Computer Communications and Networks

g

&
X
Nick Antonopoulos A
Lee Gillam Editors 30§>0\;\

Cloud
Computing

Principles, Systems and Applications

@ Springer

Computer Communications and Networks

Series editor

A.J. Sammes

Centre for Forensic Computing

Cranfield University, Shrivenham Campus
Swindon, UK

The Computer Communications and Networks series is a range of textbooks,
monographs and handbooks. It sets out to provide students, researchers, and non-
specialists alike with a sure grounding in current knowledge, together with com-
prehensible access to the latest developments in computer communications and
networking.

Emphasis is placed on clear and explanatory styles that support a tutorial
approach, so that even the most complex of topics is presented in a lucid and
intelligible manner.

More information about this series at http://www.springer.com/series/4198

http://www.springer.com/series/4198

Nick Antonopoulos ¢ Lee Gillam
Editors

Cloud Computing

Principles, Systems and Applications

Second Edition

@ Springer

Editors

Nick Antonopoulos Lee Gillam

University of Derby University of Surrey
Derby, Derbyshire, UK Guildford, Surrey, UK
ISSN 1617-7975 ISSN 2197-8433 (electronic)
Computer Communications and Networks

ISBN 978-3-319-54644-5 ISBN 978-3-319-54645-2 (eBook)

DOI 10.1007/978-3-319-54645-2
Library of Congress Control Number: 2017942811

Ist edition: © Springer-Verlag London Limited 2010

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Since the first version of this book was published in 2010, with a foreword by my
colleague Mark Baker (University of Reading), considerable developments have
taken place in Cloud computing. Today, Cloud computing is no longer a niche
research area but now closely embedded in our everyday computing environment.
This is the ultimate success of a technology, which initially starts out as a specialist
domain-specific interest, but becomes so successful that it becomes invisible to us as
users. Systems such as Dropbox, Apple iCloud, Microsoft Office 365 and Google
Drive (amongst many others) are now regularly made use of and considered very
much a core fabric of our computing infrastructure. Social media platforms such
as Facebook, Twitter and Instagram all make use of Cloud systems and make use
of novel concepts such as “eventual consistency” (amongst others) as part of their
implementation. A mobile app that does not make use of a Cloud-based back end is
now an anomaly rather than a norm, a considerable change that has taken place since
2010. Early scientific Cloud systems, such as Eucalyptus, Open Cirrus, etc., once
considered the domain of computer science research, are now regularly used within
a variety of other communities, from biological sciences to arts and humanities.

Figure 1 shows change in interest (via Google trends) for the three terms “Cloud
computing” (dashed line, descending), “Internet of Things” (dashed line, slowly
ascending) and “big data” (dotted line) since the first edition of this book was
published in 2010. These three trends are closely related, as many applications
that generate or process large data sizes make use of Cloud-based infrastructure.
Similarly, many I[oT devices act as data generators or consumers. It is also
interesting to see that programming models such as MapReduce, featured in the
2010 book, also appear in this version of the book but with a specific focus
on a dynamic Cloud computing environment. This programming model has now
been implemented across a variety of systems, from Hadoop (Cloudera, Apache)
to in-memory systems such as Apache Spark and Mesos (amongst others). This
programming model demonstrates how Cloud computing mechanisms have also
transformed data analysis and processing and has found wide-scale adoption in
industry and academia.

vi Foreword

120
100
\\f\[‘_.
I\
LS
80 =\
\
N ™
60 =
\/\
\‘,.h)-\-/'- N
40 D ~
- - ~ -
A
20 < ,—"\..""’ ""_/
- I~
‘.“. ﬁ
5 BraitE
C o g > 0 o4 g >0 o F OO0 A F >0 A F >0 A F >0
- 5 © 0o 5 S o fOo oo HO oo 0o o oo oo o
T 9 @ @I NG Q@ @u 99 g . @ 9 = 9 @ 9 =
S H M oo oo NN MMM MMM e S St D DB D
o I e B B DO .. B .. B .. DO .. DO .. DO .. B .. B .. DO .. DO .. B .. DR .. BN .. DR .. DO .. DO .. B .. B .. B .. |
& &8 5 &5 &5 5 &c & o0& &5 &5 &c &5 o6& oo &5 & & & 8
O I R I O I IR I A I I I I R I R~ R I I

Fig. 1 Google trends for Cloud computing, Internet of Things and big data

With significant commercial interest in Cloud computing due to its transfor-
mative impact on industry, the most prominent example of which is Amazon
Web Services (AWS), understanding how academic research could complement
rather than compete has been difficult. Whereas Cloud computing infrastructure
developers (Google Cloud, AWS, Microsoft Azure, Salesforce, etc.) often make
use of large-scale data centres with a large pool of servers, specialist energy
infrastructure and scalable/configurable networks, the academic community often
has limited access to such resources. Better understanding on how academic
researchers could respond to specialist challenges that may be commercially risky
for commercial vendors has changed since 2010. This book demonstrates many
such challenges that have been chosen by the academic community, such as (1)
Cloud federation, (2) adaptive and elastic resource allocation and (3) reproducibility
supported through Cloud-based systems. Whereas a particular industry vendor
would prefer a user to always make use of a single Cloud system, purchasing
and acquisition of computational infrastructure may not conform to this model,
often requiring a multi-system/Cloud environment. Understanding how commercial
Cloud systems could be “bridged” with private in-house systems, how a sudden
increase in workload could support “bursting” across multiple Cloud systems
and how services which are specialised for deployment over particular types of
infrastructure (such as GPUs) need to be integrated with services hosted on other
platforms (e.g. analytics or database services only available on a given platform)
remains an important challenge. Managing resources and efficient allocation within
such a federation remain important academic research challenges, which often
complement work being carried out in industry.

Foreword vii

The significant growth and capability of edge devices, and how these can be
combined with Cloud-based data centres, has also seen considerable interest over
recent years. In 2010, edge devices generally comprising of sensors were primarily
used as mechanism for data capture. With increasing advances in semiconductor
technologies, edge devices today have significant processing capability (e.g. the use
of Arduino, Raspberry Pi 3, Intel Edison, etc.) enabling data to be preprocessed and
sampled at the network edge, prior to being transmitted to a centralised data centre.
Another significant trend since 2010 has been the wider adoption and availability of
programmable networks through software-defined networks and network function
virtualisation technologies. The availability of a more complex capability at the
network edge, along with in-network programmability, changes the role of a data
centre. This perspective requires researchers to better understand how edge devices
and data centres can be used collectively. Understanding what should be done
at the network edge vs. in the data centre becomes an important consideration.
In 2010, a key requirement was to understand how processing and data could
be “offloaded” from a mobile/edge device to a Cloud data centre (to conserve
battery power of the edge device and avoid the impact of intermittent network
connectivity). Today the focus has shifted to “reverse offloading”, i.e. understanding
how processing to be carried out within a Cloud data centre could be shifted to
edge devices — to limit large data transfer over a public network and avoid latency
due to such transfers. Better and more effective use of edge devices (alongside
the use of a data centre) also leads to useful ways of supporting data security
(i.e. a user can decide what should remain on the devices vs. what to shift to the
data centre). The programming models needed to support this collaborative and
opportunistic use of edge devices and data centres remain in short supply at present.
Recent availability of low-overhead (in terms of memory/storage requirements and
scheduling delay) “container” technologies (such as Docker, Kubernetes, Red Hat
OpenShift) also provides useful mechanisms for supporting edge device/Cloud data
centre integration, enabling services to be migrated (offloaded) from edge devices
to data centres (and vice versa) — Villari et al.' refer to this as “osmotic computing”.

Virtualisation technologies have also seen a considerable improvement since
2010. The capability to virtualise various parts of our computing infrastructure
(from processors, networks, edge devices, storage, etc.) and services (such as a
firewall) has seen considerable growth. The “virtualised enterprise” vision now
dominates thinking in many resource management systems, aiming to make more
effective use of resources across different applications. Understanding how the
memory requirements and switching overhead of virtual machines (VMs) could be

'M. Villari, M. Fazio, S. Dustdar, O. Rana and R. Ranjan, “Osmotic Computing: A New Paradigm
for Edge/Cloud Integration”, IEEE Cloud Computing, December 2016. IEEE Computer Society
Press.

viii Foreword

reduced has led to interest in container technologies. Some predict that the days
of VM-based deployments are limited, due to benefits observed with containers.
How such approaches can be made multiplatform and support federation remain
important challenges in this context.

The editors of this book have selected an excellent combination of chapters that
cover these emerging themes in Cloud computing — from autonomic resource man-
agement, energy efficiency within such systems and new application requirements
of such technologies. The book will provide valuable reference material for both
academic researchers and those in industry to better gauge current state of the art in
Cloud-based systems.

Professor of Performance Engineering Omer F. Rana
Cardiff University, Cardiff, UK

Preface

1. Introduction

The first edition of this book, back in 2010, started by identifying the relatively
recent emergence of Cloud and the increasing demand for Cloud systems and
services that was apparent. We suggested, back then, that its meaning was hotly
debated and identified specific IT and e-commerce vendors — Amazon, Google,
IBM, Microsoft and Sun — who seemed to be leading the charge in making pay-per-
use access to a wide variety of third-party applications and computational resources
on a massive scale available widely. We also identified how the notion of Clouds
seems to blur the distinctions between grid services, web services and data centres.

In the time that has elapsed between the first edition and this second edition,
it would be fair to say that Cloud has not only emerged but has become a go-
to for both experimental and developmental uses and is variously at the core of
numerous businesses across the globe. For some, the use of Cloud in many of
their activities is either second nature or is otherwise unavoidable. The definitional
debates at a broad level have subsided, with a purportedly final perspective — at the
16th version — offered by the US National Institute of Standards and Technology
(The NIST Definition of Cloud Computing, NIST Special Publication 800—145).”
This is completed by the subsequent production in 2014 of ISO/IEC 17788, Cloud
computing — Overview and vocabulary, although these two are not perfectly aligned,
as well as ISO/IEC 17789, Cloud computing — Reference architecture. Of the
five vendors we had acknowledged before, four remain and would probably now
be considered the biggest Cloud players at this point in time, not least because
their reported Cloud revenues are now in the billions of dollars per quarter: Sun’s
Network.com which had originally appeared to be a well-timed foray is, for most
and perhaps unfortunately, a slightly distant memory following Sun’s acquisition by

Zhttp://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800- 145.pdf — doi:10.6028/
NIST.SP.800-145.

ix

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://dx.doi.org/10.6028/NIST.SP.800\%E2\%80\%93145

X Preface

Oracle, with the memory of Sun as a company becoming equally distant. And for
these big four, not only is the scale of their Cloud operations substantial, as it needs
to be, but the range of services now available is also substantial and growing. And in
terms of blurred distinctions, Cloud variously supports or subsumes these — running
in, and across, multiple data centres in a large number of geographical jurisdictions
and supporting grid, web and mobile services amongst others.

As the subject has grown, so topic coverage has extended. Many new Cloud-
based services are a commoditisation of decreasingly common computational needs,
albeit with a few with broad application. Given the inherent economies of scale
brought to such commoditisation, this is likely to put further pressure on companies
that are (still) trying to compete in Cloud. And, indeed, this has already led to
some companies who have tried to compete withdrawing their attempts to keep
pace and in one particular large company case closing down their public Cloud
entirely. Various reasons may be cited: one key reason will be the sheer scale of
investment needed to address the inherently high costs of building and running
large new data centres and of continuing to ensure these comprise the latest and
most capable hardware within a highly competitive pricing environment. The result,
of not being able to compete at this level, tends to be that the arena for competition
shifts up the stack, with consultancies and commentators of various hues espousing
the benefits to be gained using multiple, and potentially federated, Clouds (multi-
Cloud). This also adds opportunities in Cloud brokerage, in adding value or getting
the best performance per unit of cost, and also in Cloud orchestration, with the need
to simplify the complexities of using a multiplicity of services simultaneously. And
the continued focus on Cloud security shows no sign of abating at any time soon.

Cloud is also, arguably, the springboard for the emergence of various other
significant topics of interest. The scale of storage and computational capability
available supports the treatment of big data, not only of large static collections but
also of the kinds of streaming sensor data important in the Internet of Things and the
combination of big and streaming data. In turn, Cloud acts as an enabler for activities
in so-called smart cities and in supporting operation of connected and autonomous
vehicles. And although software, platform and infrastructure remain the mainstay of
service models, these also now address containers (e.g. with Docker in Amazon’s
Elastic Container Service, Microsoft Container Service, Google Container Engine
and IBM Containers) and microservices (AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions and IBM OpenWhisk); the latter abstracts away from the
lower levels of the stack, as well as offering pricing based on compute time used
as multiples of milliseconds rather than hours. With the relative maturity of such
offerings, as well as the emergent next generations of mobile telecommunications
related to network function virtualisation and mobile edge Cloud computing,
increased focus on distributed computation and computational offloading may also
be anticipated.

Given the extent described above, any collection such as this can only ever offer
insights into select subsets of what exists — as, indeed, have the paragraphs above.
Research around these areas abounds and will continue to grow, with the growth

Preface xi

in number and diversity of Cloud conferences and workshops and special issues
of very many journals that are variously Cloud flavoured, as a crude but effective
measure of reach, coverage and scope. However, the four cornerstones of quality of
service, embodied in the first edition, remain consistent:

1.

Efficiency: The need for execution and coordination of the services to be
optimised in terms of data traffic and latency remains, even with lower-latency
communications, in part due to growth of data and ability to process it. Data
traffic is typically one of the main cost factors in any distributed computing
framework, and thus its reduction is a standard long-term goal of such systems.
Latency is arguably one of the most important factors affecting customer
satisfaction, and therefore it should also be within specified acceptable limits.
And efficiencies in performance per unit cost are of particular importance.

. Scalability: Cloud service offerings of various kinds continue to need to scale

well to support massive customer bases. They must continue to withstand
demand of a great many bursty applications during peak times and endure the
“flash crowd” phenomenon familiar in overly successful marketing strategies and
provisioning for popular websites at key times. There is evidence to suggest, also,
that great scale can dissipate distributed denial of service attacks, albeit at a price.
However, applications must also be architected to be able to operate at scale.

. Robustness: Cloud services still need continuously high availability by design,

with effective use of redundancy and graceful failover. With users charged for
the expected successful use of computational facilities, it remains imperative
to understand and address the risk of failure, either to help to mitigate the
probability of failure or to use this information to offer appropriate compensation
schemes. Some high-profile Cloud users are known to make deliberate efforts to
disrupt their own systems in order to prove to themselves that any impact on the
services is minimised, which again relates to appropriate architecting.

. Security: Appropriate security provisions are now, quite simply, a fundamental

expectation for both data and applications to protect both the providers and
consumers from malicious or fraudulent activities and must recognise the
responsibilities of each with respect to the other.

In respect to various Cloud topics, this edition carries the following key

objectives:

1.

2.

To present and explore the principles, techniques, protocols and algorithms that
are used to design, develop and manage Clouds

To present current Cloud applications and highlight the use of Cloud technologies
to manage data and scientific analysis

. To present methods for linking Clouds and optimising their performance

All three objectives are firmly rooted in extant discourse of distributed computing

and a desire to understand the potential of all these technologies in constructing
purpose-specific Cloud solutions that successfully address commercial demand and
shape successful business.

xii Preface
2. Expected Audience

This book should be of particular interest for the following audiences:

* Researchers and doctoral students working on certain aspects of Cloud com-
puting research, implementation and deployment, primarily as a reference
publication. Similarly, this book should be useful to researchers in related or
more general fields, such as distributed computing, software engineering, web
services, modelling of business processes and so on.

* Academics and students engaging in research-informed teaching in the above
fields. This book can serve as a good collection of articles to facilitate a good
understanding of this subject and as such may be useful as a key reference text in
such teaching.

* Professional system architects and developers who could decide to adapt and
apply in practice a number of techniques and processes presented in the book.

» Technical managers and IT consultants who would consider this as a book that
demonstrates the potential applicability of certain methods for delivering efficient
and secure commercial services to customers globally.

These audiences will find this publication appealing as it combines three distinct
scholarly contributions: firstly, it identifies and highlights current techniques and
methods for designing Cloud systems and optimising their performance; secondly,
it presents mechanisms and schemes for developing Clouds to manage data and
produce scientific analysis and economic activities; and thirdly, it provides a
coverage of approaches and technologies used to link Clouds together and manage
heterogeneity.

3. Book Overview

The book contains 14 chapters that were carefully selected based on peer review
by at least two expert and independent reviewers. The chapters are split into five
parts:

Part I: General Principles

This part aims to cover the essential technical characteristics and concepts behind
the new developments in Cloud computing. The chapters included in this part
collectively introduce the reader to essential architectural principles behind the
new developments and how these advances are influencing the applications, how

Preface xiii

to measure the performance of new Cloud architectures and how to do effective
resource management in the emerging Clouds for improved quality of service and
performance.

Chapter | provides a taxonomy and survey to highlight the rapid technological
advancements in Cloud computing and how it will transform silos into to the so-
called Internet of Things (IoT). This chapter discusses the principles and taxonomy
behind emerging trends in Cloud computing such as edge computing (Cloudlets and
fog computing), IoT (smart grids, smart cities) and big data.

Chapter 2 describes the resource estimation problem that, if not addressed, will
either overestimate or underestimate the resources, leading to wasted resources or
poor performance. This chapter addresses the problem of dimensioning the amount
of virtual machines (VMs) in Clouds and presents approaches that estimate in a
static or dynamic way the amount of VMs for several types of applications.

Chapter 3 reviews the important approaches for resource monitoring in virtual
machines. Taxonomy is presented that, when applied to different solutions that
use or augment virtual machines, can help in determining their similarities and
differences. The process of classification and comparing systems is detailed, and
several representative state-of-the-art systems are evaluated.

Part II: Science Cloud

This part builds on the principles and approaches of Part I and provides an in-
depth coverage of how Clouds can be designed to produce scientific insights and
analysis. This part describes important aspects of scientific applications such as
agility, reproducibility, consistency and scalability. It includes chapters that propose
novel techniques and systems for making Clouds reproducible, agile and consistent.

