the
approach, real applications were used on multisite environments: traditional clusters
and clouds. However, they did not consider more than one type of VMs in each
cloud.

Table 2.6 presents several characteristics of the surveyed approaches. Table 2.6
allows for producing a higher level conclusion about the research and identifying
missing research opportunities. We classified the approaches according to the

52 R. Coutinho et al.

Table 2.6 Related works characteristics

Author Approach Scenario Criteria Evaluation Kind of application

Endo et al. [20] Survey – – – –

Shen et al. [53] Static Private QoS Real Standalone

cloud testbed application

Xu et al. [64] Static Data center Energy Simulation Standalone

application

Rodero et al. [50] Dynamic Data center Energy Simulation Standalone

application

Chaisiri et al. [5] Static Federated Cost Simulation Standalone

cloud application

Oliveira et al. [18] Static Public Cost, Real test Workflow

cloud time

Szabo et al. [55] Static Public Time, Simulation, Workflow

cloud data transfer real test

Heilig et al. [27] Static Federated Cost, Simulation Standalone

cloud time application

Lama et al. [35] Dynamic Private Time Real Standalone

cloud testbed application

Nguyen and Halem [44] Dynamic Private Time Real Workflow

cloud testbed

Wang et al. [60] Dynamic Private Time Real workflow

cloud testbed

Crawl et al. [12] Dynamic Private Time Real workflow

cloud testbed

Emeakaroha et al. [19] Dynamic Private Workflow Real Workflow

cloud completion, testbed

QoS

Chard et al. [6] Static, Public Cost Simulation Workflow

dynamic cloud

Tian et al. [57] Dynamic Federated QoS Simulation Standalone

cloud application

Xiao et al. [63] Dynamic Private Skewness Real Standalone

cloud metric testbed application

Prodan et al. [49] Dynamic Grid Cost, Simulation Workflow

time

Deng et al. [15] Dynamic Public Time Simulation Standalone

cloud application

Malawski et al. [39] Dynamic Public Time Simulation Workflow

cloud

Maheshwari et al. [38] Static Federated Time, Real test Workflow

cloud network

throughput

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 53

type of approach (dynamic or static), the type of cloud environment they are
designed for (private, public, federated, etc.), the criteria used to dimension the
cloud environment, the type of evaluation used in the paper, and the target kind of
application. Most of the surveyed approaches provide dynamic mechanisms, which
is intuitive since clouds are dynamic environments and performance variations are
common. One missing opportunity can be identified when we analyze the target
type of cloud of the proposed approaches. Most approaches focus on private and
public cloud. However, just a few provide solutions for federated and multisite
clouds, which are a reality. This way, new approaches for this type of clouds are
needed. In terms of criteria used for dimensioning the cloud, most of the approaches
optimize the environment for time and financial cost. However, just a few focus
on reliability and energy criteria, which are very important nowadays. In addition,
a multi-criteria approach would be very interesting for this problem. Most of the
surveyed approaches were evaluated using simulations of small-scale environments
(real testbed). Just a few evaluated the proposed approaches in real environments.
Finally, most approaches focus on standalone applications. However, many HPC-
based scientific experiments are modeled as scientific workflows, and solutions for
this type of experiments are needed. Thus, dimensioning approaches for scientific
workflows are still an open, yet important, issue and a research opportunity.

2.6 Conclusions and Open Problems

This chapter tackled the cloud dimensioning problem for parallel scientific applica-
tions. The problem consists in estimating the amount and types of virtual machines
to execute an application, typically aiming at the reduction of its execution time,
and sometimes considering also other objectives, such as reduction of financial costs
when using a cloud provider and power saving, for example.

In that context, an integer mathematical formulation, called CC-IP, and a GRASP
metaheuristic, GraspCC, proposed to reduce not only the execution time of the
application but also the financial cost, were presented in detail. Experimental results
on several instances of real parallel applications indicated that the presented method
is an important decision tool to aid cloud users.

The extension of that proposal that takes into account the execution of parallel
applications in federated clouds was also presented. That more general scenario
considered new issues such as communication between providers. Tests on a real
federated cloud environment, that used two commercial clouds (Amazon EC2
and Microsoft Azure), were then shown. In those real tests, scientific workflows
were adopted as case study, since they are frequently used in large-scale parallel
experiments.

Although that a priori estimation, called static dimensioning, usually provides
good estimations, sometimes due to changes in the cloud environment or in the
parallel application demands, it presents a poor performance. In those cases, a

54 R. Coutinho et al.

VM dimensioning approach, aware at runtime of all those changes, is imperative.
Thus, that chapter presented also a framework for dynamic dimensioning of cloud
environments for scientific workflow execution, named DDC-F. The dynamic
dimensioning approach presented advantages when executing scientific workflows
in a real commercial cloud. It could compensate the performance loss by acquiring
more powerful VMs to meet the scientists’ deadline [8–11].

In addition, it can be difficult to execute some scientific application in only one
cloud location due to the geographical distribution of scientists, data, and computing
resources. For example, the data accessed by a HPC application may be in different
databases of different research groups, or a parallel execution can require more
resource than one location can offer. Thus, scientific applications often have to be
partitioned and run in a multisite environment, i.e., a cloud with multiple distributed
data centers.

We also surveyed several existing works in Sect. 2.5. This survey allowed us
to produce a comparative table. Table 2.6 was used to produce a higher level
conclusion about the research and identifying missing research opportunities. We
classified the approaches according to the type of approach (dynamic or static), the
type of cloud environment they are designed for (private, public, federated, etc.),
the criteria used to dimension the cloud environment (time, financial costs, energy),
the type of evaluation used in the paper, and the target kind of application. We
concluded that there are some missing opportunities. For example, there are few
papers that focus on scientific workflow dimensioning. Most approaches focus on
stand-alone applications, but workflows are gaining much importance in the last
years. In addition, most of existing approaches are focused on single-site (private
and public) clouds. Just a few focus on federated and multisite clouds. Since these
types of clouds are evolving in a fast pace, it is a hot topic in cloud dimensioning
area. Finally, most of the existing approaches focus on time and financial costs. But,
today, there are other costs involved such as energy and reliability, which may be an
important research opportunity.

Acknowledgements Authors would like to thank CNPq and FAPERJ for partially sponsoring this
research.

References

1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
tool. J Mol Biol 215(3):403–410. citeseer.nj.nec.com/akutsu99identification.html

2. Alvares de Oliveira F, Sharrock R, Ledoux T (2012) Synchronization of multiple autonomic
control loops: application to cloud computing. In: Proceedings of the 14th interna-
tional conference on coordination models and languages, COORDINATION 2012. Springer,
Berlin/Heidelberg, pp 29–43

3. Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009)
EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC
Bioinform 10(1):154. doi:10.1186/1471-2105-10-154, http://www.biomedcentral.com/1471-
2105/10/154

citeseer.nj.nec.com/akutsu99identification.html
http://dx.doi.org/10.1186/1471-2105-10-154
http://www.biomedcentral.com/1471-2105/10/154
http://www.biomedcentral.com/1471-2105/10/154

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 55

4. Buyya R, Ranjan R, Calheiros R (2010) InterCloud: utility-oriented federation of cloud
computing environments for scaling of application services. In: Hsu CH, Yang L, Park J,
Yeo SS (eds) Algorithms and architectures for parallel processing. Lecture notes in computer
science, vol 6081. Springer, Berlin/Heidelberg, pp 13–31

5. Chaisiri S, Lee BS, Niyato D (2012) Optimization of resource provisioning cost in cloud
computing. IEEE Trans Serv Comput 5(2):164–177

6. Chard R, Chard K, Bubendorfer K, Lacinski L, Madduri R, Foster I (2015) Cost-aware elastic
cloud provisioning for scientific workloads. In: 2015 IEEE 8th international conference on
cloud computing (CLOUD), pp 971–974

7. Collela P (2004) Defining software requirements for scientific computing. In: DARPA reports,
pp 315–320

8. Coutinho R, Drummond L, Frota Y (2014) Optimization of a cloud resource management
problem from a consumer perspective. In: Euro-Par 2013: parallel processing workshops.
Lecture notes in computer science, vol 8374. Springer, Berlin/Heidelberg, pp 218–227

9. Coutinho R, Drummond L, Frota Y, de Oliveira D, Ocaña K (2014) Evaluating grasp-based
cloud dimensioning for comparative genomics: a practical approach. In: IEEE international
conference on cluster computing (CLUSTER), pp 371–379

10. Coutinho R, Drummond L, Frota Y, de Oliveira D (2015) Optimizing virtual machine allocation
for parallel scientific workflows in federated clouds. Future Gener Comput Syst 46(0):51–68

11. Coutinho R, Frota Y, Ocaña K, de Oliveira D, Drummond LMA (2016) A dynamic cloud
dimensioning approach for parallel scientific workflows: a case study in the comparative
genomics domain. J Grid Comput 1–19

12. Crawl D, Wang J, Altintas I (2011) Provenance for MapReduce-based data-intensive work-
flows. In: Proceedings of the 6th workshop on workflows in support of large-scale science,
WORKS ’11. ACM, New York, pp 21–30

13. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Pro-
ceedings of the 6th conference on symposium on opearting systems design & implementation,
OSDI’04, vol 6. USENIX Association, Berkeley, pp 10–10

14. Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB,
Good J, Laity AC, Jacob JC, Katz DS (2005) Pegasus: a framework for mapping complex
scientific workflows onto distributed systems. Sci Program 13(3):219–237

15. Deng K, Song J, Ren K, Iosup A (2013) Exploring portfolio scheduling forlong-term execution
of scientific workloads in IaaS clouds. In: Proceedings of SC13: international conference for
high performance computing, networking, storage and analysis, SC ’13. ACM, New York,
pp 55:1–55:12

16. de Oliveira D, Ogasawara E, Baião F, Mattoso M: Scicumulus: a lightweight cloud middleware
to explore many task computing paradigm in scientific workflows. In: 3rd international
conference on cloud computing (2010), pp 378–385

17. de Oliveira D, Ocaña KA, Ogasawara E, Dias J, Gonçalves J, Baião F, Mattoso M (2013)
Performance evaluation of parallel strategies in public clouds: a study with phylogenomic
workflows. Future Gener Comput Syst 29(7):1816–1825

18. de Oliveira D, Viana V, Ogasawara E, Ocaña K, Mattoso M (2013) Dimensioning the virtual
cluster for parallel scientific workflows in clouds. In: Proceedings of the 4th ACM workshop
on scientific cloud computing, science cloud ’13. ACM, New York, pp 5–12

19. Emeakaroha V, Maurer M, Stern P, Łabaj P, Brandic I, Kreil D (2013) Managing and optimizing
bioinformatics workflows for data analysis in clouds. J Grid Comput 11(3):407–428

20. Endo PT, de Almeida Palhares AV, Pereira NN, Goncalves GE, Sadok D, Kelner J, Melander
B, Mangs J (2011) Resource allocation for distributed cloud: concepts and research challenges.
IEEE Network 25(4):42–46

21. Engen V, Papay J, Phillips SC, Boniface M (2012) Predicting application performance for
multi-vendor clouds using dwarf benchmarks. In: Proceedings of the 13th international
conference on web information systems engineering, WISE’12. Springer, Berlin/Heidelberg,
pp 659–665. doi:10.1007/978-3-642-35063-4_50, http://dx.doi.org/10.1007/978-3-642-
35063-4_50

http://dx.doi.org/10.1007/978-3-642-35063-4_50
http://dx.doi.org/10.1007/978-3-642-35063-4_50
http://dx.doi.org/10.1007/978-3-642-35063-4_50

56 R. Coutinho et al.

22. Fadika Z, Dede E, Hartog J, Govindaraju M (2012) Marla: mapreduce for heterogeneous
clusters. In: Proceedings of the 2012 12th IEEE/ACM international symposium on cluster,
cloud and grid computing (Ccgrid 2012), CCGRID ’12. IEEE Computer Society, Washington,
DC, pp 49–56. doi:10.1109/CCGrid.2012.135, http://dx.doi.org/10.1109/CCGrid.2012.135

23. Feng H, Misra V, Rubenstein D (2007) Pbs: a unified priority-based scheduler. In:
Proceedings of the 2007 ACM SIGMETRICS international conference on measurement
and modeling of computer systems, SIGMETRICS ’07. ACM, New York, pp 203–214.
doi:10.1145/1254882.1254906, http://doi.acm.org/10.1145/1254882.1254906

24. Foster I, Kesselman C (2003) The grid 2: blueprint for a new computing infrastructure. The
Elsevier series in grid computing, 2nd edn. Morgan Kaufmann, San Francisco

25. Freire J, Koop D, Santos E, Silva CT (2008) Provenance for computational tasks: a survey.
Comput Sci Eng 10(3):11–21

26. Habib I (2006) Getting started with condor. Linux J 2006(149):2–. http://dl.acm.org/citation.
cfm?id=1152899.1152901

27. Heilig L, Lalla-Ruiz E, Voß S (2016) A cloud brokerage approach for solving the resource
management problem in multi-cloud environments. Comput Ind Eng 95:16–26

28. Hey T, Tansley S, Tolle K (eds) (2009): The fourth paradigm: data-intensive scientific
discovery. Microsoft Research, Redmond

29. ILOG SA (2008) Cplex 11 user’s manual
30. Jackson KR, Ramakrishnan L, Runge KJ, Thomas RC (2010) Seeking supernovae in the

clouds: a performance study. In: Proceedings of the 19th ACM international symposium on
high performance distributed computing, HPDC ’10. ACM, New York, pp 421–429

31. Jamshidi P, Ahmad A, Pahl C (2013) Cloud migration research: a systematic review. IEEE
Trans Cloud Comput 1(2):142–157. doi:10.1109/TCC.2013.10

32. Joshi SB (2012) Apache hadoop performance-tuning methodologies and best practices. In:
Proceedings of the 3rd ACM/SPEC international conference on performance engineering,
ICPE ’12. ACM, New York, pp 241–242. doi:10.1145/2188286.2188323, http://doi.acm.org/
10.1145/2188286.2188323

33. Juve G, Deelman E (2010) Scientific workflows and clouds. Crossroads 16(3):14–18.
doi:10.1145/1734160.1734166, http://doi.acm.org/10.1145/1734160.1734166

34. Kitchenham B, Brereton P, Turner M, Niazi M, Linkman S, Pretorius R, Budgen D (2009) The
impact of limited search procedures for systematic literature reviews #x2014; a participant-
observer case study. In: 2009 3rd international symposium on empirical software engineering
and measurement, pp 336–345. doi:10.1109/ESEM.2009.5314238

35. Lama P, Zhou X (2012) AROMA: automated resource allocation and configuration of
MapReduce environment in the cloud. In: Proceedings of the 9th international conference
on autonomic computing, ICAC ’12. ACM, New York, pp 63–72

36. Lord E, Leclercq M, Boc A, Diallo AB, Makarenkov V (2012) Armadillo 1.1: an original
workflow platform for designing and conducting phylogenetic analysis and simulations. PLoS
ONE 7(1):e29903. doi:10.1371/journal.pone.0029903, http://dx.plos.org/10.1371/journal.
pone.0029903

37. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones MB, Lee EA, Tao J, Zhao Y
(2006) Scientific workflow management and the Kepler system. Concurr Comput: Pract Exp
18(10):1039–1065. doi:10.1002/cpe.994, http://dx.doi.org/10.1002/cpe.994

38. Maheshwari K, Jung ES, Meng J, Morozov V, Vishwanath V, Kettimuthu R (2016) Workflow
performance improvement using model-based scheduling over multiple clusters and clouds.
Future Gener Comput Syst 54:206–218

39. Malawski M, Juve G, Deelman E, Nabrzyski J (2015) Algorithms for cost- and deadline-
constrained provisioning for scientific workflow ensembles in IaaS clouds. Future Gener
Comput Syst 48:1–18. Special Section: Business and Industry Specific Cloud

40. Manfroi LF, Ferro M, Yokoyama AM, Mury AR, Schulze B (2013) A walking dwarf on the
clouds. In: 2013 IEEE/ACM 6th international conference on utility and cloud computing
(UCC), pp 399–404. doi:10.1109/UCC.2013.80

http://dx.doi.org/10.1109/CCGrid.2012.135
http://dx.doi.org/10.1109/CCGrid.2012.135
http://dx.doi.org/10.1145/1254882.1254906
http://doi.acm.org/10.1145/1254882.1254906
http://dl.acm.org/citation.cfm?id=1152899.1152901
http://dl.acm.org/citation.cfm?id=1152899.1152901
http://dx.doi.org/10.1109/TCC.2013.10
http://dx.doi.org/10.1145/2188286.2188323
http://doi.acm.org/10.1145/2188286.2188323
http://doi.acm.org/10.1145/2188286.2188323
http://dx.doi.org/10.1145/1734160.1734166
http://doi.acm.org/10.1145/1734160.1734166
http://dx.doi.org/10.1109/ESEM.2009.5314238
http://dx.doi.org/10.1371/journal.pone.0029903
http://dx.plos.org/10.1371/journal.pone.0029903
http://dx.plos.org/10.1371/journal.pone.0029903
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1109/UCC.2013.80

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 57

41. Matsunaga A, Tsugawa M, Fortes J (2008) Cloudblast: combining mapreduce and virtualiza-
tion on distributed resources for bioinformatics applications. In: IEEE fourth international
conference on eScience, eScience ’08, pp 222–229. doi:10.1109/eScience.2008.62

42. Mattoso M, Werner C, Travassos GH, Braganholo V, Ogasawara E, Oliveira DD, Cruz SM,
Martinho W, Murta L (2010) Towards supporting the life cycle of large scale scientific
experiments. Int J Bus Process Integr Manag 5(1):79+

43. Moustafa A, Bhattacharya D, Allen AE (2010) iTree: a high-throughput phylogenomic
pipeline. IEEE, Cairo, pp 103–107. doi:10.1109/CIBEC.2010.5716071, http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5716071

44. Nguyen P, Halem M (2011) A MapReduce workflow system for architecting scientific data
intensive applications. In: Proceedings of the 2nd international workshop on software
engineering for cloud computing, SECLOUD ’11. ACM, New York, pp 57–63

45. Niemenmaa M, Kallio A, Schumacher A, Klemela P, Korpelainen E, Heljanko K
(2012) Hadoop-BAM: directly manipulating next generation sequencing data in the cloud.
Bioinformatics 28(6):876–877. doi:10.1093/bioinformatics/bts054, http://bioinformatics.
oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts054

46. Ocaña K, de Oliveira D, Ogasawara ES, Dávila AMR, Lima AAB, Mattoso M (2011) SciPhy:
a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In:
de Souza ON, Telles GP, Palakal MJ (eds) BSB. Lecture notes in computer science, vol 6832.
Springer, pp 66–70

47. Paranjape K, Hebert S, Masson B (2012) Heterogeneous computing in the cloud: crunching big
data and democratizing HPC access for the life sciences. Technical report, Intel Corporation

48. Phillips SC, Engen V, Papay J (2011) Snow white clouds and the seven dwarfs. In: 2011
IEEE third international conference on cloud computing technology and science (CloudCom),
pp 738–745 doi:10.1109/CloudCom.2011.114

49. Prodan R, Wieczorek M, Fard H (2011) Double auction-based scheduling of scientific
applications in distributed grid and cloud environments. J Grid Comput 9(4):531–548

50. Rodero I, Viswanathan H, Lee EK, Gamell M, Pompili D, Parashar M (2012) Energy-efficient
thermal-aware autonomic management of virtualized HPC cloud infrastructure. J Grid Comput
10(3):447–473

51. Severin J, Beal K, Vilella AJ, Fitzgerald S, Schuster M, Gordon L, Ureta-Vidal A, Flicek
P, Herrero J (2010) eHive: an artificial intelligence workflow system for genomic analy-
sis. BMC Bioinform 11(1):240. doi:10.1186/1471-2105-11-240, http://bmcbioinformatics.
biomedcentral.com/articles/10.1186/1471-2105-11-240

52. Shanahan JG, Dai L (2015) Large scale distributed data science using apache spark. In:
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining, KDD ’15. ACM, New York, pp 2323–2324 doi:10.1145/2783258.2789993, http://
doi.acm.org/10.1145/2783258.2789993

53. Shen Z, Subbiah S, Gu X, Wilkes J (2011) Cloudscale: elastic resource scaling for multi-tenant
cloud systems. In: Proceedings of the 2nd ACM symposium on cloud computing, SOCC ’11.
ACM, New York, pp 5:1–5:14

54. Singh A, Chen C, Liu W, Mitchell W, Schmidt B: A hybrid computational grid archi-
tecture for comparative genomics. IEEE Trans Inf Technol Biomed 12(2):218–225
(2008). doi:10.1109/TITB.2007.908462, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4358919

55. Szabo C, Sheng Q, Kroeger T, Zhang Y, Yu J (2014) Science in the cloud: allocation and
execution of data-intensive scientific workflows. J Grid Comput 12(2):245–264

56. Taylor IJ, Deelman E, Gannon DB (2007) Workflows for e-science: scientific workflows for
grids. Springer, London

57. Tian W (2009) adaptive dimensioning of cloud data centers. In: Proceedings of the 8th
international conference on dependable, autonomic and secure computing, DASC ’09. IEEE
Computer Society, Washington, pp 5–10

http://dx.doi.org/10.1109/eScience.2008.62
http://dx.doi.org/10.1109/CIBEC.2010.5716071
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5716071
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5716071
http://dx.doi.org/10.1093/bioinformatics/bts054
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts054
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts054
http://dx.doi.org/10.1109/CloudCom.2011.114
http://dx.doi.org/10.1186/1471-2105-11-240
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-240
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-240
http://dx.doi.org/10.1145/2783258.2789993
http://doi.acm.org/10.1145/2783258.2789993
http://doi.acm.org/10.1145/2783258.2789993
http://dx.doi.org/10.1109/TITB.2007.908462
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4358919
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4358919

58 R. Coutinho et al.

58. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards
a cloud definition. SIGCOMM Comput Commun Rev 39(1):50–55

59. Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ (2010) Cloud computing
for comparative genomics. BMC Bioinform 11(1):259. doi:10.1186/1471-2105-11-259, http://
bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-259

60. Wang J, Crawl D, Altintas I (2009) Kepler + Hadoop: a general architecture facilitating data-
intensive applications in scientific workflow systems. In: Proceedings of the 4th workshop on
workflows in support of large-scale science, WORKS ’09. ACM, New York, pp 12:1–12:8

61. Wolstencroft K, Haines R, Fellows D, Williams AR, Withers D, Owen S, Soiland-Reyes S,
Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, de la Hidalga
AN, Vargas MPB, Sufi S, Goble CA (2013) The Taverna workflow suite: designing and
executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res
41(Webserver-Issue):557–561. doi:10.1093/nar/gkt328, http://dx.doi.org/10.1093/nar/gkt328

62. Wozniak JM, Armstrong TG, Maheshwari K, Lusk EL, Katz DS, Wilde M, Foster IT (2013)
Turbine: a distributed memory dataflow engine for high performance many-task applications.
Fundamenta Informaticae Journal 128(3):337–366

63. Xiao Z, Song W, Chen Q (2013) dynamic resource allocation using virtual machines for cloud
computing environment. IEEE Trans Parallel Distrib Syst 24(6):1107–1117

64. Xu L, Zeng Z, Ye X (2012) Multi-objective optimization based virtual resource allocation
strategy for cloud computing. In: Proceedings of the 11th international conference on computer
and information science, ICIS ’12. IEEE Computer Society, Washington, DC, pp 56–61

http://dx.doi.org/10.1186/1471-2105-11-259
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-259
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-259
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkt328

Chapter 3
A Taxonomy of Adaptive Resource Management
Mechanisms in Virtual Machines: Recent
Progress and Challenges

José Simão and Luís Veiga

3.1 Introduction

Cloud computing infrastructures make extensive use of virtualization technologies,
either at the system or programming language level, providing a flexible allocation
of hardware resources and applying the necessary resource scheduling to run multi-
tenant data centers [19, 96, 108]. Both system-level VMs (Sys-VM) and high-level
language VMs (HLL-VM) are designed to promote isolation [86]. All these features
are essential to consolidate applications into a smaller amount of physical servers,
saving operational costs and reducing the carbon footprint of data centers [13, 30,
94].

Dynamic allocation of resources use different strategies, either aiming to max-
imize fairness in the distribution of resources or deliberately favor a given guest
based on past resource consumption and prediction on future resource demand.
Among all resources, CPU [35, 40, 110] and memory [3, 60, 100] are the two for
which a larger body of work can be found. Nevertheless, other resources, such as
the access to I/O operations, have also been analyzed [36, 51, 62].

Most HLL-VMs have only one guest at each time – the application. As a
consequence, in most cases, some resources are monitored not to be partitioned but
for the runtime to adapt its algorithms to the available environment. For example, a
memory outage could force some of the already compiled methods to be unloaded,
freeing memory to maintain more data resident. Several systems have been proposed
to control system resources usage in HLL-VMs, most of them targeting the Java

J. Simão (�)
INESC-ID Lisboa, Instituto Superior de Engenharia de Lisboa (ISEL/IPL), Lisbon, Portugal
e-mail: jsimao@gsd.inesc-id.pt

L. Veiga
INESC-ID Lisboa, Universidade de Lisboa – Instituto Superior Técnico, Lisbon, Portugal
e-mail: luis.veiga@inesc-id.pt

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_3

59

mailto:jsimao@gsd.inesc-id.pt
mailto:luis.veiga@inesc-id.pt

60 J. Simão and L. Veiga

runtime (e.g., [14, 17, 25, 83]). They use different approaches: from making
modifications to a standard VM, or even proposing a new implementation from
scratch, to modifications in the byte codes and hybrid solutions.

In each work, different compromises are made, putting more emphasis either
on the portability of the solution (i.e., not requiring changes to the VM) or on the
portability of the guests (i.e., not requiring changes to the application source code).
In order to do so, VMs, or middlewares augmenting their services, can be framed
into the well-known adaptation loop [68], where systems monitor themselves and
their context, analyze the incoming values and detect significant changes, decide
how to react, and act to execute such decisions. In this chapter, we group these
steps in three distinct phases, similarly to the adaptability loop of other works in the
context of autonomic systems [7, 57]: (i) monitoring, (ii) decision, and (iii) actua-
tion. Monitoring determines which components of the system (e.g., hardware, VM,
application) are observed. Control and decision take these observations and use them
in some decision strategy to decide what has to be changed. Enforcement deals with
applying the decision to a given component/mechanism of the VM.

However, existing surveys of virtualization technologies (e.g., [9, 53]) tend to
focus on a wide variety of approaches which sometimes results only in an extensive
catalog. One of the first published surveys of research in virtual machines was pre-
sented in 1974 [34]. Goldberg’s work was focused on the principles, performance,
and practical issues regarding the design and development of system-level virtual
machines that, at the time, were developed by IBM, the Massachusetts Institute of
Technology (MIT), and few others. Arnold et al. [9] focus only on HLL-VMs and
particularly on the techniques that are used to control the optimizations employed by
the just-in-time (JIT) compiler, taking advantage of runtime profiling information.

This chapter surveys several techniques used by virtual machines, and systems
that depend on them, to make an adaptive resource management, extending previous
preliminary work [73, 76]. Here we fully describe the adaptation loop of virtual
machines discussing their principles, algorithms, mechanisms, and techniques.
We then detail a way to qualitatively classify each of those according to their
responsiveness, i.e., how fast it can react to change their comprehensiveness, i.e.,
the scope of the mechanisms involved; and their intricateness, i.e., the complexity
of the modifications to the code base or to the underlying systems. These metrics are
used to classify the mechanisms and scheduling policies. The goal is not to find the
best system, as this depends on the scenario where the system is going to be used,
but instead it aims to identity the tradeoffs underpinning each system.

Section 3.2 presents the architecture of high-level and system-level VMs,
depicting the building blocks that are used in research concerning resource usage.
Section 3.3 presents several adaptation techniques found in the literature and frames
them into the adaptation loop. In Sect. 3.4, the classification framework is presented.
For each of the resource management components of VMs, and for each of the
three steps of the adaptation loop, we propose the use of a quantitative classification
regarding the impact of the mechanisms used by each system. We then use this
framework to classify 18 state-of-the-art systems in Sect. 3.5, aiming to compare
and better understand the benefits and limitations of each one.

3 Recent Progress and Challenges in Virtual Machines 61

3.2 From Virtual Machines Fundamentals to Recent Trends

Virtualization technologies have been used since the primordials of multiuser
systems. The idea of having better isolation among different users in a multiuser
system was first explored by IBM [5]. In these systems, each user was assigned a
virtual machine which executed in the context of a so called control program (CP).

In the last two decades, this idea was extended and further explored to support the
execution of commodity operating systems in each virtual machine, without losing
performance. Resource isolation was further enforced so that badly behaving virtual
machines cannot disrupt the service of other instances [12]. This is due not only to
the software but also to new hardware support that enhances the performance of
VMs running on a multi-tenant server [29].

System-level virtual machines execute under the control of a virtual machine
monitor (VMM) to control the access of the guest operating system running in each
virtual machine to the physical resources, virtualizing processors, memory, and I/O.
Recently, operating systems extended the process-level isolation mechanisms with
further virtualization of the file system, name spaces, and drivers (e.g., network)
[55, 107]. Furthermore, the integration of resource consumption controls made it
possible to run workloads on a new kind of execution environment, called container,
under the same OS.

High-level language VMs, which are highly influenced by the Smalltalk virtual
machine [28], also provide a machine abstraction to their guest, which is an end-user
application. The just-in-time (JIT) compiler is responsible for this translation and is,
in itself, a source of adaptation driven by the dynamics in the flow of execution
(e.g., hot methods are compiled using more sophisticated optimizations) [9].
Memory management has a high impact on the use of memory and CPU. After
more than three decades of research work focusing on tunning garbage collection
algorithms [50], recent research work is made toward the selection of application-
specific algorithms and parameters, in particular, heap size and the moment of
triggering memory collection [43, 59, 89].

Figures 3.1, 3.2, 3.3, and 3.4 depicts four types of deployments. The first is a
traditional configuration where an operating system (OS) regulates the access of
native applications (i.e., the ones that use the services of the OS) to the hardware.
The second, Fig. 3.2, represents a configuration where a hypervisor, known as virtual

Fig. 3.1 Non virtualized
system

Hardware (CPUs, memory, I/O
devices)

Operating System

Native
Application1

Native
Applicationn

...

62 J. Simão and L. Veiga

Fig. 3.2 System-level VM

HW

Guest OS1

App App

Guest OSn

App

...

App

Virtual Machine Monitor
(VMM)

Fig. 3.3 Container type VM

HW

App

Host OS

Shared kernel

Container

App App

Fig. 3.4 High-level language
VM

HW

C1 ... Cn ...

Host OS

High Level
Language

Virtual Machine

Native
Application

machine monitor, takes control of the hardware, making it possible to host several
system-level virtual machine on top of the same physical resources. Each virtual
machine runs a possibly different operating systems instance. Figure 3.3 shows the
position of containers. These execution environments share the kernel with the host
OS and allow applications to run with an extra level of isolation from the remaining
user-level processes. Finally, Fig. 3.4 depicts the position of high-level language
VMs. They are at the level of native applications but support the hosting of managed
components which rely (almost exclusively) on the services provided by these VMs.
This chapter focus on deployments Figs. 3.2 and 3.4.

The next three sections will briefly describe how fundamental resources, CPU,
memory, and I/O are virtualized by the two types of VMs. The systems presented in
Sect. 3.5 are based on the building blocks presented here, using them to implement
different adaptive resource management strategies. We conclude with a section
about recent trends on the mechanism available on these two types of VMs.

3 Recent Progress and Challenges in Virtual Machines 63

3.2.1 Computation as a Resource

The virtualization of the CPU concerns two distinct aspects: (i) the translation
of instructions and (ii) the scheduling of virtual CPUs to a physical CPU. In
this chapter, we focus on the scheduling problem. Although an efficient binary
translation is of utmost importance, and several techniques are used [86], this is done
in a way that is dependent on the execution requirement of a given tenant. In Sys-
VMs, the VMM must decide the mapping between the real CPUs and each running
VM [12, 21]. In the case of HLL-VMs, they rely on the underlying OS to schedule
their threads of execution. In spite of this portability aspect, the specification of
HLL-VMs is supported by a memory model [58] making it possible to reason about
the program behavior.

The VMM scheduler, where each guest VM is assigned to one or more virtual
CPUs (VCPU), has different requirements from the schedulers used in operating
systems [92]. Typically, the OS uses a priority-based approach which is different
from the family of schedulers used by the VMM. The VM monitor scheduling is
ruled by a proportional share assigned to each VM of the system, based on its share
(or weight) [21, 90].

Cherkasova et al. [21] further classify schedulers as (i) work conservative or
nonwork conservative and (ii) preemptive or non-preemptive. Work conservative
schedulers take the share as a minimum allocation of CPU to the VM. If there
are available CPUs, VCPUs will be assigned to them, regardless the VM’s share. In
nonwork conservative, even if there are available CPUs, VCPUs will not be assigned
above a given previously defined value (known as cap or cpu limit). A preemptive
scheduler can interrupt running VCPUs if a ready to run VCPU has a higher priority.

In Sect. 3.5, we present different systems that dynamically change the scheduler’s
parameters to give guest VMs the capacity that best fits their needs.

3.2.2 Memory as a Resource

The design of memory management system is inherently complex, regardless of the
target environment. Virtual machines (VMs) are no exception, and they add an extra
level to the system stack.

As pointed out by Smith et al. [86], the VMM extra level of indirection
generalizes the virtual memory mechanisms of operating systems. To maintain
isolation, the guest OS continues to see a real address (i.e., machine address) but
this address can in fact change during the activation of the VM. So, the VMM must
establish a virtual ! real ! physical mapping for each guest OS and VM.

When an OS kernel, running on an active VM, uses a real address to perform
an operation (e.g., I/O), the VMM must intercept this address and change it to
the correspondent physical one. On the other hand, user level applications use
a virtual address to accomplish their operations. To avoid a twofold conversion,

64 J. Simão and L. Veiga

the VMM keeps shadow pages for each process running on each VM, mapping
virtual ! physical addresses. Access to the page table pointer is virtualized by
the VMM, trapping read or write attempts and returning the corresponding table
pointer of the running VM. The translation lookaside buffer (TLB) continues to
play its accelerating role because it will still keep in cache the virtual ! physical
addresses.

To effectively manage the allocation of physical memory, the VMM must
reassign pages between VMs. The decision about which specific pages are to be
relinquished is actually made by the guest OS running on the VM that is selected by
the VMM to give away memory. This is done by interacting with a kernel driver at
the OS, known as the balloon driver [12, 100].

The balloon driver is controlled by memory management policies which will
be introduced in Sect. 3.3. When the balloon is instructed to inflate, it will make
the guest OS swap memory to secondary storage. When the balloon is instructed
to deflate, the guest OS can use more physical pages, reducing the need to swap
memory. Another issue related to memory management in the VMM is the sharing
of machine pages between different VMs. If these pages have code or read-only
data, they can be shared avoiding redundant copies.

The goal of memory’s virtualization in high-language VMs is to free the
application from explicit dealing with memory deallocation, giving the perception
of an unlimited address space. This avoids keeping track of references to data
structures (i.e., objects), promoting easier extensibility of functionalities because
the bookkeeping code that must be written in non-virtualized environment is no
longer needed [86, 106].

Different strategies have been researched and used during the last decades.
Simple mark and sweep, compacting, or copying collectors all identify live objects
starting from a root set (i.e., the initial set of references from which live objects can
be found, containing thread stacks and globals). All these approaches strive for a
balance between the time the program needs to stop and the frequency the collecting
process needs to execute. This is mostly influenced by the heap dimension, and, in
practice, some kind of nursery space is used to avoid searching all the heap.

As parallel hardware becomes ubiquitous and GC pause time reduction becomes
essential, the stop-the-world approach has been questioned, resulting in the design
of concurrent and incremental collectors [23, 95]. However, recent studies show
that the base approach has no fundamental scalability problem [31] and that the
GC impact can be diminished with parallel techniques, which still need to stop the
program, but that explore the root set in parallel.

Researchers have analyzed garbage collection performance and found it to be
application dependent [88] and even input dependent [59, 93]. Based on these
observations, several adaptation strategies have been proposed [9], ranging from
parameters adjustments (e.g., the current size of the managed heap [38, 83]) to
changing the algorithm itself before the first execution [85] or at runtime [88].

3 Recent Progress and Challenges in Virtual Machines 65

3.2.3 Input/Output as a Resource

In both types of VMs, virtualization of input/output deals with the emulation,
accounting, and constraining of using available physical devices. In spite of these
similar goals, virtualization occurs with different impacts. In a VMM, the access
to device drivers can be para-virtualized or fully virtualized. In the first scenario,
a cooperative guest OS is expected to call a virtual API in the VMM [12]. In the
second scenario (a fully virtualized environment), the VMM can either intercept the
I/O operation, at the device driver or system call level [86]. The typical option is to
virtualize at the device driver level, installing virtual device drivers at each guest,
which, from the guest operating system standpoint, are regular drivers.

The main challenge in I/O virtualization for fully virtualized systems, such as
the ESX [100] or the KVM [54] hypervisors, is to avoid the extra context switches
between the guest and the host to handle interrupts generated by I/O devices [2,
36]. The interrupts are, by nature, asynchronous and sent to the CPU to signal the
completion of I/O operations. So, the overhead comes from the extra CPU cycles
necessary to exit the guest, run the host interrupt handler, and inject the virtual
interrupt in the guest.

The performance of I/O-intensive applications in a virtualized environment is
also affected by the CPU scheduling and memory sharing mechanisms [20, 21,
62, 67]. The CPU scheduling strategy of each physical core to the virtual cores
has impact in the I/O performance of the applications running on top of virtual
machines. A detailed analysis of the scheduler’s impact on VM’s performance is
available in the literature [21, 62]. The main observations were related to the domain
driver’s preemption during the dispatch of multiple network events and the order of
VMs in the run queue.

High-level language VMs rely on the operating system API to accomplish
input/output operations as disk and network read and writes. Depending on the
address space isolation supported by the VM, accounting and regulation have
different levels of granularity. In a classic JVM implementation, accountability
can be done globally at the VM or on a per-thread basis [91]. In HLL-VMs
supporting the abstraction of different address spaces (e.g., isolates in multitask
VM [25], application domains in the Common Language Runtime) accounting is
made independently for each of these spaces.

In summary, although the interaction with I/O devices has a major role in
the design of virtual machines, the subsystems responsible for this task do not
have to make regular scheduling or allocation decisions. So, this chapter will not
focus on these works but on adaptive techniques related to the virtualization of
CPU and memory (which indirectly contribute to the performance of I/O-intensive
applications).

66 J. Simão and L. Veiga

3.2.4 Research Trends

The ACM library [1] shows that articles with the terms “VM” and “virtual machine”
continues to increase. Extrapolating the total number of publications up to 2016 to
the end of the decade, the number will more than double the results of the previous
decade, the 2000s. Because of their strategic role in cloud deployments, they will
certainly continue to be analyzed and enhanced.

Regarding Sys-VMs, major research efforts continue in memory virtualization
techniques. For example, Amit et al. propose VSwapper [6], which substitutes
the classic balloon driver in the common case of uncooperative guests. Although
this situation is known for its poor performance, VSwapper uses a combination
of intricate techniques to overcome the problem, monitoring host disk blocks and
establishing a relation to guest memory pages in order to detect page writes and
reads that hinder performance.

When looking to HLL-VMs, research in resource management is currently
driven by the need to incorporate further mechanisms to regulate memory usage
when running manage runtimes in clusters. Although this has been a topic of
research for more than a decade now [26], new challenges were introduced by cloud
deployments, namely, the execution on top of Sys-VMs and big-data applications.

Manage runtimes are the basis of modern processing and storage framework
widely used by cloud-enabled applications. However, because many times they
execute on top of Sys-VMs, there is the need to externally instruct the HLL-VM
to relinquish some memory so that the VMM can deliver it to other tenants [45, 69].

Considering a single node running instance, some improvements for big-data
workloads are also being explored to avoid the problems introduced by object
churn and very large heap sizes [33], including in NUMA-based architectures
[32]. But because typically the workloads run on top of multiple physical nodes,
researchers are looking for ways to coordinate resource management, in particular
GC operations [56, 74].

3.3 Adaptation Techniques

In a software system, adaptation is regulated by monitoring, analyzing, deciding,
and acting [68]. Monitoring is fed by sensors, and actions are accomplished by
actuators, forming a process known as the adaptation loop, as depicted in Fig. 3.5.
Virtual machines, regardless of their type, are no exception. The two intermediate
phases, analysis and decision, are in many cases seen as one [57]. An example is
the observe, decide, and act loop proposed by IBM for autonomic systems [7]. This
chapter follows the same approach and resumes the adaptation loop to three major
phases: monitor, analysis/decision, action.

3 Recent Progress and Challenges in Virtual Machines 67

Decision

Action

Determine what needs to
be changed

Use actuators
(e.g. change parameter,

change algoritm)

Adaptation Loop

Analysis
Analyze the collected data to
determine when a change is

needed

Monitoring
Collect data from sensors
(e.g. hardware, VMM, OS,

VM, App)

Fig. 3.5 Adaptation loop

In a broad sense, virtual machines have an important property of autonomic
systems which is self-optimization [7]. An example is the adaptive JIT compilation
techniques of HLL-VMs [9] or GC algorithms that use feedback-directed online
techniques to avoid page faults [37]. Furthermore, virtual machines export adapt-
ability mechanisms that are used by outside decision systems to reconfigure VM’s
parameters or algorithms.

There is a broad range of strategies regarding the analysis and decision processes.
Many solutions that augment system VMs use control theory elements, such as
the proportional-integral-derivative controller, and additive-increase/multiplicative-
decrease (AIMD) rules, to regulate one or more VM parameters. Typically, when
the analysis and decision are done in the critical execution path (e.g., scheduling,
JIT, GC), the choice must be done as fast as possible, and so, a simpler logic is used.

In our previous work, we have addressed adaptation with strategies based on
economic models and awareness of the workloads. Regarding system VMs, we
have addressed adaptation of VM allocation [72] and resizing mechanisms [79, 81].
Regarding high-level language VMs (Java VM), we have studied the economics of
enforcing resource (CPU and memory) throttling [78], taking into account applica-
tion performance [80], and the tradeoffs between resource savings and performance
degradation/improvement, when aggressively transferring resources among appli-
cations [77]. At the middleware level, federating several VMs, adaptation concerns
memory management in object caching/replication aggressiveness [97], driven by
declarative policies [98], and adapting the number of VMs/nodes dynamically allo-
cated to multi-threaded Java applications, running on top of multi-tenant clustered
runtimes [75].

Next we will present and discuss the state of the art regarding the three major
steps of the adaptation loop for each type of VM and their internal resource
management mechanisms.

68 J. Simão and L. Veiga

3.3.1 System Virtual Machine

The VMM has built-in parameters to regulate how resources are shared by their
different guests. These parameters regulate the allocation of resources to each
VM and can be adapted at runtime to improve the behavior of applications given
a specific workload. The adaptation process can be internal, driven by profiling
made exclusively inside of the VMM, or external, which depends on application’s
events such as the number of pending requests. In this section, the two major
VMM subsystems, CPU scheduling and memory manager, will be framed into the
adaptation processes – monitoring, decision, and acting.

3.3.1.1 CPU Management

CPU management relates to activities that can be done exclusively inside the
hypervisor or both inside and outside. An example of an exclusively inside activity
is the CPU scheduling algorithm. To enforce the weight assigned to each VM, the
hypervisor has to monitor the time of CPU assigned to each VCPUs of a VM,
decide which VCPU will run next, and assign it to a CPU [21, 70]. An example
of an inside and outside management strategy is the one employed by systems
that monitor events outside the hypervisor (e.g., operating systems load queue,
application level events) but then use its internal actuators to adjust parameters. For
example, monitoring the waiting time inside the spin-lock synchronization primitive
(in the kernel of the guest operating system) may be necessary to inform the
hypervisor’s scheduler about the best co-scheduling [64] decisions of VCPUs [103].

Decision strategies can be simple, like the proportional share-based that enforces
predefined shares defined by high-level policies in a multi-tenant environment.
More complex decisions, made outside the hypervisor, include (i) control theory
using a PID controller [66, 110], (ii) linear optimization [65], and (iii) signal
processing and statistical learning algorithms [35].

The actions taken by the CPU scheduler inside the hypervisor include (i) number
of VCPUs [70], (ii) co-scheduling [99, 103, 104], (iii) VCPU migration [99], and
(iv) number of threads and sleep time [110]. Systems where decisions are made
outside the hypervisor use the available actuators, namely, (i) VCPU share and
(ii) VCPU cap [35, 42, 65].

3.3.1.2 Memory Management

In this step of the control loop, the VMM needs to determine how pages (or parts
of it) are being used by each VM. To do so, it must collect information regarding
(i) page utilization [61, 100, 102] and (ii) page (and sub-page) contents equality or
similarity [39, 100]. Some systems also propose to monitor application performance,
either by instrumentation or external monitoring, in order to collect information
closer to the application’s semantics [45, 69].

3 Recent Progress and Challenges in Virtual Machines 69

The VMM supports overcommit, that is, the total memory configured to the
overall VMs can be higher than the one that is physically available. When pages of
memory need to be transferred between VMs (and their guest OS), different types
of decisions are made based on (i) shares [100], (ii) feedback control [42], (iii) LRU
reference histogram [102], and (iv) linear programming [45].

To change the system state regarding its memory use, there are three main
approaches: (i) page sharing, (ii) page transfer between VMs, and (iii) compress
page contents. While page sharing and transfer relies on intrinsic mechanisms of
the VMM, as presented in Sect. 3.2.2, page compression is an extension to these
base mechanisms.

3.3.2 High-Level Language Virtual Machine

In this section, the three major language VM subsystems, JIT compiler, GC, and
resource manager, will be framed into the adaptation processes. HLL-VMs monitor
events inside their runtime services or in the underlying platform. As always, there is
a trade-off between deciding fast but poorly or deciding well (or even optimally) but
spending too much resource and time in the process of doing so. Most systems base
their decision on a heuristic, that is, some kind of adjustment function or criterion
that although it cannot be fully formally reasoned about, it still gives good results
when properly used. Nevertheless, some do have a mathematical model guiding
their behavior [93]. Next we will analyze the most common strategies.

3.3.2.1 Just in Time Compilation

The JIT is mostly self-contained in the sense that the monitoring process (also
known as profiling in this context) collects data only inside the VM. Modern
JIT compilers are consumers of a significant amount of data collected during the
compilation and execution of code.1 Hot method information is acquired using
(i) sampling and (ii) instrumentation. In the first case, the execution stacks are
periodically observed to determine hot methods. In the second case, method code
is instrumented so that its execution will fill the appropriate runtime profiling
structures. Sampling is known to be more efficient [9] despite its partial view of
events.

To determine which methods should be compiled or further optimized, there are
two distinct groups of techniques: (i) counter-based and (ii) model-based. Counter-
based systems look at different counters (e.g., method entry, loop execution) to

1The adaptive optimization system (AOS) in Jikes RVM [4] produces a log with approximately
700 kB of information regarding call graphs, edge counters and compilation advice when running
and JIT compiling ‘bloat’, one of DaCapo’s benchmarks [15].

70 J. Simão and L. Veiga

determine if a method should be further optimized. The threshold values are
typically found by experimenting with different programs [9]. In a model-driven
system, optimization decisions are made based on a mathematical model which can
be reasoned about. Examples include a cost-benefit model where the recompilation
cost is weighted against further execution with the current optimization level [4, 52].

Adaptability techniques in the JIT compiler are used to produce native optimized
code while minimizing impact in application’s execution time overhead. Because
native takes more memory than intermediate representations, some early VMs
discarded native code compilations when memory became scarce. With the growth
of hardware capacity, this technique is less used. Thus, the actions that can complete
the adaptation loop are (i) partial or total method recompilation, (ii) inlining, or (iii)
deoptimization.

3.3.2.2 Garbage Collection

Although the way garbage collection is made usually does not change during pro-
gram’s execution, managed runtimes incorporate some form of memory adaptation
strategy [9]. In the literature, several sensors are used to guide the decision process,
both from the managed runtime and operating system, including: (i) memory
structure dimensions (e.g., heap in use) [84, 85], (ii) GC statistics (e.g., GC load,
GC frequency) [88], (iii) relevant events in the operating systems (e.g., page faults,
allocation stalls) [37, 44], and (iv) working set size [109].

Improvements to overall system performance are made by reducing time spent in
GC operations. Heap-related structures are adapted both before and during program
execution. Adjusting before program execution is made after a previous analysis of
several executions, varying relevant parameters. While there are some mathematical
models of objects’ lifetimes, they are essentially used to explain the GC behavior
and not to drive a decision process [11]. The techniques used in the decision phase
range from heuristics to more formal processes: (i) simple heuristics, (ii) machine
learning, (iii) PID controller, and (iv) microeconomic theories such as the elasticity
of demand curves.

Actions regarding GC adaptability range from simply triggering the GC in a
specific situation to the hot-swap of the algorithm itself (e.g., to avoid memory
exhaustion [88]), as described next: (i) GC parameters [85], (ii) heap size [84], and
(iii) GC algorithm [88].

3.3.2.3 Resource Management

Monitoring resources, that is, collecting usage or consumption information about
different kinds of resources at runtime (e.g., state of threads, loaded classes) can
be done through (i) a service exposed by the runtime [10, 25] and (ii) byte code
instrumentation [49]. In the former, it is possible to collect more information, both

3 Recent Progress and Challenges in Virtual Machines 71

from a quantitative and qualitative perspective. A well-known example is the Java
Management Extensions (JMX) [63]. Because HLL-VMs do not necessarily expose
this kind of service, instrumentation allows some accounting in a portable way.
Accounted resources usually include CPU usage, allocated memory, and relevant
system objects such as threads or files.

This subsystem has to decide whether a given action (e.g., consumption) over
a resource can be done or not. This is accomplished with a policy, which can be
classified as (i) internal or (ii) external. In an internal policy, the reasoning is hard-
coded in the runtime, possibly only giving the chance to vary a parameter (e.g.,
number of allowed opened files). An external policy is defined outside the scope of
the runtime, and thus, it can change for each execution or even during execution.

This subsystem is particularly important in VMs that support several independent
processes running in a single instance of the runtime. Research and commercial sys-
tems apply resource management actions to (i) limit resource usage and (ii) perform
resource reservation. Limiting resource usage aims to avoid denial of service or to
ensure that the (possibly paid) resource quota is not overused. The last scenario is
less explored in the literature [25]. Resource reservation ensures that when multiple
processes are running in the same runtime, it is possible to ensure a minimum
amount of resources to a given process.

3.3.3 Summary of Techniques

In this section, we summarize several techniques identified in the literature.
Figure 3.6 presents the techniques used in the adaptation loop of Sys-VMs. They
are grouped by the two major adaptation targets, CPU and memory, and then into
the three major phases of the adaptation loop. The CPU management sub-tree is
the one that has more elements (i.e., more adaptation techniques). This reflects the
emphasis given by researchers to this component of Sys-VMs. Regarding memory,
early work of Waldspurger [100] and Barham et al. in [12] laid solid techniques
for virtualizing and managing this resource. Recent work shows that to improve
performance of workloads regarding their use of memory, it is crucial to have more
application-level information [45, 102].

Figure 3.7 presents the techniques used in the adaptation loop of systems
using HLL-VMs. They are grouped into the three major adaptation targets: (i) JIT
compiler, (ii) garbage collection, and (iii) resource management. Each adaptation
target is then divided into the three phases of the adaptation loop. The garbage
collection sub-tree has a higher number of elements when compared with any of
the other two. This reflects different research paths but also a higher dependency
of the garbage collection process on the workloads and on the context of execution
(i.e., shared environment, limited memory, etc.).

The techniques used in the monitoring and action phase are domain-specific. For
example, there are sensors related to the utilization of memory pages or actuators

72 J. Simão and L. Veiga

CPU consumed by VCPU

Virtual time clock

OS sync primitives

OS CPU usage counters

Monitoring

Application performance

Share-based

Analysis and Decision

Analysis and decision

CPU management

ActionSystem VMs
CPUs share

Number of processes/threads

Co-scheduling

Monitoring

Memory management

Page utilization

Page contents

Application performance

Share-based

Counter threshold

Linear optimization

Control-based

Page sharing

Page/Memory transfer

Page compression

Action

Number of VCPUs

Counter threshold

Linear optimization

Control-based

Signal correlations

Fig. 3.6 Techniques used by System VMs in the monitoring, decision and action phases

that change a parameter in the garbage collection algorithm. On the contrary, the
strategies used in the decision phase can be found in other adaptability works and,
in general, in autonomic computing systems [7, 57].

Maggio et al. [57] have focused attention on the characterization of decision
techniques. They divide them into three broad categories: heuristics, control-based,
and machine learning. In fact, we can also see these categories when we look to
the techniques identified in this section. Figures 3.6 and 3.7 show that the decision
strategies are either heuristic (e.g., microeconomics, share-based), control-based
(e.g., PID controller), based on signal processing techniques (e.g., correlation of
different windows of samples), and machine learning (e.g., reinforcement learning).
Regarding strategies that use linear programming, they are used only to make a
general model of the scheduling variables. In practice, these approaches use integer
linear programming which is known to be NP-hard. Thus, they use some kind of
greedy approach to solve it.

Based on the survey of these different techniques, the next section will present a
classification framework that aims to compare complete adaptive systems.

3 Recent Progress and Challenges in Virtual Machines 73

Sampling

Instrumentation

Analysis and decision

Analysis and decision
Garbage collectionHLL VMs

Resource management Analysis and decision

Monitoring

JIT compiler

Action
Deoptimization

Model based

GC statistics

Memory structures dimensions

Memory structures

Monitoring
Events of the OS

Events of the OS

Working set size

Heuristics

Machine learning

Control Theory

Microeconomic theories

Heap size

Action

Action
Limit usage

Offline with execution

Inline with execution

Reservation

GC run

GC algorithm type

Monitoring

Counter lookup

Partial or total recompilation

Fig. 3.7 Techniques used by HLL-VMs in the monitoring, decision and action phases

3.4 The RCI Taxonomy

To understand and compare different adaptation processes, we now introduce a
framework for classification of VM adaptation techniques. The classification is
based on the different techniques described earlier and depicted in Figs. 3.6 and 3.7.
The analysis and classification of the techniques and the way they are used in each
of the adaptation loops revolve around three fundamental criteria: Responsiveness,
Comprehensiveness, and Intricateness. We call it RCI taxonomy. Our goal is to put
each system in perspective and compare them regarding three criteria. The final RCI
values of a given system depend on the techniques the system uses for monitoring,
decision, and acting.

These aspects were chosen, not only because they encompass many of the
relevant goals and challenges in VM adaptability research but also because they
seem to embody a fundamental underlying tension: to achieve improvements in
two of these aspects the system must do so at the expense of the other. System
design is always a trade-off between different choices. A well-known example is the

74 J. Simão and L. Veiga

Sα
Monitor Decide

Act

Adaptation
Loop

M

D

A

Rmin

Imax

R

I

tj

Rmin

Imax

∑ R

∑ I

C(M,A)

R

C

I

Step 1 Step 2 Step 3

N
orm

alization

RCI classification framework

Fig. 3.8 A step-by-step classification process

CAP theorem [18], showing the tension existing in the general design of distributed
systems. In the particular case of peer-to-peer systems, high availability, scalability,
and support for dynamic populations are other kind of tensions [16].

The framework starts by taking the input system and decomposing it into the
adaptation techniques used in the monitoring, decision, and acting phase. This is
represented in step 1 of Fig. 3.8. Then, for each technique, a value for R and I is
determined (step 2). The metric C is determined in step 3 by taking into account
the order of magnitude of the number of sensors and actuators. Also in step 3, the
previous values are aggregated and normalized, determining the final RCI tuple for
the system.

Decomposing the system into the previously mentioned parts (step 1) is simply
done by analyzing the reported techniques, both in their nature and cardinality. To
proceed with the classification process, the framework must determine

(i) which quantitative value is assigned to each technique in the monitoring,
decision or acting phase and

(ii) how these values are aggregated to reach a final RCI tuple.

These two steps are detailed in the following sections. First, Sect. 3.4.1 dis-
cusses a quantitative criteria, where design options, representing groups/classes of
techniques, are assigned a single value. Next, Sect. 3.4.2 maps the set of specific
techniques presented in Sect. 3.3 to these classes, so that each technique is assigned
a unique value of R and I. This completes step 2 of the classification process. Finally,
Sect. 3.4.3 explains the rationale of step 3, showing how the previous values are
aggregated with the C metric to determine a system’s RCI.

3 Recent Progress and Challenges in Virtual Machines 75

Time
(Responsiveness)

Number of sensors/actuators
(comprehensiveness)

Code
(Intricateness)

(0,0,0)

(max(R),max(C),max(I))

Fig. 3.9 Systems design interval

3.4.1 Quantitative Criteria of the RCI Taxonomy

We think the three metrics are able to capture a design interval as presented in
Fig. 3.9. They are a proxy for time, space, and complexity-related characteristics.
Our conjecture is that we will see systems that are away from the minimum and
the maximum of the cube, that is, neither too simple (e.g., near the base of the
coordinates) nor excelling in the three metrics (e.g., near or coincident with the
maximum point in the design space). The following list points the exact meaning of
the three criteria, regarding each of the adaptation phases. Next, we will detail how
they are mapped to a numeric scale, in each phase, which will be used to determine
the RCI of systems.

• Responsiveness. It captures time-related characteristics of the techniques.
Regarding the monitoring phase, it depends on the latency of reading a value.
Higher values are assigned to sensors immediately available on the VM code
base, where higher values represent external sensors (operating system or
application specific). For the decision phase, responsiveness is lower in those
techniques that take longer to reach a given adaptation target. Regarding the
action phase, high values indicate that the effect is (almost) immediate, while a
low value represents actuators that will take some time to produce effects.

• Comprehensiveness. It captures quantity-related characteristics of the tech-
niques. Regarding the monitoring and deciding phases, it gets higher as the
quantity of the monitored sensors increases. Regarding the acting phase, the
comprehensiveness value grows with the quantity of actuators that the system
can engage.

76 J. Simão and L. Veiga

• Intricateness. It captures the inherent complexity of the techniques. Regarding
the monitoring and acting phase, higher values are reserved for sensors/actuators
that had to be added to the base code of the virtual machine, operating system,
or application layer. Low values represent sensors/actuators that are already
available and can be easily used. In the deciding phase, intricateness represents
the inherent complexity of the deciding strategy. For example, an if-then-else rule
has low intricateness but advanced control theory has higher values.

Figure 3.10 represents each of these criteria (R, C, I) for the three adaptation
phases (M, D, A). For each criteria, in each adaptation phase, the figure shows
several options there are used during the classification of a given technique, used
in step 2 of the classification process. It does so by showing the mapping between
a design option (e.g., use a sensor that is an extension inside the VM) and a
quantitative value. These values establish an order among different options.

It is important so stress that these design options do not represent a specific
technique but a class of techniques. For example, “direct reading” in the criterion
I of the phase M is to be selected when the sensor is available in the original code

3 = inside VM reading

2 = kernel level reading

1 = application level reading

1 = direct reading

2 = extension in same layer

3 = extension in other layer

5 = rules / heuristics

4 = linear optimization

2 = linear optimization

3 = signal processing

3 = signal processing

3 = VM parameter

2 = VM algorithm

1 = OS parameter / algorithm

1 = direct acting

2 = extension in same layer

3 = extension in other layer

2 = control-based

1 = model-free machine learning

4 = control-based, model-free ML

1 = rules / heuristics

Intricateness

Intricateness

Intricateness

Responsiveness

Responsiveness

Responsiveness

Decision

Action

RCI framework

Monitor

Fig. 3.10 Quantitative values for the design options of the RCI framework

3 Recent Progress and Challenges in Virtual Machines 77

base or in another level of the system stack, without the necessity of building further
extensions. This indirection makes the classification system generic because the
number of techniques, sensors, and actuators can grow in the future while being
accommodated by the taxonomy in one of the existing classes. Even so, we think
these classes are expressive and distinctive enough to characterize different levels
of responsiveness, comprehensiveness, and intricateness.

The mapping between classes and specific techniques will be presented next, in
Sect. 3.4.2. Note also that the scale of the values is not important (they typically
represent different orders of magnitude) as long as the values are positive and
monotonically increasing or decreasing, in accordance with the corresponding
criteria.

Across all the adaptation phases, comprehensiveness is directly represented by
the number of sensors or actuators, as explained previously. This is represented by
n, which is a positive quantity (between 1 and 3) corresponding to the number of
sensors or actuators that are used. This means that the comprehensiveness increases
as this number grows. The other two criteria have more distinctive characterizations
in each of the adaptation phases, which we elaborate next:

• Monitoring. The responsiveness of the monitoring phase depends on the cost of
reading. The cost of reading relates to the time spent in reading a single value,
that is, how fast can a single value be collected. This depends on the layer where
the sensor is in relation to where the decision is made. For example, some systems
use application-level monitors which require inter-process communication to
read them (e.g., number of completed SQL transactions [45]). Others depend
only on values collected inside the virtual machine monitor or the HLL-VM
context. A middle-ground approach is that of systems that depend on sensors
from other layers, such as the OS, but, reading them has a low cost (e.g., the
/proc virtual file system).

The intricateness of the monitoring phase is a measurement of how complex is
the code for reading sensors. Value 1 is assigned to systems that use preexisting
sensors of the virtual machine or in the execution environment, which have a
direct access. Value 2 is for extensions made inside the virtual machine, and
value 3 is assigned when extensions were made in the underlying system and/or
hardware (e.g., operating system, in the case of HLL-VMs).

• Deciding. The responsiveness and intricateness of the deciding phase is in a large
part inspired by the study of Maggio et al. [57]. They discuss how feedback
control mechanisms compare to each other in the context of a benchmark
suite composed of multi-threaded programs, instrumented with the Application
Heartbeat framework [46]. Taking into account the analyzed techniques, our
classification framework is based on five decision types (i) rules/heuristics,
(ii) linear optimization, (iii) control-based solutions, (iv) signal processing
techniques, and (v) model-free machine learning solutions.

We have classified these five types of decision strategies as decreasingly
responsive, because they take an increasing amount of time to reach a certain
target point. They are increasingly intricate with the exception of control-based

78 J. Simão and L. Veiga

solutions which we consider more intricate than signal processing. This is so
because of the panoply of parameters that usually have to be tuned. A model-
free solution has also the highest intricateness value because the tuning of
assigning credits to each possible action and the balance between exploitation
and exploration (i.e., balancing between making the best decision given current
information or explore more system states) [57].

• Acting. In this phase, responsiveness reflects the capacity of the actuator
to produce an observable and measurable consequence. Any throttle to the
processing capacity will have almost immediate effect and so a value of 1 is
assigned to this type of actuator. Regarding memory, tweaking the set of pages
assigned to a VM will have a quicker impact than simply changing its memory
share. Changing heap parameters is, in comparison with the other techniques, the
least responsive one, and so it gets a value of 3. Intricateness has, in this phase, a
similar characterization to the one made in the monitoring phase.

In the following section, we map the previous analyzed techniques to this tree of
design options.

3.4.2 Classification of Techniques

Based on the quantitative values of the taxonomy described in the previous section,
we now focus on mapping of the techniques described in Sect. 3.3 to a value, so
that a final RCI of each system can be determined and different systems can be
compared.

Tables 3.1, 3.2, and 3.3 refer to system-level virtual machines and map a specific
sensor, actuator, or decision technique to a particular value. For each line, the
first column identifies a technique (as presented in Figs. 3.6 and 3.7) while the
second and third columns contain a design class and the corresponding value, for

Table 3.1 System VMs: sensors monitored

Sensor R option Value I option Value

Page utilization Inside VM 3 Direct reading 1

Page contents Inside VM 3 Extension same layer 2

Page faults Kernel 2 Direct reading 1

Memory demand Kernel 2 Direct reading 1

Application’s performance Outside 1 Direct reading 1

Virtual time clock Inside VM 3 Direct reading 1

CPU consumed by each VCPU Inside VM 3 Direct reading 1

Xen CPU/Mem consumed Kernel reading 2 Direct reading 1

OS sync primitives Kernel 2 Extension other layer 3

OS CPU usage counter Kernel 2 Direct reading 1

3 Recent Progress and Challenges in Virtual Machines 79

Table 3.2 System VMs: decision techniques

Control technique R option Value I option Value

Share based Rule/heuristic 5 Rule/heuristic 1

Counter threshold Rule/heuristic 5 Rule/heuristic 1

Integer linear programming Linear optimization 4 Linear optimization 2

PID controller Control-based 2 Control-based 4

Resource usage samples correlation Signal processing 3 Signal processing 3

LRU histogram Rule/heuristic 5 Rule/heuristic 1

Table 3.3 System VMs: actuators used in the action phase

Actuator R option Value I option Value

Page sharing VM parameter 3 Extension in same 2

Page compression VM algorithm 2 Extension in same 2

Page/memory transfer VM parameter 3 Direct acting 1

Co-scheduling VM parameter 3 Extension in same 2

Number of VCPUs assigned to CPU VM parameter 3 Direct acting 1

Change shares or caps VM parameter 3 Direct acting 1

Number of processes/threads VM parameter 3 Direct acting 1

Table 3.4 HLL VMs: sensors monitored

Sensor R option Value I option Value

Memory structures dimensions Inside 3 Direct 1

Events of the operative system Kernel 2 Direct 1

Working set size Kernel 2 Extension other layer 3

GC load Inside 3 Direct 1

Frequency of GC Inside 3 Direct 1

Memory usage patterns App 3 Extension same layer 2

Table 3.5 HLL VMs: decision techniques

Control technique R option Value I option Value

If-then-rule Rule/heuristic 5 Rule/heuristic 1

Generic condition Rule/heuristic 5 Rule/heuristic 1

Reinforcement learning Model-free ML 1 Model-free ML 4

PID controller Control-based 2 Control-based 4

Elasticity (micro-economy) Rule/heuristic 5 Rule/heuristic 1

responsiveness (second column) and intricateness (third column). Tables 3.4, 3.5,
and 3.6 are the ones corresponding to the high-level language virtual machines and
follow the same logic.

Looking at the techniques used in the monitor phase, Tables 3.1 and 3.4 show us
that only two techniques have the minimum responsiveness. This is so because most

80 J. Simão and L. Veiga

Table 3.6 HLL VMs: actuators used in the action phase

Actuator R option Value I option Value

Heap size VM parameter 3 Direct 1

Run GC VM parameter 3 Direct 1

Change GC algorithm VM algorithm 2 Extension same layer 2

Limit usage VM algorithm 2 Extension same layer 2

Reservation VM algorithm 2 Extension same layer 2

of the sensors are near the VM execution space (either in a subsystem of the VM
or in the operating system). Low intricateness also is dominant as most sensors are
already available.

Regarding the decision phase, analyzed in Tables 3.2 and 3.5, a majority of
techniques have high responsiveness values. As a consequence, they are less
intricate. In HLL-VMs, techniques are usually either very simple or have maximum
complexity.

Finally, regarding the action phase, we note that all actuators are either already
available in the VM code base or are extensions to the VM code base. Contrary to
sensors, no new actuators are proposed for other layers of the execution stack. This
leads to not having, in practice, actuators with the maximum intricateness.

3.4.3 Aggregation of Quantities

In this section, we give the details about the implementation of the final stage of step
2 and how step 3 operates, as depicted in Fig. 3.8.

Regarding the final stage of step 2, because a given system may use more than
one sensor, in the monitoring phase, and more than one actuator, in the acting phase,
the framework must determine a single R and I value for these two phases (i.e., RM ,
RA, IM , IA). Regarding responsiveness, we consider the technique with the lowest
responsiveness, as presented in Equation 3.1. This was so because the monitor or
the action phase will be as responsive as the least responsive technique the system
uses. Regarding the intricateness metric, we use the technique with the highest value
as a representative of the phase’s intricateness. Finally, note that this is not an issue
for the decision phase because specific systems only use one strategy.

R� D minimum of techniques0 responsiveness; where � 2 fM; Ag (3.1)

For a given system, S˛ , the three metrics of the framework, responsiveness,
comprehensiveness, and intricateness are represented by R.S˛/, C.S˛/, and I.S˛/,
respectively. Each of these metrics depends on the specific values of the techniques
used by the system. So, to determine R.S˛/, the framework adds the responsiveness
of each phase of the adaptation loop (Monitor, Decision, Action), as presented in

3 Recent Progress and Challenges in Virtual Machines 81

Table 3.7 Example of the aggregations made in step 2 for system S˛

System Monitor R I Decision R I Action R I

S˛ Ta 2 3 Td 2 3 Te 1 2

Tb 3 2 Tf 2 1

Tc 1 2

1 3 2 3 1 2

Table 3.8 Example of the arithmetic operations in step 2 for system S˛

System R C I

S˛ 1+2+1 #sensors+#actuators 3+3+2

Equation 3.2. A similar operation is done to determine the intricateness metric.

R.S˛/ D
X

� 2 fM;D;Ag

R�.S˛/ (3.2)

To determine comprehensiveness, C.S˛/, the framework takes into account the
number of sensors used in the monitoring phase, the number of actuators used in the
acting phase, and adds them to reach a single value. This is the operation identified
as C.M; A/ in step 3 of Fig. 3.8.

As an example, consider system S˛ , which uses several hypothetical techniques
for each phase of the adaptation loop. Step 1 of the framework determines that the
techniques must be identified (e.g., Ta::f). Then, for each technique, a quantitative
value is assigned regarding its responsiveness and intricateness for the three phases
of the adaptation loop.

The last line of Table 3.7 shows the result of the aggregation operations used to
determine, for each of the three phases, the R and I values. The aggregate function
minimum is used for responsiveness, while the aggregate function maximum is used
for intricateness.

Table 3.8 completes the example, showing the arithmetic operations necessary to
determine the overall R, C, and I values of the hypothetical system S˛ . The values
from the last line of Table 3.7 are the ones used to determine R and I in Table 3.8,
following the Equation 3.2.

3.4.4 Critical Analysis of the Taxonomy

The RCI taxonomy aims to show trade-offs in the design of adaptive systems in the
context of virtual machines. Its critical point is the design options tree, presented in
Fig. 3.10, and the corresponding quantitative values. It can be the case that either the
design options do not represent the entire design space or that the quantitative values

82 J. Simão and L. Veiga

are not correctly assigned. We tried to minimize this by designing the taxonomy
after examining several systems to better understand the scope of the design space.
However, we are still to collect the opinions of other researchers in the area on using
the taxonomy, and possibly improving it based on their feedback.

In the next section, relevant works are analyzed regarding monitoring and
adaptability in virtual machines, both at system as well as managed language level.
The RCI taxonomy is used to compare different systems and better understand
how virtual machine researchers have explored the tension between responsiveness,
comprehensiveness, and intricateness.

3.5 VM Systems and Their Classification

In this section, we start by surveying several state of the art systems, regarding
system-level VMs, Sect. 3.5.1, and high-level language VMs, Sect. 3.5.2. In each
case, we frame the analyzed systems into the classification framework presented in
Sect. 3.4, describing each of the techniques used, resulting in the classification and
comparison of complete systems.

3.5.1 System Virtual Machine

The following are succinct descriptions of system-level VMs and systems that
extend them. We start by presenting a well-known open-source hypervisor. A list
of systems that extend this or other similar hypervisors follows. Most of them are
centered either on CPU or memory. At the end of the section, Table 3.9 summarizes
the techniques used in each system. This process was identified as step 1 in Fig. 3.8.
This is the base for determining each system’s RCI.

3.5.1.1 Friendly Virtual Machines (FVM)

This VMM aims to neither overused or underused resources. The responsibility
for adjusting the demand of the underlying resources is delegated to each guest,
resulting in a distributed adaptation system [110]. The decision phase is regulated by
feedback control rules such as additive-increase/multiplicative-decrease (AIMD),
typically used in network congestion avoidance [22]. A VM runs inside a hosted
virtual machine, the user-mode Linux. The FVM’s daemon installed at each guest
controls the number of processes and threads that are effectively running at each
VM. When only a single thread of execution exists, FVM will adapt the rate of
execution forcing the VM to periodically sleep.

3 Recent Progress and Challenges in Virtual Machines 83

Table 3.9 Sys-VM Systems

Dominant Modified

System resource Monitor Decision Action VMM/VM

FVM CPU VTC PID Controller
AIMD

Number of
threads, periodic
sleep

Yes

Auto control CPU, I/O CPU, I/O usage,
Average response
time

Model predictive,
Quadratic solver

Cap, disk share No

Press CPU CPU, Mem, I/O
usage

Pearson
correlation

CPU cap No

HPC CPU VCPU utilization
rate, System
Parallel level

Rules with AISD Number of
VCPUs

No

ASMan CPU Spin locks
utilization and
waiting time

Thresholding
rules

Co-scheduling Yes

Ginko Mem Average time per
URL request,
#SQL
transactions,
response time

Linear
programming

Balloon No

Overbooking CPU, Mem CPU, Mem,
Average time per
URL request

PID controller CPU cap, balloon No

VMMB Mem Page faults, swap
operations

LRU histogram Balloon, VMM
swapping

Yes

Difference
engine

Mem (sub-)Page
contents

Not recently used Page sharing,
patching,
compression

Yes

3.5.1.2 ASMan

The Adaptive Scheduling Manager (ASMan) [103] is an extension to Xen’s
scheduler. It adds the capacity to co-schedule virtual CPUs (VCPU) of VMs where
there are threads holding a blocking synchronization mechanism, such as spin locks.
In non-virtualized systems, threads holding spin locks are not preempted. In a
virtualized system, the VCPU continues to be held by the thread but, because the
hypervisor sees the VCPU as being idle, the VCPU is taken from execution and
placed on the waiting queue. Using the concept of VCPU-related degree (VCRD),
the ASMan system determines the degree of relationship between the VCPUs in a
VM. The system dynamically determines this metric by monitoring, in each guest
OS, the time spent in spin locks. The VM is then classified with a low or high VCRD
if it is below or above a certain threshold. When the VCRD is high, the VCPUs of
that VM are co-scheduled.

84 J. Simão and L. Veiga

3.5.1.3 HPC Computing

Shao et al. [70] adapt the VCPU mapping of Xen [12] for high-performance com-
puting applications, based on runtime information collected by a monitor that must
be running inside each guest’s operating system. They adjust the number of VCPUs
to meet the real needs of each guest. Decisions are made based on two metrics:
the average VCPU utilization rate and the parallel level. The parallel level mainly
depends on the length of each VCPU’s run queue. The adaptation process uses an
additive increase and subtractive decrease (AISD) strategy. Shao et al. focus their
work on benchmarks used to represent the common operations of high-performance
computing applications. It acts on number of VCPUs assigned to each VM.

3.5.1.4 Auto Control

The Auto Control system [65] uses a control theory model to regulate resource
allocation, based on multiple inputs and driving multiple outputs. Inputs include
CPU and I/O usage, together with application specific metrics. It acts on the
allocation of caps for CPU and disk I/O. For each application, there is an
application controller which collects the application’s performance metrics (e.g.,
application throughput or average response time) and, based on the application’s
performance target, determines the new requested allocation. The model is adjusted
automatically, and so it can adapt to different operating points and workloads.

3.5.1.5 PRESS

PRedictive Elastic ReSource Scaling for cloud systems (PRESS) [35] tries to
allocate just enough resources to avoid service level violations while minimizing
resource waste. To handle both cyclic and noncyclic workloads, PRESS tracks
resource usage and predicts how resource demands will evolve in the near future.
The decision phase (which includes the analysis of observed values) uses signal
processing techniques (i.e., fast Fourier Transform and the Pearson correlation).
PRESS tries to look for a similar pattern (i.e., a signature) in the resource usage
history. If this fails, PRESS uses a discrete-time Markov chain. The prediction
scheme is used to regulate the CPU cap of the target VM.

3.5.1.6 Overbooking and Consolidation

Heo et al. [42] focus on monitoring memory usage (including page faults) and
application performance. They show that allocating memory in such an overcom-
mitted environment, without taking also into account the CPU, results in significant
service level violations. The system uses a PID controller to dynamically change the
allocating of memory (using the ballon driver) and the CPU cap.

3 Recent Progress and Challenges in Virtual Machines 85

3.5.1.7 Difference Engine

Differently from other system, Gupta et al. [39] share page content at the sub-
page level, using a technique named page patching, which is made by observing
the difference relative to a reference page. Based on a not recently used policy,
difference engine also uses memory compression for pages that are not significantly
similar to other pages in memory. Both techniques extends the more traditional
mechanisms of copy-on-write full page sharing, already present at the Xen VMM.

3.5.1.8 VMMB

In [61], Min et al. present VMMB, a virtual machine memory balancer for
unmodified operating systems. VMMB monitors the memory demand (i.e., nested
page faults and to guest swapping) and reallocates memory based on the QoS
requirement of each VM. It uses the LRU histogram as input for their decision
algorithm that determines the memory allocation size of each VM while globally
minimizing the page miss ratio. Similar to other works, they use balloon driver
to enforce each VM’s new memory size. When this is not enough, a VMM-level
swapping is used to select a set of victim pages and immediately allocate memory
to a selected VM.

3.5.1.9 Overall System Analysis

Table 3.9 summarizes the systems analyzed in this section. After the system name,
the second column identifies the dominant resource, that is, the resource over which
the system is monitoring but also acting. From the third to the fourth column, we
present the techniques used in each of the adaptation phases. The last column allows
us to quickly determine if the system proposes extensions to the code base of the
VM or not.

Figure 3.11 depicts the overall RCI of each system that uses or augments a
system-level VM. It presents a visual, quantitative, and comparative analysis, which
completes Table 3.9. Overall, systems tend to favor responsiveness design options
(as this metric prevails in every system).

When looking for memory-dominant systems (difference engine, VMMB, Ober-
booking, Ginko) we see that Overbooking is less responsive because it tries to
embrace a large number of sensors and actuators. In the CPU-dominated systems,
HPC is the one classified as the most responsiveness but uses simpler techniques
(low intricateness) and a minimum number of sensors and actuators. ASMan is more
intricate, basically because it needs extensions for the monitoring and action phase,
but it had to give up on some responsiveness.

86 J. Simão and L. Veiga

0

0.2

0.4

0.6

0.8

1
FVM

AutoControl

Press

HPC

ASManGinko

Overbooking

VMMB

Difference
Engine

R

C

I

Fig. 3.11 RCI of Sys-VMs

3.5.2 High-Level Language Virtual Machines

This section will present and discuss different systems that monitor resource usage,
resulting in either imposing limitations or changing the policies of the JIT, GC,
or resource manager subsystems. Adaptation in high-language virtual machines is
made by changing their building block parameters (e.g., JIT level of optimization,
GC heap size) or the actual algorithm used to perform certain operations. This
section starts by presenting classic work on Java Virtual Machines (JVMs) whose
goal was to incorporate resource usage constraints on regular VMs. It then surveys
more recent systems where the focus was to diminish the impact of GC in program
execution. At the end of the section, Table 3.10 summarizes the techniques used in
each system. As in the case of system-level VMs, this process is the implementation
of step 1 in Fig. 3.8, which is the base for determining each system RCI.

3.5.2.1 KaffeOS

Built on top of Kaffe virtual machine [10], KaffeOS [10] provides the ability to
run Java applications isolated from each other and also to limit their resource
consumption. KaffeOS, adds a process model to Java that allows a JVM to run
multiple untrusted programs safely. The runtime system is able to account for and
control all of the CPU and memory resources consumed on behalf of any process.
Consumption of individual processes can be separately accounted for, because the
allocation and garbage collection activities of different processes are separated. To

3 Recent Progress and Challenges in Virtual Machines 87

Table 3.10 HLL-VM systems

Dominant

System resource Monitor Decision Action Modifications

JRES Mix CPU, heap, I/O Rules Limitation
(CPU, heap,
I/O)

VM

Isla vista Mem Allocation stalls in
OS

Rules Heap rezise VM

Resource-
driven

Mem Page faults, resident
set size

3 types of
rules

Whole heap
collection

VM

Control Mem GC overhead PID
controller

Heap resize Yes

PAMM Mem Heap size, page
faults

Threshold Run GC Program

CRAMM Mem WSS via virtual
memory manager,
heap utilization

Fixed rule Heap resize VM/OS

Elasticity
curve

Mem Number of GCs,
heap size

Elasticity
threshold

Heap resize VM

Switch Mem Heap size, GC load,
GC frequency

Threshold
rule

GC algorithm VM

Learning Mem Available memory
(current and
variation between
observations)

Reinforcement
learning

Run GC VM

account for memory, KaffeOS uses a hierarchical structure where each process is
assigned a hard and a soft limit. Hard limits relate to reserved memory. Soft limits
acts as guard limit not assuring that the process can effectively use that memory.
Children tasks can have, globally, a soft limit bigger than their parent, but only
some of them will be able to reach that limit.

3.5.2.2 JRES

The work of Czajkowski et al. [24] uses native code, library rewriting, and byte code
transformations to account and control resource usage. JRES was the first work to
specify an interface to account for heap memory, CPU time, and network consumed
by individual threads or groups of threads. The proposed interface allows for the
registration of callbacks, used when resource consumption exceeds some limits and
when new threads are created.

88 J. Simão and L. Veiga

3.5.2.3 Multitask Virtual Machine (MVM)

The MVM [25] extends the Sun Hotspot JVM to support isolates and resource
management. Isolates are similar to processes in KaffeOS. The distinguishing differ-
ence of MVM is in its generic Resource Management (RM) API, which uses three
abstractions: resource attributes, resource domain, and dispenser. Each resource
is characterized by a set of attributes (e.g., memory granularity of consumption,
reservable, disposable). In [25] the MVM is able to manage the number of open
sockets, the amount of data sent over the network, the CPU usage, and heap memory
size. When the code running on an isolate wants to consume a resource, it will use a
library (e.g., send data to the network) or runtime service (e.g., memory allocation).
In these places, the resource domain to which the isolate is bound will be retrieved.
Then, a call to the dispenser of the resource is made, which will interrogate all
registered user-defined policies to know if the operation can continue. A dispenser
controls the quantity of a resource available to resource domains.

3.5.2.4 Isla Vista

Grzegorczyk et al. [37] takes into account a phenomenon known as allocation
stalls, which happens during memory allocation when the system has only a few
free pages. If this is so, one or more resident pages must be evicted to disk before
any new page can be assigned to the requesting process. Isla vista implements an
algorithm inspired by the exponential backoff model for TCP congestion control
to avoid the stall, where transmission rate relates to heap size, and packet loss
relates to page faults. Doing so, the heap size increases linearly when there are no
allocation stalls. Otherwise, the heap shrinks and the growth factor for successive
heap growth decisions is reduced. This is an heuristic to balance between inevitable
paging operations and time spent in GC operations.

3.5.2.5 GC Switch

Soman et al. [88] adds to the memory management system the capacity of changing
the GC algorithm during program execution. The system monitors application
behavior (i.e., GC load versus the time used by application’s threads) and resource
availability, in order to decide when to dynamically switch the GC strategy. Their
decision in based on heuristics so that when the GC load is high, they switch
from a Semi-Space (which performs better when more memory is available) to a
Generational Mark-Sweep collector (which performs better when memory is more
constrained).

3 Recent Progress and Challenges in Virtual Machines 89

3.5.2.6 Paging-Aware GC

Hertz et al. [44] developed a GC triggering system that takes into account the
overall state of the system where the VM is running and not its single process.
Two approaches were considered. VMs use a whiteboard area to know if a GC is
taking place in the system. If so, they defer their collection to avoid clustering the
environment with simultaneous collection. The other is called selfish, and the VM
only takes in consideration the heap size and page faults. Based on simple heuristics
like the difference in sizes of the resident set and the evolution of page faults, the
GC is triggered.

CRAMM [109], on the other hand, dynamically builds the working set size
(WSS) as the application progresses, monitoring minor and major page faults. It
then acts on the heap size to improve application performance. The system extends
the virtual memory manager of the operating system so that the WSS is dynamically
built as the application progresses, monitoring minor and major page faults. After
each heap collection, the system requests a WSS estimate. It then considers this
value to resize the heap. After each GC run, the histogram is also reset since the
new heap size will produce a new reference histogram pattern.

3.5.2.7 GC Economics

In [83], Singer et al. relates the heap size and number of garbage collections with
the price and demand law of microeconomics – with bigger heaps, there will be less
collections. Their decision strategy is an heuristic based on the concepts of memory
elasticity to find a tradeoff between heap size and execution time, driven by a user-
supplied elasticity target. Actions are made over the heap size, to shrink or keep.

3.5.2.8 Control Theory

Heap sizing was also researched as a control theory problem [105]. In Whites et
al.’s work, a PID controller is used where the control variable is the heap resize
ratio, and the measurement variable is the GC overhead. To determine the new
heap size, the controller, after each collection cycle, measures the error between
the current GC overhead and the target GC overhead, specified by the user. The goal
is to achieve and maintain the user-defined target GC overhead. The controller’s
parameters, such as the gain and the oscillatory period, were manually fine-tuned
for a set of benchmarks. They have only tested their system under a full-heap
collector.

90 J. Simão and L. Veiga

3.5.2.9 Machine Learning for Memory Management

Machine learning techniques have been used to dynamically learn which is the best
moment to garbage collect [8] and to choose, a-priori, the best GC configuration
(algorithm, serial, parallel) [82, 84] given an profile run of the application. In the
first case, a reinforcement learning algorithm is used. A binary action is to be taken
in each step leading to the decision to run the GC or not. The reinforcement learning
algorithm accumulates penalties based on its decisions, and, as time passes, it learns
which are the best situations to run the GC. In the second group of papers, an offline
machine learning algorithm, based on decision trees, is used to generate a classifier
that, given a profile run of a new program (i.e., not used to build the model), can
predict a GC algorithm that minimizes the execution time.

3.5.2.10 Overall Systems Analysis

Table 3.10 summarizes the systems analyzed in this section. The majority of them
are focused on the management of the heap size and use simple heuristics to
guide this process. Exceptions are the ones using a PID controller [105] and a
machine learning algorithm. However, these two systems either have to be fine-
tuned manually or impose limitations on the type of garbage collector. Only one
work takes into account the collocation of VMs and the need to transfer memory
between them [44]. Even so, it is focused on the individual performance of each
instance and not the distribution of memory based on the progress of each workload.

Figure 3.12 depicts the overall RCI of each system that augments a high-
level language VM, complementing the analysis of Table 3.10. As in the case

0

0.2

0.4

0.6

0.8

1
Isla Vista

Resource-driven

Learning

Elasticity Curve

Switch

PAMM

CRAMM

Control

R

C

I

Fig. 3.12 RCI of HLL-VMs

3 Recent Progress and Challenges in Virtual Machines 91

of system-level VMs, systems have design options that favor responsiveness. The
system taking into account the elasticity curve of microeconomics has the highest
level of responsiveness perhaps because of its low overall intricateness of sensors,
decision process, and actuators. We also see that the extra intricateness of the
decision phase in “Control” and “Learning” had a cost. In the first case, it was
the overall responsiveness, while in the second, the system had to be designed
with a smaller number of sensors, reducing comprehensiveness. Further research
is needed to determine if other unexplored techniques in these two fields can bring
more advantage.

3.6 Summary and Open Research Issues

In this chapter, we reviewed the main approaches for adaptation and monitoring
in virtual machines, their tradeoffs, and their main mechanisms for resource
management. We framed them into the adaptation loop model (monitoring, decision,
and actuation). Furthermore, we proposed a novel taxonomy and classification
framework that, when applied to a group of systems, can help visually in determin-
ing their similarities and differences. Framed by this, we presented a comprehensive
survey and analysis of relevant techniques and systems in the context of virtual
machine monitoring and adaptability.

This taxonomy was inspired by two conjectures that arise from the analysis of
existing relevant work in monitoring and adaptability of virtual machines. We pre-
sented the RCI conjecture on monitoring and adaptability in systems, identifying the
fundamental tension among responsiveness, comprehensiveness, and intricateness,
and how a given adaptation technique aiming at achieving improvements on two of
these aspects can only do so at the cost of the remaining one.

In last years, the widespread use of management systems for containerized
applications, like Docker [48] and Kubernetes [47], resurrected the interest of
container-based operating system (COS) [87]. Sys-VMs allow for each guest to have
a complete stack of the operating system and applications running in isolation from
other guests. In contrast to this, containers lose some of the CPU and I/O isolation
and share the same kernel OS, promising close to bare metal performance [71].
A container-based approach can give high-performance computing applications an
easy and light way to transport jobs and a comprehensive resource scheduling
environment [101].

An approach that is also becoming popular is the use of containers inside
Sys-VMs. Doing so, data center providers can reuse their current virtualization
infrastructure while going toward the need of more users. Also from a desktop
environment point of view, having containers inside Sys-VMs allows the for non-
Linux users to enjoy this technology and benefit from an extra degree of isolation
when running their sensitive workloads [27, 101].

With managed runtimes dominating the landscape of systems to process big data,
research will continue to reduce the impact of platforms in workload’s performance,

92 J. Simão and L. Veiga

especially regarding automatic memory management and the interface between
HLL-VMs and the underlying execution stack. Regarding memory management,
the generational principle is well suited for most general applications, but in big-
data deployments, either related to storage or stream processing, this assumption
is not always beneficial, and new segmenting options have to be considered [33].
Regarding the deployments of managed runtimes, further efforts are necessary to
explore how to reduce the cost of interfacing with operating services (especially
I/O) as this is also a cause of performance bottleneck. A research opportunity is
hybrid runtimes that run in kernel mode and take direct advantage of the available
hardware [41].

Acknowledgements This work was supported by national funds through Fundação para a Ciência
e a Tecnologia with reference PTDC/EEI-SCR/6945/2014, and by the ERDF through COMPETE
2020 Programme, within project POCI-01-0145-FEDER-016883, the Engineering School of the
Polytechnic Institute of Lisbon (ISEL/IPL).

References

1. ACM Digital Library. http://dl.acm.org/. Visited Nov 2016
2. Adams K, Agesen O (2006) A comparison of software and hardware techniques for x86

virtualization. In: Proceedings of the 12th international conference on architectural support
for programming languages and operating systems, ASPLOS XII. ACM, New York, pp 2–13

3. Agmon Ben-Yehuda O, Posener E, Ben-Yehuda M, Schuster A, Mu’alem A (2014) Ginseng:
market-driven memory allocation. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS
international conference on virtual execution environments, VEE’14. ACM, New York,
pp 41–52

4. Alpern B, Augart S, Blackburn SM, Butrico M, Cocchi A, Cheng P, Dolby J, Fink S, Grove
D, Hind M, McKinley KS, Mergen M, Moss JEB, Ngo T, Sarkar V (2005) The Jikes research
virtual machine project: building an open-source research community. IBM Syst J 44:399–
417. doi:http://dx.doi.org/10.1147/sj.442.0399

5. Amdahl GM, Blaauw GA, Brooks FP (1964) Architecture of the IBM system/360. IBM J Res
Dev 8:87–101. doi:http://dx.doi.org/10.1147/rd.82.0087

6. Amit N, Tsafrir D, Schuster A (2014) Vswapper: a memory swapper for virtualized
environments. In: Proceedings of the 19th international conference on architectural support
for programming languages and operating systems, ASPLOS’14. ACM, New York, pp 349–
366. doi:10.1145/2541940.2541969

7. An architectural blueprint for autonomic computing. Technical report, IBM (2005)
8. Andreasson E, Hoffmann F, Lindholm O (2002) To collect or not to collect? Machine learning

for memory management. In: Proceedings of the 2nd java virtual machine research and
technology symposium. USENIX Association, Berkeley, pp 27–39

9. Arnold M, Fink SJ, Grove D, Hind M, Sweeney PF (2005) A survey of adaptive optimization
in virtual machines. Proc IEEE 93(2):449–466. Special issue on program generation,
optimization, ans adaptation

10. Back G, Hsieh WC (2005) The KaffeOS java runtime system. ACM Trans Prog Lang Syst
27:583–630. doi:http://doi.acm.org/10.1145/1075382.1075383

11. Baker HG (1994) Thermodynamics and garbage collection. SIGPLAN Not 29:58–63.
doi:http://doi.acm.org/10.1145/181761.181770

12. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I,
Warfield A (2003) Xen and the art of virtualization. SIGOPS Oper Syst Rev 37:164–177.
doi:http://doi.acm.org/10.1145/1165389.945462

http://dl.acm.org/
http://dx.doi.org/http://dx.doi.org/10.1147/sj.442.0399
http://dx.doi.org/http://dx.doi.org/10.1147/rd.82.0087
http://dx.doi.org/10.1145/2541940.2541969
http://dx.doi.org/http://doi.acm.org/10.1145/1075382.1075383
http://dx.doi.org/http://doi.acm.org/10.1145/181761.181770
http://dx.doi.org/http://doi.acm.org/10.1145/1165389.945462

3 Recent Progress and Challenges in Virtual Machines 93

13. Beloglazov A, Buyya R (2010) Energy efficient resource management in virtualized cloud
data centers. In: 10th IEEE/ACM international conference on cluster, cloud and grid
computing (CCGrid), 2010, Melbourne, pp 826–831

14. Binder W, Hulaas J, Moret P, Villazón A (2009) Platform-independent profiling in a virtual
execution environment. Softw Pract Exper 39:47–79. doi:10.1002/spe.v39:1. http://portal.
acm.org/citation.cfm?id=1464245.1464249

15. Blackburn SM, Garner R, Hoffmann C, Khang AM, McKinley KS, Bentzur R, Diwan
A, Feinberg D, Frampton D, Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Moss
JEB, Moss B, Phansalkar A, Stefanović D, VanDrunen T, von Dincklage D, Wieder-
mann B (2006) The DaCapo benchmarks: java benchmarking development and analysis.
In: OOPSLA’06: Proceedings of the 21st annual ACM SIGPLAN conference on object-
oriented programming systems, languages, and applications. ACM, New York, pp 169–190.
doi:http://doi.acm.org/10.1145/1167473.1167488

16. Blake C, Rodrigues R (2003) High availability, scalable storage, dynamic peer networks: pick
two. In: Jones MB (ed) HotOS, Lihue. USENIX, pp 1–6

17. Bobroff N, Westerink P, Fong L (2014) Active control of memory for java virtual machines
and applications. In: 11th international conference on autonomic computing (ICAC 14).
USENIX Association, Philadelphia, pp 97–103. https://www.usenix.org/conference/icac14/
technical-sessions/presentation/bobroff

18. Brewer EA (2010) A certain freedom: thoughts on the CAP theorem. In: Richa AW, Guerraoui
R (eds) PODC. ACM, p 335

19. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging
it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener
Comput Syst 25(6):599–616

20. Cheng L, Wang CL (2012) vbalance: using interrupt load balance to improve i/o performance
for SMP virtual machines. In: Proceedings of the third ACM symposium on cloud computing,
SoCC’12. ACM, New York, pp 2:1–2:14

21. Cherkasova L, Gupta D, Vahdat A (2007) Comparison of the three
cpu schedulers in XEN. SIGMETRICS Perform Eval Rev 35:42–51.
doi:http://doi.acm.org/10.1145/1330555.1330556

22. Chiu DM, Jain R (1989) Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Comput Netw ISDN Syst 17(1):1–14

23. Click C, Tene G, Wolf M (2005) The pauseless gc algorithm. In: Proceedings of the 1st
ACM/USENIX international conference on virtual execution environments, VEE’05. ACM,
New York, pp 46–56. doi:http://doi.acm.org/10.1145/1064979.1064988

24. Czajkowski G, von Eicken T (1998) Jres: a resource accounting interface for java.
In: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA’98. ACM, New York, pp 21–35.
doi:http://doi.acm.org/10.1145/286936.286944

25. Czajkowski G, Hahn S, Skinner G, Soper P, Bryce C (2005) A resource management interface
for the java platform. Softw Pract Exper 35:123–157. doi:10.1002/spe.v35:2. http://portal.
acm.org/citation.cfm?id=1055953.1055955

26. Czajkowski G, Wegiel M, Daynes L, Palacz K, Jordan M, Skinner G, Bryce C (2005)
Resource management for clusters of virtual machines. In: Proceedings of the fifth IEEE
international symposium on cluster computing and the grid – volume 01, CCGRID’05.
IEEE Computer Society, Washington, DC, pp 382–389. http://portal.acm.org/citation.cfm?
id=1169222.1169492

27. Dantas B, Fleitas C, Francisco AP, Simão J, Vaz C (2016) Beyond NGS data sharing and
toward open science. doi:10.5281/zenodo.190489

28. Deutsch LP, Schiffman AM (1984) Efficient implementation of the smalltalk-
80 system. In: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on
principles of programming languages, POPL’84. ACM, New York, pp 297–302.
doi:http://doi.acm.org/10.1145/800017.800542

29. Enabling intel virtualization technology features and benefits. http://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-
virtualization-technology-features-and-benefits-paper.pdf. Visited Nov 2016

http://dx.doi.org/10.1002/spe.v39:1
http://portal.acm.org/citation.cfm?id=1464245.1464249
http://portal.acm.org/citation.cfm?id=1464245.1464249
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488
https://www.usenix.org/conference/icac14/technical-sessions/presentation/bobroff
https://www.usenix.org/conference/icac14/technical-sessions/presentation/bobroff
http://dx.doi.org/http://doi.acm.org/10.1145/1330555.1330556
http://dx.doi.org/http://doi.acm.org/10.1145/1064979.1064988
http://dx.doi.org/http://doi.acm.org/10.1145/286936.286944
http://dx.doi.org/10.1002/spe.v35:2
http://portal.acm.org/citation.cfm?id=1055953.1055955
http://portal.acm.org/citation.cfm?id=1055953.1055955
http://portal.acm.org/citation.cfm?id=1169222.1169492
http://portal.acm.org/citation.cfm?id=1169222.1169492
http://dx.doi.org/10.5281/zenodo.190489
http://dx.doi.org/http://doi.acm.org/10.1145/800017.800542
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf

94 J. Simão and L. Veiga

30. Farahnakian F, Pahikkala T, Liljeberg P, Plosila J, Hieu NT, Tenhunen H (2016) Energy-aware
VM consolidation in cloud data centers using utilization prediction model. IEEE Trans Cloud
Comput 99:1–1. doi:10.1109/TCC.2016.2617374

31. Gidra L, Thomas G, Sopena J, Shapiro M (2013) A study of the scalability of stop-the-world
garbage collectors on multicores. In: Proceedings of the eighteenth international conference
on architectural support for programming languages and operating systems, ASPLOS’13.
ACM, New York, pp 229–240

32. Gidra L, Thomas G, Sopena J, Shapiro M, Nguyen N (2015) Numagic: a garbage collector for
big data on big NUMA machines. In: Proceedings of the twentieth international conference on
architectural support for programming languages and operating systems, ASPLOS’15. ACM,
New York, pp 661–673. doi:10.1145/2694344.2694361

33. Gog I, Giceva J, Schwarzkopf M, Vaswani K, Vytiniotis D, Ramalingan G, Murray D,
Hand S, Isard M (2015) Broom: sweeping out garbage collection from big data systems. In:
Proceedings of the 15th USENIX conference on hot topics in operating systems, HOTOS’15.
USENIX Association, Berkeley, pp 2–2. http://dl.acm.org/citation.cfm?id=2831090.2831092

34. Goldberg RP (1974) Survey of virtual machine research. Computer 7(9):34–45
35. Gong Z, Gu X, Wilkes J (2010) Press: predictive elastic resource scaling for cloud systems.