Chapter 4 introduces elasticity, which helps in determining the most appropriate
set of resources for running scientific applications whose requirements cannot be
determined in advance. It describes elasticity taxonomy and how this can be used
in running scientific applications. A discussion about good practices as well as an
analysis of the state of the art is described.

Chapter 5 characterises terms and requirements related to scientific repro-
ducibility. Clouds can play a key role by offering the infrastructure for long-term
preservation of programmes and data. This chapter describes how Clouds can aid
the development and selection of reproducibility approaches in science.

Chapter 6 describes the challenges in integrating clinical and genomic data
and producing insights from it. Integration complexity, data inconsistency and
scalability of the underlying data infrastructures have been highlighted as the main
challenges. Cloud approaches to storing huge amounts of clinical and genomic data
and producing value from it are also described.

http://dx.doi.org/10.1007/978-3-319-54645-2_1
http://dx.doi.org/10.1007/978-3-319-54645-2_2
http://dx.doi.org/10.1007/978-3-319-54645-2_3
http://dx.doi.org/10.1007/978-3-319-54645-2_4
http://dx.doi.org/10.1007/978-3-319-54645-2_5
http://dx.doi.org/10.1007/978-3-319-54645-2_6

Xiv Preface
Part I11: Data Cloud

This part provides an overview of novel approaches in producing scalable, high-
performance and decentralised Cloud systems. This provides an overview of how
emerging technologies such as P2P and graph systems fit with Cloud computing to
enable fault-tolerant, scalable and high-performance data-intensive Clouds.

Chapter 7 describes the challenges of implementing graph-based systems and
frameworks. The focus is on the problem of creating scalable systems for storing
and processing large-scale graph data on HPC Clouds. It highlights a graph
database benchmarking framework and its use in analysing the performance of
graph database servers.

Chapter 8 describes a framework that exploits a peer-to-peer (P2P) model to
manage systems failures of MapReduce and their recovery in a decentralised but
effective way. It describes the architecture and performance results of the proposed
model, which shows a higher level of fault tolerance compared to a centralised
implementation of MapReduce.

Part 1V: Multi-clouds

This part presents ideas on achieving federation and interoperability across Clouds
and using autonomic computing and other intelligent approaches to self-manage the
federated Clouds. It includes chapters that propose novel techniques and systems
for making Cloud data and application interoperable as well as achieving data and
compute interoperability through automated means.

Chapter 9 presents an architecture to facilitate federated Clouds for achieving
interoperability between Clouds, especially application and data-level interoperabil-
ity. It describes the design of the architecture, implementation choices and some
practical evaluations for monitoring multiple Cloud deployments to make informed
decisions.

Chapter 10 provides an overview of the concepts that are being used in practice
and theory in order to advance the field of self-managing and self-healing Clouds.
It describes approaches to providing self-managed data- and compute-intensive
services to the users by overcoming heterogeneity in terms of computing resources.

Part V: Performance and Efficiency

This part covers a range of challenging issues associated to Cloud data centres
that, if not addressed properly, may limit its adoption. It includes chapters on

http://dx.doi.org/10.1007/978-3-319-54645-2_7
http://dx.doi.org/10.1007/978-3-319-54645-2_8
http://dx.doi.org/10.1007/978-3-319-54645-2_9
http://dx.doi.org/10.1007/978-3-319-54645-2_10

Preface XV

Cloud operations and Cloud economy offering approaches that can bring down
Cloud operation costs. It also includes chapters on resource management approaches
leading to energy efficiency and predictive workload management.

Chapter 11 presents a Cloud brokering model, which can reduce Cloud cus-
tomers’ costs when compared to traditional on-demand renting costs. It proposes
a number of online and offline heuristics to efficiently manage the resources of
the broker in order to optimise its revenue, as well as the QoS level offered to the
customers.

Chapter 12 proposes a resource management model with the aim of improv-
ing energy efficiency and reliability. The model manages the problem of over-
provisioning of resources and to an underutilisation of the active servers. Using
an evolutionary optimisation algorithm, the model can efficiently map user requests
with the available hardware resources.

Chapter 13 describes an approach to manage Cloud data centres by observing
workload behaviours and server usage patterns in the past. The analysis presented
in this chapter can support Cloud providers for achieving efficient data centre
management and prediction analytics in Cloud data centres.

Chapter 14 presents energy-efficient browsing approach that ranks URL and
web domains based on web page-induced energy consumption. The approach can
achieve substantial resource reduction for CPU and memory usage. It is also able to
reduce bandwidth usage without any degradation to user experience.

http://dx.doi.org/10.1007/978-3-319-54645-2_11
http://dx.doi.org/10.1007/978-3-319-54645-2_12
http://dx.doi.org/10.1007/978-3-319-54645-2_13
http://dx.doi.org/10.1007/978-3-319-54645-2_14

Acknowledgements

The editors are grateful to the peer review panel for supporting this book including
Miyuru Dayarathna, Daniel de Oliveira, Vincent C. Emeakaroha, Teodor-Florin
Fortig, Imen Ben Fradj, Luiz Manoel Rocha Gadelha Junior, Guilherme Galante,
Santiago Iturriaga, Sara Kadry, Somnath Mazumdar, Bhaskar Prasad Rimal, José
Simdo and Domenico Talia.

The editors are also grateful to their respective families for continuing to afford
them the time to produce works such as this.

The editors wish to thank Springer’s team for their strong and continuous support
throughout the development of this book.

The editors are also deeply apologetic to anyone that they may have forgotten.

Derby, UK Nick Antonopoulos

Guildford, UK Lee Gillam
Winter 2016

Xvii

Contents

PartI General Principles

1 The Rise of Cloud Computing in the Era of Emerging
Networked Societycoooiiiiiiiiii i 3
Bhaskar Prasad Rimal and Ian Lumb

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud
ARter ALl L. 27
Rafaelli Coutinho, Yuri Frota, Kary Ocana, Daniel de Oliveira,
and Lucia M.A. Drummond

3 A Taxonomy of Adaptive Resource Management Mechanisms
in Virtual Machines: Recent Progress and Challenges 59
José Simao and Luis Veiga

PartII Science Cloud

4 Exploring Cloud Elasticity in Scientific Applications 101
Guilherme Galante and Rodrigo da Rosa Righi

5 Clouds and Reproducibility: A Way to Go to Scientific
EXperiments?.ccooiiiiiiiiiiiiiiiiii s 127
Ary H. M. de Oliveira, Daniel de Oliveira, and Marta Mattoso

6 Big Data Analytics in Healthcare: A Cloud-Based Framework
for Generating Insights 153
Ashiq Anjum, Sanna Aizad, Bilal Arshad, Moeez Subhani,
Dominic Davies-Tagg, Tariq Abdullah, and Nikolaos Antonopoulos

Part III Data Cloud

7 High-Performance Graph Data Management and Mining
in Cloud Environments with X10oo. 173
Miyuru Dayarathna and Toyotaro Suzumura

XiX

XX Contents

8 Implementing MapReduce Applications in Dynamic Cloud
Environmentsooiiiiiiiiiiiiiii i s 211
Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio

Part IV Multi-clouds

9 Facilitating Cloud Federation Management via Data
Interoperabilityo i 227
Vincent C. Emeakaroha, Phillip Healy, and John P. Morrison

10 Applying Self-* Principles in Heterogeneous Cloud Environments... 255
Toan Drédgan, Teodor-Florin Fortig, Gabriel Tuhasz, Marian Neagul,
and Dana Petcu

Part V Performance and Efficiency

11 Optimizing the Profit and QoS of Virtual Brokers in the Cloud 277
Santiago Iturriaga, Sergio Nesmachnow, and Bernabé Dorronsoro

12 Adaptive Resource Allocation for Load Balancing in Cloud 301
Somnath Mazumdar, Alberto Scionti, and Anoop S. Kumar

13 Datacentre Event Analysis for Knowledge Discovery
in Large-Scale Cloud Environments......................oooiiiieeaa. 329
John Panneerselvam, Lu Liu, and Yao Lu

14 Cloud-Supported Certification for Energy-Efficient Web
Browsing and Servicescooiiiiiiiiiiiii 345
Gongalo Avelar, José Simao, and Luis Veiga

AUthor IndeX. ... 379

Subject INdeXooiiiiiii i e 381

Part I
General Principles

Chapter 1
The Rise of Cloud Computing in the Era
of Emerging Networked Society

Bhaskar Prasad Rimal and Ian Lumb

1.1 Introduction

In 2009, Rimal et al. [1] published a very first taxonomy and survey that defined the
field, described many issues and opportunities, and summarized the developments of
cloud computing up to that point. We refer readers to our original paper [1] to better
understand the fundamentals of cloud computing and the descriptions of potential
applications. Since then, the role and scope of cloud computing has remarkably
changed. In this chapter, our aim is a complement to that taxonomy and survey,
denoting the rapid technological advancements since then. Cloud computing has
been widely deployed and become a major backbone of every other technology —
from cellular phones through to wearables, connected vehicles, and the future
networked society. The networked society is the networks of everything (NoE), that
is, beyond the upcoming 5G networks.

Our vision of networked society is not only about wired/wireless communica-
tions but creating an ecosystem of device vendors, application developers, network
operators, telecom operators, and cloud services/infrastructure providers to create
a foreseeable new business value chain that will not only accelerate every area
but also bring new innovative ideas and services. Those services are accessible
to anyone (e.g., devices, human, robots, automobiles) to connect each other and
share data from anywhere and anytime. However, there is still no well-defined
standard definition and requirements of the networked society. Therefore, there is

B.P. Rimal (<)

University of Québec, INRS, Montfeal, QC, Canada
e-mail: b.bprimal @ gmail.com

I. Lumb

York University, Toronto, ON, Canada
Univa Corporation, Hoffman Estates, IL, USA

© Springer International Publishing AG 2017 3
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_1

mailto:b.bprimal@gmail.com

4 B.P. Rimal and I. Lumb

a need for a taxonomy of enabling technologies of networked society to better
understand the concept and advance the state of the art. This chapter provides a
holistic understanding of networked society.

Furthermore, given the wide variety of communications (e.g., machine-to-
machine communications, human-to-machine communication, human-to-robot
communications) and applications in the networked society, a single communication
technology is likely not able to meet such heterogeneity. We may need a
convergence or integration of different wired/wireless communication technologies
to truly address the complexity of the networked society. Cloud computing
technologies are the major backbone for networked society, where billions of
devices will be connected anytime to each other and access a wide variety of
services anywhere. Toward this end, the focus and contributions of this chapter are
as follows:

 First, we revisit the scope and role of cloud computing and extend them in the
context of networked society, paying particular attention to scope and emerging
areas of cloud computing.

* Second, we propose a taxonomy of enabling technologies of networked society.
This will be an instrument to understand the vision, the overall concept, and
the enabling technologies of networked society. To the best of the authors’
knowledge, this is a first taxonomy of enabling technologies of the networked
society.

» Third, we describe each enabling technology of networked society based on the
proposed taxonomy and pay close attention to some of the particular challenges
and opportunities that may be used by other researchers as a baseline for future
research in the area of networked society.

The remainder of the chapter is structured as follows. Section 1.2 provides an
overview of cloud computing in a nutshell, including cloud service modes and
deployment modes. Section 1.3 introduces a networked society and presents a
proposed taxonomy of enabling technologies of networked society. Further, each
enabling technology is discussed, including issues and opportunities in great detail.
Finally, Sect. 1.4 concludes the chapter.

1.2 Cloud Computing in Nutshell

Cloud computing implements the idea of utility computing, which was first coined
by Professor John McCarthy in 1961, where computing was viewed as a public
utility just as the telephone system. Later, this idea resurfaced in new forms as
cloud computing. There is a plethora of definitions for cloud computing, from both
academia and industry. Among them, Rimal et al. [2] defined cloud computing as,
a model of service delivery and access where dynamically scalable and virtualized
resources are provided as a service over the Internet. Cloud computing provides
a paradigm shift of business and IT, where computing power, data storage, and

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 5

services are outsourced to third parties and made available as commodities to
enterprises and customers. Cloud computing is a center point for the most highly
impactful technologies such as mobile Internet, automation of knowledge work, the
Internet of Things (IoT), and big data. Further, cloud offers tremendous economic
benefits. For example, the total economic impact of cloud technology could be $1.7—
$6.2 trillion annually in 2025, and the proliferation and sophistication of cloud
services could become a major driving force in making entrepreneurship more
feasible in the coming decade [3]. However, there are several challenges to be
addressed. The taxonomy, survey, challenges, and opportunities of cloud computing
are thoroughly studied in [4].

1.2.1 Service Models and Deployment Modes of Cloud
Computing

Cloud service models can be classified into three groups: Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). The
deployment modes can be categorized into three groups: public cloud, private cloud,
and hybrid cloud. We discuss them briefly in the following subsections.

1.2.1.1 Cloud Service Models

(1) Software-as-a-Service (SaaS): SaaS, commonly referred to as the Application
Service Provider model, is heralded by many as the new wave in application
software delivery. Further, SaaS can be view as a multi-tenant cloud platform [5].
It shares common resources and a single instance of both the object code of an
application as well as the underlying database to support multiple customers simul-
taneously. Key examples of SaaS provider include SalesForce.com,' NetSuite,?
Oracle,’ IBM,* and Microsoft (e.g., Microsoft Office 365°).

(2) Platform-as-a-Service (PaaS): It is the big idea to provide developers with
a platform including all the systems and environments comprising the end-to-
end life cycle of developing, testing, deploying, and hosting of sophisticated web
applications as a service delivered by a cloud. It provides an easier way to develop
business applications and various services over the Internet. Key examples of

I'SalesForce: https://www.salesforce.com/, Accessed Nov. 2016.

2NetSuite: http://www.netsuite.com/, Accessed Nov. 2016.

30racle: https://www.oracle.com/cloud/saas.html, Accessed Nov. 2016.

4IBM: https://www.ibm.com/cloud-computing/solutions/, Accessed Nov. 2016.

SMicrosoft Office 365: https:/products.office.com/en-us/office-online/documents-spreadsheets-
presentations-office-online, Accessed Nov. 2016.

https://www.salesforce.com/
https://www.salesforce.com/
http://www.netsuite.com/
https://www.oracle.com/cloud/saas.html
https://www.ibm.com/cloud-computing/solutions/
https://products.office.com/en-us/office-online/documents-spreadsheets-presentations-office-online
https://products.office.com/en-us/office-online/documents-spreadsheets-presentations-office-online

6 B.P. Rimal and I. Lumb

PaaS are Google AppEngine® and Microsoft Azure,” just to name two. PaaS can
slash development time and offer hundreds of readily available tools and services
compared to conventional application development.

(3) Infrastructure-as-a-Service (laaS): laaS is the delivery of resources (e.g.,
processing, storage, networks) as a service over Internet. Aside from the higher
flexibility, a key benefit of IaaS is the usage-based payment scheme. This allows
customers to pay as you grow. Key examples are Amazon EC2,® GoGrid,’ Flexis-
cale,' Layered Technologies,'' AppNexus,'” Joyent,'? and Mosso/Rackspace.'*

1.2.1.2 Cloud Deployment Modes

(1) Public Cloud: 1t describes the cloud computing in the traditional mainstream
sense, whereby resources are dynamically provisioned on a fine-grained, self-
service basis over the Internet, via web applications/web services, from an off-site
third-party provider who shares resources. Some examples are Zimory,'> Microsoft
Azure, Amazon EC2, GigaSpaces,'® Rackspace, and Flexiscale.!’

(2) Private Cloud: Data and processes are managed within the organization
without the restrictions of network bandwidth, security exposures, and legal require-
ments that using public cloud services across open, public networks might entail.
Some examples are Amazon VPC,'® Eucalyptus,'” OpenStack,”’ VMWare,?! and
Intalio.”

%Google AppEngine: https:/console.cloud.google.com/projectselector/appengine, Accessed Nov.
2016.

"Microsoft Azure: https://azure.microsoft.com/en-us/?b=16.26, Accessed Nov. 2016.

8 Amazon EC2: https://aws.amazon.com/ec2/, Accessed Nov. 2016.

9GoGrid: https://www.datapipe.com/gogrid/, Accessed Nov. 2016.

10F]exiscale: http://www.flexiscale.com/, Accessed Nov. 2016.

L ayered Technologies: https://www.datapipe.com/layered_tech/, Accessed Nov. 2016.
12 AppNexus: https://www.appnexus.com/en/platform, Accessed Nov. 2016.

BJoyent: https://www.joyent.com/, Accessed Nov. 2016.

“Mosso/Rackspace: https://www.rackspace.com/cloud, Accessed Nov. 2016.

15Zimory: http://www.zimory.com/, Accessed Nov. 2016.

16GigaSpaces: http://www.gigaspaces.com/HP, Accessed Nov. 2016.

7Flexiscale: http://www.flexiscale.com/, Accessed Nov. 2016.

18 Amazon VPC: https://aws.amazon.com/vpc/, Accessed Nov. 2016.

YEucalyptus: http://www8.hp.com/us/en/cloud/helion-eucalyptus.html, Accessed Nov. 2016.
200penStack: https://www.openstack.org/, Accessed Nov. 2016.

2lVMWare: https://www.vmware.com/, Accessed Nov. 2016.