In: International conference on network and service management (CNSM), 2010, Niagara
Falls, pp 9–16

36. Gordon A, Amit N, Har’El N, Ben-Yehuda M, Landau A, Schuster A, Tsafrir D (2012) ELI:
bare-metal performance for I/O virtualization. In: Proceedings of the seventeenth international
conference on architectural support for programming languages and operating systems,
ASPLOS XVII. ACM, New York, pp 411–422

37. Grzegorczyk C, Soman S, Krintz C, Wolski R (2007) Isla vista heap sizing: using
feedback to avoid paging. In: Proceedings of the international symposium on code gener-
ation and optimization, CGO’07. IEEE Computer Society, Washington, DC, pp 325–340.
doi:http://dx.doi.org/10.1109/CGO.2007.20

38. Guan X, Srisa-an W, Jia C (2009) Investigating the effects of using differ-
ent nursery sizing policies on performance. In: Proceedings of the 2009 interna-
tional symposium on memory management, ISMM’09. ACM, New York, pp 59–68.
doi:http://doi.acm.org/10.1145/1542431.1542441

39. Gupta D, Lee S, Vrable M, Savage S, Snoeren AC, Varghese G, Voelker GM, Vahdat A (2008)
Difference engine: harnessing memory redundancy in virtual machines. In: Proceedings of
the 8th USENIX conference on operating systems design and implementation, OSDI’08.
USENIX Association, Berkeley, pp 309–322. http://dl.acm.org/citation.cfm?id=1855741.
1855763

40. Hagimont D, Mayap Kamga C, Broto L, Tchana A, Palma N (2013) DVFS aware CPU credit
enforcement in a virtualized system. In: Middleware 2013. Lecture notes in computer science,
vol 8275. Springer, Berlin/Heidelberg, pp 123–142

41. Hale KC, Dinda PA (2016) Enabling hybrid parallel runtimes through kernel and vir-
tualization support. In: Proceedings of the 12th ACM SIGPLAN/SIGOPS international
conference on virtual execution environments, VEE’16. ACM, New York, pp 161–175.
doi:10.1145/2892242.2892255

42. Heo J, Zhu X, Padala P, Wang Z (2009) Memory overbooking and dynamic control of
XEN virtual machines in consolidated environments. In: Proceedings of the 11th IFIP/IEEE
international conference on symposium on integrated network management, IM’09. IEEE
Press, Piscataway, pp 630–637. http://dl.acm.org/citation.cfm?id=1688933.1689025

43. Hertz M, Bard J, Kane S, Keudel E, Bai T, Kelsey K, Ding C (2009) Waste not, want not:
resource-based garbage collection in a shared environment. Technical report TR-2006-908,
University of Rochester

44. Hertz M, Kane S, Keudel E, Bai T, Ding C, Gu X, Bard JE (2011) Waste not, want
not resource-based garbage collection in a shared environment. In: Proceedings of the
international symposium on Memory management, ISMM’11. ACM, New York, pp 65–76.
doi:http://doi.acm.org/10.1145/1993478.1993487

http://dx.doi.org/10.1109/TCC.2016.2617374
http://dx.doi.org/10.1145/2694344.2694361
http://dl.acm.org/citation.cfm?id=2831090.2831092
http://dx.doi.org/http://dx.doi.org/10.1109/CGO.2007.20
http://dx.doi.org/http://doi.acm.org/10.1145/1542431.1542441
http://dl.acm.org/citation.cfm?id=1855741.1855763
http://dl.acm.org/citation.cfm?id=1855741.1855763
http://dx.doi.org/10.1145/2892242.2892255
http://dl.acm.org/citation.cfm?id=1688933.1689025
http://dx.doi.org/http://doi.acm.org/10.1145/1993478.1993487

3 Recent Progress and Challenges in Virtual Machines 95

45. Hinesa M, Gordon A, Silva M, Silva DD, Ryu KD, Ben-Yehuda M (2011) Applications know
best: performance-driven memory overcommit with ginkgo. In: CloudCom’11: 3rd IEEE
international conference on cloud computing technology and science, Athens, pp 130–137

46. Hoffmann H, Eastep J, Santambrogio MD, Miller JE, Agarwal A (2010) Application
heartbeats: a generic interface for specifying program performance and goals in autonomous
computing environments. In: Proceedings of the 7th international conference on autonomic
computing, ICAC’10, Washington, DC, pp 79–88

47. http://kubernetes.io. Visited Nov 2016
48. https://www.docker.com/. Visited Nov 2016
49. Hulaas J, Binder W (2008) Program transformations for light-weight cpu accounting

and control in the java virtual machine. High. Order Symbol. Comput. 21:119–146.
doi:10.1007/s10990-008-9026-4

50. Jones R, Hosking A, Moss E (2011) The garbage collection handbook: the art of automatic
memory management, 1st edn. Chapman & Hall/CRC, Boca Raton

51. Kesavan M, Gavrilovska A, Schwan K (2010) On disk i/o scheduling in virtual machines. In:
Proceedings of the 2nd conference on I/O virtualization, WIOV’10. USENIX Association,
Berkeley, pp 6–6. http://portal.acm.org/citation.cfm?id=1863181.1863187

52. Kulkarni S, Cavazos J (2012) Mitigating the compiler optimization phase-ordering problem
using machine learning. In: Proceedings of the ACM international conference on object
oriented programming systems languages and applications, OOPSLA’12. ACM, New York,
pp 147–162

53. Liu H, Jin H, Liao X, Deng W, He B, Xu CZ (2015) Hotplug or ballooning: a comparative
study on dynamic memory management techniques for virtual machines. IEEE Trans Parallel
Distrib Syst 26(5):1350–1363. doi:10.1109/TPDS.2014.2320915

54. Lublin U, Kamay Y, Laor D, Liguori A (2007) KVM: the Linux virtual machine monitor. In:
Ottawa Linux Symposium, Ottawa

55. Lxc. https://linuxcontainers.org/. Visited Nov 2016
56. Maas M, Asanović, K., Harris T, Kubiatowicz J (2016) Taurus: a holistic language runtime

system for coordinating distributed managed-language applications. In: Proceedings of the
twenty-first international conference on architectural support for programming languages and
operating systems, ASPLOS’16, Atlanta, pp 457–471

57. Maggio M, Hoffmann H, Papadopoulos AV, Panerati J, Santambrogio MD, Agar-
wal A, Leva A (2012) Comparison of decision-making strategies for self-optimization
in autonomic computing systems. ACM Trans Auton Adapt Syst 7(4):36:1–36:32.
doi:10.1145/2382570.2382572

58. Manson J, Pugh W, Adve SV (2005) The java memory model. SIGPLAN Not. 40:378–391.
doi:http://doi.acm.org/10.1145/1047659.1040336

59. Mao F, Zhang EZ, Shen X (2009) Influence of program inputs on the selection of
garbage collectors. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on virtual execution environments, VEE’09, pp 91–100. ACM, New York.
doi:http://doi.acm.org/10.1145/1508293.1508307

60. Mian R, Martin P, Zulkernine F, Vazquez-Poletti JL (2012) Estimating resource costs of data-
intensive workloads in public clouds. In: Proceedings of the 10th international workshop on
middleware for grids, clouds and e-science, MGC’12. ACM, New York, pp 3:1–3:6

61. Min C, Kim I, Kim T, Eom YI (2012) VMMB: virtual machine memory balancing for
unmodified operating systems. J Grid Comput 10(1):69–84. doi:10.1007/s10723-012-9209-4

62. Ongaro D, Cox AL, Rixner S (2008) Scheduling I/O in virtual machine mon-
itors. In: Proceedings of the fourth ACM SIGPLAN/SIGOPS international con-
ference on Virtual execution environments, VEE’08. ACM, New York, pp 1–10.
doi:http://doi.acm.org/10.1145/1346256.1346258

63. Oracle (2016) Java management extensions (JMX) technology, visited 28-11-2016
64. Ousterhout JK (1982) Scheduling techniques for concurrent systems. In: ICDCS, Miami.

IEEE Computer Society, pp 22–30

http://kubernetes.io
https://www.docker.com/
http://dx.doi.org/10.1007/s10990-008-9026-4
http://portal.acm.org/citation.cfm?id=1863181.1863187
http://dx.doi.org/10.1109/TPDS.2014.2320915
https://linuxcontainers.org/
http://dx.doi.org/10.1145/2382570.2382572
http://dx.doi.org/http://doi.acm.org/10.1145/1047659.1040336
http://dx.doi.org/http://doi.acm.org/10.1145/1508293.1508307
http://dx.doi.org/10.1007/s10723-012-9209-4
http://dx.doi.org/http://doi.acm.org/10.1145/1346256.1346258

96 J. Simão and L. Veiga

65. Padala P, Hou KY, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A (2009)
Automated control of multiple virtualized resources. In: Proceedings of the 4th ACM
European conference on Computer systems, EuroSys’09. ACM, New York, pp 13–26.
doi:http://doi.acm.org/10.1145/1519065.1519068

66. Park SM, Humphrey M (2009) Self-tuning virtual machines for predictable escience. In:
Proceedings of the 2009 9th IEEE/ACM international symposium on cluster comput-
ing and the grid, CCGRID’09. IEEE Computer Society, Washington, DC, pp 356–363.
doi:http://dx.doi.org/10.1109/CCGRID.2009.84

67. Ram KK, Santos JR, Turner Y (2010) Redesigning Xen’s memory sharing mechanism for safe
and efficient I/O virtualization. In: Proceedings of the 2nd conference on I/O virtualization,
WIOV’10. USENIX Association, Berkeley

68. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape and
research challenges. ACM Trans Auton Adapt Syst 4:14:1–14:42.
doi:http://doi.acm.org/10.1145/1516533.1516538

69. Salomie TI, Alonso G, Roscoe T, Elphinstone K (2013) Application level ballooning for effi-
cient server consolidation. In: Proceedings of the 8th ACM European conference on computer
systems, EuroSys’13. ACM, New York, pp 337–350. doi:10.1145/2465351.2465384

70. Shao Z, Jin H, Li Y (2009) Virtual machine resource management for high performance
computing applications. In: International symposium on parallel and distributed processing
with applications, pp 137–144. doi:http://doi.ieeecomputersociety.org/10.1109/ISPA.2009.52

71. Sharma P, Chaufournier L, Shenoy P, Tay YC (2016) Containers and virtual machines at
scale: a comparative study. In: Proceedings of the 17th international Middleware conference,
Middleware’16. ACM, New York, pp 1:1–1:13. doi:10.1145/2988336.2988337

72. Silva JN, Veiga L, Ferreira P (2011) A2HA – Automatic and adaptive host allocation in utility
computing for bag-of-tasks. J Internet Services Appl 2(2):171–185

73. Simão J, Veiga L (2012) A classification of middleware to support virtual machines
adaptability in IAAS. In: Proceedings of the 11th international workshop on adaptive and
reflective middleware, ARM’12. ACM, New York, pp 5:1–5:6

74. Simão J, Lemos J, Veiga L (2011) A2-VM a cooperative java VM with support for
resource-awareness and cluster-wide thread scheduling. In: 19th international conference on
cooperative information systems (COOPIS 2011), Crete. LNCS. Springer

75. Simao J, Rameshan N, Veiga L (2013) Resource-aware scaling of multi-threaded java
applications in multi-tenancy scenarios. In: IEEE 5th international conference on cloud
computing technology and science (CloudCom), 2013, Bristol, vol 1, pp 445–451. IEEE

76. Simão J, Singer J, Veiga L (2013) A comparative look at adaptive memory management in
virtual machines. In: IEEE CloudCom 2013, Bristol. IEEE

77. Simão J, Veiga L (2012) Qoe-JVM: an adaptive and resource-aware java runtime for cloud
computing. In: OTM confederated international conferences “On the Move to Meaningful
Internet Systems”. Springer, Berlin/Heidelberg, pp 566–583

78. Simao J, Veiga L (2012) VM economics for java cloud computing: an adaptive and resource-
aware java runtime with quality-of-execution. In: Proceedings of the 2012 12th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGrid 2012), Ottawa. IEEE
Computer Society, pp 723–728

79. Simão J, Veiga L (2013) Flexible SLAs in the cloud with a partial utility-driven scheduling
architecture. In: IEEE 5th international conference on cloud computing technology and
science, CloudCom 2013, Bristol, 2-5 Dec 2013, vol 1, pp 274–281. IEEE Computer Society.
doi:10.1109/CloudCom.2013.43

80. Simão J, Veiga L (2013) A progress and profile-driven cloud-vm for resource-efficiency and
fairness in e-science environments. In: Proceedings of the 28th annual ACM symposium on
applied computing, Coimbra. ACM, pp 357–362

81. Simão J, Veiga L (2014) Partial utility-driven scheduling for flexible SLA and pricing
arbitration in cloud. IEEE Trans Cloud Comput 99:467–480. https://www.computer.org/csdl/
trans/cc/2016/04/06963452-abs.html

http://dx.doi.org/http://doi.acm.org/10.1145/1519065.1519068
http://dx.doi.org/http://dx.doi.org/10.1109/CCGRID.2009.84
http://dx.doi.org/http://doi.acm.org/10.1145/1516533.1516538
http://dx.doi.org/10.1145/2465351.2465384
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISPA.2009.52
http://dx.doi.org/10.1145/2988336.2988337
http://dx.doi.org/10.1109/CloudCom.2013.43
https://www.computer.org/csdl/trans/cc/2016/04/06963452-abs.html
https://www.computer.org/csdl/trans/cc/2016/04/06963452-abs.html

3 Recent Progress and Challenges in Virtual Machines 97

82. Singer J, Brown G, Watson I, Cavazos J (2007) Intelligent selection of application-specific
garbage collectors. In: Proceedings of the 6th international symposium on memory manage-
ment, ISMM’07. ACM, New York, pp 91–102. doi:10.1145/1296907.1296920

83. Singer J, Jones R (2011) Economic utility theory for memory management optimization. In:
Rogers I (ed) Proceedings of the workshop on implementation, compilation, optimization of
object-oriented languages and programming systems. ACM, p 4. http://www.cs.kent.ac.uk/
pubs/2011/3156. Position paper

84. Singer J, Jones RE, Brown G, Luján M (2010) The economics of garbage collection.
SIGPLAN Not 45:103–112. doi:http://doi.acm.org/10.1145/1837855.1806669

85. Singer J, Kovoor G, Brown G, Luján M (2011) Garbage collection auto-tuning for java
mapreduce on multi-cores. In: Proceedings of the international symposium on memory
management, ISMM’11. ACM, New York, pp 109–118

86. Smith J, Nair R (2005) Virtual machines: versatile platforms for systems and processes.
Morgan Kaufmann, San Francisco

87. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L (2007) Container-based operating
system virtualization: a scalable, high-performance alternative to hypervisors. In: Proceedings
of the 2Nd ACM SIGOPS/EuroSys European conference on computer systems 2007,
EuroSys’07. ACM, New York, pp 275–287. doi:10.1145/1272996.1273025

88. Soman S, Krintz C (2007) Application-specific garbage collection. J Syst Softw 80:1037–
1056. doi:http://dx.doi.org/10.1016/j.jss.2006.12.566

89. Soman S, Krintz C, Bacon DF (2004) Dynamic selection of application-specific garbage
collectors. In: Proceedings of the 4th international symposium on Memory management,
ISMM’04. ACM, New York, pp 49–60. doi:http://doi.acm.org/10.1145/1029873.1029880

90. Stoica I, Abdel-Wahab H, Jeffay K (1996) On the duality between resource reservation
and proportional share resource allocation. Technical report, Old Dominion University,
Norfolk

91. Suri N, Bradshaw JM, Breedy MR, Groth PT, Hill GA, Saavedra R (2001) State capture and
resource control for java: the design and implementation of the aroma virtual machine. In:
Proceedings of the symposium on JavaTM virtual machine research and technology sympo-
sium, JVM’01. USENIX Association, Berkeley, pp 11–11. http://portal.acm.org/citation.cfm?
id=1267847.1267858

92. Tanenbaum AS (2007) Modern operating systems, 3rd edn. Prentice Hall Press, Upper Saddle
River

93. Tay YC, Zong X, He X (2013) An equation-based heap sizing rule. Perform Eval 70(11):
948–964

94. Tchana A, Palma ND, Safieddine I, Hagimont D, Diot B, Vuillerme N (2015) Software
consolidation as an efficient energy and cost saving solution for a SaaS/PaaS cloud model.
Springer, Berlin/Heidelberg, pp 305–316

95. Tene G, Iyengar B, Wolf M (2011) C4: the continuously concurrent compacting collector.
SIGPLAN Not 46(11):79–88

96. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: toward
a cloud definition. SIGCOMM Comput Commun Rev 39(1):50–55

97. Veiga L, Ferreira P (2002) Incremental replication for mobility support in obiwan. In: 22nd
international conference on distributed computing systems, 2002 proceedings, Vienna. IEEE,
pp 249–256

98. Veiga L, Ferreira P (2004) Poliper: policies for mobile and pervasive environments. In:
Kon F, Costa FM, Wang N, Cerqueira R (eds) Proceedings of the 3rd workshop on
adaptive and reflective middleware, ARM 2003, Toronto, 19 Oct 2004. ACM, pp 238–243.
doi:10.1145/1028613.1028623

99. VMware (2009) VMware vSpher 4: the CPU scheduler in VMware ESX 4
100. Waldspurger CA (2002) Memory resource management in VMware ESX server. SIGOPS

Oper Syst Rev 36:181–194. doi:http://doi.acm.org/10.1145/844128.844146

http://dx.doi.org/10.1145/1296907.1296920
http://www.cs.kent.ac.uk/pubs/2011/3156
http://www.cs.kent.ac.uk/pubs/2011/3156
http://dx.doi.org/http://doi.acm.org/10.1145/1837855.1806669
http://dx.doi.org/10.1145/1272996.1273025
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2006.12.566
http://dx.doi.org/http://doi.acm.org/10.1145/1029873.1029880
http://portal.acm.org/citation.cfm?id=1267847.1267858
http://portal.acm.org/citation.cfm?id=1267847.1267858
http://dx.doi.org/10.1145/1028613.1028623
http://dx.doi.org/http://doi.acm.org/10.1145/844128.844146

98 J. Simão and L. Veiga

101. Weidner O, Atkinson M, Barker A, Filgueira Vicente R (2016) Rethinking high performance
computing platforms: challenges, opportunities and recommendations. In: Proceedings of the
ACM international workshop on data-intensive distributed computing, DIDC’16. ACM, New
York, pp 19–26. doi:10.1145/2912152.2912155

102. Weiming Z, Zhenlin W (2009) Dynamic memory balancing for virtual machines. In: Pro-
ceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on virtual execution
environments, VEE’09, Washington, DC, pp 21–30

103. Weng C, Liu Q, Yu L, Li M (2011) Dynamic adaptive scheduling for virtual machines. In:
Proceedings of the 20th international symposium on high performance distributed computing,
HPDC’11. ACM, New York, pp 239–250

104. Weng C, Wang Z, Li M, Lu X (2009) The hybrid scheduling framework for virtual
machine systems. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on virtual execution environments, VEE’09. ACM, New York, pp 111–120.
doi:http://doi.acm.org/10.1145/1508293.1508309

105. White DR, Singer J, Aitken JM, Jones RE (2013) Control theory for principled heap sizing.
In: Proceedings of the 2013 international symposium on memory management, ISMM’13.
ACM, New York, pp 27–38

106. Wilson PR (1992) Uniprocessor garbage collection techniques. In: Proceedings of the
international workshop on memory management, IWMM’92. Springer, London, pp 1–42.
http://portal.acm.org/citation.cfm?id=645648.664824

107. Windows server containers. https://msdn.microsoft.com/en-us/virtualization/
windowscontainers/about/index. Visited Nov 2016

108. Xu F, Liu F, Jin H, Vasilakos A (2014) Managing performance overhead of virtual machines
in cloud computing: a survey, state of the art, and future directions. Proc IEEE 102(1):11–31

109. Yang T, Berger ED, Kaplan SF, Moss JEB (2006) Cramm: virtual memory support for
garbage-collected applications. In: Proceedings of the 7th symposium on operating systems
design and implementation, OSDI’06. USENIX Association, Berkeley, pp 103–116

110. Zhang Y, Bestavros A, Guirguis M, Matta I, West R (2005) Friendly virtual machines:
leveraging a feedback-control model for application adaptation. In: Proceedings of the 1st
ACM/USENIX international conference on virtual execution environments, VEE’05. ACM,
New York, pp 2–12. doi:http://doi.acm.org/10.1145/1064979.1064983

http://dx.doi.org/10.1145/2912152.2912155
http://dx.doi.org/http://doi.acm.org/10.1145/1508293.1508309
http://portal.acm.org/citation.cfm?id=645648.664824
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/index
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/index
http://dx.doi.org/http://doi.acm.org/10.1145/1064979.1064983

Part II
Science Cloud

Chapter 4
Exploring Cloud Elasticity in Scientific
Applications

Guilherme Galante and Rodrigo da Rosa Righi

4.1 Introduction

Scientific computing is the key to solving “grand challenge” applications in many
domains and has provided advances and new knowledge in diverse fields of science.
It can be seen as a combination of engineering, natural science, computer science,
and mathematics, making scientific computing a demanding field for all partic-
ipating parties: engineers contribute with challenging applications and technical
knowledge; physicists and other natural scientists build the models; mathematicians
provide numerical methods and algorithms for the simulation of complex processes;
and computer scientists contribute with the construction of infrastructures, data
structures, and algorithms.

Running large and accurate simulations requires a huge number of computing
resources, often demanding the use of supercomputers, computer clusters, or grids.
Scientific computing has historically been dependent on the advances of high
performance computing (HPC) and parallel processing. In general, supercomputers,
clusters, and grids have a fixed number of resources that must be maintained in
terms of infrastructure configuration, scheduling (where tools such as PBS,1 OAR,2

1http://www.pbsworks.com
2https://oar.imag.fr

G. Galante (�)
Computer Science Department, Western Parana State University (Unioeste), Cascavel-PR, Brazil
e-mail: guilherme.galante@unioeste.br

R.R. Righi
Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (Unisinos), São
Leopoldo-RS, Brazil
e-mail: rrrighi@unisinos.br

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_4

101

http://www.pbsworks.com
https://oar.imag.fr
mailto:guilherme.galante@unioeste.br
mailto:rrrighi@unisinos.br

102 G. Galante and R.R. Righi

OGS3 are usually employed for resource reservation and job scheduling), and
energy consumption. In addition, tuning the number of processes to execute a HPC
application can be a hard procedure: (i) a short or a large value for this parameter
will not explore the distributed system in an efficient way and (ii) a fixed value
cannot fit irregular applications, where the workload varies along the execution or
sometimes is not predictable in advance.

In addition to these computing infrastructures, cloud computing has proved
itself as a new way to acquire computing resources on demand [38]. According to
Simmhan et al. [33], the use of a cloud computing environment can be attractive
to the scientific community in many ways, benefiting not only users that own
small applications but also those who run their experiments in supercomputing
centers. In fact, several authors in the technical literature share this opinion and
present advantages and benefits of using cloud computing to execute scientific
experiments [30, 37]. Cloud computing offers to end users a variety of resources
ranging from hardware to application levels, by charging them on a pay-as-you-go
basis, allowing immediate access to required resources without the need to purchase
additional infrastructure. In addition, an important characteristic, not available on
traditional architectures (e.g., clusters and grids) emerged on cloud computing:
elasticity. Elasticity can be defined as the ability of a system to dynamically add or
remove computational resources used by an application or user to match the current
demand as closely as possible [15].

Cloud elasticity abstracts the infrastructure configuration and technical details
about resource scheduling from users, who pay for resources, and energy con-
sequently, in accordance with the application’s demands. The use of elasticity in
scientific applications is a subject that is starting to receive attention from research
groups [11]. This interest is related to the benefits it can provide that include
improvements in applications performance, cost reduction, and better resource
utilization. Improvements in the performance of applications can be achieved
through dynamic allocation of additional processing, memory, network, and storage
resources. Examples of using elasticity in scientific applications include: (i) the
dynamic storage space allocation when data exceeds the capacity allocated for the
hosted environment in the cloud [27]; (ii) applications that use the MapReduce
paradigm, where it is possible to increase the number of working nodes during the
Map and consequently to scale down the resources during the Reduce phase [18];
and (iii) workflows execution, in which we can dynamically adjust the pool of nodes
required to resolve a given workflow step [22].

Considering the importance of elasticity to the concept of cloud computing,
as well as the possibilities of using it in scientific computing, we present in this
chapter the state of the art and an analysis of the current elasticity solutions,
aiming at pointing out some research opportunities in the area. In addition to

3http://gridscheduler.sourceforge.net

http://gridscheduler.sourceforge.net

4 Exploring Cloud Elasticity in Scientific Applications 103

fundamental concepts and research opportunities, we present two different elasticity
approaches, both developed by our research group, to support the construction of
elastic scientific applications in IaaS and PaaS cloud models.

4.2 Basic Concepts and State of the Art

Elasticity is defined as the ability of a system to dynamically add or remove
computational resources used by an application or user to match the current demand
as closely as possible [15]. Resources can include everything from single virtual
processors (VCPU) to a complete virtual cluster. The concept could also be extended
to applications. An elastic application is able to adapt itself to handle changes in
resources or to request or release resources according to demands.

In this context, several elasticity solutions have been developed by public
providers and by academy. In this section, we present a classification of existing
solutions and establish the state of the art of elasticity in computational clouds. In
addition, we present some initiatives of using elasticity in scientific applications.

4.2.1 Taxonomy and Classification

Aiming at providing a classification of the existing approaches to cloud elasticity,
we present a taxonomy that enables to differentiate aspects of the proposed elasticity
solutions. The taxonomy is summarized in Fig. 4.1.

To be able to take advantage of elasticity, it is necessary that both architecture and
application support this feature in some form. Thus, at the first level, the solutions
are separated into two groups: (1) elastic architectures and (2) elasticity support
mechanisms.

Fig. 4.1 Elasticity mechanism classification

104 G. Galante and R.R. Righi

The elasticity provided by cloud infrastructures is inherent to the use of virtual-
ization techniques and to the availability of a large amount of physical resources.
However, the manner it is provided to the user varies for each cloud platform
according to how resources are offered and which elasticity type is supported.
Resources can be provided in two different modes: fixed or configurable. In fixed
mode, virtual machines (VMs) are offered with a predefined configuration of CPU,
memory, and I/O (e.g., instance types by Amazon4 and server sizes in GoGrid5

and Rackspace6). The problem in providing resources in such way occurs when
users cannot map their specific demands into one of the configurations offered by
the provider. In configurable mode users can customize VM resources according to
their needs. Although this model is the more appropriate to the cloud concept, the
configurable mode is available in few cloud providers, such as ProfitBricks7 and
CloudSigma.8

Depending on how the cloud implements the provisioning of resources, we can
classify its elasticity as horizontal or vertical [36]. In the horizontal approach,
the number of instances (VMs) is increased or decreased. On the other hand,
the vertical approach adjusts the VM attributes, such as CPU, memory, disk
bandwidth, or storage. In some cases, requirements extend beyond the capacity
of its hosting node, so that it needs to be migrated to another node that has the
required capacity. Migration can also be used to reduce power consumption, by
consolidating VMs into fewer nodes and enabling some nodes to be switched
off [16]. Horizontal elasticity is the method supported by the clouds that provide
fixed allocation, considering the impossibility of changing the VM configurations.
In turn, vertical elasticity may be supported to allow the fine grain elasticity in
configurable providers.

Different classes of scientific applications have different workload patterns and
characteristics, and, therefore, their elasticity requirements may vary accordingly.
Ideally, highest levels of economic elasticity may be achieved by enabling cloud
consumers to customize any combination of resource capacity and as much as their
application workloads require [19]. Ben-Yehuda et al. [4] propose the Resource-as-
a-Service (RaaS) model, where compute, memory, and I/O resources could be rented
and charged for in dynamic amounts and not in fixed bundles. Clients rent VMs with
some minimal amount of resources, and other resources needed are continuously
rented in a fine-grained fashion. The resources available for rent include processing,
memory, and I/O resources, as well as emerging resources such as accelerators,
FPGAs and GPUs. Processing capacity is sold on a hardware-thread basis, or as
number of cycles per unit of time; memory is sold by frames; and I/O is sold on the
basis of I/O devices with bandwidth and latency guarantees.

4https://aws.amazon.com/ec2/instance-types/
5https://wiki.gogrid.com/index.php/Cloud_Servers
6https://www.rackspace.com/cloud/servers
7https://www.profitbricks.com/
8http://www.cloudsigma.com/

https://aws.amazon.com/ec2/instance-types/
https://wiki.gogrid.com/index.php/Cloud_Servers
https://www.rackspace.com/cloud/servers
https://www.profitbricks.com/
http://www.cloudsigma.com/

4 Exploring Cloud Elasticity in Scientific Applications 105

Scientific applications have almost always been designed to use a fixed number
of resources and cannot explore elasticity without appropriate support [31]. The
simple addition of instances and the use of load balancers have no effect for these
applications since they are not able to detect and use these resources. In addition, the
fact of either a premature death of a process or a consolidation of a VM that hosts
one or more processes from a tightly coupled parallel code can imply performance
penalties or termination of the application.

Thus, to take full advantage of the elasticity provided by the cloud, needs
more than an elastic infrastructure. We also need support mechanisms to enable
applications to adapt the resources or be adjusted according to changes in available
environment. Elasticity mechanisms differ from each other in the techniques and
means they use for performing these tasks and can be classified according to the
control and placement.

The control is the form of interaction necessary for the execution of elasticity
actions. Manual control means that the user is responsible for monitoring the virtual
environment and applications and performs all relevant elasticity actions using an
interface for cloud-user interaction. In the programmable control, the elasticity
actions are performed through API (application programming interface) calls. Most
cloud providers offer an API for allocation and deallocation of elastic resources.
Generally, the APIs are available for web-friendly languages such as, Java, PHP,
and Ruby. In automatic control, all the actions are taken by an elasticity controller
based in a set of rules, user settings, workload patterns, and service level agreements
(SLA). The elasticity controller uses information about the workload, CPU and
memory usage, network traffic, etc., to take decisions when and how to scale
the resources. These information are collected by a monitoring system or by the
application itself.

According to the technique used by the controller to trigger elasticity actions,
we can subclassify the automatic control in reactive or proactive [16, 36]. Reactive
approaches (Fig. 4.2a) typically use rules-condition-action statements and prede-

Fig. 4.2 Thresholds- and if-condition-then-based reactive elasticity (a) and prediction-based
proactive elasticity (b)

106 G. Galante and R.R. Righi

fined thresholds for elasticity management. Most commercial cloud providers offer
purely reactive approaches using threshold-based rules, in which the scaling deci-
sions are triggered based on some performance metrics and predefined thresholds.
Proactive mechanisms (Fig. 4.2b) are typically time series based, where a sequence
of events at defined intervals is analyzed to find patterns that can be used to forecast
future values. The general strategy is to use a workload predictor and then use a
performance model to determine the amount of resources required to service the
predicted demand. A variety of performance models have been proposed and are
presented in the work of Lorido-Botran et al. [24].

The placement of an elasticity mechanism is, from application point of view,
external or internal. External mechanisms are those implemented as a separate
service and generally uses a monitoring system to collect information about the
environment in which the application is running. Such information includes the
number of requests received, CPU and memory usage, number of connected
clients, and response time. In turn, internal mechanisms are implemented within the
application and, in addition to environmental information, can also trigger actions
based on internal events.

4.2.2 Elasticity in Scientific Applications

Elasticity is an important feature that can be explored by scientific applications.
Traditionally, these applications are executed on parallel architectures, such as
cluster or grid architectures. Overall, both have a fixed number of resources
that must be maintained in terms of infrastructure configuration, scheduling, and
energy consumption. In addition, tuning the number of processes to execute a
parallel application can be a difficult procedure: (i) a small or a large amount of
processing resources will not efficiently explore the distributed system, causing
under- or over-provisioning of resources, and (ii) a fixed value cannot fit irregular
applications, since workloads that may vary during execution or occasionally is
not predictable in advance. Conversely, cloud elasticity abstracts the infrastruc-
ture configuration and technical details about resource scheduling from users,
who pay for resources, and consequently energy, in accordance with application
demands.

Applications make use of virtualization and high availability of resources offered
by clouds to dynamically acquire new resources according to demands [11]. This
feature is specially interesting for dynamic applications whose resource require-
ments cannot be determined exactly in advance, either due to changes in runtime
requirements or due to interesting changes in application structure. The use of these
attributes could lead to applications with new and interesting usage modes and
dynamic execution on clouds and therefore new application capabilities [20].

Some scientific applications could natively take advantage from elasticity on
clouds or be easily adapted to it. Particularly, these applications are characterized
by having data locality, loosely coupling, high throughput, or fault tolerance, fitting

4 Exploring Cloud Elasticity in Scientific Applications 107

better the current cloud model. Examples are those applications developed using
the MapReduce paradigm [34]. This application model can scale incrementally in
the number of computing nodes, allowing users not only to launch many servers
at the beginning but also to increase the number of servers in the middle of
computation [9, 18]. New servers can automatically figure out the current job
progress and poll the queues for work to process. Some cloud providers support
MapReduce (e.g., Amazon Elastic MapReduce9) enabling running this type of
application directly on the public cloud without worrying about installing and
configuring a MapReduce cluster.

Workflows are other examples of approaches that can benefit from elasticity [28].
They can use the cloud capability to increase or reduce the pool of resources
according to the needs of the workflow at any given time of processing [5]. Cloud
providers have recognized the importance of workflow applications to science and
provide their own native solutions, such as the Amazon Simple Workflow Service
(SWF).10 Platforms and frameworks for elastic execution of workflows were also
proposed in academy [10, 22, 23, 41].

Other scientific applications (e.g., MPI, multithreaded) rely on IaaS cloud
services and solely use static execution modes, in which an instance of VM is
perceived as a cluster node [20]. For those applications, moving them to the cloud
is usually not sufficient to take advantage of elasticity and must be adapted to be
suitable for the cloud. For example, tightly coupled applications will need to be
re-engineered to realize the full benefits of elasticity. Thus, to efficiently support
elastic execution across cloud infrastructures, tools and frameworks are required.
Trying to address this issue, a couple of academic researchers have developed
solutions to enable the development of elastic scientific applications in different
models.

ElasticMPI offers elasticity for MPI applications by stopping and relaunching
the application with a newer resource configuration [31]. The system assumes that
the user knows in advance the expected conclusion time for each phase of the
program. The monitoring system can detect that the current configuration cannot
fulfill the given deadline and adds more virtual instances. Vectors and data structures
are redistributed, and the execution continues from the last iteration. Applications
that do not have an iterative loop cannot be adapted by the framework, since it
uses the iteration index as execution restarting point. Furthermore, the approach of
ElasticMPI imposes changes in the application source code by inserting monitoring
directives. And if programming with MPI, the SpotMPI toolkit can be used to
facilitate the execution of real MPI applications on volatile auction-based cloud
platforms (spot instances) [35]. The toolkit provides optimal checkpointing intervals
and restarting of applications after out-of-bid situations through calculations of the
density of out-of-bid failures from price history.

9https://aws.amazon.com/emr/
10https://aws.amazon.com/swf/

https://aws.amazon.com/emr/
https://aws.amazon.com/swf/

108 G. Galante and R.R. Righi

Rajan et al. [29] presented Work Queue, a framework for the development of
elastic master-slave applications. Applications developed using Work Queue allow
adding slave replicas at runtime. The slaves are implemented as executable files that
can be instantiated by the user on different machines. When executed, the slaves
communicate with the master that on demand coordinates the task execution and
the data exchange.

Ali-Eldin et al. [1] describe an autonomous elasticity controller for bursty work-
loads. The proposed controller changes the number of virtual machines allocated to
a service based on both monitored load changes and predictions of future load. The
cloud infrastructure is modeled as a closed loop control system, and queuing models
are used to design a feedback elasticity controller. This model is used to construct
a hybrid reactive-adaptive controller that quickly reacts to sudden load changes,
prevents premature release of resources, and takes into account the heterogeneity of
the workload, avoiding oscillations and decreasing total resource usage.

Wottrich et al. [40] propose OpenMR, an execution model based on OpenMP
and MapReduce that enables the usage of highly parallel, distributed machine
clusters while automatically providing fault tolerance and workload balancing.
Since OpenMR is built upon MapReduce, the elasticity solutions developed for
MapReduce are also available to OpenMR.

Galante and Bona [12] also propose a solution to provide elasticity for OpenMP.
In this solution, the OpenMP directives are extended to support the automatic
adjustment of the number of VCPUs according to the amount of threads in
execution. These elasticity-aware directives can automatically control elasticity,
hiding the complexity of writing and executing elasticity strategies from the user. In
addition, some routines were added to user-level library, targeting to provide a more
precise control over the elastic execution. The solution also includes support for
elastic memory allocation, taking advantage of the ballooning technique available
in most modern hypervisors.

Moltó et al. [26] developed an architecture for dynamic memory allocation
for scientific applications. The authors focused on dynamic memory management
to automatically fit at runtime the underlying computing infrastructure to the
application, thus adapting the memory size of the VM to the memory consumption
pattern of the application. The architecture uses the VM memory usage information
to decide when to scale up or scale down.

A more generic platform is proposed by Caballer et al. [6]. The CodeCloud
platform supports the execution of scientific applications in different programming
models (such as master-slave, MPI, MapReduce, and workflows) on cloud infras-
tructures. The elasticity is automatically reactive and is enabled by a set of rules
that define the elasticity modes of the infrastructure during the execution of the
application.

Table 4.1 summarizes the characteristics of the frameworks and platforms
developed to provide elasticity to scientific applications.

4 Exploring Cloud Elasticity in Scientific Applications 109

Table 4.1 Elasticity mechanisms and features

Proposed by App. type Supported elasticity

Chohan et al. [9] MapReduce Manual

horizontal

Iordache et al. [18] MapReduce Manual

horizontal

Yu et al. [41] Workflows Manual

horizontal

Byun et al. [5] Workflows Manual

horizontal

Raveendran et al. [31] MPI Programmable

horizontal

Taifi et al.[35] MPI Programmable

horizontal (spot instances)

Rajan et al. [29] Master-slave Manual

horizontal

Ali-Eldin et al. [1] Bursty Automatic-reactive-proactive

horizontal

Moltó et al. [26] Many Automatic-reactive

vertical (memory)

Wottrich et al. [40] OpenMP/MapReduce Manual

horizontal

Galante and Bona [12] OpenMP Programmable

vertical

Caballer et al. [6] Master-slave/MPI/ Automatic-reactive

MapReduce/Workflow horizontal and vertical

4.3 Developing Elastic Scientific Applications

This section presents two approaches to offer cloud elasticity for scientific applica-
tions, both developed in the research group of the authors.

4.3.1 Programming Level Elasticity

In this section, we describe an approach to explore cloud elasticity, in which
the control is performed at programming level, i.e., the elasticity controller is
embedded in the application source code, allowing the allocation and deallocation
of resources by the application itself without needing external mechanisms or user
interaction [13].

110 G. Galante and R.R. Righi

Fig. 4.3 Monitoring system approach (a) versus embedded elasticity control (b)

Fig. 4.4 Dynamic resource allocation using elasticity primitives

As shown in Fig. 4.3, moving the elasticity controller to the application code
allows access to all internal information, while monitoring-based mechanisms
collect only information about workloads and state of the virtual machines. Thus,
the control logic can also consider internal events, configuration parameters, input
data, and more. For example, you can add new VCPUs when new threads are created
or allocate more memory to a new allocated data structure.

In the proposed approach, the collection of information and the elasticity actions
are part of the application source code; thus, an appropriate mechanism should
be offered to enable such tasks. In this chapter, we propose the use of elasticity
primitives, corresponding to a set of basic functions that allow communication
with the underlying cloud infrastructure for the request or release of resources and
collection of information from the virtual environment.

Figure 4.4 illustrates the operation of the primitives for dynamic resource
allocation. When the primitive is executed, a request is sent to the cloud asking

4 Exploring Cloud Elasticity in Scientific Applications 111

for new features. If resources are available, these are allocated to the virtual
environment. In this example, the addition of two VCPUs is requested, which are
allocated to the virtual machine where the application is running.

The primitive set must provide horizontal and vertical elasticity, enabling the
allocation of complete virtual machines and the reconfiguration of virtual machines
by the addition of components such as VCPUs, memory, and storage. We must
also consider primitives to collect information from the virtual environment and
cloud infrastructure. Such information is essential for the development of elasticity
controllers, since it helps to determine the need for new resources and if there is
availability for allocation.

The possibility of considering the resources allocation as a part of the program
logic creates a new paradigm for the design and development of applications. In
this paradigm, the resources are a variable element of the program and can be
instantiated and modified on the fly. This feature allows programmers to develop
and to integrate the elasticity control considering particular characteristics of appli-
cations such as programming model, internal events, input data, and configuration
parameters.

As a consequence, novel features (not provided for in general purpose elastic
mechanisms) can be aggregated to scientific applications. We can develop dynamic
and flexible applications that adapt their own execution environment according
to its logical structure and demands to achieve performance gains, improve the
use of resources, reduce the cost of implementation, or even take advantage of
idle or low-cost resources. We can also modify legacy applications, libraries, and
parallel programming frameworks (originally designed to support a fixed number
of resources during the execution) for supporting the elasticity provided by cloud
environments. An example is the elastic OpenMP [12] presented in Sect. 4.2.2.

To offer support for the development of scientific applications using program-
ming level elasticity control, we developed the Cloudine framework. The framework
focuses on parallel and distributed applications that runs directly over the VM
operating system of IaaS clouds. Cloudine supports C/C++ languages and provides
a set of primitives for dynamic allocation of VCPUs, memory, and virtual machines.

4.3.1.1 Architecture

The framework architecture comprises two main components: runtime environment
and elasticity API, as illustrated in Fig. 4.5. The runtime environment manages the
provisioning of resources using cloud infrastructure, and the API provides a set of
primitives to enable applications, to interact with the underlying layers.

The Runtime environment is the component that manages the dynamic provision-
ing of resources and performs all interaction between the elastic applications (via
API) and cloud infrastructure. All elasticity actions are processed by the runtime
environment and sent to the underlying cloud.

The elasticity API provides the set of primitives that enable the construction of
elastic applications for the Cloudine platform. To date, the API supports C/C++

112 G. Galante and R.R. Righi

Fig. 4.5 Cloudine architecture

languages and offers 12 primitives, providing dynamic allocation of VCPUs,
memory, and virtual machines. VCPU and memory information are also provided.
All primitives are implemented in the dynamic shared library libclne.so.
Table 4.2 shows the functions implemented so far and its description.

Cloudine can be used in two ways in the construction of elastic applications. In
the first, we use directly the elasticity API in the implementation of the application,
leaving to the programmer the job of creating the control logic. The second way is
to use the API to include elasticity features to frameworks already consolidated,
enabling the construction of elastic applications transparently through modified
middleware.

Some clouds may not support all types of primitives. For example, Amazon EC2
does not support the dynamic allocation of memory or VCPUs, only supporting
the allocation and deallocation of complete instances. Thus, the set of primitives
which can be effectively used for an application depends on the underlying cloud
characteristics. Examples of using Cloudine in scientific applications could be found
in previous works [12–14].

4.3.2 Middleware Level Elasticity

This section describes the AutoElastic model, which analyzes alternatives for the
following problem statements [32]:

1. Which mechanisms are needed to provide cloud elasticity transparently at both
user and application levels?

2. Considering resource monitoring and VM management procedures, how can we
model the elasticity as a viable capability on HPC applications?

4 Exploring Cloud Elasticity in Scientific Applications 113

Table 4.2 Cloudine API functions

Function Description

int clne_add_vcpu(int N) Add N VCPUs to the current VM

int clne_rem_vcpu(int N) Remove N VCPUs from the current VM

int clne_add_node(int N) Add N nodes to the virtual environment
(cluster). This function also creates (or
updates) a file in the VM containing the IP
addresses of the cluster machines

int clne_rem_node(int N) Remove the actual node from the virtual
environment (cluster)

int clne_add_memory(long int N) Add N megabytes of memory to the current
VM

int clne_rem_memory(long int N) Remove N megabytes of memory from the
current VM

int clne_get_freemem() Returns the free memory amount of the VM
host machine

int clne_get_maxmem() Returns the total memory amount of the VM
host machine

int clne_get_mem() Returns the total memory amount of the current
VM

int clne_get_freecpu() Returns the free CPU amount of the VM host
machine

int clne_get_maxcpu() Returns the total CPU amount of the VM host
machine

int clne_get_vcpus() Returns the VCPU amount of the current VM

Our idea is to provide reactive elasticity in a transparent and effortless way to
the user, who does not need to write rules and actions for resource reconfiguration.
In addition, users must not need to change their parallel application, not inserting
elasticity calls from a particular library nor modifying the application to add/remove
resources by themselves. Considering the second aforementioned question, AutoE-
lastic should be aware of the overhead to instantiate a VM, taking this knowledge
to offer this feature without prohibitive costs. Figure 4.6a illustrates the traditional
approaches of providing cloud elasticity to HPC applications, while Fig. 4.6b
highlights AutoElastic’s idea. AutoElastic allows users to compile and submit an
HPC nonelastic aware application to the cloud. So, the middleware at PaaS level
transforms a nonelastic application in an elastic one and manages resource (and
also application processes, consequently) reorganization through automatic VM
allocation and consolidation procedures.

The first AutoElastic ideas were published in a previous work [32], in which our
idea was to present a deep analysis of the state of the art in the cloud elasticity
area, presenting the gaps in the HPC landscape. The mentioned article considered
only a pair of thresholds (one upper threshold and one lower threshold), besides not
explaining the interaction between the application processes and the AutoElastic
Manager. Here we present a novel prediction function (see Equations 4.1 and 4.2),

114 G. Galante and R.R. Righi

if metric > x
then A1

if metric < y
then A2

A1: Allocate
VM

A2: Deallocate
VM

#include<>
int main()

}

ActionsRules Application

Rules Actions

(b)

AutoElastic Manager

Monitoring

Resource
Management

Cloud Front-End

AutoElastic
Middleware

Application

Resources

(a)

Cloud

Monitoring

Resource
Management

Cloud Front-End

Application

Resources
Rules Actions

Cloud

#include<>
int main()

}

Application

Fig. 4.6 General ideas on using elasticity: (a) standard approach adopted by Amazon AWS and
Windows Azure, in which the user must pre-configure a set of elasticity rules and actions; (b)
AutoElastic idea, contemplating a Manager that coordinates the elasticity actions and configura-
tions on behalf of the user

a graphical demonstration about how an application talks with the Manager and
extensive details about the application used in the tests. Moreover, we also present
novel types of graphs, exploring the impact of the thresholds in the application
performance, the relationship between CPU load and allocated CPU cores, and
energy consumption profiles.

4.3.2.1 Architecture

AutoElastic is a cloud elasticity model that operates at the PaaS level of a cloud
platform, acting as a middleware that enables the transformation of a nonelastic
parallel application in an elastic one. The model works with both automatic and
reactive elasticity in their horizontal (managing VM replicas) and vertical modes
(resizing computational infrastructure), providing allocation and consolidation of
compute nodes and virtual machines. As PaaS model, AutoElastic proposes a
middleware to compile an iterative-based master-slave application, besides an
elasticity Manager. Figure 4.7a depicts user interaction with the cloud, who needs
to concentrate their efforts only on the application coding. The Manager hides the
details from the user on writing elasticity rules and actions. Figure 4.7b illustrates
the relationships among processes, virtual machines, and computational nodes. In
our scope, an AutoElastic cloud can be defined as follows:

• AutoElastic cloud: a cloud modeled with m homogeneous and distributed
computational resources, where at least one of them (Node0) is always active.

4 Exploring Cloud Elasticity in Scientific Applications 115

VM
Master

AutoElastic
Manager

AutoElastic Cloud

SM S

Node 0 M

S

Master process

Slave process

VM0 VMc-1

S S

Node m-1

VM (m-1)c VMn-1

Area
for
Data
Share Cloud

Front-End

Application

Virtual
Machines

Computational
Resources

Interconnection Network

SSH Connection and
Cloud-supported
Application Program
Interface (API)

Fig. 4.7 AutoElastic architecture, highlighting the distribution of nodes, VMs, and processes.
Each VM encompasses a single application process, and each node runs c processing VMs, where
c denotes the number of processing cores in the node

This node is in charge of running a VM with the master process and other c VMs
with slave processes, where c means the number of processing units (cores or
CPUs) inside a particular node. The elasticity grain for each scaling up or down
action refers to a single node and, consequently, its VMs and processes. Lastly,
at any time, the number of VMs running slave processes is equal to n D c � m.

Here, we are presenting the AutoElastic Manager as an application outside the
cloud, but it could be mapped to the first node, for example. This flexibility is
achieved by using the API of the cloud software packages. Taking into account that
HPC applications are commonly CPU intensive [2], we opted for creating a single
process per VM and c VMs per compute node to explore its fully potential. This
approach is based on the work of Lee et al. [21], where they seek to explore a better
efficiency in parallel applications.

The user can enter an SLA with the minimum and maximum number of allowed
VMs. If this file is not provided, it is assumed that this maximum is twice the
number of VMs observed at the application launch. The fact that the Manager, and
not the application itself, increases or decreases the number of resources provides
the benefit of asynchronous elasticity. Here, asynchronous elasticity means that
process execution and elasticity actions occur concomitantly, not penalizing the
application because of resource overhead (node and VM) reconfiguration (allocation
and deallocation). However, this asynchronism leads to the following question:
How can we notify the application about resource reconfiguration? To accomplish
this, AutoElastic communicates among the VMs and the Manager using a shared
memory area. Other options of communication should also be possible, including
using NFS, message-oriented middleware (such as JMS or AMQP), or tuple spaces
(JavaSpaces, for instance). The use of a shared area for data interaction among VM
instances is a common approach in private clouds [7, 25, 39]. AutoElastic uses this
idea to trigger actions as presented in Table 4.3.

Based on Action 1, the current processes may start working with the new set
of resources (a single node with c VMs, each one with a new process). Figure 4.8

116 G. Galante and R.R. Righi

Table 4.3 Actions provided through the shared data area

Action Direction Description

Action 1 AutoElastic Manager!Master process There is a new compute node with c
virtual machines, each one with a new
application process, which has an IP and a
unique identification

Action 2 AutoElastic Manager!Master process Request permission to consolidate a
compute node and its VMs

Action 3 Master process! AutoElastic Manager Giving permission to consolidate the
previously requested node

illustrates the functioning of the AutoElastic Manager when creating a new slave,
so launching Action 1 afterward. Action 2 is relevant for the following reasons:
(i) not stopping a process executing while either communication or computation
procedures take place and (ii) ensuring that application will not be aborted with
the sudden interruption of one or more processes. In particular, the second reason is
important for MPI applications that run over TCP/IP networks, since they commonly
crash with a premature termination of any process. Action 3 is normally taken by
a master process, which ensures that the application has a consistent global state
where processes may be disconnected properly. Afterward, the remaining processes
do not exchange any message to the given node. We are working with a shared area
because it makes easier the notification of all processes about resource addition or
dropping and then performing communication channel reconfigurations in a simple
way.

AutoElastic offers cloud elasticity using the replication technique. In the activity
of enlarging the infrastructure, the Manager allocates a new compute node and
launches new virtual machines on it using an application template. The bootstrap
of a VM is ended with the execution of a slave process which will do requests
to the master. The instantiation of VMs is controlled by the Manager, and only
after they are running, the Manager notifies the other processes through Action 1.
The consolidation procedure increases the efficiency on resource utilization (not
partially using the available cores) and also provides a better management of energy
consumption. Particularly, Baliga et al. [3] claim that the number of VMs in a node
is not an influential factor for energy consumption, but the fact of a node is turned
on or not.

As presented in the works of Chiu and Agrawal [8] and Imai et al. [17], data
monitoring is given periodically. Hence, AutoElastic Manager obtains the CPU
metric, applies time series based on past values, and compares the final metric
with the maximum and minimum thresholds. More precisely, we are employing
moving average in accordance with Equations 4.2 and 4.1. LP.i/ returns a CPU
load prediction when considering the execution of the n slave VMs in the Manager
intervention number i. To accomplish this, MM.i; j/ informs the CPU load of
a virtual machine j in the observation i. Equation 4.2 uses moving average by
considering the last z observations of the CPU load Load.k; j/ over the VM j, where

4 Exploring Cloud Elasticity in Scientific Applications 117

Master
Process
(compiled with
the AutoElastic
middleware)

Writes "Scale
Out Action" in

the shared
partitionAutoElastic

Manager

New VM, with
a new Slave
Process

Overhead
related to VM
bootstrapping

of the VM
status

Time

Out Action". The Master accepts a
connection from the new slave,
reorganizing the communication

topology

Scaling out
operation:

VM
allocation

VM
Launching

Requests
connection

with the
master

actions in the shared
data area at each
external loop iteration

Periodical
observation
point

After bootstrapping a
VM, a new process is
automatically executed

Procedure

Information

Fig. 4.8 Functioning of the master, the new slave and the AutoElastic Manager to enable the
asynchronous elasticity

i � z � k � i. Finally, Action 1 is triggered if LP is greater than the maximum
threshold, while Action 2 is thrown when LP is lower than the minimum threshold:

LP.i/ D
1

n
:

n�1X
iD0

MM.i; j/ (4.1)

where

MM.i; j/ D

Pi
kDi�zC1 Load.k; j/

z
(4.2)

for i � z.

4.3.2.2 Model of Parallel Application

AutoElastic exploits data parallelism on iterative-based message passing parallel
applications. Figure 4.9 shows an iterative application supported by AutoElastic
where each iteration is composed by three steps: (a) the process master distributes

118 G. Galante and R.R. Righi

M

S

S

S

M...

S

S

S

M...

S

S

S

M...

S

S

S

M...

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Consistent Global State of
the Distributed System

1. Verify
Elasticity

2. Connect
with Slaves

3. Distribute
the load

among the
slaves

4. Receive
data from

slaves

5. Disconnection
of slaves

Fig. 4.9 Iterative application supported by AutoElastic. Process reorganization takes place before
starting each new iteration

the load among the active slave processes; (b) slave processes compute the load
received by the master process; and (c) the slave processes send the computed
results to the master process. The elasticity occurs always in between each iteration
where the computation has a consistent global state, allowing changes in the
number of processes. In particular, the current version of the model still has the
restriction to operate with applications in the master-slave programming style.
Although trivial, this style is used in several areas, such as genetic algorithms, Monte
Carlo techniques, geometric transformations in computer graphics, cryptography
algorithms, and applications that follow the embarrassingly parallel computing
model [31]. However, the Action 1 allows existing processes to know the identifiers
of the new ones allowing an all-to-all communication channel reorganization
eventually. Another characteristic is that AutoElastic deals with applications that
do not use specific deadlines for concluding the subparts.

As AutoElastic project decision, elasticity feature must be offered to program-
mers without changing their application. Thus, we modeled the communication
framework by analyzing the traditional interfaces from MPI 1.x and MPI 2.x.
The first creates processes statically, where a program begins and ends with the
same number of processes. On the other hand, MPI 2.0 has support for elasticity,
since it offers the possibility of creating processes dynamically, with transparent
connections to the existing ones. AutoElastic follows the MPMD (multiple program
multiple data) approach from MPI 2.x, where the master has an executable and the
slaves another.

Based on the MPI 2.0, AutoElastic works with the following directives: (i)
publication of connection ports, (ii) finding the server based on a particular

4 Exploring Cloud Elasticity in Scientific Applications 119

port, (iii) accepting a connection, (iv) requesting a connection, and (v) making a
disconnection. Different from the approach in which the master process launches
the slaves using a spawn-like directive, the proposed model operates according
to another approach of MPI 2.0 for dynamic process management: connection-
oriented communication using point to point, as sockets do. The launching of a
VM automatically occurs in the execution of a slave process, which requests a
connection with the master afterward. Here, we emphasize that an application with
AutoElastic does not need to follow the MPI 2.0 interface but the semantic of each
aforementioned directive.

Figure 4.10a presents a pseudo-code of the master process. The master performs
a series of tasks, sequentially capturing a task and dividing it before sending for
processing on slaves. Concerning the code, the method in the line 4 of Fig. 4.10a
checks the distributed environment and publishes a set of ports (disjoint set of
numbers, names, or a combination of them) to receive a connection from each slave
process. Data communication happens in an asynchronous model, where sending
data to the slaves is non-blocking and receiving data from them is blocking. The
occurrence of an external loop is convenient for elasticity, since the beginning of
each iteration is a possible point for resource and process reconfiguration, including
communication channel reorganizations. Still, the beginning of a new loop implies
in a consistent global state for the distributed system.

The transformation of a nonelastic into an elastic application can be offered in
different ways:

(i) Implementation of an object-oriented program using polymorphism to override
the method to manage the elasticity

 1. size = initial_mapping(ports);
 2. for (j=0; j< total_tasks; j++){
 3. publish_ports(ports, size);
 4. for (i=0; i< size; i++){
 5. connection_accept(slaves[i],
ports[i]);
 6. }
 7. calculate_load(size, work[j], intervals);
 8. for (i=0; i< size; i++){
 9. task = create_task(work[j],
intervals[i]);
10. send_assync(slaves[i], task);
11. }
12. for (i=0; i< size; i++){
13. recv_sync(slaves[i], results[i]);
14. }
15. store_results(slave[j], results);
16. for (i=0; i< size; i++){
17. disconnect(slaves[i]);
18. }
19. unpublish_ports(ports);
20. }

 1. master = lookup(master_address,
naming);
 2. port = create_port(IP_address, VM_id);
 3. while (true){
 4. connection_request(master, port);
 5. recv_sync(master, task);
 6. result = compute(task);
 7. send_assync(master, result);
 8. disconnect(master);
 9. }

 1. int changes = 0;
 2. if (Action == 1){
 3. changes += add_VMs();
 4. }
 5. else if (Action == 2){
 6. changes -= drop_VMs();
 7. allow_consolidation(); // to
enable Action3
 8. }
 9. if (Action ==1 or Action == 2){
10. reorganize_ports(ports);
11. }
12. size += changes;

(a) (b) (c)

Fig. 4.10 Application model in pseudo-language: (a) Master process; (b) slave process; (c) and
elasticity code to be inserted in the Master process at PaaS level by using either method overriding,
source-to-source translation, or wrapper technique

120 G. Galante and R.R. Righi

(ii) Using a source-to-source translator to insert code between lines 4 and 5 of the
master code

(iii) Development of a wrapper for procedural languages in order to change the
function in line 4 of Fig. 4.10a. Regardless of the technique, the elasticity
code is simple and shown in Fig. 4.10c. A region of additional code checks
the shared directory if there is a new action for AutoElastic. For example, this
part of code can be inserted as an extension of the function publish_ports()
following the technique number (iii) above.

Although the initial focus of AutoElastic is on master-slave, the use of the socket-
like MPI 2.0 ideas eases the inclusion of processes and the reestablishment of
connections to compose a new totally arbitrary topology. At implementation level,
it is possible to optimize connections and disconnections if the process persists
in the list of active processes. This behavior is especially pertinent over TCP/IP
connections, since this suite uses an onerous three-way handshake protocol for
connection establishment.

4.4 Elasticity Analysis and Research Opportunities

Section 4.3 presented two proposals to explore elasticity for HPC scientific appli-
cations. Table 4.4 shows a comparison analysis between the two approaches,
highlighting advantages and disadvantages. A relevant question here to choose one
of the elasticity approach is: what is the abstraction level required by the user to
enable cloud elasticity in his/her application? If the user wants to use this cloud
capacity in an effortless and transparent way, AutoElastic model seems the most
appropriate. On the other hand, if the user aims at obtaining total control of the
execution, including metric values, parameters, and places to insert elasticity calls,
Cloudine is the best approach to support such requirements.

Cloud elasticity is a desirable facility both in commercial and academic areas.
In the first, elasticity represents the possibility of small enterprises to grow their
business without an initial large investment. Thus, if the enterprise success is lower
than expected, the enterprise does not have to pay for acquiring physical resources
beforehand. On the other hand, if the core business receives a large number of
requests, here elasticity has a crucial role to expand the processing infrastructure
to support such new demand patterns. In addition, cloud elasticity is known as a
pertinent facility to reduce a metric in the business area: time to market. In the
academic area, as discussed earlier in Sects. 4.2 and 4.3, we observe that elasticity is
gaining more and more attention on big data and high-throughput computing areas,
which address many CPU- or I/O-bound activities.

Today, we observe improvements in virtualization techniques, as well as in
network setup, to enable HPC-driven cloud environments. Dedicated clusters remain
as the main option to run HPC applications; however, on the other hand, public
and private cloud providers are also more and more focusing on offering facilities

4 Exploring Cloud Elasticity in Scientific Applications 121

Table 4.4 Comparing elasticity approaches for scientific applications

Autoelastic Cloudine

Objective To reduce the time of a parallel
application

To provide elasticity support in such a
way the users can tune application
parameters

Target
machine

Cloud computing, particularly
composed of homogeneous
computational nodes

Cloud computing

Target
application

Iterative master-slave MPI applications Parallel applications written in any of
the five parallel programming models
(master-slave, Bag-of-tasks,
Divide-and-Conquer, Pipeline, and
Bulk-Synchronous Parallel

Differential
approach

Presents the concept of asynchronous
elasticity, where processes are not
blocked when scaling in or scaling out
actions take place

Programming level elasticity, which is
offered through a set of elasticity
programming directives

Impact in
the infras-
tructure

Horizontal elasticity, with the addition
or drop of a single node with c virtual
machines. Here, c denotes the number
of processing cores (each VM executes
a new slave process)

The effectiveness of the solution
depends on the target cloud provider,
if it supports horizontal or vertical
elasticity or not. In addition, the
effectiveness also depends on the
monitoring API offered by the cloud
provider.

Advantages The user does not need to insert
elasticity directives in his/her
application. He/she only launches the
application to the cloud, so the elasticity
Manager on the fly manages the right
number of resources and processes to
execute the application.

Unprecedented functionalities can be
integrated in the application code. In
this way, it is possible to develop
dynamic and flexible applications that
adapt their own executing
environment in accordance with the
incoming demands

Limitations The elasticity grain always refers to a
single compute node. This strategy can
incur a lack of reactiveness on resource
allocation and deallocation procedures,
so penalizing the application time and
the use of resources.

The effort at the programmer
viewpoint, since he/she is in charge of
considering elasticity issues at both
application design and
implementation times

Solution
complexity

AutoElastic acts at the PaaS level of a
cloud; thus, the users only need to
compile the application with the
AutoElastic middleware. In particular,
AutoElastic has a wrapper that
transforms a nonelastic application into
an elastic one.

Both the application design and
implementation (or adaptation) must
consider the control of the elasticity in
the application source code. In this
way, the user must implement
dynamic process creation by
himself/herself using an appropriate
set of elasticity directives

122 G. Galante and R.R. Righi

and flexible configurations to reduce the performance gap between the two parallel
machines (cluster and cloud resources). Sections 4.2 and 4.3 discussed about how
to employ cloud elasticity over HPC-like scientific applications. Below, we are
compiling some issues that could be further explored to disseminate the use of
elasticity, as well as to understand its capacities and limitations.

• Cloudine represents an initiative of a programming library, which can be used to
write elastic applications. However, we observe that there is a gap in providing
a de facto standard interface for such role as either web services are for web-
based transactional applications or MPI (message passing interface) is for high
performance computing. An idea could be to explore elasticity directives, for
example, in the next version of MPI so approaching such an interface to the
cloud panorama.

• In scientific application plethora, today we observe the use of cloud elasticity
to execute workflow-based, Bag-of-Tasks, and Master-Slave HPC applications.
Nevertheless, the challenge is to visualize performance gains that could be
explored with resource reorganization over other parallel programming models,
including Divide-and-Conquer and Bulk-Synchronous parallel.

• The use of lower and upper thresholds is a problem to enable reactive elasticity,
mainly for two reasons: (i) a good pair of thresholds for a particular set of
application and infrastructure could present collateral effects like VM thrashing
when at least one element of the aforesaid set is changed. ProActive elasticity
could be a solution; however this technique normally comprises large warm-up
periods to train the prediction algorithms, and it is often associated as a time-
consuming operation. Thus, hybrid approaches could be explored to extract the
better of the two approaches: simplicity and intuitivity from the reactive elasticity
and predictability and thresholdless character from proactive elasticity.

• Today, services offered at SaaS (software-as-a-service) level such as Google
Docs and Google Mail are very diffused worldwide, so abstracting infrastruc-
ture, localization, and technical details from users properly. Thus, we expect
the development of elasticity policies on public cloud providers to adapt the
mentioned services in accordance with the demands, since we observe that often
performance and response time are put away in particular parts of the day.

• Definition of metrics to evaluate how effective an elasticity system is. At least,
we envision three metrics: time, resource consumption, and cost [32]. Time refers
to the execution time to conclude an HPC application, so being a pertinent metric
mainly when comparing elastic and inelastic systems. Resource consumption
refers to a sum when considering each VM deployment and its time as active.
For example, consider the situation: 20s with 2VMs, 120s with 4VMs, 100s
with 6VMs, and 80s with 4VMs; here we have resource consumption D 20:2 C

.120:4 C 80:4/ C 100:6 D 1440. The cost, in turn, is used to analyze how viable
is the execution, with or without elasticity. Based on the standard notion of cost
in the parallel computing area, which considers time � processors, here we can
use time and the previously computed resource consumption metric.

4 Exploring Cloud Elasticity in Scientific Applications 123

4.5 Conclusion

Demand for HPC continues to grow, driven in large part by ever-increasing demands
for more accurate and faster simulations to meet new regulatory requirements, to
increase safety, or to reduce financial risks. In this context, this chapter presented the
possibility to explore cloud elasticity in this scope. In our understanding, elasticity
is pertinent to provide resource configuration adaptivity mainly for irregular and
dynamic applications, where unpredictable workloads and nondeterministic inter-
process communication take place. In addition, non-dedicated and heterogeneous
execution environments can also extract the advantages of such facility to on-the-fly
adapt the resources in accordance with the application demands and infrastructure
modifications. The benefits of cloud elasticity are clear to the HPC community;
what remains unsolved concerns which is the best alternative to provide it for
HPC applications. This chapter detailed two alternatives: one at programming level
and another at middleware level. They represent a good start to rethink adaptivity
and resource allocation, but the authors agree that the use of standard elasticity
mechanisms and interfaces is crucial to disseminate the use of this promising facility
in the HPC landscape.

Acknowledgements This work was partially supported by the following Brazilian Agencies:
FAPERGS, CAPES, and CNPq (grants 457501/2014-6 and 305531/2015-8).

References

1. Ali-Eldin A, Kihl M, Tordsson J, Elmroth E (2012) Efficient provisioning of bursty scientific
workloads on the cloud using adaptive elasticity control. In: Proceedings of the 3rd workshop
on scientific cloud computing date, ScienceCloud’12. ACM, New York, pp 31–40

2. Azmandian F, Moffie M, Dy JG, Aslam JA, Kaeli DR (2011) Workload characterization at the
virtualization layer. In: Proceedings of the 19th international symposium on modeling, analysis
simulation of computer and telecommunication systems, MASCOTS’11. IEEE Computer
Society, Washington, DC, pp 63–72

3. Baliga J, Ayre RWA, Hintony K, Tucker RS (2011) Green cloud computing: balancing energy
in processing, storage, and transport. Proc IEEE 99(1):149–167

4. Ben-Yehuda AO, Ben-Yehuda M, Schuster A, Tsafrir D (2012) The resource-as-a-service
(RAAS) cloud. In: Proceedings of the 4th USENIX conference on hot topics in cloud
computing, HotCloud’12. USENIX, pp 1–5

5. Byun E, Kee Y, Kim J, Maeng S (2011) Cost optimized provisioning of elastic resources for
application workflows. Future Gen Comput Syst 27(8):1011–1026

6. Caballer M, de Alfonso C, Moltó G, Romero E, Blanquer I, García A (2014) Codecloud: a
platform to enable execution of programming models on the clouds. J Syst Softw 93(0):187–
198

7. Cai B, Xu F, Ye F, Zhou W (2012) Research and application of migrating legacy systems to
the private cloud platform with cloudstack. In: Proceedings of the international conference on
automation and logistics, ICAL’12. IEEE, pp 400–404

124 G. Galante and R.R. Righi

8. Chiu D, Agrawal G (2010) Evaluating caching and storage options on the Amazon web services
cloud. In: Proceedings of the 11th international conference on grid computing, GRID’10.
IEEE, pp 17–24

9. Chohan N, Castillo C, Spreitzer M, Steinder M, Tantawi A, Krintz C (2010) See spot run: using
spot instances for mapreduce workflows. In: Proceedings of the 2nd USENIX conference on
hot topics in cloud computing, HotCloud’10. USENIX, pp 1–7

10. de Oliveira D, Viana V, Ogasawara E, Ocana K, Mattoso M (2013) Dimensioning the virtual
cluster for parallel scientific workflows in clouds. In: Proceedings of the 4th ACM workshop
on scientific cloud computing, ScienceCloud’13. ACM, New York, pp 5–12

11. Galante G, Bona LCE (2012) A survey on cloud computing elasticity. In: Proceedings of
the international workshop on clouds and eScience applications management, CloudAM’12.
IEEE, pp 263–270

12. Galante G, Bona LCE (2014) Supporting elasticity in openmp applications. In: Proceedings of
the 22nd Euromicro conference on parallel, distributed and network-based processing, PDP’14.
Euromicro, pp 188–195

13. Galante G, Bona LCE (2015) A programming-level approach for elasticizing parallel scientific
applications. J Syst Softw 110(C):239–252

14. Galante G, Bona LCE, Claudio Schepke (2014) Improving olam with cloud elasticity. In:
Murgante B, Misra S, Rocha AMAC, Torre C, Rocha JG, Falcão MI, Taniar D, Apduhan
BO, Gervasi O (eds) Computational science and its applications – ICCSA 2014: 14th
international conference, Guimarães, June 30–July 3, 2014, Proceedings, Part VI. Springer,
pp 46–60

15. Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: what it is, and what
it is not. In: Proceedings of 10th international conference on autonomic computing, ICAC’13.
USENIX, San Jose, pp 23–27

16. Hummaida AR, Paton NW, Sakellariou R (2016) Adaptation in cloud resource configuration:
a survey. J Cloud Comput 5(1):57:1–57:16

17. Imai S, Chestna T, Varela CA (2012) Elastic scalable cloud computing using application-level
migration. In: Proceedings of the 5th international conference on utility and cloud computing,
UCC’12. IEEE, pp 91–98

18. Iordache A, Morin C, Parlavantzas N, Feller E, Riteau P (2013) Resilin: elastic mapreduce
over multiple clouds. In: Proceedings of 12th international symposium on cluster, cloud and
grid computing, CCGRID’13. IEEE, pp 261–268

19. Islam S, Lee K, Fekete A, Liu A (2012) How a consumer can measure elasticity for cloud
platforms. In: Proceedings of the 3rd international conference on performance engineering,
ICPE’12. ACM, pp 85–96

20. Jha S, Katz DS, Luckow A, Merzky A, Stamou K (2011) Understanding scientific applications
for cloud environments. In: Buyya R, Broberg J, Goscinski AM (eds) Cloud computing:
principles and paradigms, chapter 13. John Wiley & Sons, pp 345–371

21. Lee Y, Avizienis R, Bishara A, Xia R, Lockhart D, Batten C, Asanovic K (2011) Exploring
the tradeoffs between programmability and efficiency in data-parallel accelerators. In:
Proceedings of the 38th annual international symposium on computer architecture, ISCA’11,
pp 129–140

22. Leslie LM, Sato C, Lee YC, Jiang Q, Zomaya AY (2015) DEWE: a framework for distributed
elastic scientific workflow execution. In: Proceedings of the 13th Australasian symposium on
parallel and distributed computing, AusPDC’15. ACS, Sydney, pp 3–10

23. Lin C, Lu S (2011) SCPOR: an elastic workflow scheduling algorithm for services computing.
In: Proceedings of the 5th IEEE international conference on service-oriented computing and
applications, SOCA’11. IEEE Computer Society, Washington, DC, pp 1–8

24. Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for
elastic applications in cloud environments. J Grid Comput 12(4):559–592

25. Milojicic D, Llorente IM, Montero RS (2011) Opennebula: a cloud management tool. IEEE
Internet Comput 15(2):11–14

4 Exploring Cloud Elasticity in Scientific Applications 125

26. Moltó G, Caballer M, Romero E, de Alfonso C (2013) Elastic memory management
of virtualized infrastructures for applications with dynamic memory requirements. In:
International conference on computational science, ICCS’13; Procedia Comput Sci 18:159–
168

27. Nicolae B, Riteau P, Keahey K (2014) Bursting the cloud data bubble: towards transparent
storage elasticity in IaaS clouds. In: Proceedings of the 28th international parallel and
distributed processing symposium, IPDPS’14. IEEE, pp 135–144

28. Pandey S, Karunamoorthy D, Buyya R (2011) Workflow engine for clouds. In: Buyya R,
Broberg J, Goscinski A.M. (eds) Cloud computing: principles and paradigms, chapter 12. John
Wiley & Sons, pp 321–344

29. Rajan D, Canino A, Izaguirre JA, Thain D (2011) Converting a high performance application
to an elastic cloud application. In: Proceedings of the 3rd international conference on cloud
computing technology and science, CLOUDCOM’11. IEEE, pp 383–390

30. Ramakrishnan L, Jackson KR, Canon S, Cholia S, Shalf J (2010) Defining future platform
requirements for e-science clouds. In: Proceedings of the 1st symposium on cloud computing,
SoCC’10. ACM, New York, pp 101–106

31. Raveendran A, Bicer T, Agrawal G (2011) A framework for elastic execution of existing
MPI programs. In: Proceedings of the international symposium on parallel and distributed
processing workshops and PhD forum, IPDPSW’11. IEEE, pp 940–947

32. Righi RdR, Rodrigues VF, da Costa CA, Galante G, de Bona LCE, Ferreto T (2016)
Autoelastic: automatic resource elasticity for high performance applications in the cloud. IEEE
Trans Cloud Comput 4(1):6–19

33. Simmhan Y, van Ingen C, Subramanian G, Li J (2010) Bridging the gap between desktop and
the cloud for escience applications. In: Proceedings of the 3rd international conference on
cloud computing, CLOUD’10. IEEE, pp 474–481

34. Srirama SN, Jakovits P, Vainikko E (2012) Adapting scientific computing problems to clouds
using MapReduce. Future Gen Comput Syst 28(1):184–192

35. Taifi M, Shi JY, Khreishah A (2011) SpotMPI: a framework for auction-based HPC computing
using Amazon spot instances. In: Proceedings of the 11th international conference on
algorithms and architectures for parallel processing, ICA3PP’11. Springer, pp 109–120

36. Vaquero LM, Rodero-Merino L, Buyya R (2011) Dynamically scaling applications in the
cloud. ACM Comput Commun Rev 41:45–52

37. Vecchiola C, Pandey S, Buyya R (2009) High-performance cloud computing: a view of
scientific applications. In: Proceedings of the 10th international symposium on pervasive
systems, algorithms, and networks, ISPAN’09. IEEE, pp 4–16

38. Villamizar M, Castro H, Mendez D (2012) E-clouds: a saas marketplace for scientific
computing. In: Proceedings of the 5th international conference on utility and cloud computing,
UCC’12. IEEE, pp 13–20

39. Wen X, Gu G, Li Q, Gao Y, Zhang X (2012) Comparison of open-source cloud management
platforms: openstack and opennebula. In: Proceedings of the 9th international conference on
fuzzy systems and knowledge discovery, FSKD’12, pp 2457–2461

40. Wottrich R, Azevedo R, Araujo G (2014) Cloud-based OpenMP parallelization using a
mapreduce runtime. In: 26th IEEE international symposium on computer architecture and
high performance computing, SBAC-PAD’14. IEEE, pp 334–341

41. Yu L, Thain D (2012) Resource management for elastic cloud workflows. In: Proceedings
of the 2012 12th IEEE/ACM international symposium on cluster, cloud and grid computing,
CCGRID’12. IEEE, pp 775–780

Chapter 5
Clouds and Reproducibility: A Way
to Go to Scientific Experiments?

Ary H. M. de Oliveira, Daniel de Oliveira, and Marta Mattoso

5.1 Introduction

Computational scientific experiments use computing techniques integrated to
methodologies and scientific programs to support the development of science.
Experiments in different domains of knowledge are often dependent of data-oriented
computational methods [30, 33]. e-Science [56] emerged as a data-oriented science
that is based on computational scientific experiments. The goal is to make science
evolution more efficient and productive [24]. Among the challenges of e-Science
development, there is the processing and analysis of large scientific datasets that
currently produce a range of several terabytes to petabytes of data [5, 34, 35, 55].
As computers become more powerful, the complexity of analyzing scientific data
also grows at the same pace due to the volume, complexity, and variety of data that
is generated [16, 30, 57]. Scientific development involves a massive production of
data and must be accompanied by approaches that allow for the reproducibility of
experiments, making it possible to verify and validate the results produced by these
simulations.

For a scientific experiment to be considered “scientific” it must be reproducible
[19]. To reach the same conclusions as a previous experiment, scientists have to
analyze and compare data products (we use the term data product or dataset to

A.H.M. de Oliveira (�)
Federal University of Tocantins, Palmas, Brazil
e-mail: aryhenrique@mail.uft.edu.br

D. de Oliveira
Fluminense Federal University, Niterói, Brazil
e-mail: danielcmo@ic.uff.br

M. Mattoso
Federal University of Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, Brazil
e-mail: marta@cos.ufrj.br

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_5

127

mailto:aryhenrique@mail.uft.edu.br
mailto:danielcmo@ic.uff.br
mailto:marta@cos.ufrj.br

128 A.H.M. de Oliveira et al.

refer to data in any form, such as files, tables, and virtual collections) and metadata
related to the experiment execution. Metadata allows for scientists to check if the
experiment followed the same procedure of previous executions [32]. It is defined as
the basic principle of the scientific method, which assists in the comparison process
and methods and validation of results [23]. This is the evidence used to test and
sustain the adopted methods and obtained results. Reproducibility is a way to certify
that the results are correct and the method is convincing and reproducible [23].
The science progress depends on the effective dissemination and reproducibility
of existing research [47]. Nevertheless, it is necessary to access the material used in
the production of the results to analyze and evaluate it [6]. Science advances faster
when it is possible to build on existing results and when new ideas can be easily
measured against the state of the art [38].

The reproducibility of a scientific experiment with rigor, transparency, and
verification is a decisive factor when assessing quality [41]. The American Physical
Society (APS)1 emphasizes the importance of reproducibility. According to APS,
science is the systematic use of knowledge gathering about the universe and the
organization and condensation of that knowledge in laws and theories testable.
They complement that a way to maintain the credibility and success of science is to
anchor it in the scientist’s disposition to expose ideas and results of their studies to
independent tests and replication of these tests by other scientists. Reproducibility
is a way to allow the published knowledge to become available to the general public
[15]. A scientific contribution is considered valuable if, among other things, other
researchers are able to reproduce its results with success [52].

However, it is far from trivial to achieve reproducibility in computer-based sci-
entific experiments. Many of these experiments are composed by several activities
that invoke computing and data-intensive programs. Several experiments execute for
weeks or months in parallel even in high-performance computing (HPC) environ-
ments such as clusters, grids, and clouds. In order to be reproduced by third-party
scientists or teams, several existing approaches [7, 10, 40, 58] collect provenance
data [11] related to executions of these experiments to foster reproducibility.
Provenance, or lineage, of a scientific experiment is related to metadata associated
to the data products generated by a specific experiment execution. Simmhan et al.
[50] define provenance as the “information that helps determine the derivation
history of a data product, starting from its original sources.” The main goal of
provenance is to give credibility and confidence to the results and methods [23].
Although provenance plays a very important role, it is not sufficient to reproduce
scientific experiments. A scientific experiment may have several software and
hardware dependencies that must be preserved in the moment of reproduction. One
problem that arises is how to reproduce these dependencies since software may be
discontinued, computer architectures may be not supported anymore, etc.

1http://www.aps.org/policy/statements/99_6.cfm

http://www.aps.org/policy/statements/99_6.cfm

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 129

Clouds can play a fundamental role in e-Science reproducibility [22]. Clouds
are strongly based on the concept of virtualization in which virtual machines (VM)
are a key issue. The entire environment used to execute the experiment (programs,
data, etc.) can be packed in an image (e.g., an ISO), and VMs can be deployed
based on this image. This fosters the ability to encapsulate the entire context of the
experiment in a VM, which may virtually reproduce the same environment used to
execute the experiment. However, just having the technology infrastructure is not
enough, there are issues on how to pack the experiments, what to register, how to
help on reproducing it with different parameters, etc.

Despite the vast literature on reproducibility of experiments, the terms used in
the papers are quite diverse and do not help in mapping the field. In addition,
there lacks a reference architecture to compare the state-of-the-art solutions. Also,
the potential of cloud computing seems underutilized in reproducing experiments.
Given this context, this chapter discusses how clouds can foster reproducibility
and has three main contributions: a taxonomy on reproducibility of experiments,
a reference architecture for reproducibility support using clouds, and an evaluation
of current approaches for cloud-based reproducibility. The taxonomy organizes the
concepts and terminology of reproducibility independent of the scientific domain
area. The goal is to provide a common definition and classification for e-Science
research reproducibility. This taxonomy can be used to guide researchers among
the innumerous possibilities. The second contribution presents the basic functional
requirements to guide the construction and analysis of a reproducible infrastructure
in clouds. The proposed reference architecture helps on the characterization of
tools for the reproducibility of experiments. Then, as a third contribution, current
available tools are evaluated based on a set of properties and functionalities
presented on this taxonomy and reference architecture.

This chapter is organized in five sections besides this introduction. Section 5.2
presents the proposed taxonomy with an organization of concepts and terminology
related to reproducibility. Section 5.3 discusses about how clouds can foster
reproducibility following the classes of the taxonomy. Section 5.4 proposes a
reference architecture that makes an experiment reproducible. Section 5.5 presents a
survey on reproducibility approaches that are based on clouds, and, finally, Sect. 5.6
concludes this chapter.

5.2 A Taxonomy on Reproducibility of Experiments

The amount of published papers and proposed approaches evidences that repro-
ducible science has emerged as an important concept in the last years according to
Freire et al. [20]. Several technologies, platforms, applications, infrastructure, and
standards have been already proposed. However, the concepts involved need clear
definitions and classifications. Considering the huge interest on reproducible science
and the difficulty in finding organized definitions of concepts associated to this field,
we present in this chapter a taxonomy for reproducibility approaches in e-Science.

130 A.H.M. de Oliveira et al.

Fig. 5.1 The proposed taxonomy for reproducible science

Taxonomies are a particular classification structure where the concepts are arranged
in a hierarchical way. The proposed taxonomy provides an understanding of the
domain and aims at helping the scientist to compare different approaches for
reproducible science, particularly when using clouds.

We believe that this taxonomy will be useful to the scientific community to
compare different proposed approaches. By analyzing this taxonomy, scientists
may consider which features meet their needs, and depending on the scientific
experiment, these needs may vary. The taxonomy considers a broad view of
reproducible science and aims at exploring its major aspects. Using the taxonomy as
a common vocabulary may help scientists to find common characteristics of existing
approaches and aid into choosing the most adequate one. This section describes
several sub-taxonomies that compose a general taxonomy. For the sake of simplicity,
the proposed taxonomy, presented in Fig. 5.1, classifies the characteristics of
reproducible science in terms of authors, reproduction type, access/use license and
copyrights, content presentation form, evaluation methods, and research objects.
The term “research objects” is used to define an abstraction for communication,
sharing, and reuse of scientific experiment results [4]. The research objects are
composed of different artifacts used or generated by a scientific experiment [4],
like papers (manuscripts), notes, datasets, documentation, hardware and software
infrastructure, and configuration parameters. Following, we discuss each sub-
taxonomy in detail.

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 131

Agent. A reproducible science is influenced by the action of four actors as dis-
cussed by Koop et al. [37]: (1) the author that designs and implements experiments
to generate the results used in the scientific paper; (2) publishers that receive and
publish papers so that readers in general may have access to the contents; (3)
reviewers that evaluate the content and other materials, check results, and validate
the methodology; and (4) readers that access the paper to get access to its contents
to analyze the results, rerun the experiment, and reuse research elements.

Methodology. The methodology to be followed to reproduce an experiment’s find-
ings depends on the extent of reproducibility level desired. A report generated after
the reproducibility workshop in computer science and mathematics organized by
ICERM (Institute for Computational and Experimental Research in Mathematics2)
suggested a classification of levels for reproducible science based on the access
to documents and materials used for the scientific experiment. This workshop
report presents five levels of reproducible science [53]: reviewable, replicable,
confirmable, auditable, and reproducible. These five levels have also been described
in [18] as (1) a review allows for results to be achieved independently through
a complete description of the algorithms and methodology without the need of
using software provided by the author; (2) a repetition defines that research results
can be reproduced only in the infrastructure that they were originally obtained;
(3) a confirmation allows for accessing objects used in the experiment execution;
however, it does not support the experiment re-execution; (4) the auditable level has
records of materials used in the experiment; however, they aim to be presented to a
reviewer when requested; and (5) reproduction requires a robust methodology which
allows for reproducing the results in an operational environment different from the
one it was originally obtained.

Licensing. The license to access or use the results of a reproducible science
can be defined in three different ways: public, private, or mixed [9]. When the
scientific result is defined as public, the paper and research objects are widely
accessible to the general public, that is, anyone can get the objects used in the
experiment and reproduce the results and methodology. When the scientific result
is defined as private, the scientific paper and the research objects have controlled
access to a specific audience, through an access control and distribution of research
subjects. The mixed license has access restrictions and concession policies for
each research object, which can be public or private according to the adopted
license. Reproducibility involves reproducing research objects such as configuration
parameters, final results, and a set of elements used for the derivation of these
results.

Presentation. A scientific paper is the way for presenting research objects used
to produce a result. Currently, a paper can be written using a traditional form or
by creating an executable paper. Traditional papers present static content, allowing

2http://icerm.brown.edu/home/index.php

http://icerm.brown.edu/home/index.php

132 A.H.M. de Oliveira et al.

for the inclusion of URLs for access to research objects related to a published
result. Executable papers have dynamic content, allowing for readers to inform
values and parameters to test the methodology and check the published result. They
may contain code fragments or mechanisms that set actions for the experiment re-
execution. The main goal of the executable paper is to improve the understanding
and reproducibility of electronic publications allowing for readers and reviewers to
interact, explore, and validate the experiments [32].

Evaluation. To verify the computational results of an experiment, it is necessary to
recreate the conditions in which the experiment was performed right from the begin-
ning [49]. Reproducible science supporting solutions aim at providing mechanisms
that allow for reproducing an experiment and its conclusions based on measures
and metrics established for the evaluation of results [2]. A reproducible experiment
should provide mechanisms for validation and verification of the methodology
and experimental results. Verification evaluates whether the results generated by
the experiment are in agreement with the methodologies or observations of the
phenomenon being studied. Validation evaluates whether the methodology proposed
by the research properly resolves what it was designed to solve. Validation can be
obtained by analyzing workflow execution trails from workflow systems using log
records or provenance [12, 42].

Data. Many e-Science experiments are supported by data-oriented techniques and
tools. The input data used by a simulation program is processed to produce results
(output data). Tools like worfklow systems are used in e-Science to orchestrate the
processing of data in a coherent flow of activities [3, 56]. This introduces the concept
of intermediate data, when one activity produces a portion of data that should be
available to start the execution of the next activity in the flow. Thus, reproducible
experiment data may be classified as primary, intermediate, final results, metadata,
and data provenance. Primary data is used as input data of the experiments. In
general, data is obtained from measurements or environment monitoring, in which
an instrument or sensor is deployed. Intermediate data, also called derivatives, is
produced during the execution and is the result of the application of algorithms
and analysis techniques for deriving information from input data. It is subject to
an arrangement or structure for the production of the final results. The final results
represent the final product of an experiment execution (following a methodology).
Metadata and provenance data are, respectively, additional information about the
three classes of data. Metadata are data descriptors that give meaning to the
data. One of the broader definitions, Greenberg [26] defines metadata as data
that describes the objects’ structure and the features associated with this object.
Provenance is defined as the origin or an object derivation history from its original
source [12]. These information can be used to evaluate quality, reliability, or trust of
an object [43]. Provenance describes steps in which the data were derived, adding
significant value to the data [50].

Infrastructure. Freire et al. [19] present two formal concepts to define computa-
tional infrastructure reproducibility: (1) an experiment made by a laboratory L in a

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 133

time t is considered reproducible if it can be replicated in a different laboratory L0

in a posterior time t0, and (2) a computational experiment developed in a time t in
a hardware/operational system s using data d is reproducible if it can be executed
in a time t0 in a system s0 with data d0, which are similar or identical to d. This
definition highlights the need to preserve the operational environment in which the
experiment was deployed. Hence, the infrastructure refers to all the computation
resources used during the process of planning, designing, building, and executing
a reproducible experiment. The infrastructure is further categorized in four classes:
documentation, settings, hardware, and software, detailed as follows.

Documentation. The documentation is an indispensable element to assist other
scientists to understand the research. An algorithm configuration, the parameter
lists, and their values used for the experiment must be clearly indicated. An available
URL containing the software that implements the algorithm with information about
the used datasets helps to obtain the necessary elements to redeploy the research
objects used in the experiment. The documentation consists of registering the digital
material used. The goal is to assist other scientists to deploy the research objects that
are required to reproduce the experiment. Documentation also serves as a guide to
understand the reasoning of the researchers while designing each element and the
research as a whole. The concept of notes from Guo and Seltzer [29] emphasizes
the importance to include notes in the data products used and generated in the
experiment execution to allow accurate retrieval of files referenced in the notes.
Documentation is formed, in general, by the instruction manual, research author
notes, and other supporting materials.

Settings. Settings refer to the data settings and operational information responsible
for creating and configuring the operational computational environment. The goal
is to deploy and run the software under the same hardware used for executing the
original experiment. Settings are formed by environment variables, which should be
set in the operational system where the research objects will be deployed and the
software will run.

Hardware. All equipments used for computations of scientific experiments must
be registered as part of the infrastructure. The hardware is represented by machines,
computer networks, and storage, that is, the computer environment. A machine is
represented by two types of resources: processor and main memory. The computer
network provides information about the logical and physical organization, such as
the IP address and latency. The storage is the mechanism for data persistence in a
secondary memory structure. The architecture organizes the previous elements to
reflect the experiment performance and storage, taking into account characteristics
such as the use of physical computers or virtual environment.

Software. Elements that perform the instructions and algorithms of an experiment
are represented by registering the corresponding software. They are classified into
six groups: basic, application, libraries, source code, script, and workflow. Basic
software are formed by operational systems, virtualization software (hypervisors),

134 A.H.M. de Oliveira et al.

and compilers, responsible for generating an executable from a source code provided
by the scientist. Application software is a program (executable file) used to perform
a specific activity. Libraries are formed by subprograms set with code and auxiliary
data that provide some services to basic software and applications. Libraries are
invoked during compilation and execution. The source codes are files written in a
programming language ready to be compiled and used for activity execution. Since
the reproduction of a certain result through its source code can be affected by the
compiler used in the code compilation process, it is necessary to inform which
compiler was used to generate the experiment results and which were the parameters
applied. A script is a file with instructions set in code used by the operational system
for control programs. A workflow is an abstraction that allows for the composition
of programs, thus creating a coherent flow of activities [56]. It is executed by an
engine called scientific workflow management system (SWfMS) to automate the
activities involved in the workflow.

5.3 How Clouds Can Foster Reproducibility in Science?

Cloud computing has emerged as a computing model where web-based services
allow for different kinds of users to obtain a large variety of resources, such as
software and hardware. Cloud computing has demonstrated applicability to a wide
range of problems in several domains, including scientific ones such as astronomy
and bioinformatics. In fact, several scientists have adopted this computing model
and moved their experiments (programs and data) from local environments such as
clusters and grids to the cloud [13, 34]. One intuitive advantage provided by clouds
is that scientists are not required to assemble expensive computational infrastructure
to execute their experiments or even configure many pieces of software each time
the experiment is executed. An average scientist is able to run experiments just by
allocating the necessary resources in a cloud.

In addition to offering an adequate infrastructure for executing experiments,
clouds can also foster the reproducibility of experiments, even if these experiments
were not originally executed in clouds. As highlighted in the taxonomy presented in
Sect. 5.2, clouds are natural providers of important requirements for reproducibility.
The first requirement is the need of an infrastructure that is able to encapsulate
characteristics of computational environments used in the execution of experiments.
This requirement is natively addressed by clouds, since clouds are based on the
concept of virtualization. Clouds allow for scientists to create virtual machines that
act like a real computer with a specific operating system. All software executed
on these virtual machines are separated from the underlying hardware resources. It
allows, for example, that a computer that is running Linux 64 bits hosts a virtual
machine that runs Microsoft Windows 32 bits. In addition, full virtualization can be
applied, which allows for simulating the hardware and software originally used to
execute the scientific experiment to run unmodified.

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 135

Another requirement is to gather and store intermediate and final results of the
experiments for achieving reproducibility. Several experiments can produce many
terabytes of data that should be preserved for long-term analysis. Cloud-based
storage such as Amazon S33 can address this requirement. Online storage is an
integral part of life now, and this is not different in the scientific domain. Besides
specialized services such as S3, other general purpose cloud storage services can be
used to store scientific data, including Google Drive,4 Dropbox,5 and OneDrive.6

Storing metadata and provenance data is also an issue in reproducibility.
Provenance data is commonly stored in a structured way. For example, provenance
data can be stored in a relational database, in a graph database, using JSON files,
etc. The database as a service cloud paradigm delivers databases similar to what is
found in relational database management systems (RDBMSs) and NoSQL DBMS.
Provenance and metadata can be managed in this type of service since it offers
flexibility in the data model, scalability, security, and reliability.

Another requirement is how to manage application’s source codes that have to be
recompiled to reproduce an experiment. Version control services such as GitHub7

and BitBucket8 already provide this service in the cloud. In addition, providers such
as Amazon AWS already have services such as Amazon AWS CodeCommit,9 which
is a version control service that is associated with Amazon S3 to store versions of
documents, source code, and binary files. The advantage of using version control
services in comparison with storage services (such as Amazon S3) is that version
control services are designed for team software development, i.e., it to merge source
code from two or more users.

All these features make clouds a suitable environment to foster reproducibility
in scientific experiments. However, just having the technology infrastructure is not
enough, there are issues on how to pack the experiments, what to register, how to
help on reproducing with different parameters, etc. This way, approaches for repro-
ducibility have to be developed on top of clouds to benefit from these characteristics.
The following section presents a reference architecture for reproducibility. The goal
of this architecture is to help in comparing current solutions on reproducibility as
well as to highlight open issues and directions that can be followed when developing
a new approach.

3https://aws.amazon.com/s3
4https://apps.google.com/products/drive/
5https://www.dropbox.com/
6https://onedrive.live.com/
7https://github.com/
8https://bitbucket.org/
9http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

https://aws.amazon.com/s3
https://apps.google.com/products/drive/
https://www.dropbox.com/
https://onedrive.live.com/
https://github.com/
https://bitbucket.org/
http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

136 A.H.M. de Oliveira et al.

5.4 Reproducible Research Architecture

In the previous sections, we discussed several features, factors, and requirements of
a reproducible science. In this section we present our design of an architecture to
represent a generic reproducible science support solution. Different authors point
out important reproducible features, while others discuss new insights, identifying
new opportunities and challenges. Each paper presents its own solution, making it
difficult to have a generic view of a reproducible experiment and compare solutions
to analyze open issues. Our proposed reference architecture aims to fill this gap. It
shows how these several features have been combined into a reference architecture
for the reproducibility of experiments. Figure 5.2 presents the architecture with its
components and how they can benefit from clouds.

The architecture is divided into four main tiers: (1) interface, which performs
the interaction of the service internal elements with external entities; (2) controller,
which controls the elements provided by the interface; (3) research object manager,
which manages all research objects involved in the experiment; and (4) storage
engine, which manages devices and storage mechanisms for files and data search.
Following we describe each module of each tier in the architecture.

Reproducible Experiment Content Viewer (Interface Tier). It is a commu-
nication interface with external entities. It provides the mechanism for visually
presenting elements and allows for external infrastructure, such as conference

Fig. 5.2 Reference architecture for reproducible science

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 137

management systems to create links with the objects and the experiment. By using
this interface, components are accessible for interaction with users, platforms, and
external infrastructures. This interface can be implemented by a cloud app. A cloud
app is an evolution of a web app. Similarly to web apps, they are used to access
online services over the Internet, but they are not dependent on web browsers to
work.

Access and Security Manager (Interface Tier). It controls user access and
external entities to research objects. This control considers the types of actors that
interact with the experiment, which by default are composed of authors, reviewers,
journals, and readers. It interacts with the reproducible experiment content viewer
module to register stakeholders in accessing research objects. It communicates with
the research object retrieval engine module to identify and filter which research
objects must be presented. The filter uses the guidelines established in the licenses
and copyrights manager to select the research objects that can be displayed.

Executable Paper Editor (Interface Tier). It allows for including references to
research objects in the manuscript, creating a link to an object in a paper. Many
of the existing approaches are based on libraries and mechanisms for annotation
in HTML documents and in the text body in LaTeX to reference research objects.
These references can be included in a paper in the traditional way, i.e., using links to
static content, or an executable paper, thus creating elements that allow for inclusion,
execution, and updates dynamically.

Experiment Reproduction Engine (Interface Tier). It provides a means for
the re-execution and reproduction of an experiment by executing code fragments
inserted in the manuscripts in digital format The experiment reproduction engine
makes reproducible science more dynamic, since users can monitor the use and
execution of each research object embedded in the experiment. It interacts with the
reproducibility verifier and the validator modules. This engine allows for users to
access experiment validation and verification forms using search parameters and
input data already reported by the experiment author. The engine also allows for
testing of new values to evaluate the experiment robustness.

Reproducibility Validator and Verifier (Controller Tier). This module con-
templates the verification and validation activities to evaluate the experiment
reproduction. Verification evaluates whether the produced results are correct,
checking if they are equivalent or whether the differences between the produced
data are values within an acceptable statistical margin. The validation mechanism
evaluates if the methodology for obtaining the results was reproduced.

Research Object Reference Builder (Controller Tier). It links the textual ele-
ments of a scientific paper to research objects stored in files or databases. It receives
a link request to an object through the executable paper editor and then requests the
registration of this link to the experiment data manager. This association produces
records that are stored in the provenance database. Some studies link the manuscript
to research objects through annotation mechanisms in LaTeX documents to do the

138 A.H.M. de Oliveira et al.

element association at runtime. Other studies present dynamic mechanisms for the
re-execution of codes within the executable papers.

Research Objects Retrieval Engine (Controller Tier). It retrieves the elements
that have to be exhibited by the reproducible experiment content viewer, based on
the actors’ requests and the selection rules. To display contents it is necessary to
identify the license type related to each research object, as well as restrictions and
rules associated with them. This engine aims at checking what distribution type
of the research object is permitted (visualization, distribution, use, etc.) and also
identifies what license type applies to each type of actor.

Licenses and Copyrights Manager (Controller Tier). This module identifies the
license restrictions and copyrights related to the research objects. It can be invoked
by the research object retrieval engine or the research object reference builder
to present, respectively, a research object according to the license guidelines and
copyright. It also records the correct authorship and license to an object when it is
added to a reproducible experiment.

Software and Library Manager (Research Object Manager Tier). There are
six software groups: basic, application, libraries, source code, script, and workflow.
Each class has characteristics that are different from the others, and some are
dependent on other software classes. All these classes need information about the
hardware environment in which they were deployed, that is, which operational base
was used to host it. Therefore, the first feature to be controlled by the software
and library manager is the infrastructure information of the software deployment.
In addition, it must identify the software and library dependencies, environment
variables, and configuration parameters required for the software to run properly.

Hardware Environment Monitor (Research Object Manager Tier). This mon-
itor identifies the architecture behind a reproducible experiment. Such information
is generally related to the computer system and the storage infrastructure. E-
Science experiments perform analyses on platforms that range from workstations
to specialized high-performance computing infrastructures, such as clusters, grids,
and clouds. Some experiments are based on physical computer system architectures,
while other approaches use hardware virtualization, where the resource usage
is managed by a hypervisor. The hardware environment monitor must collect
information regarding processing (CPU), memory, hardware architecture (32, 64

bits), as well as data about network and connectivity. Furthermore, it should monitor
issues related to data storage such as storage capacity, since scientific experiments
can produce large amounts of data.

Notes and Documentation Manager (Research Object Manager Tier). It allows
for the insertion of notes in research objects, thus allowing the scientist to associate
reasoning and an interpretation regarding the use or production of a research
object. In addition, it also allows for the inclusion of documents describing each
infrastructure element and how they should be deployed and used. The notes and

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 139

documents can be stored in files through the file system, and the links with research
objects are registered in the database component.

Research Data Manager (Storage Tier). Stores the data used and produced dur-
ing the experiment execution. There are four data types in the scientific environment,
and each of these data should be stored at the most appropriate form based on its
data structure requirements. As defined in the taxonomy, reproducible experiment
data may be classified as primary, intermediate, final results, metadata, and data
provenance. Research data is stored in databases or file systems, as well as in
the provenance and metadata databases. The choice of the storage mechanism is
oriented by the data characteristics to be stored, considering factors such as data
size and the purpose of its use. It receives data of all the elements of the research
object: manager, builder, retrieval engine, and identifier engine. The research data
manager can be deployed in the cloud and benefit from cloud storage and DbaaS
solutions.

Reference Builder (Storage Tier). For each research object type, there should
be an association of a unique identification through interaction with the module
research object identifier engine and should also be associated to a use license and
authorship information, using the support of licenses and copyrights manager mod-
ule. Identification can be based on established standards such as the digital object
identifier (DOI) system [46]. The DOI represents the digital content identification
on the network identifying abstract and digital and physical entities, managed by
the federation of register agencies under policies and infrastructure provided by the
DOI International Foundation [46]. This control helps in the correct identification
of materials used to produce a result.

Reproducible Experiment Hosting Infrastructure (Storage Tier). The repro-
ducible experiment with its research objects should be shared to the public
through an accessible repository on the Internet, allowing for authors to centralize
information about their research, interacting more efficiently with users interested
in the published contents.

5.5 Survey on Approaches for Reproducible Science

There are several approaches to support experiment reproducibility. Depending
on the level of reproducibility support, they may benefit from scientific work-
flows, provenance data gathering, and executable scientific papers. Many of these
approaches are designed to use virtual machines, thus being suitable for their
deployment in cloud computing environments, which is the focus of this chapter.
Simmhan, Antoniu, and Goble [51] mention that clouds can play an important role
in data-driven science and in special for reproducibility. In a talk on reproducibility
of experiments in life sciences, Goble [25] explores issues involved in the devel-

140 A.H.M. de Oliveira et al.

opment of technical and social infrastructures for reproducibility. In this talk, she
also mentions that developing approaches for reproducibility is hard, high cost, and
unrewarded blue-collared labor, and not every experiment is reproducible in the
long term. Many experiments become less reproducible over time, even if using
cloud environments.

In this section we survey some existing approaches to help in making an
experiment reproducible. We group these approaches based on their reproducibility
support level. The first group encompasses executable papers, which are mostly
focused on reviewable experiments that might be also replicable, confirmed, and
audited, but not necessarily fully reproducible. Executable papers are defined as a
single published digital object that has both manuscript and all the code required to
reproduce the results [32]. The main objective of an executable paper is to increase
understanding and reproduction of electronic publications, allowing for readers and
reviewers to interact, explore, and validate the experiments. The main approach
examples are collage [44], SHARE [48], and paper-mache [6]. These last two are
detailed in the following subsections.

The second group focuses on supporting reproducing the results in an opera-
tional environment different from the one it was originally obtained. They obtain
environment information at a low level of execution, collecting data at the operating
system level, e.g., the file system and program calls from the operating system. They
provide for information and resources to enable the reproduction of experiments.
CDE (code, data, and environment) [27], ReproZip [8], SciCumulus [45], and PASS
(provenance aware storage systems) [39] are examples that gather data at the OS
level.

The third group, similar to the second, also aims at reproducing experiments,
but go one step further and use virtualization concepts to deploy an environment in
the cloud that is equivalent to the environment where the experiment was originally
executed. Systems from these three groups are detailed as following.

5.5.1 SHARE: Sharing Hosted Autonomous Research
Environments

SHARE is a web application that enables the creation and sharing of executable
scientific papers. The main motivations for developing SHARE were:

• Reduce installation or configuration difficulty to perform the computations on
the input data;

• Minimize problems in obtaining software versions for implementation of all
functions;

• Optimize process of downloading, installation, and configuration of each soft-
ware used in scientific research, and

• Register and control properly the software license distribution adopted in the
research.

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 141

SHARE claims that it is important that readers access the environment used
to develop a research and all research objects (software, data, infrastructure, and
operating environment) properly installed and configured. The approach proposes
to link a digital product with a VM that is created, configured, and stored within
the infrastructure where SHARE was deployed. SHARE supports three types of
users [48]: authors, publishers, and readers. The authors create SHARE VMs with
all elements used in the experiment within. Then, it associates the VM elements
to a paper. A scientific paper is submitted to publishers and readers through a web
browser. Each reproducible element is associated with a link that grants access to a
VM.

SHARE gives the user the ability to interactively explore the equations, tables,
and graphs of a paper. The VM is executed as the paper information is requested
by the user. The SHARE VM infrastructure enables the experiments design that
use high-performance computing strategies. In addition, SHARE stores incoming
sessions of VMs through the log files.

5.5.2 Paper Mâché

Paper mâché is a management system that allows for exploring scientific papers in
an interactive way, reproducing, and validating the results to test hypotheses [6]. It
allows for creating a paper and submitting it to the reviewers, so they can explore
and assess the content of experiments before publication. Once published, it allows
for exploring, discussing, and commenting the authors’ paper. Paper Mâché has
three main elements in its architecture:

• Executable paper with textual content, images, audio, and movies;
• Comments containing the review and discussion on material published and

shared; and
• The VM with the source code, executables, data, libraries, and encapsulated

dependencies.

Using paper mâché, the paper content is created in traditional text editors, in
formats *.doc or *.tex. The VM associated with the scientific paper is created
according to hypervisor adopted by paper mâché. Therefore, the author must create
a script to link the paper content published with the encapsulated components in the
VM. This association allows for recovering and reproducing executable elements.

In paper mâché, the environment is encapsulated within the VM. The hypervisor
used by the approach should ensure the VM retrieve, redeploy, and reproduce. This
allows for reproducing and testing new values in the paper executable components
and verifying that the expected results were produced. Paper mâché also allows for
deploying experiments on VMs in cloud providers. Paper mâché authors’ emphasize
that cloud computing can provide the ability to test and interact with a range of
supercomputer experiments, which is not possible with the current version.

142 A.H.M. de Oliveira et al.

5.5.3 CDE: Code, Data, and Environment

The CDE development (code, data, and environment) was motivated by scientific
code distribution technical barriers that hindered scientific applications sharing.
The CDE is an automatic deployment mechanism of source code, data, and
computational environments used for execution of a program on x86-Linux in other
machines x86-Linux. The CDE eliminates the need to install software from a source
environment to a destination [28]. The CDE monitor system calls on files, code,
data, and environment variables while running a program using the debugging tool
called ptrace.10;11

The ptrace is a monitoring mechanism that creates a process called tracer.
The tracer process monitors and controls the execution of another process called
tracee. The tracer process monitors and analyzes the system call trail in the tracee
execution capturing information about the process, registers, and memory uses of
the tracee process. Monitoring is based on the PID number (OS process identifier)
of tracee through the ptrace command. Hence, CDE encapsulates the ptrace tool in
its implementation to allow the package creation with all elements raised during the
execution of an application or command on a Linux operating system.

Figure 5.3 shows CDE architecture. In this context, a call is made to execute an
application in Python12 called analise.py. It is passed seq1.fasta as a parameter. The
application call must be made through the command cde preceding the execution
command. In this step, CDE is invoked to capture and encapsulate the elements
used in the execution. It store the elements and dependencies identified by ptrace in
a directory. Each element is copied to the CDE package directory (CDE package)
like a unit to be shared.

To reproduce a research, users just need to acquire the CDE package of the
experiment and run command cde � exec to unpack the experiment directory with

Fig. 5.3 Operation scheme CDE approach [28]

10http://linux.die.net/man/2/ptrace
11http://www.linuxjournal.com/article/6100
12https://www.python.org/

http://linux.die.net/man/2/ptrace
http://www.linuxjournal.com/article/6100
https://www.python.org/

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 143

all elements used in original execution. The scientist can browse the experiment
and reproduce it according to the original script [27]. The CDE is a good solution
for experiment encapsulation allowing computer environment’s portability and thus
enabling scientific applications reproduction.

5.5.4 Reprozip

The Reprozip is a tool that packages necessary elements to reproduce the scientific
research results oriented by provenance data [8]. The main objective is to share the
experiment with reviewers and readers so that they can unpack it and reproduce
it without the need to install additional software. The Reprozip combines CDE
approach and virtual machines to generate computer system snapshots. It encap-
sulates only the elements used in the experiment execution. ReproZip is built on top
of the VisTrails workflow system [37] to make workflows portable and reproducible
in third-party infrastructure.

The Reprozip performs two main stages, the packaging of the computing
environment and the subsequent unpack on a target computer. The packaging
consisting of three steps: (1) capturing provenance data, (2) provenance analysis,
and (3) packages generation. In the first step, the Reprozip uses system trap to
get provenance. It orchestrates and captures the system call track execution of the
execution process. The provenance is stored in a database managed by MongoDB.13

In the analysis step, the Reprozip creates an experiment provenance tree. Each node
of the tree represents an operating system process, and the edges between nodes
represent the link of the parent process with child processes. This link allows to
identify the resource dependencies with executable programs, input and output files.
Finally, it creates a package with workflow, software, and input and output files used
in the result derivation.

The Reprozip’s deployment for reproduction consists of unpacking process that
extracts the experiment package in a given directory and makes the configuration of
programs, datasets, configuration parameters, and environment variable workflow
[8]. The result of this process is the original environment recovery ready for
experiment reproduction.

5.5.5 PASS: Provenance Aware Storage Systems

PASS [39] provenance aware storage systems is an approach for provenance
processing and gathering in a VM with the Xen hypervisor. A PASS experiment
is deployed and run on a set of guest virtual machines running under an operating
system host. The PASS provenance mechanism is implemented on host system. It

13http://www.mongodb.org/

http://www.mongodb.org/

144 A.H.M. de Oliveira et al.

intercepts system calls made by guest virtual machines to the host [39], monitoring
changes in the virtual machine file systems and storing this information in a
provenance database.

The PASS environment consists of multiple virtual machines called domain
(Dom). One of the virtual machines, called Dom0, has the controller function. It is
responsible for virtual machine reporting and booting. The other virtual machines,
called visitors, are named like DomU. Applications that make up the experiment are
deployed on guest systems called DomU.

The system calls made from the guest virtual machine are intercepted by
the interceptor module. It extracts information from the kernel data structures
and moves on to the observer module. The observer module translates calls to
provenance records, creating dependency relationships between files and processes.
Then, the analyzer module eliminates duplicate records. The distributor module
stores the object provenance in a log file within the file system, called Lasagna. The
last component, called Waldo, gets the provenance records and stores in provenance
base for future reference and information retrieval.

PASS is used for provenance query on low-level details and execution trails
obtained during the execution. It is a good solution for applications requiring low-
level details for validation and reproduction.

5.5.6 SciCumulus Workflow System

Workflow systems assist scientists to orchestrate a set of activities in a coherent
flow. Most of the workflow system capture provenance data (metadata), but fail to
store all produced data and programs used in the experiment. Provenance data alone
is insufficient to allow for experiment reproduction. One advantage of SciCumulus
(or simply SCC) [14] is that it is designed to execute in the cloud, i.e., all programs
and data are deployed in the cloud to run the workflow. SCC orchestrates scientific
workflow activity execution in a distributed set of virtual machines. Each virtual
machine is associated with an image that contains all programs and data and can be
deployed for reproduction in the future. The SCC offers a computing infrastructure
to support parallel workflows with provenance capture in the cloud environment.
Although SCC is not designed to be a scientific reproduction approach, it allows
for encapsulating the computing infrastructure storage in a virtual machine in the
cloud. This allows the computing environment sharing for other scientists interested
in experiment results.

5.5.7 Reproducible Research in the Cloud

Several authors [1, 13, 33, 36] discuss the benefits of migrating experiments from
workstations, clusters, and computational grid to the cloud. Cloud-computing
features and resources may allow for fostering reproduction and motivating the

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 145

approach development based on this paradigm. WSSE [17], Chef [36], and AMOS
[54] are the most representative proposed approaches.

5.5.7.1 WSSE: Whole System Snapshot Exchange

The whole system snapshot exchange (WSSE) approach is a concept designed
to treat reproductive problems related to computing infrastructure and storage
of research objects. The WSSE proposes to generate digital data and source
code snapshots to be produced and distributed within a cloud-computing provider
[17]. The WSSE proposal is to use the cloud-based implementation of scientific
experiment advantages with reproduction support through the definition of three
layers: data, systems, and services.

In the data layer, the cloud can store and share large datasets with resources
needed to process computations on this data. Generally, the size of datasets of
scientific data may vary from gigabytes to several terabytes or more. In many cases
it is not possible to copy these large file data from one computer to another easily
and efficiently [17]. To avoid this problem, it is proposed to exchange data only
within the cloud-computing environment.

In system layer, the computers used in the result production are copied in their
entirety, including the operating system, software, and database, for VM to be
exchanged with other researchers [17]. This process allows the researchers to get
exact replicas of the computer used for the result production. The service layer
allows computations deployed in the cloud that can be accessed by external appli-
cations generating reproduction solution-oriented services. The data and systems
associated with scientific experiments can be stored in the cloud VM preserving the
environment used in the original experiment execution.

5.5.7.2 Chef

Klinginsmith et al. [36] propose an approach called Chef to deploy virtual clusters
for reproducibility in clouds. In the approach, the computational resources are
divided into two layers: (1) infrastructure and (2) software. The first layer manages
the IaaS (Infrastructure as a Service), communicating with the cloud provider’s
API to instantiate VMs, configure the network, and allocate storage space. The
second layer manages the software on the VM. Both layers are managed by
Chef configuration management tool. Chef is used to automate the virtual cluster
configuration and the necessary software installation to experiment reproduction in
the similar environment.

Chef was implemented in AMIs (Amazon machine image) on Amazon EC2
(elastic cloud compute) and EMIs (eucalyptus machine image) on FutureGrid
Eucalyptus Clouds.14 It is necessary to instantiate, configure, and register the VM

14https://www.eucalyptus.com/eucalyptus-cloud/iaas

https://www.eucalyptus.com/eucalyptus-cloud/iaas

146 A.H.M. de Oliveira et al.

manually and also install a Chef client to assist VM setup process. The result is the
possibility of virtual cluster replication on different cloud providers using a software
layer in common [36].

According to Chef designers, cloud computing can be used to reproduce
experiments and applications of e-Science researchers in a simple way. This is
due to the cloud providing the necessary infrastructure for the data storage and
management, as well as computing power to transform data in scientific knowledge.

5.5.7.3 Reproducibility with AMOS

Strijkers et al. [54] presents an e-Science tool that can be used to pack codes,
software, and scientific experiment parameters to design electronic papers. The
authors proposed to preserve the dependencies in an executable paper to enable
the experiment reproduction. The AMOS use scientific workflow as a way to define
the experiment execution and cloud-computing IaaS as a platform to encapsulate
the code dependencies and software in VMs.

The AMOS system proposed by Strijkers et al. uses a VM containing a set
of tools previously installed to implement a mechanism which initializes and
configures VMs on demand [54]. The goal is that VMs templates can be recreated or
cloned for experiment reproduction. Thus researchers can create various templates
and store them in an executable paper database. Data and application execution
management process VMs are instrumented by a workflow agent (WFA) or a
workflow system.

AMOS’ developers argue that code and data encapsulation in VMs preserves the
experimental environment, however, emphasize that this compatibility is dependent
on the virtualization software. They highlighted that still there is no effective
solution based on metadata and source data to increase the executable papers
capacity; therefore, the key would be the infrastructure virtualization.

5.5.7.4 PDIFF: Using Provenance and Data Differencing for Workflow
Reproducibility

Missier et al. [42] propose PDIFF, an algorithm that uses a comparison of workflow
provenance traces collected from workflows executed in virtual machines to check
if an experiment has been reproduced. PDIFF runs on top of e-Science Central [31]
that is a workflow system that can be deployed on clouds. e-Science central stores all
provenance data in a VM with a non-relational graph database, called Neo4j (www.
neo4j.org). The provenance database used by e-Science Central contains both traces
and the provenance for other items of e-Science Central. PDIFF then transverses
the graph in Neo4J and checks if there is a divergence between two workflow
executions by comparing their associated provenance traces. By using PDIFF along
with e-Science Central, scientists may have the perception that the challenges in
reproducibility of results can be easily overcome.

www.neo4j.org
www.neo4j.org

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 147

5.5.8 Final Considerations

The taxonomy presented in Sect. 5.2 provides several important classes to describe
the terms involved with reproducible science. In this subsection, we classify each
of the surveyed approaches following the proposed taxonomy classes. Table 5.1
presents the main characteristics of each approach. In general, the surveyed
approaches focus on a reduced set of features from each group of reproducibility
levels to address a specific aspect. For example, some approaches focus on
validation and verification methods for the evaluation; agent support, reproduction
methodology, etc. It is worth noticing that all approaches surveyed in this section
support the computing and storage infrastructure architectural features. All of them
provide some support for the hardware infrastructure aspects as computing and
storage.

5.6 Conclusions

As discussed in this chapter, computing has become fundamental for science
development in various scientific application domains. It helps science to become
reproducible accelerating the productivity of scientists and new discoveries. How-
ever, reproducible science is an important, yet open, problem, despite current efforts
found in the literature.

Clouds can play an important role to achieve reproducibility in science. However,
just having the technology infrastructure is not enough, there are issues on how to
pack the experiments, what to register, how to help on reproducing with different
parameters, etc.

Therefore, an important step toward reproducible science is to define terminology
standards and a framework to guide the construction of new solutions. Taxonomies
are already used in several domains to classify information considering some
preestablished aspects. This can be applied in several knowledge areas to assist
in the classification of concepts in a domain. This chapter presents a compilation
of concepts related to reproducibility in e-Science, which were used to guide
the comparison of existing systems for reproducible research using clouds. This
compilation evolved into designing a taxonomy, proposed in Sect. 5.2, which drove
the design of a reference architecture that was used to evaluate the state-of-the-art
approaches in supporting reproducible science.

The reference architecture, proposed in this chapter, represents a generic rep-
resentation that can be adopted to guide the construction of new reproducibility
approaches benefiting from clouds. The architecture is divided into tiers that can be
deployed in the cloud. The architecture reflects functions of particular classes from
the taxonomy. Therefore, the architecture helps in identifying a list of functions and
points out possible interactions and interfaces between modules.

148 A.H.M. de Oliveira et al.

Table 5.1 Comparison of surveyed approaches

Approach Agent Data Evaluation Methodology Setting Software

SHARE Author,
reader,
reviewer

Primary, final,
intermediary,
metadata

Verification,
validation

Repeatability Environment,
variable

Application,
basic,
library,
script,
source code

Paper
Mache

Author,
reader,
reviewer

Primary, final,
intermediary

Verification Reproducibility Environment,
variable

Application,
basic,
library,
script,
source code

CDE Author,
reader

Primary, final,
intermediary

Verification Reproducibility Environment,
variable

Application,
basic, library

ReproZip Author,
pub-
lisher,
reader,
reviewer

Primary, final,
intermediary,
metadata,
provenance

Verification,
validation

Reproducibility Environment,
variable,
parameter

Application,
basic,
library,
script,
source code,
workflow

PASS Author,
reader

Primary, final,
intermediary,
metadata

Verification,
validation

Reproducibility Environment,
variable

Application,
basic, library

SciCumulus Author,
reader

Primary, final,
intermediary,
metadata,
provenance

Verification,
validation

Reproducibility Environment,
variable,
parameter

Application,
basic,
library,
script,
source code,
workflow

WSSE Author,
reader

Primary, final,
intermediary

Verification Reproducibility Environment,
variable

Application,
basic,
library,
script,
source code

Chef Author,
reader

Primary, final,
intermediary

Verification Reproducibility Environment,
variable

Application,
basic,
library,
script,
source code

AMOS Author,
reader

Primary, final,
intermediary,
metadata,
provenance

Verification,
validation

Reproducibility Environment,
variable,
parameter

Application,
basic,
library,
script,
source code,
workflow

PDIFF Author,
reader

Primary, final,
intermediary,
metadata,
provenance

Verification,
validation

Reproducibility Environment,
variable,
parameter

Application,
basic,
library,
script,
source code,
workflow

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 149

Despite the current solutions that address making an experiment reproducible in
clouds, there are still several open problems. It is necessary to consider issues of
presentation and hosting of executable papers, references, edition and construction
of research objects, authorship management, licensing, rights of copying and dis-
tribution of research objects, version control, unique identification, documentation
and annotation management, as well as obtaining the necessary infrastructure for
the reproduction.

Therefore, this chapter is an important step to organize the involved concepts
in a taxonomy and discuss how clouds can foster reproducibility based on an
architectural framework to guide the construction of new cloud-based solutions.

Acknowledgements This work was partially funded by Brazilian agencies CAPES, FAPERJ, and
CNPq.

References

1. Armbrust M, Armando F, Rean G et al (2010) A view of cloud computing. Commun ACM
53(4):50–58

2. Baggerly KA, Berry DA (2012) Reproducible research, Amstatnews: The Membership
Magazine of the American Statistical Association

3. Barga R, Gannon D (2006) Scientific versus business workflows. In: Workflows for e-Science:
scientific workflows for grids. Springer, pp 09–16

4. Belhajjame K, Roure DD (2012) Goble CA research object management: opportunities and
challenges. In: Proceedings of the 2012 ACM conference on computer supported cooperative
work – CSCW’2012. ACM, New York

5. Berriman GB, Groom SL (2013) (2011) How will astronomy archieves survive the data
tsunami? ACM Queue 9:1–8

6. Brammer GR, Crosby RW, Matthews SJ et al (2011) Paper Mâché: creating dynamic
reproducible science. Proc Comput Sci 4:658–667

7. Cao B, Plale B, Subramanian G, Robertson Ed, Simmhan YL (2009) Provenance information
model of Karma version 3. SERVICES I 2009:348–351

8. Chirigati F, Shasha D, Freire J (2013) Packing experiments for sharing and publication. In:
Proceedings of the 2013 ACM SIGMOD international conference on management of data –
SIGMOD ’13, pp 977–980

9. Cooper MH (2010) Charting a course for software licensing and distribution. SIGUCCS
2010:153–156

10. da Cruz SMS, Barros PM, Bisch PM, Machado Campos ML, Mattoso M (2008) Provenance
services for distributed workflows. CCGRID 2008:526–533

11. Davidson SB, Freire J (2008) Provenance and scientific workfows: challenges and opportuni-
ties. In: Proceedings of the 2008 ACM SIGMOD international conference on management of
data – SIGMOD ’08. pp 1345–1350

12. Deelman E, Berriman B, Chervenak A et al (2010) Metadata and provenance management.
In: Shoshani A, Rotem D (eds) Scientific data management: challenges, technology and
deployment. Chapman & Hall/CRC, BocaRaton

13. Deelman E, Singh G, Livny M, et al (2008) The cost of doing science on the cloud: the montage
example. In: Proceedings of the 2008 ACM/IEEE conference on supercomputing, SC ’08,
pp 1–12

150 A.H.M. de Oliveira et al.

14. de Oliveira D, Ocaña KACS, Baião FA, Mattoso M (2012) A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds. J Grid Comput 10(3):
521–552

15. Donoho DL (2010) An invitation to reproducible computational research. Biostatistics 3:376–
388

16. Donoho D, Maleki A, Rahman NI et al (2009) Reproducible research in computational
harmonic analysis. Comput Sci Eng 11:8–18

17. Dudley JT, Butte AJ (2010) In silico research in the era of cloud computing. Nat Biotechnol
28:1181–185

18. Firtina C, Alkan C (2016) On genomic repeats and reproducibility. Bioinformatics
32(15):2243–2247

19. Freire J, Bonnet P, Shasha D (2012) Computational reproducibility: state-of-the-art, challenges,
and database research opportunities. In: Proceedings of the 2012 ACM SIGMOD international
conference on management of data – SIGMOD’12. ACM, New York, pp 593–596

20. Freire J, Fuhr N, Rauber A (2016) Reproducibility of data-oriented experiments in e-Science
(Dagstuhl Seminar 16041). Dagstuhl Rep 6(1):108–159

21. Gavish M, Donoho D (2011) A universal identifier for computational results. In: International
conference on computational science, vol 4, pp 637–647

22. Gillam L, Antonopoulos N (2010) Cloud computing: principles, systems and applications.
Springer, London

23. Goble C (2012) The reality of reproducibility in computational science: reproduce? repeat?
rerun? and does it matter. Keynotes and panels. In: 8th IEEE international conference on e-
Science, vol 327, pp 415–416

24. Gray J (2009) Jim Gray on eScience: a transformed scientific method. In: Hey T, Tansley
S, Tolle K (ed) The fourth paradigm data-intensive scientific discovery. Microsoft Research,
Redmond

25. Goble CA (2013) Results may vary: reproducibility, open science and all that Jazz.
LISC@ISWC 2013:1

26. Greenberg J (2002) Metadata and the world wide web. Encycl Libr Inf Sci 72:244–261
27. Guo P (2012) CDE: a tool for creating portable experimental software packages. Comput Sci

Eng 14:32–35
28. Guo PJ, Engler D (2011) CDE: using system call interposition to automatically create portable

software packages. In: Proceedings of the 2011 USENIX conference on USENIX annual
technical conference, USENIXATC’11, pp 21–21

29. Guo PJ, Seltzer M (2012) BURRITO: wrapping your lab notebook in computational infras-
tructure. In: Proceedings of 4th USENIX workshop on the theory and practice of provenance
(TaPP’12)

30. Hanson B, Sugden A, Alberts B (2011) Making data maximally available. Science 331:649
31. Hiden H, Woodman S, Watson P, Cala J (2013) Developing cloud applications using the e-

science central platform. R Soc Lond Philos Trans A Math Phys Eng Sci
32. Hinsen K (2011) A data and code model for reproducible research and executable. Proc

Comput Sci 4:579–588
33. Howe B (2012) Virtual appliances, cloud computing, and reproducible research. Comput Sci

Eng 14:36–41
34. Juve G et al (2013) Comparing futuregrid, Amazon EC2, and open science grid for scientific

workflows. Comput Sci Eng 15:20–29
35. Karpathiotakis M, Branco M, Alagiannis I, Ailamaki (2014) A adaptive query processing on

RAW data. Proc VLDB Endow 7:1119–1130
36. Klinginsmith J, Mahoui M, Wu YM (2011) Towards reproducible escience in the cloud. In:

IEEE third international conference on cloud computing technology and science (CloudCom).
pp 582–586

37. Koop D, Santos E, Mates P et al. (2011) Provenance-based infrastructure to support the life
cycle of executable papers. Procedia Computer Science 4:648–657

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 151

38. Krishnamurthi S, Vitek J (2015) The real software crisis: repeatability as a core value.
Communications da ACM 58:34–36

39. Macko P, Chiarini M, Seltzer M (2011) Collecting provenance via the Xen hypervisor. In:
Proceedings of 3rd USENIX workshop on the theory and practice of provenance (TaPP ’11),
pp 1–15

40. Marinho A, Murta L, Werner C, Braganholo V, da Cruz SMS, Ogasawara ES, Mattoso M
(2012) ProvManager: a provenance management system for scientific workflows. Concurr
Comput Pract Exp 24(13):1513–1530

41. Mcnutt M (2014) Journals unite for reproducibility. Science 346:679
42. Missier P, Woodman S et al (2013) Provenance and data differencing for workflow repro-

ducibility analysis. Concurr Comput Pract Exp 28:995–1015
43. Moreau L, Groth P (2013) Provenance: an introduction to PROV. Synthesis lectures on the

semantic web: theory and technology. Morgan & Claypool, San Rafael
44. Nowakowski P, Ciepiela E, Harezlak D et al (2011) The collage authoring environment. In:

Executable paper grand challenge international conference on computational science, ICCS
2011, vol 4, pp 608–617

45. Oliveira D, Ogasawara E, Baião F, Mattoso M (2010) SciCumulus: a lightweigh cloud
middleware to explore many task computing paradigm in scientific workflows. In: IEEE 3rd
international conference on cloud computing

46. Paskin N (2010) Digital Object Identifier (DOI) system. In: Bates MJ, Maack MN (eds)
Encyclopedia of library and information sciences, 3rd edn, chap. 157. Taylor & Francis,
pp 1586–1592

47. Peng R (2009) Reproducible research and biostatistic. Biostatistics 3:405–408
48. Pieter Van Gorp SM (2011) SHARE: a web portal for creating and sharing executable research

papers. Int Conf Comput Sci 4:1–9
49. Schwab M, Karrenbach M, Claerbout J (2000) Making scientific computations reproducible.

Comput Sci Eng 2:61–67
50. Simmhan YL, Plale B, Gannon D (2005) A survey of data provenance in e-Science. SIGMOD

Rec 34:31–36
51. Simmhan Y, Ramakrishnan L, Antoniu G, Goble CA (2016) Cloud computing for data-driven

science and engineering. Concur Comput Pract Exp 28(4):947–949
52. Stodden V (2009) The legal framework for reproducible scientific research: licensing and

copyright. Comput Sci Eng 11:35–40
53. Stodden V, Bailey DH, Borwein J et al (2013) Setting the default to reproducible: repro-

ducibility in computational and experimental mathematics. Technical report, ICERM workshop
reproducibility in computational and experimental mathematics

54. Strijkers R, Cushin R, Vasyunin D (2011) Toward executable scientific publications. Proc
Comput Sci 4:707–715

55. Szalay AS, Blakeley JA (2009) Gray’s laws: database-centric computing in science. In: Hey T,
Tansley S, Tolle KM (ed) The fourth paradigm. Microsoft research, Redmond, pp 5–11

56. Taylor I, Deelman E, Gannon DB et al (2006) Workfows for e-Science: scientific workfows for
grids. Springer, New York/Secaucus

57. Vitek J, Kalibera T (2012) R3: repeatability, reproducibility and rigor. SIGPLAN 47:30–36
58. Yogesh L. Simmhan, Beth Plale, Gannon D (2008) Karma2: provenance management for data-

driven workflows. Int J Web Serv Res 5(2):1–22

Chapter 6
Big Data Analytics in Healthcare:
A Cloud-Based Framework for Generating
Insights

Ashiq Anjum, Sanna Aizad, Bilal Arshad, Moeez Subhani,
Dominic Davies-Tagg, Tariq Abdullah, and Nikolaos Antonopoulos

6.1 Introduction

With exabytes of data being generated from genome sequencing, a whole new
science behind genomics big data has emerged. Adding to that, the recent advances
in storage and processing technologies have enabled the generation, storage,
retrieval, and processing of exabytes of genomics and healthcare data in electronic
form. As technology improves, the cost of sequencing a human genome is going
down considerably, and, in turn has increased the number of genomes being
sequenced. Handling huge amounts of genomics data along with a vast variety of
clinical data using existing frameworks and techniques has become a challenge.

There is a wide interest in genomics data because it can allow meaningful insights
to be generated. These insights could range from a variety of things including
genomics research as well as more practical uses such as personalized medicine
for a particular genome. Genomics is producing data sizes of 2–40 EB/year [43]
which is stored in local databases or in cloud storage. Cloud computing is used
for storage, distribution, and processing of this data so that applications can run on
remote machines that already have access to data ([43]).

A data platform that integrates genomics/healthcare data while enabling quick
and efficient analysis would allow extraction of practical insights in a short frame
of time. Developing such a platform poses a number of challenges on its own.

A. Anjum (�) • S. Aizad • B. Arshad • M. Subhani • D. Davies-Tagg • T. Abdullah
N. Antonopoulos
College of Engineering and Technology, University of Derby, Kedleston Road, DE22 1GB,
Derby, UK
e-mail: A.Anjum@derby.ac.uk; S.Aizad@derby.ac.uk; B.Arshad@derby.ac.uk;
M.Subhani@derby.ac.uk; D.Davies-Tagg@derby.ac.uk; T.Abdullah@derby.ac.uk;
N.Antonopoulos@derby.ac.uk

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_6

153

mailto:A.Anjum@derby.ac.uk
mailto:S.Aizad@derby.ac.uk
mailto:B.Arshad@derby.ac.uk
mailto:M.Subhani@derby.ac.uk
mailto:D.Davies-Tagg@derby.ac.uk
mailto:T.Abdullah@derby.ac.uk
mailto:N.Antonopoulos@derby.ac.uk

154 A. Anjum et al.

These challenges relate to integrating genomics and clinical data sources, ensuring
consistency of the integrated data, and developing a big data platform that stores and
manages the integrated data. An overview of these challenges and a brief description
of the proposed framework are provided in the remainder of this section.

With respect to integration of big data, it is imperative to maintain the consistency
of data between the data sources and the data warehouse. Since the data is in the
magnitude of exabytes, the issue converges to big data analytics. Infrastructures such
as that provided over cloud are required to ensure that the consistency is maintained
between the data sources and the warehouse. In a clinical information management
environment, data consists of heterogeneous data sources with multitude of data
types at distributed locations. Clinicians and scientists generate data which is
individually captured at disparate locations and brought together to a warehouse
for reporting, decision support, and data analysis. This data needs to be correctly
integrated in order to ensure the consistency and coherence of the system at
large. Any inconsistency may result in breaking the data warehouse, which in turn
would affect the reports being generated (examples include quarterly comparisons
and trends to daily data analysis) and biostatistical analysis among other things.
Therefore, there is a need for structured migration and integration of data between
the sources and the data warehouse to ensure that the integrity of the warehouse
can be maintained. In such an environment, coherence and consistency of data
is imperative in order to protect the integrity of the warehouse. Since the data
from heterogeneous sources is in exabytes, it is essential to provide a scalable
environment for clinical analytics. A possible solution is the provision of a scalable
environment for clinical data integration and system integrity based on graphs.
The infrastructure provided for such an environment needs to take the frequent
use of data into account. Large-scale graph processing systems such as Giraph [7]
and GraphLab [25] provide support for data consistency by providing configurable
consistency models.

The infrastructure of the system should be such that it should allow frequently
used data to be quickly retrieved when required, whereas the data which is not
in much use should be allowed to reside in the system. Technologies such as
Hadoop make storing a large scale of data trivial, but Hadoop by itself is often
not an ideal platform for working with data and performing the levels of complex
analysis and interactive querying often afforded to data warehouses [10, 42]. Thus,
in order to store huge amounts of data in a cost-effective and time-efficient manner
and deliver a high standard of analytics performance, Hadoop’s scalability may be
used to accommodate storing data. On the other hand, there is a need to maintain
existing scale-up data warehouses and analytics environments to provide the fast
and efficient analysis people expect. But using both technologies can only work if
we move data between environments when required.

Generating insights from the integrated data is only possible after developing
suitable infrastructure for storing and retrieving the data. Analyzing this data is
a user-driven and iterative nontrivial task. In a lot of cases, the data needs to be
revisited several times in order to get the required insights. Different challenges and
their solutions are discussed.

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 155

This chapter proposes a cloud-based framework for integrating genomics/health-
care data in a big data platform which would enable users to generate meaningful
insights in their domain. The platform provides a solution to the challenges
discussed above. The rest of the chapter is organized as follows: Section 6.2
introduces genomics and clinical data sets. Section 6.3 explains the integration
of these data sets. An approach for maintaining data consistency during and after
the integration is explained in Sect. 6.4. The infrastructure for storing the data is
explained in Sect. 6.5, whereas Sect. 6.6 explains the data analytics approaches for
generating insights from the data, and Sect. 6.7 concludes the chapter.

6.2 Genomics and Clinical Data

The cloud-based data analytics platform focuses on integrating the genomics and
clinical data sets and on generating insights from the integrated data. It is important
to understand these data sets before introducing the cloud-based data analytics
platform.

6.2.1 Genomics Data

The genetic makeup of an organism is responsible for coding its different char-
acteristics. A complete set of genetic information is contained in the genome,
which consist of genes. The genes are a sequence of four different molecules
known as nucleotide bases: adenine (A), guanine (G), thymine (T), and cytosine
(C). Different combinations and frequency of these nucleotides generate a huge
variety of genes within a genome. Understanding the constitution of these genes
was a mystery until development of sequencing methods. The 1970s and 1980s
saw manual DNA sequencing methods such as Maxam-Gilbert sequencing [28]
and Sanger sequencing [39]. Automated sequencing methods such as shotgun
sequencing were introduced in the 1990s. Over the next decade, scientists were
able to sequence unicellular and multicellular organisms using these methods. It
wasn’t until 2001 that the human genome was completely sequenced. By 2005,
next-generation sequence (NGS) technologies [30] were introduced.

Before sequencing, other techniques such as genome-wide association studies
between thousands of individuals were used because genome sequencing was an
unthinkable thing to do. However, as technologies advanced, the sequencing market
has become very competitive in recent years. Many platforms, such as Illumina [1],
454 Life Sciences [2], and Complete Genomics [3], to name a few, are available
commercially for research and clinical use.

Sequencing is now the first step for research investigating the genome at the basic
level. Genome sequencing technology takes a sample of the genetic material in a test

156 A. Anjum et al.

Fig. 6.1 Cost per raw megabase of DNA sequence and genome over the years. Published
by National Human Genome Research Institute (NHGRI) (National Human Genome Research
Institute [31])

tube and converts it to a string of As, Gs, Ts, and Cs representing the genome and
stores it as a text file. A human genome consists of three billion bases. The size of a
text file containing these is, on average, 6 � 109 bits.

As the cost of sequencing is decreasing (Fig. 6.1.), more and more genomics data
is becoming readily available sparking several initiatives such as 1000 Genomes
Project (1000 Genomes Project Consortium [4]) and the 100,000 Genome Project
[11]. One of the aims of initiatives like these is to discover medical insights
especially for more serious diseases such as cancer.

6.2.2 Clinical Data

Clinical data sets are generated during the course of ongoing patient care or as part
of a clinical trial program. Major sources include electronic health records, claims
data, disease registries, health surveys, clinical trials data, and administrative data.
These are a vital source for health and medical research.

6.3 Data Integration

Data integration is the first challenge while developing a cloud-based data analytics
platform. The data sources in clinical research domain are diversified, such as health
records, clinical trials, disease records, etc. On the other hand, the genomics data sets
are generally very data intensive such as genome sequences, variants, annotations
and gene expressions data sets, etc. Due to the massive size of genomics data sets,
the problem of integration enters into the domain of big data problems. Integrating

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 157

these data intensive genomics sources with a set of diversified clinical sources is a
considerable challenge that chiefly implies building storage capable of containing
heterogeneous data types.

The clinical data ranges from patients’ health records, diagnostic test results
including laboratory reports and imaging scans, disease history, to hospital adminis-
tration, and finance data. These data sets are captured in different repositories, such
as health records maintained by each hospital or clinical trials conducted by state
or different pharma or nonprofit organizations. The clinical data sets within these
repositories are comprised of a large variety of parameters within a single study, and
then there are further variations among parameters across different studies, as per the
requirement of underlined research. Integrating this large variety of parameters of
various data types across multiple studies is a challenging problem in itself because
the integrated clinical data should have an intuitional output.

The next challenge is to integrate these parameters with genomics data sets.
Traditionally, the information about genomics is not captured in the clinical data
sets. Therefore, the genomics data is only available from separate genomics sources,
mainly the repositories such as NCBI, Ensembl, or 1000 Genomes Project [4].
These data types are, therefore, different from those of clinical data sets. Hence,
in order to integrate them with clinical data sets, the challenge is to make the data
types compatible with each other so that they can be consolidated within a single
warehouse.

Combining data sets from different clinical sources with genomics data can help
understanding a clinical problem at a deeper level by empowering it with genomics
background information. This big data integration may help to delve into genetic
background of clinical problems, which will ultimately aid various users of these
data sets. The major benefit, that can be foreseen from clinical and genomics data
integration, will be to design personalized treatments for patients. Pharmacoge-
nomics industry can also gain the advantage to provide more personalized solutions
to healthcare, such as designing drugs with improved efficacy. Researchers from
both clinical and genomics domains can also use the integrated data to discover
the insights of complicated biological problems, such as finding new biomarkers.
Hence, it can be estimated that data integration could help every academic or
industrial institution related to these dimensions of medical science.

There exist some clinical data integration solutions, such as those provided by
SAS [40], Edifecs [13], Lumeris [26], etc., but they are only focused on data
management and administration purposes and are not targeted for clinical research.
These solutions target combining various clinical data sets from different sources
and providing them from a single platform. However, there are no solutions for
clinical and genomics data integration available hitherto. Due to the absence of any
data model that can accommodate both clinical and genomics data sets, there is a
need to design and construct such a data model which provides a single platform
access to both domains.

In the last decade, increasing trend has been observed in this direction of
research. Researchers have studied and proposed various integration models for

158 A. Anjum et al.

integrating multi-omics data. The two most common approaches that can be found
in literature are multistage analysis and meta-dimensional analysis.

Multistage analysis is a stepwise or hierarchical analysis method. It helps
to reduce search space by stage-wise analysis [35]. It essentially analyzes and
integrates only two data types at a time while analyzing across the data space.
Triangle method is the most common method under this approach which has been
widely used for association studies. This method is more commonly used for
SNP (single nucleotide polymorphism) associations with expression data and genes
themselves [21, 35]. Some clinical phenotypes can be a result of interaction between
different genes and multiple clinical parameters. Due to step-wise analysis, this
approach cannot capture those phenotypes which are determined by factors acting
from various sources. It is a robust and rather simple approach; however, it is not
recommended when multiple different sources are required to be integrated [16, 35].

Meta-dimensional studies involve simultaneous analysis of all the data sources to
produce complex models [35]. There are various methods under this approach, each
of which is based on a different data model. The approach can be selected according
to the underlining research goals. Either the multiple data sets are integrated prior
to building a common model on them, or an individual model is built on each data
set before integrating them as illustrated in Fig. 6.2. Bayesian networks and neural
networks have been more commonly observed in the integration-based research [8,
14]. Meta-dimensional approach facilitates the capability to search across various
data types among multiple data sets. This vast search capability aids to detect
those phenotypic traits which are caused by mutual interaction of multiple factors
from different clinical and genomics sources. Although this integration using meta-

SNP data

Combining raw
data

Building a data
model on each
source data

Integrating the individual
models to create a single
model

Creating an
integration model

Gene Expression data Clinical trials-data

Fig. 6.2 An illustration of meta-dimensional approach

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 159

dimensional approach leads to rather complex and less robust models, it helps to
search across a wider spectrum of data types [16, 35].

Due to the huge size of genomics data sets, and large variability of clinical
parameters, it is not viable to integrate all parameters. Only those parameters should
be integrated which may provide deeper intuition after integration. Most researchers
have identified gene expression data and SNP data sets to be most relevant to
integrate with the clinical data. Since determining the gene expression of SNPs can
help to find out ultimate effects of a gene on a phenotype, therefore, these parameters
have been widely seen to be integrated with clinical data in research [21, 24, 32, 35].
For future prospects, the research can be further extended to incorporate additional
genomics parameters for integration, such as annotations data.

A promising solution to integrate the clinical and genomics data will be to
design a relational data model based on meta-dimensional approach and implement
it within a data warehouse. Since meta-dimensional approach provides a wider
search spectrum, therefore, this approach seems more promising to be implemented
for clinical and genomics data integration where a wide variety of parameters
and large data sets are required to be integrated. Out of various meta-dimensional
approaches, graph-based models seem more promising such as Bayesian networks
[14, 18]. A probabilistic schema can be designed to implement on this data
model. Some previous work shows that star-based schema can be designed for
biomedical data [38, 46]. These schema designs can be adopted and modified to
meet the requirements of the data sets and data warehouse under consideration. The
performance and scalability of the integration model will be a critical factor to be
controlled in this case. If the model is not capable of scaling to larger data sets, or it
fails to provide same performance with larger data sets, then such a model will not
be sustainable for a futuristic model.

6.4 Data Consistency

Ensuring consistency of integrated data is a crucial part of the big data analytics
platform. Data coming from heterogeneous sources requires to be effectively
integrated to ensure the coherence of the source data and the warehouse [38]. A
change in one of the data sources not only affects the data in that data source but also
affects the interrelationships between the multiple data sources. As the structure of
the data warehouse is defined based on the structure of the individual data sources
and based on the interrelationships between the sources, a single change has the
potential to significantly impact the warehouse. More importantly, the data in the
warehouse may not be consistent with the data in the data sources when a change
occurs in the data source. This in turn means that the inconsistent changes might
result in breaking the data warehouse. Evolution of clinical data results is one
such example of inconsistent source change that needs to be reflected in the data
warehouse. Since the data from these sources is of the magnitude of petabytes, the

160 A. Anjum et al.

challenge of data consistency emerges as a part of the big data domain. Furthermore
in context of big data applications, it is imperative to maintain data consistency
across the entire spectrum of application to ensure correct results and traceability of
individual elements in the system.

One of the prime issues in an evolving data warehouse environment is the
dynamic nature of sources. The evolving nature of sources can lead to breaking the
data warehouse which is a major issue in maintaining data consistency. Inconsistent
changes can lead to generation of inaccurate reports such as those based on
personalized patient analysis further leading to incorrect diagnosis. In order to
prevent the system from breaking due to inconsistent changes, this endeavor aims
to explain a possible solution to ensure consistency between the heterogeneous data
sources and the clinical data warehouse. As explained in the previous section, once
the data has been integrated, consistency mechanisms need to ensure that the sources
and data warehouse are consistent and reflects the evolving data from clinical data
sources.

In order to prevent the breaking of data warehouse from the evolving changes in
the data sources, a possible solution is the use of graphs to ensure the coherence and
consistency of data between the sources and the warehouse. Graphs can scale well
to represent millions of entities in a clinical domain [36] thus allowing to ensure
the scalability of the system. This is of particular interest in the domain of clinical
data since integrating data from disparate sources will be of a much higher mag-
nitude compared to the data coming from sources. Graphs are governed by graph
models that allow a flexible and uniform representation of data originating from
heterogeneous sources. This study aims to investigate suitable graph data models
for accurate representation of data both at the source and data warehouse level.
Furthermore, graph models provide the ability to predict functional relationships
between heterogeneous data sources in order to ensure the correctness of source
data with respect to the data warehouse. Thus, the need for a scalable environment
for clinical analytics arises to ensure the integrity of a data warehouse without
compromising the integrity of the clinical data warehouse. Existing state-of-the-art
graph analytical systems do not fully encompass the needs for such a system.

In conjunction with source data, another key component in a data warehouse
environment is metadata [17]. Metadata describes the context in which the data
was collected and hence means to query the sources. Since the data comes from
distributed sources, a lot of research deals with capturing metadata at the source
level. Any change occurring at the source needs to be reflected in the metadata
repository by updating it, leading to generation of new metadata. Both the updated
and prior metadata are essential to aid in the replication and integration of sources.
For the purpose of our research work, we will be looking at the metadata repository
known as Semantics Manager [5] by Akana. Semantics Manager enables enterprises
to define, understand, use, and exchange data by managing standards and metadata
as organizational assets.

Several approaches have been investigated for clinical data integration that help
to ensure data consistency such as integration engines [19, 45] or ontology-based

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 161

data integration [20]. Integration engines provide a useful way of solving the
basic communication problems between systems, but they do nothing to address
true integration of information particularly in the context of data consistency
[19, 45]. This approach works well and has been effective, but when the number
of possible interactions between systems increases, the limitations of scalability
become apparent. The use of graph-based integration of data being generated from
multiple data sources is a viable option to address this issue [36].

Graphs [34, 36] are particularly useful for the description and analysis of
interactions and relationships in a clinical domain. Graphs provide useful features
such as analytical flexibility, in particular to evaluate relationships, integration
of data, and comparison of results, to name a few. Graphs are currently being
used to analyze social networks, knowledge bases, biological networks and protein
synthesis, etc. [36]. A graph consists of a set of nodes and a set of edges that connect
the nodes. The nodes are the entities of interest, and the edges represent relationships
between the entities. Edges can be assigned weights, directions, and types. This is
particularly useful in a clinical domain, the directions in edges help to represent
causality between nodes, while the edges themselves can be annotated to represent
the relationship between entities.

In order to ensure that the changes have been integrated consistently, source
graphs need to be correctly replicated. This leads to the need to investigate and
implement models that allow quick generation, integration, and replication of graphs
so that the source data can be quickly and effectively integrated. Furthermore, in
order to replicate and integrate graphs, powerful graph models such as the property
graph model [6], Bayesian networks [33], or Markov models [33] are required.
These graph models allow efficient inference of clinical data [33] essential to
determine relationships between disparate clinical data sources. Graph models can
be divided into two classes: undirected and directed graph models. Markov models
[33] are an example of undirected graph model, while property graph model is an
example of directed graph model. Bayesian networks can accommodate a variety
of knowledge sources and data types; they are computationally expensive and
difficult to explore previously unknown network. Bayesian networks do not have
feedback loops due to the acyclic nature of Bayesian network graphs. In contrast
to Bayesian networks, property graph model [6] represents data as a directed
multigraph consisting of finite (and mutable) set of nodes and edges. Both vertices
and edges can have assigned properties (attributes) which can be understood as
simple name-value pairs, shown in Fig. 6.3. A dedicated property can serve as a
unique identifier for vertices and edges. In addition to this, a type property can
be used to represent the semantic type of the respective vertex or edge. Properties
of vertices and edges are not necessarily determined by the assigned type and can
therefore vary between vertices or edges of the same type. Vertices can be connected
via different edges as long as they have different types or identifiers. The Property
graph model [6] not only offers schema flexibility but also permits managing and
processing data and metadata jointly. Graphs are generated by the graph engine
based on the graph models.

162 A. Anjum et al.

Fig. 6.3 Property graph
model (Property Graph
Model [6])

A Graph

Nodes Relationships

Properties

have have

organize

records records

The property graph model provides the following key characteristics that differ
from the classical relational data model:

• Relationships as first-class citizens – With the property graph model, relation-
ships between entities are promoted as first-class citizens of the model with
unique identity, semantic type, and possibly additional attributes.

• Increased schema flexibility – In a property graph model, edges are specified at
the instance and not at the class level, i.e., they relate two specific vertices, and
vertices of the same semantic types can be related via different edges.

• No strict separation between data and metadata – Vertices and edges in a graph
can have assigned semantic types to indicate their intended meaning. These types
can be naturally represented as a tree (taxonomy) or graph themselves. This
allows their retrieval and processing as either type definitions, i.e., metadata or
(possibly in combination with other vertices) as data.

In order to process large graphs such as those generated in clinical domain,
there is a need for systems that can scale well over hundreds and thousands of
nodes and edges at a single point in time. To ensure that this requirement can be
achieved, several large-scale graph processing systems have been designed such as
Apache Giraph [7], GraphLab [25], and Pregel [27]. Apache Giraph is an iterative
graph processing framework, built on top of Apache Hadoop [9]. The input to a
Giraph computation is a graph composed of vertices and directed edges. GraphLab
is a graph-based, high-performance, distributed framework written in CCC. The
GraphLab framework is a parallel programming abstraction targeted for sparse
iterative graph algorithms. It provides a high-level programming interface, allowing
a rapid deployment of distributed machine learning algorithms. Pregel is Google’s
scalable and fault tolerant API that is sufficiently flexible to express arbitrary graph

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 163

Fig. 6.4 Proposed solution architecture to maintain data consistency in a big data environment

algorithms. Giraph is a suitable choice for applications where scalability is essential
[7]; in contrast to that, GraphLab is effective in applications where processing time
is critical [25]. In order for the system to scale well, these systems can be deployed
over cloud to ensure the scalability of the system at large.

A proposed solution (Fig. 6.4) is a graph-based system that ensures coherent
integration of data from heterogeneous clinical data sources for consistency and
scalable analytics. In order to ensure consistency in the disparate clinical data
sources and data warehouse, graphs can be used based on the property graph model.
In order to accommodate the overarching requirement of the amount of data, large-
scale graph processing engines such as Giraph [7] can be used since it is based
on the property graph model. The proposed system can be designed based on
the gather-apply-scatter (GAS) programming paradigm [25]. This will allow an
incremental graph problem to be reduced to a subproblem that operates on a portion,
or subgraph, of the entire evolving graph. This subgraph abstraction will aim for
the solution to substantially outperform the traditional static processing techniques.
There are multiple heterogeneous clinical data sources with varying data (clinical
trials data, genomics data, EHR data, etc.). The proposed solution shall incorporate
a metadata repository that ingests the metadata from the disparate clinical data
sources in order to ensure the correctness of the data once it resides in the clinical
data warehouse. The wrapper ingests the clinical source data and passes it on to the
graph processing engine that will generate a graph and then allows it to push into
the clinical data warehouse. If the source data changes/evolves, e.g., over the course
of the clinical trial, metadata repository detects the change and automatically alerts
the data warehouse to update the graph in it, the changes are then made to the subset

164 A. Anjum et al.

of the graph where the source has evolved so the overhead of generating new graph
every time a changes occurs is omitted, reducing the computational workload on the
graph engine.

Data coming from heterogeneous sources requires to be effectively integrated
to ensure the coherence of the source data and the warehouse. Compared to
traditional approaches for data integration, graphs promise significant benefits. First,
a graph- like representation provides a natural and intuitive format for the underlying
data, which leads to simpler application designs. Second, graphs are a promising
basis for data integration as they allow a flexible and uniform representation of
data, metadata, instance objects, and relationships. Graphs are well suited for data
integration since they can model highly interconnected entities where other NoSQL
alternatives and relational databases fall short. Graphs can scale well over millions
of nodes hence are suitable for integration of data for clinical data. Metadata works
as a governance framework in such an environment.

6.5 Data Infrastructure

Data integrated from diverse genomics and clinical sources requires a cloud-based
platform for storage and retrieval. We explain the infrastructure for data storage,
retrieval, and data movement on an on-demand basis.

When planning a multi-storage data warehouse environment, the data needs to
be understood and evaluated to determine whether a specific data set needs storing
within a high-performance legacy warehouse or on a commodity Hadoop cluster. A
method to accomplish this is through assigning data with a “Data Temperature.”

“Hot” represents the in-demand and mission critical data in direct need for quick
decision making, through to “Frozen” data which is accessed very infrequently and
often is represented as archived. In between these two extremes are “Warm” data
which is commonly used but does not have a huge amount of urgency, and “Cold”
data which is infrequently accessed [44].

The assigned temperature of data is used to determine its storage location.
The frequently accessed “Hot” data is stored within fast storage such as high-
performance main-memory systems (scale-up), and the infrequently accessed
“Cold” is stored on the large amount of cheap commodity storage such as Hadoop
(scale-out) [22].

To make informed decisions about the data and where it should be moved, it is
vital to identify what data is hot, and what is cold. Factors that are commonly used to
establish data temperature are the frequency of access and age, so the more frequent
the access and the more recent the data then the hotter the data ranked. These factors
can be used separately or collectively (Fig. 6.5).

In evaluating the data, certain workloads and data tasks may be identified that
would be more suitable for batch-type work upon cold Hadoop storage. Usage and
age are common factors for data temperature, but it is also important to consider

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 165

Fig. 6.5 Data temperatures
with age of data

data that could have a priority based upon a specific task or alternatively based
around a specific group of user requirements for the data, so it is important to
consider business operations and other influencing factors when establishing a data
temperature. Another example of this could be a set of data that remains unused for
long periods of time but becomes incredibly important at a single point of the year,
the age and usage values would not be able to account for this but incorporating
business logic or machine-learned knowledge would.

Read and write operations are expensive, and are best avoided [23], but with
“Hot” storage being in short supply and high demand, it is inevitable that data
will be moving in and out (read and write) of this storage layer frequently. When
planning to implement a multi-temperature storage environment, it is vital to plan
how frequently and at what scale data will move. If it was based purely on the
temperature, then you could potentially have data moving in and out of the hotter
storage tiers constantly through the day which would be a considerable drain on
resources and considerably impact system performance [12] (Fig. 6.6).

To prevent such a problem, movement operations to rebalance the temperature
need to be scheduled at opportune times but also need to be relatively frequent to
ensure the benefits of a multi-temperature system are maintained and so that you are
not moving huge amounts of data at one time.

6.6 Data Analysis

The main aim of data analytics is to provide quick healthcare. The available
genomics data and the new data that is being generated on almost a daily basis needs
to be explored in a meaningful way. As a result, new insights, such as different
relationships between disease and genome, may be identified. Furthermore, this
could be a significant step toward personalized medicine based on an individual’s
genome. This is a very difficult challenge given the size of genomics data. Add to

166 A. Anjum et al.

Fig. 6.6 Multitiered data
storage

it the integrated clinical data and the complexity of the problem increases several
folds. There are many challenges along the way starting with finding an effective
way of storage and retrieval of this huge amount of data. Once the data can be
accessed quickly, insights could be found by generating useful data models.

The existing frameworks and platforms carry out genomics data analysis using
SQL, NoSQL, and high throughput approaches. For example, [37]) look at genome
data-management by storing the data files and importing data into a relational
database system for analysis using SQL. Another platform called Genome Analysis
Toolkit integrates data access patterns with MapReduce to allow analysis [29]. The
HIG platform makes use of in-memory technology and distributed computing to
increase the speed of processing by intelligent scheduling [41]. The SQL approaches
are not appropriate for scalable analytics. NoSQL approaches are not optimized
in reading data. MapReduce approaches are scalable but do not support iterative
analytics. Most of the time, data integration as well as storage is not taken into
account.

One way to address the scale of data and latency of accessing integrated genomics
data is to introduce an in-memory Warehouse. The genomics data can be analyzed
on its own as well as in combination with clinical data. Genomics data can be pushed
into the warehouse, but in order to store it efficiently, state-of-the-art approaches
such as tiling may be used [15]. The tiling approach breaks down the genomics
data into short overlapping segments called “tiles” and adds unique tags before and
after each tile, along with a hash table of variants and its position in the genome.
These tiles are then stored in a library. Gene variants are stored as a new tile in the
library at the same position in the genome as the reference genome. The genome is

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 167

represented by a file containing pointers to the tiles in the library, thus reducing the
size of the genome file from around 200GB to a few kilobytes (KB). Tiling could
be integrated with the warehouse so that genomics data is efficiently stored in the
warehouse in parallel to clinical data.

For analysis, the stored data should be quickly retrievable by addressing the
computational cost associated with genome data browsing. Traditional methods for
searching genome databases compare a sequence from a query to all the sequences
(i.e., several GBs of data) present within the database being searched, with thou-
sands of queries being processed a day. This method is, however, computationally
expensive. With exabytes of genomics data, this creates a limitation to query and
browse data quickly. To address this, approaches which will allow genomics data to
be browsed within the least possible time should be explored. The current warehouse
architecture is not scalable, but it can browse finite amount of data very quickly.
Efficient memory and storage management models and innovative algorithms for
processing large amounts of data should be investigated to offer high-speed iterative
analytics.

Analytics on genome data predicts disease risks, drug efficacy, and other
outcomes. This requires integration of data from external sources. Several iterations
of the data should sift through the data. To allow for fast and intelligent processing
of data using the approaches such as machine learning, the stored genomics data
could be represented as machine readable graphs (Fig. 6.7). Different graph models
should be investigated, and a suitable one, which could support high-performance
iterative analysis, should be selected. Previously, genome data has been represented
as graphs [35]. This could be extended to exploit the graph model for newer ways of
processing genomics data that is structured into the tiling approach. Using a graph
model will overcome the problem of processing the data iteratively because a graph-
like representation will offer opportunities to rapidly generate and compute graphs
using emerging hardware architectures and computing platforms.

The information associated with a genome and its variants will be linked within
the graph model. Graphs will ensure that the genomics data they are representing
is functionally correct, and results being produced are consistent with stored data.
Using a graph model will also ensure the correctness of the analytics being
performed on the data because of their capabilities to be mathematically and

Genome Data Genome data
represented as
graphs

Correlations
between
nodes found

Graph partitioning to
derive information
quickly

Fig. 6.7 Genomics data represented as graphs. Correlations are found between nodes, and useful
information is extracted using algorithms such as graph partitioning

168 A. Anjum et al.

statistically verified. Hundreds of associations between genes and variants could
be deduced by linking the nodes in the graph model (Fig. 6.7). However, not all
the correlations deduced within the data sets would be of importance in different
analytical studies of the genome. In order to extract the required information
only, approaches and algorithms such as graph partitioning should be investigated
(Fig. 6.7). In this way a few meaningful correlations from hundreds of associations
could be extracted using several iterations.

Hosting the warehouse in a cloud environment will provide the infrastructure for
scalable analytics. As the warehouse is based on distributed, in-memory architecture
hosted on a cloud environment, both performance and scalability will be addressed
in the resulting infrastructure.

6.7 Conclusions

In this chapter, we presented a cloud-based data analytics platform. It provides an
infrastructure for integrating diverse sources of genomics and clinical data. The
approaches for maintaining consistency of the integrated data are also explained.
It is ensured that data is in consistent state before and after integration. Analytics
approaches for generating insights from the integrated data are discussed toward the
end of the chapter.

References

1. (n.d.) (Illumina) Retrieved October 2016, from http://www.illumina.com/
2. (n.d.) (454 Life Sciences) Retrieved October 2016, from http://www.454.com/
3. (n.d.) (Complete Genomics) Retrieved October 2016, from http://www.

completegenomics.com/
4. 1000 Genomes Project Consortium (2010) A map of human genome variation from population-

scale sequencing. Nature 467(7319):1061–1073
5. (2016, August) Retrieved from Akana: https://www.akana.com/products/semantics-manager
6. (2016, 09 01) Retrieved from Property Graph Model: https://github.com/tinkerpop/blueprints/

wiki/Property-Graph-Model
7. (2016, September) Retrieved from Giraph: http://giraph.apache.org/
8. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, : : : , Pe’er D (2010)

An integrated approach to uncover drivers of cancer. Cell 1005–1017
9. Apache Hadoop Goes Realtime at Facebook (n.d.) Facebook

10. Borthakur D, Muthukkaruppan K, Ranganathan K, Rash S, Sarma JS, Spiegelberg N, : : : ,
Aiyer A (2011) Apache hadoop goes realtime at facebook proceedings of the 2011 ACM
SIGMOD international conference on management of data. ACM, Athen, Greece, pp 1071–
1080

11. Brierly C (2010) Press release for UK10K. Retrieved from http://www.wellcome.ac.uk/News/
Media-office/Press-releases/2010/WTX060061.htm

12. Crago SP, Yeung D (2016) Reducing data movement with approximate computing techniques.
2016 IEEE International Conference on Rebooting Computing (ICRC), IEEE, pp 1–4

http://www.illumina.com/
http://www.454.com/
http://www.completegenomics.com/
https://www.akana.com/products/semantics-manager
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
http://giraph.apache.org/
http://www.wellcome.ac.uk/News/Media-office/Press-releases/2010/WTX060061.htm

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 169

13. Edifecs CDI (n.d.) Retrieved from https://www.edifecs.com/downloads/Clinical_Data_
Integration_Solution_Brief_2015.pdf

14. Fridley BL, Lund S, Genkins GD, Wang L (2012) A Bayesian integrative genomic model for
pathway analysis of complex traits. Genet Epidemiol 36:352–359

15. Guthrie S, Connelly A, Amstutz P, Berrey AF, Cesar N, Chen J et al (2015) Tiling
the genome into consistently named subsequences enables precision medicine and
machine learning with millions of complex individual data-sets. PeerJ Preprints 3:e1780.
doi:10.7287/peerj.preprints.1426v1

16. Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CM, Beyene J (2009) Data integration in
genetics and genomics: methods and challenges. Human Genomics and Proteomics

17. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic
data capture (REDCap) – a metadata-driven methodology and workflow process for providing
translational research informatics support. J Biomed Inform 42:377–381

18. Holzinger ER, Ritchie MD (2012) Integrating heterogeneous high-throughput data
for meta-dimensional pharmacogenomics and disease-related studies. Pharmacogenomics
13(2):213–222. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350322/pdf/
nihms357046.pdf

19. Karasawas K, Baldock R, Burger A (2004) Bioinformatics integration and agent technology. J
Biomed Inform 37:205–219

20. Lapatas V, Stefanidakis M, Jimenez RC, Via A, Schneider MV (2015) Data integration in
biological research – an overview. J Biol Res – Thessaloniki 22:1–16

21. Lee E, Cho S, Kim K, Park T (2009) An integrated approach to infer causal associations among
gene expression, genotype variation, and disease. Genomics 94:269–277

22. Levandoski JJ, Larson P-A, Stoica R (2013) Identifying hot and cold data in main-memory
databases. In: Proceedings of the 2013 IEEE International Conference on Data Engineering
(ICDE 2013) IEEE Computer Society, Washington, DC, USA, pp 26–27

23. Lin H, Ma X, Chandramohan P, Geist A, Samatova N (2005) Efficient data access for parallel
BLAST. In: 19th IEEE international parallel and distributed processing symposium, IEEE, pp
72–82

24. Louie B, Mork P, Martin-Sanchez F, Halevy A, TarczyHornoch P (2005) Data integration and
genomic medicine. J Biomed Inform 40:5–16

25. Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin CE, Hellerstein J (2014) Graphlab: a new
framework for parallel machine learning arXiv preprint arXiv: 1408.2041

26. Lumeris CDI (n.d.) Retrieved from http://lumeris.com/wp-content/uploads/2014/05/Lumeris-
SOL.CDI_.05-14.v1.pdf

27. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010)
Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD
international conference on management of data, ACM, pp 135–146

28. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S
A 74(2):560–564

29. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010)
The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res 20:1297–1303

30. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46
31. National Human Genome Research Institute (2016) National Human Genome Research Insti-

tute. Retrieved from https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-
genome/

32. Nevins JR, Huang ES, Dressman H, Pittman J, Huang AT, West M (2003) Towards integrated
clinico-genomic models for personalized medicine: combining gene expression signatures and
clinical factors in breast cancer outcomes prediction. Human Mol Genet 12:R153–R157

33. Nielsen TD, Jensen FV (2009) Bayesian networks and decision graphs. Springer Science &
Business Media, New York

https://www.edifecs.com/downloads/Clinical_Data_Integration_Solution_Brief_2015.pdf
http://dx.doi.org/10.7287/peerj.preprints.1426v1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350322/pdf/nihms357046.pdf
http://lumeris.com/wp-content/uploads/2014/05/Lumeris-SOL.CDI_.05-14.v1.pdf
https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

170 A. Anjum et al.

34. Park Y, Shankar M, Park BH, Ghosh J (2014) Graph databases for large-scale healthcare
systems: a framework for efficient data management and data services. In: Data Engineering
Workshops (ICDEW), IEEE, pp 12–19

35. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data
to uncover genotype-phenotype interactions. Genetics 16:85–97

36. Rodriguez MA, Neubauer P (2010) Constructions from dots and lines. Bull Am Soc Inf Sci
Technol 36:35–41

37. Rohm U, Blakeley JA (2009) Data management for high-throughput genomics. Conference on
innovative data systems

38. Salem A, Ben-Abdallah H (2015) The design of valid multidimensional star schemas assisted
by repair solutions. Vietnam J Comput Sci 2:169–179

39. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase. J Mol Biol 94(3):441–448

40. SAS CDI (n.d.) Retrieved from [24] Louie B, Mork P, Martin-Sanchez F, Halevy A,
TarczyHornoch P (2005) Data integration and genomic medicine. J Biomed Inform 40:5–16

41. Schapranow M (2013) HIG – an in-memory database platform enabling real-time analyses of
genome data. In: IEEE international conference on big data, pp 691–696. doi:10.1109/Big-
Data.2013.6691638

42. Songting C (2010) Cheetah: a high performance, Custom data warehouse on top of MapReduce
Proc VLDB Endow, pp 1459–1468

43. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ et al (2015) Big data:
astronomical or genomical? PLoS Biol 13:e1002195

44. Subramanyam R (2015) HDFS heterogeneous storage resource management based on data
temperature. 2015 international conference on cloud and autonomic computing, ICCAC, pp
232–235

45. Sujasnsky W (2001) Heterogeneous database integration in biomedicine. J Biomed Inform
35:285–298

46. Wang L, Zhang A, Ramanathan M (2005) BioStar models of clinical and genomic data for
biomedical data warehouse design. Int J Bioinform Res Appl 1:63–80

http://dx.doi.org/10.1109/BigData.2013.6691638

Part III
Data Cloud

Chapter 7
High-Performance Graph Data Management
and Mining in Cloud Environments with X10

Miyuru Dayarathna and Toyotaro Suzumura

7.1 Introduction

X10 is a high-productivity, high-performance programming language aimed at
large-scale distributed and shared-memory parallel applications [18, 75]. It is a
strongly typed, garbage-collected, class-based, object-oriented language built on the
Asynchronous Partitioned Global Address Space (APGAS) programming model.
An X10 application runs over a collection of places which are possibly large and
possibly heterogeneous [6].

While there have been multiple different applications of X10 language, graph
processing implementations have been quite unique due to the inherent complexity
and scalability issues associated with implementing the graph algorithms. Graph
processing mainly has two flavors. First category is offline batch graph analytics.
Second category is online graph query processing. In this chapter we discuss the
implementation of both these types of applications with X10. We present how
ScaleGraph [29, 30] has been implemented with X10 to solve the issues of large
graph processing in HPC clusters. We present Acacia [28, 31] which is a distributed
graph database engine developed using X10 to handle the online graph query
processing. A significant challenge associated with implementation of online graph

M. Dayarathna (�)
WSO2, Inc., Mountain View, CA, USA

University of Moratuwa, Moratuwa, Sri Lanka
e-mail: miyurud@wso2.com

T. Suzumura
T.J. Watson Research Center, IBM, New York, NY, USA

Barcelona Supercomputing Center, Barcelona, Spain

University of Tokyo, Tokyo, Japan
e-mail: suzumura@acm.org

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_7

173

mailto:miyurud@wso2.com
mailto:suzumura@acm.org

174 M. Dayarathna and T. Suzumura

query processing systems is the lacking of suitable benchmarks for measuring
their performance. While previous implementations focused on non-distributed
benchmarking frameworks, we implement a distributed graph database benchmark-
ing framework with X10 called XGDBench [25–27].

Through real-world implementations which ran on distributed large-scale com-
pute clusters, we demonstrate the feasibility of use of X10 language for developing
large-scale graph data processing applications. With scalability experiments con-
ducted on Tsubame 2.0 supercomputer (also referred to as TSUBAME Cloud), we
have shown the ability of scaling large-scale graph computing workloads with X10
applications. Furthermore, with XGDBench we have shown how realistic workloads
could be generated with X10’s collection of places. In this chapter we investigate
various concepts and techniques which could be followed to implement large graph
processing systems using X10.

The rest of the chapter is organized as follows: First, we describe the challenges
involved with large graph processing and the technologies used to address these
challenges in Sect. 7.2. Also we review previous work which has been conducted
in this regard. Next, we provide an overview to the X10 language and describe its
basic language constructs in Sect. 7.3. We present the details of implementing a large
graph processing library with X10 in Sect. 7.4. Next, we discuss the implementation
of Acacia distributed graph database server with X10 in Sect. 7.5. Then we describe
the implementation of XGDBench graph database benchmarking framework in
Sect. 7.6. We provide the conclusions in Sect. 7.7.

7.2 Challenges and Technologies: Review of Previous Work

In this section we look at how the large graph data processing has been conducted
and how various PGAS techniques as well as non-PGAS techniques have been
applied for HPC graph data mining.

7.2.1 HPC Graph Data Processing

Construction of graph processing libraries with support for variety of graph
algorithms has been a widely studied area. One of the famous examples for such
graph libraries is igraph [23]. Igraph has been heavily used by complex network
analysis community. It has support for classic graph theory problems such as
minimum spanning trees and network flow. Core of the igraph has been written
in C. There are two extensions for igraph, one in R and another in Python. Lee et al.
created Generic Graph Component Library (GGCL) [51] which is a library built
on C++ STL. Graph algorithms on GGCL do not depend on the data structures on
which they operate. Stanford Network Analysis Package (SNAP) [52] is a general
purpose network analysis and graph mining library developed by Leskovec et al..
Version 2011-13-31 of SNAP supports maximum 250 million vertices and 2

7 Graph Data Processing with X10 175

billion edges [52]. The library calculates structural properties and generates regular
and random graphs. Similar to ScaleGraph, SNAP supports attributes on nodes and
edges and has been used to analyze large graphs with millions of nodes and billions
of edges. However compared to ScaleGraph, one of the major limitations of all the
abovementioned libraries is that they are made to run on workstations.

Boost Graph Library (BGL) is a C++ STL library for graph processing [12, 37].
Part of the BGL is a generic graph interface that allows access to the graph’s
structure while hiding the details of the implementation. A parallel version of
the library (PBGL) [38] has been developed using MPI. However, if the user is
not well versed in using C++ and STL, the learning curve of the BGL becomes
very steep [50]. Hence BGL and PBGL might not be an acceptable solution
for application programmers at large. Note that by using the term “application
programmer” we represent not only high-end parallel application programmers but
also application programmers on next-generation systems such as SMP-on-a-chip
and tightly coupled blade servers [48]. ParGraph [43] is a generic parallel graph
library which is comparable to PBGL. ParGraph is written in C++, and it has similar
syntax to PBGL. Different from BGL, PBGL, and ParGraph, ScaleGraph requires
less code for specifying a graph computation, requiring less programming effort.
This way, ScaleGraph promotes productivity in HPC graph analysis. Furthermore,
in contrast to ScaleGraph, BGL and PBGL do not support vertex and edge
attributes.

Standard Template Adaptive Parallel Library (STAPL) [4] is a generic library
with similar functionality to Boost. STAPL targets scientific and numerical appli-
cations, also intended for exploiting parallelism for graph algorithms. However
like Boost libraries, STAPL does not define broadly applicable abstractions for
graphs [67].

Java Universal Network/Graph (JUNG) is a comprehensive open-source graph
library [65, 74]. It supports a variety of representations of graphs such as directed
and undirected graphs, multimodal graphs, hypergraphs, and graphs with parallel
edges (i.e., multi-edges). Since JUNG has been developed using Java, it offers the
interoperability with rich third-party libraries written in Java. Current distribution
of JUNG includes a number of graph algorithms related to data mining and social
network analysis [74]. Current version of JUNG does not support distributed
implementation of algorithms which is a limitation in applying it to distributed graph
processing scenarios.

While there has been large-scale graph algorithm implementation on main stream
parallel architectures such as distributed memory machines, there are some other
studies focusing on specific machine architectures which are currently less popular.
Examples include the works by Madduri et al. [55], Bader et al. [9, 33], and
Berry et al. (Multithreaded Graph Library) [13], which describe the ability of
using massively multithreaded machines to implement graph algorithms. While
distributed memory application developers focus on maximization of locality to
minimize interprocess communication, program developers for massively multi-
threaded machines having large shared memory (e.g., Cray MTA-2) do not focus
on locality or data exchange [56]. Some of the works of this domain (e.g.,
Multithreaded Graph Library) have been extended to commodity processors yet

176 M. Dayarathna and T. Suzumura

with lesser performance [11]. Different from them, with ScaleGraph we concentrate
on productivity of specifying graph computations in distributed settings while
maintaining scalability aspects in commodity machines ranging from developer
laptops to supercomputers.

There has been prior work on specifying graph computations on X10. Cong et al.
worked on creating fast implementations of irregular graph problems on X10 [20,
21]. They also worked on creating an X10 work stealing framework (XWS) with
the aim of solving the problem of present software systems not supporting irregular
parallelism well. However, both these works do not focus on creating a Graph API
with well-defined abstractions for representing graphs.

While ScaleGraph is a large graph analysis library on the domain of PGAS
languages, Pregel [56] is a computational model for analyzing large graphs with
billions of vertices and trillions of edges. Pregel focuses on building a scalable and
fault-tolerant platform with an API that is flexible in expressing arbitrary graph
algorithms using vertex-centric computations. Similar to PBGL, Pregel’s C++ API
requires more programming effort compared to ScaleGraph’s API which is also
targeted for users outside the HPC domain.

7.2.2 Graph Data Management

There are few notable distributed graph databases present in the state of the art. G�

is a distributed graph database server which manages collections of large graphs by
distributing storage across multiple servers [49]. System G is another graph database
server which provides a whole spectrum solution which includes graph storage,
runtime, analytics, and visualization [83]. However, none of them have investigated
RDF graph storage. Titan is a distributed graph database server. However, it does not
have a native storage as Acacia-RDF. Instead it uses a third-party key-value store
such as Cassandra, HBase, BerkeleyDB, etc., as its backend storage. SW-Store is an
extension of a column-oriented DBMS that is designed for high-performance RDF
data management [1]. Li-Yung Ho et al. [44] described a distributed graph database
architecture for large social computing. But their focus was not on RDF graphs.
Their underlying communication has been implemented using MPI, while Acacia-
RDF uses the socket back end of Managed X10/Java sockets for communication.

DREAM is a distributed RDF engine with adaptive query planner and minimal
communication [42]. Different from Acacia-RDF, DREAM does not partition RDF
data sets. DREAM partitions only SPARQL queries. Although this eliminates the
requirement of joining partitioned subgraphs during certain query execution, dupli-
cation of the same RDF data set across multiple computers consumes significant
storage resources which is different from the objectives of Acacia-RDF. TriAD
is a distributed RDF engine which is based on shared-nothing, main-memory
architecture which uses an asynchronous message passing protocol [41]. However,
in Acacia-RDF communication is done based on master-worker pattern.

7 Graph Data Processing with X10 177

Zeng et al. implemented Trinity.RDF, a distributed, memory-based graph engine
for web scale RDF data [85]. Similar to Acacia-RDF which is built on top of Acacia,
Trinity.RDF is based on Trinity graph engine. However, Trinity is a distributed
in-memory key-value store, while Acacia-RDF persists the graph data sets across
multiple compute nodes and systematically loads data into memory during query
processing. g-Store is a graph-based RDF data management system which maintains
the data as a directed multi-edge graph where each vertex corresponds to a subject or
object [87]. However, g-Store is a non-distributed system. SemStore is a semantic-
preserving distributed triple store [82]. Different from Acacia-RDF which follows
vertex-cut paradigm, SemStore adopts a coarse-grained unit named rooted subgraph.
TripleBit is a compact system for storing and accessing RDF data [84]. Papailiou
et al. presented a system that addresses graph-based, workload-adaptive indexing
of large RDF graphs by caching SPARQL query results [66]. RDF-3X engine is
pursuing a RISC-style architecture with streamlined indexing and query processing
[61]. However, RDF-3X is a non-distributed system.

7.2.3 HPC Graph Data Management Benchmarks

HPC Scalable Graph Analysis Benchmark represents a compact application with
multiple analysis techniques that access a single data structure representing a
weighted, directed graph. This benchmark is composed of four separated opera-
tions (graph construction, classification of large vertex sets, graph extraction with
breadth-first search, graph analysis with betweenness centrality) on a graph that
follows a power-law distribution [10]. However, this benchmark does not evaluate
some features that are inherent to graph databases such as object labeling, attribute
management, etc. [10], a feature that will dominate future graph database systems.
Furthermore, HPC Scalable Graph Analysis Benchmark does not evaluate the OLTP
features of graph DBMSs.

Recently, a benchmark for graph traversal operations on graph databases was
described by Ciglan et al. [19]. They designed their graph database benchmark
focusing on traversal operations in a memory-constrained environment where
the whole graph cannot be loaded and processed in memory. Similar to them,
XGDBench implements graph traversal as one of the workload items. However,
XGDBench is a benchmarking framework rather than a benchmark specification.

There are popular benchmarks for graph data stores from the Semantic Web
community such as Lehigh University Benchmark (LUBM) [40], Berlin [14],
DBpedia [58], and SP2Bench [72]. None of these benchmarks employ statistical
graph generator model which allows very large-scale, realistic synthetic graphs.

Vicknair et al. compared performance of Neo4j graph database and MySQL [78]
for graph data storage. However, their study did not focus specifically on cloud
environments. Rohloff et al. conducts an evaluation of triple-store technologies
for large data stores [69]. Triple stores also have been used as graph database
management systems on various occasions. We use AllegroGraph, a famous triple

178 M. Dayarathna and T. Suzumura

store (which is also popular as a graph database) for evaluation of XGDBench due
to this reason. However, Rohloff et al.’s work was conducted using the LUBM, and
their study focused on evaluating triple-store technologies. Another similar work on
benchmarking RDF stores has been conducted by Thakker et al. [76]. However, they
used the University Ontology Benchmark (UOBM) [54] for this purpose.

7.3 Overview of X10

X10 is an experimental PGAS language currently being developed by IBM Research
in collaboration with academic partners [18, 46]. The project started in 2004 and
tries to address the need for providing a programming model that can withstand
architectural challenges posed by multiple cores, hardware accelerators, cluster, and
supercomputers. The main role of X10 is to simplify the programming model in such
a way that it leads to increases in programming productivity for future systems [48]
such as extreme scale computing systems [32]. X10 has been developed from the
beginning with the motivation of supporting hundreds of thousands of application
programmers and scientists with providing ease of writing HPC code [18]. Previous
programming models use two separate levels of abstraction for shared-memory
thread-level parallelism (e.g., pthreads, Java threads, OpenMP) and distributed-
memory communication (e.g., JMS, RMI, MPI) which results in considerable
complexity when trying to create programs that follow both the approaches [2].
X10 addresses this problem by introducing the notion of places. Every activity
in X10 runs in a place which is collection of non-migrating mutable data objects
and the activities (similar to threads) that operate on the data [2]. Therefore, the
notion of places includes both shared-memory thread-level parallelism as well as
distributed-memory communication which makes the life of the programmer easier.
Supporting both concurrency and distribution has been the first-class concern of
the programming language’s design [39]. X10 is available freely under open-source
license.

X10 is a strongly typed, object-oriented language which emphasizes static-type
checking and static expression of program invariants. The choice of static expression
supports the motivation of improving programmer productivity and performance.
X10 standard libraries are designed to support applications to extend and customize
their functionality, which is a supporting factor for X10 library developers.

7.4 Large Graph Processing with X10

7.4.1 ScaleGraph Architecture

ScaleGraph library has been designed from the ground-up with the aim of defining
solid abstractions for large-scale graph processing. The architecture of ScaleGraph

7 Graph Data Processing with X10 179

ScaleGraph
Application
Executable

X10 Runtime

Computer Cluster

X10 programmer

X10 Graph
program code

GraphStore(s)

X10 Standard API

X10 C++ Compiler

Third party libraries

ScaleGraph
Library

calls

uses

uses uses

outputsuses

communication

communication

creates

Fig. 7.1 ScaleGraph Architecture

is shown in Fig. 7.1. X10 application programmers can utilize our library to write
graph applications for Native X10. ScaleGraph library depends on third-party
C++ libraries such as Xerces-C++ XML Parser [68], numerical packages such as
SCALAPACK [15], etc.

X10 applications which use ScaleGraph can be written to operate in three differ-
ent scales called SMALL, MEDIUM, and LARGE. The SMALL scale represents
a graph application that runs on a single place (Lets take the maximum supported
graph size as 2n.n W n > 0; n 2 N)). We created this configuration to support
complex network analysis community at large, who might be interested of using our
library in single machine settings. If an application which uses the library in SMALL
scale is run in multiple places, the graph will be stored in the place designated by
home (i.e., Place 0).

The second configuration type is MEDIUM scale in which the number of vertices
stored in one place is 2m.m W m > n; m 2 N); however the total graph size equals
to (2m � numberofplaces). For example, when the application is developed for
MEDIUM scale size with m = 25 and is run on 32 places, the application can handle
graphs up to 230 (i.e., �1 billion) vertices (As shown in Fig. 7.2a).

The third category of applications is the LARGE scale (shown in Fig. 7.2b).
This category has been created to support scenarios where the end user does not
have enough compute resources to instantiate sufficient places to hold billion scale
graphs. This type of application scenario will be frequent for users with small
compute clusters with limited RAM or even in resource-full compute clusters such
as supercomputers when the processed graph needs to be persisted on disks.

We have introduced such three scales of operations due to resource availability
and performance trade-offs present in many graph analysis applications. While the

180 M. Dayarathna and T. Suzumura

Fig. 7.2 Medium-scale and
large-scale configurations of
ScaleGraph

library scales well with increasing numbers of machines, one cannot expect it to
process a very large graph that could not be kept on a single laptop’s memory.
We believe the three scales of operation modes lead to a more simple yet robust
architecture of ScaleGraph.

The library has been modeled entirely using object-oriented software design
techniques. Current design of the library contains six main categories: graph, I/O,
generators, metrics, clustering, and communities. Package structure of ScaleGraph
is shown in Fig. 7.3.

The graph package holds all the classes related to graph representation. All
the graphs of ScaleGraph implement a single interface called Graph. ScaleGraph

7 Graph Data Processing with X10 181

graph

io

generator clustering

sortspantree

subgraph

util

communities metrics

org
scalegraph

isomorphismlayout

Fig. 7.3 Package structure of ScaleGraph

separates graph representation from the rest of the algorithms. A Graph in Scale-
Graph is just a data structure, and it has no associated operations implementing spe-
cific analysis algorithms (e.g., degree, pagerank, centrality, etc.). Graph algorithms
are coded in separate classes. We have developed two types of Graph classes named
PlainGraph and AttributedGraph. The PlainGraph is used to store non-
attributed graphs (i.e., Graphs without attributes for both vertices and edges), while
AttributedGraphs can store attributes on both vertices and edges.

We use an adjacency list representation of graph data in our Graph interface.
Most of the real-world graphs are sparse graphs which can be efficiently represented
using an adjacency list compared to an adjacency matrix. While adjacency matrices
provide a marginal advantage over adjacency lists for memory utilization for
representing big graphs, and less time for edge insertion and deletion, it is a well-
recognized fact that adjacency lists are better for most applications of graphs [73].

ScaleGraph contains a set of classes for reading and writing graph files located
under org.scalegraph.io. All the readers implement Reader interface,
while all the writers implement Writer interface both of which are located on
org.scalegraph.io. There are many different types of graph file formats
used by the complex network research community. Out of them, we support
some frequently used file formats for attributed graphs such as GML, GEXF,
GraphML, CSV, GDF, and GraphViz. For non-attributed graphs we support
popular formats such as edgelist, CSV, DIMACS, LGL, and Pajek. Certain
file formats have more than single file reader/writer classes. An example is
ScatteredEdgeListReader which reads a collection of files created by
partitioning an edgelist file in small pieces.

The generators package includes a collection of graph generators. We have
already implemented an RMAT [17] generator and are working on other gener-
ators such as BarabasiAlbertGenerator, CitationgraphGenerator,
ErdosRenyiGenerator, etc.

ScaleGraph contains a set of classes for obtaining the structural properties of
graphs. ScaleGraph has implemented betweenness centrality and degree distribu-
tion structural property calculation. The planned other metrics include diameter,
pagerank, density, complexity, cliques, KCores, Mincut, connected component, etc.

Currently the main interfaces of ScaleGraph include Graph, Reader, and Writer
interfaces which are described above.

182 M. Dayarathna and T. Suzumura

7.4.2 Implementation of Graph Algorithms in ScaleGraph

In this section we describe the metrics used for scalability evaluation study of
ScaleGraph.

7.4.2.1 Degree Distribution Calculation

Degree distribution is one of the widely studied properties of a graph. Degree of a
vertex in a graph is the number of edges connected to it [62]. If one denotes degree
by k, then the degree distribution can be represented by pk. Two types of degree
distributions can be calculated for directed graphs such as World Wide Web graph
and citation networks called in-degree and out-degree distributions. In the context
of a web graph, in-degree of a vertex V is the number of vertices that link to V.
Out-degree of V is the number vertices that V links to [62]. ScaleGraph supports
calculation of both in-degree and out-degree for directed graphs. In ScaleGraph a
Boolean flag has been used to determine the directedness of a graph. If the flag is
set to true, the graph is treated as a directed graph.

7.4.2.2 Betweenness Centrality

Betweenness centrality (BC) [5, 35] is a graph metric which measures the extent
to which a vertex lies on paths between other vertices [60]. It is one of the most
frequently employed metrics in social network analysis [16]. We can define BC of
a general network as follows. Let ni

st be the number of geodesic paths (i.e., shortest
paths) from s to t that pass through i (s,t, and i are vertices of the graph, s¤t¤i). Let
s denote the total number of geodesic paths from s to t as gst. Then the BC of vertex
i (i.e., xi) is given by

xi D
X

st

ni
st=gst (7.1)

We implement a more efficient version of BC introduced by Brandes [16]. For
a graph with n vertices and m edges, this algorithm requires O(nCm) space. The
algorithm runs in O(nm) and O(nmCn2log n) time on unweighted and weighted
graphs, respectively [16]. Brandes algorithm traverses the vertices in nonincreasing
order of their distance from source vertex (Brandes does not mandate use of a
specific traversal algorithm for this purpose [16]). Once this is done, it backtracks
through the frontiers to update sum of important values of each vertex [53].
However, it should be noted that in the case of AttributedGraph we use
Dijkstra’s algorithm instead of BFS in order to account for edge weights. We do
not do any approximation of BC, rather we calculate exact BC scores on large
graphs.

7 Graph Data Processing with X10 183

In our BC algorithm at the beginning, Place 0 instantiates BetweennessCent-
-rality class objects in all the places. After construction of each object, it
invokes the method for constructing neighbor map that includes information of the
neighbor connectivity. Once each object constructs their own neighbor map, each
object runs Brandes on assigned vertices on them and calculates BC in parallel.
Finally, betweenness scores are scattered among each place via a distributed all
reduce operation, which are then reported as an array object from Place 0. A code
snippet of our BC implementation on PlainGraph is shown in Fig. 7.4. Note that
important X10 language constructs are highlighted in bold italics font in Figs. 7.4
and 7.5.

val distVertexList:DistArray[Long] = this.plainGraph.getVertexList();
val localVertices = distVertexList.getLocalPortion();
val numParallelBfsTasks = Runtime.NTHREADS;

finish {
for(taskId in 0..(numParallelBfsTasks -1)) {

async doBfsOnPlainGraph(taskId, numParallelBfsTasks,
this.numVertex, localVertices);

}
}

// If undirected graph divide by 2
if(this.plainGraph.isDirected() == false) {

if(this.isNormalize) {
// Undirected and normalize
betweennessScore.map(betweennessScore, (a: Double) => a /

(((numVertex - 1) * (numVertex - 2))));
} else {

// Undirected only
betweennessScore.map(betweennessScore, (a: Double) => a / 2);

}
} else {

if(this.isNormalize) {
// Directed and normalize
betweennessScore.map(betweennessScore, (a: Double) => a /

((numVertex -1) * (numVertex - 2)));
}

}

if(Place.ALL_PLACES > 1) {
Team.WORLD.allreduce(here.id, betweennessScore, 0,

betweennessScore, 0, betweennessScore.size, Team.ADD);
}

Fig. 7.4 A code snippet of BC calculation on PlainGraph

184 M. Dayarathna and T. Suzumura

makeCorrespondenceBetweenIDandIDX();

//Step 1: Make a degree matrix and a Laplacian matrix and solve a
generalized eigenvalue problem
val l:DenseMatrix = getEigenvectors();
if(l == null){

return null;
}

//copy eigenvectors to DistArray
val nPoints = l.M;
val points = DistArray.make[Vector](Dist.makeBlock(0..(nPoints-1)),
(Point) => Vector.make(nClusters));
finish for(p in points.dist.places()) async at(p) {

for([i] in points.dist.get(p)){
for(var j:Int = 0; j < nClusters; j++){

points(i)(j) = l(i, l.N - j - 1);
}

}
}

//Step 2: Apply K-Means algorithm to eigenvectors
val resultArray:DistArray[Int] = kmeans(nClusters, points);
val result:ClusteringResult = makeClusteringResult(nClusters,
resultArray);

Fig. 7.5 A code snippet of spectral clustering algorithm of ScaleGraph

7.4.2.3 Spectral Clustering

Graph clustering is the act of grouping the vertices of the graph into clusters
considering the edge structure of the graph in such a way that there should be many
edges within each cluster and relatively few edges between the clusters [71]. Graph
clustering algorithms can be divided in to two categories called “node-clustering
algorithms” and “graph-clustering algorithms” [3]. Spectral clustering is a node-
clustering algorithm.

If there are n objects labeled x1, x1, x2, . . . , xn with a pairwise similarity
function F defined between them (F is symmetric and nonnegative), spectral
clustering includes all methods and techniques that partition the set into clusters
by using eigenvectors of matrices, like F itself or other matrices derived using it
[34]. Spectral clustering algorithm includes two main steps as shown in Fig. 7.5.
First, spectral clustering algorithm transforms the initial set of objects in to a set
of points in space, whose coordinates are elements of eigenvectors. In spectral
clustering an eigenvector or a combination of several eigenvectors is used as
the vertex similarity measure for computing the clusters. Next, the set of points
are clustered via standard techniques such as k-means clustering [57]. Spectral
clustering has the ability of separating data points that could not be resolved by
applying k-means clustering directly, which is a key advantage compared to other

7 Graph Data Processing with X10 185

techniques. Spectral clustering has been applied for analysis of the network of the
Internet autonomous-system domains, graph partitioning, etc. [71]. A code snippet
depicting the spectral clustering implementation of ScaleGraph is shown in Fig. 7.5.
Our spectral clustering code utilizes SCALAPACK [15] for solving eigenvalue
problem [64].

7.5 X10-Based Distributed Graph Database Engine

Data in the form of linked/graph data have become prominent in recent computing
applications. Examples for such applications are spread across multiple domains
such as online social networks, Semantic Web (DBpedia), and major search engines
(e.g., Google, Yahoo!, Bing, etc.). Facebook’s Like button, BBC’s wildlife, and
music pages are some examples for use of linked data [81]. Linked data provides
a set of techniques for interacting with structured data on the web. Resource
Description Framework (RDF) is a standard model for data interchange on the
web which supports this interaction [79]. A single RDF statement describes a
relationship between two entities. These three elements are called subject, predicate,
and object in the linked data terminology and are often referred to as a triple. RDF
is the data model used by Semantic Web ontologies and knowledge bases such as
DBpedia, Probase, YAGO, etc. A number of database systems have been developed
in recent years by both academia and industry to cater the need of managing and
mining large linked data sets. Some of the notable examples include Trinity [85],
GraphChiDB, AllegroGraph, Titan [8], etc.

With Acacia-RDF we have made significant architecture changes to Acacia
[28]. First, we introduced our own native store which eliminated the dependency
with Neo4j. Second, we have enhanced Acacia to run not only on clusters but
also on single computers such as laptops. Third, we have implemented a scalable
SPARQL query processor in X10. Fourth, we have implemented a replication-based
fault tolerance mechanism for Acacia-RDF. Finally, we have implemented several
additional graph algorithms in Acacia’s distributed data abstraction.

7.5.1 System Design

An overview of Acacia-RDF’s system architecture is shown in Fig. 7.6. There are
two key components of Acacia system: master and worker. Front end is a command-
line user interface for Acacia’s master. There are front-end commands to list the
system statistics, to upload/delete graphs, to get system statistics, commands to run
graph algorithms, etc.

Once an RDF graph is submitted to the system, RDF Partitioner extracts the
vertices, edges, and their properties. The RDF graph is partitioned using Metis. Each
partitioned subgraph is stored in the native graph store structures, and the native
stores are distributed across X10 places.

186 M. Dayarathna and T. Suzumura

Hybrid Scheduler

Master

Worker

Front-end Client

Data Loader
CSR Converter

Hadoop

HDFS

Vertex Processor

Central Store

MetaDB Interface

Partitioner

Front-end Protocol

Back-end Protocol

Back-end

Worker Protocol

File Transfer Service Graph Algorithms

Front-end

Manager Fault Tolerance

SPARQL Executor

RDF Partitioner

Native Store

Fig. 7.6 Overview of Acacia

During the query execution, SPARQL query submitted by the user is parsed by
SPARQL executor to identify triple patterns present within the query. The identified
patterns are matched with the partitioned RDF graph data sets which are located
in multiple X10 places. In order to optimize the query execution on Acacia-RDF,
we have introduced query results caching mechanism which operates on each and
every worker of Acacia-RDF. The query-caching mechanism checks to see if the
query and the target graph (unmodified) are the same for a previous query execution
session. If these parameters are the same, then already-cached results are sent to the
master for aggregation rather than reloading the relevant subgraphs from the disk
storage and executing the queries.

There are two main types of SPARQL query executions that happen in Acacia-
RDF. These are single-variable queries and multivariable queries. In the case of
single-variable queries, we merge the intermediate results at the workers and send
the final results to the master. However, in the case of multivariable queries, we send
the intermediate results from each and every worker to the master, and merging
of the intermediate results is done at the master. This type of intermediate results
aggregation has been followed to ensure the correctness of the results obtained from
the SPARQL processor.

7.5.2 Implementation of Acacia

We implemented Acacia using X10 programming language. We used managed X10
when developing Acacia-RDF. In managed X10, the X10 application gets translated
in to a pure Java application. We leverage the notion of places, language constructs

7 Graph Data Processing with X10 187

Master
Metadata

store

Central
store

Local
store

Partitioned
graphs

…

Instance

Worker

W1

Intersecting
subgraph

W2
Wn

Fig. 7.7 System architecture of Acacia-RDF. Note that both local store and central store are of
Acacia native store type

for asynchronous execution (i.e., async, finish, etc.) available in X10 when
developing the Acacia system. Furthermore, we leverage the built-in fault tolerance
mechanism of X10 when formulating Acacia’s fault tolerance mechanism [24].

We have made several significant architectural changes with RDF extension
for the initial Acacia system described in [28]. The most notable change is the
elimination of the Neo4j instances and replacing them with a native store developed
by us. Furthermore, we had observed that considerable amount of edges stored
are for certain graphs in central store. With Acacia-RDF we have eliminated this
bottleneck by distributing the central store across workers as and when required.
Figure 7.7 shows how this is being done. We follow a random partitioning
technique to equally divide the number of edges across central stores located on
each instance. Furthermore, the previous version of Acacia’s data loading phase
depended on a sequence of MapReduce jobs. With Acacia-RDF we have eliminated
this dependency and have introduced a MetisPartitioner which constructs METIS
file format and conducts graph data partitioning. Therefore, the latest modifications
allow the Acacia system to be run even in a single computer which allows the
system to be used in multiple use cases compared to the previous system. Next,
we describe how Acacia’s RDF extension has been implemented on top of Acacia
system.

188 M. Dayarathna and T. Suzumura

7.5.3 RDF Data Partitioner and Native Store

Another view of system architecture of Acacia-RDF is shown in Fig. 7.7. Once
an RDF data set is submitted to Acacia-RDF, it extracts vertices, edges, and their
attributes. One of the main challenges in building a scalable RDF engine is how
to partition the RDF data across a compute cluster in such a way that queries can
be evaluated with minimum communication cost incurred by distributed joins [82].
In order to achieve this goal, we use METIS graph partitioner [47] to implement
the graph partitioning functionality of Acacia-RDF. The list of edges is partitioned
by Metis, and the partitioned edges are separated to local stores if the two vertices
belong to the same subgraph. If not, the edge is stored in a central store. Vertex
attributes, predicates, and other metainformation such as partition ID are stored in
separate files within the native storage.

The data structures used within the native store are shown in Fig. 7.8. Out
of them LocalSubGraphMap stores the edge list of the graph being stored.
VertexPropertyMap stores the properties of the vertices. Relationship informa-
tion are stored in RelationshipMapWithProperties, while the predicates
are stored in PredicateStore. There are several important variables such
as IsCentralStore, VertexCount, EdgeCount, PredicateCount,
PartitionCount, etc. All these data structures are serialized using Kryo library
when storeGraph() method of the native store is called. The stored data is
loaded in to memory when loadGraph() is called. Since only objects can be
serialized in Java, we transfer variables to a MetaInfo map when serialized and
extract those values from the map when deserialized.

Acacia-RDF maintains all the operational information in a metadata store
implemented using HSQLDB. Metainformation includes details such as IDs of
graphs, hosts, IP addresses configured with Acacia, partition IDs, sizes of partitions,
locations where they are stored, etc.

7.5.4 SPARQL Query Processor

SPARQL query processor executes SPARQL queries specified by the users on the
partitioned RDF graphs of Acacia-RDF. User can either select to list maximum 100
lines of results on the front-end command line interface or store the entire results of
query execution on a file. We use an ANTLR-based SPARQL grammar for parsing
SPARQL queries [36]. The user-specified SPARQL query is transferred to each
worker by the Acacia manager. Each worker runs the SPARQL query they received
in parallel and returns back the result to master based on the abovementioned
criteria. Since the RDF graphs are partitioned and stored across multiple places, the
central stores are consulted when running SPARQL queries which require joining
multiple subjects and objects. This is a common architectural feature present across
all the graph algorithms implemented in Acacia.

7 Graph Data Processing with X10 189

n

n n

n

n

k

n n

n

n

Fig. 7.8 Design of Acacia native store’s data structures. Native store has been designed to store
both plain graphs and RDF graphs. Data types of each of the data structure/variable are shown
within parenthesis

190 M. Dayarathna and T. Suzumura

The pseudo-codes shown in Algorithms 1, 2, and 3 describe the functionality of
the SPARQL executor of Acacia-RDF. Algorithm 1 is the main algorithm which
describes how the SPARQL query execution happens, while two of its functions
executeTriplePattern() and MergeAnswer() are located in Algorithms
2 and 3, respectively. Algorithm 2 is used to identify and process different types
of queries. Algorithm 3 is used to merge the intermediate answers and get the final
result.

We have drawn a block diagram to describe the main components of Acacia-
RDF’s SPARQL processor in Fig. 7.9. The SPARQL executor consists of many
components. First one is the executor. It initiates the query processing. Next one

Fig. 7.9 SPARQL query processor

7 Graph Data Processing with X10 191

is the tokenizer. It breaks the query into tokens. TriplePattern represents different
triple patterns. Triple represents the components of a triple in a query.

During the query execution, the executor initiates the query processing. Tok-
enizer breaks the query into tokens. Then, if the query type is SELECT, the Executor
should return the matching result set to the user. After tokenization, data should be
loaded. Data is loaded from native store. Next, each triple in the query should be
matched with loaded data in order to find matching results for the triple. After that,
intermediate results of each triple should be joined to get the final result set. Finally,
executor will return the matching result set for the given query.

192 M. Dayarathna and T. Suzumura

7.5.5 Evaluation of Acacia’s Performance

The experiments conducted on Acacia-RDF are threefold. In all these experiments,
we set up Acacia-RDF in a cluster of four computers. The systems were running on
Ubuntu Linux, X10 2.5.2, and JDK 1.7.

In the first experiment, Acacia-RDF was configured to run with max 8 GB heap,
four places. The aim of the experiment was to compare performance of Acacia-RDF
with Neo4j. We used four LUBM data sets of the sizes listed in Table 7.1 during the
experiments. We used Neo4j 2.2.4 in this experiment and batch uploaded the LUBM
data sets into separate Neo4j databases. We ran first and third LUBM queries (Q1
and Q3) on each of the systems. In the case of Neo4j, we formulated the two LUBM
queries as Cypher queries. In the case of Acacia-RDF, we used the SPARQL syntax.