ZIntalio: http://www.intalio.com/, Accessed Nov. 2016.

https://console.cloud.google.com/projectselector/appengine
https://azure.microsoft.com/en-us/?b=16.26
https://aws.amazon.com/ec2/
https://www.datapipe.com/gogrid/
http://www.flexiscale.com/
https://www.datapipe.com/layered_tech/
https://www.appnexus.com/en/platform
https://www.joyent.com/
https://www.rackspace.com/cloud
http://www.zimory.com/
http://www.gigaspaces.com/HP
http://www.flexiscale.com/
https://aws.amazon.com/vpc/
http://www8.hp.com/us/en/cloud/helion-eucalyptus.html
https://www.openstack.org/
https://www.vmware.com/
http://www.intalio.com/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 7

(3) Hybrid Cloud: The environment is consisting of multiple internal and/or exter-
nal providers. Some examples are RightScale,”® Asigra Hybrid Cloud Backup,’*
QTS,” and Skytap.?®

1.3 Networked Society

A conventional definition of networked society states that a number of major social,
technological, economic, and cultural transformations came together to give rise
to a new form of society, the so-called networked society. A focal point of the
networked society is the transformation of the realm of communications [6, 7]. In a
broader perspective of information, communications and technologies (ICTs), and
beyond 5G networks (refer Sect. 1.3.1), networked society can be defined as a new
paradigm and is not only about technology, but it creates an ecosystem of device
vendors, application developers, network operators, telecom operators, and cloud
services/infrastructure providers to create a foreseeable new business value chain
that will not only accelerate every area but also brings new innovative ideas and
services. Cloud technologies became a major part of networked society.

Figure 1.1 presents a hypothetical scenario that is suggestive of the near future
we hope to create by leveraging the benefits of cloud computing in the networked
society. The networked society is beyond future 5G networks. It is more than more
data and massive end-to-end connectivity of the things. Networked society is not just
incremental research but game changers for the quality and experience of people’s
life that will be more intelligent, more immersive experience enriched by context-
aware services (e.g., mixed augmented and virtual reality) and automated, secure,
sustainable, green, and more knowledgeable society. Furthermore, that will also
create a new scientific concept toward industrial and social innovations.

Jony is 65 years old and medically paralyzed man. One day Jony feels sick and asks personal|
assistant robot to call the hospital. The personal assistant robot then calls the hospital emer-
gency number and requests further assistance. The hospital authority then sends self-driving
car to Jony’s home. The personal assistant robot puts Jony into the self-driving car. Then the
self-driving car takes him to the hospital. On the way to hospital doctors were monitoring
Jony'’s health status remotely. At the hospital, a specialist doctor performs remote surgery
with actuating robots to save his life.

Fig. 1.1 Hypothetical scenario of the next generation of cloud computing: connecting everything
from everywhere via cloud in the networked society

Bhttp://www.rightscale.com/, Accessed Nov. 2016.

24 Asigra: http://www.asigra.com/cloud-backup-software, Accessed Nov. 2016.
Zhttp://www.qtsdatacenters.com/, Accessed Nov. 2016.
Zhttps://www.skytap.com/, Accessed Nov. 2016.

http://www.rightscale.com/
http://www.asigra.com/cloud-backup-software
http://www.qtsdatacenters.com/
https://www.skytap.com/

8 B.P. Rimal and I. Lumb

(Cloud Computing)
Internet of Things (loT)
(Smart Grids, Smart Cities)

N
Big Data
Network Slicing

Software-Defined
Networking (SDN)

Edge Computing
(Cloudlet, MEC,
Fog Coputing)

Augmented,Virtual,
and Mixed Reality

Tactile Internet

Enabling Technologies
for
Networked Society

Network Function
Virtualization (NFV)

Y
4G LTE/LTE-Advanced,
5G networks

Fig. 1.2 Proposed taxonomy of enabling technologies of the networked society

1.3.1 Taxonomy of Enabling Technologies of
Networked Society

Pervasiveness and emerging technological trend of cloud computing disrupts indus-
tries across the world, and companies look forward to maximize and implement
cloud as a strategic and integral technology to create value chain and business
agility. This will create a huge opportunity in the networked society era of disruptive
innovation. The proposed taxonomy of enabling technologies of networked society
is shown in Fig. 1.2. In the next section, we provide a more detailed description of
each enabling technology.

1.3.1.1 Edge Computing: Cloudlet, Fog Computing,
and Mobile-Edge Computing

Cloudlet: A cloudlet (also known as edge cloud) is a powerful computer or
computer cluster that can be viewed as a data center in a box whose goal is to
bring the cloud one wireless hop away from the mobile devices, thereby maintaining
logical proximity (low latency, high bandwidth). Further, it can be viewed as a new
architectural element that represents the middle tier of a three-tier hierarchy: mobile
device, cloudlet, and cloud [8]. The cloudlet host runs a hypervisor (e.g., KVM) in
order to host multiple virtual machines (VMs). Those VMs publish information
(e.g., OS and other properties) to the network. The cloudlet client (e.g., smart
phones, PDAs, wearable devices) discovers the cloudlet server through information
(cloudlet server IP address and port) broadcasted by the discovery service residing

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 9

in a cloudlet host. The client then establishes an HTTP connection to the cloudlet
server for VM overlay?’ transmission and uploads the overlay [8—10]. The cloudlet
decompresses this overlay and applies it to the baseVM to derive the launchVM and
then creates a VM instance from it. Afterward, the mobile client starts offloading
operation on that instance. The mobile device uses Wi-Fi or cellular data service of
4G LTE depending on the deployment scenarios of cloudlet to reach Internet and
then remote cloud (e.g., Amazon EC2).

Cloudlet supports resource-intensive and interactive mobile applications by
providing computing resources to mobile devices with low latency. Key features of
cloudlets include near-real-time, just-in-time provisioning of applications to edge
nodes and handoff of virtual machines seamlessly from one node to another once a
user has moved away from its first node.

Potential application areas of cloudlet are enormous. More specifically, the appli-
cations (e.g., video streaming, speech processing, cognitive assistance applications,
augmented and virtual reality, edge analytics in IoT, new automotive services, drone,
just to name a few) which have stringent QoS requirements, such as low latency and
real time, can all benefit from cloudlets.

Fog Computing: Cisco envisioned the concept of Fog computing in 2012. Fog
computing is a highly virtualized platform, which extends the cloud computing
to the edge of networks, thereby enabling applications and services on billions of
connected devices, especially, in the Internet of Things (IoT) [11]. Example includes
Cisco IOx that combines IoT application execution within the fog computing and
offers highly secure connectivity with Cisco IOS technology. Some of the major
characteristics of Fog computing are listed below:

* Fog nodes (i.e., provide compute, storage, and network capabilities) are typically
located away from the main cloud data centers.

* Fog nodes provide applications with awareness of device geographical location
and device context.

* Fog nodes offer special services that may only be required in the IoT context
(e.g., translation between IP and non-IP transport).

* Support for online analytics and interplay with the cloud

Fog computing may have a wide range of applications such as connected vehicle,
smart grid, smart cities, pipeline monitoring, connected rail, smart traffic light sys-
tems, machine-to-machine (M2M) communications, or human-machine interaction
(HMI), just to name a few.

Mobile-Edge Computing: The European Telecommunications Standards Institute
(ETSI) launched an industry specification for mobile-edge computing (MEC) in
September 2014. The ETSI defined MEC as: Mobile-edge Computing transforms

?"The compressed binary difference between the baseVM (i.e., a VM with a minimally configured
guest operating system installed) image and the launchVM (i.e., VM image used for offloading)
image is known a VM overlay [8, 9].

10 B.P. Rimal and I. Lumb

base stations (e.g., 2G/3G/4G/5G) into intelligent service hubs that are capable
of delivering highly personalized services (IT and cloud computing capabilities)
directly from the very edge of the network within the radio access network (RAN)
while providing the best possible performance in mobile networks [12]. Some
typical use cases of MEC are as follows:

 Intelligent video acceleration service

¢ Active location-aware application services

* Video stream analysis and video delivery optimization using data caching
* Augmented and virtual reality services

* RAN intelligence for customer experience

* Mobile PBX for large enterprises

¢ Connected vehicles and IoT gateway services

Examples of some leading MEC solution providers include the Vasona Smart
AIR platform, Saguna Open-RAN, Brocade MEC Platform Services, Nokia Liquid
Radio Applications Cloud Server, and Intel’s Network Edge Virtualization (NEV)
SDK MEC application and services.

The major components of the ETSI-MEC architecture [13] are summarized in
Table 1.1.

1.3.1.2 Internet of Things: Smart Grids and Smart Cities

Internet of Things: The Internet of Things (I0T) is the network of networks where
billions of devices/objects connect to each other and create new opportunities and
challenges. IoT ecosystem includes any type of devices/technology (smartphones,
connected cars, wearables, robots, vertical applications) that can connect to the
Internet. The International Telecommunication Union (ITU) Telecommunication

Table 1.1 The major components and its functionalities of the ETSI-MEC reference architecture

Components Description

Mobile-edge | Sets the policy and configuration rules (e.g., traffic rules) for forwarding user

platform plane traffic to MEC applications. It also provides a set of services and access
to persistent storage

Mobile-edge | Maintains an overall view of the deployed mobile-edge hosts, validates

orchestrator applications rules and requirements, and selects appropriate mobile-edge hosts
for instantiating a MEC application

Mobile-edge | Responsible for life cycle management of applications and provides element

platform management functions to the mobile-edge platform
manager
Virtualized Responsible for managing, allocating, and releasing the resources of the

infrastructure | virtualized infrastructure and also does rapid provisioning of applications
manager

Mobile-edge | Runs on the top of the virtualized infrastructure provided by the mobile-edge
applications host and also interacts with mobile-edge platform to provide services

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 11

Table 1.2 Overview of functional requirements of the IoT

Functional requirements | Description

Application support Programmable interfaces, group management, time synchronization,
requirements collaboration, authentication, authorization, and accounting
Service requirements Service level agreements (SLAs), autonomic service provisioning,

service composition, service mobility, user mobility and device
mobility, virtual storage, and processing capabilities

Communication Heterogeneous communications (wired or/and wireless technologies,

requirements such as controller area network (CAN) bus, ZigBee (IEEE 802.15.4),
Bluetooth (IEEE 802.15.1), Wi-Fi (IEEE 802.11a/b/g/n/ac), 4G
LTE/LTE-Advanced, 5G), Low power Wireless Personal Area
Networks (IEEE 802.15.4/6LoWPA), communication modes
(event-based, periodic, and automatic communication modes),
autonomic networking (self-configuring, self-healing,
self-optimizing, and self-protecting capabilities), and context- and
location-aware communications

Device requirements Remote monitoring, control and configuration of devices, monitoring
of things, and device mobility

Data management Integrity checking and life cycle management of data; storing,

requirements aggregating, transferring, and processing the data; access control of

data; and high availability and reliability of data of things

Security and privacy Trust and privacy, mutual authentication and authorization between
protection requirements | the devices, integration of security policies and techniques, and
security audit

Standardization Sector (ITU-T) in Recommendation ITU-T Y.2066 [14] defined
the 10T as a global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies. 10T has an
enormous potential to bring innovations to new business. For instance, McKinsey
report shows that the IoT has the potential to create economic impact of $2.7—
$6.2 trillion annually by 2025. Some of the most promising uses are in healthcare,
infrastructure, and public sector services [3].

Tables 1.2 and 1.3 summarize the IoT functional (related to the ToT actors®®) and
nonfunctional requirements (related to the implementation and operation of the IoT)
[14]. Even though cloud computing and IoT are two very different technologies,
both can be converged, giving rise to so-called loT-cloud computing — a novel
paradigm and enabler for vast majority of large-scale application deployments.
Indeed, the convergence of cloud computing and IoT enables ubiquitous sensing
services and powerful computing platforms with large-scale computing and storage
capabilities, thus stimulating new innovations in the area of IoT.

28 Actors are external to the IoT and interact with the IoT.

12 B.P. Rimal and I. Lumb

Table 1.3 Overview of nonfunctional requirements of the [oT

Nonfunctional requirements

Interoperability

Scalability to handle a large number of devices, applications, and user
Reliability in communication, service, and data management capabilities of [oT
Service provisioning, data management, communication, sensing, and actuating
Adaptability to new technologies

Manageability — device state and connectivity management and energy consumption
management

Cisco predicted that 50 billion devices will be connected to the Internet by 2020
[15]. These devices will produce huge amounts of data. Moving all these data to
the cloud for analysis would require vast amounts of bandwidth. Cloud computing
is certainly a better way of addressing these requirements. Despite achieving low-
latency and ultrahigh reliability (carrier-grade reliability, i.e., 99.999% availability)
for mission critical IoT applications (e.g., smart transportation, remote surgery,
industrial process automation), designing novel cloud-based sensing algorithms,
cloud-based IoT mobility management, and energy-aware communication protocols
for IoT are among the important research avenues. However, it is very challenging
due to network integration, heterogeneity (of devices, platforms, operating systems,
communication protocols), interoperability, and coexistence of human-to-human
(H2H) and machine-to-machine (M2M) communications.

Smart Grids: Cloud computing also offers opportunities for significant efficiency
savings and for making a huge contribution toward institutional carbon-saving tar-
gets, such as smart grids. IEEE Standard 2030 Guide for Smart Grid Interoperability
of Energy Technology and Information Technology operation with the Electric
Power System (EPS) and End-Use Applications and Loads [16] defines smart
grids as the “integration of power, communications, and information technologies
for an improved electric power infrastructure serving loads while providing for
an ongoing evolution of end-use applications.” Ensuring the reliable bidirectional
information flow between heterogeneous entities is a key requirement of smart
grids. In particular, the integration of IT into smart grids eventually increases the
complexity in network design, which motivates large scalable infrastructures for
computing and storage.

IEEE P2030 [16] aims at providing interoperability between power and energy
technologies, ICT, and customer side applications. Its main objectives include
the integration of energy technologies and ICT, seamless data transfer, reliable
power delivery, and end-use benefits. Furthermore, IEEE P2030 spans three
distinct architectural perspectives: power systems, communication technology,
and information technology. The objective of those perspectives is to deal with
interoperability among the elements of smart grids. The expected benefits of smart
grids are as follows:

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 13

* With the help of integrated ICT, smart grids will be able to optimize the system
reliability and allow prosumers to adjust their demand during peak hours in order
to save money.

* Reduce carbon footprint with the deployment of smart grid-enabled electrical
vehicles and efficient use of renewable energy sources that reduce the depen-
dency on fossil fuels.

Besides these advantages, smart grids face some challenges, such as to reduce
the capital and operational costs, handling big data, security of cyber and power
infrastructures, and regulatory frameworks, among others.

Furthermore, the concepts of smart grids are applicable not only to electrical
power grids but are also essential to develop a sustainable high-quality life of
citizens in cities. In particular, future smart grids will be intertwined with smart
cities to interconnect ICT, energy, water, healthcare, citizens, and governments, as
explained shortly.

Smart Cities: The global changes affecting climate, population, urbanization, and
advances in urban technology put forward the concept of “Smart Cities” as a new
dimension in urban development. There are many definitions of smart cities [17].
The author in [18] defined a smart city as follows: “a smarter city is connecting
the physical infrastructure, the IT infrastructure, the social infrastructure, and the
business infrastructure to leverage the collective intelligence of the city.” Note that
no consensus has been reached on what the term smart cities exactly means.

Smart grids can be one of the major domains of smart cities that will address
the growing energy demand by integrating renewable resources through demand
response and reduce the carbon footprint in the cities. On the other hand, other
technologies like cloud computing can provide IT infrastructures to the cities for
analyzing, controlling, and monitoring of city council data and applications. Early
examples of smart cities include the European Platform for Intelligent Cities,
IBM Smarter Cities, Microsoft’s CityNext, and Amsterdam Smart City. Among
them, the IBM Smarter Cities project promotes the deployment of instrumented,
interconnected, and intelligent systems to improve social progress from smart grids
and transportation to water management and healthcare. Some of the anticipated
benefits of smart cities are as follows:

* Provide city-scale ICT-enabled infrastructures along with unified information
and control systems for data collection, analysis, and simulation in order to
provide efficient governance and engagement of citizens for planning and
decision-making activities of sustainable cities.

* Stimulating the use of sustainable energy efficiency systems to lower carbon
emissions.

The research on cloud-based smart cities has started only recently. The authors
in [19] proposed a cloud-based architecture for context-aware citizen services for
smart cities. Similarly, the Scallop4SC platform [20] was designed to store and

14 B.P. Rimal and I. Lumb

process large-scale house data in smart cities. However, there still exist open
challenges in realizing smart cities:

* Network edges are becoming themselves complex networks because of increas-
ing data diversity and heterogeneity. Mathematical analysis and modeling of
intrinsic network dynamics on the large scale are a complex issue, e.g., dis-
tributed demand and supply and destabilized power grid operations, due to
integration of renewables and new transmission lines.

* Designing a unified information model that is capable of safely sharing infor-
mation between applications and services at a city scale is often challenging.
It should be based on semantically well-designed information models, which
capture data from disparate sources, each having its own attributes, i.e., sampling
frequency, latency characteristics, and semantics [21].

* Crowdsourcing can be used for semantic modeling of information from a crowd
of people related to a targeted issue and predicting the real-time behavior
of traffic. Crowdsourcing has been emerging in smart city applications, e.g.,
OpenStreetMap,”’ Cyclopath,® and Waze.?! Waze is a crowdsourcing traffic
application that uses each driver as a sensor for data acquisition. At the downside,
there is no best practice of characterizing crowdsourcing systems. For instance,
it is hard to predict the number of influential users, quantifying their range of
contributions, and integration of results.