Table 7.1 RDF graph data
sets

ID Data set name Vertices Edges File size

G1 LUBM-5 0.10 M 0.83 M 51.9 MB

G2 LUBM-10 0.21 M 1.70 M 105.9 MB

G3 LUBM-20 0.44 M 3.59 M 224.8 MB

G4 LUBM-40 0.86 M 7.10 M 445 MB

G5 LUBM-80 1.7 M 14.33 M 862 MB

G6 LUBM-160 3.6 M 28.50 M 1.7 GB

7 Graph Data Processing with X10 193

E
la

ps
ed

 t
im

e
(m

ill
is
ec

on
d)

E
la

ps
ed

 t
im

e
(m

ill
is
ec

on
d)

(a)

(b)

Fig. 7.10 Elapsed time for running LUBM queries 1 and 3

We have plotted the results in Fig. 7.10. Note that all the performance values listed
in this chapter (except Neo4j non-cached scenarios) are three times averages taken
after running multiple warm up runs of the same query. In the case of Neo4j non-
cached scenario, when we obtain the performance numbers for the first query, we
first ran third query ten times and then ran first query. This was to avoid Neo4j’s
query-caching feature which made third query to run without the effect of caching.
This leads to fair comparison between the two systems when they do not employ
any caching. The corresponding result is shown in the curve Neo4j-Q1. The results
obtained by just running Neo4j three times without such technique are shown in
Neo4j-Q1-With-Caching. We did similar experiment for LUBM Q3 scenario as well.

From the first category of the experiments, we observed that Acacia-RDF
outperforms Neo4j in certain scenarios when both the systems operate without

194 M. Dayarathna and T. Suzumura

El
ap

se
d

tim
e

(m
ill

is
ec

on
ds

)

Fig. 7.11 Elapsed time for running LUBM query 1 (Q1) and query 3 (Q3) with variable numbers
of X10 places on G2. LUBM Q1 and Q3 are single-variable queries

caching mechanisms’ help for graphs less than LUBM 20. However, Acacia-RDF’s
execution time rises along with the number of universities in the input LUBM data.
We conducted Nmon [63]-based profiling of the experiments and observed that the
communication between the master and worker increases with the size of the LUBM
data set. We are currently working to reduce this communication overhead in order
to speed up LUBM query execution.

In the second experiment we conducted a scalability experiment of LUBM
queries with varying number of X10 places. The objective was to observe the
scalability of LUBM query execution. The results are shown in Figs. 7.11 (single-
variable queries) and 7.12 (multivariable query).

From the second category of experiments we observed that Acacia-RDF system
scales with the increasing number of X10 places. Although it is not a linear speedup,
we observe considerable performance gain when adding more X10 places. For
example, for the LUBM query 1, on G2 Acacia-RDF completed execution in 0.9 s
with two places, while the same query ran in 0.4 s with 16 places.

Finally, we evaluated the fault tolerance mechanism of Acacia-RDF. For this we
choose G5 data set which is one of the two larger data sets used in our experiments.
We observed the system characteristics when the system runs Q2 with 16 places and
when the system runs Q2 with one place crashed (only having 15 alive places). The
elapsed time (three times average) of nonfaulty execution was 51.2 s, while with
one place killed it took 53.4 s of execution. In both the cases we receive the correct
result for executing LUBM Q2.

Overall through these experiments we observed Acacia-RDF’s scalability in a
distributed environment with first and third LUBM queries running with 16 places
on LUBM 10 data set with elapsed times of approximately 2 s. Furthermore, Acacia-
RDF reported less than ten seconds elapsed times on 16 places for running the first
three queries of the LUBM benchmark on G6.

7 Graph Data Processing with X10 195

E
la

ps
ed

 ti
m

e
(m

ill
is

ec
on

ds
)

Fig. 7.12 Elapsed time for running LUBM query 2 (Q2) with variable numbers of X10 places on
G2. LUBM Q2 is a multivariable query

We have identified several areas which need further improvements. Although
we have implemented a query results caching mechanism, its operation during
continuously updated data sets needs to be evaluated. We have significantly
improved the size of the data set which can be uploaded to the Acacia-RDF system
by optimizing the RDF Partitioner. However, we hope to optimize RDF Partitioner
to work with much larger data sets in future (beyond LUBM 160).

7.6 XGDBench Graph Database Benchmarking
Framework on Clouds

7.6.1 Methodology of XGDBench

Almost every software benchmark has been developed around a real-world appli-
cation scenario of the software system that it intends for benchmarking [45].
We developed XGDBench focusing on a graph database application for social
networking services which fits for the theme of graph databases on exascale clouds.
This is because online social networks (OSNs) are one of the rapidly growing areas
that generates massive graphs and data storage, and analysis of such online social
networks is conducted in cloud infrastructures [70].

It is a common phenomenon in social networks that people with similar interests
(i.e., attributes) are more likely to become friends in the real world. For example, if
person A and person B went to the same high school, and both of them graduated in
the same year, there is a higher probability that they are friends in the real world, as

196 M. Dayarathna and T. Suzumura

Table 7.2 Basic operations
of graph databases

Operation Description

Read Read a vertex and its properties

Insert Inserts a new vertex

Update Update all the attributes of a vertex

Delete Delete a vertex from the DB

Scan Load the list of neighbors of a vertex

Traverse Traverses the graph from a given vertex using BFS
This represents finding friends of a person in
social networks

well as in the social network service than compared to a person C who did not go to
the same high school. The fact that people went to the same high school or people
graduated in a particular year can be represented as questions with binary answers
(yes/no) which can be represented as attribute vectors.

7.6.2 Requirements of XGDBench

In this section we describe the performance aspects that are specifically targeted by
XGDBench. These performance aspects are represented by individual operations.
These individual operations (which are listed in Table 7.2) get intermixed according
to some predefined proportions to create workloads.

7.6.2.1 Attribute Read/Update

Graph databases in exascale clouds will have to handle massive graphs online,
and they will partially load the graph into memory. The workloads will include
both read/update operations. However, in most of the future exascale applications,
the read operations will dominate the workload [72]; we included read-heavy
(e.g., a workload with 0.95 probability of read operation and 0.05 probability of
write operation [22]) and read-only (having only read operations) workloads with
XGDBench.

Graphs need to be updated online. In a typical OSN, a node represents a user,
and an edge represents friendship/relationship. Properties of nodes/edges include
messages, photos, etc. The friendship graph of OSNs changes at a slower rate
compared to their properties. Therefore, performance of attribute update operation
is critical compared to node/edge update. We included an update-heavy workload
with XGDBench due to this reason.

Moreover, the benchmarking platform needs to be scalable to store data in
memory for update operations. This will eliminate unexpected delays involved in
reading large data from secondary storage.

7 Graph Data Processing with X10 197

7.6.2.2 Graph Traversal

Unlike other database types, graph databases have the unique property of having
data encoded in their graph structures. These information could only be obtained by
traversing the graph. Therefore, the benchmark should have support for evaluating
the performance of graph traversal operations. While there are a variety of graph
traversal techniques, we decided to use an algorithm that will be most frequently
executed against the graph database. This is because it is more important to check
the performance of frequently used operations than operations that run infrequently
which do not have requirements for real-time execution. We selected a scenario of
listing friends of friends, which is one of the frequently used traversal operations in
OSNs. This includes execution of BFS (breadth-first search) from a particular vertex
for detecting the connected component of a graph. Breadth-first search traverses a
graph in a level-wise manner. Before visiting the vertices at path length (k + 1), the
traverser first needs to visit all the vertices within path length k [80]. BFS can be also
considered as layers or waves growing outward from a given vertex. The vertices in
the first wave are the immediate neighbors of the starting vertex, and they have
distance of 1. The neighbors of those neighbors have distance of 2, etc. [60].

Note that most real-world graphs are irregular data structures [77], and therefore
it is possible for starting the traversal from a vertex that is heavily connected with
the other vertices as well as starting the traversal from an unconnected vertex.

Based on the aforementioned requirements we define the following set of basic
operations on a graph database (shown in Table 7.2). We believe that these basic
operations are sufficient for defining many workloads that are frequently present in
graph databases.

7.6.3 Implementation of XGDBench

Implementation details of XGDBench are shown in Fig. 7.13. XGDBench client is
the software application that is used to execute the benchmark’s workloads. Its main
components are graph generator, graph data structure, workload executor, Graph
DB Workload, and Graph DB Interface Layer. The XGDBench client is written in
managed X10. Since the X10 compiler translates managed X10 code to Java and
then compiles the generated Java code to byte code, we used Java for components
such as Graph DB Interface Layer, MAG Generator, etc. We used pure X10 code for
constructing the distributed graph data structure. This way we were able to use X10
language features only in the components that they are needed. However, the entire
XGDBench client was compiled using X10 compiler (x10c), and the benchmarking
sessions were run using the X10 interpreter (x10). XGDBench client accepts a
collection of input parameters that are used during the benchmarking process. Each
of these parameters is described in the below subsections.

XGDBench has two phases of execution called loading phase and transaction
phase. The loading phase generates an attribute graph by using the MAG algorithm

198 M. Dayarathna and T. Suzumura

XGDBench Client

M
A

G
 G

en
er

at
or Client

Threads

Stats

Graph DBs in Cloud

Neo4j

Graph Data Structure (at Place 1)

Graph Data Structure (at Place (n-1))

Place
0

Place
1

Place
(n-1)

Affinity matrix,
Attribute probability
threshold, Number
of attributes to use,
Vertex count,
random seed,
Number of generator
threads

Input parameters

M
A

G
 W

or
kl

oa
d

W
or

kl
oa

d
Ex

ec
ut

or

W
or

kl
oa

d
to

 u
se

Number of
worker
threads

DB URL,
server

authentication
information

such as
username,
password

G
ra

ph
 D

B
 In

te
rf

ac
e

La
ye

r

N
eo

4j
C

lie
nt

Fu
se

ki
C

lie
nt

Ti
ta

nC
lie

nt

O
rie

nt
D

B
C

lie
nt

A
lle

gr
og

ra
ph

C
lie

nt

OrientDB

AllegroGraph

Fuseki

Titan
Query
requests/
responses

Fig. 7.13 Architecture of XGDBench client

Table 7.3 Core workloads of XGDBench

A: Update heavy

Workload A is a mix of 50/50 read/update workload. Read operations query a vertex V and read
all the attributes of V. Update operation changes the last login time attribute of the vertices.
Attributes related to vertex affinity are not changed

B: Read mostly

A mix of 95/5 read/update workload. Read/update operations are similar to A

C: Read only

Consists of 100% read operations. The read operations are similar to A

D: Read latest

This workload inserts new vertices to the graph. The inserts are made in such a way that the
power-law relations of the original graph are preserved

E: Short range scan

This workload reads all the neighbor vertices and their attributes of a vertex A. This represents
the scenario of loading the friendliest of person A on to an application

F: Traverse heavy

Consists of 45/55 mix of traverse/read operations

G: Traverse only

Consists of 100% traverse operations

shown in Algorithm 1. The transaction phase of XGDBench calls a method in
CoreWorkload called doTransaction(), which invokes the basic operations such
as database read, update, insert, scan, and traverse. We have implemented the
workloads that satisfy the requirements stated in Sect. 7.6.2 on XGDBench, and
these workloads are listed in Table 7.3.

7 Graph Data Processing with X10 199

We use throughput (operations per second), latency (milliseconds), and runtime
(milliseconds) as the performance metrics in XGDBench. Furthermore, XGDBench
can be configured to output a histogram of latencies for each operation.

7.6.3.1 Graph Generator

XGDBench client consists of a graph data generator (MAG Generator in Fig. 7.13)
for generating the data to be loaded to the database. The workload generator is
implemented using Multiplicative Attribute Graphs (MAG) model [59] as described
in the previous section. As can be observed in the line 1 of Algorithm 1, the graph
generator accepts an attribute matrix that is initialized with random attribute values
(either 0 or 1). To ensure the repeatability of the benchmarking experiments, the
attribute matrix needs to be initialized with the same attribute values across different
benchmarking experiments that contain the same set of input parameters. To ensure
this property, we used a single random number generator object that is initialized
with some initial random seed that can be specified on the command line. We
observed during our experiments that the graph generator generates the same graph
across different benchmarking sessions.

7.6.3.2 Graph Data Structure

We use the DistArray of X10 to implement the distributed graph data structure
of XGDBench client. This data structure is useful for storing very large graphs
that cannot be stored on a single node’s memory. By default, the vertex and edge
information are stored in Place 0 (Place 0 runs on the node that invoked the
XGDBench client.), and when the graph grows exceeding the prespecified vertex
count per place, the excess vertices are transferred to the next place. We configured
XGDBench’s graph structure to handle up to 225 (33 million) vertices per place
during the experiments.

7.6.3.3 Workload Executor

The workload executor initializes multiple client threads which invoke operation
sequences according to the workloads it handles. A sequential series of operations
are executed by each client thread. Graph database interface layer translates these
simple requests from client threads into calls against the graph database. Unlike
its predecessor (YCSB), XGDBench faces a problem when implementing the
multithreaded workload execution. This is because each thread needs to access the
same generator object to get its next vertex/edge information. However, in YCSB
there was no such requirement for querying a single object for information because
the operations invoked did not have relationships like edges in graphs. Currently we
synchronize only the code that obtains the next vertex/edge information from the
generator which solves this problem.

200 M. Dayarathna and T. Suzumura

7.6.3.4 Graph DB Workload

Graph DB Workload (MAG Workload in Fig. 7.13) is a component that represents
a workload that can be invoked on the Graph DB Interface Layer. It wraps up the
workload’s properties that are specified in the property files as well as command
line arguments. Furthermore, it acts as the bridge between the client threads and the
graph generator. The Graph DB Workload component also forwards each operation
invoked by the client threads to the Graph DB Interface Layer.

7.6.3.5 Graph DB Interface Layer

Graph DB Interface Layer consists of interfaces for different graph databases. Most
of the current graph database servers have their own optimized query interfaces.
For example, RexPro [7] is a binary protocol that can be utilized to send Gremlin
scripts to remote Rexster instances. However, we decided to use common protocols
such as HTTP/REST for implementing the Graph DB Layer because it enables us to
do more fair comparison of different systems. Furthermore, there were limitations
of the HTTP/REST interfaces of certain graph database servers that made us use
some alternatives in combination with HTTP/REST interfaces to implement the
required functions. For example, the Rexster server 2.1.0 used for Titan graph
database server threw an error when we try to POST edges through HTTP/REST
interface which made us use the Rexster’s Gremlin interface to conduct edge
insertion.

In current XGDBench implementation, our focus is on benchmarking graph
database servers. The reason for this is that XGDBench is a benchmarking
framework rather than a benchmark specification. If XGDBench was a benchmark
specification, the specified benchmark operations would have to be implemented
in the target graph database using its query language which could be either an
embedded graph database or a stand-alone graph database server. Such an approach
can be categorized as a white box approach because the developer can implement the
benchmark specification in the way he/she wants. However, in XGDBench we treat
the graph database server completely as a black box which makes the benchmarking
process and the workloads executed on the graph databases work more similar
to a graph-based application communicating with a stand-alone graph database
server. Nevertheless, if a user wants to benchmark an embedded graph database
with XGDBench, that is completely doable with the current implementation. In
such a scenario the graph database client will create an embedded graph database
server instance within the same JVM instance (note that managed X10 is interpreted
by the system’s JVM). But the benchmarking result will be interfered with by
the benchmarking software itself. This is another reason for why we do not use
XGDBench for benchmarking embedded graph databases.

7 Graph Data Processing with X10 201

7.6.3.6 Implementation of Traversal Operation

We implemented the traversal operation of the XGDBench by implementing BFS
traversal for finding friends of friends scenario for each graph database client. The
BFS traversal operation is conducted up to only two hops from a randomly chosen
starting point. This is because we believe that many of the social network users
are interested of finding their friends’ information as well as the user’s friends of
friends information. It is rare that users go beyond this two-hop traversal. Here “two-
hop traversal” means visiting vertices’ neighbors and neighbors of neighbors by
traversing the graph. Social networking happens among peers, not among strangers
[86].

7.6.3.7 Implementation of Insert and Update Operations

The update operations on the graph data preserves the power-law distribution that
is present in the original graph created by MAG because the update operations are
conducted only on attributes that are not related to calculation of probability of an
edge. Furthermore, we make sure the insert operations of the vertices done during
the workload executions preserve the power-law structure. While it is rare to find
graph database applications that execute 100% traverse operations, we created the
workload G as a complete traverse only workload because traverse operation is one
of the inherent key features of a graph database server, and it is important to compare
graph traverse operation performance of graph databases.

7.6.4 Evaluation of XGDBench in HPC Cluster

7.6.4.1 Performance Evaluation of Titan

In the next half of the evaluations, we configured Titan (through Rexster 2.1.0) on
Tsubame. The arrangement of the experiment node cluster is shown in Fig. 7.14.

We executed data loading and transaction workloads on the Titan Rexster server
for different vertex counts. We used 24 threads for XGDBench during all the
experiments because a single node on Tsubame 2.0 contains 24 hardware threads.
Before each experiment round we truncated the Titan and Cassandra to make sure
each experiment is started with clean graph database server. We used 100 as the
initial random seed value for XGDBench. The results of the data loading phase are
shown in Fig. 7.15.

The results of executing transaction phase are shown in Fig. 7.15. Note that the
experiment results shown in Figs. 7.15 and 7.16 are single experiment runs.

202 M. Dayarathna and T. Suzumura

Fig. 7.14 How XGDBench,
Titan Rexster server, and
Cassandra are deployed in the
experiment node cluster on
Tsubame

Apache Cassandra Cluster

Rexster Titan
Server

HTTP/REST
requests and
responses

Node 2

Node 3

Node 4

Node 5

XGDBench

Node 0

Node 1

7.6.4.2 Evaluation of Graph Generation Time

We evaluated the time taken for generating large graphs with XGDBench’s graph
generator. The purpose of this evaluation was to identify to what extent the generator
can generate large graphs. The results are shown in Fig. 7.17. We observed that
XGDBench’s generator is able to generate a graph with 250 thousand vertices and
622 million edges in about 315 s using a JVM heap size of 32 GB on a single
node of Tsubame. While such large-scale graphs can be generated with XGDBench,
benchmarking graph database servers with such gigantic graphs cannot be achieved
easily because most of the current graph database servers are not capable of handling
such large graphs efficiently.

7.7 Conclusion

This chapter presented our experience of design and implementation of graph data
processing systems in X10. We first described about ScaleGraph graph processing
library and then moved to discuss about Acacia distributed graph database server.
Finally, we discussed about design and implementation of XGDBench which is
a graph benchmarking framework. An important characteristic of these graph
processing frameworks is that while they are completely developed in X10 from
the ground-up, X10’s native code invocation has helped them to leverage their
underlying language back end.

7 Graph Data Processing with X10 203

0
10
20
30
40
50
60
70
80
90

100

0 2000 4000 6000 8000 10000 12000

T
hr

ou
gh

pu
t (

op
er

at
io

ns
\s

)

Number of vertices

Throughput for data loading on Titan

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Number of vertices

Average Latency for data loading on Titan

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000

N
um

be
r

of
 o

pe
ra

tio
ns

Latency (ms)

Histogram of latencies for each INSERT operation for
data loading on Titan

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000

R
un

tim
e

(s
)

Number of vertices

Runtime for data loading on Titan

(a)

(b)

(c)

(d)

Number of vertices
(Thousands)

Number of edges

1 9,947

2 39,330

4 152,880

8 645,682

10 991,925

(e)

1000 2000
4000 8000
10000

Number of vertices

Fig. 7.15 Data loading phase of Titan on Tsubame Cloud

Through extensive scalability experiments, we have shown that X10-based
graph processing applications indicate limited scalability in cluster environments.
In the future we plan to extend our knowledge on the scaling bottlenecks of
X10 applications further in large-scale clusters. Furthermore, we are working on
extending these graph data processing frameworks to novel areas such as time-
evolving graphs.

204 M. Dayarathna and T. Suzumura

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

T
hr

ou
gh

pu
t (

O
pe

ra
tio

ns
\s

)

Number of vertices

Throughput for transaction phase on Titan

A

B

C

D

E

F

G

(a)

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000 10000 12000

R
un

tim
e

(s
)

Number of vertices

Runtime for transaction phase on Titan

A
B
C
D
E
F
G

(b)

Fig. 7.16 Throughput and runtime for transaction phase of Titan on Tsubame Cloud

7 Graph Data Processing with X10 205

99M

395M

502M

622M

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0 50000 100000 150000 200000 250000 300000

E
la

ps
ed

 T
im

e
(s

)

Vertex Count

Time taken for generating Large Graphs

(a)

vertex
count edge count time taken for generation

(s) JVM Heap (GB)

10000 992475 0.58 8

12000 1510848 0.73 8

14000 2040288 1.03 8

16000 2654232 1.26 8

18000 3327168 1.73 8

20000 4107086 2.48 8

40000 15676452 7.97 8

60000 35443092 16.57 8

80000 62407092 30.36 8

100000 98956856 48.09 8

200000 395973240 161.73 32

225000 502131805 233.96 32

250000 622108008 315.12 32

(b)

Fig. 7.17 Evaluation of graph generation time on XGDBench graph generator on Tsubame Cloud.
The numbers on the curve in (a) indicate the number of edges generated in millions (M)

206 M. Dayarathna and T. Suzumura

References

1. Abadi DJ, Marcus A, Madden SR, Hollenbach K (2009) Sw-store: a vertically
partitioned DBMS for semantic web data management. VLDB J 18(2):385–406.
doi:10.1007/s00778-008-0125-y

2. Agarwal S, Barik R, Sarkar V, Shyamasundar RK (2007) May-happen-in-parallel analysis of
x10 programs, PPoPP ’07, San Jose, pp 183–193

3. Aggarwal CC, Wang H (2010) A survey of clustering algorithms for graph data. In: Aggarwal
CC, Wang H, Elmagarmid AK (eds) Managing and mining graph data. The Kluwer interna-
tional series on advances in database systems, vol 40. Springer, New York, pp 275–301

4. An P, Jula A, Rus S, Saunders S, Smith T, Tanase G, Thomas N, Amato N, Rauchwerger
L (2003) STAPL: an adaptive, generic parallel c++ library. In: Proceedings of the 14th
international conference on Languages and compilers for parallel computing, LCPC’01.
Springer, Berlin/Heidelberg, pp 193–208

5. Anthonisse J (1971) The rush in a directed graph. Technical report BN 9/71
6. Arnold M, Grove D, Herta B, Hind M, Hirzel M, Iyengar A, Mandel L, Saraswat VA, Shinnar

A, Siméon J, Takeuchi M, Tardieu O, Zhang W (2016) Meta: middleware for events, transac-
tions, and analytics. IBM J Res Dev 60(2–3):15:1–15:10. doi:10.1147/JRD.2016.2527419

7. Aurelius (2013) Rexpro. https://github.com/tinkerpop/rexster/wiki/RexPro
8. Aurelius (2015) Titan: distributed graph database. http://thinkaurelius.github.io/titan/
9. Bader D, Cong G, Feo J (2005) On the architectural requirements for efficient execution

of graph algorithms. In: International conference on parallel processing, ICPP 2005, Oslo,
pp 547–556

10. Bader DA, Feo J, Gilbert J, Kepner J, Koester D, Loh E, Madduri K, Mann B, Meuse T,
Robinson E (2009) HPC scalable graph analysis benchmark. http://www.graphanalysis.org/
benchmark/

11. Barrett B, Berry J, Murphy R, Wheeler K (2009) Implementing a portable multi-threaded graph
library: the MTGL on Qthreads. In: IEEE international symposium on parallel distributed
processing, IPDPS 2009, Rome, pp 1 –8

12. Batenkov D (2011) Boosting productivity with the boost graph library. XRDS 17:31–32
13. Berry J, Hendrickson B, Kahan S, Konecny P (2007) Software and algorithms for graph queries

on multithreaded architectures. In: IEEE international parallel and distributed processing
symposium, IPDPS 2007, Long Beach, pp 1–14

14. Bizer C, Schultz A (2009) The Berlin SPARQL Benchmark. Int J Semant Web Inf Syst 5(2):1–
24

15. Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997) ScaLAPACK Users’ guide.
Society for Industrial and Applied Mathematics, Philadelphia

16. Brandes U (2001) A Faster algorithm for betweenness centrality. J Math Sociol 25:163–177
17. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: a recursive model for graph mining. In:

Fourth SIAM international conference on data mining, Philadelphia
18. Charles P, Grothoff C, Saraswat V, Donawa C, Kielstra A, Ebcioglu K, von Praun C,

Sarkar V (2005) X10: an object-oriented approach to non-uniform cluster computing. In:
Proceedings of the 20th annual ACM SIGPLAN conference on object-oriented program-
ming, systems, languages, and applications, OOPSLA ’05. ACM, New York, pp 519–538.
doi:10.1145/1094811.1094852

19. Ciglan M, Averbuch A, Hluchy L (2012) Benchmarking traversal operations over graph
databases. In: 2012 IEEE 28th international conference on data engineering workshops
(ICDEW), Arlington, pp 186–189

20. Cong G, Almasi G, Saraswat V (2009) Fast PGAS connected components algorithms, PGAS
’09. ACM, New York, pp 13:1–13:6

21. Cong G, Almasi G, Saraswat V (2010) Fast PGAS implementation of distributed graph
algorithms, SC ’10. IEEE Computer Society, Washington, DC, pp 1–11

http://dx.doi.org/10.1007/s00778-008-0125-y
http://dx.doi.org/10.1147/JRD.2016.2527419
https://github.com/tinkerpop/rexster/wiki/RexPro
http://thinkaurelius.github.io/titan/
http://www.graphanalysis.org/benchmark/
http://www.graphanalysis.org/benchmark/
http://dx.doi.org/10.1145/1094811.1094852

7 Graph Data Processing with X10 207

22. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud
serving systems with YCSB. In: Proceedings of the 1st ACM symposium on cloud computing,
SoCC ’10. ACM, New York, pp 143–154. doi:http://doi.acm.org/10.1145/1807128.1807152

23. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter
J Complex Syst 1695. http://igraph.sf.net

24. Cunningham D, Grove D, Herta B, Iyengar A, Kawachiya K, Murata H, Saraswat V, Takeuchi
M, Tardieu O (2014) Resilient x10: efficient failure-aware programming. In: Proceedings of the
19th ACM SIGPLAN symposium on principles and practice of parallel programming, PPoPP
’14. ACM, New York, pp 67–80. doi:10.1145/2555243.2555248

25. Dayarathna M, Suzumura T (2012) Xgdbench: a benchmarking platform for graph stores in
exascale clouds. In: 2012 IEEE 4th international conference on cloud computing technology
and science (CloudCom), pp 363–370. doi:10.1109/CloudCom.2012.6427516

26. Dayarathna M, Suzumura T (2014) Graph database benchmarking on cloud environments with
XGDBench. Autom softw Eng 21(4):509–533. doi:10.1007/s10515-013-0138-7

27. Dayarathna M, Suzumura T (2014) Towards emulation of large scale complex network
workloads on graph databases with XGDBench. In: 2014 IEEE international congress on big
data, pp 748–755. doi:10.1109/BigData.Congress.2014.140

28. Dayarathna M, Suzumura T (2014) Towards scalable distributed graph database engine for
hybrid clouds. In: 2015 5th international workshop on data-intensive computing in the clouds
(DataCloud), pp 1–8. doi:10.1109/DataCloud.2014.9

29. Dayarathna M, Houngkaew C, Ogata H, Suzumura T (2012) Scalable performance of
scalegraph for large scale graph analysis. In: 2012 19th international conference on high
performance computing (HiPC), pp 1–9. doi:10.1109/HiPC.2012.6507498

30. Dayarathna M, Houngkaew C, Suzumura T (2012) Introducing scalegraph: an x10 library for
billion scale graph analytics. In: Proceedings of the 2012 ACM SIGPLAN X10 workshop, X10
’12. ACM, New York, pp 6:1–6:9. doi:10.1145/2246056.2246062, http://doi.acm.org/10.1145/
2246056.2246062

31. Dayarathna M, Herath I, Dewmini Y, Mettananda G, Nandasiri S, Jayasena S, Suzumura
T (2016) Introducing acacia-RDF: an x10-based scalable distributed RDF graph database
engine. In: 2016 IEEE international parallel and distributed processing symposium workshops
(IPDPSW), pp 1024–1032. doi:10.1109/IPDPSW.2016.31

32. Dongarra J et al (2011) The international exascale software project roadmap. Int J high Perform
Comput Appl 25(1):3–60

33. Ediger D, Jiang K, Riedy J, Bader DA, Corley C (2010) Massive social network analysis:
mining twitter for social good. In: Proceedings of the 2010 39th international conference on
parallel processing, ICPP ’10. IEEE Computer Society, Washington, DC, pp 583–593

34. Fortunato S (2009) Community detection in graphs. CoRR abs/0906.0612
35. Freeman LC (1977) A Set of Measures of centrality based on betweenness. Sociometry

40(1):35–41
36. SPARQL G (2016) The SPARQL (pron: sparkle) query language antlr4 grammar. https://code.

google.com/p/sparkle-g/
37. Garcia R, Jarvi J, Lumsdaine A, Siek JG, Willcock J (2003) A comparative study of language

support for generic programming, OOPSLA’03. ACM, New York, pp 115–134
38. Gregor D, Lumsdaine A (2005) Lifting sequential graph algorithms for distributed-memory

parallel computation. SIGPLAN Not 40:423–437
39. Grove D, Tardieu O, Cunningham D, Herta B, Peshansky I, Saraswat V (2011) A performance

model for x10 applications: What’s going on under the hood?
40. Guo Y, Pan Z, Heflin J (2005) Lubm: a benchmark for owl knowledge base systems. Web

Semant 3(2–3):158–182. doi:10.1016/j.websem.2005.06.005
41. Gurajada S, Seufert S, Miliaraki I, Theobald M (2014) Triad: a distributed shared-nothing RDF

engine based on asynchronous message passing. In: Proceedings of the 2014 ACM SIGMOD
international conference on management of data, SIGMOD ’14. ACM, New York, pp 289–300.
doi:10.1145/2588555.2610511

http://dx.doi.org/http://doi.acm.org/10.1145/1807128.1807152
http://igraph.sf.net
http://dx.doi.org/10.1145/2555243.2555248
http://dx.doi.org/10.1109/CloudCom.2012.6427516
http://dx.doi.org/10.1007/s10515-013-0138-7
http://dx.doi.org/10.1109/BigData.Congress.2014.140
http://dx.doi.org/10.1109/DataCloud.2014.9
http://dx.doi.org/10.1109/HiPC.2012.6507498
http://dx.doi.org/10.1145/2246056.2246062
http://doi.acm.org/10.1145/2246056.2246062
http://doi.acm.org/10.1145/2246056.2246062
http://dx.doi.org/10.1109/IPDPSW.2016.31
https://code.google.com/p/sparkle-g/
https://code.google.com/p/sparkle-g/
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1145/2588555.2610511

208 M. Dayarathna and T. Suzumura

42. Hammoud M, Rabbou DA, Nouri R, Beheshti SMR, Sakr S (2015) Dream: distributed
RDF engine with adaptive query planner and minimal communication. Proc VLDB Endow
8(6):654–665. doi:10.14778/2735703.2735705

43. Hielscher F, Gottschling P (2012) Pargraph. http://pargraph.sourceforge.net/
44. Ho LY, Wu JJ, Liu P (2012) Distributed graph database for large-scale social computing.

In: 2012 IEEE 5th international conference on cloud computing (CLOUD), Piscataway,
pp 455–462

45. Huppler K (2009) The art of building a good benchmark. In: Nambiar R, Poess M (ed)
Performance evaluation and benchmarking. Springer, Berlin/Heidelberg, pp 18–30

46. IBM (2014) X10: performance and productivity at scale. http://x10-lang.org/
47. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM J Sci Comput 20(1):359–392
48. Kemal Ebcioglu VS Vijay Saraswat (2004) X10: Programming for hierarchical parallelism and

non-uniform data access. In: 3rd international workshop on language runtimes, impact of next
generation processor architectures on virtual machine technologies

49. Labouseur AG, Birnbaum J, Olsen J PaulW, Spillane S, Vijayan J, Hwang JH, Han WS (2014)
The g* graph database: efficiently managing large distributed dynamic graphs. Distrib Parallel
Databases 1–36. doi:10.1007/s10619-014-7140-3

50. Law J (2003) Review of “the boost graph library: user guide and reference manual by jeremy g.
siek, lie-quan lee, and andrew lumsdaine.” addison-wesley 2002. ACM SIGSOFT Softw Eng
Notes 28(2):35–36

51. Lee LQ, Siek JG, Lumsdaine A (1999) The generic graph component library. SIGPLAN Not
34:399–414

52. Leskovec J (2012) Snap: Stanford network analysis project. http://snap.stanford.edu/
53. Lugowski A, Alber D, Buluç A, Gilbert J, Reinhardt S, Teng Y, Waranis A (2012, accepted)

A flexible open-source toolbox for scalable complex graph analysis. In: SIAM Conference on
Data Mining (SDM), Philadelphia

54. Ma L, Yang Y, Qiu Z, Xie G, Pan Y, Liu S (2006) Towards a complete owl ontology benchmark.
In: Sure Y, Domingue J (eds) The semantic web: research and applications. Lecture notes in
computer science, vol 4011. Springer, Berlin/Heidelberg, pp 125–139

55. Madduri K, Hendrickson B, Berry J, Bader D, Crobak J (2008) Multithreaded algorithms for
processing massive graphs

56. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel:
a system for large-scale graph processing. In: Proceedings of the 2010 international conference
on management of data, SIGMOD ’10. ACM, New York, pp 135–146

57. Marsland S (2009) Machine learning: an algorithmic perspective. Chapman & Hall/CRC, Boca
Raton

58. Morsey M, Lehmann J, Auer S, Ngomo ACN (2011) Dbpedia sparql benchmark – performance
assessment with real queries on real data. In: International semantic web conference (1)’11,
pp 454–469

59. Myunghwan K, Leskovec J (2012) Multiplicative attribute graph model of real-world networks.
Internet Math 8(1-2):113–160

60. Newmann M (2010) Networks: an introduction. Oxford University Press, Oxford/New York
61. Neumann T, Weikum G (2010) The RDF-3x engine for scalable management of RDF data.

The VLDB J 19(1):91–113. doi:10.1007/s00778-009-0165-y
62. Newmann M, Barabasi AL, Watts DJ (2006) The structure and dynamics of networks.

Princeton University Press, Princeton
63. NMON (2016) NMON performance: a free tool to analyze aix and linux performance. http://

www.ibm.com/developerworks/aix/library/au-analyze_aix/
64. Ogata H, Dayarathna M, Suzumura T (2012) Towards highly scalable x10 based spectral

clustering. In: 2012 19th international conference on high performance computing, pp 1–5.
doi:10.1109/HiPC.2012.6507522

http://dx.doi.org/10.14778/2735703.2735705
http://pargraph.sourceforge.net/
http://x10-lang.org/
http://dx.doi.org/10.1007/s10619-014-7140-3
http://snap.stanford.edu/
http://dx.doi.org/10.1007/s00778-009-0165-y
http://www.ibm.com/developerworks/aix/library/au-analyze_aix/
http://www.ibm.com/developerworks/aix/library/au-analyze_aix/
http://dx.doi.org/10.1109/HiPC.2012.6507522

7 Graph Data Processing with X10 209

65. O’Madadhain J, Fisher D, White S, Boey Y (2003) The JUNG (Java Universal Network/Graph)
Framework. Technical report, UCI-ICS

66. Papailiou N, Tsoumakos D, Karras P, Koziris N (2015) Graph-aware, workload-adaptive
sparql query caching. In: Proceedings of the 2015 ACM SIGMOD international con-
ference on management of data, SIGMOD 2015. ACM, New York, pp 1777–1792.
doi:10.1145/2723372.2723714

67. Pingali K, Nguyen D, Kulkarni M, Burtscher M, Hassaan MA, Kaleem R, Lee TH, Lenharth A,
Manevich R, Méndez-Lojo M, Prountzos D, Sui X (2011) The tao of parallelism in algorithms.
In: Proceedings of the 32nd ACM SIGPLAN conference on programming language design and
implementation, PLDI ’11. ACM, New York, pp 12–25

68. Project AX (2012) Xerces-c++ xml parser. http://xerces.apache.org/xerces-c/
69. Rohloff K, Dean M, Emmons I, Ryder D, Sumner J (2007) An evaluation of triple-store

technologies for large data stores. In: On the move to meaningful Internet systems 2007: OTM
2007 workshops. Lecture notes in computer science, vol 4806. Springer, Berlin/Heidelberg,
pp 1105–1114

70. Sarwat M, Elnikety S, He Y, Kliot G (2012) Horton: online query execution engine for large
distributed graphs. In: ICDE, pp 1289–1292

71. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27 – 64
72. Schmidt M, Hornung T, Lausen G, Pinkel C (2008) Sp2bench: a SPARQL performance

benchmark. CoRR abs/0806.4627
73. Skiena SS (2008) The algorithm design manual. 2nd edn. Springer, London
74. Sourceforge (2012) Jung – java universal network/graph framework. http://jung.sourceforge.

net/index.html
75. Tardieu O, Herta B, Cunningham D, Grove D, Kambadur P, Saraswat V, Shinnar A, Takeuchi

M, Vaziri M (2014) X10 and apgas at petascale. In: Proceedings of the 19th ACM SIGPLAN
symposium on principles and practice of parallel programming, PPoPP ’14. ACM, New York,
pp 53–66. doi:10.1145/2555243.2555245

76. Thakker D, Osman T, Gohil S, Lakin P (2010) A pragmatic approach to semantic repositories
benchmarking. In: Aroyo L, Antoniou G, Hyvönen E, ten Teije A, Stuckenschmidt H, Cabral
L, Tudorache T (eds) The semantic web: research and applications. Lecture notes in computer
science, vol 6088. Springer, Berlin/Heidelberg, pp 379–393

77. Versaci F, Pingali K (2012) Processor allocation for optimistic parallelization of irregular
programs. In: Proceedings of the 12th international conference on computational science and
its applications – volume part I, ICCSA’12. Springer, Berlin/Heidelberg, pp 1–14

78. Vicknair C, Macias M, Zhao Z, Nan X, Chen Y, Wilkins D (2010) A comparison of a graph
database and a relational database: a data provenance perspective. In: Proceedings of the 48th
annual southeast regional conference, ACM SE ’10. ACM, New York, pp 42:1–42:6

79. W3C (2015) RDF – semantic web standards. http://www.w3.org/RDF/
80. WANG J (2009) Sequential patterns. In: LIU L, öZSU M (eds) Encyclopedia of database

systems. Springer, New York, pp 2621–2625
81. Wood D, Zaidman M, Ruth L, Hausenblas M (2014) Linked Data. Manning, Shelter Island
82. Wu B, Zhou Y, Yuan P, Jin H, Liu L (2014) Semstore: a semantic-preserving dis-

tributed RDF triple store. In: Proceedings of the 23rd ACM international conference
on information and knowledge management, CIKM ’14. ACM, New York, pp 509–518.
doi:10.1145/2661829.2661876

83. Xia Y, Tanase I, Nai L, Tan W, Liu Y, Crawford J, Lin CY (2014) Graph analytics
and storage. In: IEEE international conference on big data (Big Data), pp 942–951.
doi:10.1109/BigData.2014.7004326

84. Yuan P, Liu P, Wu B, Jin H, Zhang W, Liu L (2013) Triplebit: a fast and compact system for
large scale RDF data. Proc VLDB Endow 6(7):517–528. doi:10.14778/2536349.2536352

85. Zeng K, Yang J, Wang H, Shao B, Wang Z (2013) A distributed graph engine for web scale
RDF data. In: Proceedings of the 39th international conference on Very Large Data Bases,
VLDB Endowment, PVLDB’13, pp 265–276. http://dl.acm.org/citation.cfm?id=2488329.
2488333

http://dx.doi.org/10.1145/2723372.2723714
http://xerces.apache.org/xerces-c/
http://jung.sourceforge.net/index.html
http://jung.sourceforge.net/index.html
http://dx.doi.org/10.1145/2555243.2555245
http://www.w3.org/RDF/
http://dx.doi.org/10.1145/2661829.2661876
http://dx.doi.org/10.1109/BigData.2014.7004326
http://dx.doi.org/10.14778/2536349.2536352
http://dl.acm.org/citation.cfm?id=2488329.2488333
http://dl.acm.org/citation.cfm?id=2488329.2488333

210 M. Dayarathna and T. Suzumura

86. Zhao Z, Liu J, Crespi N (2011) The design of activity-oriented social networking: Dig-event.
In: Proceedings of the 13th international conference on information integration and web-based
applications and services, IIWAS ’11. ACM, New York, pp 420–425

87. Zou L, Mo J, Chen L, Özsu MT, Zhao D (2011) gStore: answering SPARQL queries via
subgraph matching. Proc VLDB Endow 4(8):482–493. doi:10.14778/2002974.2002976

http://dx.doi.org/10.14778/2002974.2002976

Chapter 8
Implementing MapReduce Applications
in Dynamic Cloud Environments

Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio

8.1 Introduction

Clouds are used as effective computing platforms to face the challenge of extracting
knowledge from big data repositories, as well as to provide efficient data analysis
environments to both researchers and companies [1]. A key point for the effective
implementation of data analysis environments on Cloud platforms is the availability
of programming models that support a wide range of applications and system
scenarios [2]. One of the most popular programming models adopted for the
implementation of data-intensive Cloud applications is MapReduce [3].

Since its introduction by Google, MapReduce has proven to be applicable to
many domains, including machine learning and data mining, log file analysis, finan-
cial analysis, scientific simulation, image retrieval and processing, blog crawling,
machine translation, language modelling, and bioinformatics. It is widely recog-
nized as one of the most important programming models for Cloud environments,
being supported by leading providers such as Amazon, with its Elastic MapReduce
service,1 and Google itself, which released a MapReduce API for its App Engine.2

MapReduce defines a framework for processing large data sets in a highly
parallel way by exploiting computing facilities available in a large cluster or through
a Cloud system. Users specify the computation in terms of a map function that
processes a key/value pair to generate a list of intermediate key/value pairs and a
reduce function that merges all intermediate values associated with the same inter-

1http://aws.amazon.com/emr/
2https://cloud.google.com/appengine/docs/java/dataprocessing/

F. Marozzo (�) • D. Talia • P. Trunfio
DIMES, University of Calabria, Rende, Italy
e-mail: fmarozzo@dimes.unical.it; talia@dimes.unical.it; trunfio@dimes.unical.it

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_8

211

http://aws.amazon.com/emr/
https://cloud.google.com/appengine/docs/java/dataprocessing/
mailto:fmarozzo@dimes.unical.it
mailto:talia@dimes.unical.it
mailto:trunfio@dimes.unical.it

212 F. Marozzo et al.

mediate key. Standard MapReduce implementations (e.g., Google’s MapReduce [4]
and Apache Hadoop [5]) are based on a master-slave model. A job is submitted by
a user node to a master node that selects idle workers and assigns each one a map
or a reduce task. When all map and reduce tasks have been completed, the master
node returns the result to the user node. The failure of a worker is managed by re-
executing its task on another worker, while standard MapReduce implementations
do not handle master failures as designers consider failures unlikely in large clusters
or in reliable Cloud environments.

On the contrary, node failures – including master failures – can occur in large
clusters and are likely to happen in dynamic Cloud environments like a Cloud of
clouds, which can be formed by a large number of computing nodes that join and
leave the network at very high rates. Therefore, providing effective mechanisms
to manage master failures is fundamental to exploit the MapReduce model in the
implementation of data-intensive applications in large dynamic Cloud environments
where standard MapReduce implementations could be unreliable.

P2P-MapReduce [6] exploits a peer-to-peer model to manage node churn, master
failures, and job recovery in a decentralized but effective way, so as to provide a
more reliable MapReduce middleware that can be effectively exploited in dynamic
Cloud infrastructures. This chapter describes the P2P-MapReduce architecture,
mechanisms, and implementation and provides an evaluation of its performance.
The performance results confirm that P2P-MapReduce ensures a higher level of
fault tolerance compared to a centralized implementation of MapReduce.

The remainder of the chapter is organized as follows. Section 8.2 provides a
background on MapReduce. Section 8.3 describes the P2P-MapReduce architecture.
Section 8.4 discusses the fault tolerance mechanisms used in P2P-MapReduce.
Section 8.5 describes how the system has been implemented. Section 8.6 presents
an evaluation of its performance. Finally, Sect. 8.7 concludes the chapter.

8.2 MapReduce Background

This section describes the operations performed by a generic MapReduce applica-
tion to transform input data into output data according to the standard master-slave
model and discusses some popular MapReduce frameworks.

MapReduce Users define a map and a reduce function [3]. The map function
processes a (key, value) pair and returns a list of intermediate (key, value) pairs:

map (k1,v1) ! list(k2,v2).

The reduce function merges all intermediate values having the same intermediate
key:

reduce (k2, list(v2)) ! list(v2).

8 Implementing MapReduce Applications in Dynamic Cloud Environments 213

Fig. 8.1 Execution phases in a generic MapReduce application

The whole transformation process can be described through the following steps
(see Fig. 8.1):

1. A master process receives a job descriptor that specifies the MapReduce job to
be executed. The job descriptor contains, among other information, the location
of the input data, which may be accessed using a distributed file system or an
HTTP/FTP server.

2. According to the job descriptor, the master starts a number of mapper and reducer
processes on different machines. At the same time, it starts a process that reads
the input data from its location, partitions that data into a set of splits, and
distributes those splits to the various mappers.

3. After receiving its data partition, each mapper process executes the map function
(provided as part of the job descriptor) to generate a list of intermediate key/value
pairs. Those pairs are then grouped on the basis of their keys.

4. All pairs with the same keys are assigned to the same reducer process. Hence,
each reducer process executes the reduce function (defined by the job descriptor)
which merges all the values associated to the same key to generate a possibly
smaller set of values.

5. The results generated by each reducer process are then collected and delivered
to a location specified by the job descriptor, so as to form the final output
data.

Several applications of MapReduce have been demonstrated, including per-
forming a distributed grep, counting URL access frequency, building a reverse
Web-link graph, building a term-vector per host, building inverted indexes, and

214 F. Marozzo et al.

performing a distributed sort. Ref. [5] mentions many significant types of appli-
cations implemented exploiting the MapReduce model, including machine learning
and data mining, log file analysis, financial analysis, scientific simulation, image
retrieval and processing, blog crawling, machine translation, language modelling,
and bioinformatics.

Besides the original MapReduce implementation by Google [4], several other
MapReduce implementations have been realized within other systems, including
Hadoop [5], GridGain [7], Skynet [8], MapSharp [9], and Disco [10]. Another
system sharing most of the design principles of MapReduce is Sector/Sphere [11],
which has been designed to support distributed data storage and processing over
large Cloud systems. Sector is a high-performance distributed file system; Sphere is
a parallel data processing engine used to process Sector data files. Some other works
focused on providing more efficient implementations of MapReduce components,
such as the scheduler [12] and the I/O system [13], while others focused on adapting
the MapReduce model to specific computing environments, like shared-memory
systems [14], volunteer computing environments [15], desktop grids [16], and
mobile environments [17].

Even though P2P-MapReduce [18] shares some basic ideas with some of the
systems discussed above (in particular, [15] and [17]), it also differs from all of
them for its use of a peer-to-peer approach both for job and system management.
Indeed, the peer-to-peer mechanisms implemented by P2P-MapReduce allow nodes
to dynamically join and leave the network, change state over time, and manage
nodes and job failures in a way that is completely transparent both to users and
applications.

8.3 P2P-MapReduce Architecture

The P2P-MapReduce architecture includes three types of nodes, as shown in
Fig. 8.2: user, master, and slave. Computing nodes are dynamically assigned the
master or the slave role; thus the sets of master and slave nodes change their
composition over time, as discussed later. User nodes submit their MapReduce jobs,
composed by multiple map/reduce tasks, through one of the available masters. The
choice of the master to which to submit the job may be done on the basis of the
current workload of the available masters, i.e., the user may choose the master that
is managing the lowest number of jobs.

Master nodes are at the core of the system. They perform three types of
operations: management, recovery, and coordination. Management operations are
those performed by masters that are acting as the primary master for one or
more jobs. Recovery operations are executed by masters that are acting as backup
master for one or more jobs. Coordination operations are performed by the master
that is acting as the network coordinator. The coordinator has the power of
changing slaves into masters, and vice versa, so as to keep the desired master/slave
ratio.

8 Implementing MapReduce Applications in Dynamic Cloud Environments 215

Master
nodes

Slave
nodes

Job1

Node1

Job Manager

Job2
JobManager

Node2

Job Manager
Job3

Node6Node5

Task ManagerTask Manager

Node7

Task ManagerTask Manager Task Manager Task ManagerTask Manager

Task Manager

Node11Node10Node9Node8

User1 User2

Node4

Task ManagerTask Manager

Job1.Task1

Task Manager

User
nodes Job1 Job2 Job3

Coordinator

Management

Recovery

Coordination

Backup
Job Manager

Job1

Node3

Backup
Job Manager

Job1
Backup

Job Manager

Job3

Job1.Task2

Job1.Task4 Job2.Task4

Job3.Task1 Job1.Task3Job2.Task1 Job2.Task2

Job3.Task2 Job1.Task5Job2.Task3

Backup
Job Manager

Job2

Task ManagerTask Manager

Job3.Task4Job3.Task3

Fig. 8.2 Architecture of P2P-MapReduce

Each slave executes the tasks that are assigned to it by one or more primary
masters. Task assignment may follow various policies, based on current workload,
highest reliability, and so on. In our implementation, tasks are assigned to the
slaves with the lowest workload, i.e., with the lowest number of assigned tasks.
Jobs and tasks are managed by processes called Job Managers and Task Managers,
respectively. Each primary master runs one Job Manager thread per managed job,
while each slave runs one Task Manager thread per managed task. Moreover,
masters use a Backup Job Manager for each job they are responsible for as backup
masters.

Figure 8.2 shows an example scenario in which three jobs have been submitted:
one job by User1 (Job1) and two jobs by User2 (Job2 and Job3). Focusing on Job1,
Node1 is the primary master, and two backup masters are used (Node2 and Node3).
Job1 is composed of five tasks: two of them are assigned to Node4 and one each to
Node7, Node9, and Node11.

If the primary master Node1 fails before the completion of Job1, the following
recovery procedure takes place:

• Backup masters Node2 and Node3 detect the failure of Node1 and start a
distributed procedure to elect the new primary master among them.

• Assuming that Node3 is elected as the new primary master, Node2 continues to
play the backup function, and to keep the desired number of backup masters
active (two, in this example), another backup node is chosen by Node3. Then,
Node3 binds to the connections that were previously associated to Node1 and
proceeds to manage the job using its local replica of the job state.

216 F. Marozzo et al.

As soon as the job is completed, the (new) primary master notifies the result to
the user node that submitted the managed job.

8.4 System Mechanisms

The behavior of a generic node is modeled as a state diagram that defines the
different states a node can assume and all the events that determine the transitions
from a state to another state. Figure 8.3 shows such state diagram modeled using the
UML state diagram formalism.

The state diagram includes two macro-states, SLAVE and MASTER, which
describe the two roles that can be assumed by each node. The SLAVE macro-
state has three states, IDLE, CHECK_MASTER, and ACTIVE, which represent
respectively a slave waiting for task assignment, a slave checking the existence of
at least one master in the network, and a slave executing one or more tasks. The
MASTER macro-state is modeled with three parallel macro-states, which represent
the different roles a master can perform concurrently: possibly acting as the primary
master for one or more jobs (MANAGEMENT), possibly acting as a backup master
for one or more jobs (RECOVERY), and coordinating the network for maintenance
purposes (COORDINATION).

The MANAGEMENT macro-state contains two states: NOT_PRIMARY, which
represents a master node currently not acting as the primary master for any job,

Fig. 8.3 Behavior of a generic node described by a UML state diagram

8 Implementing MapReduce Applications in Dynamic Cloud Environments 217

and PRIMARY, which, in contrast, represents a master node currently managing at
least one job as the primary master. Similarly, the RECOVERY macro-state includes
two states: NOT_BACKUP (the node is not managing any job as backup master)
and BACKUP (at least one job is currently being backed up on this node). Finally,
the COORDINATION macro-state includes four states: NOT_COORDINATOR (the
node is not acting as the coordinator), COORDINATOR (the node is acting as the
coordinator), WAITING_COORDINATOR, and ELECTING_COORDINATOR for
nodes currently participating to the election of the new coordinator, as specified
later.

The combination of the concurrent states [NOT_PRIMARY, NOT_BACKUP,
NOT_COORDINATOR] represents the abstract state MASTER.IDLE. The transition
from master to slave role is allowed only to masters in the MASTER.IDLE state.
Similarly, the transition from slave to master role is allowed to slaves that are not in
ACTIVE state.

8.5 Implementation

We implemented a prototype of the P2P-MapReduce framework using the JXTA
framework [19]. JXTA provides a set of XML-based protocols that allow computers
and other devices to communicate and collaborate in a peer-to-peer fashion. In JXTA
there are two main types of peers: rendezvous and edge. The rendezvous peers
act as routers in a network, forwarding the discovery requests submitted by edge
peers to locate the resources of interest. Peers sharing a common set of interests
are organized into a peer group. To send messages to each other, JXTA peers use
asynchronous communication mechanisms called pipes. Pipes can be either point
to point or multicast, so as to support a wide range of communication schemes. All
resources (peers, services, etc.) are described by advertisements that are published
within the peer group for resource discovery purposes.

All master and slave nodes in the P2P-MapReduce system belong to a single
JXTA peer group called MapReduceGroup. Most of these nodes are edge peers,
but some of them also act as rendezvous peers, in a way that is transparent to the
users. Each node exposes its features by publishing an advertisement containing
basic information that are useful during the discovery process, such as its role and
workload. Each advertisement includes an expiration time; a node must renew its
advertisement before expiration; nodes associated with expired advertisements are
considered as no longer present in the network.

Each node publishes its advertisement in a local cache and sends some keys
identifying that advertisement to a rendezvous peer. The rendezvous peer uses
those keys to index the advertisement in a distributed hash table called Shared
Resource Distributed Index (SRDI) that is managed by all the rendezvous peers
of MapReduceGroup. Queries for a given type of resource (e.g., master nodes) are
submitted to the JXTA Discovery Service that uses SRDI to locate all the resources
of that type without flooding the entire network.

218 F. Marozzo et al.

Fig. 8.4 Software modules inside each node and interactions among nodes

Pipes are the fundamental communication mechanisms of the P2P-MapReduce
system, since they allow the asynchronous delivery of event messages among nodes.
Different types of pipes are employed within the system: bidirectional pipes are
used between users and primary masters to submit jobs and return results, as well
as between primary masters and their slaves to submit tasks and receive result
notifications, while multicast pipes are used by primary masters to send job updates
to their backups.

Figure 8.4 uses the UML Deployment/Component Diagram formalism to
describe the software modules inside each node and how those modules interact
with each other in a P2P-MapReduce network.

Each node includes three software modules/layers: Network, Node, and MapRe-
duce:

• The Network module is in charge of the interactions with the other nodes by
using the pipe communication mechanisms provided by the JXTA framework.
When a connection timeout is detected on a pipe associated with a remote
node, this module propagates the appropriate failure event to the Node module.
Additionally, this module allows the node to interact with the JXTA Discovery
Service for publishing its features and for querying the system (e.g., when
looking for idle slave nodes).

8 Implementing MapReduce Applications in Dynamic Cloud Environments 219

• The Node module controls the life cycle of the node in its various aspects, includ-
ing network maintenance, job management, and so on. Its core is represented
by the FSM component which implements the logic of the finite state machine
described in Fig. 8.3, steering the behavior of the node in response to inner events
or messages coming from other nodes (i.e., job assignments, job updates, and
so on).

• The MapReduce module manages the local execution of jobs (when the node is
acting as a master) or tasks (when the node is acting as a slave). Currently this
module is built around the local execution engine of the Hadoop system [5].

8.6 Evaluation

The evaluation has been carried out by using a custom-made discrete-event simula-
tor that reproduces the behavior of the P2P-MapReduce prototype described in the
previous section, as well as the behavior of a centralized MapReduce system that
performs the standard operations described in Sect. 8.2.

The simulator models joins and leaves of nodes and job submissions as Poisson
processes; therefore, the inter-arrival times of all the join, leave, and submission
events are independent and obey an exponential distribution with a given rate.
Table 8.1 shows the input parameters used during the simulation.

As shown in the table, we simulated MapReduce systems having a size of 10,000
nodes, including both slaves and masters. In the centralized implementation, there
is one master only and there are not backup nodes. In the P2P implementation,
there are 1% masters (out of N), and each job is managed by one master which
dynamically replicates the job state on one backup master.

To simulate node churn, a joining rate JR and a leaving rate LR have been defined.
On average, every minute JR nodes join the network, while LR nodes abruptly leave
the network so as to simulate an event of failure (or a graceless disconnection).

Table 8.1 Simulation parameters

Symbol Description Values

N Initial number of nodes in the network 10,000

NM Number of masters (% on N) 1 (P2P only)

NB Number of backup masters per job 1 (P2P only)

LR Leaving rate: avg. number of nodes that leave the
network every minute (% on N)

0.025, 0.05, 0.1, 0.2, 0.4

JR Joining rate: avg. number of nodes that join the network
every minute (% on N)

equal to LR

SR Submission rate: avg. number of jobs submitted every
minute (% on N)

0.01

CT Avg. computing time of a job (hours) 150

NT Avg. number of tasks of a job 300

220 F. Marozzo et al.

In our simulation JR D LR to keep the total number of nodes approximatively
constant during the whole simulation. In particular, we used five values for JR and
LR: 0.025, 0.05, 0.1, 0.2, and 0.4, so as to evaluate the system under different churn
rates. Note that such values are expressed as a percentage of N. For example, if
N D 10;000 and LR D 0:05, there are on average 5 nodes leaving the network every
minute.

Every minute, SR jobs are submitted on average to the system by user entities.
The value of such submission rate is 0.01, expressed, as for JR and LR, as
a percentage of N. Each job submitted to the system is characterized by two
parameters, total computing time CT and number of tasks NT , whose average values
are reported in the table.

For a given submitted job, the system calculates the amount of time that each
slave needs to complete the task assigned to it as the ratio between the total
computing time and the number of tasks required by that job. Tasks are assigned
to the slaves with the lowest workload, i.e., with the lowest number of assigned
tasks. Each slave keeps the assigned tasks in a priority queue. After the completion
of the current task, the slave selects for execution the task that has failed the highest
number of times among those present in the queue.

At the end of the simulation, we collected two main performance
indicators:

• The percentage of failed jobs, which is the number of jobs failed expressed as a
percentage of the total number of jobs submitted.

• The percentage of lost computing time, which is the amount of time spent
executing tasks that were part of failed jobs, expressed as a percentage of the
total computing time.

For the purpose of our evaluation, a “failed” job is a job that does not complete
its execution, i.e., does not return a result to the submitting user entity. The failure
of a job is always caused by a not-managed failure of the master responsible for that
job. The failure of a slave, on the contrary, never causes a failure of the whole job
because its task is reassigned to another slave.

Figure 8.5 compares the P2P and centralized implementations in terms of
percentage of failed jobs.

As expected, with the centralized MapReduce implementation, the percentage
of failed jobs significantly increases with the leaving rate, passing from 2.5% when
LR D 0:025 to 38.0% when LR D 0:4. In contrast to the centralized implementation,
the P2P-MapReduce framework is limitedly affected by job failures. In particular,
the percentage of failed jobs is 0% for LR � 0:2, while it is 0.2% for LR D 0:4 even
if only one backup master per job is used.

Figure 8.6 reports the percentage of lost computing time in centralized and
P2P implementations related to the same experiments of Fig. 8.5, for different
leaving rates. The figure also shows the amount of lost computing time, expressed
in hours, in correspondence of each graph point for the centralized and P2P
cases.

8 Implementing MapReduce Applications in Dynamic Cloud Environments 221

Fig. 8.5 Percentage of failed jobs

Fig. 8.6 Percentage of lost time. The numbers in correspondence of each graph point represent
the amount of lost computing time expressed in hours

The lost computing time follows a similar trend as the percentage of failed jobs.
For example, the percentage of lost computing time for the centralized system passes
from 1.9% when LR D 0:025 to 24.2% when LR D 0:4, while the percentage
of time lost by the P2P system is under 0.1% in the same configurations. The
difference between centralized and P2P is even clearer if we look at the absolute
amount of computing time lost in the various scenarios. In the worst case (LR=0.4),
the centralized system loses 29753 h of computation, while the amount of lost
computing time with the P2P-MapReduce system is only 62 h. An additional series
of simulation results can be found in [6].

222 F. Marozzo et al.

8.7 Conclusions

Providing effective mechanisms to manage master failures, job recovery, and inter-
mittent participation of nodes is fundamental to exploit the MapReduce model in
the implementation of data-intensive applications in dynamic Cloud environments
where current MapReduce implementations may be unreliable.

The P2P-MapReduce model described in this chapter exploits a P2P model
to perform job state replication, manage master failures, and allow intermittent
participation of nodes in a decentralized but effective way. Using a P2P approach,
we extended the MapReduce architectural model making it suitable for highly
dynamic environments where failure must be managed to avoid a critical loss of
computing resources and time.

The performance analysis conducted through simulation confirms that P2P-
MapReduce ensures a higher level of fault tolerance compared to a centralized
implementation of MapReduce. A prototype of the system is available at the
following url: http://gridlab.dimes.unical.it/projects/p2p-mapreduce/.

References

1. Talia D, Trunfio P, Marozzo F (2015) Data analysis in the cloud. Elsevier, Amsterdam,
Netherlands

2. Marozzo F, Talia D, Trunfio P (2013) Using clouds for scalable knowledge discovery
applications. Lecture notes in computer science, vol 7640 LNCS. Springer, Berlin/New York,
pp 220–227

3. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters.
Commun ACM 51(1):107–113

4. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters.
6th USENIX symposium on operating systems design and implementation (OSDI’04), San
Francisco

5. Hadoop (2016) http://hadoop.apache.org. (Site visited September 2016)
6. Marozzo F, Talia D, Trunfio P (2012) P2P-MapReduce: parallel data processing in dynamic

Cloud environments. J Comput Syst Sci 78(5):1382–1402, Elsevier Science
7. Gridgain (2016) http://www.gridgain.com. (Site visited September 2016)
8. Skynet (2016) http://skynet.rubyforge.org. (Site visited September 2016)
9. MapSharp (2016) http://mapsharp.codeplex.com. (Site visited September 2016)

10. Disco (2016) http://discoproject.org. (Site visited September 2016)
11. Gu Y, Grossman R (2009) Sector and sphere: the design and implementation of a high

performance data cloud. Philos Trans Ser A Math Phys Eng Sci 367(1897):2429–2445
12. Zaharia M, Konwinski A, Joseph AD, Katz RH, Stoica I (2008) Improving MapReduce

performance in heterogeneous environments. 8th USENIX symposium on operating systems
design and implementation (OSDI’08), San Diego

13. Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy K, Sears R (2010) MapReduce
online. 7th USENIX symposium on networked systems design and implementation (NSDI’10),
San Jose

14. Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C (2007) Evaluating MapReduce
for multi-core and multiprocessor systems. Proceedings of the 13th international symposium
on high-performance computer architecture (HPCA’07), Phoenix

http://gridlab.dimes.unical.it/projects/p2p-mapreduce/
http://hadoop.apache.org
http://www.gridgain.com
http://skynet.rubyforge.org
http://mapsharp.codeplex.com
http://discoproject.org

8 Implementing MapReduce Applications in Dynamic Cloud Environments 223

15. Lin H, Ma X, Archuleta J, Feng W-c, Gardner M, Zhang Z (2010) MOON: MapReduce
on opportunistic eNvironments. Proceedings of the 19th international symposium on high
performance distributed computing (HPDC’10), Chicago

16. Tang B, Moca M, Chevalier S, He H, Fedak G (2010) Towards MapReduce for desktop grid
computing. Proceedings of the 5th international conference on P2P, parallel, grid, cloud and
internet computing (3PGCIC’10), Fukuoka

17. Dou A, Kalogeraki V, Gunopulos D, Mielikainen T, Tuulos VH (2010) Misco: a MapReduce
framework for mobile systems. Proceedings of the 3rd international conference on pervasive
technologies related to assistive environments (PETRA’10), New York

18. Marozzo F, Talia D, Trunfio P (2011) A framework for managing MapReduce applications in
dynamic distributed environments. Proceedings of the 19th Euromicro international conference
on parallel, distributed and network-based computing (PDP 2011), Ayia Napa, pp. 149–158

19. Gong L (2001) JXTA: a network programming environment. IEEE Internet Comput 5(3):
88–95

Part IV
Multi-clouds

Chapter 9
Facilitating Cloud Federation Management
via Data Interoperability

Vincent C. Emeakaroha, Phillip Healy, and John P. Morrison

9.1 Introduction

Cloud computing facilitates on-demand and scalable resource provisioning as
services in a pay-as-you-go manner [2]. Cloud promises to make resources available
at all times from every location. The interest of companies in deploying their
business systems on the cloud to achieve an economy of scale is increasing.
Currently, there is a plethora of cloud providers with individual infrastructures, APIs
and application description formats. This heterogeneity has resulted in issues such
as vendor lock-in that reduce consumer flexibility in terms of negotiating power,
reaction to price increases and freedom to change provider [16]. Any attempt by the
consumer to take advantage of multiple cloud deployments faces the problems of
cross-cloud migration of resources and heterogenous data processing. The consumer
has to manage a variety of resources in different representations and data formats
[4]. A means of addressing this problem is the use of a generic data interchange
format, which is capable of structuring and serialising data in a platform-neutral
fashion.

Moreover, the volume of computing resources demanded by current data-
intensive applications is rapidly increasing, thereby placing high requirements for
cloud resources [19]. A single cloud provider’s resources might not be enough to
meet such high resource demand. Therefore, cloud providers have to rethink their
business strategy and seek to increase dynamism in resource provisioning. Cloud
federation offers suitable platform to address this deployment issue. A cooperative
of cloud providers will enable the provisioning of applications using multiple cloud
platforms. However, the management of such federated application deployment is

V.C. Emeakaroha (�) • P. Healy • J.P. Morrison
Irish Centre for Cloud Computing and Commerce, University College Cork, Cork, Ireland
e-mail: vc.emeakaroha@cs.ucc.ie; p.healy@cs.ucc.ie; j.morrison@cs.ucc.ie

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_9

227

mailto:vc.emeakaroha@cs.ucc.ie
mailto:p.healy@cs.ucc.ie
mailto:j.morrison@cs.ucc.ie

228 V.C. Emeakaroha et al.

challenging due to the heterogeneity of cloud platforms and data formats. Previous
approaches to interoperability for federated cloud management focus mainly on the
infrastructure levels, and little attention is being given to the application levels and
data [3, 24].

Besides, the heterogenous nature of clouds makes inter-cloud monitoring to
facilitate interoperable cloud management challenging. Existing cloud monitoring
tools are mainly designed for specific platforms and have limited support for
interoperability. We argue that this issue can be addressed by implementing a robust
message bus system to facilitate inter-cloud management via monitoring and generic
data formatting.

In this chapter, we present an architecture to facilitate federated cloud deploy-
ments management through data interoperability across clouds. The approach is
based on the integration of monitoring techniques with a holistic message bus
system. We propose a monitoring framework that gathers data from multiple cloud
deployments. Based on this data, knowledge is drawn for managing the service
provisioning and making informed decisions. The message bus system provides
a holistic communication mechanism that is capable of supporting messaging at
different levels of abstraction within and between clouds. It realises interoperable
communication by integrating generic data interchange formats. The key con-
tributions of this chapter include (i) presentation of a novel service monitoring
framework to support the management of cloud resources and service provisioning,
(ii) an interoperable communication mechanism for efficient transfer of data
between clouds, (iii) analysis of different data interchange formats to identify their
strengths and usage in clouds, (iv) presentation of an architecture for federated
cloud deployment management and (v) presentation of a use case scenario for
demonstration and evaluation of our approach.

The rest of the chapter is organised as follows: Sect. 9.2 presents a detailed
description of the problem including the open challenges. It also discusses the
previous research efforts in this area. In Sect. 9.3, we present our novel cloud
monitoring framework. Section 9.4 discusses some data interchange formats for
structuring and formatting the monitoring data in a platform-neutral manner,
while Sect. 9.5 presents the holistic message bus to achieve interoperable com-
munications. Section 9.6 presents the integration of monitoring, data interchange
format and message bus to achieve an architecture for federated cloud deployment
management. In Sect. 9.7, we present some performance evaluations based on a
use case scenario. Section 9.8 concludes the work and highlights some future
directions.

9.2 Challenges and Related Work

This section describes the challenges in this area and analyses the previous related
work.

9 Facilitating Cloud Federation Management via Data Interoperability 229

9.2.1 Challenges to Cloud Federation Deployment

Efficient provisioning of cloud services often demands finding a balance between
issues. Cloud providers strive to maximise resource utilisation and minimise other
factors like energy consumption while at the same time trying to maintain high
quality of service. Finding this balance is difficult, especially for small and midsize
enterprises that might have infrastructure constraints, scaling issues and a low
budget.

Cloud federation offers providers the ability to share resources among themselves
to achieve economic advantages. It allows providers to outsource services when
demand exceeds their capacity and to rent out their own resources when others
need them. This is driven by market growth and new forms of computational
demand. The emergence of data-intensive applications and the amount of computing
resources they demand are, in some cases, overwhelming for single small cloud
providers.

There are, however, many open challenges to cloud federation such as how could
application deployment across clouds be managed? How could data interoperability
and communication be achieved? Or how can resource utilisation be monitored? In
the past, cloud federation has been mainly considered in the context of outsourcing
and renting infrastructure resources such as virtual machines [30]. Efforts have been
made to achieve interoperability for federated cloud management at this infrastruc-
ture level [3, 8, 24]. However, little attention has been paid to the possibilities of
deploying a single application using multiple cloud resources in a federation. This
is a growing trend driven by cost, consumer satisfaction and resource requirements
[32]. Consumers are seeking to use a composite of low-cost computing resources
from different clouds to execute their application. Such deployments reduce cost
for consumers because only cheap resources from multiple providers are used. The
management of such federated application deployment is complex and challenging,
especially due to the lack of data interoperability and interoperable communication
systems.

Recently, there have been attempts to standardise various aspects of cloud
Computing, such as Open Cloud Computing Interface (OCCI) [7]. Efforts have also
been made to provide open implementations of cloud services, such as OpenStack
[22]. Despite these efforts, cloud Computing to date has been largely characterised
by competition between closed proprietary platforms.

As a result of these proprietary, vendor-specific cloud platforms and the need
to provision data-intensive applications, the issues of interoperability and com-
munication between individual cloud platforms have come to light. These issues
arise from software and API incompatibilities when multiple cloud providers
attempt to cooperate to achieve economy of scale among other advantages. This
cooperation requires communication and transfer of data between clouds. An ideal
communication system for the entire cloud stack is shown in Fig. 9.1.

A standard mechanism for performing communications such as these does not
exist. A number of proprietary messaging services are available, such as Amazon’s

230 V.C. Emeakaroha et al.

Co
m

m
on

 M
es

sa
ge

 F
or

m
at

Application

Platform

Infrastructure

Intra-Cloud
Communication

Inter-Cloud
Communication

Intra-Cloud
Communication

Co
m

m
on

 M
es

sa
ge

 F
or

m
at

Application

Platform

Infrastructure

Fig. 9.1 Interoperable cloud data communication

Simple Notification, Oracle Messaging and cloudPrime. However, these services
use a variety of underlying messaging technologies and incompatible message
formats.

Furthermore, different monitoring tools can be used to gather detailed informa-
tion at the infrastructure, platform and application levels in clouds to support the
management of resources and service provisioning. However, due to heterogeneity,
these monitoring tools tend to gather data in proprietary formats that are incompat-
ible with other platforms.

Integration of a generic data interchange format for structuring data relating to
cloud deployments is necessary to solve many of the issues identified above. Such a
format would facilitate cloud data interoperability and thereby support the efficient
management of federated cloud deployments.

9.2.2 Related Work

Currently, there is some interesting research being conducted in the area of cloud
federation and interoperability. In this section, we analyse the work related to our
approach.

In the area of inter-cloud federation, Demchenko et al. [6] propose an inter-cloud
federation framework, which attempts to address the interoperability and integration
issues in provisioning on-demand multi-provider heterogenous cloud infrastructure
services. The paper describes two types of federations – consumer-side and
provider-side federations. The former includes federation between cloud-based
services and enterprise infrastructures, while provider-side federation is created by
a group of cloud providers to outsource resources when provisioning services to
consumers. They focus on the federated access control model and do not consider
monitoring of deployed services nor data interoperability.

9 Facilitating Cloud Federation Management via Data Interoperability 231

Since cloud federation started gaining attention from industry, there are many
solutions coming up. Kertesz [15] characterises approaches to cloud federation that
are based on their formation and interoperability issues. The paper classifies recent
solutions arising from both research projects and individual research groups and
shows how they attempt to conceal the diversity of multiple clouds in order to
form a unified federation on top of them. The author gave some guidelines on
important issues aimed at addressing interoperability, such as service monitoring,
data protection and privacy, data management and energy efficiency. However,
issues such as platform-neutral data formatting were not considered.

As an effort to address management issues in cloud federation, Zahariadis et al.
[33] propose a management solution for cloud federation that automates service
provisioning to the best possible extent. It aims to relieve developers from time-
consuming configuration and provide real-time information about the whole life
cycle of the provisioned service. They address this issue by introducing solutions
to realise seamless deployment of services across cloud federations and the ability
for services to span across different infrastructures of the federations. Furthermore,
they provide monitoring of resources and data aggregation with a common structure.
The paper, however, did not elaborate on the type of data interchange format used
to achieve the common structure.

Mashayekhy et al. [19] present a cloud federation formation game that considers
the cooperation of cloud providers in offering cloud IaaS services. On this basis,
the paper designs a cloud federation formation mechanism that empowers cloud
providers to dynamically form a cloud federation to achieve economic advantages.
The mechanism determines the individual profits of each participating cloud
provider in the federation. It ensures that the cloud provider covers its incurred cost
and obtains profits based on its market power. The focus is on maximising profits,
and they do not consider monitoring of the deployed services.

Nguyen et al. [21] address interoperability from the perspective of developing
interoperable cloud services that can be simultaneously deployed on multiple IaaS
clouds. Their approach uses a high-level abstraction layer to provide a unified
interface to developers for managing the entire service life cycle. However, they do
not address a means of realising data interoperability. Sotiriadis et al. [23] propose
a decentralised meta-broker concept for inter-cloud resource management. In their
concept, a broker is responsible for exchanging and monitoring a consumer resource
request. On top of these brokers, they place meta-brokers to enable inter-cloud
operation. Their approach does not consider platform-neutral messaging.

Tovarnak et al. [25] discuss requirements for the producer of monitoring informa-
tion to address issues of representation, processing and distribution. To this end, they
propose the use of an extensible data format to structure monitoring information
to be usable by multiple consumers and thereby achieve interoperability. Their
approach is event based and not general purpose. Williams et al. [30] present Xen-
Blanket, a thin deployable virtualisation layer that can homogenise diverse cloud
infrastructures. But their concept considers only the deployment of VM instances
across clouds.

232 V.C. Emeakaroha et al.

Wang et al. [29] discuss efficiency analysis of data interchange formats for Ajax
applications. Their goals are to reduce data redundancy, improve processing time
and increase the performance of Ajax applications. Their approach, however, does
not consider the application of data interchange formats in clouds.

To the best of our knowledge, none of the existing work considers the integration
of monitoring with a platform-neutral message bus system that uses a generic data
interchange format to realise interoperability and thereby support federated cloud
application deployment management.

9.3 Cloud Service Monitoring

This section presents our service monitor framework. It is designed for monitoring
cloud resources and deployed application behaviour to enable efficient supervision
of resource utilisation and application provisioning. We discuss its architectural
design and implementation choices.

9.3.1 Architecture Design

The service monitor framework is a composed monitoring platform consisting of
independent configurable monitoring tools that are managed in a decentralised
manner. It is a holistic framework capable of monitoring both at the infrastructure
and application levels in clouds. Since many of the cloud services today are
application based, only a resource monitoring tool like [10] would be incapable of
monitoring such deployments. Therefore, application level monitoring is necessary.
Figure 9.2 presents the service monitor framework architecture.

As shown in Fig. 9.2, the service monitor framework consists of different
components that work together to achieve its objectives. The monitor configura-
tion/visualisation interface is the front end for configuring the monitoring tools.
It allows the parameterisation of the individual monitoring tools, for example, to
specify different monitoring intervals, and the selection of particular monitoring
tools for specific purposes. In addition, it provides a visualisation interface for
graphing the monitoring data for easy human observation of trends.

The input processing API gathers the configurations made on the front-end
interface and parses them into the proper format for the service monitor core engine
to understand. It is the responsibility of the service monitor core to instantiate
the necessary monitoring tools with the proper configuration parameters and to
co-ordinate their execution. The monitoring tools monitor the cloud resources or
deployed applications to provide their current status data at run time. They are
executed in parallel, and each pushes its monitoring data to the management portal
for processing and decision-making.

9 Facilitating Cloud Federation Management via Data Interoperability 233

Management Portal

Input
Processing API

Monitor Configuration/
Visualisation

Start Monitoring
Processes

Setup Execution
Engine

Service Monitor Core

Response
Time Availability Through-

put
Execution

Time

Cloud
Resources/
Deployed

Applications

DB Data Analytics

Fig. 9.2 Service monitor framework architecture

The management portal interacts with the cloud resources and deployed applica-
tions to manage them. It includes databases for storing monitoring data for historical
reasons and analytic engines for analysing the monitoring data to draw control
information. Based on user settings, the management portal can interact with the
visualisation interface to display aggregated historical monitoring data.

The service monitor framework is designed with quality in mind. We strive to
make it nonintrusive, scalable, interoperable and extensible. These qualities have
been described as important features of an efficient monitoring tool in a monitoring
survey paper [11]. Intrusive software is one that consumes significant resources
on the monitored system, which may degrade the system performance. Therefore,
to achieve nonintrusiveness in our monitoring framework, we host the monitoring
software on separate nodes to the ones used to run the cloud services. However,
we deploy a small agent on the computing nodes hosting the cloud services to
collect the monitoring information and send them back to the monitoring nodes.
This separation of responsibility also increases the scalability of the monitoring
framework since it facilitates the creation of clusters of monitoring agents with
decentralised control nodes.

For a monitoring tool to be usable in heterogeneous cloud platforms, interoper-
ability is required. In the service monitor framework, we used standardised data

234 V.C. Emeakaroha et al.

interchange formats to achieve neutrality in serialising and formatting the mon-
itoring data. Furthermore, we developed a platform-independent communication
mechanism based on a message bus to facilitate seamless transfer of data between
diverse cloud platforms (see Sect. 9.4 for details).

Extensibility is the ability to easily customise and extend a software system. This
is an important feature since cloud computing is still evolving and many users have
particular needs that cannot be covered by out-of-the-box software tools. To ensure
the presence of this feature, a modular strategy was taken in designing the service
monitor framework. This allows the organisation of the framework components into
loosely coupled modules. Each of the modules represents a unique function. Based
on this strategy, it is easy to add new modules or extend an existing one without
having to remake the whole framework.

9.3.2 Implementation

This section describes the implementation details of the service monitor framework.
We present the technology choices and explain our applied strategies to achieve a
quality monitoring framework.

The monitor configuration and visualisation interface is developed using Ruby
on Rails. This technology enabled a quick development and makes the interface
compatible with other components. One of the attractive features of Ruby on Rails
is its support for plug and play in terms of integrating new components. We exploited
this feature to make the interface easily extendible with new functionalities. Ruby on
Rails provides many APIs, and based on this, we used the JSON API to aggregate
the inputted configuration data before transferring them to the next component to
achieve efficiency.

The input processing API component is implemented as a RESTful service in
Java. Since Ruby on Rails supports RESTful design, it integrates seamlessly with
this component in passing down the user input data. The input processing API
extracts these data and makes them available to the service monitor core component.

The service monitor core component is fully implemented in Java. It sets up and
manages the execution of the user selected and configured monitoring tools. We use
multithreading in this component to achieve parallel execution of the monitoring
tools. The monitoring tools are developed as individual applications so that when
a user wants to run particular monitoring activities, the service monitor sets up the
appropriate tool based on the provided configuration parameters and arranges for a
thread to execute the application.

In general, the interaction of monitoring tools with cloud resources or deployed
applications is based on the type of monitoring objective the tools aim to fulfil. For
example, a resource monitoring tool designed to gather low-level resource utilisation
information may act as an agent that resides on the targeted cloud resource and
parses different files on that system to extract data such as CPU, memory and

9 Facilitating Cloud Federation Management via Data Interoperability 235

storage utilisation. However, we implement an application-level monitoring tool to
interact with the target application and must not reside on the same machine. In our
approach, we use a ping mechanism to periodically query the status of the service.
For HTTP queries, Java.Net APIs were used.

To persist the monitoring data, a MySQL database cluster was designed for
the monitoring tools to achieve scalability. Each instantiated monitoring tool is
automatically assigned to a database for storing its monitoring data. Hibernate is
used to realise the interaction between the Java classes and the database. With
Hibernate, it is easy to exchange database technologies. Thus, we are not bound
to MySQL alone but could easily exchange it with other databases.

The service monitor framework enables adequate monitoring of the cloud
resources and deployed application to facilitate timely and informed decision-
making. This allows the management portal to outsource or rent resources and to
schedule for an application migration in order to ensure high quality of service.
In the next section, we discuss the data interchange formats for structuring and
serialising the monitoring data.

9.4 Data Interchange Formats

As a step towards addressing the challenges of interoperability and cloud federation,
we investigate data interchange formats, which provides means of structuring
and serialising data for platform-neutral transmissions. In this section, we present
detailed descriptions of the selected data interchange formats. The selection of these
formats is based on their prominence in the existing literature.

9.4.1 eXtensible Markup Language

eXtensible Markup Language (XML) is a widely used data interchange format
for structuring application data, including web services [5, 18, 31]. XML is
designed to provide simplicity, generality and usability of data over the Internet
[1]. Data representation in XML is text based and position independent, which
makes it suitable for usage in different platforms and heterogeneous Internet
environments.

An XML document is composed of units called elements. An element usually
consists of a start tag and an end tag, and there is exactly one “root” element in a
document. An element may contain other elements in a nested structure, i.e., if an
element contains another element, it should contain both the start tag and end tag
of that contained element.

One of the strengths of XML is that it is easy to read and write by both human
and machine. On the down side, XML does not match with the data model of

236 V.C. Emeakaroha et al.

most programming languages, and it requires that the structure of data be translated
into document structure, which can make the mapping complicated. Furthermore,
the size of XML encoded data is larger than other representation formats due to
the inclusion of many redundant tags. This verbose nature of XML can make it
unsuitable for some applications, especially those operating on resource-constrained
devices such as embedded systems.

9.4.2 JavaScript Object Notation

JSON is a text-oriented lightweight human readable data interchange format [18].
It is designed for the representation of simple data structures and associative arrays.
JSON is programming language independent but uses conventions such as those
from languages, such as Java, C, C++ and JavaScript.

When compared to XML, JSON is typically smaller in size due to the absence
of extra tags. These properties make JSON a powerful language-neutral data
interchange format. JSON has been used for representing many types of data
including event objects [25].

In JSON, data can be organised as objects composed of key-value pairs or arrays
of objects. The data are serialised into string streams, which in some instances
require further conversion into binary bytes before transmission. There is a binary
extension of this interchange format known as BSON. It provides, in summary, a
binary serialisation of JSON.

9.4.3 MessagePack

MessagePack is a binary data interchange format [17]. It is designed for representing
simple data structures such as arrays and associative arrays as compactly and simply
as possible. MessagePack includes data structures that loosely correspond to those
used by JSON. Its data structures are more compact than the ones in JSON, but they
have limitations on array and integer sizes.

MessagePack supports various data types, including fixed-length types (e.g.
integer, boolean, floating point), variable-length types (e.g., raw bytes) and container
types (e.g., arrays, maps).

When compared to BSON, MessagePack is more space efficient. For example,
BSON requires zero-byte terminators at the end of all strings and inserts string
indexes for list elements, while MessagePack does not have those characters. Also,
MessagePack allows for more compact representation of small integers, shortlists
and associative arrays. Furthermore, it provides portability across many languages.
Another advantage of this data interchange format is that implementations are
available for a number of programming languages including C/C++, C#, Java and
Python.

9 Facilitating Cloud Federation Management via Data Interoperability 237

9.4.4 Protocol Buffers

Protocol Buffers is a binary interchange format developed by Google [14]. It
provides a language- and platform-neutral way of serialising and structuring data
for usage in communication. To provide smaller and faster serialisation, it encodes
data into binary form. It allows users to define their suitable data structure and
provides an efficient automated mechanism for serialising the structured data. Once
the user defines a data structure, a compiler is used to generate code for writing
and reading the structured data to and from a variety of data streams using different
programming languages.

Each Protocol Buffers data element consists of a series of name-value pairs. Each
data type has one or more uniquely numbered fields, and each field has a name and a
value type, where value types can be numbers, booleans, strings, raw bytes, or other
Protocol Buffers data types. There is a possibility of also specifying optional fields,
required fields and repeated fields.

The Protocol Buffers mechanism is compact in terms of data serialisation. One
of the major challenges to its use is the requirement of an extra compilation process
using a proprietary compiler. The Protocol Buffers compiler currently supports Java,
C++ and Python. However, there are ongoing efforts to extend to other languages.

In the next section, we present the communication message bus system that uses
these data interchange formats to achieve interoperable data communication.

9.5 Messaging Bus Communication System

To communicate data between and within entities such as clouds and applications,
there is a need for an efficient messaging system. We strive to design and implement
a unified message bus system usable for transferring data at the different layers and
levels in clouds. This section presents the details of the message bus system.

9.5.1 Intercommunication Potential

The ability to communicate data is a fundamental requirement for the management
of single and distributed systems. Cloud computing and federation involve different
components and layers of interaction. To enable seamless communication, we aim
to realise a mechanism with the following capabilities:

• Inter-application communication: To enable applications executing in a cloud or
in multiple clouds to interact and exchange information.

• Intra-layer communication: This ability embodies the interaction among
resources and their control entities in a cloud layer. For example, the exchange
of application behaviour data for management purposes at the cloud application
layer.

238 V.C. Emeakaroha et al.

• Cross-layer communication: Enables the management of resources and appli-
cations at different cloud layers from a central point. The cross-layer commu-
nication supports resource allocation, load balancing of virtual machines and
application deployment.

• Inter-cloud communication: Enables the outsourcing of resources or service
executions between clouds. This facilitates cloud bursting and management of
different federation deployments.

• Notification/alerting: Enables one-way communication to notify or alert users
and administrators about the occurrence of certain events.

From provider and consumer perspectives, these messaging types cover the com-
munication requirements for efficient management of cloud service provisioning
and usage.

9.5.2 Design and Implementation

The message bus system design is aimed at achieving the aforementioned inter-
communication capabilities. Figure 9.3 depicts an abstract view of the message bus
system.

As shown in Fig. 9.3, the message bus consists of three components: (i) producer,
(ii) messaging infrastructure and (iii) consumer. In the following, we present the
details of these components.

9.5.2.1 Producer

The producer is responsible for accessing the data and encoding it into messages
for sending into the message broker. In some cases, the producer could be attached
directly to a data generator and in other cases it could receive the data from a source.
In our implementation, the producer is integrated with the monitoring to have full
access to the monitoring data. It uses the platform-neutral data interchange format
(see Sect. 9.4) for structuring and serialising the monitoring data before encoding it
into messages.

Exchange
Queue

Queue

Messaging Broker

Binding

Data

Create
Message

Publish
Message

Producer
Message

Read
Message

Data

Consumer

Fig. 9.3 Communication message bus overview

9 Facilitating Cloud Federation Management via Data Interoperability 239

Using the platform-neutral data interchange format in formatting the monitoring
data enables interoperable communication and understanding of these data by
heterogenous cloud platforms. This is a key factor in facilitating federated cloud
deployment management.

The producer has a simple interface for accessing data, and this makes it easy to
integrate it into different levels in clouds, including applications, monitoring tools
and management platforms.

9.5.2.2 Messaging Infrastructure

The messaging infrastructure provides the functions of a message broker. It
asynchronously delivers messages from producers to consumers (synchronisation
decoupling). The producer does not need to know the nature or location of a
consumer. It simply sends its messages to the broker, which in turn routes them to
the appropriate consumer (space decoupling). The broker therefore enables space,
time and synchronisation decoupling [26]. This feature facilitates the necessarily
loose relationship between a producer and a consumer, which is essential in
distributed systems such as clouds and cloud federations.

In our prototype implementation, we use RabbitMQ as the messaging broker
[27]. It is based on the Advanced Message Queuing Protocol (AMQP) [28]. AMQP
is developed by a cooperative of industrial partners led by the financial sector
with the objective of providing messaging interoperability among heterogenous
platforms and message brokers. It is a binary wire-level protocol, which facilitates
application-level communications.

The RabbitMQ broker consists of exchanges, bindings and queues. As shown
in Fig. 9.3, the message producer sends messages into an exchange along with a
routing key and not directly to a queue. The exchanges are bound to queues through
binding directives. A binding directive indicates which message should be routed
from an exchange to a particular queue. The message consumers set up the queues
and receive messages from the queues bound to an exchange. If the routing key
sent with the message matches the binding specified between the exchange and the
queue, then the message is routed to the queue and received by the consumer.

We use RabbitMQ in this project because it provides well-tested open-source API
implementations that are widely used in many other research projects including the
Contrail project [20], which uses it in their current efforts to address interoperability
at the IaaS layer [13].

9.5.2.3 Consumer

The consumer is the receiving end of the communication. It is responsible for
receiving and deserialising the message body to extract the transferred data. To
deserialise the data, it uses the platform-neutral data interchange format APIs to
process them.

240 V.C. Emeakaroha et al.

The consumer is implemented in Java, and it provides a simple interface for easy
integration into different cloud levels to effect interoperable communication.

In the next section, we present the integrated architecture for federated cloud
deployment management.

9.6 Cloud Federation Management

In this section, we present an architecture for federated cloud deployment man-
agement. It builds on the monitoring framework, data interchange format and
messaging bus. We discuss the components, their integration and the implication
of such architecture for cloud market growth.

9.6.1 Architecture Design

This architecture aims to advance cloud market growth by addressing the issues
of data-intensive application deployment in clouds. The ability to compose low-
cost resources from multiple clouds to provision at application level is promising.
This will increase the adoption of cloud computing for heavy resource-demanding
applications.

Figure 9.4 presents an abstract graphical illustration of our proposed architecture
for federated cloud deployment management. The architecture is designed to
achieve interoperability and interoperable communications to enhance sophisticated
application deployments in clouds. Interoperability is one of the key factors
that enables the cooperation of multiple cloud platforms since they are mostly
proprietary and heterogenous in nature.

Our integration of monitoring and an interoperable communication message bus
in this work provides many advantages, especially to support management oper-
ations. Monitoring provides in-depth information on the cloud resource utilisation
status and deployed application performance. This knowledge is essential in making
informed decisions about resources. The monitoring data can provide information
to support on-demand resource scheduling to meet peak load, application migration
to ensure quality of service or identification of unused resources that could be rented
out.

As shown in Fig. 9.4, the service monitor framework is responsible for monitor-
ing the cloud resources and deployed applications. It uses the message bus, which
integrates platform-neutral data interchange formats, to transfer the monitoring data
to the management interface.

The management interface is in control of the whole cloud deployment. It
includes some username and password authentication mechanisms, which it shares
with the monitoring component for accessing different cloud platforms. It also
contains other management capabilities such as resource scheduling, application

9 Facilitating Cloud Federation Management via Data Interoperability 241

Communication Message Bus

Data Interchange Format

 Cloud A Cloud C Cloud B

VM Application

DB

Monitoring
Framework

Monitoring
Framework

Monitoring
Framework

DBDB

Management Interface A
Scheduler

Analytics

Deployer

Authentication

Management Interface B Management Interface C
SchedulerScheduler DeployerDeployer

AnalyticsAnalytics Authentication Authentication

VM Application VM Application

Fig. 9.4 Federated deployment management

deployment and data analytics. The monitoring data provide the source of knowl-
edge for the management interface to determine the resource status and the
performance of the deployed applications.

The architecture depicted in Fig. 9.4 presents an abstract view. The three cloud
platforms shown represent an example of cloud federation. Usually, cloud federation
could be formed with two or more individual cloud platforms.

In the next section, we discuss some benefits of our proposed architecture.

9.6.2 Architecture Importance for Cloud Advancement

Recent developments in genetic studies in bioinformatics [9] have shown the
importance of achieving application elasticity using multiple cloud resources. Provi-
sioning computationally intensive applications and achieving deployment flexibility
are among the core concepts driving this trend. This type of service provisioning
can only be facilitated by cloud federation deployments; however, its management
is complex and challenging.

Our proposed architecture targets the management of federated application
deployments in clouds. It has the potential to shape the future of managing on-the-
fly federated application deployment. It aims to support the growing cloud market in
this area by allowing varying service provisioning constellations. This offers many

242 V.C. Emeakaroha et al.

business opportunities and incentives to customers, for instance, in cost reduction,
by using a composite of low-priced resources from different providers to execute an
application.

Furthermore, it supports dynamic and automatic application deployment using
multiple cloud resources based on user-specified requirements. This strategy allows
a user to specify constraints such as completion time and performance goals for an
application. The user application is deployed once these constraints are met.

A key advantage of our approach is that it uses emerging technologies, especially
the data interchange format and message bus, in achieving application-level data
interoperability.

We are in the process of evaluating the proposed architecture using real-world
heterogenous clouds. However, in the next section, we present efficiency evaluation
of the data interchange format with the communication message bus.

9.7 Data Interchange Format and Message Bus Evaluations

In this section, we present some evaluations of the data interchange format in the
context of a cloud federation use case scenario. This serves as the first step towards
evaluating our whole architecture. The goals of the evaluations are to surface their
performance characteristics. We first show the data structuring capabilities and later
compare the size, processing time and the amount of bandwidth consumed by each
of the data interchange formats for transmission.

9.7.1 Evaluation Environment Setup

To setup the experimental environment, an OpenStack cloud platform installation
running Ubuntu Linux is used. The basic hardware and virtual machine config-
urations of our OpenStack platform are shown in Table 9.1. We use the KVM
hypervisor for hosting the virtual machines.

The physical machine resources offer the flexibility of firing up multiple virtual
machines on demand for hosting different cloud services. The use of the OpenStack

Table 9.1 Cloud environment hardware

Machine type = physical machine

OS CPU Cores Memory Storage

OpenStack Intel Xeon 2.4 GHz 8 12 GB 1 TB

Machine type = virtual machine

OS CPU Cores Memory Storage

Linux/Ubuntu Intel Xeon 2.4 GHz 1 2048 MB 50 GB

9 Facilitating Cloud Federation Management via Data Interoperability 243

platform as the evaluation environment provides the needed assurance that our
approach could be used in many other cloud platforms. In the next section, we
discuss the use case scenario.

9.7.2 Use Case Description

As a basis for the evaluation, we present a use case scenario of federated cloud
deployments.

The use case demonstrates application execution outsourcing and the monitoring
of application- and low-level resource metric data. These two data sets represent
the widely communicated data types in clouds. The reason for using them is to be
able to investigate the behaviour of the data interchange formats in serialising small
and bigger data sets as represented by the application and resource-monitored data,
respectively.

Figure 9.5 depicts the use case scenario. It shows the cooperation of three cloud
providers in a federation to facilitate application deployment. In this case, cloud B
is out of resources and seamlessly outsources the execution of App B2 to cloud
C. However, cloud B is responsible for managing the execution of App B2 on
cloud C’s resources. So cloud B needs access to the resource status and application
performance on cloud C.

VM
App A1

VM
App An

Application
Manager

VM
App B1

VM
App Bn

VM
App C1

VM
App Cn

Cloud A Cloud B

Cloud C

Inter-Cloud Message

Inter-Cloud Message
In

te
r-C

lou
d

M
es

sa
ge

VM
App B2

Application
Manager

Application
Manager

Fig. 9.5 Cloud federated use case

244 V.C. Emeakaroha et al.

To derive these data, we employ our described monitoring framework to monitor
and report on resource usage and application behaviour. The deployed App B2
is a web application, and we monitor and gather seven metrics describing its
performance. The resource status is determined by monitoring 53 physical/virtual
machine resource metrics, such as CPUIdle, FreeDisk, Memory, etc. Since cloud
can host hundreds or even thousands of virtual machines, the transmission of these
monitoring data should be efficiently done to maintain performance.

We use the application monitoring data as shown in Table 9.2 to demonstrate the
data structuring since they are short and simple.

In the next section, we present the data structuring capabilities.

9.7.3 Data Structuring

The data interchange formats can be categorised into two groups: (i) self-describing
data interchange formats and (ii) binary (schema-based) data interchange formats.
Table 9.3 present the classification of our described data interchange formats into
these groups.

The two format groups have their advantages and drawbacks. The self-describing
data interchange format group has the strength of being human readable and easy
to understand. But, from the transmission perspective, they contain redundant
components, which affect their sizes. The binary data interchange format group
is not human readable. But they seem to be more efficient for transmission (see
Sect. 9.7.4 for details).

In the following, we use the self-describing data interchange formats and the
schema of the binary interchange formats to structure the application monitoring
data presented in Table 9.2.

Table 9.2 Sample
application monitoring data

Application metrics Values

App name Web application

App ID 178349064

Response time 5.24312 ms

Throughput 20 trans/s

Latency 3.2345 ms

Availability 99.999%

Execution time 10.5 weeks

Table 9.3 Data interchange
format classification

Self-describing Binary

XML MessagePack

JSON Protocol buffer

9 Facilitating Cloud Federation Management via Data Interoperability 245

9.7.3.1 XML

Listing 9.1 presents the structuring of the monitoring data using XML.

Listing 9.1 XML Data structuring format

1 <webapp >
2 <appname >Web A p p l i c a t i o n < / appname >
3 <appid >178349064 </ appid >
4 < r e s p o n s e t i m e >5.24312 </ r e s p o n s e t i m e >
5 < t h r o u g h p u t >20 </ t h r o u g h p u t >
6 < l a t e n c y >3.2345 </ l a t e n c y >
7 < e x e c u t i o n t i m e >10 .5 </ e x e c u t i o n t i m e >
8 < a v a i l a b i l i t y >99 .999 </ a v a i l a b i l i t y >
9 </ webapp >

As shown in Listing 9.1, XML data structuring is human readable and easy to
understand. This is one of the major advantages of using XML for encoding data.

9.7.3.2 JSON

Listing 9.2 shows the structuring of the monitoring data using JSON.

Listing 9.2 JSON data structuring format

1 { " webapp " :
2 {
3 " r e s p o n s e t i m e " : 5 . 2 4 3 1 2 ,
4 " l a t e n c y " : 3 . 2 3 4 5 ,
5 " appname " : "Web A p p l i c a t i o n " ,
6 " a p p i d " :178349064 ,
7 " e x e c u t i o n t i m e " : 1 0 . 5 ,
8 " t h r o u g h p u t " : 2 0 ,
9 " a v a i l a b i l i t y " : 9 9 . 9 9 9

10 }
11 }

The JSON structuring is human readable but uses fewer characters to describe
the data. It is, however, highly compatible with XML.

9.7.3.3 MessagePack

This is a binary data interchange format. It does not offer a human readable data
structuring form, but it provides a schema for describing the data element types. The
schema can be implemented in different programming languages including Java, C,
C++, Ruby, Python, PHP and Erlang. In our approach, we use Java. Listing 9.3
presents the schema definition for the monitoring data.

246 V.C. Emeakaroha et al.

Listing 9.3 MessagePack schema definition

1 @Message
2 p u b l i c c l a s s WebApp {
3

4 p u b l i c S t r i n g appName ;
5 p u b l i c long appId ;
6 p u b l i c d o u b l e re sponseT ime ;
7 p u b l i c i n t t h r o u g h p u t ;
8 p u b l i c d o u b l e l a t e n c y ;
9 p u b l i c d o u b l e e x e c u t i o n T i m e ;

10 p u b l i c d o u b l e a v a i l a b i l i t y ;
11 }

The “@Message” annotation indicates a MessagePack schema definition. Mes-
sagePack uses the defined schema in Listing 9.3 for serialising and deserialising
data.

9.7.3.4 Protocol Buffers

This is a binary data interchange format. It uses a schema definition to describe the
data, and the schema must be saved in a “.proto” file. There is a special compiler to
read the schema and generate accessor classes for accessing and manipulating the
data. Once the accessor classes are generated, subsequent manual editing is strongly
discouraged. Protocol Buffers currently supports some programming languages
including C++, Java and Python. Listing 9.4 shows the protocol buffer schema
definition for the application monitoring data.

Listing 9.4 Protocol buffer schema definition

1 o p t i o n j a v a _ p a c k a g e = " use . c a s e . p r o t o . c o r e " ;
2 o p t i o n j a v a _ o u t e r _ c l a s s n a m e = " WebAppProtos " ;
3

4 message WebApp {
5 r e q u i r e d s t r i n g appName = 1 ;
6 r e q u i r e d i n t 3 2 appId = 2 ;
7 r e q u i r e d d o u b l e re sponseT ime = 3 ;
8 r e q u i r e d d o u b l e l a t e n c y = 4 ;
9 r e q u i r e d i n t 3 2 t h r o u g h p u t = 5 ;

10 r e q u i r e d d o u b l e e x e c u t i o n T i m e = 6 ;
11 r e q u i r e d d o u b l e a v a i l a b i l i t y = 7 ;
12 }

The “ = 1”, “ = 2”, etc. markers on each field identify a unique “tag” used in the
binary encoding. Tags 1 to 15 require one less byte to encode as compared to higher
tag numbers. This provides a means of optimisation in the encoding process [12].