Necessity of Cloud Computing for Smart Grids/Cities

Most of the power grid applications (e.g., SCADA, customer relation management
(CRM)) are based on traditional IT models that run over dedicated control centers.
They are expensive and rigid, but the scalability of such models in the context of
smart grids and smart cities is a major concern. Therefore, instead of deploying
such applications in traditional data centers, leveraging existing public computing
infrastructures such as cloud computing appears to be a promising solution, e.g., by
using an on-demand pricing model of cloud computing for demand response man-
agement. Further, virtualized cloud resources and virtualized smart grid resources
can be integrated in the form of a unified virtualization layer to decouple smart grid
applications from underlying smart grid monitoring and communications physical
infrastructures [22]. Some major roles of cloud computing in smart grids and smart
cities are as follows:

2OpenStreetMap Community: https://www.openstreetmap.org, Accessed Nov. 2016.
3 Cyclopath: http://cyclopath.org/, Accessed Nov. 2016.
31'Waze: https://www.waze.com/, Accessed Nov. 2016.

https://www.openstreetmap.org
http://cyclopath.org/
https://www.waze.com/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 15

e Managing large numbers of events and updating each state of distributed
energy resources create scalability issues. In addition, data generated from smart
meters, sensors, CRM, electric vehicles, and home appliances are massive and
heterogeneous. Due to poor scalability and high cost, traditional data warehouse
technologies may not be a viable option for smart grids and smart cities. For
instance, for a frequency of S5min, 1 KB data per power usage reading with
one million smart meters generates 2.68 TB/day data. This requires intensive
resources to be processed, analyzed, and stored. Cloud computing can satisfy
such requirements, as it offers scalable infrastructures. In addition, smart grid
data are time series data that can be stored in a distributed structure made up
of key-value pairs, which enable the distributed management and horizontal
scaling [23].

e The computational workload of smart grid and smart city applications can be
spread across geographically distributed cloud data centers, where electricity
supply is available at low cost. Redundant instances of smart grid and smart city
applications minimize service outages and prevent disaster recovery. The authors
in [24] discussed a grid-aware routing algorithm, which improves load balancing
in smart grids and renders power grids more robust and reliable with regard to
demand variations.

e Simulations of smart grids and smart cities include contingency analysis,
dynamic behavior of power systems, load forecasting, and climate and crime
models. To perform those tasks, large scalable parallel computing infrastructures
are required, which are not easy to realize at low cost with traditional
infrastructures. Conversely, cloud computing offers such resources on-demand
at low cost.

1.3.1.3 Big Data

The big data scenario includes the collection of many data sets. In the past, typically
the source of big data is considered as remote sensors and satellite imaging and
scientific visualization [25]. However, the horizon of data sources is not limited.
Many of the most important sources of big data are relatively new [26]. The big
data scenarios are like conventional data analytics before it. However, there are four
major differences:

Volume: The amount of all types of data generated from different sources. For
instance, Walmart collects more than 2.5 petabytes of data every hour from its
customer transactions [26].

Velocity: The speed of data transfer matters for many applications. For example,
real-time information and batch processing.

Variety: The huge amounts of information are generated from different sources
such as mobile phones, online shopping, social networks (e.g., Facebook,
Twitter), and GPS, just to name a few.

Veracity: It refers to the uncertainty of the data and its value.

16 B.P. Rimal and I. Lumb

There are several tools and frameworks (e.g., Hadoop,*> MapReduce [27],
Spark,* Flink,** Storm,*> Samza’®) available to handle the volume, velocity, and
variety of big data. Cloud computing plays a vital role for big data not only
providing scalable infrastructures and on-demand high-performance computing and
distributed storage to process and manage big data but also providing a new business
model, for example, big data as a service — a cloud service that allows users to
collect, store, analyze, visualize, and manage their big data. On the other hand,
there are open issues in big data such as real-time big data analytics, coordination
between database systems, and large-scale visualization.

1.3.2 5G Networks: Technology Requirements and Potential
Use Cases

Recently, the fifth generation of mobile technology (5G) has received enormous
attention from both academia and industry (e.g., METIS?? [28], 5G-Crosshaul [29],
5GNOW?™®). There is no common understanding about what 5G will be. Many
different visions and requirements can be found in the literature and industry
white papers. For instance, the telecommunications industry alliance NGMN’s 5G
vision states that “5G is an end-to-end ecosystem to enable a fully mobile and
connected society. It empowers value creation towards customers and partners,
through existing and emerging use cases, delivered with consistent experience,
and enabled by sustainable business models” [30]. In fact, 5G will be intertwined
communications, computing, and control communities.

The requirements for a 5G system are as follows [31, 32]: (a) aggregate data rate
should be 1000x from 4G to 5G, (b) 5G will need to support an end-to-end round-
trip latency of about 1 ms, (c) massive device connectivity (10-100x), (d) Joules/bit
and cost/bit of data will need to fall by at least 100x, (e) (Perception of) 99.999%
availability, (f) (Perception of) 100% coverage, and (g) up to 10-year battery life for
low-power, machine-type devices. An important question may arise at this point:
What could users do on a network, which meets the 5G requirements mentioned
above that is not currently possible on an existing 3G/4G/4.5G networks? To find

32 Apache Hadoop. http://hadoop.apache.org/, Accessed Oct. 2016.

33 Apache Spark. http://spark.apache.org/, Accessed Oct. 2016.

34 Apache Flink. https:/flink.apache.org/, Accessed Oct. 2016.

35 Apache Storm. http://storm.apache.org/, Accessed Oct. 2016.

36 Apache Samza. http://samza.apache.org/, Accessed Oct. 2016.

37FP7 European Project — Mobile and wireless communications Enablers for the Twenty-twenty
Information Society (METIS).

3FP7 European Project — 5th Generation Non-Orthogonal Waveforms for Asynchronous Sig-
nalling (SGNOW), http://www.5gnow.eu/

http://hadoop.apache.org/
http://spark.apache.org/
https://flink.apache.org/
http://storm.apache.org/
http://samza.apache.org/
http://www.5gnow.eu/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 17
Delay
Autonomous o Augmented T)
1ms driving @ reality @ infornet Fixed
Virtual Nomadic
reality . On the go
10 Disaster Real time Multi-person Services that can
ms |@ alert gaming video call be delivered by
legacy networks
o Services that could
i Bi-girectional be enabled by 5G
Automotive remote controlling .
100ms .ecall Device M2M connectivity
remote .First responder
controlling connectivity
1000ms L Personal Wireless cloud
Monitoring cloud : based office
sensor networks Video)
streaming Bandwith

<1Mbps 1Mbps 10Mbps 100 Mbps >1 Gbps throughput

Fig. 1.3 Latency and bandwidth/data rate requirements for generic applications (Source: GSMA
Intelligence [32])

the answer of this question, potential use cases should be identified. Some of the
requirements identified for 5G can be enabled by existing 4G and/or other networks.
Figure 1.3 illustrates the latency and bandwidth/data rate requirements of the various
applications, which have been discussed in the context of 5G.

The emerging technologies such as cloud radio access network (C-RAN),
software-defined networking (SDN), network functions virtualization (NFV), and
edge computing (mobile-edge computing (MEC), fog computing) are the building
block for 5G, described in detail in the following.

1.3.2.1 Cloud Radio Access Network (C-RAN)

Cloud computing technology can be beneficial to radio access networks (RAN5),
e.g., moving RAN functionality to the cloud computing infrastructure. In order
to provide mobile broadband Internet access to wireless users with high spectral
and energy efficiency, a cloud-based radio access network was envisioned, so-called
cloud radio access network (C-RAN) [33]. C-RAN is a mobile network architecture
where baseband resources are pooled from multiple base stations into centralized
baseband units (BBUs) pool. In fact, a C-RAN architecture exploits a combination
of virtualization, centralization, and coordination (radio coordination between cells
and bands) techniques, all of which interact with each other within the network.
Based on the functional splits between BBU and remote radio head (RRH), C-RAN
can be fully centralized or partial centralized [33].

18 B.P. Rimal and I. Lumb

Some of the major benefits of the C-RAN are as follows: reduce the network
deployment, energy consumption, and operation cost due to centralized maintenance
and sharing of infrastructure; improve system, mobility, and coverage performance
because of coordinated signal processing techniques (e.g., Coordinated Multi-Point
(CoMP) in LTE-Advanced (LTE-A) [34]); reduce backhaul traffic by offloading;
and enable better load balancing. As a result, mobile operators are able to deliver
rich wireless services in a cost-effective manner.

On the other hand, there are several open research issues to address in C-RAN
including high bandwidth requirement for fronthaul (link between BBU and RRH),
strict latency and jitter, low-cost transport network, techniques on BBU cooperation
(e.g., signal processing algorithms), virtualization techniques for baseband process-
ing pool, and utilization of computing resources (e.g., dynamic resource allocation)
in the cloud, just to name a few. Interested readers may refer to [33] and [35] for the
details on C-RAN.

1.3.2.2 Tactile Internet

The Tactile Internet enables precise haptic interaction not only machine-to-machine
but also human-to-machine relying on 1 ms round-trip latency combining with high
availability, ultra-reliability, and high security [36, 37]. Tactile Internet architecture
facilitates abstracting and virtualizing sensor/actuator functionalities as well as
network resources. The Tactile Internet brings together many disciplines such
as healthcare, education, robotics (e.g., industrial robots, service robots, remote-
controlled humanoid robots), manufacturing, industrial automation, sports, serious
games, and augmented and virtual reality, just to name a few.

Since light travels 300 km within 1 ms, the distance between a control server
and the point of tactile interaction can be 150 km, at most [38]. Therefore, to meet
the ultralow end-to-end latency and real-time response, Tactile Internet should rely
on edge computing (e.g., cloudlets, MEC, Fog computing), and content servers
should be located very close to the end users. Possibly such servers are deployed
at the base station of every cell, including many small cells (in heterogeneous
networks (HetNets)), and importantly any service requiring 1 ms latency has a need
for interconnection between operators; this interoperator interconnectivity must also
occur within 1 km of the end users [32]. This will likely require a substantial increase
in capital expenditure (CAPEX) spent on infrastructure for content distribution
and servers [32]. It is worth noting that existing interconnectivity points between
operators in 3G/4G networks are very sparse. Meeting 1 ms latency requirement of
the Tactile Internet in the era of 5G, there would be also a need of interconnection
between base stations (interconnectivity may work in urban areas, but what happens
in the case of rural areas?), which not only impact on the CAPEX as mentioned
above but also the topology of core network; especially existing mobility model
should be revisited.

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 19

1.3.2.3 Software-Defined Networking (SDN)

It is a new paradigm in networking (programmable networks), which advocates
separating the data plane and the control plane, and facilitates the design, delivery,
and operation of network services in a dynamic and scalable manner [39]. Since
SDN introduces a centralized approach to network configuration, network operators
do not have to configure all network devices individually. Key benefits of the
SDN include centralized control, simplified algorithms, commoditizing network
hardware, and standard application programming interfaces (APIs). OpenFlow
defined by Open Networking Forum® is the main southbound API in SDN. Note
that there is no currently standardized API for the northbound interactions. A
detailed description of the SDN architecture is beyond the scope of this chapter,
and interested readers are referred to [39, 40].

SDN has applications in a wide range of networked environments. Importantly,
SDN is expected to reduce both capital expenditure and operational expenditures of
cloud service providers, enterprise networks, and data centers.

An overview of SDN and some important future research directions are summa-
rized in [41] as follows: controller and switch design, scalability and performance in
SDNS, controller-service interfacing, virtualization and cloud service applications,
information centric networking, and enabling heterogeneous networking with SDN.

1.3.2.4 Network Function Virtualization (NFV)

Network Function Virtualization (NFV) group of the ETSI [42] defined NFV
as follows: “NFV aims to transform the way that network operators architect
networks by evolving standard IT virtualization technology to consolidate many
network equipment types onto industry standard high volume servers, switches
and storage, which could be located in data centers, network nodes and in the
end user premises.” NFV is applicable to data plane and control plane in both
mobile and fixed networks. Some use cases of NFV include security functions, NGN
signaling, SLA monitoring functions, gateways, switching functions, and mobile
network functions (base station, mobility management entity (MME), radio network
controller (RNC), home subscribe server (HSS), packet data network gateway
(PDN-GW), serving gateway (SGW), carrier-grade network address translator
(CGNAT), and so on). Cloud technologies are the major driving force for NVF,
for instance, hardware virtualization (e.g., vSwitch). Indeed, NFV brings several
benefits to the telecommunications industry along with cloud computing. More
specifically key advantages of NFV are as follows:

¢ Reduced equipment costs and power consumption
* Availability of network appliance multi-version and multi-tenancy

30pen Network Foundation. https://www.opennetworking.org, Accessed Oct. 2016.

https://www.opennetworking.org

20 B.P. Rimal and I. Lumb

* Enables a wide variety of ecosystems and fosters openness.
* Enable network operators to reduce the maturation cycle
* Supports multi-tenancy

The building block of NFV architecture mainly consists of virtualized network
functions (VNFs — software implementation of network functions), NFV infrastruc-
ture (NFVI — virtual compute, storage, and network), and NFV management and
orchestration (life cycle management of resources and VNFs). The details of the
NFV reference architecture are beyond the scope of this chapter. Interested readers
are referred to [43].

Besides these benefits, there are some technical challenges that need to be
addressed, such as scalability, seamless integration of different appliances from
different vendors, resilience, orchestration of legacy and virtual network appliances,
network stability, and so on.

1.3.2.5 Augmented Reality, Virtual Reality, and Mixed Reality

An augmented reality is a system (e.g., Google Glass) that combines the real
world with computer-generated virtual objects and appears to coexist in the same
space as the real world. AR system registers real and virtual objects to each other
[44]. In virtual reality (VR) system, user is immersed in the computer-generated
virtual environments. The first VR device called head-mounted display (HMD) was
developed by Ivan Sutherland and his team in 1968 (also see his paper “The Ultimate
Display” [45]). The examples of recent VR devices include Google Cardboard,
Samsung Gear VR, Oculus Rift, HTC Vive, Sony PlayStation VR, Razer OSVR
HDK 2, and so on. Mixed reality is the combination of both AR and VR systems
(e.g., Microsoft’s HoloLens) that means the MR combines real and virtual objects
and information.

The AR, VR, and MR systems has a wide range of applications. For instance,
AR devices can help improve safety and efficiency in customer service and can be
used by doctors, while the VR devices are mainly designed for gaming. However,
application areas can be expanded from academic research through to engineering,
design, business, gaming (e.g., Pokémon Go), and entertainment. Since AR/VR/MR
devices have low computing, processing, and storage capabilities, the best way to
achieve good performance of the AR/VR/MR applications is to offload compute-
intensive tasks to the remote cloud or edge cloud.

There are several research directions in the AR/VR/MR systems. Among them,
performance benchmarking is very important. For instance, finding the relationships
among independent variables including field of view, image resolution, scene
content, and interactive control, using the presence and performance as dependent
variables, is still an open issue [46].

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 21

1.3.2.6 Network Slicing

Network slice is an end-to-end logically isolated network, where each slice owns
its control plane and data path. The slicing layer provides an abstraction between
the control and data plane as well as enforces strong isolation between slices. Users
pick which slice controls their traffic [47]. Indeed, slicing policy specifies resource
(bandwidth, topology, forwarding rules, etc.) limits for each slice. FlowVisor (i.e.,
OpenFlow controller) [48] is one of the examples of network slicing. 5G network
architecture is expected to provide network slicing feature — so-called 5G slice —
a 5G slice consists of 5G network functions and specific radio access technology
settings that are combined together for the specific use case [30].

Network slicing helps operators to manage and operate multiple virtual networks
over a shared physical network infrastructure. Since 5G network slicing may
involve the combination of different conventional and emerging network technolo-
gies (e.g., wired/wireless, different radio access networks, SDN, NFV), network
slicing poses new challenges in service instantiation and orchestration and resource
allocation/sharing.

1.3.2.7 Containerization

Although it was in principle possible to predict the disruptive impact of containers
5 years ago, it is not clear that anyone actually did. And that is not entirely
surprising, as the concept realized with significant success in Solaris Zones,*
for example, required various enhancements in the Linux kernel (e.g., cgroups,
namespaces) as implementation prerequisites. Interestingly in the context of this
chapter and indeed this book, the contemporary notion of containers was spun off an
internal project from within PaaS company dotCloud in France. Ultimately released
to open source in 2013, Docker immediately gained interest, especially following
the development of its libcontainer library written in the Go programming language,
which replaced the LXC execution environment about a year later. As even a cursory
search of Google Trends data emphatically demonstrates, interest in Docker*! has
seen nothing short of a meteoric rise over the past few years and, indeed, since the
publication of the first edition of this book. This interest is warranted and can be
substantiated on tactical as well as strategic grounds.

Tactically, containers allow applications and all of their dependencies to be
packaged, distributed, and executed on any modern Linux server. And although
containers have much in common with the virtual machines introduced earlier in this
chapter, they also have some significant differences. As Fig. 1.4 indicates, containers
share the host’s operating system, rather than require their own. Needing only the

408plaris Zones: https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#
OPCUG426, Accessed Oct. 2016.

“'Docker: https://www.docker.com/, Accessed Oct. 2016.

https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://www.docker.com/

22 B.P. Rimal and I. Lumb

Containers vs. VMs

Containers are isolated,
but share OS and,
where appropriate,
binaries/libraries

Container

Bins/Libs

Host OS5
Server

Server

Fig. 1.4 Architectural similarities and differences between containers and virtual machines

runtime provided by the Docker Engine,** for example, lighter-weight containers
can be instantiated much more efficiently than can a VM that relies on its own
OS. Not only is this efficiency appealing in highly dynamic environments, lighter-
weight containers are also appealing from a resource management perspective — as
a given server can support many isolated containers — as opposed to just a few VMs.
Finally, the convenience of containers is responsible for increased portability from
development through to deployment and is thus considered significant enablers of
the DevOps movement.

From a strategic perspective, containerization is a key enabler for the develop-
ment of cloud-native applications. Along with an orientation around microservices
as well as dynamic scheduling, containerization permits cloud nativity to be
architected in at the outset, as opposed to being grafted on as some afterthought.
Under the auspices of the Cloud Native Computing Foundation (CNCF),** container
clusters are already making use of open-source Kubernetes** as “seed technology.”
CNCEF is currently incubating a number of projects and promises to further make
tangible a number of cloud-native applications.

Although Docker in particular, and containers in general, continue to receive
a tremendous amount of interest and attention, it is important to temper this
enthusiasm through consideration of a number of concerns. Most importantly, and
as is often the case with disruptive technologies, security remains a concern when it
comes to containers — so much so — that some organizations run containers within
VMs! Security and networking challenges notwithstanding, there is also a degree

“Docker Engine: https://www.docker.com/products/docker-engine, Accessed Oct. 2016.
#3Cloud Native Computing Foundation: https://cncf.io/, Accessed Oct. 2016.
#Kubernetes: http://kubernetes.io/, Accessed Oct. 2016.

https://www.docker.com/products/docker-engine
https://cncf.io/
http://kubernetes.io/

1 The Rise of Cloud Computing in the Era of Emerging Networked Society 23

of tension between some proponents of Docker and those who seek to establish
standards for containers (e.g., the Open Container Initiative (OCI).*> Finally, the
rapidly evolving ecosystem around containers is both broad and deep, and this
certainly creates challenges for those seeking to make future-proofed decisions for
enterprise adoption. And that’s quite an achievement for a technology that did not
really exist, in any significant way, when the previous edition of this book was
released some 7 years ago.

1.4 Conclusions

A networked society is a big vision of future information and communications
technology world, where everything will be connected and services and application
can be accessed anytime from anywhere. Indeed, the networked society is the
networks of everything (NoE), that is, beyond the upcoming 5G networks. That
will enhance the quality of people’s lives not only for information access but in
the wide range of sectors including healthcare, education, transportation, education,
and entertainment, just to name a few. This chapter has highlighted the new role
and scope of cloud computing for the networked society. A taxonomy of enabling
technologies of networked society was proposed, and each of them discussed in
a great detail. Many technical challenges and opportunities were identified. In
order to achieve a full spectrum of benefits of networked society, there is a long
journey that may also need new fixed/wireless technologies for long-term realization
of networked society. We may need a convergence or combination of different
technologies, shown in the proposed taxonomy that can support a wide variety of
applications and services. We hope that this chapter will help to understand a long
journey toward a networked society.

References

1. Rimal BP, Choi E, Lumb I (2009) A taxonomy and survey of cloud computing systems. In:
Proceedings of IEEE fifth international joint conference on INC, IMS and IDC, Aug 2009,
pp 44-51

2. Rimal BP, Jukan A, Katsaros D, Goeleven Y (2011) Architectural requirements for cloud
computing systems: an enterprise cloud approach. J Grid Comput 9(1):3-26

3. Manyika J, Chui M, Bughin J, Dobbs R, Bisson P, Marrs A (2013) Disruptive technologies:
advances that will transform life, business, and the global economy. McKinsey Global Institute,
report, May 2013

4. Rimal BP, Choi E (2012) A service-oriented taxonomical spectrum, cloudy challenges and
opportunities of cloud computing. Int J Commun Syst 25(6):796-819

430pen Container Initiative: https://www.opencontainers.org/, Accessed Oct. 2016.

https://www.opencontainers.org/

24

10.

11.

12.

13.

14.

15.

17.

20.

21.

22.

23.

24.

B.P. Rimal and I. Lumb

. Rimal BP, El-Refaecy MA (2010) A framework of scientific workflow management systems for
multi-tenant cloud orchestration environment. In: Proceedings of the 19th IEEE international
workshop on enabling technologies: infrastructures for collaborative enterprises (WETICE),
Larissa, June 2010, pp 88-93

. Castells M (2000) Materials for an exploratory theory of the network society. Br J Soc 51(1):
5-24

. Castells M (2011) The rise of the network society: the information age: economy, society, and
culture, vol 1. Wiley, Somerset

. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for vm-based cloudlets in
mobile computing. IEEE Pervasive Comput 8(4):14-23

. Ha K, Pillai P, Richter W, Abe Y, Satyanarayanan M (2013) Just-in-time provisioning for

cyber foraging. In: Proceedings of the 11th annual international conference on mobile systems,

applications, and services, MobiSys *13, Taipei, June 2013, pp 153-166

Simanta S, Lewis GA, Morris E, Ha K, Satyanarayanan M (2012) A reference architecture

for mobile code offload in hostile environments. In: Proceedings of the IEEE/IFIP conference

on software architecture (WICSA) and European conference on software architecture (ECSA),

Helsinki, Aug 2012, pp 282-286

Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the Internet of

things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing,

Helsinki, Aug 2012, pp 13-16

ETSI Industry Specification Group (ISG) (2014) Mobile-edge computing — introductory

technical white paper. In: ETSI, Sept 2014, pp 1-36

ETSI Industry Specification Group (ISG) (2016) Mobile edge computing (MEC); framework

and reference architecture, ETSI GS MEC 003 V1.1.1, Mar 2016, pp 1-36

International Telecommunication Union (2014) Common requirements of the Internet of

Things. Recommendation ITU-T Y.2066, June 2014

Evans D (2011) The Internet of Things how the next evolution of the Internet is changing

everything. In: Cisco Internet Business Solutions Group (IBSG) white paper, Apr 2011,

pp 1-11

. IEEE (2011) IEEE guide for smart grid interoperability of energy technology and information

technology operation with the electric power system (EPS), end-use applications, and loads.

IEEE Std 2030-2011, Sept 2011, pp 1-126

Chourabi H, Nam T, Walker S, Gil-Garcia JR, Mellouli S, Nahon K, Pardo TA, Scholl HJ

(2012) Understanding smart cities: an integrative framework. In: Proceedings of 45th Hawaii

international conference on system science (HICSS), Maui, Jan 2012, pp 2289-2297

. Harrison C, Eckman B, Hamilton R, Hartswick P, Kalagnanam J, Paraszczak J, Williams P
(2010) Foundations for smarter cities. IBM J Res Dev 54(4):1-16

. Khan Z, Kiani SL (2012) A cloud-based architecture for citizen services in smart cities. In:

Proceedings of IEEE fifth international conference on utility and cloud computing (UCC),

Chicago, Nov 2012, pp 315-320

Yamamoto S, Matsumoto S, Nakamura M (2012) Using cloud technologies for large-scale

house data in smart city. In: Proceedings of the IEEE 4th international conference on cloud

computing technology and science (CloudCom), Taipei, Dec 2012, pp 141-148

Naphade M, Banavar G, Harrison C, Paraszczak J, Morris R (2011) Smarter cities and their

innovation challenges. Computer 44(6):32-39

Yufeng X, Baldine I, Chase J, Beyene T, Parkhurst B, Chakrabortty A (2011) Virtual smart grid

architecture and control framework. In: Proceedings of the IEEE international conference on

smart grid communications (SmartGridComm), Brussels, Oct 2011, pp 1-6

Rusitschka S, Eger K, Gerdes C (2010) Smart grid data cloud: a model for utilizing cloud

computing in the smart grid domain. In: Proceedings of the first IEEE international conference

on smart grid communications (SmartGridComm), Gaithersburg, Oct 2010, pp 483488

Mohsenian-Rad A-H, Leon-Garcia A (2010) Coordination of cloud computing and smart

power grids. In: Proceedings of the first IEEE international conference on smart grid

communications (SmartGridComm), Gaithersburg, Oct 2010, pp 368-372

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

4

—

42.

43.

44,

45.

46.

47.

48.

The Rise of Cloud Computing in the Era of Emerging Networked Society 25

Cox M, Ellsworth D (1997) Managing big data for scientific visualization. In: ACM Siggraph,
Los Angeles, Aug 1997

McAfee A, Brynjolfsson E (2012) Big data. Harv Bus Rev 90(10):61-67

Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun
ACM 51(1):107-113

Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M, Queseth O, Schellmann
M, Schotten H, Taoka H, Tullberg H, Uusitalo MA, Timus B, Fallgren M (2014) Scenarios
for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun
Mag 52(5):26-35

La Oliva AD, Perez XC, Azcorra A, Giglio AD, Cavaliere F, Tiegelbekkers D, Lessmann
J, Haustein T, Mourad A, Iovanna P (2015) Xhaul: toward an integrated fronthaul/backhaul
architecture in 5G networks. IEEE Wirel Commun 22(5):32-40

NGMN Alliance (2015) NGMN 5G white paper, Feb 2015, pp 1-125

Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will
5G be? IEEE J Sel Areas Commun 32(6):1065-1082

GSMA Intelligence (2014) Understanding 5G: perspective on future technological advance-
ment in mobile. White paper, Dec 2014, pp 1-26

China Mobile Research Institute (2011) C-RAN: the road towards green RAN. White paper,
Oct 2011

Lee D, Seo H, Clerckx B, Hardouin E, Mazzarese D, Nagata S, Sayana K (2012) Coordinated
multipoint transmission and reception in LTE-advanced: deployment scenarios and operational
challenges. IEEE Commun Mag 50(2):148-155

Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2015)
Cloud ran for mobile networks — a technology overview. IEEE Commun Surv Tutor 17(1):405—
426. Firstquarter 2015

Fettweis G, Alamouti S (2014) 5G: personal mobile Internet beyond what cellular did to
telephony. IEEE Commun Mag 52(2):140-145

Fettweis GP (2014) The tactile Internet: applications and challenges. IEEE Veh Technol Mag
9(1):64-70

ITU (2014) The tactile Internet. ITU-T technology watch report, pp 1-24

Kim H, Feamster N (2013) Improving network management with software defined networking.
IEEE Commun Mag 51(2):114-119

Sezer S, Scott-Hayward S, Chouhan PK, Fraser B, Lake D, Finnegan J, Viljoen N, Miller
M, Rao N (2013) Are we ready for SDN? Implementation challenges for software-defined
networks. IEEE Commun Mag 51(7):36-43

. Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti T (2014) A survey of software-

defined networking: past, present, and future of programmable networks. IEEE Commun Surv
Tutor 16(3):1617-1634. Third Quarter 2014.

ETSI Industry Specification Group (ISG) (2012) Network functions virtualisation (NFV),
white paper, Oct 2012, pp 1-16

ETSI Industry Specification Group (ISG) (2012) Network functions virtualisation (NFV);
architectural framework, ETSI GS NFV 002 V1.1.1, Aug 2012, pp 1-21

Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, Maclntyre B (2001) Recent advances in
augmented reality. IEEE Comput Graph Appl 21(6):34-47

Sutherland IE (1965) The ultimate display. In: Proceedings of the IFIP congress, New York
City, Aug 1965, pp 506-508

Duh HB-L, Lin JJW, Kenyon RV, Parker DE, Furness TA (2002) Effects of characteristics
of image quality in an immersive environment. J Presence: Teleoper Virtual Environ 11(3):
324-332

Feamster N, Motiwala M, Vempala S (2007) Path splicing with network slicing. In: Proceed-
ings of the ACM SIGCOMM HotNets, Nov 2007

Sherwood R, Gibb G, Yap K-K, Appenzeller G, Casado M, McKeown N, Parulkar G (2009)
Flowvisor: a network virtualization layer. OpenFlow switch consortium, technical report, TR-
2009-1, Oct 2009, pp 1-15

Chapter 2
Mirror Mirror on the Wall, How Do I Dimension
My Cloud After All?

Rafaelli Coutinho, Yuri Frota, Kary Ocaia, Daniel de Oliveira,
and Licia M.A. Drummond

2.1 Introduction

Clouds have already proven their utility and importance in commercial and scientific
domains over this decade [58]. Although most of its huge success is mainly due to
existing commercial providers (e.g., Amazon AWS,' Google Cloud,” IBM Cloud,’
Rackspace4 and Microsoft Azure’) and frameworks such as Hadoop [22, 32] and
Apache Spark [52], it opened a new dimension of possibilities for building complex
scientific applications that demand high performance computing (HPC) capabilities
to process large sets of scientific data and combinations of parameters based on
distributed resources [30, 58]. Until 2010, there was still a lot of questioning
whether clouds were suitable for HPC scientific applications, but several researches

Thttps://aws.amazon.com/
2cloud.google.com/
3http://www.ibm.com/cloud-computing/
“https://www.rackspace.com/
Shttps://azure.microsoft.com/

R. Coutinho (0<)

Federal Center of Technological Education, Nova Iguacu, Brazil
e-mail: rafaelli.coutinho @cefet-rj.br
Y. Frota « D. de Oliveira * L.M.A. Drummond

Fluminense Federal University, Niter6i, Brazil
e-mail: yuri @ic.uff.br; danielcmo @ic.uff.br; lucia@ic.uff.br

K. Ocaiia
National Laboratory of Scientific Computing, Petrépolis, Brazil
e-mail: karyann@Incc.br

© Springer International Publishing AG 2017 27
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_2

https://aws.amazon.com/
cloud.google.com/
http://www.ibm.com/cloud-computing/
https://www.rackspace.com/
https://azure.microsoft.com/
mailto:rafaelli.coutinho@cefet-rj.br
mailto:yuri@ic.uff.br
mailto:danielcmo@ic.uff.br
mailto:lucia@ic.uff.br
mailto:karyann@lncc.br

28 R. Coutinho et al.

showed the advantages of cloud computing for science [2, 17, 30, 33]. In addition,
some approaches such as Magellan® and Nebula’ offer to the scientific community
HPC-optimized Clouds.

Currently, traditional HPC resources are already available in cloud offerings
[47]. Applications from different domains of science can take advantage from these
resources since scientists commonly need to execute large-scale experiments that
require high processing power, memory, storage capacity, etc. to run [56]. Many
existing experiments are executed through a single application that encapsulates all
the computational steps of the experiment. On the other hand, many experiments
have a more complex structure, being composed of a set of programs and the data
dependencies among them, thus forming a scientific workflow [42, 56]. Scientific
workflows may be defined as an abstraction that models the experiment in terms
of activities (steps of the scientific process) connected by a dataflow. Scientific
workflows are managed by scientific workflow management systems, and they are
at the interface of scientists and computing infrastructures.

Standalone HPC applications are commonly executed by creating several parallel
jobs using a HPC scheduler such as PBS/TORQUE [23] or Condor [26]. On the
other hand, scientific workflows are managed by complex engines called Scientific
Workflow Management Systems (SWfMS) [56] that provide parallel capabilities for
managing and executing workflows in HPC environments. Both application types
(standalone and workflows) commonly rely on traditional HPC environments such
as clusters and grids [24] but many of them have already migrated to clouds [58].

One interesting example of scientific application migrated to clouds is found
in the genomic bioinformatics domain: The BLAST application [1]. BLAST is a
suite of programs that aims at finding regions of local similarity among biological
sequences (DNA or protein). It is used to generate alignments among a sequence,
referred to as a “query,” and sequences within a database, referred to as “subject.” In
fact, BLAST serves as basis for many bioinformatics protocols, scripts, pipelines,
and workflows [3, 36, 43,45, 51, 54, 59], and much effort was spent in the last years
on optimizing this tool. One of the most interesting optimizations of BLAST is a
cloud-based version named CloudBLAST [41], which encapsulates in a VM (or in
a set of VMs) the parallelized BLAST using MapReduce [13] model. Experiments
showed that CloudBLAST presented speedups of 57 compared with 52.4 of its MPI
version running on 64 processors [41].

Although CloudBLAST proved that scientific applications that demand HPC
capabilities could benefit from clouds, there is a tricky factor that must be considered
before to start using CloudBLAST (or any other scientific application that needs to
execute in parallel in the cloud): what is the most suitable type and the amount
of resources that “fits” with my scientific problem? Differently from clusters and
grids, clouds are based on an “on demand” model, where resources are not available
a priori. They need to be deployed only when the user needs them. Also, since

Shttp://magellan.alcf.anl.gov
http://nebula.nasa.gov

http://magellan.alcf.anl.gov
http://nebula.nasa.gov

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 29

the cloud follows a pay-as-you-go model, over- or underestimations of resources
can produce a negative impact in the scientific experiment both in terms of total
execution time and financial costs. However, it is not simple to estimate the
necessary amount of resources for a specific application.

Still considering CloudBLAST example, for each execution of the application,
the scientist firstly needs to estimate the necessary computing power based on the
provided input data (biological sequences) and parameters and then choose one (or
more) VM types to deploy based on a (commonly huge) set of VM types. This ad
hoc estimation can be tedious and error prone especially because cloud providers
such as Amazon AWS offer more than 30 VM types to be deployed, some of them
provide high parallel processing capability, others provide high storage capacity,
etc. Choosing the right type and the amount of VMs to deploy is a top priority for
scientists since under- or overestimations can made the experiment unviable, and/or
financial costs can spiral out of control if scientists make the wrong VM type choice.

This chapter addresses the problem of dimensioning the amount of VMs in
clouds for executing scientific applications that demand HPC and parallel capa-
bilities. The aim of this chapter is to present existing approaches that estimate in
a static or dynamic way the amount of VMs for several types of applications from
stand-alone applications to complex simulations modeled as scientific workflows.

This chapter is organized in five sections besides this introduction. Section 2.2
discusses about scientific applications, scientific workflows, and their HPC require-
ments. Section 2.3 presents the static cloud dimensioning and Sect. 2.4 the dynamic
dimensioning approach. Section 2.5 brings a survey on existing approaches for
cloud dimensioning, and, finally, Sect. 2.6 concludes this chapter and points some
future work.

2.2 Desiderata for HPC Applications and Scientific
Workflows

This section presents the main definitions regarding scientific applications and
scientific workflow concepts, which will be used along this chapter.

2.2.1 Scientific Applications

Many of the existing scientific applications are compute intensive and/or data
intensive [28]. This means that these applications demand HPC capabilities to
produce results in a timely manner. Even when scientists have access to HPC
environments such as HPC VMs, the execution of some applications may last for
several hours or days. Thus, it is fundamental to understand the HPC requirements of
scientific applications in order to discover if the chosen resource in the cloud is able
to offer the necessary computational power to execute the application. However, it

30 R. Coutinho et al.

is not trivial to generalize the HPC requirements for scientific applications since
there are several different types of applications and their categorization is very
complex.

One of the prominent solutions to categorize scientific applications is proposed
by Colella [7], which categorized seven computational methods that he believed to
be the basis of most scientific applications in science and engineering. In [7] the
“Seven Dwarfs” of scientific computing is proposed. Each Dwarf is associated to
one type of scientific applications. They represented entire families of applications
with common computational properties. After the work of Collela, the parallel
computing team at the University of California at Berkeley extended the list for
13 Dwarfs, as follows:

Dense linear algebra
Combinational logic
Sparse linear algebra
Graph traversal
Spectral methods
Dynamic programming
N-body methods
Backtrack and branch-and-bound
Structured grids

10. Graphical models

11. Unstructured grids

12. Finite state machines
13. MapReduce

NN R DD~

N

Some works use the Dwarfs characterization to check if they are suitable for
cloud computing environments. Examples using Dwarfs to predict performance and
analyze cloud suitability are [21, 40, 48]. These papers showed that clouds provide
a suitable environment for executing applications that demand HPC capabilities,
since they provide the necessary processing power and storage that are required by
those categories of applications. However, how to choose the right type of resource
and the amount to deploy for those applications remains an open, yet fundamental,
challenge.