This section has shown the data structuring abilities of the data interchange
formats. Efforts were made to demonstrate their strength and shortcomings in terms
of human readability and ease of use. In the next section, we consider and compare
their serialisation compactness.

9 Facilitating Cloud Federation Management via Data Interoperability 247

9.7.4 Serialisation Compactness

This section evaluates the serialisation compactness of the analysed data interchange
formats. We compare the size, the processing time for the serialisation and
the amount of used transmission bandwidth for each format to determine their
performance.

The data serialisation is integrated in our implemented message bus system.
When deployed, the data are serialised at the producer before being passed to
the messaging infrastructure, which transmits them. The consumer receives and
deserialises the data. To determine the processing time, we log the total time
for structuring and serialising the data in the producer. The size of the serialised
data is captured by writing them into files before sending them into the message
bus. The message bus has 1 Gbit/s transmission bandwidth. Thus, we calculate the
percentage of the bandwidth utilisation (BU) in transmitting the data by considering
the serialised data size, the transmission bandwidth and the network overhead as
expressed in equation 9.1.

BU D
.DS C Network Overhead/ � 8 � 100

Transmission Bandwidth
(9.1)

where DS represents serialised data size and network overhead includes the
Ethernet, IP and TCP headers. Note, if the sum of the data size and network overhead
is greater than 1480 bytes, the network overhead is multiplied by 2 to accommodate
the packet fragmentation.

Figure 9.6 presents the achieved results of serialising the monitoring web
application data including the processing time and the amount of bandwidth used
for transmitting the data through the message bus.

As shown in Fig. 9.6a, the binary data interchange format group performs better
than the self-describing ones in terms of serialised data sizes. The XML data
interchange format outputs the largest data size, which is about 236 bytes, and
hence, it has the weakest compactness. This may be attributed to the extra tags it
uses in structuring/encoding data as shown in Listing 9.1. MessagePack presents
the best result, which is slightly better than Protocol Buffer.

Figure 9.6b presents the processing time, that is, the time it takes for structuring
and serialising the application data for each of the data interchange formats.
Surprisingly, MessagePack produced the worst result among all. It took about
193 ms to process. This is interesting to note because it clearly shows where the
strengths and weaknesses of this data interchange format lies. Protocol Buffers
presents the best result, followed by JSON.

In Fig. 9.6c, the achieved results in terms of the amount of bandwidth consumed
by each of the data interchange formats for transferring the serialised data are
shown. In this aspect JSON consumed the highest amount of bandwidth in transfer-
ring the data. MessagePack produced the best results, followed by Protocol Buffer.

Figure 9.7 presents the achieved results for the second data set. It shows the
sizes of the serialised resource data including the processing time and the amount of

248 V.C. Emeakaroha et al.

(a)

(b)

(c)

250

200

150

100

Si
ze

 (B
yt

es
)

Data Interchange Formats

50

0
XML JSON Message Pack Protocol Buffer

250

200

150

100

Pr
oc

es
si

ng
 T

im
e

(m
s)

Data Interchange Formats

50

0
XML JSON Message Pack Protocol Buffer

3,000

2,500

2,000

1,500

1,000

Ba
nd

w
id

th
 (x

10
^-

4%
)

Data Interchange Formats

500

0
XML JSON Message Pack Protocol Buffer

Fig. 9.6 Application metric data results. (a) Size (bytes). (b) Processing time (ms). (c) Bandwidth
utilisation (%)

9 Facilitating Cloud Federation Management via Data Interoperability 249

0
200
400
600
800

1000
1200
1400
1600
1800
2000

XML JSON MessagePack Protocol Buffer

Si
ze

 (B
yt

es
)

Data Interchange Formats

0

50

100

150

200

250

XML JSON MessagePack Protocol Buffer

Pr
oc

es
si

ng
 T

im
e

(m
s)

Data InterChange Formats

0

2,000

4,000

6,000

8,000

10,000

12,000

Ba
nd

w
id

th
 (x

10
^-

4%
)

XML JSON MessagePack Protocol Buffer

Data InterChange Formats

(a)

(b)

(c)

Fig. 9.7 Resource metric data results. (a) Size (bytes). (b) Processing time (ms). (c) Bandwidth
utilisation (%)

250 V.C. Emeakaroha et al.

bandwidth used for transmitting the data through the message bus. The monitoring
resource data is a larger data set than the application data. We evaluated it in order
to compare the results.

As shown in Fig. 9.7a, the MessagePack data interchange format produced the
smallest data size while serialising the resource monitoring data. It produced a size
of 264 bytes for the data. This is consistent when compared to its achieved result in
serialising the application data. The other data interchange formats achieved similar
results to those achieved in serialising the monitoring application data. These results
show that the amount of raw data to be serialised correlates with the serialisation
performance of these data interchange formats.

Figure 9.7b depicts the processing time in structuring and serialising the moni-
toring resource data. The MessagePack took the longest time. In this case, it took
about 223 ms. This is similar to its processing time for the application data. The
Protocol Buffer maintained a constant processing time for the two data sets. This
is an interesting performance that could have huge effects in terms of efficiency
in managing federated cloud deployments, considering the large amount of data it
generates.

Figure 9.7c presents the amount of bandwidth consumed in transferring the
serialised resource data. The JSON data interchange format performed best in
this case. This is a very different result compared to the amount of bandwidth
it consumed for the application data. Based on this result, it seems that JSON
consumes less bandwidth with larger data sets. This is an assumption that we think
should be investigated further. MessagePack and Protocol Buffers consumed similar
amounts of resources as was the case for application data.

9.7.4.1 Short Summary

The binary data interchange format group produces very compact output while
serialising data. This translates into smaller serialised data sizes. In this group,
MessagePack has slightly better performance when compared to Protocol Buffers
in serialising both data sets. However, in terms of processing time, Protocol Buffers
is the clear winner. It even has an average constant processing time for both the
smaller and bigger data sets. This is an interesting result, which could be explored
further using larger data sets. Overall, there is no clear preference between the two
binary formats since they both have strengths and drawbacks.

Generally, the MessagePack data interchange format seems to be the most
compact in serialising both monitoring data sets. However, it incurs the highest
processing overhead, which is a drawback. Protocol Buffers performs well all
round with low processing time, and it produces relatively compact sizes. Its main
drawback is the special compiler for generating code from the schema, which adds
extra complexity to its initial setup.

In terms of bandwidth utilisation, the percentage of the message bus band-
width used for transmitting single instances of these serialised data as shown in

9 Facilitating Cloud Federation Management via Data Interoperability 251

Figs. 9.6c and 9.7c is small, but considering the large-scale nature of federated
cloud environments, i.e., the number of virtual machines and applications to be
monitored, the bandwidth utilisation can increase tremendously. This surfaces the
importance of using efficient data interchange formats in order to achieve scalability
and to maintain high performance, especially in managing federated application
deployment.

9.8 Conclusion and Future Work

In this chapter, we proposed an architecture to facilitate the management of
federated cloud deployments. The architecture aims to address the issues of data
interoperability in clouds by integrating platform-neutral data interchange formats
with a messaging bus and monitoring framework. Our goal is not only to achieve
platform-neutral inter-cloud communication but also to extend the capability of
cloud management to enable seamless federated application deployment.

The proposed monitoring framework provides the ability to measure in real-
time the resource consumption of services/applications executing on cloud
resources. It generates the required data to facilitate efficient management of cloud
deployments.

Interoperable data transfer in our approach is enabled by a message bus system.
This message bus represents a complete solution for communication in clouds. It
provides intra- and inter-cloud communication, which includes interactions among
applications and across cloud layers. It uses platform-neutral data interchange
formats to structure and serialise the monitoring data to achieve efficiency and
interoperability. The integration of monitoring with this message bus system has
the potential of facilitating interoperable federated cloud management.

We presented the initial evaluation of the proposed architecture based on a
cloud federation use case scenario. The focus of the evaluations was on the data
interchange formats. As can be observed from the achieved results, the binary
data interchange format group outperforms the self-describing data interchange
format group in terms of compactness and the size of serialised data. However,
this does not necessarily imply that the binary formats are superior to the self-
describing formats in all aspects. These data interchange formats provided us with
the ability to achieve interoperability and to support the management of federated
cloud application deployments.

In the future, we aim to achieve a full evaluation of the proposed architecture
using real-world heterogenous cloud platforms. This would contribute to our vision
of barrier-free data-intensive application deployments using multiple clouds.

Acknowledgements The research work described in this paper was supported by the Irish Centre
for cloud Computing and Commerce, an Irish National Technology Centre funded by Enterprise
Ireland and the Irish Industrial Development Authority.

252 V.C. Emeakaroha et al.

References

1. Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (1997) Extensible markup
language (XML). World Wide Web J 2(4):27–66

2. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging
IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur Gener
Comput Syst 25(6):599–616

3. Celesti A, Tusa F, Villari M, Puliafito A (2010) How to enhance cloud architectures to enable
cross-federation. In: 2010 IEEE 3rd international conference on cloud computing (CLOUD),
pp 337–345. doi:10.1109/CLOUD.2010.46

4. Chen G, Jagadish H, Jiang D, Maier D, Ooi BC, Tan KL, Tan WC (2014) Federation in cloud
data management: challenges and opportunities. IEEE Trans Knowl Data Eng 26(7):1670–
1678. doi:10.1109/TKDE.2014.2326659

5. Crockford D (2006) JSON: the fat-free alternative to XML. http://www.json.org/xml.html
Accessed on 28 May 2015

6. Demchenko Y, Ngo C, De Laat C, Lee C (2014) Federated access control in heterogeneous
intercloud environment: basic models and architecture patterns. In: 2014 IEEE international
conference on cloud engineering (IC2E), pp 439–445. doi:10.1109/IC2E.2014.84

7. Edmonds A, Metsch T, Pappspyrou A, Richardson A (2012) Towards an open cloud standard.
IEEE Internet Comput 16(4):15–25

8. Emeakaroha V, Healy P, Fatema K, Morrison J (2014) Cloud interoperability via message bus
and monitoring integration. In: an Mey D, Alexander M, Bientinesi P, Cannataro M, Clauss
C, Costan A, Kecskemeti G, Morin C, Ricci L, Sahuquillo J, Schulz M, Scarano V, Scott S,
Weidendorfer J (eds) Euro-Par 2013: parallel processing workshops. Lecture notes in computer
science, vol 8374. Springer, Berlin/Heidelberg, pp 65–74. doi:10.1007/978-3-642-54420-0_7

9. Emeakaroha V, Maurer M, Stern P, Labaj PP, Brandic I, Kreil D (2013) Managing and
optimizing bioinformatics workflows for data analysis in clouds. J Grid Comput 11(3):407–
428. doi:10.1007/s10723-013-9260-9

10. Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2010) Low level metrics to high level
SLAs – lom2his framework: bridging the gap between monitored metrics and SLA parameters
in cloud environments. In: 2010 international conference on high performance computing and
simulation (HPCS), pp 48–54

11. Fatema K, Emeakaroha VC, Healy PD, Morrison JP, Lynn T (2014) A survey of cloud
monitoring tools: taxonomy, capabilities and objectives. J Parallel Distrib Comput 74:
2918–2933

12. Google Inc. (2008) Protocol buffers. https://code.google.com/p/protobuf/. Accessed on 29 May
2015

13. Harsh P, Dudouet F, Cascella R, Jegou Y, Morin C (2012) Using open standards for
interoperability issues, solutions, and challenges facing cloud computing. In: 2012 workshop
on systems virtualization management (SVM) in conjunction with 8th international conference
on Network and service management (CNSM), pp 435–440

14. Kaur G, Fuad M (2010) An evaluation of protocol buffer. In: Proceedings of the IEEE
SoutheastCon 2010 (SoutheastCon), pp 459–462. doi:10.1109/SECON.2010.5453828

15. Kertesz A (2014) Characterizing cloud federation approaches. In: Mahmood Z (ed) Cloud
computing, computer communications and networks. Springer International Publishing,
pp 277–296. doi:10.1007/978-3-319-10530-7_12

16. Lewis G (2013) Role of standards in cloud-computing interoperability. In: 2013 46th Hawaii
international conference on system sciences (HICSS), pp 1652–1661

17. Maeda K (2012) Comparative survey of object serialization techniques and the programming
support. J Commun Comput 9:920–928

http://dx.doi.org/10.1109/CLOUD.2010.46
http://dx.doi.org/10.1109/TKDE.2014.2326659
http://www.json.org/xml.html
http://dx.doi.org/10.1109/IC2E.2014.84
http://dx.doi.org/10.1007/978-3-642-54420-0_7
http://dx.doi.org/10.1007/s10723-013-9260-9
https://code.google.com/p/protobuf/
http://dx.doi.org/10.1109/SECON.2010.5453828
http://dx.doi.org/10.1007/978-3-319-10530-7_12

9 Facilitating Cloud Federation Management via Data Interoperability 253

18. Maeda K (2012) Performance evaluation of object serialization libraries in XML,
JSON and binary formats. In: 2012 second international conference on digital infor-
mation and communication technology and it’s applications (DICTAP), pp 177–182.
doi:10.1109/DICTAP.2012.6215346

19. Mashayekhy L, Nejad M, Grosu D (2015) Cloud federations in the sky: formation game and
mechanism. IEEE Trans Cloud Comput 3(1):14–27. doi:10.1109/TCC.2014.2338323

20. Morin C (2011) Open computing infrastructure for elastic service: Contrail approach. In:
Proceeding of the 5th international workshop on virtualisation technologies in distributed
computing, pp 1–2

21. Nguyen BM, Tran V, Hluchy L (2013) A novel approach for developing interoperable services
in cloud environment. In: 2013 international conference on information networking (ICOIN),
pp 232–237

22. Pepple K (2011) Deploying OpenStack. Ó Reilly, Sebastopol
23. Sotiriadis S, Bessis N, Antonpoulos N (2012) Decentralized meta-brokers for inter-cloud: mod-

eling brokering coordinators for interoperable resource management. In: 2012 9th international
conference on fuzzy systems and knowledge discovery (FSKD), pp 2462–2468

24. Toosi A, Calheiros R, Thulasiram R, Buyya R (2011) Resource provisioning policies to
increase IaaS provider’s profit in a federated cloud environment. In: 2011 IEEE 13th interna-
tional conference on high performance computing and communications (HPCC), pp 279–287.
doi:10.1109/HPCC.2011.44

25. Tovarnak D, Pitner T (2012) Towards multi-tenant and interoperable monitoring of virtual
machines in cloud. In: 2012 14th international symposium on symbolic and numeric algorithms
for scientific computing (SYNASC), pp 436–442

26. Tran NL, Skhiri S, Zimanyi E (2011) EQS: an elastic and scalable message queue for the cloud.
In: 2011 IEEE third international conference on cloud computing technology and science
(CloudCom), pp 391–398. doi:10.1109/CloudCom.2011.59

27. Videla A, Williams JJ (2012) RabbitMQ in action: distributed messaging for everyone.
Manning Publications Company, Shelter Island

28. Vinoski S (2006) Advanced message queuing protocol. IEEE Internet Comput 10(6):87–89
29. Wang P, Wu X, Yang H (2011) Analysis of the efficiency of data transmission format based

on Ajax applications. In: 2011 international conference on information technology, computer
engineering and management sciences (ICM), vol 4, pp 265–268. doi:10.1109/ICM.2011.199

30. Williams D, Jamjoom H, Weatherspoon H (2012) The Xen-Blanket: virtualize once, run
everywhere. In: Proceedings of the 7th ACM European conference on Computer Systems,
EuroSys’12, pp 113–126. doi:10.1145/2168836.2168849

31. Yahui Y (2012) Impact data-exchange based on XML. In: 2012 7th international conference
on computer science & education (ICCSE). IEEE, pp 1147–1149

32. Yang X, Nasser B, Surridge M, Middleton S (2012) A business-oriented cloud federation
model for real-time applications. Futur Gener Comput Syst 28(8):1158–1167. doi:http://
dx.doi.org/10.1016/j.future.2012.02.005. http://www.sciencedirect.com/science/article/pii/
S0167739X12000386. Including Special sections SS: Trusting Software Behavior and SS:
Economics of Computing Services

33. Zahariadis T, Papadakis A, Alvarez F, Gonzalez J, Lopez F, Facca F, Al-Hazmi Y (2014)
Fiware lab: managing resources and services in a cloud federation supporting future internet
applications. In: 2014 IEEE/ACM 7th international conference on utility and cloud computing
(UCC), pp 792–799. doi:10.1109/UCC.2014.129

http://dx.doi.org/10.1109/DICTAP.2012.6215346
http://dx.doi.org/10.1109/TCC.2014.2338323
http://dx.doi.org/10.1109/HPCC.2011.44
http://dx.doi.org/10.1109/CloudCom.2011.59
http://dx.doi.org/10.1109/ICM.2011.199
http://dx.doi.org/10.1145/2168836.2168849
http://dx.doi.org/10.1016/j.future.2012.02.005
http://dx.doi.org/10.1016/j.future.2012.02.005
http://www.sciencedirect.com/science/article/pii/S0167739X12000386
http://www.sciencedirect.com/science/article/pii/S0167739X12000386
http://dx.doi.org/10.1109/UCC.2014.129

Chapter 10
Applying Self-* Principles in Heterogeneous
Cloud Environments

Ioan Drăgan, Teodor-Florin Fortiş, Gabriel Iuhasz, Marian Neagul,
and Dana Petcu

10.1 Introduction

The taxonomy of cloud computing, which was presented in [45], was constructed
on criteria that were focused on five features: cloud architecture, virtualization
management, service, fault tolerance, and security.

In general, when we are speaking about cloud architectures, we are referring to
a layered architecture that permits development of applications running on an on-
demand internet access service. Each of these services have to be accessible from
anywhere given that there is internet connectivity.

Virtualization management is the component that takes care of abstracting
the coupling between hardware components and the operating system. When it
comes to virtualization, nowadays, there exists a large palette of techniques and
implementations. Services can be classified in several categories, such as software
as a service (SaaS), platform as a service (PaaS) etc., each of them having specific
properties and offering to the users various resources that are to be consumed over
the internet.

I. Drăgan (�)
Institute e-Austria, Timişoara, Romania

“Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
e-mail: idragan@ieat.ro

T.-F. Fortiş • G. Iuhasz • M. Neagul • D. Petcu
Institute e-Austria, Timişoara, Romania

West University of Timişoara, Timişoara, Romania
e-mail: fortis@info.uvt.ro; iuhasz.gabriel@info.uvt.ro

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_10

255

mailto:idragan@ieat.ro
mailto:fortis@info.uvt.ro
mailto:iuhasz.gabriel@info.uvt.ro

256 I. Drăgan et al.

Fault tolerance is one of the key components of any cloud architecture, and it
has to deal with the cases when various building blocks fail. When speaking about
fault tolerance, one refers to the case when the service running stops suddenly and
another service is ready to take its place and continue the job from where the other
service failed.

Another crucial component in cloud computing is security, its focus being on
data, infrastructure, and virtualization of resources. The issues that arise from an
unsecure environment can be catastrophic to companies where data is not only an
asset but might also contain information about various clients.

Given that in recent years cloud computing gained momentum as more compa-
nies understood the concepts that govern the cloud environment, various parallel
computing applications considered a migration toward the new concept. In this
migration process, some of the applications partially sacrificed their performance
in favor of scalability or instant availability of resources.

On the other hand, as supercomputing centers have slow procedures for admis-
sion (based on proposals and evaluations) and long waiting queues (that are serving
resource-greedy batch parallel applications already tuned to match the particular
architecture of the supercomputer), the new initiatives from the cloud community
have started to spawn offering HPC as a service (HPCaaS) or developments that
enable high-performance computing (HPC) applications. Taking this approach over
the traditional HPC seems to be an appealing alternative for just-in-time parallel
applications, real-time or interactive parallel applications, or even to support special
environmental settings that are hard to be under user control in a supercomputing
center.

Nowadays we are witnessing multiple changes in how the data- and compute-
intensive services are offered due to the influences of cloud computing, autonomic
computing, or the increase of the heterogeneity in terms of computing resources.
As a particular case, the self-* principles may offer an interesting alternative in
migrating some compute-intensive applications to tailored cloud environments.

At the moment, bare metal cloud is also gaining momentum. Although the trend
is to move as many applications to cloud environments, there are multiple warnings
coming from the scientific literature about the significant loss of performance
relative to the case of a supercomputing usage. This is due to the fact that parallel
computing applications are rather expected to run in a cloud environment in the
same manner as they are running on computing centers or even supercomputers
(especially for production phases of an application).

In this context, when we are speaking about application providers, they are
expecting that the cloud infrastructure service behaves like a grid service rather than
a supercomputer. The main difference is that individual users have more control
on the software stack that is supporting the application execution. However, this
is a small difference, as the grid environments currently allow to simulate cloud
environments on top of grid services. While such a simulation approach is useful
for the users who do not have access to supercomputers or grid environments (as

10 Applying Self-* Principles in Heterogeneous Cloud Environments 257

they are mainly targeting academic users), an HPCaaS approach has the potential to
benefit more from the automation processes associated with the cloud services.

Our chapter is intended to offer an overview of individual characteristics
presented in the context of cloud computing, focusing mostly on aspects coming
from the self-organization and self-management of clouds. In order to achieve this
goal, we start by presenting some of the building blocks presented in literature for
being able to construct such systems. That is, we first present the concepts and
properties from the area of autonomic computing (see Sect. 10.2). Based on these
concepts and features, we also offer a short overview of several European projects
that try to tackle various problems that arise from the concepts. Next we focus our
attention on principles of cloud computing (see Sect. 10.3), present the basics, and
introduce the concepts that are required in order to further develop and understand
the principles that are presented in various research papers as being part of the so
called self-* clouds (see Sect. 10.4). We conclude this chapter with an overview of
both European initiatives and with actual production-ready software that is designed
in order to cover the various characteristics of such cloud systems (see Sect. 10.5).

10.2 Autonomic Computing

10.2.1 Properties of Autonomic Computing

In the visionary document on autonomic computing, Paul Horn (IBM) stated that
“autonomic systems must anticipate needs and allow users to concentrate on what
they want to accomplish rather than figuring how to rig the computing systems to
get them there” [21]. While self-management, self-evolving, self-configuration, and
others were not new, the merit of the document was to gather such characteristics
and define their role in the description of much complex systems. Some of the core
concepts of autonomic computing were exploited in the project eLiza. The project
was designed in order to close the gap between autonomic and grid computing,
given that “grids will connect heterogeneous resources anywhere in the world. It
will be impossible to manually manage the complexity of such vast, interconnected
systems,” as a press release from 2002 specified [23].

In a simplified view, autonomic computing is often viewed as a manifestation
of the automation of resource management, usually exposed in various distributed
systems [26]. Indeed, according to Kephart and Chess, self-management is “the
essence of autonomic computing,” with self-configuration, self-optimization, self-
healing, and self-protection frequently considered aspects of self-management.
However, there cannot be set any limitation in relation with the other essential
characteristics an autonomic computing system may have, such as self-awareness,
self-regulation, self-description, or self-creation [21, 22, 39, 44].

258 I. Drăgan et al.

Despite the complexity of the interdisciplinary approaches needed in order to
achieve the full set of characteristics, according to [46] a minimal set of properties
can be identified for any autonomic system:

1. Automatic – self-control of systems’ internals, coupled with the self-containment
ability

2. Adaptive – the “capability to change its operation”
3. Aware – awareness on its operational context and internal states, which allows a

system to control its adaptive property

In fact, Schmid et al. clearly differentiate autonomic computing, as it was defined
in [21], from autonomic systems, and offer a definition for the latter: “an autonomic
system is a system that operates and serves its purpose by managing its own self
without external intervention even in case of environmental changes” [46].

By its essential characteristics, cloud computing already offers an environment
which exposes some of the properties of autonomic computing and autonomic
systems, like the on demand self service or rapid elasticity characteristics. However,
important steps are required to enable an autonomic behavior in the context of
cloud computing: for example, at software-as-a-service (SaaS) level, the autonomic
properties may be put in action by the means of fully automated cloud service
lifecycle [19] or by employing new approaches in service brokering [12].

In order to enable automatic scalability, which is involved by the rapid elasticity
cloud characteristic, it is supposed to support unpredictable number of demands and
automatic adaptation which is required to avoid the failures of hardware resources;
some techniques that are specific to autonomic systems must be also applied in
the cloud context. One may consider that the main characteristics of an autonomic
cloud are as follows, as argued in [43]:

1. Resources variability, which involves services for which the number of instances
varies by adapting to unpredictable changes

2. Contextual behavior, through methods of self-management, self-tuning, self-
configuration, self-diagnosis, and self-healing

3. Easy deployment, management and robustness, by using techniques for the
design, build, deployment, and management of resources with minimal human
involvement and presenting itself as a robust and fault tolerant system

One may notice that the set of properties from [43] are built in close relation with the
minimal set of properties describing an autonomic system [46], with some additional
requirements of robustness and fault tolerance.

10.2.2 The Autonomic Loop

In its series of autonomic computing white papers, IBM was developing the
architectural blueprint for autonomic computing [3]. The autonomic manager was
described as one of the core components that “manages other software or hardware

10 Applying Self-* Principles in Heterogeneous Cloud Environments 259

Fig. 10.1 The IBM MAPE-K autonomic loop (Source: [3])

components using a control loop, as depicted in Fig. 10.1. The control loop of
the autonomic manager includes monitor, analyze, plan and execute functions.”
The internal structure of the autonomic manager included five core components,
Monitor, Analyze, Plan, Execute and Knowledge, which inspired the acronym often
used in literature: the MAPE-K loop. The four functions of the autonomic manager
are as follows [3]:

Monitor: a function of the autonomic manager, responsible for collecting,
aggregating, filtering, and reporting of various details coming from managed
resources

Analyze: the function used to analyze collected data to get an understanding of
current state of the system

Plan: the function of the autonomic manager needed to trigger the necessary
actions to achieve certain goals and objectives

Execute: the function used to change the behavior of the managed resources.

These functions are using, analyzing, modifying, or acting based on a set of shared
data, the shared knowledge, for which different types were identified: solution
topology knowledge; policy knowledge; problem determination knowledge.

There exist several approaches based on the MAPE-K autonomic loop which
were applied in cloud computing. In [36], the authors proposed an extension of
the autonomic loop, by introducing an additional phase, the Adaptation, which was

260 I. Drăgan et al.

viewed as “a balance to the virtualization layer” and contained “all steps necessary
to be done before successful deployment and start of the application.’. The new
model, named A-MAPE-K, also received an update for the knowledge management
phase in order to fully support the newly defined, adaptation phase. A rule-based
knowledge management approach associated with this autonomic loop was further
extended by the authors in [35].

Leite et al. exploited the autonomic loop in order to deliver a cloud autonomic
architecture for parallel applications. The autonomic properties were used for
achieving a series of objectives: to “provide a platform for high performance com-
puting in the cloud for users without cloud skills; dynamically scale the applications
without user intervention; meet the user requirements such high performance at
reduced cost” [31].

In [29], Koehler et al. enhanced the Vienna Grid Environment (VGE) with
some adaptive abilities in order to enable the environment for cloud deployments.
The MAPE-K autonomic loop was used to enable “on demand selection and
configuration of resources and the application based on utility functions.”

The authors of [19] discussed the relevance of the MAPE-K functions in
the context of cloud governance and management. In their analysis, the Exe-
cute function was set in relation with resource provisioning, configuration, and
deployment; the Monitoring function was related with resource monitoring actions,
SLA management with the Plan function, while the Analyze function was linked
with the capability of application reconfiguration and thus being established links
between the MAPE-K autonomic loop functions and ISO/IEC 38500, as depicted in
Fig. 10.2.

10.2.3 European Initiatives for Autonomic Clouds

The set of properties for autonomic computing, autonomic systems, and the
MAPE-K autonomic loop received extensive attention from a series of research
projects. Such recent approaches, dealing with autonomic aspects of cloud, include
several European initiatives like PANACEA,1 HARNESS,2 MIKELANGELO,3

CloudLightning,4 and SUPERCLOUD5 are several European ongoing initiatives
dealing with autonomic clouds, respectively, Autonomic HPC Clouds.

PANACEA is a FP7 project, which builds innovative solutions for a proactive
autonomic management of cloud resources, based on a set of advanced machine
learning techniques and virtualization, by using an “ML-based framework for

1http://projects.laas.fr/panacea-cloud/
2http://www.harness-project.eu/
3https://www.mikelangelo-project.eu/
4http://cloudlightning.eu/
5http://supercloud-project.eu

http://projects.laas.fr/panacea-cloud/
http://www.harness-project.eu/
https://www.mikelangelo-project.eu/
http://cloudlightning.eu/
http://supercloud-project.eu

10 Applying Self-* Principles in Heterogeneous Cloud Environments 261

Fig. 10.2 The MAPE-K and ISO 38500 models (Source: [19])

Proactive Client-server Application Management (PCAM)” [15]. It supports a series
of properties of the autonomic cloud, including (a) self-healing against anomalies
by recovering from multiple node and link failures and using proactive rejuvenation
of applications and servers for preventing crashes and increasing the availability,
predicting the threshold violation of response time of servers; (b) self-configuration
by efficiently mapping user’s requirements onto distributed clouds and configuring
on-the-fly in the presence of anomalies, self-optimizing using proactive migration
of virtual machines from one cloud resource to another, maintaining the quality of
service of end-to-end flows; (c) self-protection using proactive reconfiguration of
overlay networks to protect against security attacks.

The FP7 HARNESS project offers an approach to the integration of het-
erogeneous hardware and network technologies into data center platforms, to
increase performance, reduce energy consumption, and lower cost profiles for cloud
applications. It develops an enhanced PaaS software stack that brings new degrees
of freedom to cloud resource allocation and optimization, providing mechanisms
to “automate the choice of resources that should be assigned to arbitrary non-
interactive applications that get executed repeatedly” [25]. Technologies such as
FPGAs, GPGPUs, programmable network routers, and solid-state disks promise
increased performance, reduced energy consumption, and lower cost profiles.
Specialized technologies are virtualized into resources that can be managed and

262 I. Drăgan et al.

accessed at the platform level. The cloud platform has access to a variety of
resources to which it can map the components. A flexible application may poten-
tially be deployed in many different ways over these resources, each option having
its own cost, performance, and usage characteristics.

High-performance computing, big data, and I/O intensive applications inspired
the H2020 project MIKELANGELO. The work for this project is concentrated
on I/O efficiency improvement through an extension of a specific hypervisor,
a new operating system6 designed for the cloud, and implementation of new
communication methods via remote direct memory access, and by integrating them
within a cloud middleware and an HPC batch system.

The H2020 project CloudLightning proposes a new way of provisioning het-
erogeneous cloud resources to deliver services, specified by the user, using a
specific service description language (CL-SDL). As there is an evolving complexity
of modern heterogeneous clouds, the project proposes to build a system based
on principles of self-management and self-organization, with a specific goal to
address energy inefficiencies particularly in the use of resources and consequently
to deliver savings to the cloud provider and the cloud consumer in terms of resource
utilization, particularly power consumption [33].

The mission of the SUPERCLOUD project is to “build a security management
architecture and infrastructure to fulfill the vision of user-centric secure and depend-
able clouds of clouds.” In order to reach this objective, the paradigms approached
by this project must be self-managed, with a specific goal to “reduce administration
complexity through security automation” [30]. With such an approach, it is expected
to tackle both the new security risks, identified in the context of multi-cloud
applications, as well as the traditional ones, as previously identified in the literature.
All these risks are set in the context of security, privacy, and trust, as mentioned
in [52].

10.3 Cloud Architectures

Together with the large scale adoption of cloud computing, a series of reference
architectures addressing various of its aspects were identified and defined. Being
based on the five essential characteristics of cloud computing, with an emphasis on
the on-demand self-service, resource pooling and rapid elasticity and being inspired
by the developments in grid computing, these architectures clearly identified
components that may offer the foundation for autonomic approaches for cloud
computing.

6http://osv.io/

http://osv.io/

10 Applying Self-* Principles in Heterogeneous Cloud Environments 263

10.3.1 Service Automation

Automation, in the context of cloud computing, represents one of the challenges
for improved inter-cloud workload deployments. The “NIST Cloud Computing
Standards Roadmap” document mentioned it as “a future direction of workloads
data and metadata standardization is to help improve the automation of inter-cloud
system workload deployment,” while it enables reduced costs in various distributed
architectures (including cloud system, grids, and others) [40].

One of the first architectures dedicated to cloud management was defined by
DMTF [17] in a series of two white papers from the Open Cloud Standards
Incubator (OCSI). While the work in the first one intends to offer a unified
framework for cloud interoperable management [17], the second of the DMTF
documents shows, in the context of the provision resources or deploy service
template scenarios, that “the Service Manager, Provisioning Manager, and Metering
Manager, are functions that are most likely automated” [18].

In the IBM CCRA document [24], the service automation management is one
of the core components for supporting the Operational Support Services (OSS)
aspects of a cloud deployment. IBM’s CCRA, amongst others, “combines powerful
automation and services management (low touch) with rich business management
functions for fully integrated, top-to-bottom management of cloud infrastructure and
cloud services,” and achieving the “low-cost automation required to successfully
scale to economically successful cloud solutions” was identified as raising highly
relevant challenges related with the cloud management platform.

In Microsoft’s Cloud Services Foundation Reference Model (CSFRM) series
of articles [16],7 a specific component for coordination of automated processes
“across multiple Management and Support and Infrastructure components” was
identified, which was considered a key enabler for controlling service costs, while
in a white paper from the Cloud Council, service automation was considered one
of the security controls used for the development of a set of security use case
scenarios [11].

10.3.2 Autonomic SLA Management

There were recent intense efforts in defining and implementing service level agree-
ment (SLA) approaches for cloud resource provisioning. Service level agreements
(SLA), quality of service (QoS) as well as “autonomic management system and
PaaS framework” were identified at the core of several open challenges and archi-
tectural components for autonomic cloud computing, in [8]. The overall approach
was described by Kertesz et al., where SLA-based cloud middleware was seen in

7https://aka.ms/csfrm,https://aka.ms/Q6voj9

https://aka.ms/csfrm, https://aka.ms/Q6voj9

264 I. Drăgan et al.

the core of the implementation of the autonomic principles, and the autonomic loop
is based on SLA violations while service level objectives (SLOs) offer the basis for
autonomic reactions [28].

The importance of SLA-based management was also revealed in [9], where
autonomic resource management was mentioned as one of the important research
challenges in the field. In the case of SLA-based autonomic resource management,
the steps from the MAPE-K autonomic loop are highly relevant, as continuous
monitoring of service request and appropriate answers to requests are necessary
for implementing self-management for the reservation process, self-configuration
of components, adaptability to new service requirements, and others. However,
for the MAPE-K loop to come into action, yet other research challenges were
mentioned, such as Service Benchmarking and Measurement or SLA-oriented
Resource Allocation Through Virtualization.

A slightly different approach was considered by Almeida et al. in [2], where the
authors are trying to approach two different types of problems, from a provider point
of view:

• The SLA management problem: minimizing resource management costs, while
maximizing SLA-based revenues

• The long-term capacity planning problem: maximizing SLA-based long-term
revenues, while minimizing the total cost of ownership (TCO) of resources, as a
reaction to the size of a service center.

Even if their approach was not set in the context of cloud computing, the associated
performance model offers results which are highly relevant for various distributed
environments.

Other SLA-oriented approaches were considered in recent years, covering
particular autonomic features. An autonomic approach based on SLA templates
was considered in [6]. In this approach, the targeted autonomic behavior was rather
for the cloud markets by using a two-step autonomic SLA mapping mechanism. A
different mechanism was investigated [35], where “an autonomic SLA enactment
and resource management tool for Cloud Computing infrastructures on the level
of VMs” was presented, where “no a-priori learning was necessary and adaptation
happens on the fly during execution.”

10.3.3 Cloud Brokerage and Cloud Service Lifecycle

An autonomic computing framework is naturally implemented using multi-agent
systems (with micro-services as an alternative), like in [4, 49, 50]. Alternative
artificial intelligence techniques, like genetic algorithms, neural networks, or multi-
objective and combinational optimization heuristics, can also be successfully
applied, especially in the context of the solutions supporting cloud brokerage and
cloud service lifecycle [38, 49, 53].

10 Applying Self-* Principles in Heterogeneous Cloud Environments 265

The relevance of the cloud broker was revealed in a Gartner report8 from the
early ages of cloud computing, as the necessary link between service consumers
and service providers, designed to address three major uses: service intermediation,
service aggregation, and service arbitrage. Closely related with the information
from previously mentioned Gartner report, the cloud broker was later defined in
a NIST document as “as an entity that manages the use, performance, and delivery
of cloud services, and negotiates relationships between Cloud Providers and Cloud
Consumers” [32].

The CompatibleOne project defined an “open source broker, which provides
interoperable middleware for the description and federation of heterogeneous
Clouds and resources provisioned by different Cloud providers” [53]. This cloud
broker is at the core of the Advanced Capabilities for CORDS model (ACCORDS)
cloud brokerage platform, which is built on top of the CompatibleOne Resource
Description System (CORDS) model. One may notice that the architecture of
this platform follows the MAPE-K principles, which are visible through its four
functional steps:

1. Handling user’s requirements, and creation of the CORDS manifest (the Knowl-
edge) – enabling the Monitoring step, by specific CompatibleOne components

2. Validation of CORDS manifests and build of the provisioning plan – the Analyze
step

3. Execution of the provisioning plan (enabled by the ACCORDS broker) – the
Plan step

4. Cloud service delivery – the Execution step

In the context of the mOSAIC project,9 a cloud agency was defined to carry out
specific cloud resource brokering activities and to assist the mOSAIC PaaS during
its self-deployment activities. The mOSAIC PaaS was designed as a self-deployable
platform, capable to run on top of various IaaS deployments. The mOSAIC cloud
agency [4, 49], which is built as a “mobile agent”-based solution, offers support
for cloud resource management, by means of SLA negotiation and management.
The SLA negotiation capabilities also include dynamic renegotiation of SLAs, in
order to adapt itself to the time varying consumer requirements. The autonomic
characteristics are exposed by different agent classes, including:

1. The client agent class, which dynamically creates and updates the SLAs based
on users’ requirements – the plan step

2. The mediator agent class, which coordinates various provider agents to assist in
selecting the best provider – exposing activities from the analyze and execute
steps

3. The negotiation agent class, which will support specific SLA-based activities in
order to optimize contracts – exposing activities from the analyze step

8http://www.gartner.com/newsroom/id/1064712
9http://www.mosaic-cloud.eu/

http://www.gartner.com/newsroom/id/1064712
http://www.mosaic-cloud.eu/

266 I. Drăgan et al.

4. The monitor agent class, which will collect available information necessary to
assess application performance and current values of various QoS parameters,
this agent class will be supported by the benchmarker agent type – the monitoring
step

5. A semantic engine, built on top of the mOSAIC ontology [37], is used by various
agents for semantic validation, translation and unification of messages coming
from different sources, in order to assist in the construction of complete SLA
specifications – the knowledge component.

An interesting approach was offered by the Cloud@Home approach, which
“aims at implementing a brokering-based Cloud Provider starting from resources
shared by different providers, addressing QoS and SLA related issues, as well as
resource management, federation and brokering problems” [12, 13] and defines an
autonomic service engine framework (CHASE – Cloud@Home Autonomic Service
Engine). Another SLA-based approach for an “SLA-based Service Virtualization
and on-demand resource provision” is described by Kertesz et al., which is built
on top of the principles of autonomic computing, in order to deliver different func-
tionalities including meta-negotiation, brokering, and automatic service deployment
and previously identified in [5]. The SSV architecture from [27] identifies three
mandatory components for the realization of the autonomic architecture: agreement
negotiation, service brokering, and service deployment and virtualization, and clear
mappings to the MAPE-K model were offered.

10.4 Self-*

As presented in Sect. 10.3, there are a series of reference architectures that address
the problem of self-*. Most approaches described in literature are based on the
concept of matchmaking that basically tries to satisfy all the requirements from a
request based on the resources that are available. Before we can dive deeper in
the concepts and principles of matchmaking, we first have to define the driving
characteristics that allow us to identify and quantify the needed resources. Table 10.1
gives a short overview of the core properties that are used in order to define the self-*
principles.

Lots of attention coming from various research communities was directed toward
the study of the self-* properties in order to better adapt and integrate the concepts in
the field of study. As presented in Sect. 10.2, some of the recent European initiatives
invested lots of effort in research and are still focusing on adoption and improvement
of the principles from self-* to new cloud architectures. The rest of this section tries
to give a short overview of the directions identified in various research literature.

There are a couple of major directions identified by the authors in [47].
As presented, the process of matchmaking refers to the mechanism that allows
prediction of future steps that have to be taken in order to fulfill future and current
requests based on the historical information collected. In contrast to this approach,

10 Applying Self-* Principles in Heterogeneous Cloud Environments 267

Table 10.1 A summary of the core self-* properties

Self-* property name Description

Self-stabilization refers to a system that is capable of recovering to a configuration that
meets all the safety properties when starting from a random initial state

Self-healing a system is said to be self-healing if by the occurrence of an external
event that destabilizes the system that state causes at most a temporary
violation of the systems safety properties

Self-organizing refers to a system with a number of processes that run simultaneously
that is capable of maintaining, improving or restoration of one or more
safety properties after a set of external actions have happened to the
system

Self-organizing refers to the capability of a system to optimize some objective function,
that is starting from an arbitrary initial configuration it has the capability
of improving its configuration in such a way that the objective function
is optimized

Self-configuration refers to the capacity of a system to organize itself, such as changing
network topology or various settings of software and hardware compo-
nents

Self-scaling refers to the capability of a system to behave as expected under various
configurations on the system size

basic cloud computing model does not provide any means of prediction. In their
paper, the authors use annotated monitoring data for prediction and matchmaking
process. The process of matchmaking is a crucial component when it comes to self-
healing clouds. That is, in the process of on-the-fly vendor replacement for various
reasons, it is crucial to have good prediction mechanisms that enable efficient
solution generation. Nowadays, it is common to have services that run on multiple
clouds (offered by various vendors) hence on-the-fly replacement for infrastructure
parts becomes essential.

The process of matchmaking is nothing else than another component that stands
between the cloud service request and the cloud service description (composition of
clouds that enables run of the application). Matchmaking component is in charge of
generating a large set of cloud offers for the cloud service request based on the cloud
descriptions. As next step it filters out the offers that are not efficient from various
points of view; here efficiency is defined by the user. Some of the classical efficiency
measurements refer to cost efficiency, RAM, and CPU usage, or even storage cost
can be involved in defining the cost function. Based on these cost functions, the
generated offers are ranked, and a small set of offers are presented back to the cloud
consumer in order to select and deploy its services.

Marinescu et al. in [34] argues that the self-organizing and self-managing
principles for autonomic clouds are not only desirable but rather necessary for the
future of cloud computing.

One classification of self-manageable cloud can be made as follows, first we
have novel solutions for the cloud computing approach as presented in [7]. Second
we have the solutions based on service level agreement (SLA) and negotiation,

268 I. Drăgan et al.

inspired from the related area of grid computing. Lastly we have a category that
is inspired from principles of automatic computing adapted to meet the needs of
cloud computing.

The work presented in [1] proposes an extension to the service abstraction in
the context of Open Grid Service Architecture (OGSA) for quality of service (QoS)
properties. This extension is intended for providing means for various requests to
search in computational grids for services based on QoS criteria. The framework
is intended to operate at the application layer and provide support for service
discovery based on properties describing QoS. The interaction between various
modules is done by either reservation of resources or by allocating resources based
on a predefined budget.

Another direction coming from the Grid computing community is focused
on service level agreement (SLA) brokering [41]. In a broad sense, the SLA is
nothing else than a bilateral agreement between the service provider and the service
consumer. This approach is based on a multi-agent system that is in charge of
scheduling the various resources in order to meet the SLA. As for the negotiation
protocol, a variation of the Contract Net Protocol is used. Contract Net Protocol
[48] is a communication protocol that allows efficient cooperation between agents.
With regard to SLAs, there exist a big variety of languages that allow end-users to
specify SLAs, and there are a couple of directives that aim at standardizing how
these documents should look e.g., the web service level agreement (WSLA).10

From the perspective of scientific computing and doing science using the cloud
as back-end, there are some results summarized in [14]. In their paper, Deelman et
al. focus only on one dimension by examining the trade-offs of various execution
modes and provisioning plans for cloud resources. They show that in a setting
where the application is data intensive with small computational granularity, the
cost of computation power represents a big proportion of the overall costs for the
application in test. As a case study, they used the Montage application and the
Amazon EC2 fee structure.

In [5], the first steps toward a self-manageable cloud services are presented.
The work is focused on presentation of core components that allow a system to
keep its state stable by having services manage themselves. Alongside, a taxonomy
for resource submission is developed in order to match the requirements of self-
manageable cloud services. Evaluation was carried out on a system that is based on
service mediation and negotiation bootstrapping.

10.5 Applications of Self-* Principles in Cloud Computing

The principles and methodologies detailed in the previous sections are being
implemented in particular by cloud computing environments. The dynamic nature
of cloud environments enables developers to easily use intelligent self-* style

10http://www.research.ibm.com/WSLASpecV1-20030128.pdf

http://www.research.ibm.com/WSLASpecV1-20030128.pdf

10 Applying Self-* Principles in Heterogeneous Cloud Environments 269

methodologies and principles. One of the first principles to be tackled is that of
self-optimization, also known as distributed orchestration.

Traditional orchestration usually follows a client-server type architecture pattern.
This model assumes that there is a central component which handles service
composition. Choreography uses interaction rules between services to achieve the
same goal in a distributed manner. Distributed orchestration is situated at the
intersection of these two approaches, borrowing concepts from both approaches.
That is, it uses a central component of service composition, but the component is
elected from a pool of peers instead of being fixed before runtime.

Dynamic resource configuration is a key issue in orchestrating dynamic mas-
sively scalable applications. This is necessary as newly provisioned resources have
to be configured in order to integrate them into the already running application.
This configuration is not done in a stateless manner; most often, it is based on the
current state of the running application. In order to effectively orchestrate and then
configure such an application, a scalable near real-time monitoring solution needs to
be considered in the application design. This can take the form of a strongly coupled
monitoring component present in the application architecture. Another way would
be by providing mechanisms that allow application metrics (performance, quality, or
any other type of metrics) to be easily consumed by external monitoring solutions.
The resulting metrics can be used in the creation of both anomaly detection (both in
behavior or in resource usage) and predictive workload models [10, 42].

In order to satisfy various quality of service, optimal resource selection and allo-
cation are needed. This is still an open research topic, and a wide range of solutions
have been proposed ranging from computational optimization [20] to evolutionary
optimization [51]. In the FP7 FUSION project,11 an orchestration framework was
developed. The framework was designed for deployment of resources close to the
user. It uses monitoring metrics related to current capability of a particular instance
in order to decide if scaling or even stopping an instance is necessary.

Serf12 is a decentralized solution for service discovery and orchestration that is
designed to be lightweight, highly available, and fault tolerant. It uses a lightweight
gossip protocol for communication among nodes. In order for a newly created
service to join a cluster, it must know at least one member of the said cluster.
Communication (in this case done UDP) is done using a fixed fanout and time
interval. Its reliance on the gossip protocol means in the case of a large number
of joined services, the convergence rate can become quite significant (eventual
consistency). This limitation also extends to services which have a small startup time
(i.e., unikernels) and a low life expectancy. In essence the service can start, fulfill its
designated task, and be decommissioned before convergence can take place.

Consul13 is built on top of Serf and leverages the membership and failure
detection features built upon them in order to add service discovery. Consul focuses

11http://www.fusion-project.eu/
12https://www.serf.io/
13https://www.consul.io/

http://www.fusion-project.eu/
https://www.serf.io/
https://www.consul.io/

270 I. Drăgan et al.

more on service level abstraction in contrast to Serf, which relies on node level
abstractions. It is also important to note that while Serf sacrifices consistency for
availability, Consul is the other way around; it cannot operate if the central servers
cannot form a quorum. At high level, Consul is made up of Consul agents (each
member of a Consul cluster must run an agent instance) that can run in server or
client modes and can run HTTP or DNS. They are also responsible for running
checks and keeping services in sync. In client mode, agents are basically stateless
and are only responsible to forward remote procedure calls to a server. Server
agents participate in the Raft quorum and are responsible to maintain the cluster
state. Consensus in Consul means the election of leaders as well as the ordering
of transactions. Transactions are applied to finite-state machines, and consensus
requires the consistency between replicated state machines.

Akka14 is an open source toolkit and runtime designed for the construction
of concurrent and distributed applications running on the JVM. It uses an actor-
based concurrency model which is message based and asynchronous. Each actor
communicates directly or using routing facilities. This allows for easy scaling both
horizontally and vertically. Actors are arranged hierarchically making dealing with
program failure easier to handle. It has been used to create a wide array of self
optimizing applications.

Configuration management systems are a key feature when designing cloud
applications using self-* principles. They are used to automatically provision and
configure new VMs. There are currently a wide array of such solutions likes Chef,15

Puppet,16 and Salt.17 Chef in particular is one of the most notable solutions in
the Infrastructure as a Code paradigm. Users write recipes that describe how the
newly provisioned application VMs should be configured. The Chef server and
clients use these descriptions as a basis for management. It can be argued that
these configuration management systems, in many ways, adhere to a multi-agent
paradigm in that there are a number of software entities that have a clear goal
(in the case of Chef given by the recipes) which they have to achieve. The most
important difference of this type of system and an agent based one is that in the case
of configuration management each component (be it the server or the clients) has a
narrow degree of autonomy to create a plan in order to achieve a given goal. The plan
being defined in large part by the user. However, there are ways to generate these
plans dynamically using the configuration management system only as an actuator.

In order to create a self-healing application in a cloud environment, they have
to be in a place where some mechanisms allow this to happen. First a cloud
environment will have to have the ability to scale some, if not necessarily all,
of its components with the aid of load balancing and a mechanism to create
and enforce scaling policies. For example, in the case of AWS, this can be done

14http://akka.io/
15https://www.chef.io/
16https://puppet.com/
17https://saltstack.com/

http://akka.io/
https://www.chef.io/
https://puppet.com/
https://saltstack.com/

10 Applying Self-* Principles in Heterogeneous Cloud Environments 271

using EC2 autoscaling groups and elastic load balancing. Secondly, there has to
be a way of monitoring the application which allows the orchestration to react
based on the detected events (failures, high load, etc.). Automatic failover of
unresponsive components is also key in creating a self-healing application. Once
a failed component is detected, all traffic meant for that component has to be
redirected to a replica. Self-healing networks need to recognize failures in a network
and deal with them automatically. For example, a web server can be considered to
be stateless. If one server fails, traffic to that server should be rerouted to other web
servers automatically. Once the server is back online, a series of tests should be run
on the server to see if it is configured correctly. Once all tests have been done, traffic
can be safely rerouted to it. The abovementioned scenario can be easily implemented
by taking advantage of autoscaling groups in AWS.

Druva18 is a cloud-based storage solution which deploys its own file system
called Druva cloud file system. It has source-side data de-duplication, continuous
data protection, compressed and encrypted data storage, and policy-based data
retention. It has many key concepts which are important in a cloud-based storage
system such as durability (it uses AWS S3 and DynamoDB for file system meta-
data storage). It also features self-healing capability by using inSync that continues
to serve both backup and restore requests despite possible inconsistencies. It
accomplishes this by periodically simulating a restore procedure. If a restore
procedure fails, it executes a purge of that snapshot. An inconsistency report is
generated which ensures future consistency.

10.6 Conclusion

The application of the self-* principles in heterogeneous cloud environments is a hot
topic nowadays, and lots of effort is invested in the development and integration of
the principles in production-ready environments. Adaption and promotion of self-
* principles in the context of heterogeneous cloud environments is based on good
examples from practice. An important step in this direction is the establishment of
a good set of templates that can be used in order to use the self-* principles in
production-ready systems.

This chapter gives an historical overview of the self-* principles and also of
individual properties that make a system to be classifiable as self-* system. We
also give a brief overview of the state-of-the-art literature that is guiding the field of
study as well as the various research projects that have as a goal the development of
various components that contribute to the composition of a self-* system. Alongside
the presentation of individual characteristics of self-*, we also present interesting
European initiatives aiming at improving both the theoretical and the practical part
of various fields of self-* cloud environments. Last but not least this chapter also a

18http://www.druva.com/

http://www.druva.com/

272 I. Drăgan et al.

succinct presentation of production ready tools and their characteristics offered. By
combining all the ingredients presented in this chapter, we believe that the field of
self-* clouds has a good starting point for further development and improvement.

Acknowledgements This work is partially funded by the European Union’s Horizon 2020
Research and Innovation Programme through the CloudLightning project (http://www.
cloudlightning.eu) under Grant Agreement Number 643946 and the DICE project (http://www.
dice-h2020.eu/) under Grant Number 644869.

References

1. Al-Ali RJ, Rana OF, Walker DW, Jha S, Sohail S (2002) G-QOSM: grid service discovery
using QOS properties. Comput Inf 21(4):363–382

2. Almeida J, Almeida V, Ardagna D, Francalanci C, Trubian M (2006) Resource management
in the autonomic service-oriented architecture. In: 2006 IEEE international conference on
autonomic computing

3. An architectural blueprint for autonomic computing (2005) White paper, IBM
4. Aversa R, Di Martino B, Rak M, Venticinque S (2010) Cloud agency: a mobile agent based

cloud system. In: 2010 international conference on complex, intelligent and software intensive
systems

5. Brandic (2009) Towards self-manageable cloud services. In: 2009 33rd annual IEEE interna-
tional computer software and applications conference

6. Breskovic I, Maurer M, Emeakaroha VC, Brandic I, Dustdar S (2011) Cost-efficient utilization
of public sla templates in autonomic cloud markets. In: 2011 fourth IEEE international
conference on utility and cloud computing

7. Broberg J, Buyya R, Tari Z (2009) MetaCDN: harnessing ’Storage Clouds’ for high perfor-
mance content delivery. J Netw Comput Appl 32(5):1012–1022

8. Buyya R, Calheiros RN, Li X (2012) Autonomic cloud computing: open challenges and
architectural elements. In: 2012 third international conference on emerging applications of
information technology

9. Buyya R, Garg SK, Calheiros RN (2011) Sla-oriented resource provisioning for cloud
computing: challenges, architecture, and solutions. In: 2011 international conference on cloud
and service computing

10. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv
41(3):15:1–15:58

11. Cloud Computing Use Cases White Paper (2010) http://www.cloud-council.org/Cloud_
Computing_Use_Cases_Whitepaper-4_0.pdf

12. Cuomo A, Rak M, Venticinque S, Villano U (2012) Enhancing an autonomic cloud architecture
with mobile agents. Springer, Berlin/Heidelberg, pp 94–103

13. Cuomo A, Di Modica G, Distefano S, Puliafito A, Rak M, Tomarchio O, Venticinque S, Villano
U (2012) An sla-based broker for cloud infrastructures. J Grid Comput 11(1):125

14. Deelman E, Singh G, Livny M, Berriman B, Good J (2008) The cost of doing science on the
cloud: the montage example. In: 2008 SC – international conference for high performance
computing, networking, storage and analysis, SC 2008

15. Di Sanzo P, Pellegrini A, Avresky DR (2015) Machine learning for achieving self-* properties
and seamless execution of applications in the cloud. In: 2015 IEEE fourth symposium on
network cloud computing and applications (NCCA). Institute of Electrical & Electronics
Engineers (IEEE)

16. Dial J (2013) Cloud services foundation reference architecture – reference model – cloud and
datacenter solutions. BLOG entry

http://www.cloudlightning.eu
http://www.cloudlightning.eu
http://www.dice-h2020.eu/
http://www.dice-h2020.eu/
http://www.cloud-council.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://www.cloud-council.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf

10 Applying Self-* Principles in Heterogeneous Cloud Environments 273

17. DMTF (2010) Architecture for Managing Clouds A White Paper from the Open Cloud
Standards Incubator. Technical report, Distributed Management Task Force

18. DMTF (2010) Use Cases and Interactions for Managing Clouds A White Paper from the Open
Cloud Standards Incubator. Technical report, Distributed Management Task Force

19. Fortis T-F, Munteanu VI (2014) From cloud management to cloud governance. Continued Rise
of the Cloud, pp 265–287

20. Hajjat M, Sun X, Sung YWE, Maltz D, Rao S, Sripanidkulchai K, Tawarmalani M (2010)
Cloudward bound: planning for beneficial migration of enterprise applications to the cloud.
SIGCOMM Comput Commun Rev 40(4):243–254

21. Horn P (2001) Autonomic computing: IBM’s Perspective on the State of Information.
Technical report, IBM

22. Huebscher MC, McCann JA (2008) A survey of autonomic computing-degrees, models, and
applications. ACM Comput Surv 40(3):1–28

23. IBM’s project eLiza closing the gap between autonomic and grid computing (2002) http://
www.itweb.co.za/index.php?option=com_content&view=article&id=85862

24. IBM (2011) Getting cloud computing right. Technical report, IBM
25. Iordache A, Buyukkaya E, Pierre G (2015) Heterogeneous resource selection for arbitrary HPC

applications in the cloud. In: Lecture notes in computer science, vol 9038. Springer Science +
Business Media, pp 108–123

26. Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50
27. Kertesz A, Kecskemeti G, Brandic I (2014) An interoperable and self-adaptive approach for

sla-based service virtualization in heterogeneous cloud environments. Futur Gener Comput
Syst 32:5468

28. Kertesz A, Kecskemeti G, Brandic I (2011) Autonomic sla-aware service virtualization for
distributed systems. In: 2011 19th international Euromicro conference on parallel, distributed
and network-based processing

29. Koehler M, Kaniovskyi Y, Benkner S (2011) An adaptive framework for the execution of data-
intensive mapreduce applications in the cloud. 2011 IEEE international symposium on parallel
and distributed processing workshops and Phd Forum

30. Lacoste M, Charmet F (2015) Towards user-centric management of security and dependability
in clouds of clouds. E-Democracy–Citizen Rights in the World of the New Computing
Paradigms, pp 198201

31. Leite AF, Raiol T, Tadonki C, Walter MEMT, Eisenbeis C, de Melo ACMA (2014) Excalibur:
an autonomic cloud architecture for executing parallel applications. In: Proceedings of the
fourth international workshop on cloud data and platforms – CloudDP 14

32. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D (2012) NIST cloud computing
reference architecture: recommendations of the national institute of standards and technology
(Special Publication 500–292). CreateSpace Independent Publishing Platform

33. Lynn T, Xiong H, Dong D, Momani B, Gravvanis G, Filelis-Papadopoulos C, Elster A,
Khan MMZM Tzovaras D, Giannoutakis K et al. (2016) CLOUDLIGHTNING: a framework
for a self-organising and self-managing heterogeneous cloud. In: Proceedings of the 6th
international conference on cloud computing and services science. Scitepress, pp 333–338

34. Marinescu DC, Morrison JP, Paya A (2015) Is cloud self-organization feasible? Springer
International Publishing, pp 119–127

35. Maurer M, Brandic I, Sakellariou R (2012) Self-adaptive and resource-efficient sla enactment
for cloud computing infrastructures. In: 2012 IEEE Fifth International Conference on Cloud
Computing

36. Maurer M, Breskovic I, Emeakaroha VC, Brandic I (2011) Revealing the MAPE loop for the
autonomic management of cloud infrastructures. In: 2011 IEEE symposium on computers and
communications (ISCC)

37. Moscato F, Aversa R, Di Martino B, Fortis T-F, Munteanu VI (2011) An analysis of mosaic
ontology for cloud resources annotation. In: 2011 Federated Conference on Computer Science
and Information Systems (FedCSIS), pp 973–980

http://www.itweb.co.za/index.php?option=com{_}content{&}view=article{&}id=85862
http://www.itweb.co.za/index.php?option=com{_}content{&}view=article{&}id=85862

274 I. Drăgan et al.

38. Munteanu VI, Fortis T-F, Negru V (2013) An evolutionary approach for sla-based cloud
resource provisioning. In: 2013 IEEE 27th international conference on advanced information
networking and applications (AINA)

39. Nami MR, Bertels K (2007) A survey of autonomic computing systems. In: Third international
conference on autonomic and autonomous systems, (ICAS’07). IEEE, pp 26–26

40. NIST Cloud Computing Standards Roadmap Working Group (2013) NIST Cloud Computing
Standards Roadmap. Technical report, National Institute of Standards and Technology

41. Ouelhadj D, Garibaldy J, MacLaren J, Sakellariou R, Krishnakumar K (2005) A multi-agent
infrastructure and a service level agreement negotiation protocol for robust scheduling in grid
computing. In: Advances in grid computing, pp 651–660

42. Patcha A, Park J-M (2007) An overview of anomaly detection techniques: existing solutions
and latest technological trends. Comput Netw 51(12):3448–3470

43. Petcu D (2014) Building automatic clouds with an open-source and deployable platform-as-a-
service. In: Advances in parallel computing. Cloud computing and big data. IOS Press, pp 3–19

44. Poslad S (2009) Autonomous systems and artificial life. John Wiley & Sons, pp 317–341
45. Rimal BP, Choi E, Lumb I (2009) A taxonomy and survey of cloud computing systems. In:

Proceedings of the 2009 fifth international joint conference on INC, IMS and IDC, NCM ’09.
IEEE Computer Society, Washington, DC, pp 44–51

46. Schmid S, Sifalakis M, Hutchison D (2006) Towards autonomic networks. Springer,
Berlin/Heidelberg, pp 1–11

47. Serrano M, Le-Phuoc D, Zaremba M, Galis A, Bhiri S, Hauswirth M (2013) Resource
optimisation in IoT cloud systems by using matchmaking and self-management principles.
Springer, Berlin/Heidelberg, pp 127–140

48. Smith RG (1980) The contract net protocol: high-level communication and control in a
distributed problem solver. IEEE Trans Comput C-29(12):1104–1113

49. Venticinque S, Aversa R, Di Martino B, Rak M, Petcu D (2011) A cloud agency for SLA
negotiation and management. Lecture notes in computer science. Springer, Berlin/New York,
pp 587–594

50. Venticinque S, Aversa R, Di Martino B, Petcu D (2011) Agent based cloud provisioning and
management – design and prototypal implementation. In: Proceedings of the 1st international
conference on cloud computing and services science, pp 184–191

51. Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for service-
oriented clouds. Softw Pract Exper 41(5):469–493

52. Yaich R, Idrees S, Cuppens N, Cuppens F (2015) D1.2 SUPERCLOUD self-management of
security specification. Project deliverable, SUPERCLOUD Project

53. Yangui S, Marshall I-J, Laisne J-P, Tata S (2013) Compatibleone: the open source cloud broker.
J Grid Comput 12(1):93109

Part V
Performance and Efficiency

Chapter 11
Optimizing the Profit and QoS of Virtual
Brokers in the Cloud

Santiago Iturriaga, Sergio Nesmachnow, and Bernabé Dorronsoro

11.1 Introduction

The paradigm of cloud computing [10] has evolved extremely fast in the last years,
thanks to the unique properties it offers, such as flexibility, fail over mechanisms,
and the (apparently) unlimited computational power. The main features of the cloud
computing model are achieved by using the hardware virtualization technology.
This technology allows splitting a single physical computing resource into several
separated virtual resources which can be used to perform different computing tasks
or to offer different services. Regarding computing hardware, cloud computing is
based on virtual machines (VMs) that can be dynamically allocated and deallocated
to the physical resources (servers) according to demand and availability. The cloud
provider has the possibility of applying consolidation strategies to group a number
of VMs into the same physical server. Furthermore, when the available resources
owned by the provider are not enough for the current demand at a given peak
time, specific techniques such as cloud bursting [14] can be used to get additional
resources from external clouds, therefore extending the computing capacity of the
facility in a transparent way to the users.

Among the different provisioning models that cloud computing offers, we deal
in this chapter with the optimization of IaaS-oriented cloud services, which is
the most flexible model to deploy applications but also the most challenging for
the user. IaaS allows the user to significantly reduce infrastructure costs (e.g.,
from purchasing, installation/configuration, administration, and maintenance among

S. Iturriaga (�) • S. Nesmachnow
Universidad de la República, Montevideo, Uruguay
e-mail: siturria@fing.edu.uy; sergion@fing.edu.uy

B. Dorronsoro
Universidad de Cádiz, Cádiz, Spain
e-mail: bernabe.dorronsoro@uca.es

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_11

277

mailto:siturria@fing.edu.uy
mailto:sergion@fing.edu.uy
mailto:bernabe.dorronsoro@uca.es

278 S. Iturriaga et al.

others) providing flexibility comparable to an in-house infrastructure. Furthermore,
by dealing with IaaS-oriented services, a cloud system can provide PaaS and SaaS
services in a more efficient way. Since those models are built upon IaaS services,
the deployment of VMs can be customized to offer better PaaS and SaaS services to
its customers [18].

Since cloud computing became a successful computing model in many applica-
tion domains [4], the number of cloud providers has increased notably in the last
decade. Among many well-known cloud providers, we can name Amazon Elastic
Compute Cloud, Google App Engine Cloud Platform, Microsoft Azure, VMware
vCloud Air, and Rackspace. Many other companies offer small-scale services in the
cloud, too. Each provider competes for a market share, usually applying aggressive
strategies and offering many services, applications, bundles, and also different prices
and rates, thus overwhelming cloud end users with many options. Up to now, no
standardization exists among cloud providers; hence each one offers a set of services
with its own characteristics and pricing.

The lack of standardization and the increasing number of cloud providers
have made it challenging for end users to choose an adequate provider for their
applications. To cope with this, a new kind of player—the cloud broker—has
emerged as an intermediary between end users and providers [6]. The cloud broker is
an agent that manages a portfolio of cloud providers and offers consulting services,
advising end users which are the most suitable providers for them and the best way
to deploy their applications. This is a complex task in which the cloud broker must
take into account providers’ characteristics such as pricing, performance, service
level agreements (SLA), security, privacy, and any other feature that may affect the
user application. However, the services of a cloud broker are usually expensive,
increasing the budget of the end user.

Nesmachnow et al. [17] introduced a new brokering model which takes advan-
tage of the pricing structure of the cloud providers to produce revenue without
increasing the budget of the end user. In this new model, the cloud broker is called
a virtual broker, because it owns a number of virtual resources: it rents a number of
VMs from different providers for a long period of time with a significant discount
in price (i.e., up to 75%). Then, it sublets these VMs on an on-demand basis to
end users at cheaper prices than those of the cloud providers. We also introduced
the profit optimization problem for the virtual broker and proposed batch-oriented
algorithms for solving the planning problem taking into account profit and quality
of service (QoS) metrics. We proved that the virtual broker is capable of generating
revenue with very competitive pricing.

This chapter summarizes our previous work and extends it by improving the
problem formulation using a multi-objective approach to consider both profit and
QoS simultaneously. In this formulation the profit objective is the total economic
profit of the virtual broker, while the QoS objective is the sum of the waiting time
of all VM requests. We design six heuristic algorithms for tackling the problem and
accurately compute trade-off values between both objectives. These new algorithms
allow further studying the efficacy of the virtual brokering approach by comparing
the obtained results applying a Pareto dominance analysis of accurate trade-off
solutions.

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 279

We design two online scheduling algorithms and four offline scheduling algo-
rithms. Online algorithms are defined as being non-batch oriented, meaning they
schedule requests as soon as they arrive without creating batches and without delay.
On the contrary, offline algorithms accumulate arriving requests into batches and
schedule a whole batch of requests each time. To compare online and offline algo-
rithms is relevant since creating larger batches provides the scheduling algorithms
with greater context insight. But at the same time, the size of the batch affects the
QoS of the system since the VM requests must be delayed briefly for creating each
batch.

The main contributions of the research reported in this chapter are:

• The design of six fast optimization techniques to efficiently solve the problem of
optimizing the profit of the virtual broker and the QoS provided to its customers.

• The experimental evaluation performed in a benchmark set of realistic problem
instances, including data from real cloud IaaS providers. These experiments
demonstrate that the proposed methods are accurate and efficient strategies to
solve the problem, finding good quality schedules that account for both the virtual
broker profit and QoS provided to the cloud users.

• The reported results represent the new state of the art for this problem when
considering the virtual brokering approach.

The paper is structured as follows. The next section presents the current cloud
brokering model and introduces the new virtual brokering model. The optimization
problem addressed in this work and a review of the existing work on related broker-
ing proposals for cloud computing are presented in Sect. 11.3. The six scheduling
heuristics proposed for addressing the virtual brokering optimization problem are
described in Sect. 11.4. The experimental evaluation over a set of realistic workloads
and scenarios is reported in Sect. 11.5. Finally, Sect. 11.6 presents the conclusions
and formulates some open lines for future work.

11.2 Brokering and Virtual Brokering in Cloud Computing
Systems

This section introduces the main concepts about brokering models and services and
describes our proposal for a virtual broker for IaaS services.

11.2.1 Cloud Brokering

A cloud broker is defined as “a cloud service partner that negotiates relation-
ships between cloud service customers and cloud service providers,” according
to the International Organization for Standardization [13]. The figure of the cloud

280 S. Iturriaga et al.

broker [11] emerged as an important actor to assist cloud users in the quest of finding
the best choices of both hardware and software for implementing, deploying, and/or
executing their applications.

Cloud brokers are important agents to manage the different types of cloud
infrastructures. The most recognizable and popular type of cloud are public clouds,
which follow the standard model for providing services based on virtualized
environments. Public clouds provide services to multiple clients using the same
shared infrastructure and a multitenancy model for applications. Public clouds
are mostly used individually by users that do not have important concerns about
processing time or security, but they are also useful for industries and companies to
store and process nonsensitive data and other day-to-day collaborative operations.
Public clouds provide the standard features of scalability, flexibility, reliability, and
pay-as-you-use utility pricing for users.

Private clouds, usually also named as internal cloud or corporate cloud, are based
on the same features as public clouds but based on a proprietary infrastructure
and/or software. Private clouds are dedicated to a single organization, which makes
use of the resources and services to handle critical processes which have strong
uptime requirements, to store and handle sensitive data, or those that have large
security concerns. Private clouds tend to be small, due to the ownership costs and
management costs that cannot be delegated to third parties.

Finally, a hybrid cloud is a type of cloud that makes use of both private and
public services and resources in a coordinated way. This model allows scaling
the operation beyond a private infrastructure, delegating noncritical processes and
data to the public cloud, while keeping sensitive data and processing in the private
cloud. Processes and data can move between private and public clouds depending
on (variable) situations, such as changes in cost or changes on demand. Thus,
hybrid clouds provide the users the most flexible option to deploy their applications,
especially for dynamic operations, for example, workload peaks. The technique
that allows scaling up to get additional resources and services from a public cloud
is called cloud bursting. The hybrid model allows getting the most from cloud
resources and services, but it also requires an advanced management from both
technical and economical point of views. Issues such as compatibility, connectivity,
interoperability, and resource planning are critical for the correct operation of the
hybrid cloud.

Cloud brokers can play different roles according to the type of cloud they work
over. The broker can focus on specific actions and services for the public, private,
or hybrid cloud, such as the ones described in the following subsection.

11.2.2 Broker Types

An effective broker should guide users toward the most adequate cloud solutions
for their needs, creating and offering added value over basic cloud services. This
way, users will be attracted to use the broker services and make the brokering

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 281

model useful and profitable. The main concepts of cloud brokering apply to both
the traditional broker and the virtual broker.

Two main sources of users’ motivation emerge as possible targets for brokers
to attract users: the QoS point of view and the economic point of view. On the one
hand, brokers can focus on offering better services by improving the QoS of external
services and applications in their portfolio. On the other hand, brokers can focus on
improved and attractive pricing models, such as the one we exploit in this chapter.
These two main aspects directly impact on the broker reputation, which is certainly
an important feature in a market with a large number of actors offering brokering
services. We will also consider this important issue in the model for our virtual
broker.

Regarding brokering services, the literature recognizes two different classifica-
tions: the ones proposed by Gartner [12] and by the National Institute of Standards
and Technology (NIST) of the US Department of Commerce [3]; both classify
cloud services into three categories. On the one hand, the classification proposed by
Gartner defines three main types of services that fulfill distinct needs (we include a
brief description of each service type over the IaaS model):

• Aggregation brokers: These brokers provide bundles of services and platforms
with different features that gather software and hardware services from multiple
providers. The broker accounts for managing SLAs for the users. In the IaaS
model, aggregation services are provided by brokers that offer cloud computing
platforms with different features (e.g., computing power, storage, geographical
location, security, and access among others) following the single system image
concept, usually applied in distributed computing. A simple method for imple-
menting aggregation is the low-level hardware-as-a-service (HaaS) paradigm that
provides access to infrastructure from several cloud providers in a pay-as-you-
use model for cloud users. But the broker can also offer services that implement
a distributed system, including single IP address space, checkpointing, process
migration, single process space, and unified view of the file system among others.

• Integration brokers: These brokers provide services focused on creating a
unified system using capabilities from several providers. A typical example of
integration broker is the one that allows implementing the concept of hybrid
cloud. Specific services are offered by brokers for the integration of public and
private clouds. This model is usually implemented for high level services, but
integration of low-level IaaS services is also possible, for example, when a broker
provides assistance for the management of cloud bursting techniques.

• Customization brokers: These brokers provide services that allow personalizing
existing services, usually combining aggregation, integration, and other specific
features oriented to add value and build new products. Customization is useful
for creating new and sophisticated services, which are usually focused on specific
platforms, but can be used generally too. In the IaaS model, customization can
be applied to create managing services, for example, to provide support for
heterogeneous platforms including different hardware and devices.

282 S. Iturriaga et al.

On the other hand, the definition proposed by NIST groups broker services in the
following categories:

• Intermediation brokers: These brokers provide intermediation services as defined
by NIST. An intermediation service is an improvement or enhancement over
some given service. This improvement may be related to QoS activities, security,
performance reporting, or some other capability.

• Aggregation brokers: These brokers provide aggregation services which combine
and integrate multiple services into new services. These brokers must integrate
data and processes and ensure security in service-to-service interaction.

• Arbitration brokers: Arbitration services are a more flexible form of aggregation
services. In an aggregation service, all aggregated services are fixed and do not
change over time. However, in an arbitration service, the broker can dynamically
aggregate services according to a business-aware algorithm to achieve some
advantage related to pricing, features, or some other.

According to the mentioned classifications, our virtual broker would fall into the
categories of integration brokers and intermediation brokers.

11.2.3 The Virtual Broker for IaaS

Traditional brokering. As intermediary agent between cloud providers and cloud
users, a traditional cloud broker, offers several services. The most common service
offered by brokers is assisting users to find the best cloud options and providers
to satisfy users’ requirements or to deploy users’ applications. The “best” option
can be defined regarding many factors, including economic cost, QoS, reliability,
security and privacy, and several other criteria. Other more sophisticated services
can be offered by the broker (as described in the previous subsection), but in general
they all work following the specific methodology for the interactions between users,
broker, and providers that we describe in Fig. 11.1.

When using the services of a traditional broker T, users contact the broker asking
assistance for meeting specific needs (this interaction is represented with the blue
arrow in Fig. 11.1, labeled “T1”). The cloud broker searches cloud providers (within
his portfolio, or looking for different options in the public cloud) to find a set of
alternatives for the user (gray arrows in Fig. 11.1, labeled “T2”). This information is
then offered to the user, who may deal directly with the cloud provider(s) or interact
through the cloud broker (orange arrows in Fig. 11.1, labeled “T3.1” and “T3.2”).

The traditional cloud brokering approach has some limitations. For instance, it
limits the added value that broker offers to users when acting just as an intermediary
to find services in the public cloud (orange arrow labeled “T3.1” in Fig. 11.1).
However, this approach is also open to many possibilities for developing new
business models. Our proposal for the virtual broker is based on concentrating the
interactions in the broker and taking advantage of existing pricing schemes for IaaS
services, as we describe in the next subsection.

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 283

User 1

User 2

User n

Cloud
provider 1

...

Cloud
provider 2

Cloud
provider n

...

(T3.1) User interacts through the
broker or (T3.2) directly with

providers

(T1) Broker acts as
intermediary

(T2) Broker queries
providers

Broker
Aggregation

Integration

Customization

Fig. 11.1 Diagram of the interactions between users, a traditional broker, and cloud providers

Virtual
broker

User 1

User 2

User n

Cloud
provider 1

...

Cloud
provider 2

Cloud
provider n

...

(V1) Virtual
broker is always

intermediary

(V2) Leases reserved
VM instances

(V3) Rents on-demand
VM instances

Fig. 11.2 Diagram of the interactions between users, the virtual broker [17], and cloud providers

Virtual brokering. The virtual broker presented by Nesmachnow et al. [17] and
Alsina et al. [1] is based on an economic model that exploits some features of
current pricing schemes of public IaaS providers. On the one hand, under the
current situation, renting a specific virtual machine on a given cloud provider is
usually more expensive when the request is submitted on demand than when a
reserved instance is used (e.g., from 0.18 USD/h [reserved instance] to 0.41 USD/h
[on-demand instance]). On the other hand, public IaaS providers, such as AWS,
Azure, and Google, have significant discounts for volume usage. For example,
reserved instances by Amazon allow customers to get a discount of up to 60% when
compared to on-demand EC2 prices. However, to get these discounts, customers are
required to reserve the virtual machines for a long period of time. This policy is
applied to promote long-term provisioning of virtual machines, which accounts for
better hardware amortization and thus increased revenue for cloud providers. The
diagram on Fig. 11.2 presents the interactions in the virtual brokering model.

284 S. Iturriaga et al.

The virtual broker leases a number of virtual machines referred to as reserved
instances (marked in green Fig. 11.2) for a large period of time (e.g., from six
months to a few years) that it then sublets to its customers. These resources are
not physical servers owned by the virtual broker to provide cloud services, so the
virtual broker cannot be considered to be a traditional cloud provider.

The virtual broker pays a flat discount rate according to the plans offered by
the cloud providers which depends on the features of the reserved instances. These
resources are outsourced as on-demand virtual machines to users. In order to attract
customers, the virtual broker must charge less than cloud providers for on-demand
virtual machines. In our case, the broker rents virtual machines as proposed by the
IaaS model; however, the presented schema can be extended to models such as SaaS
and PaaS. This way, the virtual broker builds a cloud of virtual resources having
diverse characteristics, which is used as the infrastructure to offer different services.

Under this pricing schema, the virtual broker could generate a profit, as a
consequence of the significant price differences between reserved and on-demand
virtual machines. For example, price differences for reserved and on-demand virtual
machines ranges between 34%–55% in Amazon EC2 and 25%–56% in Microsoft
Azure cloud IaaS services.

Reputation is crucial for a virtual broker, as it is dealing with a very dynamic
market with many similar agents that provide services on the cloud. Rejecting user
requests is not desirable, as the broker gains negative reputation and the user might
not be willing to hire the broker services in the future. In case the virtual broker
cannot accommodate a specific upcoming request before the demanded deadline,
it must either use a larger available reserved instance (i.e., offering the user more
resources than (s)he requested), or buy an on-demand instance to fulfill the request.
In any case, the broker must charge the cost of the virtual machine originally
requested by the user, coping with any additional cost. This approach allows the
virtual broker to keep a positive reputation among its customers at the cost of some
negative impact on its revenue.

The success of the economical model applied by the virtual broker relies on two
key aspects:

1. An accurate forecasting of resources requested by users, in order to fulfill their
demands. This estimation can be performed by applying a market analysis
in order to study the needs and how attractive is the proposed model within
a given area of application or users from a cloud community. An accurate
forecasting technique is not critical for the adequate operation of the virtual
broker model because the broker has the capability of renting on-demand virtual
machines to guarantee that users are served. Nevertheless, the more accurate the
forecasting technique is, the more accurately the virtual broker can estimate the
number of reserved instances to rent. This is useful for maximizing the profit of
the virtual broker because overestimating demand would increase costs, while
underestimating it would decrease revenue;

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 285

2. The utilization of accurate scheduling algorithms (such as greedy heuristics
or evolutionary algorithms) for managing the available reserved instances and
scheduling them to customers’ VM requests in order to maximize their usage,
the proper location of requests to resources, and the hiring of on-demand virtual
machines when needed.

Rogers and Cliff [19] proposed a brokering business model similar to the one
we propose in this work but using a collaborative forecasting and dynamic pricing
approach. The model by Rogers and Cliff requires each customer to forecast its
own VM resource usage and rewards the most accurate forecasting customers
by lowering their resource renting costs. These forecasts are used by the broker
to determine the amount of reserved instances to rent. Recently, Cartlidge and
Clamp [5] showed that the model proposed by Rogers and Cliff [19] is not viable
with the pricing schemes from 2014, and they claim that “the window of opportunity
has now closed.” In this work, we present a new economic model which differs
from the one by Rogers and Cliff in several aspects and opens a new window of
opportunity for the virtual broker.

Our research studies the viability of the proposed economic model for the virtual
broker, and we propose specific planning algorithms to be applied in order to
maximize the broker profit and the QoS offered to users. Statistic approaches can be
applied for forecasting the required reserved instances, for example, as proposed by
De Felice and Yao [8]. Our algorithms assume that a given virtual cloud is already
reserved by the virtual broker. We focus on the comparison of online and offline
methods to manage the reserved instances to satisfy users’ request, according to
specific service levels agreed by users and the broker.

The virtual broker rents a distributed infrastructure, possibly including reserved
instances from many IaaS providers and geographically located in different data-
centers around the globe. As a consequence, it is very important to consider the
geographical location of resources, applications, and users and also the possible
communications between applications and users.

We focus on designing greedy heuristic scheduling algorithms to manage a set
of reserved virtual resources in order to satisfy as many user requests as possible,
without relying on on-demand resources. Only when the broker cannot fulfill the
contracted SLA, a kind of cloud bursting approach is applied, renting on-demand
virtual machines.

11.3 Virtual Machine Planning for a Virtual Cloud Broker

This section defines the virtual machine planning problem for a virtual cloud broker.
First, we introduce the general problem formulation. After that, we present an
extended problem formulation which considers geolocalization and various types
of applications.

286 S. Iturriaga et al.

11.3.1 Problem Formulation

The ultimate goal of the virtual broker is to maximize its revenue. To accomplish this
task, the virtual broker must efficiently manage its reserved instances to cope with
as many user requests as possible. In the case it cannot fulfill all requests without
violating the contracted SLA, it must rent on-demand VM instances from the public
cloud to satisfy demand, despite its revenue loss.

We define the SLA to be deadline based; thus it is associated with each customer
request. In its most simple formulation, the objective of our problem is to find a
mapping function to schedule customers’ requests into VM instances, maximizing
the revenue of the virtual broker while satisfying their deadlines. In order to
formulate this objective, we must introduce some definitions.

• The set of VM requested by the virtual broker’s customers VM D fv1; : : : ; vng.
Each request vi with a hardware demand given by its required processor speed
P.vi/, number of cores nc.vi/, memory size M.vi/, and persistent storage space
S.vi/. The arrival of these requests follows a stochastic homogeneous Poisson
process with an arrival rate of �.

• The customer must specify the time length T.vi/ and deadline D.vi/ of each
request. The time length is the amount of time the customer will use the VM,
while the deadline is the maximum amount of time the customer is willing to
wait for the VM to be available.

• The set of reserved VM instances leased by the virtual broker RI D fr1; : : : ; rmg

with m � n. Each reserved VM rj with hardware characteristics given by its
processor speed P.rj/, number of cores nc.rj/, memory size M.rj/, and persistent
storage space S.rj/.

• The cost function C.rj/ defines the cost the virtual broker must pay for renting the
reserved VM instance rj for each time unit. Additionally, COD.rj/ is the cost the
virtual broker must pay for renting the same instance as an on-demand instance
for each time unit.

• The pricing function p.rj/ defines the price the virtual broker charges its
customers for VM instance rj, for each time unit.

We consider all time units to be expressed in an hourly basis. This is a realistic
consideration since most cloud providers charge per hour for VM instances. Also, it
is key to highlight that for this model to be profitable, two things must be ensured.
First, C.rj/ � COD.rj/, since this model would be unprofitable if the discount for
the reserved instances owned by the virtual broker is not large enough. Second,
C.rj/ < p.rj/ < COD.rj/, this is key for attracting customers and generating
revenue.

The objective of our problem is to find a mapping function f W VM ! RI to assign
VM requests to VM instances which maximizes the profit of the virtual broker as
shown in Eq. 11.1.

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 287

Op D max
mX

jD1

X
iWf .vi/Drj

�
p.BF.vi// � C.rj/

�
� T.vi/

C
X

hWST.vh/>D.vh/

.p.BF.vh// � COD.BF.vh/// � T.vh/ (11.1)

where BF.vi/ is a simple function that returns the cheapest VM instance that is
suitable for request vi. That is, BF.vi/ considers every VM instance which meets or
exceeds the hardware requirements of request vi and selects the VM instance which
has the cheapest on-demand cost. Finally, ST.vh/ is the starting time of request vh

according to the scheduling function f .
As we already discussed, the virtual broker must satisfy all requests from its

customers. If it is unable to satisfy the deadline of a request vi with the reserved VM
instance given by BF.vi/, the virtual broker has two alternatives. If it has reserved
VM instances available with larger capacity than BF.vi/, it may assign one of them
to request vi. Otherwise, the virtual broker must lease an on-demand VM instance
from a cloud provider to satisfy request vi. Either way, this will generate a loss in
revenue, since the virtual broker must charge p.BF.vi// for request vi.

This problem is different from the classical VM deployment in physical servers
typically addressed in cloud computing to efficiently manage the resources of the
cloud provider [4, 20, 22, 23]. In contrast, we focus on mapping all VM requests into
the available RIs, taking into account that the assigned RIs must provide similar or
better performance than the corresponding VM request. Therefore, this is a resource
allocation problem with additional constraints, making it more complex than the
resource allocation problem (the resource allocation problem itself is NP-hard [21]).
In our problem, the virtual broker relies on the cloud provider to meet the SLA, thus
the broker just needs to ensure that all VMs are assigned to RIs with similar or larger
capacity.

Since we do not consider geographic localization in this formulation, we consider
it to be a location-agnostic formulation. Next we present an extended formulation
which includes geographic localization.

11.3.2 Extended Problem Formulation

In the previous section, we presented a formulation that takes into account all the
fundamental aspects of our problem. In this section we further extend our previous
formulation in order to address a more realistic scenario. In this extended, location-
aware formulation, we consider the geographic localization of customers and cloud
providers, the type of application of each VM request, and the cost of the data
transferred by each application through the network. On top of this, we also consider
a SLA-related objective to be optimized simultaneously with the profit objective we
defined previously. Let us introduce some additional elements, on top of the ones
introduced on our previous formulation.

288 S. Iturriaga et al.

• Two types of customers’ requests: computation tasks (CT) and web services
(WS). A computation task is a noninteractive application which may be executed
at any time just before its deadline D.vi/. Because of noninteractive nature,
there is flexibility on its starting time. On the contrary, a web service is an
interactive task; thus it must be started right away without delay. That is, there is
no flexibility on their starting time.

• A set of geographic zones C D fz1; : : : ; zlg. Each VM instance is located in a
geographic zone zj which depends on the geographic location of its hosting cloud
provider. Each application transfers data to and from users, which in turn are also
located in some geographic zone. Hence, we define a function DTC.zj; zi/ which
models the data transfer cost per hour for transferring data between zone zi and
zj. For VM request vi, the rate of data transferred between each zone zi is given
by DTD.vj; zi/, with

Pl
iD1 DTD.vj; zi/ D 1 8vj 2 VM.

The objective of the extended problem formulation is to find a mapping function
f W VM ! RI to assign VM requests to VM instances which maximizes the profit for
the virtual broker and also minimizes the waiting time for the customer’s requests.
In this multi-objective formulation, the QoS is related to the waiting time of the VM
requests, i.e., the time lapse since the VM request arrives up until the VM instance
starts its execution. Equation 11.2a shows the profit maximization objective (Op),
while the QoS objective (Oq) is modeled in Eq. 11.2b by the minimization of the
waiting time of customer’s requests. In Eq. 11.2b, AR.vi/ is the arrival time of the
customer’s VM request vi.

Op D max
mX

jD1

X
iWf .vi/Drj

�
p.BF.vi// � C.rj/

�
� T.vi/

C
X

hWST.vh/>D.vh/

.p.BF.vh// � COD.BF.vh/// � T.vh/ C (11.2a)

nX
iD1

lX
kD1

DTD.vi; zk/ � DTC.f .vi/; zk/ � DT.f .vi//

Oq D min
nX

iD1

ST.vi/ � AR.vi/ (11.2b)

11.4 The Proposed Scheduling Methods

In this section we introduce a set of efficient scheduling algorithms for solving the
two formulations of the virtual machine planning problem presented in the previous
section. We originally proposed these heuristics in [16] for solving a simpler
formulation of the problem proposed in this work. We designed them to be efficient

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 289

and effective and capable of scaling up to several hundreds of VM requests. They
aim to provide a trade-off between user-related and system-related criteria. User-
related criteria evaluate the algorithm from the user perspective and include metrics
such as response time, waiting time, and turnaround time. Likewise, system-related
criteria evaluate the algorithm from the system perspective and include metrics
like VM utilization, profit, and throughput. The presented heuristics consider two
different scheduling approaches: online scheduling and batch scheduling. Next we
describe each scheduling approach along with each heuristic.

11.4.1 Online Scheduling Heuristics

The online scheduling approach consists in immediately assigning VM requests to
VM instances upon each request arrival, considering the workload queue of each
VM instance for load balancing. This approach is depicted in Fig. 11.3. The online
approach is agile in the sense that VM requests are assigned to a VM instance
without delay. However, this does not mean the VM requests are executed right
away. It is most likely they will be queued at their assigned VM instances waiting
for their time to start executing.

The online heuristics we designed for this chapter are:

• Best fit resource (BFR). This heuristic assigns each VM request to the VM which
best fits the request of the customer, disregarding the deadline values. If there is
no reserved VM instance which best fits and satisfies the deadline of the request,
then an on-demand best fit VM instance is rented. The best fit is defined as a VM
instance with the same number of cores as requested and the closest amount of

Virtual broker

Online
Scheduler

User 1 VM 1

Request
queue

User 2

VM 2

VM 3

VM requests

Fig. 11.3 Schema of the online scheduling model

290 S. Iturriaga et al.

memory to the requested value. The approach used in this heuristic intends to
take advantage of assigning the requests to those VM instances that fit the most,
making room for most restrictive requests to be executed in larger reserved VM
instances.

• Cheapest instance (CI). This heuristic selects the cheapest VM instance that
allows the execution of each request. This heuristic is intended to reduce the
average waiting time of VM requests on the cloud system. An on-demand VM
instance is rented only if there is absolutely no reserved VM instance which can
satisfy the deadline of the VM request.

11.4.2 Offline Scheduling Heuristics

The batch scheduling approach arranges the arriving VM requests in batches. To
achieve it, this approach makes use of an auxiliary batch queue where arriving
requests are queued. Every T seconds, all VM requests in the batch queue are
removed from it and scheduled to the VM instances considering not just the request
queue of each VM instance but also all the VM requests in the request batch.
Since VM requests in the same batch are scheduled together, the batch scheduling
algorithm has a larger amount of information to schedule and accommodate requests
than the online scheduling algorithm. This usually means the batch approach is able
to compute more accurate schedules than the online approach. However, it is also
less agile than the online approach because a request must wait in the batch queue
until the batch is complete before it is scheduled to a VM instance. This approach is
depicted in Fig. 11.4.

Virtual broker

Batch
Scheduler

User 1
VM 1

Request
queue

User 2

VM 2

VM 3

VM requests

Batch queue

Fig. 11.4 Schema of the batch scheduling model

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 291

Next, we present a set of batch scheduling algorithms for the virtual machine
planning problem.

• Shortest request to cheapest instance (SRCI). This heuristic sorts by duration the
VM requests in the batch queue and selects the cheapest instance that allows the
execution of each request. Just as CI, an on-demand VM instance is rented only
if there is absolutely no reserved VM instance which can satisfy the deadline
of the VM request. SRCI is similar to the well-known Shortest Job to the
Fastest Resource (SJFR) heuristic for makespan optimization. As SJFR, the SRCI
heuristic is intended to maximize the broker profit, as well as to minimize the
response time perceived by the user of the cloud infrastructure: since shortest
requests are assigned to execute first, they will finish earlier, and users with short
computing time demands will find that their requests are completed very fast.

• Earliest Deadline First (EDF). This heuristic gives priority to those VM requests
with the earliest deadlines (without taking into account their arrival time), and
assigns each request to the suitable VM instance with the earliest availability. An
on-demand VM instance is rented if the earliest available reserved VM instance
cannot satisfy the deadline of the VM request. The main idea behind this heuristic
is execute the more restrictive requests first, in order to avoid the penalization of
buying on-demand instances due to deadline violations.

• Earliest Finishing Task (EFT). This heuristic gives priority to those VM requests
that can be finished the soonest. The availability of each suitable VM instance for
the request is considered to compute the finish time. The main idea behind this
heuristic is to take advantage of executing the requests that can be finished the
soonest to increase the availability of VM instances. As before, an on-demand
VM instance is rented if no reserved VM instance can satisfy the deadline of the
VM request.

• Shortest Task First (STF). It gives priority to VM requests with shorter execution
times, following the idea of the STF method for makespan minimization. The
heuristic searches for the shortest unattended VM request, and it assigns it to
the lowest-cost VM instance that satisfies its hardware requests. Similarly, an
on-demand VM instance is rented if no reserved VM instance can satisfy the
deadline of the VM request.

11.5 Experimental Evaluation

In this section we present the results of the experimental analysis of the online
and offline scheduling algorithms. First, we present the problem instances and the
computing infrastructure for the experiments. Next, we present and discuss the
results of our experimental analysis.

292 S. Iturriaga et al.

11.5.1 Problem Instances

We create a set of real-world problem instances based on data gathered from public
reports and webpages from cloud providers [2, 15]. On top of that, we model
the workload of customer’s requests using real data from our high-performance
computing facility [7] and from the parallel workload archive [9].

Each problem instance is defined by a workload file and a scenario file. The
workload file contains the workload of customer’s requests, while the scenario file
describes the VM hardware characteristics, their renting prices, and the number of
reserved VM instances. We consider scenarios with 10, 20, 30, and 50 reserved
instances combining VMs from Amazon and Azure providers. We consider work-
loads of 50, 100, 200, and 400 requests, arriving according to a Poisson process, with
length between 10 and 200 time units and deadlines defined according to real data
from cloud logs. The combination of these scenarios and workloads samples a wide
range of heterogeneous problem instances. On the one hand, the problem instance
considering 50 customer’s requests and 50 reserved instances models a very lightly
loaded instance where reserved VMs are mostly idle. On the other hand, the problem
instance considering 400 customer’s requests and only 10 reserved VMs models the
most heavily loaded instance.

Furthermore, for the location-aware problem, we consider five geographical
zones: South America, North America, Europe, Asia, and Oceania. We define two
data traffic scenarios, one for requests with low networking usage and another
for high networking usage. The low data traffic scenario considers a total data
traffic for all requests between 10 and 20 GB, while the high data traffic scenario
considers traffic between 50 and 250 GB. Finally, we consider the application type
of customer’s requests to be 70% computation tasks (CT) and 30% web services
(WS).

Our pricing policy considers a 20% price reduction compared to the on-demand
pricing offered by cloud providers. That is, p.bj/ D 0:8 � COD.bj/. This is a very
attractive pricing reduction for cloud customers.

In total, we consider 400 instances for the location-agnostic problem and 800
instances for the location-aware problem.

11.5.2 Computing Infrastructure

The proposed heuristics are implemented in C using GNU gcc. The experimental
analysis is performed on a 24-Core AMD Opteron Magny-Cours Processor 6172 at
2.1 GHz, with 24 GB RAM and CentOS Linux, hosted at the Cluster FING HPC
facility from Universidad de la República, Uruguay [7].

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 293

11.5.3 Experimental Results for the Location-Agnostic
Problem

In this section we present and discuss the results computed by the schedulers for
the location-agnostic problem. Figure 11.5 presents the profit computed by each
scheduling algorithm grouped by the size of the request workload. Each workload
size aggregates 100 different instances which consider different stress scenarios for
the infrastructure of reserved VMs.

Figure 11.5 shows a wide range of extreme values which represent the most
lightly loaded and most heavily loaded scenarios for each workload size. On the one
hand, for the most lightly loaded scenarios, profit is high since reserved instances
are plenty and nearly no on-demand instances are needed. On the other hand, profit

−20

60

Scheduling algorithm

0

20

40

P
ro

fit
 (U

S
D

)

(a)

−50

100

Scheduling algorithm

0

50

P
ro

fit
 (U

S
D

)
(b)

−50

100

Scheduling algorithm

0

50

P
ro

fit
 (U

S
D

)

(c)

BFR CI SRCI EDF EFT STF BFR CI SRCI EDF EFT STF

BFR CI SRCI EDF EFT STF
Scheduling algorithm

−100

0

100

200

BFR CI SRCI EDF EFT STF

P
ro

fit
 (U

S
D

)

(d)

Fig. 11.5 Profit computed by each scheduling algorithm for the location-agnostic problem
formulation aggregated by workload size. (a) Workload with 50 customer’s requests. (b) Workload
with 100 customer’s requests. (c) Workload with 200 customer’s requests. (d) Workload with 400
customer’s requests

294 S. Iturriaga et al.

is very low (sometimes there is even a budget deficit) for the most heavily loaded
scenarios, since reserved instances are not enough to cope with the demand and the
virtual broker is forced to lease on-demand instances too frequently.

Figure 11.5a, b shows BFR, CI, and SRCI are the best performing algorithms
for lightly and moderately loaded scenarios. CI and SRCI are more reliable, but
BFR is able to compute the best schedules. Figure 11.5d shows no scheduler is
able to reliably compute profitable schedules for the most heavily loaded scenarios.
Nevertheless, CI and SRCI are the best alternatives in these scenarios, since all the
others compute negative profits in median.

All considered, for the most simple location-agnostic formulation, the best
performing schedulers are the online scheduler (CI) and the offline scheduler
(SRCI). The offline schedulers do not seem to take any advantage of the additional
scheduling insight provided by the batch queue. Next, we present and discuss the
results computed for the more realistic location-aware problem.

11.5.4 Experimental Results for the Location-Aware Problem

This section presents the results of the experimental analysis of the proposed
schedulers for the location-aware problem. The location-aware problem addresses
two different objectives: the profit maximization and QoS maximization. Hence, in
this section we start by discussing the results related to the profit maximization
objective. We analyze separately the low network and the high network traffic
scenario. After that, we discuss the QoS maximization in a similar way. And finally
we compare both objectives simultaneously.

Figure 11.6 presents the results of the proposed schedulers when addressing the
low network traffic scenario aggregated by workload size. Results show CI and
SRCI are clearly the most accurate heuristics. Both are able to compute better
schedules in median than any other scheduler in any scenario.

On the other hand, Fig. 11.7 shows results for the high network traffic scenarios
are more contested. Along with CI and SRCI, BFR and EDF are also able to com-
pute competitive schedules for the lightly loaded and moderately loaded scenarios.
Nevertheless, for the most loaded scenario, again SRCI is the most profitable choice,
with higher median and higher upper and lower whiskers. All these results position
SRCI as the most reliable overall scheduler for profit optimization, with CI being
the second most reliable scheduler. Considering the simplicity of online scheduling,
CI may be even preferable over SRCI if we consider profit alone.

Let us compare the results of the schedulers when considering QoS. The QoS
metric is related to the waiting time of all customer’s request, that is, the time
the customer has to wait before its request starts its execution (i.e., WT.vi/ D

ST.vi/ � AR.vi/). For simplicity we discuss the results computed by each scheduler
by comparing the waiting time metric.

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 295

0

20

40

60

80

100

Scheduling algorithm

(a)

0

50

100

150

200

Scheduling algorithm

P
ro

fit
 (U

S
D

)

P
ro

fit
 (U

S
D

)

P
ro

fit
 (U

S
D

)

P
ro

fit
 (U

S
D

)
(b)

0

50

100

150

200

250

300

Scheduling algorithm

(c)

0

100

200

300

400

500

600

BFR CI SRCI EDF EFT STFBFR CI SRCI EDF EFT STF

BFR CI SRCI EDF EFT STF BFR CI SRCI EDF EFT STF

Scheduling algorithm

(d)

Fig. 11.6 Profit computed by each scheduling algorithm for the location-aware problem formula-
tion for a low networking scenario aggregated by workload size. (a) Workload with 50 customer’s
requests. (b) Workload with 100 customer’s requests. (c) Workload with 200 customer’s requests.
(d) Workload with 400 customer’s requests

Figure 11.8 presents the waiting time computed by each scheduler aggregated by
workload size. Results show SRCI computes the schedules with the lowest median
waiting time and the lowest worst waiting time. SRCI reliably provides the best
QoS for nearly every scenario considered, with the only exception of a few outlier
schedules.

Overall, experimental analysis shows SRCI to be the best scheduling algorithm
for our problem. Both SRCI and CI compute the most profitable schedules,
outperforming all other schedulers especially for the low networking scenarios.
However, CI is not able to keep up with SRCI when considering the QoS provided
by their schedules. SRCI clearly computes the schedules with the best QoS in every
scenario.