2.2.2 Computer-Based Scientific Experiments

Computer-based scientific experiments are composed of complex scientific appli-
cations that consume and produce large datasets and allocate huge amounts of
computational resources [42]. A computer-based scientific experiment follows a
specific life cycle [42], which presents three main phases that describe the exper-
iment from its conception, implementation until its final results, where provenance
[25] is a key issue to promote the integration: (i) composition - deals with the
experiment configuration steps as defining the activity scope, choosing the adequate

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 31

scientific application; (ii) execution - focuses on the distribution and monitoring
programs and data in a computational environment; and (iii) analysis - focuses
on evaluating results from scientific experiments as whole, including steps as data
visualization, mining results, or querying provenance databases. These computer-
based experiments are commonly modeled as scientific workflows, which are
explained in the next subsection.

2.2.3 Scientific Workflows

A scientific workflow is an abstraction that models a set of activities (i.e., program
invocations) connected through a dataflow. Scientific workflows are commonly
represented as a graph where each node is associated to the invocation of a program
and the edges are data dependencies among programs [14, 56]. Scientific workflows
can be managed by Scientific Workflow Management Systems (SWfMSs), such
as Kepler [37], Taverna [61], Pegasus [14], SciCumulus [16], and Swift/T [62].
SWIMSs allow for defining, executing, and monitoring workflow execution. Most
of existing SWfMSs also collect provenance [25], that is, the historical information
about the experiment and can be used for reproducibility and data curation. SWfMSs
have been successfully used in several domains of science such as chemistry,
physics, bioinformatics, oil & gas, and astronomy. Nowadays, several scientific
workflows are large scale, since they may process many TBs of data [28], thus
requiring parallel execution in HPC or HTC environments, such as clouds. Also,
since these workflows are composed of applications that demand HPC capabilities,
they also demand HPC environments to run in a timely manner. Thus, the problem
of dimensioning the amount of resources in the cloud is also fundamental for cloud-
based scientific workflows.

2.3 Static Cloud Dimensioning

Vaquero et al. [58] cite various different objectives for cloud computing. Despite
the fact that most of these objectives are important, the focus of this chapter is on
the infrastructure-as-a-service model (IaaS), where scientist that wants to run large-
scale applications needs computing resources (VMs) for a specific amount of time
and pays only what they use. However, deploying the exact number of VMs for a
scientific application execution is a hard task because it is not trivial for scientists to
estimate the time needed for an application to execute, the size of the files generated,
and the associated transfer times. As a matter of fact, if the amount of resources to
be deployed is overestimated or underestimated, it may produce a high financial
cost of the execution or a negative impact on the performance of applications. This
deployment is a complex task because cloud providers commonly have a great
number of VM types (e.g., computer and GPU clusters, micro, high performance

32 R. Coutinho et al.

specification

Cloud 4

. Provider /

-

i

Scientific workflow VM
VM
y !

Time Financial
constraints constraints

Fig. 2.1 VM allocation scenario [8]

CPU, etc.), where each resource is associated with a performance characteristic and
a financial cost, designed to reach the requirements of all kind of users. In this
scenario, clients (users/scientists) have to decide the type and the amount of VMs
they should deploy with the objective to minimize financial cost or execution time
(or both). Figure 2.1 illustrates this scenario, where users pay for a specific set of
VMs to a cloud provider, in order to execute their application. On the other hand, the
provider offers a group of VM types to users. To prevent a cloud environment with
an over- or an under-dimensioning, the user needs to use some strategy to allocate
the VMs in an optimal or at least a near-optimal configuration. One type of strategy
is the static dimensioning. In this type of dimensioning, all the deployment plan
is produced before the execution of the application or the workflow. It allows for
optimizing the deployment plan, but it is susceptible to performance variations in
the cloud VMs.

2.3.1 Mathematical Formulation

The VM allocation problem described in the last section can be described as the
following mathematical formulation. Let P be the set of available VM types. A set
of users’ requirements such as the maximum execution time T);, memory capacity
M, maximum financial cost Cy, disk storage, Ds and a processing demand of G
Gflops are defined. Similarly, each VM type p € P has a financial cost ¢, (per period
of time) and a set of characteristics such as storage capacity d,, amount of memory,

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 33

Table 2.1 Clouds
environment notations [10]

Notation
P

Cy

Ty

Dy

Mc

Gy
Cp

d,

ny
8p

Nu

Description

The set of available VM types

The maximum user financial cost
The maximum user execution time
The disk storage required by the user

The amount of memory required by the
user

The processing power required by the user
The financial cost of hiring the VM of
type p for one period of time

The disk storage available in VM of type p
The amount of memory available in VM
of type p

The processing power available in VM of
type p

The limit of allocated VM that a single
user can hire in each period of time

m,, and a processing power of g, Gflop per period of time (Gflopt). Furthermore,
cloud providers limit the number of VMs that each user can allocate per period of
time. Table 2.1 describes the used notation for the problem.

A binary variable x,;, is defined foreachp € P,i € {1,... Ny}andt € T =
{1,..., Ty}, such that x,; = 1if and only if VM i of type p is allocated (hired) at
time ¢, otherwise x,; = 0. Also, consider makespan variable t,, as the last time that
a VM was allocated by the user. This scenario can be formulated as following:

N,
(CC-IP) min | oy Y XM: > epxpin + ot 2.1)

peP i=1 t€T

N,
subject to Z XM: Z cpXpit < Cut (2.2)

peP i=1 €T

Nu
E E dp Xpit = DS Xp/i'ts vVt e T, VP/ € P,
pEP i=1

Vi'e{l,....,Ny} (2.3)

Nm
Z me’ Xpit = Mc Xpriry, VeeT, Vp’ e P,

pEP i=1

vi'e{l,....Ny} (24

34 R. Coutinho et al.

Nm
YD e =G 2.5)

pEP i=1 (€T
Ny
D0 i < Nur. VieT (2.6)
peP i=1
I = Xpiz, VteT,VpeP,
Vie{l,....Ny} (2.7
Xpit+1 = Xpits VteT,Vp eP,
Vie{l,....Ny} (2.8
Xpit-1t = Xpir, VteT,VpeP,
Vie{l,....Ny—1} (2.9
Xpir € {0, 1}, VteT,VpeP,
Vie{l,...,Ny} (2.10)
tw €7 2.11)

where (o) + o) = 1.

The objective function (2.1) pursues both the minimization of financial costs and
total execution time (makespan). The parameters «; and o, define the weight of
each one of the objectives (defined by the user). Constraints (2.2) express that the
maximum user financial cost should not be exceeded. Inequalities (2.3) and (2.4)
state that there is enough memory and disk storage to meet the user requirements in
each time quantum. In a similar way, inequalities (2.5) enforce that the processing
power of the hired VMs is large enough to satisfy the user application. Constraints
(2.6) rule that the number of hired VMs is bound by the cloud providers limit while
inequalities (2.7) ensure that makespan variable ¢, is limited by the last time a VM
was hired. Constraints (2.8) guarantee continuous hiring periods (i.e., if a VM is
hired at time ¢ + 1, then it must also be hired at time ¢). Furthermore, inequalities
(2.9) are responsible to eliminate symmetrical solutions. Finally, inequalities (2.10)
and (2.11) define the variables domain.

2.3.2 Federated Clouds Scenario

Besides executing stand-alone applications or workflows in single provider compute
clouds, we can also explore federated cloud scenario. A federated cloud is a group
of several clouds that are put together to meet the user needs. According to Buyya
et al. [4], cloud providers have covered many regions of the planet with data centers

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 35

in order to provide reliability and redundancy for the users. Especially for users
interested in executing their applications in parallel, the scenario of federated clouds
is interesting in at least three main points: (i) when the user reaches the limit of VMs
that can be allocated in just one provider, (ii) to avoid costly data transfers between
regions, and (iii) when the hired provider does not have any more available VMs
and then needs to rent the resources from another provider.

In this new scenario, in order to take into account the execution of parallel
applications in federated clouds, we extended formulation (CC-IP) to consider new
characteristics such as communication costs between different providers. In order to
represent this new scenario, some additional notation is needed.

Let g be the number of cloud providers and P; be the set of available VM types
by provider j, such P = P; U P, U ... U P, is the family of all VM types from
all providers. In this new environment, each VM has a new communication cost
_c)pip/,-/ representing the transfer cost from VM i of type p to another VM ¢’ of type
p'. We consider that ¢ ;,ys = (uc, + dc,y + sc) * s, if p and p’ belong to different
providers, or C vy = cs, * sizedata, otherwise, where uc, is the cost to upload
data from a VM of type p, dc,y is the cost to download data to a VM of type p’, sc
is the cost to store the transferred data, cs, is the communication cost between VMs
of the same type in the same provider, and s is the average size of the transmitted
data. Furthermore, let N,’\,, be the limit of VMs that a single user can hire in each
provider j and in each quantum of time. We also define that Pr(p) stands for the
provider index of VM p € P. Therefore, two new binary variables are presented: y,;

foreachp € P,i € {1,... ,NZ‘(I’)} , such that y,; = 1 if and only if VM i of type

p is hired, or y,; = 0, otherwise, and ?pip/i/ foreachp,p’ e P,i e {l,... ,N,ﬁ,r(”) },
iedl,... ,N;Ir(p)}, such that _z)p[p/i/ = lifand only if y,i*yy» = 1, 0r _z>p,<p/,»/ =0,

otherwise. Table 2.2 expand the notation used in (CC-IP).

Table 2.2 Notations for federated clouds environment [10]

Notation | Description

P; The set of available VM types offered by provider j

P P={P,UP,U...UP,}

Nﬁ,, The limit of allocated VM that a single user can hire in each period of time in
provider j

Pr(p) Provider index of VM p € P

_c>p,-p/ i The communication cost from a VM i of type p. To another VM i’ of type p’

uc, The upload cost froma VM p

dc, The download cost to a VM p

sc The storage cost of the transmitted data

s The average size of the transmitted data

csp The communication cost of VM type p with other. VM types of the same cloud

provider

36 R. Coutinho et al.

N;;ru») NA’;"‘”,)
Thus, we increase the previous formulation (CC-IP) by adding Z Z Z Z
pEP p'ep i=1 =]
_c)pi,,r;r_z),,;p/,-/ to the objective function (2.1), dropping constraint (2.6), and inserting
the following inequalities to (CC-IP):

Nlil:[r(p)
Yo wu <NV Vj=1...qVieT (2.12)

peP; i=1

- /
ypi z Zpip/i/’ Vpap € P7

Vie {1,...,N§’(P’}, and /' € {1,...,N,{';’(””} 2.13)

—
yp/i/ > 2 pip'i’ s Vpsp/ € P7

Vie {1,...,NA’7(”)}, and i’ € {1,...,1\/;’("/)} (2.14)

Ypi +ypr —1= _Z)pip’i/, Vp,p/ eP,

Vie {1,...,N§’<”)}, and i’ € {1,...,N§""”} (2.15)

> X < il TI, ¥p € P,

teT

Vie {1,...,Nﬁ’;’(”)} (2.16)

In this generalized formulation, denoted as CC-IP-fed, inequalities (2.12) ensure
that the number of hired VMs is bound by each cloud providers limit (equivalent
to constraint (2.6)). The constraints (2.13), (2.14), (2.15), and (2.16) rule that
the financial cost derive from the communication between different providers is
considered. Note that by constraints (2.13), (2.14), and (2.15), whenever x,; = 1
for some ¢, this means that y,; = 1.

2.3.3 A Heuristic Approach

In [10], a greedy randomized adaptive search procedure (GRASP), named GraspCC
[8], is introduced to tackle the problem of VM allocation in federated clouds. Each

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 37

GraspCC iteration consists of constructing an initial solution by method coCC and
then applying a local search procedure, denoted IsCC, to find a local optimum.

We define a solution {(p1,i1,t1), (p2,i2,12),...} as a set of 3—tuples (p,i,1)
indicating that VM i of type p was hired on period . We denote S the set of all
feasible solutions (i.e., solutions that respect the user’s requirements). We also define
1w(S) = max, e, t as the last time period that a VM was hired in a feasible solution
s € S. Furthermore, we define a cost function F : S — R, which define the solution
quality. Note that function F tries to minimize financial and time costs (2.17), while
(2.18) penalizes the infeasibility regarding maximum time and maximum financial
cost. The terms A, and A, are coefficients of penalty related to the violation of time
and cost requirements, respectively.

F(s) =1 Z cp + Z Z Cipiv | + catin(s) (2.17)
(p.i,H)Es (p,i,t)Es (p' i’ 1')€Es
+ A1 (max{0, t,,(s) — Tyr}) + A2 [max 40, Y ¢, — Cy (2.18)
(p,i,t)Es

Algorithm 1: GraspCC

1 Input: P, CM,TM,Ds,Mc.Gf,Oll,()tz,Al,Az
2 Output: solution s™;
35 =0; F(s*) =00; i =0;
4 while i < iter
5 S=COCC(P, CM,TM,Ds.Mc,Gf.&],az,)nl,kz);
6 s = lSCC(S, P, CM, TM,Ds, Mc, G/‘, oy, 0, A] s Az),
7 if (F(s) < F(s™)) and (s is feasible)
8 s*¥=s51=0;
9 endif
10 i=i+1;
11 end while
12 return s™;

The GraspCC algorithm is presented in algorithm 1. The value iter represents the
maximum number of iterations without improvement. First, the construction phase
is performed by algorithm coCC in a random and greedy way (Algorithm 2). In
this method, a solution is constructed by adding tuples, in each iteration, to the first
period of time. The tuples are built from the ordered set Lp where VMs p € P
appears in descending order of financial cost and processing power (xc, + 02gp).
The algorithm randomly chooses VM p from the § first VMs in Lp until the current
solution satisfies the disk and memory requirements for = 1. Furthermore, in lines
(9)-(12), the solution is replicated in all remaining time periods until the demand for
processing power is satisfied. Note that the maximum time and maximum financial

38 R. Coutinho et al.

cost requirements are not necessarily met in this initial solution, but this strategy is
important to achieve diversity in the initial solution.

Algorithm 2: coCC

Input: P, CM, TM, Ds, Mc. Gf, 1,0, A] s Az

Output: solution s;

s = 0; Lp = Order(P);

while (me,l)a d, < Dg) or (Zm(‘,y“)a my, < Mc)
Choose VM p (index i) randomly among the first 8 elements of Lp
s=sU{pi};

end while

=2;

while (Zpl(p.i,/)ex 8 < Gf)
§= U(p.i.])e.y(l’s i,f) Us;
t=1+1;

end while

return s

XTI N AW -

ok
RN =D

The initial solution s, provided by coCC, may be improved by a local search
procedure denoted IsCC (Algorithm 3). First, we define neighborhood N, (s) as the
set of solutions reached by exchanging r tuples in solution s by another r tuples
that does not belong to s. These movements are executed extensively with the first
improvement strategy. The IsCC method, at each iteration, replaces the current
solution s by that with minimum cost function F in its neighborhood N,(s). This
improving phase leads to a sequence of movements toward a local optimum solution,
until no better solution is reached by the neighborhood. A neighborhood of r < 2
was used in this work, since the complexity of neighborhoods for values of » > 2 is
impractical.

Algorithm 3: [sCC

1 Input: S, P, CM,TM,Ds,Mc,Gf,al,Olz,Al,Az
2 Output: solution s;

3 while (s improving)

4 foralls € (N;(s) U N(s))
5 if F(5) < F(s)

6 s=75

7 end if
8

9

end for
end while

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 39
2.3.4 Experimental Results for Static Cloud Dimensioning

Coutinho et al. [10] previously compared the GraspCC-fed and the CC-IP-fed
in terms of quality of the solution and total execution time using simulation. In
these experiments, CPLEX 12.4 [29] was the chosen optimization software package
to solve the CC-IP-fed formulation. The input data of the experiments was real
performance data from a large range of applications as stated in [10] and VM types
available in commercial clouds such as Amazon EC2, Google Cloud Platform, and
Microsoft Azure (small, medium, large, xlarge, and 2xlarge [10]).

All results are presented in Table 2.3. In this experiment we used the following
parameter values: A; = 1000 and A, = 1000, 8 = max,ep(Ny,), and iter = 40.
The chosen «; and o, represent the cases where variables are removed from the
objective function (¢; = 0 or o, = 0) and when all variables are considered
(@1 # 0and oy # 0). The maximum number of VMs N, in each provider j is
the same defined by Amazon EC2.® The values of other parameters 8, A, A,, and
iter were empirically obtained as it is usually done in the parameter settings of
metaheuristics. Both objectives of the cost function were normalized due to their
distinct range values. In Table 2.3, the first column represents the application name.
The next four columns represent the best feasible solution found by CC-IP-fed
and its associated costs (not normalized): financial costs for VM deployment and
communication and its execution time, respectively. The sixth column presents the
execution time in seconds for CC-IP-fed to solve the problem. Analogously, the
next five columns represent the same characteristics for the best solution found by
GraspCC-fed. Finally, the last two columns present the chosen values for «; and o
in the cost function.

For some instances, a considerable time for CC-IP-fed to prove the optimality
of the solution was necessary. It is worth noticing that in these experiments, we set
a maximum execution time restriction of 24 h. The exact method was not able to
find the optimal solution in instances marked with (*) in Table 2.3 following this
time restriction. Note that GraspCC-fed presented an improvement of the execution
time, in average 99.35% less than the execution time of CC-IP-fed. Furthermore,
the GraspCC-fed heuristic found a better or equal solution than the CC-IP-fed
formulation in most instances (which are highlighted in the Table 2.3), presenting a
percentage difference from the best feasible solution found by CC-IP-fed of 5.43%,
in average.