296 S. Iturriaga et al.

400

500

600

700

Scheduling algorithm

(a)

600

800

1000

1200

1400

Scheduling algorithm

(b)

1000

1500

2000

2500

BFR CI SRCI EDF EFT STF

BFR CI SRCI EDF EFT STF BFR CI SRCI EDF EFT STF

BFR CI SRCI EDF EFT STF
Scheduling algorithm

(c)

1000

2000

3000

4000

Scheduling algorithm

P
ro

fit
 (U

S
D

)
P

ro
fit

 (U
S

D
)

P
ro

fit
 (U

S
D

)
P

ro
fit

 (U
S

D
)

(d)

Fig. 11.7 Profit computed by each scheduling algorithm for the location-aware problem formula-
tion for a high networking scenario aggregated by workload size. (a) Workload with 50 customer’s
requests. (b) Workload with 100 customer’s requests. (c) Workload with 200 customer’s requests.
(d) Workload with 400 customer’s requests

Figure 11.9 presents the average relative profit and waiting time computed by
each scheduler aggregated by workload size. Results presented in Fig. 11.9 confirm
previously presented results. SRCI computes the most profitable schedules while
also providing the best QoS. CI computes competitive results in terms of profit, but
SRCI is able to clearly outperform CI in terms of QoS by taking advantage of the
batch queue.

11.6 Conclusions and Future Work

In this work we present the virtual broker model for cloud infrastructures. This
brokering model extends previous models by proposing the broker to lease a set of
virtual resources. By taking advantage of bulk discounts, the virtual broker is able to
sublease these resources to its customers at cheaper prices than the cloud providers.

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 297

0

5

10

15

20

25

BFR CI SRCI EDF EFT STF

BFR CI SRCI EDF EFT STF

Scheduling algorithm

(a)

5

10

15

20

25

Scheduling algorithm

(b)

10

15

20

25

Scheduling algorithm

(c)

10

15

20

25

BFR CI SRCI EDF EFT STF

BFR CI SRCI EDF EFT STF

Scheduling algorithm

W
ai

tin
g

tim
e

(m
in

s)
W

ai
tin

g
tim

e
(m

in
s)

W
ai

tin
g

tim
e

(m
in

s)
W

ai
tin

g
tim

e
(m

in
s)

(d)

Fig. 11.8 Waiting time computed by each scheduling algorithm for the location-aware problem
formulation aggregated by workload size. (a) Workload with 50 customer’s requests. (b) Workload
with 100 customer’s requests. (c) Workload with 200 customer’s requests. (d) Workload with 400
customer’s requests

However, for this model to be effective, the virtual broker must schedule its
leased resources effectively in order to maximize its profit. Hence, we introduce
a mathematical formulation for the problem of optimizing the profit of the virtual
broker, and we design six simple heuristics for solving the optimization problem.
Experimental evaluation shows the virtual brokering model is profitable in most
situations even when considering a simple scheduling approach.

We further study the virtual brokering model by proposing a more realistic
problem formulation. We extend the previous problem formulation by considering
geographical location of customers, requests of different application types, network
data transmission, and QoS provided to customers. Experimental evaluation shows
again the virtual broker is able to make profit in most scenarios while delivering an
adequate QoS to its customers. The SRCI scheduling is the most accurate scheduler
for addressing this extended problem formulation, computing schedules with high
profit for the virtual broker and low waiting time for the customers.

298 S. Iturriaga et al.

Fig. 11.9 Average relative
profit and relative waiting
time computed by each
scheduler for the
location-aware problem
aggregated by workload size

0 0.2 0.4 0.6 0.8 1
Average relative waiting time

A
ve

ra
ge

 re
la

tiv
e

pr
of

it

0

0.2

0.4

0.6

0.8

1

BFR

CI

SRCI

EDF

EFT

STF

Best solutions

In case that the pricing model for renting VMs in the cloud changes drastically,
our model and methods would still have a window of opportunity, taking into
account the main differences between our model and the one proposed by Rogers
and Cliff [19] and later analyzed by Cartlidge and Clamp [5]. Some minor
adjustments might be needed in the price offered to users, and the overall broker
profit might reduce, but the business model will still be valid.

The main lines of future work include further studying the proposed methods
in overloaded situations to test the scalability of our methods. Furthermore, we
propose to study more accurate methods, such as algorithms based on computational
intelligence, for addressing the proposed problem. Regarding this, we propose to
adapt the evolutionary technique introduced by Nesmachnow et al. [17] to address
the problem proposed in this work. This evolutionary technique is relevant to our
problematic since Nesmachnow et al. showed it to be more accurate than a set of
eight greedy heuristics when addressing a problem similar to the one proposed in
this work without considering geolocalization.

Also, it is relevant to study the application of the proposed model to other realistic
applications (such as massive online gaming and audio and video streaming) and
other cloud service models (such as platform as a service and function as a
service). For this, our model must be further extended to incorporate a larger set
of characteristics (such as the network scheme), and it must be able to describe a
wider scope of applications (such as applications that do not follow the deadline QoS
model). Finally, the development of precise forecasting methods is key to accurately
predict the volume of VM requests. This is a must for the virtual broker to efficiently
manage its reserved resources.

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 299

Acknowledgements Bernabé Dorronsoro would like to acknowledge the Spanish MINECO
for the support provided under contracts TIN2014-60844-R (the SAVANT project) and RYC-
2013-13355. Santiago Iturriaga and Sergio Nesmachonow acknowledge ANII and PEDECIBA
(Uruguay) for supporting this research.

References

1. Alsina J, Iturriaga S, Nesmachnow S, Tchernykh A, Dorronsoro B (2016) Virtual machine
planning for cloud brokering considering geolocation and data transfer. In: IEEE international
conference on cloud computing technology and science, pp 352–359

2. Amazon (2016) Amazon Web Services. Online, http://aws.amazon.com/. Accessed on Nov
2016

3. Bohn RB, Messina J, Liu F, Tong J, Mao J (2011) NIST cloud computing reference
architecture. In: IEEE world congress on services, Washington, DC, pp 594–596

4. Buyya R, Broberg J, Goscinski AM (2011) Cloud computing principles and paradigms. Wiley
Publishing, Hoboken

5. Cartlidge J, Clamp P (2014) Correcting a financial brokerage model for cloud computing:
closing the window of opportunity for commercialisation. J Cloud Comput Adv Syst Appl
3(2):1–20

6. Chhetri MB, Chichin S, Vo QB, Kowalczyk R (2013) Smart cloud broker: finding your home
in the clouds. In: 28th international conference on automated software engineering, Silicon
Valley, pp 698–701

7. Cluster FING (2015) High Performance Computing at Universidad de la República. Available
online at http://www.fing.edu.uy/cluster. Accessed Aug 2016

8. De Felice M, Yao X (2011) Short-term load forecasting with neural network ensembles: a
comparative study. IEEE Comput Intell Mag 6(3):47–56

9. Feitelson D (2016) Parallel workload archive. Available online at http://www.cs.huji.ac.il/labs/
parallel/workload. Accessed Aug 2016

10. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree
compared. In: Grid computing environments workshop, Austin, pp 1–10

11. Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and
survey. Softw Pract Exp 44(3):369–390

12. Guzek M, Gniewek A, Bouvry P, Musial J, Blazewicz J (2015) Cloud brokering: current
practices and upcoming challenges. IEEE Cloud Comput 2(2):40–47

13. International Standards Organization/International Electrotechnical Commission (2014)
Information technology–cloud computing–overview and vocabulary. International Standard
17788:2014

14. Mattess M, Vecchiola C, Garg S, Buyya R (2011) Cloud bursting: managing peak loads by
leasing public cloud services. CRC Press, Boca Raton

15. Microsoft (2016) Microsoft Azure. Online, https://azure.microsoft.com/. Accessed on Nov
2016

16. Nesmachnow S, Iturriaga S, Dorronsoro B, Talbi EG, Bouvry P (2013) List scheduling
heuristics for virtual machine mapping in cloud systems. In: VI high performance computing
Latin America symposium, Mendoza, pp 37–48

17. Nesmachnow S, Iturriaga S, Dorronsoro B (2015) Efficient heuristics for profit optimization of
virtual cloud brokers. IEEE Comput Intell Mag 10(1):33–43

18. Rimal BP, Choi E, Lumb I (2009) A taxonomy and survey of cloud computing systems.
In: Fifth international joint conference on networked computing, advanced information
management and service, and digital content, multimedia technology and its applications,
Seoul, pp 44–51

http://aws.amazon.com/
http://www.fing.edu.uy/cluster
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
https://azure.microsoft.com/

300 S. Iturriaga et al.

19. Rogers O, Cliff D (2012) A financial brokerage model for cloud computing. J Cloud Comput
Adv Syst Appl 1(2):1–12

20. Schwiegelshohn U, Tchernykh A (2012) Online scheduling for cloud computing and different
service levels. In: IEEE international parallel and distributed processing symposium, Anchor-
age, pp 1061–1068

21. Tang C, Steinder M, Spreitzer M, Pacifici G (2007) A scalable application placement controller
for enterprise data centers. In: International conference on World Wide Web, Banff, pp 331–
340

22. Tchernykh A, Lozano L, Schwiegelshohn U, Bouvry P, Pecero JE, Nesmachnow S (2014)
Bi-objective online scheduling with quality of service for IaaS clouds. In: IEEE international
conference on cloud networking, pp 307–312

23. Tchernykh A, Lozano L, Schwiegelshohn U, Bouvry P, Pecero JE, Nesmachnow S (2014)
Energy-aware online scheduling: ensuring quality of service for IaaS clouds. In: Proceedings
of the international conference on high performance computing & simulation, New Orleansm,
pp 911–918

Chapter 12
Adaptive Resource Allocation for Load
Balancing in Cloud

Somnath Mazumdar, Alberto Scionti, and Anoop S. Kumar

12.1 Introduction

Cloud computing, or simply Cloud, is a computational as well as an infrastructural
model, which aims at providing enormous computational power as a utility service
by federating physical resources and associated services. Since its initial adoption,
several research works have been done to make Cloud a robust computing model.
Its attractiveness derives from its capability of scaling and offering a reliable service
through a standard web access. A growing number of users who work on large data
sets (or so-called Big Data) mostly running lengthy jobs found Cloud very efficient,
regarding cost and ease of manageability.

Cloud is a successful example of a heterogeneous computing platform. Het-
erogeneity in data centres (DCs) is present in many forms: from different imple-
mentations of the same instruction set architecture (ISA) to reconfigurable and
custom devices (e.g., FPGAs). This vast architectural diversity of hardware in DCs
may benefit many applications: for instance, recently FPGA-based acceleration
approach has been successfully applied to speed up the search engine service Bing
Search [56]. However, some of the challenges faced by DCs are (i) the appropriate
dimensioning of the set of resources used to cover incoming application requests and
(ii) the efficient distribution of the workload among the nodes of the infrastructure.

S. Mazumdar (�)
Università di Siena, Via Roma 56, Siena, Italy
e-mail: mazumdar@dii.unisi.it

A. Scionti
Istituto Superiore Mario Boella, Via P. C. Boggio 61, Torino, Italy
e-mail: scionti@ismb.it

A.S. Kumar
BITS Pilani – K.K. Birla Goa Campus, 403726, Goa, India
e-mail: anoopk@goa.bits-pilani.ac.in

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_12

301

mailto:mazumdar@dii.unisi.it
mailto:scionti@ismb.it
mailto:anoopk@goa.bits-pilani.ac.in

302 S. Mazumdar et al.

Thus, an efficient allocation of the physical resources becomes a key feature
to maintain a robust execution environment. Furthermore, it also helps service
providers to offer a high level of quality of service (QoS) also during unexpected
events or failures.

Cloud’s success is due to the elasticity or dynamic scalability, which requires
physical servers to be provisioned (i.e., scale up and down) as quickly as possible.
The capacity of a typical DC is huge, but not “infinite”. A DC has thousands of
running servers arranged in multiple racks, paying 40%–50% of its total expenses
as power bills [28, 37]. However, the average server utilisation remains between
10% and 50% in most of the DCs [4, 5], and, further, idle servers can consume up to
60% of their peak power [5, 26, 30]. In general, the power efficiency of servers can
be increased by reducing the number of idle servers and maximising their usage. To
that end, multiple services can be packed on the same physical machine efficiently.
Server consolidation, which addresses this problem, is a combinatorial optimisation
problem and can be reduced to a bin-packing problem [17].

Virtual machines (VMs) are the basic resource block for running jobs, and
packing VMs inside a physical server represents an example of an online bin-
packing problem [18]. When the number of VM types is few, then packing them
inside the available servers is a “bit simpler” (e.g., some Cloud providers use a pool
of single sized VMs, which makes their allocation on the physical machines trivial).
However, in public DCs, for different user requirements, there exist various VM
types (i.e., VMs with various configurations regarding CPU, memory, network, and
storage capabilities), so in this case, efficiently packing the VMs inside the servers is
complex. Virtualisation [53] is a widely used technique to increase server utilisation,
and due to virtualisation, servers with different resource capacities can dynamically
host different types of VMs. Hypervisors are responsible for VM management and
play a fundamental role in scheduling their allocation to the physical servers, but
hypervisors also consume computing resources for maintaining VMs. The arrival of
user requests for acquiring resources (VMs) in a DC can be effectively modelled
as a stochastic process. The dynamism in the resource allocation is because the
Cloud allows acquiring and releasing resources in real-time. The stochastic nature
of Cloud workload and worst-case resource usage policy (i.e., resources are usually
provisioned to their peak usage) employed by most DCs lead to poor resource
utilisation [64, 71]. Thus, there is a need for an efficient proactive resource allocation
strategy (PRAS) which can be useful in reducing the workload imbalance and
also optimising resource utilisation by predicting the future workload. In general,
the resource acquisition patterns present two components: one is a stable part
and burstiness characterises the other. Fortunately, the stable pattern occurs more
often than burstiness, meaning that real-world traces show that application access
patterns are more correlated than random patterns [61, 66]. Time series analysis
can find repeating patterns in the workload traces and also can forecast future VM
requests.

In this chapter, we discuss a framework for PRAS developed for the
Infrastructure-as-a-Service (IaaS) service model, which not only efficiently predicts
the incoming VM requests but also maps VMs onto the servers. PRAS works in

12 Adaptive Resource Allocation in Cloud 303

two steps: (i) it predicts the future workload (incoming VM counts) and, (ii) next,
it employs a resource allocation strategy based on a heuristic using the predicted
value. For the first step, we picked the best predictor from the three well-known
variants of the autoregressive moving-average (ARMA) model (i.e., autoregressive
integrated moving-average, ARIMA; seasonal autoregressive integrated moving-
average, SARIMA; and autoregressive fractionally integrated moving-average,
ARFIMA) [11] and compared their forecasting accuracy. Next, we have employed
particle swarm optimization (PSO) [24], to schedule the resource assignment. PSO
is inspired by the interaction between swarm members, requiring no supervision or
a priori knowledge. This approach can better adapt itself to changes by exploiting
inherited “memory” of both the predictive model and the optimisation heuristic,
which can further lead to better energy savings and improved reliability. We also
present experimental results to demonstrate the feasibility of the proposed system.

The rest of the chapter is organised as follows. Section 12.2 introduces state-
of-the-art related works; Sect. 12.3 gives an overview of the current evolution
of the Cloud paradigm. In Sect. 12.4, we detail the Cloud hardware resources,
while Sect. 12.5 elaborates the workload management challenges in Cloud. Next,
in Sect. 12.6, we explain our PRAS-based framework and its results in Sect. 12.7.
Finally, we conclude the presented chapter in Sect. 12.8.

12.2 Related Work

Energy efficiency in Cloud computing domain is a well-researched area, and in
past years, various approaches have been proposed [41]. Most of these approaches
improve the resource allocation aiming at more efficiently using computational
capabilities and further reducing energy cost. Among them, the popular method-
ologies are Best Fit [6], First Fit [9, 50, 70], constraint satisfaction problem
(CSP) [34, 68], control theory [80], game theory [3, 73], genetic algorithms (GA)
and their variants [57, 76], queuing model [44, 67], and also various forms of
heuristics [15, 29, 43, 55]. It is interesting to note that greedy algorithms are also
used in commercial products (e.g., the distributed resource scheduler (DRS) tool
from VMware [36]).

Time series-based prediction is well known, and it also has a comprehensive
set of literature. Autoregressive (AR) model is a simplified approach for modelling
univariate time series. AR can be combined with the moving-average (MA), leading
to the well-known ARMA model. ARMA has been already used to forecast Cloud-
based services [32, 59, 65]. In [32], authors proposed a framework for characterising
and forecasting the access patterns of YouTube videos. In this work, ARMA model
was employed on the principal components of the data instead of the individual time
series. In this work, daily video access demand was predicted using 1-week datasets.
Tirado et al. [65] present a load forecasting model based on an ARMA model to
improve the server utilisation and load imbalance by replicating and consolidat-
ing resources based on a configurable utilisation threshold. The workload (trace

304 S. Mazumdar et al.

collected from an online music service) is predicted by an AR model capturing
trends and seasonal patterns by employing multiplicative seasonal autoregressive
moving-average model. Authors in [59] develop a look-ahead resource allocation
algorithm based on model predictive control. The proposed model predicts the
future workload based on a limited horizon. Here, a second-order ARMA has been
used for estimating the incoming workload of the system for future time periods,
and resource allocation is adjusted ahead of time. Chandra et al. [13] proposed
a system architecture that combines online measurements (e.g., the workload
characteristics and the current state of the system) with prediction and resource
allocation techniques. This framework uses the AR model to predict workload and
then employ a constrained non-linear optimisation method (i.e., queuing theory) to
allocate the server resources (CPU, network, and disk space) dynamically. Similarly,
Chen et al. [15] propose an energy-efficient server provisioning and load dispatching
method in a single framework, using an AR model and a heuristic for distributing
the load among the servers.

Differently, from these works, we are focused on the variants of ARMA models
and the measurement of their efficiency in forecasting future workload of the DC.
Recently, Kumar et al. [42] showed that ARIMA could forecast CPU, RAM, and
also network patterns with a very low forecasting error rate while outperforming
SARIMA and ARFIMA model regarding forecast accuracy. In this work, the
Wikipedia grid traces are used in the experiment. Earlier, Dinda et al. [20] predicted
the task’s running time by exploiting multiple (AR, MA, ARMA, ARIMA, and
ARFIMA) linear time series models, and authors claimed that ARIMA model
performs well in capturing the nonstationary behaviour (i.e., it performs better in
describing mean, variance, autocorrelation of time series, which in turn change over
time) of time series, while ARFIMA is more appropriate for extracting statistical
self-similar or long memory patterns embedded in the data.

ARIMA has been employed for load prediction based on both CPU utilisation
only [27, 48] and a combination of CPU and memory [79] for improving the
dynamic capacity provisioning. Authors in [48] present a control theory-based
performance management approach to execute scientific applications in a distributed
environment such as that offered by a DC and that uses loop scheduling technique.
Here, the ARIMA model is used for estimating the percentage of CPU capacity that
is available for the execution process loop. In [27], authors proposed a proactive
framework, where the ARIMA model has been used to predict the future workload
regarding CPU load, while VM migration has been used extensively to optimise
the overall resource allocation. In [79], the authors proposed a solution based
on a model predictive control (MPC) policy for the dynamic server provisioning
problem, to minimise the total energy cost and also to satisfy the task scheduling
delay. In particular, authors used the ARIMA model to forecast the future usage
of CPU and RAM. In a recent work [12], ARIMA has been used for forecasting
the future application workload behaviour in Cloud. In this work, the forecasted
value is fed into the queueing model for calculating the number of required VMs.
Seasonal ARIMA (SARIMA) was mostly used in analysing and predicting the
network traffic [14, 63]. However, recently, the SARIMA model has also been

12 Adaptive Resource Allocation in Cloud 305

used for forecasting server workloads too [19]. Adzigogov et al. [2] proposed
a Grid meta-scheduler which predicts CPU and memory usage by implementing
different variants of the AR model (i.e., specifically AR, ARIMA, ARFIMA). In the
experiments, authors claim that AR and ARFIMA performed well for forecasting
the resource usage.

In DCs, automated provisioning of VMs is also proposed via dynamic scaling
algorithm without using any predictive method. In [38], the authors propose a hybrid
scaling technique that employs reactive rules to scale up (mainly based on CPU
utilisation) and a regression-based approach for scaling down when needed. The
proposed technique actively monitors the response times for requests to a multi-tier
web application to collect CPU utilisation-related data and employs heuristics to
identify the bottlenecks in the system. In [7], authors propose an energy-efficient
threshold-based dynamic consolidation approach of VMs, with dynamic adjustment
of the threshold values. It employs dynamic thresholds, which are calculated
considering the running application conditions. In this work, the adaptive utilisation
threshold is based on a statistical analysis of the historical data of the VMs. Chieu et
al. [16] proposed dynamic scaling of Cloud web applications based on thresholds.
The proposed dynamic scaling algorithm relies on the number of active sessions, and
the scaling algorithm fits in the front-end load balancer. However, the selection of
the threshold value remains an open issue, and improper selection of values may
lead to a degradation of the algorithm performance. Lim et al. [45] designed a
proportional threshold technique based on an integral controller, which can adjust
the number of VMs based on the average CPU usage. Authors have applied a simple
MA method to remove the noise from the time series data.

Particle swarm optimization (PSO) has been widely used in resource allocation
problems [46, 75, 77, 78]. Zhan et al. [77] proposed a hybrid PSO algorithm by
combining the standard PSO algorithm with the simulated annealing (SA) algorithm
called as particle swarm-simulated annealing. It primarily aims at improving
convergence rate and also the solution quality by adding SA into every iteration
of PSO. This approach improves the average task execution time and also the
resource utilisation. In [46], an improved version of PSO-based task scheduling
model has been proposed, to solve the load balancing problem of VMs in Cloud. To
this end, the proposed solution optimises the task execution time and the resource
utilisation. In this paper, authors introduced a mutation mechanism and a self-
adapting inertia weight method to the standard PSO to improve convergence speed
and efficiency. Zhang et al. [78] describe a hierarchical PSO-based application
scheduling algorithm for Cloud, where the primary goal is to minimise both the load
imbalance and also the internetwork communication cost. Similar to the previous
work, to avoid plunging into the local optimum and also to provide effective local
and global search, an inertia weight has been introduced into the model. In [51],
a PSO-based method to minimise both communication and execution costs of
applications has been proposed. Here, authors claim that PSO outperforms the
best resource selection (BRS) algorithm. Revised discrete PSO (RDPSO) [75] is
proposed to schedule a set of workflow applications in Cloud. The solution of
RDPSO is represented by the set of pair task service and considers both data

306 S. Mazumdar et al.

transmission and computational costs. In this model, each particle learns from
both different exemplars and also from other feasible pairs of different dimensions.
Similar to [51], authors also claim that RDPSO can achieve better performance
on makespan and cost optimisation compared to the standard PSO and BRS.
In [82], an integer programming model is used for solving the resource allocation
problem, and a self-adaptive learning PSO (SL-PSO)-based scheduling approach
is also proposed. The algorithm aimed at optimising the user-level QoS, as well
as the economic profit. Likewise, self-adaptive PSO (SA-PSO) has been used to
implement meta-schedulers for mapping VMs onto a set of servers, by fulfilling
resource requirements of a maximum number of workloads [40]. In the proposed
solution, to improve the quality of the solutions, the PSO algorithm also incorporates
the processor transitions to various sleep states and their corresponding wake-up
latencies.

12.3 Cloud Computing Continuum

Cloud provides a way to access computing resources without hosting them on
premise. The three standard service models of Cloud (Software-as-a-Service, SaaS;
Platform-as-a-Service, PaaS; and Infrastructure-as-a-Service, IaaS) differ from each
other for the level of abstraction and the way the user accesses computing resources.
In this chapter, we focus on the IaaS service model. At IaaS level, resource allocation
problem emerges as one of the main challenges to address. In recent years, there has
been an evolution of the Cloud spectrum. With the fast growth of the number of
small embedded devices connected to the Internet [25], Cloud providers need to
support them anywhere at any time, through the extension of the Cloud paradigm.
The extensive computational infrastructure support of Cloud helps to integrate
Cloudlets, Fog computing, and the “Cloudification” of the Internet of things (IoT)
within traditional infrastructures (see Fig. 12.1).

12.3.1 Cloudlets

In recent years, mobile computing gained a momentum due to the enormous
progress in low-power embedded hardware platforms. However, limitation in
the processing and storage capacity of such systems requires off-loading high
computational demanding tasks to more reliable infrastructures. In this case,
Cloud becomes an optimal choice. Cloud infrastructures began to reduce the
latency for processing jobs and to support almost real-time services aiming at
supporting mobile computing applications. The proposed solutions are termed as
Cloudlets [60], often known as “Datacenter-in-a-Box”: trusted, capable systems co-
located with the point of presence (e.g., a wireless access point), equipped with a
fixed number of servers. This approach is quite similar to the in-network services

12 Adaptive Resource Allocation in Cloud 307

Fig. 12.1 The Cloud computing continuum: an overview of Cloud computing, Cloudlets, Fog
computing, and IoT services. In bottom, Fog- or Cloudlet-based execution paradigm directly
communicates with user via mobile devices and thus providing the better latency-based solution.
While at the top, the traditional Cloud DCs are connected (via the complex network hardware) to
the Fog and Cloudlets. Cloud DCs are still acting as a backbone to the Fog or to the Cloudlet

or middleboxes (e.g., content caches, load balancers). Using Cloudlets, mobile
users can easily and quickly instantiate custom VMs on the cluster of commodity
machines, without the need for accessing traditional Cloud services.

12.3.2 Fog Computing

Fog computing [10, 69] extends Cloud computing by transferring and processing
jobs at the edge of the network to reduce the access latency and to improve

308 S. Mazumdar et al.

QoS [69]. Fog computing architecture can be exploited to adapt user’s network
conditions dynamically, thus optimising the user access experience. In Fog com-
puting, the network access points (i.e., routers and switches) are virtualised, and
their functionalities are melded with more general purpose processing capabilities
offered in the form of specific services [74]. A less defined boundary between
computing and network functions leads to label such systems as “fog”. Managing
fog infrastructures requires new technologies, such as software-defined networking
(SDN)1 and network function virtualization (NFV) [47], which are emerging as a
front runner to increase network scalability and to optimise infrastructural costs.
Although both SDN and NVF can be implemented independently, NVF is a highly
complementary set of functionalities to SDN paradigm.

SDN provides a centralised, programmable network framework (of different
network technologies) that can dynamically (more flexible and agile) provision
a virtualised server and storage infrastructure in a DC. SDN consists of SDN
controllers (for a centralised view of the overall network), southbound APIs
(for communicating with the switches and routers), and northbound APIs (to
communicate with the applications and the business logic). NFV provides a way
to design, deploy, and manage fully virtualised infrastructure in a DC. It helps to
run network functions such as network address translation (NAT) and firewall as a
piece of software instead of running on proprietary hardware. NVF can be used in
both wired and wireless networks.

Mobile edge computing (MEC) [52] is also a new computing paradigm, aimed
at providing a dynamic content optimisation and also improving the quality of user
experience. It leverages on radio access networks (RANs) to enhance latency and
bandwidth mainly offered to application developers and web content providers.
MEC aims at providing a set of services by the amalgamation of Cloud and IT
services at the edge of the mobile network.

12.3.3 Cloud-IoT

Looking at the Internet of things (IoT) landscape [31, 35], Cloud provides a
virtualised infrastructure, as well as SDN support for collecting, aggregating, and
analysing data streams generated by smart sensors. Cloud-IoT applications are
quite different compared to the traditional Cloud applications and services (due
to a diverse set of network protocols and the integration of specialised hardware
and software solutions). From this standpoint, Cloud-based IoT platforms are a
conglomeration of APIs and machine-to-machine communication protocols, such
as REST, WebSockets, and IoT-specific ones (e.g., message queuing telemetry

1https://www.opennetworking.org/sdn-resources/sdn-definition

https://www.opennetworking.org/sdn-resources/sdn-definition

12 Adaptive Resource Allocation in Cloud 309

transport – MQTT2 and constrained application protocol, CoAP).3 MQTT is the
protocol built for machine-to-machine communication and IoT, while CoAP has
been developed to allow low-power devices to communicate with Cloud infrastruc-
tures. The management APIs offer provisioning, managing, and troubleshooting
features for the devices/machines, while the integration mediates access to tradi-
tional services through traditional Cloud infrastructures (e.g., some IoT applications
are designed to interface with popular social networks).

12.4 Cloud Hardware Resources

Broadly speaking, DCs can be classified depending on the number of servers
available in the DC infrastructure, which can range from few hundreds to hundreds
of thousands of rack servers, but, in all cases, DCs are equipped with a large
number of active servers. DCs maintain a pool of physical machines which
are heterogeneous regarding core count and ISA. In recent years, heterogeneity
expanded in such a way that it now comprises also low-power processors previously
employed only in mobile devices, although traditional server processors still
represent the majority [58]. Another source for improving efficiency and gaining
performance comes from the adoption of high-density server systems, which are
designed to aggregate a large set of server nodes within a standard chassis (e.g.,
HPE Moonshot system). With a strong preponderance of the X86 architecture,
other systems based on powerful manycores are gaining interest (e.g., Kalray’s
MPPA-256 Processor [21] and Adapteva’s Epiphany multicore [1]). Since more and
more applications can benefit from execution on specialised parallel processors,
heterogeneous hardware acceleration platforms (e.g., GPU and the Intel Xeon
Phi) [49] also entered into the Cloud computing market. Another example of such
diversity is represented by the growing adoption of field-programmable gate array
(FPGA) accelerators. Several applications have been demonstrated to greatly benefit
from the acceleration on specific circuits and significant parallelism offered by
FPGAs [54, 56].

Two main factors that contribute to the limit of scalability in a DC are the
power consumption and the components’ reliability. Figure 12.2 shows the internal
architecture of a processor, highlighting the numerous components that contribute
to power inefficiency and reliability issues. There is also a big issue in moving the
generated heat away from the processing elements. Similarly, the capability of inte-
grating more components and functionalities inside the cores exposes the reliability
issues. The more components there are in the system (e.g., cores, memory modules,
accelerators, network interfaces), the higher the likelihood of failures. The adoption

2http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
3http://coap.technology/

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://coap.technology/

310 S. Mazumdar et al.

Special
Accelerator
Functions

Memory Controllers and I/O

LLC

LLC

LLC

LLC

C0 C1

C2 C3

C8 C9

C10 C11

C4 C5

C6 C7

C12 C13

C14 C15Lo
ca

l I
nt

er
co

nn
ec

ts

Chip Layout

Main Power
Sources

Leakage

Clock frequency

Fig. 12.2 An example of the internal organisation of a modern server processor with the main
components consuming the largest part of the power budget. Sources of main energy consumption
are highlighted too

of smaller transistor features makes electronic devices more sensitive to stress
conditions (such as hotspots in the silicon chips, high-energy particles, ageing),
and it leads to an increase of the statically dissipated power (i.e., leakage currents
become dominant since transistors’ isolation layers are less effective). A correct
distribution of a server load represents a way to address reliability issues, using
minimisation of the stress conditions acting on each server. However, sometimes
hardware performance starts to degrade significantly and becomes limping hardware
or limpware [22]. On the other hand, power consumption is dominated by the clock
speeds, which in turns drives the performance of the processor. Higher clock speed
allows executing a large number of instructions per unit of time, however, causing
an increase in the dynamic power consumption. Dynamic voltage frequency scaling
(DVFS) is a widely used technique for power reduction in servers [72, 81]. DVFS
refers to the capability of the system to tune the supply of voltage and the clock
frequency at the run time, depending on the workload conditions. Similarly, power-
gating (PG) and clock-gating (CG) techniques aim at completely cutting off the
power or the clock signal whenever the CPU is not used. Although DVFS, PG, and
CG techniques provide considerable benefits regarding power saving, approaching
the energy efficiency in a DC requires a more holistic strategy. Being able to
schedule jobs on the processing elements correctly greatly helps to reduce the
number of active servers with low load conditions.

12.5 Workload Management

Due to the dynamic nature of Cloud workloads, scheduling VMs on the fly on
a given host machine is a complex task. Complexity is getting higher due to the
failures of physical machines and unavailability when acquiring needed resources
for allocation. Incoming requests (allocation of VMs) are stored in a queue waiting

12 Adaptive Resource Allocation in Cloud 311

to be processed on a first-come-first-served (FCFS) basis. Workload diffusion can
be used to distribute jobs among physical machines effectively. In Cloud, it can
be achieved by successful VM completion and VM migration. Also, scheduling
policy is getting complex when jobs have their priority or fairness which needs
to be maintained. With the proper scheduling strategy, it is possible to optimise
the utilisation of resources, improve the job throughput, and also reduce the total
turnaround time of tasks. However, to counter the “slashdot effects”, it would
be desirable to put a proactive workload management framework that can adjust
resource allocation based on the actual applications’ needs.

12.5.1 Load Balancing Techniques

Load balancing refers to the set of techniques, both software and hardware, used
to distribute the load in a system where multiple agents can serve input requests.
Load balancing can be implemented at different levels of the Cloud, but IaaS
layer provides more control for balancing the workload. At the infrastructure level,
multiple services expose their functionalities through a virtual IP address which
is mapped to a set of direct IP addresses associated with the working servers
(by the load balancer agent). This assignment mechanism refers to the request
for instantiating VMs on the available physical servers. Examples of well-known
proprietary load balancers used by public Cloud providers are Elastic load balancer4

and F5.5

Most of the hardware load balancers work directly at the network level, by
routing incoming traffic to the appropriate servers based on a set of established
rules (i.e., rules are used to implement filters acting on the IP addresses of
the packets traversing the network). These hardware load balancers offer high
performance and throughput. As the demand for Cloud services grows, software
counterparts also become very much effective by supporting distributed and more
flexible data plane running on commodity servers. Conversely, “pure” software load
balancers suffer from low performance and sustained throughput, making them less
attractive for latency-sensitive applications. Thus, most of the commercial solutions
resort to a hybrid approach. The mechanism resembles the one used by modern
microprocessors to manage virtual-to-physical memory address translation, and
it can be easily implemented on modern network switches. Due to the dynamic
nature of the Cloud workloads, load balancers must be dynamically able to migrate
already assigned VMs on a different server to balance the load in the system (VM
migration). To that end, fast scheduling mechanisms must be provided: heuristics
can be employed as core components of any load balancing system to address this
challenge. In the following, we describe a framework that takes advantage from

4https://aws.amazon.com/elasticloadbalancing/
5https://f5.com/glossary/load-balancer

https://aws.amazon.com/elasticloadbalancing/
https://f5.com/glossary/load-balancer

312 S. Mazumdar et al.

coupling one of such fast metaheuristics (specifically PSO) with a prediction model
for the incoming requests, which provides an efficient mechanism to distribute the
workload in the Cloud infrastructure.

12.5.2 Existing Proactive Measures

The flexibility of Cloud to allow adding and removing computing resources at run
time might suffer from resource fragmentation if improper server management is in
action. DC servers face large fluctuating workloads, and to counter this situation,
automatic resource scaling (up/down, auto-scaling) systems are in place. Auto-
scaling techniques can be either threshold based or schedule based. In the former
method, mainly two rules (each for up and down) are configured. For scaling up
or down, some pre-specified thresholds are set, and whenever the utilisation level
of some specific resource (e.g., the CPU utilisation or the average response time)
is met, actions are taken accordingly (i.e., rules are applied). It works as a reactive
system and is widely used by the public Cloud service providers. Improper choice
of the thresholds can significantly degrade the performance, and oscillation can be
introduced in the system [23].

Conversely, schedule-based approach extracts the pattern from the workload
traces, and the scaling policy is adjusted accordingly. The efficiency of the technique
solely depends on the capability of understanding the nature of the workload.
To this purpose, schedule-based auto-scaling systems include proactive methods,
use a prediction model to anticipate future workloads, and allocate the resources
accordingly. Choosing the proper prediction model is also not trivial, and the fore-
casting accuracy mainly depends on the optimal predictive model for the data sets.
Voting-based resource/VM allocation is also in use by a public service provider,6

which is also quite similar to threshold-based scaling model. From academics,
mostly the proposed techniques are based on resource utilisation [16], proportional
threshold [33, 45], and dynamic threshold [7]. However, there are also existing
works which used time series prediction models and prediction-based resource
allocation strategies for auto-scaling in Cloud [39, 62], with promising results.

12.6 PRAS: Proactive Resource Allocation Strategy

Cloud is a collection of well-connected networks of servers or commodity machines.
For ease of system manageability, cluster concept can be used to improve location
policy. Proactive resource allocation strategy (or proactive resource allocation

6http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/\Arrays/Actions/Set_
up_Autoscaling_using_Voting_Tags/index.html

http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html
http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html

12 Adaptive Resource Allocation in Cloud 313

Prediction
Model

PSO
scheduler

Historical data

Predicted
values

Job queue
Incoming

Job

Proactive Resource Allocation Framework

Servers

S0

S1

Sn-1

…

Fig. 12.3 Generic framework of proactive resource allocation strategy

framework) is based on three primary policies. Specifically, they are (i) information
policy, (ii) transformation policy, and (iii) location policy. In information policy,
historical data are used for predicting user’s request by employing a time series
model. Next, heuristics or algorithms are used to perform resource allocation by
solving last two policies. In Fig. 12.3, we present the main architecture of our
proactive resource allocation framework. It consists of two main components:
the prediction model and the PSO-based scheduler. The former is in charge of
forecasting the future workload on the system, while the latter is responsible for
allocating resources (i.e., physical servers) for the predicted load (i.e., VMs). The
prediction model is based on the seasonal variant of the ARIMA model, and it uses
historical data as the input for predicting the future system load. Input requests are
collected on the main queue (Job Queue – JQ), which is used by the PSO-based
scheduler to select the effective set of VMs to allocate on the available physical
servers. The selection process takes into account output information provided by
the prediction module. Allocated VMs are assigned to physical machines by issuing
requests on their input queues (si).

12.6.1 Prediction

In Cloud, users request VMs by specifying the type together with the required
number. It has been found that “univariate” time series model is a good instrument
for identifying user access patterns as it is a scalar observation recorded serially
over equal time increments. “Pure load balancing” is not a very practical approach to
managing the workloads in DCs. Analysing the data usage patterns, we can discover
that user requests also follow some seasonality (or trend). In general, the workload
estimation can be done using the standard deviation of CPU utilisation [15]. The
CPU usage can be used as an estimator of energy cost, and here, we consider
the linear power model similar to [15, 26]. In a linear power model, the power
consumption of a server increases linearly as the CPU utilisation increases.

314 S. Mazumdar et al.

AR is a linear regression of the current value of the set of one or more prior values
belonging to another set. When AR model is combined with moving-average (MA),
it is known as ARMA model. We use three state-of-the-art variants (integrated,
seasonal, and fractional) of ARMA model for out-sample prediction with a 1-h
prediction horizon. We also compare each model in their forecasting accuracy and
execution time. It is also interesting to note from the results that the choice of the
prediction model can affect subsequent resource allocation.

12.6.1.1 ARIMA

ARIMA model is a generalisation of the ARMA class which incorporates non-
stationary univariate time series. Stationary time series has its mean, variance,
and autocorrelations constant in time. ARIMA includes three main components.
They are the lag of the stationary series, the lag of the forecast errors, and the
integrated (I) component which allows the series to be differentiated. ARIMA
models hold the generalised properties of a random walk, exponential smoothing,
and stationary regression models. In ARIMA terminology, p is the number of AR
terms, d the number of nonseasonal differences, and q is the number of MA terms.
An ARIMA.p; d; q/ model for a univariate time series Xt can be defined as follows:

˚.L/.1 � L/d.Xt � �/ D �.L/�t; �t 	 Niid.0; �2/ (12.1)

In Eq. 12.1, L is the lag operator, � is the mean, and �t is the residual term which
follows an independent and identically distributed normal distribution (Niid). The
differencing parameter d takes integer values in the ARIMA models. Before fitting
the ARIMA on the datasets, we first need to understand the order of differencing
and then the numbers of AR and MA terms. The differencing value can be scaled
up or down if the sum of AR coefficients and the sum of MA coefficients are close
to 1.

12.6.1.2 SARIMA: Seasonal ARIMA

ARIMA can also support seasonality. A seasonal ARIMA model is also known as
SARIMA (seasonal ARIMA) and can be written as:

SARIMA D ARIMA.p; d; q/.P; D; Q/h (12.2)

In Eq. 12.2, the first term .p; d; q/ supports the nonseasonal part of the model where
p is the AR order, d is the order of integration, and q is the MA order. The last
term .P; D; Q/h supports the seasonality of the time series (h is equal to the number
of periods). In SARIMA model, seasonal differencing (D) is used to remove the
nonstationary component from the data sets. If there is seasonality, then D is set to

12 Adaptive Resource Allocation in Cloud 315

one; otherwise, it is zero, and the number of regular differences (i.e., parameter d)
is d � 3. The seasonal part consists of the back shifts of the seasonal data sets. We
also represent the standard SARIMA model for a given time series Xt in Eq. 12.3.

˚.Bh/�.B/rD
H rdXt D ˛ C �.Bh/	.B/Zt

rD
h Xt D .1 � Bh/DXt

(12.3)

where ˛ is the intercept; �.B/ and 	.B/ are the back-shift operators for AR and
MA, respectively; Bh is the differencing back-shift operator; and D is the seasonal
difference (D D 1; 2; : : :).

12.6.1.3 ARFIMA

ARFIMA indicates the presence of self-similar structures or long memory in the
given series. ARFIMA is one of the best-known classes of long memory models,
while ARIMA can be considered a short memory series. The main objective of
ARFIMA is to measure the persistence to incorporate the long-term correlations
in the time series data. ARFIMA allows the series to be fractionally integrated
by generalising the ARIMA model’s integer order of integration to allow the
d parameter to have fractional values (0 � d � 0:5). Parameter d indicates
the presence of long memory or self-similar patterns in the data. Equation 12.4
represents the general form of the ARFIMA model:

˚.B/yt D �.B/.1 � B/�d�t (12.4)

where ˚.B/ D 1 � �1.B/ �

 � �p.B/p presents AR part, �.B/ D 1 C 	1.B/ C

 C 	q.B/q represents MA operators, ˚.B/ and �.B/ have no common roots, B is
the back-shift operator, and .1 � B/�d is the fractional differencing operator.

12.6.2 Particle Swarm Optimization-Based Scheduling

In the server consolidation problem (SCP), VM allocation is tackled by taking
into account VM migrations. SCP belongs to the combinatorial optimisation class,
and the problem can be further reduced to a bin-packing problem. PSO [24]
is a metaheuristic developed by Kennedy and Eberhart in 1995 to optimise
multimodal continuous problems. Compared with other evolutionary-based tech-
niques, it provides higher-quality solutions, with faster convergence. Similar to
other evolutionary-based heuristics, such as genetic algorithms (GAs), PSO is a
population-based stochastic optimisation approach, where a group of independent
solutions are used to sample the search space and discover the optimal solution. In

316 S. Mazumdar et al.

PSO, a group of particles are evolved over time, by moving their position into a
multivariable search space. Passing from one position in a given instant of time to
another position is made by taking into account the velocity of the particles. The
particles’ velocity and their positions are taken care by two components, which are
described as two factors incorporating a form of distributed intelligence:

• Cognitive factor encodes the information regarding the history of the best
position assumed by the particles at the time t.

• Social factor encodes the information relating to the history of the best position
assumed by the neighbourhood of the particle at the time t.

These two factors are used to adapt the velocity of the particles in such a way it
can steer the position towards the optimal solution. In PSO, there are no operators
devoted to combining solutions belonging to the same population. The social factor
allows to incorporate the knowledge collected by other particles. The topology of
the neighbourhood influences the behaviour of the heuristic, although the entire set
of particles is used as the neighbourhood (i.e., lattice model). The lattice model
also has the advantage of keeping the number of operations used to determine the
absolute best position low. Equation 12.5 shows the general rule used to update the
velocity of the particle i at time t.

VtC1
i D !Vt

i C �1r1.Bt
i � Xt

i/ C �2r2. OBt � Xt
i/ (12.5)

In Eq. 12.5, ! parameter is called inertia factor, and it is used to determine the
fraction of the current velocity (i.e., it determines how fast we want to move the
particle to the next position, compared to the current velocity). Inertia is a time-
variable parameter, kept high (e.g., a typical value is 0.9) at the beginning of the
evolution phase to allow particles exploring the search space (exploration phase).
Later, it is reduced to lower values (e.g., a typical value is 0.1) in the last part
of the evolution cycle (exploitation phase). Bt

i and OBt are, respectively, the best
position assumed by the particle and by the whole swarm at the time t. �1 and
�2 are parameters that greatly influence the algorithm convergence and are kept
constant (several works demonstrated empirically that setting �1 D �2 D 2 provides
the best trade-off between probability of convergence and algorithm efficiency).
Finally r1 and r2 are two stochastic variables with a uniform distribution U .0; 1/.
Equation 12.6 shows how the position of each particle is updated:

XtC1
i D Xt

i C
VtC1
i (12.6)

The parameter
 is called constriction factor. It can be used to adapt the final
velocity in such a way the change to the position of the particle is small enough
not to compromise the overall adaptation given by the cognitive and social factors.

In such adaptive optimisation heuristics, an initial set of solutions is randomly
generated by the algorithm. In the case of PSO, solutions represent the particles’
position in the search space. By using a fitness evaluation function (i.e., the objective
function to optimise), each candidate solution is evaluated and ranked based on its

12 Adaptive Resource Allocation in Cloud 317

fitness value. PSO received attention for developing adaptive resource allocators
thanks to the quality of the solution that they provide, and their inherently parallel
nature, that makes them well suited for modern massive multi-/manycore processors
largely available in modern DCs.

12.6.2.1 VM Allocation

In allocating VMs on a given set of physical servers, with the aim of reducing the
number of active servers, we can model the problem as follows. Given a set S of
physical servers and a set V of VMs, we want to assign the maximum number of
VMs denoted as vj 2 V to the servers si 2 S, in such a way the sum of required
resources of the VMs to each server does not exceed the amount of available free
resources on the servers.

Equation 12.7 allows to model this objective function (Fo) as follows:

Fo D max

8<
:
jSj�1X
iD0

jVj�1X
jD0

aij
 vj

9=
; C min f�Sg (12.7)

where jSj and jVj denote, respectively, the cardinality of the set of servers S and
of the VMs V . When asserted, boolean variables aij allow to assign the VM j to
the server i. Finally, �S takes care of the distribution of the VMs among the active
servers (i.e., a server si for which exists at least one of the aij D 1).

�S D

vuut
PjSj�1

iD0

PjVj�1
jD0 .vj
 aij � V/2

jVj � 1
V D

PjSj�1
iD0

PjVj�1
jD0 vj
 aij

jVj
(12.8)

Equation 12.8 shows how to take into account the way the load is distributed on the
servers. Minimising the standard deviation in this distribution, the function Fo tries
to reduce the imbalance in the load distribution, thus contributing to reduce power
consumption on the active servers. On the other hand, maximising the number of
assigned VMs to a given server allows reducing the number of active servers. To
correctly optimise this objective function, the following constraint must be satisfied:

jVj�1X
jD0

aij
 vj � si; 8i 2 f0;

 ; jSj � 1g (12.9)

Since both VMs and servers are characterised by the set of resources, they,
respectively, require and offer on the maximum resources available. We express the
quantities si and vj as the ratio between the assigned (VM) or free (server) resources
and the maximum available resources. For instance, if a certain VM requires four
CPU cores and the maximum CPU cores in the system is set to ten, then the VM

318 S. Mazumdar et al.

will be characterised by a CPU utilisation of 0.4. Similarly, a server with five CPU
cores free will be characterised by a CPU offer of 0.5. Both servers and VMs are
characterised by a set of three distinctive features which globally represent the full
set of resources. They are CPU core fraction, the amount of main memory, and the
network bandwidth required.

To find a solution for the stated problem using the PSO algorithm, we need to
transform the objective function Fo (see Eq. 12.7) in such way it can be conveniently
minimised. To this end, the first term of the function Fo is substituted by another
term, as follows:

� D
1PjSj�1

iD0

PjVj�1
jD0 aij
 vj

H) Fo D minf� C �Sg (12.10)

12.7 Evaluation

The proposed framework is designed to provide adaptability to the Cloud resource
schedulers. The ability of such components to efficiently performing resource
allocation to the requesting VMs plays a vital role in supporting Cloud QoS. A fair
distribution of the workload contributes to increase the efficiency and reliability of
the whole DC. Experimental results demonstrate the effectiveness of this approach,
which can outperform a traditional Cloud scheduling policy such as First Fit.

12.7.1 Prediction Results

For our analysis, we have collected a trace for incoming VM requests over a
period of 7 days from a private Cloud, shown in Fig. 12.4. The granularity of
the incoming VM request is 6 min, and using the trace, we perform out-sample,
multistep forecasting. To compare the forecasting accuracy, we consider two well-
known forecasting error measures: mean absolute percentage error (MAPE) and
root mean squared error (RMSE). MAPE is the sum of all prediction errors divided
by the sum of actual values, while RMSE is a more rigorous error measure, and the
standard error (SE) provides the details of the error distribution (see Eq. 12.11).

MAPE D
1

n

Pn
tD1

ˇ̌
ˇ Xt�bXt

Xt

ˇ̌
ˇ

RMSE D

r
1

n

Pn
tD1 .Xt � bXt/

2

(12.11)

12 Adaptive Resource Allocation in Cloud 319

150010005000

4
5

6
7

8
9

10

Weekly Request (Interval 6 Minutes)

 In
co

m
in

g
V

M
 R

eq
ue

st

Fig. 12.4 Representation of incoming VM request for 7 days

Table 12.1 Prediction models: ARIMA input parameters are (3,1,2), SARIMA input parameters
are (2,1,2)(1,1,1), and ARFIMA input parameters are (0,d,1). Standard errors are reported in
parenthesis

Model AR(1) AR(2) AR(3) d MA(1) MA(2) SAR(1) SMA(1)

ARIMA 1.3475 �0.5905 �0.1456 – �1.6867 0.8582 – –

(0.029) (0.040) (0.0276) (0.0176) (0.0160)

SARIMA 1.4798 �0.7918 – – 1.7279 0.8726 �0.1526 �1.0

(0.0200) (0.0192) (0.0158) (0.0162) (0.0256) (0.0087)

ARFIMA – – – 0.477 �0.2842 – – –

(0.0213) (0.0246)

We have used three widely used univariate time series models for predicting
incoming VM request of a DC over a 1-h window. First, we consider the ARIMA
model; next we incorporate the idea of seasonality by implementing the seasonal
ARIMA (SARIMA) model. Finally, we check the possibility of fractional integra-
tion and long memory by estimating the ARFIMA model (fractional ARIMA). The
optimal lag values for all the models were calculated using Akaike information
criteria (AIC). The estimated values are given in Table 12.1 where standard errors
are in the parenthesis.

From the standard error values, we can observe that parameters are statistically
significant. The presence of seasonality in the data is verified by the values of the
seasonal AR and MA coefficient. Further, the presence of long memory is confirmed
as the fractional integration parameter d is statistically significant and less than 0.5.
Next, we analyse the ability to predict for the three estimated models (see Fig. 12.5).

320 S. Mazumdar et al.

Hourly (6 min Interval) Prediction

P
re

di
ct

ed
 V

M
 R

eq
ue

st

0 2 4 6 8 10

2
4

6
8

10 Real Value
ARIMA Prediction
SARIMA Prediction
ARFIMA Prediction

Fig. 12.5 Comparison of prediction between ARIMA, SARIMA, and ARFIMA models

Table 12.2 Forecasting error comparison and the execution time for the three analysed prediction
models

Performance ARIMA(3,1,2) SARIMA(2,1,2)(1,1,1) ARFIMA(0,0.48,1)

MAPE 2.092558 2.066657 2.277271

RMSE 0.02313968 0.02292463 0.02465025

Exe. time (seconds) 2.712 12.376 2.108

From the results, it is evident that SARIMA model has outperformed other
models regarding forecast accuracy (it is evident from the RMSE and MAPE
values). ARIMA model is found out to be the second best in prediction (see
Table 12.2). The value of d is found to be 0.48 in the ARFIMA model. Hence, the
presence of long memory is confirmed. However, it does not increase the forecast
performance of the ARFIMA model. The superior performance of the SARIMA
model indicates that there are seasonal patterns present in the analysed data. Finally,
regarding computation time, ARFIMA model is found to be the fastest model,
whereas SARIMA model requires the largest amount of time. This delay could
be justified by the fact that the SARIMA model estimates more parameters as it
incorporates seasonal patterns. Thus, in this part of the experiment, we have shown
how the selection of model can affect the forecasting accuracy together with running
time. The execution time should also be considered during the selection of the
model. Because the real-time applicability of the model can come into question
when the data sets get larger.

12 Adaptive Resource Allocation in Cloud 321

12.7.1.1 PSO Results

The output of the prediction model can be effectively used to drive the allocation
of the DC resources, by running a metaheuristic that provides a possible resource
schedule in a very short time. To show the effectiveness of the proposed method,
we considered a test case where input requests are collected in an input queue.
Allocation is performed analysing a window of R � Qsize requests, where Qsize

accounts for the maximum number of requests that can be presented at the input
of the scheduler. Once a schedule is produced for the current window, only the
VMs that effectively have been allocated are removed from the queue. The other
requests are kept in the queue for the next iteration. Experimental setup used a
window with a fixed size of R D 80 (the entire pool of predicted VMs to allocate
is set to Qsize D 240), with a pool of available servers that is predicted to be of
five servers. Although the number of servers in the experiments appears to be tiny,
it is worth noting that the ratio between the available servers and the number of
VMs to allocate is equal to 0.06, making the instance of the problem complex for
any resource allocation algorithm (especially if the solution has to be generated
dynamically). In experiments, it has been seen that the servers generated traffic
follows localisation [8] thus running the small problem instances in parallel can be
of great use. For more complex situations of the allocation problem (e.g., where a
quite larger window is used, as well as the number of servers available is higher), the
scheduler algorithm can leverage on its inherited parallel nature and the availability
of multi-/manycore processors. By allowing groups of candidate solutions to be
analysed in parallel by multiple cores on modern processors (or even better on
large multithreaded systems, such as GPUs and Intel Xeon Phi coprocessor), the
execution time may be kept reasonable. Furthermore, specific problem knowledge
can be incorporated in the PSO heuristic to speed up its execution (i.e., reducing the
number of required iterations to converge).

For comparison purpose, we have used the well-known First Fit allocation policy.
In Fig. 12.6, we present the fitness value (of both PSO-based algorithm and also the
First Fit) over the time related to the solutions for the problem. The simple logic
employed by the First Fit algorithm allows performing initially better. However, the
algorithm is not able to effectively explore the complete solution space. Conversely,
the ability of PSO to intelligently sample the search space allows it to discover
a solution with a lower fitness. This approach lets the PSO algorithm to quickly
outperform the First Fit, leaving the algorithm to explore more the solution space. It
is worth to note that presented results (see Fig. 12.6) are provided for the standard
version of the PSO algorithm, without any specific problem knowledge integrated
and without any parallelisation mechanism.

Regarding execution time, First Fit is faster (taking a few seconds) compared
to the PSO model. The PSO-based algorithm took less than 20 s to complete
the solution space exploration while running as a single-threaded instance/task.

322 S. Mazumdar et al.

Fitness function for the scheduling policies (PSO, First-Fit)
F

itn
es

s
V

al
ue

Iteration

0.1

1

10

0 10000 20000 30000 40000 50000 60000 70000 80000

PSO-Scheduler

First-Fit

Fig. 12.6 Comparison of the fitness function over the time for the First Fit and PSO-based
allocation algorithms

However, it is important to observe two specific aspects of the PSO scheduler. They
are (i) its inherited parallel nature that can take enormous advantages from recent
multi-/manycore processors and (ii) the capability of incorporating a memory effect.
While the former aspect greatly contributes to speed up the execution, the latter
aspect represents a remarkable factor. In fact, since the distribution of requests
are not totally random, it leaves space for the evolutionary algorithm to exploit
accumulated knowledge from previous iterations (i.e., when the scheduler moves
from one window to the next one, the current best solution can be used to initialise
the population of solution candidates). In this last experiment, we have shown that
even a simpler form of the PSO-based solution can outperform the well-known First
Fit algorithm regarding allocation efficiency. The performance can also be improved
further by adding parallelism, and the complexity of the scheduling model can be
increased by adding more resource-related constraints.

12.8 Conclusions and Future Work

Maintaining a power-efficient Cloud infrastructure is not easy, and the complexity
of Cloud resource management is further increased by the dynamic access patterns
of the users. Although many good works have been done to make the model of

12 Adaptive Resource Allocation in Cloud 323

the problem as real as possible by adding realistic features, these proposals quickly
fail when implemented as a real-time solution. In this chapter, we advocate for an
adaptive resource allocation mechanism in Cloud which is still an open research
problem. Here, we first give an overview of the current state of the Cloud paradigm
and then discuss the underlying resources. Next, we advocate for a proactive
resource allocation strategy for better resource allocation. We believe that if the
first part (forecast) of the framework is efficient, then we do not need a complex
allocation policy (second part). During the experiments, we have shown that (for
our case) the SARIMA is more efficient to predict future VM requests compared
to other state-of-the-art predictors. Passing such inputs to a metaheuristic (such as
PSO), we can make an adaptive resource allocation framework for Cloud. The future
direction of this work would be optimising the PSO for better convergence speed and
quality of the solution. Few related approaches have been discussed in the chapter,
but further tuning the control parameters (such as velocity clamping, inertia weight,
constriction coefficient) could lead to better solutions. Searching space extension
or hybrid PSO can also provide better performance. Apart from that, it could also
be interesting to develop more robust hybrid prediction model by combining other
models with the state-of a the-art models.

References

1. Adapteva Inc. (2013) Epiphany architecture reference. http://adapteva.com/docs/epiphany_
arch_ref.pdf

2. Adzigogov L, Soldatos J, Polymenakos L (2005) Emperor: an ogsa grid meta-scheduler based
on dynamic resource predictions. J Grid Comput 3(1–2):19–37

3. Ardagna D, Panicucci B, Passacantando M (2011) A game theoretic formulation of the service
provisioning problem in cloud systems. In: Proceedings of the 20th international conference
on world wide web. ACM, pp 177–186

4. Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the
design of warehouse-scale machines. Synth Lect Comput Archit 8(3):1–154

5. Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40:33–
37

6. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Futur Gener Comput Syst
28(5):755–768

7. Beloglazov A, Buyya R (2010) Adaptive threshold-based approach for energy-efficient
consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th international
workshop on middleware for grids, clouds and e-science, vol 4. ACM,

8. Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data centers in the
wild. In: Proceedings of the 10th ACM SIGCOMM conference on internet measurement.
ACM, pp 267–280

9. Bobroff N, Kochut A, Beaty K (2007) Dynamic placement of virtual machines for managing
SLA violations. In: 10th IFIP/IEEE international symposium on integrated network manage-
ment, IM’07, pp 119–128

10. Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing: a platform for internet of things
and analytics. In: Bessis N, Dobre C (eds) Big data and internet of things: a roadmap for smart
environments. Springer, Cham, pp 169–186

11. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and
control. Wiley, Hoboken

http://adapteva.com/docs/epiphany_arch_ref.pdf
http://adapteva.com/docs/epiphany_arch_ref.pdf

324 S. Mazumdar et al.

12. Calheiros RN, Masoumi E, Ranjan R, Buyya R (2015) Workload prediction using ARIMA
model and its impact on cloud applications QoS. IEEE Trans Cloud Comput 3(4):449–458

13. Chandra A, Gong W, Shenoy P (2003) Dynamic resource allocation for shared data centers
using online measurements. In: International workshop on quality of service. Springer,
pp 381–398

14. Chen C, Pei Q, Ning L (2009) Forecasting 802.11 traffic using seasonal ARIMA model.
In: International forum on computer science-technology and applications, IFCSTA’09, vol 2,
pp 347–350

15. Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F (2008) Energy-aware server provisioning
and load dispatching for connection-intensive internet services. In: NSDI, vol 8, pp 337–350

16. Chieu TC, Mohindra A, Karve AA, Segal A (2009) Dynamic scaling of web applications in
a virtualized cloud computing environment. In: IEEE international conference one-business
engineering, ICEBE’09, pp 281–286

17. Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the third
annual ACM symposium on theory of computing. ACM, pp 151–158

18. Csirik J, Woeginger GJ (1998) On-line packing and covering problems. Springer, Berlin/New
York

19. Debusschere V, Bacha S et al (2012) Hourly server workload forecasting up to 168 hours
ahead using seasonal ARIMA model. In: 2012 IEEE international conference on industrial
technology

20. Dinda PA, O’Hallaron DR (1999) An evaluation of linear models for host load prediction.
In: Proceedings of the eighth IEEE international symposium on high performance distributed
computing, pp 87–96

21. de Dinechin BD, de Massas PG, Lager G, Léger C, Orgogozo B, Reybert J, Strudel T (2013) A
distributed run-time environment for the Kalray MPPA®-256 integrated manycore processor.
Procedia Comput Sci 18:1654–1663

22. Do T, Hao M, Leesatapornwongsa T, Patana-anake T, Gunawi HS (2013) Limplock: under-
standing the impact of limpware on scale-out cloud systems. In: Proceedings of the 4th annual
symposium on cloud computing. ACM, p 14

23. Dutreilh X, Moreau A, Malenfant J, Rivierre N, Truck I (2010) From data center resource
allocation to control theory and back. In: 2010 IEEE 3rd international conference on cloud
computing, pp 410–417

24. Eberhart RC, Kennedy J et al (1995) A new optimizer using particle swarm theory. In:
Proceedings of the sixth international symposium on micro machine and human science, vol 1,
pp 39–43

25. Evans D (2011) The internet of things how the next evolution of the internet is changing
everything. White paper by Cisco Internet Business Solutions Group (IBSG), pp 1–11

26. Fan X, Weber WD, Barroso LA (2007) Power provisioning for a warehouse-sized computer.
In: ACM SIGARCH computer architecture news, vol 35. ACM, pp 13–23

27. Fang W, Lu Z, Wu J, Cao Z (2012) Rpps: a novel resource prediction and provisioning scheme
in cloud data center. In: 2012 IEEE ninth international conference on services computing
(SCC), pp 609–616

28. Filani D, He J, Gao S, Rajappa M, Kumar A, Shah P, Nagappan R (2008) Dynamic data center
power management: trends, issues, and solutions. Intel Technol J 12(1):59–67

29. Ghribi C, Hadji M, Zeghlache D (2013) Energy efficient VM scheduling for cloud data centers:
exact allocation and migration algorithms. In: 2013 13th IEEE/ACM international symposium
on cluster, cloud and grid computing (CCGrid), pp 671–678

30. Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a cloud: research problems in
data center networks. ACM SIGCOMM Comput Commun Rev 39(1):68–73

31. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision,
architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660

32. Gürsun G, Crovella M, Matta I (2011) Describing and forecasting video access patterns. In:
2011 Proceedings IEEE INFOCOM, pp 16–20

12 Adaptive Resource Allocation in Cloud 325

33. Hasan MZ, Magana E, Clemm A, Tucker, L, Gudreddi SLD (2012) Integrated and autonomic
cloud resource scaling. In: 2012 IEEE network operations and management symposium,
pp 1327–1334

34. Hermenier F, Lorca X, Menaud JM, Muller G, Lawall J (2009) Entropy: a consolidation
manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on virtual execution environments. ACM, pp 41–50

35. Hwang K, Dongarra J, Fox GC (2013) Distributed and cloud computing: from parallel
processing to the internet of things. Morgan Kaufmann, Waltham

36. Infrastructure V (2006) Resource management with VMware DRS. VMware Whitepaper
37. Interconnect EE, Living S, Computing G (2008) Technology with the environment in mind.

Intel Technol J 12(1):59–67
38. Iqbal W, Dailey MN, Carrera D, Janecek P (2011) Adaptive resource provisioning for read

intensive multi-tier applications in the cloud. Futur Gener Comput Syst 27(6):871–879
39. Islam S, Keung J, Lee K, Liu A (2012) Empirical prediction models for adaptive resource

provisioning in the cloud. Futur Gener Comput Syst 28(1):155–162
40. Jeyarani R, Nagaveni N, Ram RV (2012) Design and implementation of adaptive power-aware

virtual machine provisioner (APA-VMP) using swarm intelligence. Futur Gener Comput Syst
28(5):811–821

41. Kaur T, Chana I (2015) Energy efficiency techniques in cloud computing: a survey and
taxonomy. ACM Comput Surv (CSUR) 48(2):22

42. Kumar AS, Mazumdar S (2016) Forecasting HPC workload using ARMA models and SSA.
In: Proceedings of the 15th IEEE conference on information technology (ICIT), pp 1–4

43. Li K, Tang X, Li K (2014) Energy-efficient stochastic task scheduling on heterogeneous
computing systems. IEEE Trans Parallel Distrib Syst 25(11):2867–2876

44. Li L (2009) An optimistic differentiated service job scheduling system for cloud computing
service users and providers. In: Third international conference on multimedia and ubiquitous
engineering, MUE’09, pp 295–299

45. Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing:
challenges and opportunities. In: Proceedings of the 1st workshop on automated control for
datacenters and clouds. ACM, pp 13–18

46. Liu Z, Wang X (2012) A PSO-based algorithm for load balancing in virtual machines of cloud
computing environment. In: International conference in swarm intelligence. Springer, pp 142–
147

47. Martins J, Ahmed M, Raiciu C, Olteanu V, Honda M, Bifulco R, Huici F (2014) Clickos and
the art of network function virtualization. In: Proceedings of the 11th USENIX conference on
networked systems design and implementation. USENIX Association, pp 459–473

48. Mehrotra R, Banicescu I, Srivastava S, Abdelwahed S (2015) A power-aware autonomic
approach for performance management of scientific applications in a data center environment.
In: Khan SU, Zomaya AY (eds) Handbook on data centers. Springer, New York, pp 163–189

49. Mittal S, Vetter JS (2015) A survey of CPU-GPU heterogeneous computing techniques. ACM
Comput Surv (CSUR) 47(4):69

50. Murtazaev A, Oh S (2011) Sercon: server consolidation algorithm using live migration of
virtual machines for green computing. IETE Techn Rev 28(3):212–231

51. Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarm optimization-based heuristic
for scheduling workflow applications in cloud computing environments. In: 2010 24th IEEE
international conference on advanced information networking and applications, pp 400–407

52. Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A et al (2014) Mobile-edge
computing introductory technical white paper. White Paper, Mobile-edge Computing (MEC)
industry initiative

53. Pearce M, Zeadally S, Hunt R (2013) Virtualization: issues, security threats, and solutions.
ACM Comput Surv (CSUR) 45(2):17

54. Pell Oliver MOTKH, Luk W (2013) High-performance computing using FPGAs, pp 747–774.
Springer, New York

326 S. Mazumdar et al.

55. Petrucci V, Carrera EV, Loques O, Leite JC, Mosse D (2011) Optimized management of power
and performance for virtualized heterogeneous server clusters. In: 2011 11th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGrid), pp 23–32

56. Putnam A, Caulfield AM, Chung ES, Chiou D, Constantinides K, Demme J, Esmaeilzadeh H,
Fowers J, Gopal GP, Gray J, Haselman M, Hauck S, Heil S, Hormati A, Kim JY, Lanka S,
Larus J, Peterson E, Pope S, Smith A, Thong J, Xiao PY, Burger D (2016) A reconfigurable
fabric for accelerating large-scale datacenter services. Commun ACM 59(11):114–122

57. Quang-Hung N, Nien PD, Nam NH, Tuong NH, Thoai N (2013) A genetic algorithm for
power-aware virtual machine allocation in private cloud. In: Information and communication
technology. Springer, Berlin/Heidelberg, pp 183–191

58. Reddi VJ, Lee BC, Chilimbi T, Vaid K (2011) Mobile processors for energy-efficient web
search. ACM Trans Comput Syst (TOCS) (3):9

59. Roy N, Dubey A, Gokhale A (2011) Efficient autoscaling in the cloud using predictive
models for workload forecasting. In: 2011 IEEE international conference on cloud computing
(CLOUD), pp 500–507

60. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based cloudlets in
mobile computing. IEEE Pervasive Comput 8(4):14–23

61. Schroeder MR (2012) Fractals, chaos, power laws: Minutes from an infinite paradise. Courier
Corporation. New York

62. Shen Z, Subbiah S, Gu X, Wilkes J (2011) Cloudscale: elastic resource scaling for multi-tenant
cloud systems. In: Proceedings of the 2nd ACM symposium on cloud computing. ACM, p 5

63. Shu Y, Yu M, Liu J, Yang OW (2003) Wireless traffic modeling and prediction using seasonal
ARIMA models. In: IEEE international conference on communications, ICC’03,vol 3,
pp 1675–1679

64. Srikantaiah S, Kansal A, Zhao F (2008) Energy aware consolidation for cloud computing. In:
Proceedings of the 2008 conference on power aware computing and systems, San Diego, vol 10

65. Tirado JM, Higuero D, Isaila F, Carretero J (2011) Predictive data grouping and placement
for cloud-based elastic server infrastructures. In: Proceedings of the 2011 11th IEEE/ACM
international symposium on cluster, cloud and grid computing. IEEE Computer Society,
pp 285–294

66. Urdaneta G, Pierre G, Van Steen M (2009) Wikipedia workload analysis for decentralized
hosting. Comput Netw 53(11):1830–1845

67. Urgaonkar B, Shenoy P, Chandra A, Goyal P, Wood T (2008) Agile dynamic provisioning of
multi-tier internet applications. ACM Trans Auton Adapt Syst (TAAS) 3(1):1

68. Van HN, Tran FD, Menaud JM (2010) Performance and power management for cloud
infrastructures. In: 2010 IEEE 3rd international conference on cloud computing (CLOUD),
pp 329–336

69. Vaquero LM, Rodero-Merino L (2014) Finding your way in the fog: towards a comprehensive
definition of Fog computing. ACM SIGCOMM Comput Commun Rev 44(5):27–32

70. Verma A, Ahuja P, Neogi A (2008) pmapper: power and migration cost aware application
placement in virtualized systems. In: Middleware 2008, pp 243–264. Springer

71. Vogels W (2008) Beyond server consolidation. Queue 6(1):20–26
72. Von Laszewski G, Wang L, Younge AJ, He X (2009) Power-aware scheduling of virtual

machines in dvfs-enabled clusters. In: IEEE international conference on cluster computing
and workshops, CLUSTER’09, pp 1–10

73. Wei G, Vasilakos AV, Zheng Y, Xiong N (2010) A game-theoretic method of fair resource
allocation for cloud computing services. J Supercomput 54(2):252–269

74. Willis DF, Dasgupta A, Banerjee S (2014) Paradrop: a multi-tenant platform for dynamically
installed third party services on home gateways. In: Proceedings of the 2014 ACM SIGCOMM
workshop on distributed cloud computing. ACM, pp 43–44

75. Wu Z, Ni Z, Gu L, Liu X (2010) A revised discrete particle swarm optimization for cloud
workflow scheduling. In: 2010 international conference on computational intelligence and
security (CIS), pp 184–188

12 Adaptive Resource Allocation in Cloud 327

76. Xu J, Fortes JA (2010) Multi-objective virtual machine placement in virtualized data center
environments. In: Green computing and communications (GreenCom). 2010 IEEE/ACM
international conference on cyber, physical and social computing (CPSCom), pp 179–188

77. Zhan S, Huo H (2012) Improved PSO-based task scheduling algorithm in cloud computing. J
Inf Comput Sci 9(13):3821–3829

78. Zhang H, Li P, Zhou Z, Yu X (2012) A PSO-based hierarchical resource scheduling strategy
on cloud computing. In: International conference on trustworthy computing and services.
Springer, pp 325–332

79. Zhang Q, Zhani MF, Zhang S, Zhu Q, Boutaba R, Hellerstein JL (2012) Dynamic energy-
aware capacity provisioning for cloud computing environments. In: Proceedings of the 9th
international conference on autonomic computing. ACM, pp 145–154

80. Zhang Q, Zhu Q, Boutaba R (2011) Dynamic resource allocation for spot markets in cloud
computing environments. In: 2011 fourth IEEE international conference on utility and cloud
computing (UCC), pp 178–185

81. Zhuravlev S, Saez JC, Blagodurov S, Fedorova A, Prieto M (2013) Survey of energy-cognizant
scheduling techniques. IEEE Trans Parallel Distrib Syst 24(7):1447–1464

82. Zuo X, Zhang G, Tan W (2014) Self-adaptive learning PSO-based deadline constrained task
scheduling for hybrid IaaS cloud. IEEE Trans Autom Sci Eng 11(2):564–573

Chapter 13
Datacentre Event Analysis for Knowledge
Discovery in Large-Scale Cloud Environments

John Panneerselvam, Lu Liu, and Yao Lu

13.1 Introduction

The emergence of Cloud Computing in recent years has achieved tremendous
outreach in both academia and industry. Cloud providers are contractually com-
mitted to avail services and provision resources within the bounds [5] of the initial
negotiated SLA (service level agreement) with the clients. SLA is paramount in
determining the performance of the Cloud providers in satisfying the user requests
with the measure of Quality of Service (QoS) and Quality of Expectations (QoE)
of the users. A typical Cloud Computing environment is composed of massive
datacentres encompassing large numbers of servers hosting the operation of the
virtual machines (VMs). Jobs arriving at a datacentre for processing are usually
scheduled, allocated with appropriate resources and are executed at the back-end
servers. The server resources are orchestrated to execute the tasks effectively within
the allocated resource levels. A scheduler in the datacentre receives, finds and
allocates the jobs onto VMs encapsulated onto the physical servers for processing.
Emerging multi-provider Cloud service infrastructure enables the job execution to
utilise resources from different Cloud datacentres. The exchange of services within
multiple Cloud datacentres are enabled by the meta-schedulers and Cloud brokers
which are responsible for identifying and locating the desired services based on the

J. Panneerselvam (�) • L. Liu
Department of Electronics, Computing and Mathematics, University of Derby, Derby, UK
e-mail: j.panneerselvam@derby.ac.uk; l.liu@derby.ac.uk

Y. Lu
School of Computer Science and Telecommunication Engineering, Jiangsu University,
Jiangsu, China
e-mail: luyao478208892@163.com

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_13

329

mailto:j.panneerselvam@derby.ac.uk
mailto:l.liu@derby.ac.uk
mailto:luyao478208892@163.com

330 J. Panneerselvam et al.

job requirements. Other than the compute and storage components, datacentres also
comprise cooling components to maintain the reliability and longevity of the server
resources such as air-conditioning, water-based cooling systems, etc. Maintaining
the server resources in a ‘readily-available’ state is essential for achieving timely
scheduling of the incoming jobs. Switching the server resources off and turning on
after the job arrival in an attempt to conserve energy might delay the availability of
the server resources. Server switching is usually governed by the wake-up latencies
which determine the boot-up times required by servers to become available for
processing.

A single job may encompass one to several tasks [13] which are scheduled
accordingly onto the Cloud servers and allocated with resource levels in terms of
CPU core counts, memory and disk spaces. Allocated resource levels are usually
determined based on the resource requirements of the users and the computational
intensity of the jobs. CPU resources are usually evaluated in terms of core counts,
while the memory and disk space requirements are evaluated in terms of the memory
bytes. It is commonly being argued that the initial evaluation of the resource
requirements for jobs exceed far beyond the actual execution requirements. The
scheduled jobs are usually executed smoothly upon allocating the required level
of server resources, when there are no intrinsic and extrinsic termination causes.
But the actual execution of the tasks could face various types of terminations [2]
resulting in execution failures; such terminated jobs are most often resubmitted and
rescheduled for processing. The current status of jobs and tasks [11] are classified as
un-submitted, pending, running and dead depending on their status at the back-end
server.

Understanding the nature of the incoming user requests and the server resources
benefits the providers with the necessary knowledge to choose appropriate server
resources for allocating jobs with optimum provisioning of resource levels. Opti-
mum level of resource provisioning for the user requests helps the providers
to accommodate more workloads onto the server resources and to reduce the
energy implications of the datacentres. But the characteristics [9] of the Cloud
workload are still not perfectly clear, thus modelling the behaviours of the Cloud
workloads at the datacentres is challenging. The dynamic nature and the inherent
diversity of the Cloud workloads demand an extensive and continuous analysis for
characterising the incoming workloads, since the users of Cloud services generally
coexist from different business contexts and submit workloads of diverse resource
requirements, characterising diverse arrival frequency and resource consumption
patterns. Furthermore, a single datacentre environment usually comprises hetero-
geneous servers in terms of the operating system, server capacities, utilisation
levels and operating temperature, etc. Such intrinsic and extrinsic heterogeneities
[10] of both the user requests and the server resources impose various levels of
complexities in the datacentre management for achieving efficient execution of the
user requests. With this in mind, this chapter deeply studies the characteristics of
the incoming workloads and the server resource usage patterns in a large-scale
datacentre execution and presents an empirical analysis of the various execution

13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud. . . 331

events with the motivation of exhibiting the trend and knowledge inherent among
the datacentre execution events, ultimately to benefit decision making for optimum
and effective datacentre management.

The remainder of this paper is organized as follows:

Section 13.2 presents an overview of the characteristics of the Cloud workloads.
Section 13.3 defines the inherent Cloud periodicity patterns and predictability of

Cloud Computing.
Section 13.4 introduces the datacentre trace logs explored in this study.
Section 13.5 presents an empirical analysis conducted on the incoming job arrival

trend and user behaviours in terms of job submission.
Section 13.6 covers the analysis conducted on the server farm usage pattern.
Section 13.7 presents an analysis conducted on the nature of the incoming work-

loads in terms of their resource intensiveness.
Section 13.8 concludes this chapter along with the future research directions.

13.2 Cloud Workload Analytics

Cloud workloads can be witnessed as jobs encompassing tasks and exhibit temporal
and spatial correlations [8] as they are driven by repeatable business behaviours.
Such workloads originate from users, and the active number of concurrent users in a
service session is crucial in determining the required amounts of active resources in
the server farm. Usually, Cloud providers employ a higher level of parallelism under
increased level of concurrent users. The demand for CPU cores generally increases
with increasing number of concurrent users, as the demand for CPU witnessed at
20% under 100 concurrent users and 70% fewer than 300 concurrent users in a
datacentre analysis. The duration [1] of the workloads is tri-modal and classified
as short, medium and long running jobs. Cloud workloads are mostly shorter in
duration and are submitted at higher frequencies within shorter intervals and use the
allocated resources well up to the allocated margin. Shorter duration jobs are further
classified as highly parallel user requests requiring both CPU and memory resources
to shorter CPU and shorter memory intensive tasks, respectively. Medium jobs
usually have a fair resource utilisation profile and are more often memory intensive.
Medium jobs arrive less frequently than the short jobs but more frequently than the
long jobs. Though fewer in number, long running jobs consume maximum amounts
of resources and are highly CPU intensive. In order to model the resource utilisation
profiles of the workloads, job duration [1] has further been classified as short jobs,
approaching mid, medium, receding long and long jobs accordingly. Long running
jobs are further classified as encompassing user facing tasks and compute intensive
tasks. The former run continuously with quicker responses and interactions with the
users, and the latter generally refer to the processing of the weblogs.

332 J. Panneerselvam et al.

In general, majority of the Cloud jobs run for less than 15 min [7], and very few
jobs run for more than 300 min with the duration of latency sensitive jobs being
less than 30 min on average. The incoming workloads are usually characterised
with various levels of latency sensitivity [11] depending on their computational
intensity, which defines the allowed timescale within which the job should be
processed. Cloud datacentres usually face workloads of various latency levels,
though a majority of the Cloud workloads are jobs characterising lower levels
of latency sensitiveness. Task duration heavily depends on the nature of the user
behaviours and their interactions. For instance, a simple search and retrieval job may
run for shorter duration than those of downloading massive data or watching movies.
Generally, a single job may contain tasks of both shorter and longer durations, and
tasks running longer consume more of the resources than those running shorter
within the same job.

Alongside job duration, the number of tasks encompassed within the incoming
jobs is crucial in determining the execution profiles of the jobs. Most of the jobs
in Cloud datacentres encompass small to medium number (100 on average) of
tasks, and very few jobs have a single task. On the contrary, very few jobs also
contain more than 2000 [7] tasks. Thus a majority of the Cloud users submit jobs
with smaller number of tasks, and very few users submit jobs encompassing larger
proportion of tasks. In the case of jobs submitted with a single task, the execution
duration of the task is actually the execution duration of the entire job. With jobs
encompassing several tasks, the execution duration of the job is the accumulation
of all the tasks contained within that particular job. The smaller number of jobs
with increased number of tasks and the larger number of jobs with fewer tasks
have distinctive impacts on the overall datacentre behaviour. Jobs are generally
attached with various constraints ([3]) such as scheduling constraints, specified
server requirements, etc. An efficient Cloud infrastructure effectively manages such
constraints but there are few jobs witnessed to have more than 400 constraints.
Intrinsic and extrinsic dynamicity among the user-submitted workloads make them
behave distinctively in the datacentre resources in terms of their resource usages,
energy consumption and execution duration, etc., adding to the complexities in
datacentre management.

13.3 Cloud Predictability

Interestingly, both the Cloud workloads and the server resources exhibit similar
behaviours at various levels of the Cloud process infrastructure. Workload patterns
generally follow a periodical behaviour despite their heterogeneity and are found
to be more uniform when compared to the user diversity. Repeating patterns
[8] in the behaviours of the virtual machines (VMs) in the Cloud datacentre
could be attributed to their processing approach and related characteristics such as
thresholds and image similarities. VM threshold pattern can be used to categorise

13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud. . . 333

the VMs according to their resource utilisation profiles, which helps scheduling
and allocating jobs onto the servers effectively. Image similarity pattern studies the
similarities among the VMs which help storing identical images together thereby
benefits reducing the storage space of the VMs. Relationship pattern determines
the degree of association between any two parameters and helps to identify the
correlation among the workloads, which helps grouping similar workloads together
for efficient processing. Variability pattern studies the covariance among both the
workload and the VM groups. Periodicity pattern identifies the recurring behaviours
among the incoming workloads, which are usually evident among the arrival
frequency, resource requirements, etc. The accuracy of such pattern identification
can be enhanced by extracting the statistical properties of the workloads and the
machine parameters which remain consistent over a significant amount of time.

In general, Cloud datacentres encounter repeated submissions of jobs in a timely
fashion which characterises their periodicity. For instance, generating weather
reports and road traffic information is a typical example of a timely recurring job
submission. Jobs are assigned with a random string of user ID, and jobs submitted
by a single user are usually allocated with the same user ID. But a single user
may have various user profiles with different user IDs, which would lead to the
generation of various user driven profiles for a single user. It is much harder to match
the ownerships of the jobs submitted by a single user in spite of being submitted
under different user IDs. But jobs characterising similar behavioural patterns closely
correlated with the user profiles of similar characteristics can be treated in a common
way for predictive analytics. Another challenge imposed by the workload behaviour
is the job submissions from brand new users. Newly arriving jobs may or may not
have a pre-existing user or job profiles to which they can fit into. If they don’t
fit into an existing profile, then new job behavioural profiles should be created
for every new user. Cloud workloads may also contain anomalies [14] and jobs
submissions from malicious users. Such anomalies generally show an abnormal
pattern of the behavioural profiles. Some of the runtime factors such as user access
patterns, user concurrency and resource usages often result in contextual anomalies
which are unavoidable in Cloud environments. It is possible that these anomalies
could also be considered as newly arriving jobs submitted by brand new users, and
conversely genuine workloads might also be classified as anomalies. The possibility
of classifying anomalies into new patterns further increase from the oscillatory
behaviours of the workloads and the measure of uncertainty of noise among the
workloads. In general, genuine workloads may characterise dense neighbourhoods,
whereas anomalies fall far from such dense neighbourhoods. But, anomalies may
cause false nearest neighbourhoods, which causes the anomalies to fall closer to the
dense clusters of genuine workloads.

Usually, Cloud providers tend to expose ample coarse grain parallelism in order
to harness larger clusters of machines, where the clusters are connected by a
high bandwidth cluster network for the purpose of processing the user requests.
Every machine cluster has a cluster management system which is responsible for
scheduling and allocating tasks to individual VMs within that particular cluster.

334 J. Panneerselvam et al.

Though each machine within a given cluster may have its own capacity characterised
by the CPU and memory capacity, etc., the characteristics of all the machines within
the same cluster would be fairly homogeneous. Thus, the VM clusters facilitate the
prediction of workload variations over the entire cluster, which assist predicting the
workload patterns on individual VMs. A stronger workload correlation is obvious
among the VMs running applications in a collaborative fashion. Such a spatial
correlation among groups of VMs helps to filter the noise at the individual VM levels
for accurate predictive analytics. Physical machine clusters are generally formed
based on the server architecture, operating platform, CPU capacity and Memory
capacity, whereas VMs are clustered based on their image similarity, threshold
levels, allocated CPU and memory. In the presence of a cache at the hypervisor
level, multiple VMs tend to share common chunks of VM images composed of same
OS and execute similar workloads. But duplicated chunks can also exist among the
VM images. Process clusters are naturally formed in the Cloud infrastructure, where
tasks belonging to the same job may be executed in the same or different compute
clusters located in the same or different physical server.

Quantifying machine events in clusters helps achieving appropriate allocation
of VMs for the incoming jobs, load balanced resource allocation, reducing the
machine failures and further identifying the causes of machine failures. Machine
usage patterns generally exhibit temporal locality which can be extracted from
their CPU usage profiles. The frequency at which the machine events are triggered
and machine usage patterns helps server farm maintenance for managing resource
availability.

Most of these metric parameters exhibit temporal and/or spatial variations and
correlations, which could be both significant positives (maximum correlations) and
significant negatives (minimum correlations). Significant positive represents the
persistence of a system metric to remain almost the same for a consistent time
period. The degree of these positives and negatives should be carefully attributed
for behaviour modelling, since clusters of significant positives lead to effective
prediction analysis whereas clusters of significant negatives not only affects the
prediction accuracy but further causes SLA violations and QoS degradations. These
correlation metrics exhibit dynamic shifts with time as the workloads fluctuate
over time [6] due to the time-of-the-day, day-of-the-week, week-of-the-month and
month-of-the-year effects. Thus it is essential to study and model the association
of both the incoming workload patterns and machine usage patterns with the time
driven periodical effects.

13.4 Datacentre Trace Sample

This work conducts empirical analysis based on the Cloud trace logs [4] released by
Google, featuring more than 650,000 jobs over 28 days of datacentre execution. The
statistical observations of the trace logs [11] are presented in Table. 13.1. The trace
log data has been sampled on a daily basis with a single day spanning across 24 h

13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud. . . 335

Table 13.1 Trace log
statistics

Number of days 28
Total number of job submissions 650,892
Total number of task submissions 46,093,201
Number of operating servers 12,500
Average number of users per day 190

starting from 12:00 am for a given day. In order to accurately model the time-of-
the-day and day-of-the-week effects, the trace log data has been sampled in such a
way that the trace time starts exactly at 12:00 am on a Sunday. This datacentre trace
data have been deeply explored in order to the extract the inherent trend among
the submission and execution events to benefit effective decision making in Cloud
datacentre management.

13.5 Submission Event Analysis

Figure 13.1 presents the statistical observation of the total number of job and task
submissions on a daily basis. From Fig. 13.1, it can be clearly observed that a weekly
trend is evident among the incoming number of job submissions as the arrival shows
an increasing/declining trend over the weekdays and weekends, respectively. On a
coarse grain analysis, this arrival trend can be postulated to the operating business
days. But the weekly arrival trend is hardly evident among the incoming number
of task submissions. An abrupt spike is evident in the number of jobs arrived
on Day 18, but it encompasses a lower number of tasks. Day 10 characterises a
fewer number of jobs but encompasses an increased number of tasks. Thus the
arriving trend of jobs and tasks are loosely correlated within the same day, since
days with increased number of jobs encompass fewer tasks and vice versa. From
this observation, it is clear that tasks and jobs are independent to each other; tasks
contained within similar jobs may vary abruptly. An abrupt spike is evident among
the number of jobs arrived on Day 18 because a single user suddenly submitted
around 81% of the total jobs. Such a sudden arrival of the jobs is a rare event,
resulting from a rare user submitting once-in-a-life-time workloads.

For deeper exploration on the job trend, Day 3 Wednesday has been randomly
chosen to analyse the job arrival pattern during different time of the day for the
purpose of characterising the periodical effects on job submission. Since jobs are
driven by the users, it is worthy to observe the usage patterns of Cloud users during
different times of day. With this in mind, Day 3 has been sampled into six different
segments for deriving insights during receding midnight (12 am – 4 am), early
morning (4 am – 8 am), morning (8 am – 12 pm), noon (12 pm – 4 pm), evening
(4 pm – 8 pm) and approaching midnight (8 pm – 12 am), respectively, in order
to observe the job arriving trend during off-peak and peak time business hours of
datacentre execution.

336 J. Panneerselvam et al.

1
0

10000

20000

30000

40000

50000

3 5 7 9 11 13

Day

a b
N

um
be

r
of

 J
ob

s

15 17 19 21 23 25 27 1
0

1000000

2000000

3000000

4000000

6000000

5000000

3 5 7 9 11 13

Day

N
um

be
r

of
 T

as
ks

15 17 19 21 23 25 27

Fig. 13.1 Submission event statistics: (a) jobs, (b) tasks

It is obvious in a datacentre that a single job may characterise one to several
submissions within a single day. Similarly, users submitting jobs might submit one
to several jobs within a single day and might submit a single job several times. Jobs
submitted more than once within a single day might generate a recurring pattern of
resubmissions, and in addition, jobs facing terminations are most often resubmitted
within a short succession. Figure 13.2a presents the statistical observations of the
number of jobs submitted during different times of the day in Day 3. Figure 13.2b
presents the data distribution of the job submission trend for the number of times
a job is submitted, fitted with the closest theoretical distribution for the entire day.
It can be observed that the job arrival trend is fluctuating during different hours of
the day; the number of jobs arrived are increasing during the day time and declining
towards the night time, exhibiting a diurnal trend of job arrival. Further, from the
distribution analysis, it is clear that the curve is significantly positively skewed
and predominantly fits gamma and 3 parameter Weibull distributions, insisting that
Cloud datacentres face a majority of the jobs submitted for a few times, and a
minority of the submitted jobs involve several resubmissions, respectively. Figure
13.3a presents the statistical observations of the active number of users during
different times of the day during Day 3. Further Fig. 13.3b presents the data
distribution for the number of times a job is submitted triggered by the users for the
entire day. Similar to the job submission trend, the number of active users submitting
jobs is high during the day time, again exhibiting a diurnal trend of active users. On a
coarse grain analysis, a close correlation is evident among the number of active users
and the number of jobs arrived at the datacentre. Further, the distribution curve of
the job submission trend from different users predominantly fit Lognormal and three
parameter Weibull distributions and are positively skewed, suggesting that Cloud
datacentre comprise a majority of users submitting a fewer number of jobs and a
very few users characterise majority of the jobs submissions, respectively. The data
distribution statistics for both the job and user trend is illustrated in Table 13.2.

13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud. . . 337

12-4 am
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4-8 am 8 am -
12 pm

Time of the Day

a b
N

um
be

r
of

 J
ob

s

12-4 pm 4-8 pm 8 pm-12
pm

0

0

20

40

60

80

100

250 500

Frequency Count

C
um

ul
at

iv
e

P
er

ce
nt

750 1000 1250

Fig. 13.2 Job statistics: (a) submissions, (b) distribution

12-4 am 4-8 am 8 am -12
pm

Time of the Day

12-4 pm 4-8 pm 8 pm-12
pm

0

20

40

60

80

100

120

140

N
um

be
r

of
 U

se
rs

0 500 1000

Frequency Count

1500 2000 2500 3000

0

20

40

60

80

100

C
um

ul
at

iv
e

P
er

ce
nt

a b

Fig. 13.3 User statistics: (a) active users, (b) distribution

Table 13.2 Data distribution trend for job submission

Trend Distribution Parameters Skewness

Jobs Gamma ˛ D 0.6465 � D 6.1738 26.6112706
3P Weibull 	 D 0.999 cD 0.2407 � D 0.0653

Users Lognormal � D 1.946 & D 2.6876 6.11923945
3P Weibull 	 D 0.999 cD 0.3633 � D 26.36

13.6 Machine Usage Analysis

13.6.1 Machine Events

It is natural in a Cloud processing environment that individual machines may
become unavailable due to hardware failures and sever downtimes for upgrades.
Such machines are taken offline to apply the necessary repairs before bringing

338 J. Panneerselvam et al.

1
0

100

200

300

400

500

600

3 5 7 9 11 13

Day

a b
N

um
be

r
of

 M
ac

hi
ne

s

0

100
50

150
200
250
300
350
400

N
um

be
r

of
 M

ac
hi

ne
s

15 17 19 21 23 25 27 1 3 5 7 9 11 13

Day

15 17 19 21 23 25 27

Fig. 13.4 Machine event statistics: (a) removals, (b) updates

them online in order to confront the unexpected failures. Most of these machine
downtimes are shorter, and tasks being processed in such machines are stopped
and rescheduled to other available machines. Some of the machines may face more
frequent downtimes than others, which could be attributed to their capacity, ageing,
etc. Figure 13.4 illustrates the number of machine removals and machine updates,
respectively, over the observed period of 28 days. On average, around 311 machines
are removed due to failures, and around 255 machines are updated at the studied
datacentre traces. Such events would have a significant impact upon the availability
of the machines in the server farm. From Fig. 13.4, it can be observed that both the
number of machine removal and update events show a decline over the weekends
compared to those during weekdays. Thus a close correlation is evident between the
machine events and the number of job submissions; increased number of job arrivals
naturally demands more availability of the machines in the server farm.

13.6.2 Machine Usage Frequency Analysis

Server resources in a Cloud datacentre can be viewed as common and uncommon
servers. Common servers are those resources used quite often and characterised
by low utilisation profiles, whereas uncommon servers show higher utilisation
rates and are used occasionally. Servers in the datacentres are usually assigned
with a permanent machine ID; jobs arriving at the datacentres are allocated from
the temporarily deployed VMs onto these permanent machines. Schedulers in the
datacentre receive the jobs and find the appropriate physical machines to allocate
the tasks for processing. This process of selecting machines is usually governed by
various factors such as the machine availability status, current server load, utilisation
levels, nature and intensities of the jobs, etc. This section analyses the machine
usage patterns based on the actual scheduling of the tasks. For this analysis, Day
3, Wednesday, has been randomly chosen for delving into the machine events
in order to exhibit the machine usage patterns. A total of 12,503 servers have

13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud. . . 339

Rare

0

0

20

40

60

80

100

200 400 600 800 1000

0

1000

2000

3000

4000

5000

6000

Uncommon Occasional

Server Type

a b

Frequency Count

C
um

ul
at

iv
e

P
er

ce
nt

U
sa

ge
 F

re
qu

en
cy

Common

Fig. 13.5 Machine usage frequency: (a) quantification, (b) data distribution

Table 13.3 Data distribution
parameters for machine usage

Distribution Parameters Skewness

Weibull cD 1,7518 � D 157.18 0.85857994
3P gamma 	 D 26.88 ˛ D 4.109 � D 40.69 0.85857994

been utilised for scheduling the incoming tasks during Day 3 across a period
of 24 h. Interestingly, an extreme dynamism is evident in the usage patterns of
these 12,503 servers, since the usage frequency of the machines in the server
farm ranges from once to a few hundred times. A total of 31 machines has been
utilised only once for the whole day; such machines are generally the uncommon
servers used occasionally. On the contrary some of the other machines have been
consistently utilised for job scheduling throughout the entire day. In order to exhibit
the usage patterns of the server, the machines are classified based on their usage
frequency as rare (used once), uncommon (used for less than 100 times), occasional
(used between 100 and 200 times) and common servers (used for more than 200
times). Figure 13.5a presents the usage frequency patterns for the 12,503 machines
in the server farm during a period of 24 h in Day 3. It can be observed that
nearly half of the servers are occasional servers, accounting for 43.2%, followed
by uncommon servers, accounting for 35.21%, and common servers used for
21.27% and rare servers accounting only for 0.248% of the total machine usages.
Figure 13.5b illustrates the distribution of the machine usage frequency pattern in
terms of the cumulative distribution function (cdf) fitted with the closest theoretical
distribution. The machine usage frequency distribution predominantly fits Weibull
and 3-parameter gamma distribution for Day 3. Table 13.3 presents the statistics
for the data distribution analysis for machine usage pattern over 24 hours in Day
3. It can be observed that the distribution is positively skewed at 0.8585, insisting
that fewer proportions of the server farms characterise maximum utilisation within
a single day; 21.27% of the total servers have been consistently utilised for majority
of the incoming jobs or processing within a single day.

340 J. Panneerselvam et al.

13.7 Resource Request Analysis

It is a common belief that good service quality and energy efficient datacentre exe-
cution cannot coexist, since user requesting resource levels shift dynamically over
time. Based on the user requested requirements, the schedulers in the datacentres
schedule and allocate tasks on the servers with predefined allowed resource levels
for task execution. In other words, this allocated level of resources is the maximum
level of resources a task is allowed to consume during execution. Task executions
consuming more than this predefined level of resources are usually terminated,
causing resubmissions. It is commonly witnessed that user requested requirements
are demanding the providers to allocate resources 10 times [12] more than the
actual requirements. Further, this strategy of the schedulers always overcommits
resources for task executions, leading to two immediate implications. Firstly, over-
committed resource levels are vulnerable to leave most of the allocated resources
idle without actually contributing to the task execution causing undesirable energy
consumptions. Secondly, over-allocating the resources restrains the capability of
the datacentres to accommodate more task executions. This necessitates the need
to investigate the dynamism of user requested resource levels in accordance with
the operating business hours of datacentre execution. In general user requests are
associated with the required amounts of CPU, memory and disk space requirements.
Most often, the allocated-to-usage ratio of both CPU and memory resources varies
dynamically with the disk space utilisation remaining consistent. This section
investigates the nature of the incoming workloads in accordance with the amounts
of resources requested for task execution during different business hours.

Dynamism in workload resource requirements are analysed from two different
perspectives. Firstly, by delving into time-of-the-day effects, user requests from
a randomly chosen Day 3 are inspected to observe the hourly variations of user
requested resources in terms of CPU and memory resources within a single day.
Secondly, a clustering analysis is performed by preferentially segmenting the sample
into the aforementioned six segments. This cluster analysis is performed based on
k-means clustering algorithm for clustering the user requests with similar resource
levels together to identify the shifts in the intensity of resource requests levels
over time. K-means is a form of disjoint cluster analysis, which finds the optimum
number of clusters and maximises the differences among the distinct clusters until
convergence is achieved for the purpose of exhibiting the nature of the formed
clusters. K-means algorithm with k ranging from 1 to 9 is run firstly to identify
the optimum number of clusters for the given user requests and later to analyse the
diversity in the resource requests trend of the users over time.

Figure 13.6 presents the requested resource levels based on the job requirements
during Day 3 over the period of 24 h. The user requested resource levels are depicted
in terms of the core counts for CPU and bytes for RAM. It is clearly evident
that the requested resource levels are highly fluctuating during different hours of
the observed day, as the resource levels are increasingly high during the first 4 h

13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud. . . 341

1
0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8 9 10 11 12

Hour

CPU Memory

R
es

ou
rc

e
Le

ve
l

13 14 15 16 17 18 19 20 21 22 23 24

Fig. 13.6 Resource request statistics

when compared to the rest of the day. This higher level of resource requests is
postulated to the user activities during such hours submitting increasing number
of jobs at the datacentre. In general, increased amounts of job arrival impose higher
challenges to the scheduler in scheduling and allocating appropriate resource levels
to the incoming jobs, causing increased job terminations and resubmissions. Such
resubmissions demand reallocation of resources to execute the terminated jobs
successfully. With the increasing/declining trend of resource request levels are the
desired inferences from the resource request analysis; the providers might not obtain
sufficient inferences from the timely trend of resource request levels. Hence, we
postulate that the resource requirements computation at a given time should be given
consideration to the user activities during that corresponding time rather than the
operating business hours.

Further to the inherent inferences obtained from the hourly-based user requested
resource levels, we lead our analyses into the intensity of the requested resource
levels during different hours of the day based on the samples of Day 3. Figure 13.7
illustrates the clusters of requested resource levels in terms of CPU and memory
during the segmented 6 h within Day 3. It is clearly evident that the resource request
levels remain consistent throughout the day. During all the observed six segmented
hours within Day 3, both the CPU and memory resource requests are witnessed to
be of lower intensities. This corresponds to the fact that Cloud workloads are less
computationally intensive. It can thus be concluded that the intensity of resource
request levels remain consistent throughout the day. User activities such as the
number of concurrent active users and their respective job submissions are the
deciding factors of the level of resource provisions at the datacentres. Obviously,
increasing numbers of users and job submissions demand more active servers at the
datacentres in order to facilitate the providers to provision the appropriate level of
resources to the user requests.

342 J. Panneerselvam et al.

Fig. 13.7 Resource request intensity on Day 3: (a) 12–4 am, (b) 5–8 am, (c) 9 am–12 pm, (d)
1–4 pm, (e) 5–8 pm, (f) 9 pm–12 am

13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud. . . 343

13.8 Conclusion

This chapter analyses the submission events in a large-scale datacentre environment,
with the motivation of exhibiting the dynamic nature of Cloud workloads and the
machine usage patterns in the server farm. Workload arrival and user behaviours
are quantified for different operating business hours and further the machine usage
patterns have been analysed in terms of their usage frequency for scheduling the
incoming tasks. Extensive analysis conducted on a real-life Cloud trace logs reveals
that both Cloud workload and user behaviours are highly dynamic and are bound to
periodical effects in accordance to the operating business hours.

Arriving number of job submissions and active number of users follow a
diurnal trend and further correspond to the operating business hours with weekday
increase and weekend declines. User activities at a given time are the determining
factors on the resource request levels during that time rather than the operating
business hours. Cloud datacentres usually face a majority of users submitting
fewer jobs and fewer jobs characterise a majority of the job submissions. The
intensity of requested resource levels are witnessed to be low and remain consistent
throughout the day, thus quantifying the number of active concurrent users and
their respective job submissions provides contextual clues for the providers to scale
and provision the server resources at an optimum level for achieving an efficient
trade-off between energy efficiency and QoS. Machines in the server farm exhibit
extreme heterogeneity in their usage patterns, with machines characterising one to
a few hundred times of utilisations for scheduling tasks. The characterisation of the
workload and user behaviours and machine usage patterns presented in this chapter
finds applications in prediction analytics, resource provisioning, server management
and job allocation, etc., at the datacentres. The inferences presented in this chapter
are believed to provide sufficient insights for the Cloud providers to avail proactive
services to their clients, by way of balancing the trade-off between energy efficiency
and QoS, for prompting eco-friendly sustainable datacentre execution.

References

1. Alam M, Shakil KA, Sethi S (2015) Analysis and clustering of workloads in Google Cluster
trace based on resource usage. Cornell University

2. Garraghan P, Moreno IS, Townend P, Xu J (2014) An analysis of failure-related energy waste
in a large-scale cloud environment. IEEE Trans Emerg Top Comput 2:166–180

3. Garraghan P, Townend P, Xu J (2013) An analysis of the server characteristics and Resource
utilization in Google cloud. In: International Conference on Cloud Engineering. IEEE,
Redwood City

4. Google (2011) Google Cluster data V2 [Online]. Google. Available: https://github.com/google/
clusterdata/blob/master/ClusterData2011_2.md

5. Jing S-Y, Ali S, She K, Zhong Y (2013) State-of-the-art research study for green cloud
computing. J Supercomput 65:445–468

https://github.com/google/clusterdata/blob/master/ClusterData2011_2.md

344 J. Panneerselvam et al.

6. Khan A, Yan X, Tao S, Anerousis N (2012) Workload characterization and prediction in
the cloud: a multiple time series approach. In: IEEE network operations and management
symposium. IEEE, Maui

7. Liu Z, Cho S (2012) Characterizing machines and workloads on a Google cluster. In: 41st
international conference on parallel processing workshops. IEEE, Pittsburgh

8. Mahambre S, Kulkarni P, Bellur U, Chafle G, Deshpande D (2012) Workload characterization
for capacity planning and performance management in IaaS cloud. In: International conference
on cloud computing in emerging markets (CCEM). IEEE, Bangalore

9. Moreno IS, Garraghan P, Townend P, Xu J (2013) An approach for characterizing workloads in
Google cloud to derive realistic resource utilization models. In: 7th international symposium
on service oriented system engineering (SOSE). IEEE, Redwood City

10. Moreno IS, Garraghan P, Townend P, Xu J (2014) Analysis Modelling and simulation of
workload patterns in a large scale utility cloud. IEEE Trans Cloud Comput 2:208–221

11. Panneerselvam J, Liu L, Antonopoulos N, Trovati M (2016) Latency-aware empirical analysis
of the workloads for reducing excess energy consumptions at cloud datacentres. In: IEEE
symposium on service-oriented system engineering (SOSE). IEEE, Oxford

12. Patel J, Jindal V, Yen I-L, Bastani F, Xu J, Garraghan P (2015) Workload estimation for
improving resource management decisions in the cloud. In: Twelfth international symposium
on autonomous decentralized systems. IEEE, Taichung

13. Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuchi MA (2012) Towards understanding
heterogeneous clouds at scale: Google trace analysis. Intel Science and Technology Center
for Cloud Computing, Pittsburgh

14. Wang T, Wei J, Zhang W, Zhong H, Huang T (2014) Workload-aware anomaly detection for
web applications. J Syst Softw 89:19–32

Chapter 14
Cloud-Supported Certification for
Energy-Efficient Web Browsing and Services

Gonçalo Avelar, José Simão, and Luís Veiga

14.1 Introduction

The software-as-a-service business model relies largely on the capacity for the client
to execute rich applications inside a web browser. Parallel to this trend, the Web 2.0
phenomenon also led to the creation of more capable technologies, such as HTML5,
enhancements in the JavaScript language and Cascading Style Sheets (CSS), to
support blogging platforms, social networks and multimedia streaming sites. As
a result, the power consumption in a single end-user device, derived from web
browsing, is two to three orders of magnitude larger than in all the intermediate
routing equipment, found in the traversed network path [15]. This relation between
the different machinery that operates on the Internet suggests much more could be
done regarding the way web pages are processed and demanded by browsers. To
that effect, two scenarios can be considered:

• Either people start browsing the web more responsibly, requesting each page at a
time, lowering the resource consumption on their devices and therefore lowering
power consumption rates, (which could be perceived as a loss of convenience and
business value); or

• Developers become more responsible for the software they develop, making
energy efficiency a primary requirement, taking it into account when they start
developing their systems.

G. Avelar • L. Veiga (�)
INESC-ID Lisboa, Universidade de Lisboa – Instituto Superior Técnico, Lisbon, Portugal
e-mail: luis.veiga@inesc-id.pt

J. Simão
INESC-ID Lisboa, Instituto Superior de Engenharia de Lisboa (ISEL/IPL), Lisbon, Portugal
e-mail: jsimao@gsd.inesc-id.pt

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_14

345

mailto:luis.veiga@inesc-id.pt
mailto:jsimao@gsd.inesc-id.pt

346 G. Avelar et al.

The first scenario is an improbable one. It is hard to instigate environmental
responsibility and energy awareness into users’ minds, mainly because the financial
and energetic incentives, to make people adopt energy management strategies, are
minor compared to the constant “desire for always available computing” [10]. In
the same study, it is also suggested that “people do not necessarily choose their
automated power management settings”. Even though this was a study on energy
inefficiencies derived from domestic computer usage, it is reasonable to assume that
the same ideas hold in more specific cases like the one of web browsers. Another
hint of the users’ indifference towards green software can be found in several studies
[3, 26], suggesting that energy awareness must be delegated to the developer, instead
of the user.

Therefore, what power management strategies should be employed in order
to provide power consumption reductions, while browsing the web? How can
environmentally concerned users, or simple-minded users alike, be assured that
certain web pages are greener than others? How can the related web page processing
be used to instigate energy awareness?

Current solutions lack the context at which they were supposed to perform power
management actions (the web browser runtime state). Moreover, they typically
oversee component metrics, like CPU utilization, disregarding other important
components like main memory, which are also responsible for a reasonable slice
of the overall energetic waste [8]. An example is Chameleon [24] that brings power
management to the application level, adjusting the speed at which applications run.
This might be a bad design, since users often impose tight availability constraints
on the systems they use, although techniques such as computation offloading [21] or
edge computing [5] could be used to improve performance and save energy. These
techniques are not always possible to use without hindering the user-experience
expected from highly responsive applications.

The main challenge is to provide mechanisms that effectively reduce the energy
cost when browsing the web, without sacrificing much of the availability and
performance that is expected. This chapter describes and evaluates GreenBrowsing,
a system that manages browser access to resources, through the enforcement of dif-
ferent mechanisms that limit resource usage. GreenBrowsing extends the underlying
runtime systems and application environments: web browsers, to monitor, promote
and certify resource efficiency of running applications, and web pages, based on a
cloud-supported certification infrastructure.

On the front-end, GreenBrowsing extends Google’s web browser [11] to reach
operating system resource management mechanisms in order to enforce our page-
aware energy policies. Chrome embodies a full application execution environment
with JavaScript just-in-time compilation, garbage collection, thread and process
management and component-oriented architecture, in essence a virtual machine
for the web. Although it has widespread use, studies also show that it is one
of the most power-consuming browsers and, in general, one of the most power-
consuming applications [7, 31]. Supported by a back-end infrastructure running
cluster and classification algorithms, GreenBrowsing provides means to certify web
pages regarding their energy consumption (both during rending and user operation),

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 347

in order to inform users of the energetic inefficiencies related to different web
page visualizations. We show that our system significantly saves browsing-related
resources (up to 80% for CPU, memory usage, and bandwidth usage) while keeping
delays almost unnoticeable for the user.

In summary, in this chapter we present the following contributions:

• Policies to manage browser access to resources, through the enforcement of
different mechanisms that limit resource usage, by taking into account idle tabs
(tabs that are open but not being used).

• An extension to a widely used browser, Chrome, in order to decrease the energy
costs of browsing, as well as taking advantage of the browser API to perform
energy-related optimizations.

• A cloud-based energy-related web page certification scheme, based on computa-
tional resource consumption, to the end of raising user awareness in regards to
what pages are more resource hungry.

The chapter is organized in the following manner. In Sect. 14.2, both seminal and
state-of-the-art energy-reduction systems are surveyed along with energy-related
certification systems. In Sect. 14.3, the architectural choices and the algorithms
relative to this work will be described, for both the power management extension
and the certification subsystem. Section 14.4 explains the details accounting for
platform-specific problems and how they were overcome. In Sect. 14.5, the evalua-
tion methodology will be presented, as well as the evaluation testing done in regard
to the resource reduction achieved and user-perceived latency impact. To conclude,
Sect. 14.6 presents final remarks, and directions for future work will be given.

14.2 Related Work

In this section we present several mechanisms, techniques and systems related
to the area of energy-aware web browsing. Section 14.2.1 focuses on techniques
to dynamically manage power consumption. Section 14.2.2 presents scheduling
algorithms to reduce energy losses, in multitask environments. Section 14.2.3
discusses big data and energy analytic systems.

14.2.1 Dynamic Power Management

Dynamic power management (DPM) is the ability to reduce power dissipation, by
selectively turning off or reducing the performance of a system’s components when
they are idle (or partially unexploited) [29]. These reductions of power dissipation
are typically subject to performance and inherent quality of service constraints.

Benini et al. [6] establish a fundamental approach to system-level dynamic
power management by providing a high-level architecture, composed by three main

348 G. Avelar et al.

Observer

Controller

Policy

HARDWARE

Fig. 14.1 Dynamic power management architecture. As seen in the work of Benini et al. [6]

components: the observer, the controller and the policy (as seen in Fig. 14.1).
The latter takes power-management decisions. These decisions are based on the
information gathered and transmitted by the observer, as it monitors system activity.
The controller is the component through which power management decisions are
enforced, on behalf of the policy.

In practice, the observer corresponds to the components that interact with the OS
and other device APIs, gathering system properties like CPU and memory usage.
The controller is the one who engages devices directly through device drivers. The
policy is the component responsible for making sense from the gathered data –
by the observer – and issue calls to the right system components – through the
controller.

14.2.1.1 Classification of Dynamic Power Management Systems

The decision criteria that allow for a certain system to be adjusted in terms of
power consumption, with respect to a systems state change, are embodied in power
models. Through the enforcement of power models, the policy can adapt to different
workload scenarios, adjusting its decision-making mechanisms, in order to perform
better power management actions. In essence, power models provide a formal
description of the conditions that need to be met, accounting for both system
characteristics and other constraints (like performance and availability).

Heuristic Power Models

The more intuitive approach to provide some means of policy adaptation is through
the establishment of a static set of rules. These rules are based on common system
behaviour and can be implemented as functions, whose parameters correspond to
observations and measurements gathered during system’s execution. This is the
essence of heuristic power models. When modelling simple systems, under near-
always-right assumptions, these might suffice in providing good power management
capabilities.

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 349

Stochastic Power Models

A stochastic model [20] is one that is based on the notion of stochastic process: set
of random variables X(t), as a function of time t, whose values are called states,
and the set of possible values is the state space. In this way, a stochastic model
models a process where the current system’s state depends on previous states in a
nondeterministic way.

Among the many types of stochastic models are the widely used Markov
models [18]. In these models, the Markov property [27] holds, hence their name.
Intuitively, the Markov property tells us that given a sequence of N events, the value
of the probability of the nth event happening after some exact sequence of N � 1

previously observed events is approximately equal to the value of the probability of
the nth event happening after the n � 1th. This approximation is quite useful, since
it just requires the computation of the probability of a certain event nth, conditioned
to the previous n � 1th one, disregarding all the events observed previously.

In a controlled system, the Markov model state transitions depend on the current
state and on an action that is applied to the system. Therefore, each state is associated
to a certain action. In the context of DPM, it means that when the system is in
a certain state, the policy will perform the corresponding action over some power-
consuming components. Of course, to that effect, there must be some sort of relation
among the state set and the components under management, by the policy.

Typically, the stochastic power models used in dynamic power management fall
into the Markov decision process category. What Markov decision processes (MDP)
try to capture is the relation among sequences of actions in a system and the state
transitions that they cause.

Learning Power Models

“An agent is learning if it improves its performance on future tasks after making
observations about the world” [34]. This proposition is very relevant to dynamic
power management, because there are some power management problems to which
solutions are difficult to be programmed or even devised, due to the complexity of
the systems at hand. In this way, the policy can be conceived as an agent that learns
a new power model from the data it gathers and actions it performs in runtime. This
is why machine learning policies tend to be both power model and system model
free, since they learn power models dynamically and they might not require any
specific system information, in order to execute. They also tend to perform worse
than policies that employ heuristic models though.

One particular type of learning process is reinforced learning (RL). In this
case, the agent learns from a series of reinforcements: rewards or punishments. No
direct consequence of the agent actions is observed, even though some feedback is
provided in the form of hints, useful for the agent to reason on how it should operate.

It is often desirable to conceive dynamic power management policies that
perform actions on a trial-and-error basis, learning from good and bad decisions.

350 G. Avelar et al.

Hence, they can be designed as reinforced learning agents. One common technique
of reinforced learning is Q-learning [38] (QL). Q-learning is designed to find
stochastic policies that follow the model of Markov decision processes (MDP). This
technique is an iterative process with feedback from the previous iterations. At each
step of interaction with the environment, the agent observes the environment and
issues an action based on the system state. By performing the action, the system
moves from one state to another. Based on a value function, the agent decides which
action should be taken, given the state the system is in, to achieve the minimum
long-term penalties. As it is an iterative process, some initial numeral for the value
function must be assumed, in order to start the algorithm.

To construct a Markov decision processes through Q-learning, two questions
need to be answered: (1) What are the states that compose the state space? (2) How
to formulate cost function that depends both on the actions taken and states transited
to, from the observed information?

System Models

As shown in the particular cases of heuristic and stochastic models, power models
often require information regarding the different power states in which systems can
be. More precisely, it is often desirable to know how the power state transitions
influence performance and the power consumption of systems. To that end, power
models are often based on system models.

System models are abstract constructs that describe how a system operates
and prescribe functionality and interactions among different system components.
They provide a basic framework of system behaviour, facilitating the conception of
suitable power models.

An example of a system model is the one of service requester and service
provider (SRSP in short). These systems are composed of four components: a power
manager (PM), a service provider, (SP), a service requester (SR), and a service
request queue, (SQ). The idea is such that:

• The service requester sends requests to the service provider;
• The requests are enqueued in the service request queue;
• If the queue of the service provider is empty, then it is in idle mode;
• If the queue of the service provider is not empty, then it is not in idle mode;
• The PM is able to monitor service requests and conclude the mode of the service

provider;

Adaptation

Power models can be devised statically, before the execution of the policy, or can
be dynamically adapted, given the history that is maintained, in order to perfect the
model, itself.

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 351

This is practical because systems workload changes over time, due to the
number and type of applications running, users’ use and misuse of applications
and other variable concerns that lead to chaotic and, sometimes, unpredictable
power dissipation scenarios. In this way, adapted power models can be employed
by policies, changing the criteria by which components are put to sleep or have their
performance reduced.

Logically, every policy that employs machine learning techniques to devise its
power model is an adaptable policy. Heuristic and stochastic models can also be
adapted in runtime, by any means other than machine learning. One limitation of a
dynamically generated power model is that it incurs additional overheads. This is
sometimes problematic, especially if the adaptation is computationally intensive or
when there are tight performance constraints.

Synchronization

The way the policy communicates with the observer and the controller is a deter-
mining factor on how well the dynamic power manager helps to reduce the power
consumption of a system’s components. Therefore, it is relevant to classify a policy
regarding its communication synchrony, towards the other two DPM components, as
synchronous or asynchronous. Typically, asynchronous policies perform better than
their counterparts, since they do not incur overheads as substantial as synchronous
policies, by busily waiting for the observer’s responses or the controller’s actions to
succeed. Therefore, they do not miss as many system events that can be relevant
to the act of power management and operate in parallel with the observer and
controller, enhancing performance.

Power Reduction Technique

Policies can enforce the reduction of power consumption, according to different
technique types, either by selectively putting system’s components to sleep or
by reducing the performance of those same components. The notion of sleep state
will depend on the system that is being managed. One common way of achieving
lower power consumption through performance reductions is through dynamic
voltage and frequency scaling. DVFS [14, 45] allows the voltage of certain hardware
components or the clock frequency of CPUs to be decreased, trading performance
for energy. Current architectures provide mechanisms that allow direct access to
system components, for DVFS purposes.

Policy Optimality

Policy classification can be done with respect to optimality. Benini et al. [6] also
point out that observation is indeed essential for devising good policies, i.e. it is

352 G. Avelar et al.

strictly necessary to gather system data and adjust policy decisions at runtime. It is
not sufficient to greedily put components to sleep as soon as they are idle. There
are trade-offs involved that need to be considered: (1) In case of multiple sleep
states, the dynamic power management system should choose one sleep state over
the others; (2) Since transitions to sleep mode and back to active mode also have
a performance cost and inherent overhead, the DPM system should guarantee that
the state transitions actually reduce power, compromising performance just up to an
acceptable level. This leads to the problem of policy optimization, which is the one
of choosing a policy that minimizes power consumption, while under performance
constraints (or vice versa), based on certain usage patterns. Such a policy is called
an optimal policy.

14.2.1.2 Relevant Dynamic Power Management Solutions

In the work by Qiu et al. [32], the authors describe the problem of DPM as a
continuous-time Markov decision process, applied to a SRSP system model. Qiu
et al. propose a continuous time process and included the notion of idle and busy
states of the service provider (SP). This is accomplished by adding a transfer state to
the service request queue (SQ), to represent the periods when the SP is busy, (since
the SP accesses directly the SQ).

On each iteration, a new policy is generated consisting on the cost of performing a
sequence of actions, whose probability is weighted and summed to the delay cost of
transiting from one system state to another (the actions could be, for instance, to put
providers to sleep or wake them up). If the policy is optimal under the performance
constraints imposed (an upper bound to the cost function described), it is put in
practice. Otherwise, a new iteration of the algorithm is performed, in order to adjust
the sequence of actions that are to be made and the respective delay costs state
transitions.

In the work by Gerards et al. [14], the authors prove in a theoretical fashion that in
order to find an optimal schedule for a set of tasks, it is necessary to consider both
DPM and DVFS, instead of just maximizing idle periods’ length or minimizing
clock frequencies independently. They consider a system model of a number of
periodic tasks, in which each of them is invoked the same number of times. The
authors conclude that it is best to either start each invocation as soon as possible or
as late as possible, with this rationale used to find a globally optimal schedule that
minimizes the energy consumption using DPM, for frame-based systems.

In the work by He et al. [16], a simulated annealing (SA)-based heuristic
algorithm to minimize the energy consumption of hard real-time systems (real-
time system where deadlines must be met) on cluster-based multicore platforms
is presented. A technique that allows the power management algorithm to be

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 353

executed in an online fashion is also proposed, exploring the static and dynamic
slack (times of idleness, or amount of time left until a new task is scheduled, during
job execution).

The system model follows a classic real-time task model, since this solution is
intended for multicore systems. In this way, the system comprehends a task set,
where each task corresponds to a pair of its worst-case execution time and the
deadline (equal to the period of the job the task is executing). The main idea behind
SA is to iteratively improve the solution by investigating the neighbour solutions,
generated based on penalty and reward values obtained from the solution of the
current iteration. If the number of iterations is sufficiently large, an optimal schedule
of tasks can be found.

Shen et al. propose an approach [38] to dynamic power management using
reinforced learning, specifically the Q-learning algorithm. Even though QL can
be applied as a model-free technique, the system under management is known
beforehand, which allows for the enhancement of the QL algorithm. In this work,
they propose a solution to the management of peripheral devices. The policy chosen
will consider states that minimize the delay cost at each state and expected average
power wasted, given the observations it has made, over the time the algorithm has
been executing, while learning from its decisions and maximizing their quality.
After a certain set-up time, the optimal policy can be found.

In the work of Wang et al. [44], the authors propose the use of temporal difference
(TD) learning for semi-Markov decision process (SMDP), as a power model-free
technique, to solve the system-level DPM problem. Temporal difference learning
is a type of reinforcement learning. The system is modelled as a SRSP model.
Temporal Difference Learning assumes that the agent-environment interaction
system evolves as a stationary SMDP, which is continuous in time but has a
countable number of events. The periods at which those events occur are known
as epochs.

The key idea is to separate time in decision epochs. At each decision epoch
(corresponding to the SP being in a sleep state), actions are taken, depending on
the state of the SR. At the next decision epoch, the action is evaluated in order to
associate a value to the action taken previously. This will allow to choose from a
set of power preserving actions, for each state of the SR, the one with the most
beneficial value. Considering the number of requests from the SR and the total
execution time to be fixed, the value function is equivalent to a combination of the
average power consumption and per-request latency. The relative weight between
average power and per-request latency can be changed, over epochs, to obtain an
optimal trade-off curve between the average power and latency per request.

In Table 14.1, the different algorithms previously presented are summarized
according to the classification criteria established in Sect. 14.2.1.1. The [–] symbol
represents that a certain property is not applicable to a particular solution or that the
authors did not specified anything regarding that property.

354 G. Avelar et al.

Table 14.1 Dynamic power management scheme classification

Policy

Work PowerModel SystemModel Optimality Adaptation Synchronization Technique

Qiu et al. MDP SRSP Optimal Adaptable Asynchronous sleep

Gerards et al. – Sporadic
tasks

Optimal – – DVFS

He et al. Heuristic Real-time
tasks

Optimal Adaptable – DVFS

Shen et al. Q-learning Peripheral
devices

Optimal Adaptable Asynchronous sleep

Wang et al. TD learning SRSP Optimal Adaptable – sleep

14.2.2 Energy-Aware Scheduling Systems

In the classical definition of scheduling, the goal of the scheduler is to determine
which task, thread or process should be executed, according to some notion of
priority. The idea is to optimize and make the most of CPU utilization.

Energy-aware scheduling is the problem of assigning tasks to one or more
cores, so that performance and energy objectives are simultaneously met [37]. In
this way, the goal of energy-aware scheduling differs from the one of “vanilla”
scheduling, since it is intended to solve a multi-objective optimization problem that
comprehends both performance and energy.

Classic techniques include the first-come first-served (FCFS) scheduling algo-
rithm [46], where jobs are executed according to the order of their arrival time,
to a waiting queue. The major disadvantage of this algorithm is the fact that
large jobs greatly delay the execution of the next jobs to execute. This situation
is called convoy effect. The Round Robin scheduling [42] asserts to each job a
time slice where it can run. Finding the proper value for the time slices might be
challenging to meet performance constraints, even more if it is intended to achieve
both performance and power optimization. Earliest deadline first [17] is a dynamic
scheduling algorithm where tasks are placed in a priority queue, such that whenever
a scheduling event occurs, the queue will be searched for the process closest to its
deadline, to be scheduled to execution. Because the set of processes that will miss
deadlines is largely unpredictable, it is often not a suitable solution to real-time
systems.

Energy-aware scheduling impacts on several levels of the system stack. In the
work of Kamga et al. [19], they propose a solution where they extend Xen’s default
virtual machine scheduler – Credit. The goals are to: (i) Induce power reduction
in the execution of several consolidated VMs while; (ii) Respecting the agreed
service level agreement (SLA) – maintaining acceptable levels of performance. The
extension of the credit scheduler is comprised of two modules: monitoring module
and cap control module. At each tick, the monitoring module gathers the current

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 355

CPU load for each VM and then computes the optimal frequency to which the
CPU should be set to, according to the total VM load and the ratio between current
and maximum frequency. After that, the cap control module recalculates new cap
values for each VM, adjusting each VM CPU share to the fair percentage, taking
into account the CPU load of each VM. In this way, it is possible to redistribute
unused CPU cycles from one idle or less active VM to another, while minimizing
CPU frequency to save energy, respecting the SLAs imposed.

Yan et al. propose an approach [46] where they introduce a job scheduling
mechanism that takes the variation of electricity price into consideration as a way to
make better decisions of the timing of scheduling jobs with diverse power profiles,
since electricity price is dynamically changing within a day and high-performance
computing (HPC) jobs have distinct power consumption profiles.

In this approach, the scheduling system is composed by three components: a
waiting queue, a scheduling window and a scheduling policy. The waiting queue
is where jobs are stored in order to be processed by the HPC system. Rather than
allocating jobs one by one from the front of the wait queue, the algorithm allocates
a window of jobs. The selection of jobs into the window is based on certain user
centric metrics, such as job fairness, while the allocation of these jobs onto system
resources is determined by certain system-centric metrics such as system utilization
and energy consumption. By doing so, it is possible to balance different metrics,
representing both user satisfaction and system performance.

In the work of Datta et al. [12], the authors present two scheduling algorithms that
address the utilization of homogeneous CPUs, operating at different frequencies,
in order to lower the global power budget in a multiprocessor system. By using
cache miss and context switch-CPU migration indexes, the algorithms are able to
exploit the increased performance associated with switching more computationally
intensive tasks to higher frequency cores, without suffering from the performance
losses associated with cache coherence and context switching overhead. The
algorithm assigns static and dynamic priorities to each task. During the schedule
stage, the algorithm moves computationally intensive tasks that perform slower, to
a higher frequency core or vice versa, based on the number of context switches (or
cache misses depending on which of the two algorithms is chosen) and their priority.

14.2.3 Energy-Related Certification and Analytics on the
Cloud

In this section we start by analysing the current solutions that assign some sort
of energetic rating to computational systems (Sect. 14.2.3.1). We then move to the
cloud and big data systems domain (Sects. 14.2.3.2 and 14.2.3.3) in order to study
the relevant work that will give us insight on how to incorporate an energy-related
certification subsystem into GreenBrowsing, following a cloud-based approach.

356 G. Avelar et al.

14.2.3.1 Energy-Related Certification Computational Systems

To our knowledge, there is no considerable work focusing on the energy-related
certification of web pages. There is, however, some work that tries to rationalize
and quantify the energy consumption of devices and software, for user visualization
purposes.

Siebra et al. propose a scheme [39] to certify mobile devices, regarding their
energetic performance. The evaluation is done based on mobile operations (voice
call, Internet browsing, message services) and temporal delays between them. Each
test case has an energy threshold that cannot be surpassed. If it is, then the mobile
device under evaluation is not considered to be green. Amsel et al. developed a tool
– GreenTracker [2] – that aims at encouraging users to use software systems that
are the most environmentally sustainable. They do this by collecting information
about the computer’s CPU and by comparing software systems in different classes
of software (e.g. browsers are compared with other browsers), based on energy
consumption. When all the systems in one class have been tested, Green Tracker
creates a chart comparing the CPUs across all the software systems.

Camps et al. propose a solution [9] where a classification of web sites depending
of their downloadable content is provided to users, making them aware of the web
session costs. The classification is done statistically by computing: (i) The average
size of objects embedded on pages; (ii) The rate flow; (iii) The distance from the
web browser to the servers. The energy cost should be displayed to final user: this,
from the authors’ perspective, will allow people to make smarter decisions on how
to better manage their energy consumption in their web session.

From these three solutions, the most related to GreenBrowsing is, in fact, the
solution presented by Camps et al. However, some disadvantageous characteristics
make it less attractive than GreenBrowsing, in particular the fact that it only takes
into account the downloadable content of web pages, disregarding important and
predominant metrics such as how heavy the page is in terms of CPU, memory
and I/O performance while rendering and executing JavaScript code. Moreover, all
of the required statistical processing is done on the client side of the application,
which might turn out to be a dominant overhead, leading to high resource usage and
consequent energy consumption.

14.2.3.2 Classes of Big Data Analytic System

There is big variability in terms of big data systems that deal with energy data. In
this section attention will be given to systems that gather home energy counters for
auditing, analysis and automation purposes.

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 357

Features

Singh et al. [41] identify a number of features that can be used to classify a system,
regarding its ability to aggregate data from multiple sources and to ubiquitously
control data accesses and sharing (from any device and from anywhere).

• Consolidation: To allow a single view into multiple data streams and cross-
correlation between different time series, the system should automatically con-
solidate energy usage data from multiple sources.

• Durability: To allow analysis of usage history, a consumer’s energy data should
be always available, irrespective of its time of origin.

• Portability: To prevent lock-in to a single provider, data and computation should
be portable to different cloud providers.

• Privacy: To preserve privacy, the system should allow a consumer to determine
which other entities can access the data, and at what level of granularity, or
employ mechanisms that preserve consumers’ privacy.

• Flexibility: The system should allow consumers a free choice of analytic
algorithms.

• Integrity: The system should ensure that a consumer’s energy data have not been
tampered with by a third party.

• Scalability: The system should scale to large numbers of consumers and large
quantities of time series data.

• Extensibility: It should be possible to add more data sources and analytic
algorithms to the system.

• Performance: Data analysis times and access latencies should be minimized.
• Universal Access: Consumers should be able to get real-time access to their data

on their Internet-enabled mobile devices.

Design Rationale

At the highest abstraction level, a system’s architecture can be divided into the data
store (D) components and the application runtime (AR) components that access the
data store and perform the execution of analytic algorithms [41]. If we also consider
that the system is comprised by two “endpoints” – one residing locally at the client
side of the system and other residing remotely – three scenarios for the design of a
system are possible:

• Local-DataStore-Local-Runtime (LDLR) – Both the data store and application
runtime are placed at the client end of the system. There is no remote end.

• Local-DataStore-Remote-Runtime (LDRR) – The data store is placed at the client
side while the application runtime is executed remotely.

• Remote-DataStore-Remote-Runtime (RDRR) – Both the data store and applica-
tion runtime are placed in the component of the system that operates remotely.

358 G. Avelar et al.

The main disadvantage of the LDLR design is that the application runtime exe-
cutes on the client side of the system, which can compromise system performance,
due to the computational intensiveness of the AR execution.

The LDRR design tries to solve the LDLR disadvantage by moving the applica-
tion runtime to the component of the system that operates remotely. However, as it
also happens in the case of the LDLR design, the consolidation feature is harder to
attain, since in order to integrate data from various sources into the AR functions,
this would incur in greater complexity of the overall system management.

A RDRR design might release the client side of the application from the store and
application runtime totally, providing a more lightweight approach to the client end
of the system than the LDLR and LDRR designs. However, by moving the data store
to the remote end of the system, less control over personal data follows, because the
granularity at which users can establish access permissions to their energetic data
is greatly decreased. This introduces privacy concerns, since certain energy usage
patterns might lead to the disclosure of personal habits the users do not intend to
make public.

Business Rationale

This aspect reveals the purpose of the system, which can be classified as a consumer-
centric system or a utility-centric one. The latter emphasizes on the usage of energy
data by the system, in order to provide utility planning and operation services such
as customer billing and home energy waste visualization [41]. On the other hand,
consumer-centric approaches emphasize consumer preferences regarding the way
their data are handled [25], by integrating their preferences in the decision-making
of the services provided.

14.2.3.3 Relevant Energy-Related Big Data Analytic Systems

In the work of Lachut et al. [22], they present the design of a system for com-
prehensive home energy measurement with the intent of automating the process of
adapting energy demand to meet supply. They do this by measuring how the energy
consumption is broken down by each appliance, by house, instead of measuring
the overall energetic waste of all appliances or just at individual devices. Instead of
having one device measuring the energy consumed by each appliance, which might
be considered intrusive, the authors state that only minimal collections of energy-
related data need to be gathered, in order to measure the actual energy wasted at each
appliance. These devices will provide the necessary metrics in order to statistically
determine the energy consumption of each appliance, using a technique based on a
Markov model.

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 359

In the work of Lee et al. [23], the authors propose an analytical tool that can
assist in assessing, benchmarking, diagnosing, tracking, forecasting, simulating and
optimizing the energy consumption in buildings. This tool is deployed in the cloud,
in a software-as-a-service fashion, performing computationally intensive statistical
operations on the data it gathers and allowing for the visualization of energy-related
data of users’ houses. The visualization is done at customers’ devices through a
dashboard application that summarizes the data outputted by the tool running in the
cloud, alleviating any burden to the customer with regard to software maintenance,
ongoing operation and support.

In the work of Singh et al. [41], a system that allows consumers to control the
access to their energy usage data, from different devices on his/her house, and have
it analysed on the cloud, using algorithms of their choice is presented. The analysis
of their energy-related data can be done by any third party application in a privacy
preserving fashion. In order to allow other applications to access the data stored
in the cloud, such as third party applications that can provide different analysis
algorithms, privacy protection mechanisms (PPMs) are enforced. PPMs preprocess
data by employing mechanisms like noise addition to the data transferred out of the
cloud to these applications.

In the work of Balaji et al. [4], the authors present a system called ZonePAC, for
the energy measurement of houses with different types of climatization technologies
(e.g. variable air volume type heating, ventilation, air conditioning) and energy con-
sumption feedback provision to the house occupants through a web application. The
system makes use of existing sensors present on the deployed physical infrastructure
of each building to communicate energy consumption counters from the sensors
to a building management web service, called BuildingDepot [1]. It relies on a
communication protocol for building automation and control networks, BACnet.
The network is formed of sensors and the BACnet connector that communicate over
a BACnet protocol.

In the work of Oliner et al. [28], the authors propose Carat, a system for
diagnosing energetic anomalies on mobile devices. This system consists in a
client application, running on a client device, to send intermittent, coarse-grained
measurements to a server, which correlates energy use with client properties like the
running applications, device model and operating system. The analysis quantifies
the error and confidence associated with a diagnosis, suggests actions the user could
take to improve battery life and projects the amount of improvement. The server
is deployed in a cloud setting, where the samples from client devices are analysed,
aggregating the consumption of various mobile devices.

Table 14.2 presents the features that each system has. [*] means that a partial
solution is given. [–] means that the authors give no information regarding that
particular feature. Table 14.3 exhibits the classification for each system. To represent
the fact that the authors gave no information regarding a specific classification
property, the [–] symbol will be used.

360 G. Avelar et al.

Table 14.2 Big data system features

Feature
Balaji
et al. [4]

Lachut
et al. [22]

Lee et al.
[23]

Oliner
et al. [28]

Singh
et al. [41]

Consolidation Yes No Yes Yes Yes

Durability – – – Yes Yes

Portability – – – Yes Yes

Privacy – Yes Yes – Yes

Flexibility No No No No Yes

Integrity – – Yes – *

Scalability – – Yes Yes Yes

Extensibility – – Yes – Yes

Performance – Yes Yes Yes Yes

Universal access Yes Yes Yes Yes Yes

Table 14.3 Big data system classification

System Energy data to visualize Design rationale Business rationale

Balaji et al. [4] Home energy consumption LDLR Utility-centric

Lachut et al. [22] Home energy consumption RDRR Utility-centric

Lee et al. [23] Home energy consumption RDRR Utility-centric

Oliner et al. [28] Mobile device energy anomalies RDRR Utility-centric

Singh et al. [41] Home energy consumption RDRR Consumer-centric

14.2.4 Analysis and Discussion

In this section, different energy- and software-related topics were covered, in order
to understand how could a browser power management solution be devised. We
presented the trade-offs of dynamic power management, in order to understand the
advantages of the different policies presented, as well as help perceive the most
advantageous situations where one could use those different policies. In particular,
the concept of dynamic power management energy-aware scheduling techniques
were also discussed because they take into account not only performance constraints
but also energetic ones. The rationale of energy-aware scheduling is of great interest
to the design of a multitask architecture. Finally, emphasis was given to the fact that
it is desirable to move expensive and resource-intensive computations to a cloud-
based system when it comes to energy evaluation. These remote systems should be
able to process event streams of energy-related counters and give a response in a
timely fashion. The data needed to do these computations can sometimes disclose
private details of users, and so it should be protected.

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 361

14.3 An Architecture for Energy-Efficient Browsing

There are two major subsystems that comprise the GreenBrowsing architecture:
a browser extension that will act at a power manager, limiting browser access to
resources, and a web page certification back end, to be deployed as a prototypical
big data analytic system.

14.3.1 Browser Extension and Power Management

The main roles of the browser extension are to reduce the resource consumption of
idle tabs and send to the analytics back-end resource-related data, used to derive
energy consumption data, in order to certify web pages in terms of their energy
consumption while being accessed.

A layered view of the extensions proposed is presented in Fig. 14.2. Observer-
Controller-Adapter (OCA) provides interfaces for gathering performance counters
of each running tab and the process(es). It is also able to issue commands to
reduce tab resource usage through the application of different mechanisms. The
Certification FrontEnd sends performance data to the back end regarding the open
web pages, whose result is rendered by the Certification Renderer. The Policy
Enforcer applies the power reduction algorithms and is configured by the Policy
Manager. It uses the OCA interface, to gather performance counters and to issue
content adaptation and power reduction-related commands. The Web Page Certifier
module will have code to fetch performance counters, through the OCA. It will
also interface with the Certification FrontEnd to send the counters gathered to the

OPERATING SYSTEM

BROWSER

Observer-Controller-Adapter

Policy Enforcer

Certification
Renderer

Web Page Certifier

Profile Manager

Certification
Front End

Platform
Independent

Platform
Dependent

Browser Extension

Fig. 14.2 Layered view of the browser extension

362 G. Avelar et al.

back end (for energy-related certification of web pages). Communications with the
Certification Renderer are done to inform the user of each web page certification.

In terms of components, the execution of Policy Enforcer’s code will be done in
parallel with the control and content adaptation of tabs/pages, by two different tasks
(comprising one or more threads, each). If they were to be executed sequentially,
significant delays could occur in the policy’s components execution.

14.3.1.1 Browser-Level Management Policies

We approached the power management problem through simpler heuristics that
offer a smaller implementation overhead compared to stochastic or machine learning
techniques. This is particularly important to cause the least possible user-perceived
delays, while browsing the web. Two assumptions are made, regarding general
browsing behaviour, serving as basis to the resource-limiting mechanisms to be
considered:

• Last Time Usage. Tabs that were accessed more recently are more likely to be
accessed again and therefore will be less likely to be acted upon. In this way, the
tab management policy will make use of a least recently used list for tab energy
management.

• Active Tab Distance. We also assume that tabs that are closer to the actual tab
opened by the user are more likely to be accessed; therefore, they will have lesser
probability of being discarded or subject to resource constraints.

The pseudo-code at Algorithm 1 summarizes the extension’s behaviour for
managing idle tab resource consumption. There is an initial test where, if a certain
browser window is not focused (i.e. the topmost user-viewed window), all of the
processes that handle its tabs will be halted. In other words, they will stop executing.
On the other hand, if a certain window is focused, each of its tabs will be acted
upon, individually. Firstly, if a certain tab is active (i.e. selected by the user), it can
consume as many resources it needs. If a tab is not active, the maximum resources
its process is allowed to use will be limited. If that tab’s process ever reaches the
limits imposed, a certain effect/action will be cast upon that process. Both the
resource type (e.g. CPU usage) and the expected effects on resource limit violation
are mechanism dependent.

An important aspect that our algorithm considers is the maximum resources
allowed for a given tab. Equation 14.1 expresses the resource usage factor (uf) which
is used to set the maximum resource usage (for any resource type), by taking into
account the distance each idle tab is from the currently visualized tab, at a given
moment, and the last time a certain idle tab was selected. Considering i as the tab
index distance from a certain tab to the active tab, within a certain window, p as
the least recently used index relative to tabs within that same window and a as a
controllable/user-defined aggressiveness exponent to further intensify reductions, if
need be, and where p >D 1, i >D 1, a >D 0:

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 363

Algorithm 1: Tab management algorithm overview
Data: Windows
Data: Tabs
foreach window in Browser.Windows do

if window is focused then
foreach tab in window.Tabs do

if tab not active then
compute tab resource usage allowance ;
apply resource consumption reduction mechanism ;

else
give unconditional resource consumption allowance to tab ;

end
end

else
foreach tab in window.Tabs do

halt tab’s process ;
end

end
end

tabk
active

a = 1

a = 1

a = 1

a = 1

a = 1

a = 1

a = 1

a = 1

a = 1

a > 1

a > 1

a > 1
a > 1a > 1

a > 1

a > 1

a > 1
a > 1

ik+1 = 1 in > 1ik-1 = 1i0 > 1

a > 1

a = 1

resource usage
limit

tab1tab0 tabn

Fig. 14.3 Effects of tab management algorithm on tab resource consumption

uf .i; p; a/ D
1

p � ia
(14.1)

The value computed by Eq. 14.1 will determine the resources that a given idle tab
can consume, under the influence of any given resource consumption mechanism
(e.g. process priority, CPU and memory cap). The intended effect on focused
windows’ tabs resource consumption is depicted in Fig. 14.3.

364 G. Avelar et al.

This model allows the possibility that two tabs exist at the same distance i from
the active tab and still experience different resource usage limits, for the same value
of aggressiveness a, since one of them could have been activated more recently
(holding a smaller value for p). One final remark is that some idle tabs may share
the same process with the active tab. If this happens, those idle tabs will not be
acted upon, since the resource consumption of their process would also constrain
the active tab’s resource usage (and possibly degrade user experience).

14.3.1.2 Tab Management Mechanisms

Many browsers employ a multiprocess model so GreenBrowsing has to act directly
upon the process responsible for handling each tab. This allows to take advantage of
some operating system’s capabilities, but also implies that some of the mechanisms
considered will be OS dependent. The available GreenBrowsing mechanisms used
to reduce resource consumption are presented as follows:

Process Priority Adjustment (prio): If there are x adjustable process scheduling
priorities, ascendantly ordered by scheduling weight (where a value of x represents
the highest priority value and a value of 1 represents the least), the resulting priority
of a certain tab’s process will be given by

round.uf .i; p; a/ � x/ (14.2)

The maximum value x for priority will be the one that represents a standard/nor-
mal priority given on process creation, by the operating system scheduler. Regarding
the effect on resource limit violation, there is no concrete action taken. The only
expectation is for a tab’s process to execute less often relative to other processes
(browser or any other applications related).

Process CPU Rate Adjustment (cpu): The rate adjustment will be a value in
Œ0; 100�, where 0 represents no process usage allowed and 100 means the process
may fully utilize the processor; hence the adjustment will be computed as

round.uf .i; p; a/ � 100/ (14.3)

If cpu is active, once a tab’s process CPU usage reaches the limit set for that
process, its execution is postponed, running again later, when it is given the chance
to do so, by the operating system’s scheduler.

Process Memory Limitation (mem): With this mechanism, the maximum mem-
ory allowed for a process will be the maximum committed private memory up to the
time that this mechanism was enforced. The adjusted memory value will be given by

round.uf .i; p; a/ � max_memory_committed/ (14.4)

For mem there are two versions of this mechanism, with two different possible
effect outcomes, once a memory limit is reached by a process: (i) A soft version: The

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 365

process is halted, and put to a sleep state, returning to execute once its tab becomes
active; (ii) A hard version: The process is terminated, releasing all the resources
allocated by it, until then.

Process Execution Time Limitation (time): In order to limit the duration a
certain tab’s process is allowed to run for the average time between consecutive tab
activations will be considered. The resource directly managed with this mechanism
is execution time. The adjustment formula for allowed process execution time is
computed as

round.uf .i; p; a/ � average_tab_activation_time/ (14.5)

For time, the effects employed on limit-breaching processes are the same as with
mem, once the time for a tab’s process to execute expires. It will also wield a soft
and a hard version.

14.3.1.3 Enforcing Limits

Once a certain limit is hit, i.e. the maximum value for a tab to consume was reached
or surpassed, the effects on the tab depend on the type of mechanism employed. The
effects expected once limits are violated are described as follows:

(i) If prio is active, there is no concrete action taken, because changing process
execution priorities is not, in itself, a resource-limiting mechanism. The
expected outcome would be, however, for a tab’s process to execute less often
relative to other processes (browser or any other applications related). But,
indeed, the arbitration of when a tab’s process should be executed is delegated
to the operating system’s scheduler, entirely.

(ii) If cpu is active, once a tab’s processor usage reaches the limit set for that
process, its execution is postponed, running again later, when it is given the
chance to do so, by the operating system’s scheduler.

(iii) For mem there are two versions of this mechanism, with two different possible
effect outcomes, once a memory limit is reached by a process:

• Soft version: The process is either halted, and put to a sleep state, returning
to execute once its tab becomes active, or

• Hard version: The process is terminated, releasing all the resources allo-
cated until then.

(iv) For time, the effects employed on limit-breaching processes are the same as
with mem, once the time for a tab’s process to execute expires. It will also
wield a soft and a hard version.

By combining the four resource adjustment metrics with the effects on resource
usage limit violation, described previously, a total of six mechanisms are singled
out. Table 14.4 summarizes these mechanisms in terms of the metric that is directly
adjusted by the mechanism, the maximum value for resource limits, and action taken
on limit violation.

366 G. Avelar et al.

Table 14.4 Mechanisms summarized classification

Model Metric Maximum resource value Action on limit

prio cpu usage Normal process priority –

cpu cpu usage 100% usage Postpone execution

mem soft Memory usage Max memory committed Halt execution

mem hard Memory usage Min memory committed Terminate process

time soft Execution time avg tab activation time Halt execution

time hard Execution time avg tab activation time Terminate process

Data Store Certification Modeler

query(url-metrics-tuples)
store(certification-model)

Analytics Workers

3. store(url-metrics-tuples)
4. get(certification-model)

Certification Server

● Asynchronous Interaction;
● Synchronous Interaction;

1. send(url-metrics-tuples)

2. send(url-metrics-tuples)

1. send(

5. send(certification-score)

GreenBrowsing
users

Fig. 14.4 Certification requests sent from GreenBrowsing users to the certification server

14.3.2 Certification Back End

The certification back-end subsystem has the objective of providing a clear and
meaningful notion of how much energy web pages consume. It is composed of three
main components, as depicted on Fig. 14.4:

• A Certification server comprised of network communication tasks that receive
energy-related web page certification requests and forward these requests to tasks
specialized in the certification of pages themselves (to avoid service bottlenecks
and enhancing the scalability of the system regarding the treatment of requests);
those are analytics certifier tasks that do the work of certifying a given page,
according to a specific certification model.

• A certification modeller comprised of certification modeller tasks that adjust
the certification model, taking into account all the resource data sent from the
extension subsystem. For performance purposes, this design emphasizes the
usage of specified worker tasks to whom parts of the analytical calculations are
mapped. The results of processing data at workers are assembled back at the
modeller task, as soon as they are ready.

• A data store that stores the models used in the certification of pages and tuples
with information relative to the performance counters of each page;

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 367

14.3.2.1 Performance Counters for Energy-Related Certification

The power consumption induced by web pages will be indirectly determined by
some of the performance counters gathered on the browser extension. For each page,
the metrics considered will be:

1. CPU usage (in terms of completed clock cycles);
2. Private (main-)memory usage of processes (in Mega-Bytes);
3. Network interface usage (in terms of the bits-per-second), to process and

maintain each page open;

These metrics were chosen because they were proved to be highly related to
power consumption, in different settings ([8, 30, 33]).

The certification is done at the level of the web page and domain, but could
easily be extended to individual subdomains, subtrees of each domain hierarchy, for
instance. Therefore, the information sent from the extension to the certification back
end will be a 5 tuple <id, type, CPU-usage, memory-usage, network-bandwidth-
usage>, where the type entry indicates if the performance counters refer to a URL
or domain and the id refers to its textual representation.

14.3.2.2 Devising Categories and Certifying Pages

Certifying web pages considers the existence of a set of well-defined ranks or
certification categories, which in their totality are all inclusive to any web page,
i.e. given a certain web page, it is always possible to associate an energy-related
classification to it. This might not be trivial, since many different resource usage
patterns are expected to be observed while processing web pages, due to the
variability of web technologies and richness of web content. Furthermore, it is not
known what all resource consumption behaviour inherent to web page processing
will entail.

While devising a certification scheme, one should also consider that the entities
need to certify change over time. Web pages are no different. What might be
considered resource intensive in the present might be considered acceptable in the
future (or, most likely, the other way around). So, in essence, the requirements
expected for an appropriate certification scheme, in the context presented, are:

1. Group resource consumption from various sources to ensure all-inclusiveness of
certification categories;

2. Predict unobserved resource consumption ranges to further ensure complete-
ness/inclusiveness of certification categories;

3. Dynamically adjust the certification scheme to the changes in web-page proper-
ties that induce varied resource consumption patterns over time;

368 G. Avelar et al.

To devise certification all-inclusive of categories from multiple sources, the
certification modeller uses a method know as expectation-maximization [13]. The
basic idea is to cluster the observations recorded into, no less than, 8 categories.
This is done in a three-dimensional (multivariate) random variable space that
comprehends one dimension for the CPU usage, one for the memory usage and
another for network usage. Two different data sets will be used to compute
parameters for two different models – one comprising resource usage associated
with URL and another for web-page domains, being the URL dataset contained in
the domain dataset.

The observations belonging to the multivariate resource consumption random
variables are assumed to be normally distributed, so multivariate Gaussian mixture
models (MGMM) are used to fit the data and to iteratively train the parameters for
eight random variable’s subpopulations, each one corresponding to a cluster. The
parameters in question are:

• A three-dimensional vector comprising the means of each random variable
• A 3 � 3 covariance matrix;

After having trained a group of MGMM clusters, a random selection of trained
cluster observations is selected from each cluster. The centre of mass (CM),
or centroid, of each sample is computed, afterwards. The resulting centre of
mass vector obtained this way is representative of the category, identifying it
unequivocally, and will be used to certify web-page URL or domains while running
the certification algorithm. In order to qualify a certain cluster, the vectorial norm
of the hypothetical vector space origin to the centre of mass of that cluster will
be considered. The greater the norm, the more resource-intensive pages with that
norm’s certification category will be considered to be. This is done once, per trained
model.

In order to certify a page’s URL and domain, tasks running at the certification
server fetch the clusters’ centres of mass, of the last trained certification model, from
the data store. The algorithm to certify a URL/domain’s web page with respect to its
consumption consists in comparing the Euclidean distance (d) that goes from each
observed resource measurement to the centre of mass of each cluster. If two or more
clusters’ centres of mass are at the same distance from an observation, the one with
the greater norm is associated with the observation. In the end, the cluster/category
that is associated with more observations is the final certification category assigned
to the URL/domain.

The certification methodology is described more succinctly in Algorithm 2. The
input consists of a set of n resource consumption values gathered from a single user
device and a set of k certification categories previously computed.

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 369

Algorithm 2: Certification algorithm used to score web-page URL and domains

Input: A set O D fO1; O2; : : : ; Ong of resource consumption values
Input: A set C D fC1; C2; : : : ; Ckg of clusters’ centers of mass
Output: A pair hs; ki, where s 2 f1; kg
S fS1; S2g
for i 1 to n do

min �1
˛ k
for j 1 to k do

distance d.Oi; Cj/
if distance < min then

min distance
˛ j

end
end
S˛ S˛ C 1

end
s i; where Si > Sj;8hSi; Sji 2 S
return hs; ki

14.4 Browser-Level Extensions and Certification Back End

14.4.1 Browser Extension

The browser extension was implemented using a Chrome deployment on the
Windows operating system. Since Chrome has very limited support for process
management, namely, of its tabs, the extension needed to be divided in two
main entities: (i) the browser extension itself, comprised of JavaScript callbacks
and code rather event oriented, whose execution and handling is delegated to
the browser, by running from within the browser itself as a Google Chrome
extension. (ii) A background process (BP) running natively as a service. Through
it, browser processes can be directly managed by communicating, beforehand, with
the extension.

The extension communicates with the background process issuing mechanism-
related commands and in order to allow the latter to keep track of certain browser
states, relevant to the tab management algorithm described in Sect. 14.3.1.2. The
browser state-related information passed this way is composed of general tab infor-
mation such as tab identifiers, tab indexes within their windows and corresponding
process ids. All communications are handled asynchronously by the background
process each time an event is raised by the browser, following a certain tab state
update, for instance, when a tab is created, or when a tab is activated.

When on Windows, Chrome uses Windows job objects to employ part of
its sandboxing constraints. Job objects are Windows abstractions that allow the
grouping of processes and the enforcement of certain limits and restrictions over
them. This is exactly what is needed in order to implement the resource limiting
mechanisms described in Sect. 14.3.

The sandboxing used by Chrome prescribes the association of a single tab
process to a single job. Knowing that these job objects are kept at Chrome’s kernel

370 G. Avelar et al.

process – i.e., the process that orchestrates all browser activity, from tab creation
and management to resource access – the BP retrieves these jobs by enumerating all
the Windows kernel objects present at Chrome’s kernel process, keeping those that
correspond to job objects. Once all job objects are found, the association of jobs to
tab processes is done by calling a Win32 API function. Tab processes are retrieved
by querying the browser, through its JavaScript API. This is done at the browser
extension which, in turn, will pass the tab-to-process associations to the BP, where
they are associated with jobs.

The tab management algorithm described in Sect. 14.3 will therefore limit
resource usage by acting directly on jobs. Each mechanism is implemented by
exploiting the capabilities of job objects. For instance, it is possible to change
process priorities or adjust maximum CPU rates for any given tab process belonging
to a single job object. This is accomplished in the cases of prio and cpu mechanisms.

14.4.2 Certification Back End

Concerning the back-end subsystem, all code was developed on Java. Communica-
tion between components is done via the certification server web API, transporting
messages in JSON format.

The certification server uses the Netty-socketio framework, to serve incoming
certification requests. This framework is an implementation of the WebSocket
protocol and allows to serve requests efficiently and asynchronously.1

The certification modeller runs as a process with two Java threads. Each
thread computes the model used to certify either URLs or domains. This is done
using a combination of Apache Spark built-in expectation-maximization function,
for multivariate Gaussian mixtures and Apache Commons Math library, for the
sampling of clusters.2 For storing resource consumption records, coming from the
certification server, and the model’s centres of mass, coming from the certification
modeller, a PostgresSQL database is deployed at the data store.3

14.5 Evaluation

In order to evaluate GreenBrowsing in a systematic way, tests were scripted com-
bining sequences of mechanisms with aggressiveness values. The aggressiveness
values considered will hold values of 1 and 1024, to assess how the intensification
of the limits imposed affects resource usage. A set of typical web pages was used,

1https://github.com/mrniko/netty-socketio, visited 22 November 2016.
2https://spark.apache.org/, visited 22 November 2016.
3http://www.postgresql.org/, visited 22 November 2016.

https://github.com/mrniko/netty-socketio
https://spark.apache.org/
http://www.postgresql.org/

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 371

comprising pages of news sites, social networks, sports sites, mail clients and
multimedia-streaming sites, providing a varied web-page suite.

Scripts were developed to open a set of pages and then navigate through those
pages, gathering resource consumption data. Every time a tab is terminated, due to
employing mem hard or time hard, it has its page reloaded once it becomes active
again.

Regarding the testing environment, Chrome version was 44.0.2391.0, dev-
channel release. The operating system on which Chrome was installed was Windows
8.1 Pro – baseline install, no updates. Hardware wise, the tests were conducted with
machines with Intel®Core(TM)2 Duo CPU P8700 running at 2.53 GHz, with 4 GB
of RAM memory.

For understanding how the employment of certain mechanism combinations
might affect latency, browsing habits are simulated through different tab selection
policies. These policies state what is the next tab to activate (i.e. what page to
visualize next): (i) Round-robin selection to navigate sequentially from tab to tab;
(ii) Central tab incidence, where the tabs at the centre of the tab bar will be selected
more often, by following a periodic navigation scheme, from the first tab to the
last and from the last to the first one, in a back and forth-fashion; (iii) Random tab
selection where a certain tab is selected randomly, possibly more than once.

14.5.1 Resource Usage Evaluation

The resource variations induced by prio might not be noticeable to the naked eye
because of the highly variable values of CPU usage rates, over time. Reductions of
9.92% and 17.56% were recorded, however, being the latter recorded with an higher
value of aggressiveness, as shown in Fig. 14.5, in green.

When applying cpu (Fig. 14.5), the reductions in CPU usage are intensified even
more when compared with prio, this time holding reductions that range from 20%
to about 47% of CPU time. This advantage over prio was expected, since cpu
directly adjusts the CPU usage allowed for each tab’s process, contrary to prio,
that associates priorities to a process without adjusting the maximum value for CPU
usage, itself.

Figure 14.6 depicts how applying mem soft and time soft influenced CPU usage.
The first seems to be the most prominent in reducing CPU usage, with 80%
reductions, while the latter is still successful in doing so, even though to a lesser
extent, achieving close to 70% reductions.

Concerning memory usage, depicted in Fig. 14.7, hard mechanisms induce a
substantially lower memory usage, than their soft counterparts, achieving reductions
of 80% to 85%, when compared to mechanisms being all off.

Overall, mem soft and time soft seemed to be the most capable mechanisms,
in terms of managing idle tab resource consumption regarding CPU usage. Even
though experiments in Fig. 14.7 seem to disprove its effectiveness in reducing
memory usage, (since soft mechanisms achieved slight increases when compared

372 G. Avelar et al.

Fig. 14.5 Priority and CPU share mechanisms. (a) CPU usage for prio. (b) CPU usage for prio &
cpu

to all off), it is important to notice how stable memory consumption was when
compared to the memory variations induced by other mechanisms and all off,
over time. If it is assumed that memory variations represent system-wide activity,
due to having many system entities accessing it, and therefore inducing energy
consumption rates proportional to the variations recorded, then soft mechanisms
effectively help reduce energy consumption, by varying the least.

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 373

Fig. 14.6 CPU usage when applying memory related mechanisms. (a) CPU usage for mem soft.
(b) CPU usage for time soft

14.5.2 Perceived Delay Evaluation

In order to assess the implications in terms of user experience-significant require-
ments, latency was recorded, while running resource consumption tests. Latency, in
this context, corresponds to the time period that goes from the moment the active tab
starts loading web-page content to the moment that content is totally loaded. This
notion of latency is useful to give an idea of how much time is wasted, by enforcing
certain mechanisms, in comparison to others.

374 G. Avelar et al.

Fig. 14.7 Memory restriction mechanisms. (a) Memory usage for mem soft & mem hard. (b)
Memory usage for time soft & time hard

Figure 14.8 presents the latencies experienced on average, as rectangles, for each
tab selection policy. Standard deviations correspond to the vertical lines above rect-
angles. It is possible to see that latencies for hard mechanisms were always bigger,
on average, when compared to other mechanisms. The experiments comprising all
off, prio and cpu held the smaller latency values, as expected, since they tamper
very little with process functioning, when compared to other mechanisms (viz. the
soft and hard ones). It is possible to observe that soft mechanisms seem to achieve
acceptable latencies, when compared to all off. The exception is when tabs were
chosen randomly, where the latency values are comparable to those recorded for
hard processes. The standard deviations observed are rather high in value. It has

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 375

Fig. 14.8 Latency measurements for the 3 tab selection policies considered. (a) Latency
measurement/round-robin tab selection. (b) Latency measurement/central-tab-incidence selection.
(c) Latency measurement/random tab selection

to do with the wide latency value ranges recorded since; occasionally, some long
periods of consecutive busy-tab activations were recorded (where the activated tabs
were still processing their pages).

It seems, therefore, negotiable to apply all mechanisms for resource reduction
purposes, with the exception of hard mechanisms, given the latencies recorded for
them, in most experiments.

14.6 Conclusions

This chapter presented GreenBrowsing, a tab-management solution (implemented
as a Google Chrome extension) and a cloud-based energy-related certification
scheme implemented on a separate subsystem. Evaluation shows substantial
resource usage reductions on energy consumption-related resource metrics (up
to 80% for CPU, 85% for memory usage and 85% for bandwidth usage) while
preserving acceptable user-perceived delays (unnoticeable in most cases), all of this
when comparing GreenBrowsing-aided web navigations with standard navigations.

376 G. Avelar et al.

Regarding future work, more resource reduction mechanisms could be devised in
order to account for bandwidth usage, since studies show it plays a significant part in
energy consumption, especially in the case of Wi-Fi-enabled devices. The back end
would benefit from improvements at the data store, in order to improve its scalability
when it comes to processing reads and writes of resource consumption records.
Furthermore, we would like to explore how previous work on differentiated quality
of service in the cloud [40] could be combined with declarative policies [43] in order
to improve the approach effectiveness and expressiveness for users. Also relevant is
studying how this work can be combined with providing web-based services from
community networks in order to further improve energy effectiveness [35, 36].

Acknowledgements This work was supported by national funds through Fundação para a Ciência
e a Tecnologia with reference PTDC/EEI-SCR/6945/2014 and by the ERDF through COMPETE
2020 Programme, within project POCI-01-0145-FEDER-016883, the Engineering School of the
Polytechnic Institute of Lisbon (ISEL/IPL).

References

1. Agarwal Y, Gupta R, Komaki D, Weng T (2012) Buildingdepot: an extensible and distributed
architecture for building data storage, access and sharing. In: Proceedings of the 4th ACM
workshop on BuildSys. ACM, New York

2. Amsel N, Tomlinson B (2010) Green tracker: a tool for estimating the energy consumption of
software. In: CHI’10 extended abstracts on human factors in computing systems, CHI EA’10.
ACM, New York

3. Amsel N, Ibrahim Z, Malik A, Tomlinson B (2011) Toward sustainable software engineering
(nier track). In: Proceedings of the 33rd international conference on software engineering,
ICSE’11. ACM, New York, pp 976–979

4. Balaji B, Teraoka H, Gupta R, Agarwal Y (2013) Zonepac: zonal power estimation and control
via hvac metering and occupant feedback. In: Proceedings of the 5th ACM workshop on
embedded systems for energy-efficient buildings, BuildSys’13. ACM, New York

5. Beck MT, Werner M, Feld S, Schimper T (2014) Mobile edge computing: a taxonomy. In: The
sixth international conference on advances in future internet, Lisbon

6. Benini L, Bogliolo A, Cavallucci S, Riccó, B (1998) Monitoring system activity for os-directed
dynamic power management. In: Proceedings of the 1998 international symposium on low
power electronics and design, ISLPED’98. ACM, New York

7. Bianzino AP, Raju AK, Rossi D (2011) Greening the internet: measuring web power
consumption. IT Prof 13:48–53

8. Bircher WL, John LK (2012) Complete system power estimation using processor performance
events. IEEE Trans Comput 61(4):563–577

9. Camps F (2010) Web browser energy consumption
10. Chetty M, Brush AB, Meyers BR, Johns P (2009) It’s not easy being green: understanding

home computer power management. In: Proceedings of the SIGCHI conference on human
factors in computing systems, CHI’09. ACM, Boston

11. Chrome browser. https://www.google.com/intl/en/chrome/browser/
12. Datta AK, Patel R (2013) Cpu scheduling for power/energy management on multicore

processors using cache miss and context switch data. IEEE Trans Parallel Distrib Syst 1190–
1199

https://www.google.com/intl/en/chrome/browser/

14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services 377

13. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the
em algorithm. J R Stat Soc Ser B 39(1):1–38

14. Gerards M, Kuper J (2013) Optimal dpm and dvfs for frame-based real-time systems. TACO
9(4):1–23

15. Gyarmati L, Trinh TA (2011) Power footprint of internet services. In: Proceedings of the 2nd
international conference on energy-efficient computing and networking, e-Energy’11. ACM,
New York

16. He D, Mueller W (2012) A heuristic energy-aware approach for hard real-time systems on
multi-core platforms. In: Proceedings of the 2012 15th Euromicro conference on digital system
design, DSD’12. IEEE Computer Society, Washington, DC, pp 288–295

17. Jansen PG, Mullender SJ, Havinga PJ, Scholten H (2003) Lightweight edf scheduling with
deadline inheritance. Technical report, University of Twente, Enschede

18. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable
stochastic domains. J Artif Intell 101(1–2):99–134

19. Kamga CM, Tran GS, Broto L (2012) Extended scheduler for efficient frequency scaling in
virtualized systems. SIGOPS Oper Syst Rev 46(2):28

20. Klebaner FC (2012) Introduction to stochastic calculus with application, 3rd edn. World
Scientific, Singapore/London

21. Kumar K, Liu J, Lu YH, Bhargava B (2013) A survey of computation offloading for mobile
systems. Mobile Netw Appl 18(1):129–140. doi:10.1007/s11036-012-0368-0. http://dx.doi.
org/10.1007/s11036-012-0368-0

22. Lachut D, Piel S, Choudhury L, Xiong Y, Rollins S, Moran K, Banerjee N (2012) Minimizing
intrusiveness in home energy measurement. In: Proceedings of the fourth ACM workshop on
embedded sensing systems for energy-efficiency in buildings, BuildSys’12. ACM, New York

23. Lee YM, An L, Liu F, Horesh R, Chae YT, Zhang R, Meliksetian E, Chowdhary P, Nevill P,
Snowdon JL (2013) Building energy performance analytics on cloud as a service. Serv Sci
5:124–136

24. Liu X, Shenoy P, Corner M (2005) Chameleon: application level power management with
performance isolation. In: Proceedings of the 13th annual ACM international conference on
multimedia, MULTIMEDIA’05. ACM, New York

25. Liu W, Liu K, Pearson, D. (2011) Consumer-centric smart grid. Innovative Smart Grid
Technologies pp 1–6

26. Miettinen AP, Nurminen JK (2010) Analysis of the energy consumption of javascript based
mobile web applications. In: MOBILIGHT, Barcelona

27. Norris JR (1998) Markov chains. Cambridge series in statistical and probabilistic mathematics.
Cambridge University Press, Cambridge

28. Oliner AJ, Iyer AP, Stoica I, Lagerspetz E, Tarkoma S (2013) Carat: collaborative energy
diagnosis for mobile devices. SenSys’13. ACM, New York

29. Paleologo BB, Benini L, Bogliolo A, Paleologo GA, Micheli GD (1998) Policy optimization
for dynamic power management. IEEE Trans Comput Aided Des Integr Circuits Syst 18:813–
833

30. Park J, Yoo S, Lee S, Park C (2009) Power modeling of solid state disk for dynamic power
management policy design in embedded systems. In: Proceedings of the 7th IFIP WG
10.2 international workshop on software technologies for embedded and ubiquitous systems,
SEUS’09. Springer, Berlin/Heidelberg, pp 24–35

31. Patel S, Perkinson J (2013) Fraunhofer report – the impact of internet browsers on computer
energy consumption

32. Qiu Q, Pedram M (1999) Dynamic power management based on continuous-time markov
decision processes. In: Proceedings of the 36th annual ACM/IEEE design automation
conference, DAC’99. ACM, New York

33. Rodrigues R, Annamalai A, Koren I, Kundu S (2013) A study on the use of performance
counters to estimate power in microprocessors. IEEE Trans Circuits Syst Express Briefs
60:882–886

http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0

378 G. Avelar et al.

34. Russel S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. AIPI, Moorpark
35. Sharifi L, Rameshan N, Freitag F, Veiga L (2014) Energy efficiency dilemma: P2p-cloud

vs. datacenter. In: IEEE 6th international conference on cloud computing technology and
science, CloudCom 2014, Singapore, 15–18 Dec 2014. IEEE Computer Society, pp 611–619.
doi:10.1109/CloudCom.2014.137. http://dx.doi.org/10.1109/CloudCom.2014.137

36. Sharifi L, Cerdà-Alabern L, Freitag F, Veiga L (2016) Energy efficient cloud service pro-
visioning: keeping data center granularity in perspective. J Grid Comput 14(2):299–325.
doi:10.1007/s10723-015-9358-3. http://dx.doi.org/10.1007/s10723-015-9358-3

37. Sheikh HF, Tan H, Ahmad I, Ranka S, Bv P (2012) Energy- and performance-aware scheduling
of tasks on parallel and distributed systems. J Emerg Technol Comput Syst 8(4):1–37

38. Shen H, Tan Y, Lu J, Wu Q, Qiu Q (2013) Achieving autonomous power management using
reinforcement learning. ACM Trans Des Autom Electron Syst 18(2):1–32

39. de Siebra C, Costa P, Marques R, Santos ALM, da Silva FQB (2011) Towards a green mobile
development and certification. In: 2011 IEEE 7th international conference on wireless and
mobile computing, networking and communications (WiMob). IEEE. https://doi.org/10.1109/
WiMOB.2011.6085386

40. Simão J, Veiga L (2013) Flexible slas in the cloud with a partial utility-driven scheduling
architecture. In: IEEE 5th international conference on cloud computing technology and
science, CloudCom 2013, Bristol, 2–5 Dec 2013, vol 1. IEEE Computer Society, pp 274–281.
doi:10.1109/CloudCom.2013.43. http://dx.doi.org/10.1109/CloudCom.2013.43

41. Singh RP, Keshav S, Brecht T (2013) A cloud-based consumer-centric architecture for energy
data analytics. In: Proceedings of the fourth international conference on future energy systems,
e-Energy’13. ACM, New York

42. Tanenbaum AS (2007) Modern operating systems, 3rd edn. Prentice Hall Press, Upper Saddle
River

43. Veiga L, Ferreira P (2004) Poliper: policies for mobile and pervasive environments. In:
Kon F, Costa FM, Wang N, Cerqueira R (eds) Proceedings of the 3rd workshop on
adaptive and reflective middleware, ARM 2003, Toronto, 19 Oct 2004, pp 238–243. ACM.
doi:10.1145/1028613.1028623. http://doi.acm.org/10.1145/1028613.1028623

44. Wang Y, Xie Q, Ammari A, Pedram M (2011) Deriving a near-optimal power management
policy using model-free reinforcement learning and bayesian classification. Proceedings of the
48th design automation conference on – DAC’11, New York, p 41

45. Weiser M, Welch B, Demers A, Shenker S (1994) Scheduling for reduced CPU energy
46. Yang X, Zhou Z, Wallace S, Lan Z, Tang W, Coghlan S, Papka ME (2013) Integrating dynamic

pricing of electricity into energy aware scheduling for hpc systems. In: Proceedings of SC13:
international conference for high performance computing, networking, storage and analysis,
SC’13. ACM, New York

http://dx.doi.org/10.1109/CloudCom.2014.137
http://dx.doi.org/10.1109/CloudCom.2014.137
http://dx.doi.org/10.1007/s10723-015-9358-3
http://dx.doi.org/10.1007/s10723-015-9358-3
https://doi.org/10.1109/WiMOB.2011.6085386
https://doi.org/10.1109/WiMOB.2011.6085386
http://dx.doi.org/10.1109/CloudCom.2013.43
http://dx.doi.org/10.1109/CloudCom.2013.43
http://dx.doi.org/10.1145/1028613.1028623
http://doi.acm.org/10.1145/1028613.1028623

Author Index

A
Abdullah, Tariq, 153
Aizad, Sanna, 153
Anjum, Ashiq, 153
Antonopoulos, Nick, 153
Arshad, Bilal, 153
Avelar, Gonçalo, 345

C
Coutinho, Rafaelli, 27

D
Da Rosa Righi, Rodrigo, 101
Davies-Tagg, Dominic, 153
Dayarathna, Miyuru, 173
de Oliveira, Daniel, 27, 127
Dorronsoro, Bernabe, 277
Drăgan, Ioan, 255
Drummond, Lúcia, 27

E
Emeakaroha, Vincent Chimaobi, 227

F
Fortiş, Teodor-Florin, 255
Frota, Yuri, 27

G
Galante, Guilherme, 101

H
Healy, Philip, 227
Henrique Morais de Oliveira, Ary, 127

I
Iturriaga, Santiago, 277
Iuhasz, Gabriel, 255

K
Kumar, Anoop S., 301

L
Liu, Lu, 329
Lumb, Ian, 3
Lu, Yao, 329

M
Marozzo, Fabrizio, 211
Mattoso, Marta, 127
Mazumdar, Somnath, 301
Morrison, John, 227

N
Neagul, Marian, 255
Nesmachnow, Sergio, 277

O
Ocaña, Kary, 27

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2

379

380 Author Index

P
Panneerselvam, John, 329
Petcu, Dana, 255

R
Rimal, Bhaskar Prasad, 3

S
Scionti, Alberto, 301
Simão, José, 59, 345

Subhani, Moeez, 153
Suzumura, Toyotaro, 173

T
Talia, Domenico, 211
Trunfio, Paolo, 211

V
Veiga, Luís, 59, 345

Subject Index

© Springer International Publishing AG 2017
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2

381

Numbers and Symbols
1Gbit, 247
1ms, 16, 18
2xlarge, 39, 42, 44
3G, 10, 16, 18
4G, 9–11, 16–18
4G LTE, 9, 11
5G networks, 3, 7, 16–23

A
Abnormal, 333
Aborted, 116
Abrupt, 335
Abruptly, 219, 335
Abstraction(s), 21, 28, 31, 61, 65, 88, 120, 130,

134, 162, 163, 175, 176, 178, 185, 228,
231, 268, 270, 306, 357, 369

Accelerate, 3, 7
Accelerating, 64, 147
Acceleration, 10, 301, 309
Accelerator(s), 104, 178, 309
Acceptable, 49, 137, 175, 352, 354, 367, 374,

375
Accessible, 3, 131, 137, 139, 255
Account, 35, 43, 53, 67, 74, 77, 81, 84, 86–91,

108, 115, 133, 154, 165, 166, 182, 278,
279, 281, 283, 287, 291, 298, 313,
315–317, 321, 345, 347, 355, 356, 360,
362, 366, 376

Accountability, 65
Accounting, 11, 65, 71, 339, 347, 348
Accuracy, 303, 304, 312, 314, 318, 320, 333,

334

Accurate, 101, 123, 133, 160, 278, 279,
284, 285, 290, 294, 297, 298, 334,
335

Accurately, 278, 284, 298, 335
Activation(s), 63, 365, 366, 375
Actuator(s), 18, 66–68, 71, 74–81, 85, 91, 270
Adaptation, 60, 61, 64, 66–77, 81, 82, 84–86,

91, 258–260, 264, 316, 348–351, 361,
362

Adaptation loop, 60, 66, 67, 70, 71, 73, 81, 91
Adapteva, 309
Adaptive resource, 59–92, 301–323
Adaptive systems, 72, 81
Addictive, 84
Addresses, 29, 64, 113, 177, 178, 188, 294,

302, 311
Adenine, 155
Administration, 157, 262, 277
Administrative, 156
Administrators, 238
Advanced Message Queuing Protocol

(AMQP), 115, 239
Affinity, 198
Agent(s), 131, 146, 147, 233, 234, 264–266,

268, 270, 278, 280, 282, 284, 311, 349,
350, 353

Agile, 289, 290, 308
Agility, 8
Agnostic, 157, 287, 292–294
Agreement(s), 11, 105, 132, 263, 266–268,

272, 278, 329, 354
Air conditioning, 330, 359
Alerting, 238
Alerts, 163, 238

382 Subject Index

Alliance, 16
Amalgamation, 308
Amazon, 42, 107, 211, 278, 283, 292
Amazon EC2, 6, 9, 39, 42, 44, 50, 53, 112,

145, 268, 284
Amazon machine image (AMIs), 145
Amazon S3, 135
Amazon Web Services (AWS), 27, 29, 114,

135, 270, 271, 283
AMD, 292
Amortization, 283
Analytic(s), 9, 15, 16, 153–168, 173, 176, 233,

241, 331–334, 343, 347, 355–361,
366

Annealing, 305, 352
Anomay(lies), 49, 261, 269, 333, 359, 360
Apache, 27, 162, 212, 370
Apache hadoop, 162, 212
Apache spark, 27, 370
APIs. See Application programming interfaces

(APIs)
App, 137
App engine, 6, 211, 278
Appliance(s), 15, 19, 20, 358
Application programming interfaces (APIs),

19, 65, 88, 105, 111–113, 115, 145,
162, 176, 211, 229, 232, 234, 239, 347,
370

Appname, 245, 246
AppNexeus, 6
Arbitrage, 265
Arbitration, 282, 365
Architectural blueprint, 258–259
Archived, 164
Archives, 292
ARFIMA models, 304, 315, 319, 320
ARIMA model(s), 304, 313, 314, 320
Arithmetic, 81
ARMA model, 303, 304, 314
AROMA, 50
Arrays, 183, 236, 270, 309
Arrival(s), 286, 288, 289, 291, 302, 330, 331,

333, 335, 336, 338, 341, 343, 354
Artifacts, 130
Artificial, 264
Asset(s), 160, 256
Assistant, 7
Associative arrays, 236
Astronomy, 31, 134
Async, 183, 184, 187
Asynchronous, 65, 115, 117, 119, 173, 176,

187, 217, 218, 239, 270, 351
Asynchronously, 239, 369, 370
Attacks, 261

Attributes, 14, 88, 104, 106, 161, 162, 175,
177, 181, 188, 195–199, 201, 247, 332,
334, 338

Audio, 141, 298
Audit, 11
Auditable, 131
Audited, 140
Auditing, 356
Augment(s), 67, 85, 90
Augmented, 7, 9, 10, 18, 20
Augmented reality, 20
Augmenting, 60
Authentication, 11, 240–241
Authority, 7, 251
Authorization, 11
Auto control, 83, 84
Autocorrelation(s), 304, 314
Autoelastic, 112–121
Autoelastic manager, 115–117
Automate(s), 49, 134, 145, 231, 261
Automated, 7, 50, 155, 237, 258, 263, 305, 346
Automatic, 11, 84, 92, 105, 107, 108, 113, 114,

119, 142, 163, 235, 242, 258, 266, 268,
270, 271, 312, 357

Automobiles, 3
Automotive, 9
Autonomic, 11, 49, 60, 66, 67, 72, 256–267

clouds, 260–263, 267
computing, 72, 257–262, 264, 266
computing systems, 72, 257
loop, 258–260, 264
manager, 258, 259
system(s), 60, 66, 257, 258, 260

Autonomous, 108, 140–141
Autonomy, 270
Autoregressive, 303
Autoscaling, 271
AWS. See Amazon Web Services (AWS)
Azure, 6, 27, 39, 42, 53, 114, 278, 283, 284,

292

B
Backbone, 3, 4, 307
Backend, 176
Background process (BP), 369, 370
Backhaul, 18
Backoff, 88
Backtrack(s), 30, 182
Backup(s), 215, 218, 219, 271
Backup masters, 215–217, 219, 220
Balancer(s), 85, 105, 305, 307, 311
Bandwidth, 6, 8, 12, 17, 18, 21, 104, 242, 247,

250, 308, 318, 333

Subject Index 383

Bandwidth usage, 347, 375, 376
Bandwidth utilisation (BU), 247–251
Barrier, 142
Base, 10, 18, 19, 60, 64, 69, 75–77, 80, 82, 85,

86, 138, 144
Baseband, 17, 18
Base band units (BBUs), 17
Baseline, 4, 371
Batch(es), 15, 164, 173, 192, 256, 262, 279,

289–291, 294, 296
Bayesian networks, 158, 159, 161
Behavior, 14, 15, 42, 51, 63, 68–70, 88, 120,

216, 219, 258, 259, 264, 269
Behaviour(s), 232, 237, 243, 244, 304, 316,

330–334, 343, 348, 350, 362, 367
Behavioural, 333
Benchmark(s), 69, 77, 84, 89, 174, 177, 194,

195, 197, 200, 279
Benchmarking, 20, 174, 177, 178, 195–197,

199, 200, 202, 359
Benefits, 5–7, 9, 11–13, 18–20, 23, 28, 42, 60,

91, 102, 107, 115, 123, 135, 136, 139,
144, 157, 164, 165, 241, 257, 301, 309,
310, 330, 331, 333, 335, 376

BerkeleyDB, 176
Bidirectional, 12, 218
Big data, 5, 13, 15–16, 66, 91, 120, 153–157,

159, 160, 163, 211, 262, 301, 347, 355,
356, 360, 361

Binary data interchange format, 236, 244–247,
250

Bioinformatics, 28, 31, 42, 134, 211, 214, 241
Biology, 28, 29, 157, 161
Biomarkers, 157
Biomedical, 159
Biomedical informatics, 159
Biostatistical, 154
BitBucket, 135
Blade, 175
BLAST, 28, 29
Block(s), 17, 20, 60, 62, 66, 86, 190, 256, 257,

302
Blocked, 121
Blog, 211, 214
Blueprint(s), 258
Bluetooth, 11
Bookkeeping, 64
Boot, 330
Booting, 144
Bootstrap, 116
Bootstrapping, 268
Bottleneck(s), 92, 187, 203, 305, 366
Bound(s), 30, 34, 36, 88, 235, 239, 329, 343,

352

Boundary, 308
Branch(es), 30
Bridge, 44, 200
Broadband, 17
Broadcasted, 8
Brokerage, 50, 264–265
Brokering, 258, 265, 266, 268, 278–285, 296,

297
Brokers, 231, 238, 239, 265, 278–299, 329
Browser access, 346, 347, 361
BSON, 236
Buffer(s), 237, 244, 246, 247, 250
Bulk, 296
Burstiness, 302
Bursting, 238, 277, 280, 281, 285
Bursty, 108, 109
Bus, 228, 232, 234, 237–240, 242–251
Business hours, 335, 340, 341, 343
Business value, 3, 7, 345
Byte(s), 60, 70, 87, 197, 236, 237, 246–250,

330, 340

C
Cache(s), 64, 217, 307, 334, 355
Cached, 186, 193
Caching, 10, 67, 177, 186, 193–195
Callbacks, 87, 369
Cancer, 156
Capital, 13, 18, 19
Capital expenditure (CAPEX), 18
Capture, 14, 75, 76, 142–144, 158, 349
Car(s), 7, 10
Carat, 359
Carbon, 12, 13
Carbon footprint, 13, 59
Cardinality, 74, 317
Carlo, 118
Carrier, 12, 19
Catalog, 60
Catastrophic, 256
Causal, 161
Cell(s), 17, 18
Cellular, 3, 9
Centos, 292
Centric, 19, 49, 176, 262, 355, 358, 360
Centroid, 368
Certification, 345–376

modeller, 366, 370
scheme, 347, 367
server, 366, 370

Certifier, 361, 366
Certify, 128, 346, 356, 361, 367, 368, 370
Certifying, 366–369

384 Subject Index

Cgroups, 21
Chain(s), 3, 8, 84
Chameleon, 346
Channel, 116, 118, 119, 371
Chaotic, 351
Charge(s), 115, 121, 218, 267, 268, 284, 286,

287, 313
Charged, 104
Charging, 102
Chart, 356
Chassis, 309
Cheap, 164, 229
Cheaper, 278, 296
Cheapest, 287, 290, 291
Checkpointing, 107, 281
Chef, 145–146, 148, 270
Chemistry, 31
Chip(s), 175, 310
Choke, 44
Choreography, 269
Chrome, 346, 347, 369–371, 375
Chunks, 334
Churn, 66, 212, 219, 220
Circuits, 309
Cisco, 9, 12
Cities, 9–15
Citizen(s), 13, 162
Classification(s), 60, 72–74, 76–80, 82–91,

103–106, 129–131, 147, 177, 244, 267,
281, 282, 346, 348–354, 356, 359, 360,
366, 367

Classifier, 90
Classify, 60, 63, 104, 147, 281, 351, 357
Classifying, 333
Client(s), 8, 9, 32, 104, 106, 146, 197–200,

256, 261, 265, 269, 270, 280, 329, 343,
345, 356–359, 371

Client threads, 199, 200
Climate, 13, 15
Clinical, 154–160, 163, 164
Clinical data, 153–157, 159–161, 163, 164,

166–168
Clinical datasets, 155–157
Clinical data warehouse, 160, 163
Clinical domain, 160–162
Clinicians, 154
Clock, 78, 310, 351, 352, 367
Cloned, 146
Cloud agency, 265
Cloud architectures, 255, 256, 262–266
Cloud broker, 265, 278, 279, 282, 285–288
Cloud brokerage, 50, 264–266
Cloud computing, 3–23, 28, 31, 43, 44, 49,

102, 121, 129, 134, 141, 144–146, 153,

227, 229, 234, 237, 240, 255–259,
262–265, 267–271, 277–279, 281, 287,
301, 303, 306–309, 329, 331

Cloud computing environment(s), 30, 102,
139, 145, 268, 329

Cloud computing infrastructures, 17, 49, 59,
264

Cloud computing technology, 17
Cloud data centers, 9, 15, 51, 329, 332, 333,

335, 336, 338, 343
Cloud deployment(s), 6–7, 48, 66, 227, 228,

230, 240, 250, 251, 260, 263
Cloud dimensioning, 29, 31–54
Cloud elasticity, 101–123
Cloud environment, 32, 43, 44, 46, 50, 53, 54,

120, 140, 144, 168, 173–205, 211–222,
242, 251, 255–272, 329–343

Cloud federation, 229–231, 235, 239, 241, 242,
251

Cloud federation management, 227–251
Cloudine, 111–113, 120–122
Cloud infrastructure, 107, 108, 110, 111, 195,

212, 230, 256, 263, 291, 296, 306, 309,
312, 322, 332, 334

Cloud interoperability, 263
Cloudlet(s), 8–10, 18, 306–307
Cloud management, 228, 229, 251, 263
Cloud paradigm, 135, 303, 306, 323
Cloud platform(s), 5, 39, 107, 211, 228,

229, 233, 234, 239–243, 251, 262,
278

Cloud provider(s), 29, 31–36, 50, 53, 105–107,
120–122, 141, 145, 146, 227, 229–231,
262, 265, 266, 278, 281–284, 286, 287,
292, 296, 302, 306, 311, 329, 331, 333,
343, 357

Cloud provisioning, 48
Cloud radio access network (C-RAN), 17–18
Cloud resource management, 265, 322
Cloud resources, 14, 50, 51, 122, 227–229,

232–234, 240–242, 260–263, 265, 268,
318

CloudScale, 49
Cloud service(s), 3–6, 16, 19, 229, 231–235,

238, 242, 257, 258, 263–268, 277,
279–281, 284, 298, 307, 311, 312, 318,
329, 330

CloudSigma, 104
Cloud system(s), 211, 214, 257, 263, 278, 290
Cloud technologies, 5, 7, 19
Cloud workload(s), 302, 310, 311, 330–333,

341, 343
Cluster(s), 8, 22, 28, 31, 43, 45, 51, 66,

101–103, 106–108, 113, 120, 122, 128,

Subject Index 385

134, 138, 144–146, 164, 173, 174, 178,
179, 184, 185, 188, 192, 201–203, 211,
212, 233, 235, 269, 270, 292, 307, 312,
333, 334, 340, 341, 346, 352, 368, 370

Clustered, 67, 184, 334
Clustering, 89, 180, 184–185, 340
Cms, 39–41
Cognitive, 9, 316
Collaboration, 11, 178
Collaborative, 280, 285, 334
Collateral, 122
Collector(s), 64, 88–90
Collects, 15, 16, 31, 68–70, 82, 84, 90, 106,

110, 111, 128, 138, 233, 266, 305
Collocation, 90
Combinatorial, 302, 315
Command(s), 142, 185, 188, 199, 200, 361,

369
Commerce, 281
Commercial, 27, 39, 42, 51, 53, 54, 71, 106,

120, 303, 311
Commercially, 155
Commoditizing, 19
Commodity(ies), 4, 164, 175, 176, 307, 311,

312
Community(ies), 16, 28, 102, 123, 130, 174,

179–181, 256, 266, 268, 284, 376
Compactness, 246–251
Comparison(s), 44, 78, 82, 120, 128, 135,

146–148, 154, 161, 193, 200, 285,
320–322, 373

Compatibility, 146, 280
Compatible, 157, 230, 234, 245
Compensate, 54
Compilation(s), 69, 70, 134, 147, 237, 346
Compile(s), 113, 114, 121, 197
Compiled, 59, 61, 69, 117, 134, 135, 197
Compiler(s), 60, 61, 69–71, 134, 197, 237,

246, 250
Compiling, 69, 122
Complex, 14, 27–31, 63, 68, 77, 101, 154, 158,

159, 174, 179, 181, 229, 241, 257, 278,
287, 302, 307, 310, 311, 321, 323

Complexity(ies), 4, 12, 38, 60, 75, 76, 80, 108,
121, 127, 166, 173, 178, 181, 250, 257,
258, 262, 310, 322, 330, 332, 349, 358

Component(s), 10, 60, 62, 71, 111, 136, 137,
139, 141, 144, 160, 181, 185, 190, 191,
197, 200, 214, 218, 219, 232, 234, 237,
238, 240, 244, 255, 256, 258, 259,
262–271, 302, 303, 309–311, 313, 314,
316, 318, 330, 346–352, 355, 357, 358,
362, 366, 370

Compose, 120, 130, 240, 350

Composed, 28, 30, 31, 44, 77, 117, 121, 128,
130, 137, 162, 177, 214, 215, 232, 235,
236, 329, 334, 347, 350, 355, 366, 369

Composite, 229, 242
Composition, 11, 30, 134, 214, 267, 269, 271
Compress, 69
Compressed, 9, 271
Compression, 69, 79, 83, 85
Computational resources, 30, 103, 114, 145
Compute clusters, 179, 188
Compute node(s), 114–116, 121, 177
Computer architecture, 128
Computer networks, 133
Computing infrastructure(s), 15, 28, 102, 108,

138, 144, 145, 291, 292
Computing nodes, 107, 212, 214, 233
Computing systems, 72, 178, 257
Conceal, 231
Concentrated, 262
Concept(s), 4, 7, 9, 13, 21, 29, 48, 49, 51, 83,

89, 102–109, 121, 129, 130, 132–134,
140, 145, 147, 149, 174, 231, 241, 256,
257, 266, 269, 271, 279, 281, 312, 350,
360

Concession, 131
Concurrency, 178, 270, 333
Concurrent, 64, 217, 270, 331, 341, 343
Concurrently, 216
Condensation, 128
Condor, 28
Conduction, 47, 48
Configurable, 104, 154, 232, 303
Configuration(s), 10, 11, 19, 30, 32, 43, 50, 51,

61, 90, 101, 102, 104, 106, 107, 111,
114, 122, 123, 133, 140, 143, 145, 179,
180, 221, 231, 232, 234, 260, 267, 269,
270, 277, 302

Configuration parameters, 51, 110, 130, 138,
143, 232, 234

Configure, 19, 134, 145, 146, 269, 270
Configured, 9, 69, 141, 188, 192, 199, 201,

234, 269–271, 312, 361
Configuring, 107, 133, 232, 261
Congestion, 82, 88
Conglomeration, 308
Conjecture(s), 75, 91, 160
Connection(s), 9, 115, 118–120, 215, 218
Connectivity, 9, 12, 16, 17, 138, 183, 255, 280
Connector, 359
Consensus, 13, 270
Consistency, 154, 155, 159–164, 168, 269, 271
Console, 6
Consolidate, 19, 59, 116
Consolidated, 112, 157, 354

386 Subject Index

Consolidating, 104, 303
Consolidation, 84, 105, 113, 114, 116,

119, 277, 302, 305, 315, 357, 358,
360

Constellations, 241
Constraint(s), 34, 36, 50, 51, 86, 229, 242, 287,

303, 317, 322, 332, 346–348, 351, 352,
354, 360, 362, 369

Constraint satisfaction problem (CSP), 303
Constriction, 323
Consumer(s), 69, 104, 227, 229–231, 238–240,

247, 262, 265, 267, 268, 357–359
Container(s), 21–23, 61, 62, 91, 236
Containerization, 21–23
Containerized, 91
Contingency, 15
Continuum, 306–309
Contract(s), 265, 299
Contracted, 285, 286
Contract net protocol, 268
Contrail, 239
Control(s), 11, 13, 14, 16, 18–21, 29, 59–62,

67–69, 76, 77, 79, 82, 84, 86–91, 105,
108–112, 120, 121, 131, 135–137, 139,
140, 142, 149, 230, 233, 237, 240, 256,
258, 259, 303, 304, 311, 323, 354, 355,
357–359, 362

Controller(s), 19, 67, 68, 70, 72, 79, 83, 84, 87,
89, 90, 105, 108–111, 136, 144, 305,
308, 348, 351

Controller tier, 137, 138
Convenience, 22, 345
Convenient, 119, 318
Conventional, 6, 7, 15, 21
Conventions, 236
Convergence, 11, 23, 269, 305, 315, 316, 323,

340
Convoy, 354
Cooling, 330
Cooperative, 65, 227, 239
Coordinated, 18, 280
Coordinating, 216
Coordination, 16, 17, 214, 263
Coordinator(s), 214, 217
Coprocessor, 321
Copy(ies), 64, 145
Core(s), 18, 42, 43, 45–47, 65, 114–116, 120,

121, 174, 178, 198, 214, 219, 232, 234,
241, 242, 257–259, 263–268, 286, 289,
309, 311, 317, 318, 321, 330, 331, 340,
354, 355

Correctness, 160, 163, 167, 186
Correlated, 302, 333, 335
Correlates, 250, 359

Correlation(s), 72, 79, 83, 84, 167, 168, 315,
331, 333, 334, 336, 338, 357

Cost(s), 13, 15, 16, 18, 19, 29, 31–40, 42, 43,
45, 46, 49–54, 59, 70, 77, 91, 92, 102,
111, 113, 122, 140, 153, 154, 156, 167,
188, 229, 231, 240, 242, 260–264, 267,
268, 277, 280, 282, 284–288, 291, 301,
303–306, 308, 313, 346, 347, 350, 352,
353, 356

Countable, 353
Counterparts, 311, 351, 371
Coupled, 105–107, 175, 234, 258, 269
Coupling, 255, 312
Covariance, 333, 368
CPU(s), 32, 44, 49, 59, 61–63, 65, 67, 68, 71,

78, 79, 82–87, 91, 104–106, 113–116,
120, 138, 234, 242, 302, 304, 305, 310,
318, 330, 331, 334, 340, 341, 347, 348,
351, 355, 356, 363–365, 370–372, 374,
375

cap, 83, 84
cores, 114, 317, 318, 330, 331
usage, 71, 78, 88, 267, 305, 313, 334, 362,

364, 366–368, 371–373
utilisation, 304, 305, 312, 313, 318, 346,

354
C-RAN. See Cloud radio access network

(C-RAN)
Crash(s), 116, 261
Crawl, 50, 52
Crawling, 211, 214
Credibility, 128
Credit(s), 78, 354
Crime, 15
Criteria, 48, 52–54, 73–78, 188, 255, 268, 282,

289, 348, 351, 353
Criterion, 48, 69, 76
Critical, 12, 44, 67, 81–82, 159, 163, 164, 196,

222, 280, 284
CRM. See Customer relation management

(CRM)
Crowd, 14
Crowdsourcing, 14
Cryptography, 118
CSP. See Constraint satisfaction problem

(CSP)
Cube, 75
Curation, 31
Cure, 336
Curve, 70, 87, 91, 175, 193, 205, 336, 353
Customer(s), 5, 6, 10, 12, 15, 16, 20, 242, 278,

279, 283–289, 292–297, 358, 359
Customer relation management (CRM), 14, 15
Customization, 281

Subject Index 387

Customize, 104, 178, 234
Customized, 278
Cyber, 13
Cycle(s), 5, 10, 11, 20, 30, 65, 89, 104, 219,

231, 316, 355, 367
Cyclic, 84
Cypher, 192

D
Daemon, 82
Dashboard, 359
Data analysis, 12, 13, 154, 165–168, 195, 211,

228, 232, 357
Data analytics, 15, 16, 153–168, 241, 356–361
Data analytics platform, 155, 168
Database (DB), 5, 28, 31, 48, 54, 135, 137,

139, 143–146, 153, 164, 167, 173, 174,
176–178, 185–202, 233, 235, 370

Database management, 177
Database management systems (DBMS), 135,

176, 177
Database systems, 16, 166, 177, 185
Data center(s), 8, 9, 14, 15, 19, 34, 49, 51, 52,

54, 59, 91, 261
Data centre management, 330–332, 335
Datacentres (DCs), 301, 302, 304, 305,

307–310, 312, 313, 317–319, 321,
329–343

Datacloud, 9, 15, 51, 230
Data consistency, 46, 154, 155, 159–164, 168
Data differencing, 146
Data distribution, 160, 214, 336, 337, 339
Data driven, 139
Dataflow, 28, 31
Data integration, 154–161, 163, 164, 166, 167,

230
Data intensive, 50, 128, 156, 157, 211, 212,

222, 229, 240, 251, 268
Data interchange format(s), 228, 230–240,

242–251
Data interoperability, 227–251
Data management, 11, 12, 166, 173–205, 231
Data manager, 137, 139
Data mining, 173–205, 211, 214
Data model, 135, 157–160, 162, 166, 185, 235
Datapipe, 6
Data plane, 19, 21, 311
Data processing, 132, 174–176, 203, 214, 227
Dataset(s), 30, 44, 127, 130, 133, 143, 145,

303, 314, 368
Data storage, 4, 138, 146, 164, 166, 177, 195,

214, 271
Data store, 177, 357, 358, 366, 368, 370, 376

Data structure(ing), 107, 110, 139, 144, 159,
174, 177, 181, 188, 189, 197, 199, 227,
228, 230, 235–238, 244–247, 250

Data warehouse, 15, 154, 159, 160, 163, 164
DbaaS, 139
DBpedia, 177, 185
Deadline(s), 50, 54, 107, 118, 284, 286–292,

298, 352–354
Deallocate, 277
Deallocation, 64, 105, 109, 112, 115, 121
Debugging, 142
Decentralized, 212, 222, 231–233, 269
Declarative, 67, 376
Decline(s), 338, 343
Declining, 335, 336, 341
Decommissioned, 269
Decomposing, 74
Decomposition, 50
Decompresses, 9
Decouple(ing), 14, 239
Dedicated, 14, 44, 120, 161, 263, 280
Deep, 23, 113, 330, 335, 340
Deeper, 157, 159, 266, 335
Deficit, 294
Deflate, 64
Degradation(s), 64, 305, 334
Degrade, 233, 310, 312, 364
Delay(s), 43, 51, 196, 279, 288, 289, 304, 320,

330, 347, 352–354, 356, 362, 373–375
Delete, 185, 196
Deletion, 181
Deliver(ing), 5, 10, 16, 18, 49, 66, 135, 154,

213, 239, 260, 262, 266, 297
Delivery, 4–6, 10, 12, 19, 218, 265
Demands, 13–15, 27–32, 37, 43, 44, 46, 49–51,

53, 59, 70, 78, 82, 84, 85, 89, 101–104,
106, 108, 111, 120–123, 146, 165, 227,
229, 242, 255, 258, 260, 277, 280, 284,
286, 291, 294, 303, 306, 311, 330, 331,
338, 340, 341, 345, 358

Denial, 71
Dense, 30, 333
Density, 107, 181
Deoptimization, 70
Dependency(ies), 20, 21, 28, 31, 49, 63, 64,

71, 101, 127, 128, 137, 138, 141–144,
146, 185, 187, 362, 364

Dependent, 20, 63, 64, 101, 127, 137, 138,
146, 362, 364

Deploy(ing), 3, 5, 10, 14, 18, 28–32, 44, 129,
132, 133, 138–141, 143–147, 163, 202,
227, 229–235, 240–242, 244, 247, 262,
263, 267, 271, 277, 278, 280, 282, 308,
338, 359, 361, 370

388 Subject Index

Deployer, 241
Deployment(s), 4–7, 9, 11, 13, 18, 22, 31, 32,

39, 61, 62, 66, 92, 122, 138, 139, 142,
143, 162, 218, 227–232, 238–243, 250,
251, 258, 260, 263, 265, 266, 269, 278,
287, 369

Deployment modes, 4–7
Derivation, 128, 131, 132, 143
Derivative, 132
Deserialize(ing), 188, 239, 246, 247
Desiderata, 29–31
Desktop, 91, 214
Develop(s), 5, 13, 20, 51, 103, 107–121, 133,

135, 140, 141, 153, 154, 156, 173–175,
178, 179, 181, 185–187, 195, 202, 231,
234, 237, 239, 257, 258, 261, 268, 269,
282, 302, 304, 309, 315, 317, 323, 345,
356, 370, 371

Developer(s), 3, 5, 7, 146, 175, 176, 178, 200,
231, 268, 308, 345, 346

Development(s), 3, 6, 13, 21, 22, 60, 107, 108,
111, 120, 122, 127, 135, 140, 142, 145,
147, 155, 234, 241, 255, 256, 262, 263,
271, 272, 298

Deviation(s), 313, 317, 374
Device(s), 3, 4, 7–12, 16, 19, 20, 65, 104, 136,

217, 236, 281, 301, 306, 307, 309, 310,
345, 348, 353, 356–360, 368, 376

Device vendors, 3
Devops, 22
Diagnosing, 359
Diagnosis, 160, 359
Diagnostics, 157
Differencing, 146, 314, 315
Diffused, 122
Diffusion, 311
Digital, 133, 137, 139–141, 145
Directive(s), 107, 108, 118, 119, 121, 122, 239,