Despite the GraspCC-fed does not find a better solution than the CC-IP-fed for
some instances, the needed time to execute it is always smaller than presented by
the CC-IP-fed. For example, in terms of quality of the solution, GraspCC-fed found
a solution 46.67% far from the formulation for the instance cms-1000 with oy = 0
and oy = 1. However, in terms of execution time, GraspCC-fed needed only 57 s to
obtain this solution, while the formulation needed 7.7 h. If this execution time was

8https://aws.amazon.com/ec2/faqs/

https://aws.amazon.com/ec2/faqs/

R. Coutinho et al.

40

Il 0 o9ce I S00 | ¥ST LTFO'0| 0019 I oL'Sy 9L'S L1¥0°0 [ea1-[wXel
| 0 e I 600 | 6vC LTFO'0| 0019 I 500 88'C L1$0°0 | [eaI-udSpowr
| 0 Syl o1 000 | 0T€89 LOTH'0 | 00°ST8TE o1 000 0T€89| L9TH0 00§ T-Swo
Il 0 T€es 9 000 | €81LE LIFTO | 00'180°0C S 000 EvE | €80T°0 0ST1-swd
I 0 L69S 4 000 | 199ST €€81°0| 00'8SS°LT € 000 TTT8I | 0STIO 0001 -Swo
I| 0 €96¢£C (4 LI 0TT0l 8€70°0 | 00'8THTL (4 TLeT YTroL | 8€20°0 qqs-ogsnu
I| 0 L8¥CC I 88y | 8STH 6€10°0 | 00°6SE°TL I S6C9LT | YI6Y 6€10°0 qqs-gzsnu
I 0| 1sT8l I 96 | ILT 00200 | 00°0C6 I L6'8T TI9¢ L910°0 qqs-ggsnu
I 0| 69TTl I §9'9 | €89l 8070°0 | 00°LE9E I 1681 LI'LE 80200 qqs-yg3nu
o 1, LOL 4 000 | 861 82000 | 00tP 4 000 861 8200°0 [eaI-[wxer
0 1, €09 (4 100 | 861 82000 | 00t € 100 861 82000 | [edI-usgpow
0 1| 19%I1 01 000 | 0T€89 9L8€°0| 00°8¢H98 11 000 8G96L | 61SH0x 00§ 1-suwod
0/ 1, 91001 9 000 | #£99¢ 8L0T0 | 00°TLF08 S 000 0vIE| T8LIO 0ST1-swd
0 1, 60Tl 4 000 | T0TET 9IET0 | 0076501 € 000 95691 | 796070 0001-swd>
0 1| €r99r z 9801 | €818 0S10°0 | 00°69+°98 (4 98'11 80'18 0S100 qqs-0g3nu
0 1, 86768 I 090 | 08°0% 8L00°0 | 00°€6+°98 I 9’9 SL'8¢ $800°0x qqs-gg3nu
0| 1| 897TES I SI'0 | OI'LI 6£00°0 | 00°60S°1¢C I S1°0 0r'LI 6£00°0 qqs-gzsnu
0| 1| L6SST I 90T | L96 0€000 | 00°S¥+98 I 90°T €L°6 0€000x qqs-pzsnu
0 1| 2T I 170 | TS°€E 5000 | 00°ST8 I 170 (433 1%00°0 qqs-gzsnu
[79) To| (S)Pwn | owip| UOHEdUNWWO) Sulry 180D (s)own | owiy | UOHEIIUNWWO)D Sulry 180D [ehliiaN |
[eoL, $)S09 [BIOURULY | UONOUN] e, $)S00 [BIOURULY | UONOUN]
an[eA uonnjos an[eA uonnjos
paj-DOdse1n PaJ-dI-0D

[01] XAT1dD Sursn uone[nuLoy [eonewayiew paj-d1-O) pPue dnsunayelaw paj-))dsern) jo synsay €7 IqeL

41

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All?

06981 10°¢ 0L'T 0c'scl £280°0 €9'0CL°8T 99°¢C [44% I81¢C1 8LLOO o5eIoAy
S0 S0 99°L I 10°0 861 0’0 0008 I 100 861 00 [eal-[uIxel
S0 S0 LEL I 10°0 861 0’0 00CL I 10°0 861 00 [ea1-uaSpow
S0 S0 6911 0l 000 0C°¢89 120%°0 00°8769 0l 000 0C°€89 12017°0 00S[-swo
S0 S0 0L'801 9 000 PEE9e 18¢C°0 00°TT 98 S 000 00°6cE SL6T 0= 0SCI-swo
S0 0] ¢1°00C ¥ 000 SO 11T €Irio 006L8°9S € 000 96691 9011°0 0001-swd
S0 S0 8°LS8 C Scol 9078 S610°0 00°€TS°98 [4 90T 80°18 €610°0= qqs-p¢snu
S0 S0 C1'886 I 09°0 0801 8010°0 00°6TS°TI I 090 0801 80100 qqs-gz8nu
S0 S0 6£°60L I SI'o orLl €010°0 00818 I S1°0 orLt €010°0 qqs-Gz8nu
S0 S0 S1°80¢ ! 90°1 L9'6 6110°0 00°606 I 90°1 L9'6 61100 qqs-yg8nu
S0 0] 09°vL I 170 (4553 LEVO'0 00°1¢9 I 170 (4553 LEYOO qqs-ggsnu

42 R. Coutinho et al.

ModelGenerator and RAXML
80

ModelGenerator and RAXML ———
70 -

60
50
40

30

Amount of Cloud Activities

20 -

10 ¢

0 . P . . P . P . P . P . P . . P .
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Time (minutes)

Fig. 2.2 Execution of ModelGenerator and RAXML (from SciPhylomics) in the Amazon EC2 and
the Microsoft Azure using VMs given by the GraspCC-fed [10]

added to the overall needed time to find a solution, the total time using GraspCC-fed
and CC-IP-fed would be 4.02 and 10.7 h, respectively. Thus, even when GraspCC-
fed does not find the optimal solution, it can be considered an attractive alternative
to solve the VM allocation problem in federated clouds.

Next, we present the results of a real execution of a workflow in a federated
cloud scenario dimensioned using GraspCC-fed. In order to study the feasibility
of this approach in federated cloud scenarios, we consider two commercial clouds
(Amazon EC2 and Microsoft Azure) in the execution of the bioinformatics work-
flow SciPhylomics [46]. We also use the scientific workflow system SciCumulus
[16], adapted to work with federated clouds (SciCumulus-fed [10]).

Figure 2.2 presents the SciPhylomics executions using the GraspCC-fed solu-
tions of the instances modgen-real and raxml-real of the Table 2.3 with oy = 0.5
and o, = 0.5. These values were used because it is more fair to define the same
weights for time and financial costs. These executions suggested that 1 xlarge VM
and 1 2xlarge VM from Amazon and 1 xlarge VM from Azure should be allocated
per 1 h for each application, Model Generator and RAXML. Figure 2.2 presents the
amount of tasks (axis Y) executing in a given period of time (X axis). We can state
that GraspCC-fed indicated that three VMs are needed (47 virtual cores) for 1 h
with financial cost of $1.99 for each application, totaling 2 h and a financial cost of
$3.98, but the real execution using 3 VMs lasted for around 4 h (100% more) with an
approximated financial cost of $7.96. This behavior was due to problems identified
in the adapted version of the workflow engine (SciCumulus-fed). Although we have
47 virtual cores available for execution, SciCumulus was not able to benefit from
the entire set of available VMs during the entire execution course of the workflow.
This happened because we are using S3fs’, and we face a severe delay when the

“https://github.com/s3fs-fuse/s3fs-fuse

https://github.com/s3fs-fuse/s3fs-fuse

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 43

data files are being synchronized among all VMs in the virtual cluster. This way,
in the beginning of the workflow execution, several tasks were not ready to be
executed since input data files were not available to be processed. SciCumulus-
fed then waits until each data file is available in all VMs before starting a specific
task.

This way, the number of tasks that are executing until 80 min is reduced, and
many cores remain idle. Another problem was related to the scheduling mechanism
of SciCumulus. SciCumulus is based on a cost model to distribute tasks in the
several VMs. This cost model considers performance issues, financial cost, and
reliability, but it was designed for a single-provider cloud. Since we are executing
in different clouds, communication issues impact more than execution time of the
task for several tasks. This way, SciCumulus scheduled tasks without taking into
account the locality of these VMs, which requested more messages to be exchanged
and impacted on the overall performance.

2.4 Dynamic Cloud Dimensioning

Static dimensioning of VMs may provide good estimations of the types and number
of VMs to be used, but, in some cases, the corresponding estimated execution time
and memory usage are not close to the real ones. Some applications may demand
different computing power and memory usage along their executions, and the a
priori estimation of the amount of VMs can be not suitable for them. Generally,
the static dimensioning considers only the total demand of the application, not
treating those usual variations during its execution. Moreover, clouds can be
considered changing environments, where processing capacity and network speed,
for example, can suffer performance variations along the application execution.
Thus, the estimated amount of VMs may be not suitable when those performance
and can lead to efficiency losses of applications. Then, it is important that the VM
dimensioning approach monitors all those changes in the cloud environment and
adapts it when necessary.

In order to solve that problem, several works propose the dynamic dimensioning
of cloud computing. Dynamic dimensioning involves typically two phases. The
first one is the monitoring of VMs, when data related to VM usage are collected.
In the second phase, if the application or the environment suffers changes, that
can impact application performance negatively or result in VM time waste; some
actions are triggered to improve the application efficiency with the best usage
of VMs. Those actions include the redimensioning of the number (or types) of
VMs and the balancing of tasks not yet executed in that new scenario. In case
of redimensioning, new VMs can be instantiated or eliminated, considering the
demands of the application and the attendance quality given by the current cloud
configuration.

In the last section, it was shown that the static dimensioning GraspCC provided
good estimations of VMs and the corresponding time executions in average.
However, in some cases, the obtained real execution time was not close to the

44 R. Coutinho et al.

estimated one. Particularly, the SciPhylomics workflow presented a real execution
time 100% higher than the estimated one. In this case, the estimation was not
suitable for the entire workflow because the number of parallel activities varied a
lot and there was a particular activity that has to be executed before several others,
limiting the parallelism during the execution a lot.

In [11], an extension of the previously proposed static approach is introduced.
That approach, named dynamic dimensioning of cloud computing framework
(DDC-F), is composed by two modules: (i) a monitoring module and (ii) a virtual
machine dimensioning module. The first one monitors the VM, collecting data
related to CPU and memory usage. The second module recalculates the number of
VMs necessary to attend the workflow demand satisfactorily. DDC-F interacts with
the workflow engine through a provenance repository that acts as a communication
bridge between them. The workflow engine is responsible for instantiating VMs
for the workflow execution and balancing of tasks among VMs, according to the
obtained information from a provenance repository.

After the instantiation of VMs executed by the workflow engine, DDC-F is
initiated to monitor the deployed VMs. Remark that, at this moment, the workflow
engine can deploy a minimum number of VMs or the number of VMs estimated
statically by GraspCC. The monitoring module executes in a distributed manner,
being composed by a monitor process at each VM. The monitor process records
local data about the CPU and memory usages, periodically, and sends out a message
to all instantiated VMs whenever a significant change of performance occurs locally,
in its own VM. In addition, when the monitor process identifies those changes or
receives a message from another monitor in that state, it sends the last collected data
about VM usage to the virtual machine dimensioning module. This module has a
unique process running on a dedicated VM. It evaluates the need of redimensioning
VMs or executing a load balance procedure, by running GraspCC and considering
data received from all monitor processes. That decision can result in redistributing
the remaining tasks among the already deployed VMs, instantiating or eliminating
VMs, whether the current scenario is not suitable for the new demands of the
workflow.

In order to evaluate the efficiency of the dynamic approach, a comparison
with the static dimensioning, previously introduced, was accomplished considering
two workflows: SciPhy, a well-behaved workflow with no choke point tasks,
and SciPhylomics, the critical case in the static approach, that presented a poor
estimation. Amazon EC2 was adopted as cloud environment with five types of
VMs: small, medium, large, xlarge, and 2xlarge. Programs used in these workflows
were executed with default parameters, but executed over larger input datasets. A
redimensioning was considered in case of CPU or RAM memory usage exceeded
80% or dropped to 20% of the total capacity.

Results of the executions in Amazon EC2 for the SciPhy workflow are presented
in Table 2.4, where the set of used VMs are shown for each time, the initial time #;,
and the others 71, #, and 73, when DDC-F changed the set of used VMs.

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 45

Table _2'4 Results of SciPhy Approach Static GraspCC | Dynamic DDC-F
execution [11]
Set of VMs 2 small to: 1 small
8 xlarge t1: 10 xlarge, 1 large,
1 small
ty: 10 xlarge, 1 large,
6 small
t3: 13 xlarge, 1 large,
6 small
Execution time | 107 min 55 min
Financial cost | U$4.86 U$4.04
100
80
60

Number of Virtual Cores

40 | BB
20 | I e
0

0 1 20 30

Workflow Execution Time (in minutes)

55

Fig. 2.3 The number of virtual cores in each period of time during the SciPhy workflow execution
initiated with a VM [11]

Dynamic dimensioning is more suitable when there are performance variations
in clouds, as occurred aforementioned. As GraspCC considered that VMs would
present fixed processing capacity, and in this case it did not occur, the number of
VMs to execute SciPhy was sub-estimated. Note that with the static dimensioning,
two quanta of 1 h were required to execute the application, resulting in a financial
cost of $4.86, against $4.04 with dynamic dimensioning. The number of virtual
cores at each time along the execution can be seen in Fig.2.3, and the number of
VMs and their types are shown in Fig. 2.4.

A second experiment was accomplished with the workflow SciPhylomics that
had presented a poor result with GraspCC. SciPhylomics was executed in two
different scenarios. In one of them, the execution started with a virtual cluster
estimated statically by GraspCC: 13 VMs xlarge and 1 VM large for 1 h. In the
other, it started with a minimum quantity of VMs, i.e., 1 large.

Results of the executions are shown in Table 2.5, where the set of used VMs
are also shown for each time, the initial time f(, and the others #, t,, and #3, when
DDC-F changed the set of used VMs.

In the experiment with SciPhylomics, DDC-F managed to reduce the financial
cost when compared with GraspCC approach, because it adapted the number of

46 R. Coutinho et al.

18
Eoo) gl
s 14 large W oo
Lo V) B R Em—
B 10 [
Sl
S 6 |
7Y I
£ 2|

i 777

0 1

Workflow Execution Time (in minutes)

Fig. 2.4 The number of VMs according to each type of VMs instantiated during of the SciPhy
workflow execution initiated with a VM [11]

Table 2.5 SciPhylomonics Approach Static GraspCC | Dynamic DDC-F
execution [11]
Set of VMs 13 xlarge to: 1 large
1 large t;: 11 large, 2 small
t: 6 xlarge, 1 large
Execution time | 137 min 151 min
Financial cost U$10.56 U$5.12

instantiated VMs in accordance with the demand of the moment. By using the static
GraspCC, the large number of VMs initially instantiated remained available even
when they stayed idle for more than 1h time quantum. GraspCC overestimated
the amount of VMs for this workflow because it assumed that the entire workflow
could be parallelized and executed in 1 h. DDC-F did not manage to improve the
execution time of that workflow, because of the overhead imposed to remove VMs
and instantiate new ones in this case. On the other hand, the financial cost was better,
around 52% less than GraspCC.

The number of virtual cores in each period of time along the execution can be
seen in Fig. 2.5, and the number of VMs and their types can be seen in Fig. 2.6. In
this execution, the total execution time of SciPhylomics was 2:31 h with a financial
cost of U$5.12.

Finally, note that efficient dynamic dimensioning in a federated environment
remains a challenge. Monitoring a federated cloud is not a trivial task because
of high overheads necessary to obtain consistent data of the entire environment.
As seen in this section, collecting consistent data from VMs requires that they
communicate among themselves, what usually is much more expensive in a
federated cloud than in regular cloud environments. So, it remains an open problem
to be investigated in future works.

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 47

100
g
S 8o
=
g 60 |-
>
S 40|
5
£ 2 lII
=
Z

0

0 1 51 151

Workflow Execution Time (in minutes)

Fig. 2.5 The number of virtual cores in each period of time during the SciPhylomics workflow
execution using DDC-F initiated with 1 m3.large VM [11]

18

161 small vzzzzzza]
xlarge

14| large W oo

| R [

Number of Virtual Machines

0 1 51 151
Workflow Execution Time (in minutes)

Fig. 2.6 The number of VMs according to each type of VMs instantiated during of the SciPhy-
lomics workflow execution using DDC-F initiated with 1 m3.large VM [11]

2.5 Survey on Existing Approaches for Cloud Dimensioning

In the previous sections of this chapter, we presented the problem of cloud
dimensioning (static and dynamic) and possible solutions. However, this is a fruitful
research area, and many papers have already been proposed. This section aims at
surveying existing works in the literature. Thus, this section presents a simplified
version of a systematic review of the literature (SRL) in the topic of resource
dimensioning for clouds. It is inspired in the SRL presented in [31].

A SRL is one of the possible ways for designing reviews, since we are focused
at identifying, evaluating, and comparing available published papers associated to
a particular topic area of interest for answering a specific scientific question. As
proposed by Kitchenham et al. [34], a SRL has three main phases: (i) planning, (ii)
conduction, and (iii) analysis of results. In the planning phase, we must have a clear

48 R. Coutinho et al.

goal of our research since a protocol must be defined at this stage. This protocol will
be followed in the conduction phase.

In the context of this chapter, we defined two research questions that should be
answered in our SRL:

1. RQ1: What approaches provide cloud dimensioning?
2. RQ2: Which techniques are used in these approaches?

Therefore, our search strategy consisted of identifying approaches in published
papers that cover main concepts (or terms) related to cloud dimensioning tech-
niques. Here, we define the search string used for conducting our search strategy
in three electronic databases (ACM Digital Library, IEEEXPlore, and Scopus) for
the scientific literature search: “(Cloud Dimensioning OR Cloud Provisioning OR
Cloud Deployment) AND (Static OR Dynamic).”