268
Disaster, 15
Disclose, 360
Disclosure, 358
Discontinued, 128
Discount(s), 278, 283, 284, 286, 296
Discrete, 84, 219
Disease(s), 156, 157, 165, 167
Disjoint, 119, 340
Disk(s), 37, 65, 66, 83, 84, 88, 104, 179, 261,

304, 330, 340
Disk storage, 32–34
Disparate, 14, 154, 160, 161, 163
Dispatch(ing), 65, 304
Disposable, 88
Disposal, 128

Disprove, 371
Disputed, 51
Disrupt(s), 8, 61
Disruptive, 8, 21, 22
Dissipated, 310
Dissipation, 347, 351
Distribute(ing), 15, 16, 21, 27, 43, 44, 54, 74,

82, 102, 106, 108, 111, 114, 117, 119,
144, 145, 154, 160, 162, 166, 168, 173,
175–177, 183, 185–195, 197, 199, 202,
237, 239, 257, 261, 263, 264, 269, 270,
281, 285, 303, 304, 311, 312, 314, 316,
317, 368

Distributed databases, 16, 54, 173, 174, 176,
185–195, 202

Distributions, 18, 31, 54, 59, 90, 115, 131, 138,
140, 142, 153, 175, 177, 178, 182, 201,
213–215, 217, 219, 231, 301, 310, 317,
318, 322, 336, 337, 339

Distributor, 144
Diurnal, 336, 343
Divergence, 146
Diversified, 156, 157
Diversity, 14, 38, 231, 301, 309, 330, 332, 340
DNA, 28, 155, 156
DNS, 270
Docker, 21–23, 91
Doctor(s), 7, 20
Dom0, 144
Domain (Dom), 13, 27, 28, 31, 34, 50, 65, 88,

101, 127, 129, 130, 134, 135, 144, 147,
155–157, 160–162, 175, 176, 185, 211,
278, 303, 355, 367–370

Dominance, 278
Dominant, 80, 83, 85, 87, 310, 356
Dominate, 177, 196, 310
DomU, 144
Downside, 14
Downtimes, 337, 338
Drain, 165
Drone, 9
Dropbox, 135
Drug(s), 157, 167
Duplicate, 144, 334
Durability, 271, 357, 360
Dwarf(s), 30
Dynamic cloud environments, 211–222
Dynamic dimensioning, 43–46, 51, 54
Dynamic environments, 22, 53, 222
Dynamic memory, 108
Dynamic resource, 18, 110, 269
Dynamics, 4, 6, 14, 15, 19, 22, 29, 30, 43–54,

59, 61, 63, 74, 83, 84, 88–90, 102–104,
106, 108, 110–112, 118, 119, 121, 123,

Subject Index 389

132, 137, 138, 160, 214, 219, 231, 242,
260, 265, 268–270, 277, 280, 282, 284,
285, 302, 304, 305, 308, 310–312, 321,
322, 330, 334, 340, 343, 347–355, 360,
367

Dynamic voltage frequency scaling (DVFS),
310, 351, 352, 354

DynamoDB, 271

E
EC2, 6, 39, 42, 44, 50, 112, 145, 268, 271, 283,

284
Economic, 5, 7, 11, 67, 104, 229, 231, 278,

281–283, 285, 306
Economical, 280, 284
Economy, 227, 229
Ecosystem, 3, 10, 20, 23
Edge computing, 8–10, 17, 18, 308, 346
Edges, 8–10, 14, 17, 18, 20, 31, 69, 143, 161,

162, 175, 176, 181, 182, 184, 187, 188,
196, 199–203, 205, 217, 241, 307, 308,
346

Education, 18, 23
Efficacy, 157, 167, 278
Efficiency, 12, 13, 17, 20, 22, 43, 44, 49, 115,

116, 231, 232, 234, 242, 250, 251, 262,
267, 302–305, 309, 312, 318, 322, 343,
345, 346

Efficient, 13, 46, 49, 50, 63, 69, 102, 127, 153,
154, 161, 167, 182, 211, 214, 228–230,
232, 233, 236–238, 244, 251, 267, 268,
278, 279, 288, 301, 302, 312, 323, 330,
332, 333, 340, 343

Efficiently, 22, 106, 107, 139, 145, 166, 167,
181, 202, 244, 261, 279, 286, 287, 298,
302, 303, 318, 370

Eigenvalue, 184, 185
Eigenvectors, 184
Elastic, 49, 103, 105, 107–120, 122, 271
Elastically, 51
Elasticity, 70, 89, 91, 101–123, 241, 302

controller, 105, 108–110
mechanisms, 105, 109
solutions, 102, 103, 108

Election, 270
Electric, 12, 15
Electrical, 13
Electricity, 15, 355
Electronic, 48, 132, 140, 146, 153, 156, 310
Embarrassingly, 118
Embedded, 200, 304, 306, 356

elasticity, 110
systems, 236

Emissions, 13
Empirical analysis, 330, 331, 334
Emulation, 65
Enablers, 11, 16, 22, 263
Encapsulate(s), 28, 129, 134, 142, 146
Encapsulated, 141, 329
Encapsulating, 144
Encapsulation, 143, 146
Encode(s), 237, 246, 316
Encoded, 197, 236
Encoding, 238, 245–247
Encrypted, 271
Endpoints, 357
Energy, 12, 13, 15, 17, 18, 49, 50, 53, 54,

102, 106, 114, 116, 229, 231, 261, 262,
303–305, 310, 313, 330, 332, 340, 346,
347, 351, 352, 354–362, 366, 367, 372,
375, 376

Energy efficiency, 13, 17, 49, 231, 303–305,
310, 340, 343, 345–376

Enqueued, 350
Enriched, 7
Enterprises, 5, 10, 19, 23, 120, 160, 229, 230
Entertainment, 20, 23
Entrepreneurship, 5
Environmental, 106, 256, 258, 346
Environmentally, 346, 356
Environments, 5, 7, 19–22, 28–32, 35, 43, 46,

50, 51, 53, 54, 59, 61–65, 68, 77, 84, 89,
91, 102, 105, 106, 110, 111, 119–121,
123, 129, 131–135, 138–146, 148, 154,
160, 163–165, 168, 173–205, 211–222,
235, 242, 243, 251, 255–272, 280, 302,
304, 329–343, 346, 347, 350, 371

Environment variables, 133, 142, 143, 148
Epochs, 353
Erlang, 245
Error, 29, 89, 200, 304, 314, 318–320, 359
Ethernet, 247
ETSI. See European Telecommunications

Standards Institute (ETSI)
Eucalyptus, 6, 145
Euclidean, 368
European Telecommunications Standards

Institute (ETSI), 9, 10, 19
Evaluation, 50–54, 129, 130, 132, 147, 148,

177, 178, 182, 192–195, 201–202, 205,
212, 219–221, 228, 242–251, 258, 268,
279, 291–297, 318–322, 330, 347, 356,
360, 370–375

Evicted, 88
Evidence, 128, 129
Evolution, 12, 89, 127, 137, 159, 303, 306, 316
Evolutionary, 49, 50, 269, 285, 298, 322

390 Subject Index

Exabytes, 153, 154, 167
Exascale, 196
Exascale clouds, 195, 196
Excess, 199
Executable, 108, 118, 134, 141, 143, 179
Executable papers, 131, 132, 137, 138, 140,

141, 146, 149
Execution, 9, 21, 29, 31–35, 39, 42–47, 49–51,

53, 54, 61–64, 66, 67, 69–71, 73, 77, 80,
82, 83, 86, 88–90, 92, 102, 105–108,
111, 115, 116, 119, 120, 122, 123, 128,
131–134, 137, 139, 140, 142–146, 176,
186–188, 190, 191, 194, 197, 199, 201,
213, 219, 220, 232–234, 238, 243–246,
256, 264, 265, 268, 288, 290, 291, 294,
302, 304–305, 309, 314, 320, 322,
329–332, 334, 335, 340, 343, 362, 364,
366, 369

Exhaustion, 70
Exhibit, 331, 332, 334, 338, 339, 343, 359
Exhibited, 138
Exhibiting, 331, 336, 340, 343
Expectancy, 269
Expenditure, 18, 19
Expenses, 302
Expensive, 14, 46, 134, 161, 165, 167, 278,

283, 360
Expiration, 217
Exploitation, 78, 316
Exploits/exploited/exploiting, 17, 117, 167,

175, 211, 212, 214, 222, 234, 257, 260,
281, 283, 303, 304, 308, 322, 355,
370

Exploration, 78, 316, 321, 335
Exponent, 362
Exponential, 88, 219, 314
Export, 67
Expressiveness, 376
Extensibility, 64, 234, 357, 360
Extensible, 231, 233, 235–236
Extensions, 44, 53, 69, 76–80, 83, 85, 120,

174, 176, 187, 236, 259, 262, 268, 306,
323, 347, 354, 361, 362, 366, 367,
369–370

Extrapolating, 66
Extrinsic, 330, 332

F
Facebook, 15, 185
Facility(ies), 120, 123, 211, 270, 277, 292
Failed, 220, 221, 256, 271
Failover, 271

Failure(s), 107, 212, 214, 215, 218–220, 222,
258, 261, 269–271, 302, 309, 310, 330,
334, 337, 338

Fanout, 269
Fasta, 142
Fault(s), 67, 70, 78, 83–85, 87–89, 106, 108,

137, 162, 176, 185–187, 194, 199, 212,
255, 256, 258, 269

Federated, 34–36, 42, 46, 52–54, 227–230,
232, 239–241, 243, 250, 251

Federated cloud(s), 34–36, 42, 46, 53, 228,
230, 232, 239, 240, 243, 250, 251

Federated cloud deployment management,
240

Federated cloud deployments, 230, 250, 251
Federated cloud management, 228, 229, 251
Federation(s), 139, 227–251, 265, 266
Field-programmable gate arrays (FPGAs), 104,

261, 301, 309
File system, 61, 77, 139, 140, 144, 213, 214,

271, 281
Filter(s), 48, 137, 267, 311, 334
Filtering, 259
Finance, 157
Financial, 29, 31–34, 36, 37, 39, 40, 42, 43, 45,

49–51, 53, 54, 123, 214, 239, 346
Firewall, 308
Fitness, 316, 317, 321, 322
Flexibility, 6, 115, 135, 161, 162, 227, 241,

242, 277, 278, 280, 288, 312, 357, 360
Flexible, 59, 111, 121, 122, 160, 162, 164, 176,

262, 277, 280, 282, 308, 311
Flexiscale, 6
Flooding, 217
Flow(s), 12, 61, 132, 134, 139, 144, 174, 261,

356
FlowVisor, 21
Fluctuate, 334
Fluctuating, 336, 340
Fog, 8–10, 17, 18, 306–308
Fog computing, 8–10, 17, 18, 306–308
Fog nodes, 9
Forecast(s), 106, 285, 302–304, 314, 320, 323
Forecasted, 304
Forecasting, 15, 284, 285, 298, 303–305, 313,

314, 318, 320, 359
Forecasting accuracy, 12, 314, 318, 320
Formal, 70, 132
Formalism, 216, 218
Formation, 231
Forwarding, 10, 21, 217
Fossil, 13
Foundation(s), 19, 22, 139, 262, 263

Subject Index 391

Fourier, 84
FPGAs. See Field-programmable gate arrays

(FPGAs)
Fragmentation, 247, 312
Fragments, 132, 137
Frequencies, 331, 352, 355
Frequency scaling, 49, 310, 351
Friendly virtual machines (FVM), 82–83, 86
FTP, 213
Fuse, 42
FUSION, 269
Futuristic, 159
Fuzzy, 125, 253
FVM. See Friendly virtual machines (FVM)

G
Gain(s), 21, 89, 111, 122, 157, 194, 256, 284,

294, 306
Game(s), 7, 18, 231
Gaming, 20, 298
Garbage, 61, 64, 70–72, 86, 89, 90, 346
Gas, 31
Gate, 309
Gateways, 19
Gating, 310
Gaussian, 368, 370
Gcc, 292
Generating insights, 154, 155, 168
Generators, 177, 180, 181, 197, 199, 200, 202,

205, 238
Genes, 155, 156, 158, 159, 166, 168
Genetic algorithms (GAs), 50, 118, 264, 303,

326
Genetics, 155, 157, 241
Genome data, 167
Genomes, 153, 155–157, 165–168
Genome sequencing, 153, 155, 156
Genomic data, 153, 155–157, 159, 163,

165–167
Genomics, 28, 153–155, 157–159, 164
Genuine workloads, 333
Geodesic, 182
Geolocalization, 285, 298
Geometric, 118
Gflops, 32, 33
GigaSpaces, 6
GitHub, 135
Global, 11, 13, 116, 118, 119, 305, 355
Globally, 65, 85, 87, 318, 352
Gmail, 122
GNU, 292
GoGrid, 6, 104
Google, 185, 211, 214, 237, 283, 334, 346

Google Chrome, 369, 375
Google Cloud, 27, 39
Governance, 13, 164, 260
Governments, 13
GPGPUs, 261
GPS, 15
GPUs, 31, 104, 309, 321
Graceless, 219
Grafted, 22
Granularity, 65, 88, 268, 318, 357, 358
Graph algorithms, 162, 173–175, 181–185,

188
Graph data, 160, 173–205
Graph database engine, 173, 185–195
Graph databases, 135, 146, 173, 174, 176–178,

185–202
Graph database servers, 174, 176, 200–202
Graph data processing, 174–176, 203
Graph data structure, 197, 199
Graph DB Interface Layer, 197, 200
Graphical, 114, 240
Graphics, 118, 287, 288
Graphing, 232
Graph library(ies), 174
GraphML, 181
Graph models, 160–163, 167, 168
Graph partitioning, 168, 185, 188
Graph processing, 154, 162, 163, 173–175,

178–185, 202, 203
Graphs, 69, 114, 141, 154, 160–164, 167,

175–177, 179–182, 185, 187–189,
194–197, 199, 202, 203

GraphStore, 185
Graph theory, 174
Graph traversal, 30, 177, 197, 201
GraphViz, 181
Greedy, 36, 37, 72, 285, 298, 303
Gremlin, 200
Grid computing, 257, 262, 268
GridGain, 214
Grids, 12–15, 28, 30, 51, 101, 102, 128, 134,

138, 214, 257, 263, 268
Gridscheduler, 102
Guanine, 155
Guarantees, 34, 50, 104, 284, 352
Guest OS, 63–65, 69
Guidelines, 137, 138, 231
Guides, 70, 90, 129, 133, 147, 149, 280

H
Hadoop, 16, 27, 50, 154, 164, 214, 219
Halt, 362, 365
Handler, 65

392 Subject Index

Handles/handling, 12, 13, 16, 65, 84, 103, 153,
173, 179, 196, 199, 212, 265, 269, 270,
280, 358, 362, 364, 369

Handoff, 9
Haptic, 18
Hard, 14, 31, 87, 140, 256, 346, 365, 371, 374,

375
Hardware-as-a-service (HaaS), 281
Hardware components, 255, 267
Hardware resources, 59, 134, 258, 303,

309–310
Hash, 166, 217
HBase, 176
HDFS, 186
Head-mounted display (HDC), 20
Healing, 257
Health, 156, 157
Healthcare, 11, 13, 18, 23, 153–168
Healthcare data, 153
Heaps, 61, 64, 66, 70, 78, 87–90, 202
Heap sizes/ heap sizing, 61, 66, 70, 80, 86–90,

202
Heartbeats, 77
Heat/heating, 309, 359
Hertz, M., 89
Heterogeneities, 4, 12, 14, 108, 227, 228, 230,

256, 309, 330, 332, 343
Heterogeneous, 11, 12, 15, 18, 19, 50, 51, 123,

154, 157, 159, 160, 163, 164, 173, 233,
235, 281, 292, 301, 309

Heterogeneous cloud environments, 255–272
Heterogeneous networks, 19
Heuristics, 39, 69, 70, 72, 77, 79, 88–90, 264,

278, 279, 285, 288–292, 294, 297, 298,
303–305, 311, 313, 315, 316, 321,
348–352, 354, 362

Hibernate, 235
Hierarchical, 87, 130, 158, 305
Hierarchically, 270
Hierarchy, 8, 367
High performance computing (HPC), 16,

27–31, 49, 53, 54, 83–86, 91, 101, 102,
112, 113, 115, 120, 122, 123, 128, 138,
141, 173–178, 201–202, 256, 257, 260,
262, 292, 355

Hire/hiring, 33–37, 40, 284, 285
History, 84, 107, 128, 132, 157, 316, 350,

357
Hololens, 20
Home energy, 356, 358, 360
Homogeneous, 114, 121, 286, 334, 355
Homogenise, 231
Hospital, 7, 157

Hosts/ hosting, 5, 8–10, 21, 62, 65, 66, 82, 102,
104, 105, 113, 134, 138–141, 143, 144,
149, 168, 188, 213, 233, 242, 244, 288,
292, 302, 306, 310, 329

Hotspots, 310
Hourly, 286, 320, 340
Hours, 13, 15, 29, 219–221, 286, 288, 320,

335, 336, 339–341, 343
HP, 6
HPC. See High performance computing (HPC)
HPC as a service (HPCaaS), 256, 257
HPC environments, 28, 31, 128
HPE, 309
Hubs, 10
Humanoid, 18
Human-to-human, 12
HW, 62
Hybrid, 60, 92, 108, 122, 280, 305, 311, 323
Hybrid cloud, 5, 7, 280
Hypervisors, 65, 82, 108, 133, 302

I
IA, 80
IBM, 5, 13, 27, 60, 61, 66, 178, 257–259, 263
Ideal, 154, 229
Ideas, 3–5, 7, 61, 113–115, 120, 122, 128, 154,

214, 291, 319, 346, 350, 353, 354, 368,
373

Identification, 116, 139, 149, 240, 333
Identity, 60, 162
Idle, 43, 46, 83, 111, 212, 216–218, 292, 302,

340, 347, 350, 352, 355, 361–364
IEC, 260
Imax, 74
Immersive, 7
Impossibility, 104
Impossible, 257
Impractical, 38
Improbable, 346
Improper, 305, 312
Inaccurate, 160
Incapable, 232
Incentives, 242, 346
Inclusive, 367, 368
Inclusiveness, 367
Incompatibilities, 229
Incompatible, 230
Inconsistencies, 154, 271
Inconsistent, 159, 160
Incorrect, 160
Incremental, 7, 64, 107, 163
Increments, 313

Subject Index 393

Incubator, 22
Index(ing)/Indexes, 35, 38, 107, 177, 213, 217,

236, 355, 362, 369
Indifference, 346
Indispensable, 133
Inefficiency(ies), 262, 309, 346, 347
Inertia, 305, 316, 323
Infeasibility, 37
Influential, 14, 116
Infrastructure-as-a-Service (IaaS), 5, 6, 31,

50, 103, 145, 146, 239, 265, 277–279,
281–285, 302, 306, 311

clouds, 5, 6, 31, 50, 103, 107, 111, 145,
146, 231, 239, 265, 277–279, 281–285,
306, 311

Infrastructure configuration, 101, 102, 106
Ingests, 163
Ingredients, 272
Inlining, 70
Innovations, 7, 8, 11
Innovative, 3, 7, 167, 260
Instantiation, 21, 44, 116
Institute of Electrical & Electronics Engineers

(IEEE), 11, 12, 272
Insufficient, 144
Intel, 242, 309, 321, 371
Intelligence, 10, 13, 17, 264, 298, 316
Intelligent, 7, 10, 13, 166, 167, 268
Intelligently, 321
Intensification, 370
Interactive, 9, 20, 141, 154, 256, 261, 288
Interceptor, 144
Intercepts/Intercepted, 63, 65, 144, 315
Intercloud, 228, 230, 231, 238, 243, 251, 263
Intercommunication, 237–238
Interconnects, 11, 13, 18, 115, 164, 257, 310
Interface Tier, 136, 137
Interfered, 200
Intermediary, 148, 278, 282, 283
Intermittent, 222, 359
Internet of things (IoT), 5, 8–15, 306–309
Interoperability, 12, 175, 227–252, 280
Interoperable, 11, 228–231, 233, 237, 239,

240, 251, 263, 265
Intertwined, 13, 16
Intrinsic, 14, 69, 330, 332
Intrusive, 233, 358
Investigate/Investigated, 46, 160, 161, 167,

168, 174, 176, 235, 243, 250, 264, 340
Investment, 120
Invocations, 31, 202, 352
IOS, 9
Isomorphism, 181

J
Java, 59, 67, 86, 105, 175, 176, 178, 186, 188,

197, 234–237, 240, 245, 246, 370
Javascript, 236, 345, 346, 356, 369, 370
Javaspaces, 115
Java Virtual Machines (JVMs), 86
Jitter, 18
Job

arrival, 330, 331, 335, 336, 338, 341
descriptor, 213
submissions, 51, 219, 331, 333, 335–337,

341, 343
submitted, 220

Joules, 16
Joyent, 6
JSON, 135, 234, 236, 244, 245, 247–250, 370
Just-in-time (JIT) compiler, 60, 61, 67, 69–71,

73, 86
JXTA, 217, 218

K
Kernel, 21, 62–64, 68, 76, 78, 79, 91, 92, 144,

369, 370
Keys, 5, 6, 9, 12, 15, 19, 22, 30, 48, 50, 101,

129, 146, 160, 162, 176, 177, 184, 185,
201, 211–213, 217, 228, 236, 239, 240,
242, 256, 263, 269–271, 284, 286, 298,
302, 353

Knowledge discovery, 329–343
Kubernetes, 22, 91
KVM, 8, 65, 242

L
Labor, 140
Laboratory, 132, 133, 157
Lack(ing)/lacks, 121, 129, 174, 229, 278, 346
Lag, 314, 319
Laplacian, 184
Laptops, 176, 180, 185
Large-scale graph processing, 154, 162, 178
Latency(ies), 8, 9, 12, 14, 16–18, 75, 104, 133,

166, 199, 203, 244, 306–308, 311, 330,
332, 347, 353, 357, 371, 373–375

Laws, 89, 128
Layers/layered, 6, 14, 21, 76–80, 111, 145,

146, 165, 197–200, 218, 231, 237–239,
251, 255, 260, 268, 310, 311, 361

Leakage, 310
Leases/leased, 286, 287, 294, 296, 297
Legacy, 17, 20, 111, 164
Legal, 6

394 Subject Index

Leverages/leveraging, 7, 13, 14, 186, 187, 202,
269, 308, 321

Library(ies), 21, 48, 66, 87, 88, 108, 111–113,
122, 133, 134, 137, 138, 141, 148, 166,
167, 174–176, 178–180, 188, 202, 370

Licenses/licensing, 130, 131, 137–140, 149,
178

Lifecycle, 258, 264–266
Life sciences, 139, 155
Lifetimes, 70
Lightweight, 236, 269, 358
Limpware, 310
Linux, 21, 82, 91, 134, 142, 192, 242, 292
Loads/loaded, 12, 15, 18, 44, 49, 68, 70, 79,

87, 88, 105, 108, 114, 116–119, 177,
188, 191, 196, 199, 238, 240, 270, 271,
289, 292–294, 301–323, 331, 334, 338,
355, 373

Locality, 43, 106, 175, 334
Localization, 122, 285, 287, 298
Locks, 68, 83, 227, 357
Login, 198
Lognormal, 336, 337
Logs, 69, 132, 141, 144, 211, 214, 247, 292,

331, 334, 335, 343
Lookup, 73, 119
LTE, 8, 9, 11, 18

M
Machine monitor, 59, 60
Machine-to-machine (M2M), 9, 12, 18, 308,

309
Machine usage patterns, 334, 338, 339, 343
Macro-state(s), 216, 217
Magnitude, 74, 77, 154, 159, 345
Maintenance, 18, 216, 219, 277, 334, 359
Makespan, 33, 34, 291, 306
Malicious, 333
Manageability, 12, 301, 312
Manageable, 267, 268
Manage/managed, 6, 16, 21, 28, 31, 45, 46, 62,

64, 66, 70, 82, 88, 91, 92, 119, 135, 138,
139, 143, 145, 176, 186, 197, 200, 212,
214–217, 219, 222, 227, 229, 232, 233,
257, 259, 261, 262, 268, 280, 285–287,
298, 308, 311, 347, 351, 356, 365,
369

Management, 10–15, 19, 20, 22, 49, 50, 59–92,
106, 108, 112, 116, 119, 137, 141, 146,
149, 154, 157, 167, 173, 205, 214, 219,
227–251, 255, 257, 258, 260, 262–266,
270, 280, 281, 302–304, 309–312,

330–333, 335, 343, 346–354, 358–365,
369, 370

Management interface, 240, 241
Management portal, 232, 233, 235
Management system, 28, 63, 88, 91, 137, 141,

177, 263, 270, 333, 348–352
Manifest(s), 265
Manifestation, 257
Manipulating, 246
Manufacturing, 18
Manycore, 309
Manycore processors, 317, 321, 322
Map(ing), 63, 64, 74–78, 84, 102, 104, 115,

129, 183, 188, 211–214, 236, 261, 262,
264, 266, 286–288, 302, 306, 311, 366

Mapper(s), 213
MapReduce, 16, 30, 50, 102, 107, 108, 166,

187, 211–222
architecture, 212, 214–216
framework, 211, 212
model, 28, 212, 214, 222

Margin, 137, 181, 331
Market(s), 120, 155, 229, 231, 240, 241, 264,

278, 281, 284, 309
Markov, 84, 349, 350, 352
Markov models, 161, 349, 358
Markup, 235–236
Mass, 368, 370
Massive, 7, 15, 16, 127, 156, 195, 196, 298,

317, 329, 332
Massively, 175
Master(s), 108, 114, 116–122, 176, 185, 186,

188, 194, 212–220, 222
Match(ing), 102, 103, 186, 191, 235, 239, 256,

268, 333
Matchmaking, 266, 267
Matrices, 181, 184, 199, 368
Maturation, 20
Maxmem, 113
Measurable, 78
Measure(ing)/measured, 51, 89, 128, 132, 174,

182, 184, 251, 312, 315, 318, 329, 333,
358

Measurement(s), 77, 89, 132, 264, 267, 304,
348, 358, 359, 368

Mediation, 268
Mediator, 265
Medical, 156, 157
Medicine, 153, 165
Memory, 28, 32, 34, 37, 59, 61–67, 69–71,

78, 82, 84–90, 102, 104, 108, 110–112,
115, 133, 138, 142, 175, 177, 180, 181,
188, 196, 199, 234, 244, 262, 286, 290,

Subject Index 395

302–304, 309, 311, 315, 318–320, 322,
330, 331, 334, 340, 341, 346, 356,
363–365, 371–374

management, 61, 63, 64, 67–69, 88, 90, 92,
108, 167

manager, 68, 89
usage, 43, 44, 66, 84, 105, 106, 108, 305,

347, 348, 367, 368, 371, 374, 375
Message bus, 228, 232, 234, 237, 238, 240,

242–251
Message bus communication system, 237–240
MessagePack, 236, 245–247, 250
Message passing interface (MPI), 28, 107, 108,

118–120, 122, 175, 176, 178
Messages/messaging, 43, 44, 116, 117, 122,

176, 196, 217–219, 228, 230, 232, 234,
237–239, 246, 247, 250, 251, 266, 270,
308, 356, 370

Messaging infrastructure, 238, 239, 247
Metadata, 128, 132, 135, 139, 144, 146,

160–164, 188, 263
Metadata repository, 160, 163
MetaDB, 186
Meta-dimensional, 158, 159
Metaheuristics, 39, 40, 53, 312, 315, 321, 323
MetaInfo, 188
Metrics, 69, 74, 75, 80, 81, 83–85, 106, 116,

120, 122, 132, 180–182, 184, 199, 243,
244, 248, 249, 269, 278, 289, 294, 334,
346, 355, 356, 358, 365, 367, 375

Microeconomics, 70, 72, 89, 91
Microprocessors, 311
Microservices, 22
Microsoft, 5, 13, 20, 134, 263
Microsoft Azure, 6, 27, 39, 42, 53, 278
Middlewares, 60, 67, 112–120, 123, 212, 262,

263, 265
Migrate(ing)/migrated, 28, 104, 144, 256, 311
Migration(s), 49, 68, 104, 154, 227, 235, 240,

256, 261, 281, 304, 311, 315, 355
Mincut, 181
Mirror, 27–54
Misuse, 351
Mixed, 7, 131
Mixed reality, 20
Mixtures, 368, 370
Mobile, 5, 9, 10, 15–19, 214, 265, 306, 307,

356
Mobile computing, 306
Mobile devices, 8, 9, 307, 309, 356, 357, 359
Mobile-edge, 10
Mobile-edge computing (MEC), 8–10, 17, 18,

308
Mobile networks, 10, 17, 308

Mobility, 11, 12, 18, 19
Modeling/modeled, 14, 29, 31, 48, 53, 108,

114, 118, 180, 211, 214, 216, 288, 302,
303, 330, 334, 348, 353

Modeller, 366, 368, 370
Model predictive control (MPC), 304
Molecules, 155
Momentum, 256, 306
Money, 13
MongoDB, 143
Monitoring data, 228, 232, 233, 235, 238, 240,

241, 244–246, 250, 251, 267
Monitoring framework, 228, 233, 234, 240,

244, 251
Monitoring module, 44, 354
Monitoring phase, 75, 77, 78, 80, 81
Monitoring system, 105–107, 110
Monitoring techniques, 50, 228
Monitoring tools, 230, 232–235, 239
Monitor(ing)/monitored, 9, 11, 13, 14, 19, 31,

43, 44, 46, 48, 50, 51, 59–63, 66, 68–73,
75, 77–86, 88, 89, 91, 105–108, 112,
116, 132, 137, 138, 142, 144, 228–235,
238, 240, 243, 244, 247, 250, 251, 259,
260, 264–266, 269, 271, 305, 346, 348,
350

Moonshot, 309
mOSAIC, 265, 266
Movements, 22, 38, 164, 165
Move(s)/moved, 9, 134, 144, 154, 164, 165,

202, 256, 280, 316, 322, 355, 360
Movies, 141, 332
mp, 33
MPPA, 309
MQTT, 309
Multicast, 217, 218
Multicellular, 155
Multicores, 309, 352, 353
Multidimensional, 368
Multi-edge, 175, 177
Multimedia, 345
Multi-omics, 158
Multiple cloud providers, 50, 229
Multiple cloud resources, 229, 241, 242
Multiple clouds, 227, 228, 231, 237, 240, 251,

329
Multiple program multiple data (MPMD), 118
Multiprocessor, 355
Multisite, 51, 53, 54
Multistage, 158
Multitask, 65, 347, 360
Multitask Virtual Machine (MVM), 88
Multi-tenancy, 19, 20, 280
Multi-tenant, 5, 49, 61, 67, 68

396 Subject Index

Multi-threaded, 67, 77, 107, 175, 199, 321
Multiuser, 61
Music, 185, 304
Mutation, 305
MySQL, 177, 235
Mystery, 155

N
Naked, 371
Namespaces, 21, 61
Naming, 119
Narrow, 270
National Institute of Standards and Technology

(NIST), 263, 265, 281, 282
Native, 61, 62, 70, 87, 107, 176, 179, 185,

187–189, 191, 202
Nativity, 22
Natural, 101, 134, 164, 337
Nature, 65, 74, 160, 161, 228, 236, 239, 240,

251, 268, 288, 302, 310–312, 317, 322,
330–332, 338, 340, 343

Navigate, 371
Navigations, 371, 375
NCBI, 157
Nebula, 28
Negative(s), 29, 31, 284, 294, 334
Negatively, 43
Negotiated, 329
Negotiates, 265, 279
Negotiating, 227
Negotiation, 265–268
Neighbor(s), 183, 196–198, 201
Neighborhood(s), 38, 59
Neighbour, 353
Neighbourhood(s), 316, 333
Neo4j, 146, 177, 185, 187, 192, 193
Neo4jclient, 198
Nested, 85, 235
Net, 268
Netsuite, 5
Netty, 370
Network(s), 3, 6–10, 12, 14–23, 43, 51, 52,

61, 65, 82, 87, 88, 102, 105, 116, 120,
133, 138, 139, 145, 158, 159, 161, 174,
181, 182, 185, 195, 196, 201, 212, 214,
216–220, 247, 261, 264, 267, 271, 287,
294, 297, 298, 302, 304, 307–309, 311,
312, 318, 333, 345, 359, 366–368, 371,
376

Network address translation (NAT), 308
Network analysis, 174, 175, 179, 182
Networked, 3–23

Network functions virtualization (NFV), 17,
19–21, 308

Networking, 11, 19, 22, 195, 201, 292, 295,
296, 308

Network operators, 7, 19, 20
Network overhead, 247
Network slicing, 21
Networks of everything (NOE), 3, 23
Network technologies, 261, 308
Neural, 158, 264
Neutrality, 234
Next-generation sequence (NGS), 155
NFS, 115
NFV. See Network functions virtualization

(NFV)
NGS. See Next-generation sequence (NGS)
NIST. See National Institute of Standards and

Technology (NIST)
Noise, 305, 333, 334, 359
Nokia, 10
Nonattributed, 181
Nonelastic, 113, 114, 119, 121
Nonstationary, 304, 314
Normalization, 74
Normalize, 183
Normalized, 39, 74
NoSQL, 135, 164, 166
Notation(s), 33, 35, 236
Notification(s), 116, 218, 230, 238
Notify, 115, 238
Novel, 11, 12, 91, 111, 113, 114, 203, 228, 267
Nucleotide(s), 155, 158
NUMA, 66
NVF, 19, 308

O
Oasis, 309
Objective(s), 12, 31, 32, 34, 36, 39, 53, 121,

140, 143, 176, 194, 232, 234, 239, 259,
260, 262, 264, 267, 278, 286–288, 294,
315–318, 354, 366

Observable, 78
Observation(s), 60, 64, 65, 87, 116, 132, 232,

313, 334–336, 348, 349, 351, 353, 368
Observer, 144, 348, 351, 361
Observer-Controller-Adapter (OCA), 361
OCA. See Observer-Controller-Adapter (OCA)
OCCI. See Open cloud Computing Interface

(OCCI)
Occupants, 359
Oculus, 20
Offline, 90, 173, 279, 285, 290–291, 294, 337

Subject Index 397

Offload, 20
Offloading, 9, 18, 346
OGSA. See Open Grid Service Architecture

(OGSA)
OLTP, 177
OneDrive, 135
Ontology(ies), 160, 185, 266
Open cloud Computing Interface (OCCI), 229
Opencontainers, 23
OpenFlow, 19, 21
Open Grid Service Architecture (OGSA), 268
OpenMP, 108, 109, 111, 178
OpenMR, 108
Open networking, 19
Open source, 21, 22, 82, 175, 178, 239, 265,

270
OpenStack, 6, 229, 242
OpenStreetMap, 14
Operating system (OS), 8, 9, 12, 21, 22, 61–65,

68–70, 75–78, 80, 83–85, 87, 89, 91,
111, 134, 140, 142, 143, 145, 242, 255,
262, 330, 334, 346, 348, 359, 365, 369,
371

Operational, 13, 19, 59, 131, 133, 134, 138,
188, 258

Operations, 9, 11, 12, 14, 18, 19, 59, 63, 65,
66, 70, 81, 83, 84, 86, 88, 110, 122,
142, 165, 177, 179–181, 183, 195–201,
212, 214, 219, 231, 258, 280, 284, 316,
329, 346, 356, 358, 359

Operative, 79
Opportune, 165
Opteron, 292
Optimal, 32, 39, 42, 50, 107, 269, 306, 312,

315, 316, 319, 352–355
Optimality, 39, 351, 354
Optimally, 69
Optimization(s), 10, 28, 39, 48–50, 60, 61,

68, 70, 77, 79, 86, 246, 261, 264, 269,
277–279, 291, 294, 297, 302–304, 306,
308, 315, 316, 347, 352, 354

Optimize(s), 13, 50, 51, 53, 120, 140, 186, 195,
265, 267, 304, 305, 308, 311, 315–317,
354

Optimized, 51, 69, 70, 166, 200, 267, 287
Optimizing, 28, 32, 49, 50, 195, 277–298, 302,

306, 308, 323, 359
Optimum, 37, 38, 305, 330, 331, 340, 343
Oracle, 5, 230
Orange, 282
Orchestrate(s), 132, 143, 144, 269, 370
Orchestrated, 329
Orchestrating, 269
Orchestration, 20, 21, 269, 271

Orchestrator, 10
Organisms, 155
Organization(s), 6, 22, 128, 129, 133, 157, 279,

280
Organizational, 160
OrientDB, 198
OrientDBClient, 198
OS. See Operating system (OS)
Oscillation(s), 108, 312
Oscillatory, 89, 333
Outage(s), 15, 59
Outcome(s), 364, 365
Outperform(s), 163, 193, 251, 296, 305, 318,

321, 322
Outperformed, 320
Outperforming, 295, 304
Outsource(s), 229, 230, 235, 243
Outsourced, 4, 284
Outsourcing, 229, 238, 243
Overbooking, 83–85
Overcommit, 69, 340
Overcommitted, 340
Overestimate, 31
Overestimated, 46
Overestimating, 284
Overhead(s), 46, 65, 70, 87, 89, 113, 115, 164,

194, 247, 250, 351, 352, 355, 356, 362
Overlay, 9, 261
Overloaded, 298
Override, 119
Overriding, 119
Oversee, 346
Overused, 71, 82
Ownership(s), 280, 333

P
Packet(s), 19, 88, 247, 311
Packing, 302
Page faults, 67, 70, 78, 83–89
Pagerank, 181
Pairwise, 184
Panacea, 260
Panoply, 78
Panorama, 122
Paradigm(s), 4, 7, 11, 19, 102, 107, 111, 135,

145, 163, 177, 262, 270, 277, 281, 303,
306–308, 323

Parallelism, 44, 117, 175, 176, 178, 309, 322,
331, 333

Parallelized, 28, 46
Pareto, 278
Parsed, 186
Parser, 179

398 Subject Index

Parses, 232, 234
Parsing, 188
Particle(s), 303, 305, 306, 310, 315, 316
Particle swarm optimization (PSO), 303, 305,

306, 312, 313, 315–318, 321–323
Parties, 4, 101, 280
Partition, 19, 213
Partitioned, 59, 173, 176, 185, 186, 188
Partitioned global address space, 173
Partitioner, 185, 188, 195
Partitioning, 167, 168, 181, 185, 187, 188
Partitions, 176, 184, 188, 213
Password, 240
Patching, 83, 85
Patient(s), 156, 157, 160
Pattern, 51, 79, 84, 89, 104–106, 108, 120,

166, 176, 186, 190, 191, 269, 302–304,
312, 313, 315, 320, 322, 330–336, 338,
339, 343, 352, 358, 367

Pauseless, 64
Pay, 4, 26, 29, 32, 102, 106, 120, 286
Payed, 71
Paying, 4, 302
Payment, 6
PBS, 28, 101
PBX, 10
PDIFF, 146, 148
Peaks, 13, 240, 277, 280, 302, 335
Peer(s), xii, xiv, 48, 74, 201, 212, 214, 217, 269
Peer-to-peer (P2P), 219–222

cloud, xiv, 212, 214, 217
computing, 212
mapreduce, xiv, 212, 214–221
-mapreduce, 212, 214, 215, 217–222

Pegasus, 31
Penalization, 291
Penalizes, 37
Penalizing, 115, 121
Penalty(ies), 37, 90, 105, 350, 353
Perform(s), 7, 15, 63, 71, 86, 88, 105, 111, 133,

134, 136, 138, 140, 143, 214, 216, 222,
247, 250, 277, 304, 313, 318, 346–351,
355, 357

Performance
constraints, 351, 354, 360
counters, 361, 366, 367
evaluation, 50, 201–202, 228
management, 304
metrics, 84, 106, 199
models, 106, 264

Performed, 37, 49, 51, 109, 132, 167, 212, 214,
250, 279, 284, 292, 305, 321, 340, 352

Performing, 105, 116, 154, 214, 229, 294, 318,
321, 350, 352, 359

Periodic, 11, 83, 352, 371
Periodical, 117, 332, 334, 335, 343
Periodically, 44, 69, 82, 116, 235, 271
Periodicity, 331, 333
Periods, 32–35, 37, 42, 45–47, 89, 122, 165,

278, 283, 284, 304, 314, 318, 331,
334, 338–340, 343, 352, 353, 371, 373,
375

Peripheral, 353, 354
Permanent, 338
Permission, 116, 358
Permits, 22, 138, 161, 255
Permitted, 138
Persist(s), 120, 177, 235
Persisted, 179
Persistence, 133, 315, 334
Persistent, 10, 286
Personalized, 10, 153, 157, 160, 165
Personalizing, 281
Pervasiveness, 8
Petabytes, 15, 127, 159
Pharmacogenomics, 157
Pharmacy, 157
Phenomenon, 88, 132, 195, 345
Phenotype, 158, 159
Phenotypic, 158
Php, 105, 248
Physicists, 101
Physics, 31
Ping, 235
Pipe(s), 217, 218
Pipeline(s), 9, 28, 121
Placement, 105, 106
Plane, 10, 19, 21, 34, 311
Planet, 34
Planned, 181
Planner, 176
Planning, 13, 47, 133, 164, 165, 264, 278, 280,

285–288, 291, 358
Plans, 32, 165, 203, 259, 260, 265, 268, 270,

284
Platform, 5, 6, 9, 10, 12, 13, 39, 69, 91, 104,

108, 114, 129, 137, 138, 146, 153–157,
159, 166–168, 176, 196, 211, 227–235,
237–241, 251, 255, 260–263, 265, 278,
281, 298, 301, 306, 308, 309, 334, 345,
347, 352

Platform-as-a-Service (PaaS), 5, 6, 21, 103,
113, 114, 119, 121, 255, 261, 263, 265,
278, 284, 306

Playstation, 20
Plethora, 4, 122, 227
Pointer(s), 64, 167
Poisson, 219, 286, 292

Subject Index 399

Policy(ies), 10, 11, 21, 51, 60, 64, 67, 68, 71,
85, 86, 88, 122, 128, 131, 139, 215, 259,
270, 271, 283, 292, 302, 304, 311–313,
318, 321–323, 346–355, 360–364,
374–376

Polymorphism, 119, 158
Pool(ing), 17, 18, 102, 107, 262, 269, 302, 309,

321
Pooled, 17
Poor, 15, 44, 45, 53, 66, 69, 302
Poorly, 69
Population(s), 13, 74, 315, 316, 322, 368
Port, 8, 119, 120
Portability, 22, 60, 63, 143, 236, 357, 360
Portable, 71, 143, 357
Portal, 232, 233, 235
Portfolio, 51, 278, 281, 282
Ports, 8, 118–10
Posterior, 133
Postgresql, 370
Postpone, 364–366
Postponed, 364, 365
Postulate, 335, 341
Postulated, 335, 341
Power, 4, 8, 12–16, 19, 28–30, 33, 34, 37, 53,

104, 146, 177, 198, 201, 214, 227, 231,
262, 268, 277, 281, 301, 302

Powermodel, 354
Practice(s), 14, 64, 72, 80, 271, 348, 352
Precise, 18, 108, 298
Predict(s), 14, 21, 30, 51, 84, 90, 160, 167,

298, 302–305, 319, 323, 367, 369
Predictability, 331–334
Predictable, 102, 106
Predicted, 12, 106, 303, 304, 313, 321
Predicting, 14, 261, 302, 304, 313, 319, 334
Prediction(s), xv, 49, 59, 84, 105, 108, 113,

116, 122, 266, 267, 303, 304, 312–314,
318–320, 323, 334, 343

Predictive, xv, 83, 84, 269, 303–305, 312, 333,
334

Predictor(s), 106, 303, 323
Predominant, 336, 339, 356
Predominantly, 336, 339
Preempted, 83
Preemption, 65
Preemptive, 63
Premature, 105, 108, 116
Premises, 19, 306
Prerequisites, 21
Preserved, 128, 135, 198
Preserves, 146, 201, 357
Preserving, 145, 177, 353, 359, 375

Price(s), 50, 51, 89, 107, 227, 278, 283, 284,
286, 292, 296, 298, 355

Priced, xi, 50, 51, 89, 278, 283–285, 292, 296,
298, 355

Pricing, x, 14, 278, 280–286, 292, 298
Primary masters, 214–216, 218
Principle(s), 21, 60, 92, 128, 214, 255–271
Principles of cloud computing, 257
Priority(ies), 29, 63, 165, 220, 291, 311, 354,

355, 363–366, 370–372
Privacy, 11, 231, 262, 278, 282, 357–360
Private, 5, 6, 52–54, 115, 120, 131, 280, 281,

318, 360, 364, 367
Private cloud, 5, 6, 115, 120, 280, 281, 318
Proactive, 105, 106, 109, 122, 260, 261, 302,

304, 311–313, 323, 343
Proactive elasticity, 105, 122
Probabilistic, 159
Probability, 195, 196, 201, 316, 349, 352, 362
Problematic, 298, 351
Procedure(s), 36–38, 44, 51, 102, 106, 112,

113, 116, 117, 121, 128, 215, 256, 270,
271

Processing techniques, 18, 72, 84, 163
Processor(s), 28, 61, 103, 122, 133, 175, 185,

186, 188–192, 282, 292, 306, 309–311,
317, 321, 322, 355, 364, 365

Producer(s), 231, 238–239, 247
Producing, 51, 153
Product(s), 127, 128, 132, 133, 141, 281, 303
Production, 49, 127, 128, 132, 138, 145, 256,

257, 271, 272
Productive, 127
Productivity, 147, 175, 176, 178
Professional, xii
Profile(s), 51, 90, 114, 261, 331–334, 338,

355
Profiling, 60, 68, 69, 194
Profit(s), 231, 277–299, 306
Profitable, 281, 286, 294–297
ProfitBricks, 104
Programmability, vii
Programmable, 11, 19, 105, 109, 261, 308, 309
Programmed, 349
Programmers, 111, 112, 121, 175, 178, 179
Programming, 19, 21, 30, 50, 59, 69, 72, 79,

83, 105, 107, 109–111, 118, 121–123,
134, 162, 163, 173, 175, 176, 178, 186,
211, 236, 237, 245, 246, 306

Programming languages, 59, 134, 173, 178,
186, 236, 237, 245, 246

Programming models, 50, 111, 121, 122, 173,
178, 211, 306

400 Subject Index

Programs, 28, 31, 44, 49, 61, 63, 64, 70, 77,
86–88, 90, 92, 107, 108, 111, 118, 119,
127–129, 132, 134, 140, 142–144, 156,
175, 178, 179, 270

Prohibitive, 113
Proliferation, 5
Prominence, 235
Prominent, 30, 185, 371
Promising, 11, 14, 48, 98, 123, 159, 160, 164,

240, 312, 352
Prone, 29
Property graph model, 161–163
Proprietary, 229, 230, 237, 240, 280, 308, 311
Prosumers, 13
Protect, 261
Protected, 360
Protection, 11, 231, 271, 359
Protein, 28, 161
Protocol, 12, 28, 48, 176, 200, 217, 237, 239,

244, 246–250, 268, 269, 308, 309, 359,
370

Protocol buffers, 237, 244, 246–250
Prototype, 217, 219, 222, 239
Prototypical, 361
Provenance, 30, 31, 44, 128, 132, 135, 137,

139, 140, 143, 144, 146, 148
Provider, 3, 5–7, 10, 19, 27, 29, 31–36, 39,

43, 50, 53, 91, 103–107, 120–122, 134,
135, 141, 145, 146, 211, 227, 229–231,
238, 242, 243, 262, 264–266, 268, 278,
279, 281–288, 292, 296, 302, 306, 308,
311, 312, 318, 329–331, 333, 340, 341,
343, 350, 352, 357

Provision(s), 50, 51, 154, 229, 240, 263, 266,
270, 308, 341, 343, 359

Provisioned, 6, 231, 265, 269, 270, 302
Provisioner, 51
Provisioning, 9–12, 48, 50, 104, 106, 111, 227,

228, 230, 231, 238, 241, 260, 262, 263,
265, 268, 277, 283, 304, 305, 309, 330,
343

Proximity, 8
Proxy, 75
Pso algorithm, 305, 306, 318, 321
Pthreads, 178
Ptrace, 142
Public, 4, 6, 11, 14, 52–54, 103, 107, 120, 122,

131, 139, 280–283, 292, 302, 311, 312,
358

Public cloud, 6, 53, 107, 122, 280, 282, 311,
312

Puppet, 270
Purchase, 107
Purchasing, 277

Pure, 186, 197, 311, 313
Purge, 271
Python, 142, 174, 236, 237, 245, 246

Q
Quadratic, 83
Qualitative, 60, 71
Quality(ies), 7, 13, 23, 37, 39, 43, 50, 68, 128,

132, 229, 233–235, 240, 261, 263, 268,
269, 278, 279, 302, 305, 306, 308, 315,
317, 323, 329, 340, 347, 353, 376

Quantification, 339
Quantify(ies), 266, 343, 359, 376
Quantifying, 14, 334, 343
Quantitative, 60, 71, 74–76, 78, 81, 82, 85
Quantities, 80, 317, 357
Quantum, 34, 35, 46
Query(ies), 28, 48, 144, 160, 167, 173, 174,

176, 177, 185, 186, 188–195, 198, 200,
217, 235

Querying, 31, 48, 154, 199, 218, 370
Query processing, 173, 174, 177, 190, 191
Queue(s), 51, 65, 68, 83, 84, 107, 108, 220,

238, 239, 253, 256, 289–291, 294, 296,
304, 310, 313, 321, 350, 352, 354, 355

Queued, 289, 290
Queueing, 304
Queuing, 108, 239, 303, 304, 308
Quorum, 270
Quota, 71

R
RabbitMQ, 239
Rack(s), 302, 309
Rackspace, 6, 27, 104, 278
Radio, 10, 17–19, 21, 308
Radio access networks (RAN), 10, 17, 21, 308
Rail(s), 9, 234
RAN. See Radio access networks (RAN)
Random, 37, 175, 187, 199, 201, 302, 314,

316, 322, 333, 335, 338, 340, 349, 368,
371, 374, 375

Randomized, 36–37
Rare, 201, 335, 339
Rate(s), 16, 17, 82, 84, 88, 196, 212, 219, 220,

269, 278, 284, 286, 288, 304, 305, 338,
345, 356, 364, 370–372

Rating, 355
Razer, 20
RCT taxonomy, 73–82
RDF. See Resource Description Framework

(RDF)

Subject Index 401

React(s), 60, 108, 271
Reaction(s), 227, 264
Reactive, 105, 106, 108, 113, 114, 122, 305,

312
Reactive elasticity, 105, 113, 114, 122
Reactiveness, 121
Readable, 167, 236, 244, 245
Reallocation, 341
Realm, 7
Real time, 9, 14–16, 18, 197, 231, 256, 269,

302, 306, 320, 323, 352–354, 357
Rebalance, 165
Recipe(s), 270
Recompilation, 70
Reconfigurable, 301
Reconfiguration(s), 111, 113, 115, 116, 119,

260, 261
Reconfigure, 67
Recovering, 141, 261
Recovery, 15, 141, 143, 212, 214–217, 222,

261
Recreate, 132
Recreated, 146
Redeploy, 133, 141
Redimensioning, 43, 44
Redistribute, 107, 355
Redistributing, 44
Reduced, 19, 43, 88, 147, 163, 260, 261, 263,

302, 315, 316, 351
Reducer, 213
Reducing, 50, 59, 64, 70, 91, 164, 167, 302,

303, 317, 321, 333, 334, 347, 351, 371
Reduction(s), 53, 64, 102, 242, 292, 310, 346,

347, 351, 354, 361, 371, 375, 376
Redundancy, 35, 232
Redundant, 15, 64, 236, 244
Reestablishment, 120
Region(s), 28, 34, 35, 120
Registered, 88, 133, 139
Registering, 133
Registers, 20, 129, 135, 137, 139, 140, 142,

145, 147
Registration, 87, 137
Registries, 156
Regulate(s), 61, 66–68, 82, 84
Regulated, 66, 82
Regulation, 65
Regulatory, 13, 123
Reinforcements, 72, 90, 349, 353
Relation(s), 14, 66, 77, 114, 257, 258, 260,

345, 349
Relational, 135, 159, 162, 164, 166
Relationships, 20, 83, 114, 144, 159–162, 164,

165, 185, 188, 196, 199, 239, 265, 333

Relaunching, 107
Reliability, 12, 13, 18, 35, 43, 53, 54, 132, 135,

215, 280, 282, 303, 309, 310, 318, 330
Reliable, 12, 15, 212, 222, 294, 301, 306
Reliably, 294, 295
Reliance, 269
Relie(s), 22, 69, 270, 284, 287, 305, 345, 359
Relieve, 231
Relinquish, 66
Relinquished, 64
Reloaded, 371
Reloading, 186
Rely, 18, 28, 62, 63, 65, 107
Relying, 18, 285
Remote, 7, 9, 12, 15, 17, 20, 153, 200, 218,

262, 270, 357, 358, 360
Remotely, 7, 357, 358
Remote radio head (RRH), 17, 18
Rendezvou(s), 217
Renegotiation, 265
Renewable(s), 13, 14
Rent(s), 35, 104, 229, 235, 278, 284–286
Rented, 104, 240, 289–291
Renting, 229, 283–286, 292, 298
Reorganizations, 113, 118, 119, 122
Reorganizing, 117
Repeatability, 199
Repeatable, 331
Repeated, 237, 261, 333
Repeating, 302, 332
Replacement, 267
Replacing, 187
Replica(s), 108, 114, 131, 145, 215, 271
Replicable, 131, 140
Replicate(s), 161, 219, 270
Replicated, 37–38, 133, 161
Replicating, 303
Replication, 67, 116, 128, 146, 160, 161, 185,

222
Repository(ies), 44, 139, 157, 160, 163, 211
Representation(s), 70, 160, 164, 167, 175, 180,

181, 227, 231, 235, 236, 319, 367
Reproduced, 128, 131, 137, 146
Reproduces, 128, 129, 131, 133, 135, 140–143,

146, 219
Reproducibility, 31, 127–149
Reproducible, 127–133, 136–147, 149
Reproducible science, 129–132, 137, 139–147
Reproducing, 129, 131, 132, 135, 140, 141,

147
Reproduction, 128, 130, 131, 134, 137, 140,

143–147, 149
Reproductive, 145
Reprozip, 140, 143, 148

402 Subject Index

Reputation, 281, 284
Requirement(s)), 3–4, 9–12, 15–23, 29, 30, 32,

34, 37, 38, 51, 63, 85, 104, 106, 120,
123, 129, 134–136, 139, 157, 159, 162,
163, 165, 176, 196–199, 227, 229, 231,
237, 238, 242, 258, 260, 261, 264–266,
268, 280, 282, 287, 302, 306, 330, 332,
333, 340, 341, 345, 367, 373

Rerouted, 271
Rerun, 131
Rescheduled, 330, 338
Reservable, 88
Reservation, 71, 80, 102, 264, 268
Reserve, 283
Reserved, 76, 87, 128, 135, 198, 283–287,

289–294, 298
Resident, 59, 87–89
Residual, 314
Resilience, 20
Resize(ing), 67, 87, 89, 114
Resource-as-a-Service (RaaS), 104
Resource availability, 179
Resource Description Framework (RDF),

176–178, 185–189, 192, 195
data, 176, 177, 188
engine, 176, 188
graphs, 176, 177, 185, 186, 188, 189, 192

Resource management, 22, 59–92, 231, 257,
264–266, 322–323, 346

Resource provisioning, 227, 260, 263, 330,
343

Resources allocation, 111
Resource scaling, 84, 312
Resource status, 241, 243, 244
Resource usage, 60, 71, 79, 84, 86, 87, 108,

138, 244, 269, 285, 302, 305, 330, 333,
346, 347, 356, 361–364, 367, 368,
370–373, 375

Resource utilisation, 116, 229, 232, 234, 240,
302, 305, 312, 331, 333

Resource utilisation profiles, 331, 333
Responsive, 77, 78, 80, 85, 346
Responsiveness, 60, 73, 75, 77–82, 85, 91
REST, 200, 308–309
Restarting, 107
RESTful, 234
Restoration, 267
Restore, 271
Restrain, 340
Restriction(s), 6, 39, 118, 131, 138, 369, 374
Restrictive, 290, 291
Resubmissions, 336, 340, 341
Resubmitted, 330, 336
Retrievable, 167

Retrieval, 133, 137–139, 144, 153, 162, 164,
166, 211, 214, 332

Retrieval engine, 137–139
Retrieve(s), 138, 141, 370
Retrieved, 88, 154, 370
Retrieving, 154
Revenue(s), 264, 278, 283, 284, 286, 287
Richness, 367
Right(s), 29, 30, 121, 132, 149, 288, 289, 348
Rightscale, 7
Rigor, 128
Rigorous, 318
RISC, 177
Risk(s), 123, 167, 262
Roadmap, 263
Robot(s), 3, 4, 7, 10, 18
Robotics, 18
Robust, 15, 131, 158, 159, 180, 228, 258, 301,

302, 323
Robustness, 137, 258
Role(s), 3, 4, 14, 16, 23, 64–66, 120, 122, 128,

129, 139, 147, 178, 214, 216, 217, 257,
280, 302, 318, 361

Root(s), 64, 235, 315, 318
Rooted, 177
Root mean squared error (RMSE), 318, 320
Routed, 239, 271
Router(s), 217, 261, 308
Routes, 239
Routines, 108
Routing, 15, 239, 270, 311, 345
Ruby, 105, 234, 245
Runtime(s), 22, 50, 54, 59, 60, 64–71, 84, 86,

88, 91, 92, 106, 108, 111, 138, 176,
199, 204, 269, 270, 333, 346, 349, 351,
352, 357, 358

Runtime environment, 111

S
S3, 135, 271
SaaS. See Software-as-a-Service (SaaS)
Safely, 14, 86, 271
Safety, 20, 123, 267
SalesForce, 5
Saltstack, 270
Sample(s), 72, 79, 155, 244, 292, 315, 321,

334–335, 340, 341, 359, 368
Sampled, 334, 335
Sampling, 14, 69, 654
Samsung, 20
Sandboxing, 369
SARIMA model, 304, 314, 315, 319, 320
Satellite, 15

Subject Index 403

Satisfaction, 229, 303, 355
Satisfy(ing), 15, 34, 51, 198, 266, 269, 282,

285–287, 290, 291, 304, 329
Save(s), 7, 16, 49, 346, 347, 355
Saved, 246
Saving(s), 12, 49, 50, 53, 59, 67, 262, 303, 310
SCADA, 14
Scalability, 12, 14, 15, 19, 20, 64, 74, 135, 154,

159–161, 163, 168, 173, 176, 182, 185,
194, 203, 233, 235, 251, 256, 258, 280,
298, 302, 308, 309, 357, 360, 366

Scalable, 4, 15, 19, 154, 160, 162, 166, 167,
176, 177, 185, 188, 196, 227, 233, 269

analytics, 163, 166, 168
infrastructures, 12, 15, 16

SCALAPACK, 179, 185
Scalar, 313
Scale(s), 14, 31, 50, 51, 75, 77, 102, 105, 107,

108, 154, 160, 162–166, 177–180, 194,
227, 229, 260, 262, 263, 270, 302, 305,
343, 357

Scaled, 314
Scaling, 15, 49, 84, 106, 115, 121, 159, 174,

203, 229, 269, 270, 280, 289, 301, 305,
312, 351

Scan(s), 157, 196, 198
Scarce, 70
Scattered, 183
Schedule(s), 49, 63, 235, 279, 286, 290,

294–297, 303, 305, 310, 312, 321, 340,
352, 353, 355

Scheduled, 43, 165, 290, 329, 330, 353, 354
Scheduler(s), 28, 51, 63, 68, 83, 214, 293–298,

313, 318, 321, 322, 329, 338, 340, 341,
354, 364, 365

Scheduling, 22, 43, 51, 59, 60, 63, 65, 67,
68, 72, 91, 101, 102, 106, 166, 240,
268, 279, 285, 287–291, 293–297, 302,
304–306, 310, 311, 315–318, 322, 330,
332, 333, 338, 339, 341, 343, 347,
354–355, 360, 364

Schema, 6, 84, 142, 159, 161, 162, 217,
244–246, 250, 282–285, 289, 290, 298,
347, 354, 356, 367, 371, 375

Sciences, 07, 28, 30, 31, 101, 127–132,
134–147, 153, 155, 157, 268

Scientific applications, 27–31, 51, 54,
101–123, 142, 143, 147, 304

Scientific workflows, 28, 29, 31, 42, 49–51, 53,
54, 134, 146

Scientist(s), 28, 29, 31, 32, 54, 101, 127, 128,
130, 133, 134, 138, 143, 144, 146, 147,
154, 155, 178

Scionti, alberto, 301–323

Scratch, 60
Script(s), 28, 133, 134, 138, 141, 143, 148,

200, 371
Scripted, 370
SDK, 10
SDN. See Software-defined networking (SDN)
Seamless, 12, 20, 231, 234, 237, 251
Seamlessly, 9, 234, 243
Search(es), 21, 36–38, 48, 136, 137, 158, 159,

177, 185, 197, 268, 282, 291, 301, 305,
315, 316, 321, 332

Searched, 167, 354
Searching, 64, 167, 323
Seasonal, 303, 304, 313–315, 319, 320
Seasonality, 313, 314, 319
Secondary, 64, 133, 196
Sector(s), 11, 23, 214, 239
Secure, 7, 9, 262
Security, 6, 11, 13, 18, 19, 22, 135, 137, 255,

256, 261–263, 278, 280–282
Seed, 22, 199, 201
Seek, 23, 115, 227
Seeking, 23, 229
Segmented, 341
Segmenting, 92, 340
Segments, 166, 335, 340
Self-*, 255–272
Self configuration, 257, 261, 264, 267
Selfish, 89
Self manageable, 267, 268
Self-management, 257, 258, 262, 264
Self optimization, 67, 257, 269
Self-organization, 257, 262
Self organizing, 267
Self service, 258, 262
Semantic(s), 14, 68, 119, 160–162, 266
Semantic web, 177, 185
Seminal, 347
Sensing, 11, 12
Sensitive, 91, 280, 310, 332
Sensitivity, 332
Sensor(s), 14, 15, 18, 66, 70, 71, 74–81, 85,

91, 132, 308, 359
Separation, 162, 233
Sequence(s), 28, 29, 38, 106, 155, 156, 167,

187, 199, 349, 352, 370
Sequenced, 153, 155
Sequencing, 153, 155, 156
Sequential, 199
Sequentially, 119, 362, 371
Serial, 90
Serialisation, 236, 237, 247, 250
Serialisation compactness, 246–251
Serialise, 251

404 Subject Index

Serialised, 188, 236, 247, 250, 251
Serialising, 234, 235, 237, 238, 243, 246, 247,

250
Serialising data, 227, 235
Serially, 313
Serious, 18, 156
Serve(s), 28, 133, 161, 242, 258, 271, 311,

350, 370
Served, 284
Server(s)

consolidation, 302, 315
resources, 51, 304, 317, 329, 330, 332, 338,

343
utilisation, 49, 302, 303

Service(s)
discovery, 269
model, 5–7, 31, 298, 302, 306
monitor framework, 232–235, 240
monitoring, 228, 231–235
provider, 5, 19, 265, 268, 279, 312, 318,

350, 352
provisioning, 11, 12, 228, 230, 238, 241
requester, 350

Service level agreements (SLA), 11, 19, 105,
115, 260, 263–268, 278, 281, 285–287,
329, 334, 354, 355

Service level objectives (SLOs), 264
Serving, 12, 256, 362
Session(s), 141, 186, 197, 199, 305, 331, 356
Setup, 120, 146, 242–243, 250, 321
Severe, 43
S3fs, 42
Shadow, 64
Shared memory, 173, 175, 178, 214
Shopping, 15
Shortcomings, 246
Signal, 18, 65, 68, 72, 77–79, 84, 310
Signaling, 19
Signalling, 16
Signature, 84
Silicon, 310
Simple Workflow Service (SWF), 107
Simulate, 219, 256
Simulated, 371
Simulating, 134, 271, 359
Simulation(s), 13, 15, 29, 39, 49–53, 101, 123,

127, 132, 211, 214, 219–222, 256
Simulator, 51, 219
Size(s), 31, 35, 50, 61, 64, 66, 70, 79, 80,

85–90, 104, 108, 139, 145, 153, 156,
159, 165, 167, 179, 188, 192, 194, 195,
202, 219, 236, 242, 244, 247–251, 264,
267, 279, 286, 293, 294, 296–298, 321,
356

Sized, 302
Sizing, 89
Skewed, 336, 339
Skewness, 51, 52, 337, 339
Skynet, 214
Skytap, 7
SLA. See Service level agreements (SLA)
Slack, 353
Slashdot, 311
Slave(s), 108, 115–119, 121, 214–220
Slave process(es), 115, 116, 118, 119, 121
SLA violations, 264, 334
Sleep, 68, 82, 83, 306, 351–354, 365
Slice(s), 21, 346, 354
Slicing, 21
SLOs. See Service level objectives (SLOs)
Slow, 256
Slower, 196, 355
SMA, 319
Smalltalk, 61
Smart, 8, 9, 12, 15
Smart city(ies), 9–15
Smarter, 13, 356
Smart grid(s), 9–15
Smartphones, 10
Smoothing, 314
SMP, 175
Snapshot(s), 143, 145, 271
Snippet, 183–185
Social, 7, 13, 15, 140, 161, 175, 176, 182, 185,

195, 196, 201, 309, 316, 345, 371
Society, 3–23
Socket(s), 88, 119, 176
Software-as-a-Service (SaaS), 5, 122, 255,

258, 278, 284, 306, 345, 359
Software-defined networking (SDN), 17, 19,

21, 308
Software system(s), 66, 176, 195, 234, 356
Solaris, 21
Sold, 104
Sony, 20
Sophisticated, 5, 61, 240, 281, 282
Sophistication, 5
Sort(s), 214, 291, 349, 355
Sorted, 48
Sorting, 49
Sourceforge, 102
Space(s), 20, 61, 64, 65, 75, 80, 82, 102, 115,

145, 158, 182, 184, 236, 239, 281, 286,
304, 315, 316, 321–323, 330, 333, 340,
349, 350, 368

Spanning, 174, 335
Spans, 12
Spantree, 181

Subject Index 405

Spark, 16, 27, 370
SPARQL, 186, 188, 190, 192

executor, 186, 190
query(ies), 177, 185, 186, 188–192

Sparse, 18, 30, 162, 181
Spatial, 331, 334
Spawn, 256
SP2Bench, 177
Specialist, 7
Specialized, 135, 138, 261, 308, 309, 366
Specification(s), 9, 63, 177, 200, 266
Specified, 89, 162, 188, 199, 200, 213, 217,

239, 257, 262, 332, 353, 366
Specify(ies), 21, 87, 211, 213, 232, 242, 268,

286
Specifying, 175, 176, 237, 313
Spectral, 17, 30
Spectral clustering, 184–185
Spectrum, 23, 159, 160, 176, 306
Speech, 9
Speed(s), 15, 43, 166, 194, 286, 301, 305, 310,

321–323, 346
Speedup(s), 28, 194
Spending, 69
Spent, 18, 28, 70, 77, 83, 88, 220
Sphere, 214
Spike, 335
Spin, 83
Spiral, 29
Spite, 63, 65, 333
Splits, 17, 213
Splitting, 277
Sporadic, 354
Sports, 18, 371
Spot, 51, 107, 109
Spread, 15, 185
Spun, 21
SQL, 77, 83, 166
Stability, 20
Stable, 51, 268, 302, 372
Stack(s), 63, 64, 69, 77, 80, 91, 229, 256, 261,

354
Stage(s), 48, 50, 80, 143, 355
Stakeholders, 137
Standalone, 28, 52, 53
Standard(s), 3, 9, 19, 23, 60, 114, 122, 123,

129, 139, 147, 154, 160, 175, 178, 184,
185, 212, 219, 229, 263, 280, 281, 301,
305, 306, 309, 313, 315, 317–319, 321,
364, 374, 375

Standardise, 229
Standardised, 233
Standardization, 11, 263, 278, 279
Standardized, 19

Standardizing, 268
Star, 159
Stateless, 269–271
State space, 349, 350
Static, 29, 31–48, 50, 52–54, 107, 131, 137,

163, 178, 348, 353, 355
Statically, 44, 45, 49, 118, 310, 350
Static and dynamic provisioning, 47, 353, 355
Static dimensioning, 32, 43–45, 50, 53
Stationary, 314, 353
Stealing, 176
Steering, 219
Stepwise, 158
Stimulating, 11, 13
Stochastic, 50, 286, 302, 315, 316, 350, 362
Stochastic models, 349–351
Stopping, 107, 116, 269
Storage, 4, 6, 9–12, 16, 19, 20, 28–30, 32–35,

64, 66, 92, 102, 104, 111, 133, 135, 136,
138–140, 143–147, 153, 157, 164–167,
176, 177, 186, 188, 195, 196, 214, 235,
242, 267, 271, 280, 281, 286, 302, 306,
308, 330, 333

Storage tier, 139, 165
Store(s), 13, 16, 35, 135, 139, 141, 142,

144–146, 154, 156, 166, 176–178, 181,
185, 187–189, 191, 196, 280, 357, 358,
366, 368, 370, 376

Stored, 15, 135, 137, 139, 141, 143, 145, 153,
164, 166, 167, 179, 185, 187, 188, 199,
310, 355, 359

Storm, 16
Strangers, 201
Strategy, 32, 38, 48–50, 59, 60, 62, 64, 65,

67–70, 72, 76, 77, 80, 84, 88, 89, 106,
108, 121, 141, 227, 234, 242, 277–279,
303, 310–318, 323, 340, 346

Stream(s), 10, 92, 175, 236, 237, 308, 357
Streaming, 9, 298, 345
Streamlined, 177
Stress, 76, 293, 310
Stringent, 9
Structural, 175, 181
Structure(s), 15, 28, 64, 69, 70, 79, 87, 101,

106, 107, 110, 111, 130, 132, 133, 139,
144, 159, 174, 175, 177, 180, 181, 184,
185, 188, 189, 197, 199, 201, 231,
235–237, 244, 251, 259, 268, 278, 315

Structured, 4, 30, 135, 154, 167, 279
Structured data, 185, 237
Structuring, 227, 228, 230, 235, 237, 238, 242,

244–247, 250
Subclassify, 105
Subdomains, 367

406 Subject Index

Subgraph(s), 163, 176, 177, 185, 186, 188
Sublease, 296
Sublets, 278, 284
Substantiated, 21
Substituted, 318
Subsystem(s), 65, 68, 69, 71, 80, 86, 347, 355,

361, 366, 370, 375
Subtrees, 367
Succeed, 351
Success, 21, 27, 120, 128, 284, 302
Successful, 50, 260, 263, 278, 301, 311, 371
Successfully, 31, 263, 264, 301, 341
Sudden, 108, 116, 335
Suffice, 348
Sufficient, 107, 128, 179, 197, 341, 343, 352
Suitability, 30
Suite, 28, 77, 120, 371
Suited, 92, 164, 317
SUPERCLOUD, 260, 262
Supercomputer(s), 101, 141, 174, 176, 178,

179, 256
Supercomputing, 102, 256
Superior, 251, 320
Supervision, 232, 303
Supply, 14, 15, 165, 310, 358
Support, 5, 9, 11, 16, 20, 22, 23, 51, 61, 62,

69, 71, 74, 88, 103, 105, 107, 108,
111, 112, 118, 120, 121, 127, 129, 131,
136, 139–141, 144, 145, 147, 154, 166,
167, 174, 175, 178, 179, 181, 182, 185,
197, 211, 214, 217, 228, 230, 232, 234,
236–238, 240–242, 246, 251, 256, 258,
260, 261, 263, 265, 268, 281, 306, 308,
314, 345, 359, 369

Supported, 63, 65, 104, 109, 117, 118, 128,
132, 179, 211, 266, 346

Surface, 242, 251
Surgery, 7, 12
Susceptible, 32
Sustainable, 7, 13, 16, 159, 343, 356
Swap, 64, 83
Swapping, 83, 85
Swarm, 303, 316
Sweep, 64
SWF. See Simple Workflow Service (SWF)
Swift, 31
Switch(es), 19, 65, 87, 88, 308, 311, 355
Switched, 104
Switching, 19, 330, 355
Symbol, 219, 353, 359
Symmetric, 184
Sync, 78, 270
Synchronisation, 239
Synchronization, 11, 68, 83, 351, 354

Synchronize, 199
Synchronized, 43
Synchronous, 351
Synchrony, 351
Synthesis, 161
Synthetic, 177
System architecture, 138, 185, 187, 188, 304
System model(s), 349, 350, 352, 353
System performance, 70, 165, 233, 355, 358
System stack, 63, 77, 354

T
Tactical, 21
Tactile, 18
Tactile internet, 8, 17, 18
Tamper/tampered, 357, 374
Tangible, 22
Targets/targeted/targeting, 14, 53, 54, 59, 63,

71, 75, 77, 84, 89, 108, 121, 143, 157,
162, 175, 176, 186, 196, 200, 234, 235,
241, 257, 264, 281

Tasks, 15, 20, 31, 42–44, 46, 65, 87, 105,
108, 110, 119, 154, 164, 165, 212, 215,
216, 218–220, 269, 277, 278, 286, 288,
292, 304–306, 310, 311, 321, 329–336,
338–340, 343, 352–355, 362, 366

Taxonomy(ies), 3–5, 8–16, 23, 59–92,
103–106, 129–134, 139, 147, 149, 255,
268

TCP, 88, 116, 120, 247
Technical, 20, 23, 101, 102, 106, 122, 140,

142, 280
Techniques, 11, 17, 18, 48–51, 60, 63–67,

69–82, 84–86, 90, 91, 104, 105, 108,
116, 118–120, 122, 127, 132, 153, 155,
163, 174, 177, 180, 184, 185, 187, 193,
197, 228, 255, 258, 260, 264, 277,
279–281, 284, 298, 302, 304, 305,
310–312, 346, 347, 350–354, 358,
360

Technological, 3, 7, 8
Technology(ies), 3–5, 7–17, 19, 21–23, 49,

59–61, 91, 129, 135, 147, 153–155,
166, 174–178, 230, 234, 235, 242, 251,
261, 277, 281, 308, 345, 359, 367

Tedious, 29
Telecommunications, 16, 19
Telecom operators, 3, 7
Telemetry, 308
Temperatures, 164, 165, 330
Temporal, 331, 334, 353, 356
Tenants/tenancy, 63, 66
Tend, 60, 85, 230, 280, 333, 334, 349

Subject Index 407

Tensions, 23, 73, 74, 82, 91
Terminate/terminated, 330, 340, 341, 365, 371
Terminations, 105, 116, 330, 336, 341
Terminators, 236
Terminology, 129, 147, 185, 314
Testable, 128
Testbed, 52, 53
Tests/tested/testing, 5, 53, 89, 114, 128, 137,

141, 155, 157, 268, 271, 298, 321, 347,
356, 362, 370, 371, 373

Theorem, 74
Theoretical, 49, 271, 336, 339, 352
Theory(ies), 67, 68, 70, 76, 84, 89, 128, 174,

303, 304
Thermal, 49
Thrashing, 122
Threads/threaded/threading, 63, 64, 68, 70, 71,

79, 82, 83, 87, 88, 108, 110, 199–201,
234, 346, 354

Thresholdless, 122
Thresholds/thresholding, 49, 70, 83, 87, 106,

113, 114, 116, 117, 122, 261, 303, 305,
312, 332, 334, 356

Throttle, 78
Throttling, 67
Throughput, 17, 51, 52, 84, 106, 166, 199, 203,

204, 244, 289, 311
Tiered, 166
Tiers, 8, 136, 147, 165
Tight, 346, 351
Tightly, 105, 107, 175
Timely, 29, 31, 235, 330, 333, 334, 341, 360
Timeout, 218
Times, 31, 66, 121, 154, 165, 193, 194, 219,

220, 227, 291, 305, 310, 330, 336, 339,
340, 343, 352, 357

Timeslices, 354
Timing, 355
Tokenization, 191
Tokenizer, 191
Tokens, 191
Tolerance, 108, 185–187, 194, 212, 222, 255,

256, 258
Tolerant, 106, 162, 176, 258, 269
Tool, 6, 16, 28, 53, 101, 107, 129, 132, 142,

143, 145, 146, 228, 230, 232–235, 239,
264, 272, 303, 356, 359

Toolkit, 107, 166, 270
Topology, 18, 21, 117, 120, 259, 267, 316
Torque, 28
Total cost of ownership (TCO), 264
Traceability, 160
Tracee, 142
Tracer, 142

Traces, 49, 51, 146, 302, 304, 312, 318, 331,
334–335, 338, 343

Tradeoffs, 60, 67, 69, 73, 81, 89, 91, 179, 268,
278, 289, 316, 343, 352, 353, 360

Trading, 351
Traffic, 9, 14, 18, 21, 105, 271, 292, 294, 304,

311, 321, 333
Train/trained, 122, 368
Traits, 158
Transactional, 122
Transaction phase, 198, 201, 204
Transactions, 15, 77, 83, 197, 270
Transfers/transferred/transfering, 11, 12, 15,

31, 35, 50, 67, 69, 90, 188, 199, 228,
229, 234, 237, 239, 240, 247, 250, 251,
287, 288, 307, 352, 359

Transformations, 7, 87, 114, 118, 119, 213,
313

Transforms/transformed, 19, 113, 121, 146,
184, 212, 318

Transistor, 310
Transmissions, 9, 14, 88, 235, 236, 242, 244,

247, 297, 306
Transmits/transmitted/transmiting, 35, 247,

250, 348
Transparency, 128
Transparent, 113, 118, 120, 214, 217, 277
Transparently, 112
Transport(ing), 9, 18, 91, 309, 370
Transportation, 12, 13, 23
Transverse, 146
Traversal, 30, 177, 182, 197, 201
Traverser, 197
Traverses/traversed/traversing, 182, 196–198,

201, 311, 345
Treatments, 48, 157, 366
Trees, 90, 174
Trends, 8, 61–66, 154, 157, 221, 229, 232, 241,

256, 304, 313, 331, 335–337, 340, 341,
343, 345

TriAD, 176
Trials, 156, 157, 163, 349
Trigger(ing)/triggered, 43, 61, 70, 89, 105,

106, 115, 117, 259, 334, 336
Triples, 177, 178, 186, 191
Trivial, 30, 31, 46, 118, 128, 154, 302, 312,

367
Troubleshooting, 309
Trust(ing)/trusted, 11, 132, 262, 306
Tune/tuned/tuning, 102, 106, 121, 256, 310,

323
Tuples, 37, 38, 74, 115, 366, 367
Twitter, 15
Typechecking, 178

408 Subject Index

U
Ubiquitous, 11, 64, 357
Ubiquitously, 357
Ubuntu, 192, 242
UDP, 269
Ultimate, 159, 286
Ultimately, 21, 157, 331, 340
UML, 216, 218
Unable, 287
Unattended, 291
Unavailability, 310
Unavailable, 337
Unavoidable, 333
Uncertainty(ies), 15, 50, 333
Uncommon, 338, 339
Unconditional, 363
Unconnected, 197
Uncooperative, 66
Underestimate, 31
Underestimating, 284
Underlying, 5, 14, 60, 63, 69, 73, 77, 82, 92,

108, 110–112, 134, 164, 176, 230, 323,
346

Underused, 82
Underutilized, 129
Undesirable, 340
Undirected, 161, 175
Unexpected, 196, 302, 338
Unexploited, 347
Unicellular, 155
Unification, 266
Unified, 13, 14, 231, 237, 263, 281
Unikernels, 269
Univariate, 303, 313, 314, 319
Unlimited, 64, 277
Unloaded, 59
Unobserved, 367
Unpack(ing), 142, 143
Unpredictable, 123, 258, 351, 354
Unprofitable, 286
Unreliable, 212, 222
Unresponsive, 271
Unrewarded, 140
Unsolved, 123
Unstructured, 30
Unsuitable, 236
Unthinkable, 155
Untrusted, 86
Upcoming, 3, 23, 284
Updates/updated/updating, 48, 137, 160, 163,

182, 195, 196, 198, 201, 218, 219, 260,
265, 316, 338, 369, 371

Upgrades, 337
Uploads/uploaded, 9, 35, 185, 192, 195

Uptime, 280
Urban, 13, 18
Urbanization, 13
Urgency, 164
Usability, 235
Usable, 231, 233, 237
Usage patterns, 313, 330, 331, 334, 335, 338,

339, 343, 352
Usages, 6, 15, 43, 44, 59, 60, 66, 70, 71, 84,

86–88, 105, 106, 108, 138, 164, 165,
228, 235, 237, 238, 244, 256, 262, 267,
269, 283, 285, 292, 302, 304, 305, 313,
330–335, 337–340, 343, 346–348, 352,
356–359, 361, 370–373, 376

Utilisation, 229, 232, 234, 235, 240, 247, 250,
251, 302–305, 311–313, 318, 330, 331,
333, 338–340, 343

Utilise/utilised, 329, 339
Utility, 4, 27, 260, 280, 301, 358
Utilization, 18, 49, 51, 68, 71, 84, 102, 116,

181, 262, 285, 289, 346, 354, 355
Utilizes/utilized/utilizing, 179, 185, 200, 364

V
Valid, 298
Validate/validated/validating, 10, 50, 127, 128,

131, 132, 137, 140, 141, 144, 147, 265,
266

Validation, 128, 132, 137, 144, 147, 265, 266
Validator, 137
Valuable, 128
Variability, 159, 258, 333, 356, 367
Variance, 304, 314
Variants, 156, 166–168, 303–305, 313, 314
Variations, 15, 32, 43, 45, 51, 53, 157, 268,

334, 340, 355, 372
Variety, 4, 15, 16, 20, 23, 60, 102, 106, 127,

134, 153, 155, 157, 159, 161, 174, 175,
197, 227, 230, 237, 262, 268

Various, 5, 17, 21, 31, 48, 49, 51, 146, 147,
157–159, 174, 177, 213, 215, 219, 221,
229, 236, 255–257, 259, 262–269, 271,
285, 302, 303, 306, 330, 332, 333, 338,
358, 359, 367

Vary(ing)/varied, 44, 70, 71, 102, 104, 106,
130, 145, 161, 163, 194, 241, 258, 265,
335, 340, 367, 371, 372

Vast, 11, 12, 129, 153, 158, 257, 301
vCloud, 278
Vectorial, 368
Vectors, 50, 107, 196, 368
Vehicles, 3, 9, 10, 13, 15
Velocity, 15, 16, 316, 323

Subject Index 409

Vendors, 3, 7, 20, 227, 267
Veracity, 15
Verbose, 236
Verification, 128, 132, 137, 147
Verifier, 137
Verify(ing)/verified, 118, 127, 132, 141, 168,

319
Vertex, 161, 175–177, 182, 184, 188, 197–199,

201
Vertical, 10, 104, 111, 114, 374
Vertically, 51, 270
Vertices, 161, 162, 174, 176, 179, 181–185,

188, 197–199, 201, 202
Viability, 285
Viable, 15, 112, 122, 159, 161, 285
Victim, 85
Videos, 9, 10, 298, 303
Violating/violated, 286, 365
Violations, 37, 84, 261, 264, 267, 291, 334,

362, 364, 365
Virtual, 7, 9–11, 18, 20, 21, 42–47, 49, 63–65,

77, 83, 89, 103, 105, 107, 110, 111,
128, 133, 145, 146, 277–299, 311

Virtual CPUs (VCPUs), 63, 68, 83, 84, 103,
108, 110–112

Virtualization, 14, 17, 19, 61, 63–65, 91, 106,
129, 133, 134, 138, 140, 146, 231, 255,
256, 260, 264, 266, 277, 302

techniques, 18, 51, 66, 104, 120, 302
technologies, 19, 49, 59–61, 277

Virtualized environment, 65
Virtualized infrastructure, 10, 308
Virtualized systems, 65, 83
Virtualize/virtualized/virtualizing, 4, 9, 14, 18,

20, 61, 62, 64, 65, 71, 261, 308
Virtually, 129
Virtual machine monitor (VMM), 61, 63–66,

68, 69, 77, 82, 85
Virtual machines (VMs), 8, 9, 21, 22, 28, 29,

31–37, 39, 42–51, 54, 59–92, 104, 105,
107, 108, 110–116, 119, 122, 129, 134,
139, 141, 143–146, 228, 229, 231, 242,
244, 251, 261, 264, 270, 277–279,
283–293, 298, 302–307, 310–313, 315,
317–319, 321, 329, 332–334, 338, 346,
354, 355

Virtual reality (VR), 7, 9, 10, 18, 20
Vision, 3, 4, 16, 23, 251, 262
Visionary, 257
Visualisation interface, 232–234
Visualizations, 15, 16, 31, 138, 176, 347, 356,

358, 359
Visualize/visualized, 16, 122, 362, 371
Vital, 16, 156, 164, 165, 318

VM0, 115
VM migration(s), 49, 304, 311, 315
VM systems, 82–91
VMWare, 6, 278, 303
Volatile, 51, 107
Voltage, 49, 310, 351
Volume, 15, 16, 19, 127, 227, 283, 298, 359
Volunteer, 214
Voting, 312
VPC, 6
VSwapper, 66
vSwitch, 19
Vulnerable, 340

W
Wait(ing), 43, 68, 83, 216, 256, 278, 286,

288–290, 294–298, 310, 351, 354, 355
Wake, 352
Walmart, 15
Warehouse(s), 15, 154, 157, 159, 160, 163,

164, 166–168
Warnings, 256
Waste(s), 43, 84, 346, 353, 358, 373
Watch, 332
Water, 13, 330
Wave(s), 5, 197
Waze, 14
Weakest, 247
Weaknesses, 247
Wearables, 3, 8, 10
Weather, 333
Web, 5, 6, 122, 137, 140, 141, 177, 185, 244,

247, 292, 301, 305, 308, 345–347,
356, 359, 362, 366–368, 370, 371, 373,
376

Web app, 6, 137, 140, 244, 305, 359
Web based, 134, 376
Web browsing, 345–376
Weblogs, 331
Web page certification, 347, 356, 361, 362,

366–369
Web server, 271
Web services (WS), 6, 122, 235, 288, 292, 359
Websocket(s), 308, 370
Weight(s), 22, 34, 42, 68, 70, 161, 177, 182,

305, 323, 352, 353, 364
Wi-Fi, 9, 11, 376
Wikipedia/Wiki, 304
Wildlife, 185
Win32, 370
Wired, 3, 4, 11, 21, 308
Wireless, 3, 4, 8, 11, 17, 18, 21, 23, 306, 308
Worker(s), 185–188, 194, 212, 366

410 Subject Index

Workflow(s), 28–32, 34, 42–46, 49–54, 102,
107–109, 132–134, 138, 143, 144, 146,
148, 305

Workflow engine, 42, 44
Workload, 15, 49, 51, 61, 66–68, 71, 84, 90,

91, 102, 104–106, 108, 110, 123, 164,
174, 196–201, 214, 215, 217, 220, 263,
269, 279, 280, 289, 292–298, 301–306,
310–313, 318, 330–335, 340, 341, 343,
348, 351

behaviours, 304, 333, 343
patterns, 104, 105, 332, 334
predictor, 106

Workstations, 138, 144, 175
Wrapper, 119–121, 163
Wraps, 200

X
X86, 309

Xen, 78, 83–85, 143, 354
Xeon, 242, 309, 321
Xerces, 179
eXtensible Markup Language (XML), 179,

235, 236, 244, 245, 247
XGDbench, 174, 177, 178, 195–202, 205
XGDBench client, 197–199
Xlarge, 39, 42, 44, 45

Y
Yahoo, 185
YCSB, 199
YouTube, 303

Z
Zigbee, 11
Zimory, 6
Zone(s), 51, 288, 292

	Foreword
	Preface
	1. Introduction
	2. Expected Audience
	3. Book Overview
	Part I: General Principles
	Part II: Science Cloud
	Part III: Data Cloud
	Part IV: Multi-clouds
	Part V: Performance and Efficiency

	Acknowledgements
	Contents
	Part I General Principles
	1 The Rise of Cloud Computing in the Era of Emerging Networked Society
	1.1 Introduction
	1.2 Cloud Computing in Nutshell
	1.2.1 Service Models and Deployment Modes of Cloud Computing
	1.2.1.1 Cloud Service Models
	1.2.1.2 Cloud Deployment Modes

	1.3 Networked Society
	1.3.1 Taxonomy of Enabling Technologies of Networked Society
	1.3.1.1 Edge Computing: Cloudlet, Fog Computing, and Mobile-Edge Computing
	1.3.1.2 Internet of Things: Smart Grids and Smart Cities
	1.3.1.3 Big Data

	1.3.2 5G Networks: Technology Requirements and Potential Use Cases
	1.3.2.1 Cloud Radio Access Network (C-RAN)
	1.3.2.2 Tactile Internet
	1.3.2.3 Software-Defined Networking (SDN)
	1.3.2.4 Network Function Virtualization (NFV)
	1.3.2.5 Augmented Reality, Virtual Reality, and Mixed Reality
	1.3.2.6 Network Slicing
	1.3.2.7 Containerization

	1.4 Conclusions
	References

	2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All?
	2.1 Introduction
	2.2 Desiderata for HPC Applications and Scientific Workflows
	2.2.1 Scientific Applications
	2.2.2 Computer-Based Scientific Experiments
	2.2.3 Scientific Workflows

	2.3 Static Cloud Dimensioning
	2.3.1 Mathematical Formulation
	2.3.2 Federated Clouds Scenario
	2.3.3 A Heuristic Approach
	2.3.4 Experimental Results for Static Cloud Dimensioning

	2.4 Dynamic Cloud Dimensioning
	2.5 Survey on Existing Approaches for Cloud Dimensioning
	2.6 Conclusions and Open Problems
	References

	3 A Taxonomy of Adaptive Resource Management Mechanisms in Virtual Machines: Recent Progress and Challenges
	3.1 Introduction
	3.2 From Virtual Machines Fundamentals to Recent Trends
	3.2.1 Computation as a Resource
	3.2.2 Memory as a Resource
	3.2.3 Input/Output as a Resource
	3.2.4 Research Trends

	3.3 Adaptation Techniques
	3.3.1 System Virtual Machine
	3.3.1.1 CPU Management
	3.3.1.2 Memory Management

	3.3.2 High-Level Language Virtual Machine
	3.3.2.1 Just in Time Compilation
	3.3.2.2 Garbage Collection
	3.3.2.3 Resource Management

	3.3.3 Summary of Techniques

	3.4 The RCI Taxonomy
	3.4.1 Quantitative Criteria of the RCI Taxonomy
	3.4.2 Classification of Techniques
	3.4.3 Aggregation of Quantities
	3.4.4 Critical Analysis of the Taxonomy

	3.5 VM Systems and Their Classification
	3.5.1 System Virtual Machine
	3.5.1.1 Friendly Virtual Machines (FVM)
	3.5.1.2 ASMan
	3.5.1.3 HPC Computing
	3.5.1.4 Auto Control
	3.5.1.5 PRESS
	3.5.1.6 Overbooking and Consolidation
	3.5.1.7 Difference Engine
	3.5.1.8 VMMB
	3.5.1.9 Overall System Analysis

	3.5.2 High-Level Language Virtual Machines
	3.5.2.1 KaffeOS
	3.5.2.2 JRES
	3.5.2.3 Multitask Virtual Machine (MVM)
	3.5.2.4 Isla Vista
	3.5.2.5 GC Switch
	3.5.2.6 Paging-Aware GC
	3.5.2.7 GC Economics
	3.5.2.8 Control Theory
	3.5.2.9 Machine Learning for Memory Management
	3.5.2.10 Overall Systems Analysis

	3.6 Summary and Open Research Issues
	References

	Part II Science Cloud
	4 Exploring Cloud Elasticity in Scientific Applications
	4.1 Introduction
	4.2 Basic Concepts and State of the Art
	4.2.1 Taxonomy and Classification
	4.2.2 Elasticity in Scientific Applications

	4.3 Developing Elastic Scientific Applications
	4.3.1 Programming Level Elasticity
	4.3.1.1 Architecture

	4.3.2 Middleware Level Elasticity
	4.3.2.1 Architecture
	4.3.2.2 Model of Parallel Application

	4.4 Elasticity Analysis and Research Opportunities
	4.5 Conclusion
	References

	5 Clouds and Reproducibility: A Way to Go to ScientificExperiments?
	5.1 Introduction
	5.2 A Taxonomy on Reproducibility of Experiments
	5.3 How Clouds Can Foster Reproducibility in Science?
	5.4 Reproducible Research Architecture
	5.5 Survey on Approaches for Reproducible Science
	5.5.1 SHARE: Sharing Hosted Autonomous Research Environments
	5.5.2 Paper Mâché
	5.5.3 CDE: Code, Data, and Environment
	5.5.4 Reprozip
	5.5.5 PASS: Provenance Aware Storage Systems
	5.5.6 SciCumulus Workflow System
	5.5.7 Reproducible Research in the Cloud
	5.5.7.1 WSSE: Whole System Snapshot Exchange
	5.5.7.2 Chef
	5.5.7.3 Reproducibility with AMOS
	5.5.7.4 PDIFF: Using Provenance and Data Differencing for Workflow Reproducibility

	5.5.8 Final Considerations

	5.6 Conclusions
	References

	6 Big Data Analytics in Healthcare: A Cloud-Based Framework for Generating Insights
	6.1 Introduction
	6.2 Genomics and Clinical Data
	6.2.1 Genomics Data
	6.2.2 Clinical Data

	6.3 Data Integration
	6.4 Data Consistency
	6.5 Data Infrastructure
	6.6 Data Analysis
	6.7 Conclusions
	References

	Part III Data Cloud
	7 High-Performance Graph Data Management and Mining in Cloud Environments with X10
	7.1 Introduction
	7.2 Challenges and Technologies: Review of Previous Work
	7.2.1 HPC Graph Data Processing
	7.2.2 Graph Data Management
	7.2.3 HPC Graph Data Management Benchmarks

	7.3 Overview of X10
	7.4 Large Graph Processing with X10
	7.4.1 ScaleGraph Architecture
	7.4.2 Implementation of Graph Algorithms in ScaleGraph
	7.4.2.1 Degree Distribution Calculation
	7.4.2.2 Betweenness Centrality
	7.4.2.3 Spectral Clustering

	7.5 X10-Based Distributed Graph Database Engine
	7.5.1 System Design
	7.5.2 Implementation of Acacia
	7.5.3 RDF Data Partitioner and Native Store
	7.5.4 SPARQL Query Processor
	7.5.5 Evaluation of Acacia's Performance

	7.6 XGDBench Graph Database Benchmarking Framework on Clouds
	7.6.1 Methodology of XGDBench
	7.6.2 Requirements of XGDBench
	7.6.2.1 Attribute Read/Update
	7.6.2.2 Graph Traversal

	7.6.3 Implementation of XGDBench
	7.6.3.1 Graph Generator
	7.6.3.2 Graph Data Structure
	7.6.3.3 Workload Executor
	7.6.3.4 Graph DB Workload
	7.6.3.5 Graph DB Interface Layer
	7.6.3.6 Implementation of Traversal Operation
	7.6.3.7 Implementation of Insert and Update Operations

	7.6.4 Evaluation of XGDBench in HPC Cluster
	7.6.4.1 Performance Evaluation of Titan
	7.6.4.2 Evaluation of Graph Generation Time

	7.7 Conclusion
	References

	8 Implementing MapReduce Applications in Dynamic Cloud Environments
	8.1 Introduction
	8.2 MapReduce Background
	8.3 P2P-MapReduce Architecture
	8.4 System Mechanisms
	8.5 Implementation
	8.6 Evaluation
	8.7 Conclusions
	References

	Part IV Multi-clouds
	9 Facilitating Cloud Federation Management via DataInteroperability
	9.1 Introduction
	9.2 Challenges and Related Work
	9.2.1 Challenges to Cloud Federation Deployment
	9.2.2 Related Work

	9.3 Cloud Service Monitoring
	9.3.1 Architecture Design
	9.3.2 Implementation

	9.4 Data Interchange Formats
	9.4.1 eXtensible Markup Language
	9.4.2 JavaScript Object Notation
	9.4.3 MessagePack
	9.4.4 Protocol Buffers

	9.5 Messaging Bus Communication System
	9.5.1 Intercommunication Potential
	9.5.2 Design and Implementation
	9.5.2.1 Producer
	9.5.2.2 Messaging Infrastructure
	9.5.2.3 Consumer

	9.6 Cloud Federation Management
	9.6.1 Architecture Design
	9.6.2 Architecture Importance for Cloud Advancement

	9.7 Data Interchange Format and Message Bus Evaluations
	9.7.1 Evaluation Environment Setup
	9.7.2 Use Case Description
	9.7.3 Data Structuring
	9.7.3.1 XML
	9.7.3.2 JSON
	9.7.3.3 MessagePack
	9.7.3.4 Protocol Buffers

	9.7.4 Serialisation Compactness
	9.7.4.1 Short Summary

	9.8 Conclusion and Future Work
	References

	10 Applying Self-* Principles in Heterogeneous Cloud Environments
	10.1 Introduction
	10.2 Autonomic Computing
	10.2.1 Properties of Autonomic Computing
	10.2.2 The Autonomic Loop
	10.2.3 European Initiatives for Autonomic Clouds

	10.3 Cloud Architectures
	10.3.1 Service Automation
	10.3.2 Autonomic SLA Management
	10.3.3 Cloud Brokerage and Cloud Service Lifecycle

	10.4 Self-*
	10.5 Applications of Self-* Principles in Cloud Computing
	10.6 Conclusion
	References

	Part V Performance and Efficiency
	11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud
	11.1 Introduction
	11.2 Brokering and Virtual Brokering in Cloud Computing Systems
	11.2.1 Cloud Brokering
	11.2.2 Broker Types
	11.2.3 The Virtual Broker for IaaS

	11.3 Virtual Machine Planning for a Virtual Cloud Broker
	11.3.1 Problem Formulation
	11.3.2 Extended Problem Formulation

	11.4 The Proposed Scheduling Methods
	11.4.1 Online Scheduling Heuristics
	11.4.2 Offline Scheduling Heuristics

	11.5 Experimental Evaluation
	11.5.1 Problem Instances
	11.5.2 Computing Infrastructure
	11.5.3 Experimental Results for the Location-Agnostic Problem
	11.5.4 Experimental Results for the Location-Aware Problem

	11.6 Conclusions and Future Work
	References

	12 Adaptive Resource Allocation for Load Balancing in Cloud
	12.1 Introduction
	12.2 Related Work
	12.3 Cloud Computing Continuum
	12.3.1 Cloudlets
	12.3.2 Fog Computing
	12.3.3 Cloud-IoT

	12.4 Cloud Hardware Resources
	12.5 Workload Management
	12.5.1 Load Balancing Techniques
	12.5.2 Existing Proactive Measures

	12.6 PRAS: Proactive Resource Allocation Strategy
	12.6.1 Prediction
	12.6.1.1 ARIMA
	12.6.1.2 SARIMA: Seasonal ARIMA
	12.6.1.3 ARFIMA

	12.6.2 Particle Swarm Optimization-Based Scheduling
	12.6.2.1 VM Allocation

	12.7 Evaluation
	12.7.1 Prediction Results
	12.7.1.1 PSO Results

	12.8 Conclusions and Future Work
	References

	13 Datacentre Event Analysis for Knowledge Discovery in Large-Scale Cloud Environments
	13.1 Introduction
	13.2 Cloud Workload Analytics
	13.3 Cloud Predictability
	13.4 Datacentre Trace Sample
	13.5 Submission Event Analysis
	13.6 Machine Usage Analysis
	13.6.1 Machine Events
	13.6.2 Machine Usage Frequency Analysis

	13.7 Resource Request Analysis
	13.8 Conclusion
	References

	14 Cloud-Supported Certification for Energy-Efficient Web Browsing and Services
	14.1 Introduction
	14.2 Related Work
	14.2.1 Dynamic Power Management
	14.2.1.1 Classification of Dynamic Power Management Systems
	14.2.1.2 Relevant Dynamic Power Management Solutions

	14.2.2 Energy-Aware Scheduling Systems
	14.2.3 Energy-Related Certification and Analytics on the Cloud
	14.2.3.1 Energy-Related Certification Computational Systems
	14.2.3.2 Classes of Big Data Analytic System
	14.2.3.3 Relevant Energy-Related Big Data Analytic Systems

	14.2.4 Analysis and Discussion

	14.3 An Architecture for Energy-Efficient Browsing
	14.3.1 Browser Extension and Power Management
	14.3.1.1 Browser-Level Management Policies
	14.3.1.2 Tab Management Mechanisms
	14.3.1.3 Enforcing Limits

	14.3.2 Certification Back End
	14.3.2.1 Performance Counters for Energy-Related Certification
	14.3.2.2 Devising Categories and Certifying Pages

	14.4 Browser-Level Extensions and Certification Back End
	14.4.1 Browser Extension
	14.4.2 Certification Back End

	14.5 Evaluation
	14.5.1 Resource Usage Evaluation
	14.5.2 Perceived Delay Evaluation

	14.6 Conclusions
	References

	Author Index
	Subject Index