The logical operator “AND” was used to connect the key terms (i.e., cloud
dimensioning) and the “OR” operator to connect the possible variations derived
from any key terms. Then, the search string was used for querying a set of
existing electronic databases. Three electronic databases were selected based on the
following criteria: (i) the publication of papers is regularly updated, (ii) all papers
are available for download and analysis, and (iii) all papers are reviewed using a
peer-review process.

Since the defined query returns many papers (in some databases, more than 3,000
papers), it is not feasible to read all these papers in a suitable time. Thus, we defined
that the most impact ones should be considered in this SRL. This way, we sorted the
papers using the filters in the databases (by relevance) and analyzed only the top 20
papers in each database.

Although we selected the top 20 papers, many of them may not be directly related
to the topic discussed in this chapter. This way, we defined two additional criteria
(inclusion/exclusion) to include papers in our research. The inclusion criterion refers
to the study presented in the paper, which must involve both dimensioning and
clouds. If two papers present the same research, only the latest published paper
would be considered. For excluding papers (at the exclusion criterion), we consider
the following topics: (i) papers must be available for downloading on the Internet,
(i1) papers must be presented in electronic format, and (iii) papers should be written
in English.

We conducted the simplified SRL between July and August 2016. Twenty-two
papers were selected by our simplified SRL, as presented following. Interestingly,
we observed that those papers were published in the last 7 years (since 2009) as
presented in Fig. 2.7. Following we discuss each of these papers.

Endo et al. [20] highlight the main challenges of the VM provisioning problem
in clouds, offering a detailed view of this problem which comprises from the initial
modeling phase to the optimization phase. These challenges are discussed on four
fundamental points: resource modeling, resource offering and treatment, resource
discovery and monitoring, and resource selection. Although they present special
challenges requiring new research, clouds are promising and may grow to be seen
in various contexts.

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 49

2009 2010 2011 2012 2013 2014 2015 2016
Tian et al. Crawl et al. | | |Chaisiri et al] DXsStyei Szabo et al. ‘ Chard et al. R
et al. et al.
‘Nguyen et al, l Lama et al. ‘ Deng et al. M::E;;Skj ‘ Heilig et al.
‘ Prodaner al. [‘Rodcm et al. ‘ I =
et al.
‘ Endo et al. l Xu ef al. ‘ Xiao ef al. ‘

Fig. 2.7 Survey timeline

Several existing approaches focus on optimizing VM allocation statically or
dynamically in terms of application execution time and financial costs [5, 6, 18,
19, 27, 35, 55] while others focus on energy-efficient VM allocation [50, 53, 64].
Some of these approaches can consider or not the concept of scientific workflow in
the moment of cloud dimensioning, and, most of them, performed experiments by
theoretical studies and simulation.

For example, Shen et al. [53], Xu et al. [64], and Rodero et al. [50] treat the
VM allocation problem from the energy savings perspective. Usually they use
virtualization technology, which is a fundamental technique widely employed in
cloud computing for resource sharing. In this context, VM migration is one of
the most common techniques used to alleviate anomalies and reduce load and
server utilization in cloud datacenter. Shen et al. [53] automate the elastic resource
scaling for multi-tenant cloud computing infrastructures through of a system called
CloudScale. This system employs online resource demand prediction without any
a priori knowledge about the applications running inside the cloud. It resolves
scaling conflicts between applications using migration and integrates dynamic CPU
voltage/frequency scaling to save energy with minimal impact on application.
However, CloudScale does not adjust resource pressure threshold dynamically
according to the workload type and only dimension isolated applications in clouds,
not considering the concept of scientific workflow neither data dependencies among
programs. Xu et al. [64] model the energy efficiency virtual resource allocation for
clouds as a multi-objective optimization problem. The problem was solved by one
of the existing evolutionary multi-objective optimization algorithms, non-dominated
sorting genetic algorithm II (NSGA-II). They present through simulations that
the NSGA-II can produce schedules of different numbers of server VMs with
various characteristics in an acceptable time, thus decreasing the total operating
energy of data center. Rodero et al. [50] introduce an autonomic energy-efficient
thermal management while ensuring the QoS delivered to the users in the cloud
infrastructure. They also proposed an application-centric energy-aware strategy for
the problem of VM allocation that arises during VM migrations. The proposed
approach was evaluated through simulations with real production HPC workload
traces.

50 R. Coutinho et al.

In addition to the concern of saving energy, researchers have been interested
in optimizing the application executions in clouds. The purpose is to dimension
the number of VMs aiming at reducing the execution time and financial costs.
Thus, some approaches consider data of previous executions to make decisions
about static dimensioning. The static approaches [5, 18, 27, 55] do not dynamically
adjust the number of VMs; however they already provide good solutions in terms
of time and costs. Chaisiri et al. [5] present an optimal algorithm to provision
resources offered by multiple cloud providers, named OCRP. The OCRP solution
is obtained by formulating and solving a stochastic integer programming model.
The OCRP algorithm considers multiple provisioning stages with demand and price
uncertainties. Different approaches such as deterministic equivalent formulation,
sample-average approximation, and Benders decomposition are considered. The
performance evaluation of the OCRP algorithm has been made only by numerical
studies and simulations. Oliveira et al. [18] aim to optimize VM allocations in clouds
using jointly a multi-objective cost function with genetic algorithms in a service
called SciDim. The SciDim also uses provenance data to set an initial configuration
for the VM allocation respecting budget and deadline constraints given by the users.
Szabo et al. [55] introduce a multi-objective evolutionary algorithm that optimizes
both the workflow runtime and size of transferred data of data-intensive scientific
workflows. The proposed approach was validated using simulations and real
experiments on the Amazon EC2. However, they did not consider heterogeneous
cloud VM types, the optimization of the number of VMs, and the dynamic allocation
of VMs. Heilig et al. [27] propose an efficient biased random-key genetic algorithm
for the VM dimensioning problem in multi-cloud environments that aim to reduce
the financial cost and the runtime of user applications using IaaS of several cloud
providers. The algorithm is based on cloud brokerage mechanism and provides high-
quality solutions. It assists users to select a suitable set of cloud resources from
multiple cloud providers.

The dynamic approaches [6, 19, 35] are capable of adjusting cloud resources
during the application execution. Therefore, they may use monitoring techniques
for capturing data about cloud resources and then to make decisions about the
amount of resources to be instantiated for the application for the completion of the
execution. For example, Lama et al. [35] present a system that enables automated
VM allocation for MapReduce environment in clouds, named AROMA. Even
though MapReduce-like approaches are not similar to SWfMS, they can be used
to model workflows as presented by Nguyen and Halem [44], Wang et al. [60], and
Crawl et al. [12], which applied these approaches in the workflow domain. AROMA
uses vector machines and genetic algorithms to obtain the appropriate resources and
then allocate the VMs. This system shows effectiveness in providing performance
guarantee of diverse Hadoop jobs, but it does not consider financial issues.
Emeakaroha et al. [19] propose a management infrastructure that scales scientific
workflow executions in the cloud while ensuring performance goals and successful
workflow completion. They make decisions on how to dynamically allocate the
necessary amount of resources to complete the workflow execution according to
data originated from monitoring and a knowledge management strategy. However,

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 51

they also do not consider financial issues that are fundamental in commercial clouds.
Chard et al. [6] introduce an approach that elastically provisions cloud resources
on demand in workflows. It monitors a job submission queue and provisions VMs
based on predefined policies. The provisioner is able to appropriately choose VM
types to execute a given application based on application profiles, select the most
cost-effective VM type across availability zones using on-demand and spot prices,
over-provision resources when VMs are highly disputed, and change to stable on-
demand VMs when spot prices are volatile or requests are delayed. They evaluated
the approach using realistic conditions in simulation of execution traces.

Several approaches also provide solutions for resource dynamic dimensioning
in cloud data centers [57, 63]. Tian et al. [57] implement adaptive dimensioning
procedures for cloud data centers that allocate computing resources for variable
workloads meeting QoS requirements. Xiao et al. [63] design a system that uses
virtualization techniques to dynamically allocate resources in data center based on
application requirements. The system supports green computing since the number of
servers in use is optimized. They introduce the concept of “skewness” to measure the
variation in the utilization of server resource. Thus, different types of workloads can
be combined nicely, and the resources utilization can be improved by minimizing
skewness. The experiment results were performed only by trace-driven simulation.

Concerning the scheduling problem in clouds, Prodan et al. [49] present a
scientific applications scheduler and a resource manager for heterogeneous com-
puting infrastructures such as grids and clouds. They identify general behavior
patterns that can be applied by a scheduler to minimize the cost of application
execution. However, they do not consider the impact of time and budget limitations,
and the experiments were performed using only a simulator. Deng et al. [15]
propose an algorithm that selects the best policy from a scheduling policy portfolio.
They studied an abstract algorithm selection model for portfolio scheduling and
introduced a portfolio scheduling framework with various configuration parameters.
The scheduler was evaluated only by trace-based simulation. Malawski et al. [39]
develop several adaptive scheduling algorithms for scientific workflows that dimen-
sion and vertically scale the workflow execution to satisfy the users’ constraints.
They presented experimental results based on simulations of workflow executions.
Although this approach is an important step, it does not optimize the initial VM
configuration, i.e., it does not adjust the number of VMs before the execution of
scientific workflow according to the user’s constraints. If this VM allocation was
optimized before the workflow execution, the performance of these adaptive VM
configurations could be improved. Maheshwari et al. [38] use a multisite workflow
scheduling technique to predict the execution time on resources and to identify the
achievable network throughput between sites. In the experimental evaluation of the
approach, real applications were used on multisite environments: traditional clusters
and clouds. However, they did not consider more than one type of VMs in each
cloud.

Table 2.6 presents several characteristics of the surveyed approaches. Table 2.6
allows for producing a higher level conclusion about the research and identifying
missing research opportunities. We classified the approaches according to the

52

Table 2.6 Related works characteristics

R. Coutinho et al.

Author Approach | Scenario | Criteria Evaluation | Kind of application
Endo et al. [20] Survey - - - -
Shen et al. [53] Static Private QoS Real Standalone
cloud testbed application
Xu et al. [64] Static Data center | Energy Simulation | Standalone
application
Rodero et al. [50] Dynamic | Data center | Energy Simulation | Standalone
application
Chaisiri et al. [5] Static Federated | Cost Simulation | Standalone
cloud application
Oliveira et al. [18] Static Public Cost, Real test Workflow
cloud time
Szabo et al. [55] Static Public Time, Simulation, | Workflow
cloud data transfer | real test
Heilig et al. [27] Static Federated | Cost, Simulation | Standalone
cloud time application
Lama et al. [35] Dynamic | Private Time Real Standalone
cloud testbed application
Nguyen and Halem [44] | Dynamic | Private Time Real Workflow
cloud testbed
Wang et al. [60] Dynamic | Private Time Real workflow
cloud testbed
Crawl et al. [12] Dynamic | Private Time Real workflow
cloud testbed
Emeakaroha et al. [19] | Dynamic | Private Workflow | Real Workflow
cloud completion, | testbed
QoS
Chard et al. [6] Static, Public Cost Simulation | Workflow
dynamic | cloud
Tian et al. [57] Dynamic | Federated | QoS Simulation | Standalone
cloud application
Xiao et al. [63] Dynamic | Private Skewness | Real Standalone
cloud metric testbed application
Prodan et al. [49] Dynamic | Grid Cost, Simulation | Workflow
time
Deng et al. [15] Dynamic | Public Time Simulation | Standalone
cloud application
Malawski et al. [39] Dynamic | Public Time Simulation | Workflow
cloud
Maheshwari et al. [38] | Static Federated | Time, Real test Workflow
cloud network

throughput

2 Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 53

type of approach (dynamic or static), the type of cloud environment they are
designed for (private, public, federated, etc.), the criteria used to dimension the
cloud environment, the type of evaluation used in the paper, and the target kind of
application. Most of the surveyed approaches provide dynamic mechanisms, which
is intuitive since clouds are dynamic environments and performance variations are
common. One missing opportunity can be identified when we analyze the target
type of cloud of the proposed approaches. Most approaches focus on private and
public cloud. However, just a few provide solutions for federated and multisite
clouds, which are a reality. This way, new approaches for this type of clouds are
needed. In terms of criteria used for dimensioning the cloud, most of the approaches
optimize the environment for time and financial cost. However, just a few focus
on reliability and energy criteria, which are very important nowadays. In addition,
a multi-criteria approach would be very interesting for this problem. Most of the
surveyed approaches were evaluated using simulations of small-scale environments
(real testbed). Just a few evaluated the proposed approaches in real environments.
Finally, most approaches focus on standalone applications. However, many HPC-
based scientific experiments are modeled as scientific workflows, and solutions for
this type of experiments are needed. Thus, dimensioning approaches for scientific
workflows are still an open, yet important, issue and a research opportunity.

2.6 Conclusions and Open Problems

This chapter tackled the cloud dimensioning problem for parallel scientific applica-
tions. The problem consists in estimating the amount and types of virtual machines
to execute an application, typically aiming at the reduction of its execution time,
and sometimes considering also other objectives, such as reduction of financial costs
when using a cloud provider and power saving, for example.

In that context, an integer mathematical formulation, called CC-IP, and a GRASP
metaheuristic, GraspCC, proposed to reduce not only the execution time of the
application but also the financial cost, were presented in detail. Experimental results
on several instances of real parallel applications indicated that the presented method
is an important decision tool to aid cloud users.

The extension of that proposal that takes into account the execution of parallel
applications in federated clouds was also presented. That more general scenario
considered new issues such as communication between providers. Tests on a real
federated cloud environment, that used two commercial clouds (Amazon EC2
and Microsoft Azure), were then shown. In those real tests, scientific workflows
were adopted as case study, since they are frequently used in large-scale parallel
experiments.

Although that a priori estimation, called static dimensioning, usually provides
good estimations, sometimes due to changes in the cloud environment or in the
parallel application demands, it presents a poor performance. In those cases, a

54 R. Coutinho et al.

VM dimensioning approach, aware at runtime of all those changes, is imperative.
Thus, that chapter presented also a framework for dynamic dimensioning of cloud
environments for scientific workflow execution, named DDC-F. The dynamic
dimensioning approach presented advantages when executing scientific workflows
in a real commercial cloud. It could compensate the performance loss by acquiring
more powerful VMs to meet the scientists’ deadline [8—11].

In addition, it can be difficult to execute some scientific application in only one
cloud location due to the geographical distribution of scientists, data, and computing
resources. For example, the data accessed by a HPC application may be in different
databases of different research groups, or a parallel execution can require more
resource than one location can offer. Thus, scientific applications often have to be
partitioned and run in a multisite environment, i.e., a cloud with multiple distributed
data centers.

We also surveyed several existing works in Sect.2.5. This survey allowed us
to produce a comparative table. Table 2.6 was used to produce a higher level
conclusion about the research and identifying missing research opportunities. We
classified the approaches according to the type of approach (dynamic or static), the
type of cloud environment they are designed for (private, public, federated, etc.),
the criteria used to dimension the cloud environment (time, financial costs, energy),
the type of evaluation used in the paper, and the target kind of application. We
concluded that there are some missing opportunities. For example, there are few
papers that focus on scientific workflow dimensioning. Most approaches focus on
stand-alone applications, but workflows are gaining much importance in the last
years. In addition, most of existing approaches are focused on single-site (private
and public) clouds. Just a few focus on federated and multisite clouds. Since these
types of clouds are evolving in a fast pace, it is a hot topic in cloud dimensioning
area. Finally, most of the existing approaches focus on time and financial costs. But,
today, there are other costs involved such as energy and reliability, which may be an
important research opportunity.

Acknowledgements Authors would like to thank CNPq and FAPERJ for partially sponsoring this
research.

References

1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
tool. J Mol Biol 215(3):403—410. citeseer.nj.nec.com/akutsu99identification.html

2. Alvares de Oliveira F, Sharrock R, Ledoux T (2012) Synchronization of multiple autonomic
control loops: application to cloud computing. In: Proceedings of the 14th interna-
tional conference on coordination models and languages, COORDINATION 2012. Springer,
Berlin/Heidelberg, pp 29-43

3. Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009)
EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC
Bioinform 10(1):154. doi:10.1186/1471-2105-10-154, http://www.biomedcentral.com/1471-
2105/10/154

citeseer.nj.nec.com/akutsu99identification.html
http://dx.doi.org/10.1186/1471-2105-10-154
http://www.biomedcentral.com/1471-2105/10/154
http://www.biomedcentral.com/1471-2105/10/154

V)]

10.

1

—

12.

13.

14.

17.

19.

20.

2

—_

Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 55

Buyya R, Ranjan R, Calheiros R (2010) InterCloud: utility-oriented federation of cloud
computing environments for scaling of application services. In: Hsu CH, Yang L, Park J,
Yeo SS (eds) Algorithms and architectures for parallel processing. Lecture notes in computer
science, vol 6081. Springer, Berlin/Heidelberg, pp 13-31

. Chaisiri S, Lee BS, Niyato D (2012) Optimization of resource provisioning cost in cloud

computing. IEEE Trans Serv Comput 5(2):164-177

Chard R, Chard K, Bubendorfer K, Lacinski L, Madduri R, Foster I (2015) Cost-aware elastic
cloud provisioning for scientific workloads. In: 2015 IEEE 8th international conference on
cloud computing (CLOUD), pp 971-974

. Collela P (2004) Defining software requirements for scientific computing. In: DARPA reports,

pp 315-320

. Coutinho R, Drummond L, Frota Y (2014) Optimization of a cloud resource management

problem from a consumer perspective. In: Euro-Par 2013: parallel processing workshops.
Lecture notes in computer science, vol 8374. Springer, Berlin/Heidelberg, pp 218-227
Coutinho R, Drummond L, Frota Y, de Oliveira D, Ocafia K (2014) Evaluating grasp-based
cloud dimensioning for comparative genomics: a practical approach. In: IEEE international
conference on cluster computing (CLUSTER), pp 371-379

Coutinho R, Drummond L, Frota Y, de Oliveira D (2015) Optimizing virtual machine allocation
for parallel scientific workflows in federated clouds. Future Gener Comput Syst 46(0):51-68

. Coutinho R, Frota Y, Ocafia K, de Oliveira D, Drummond LMA (2016) A dynamic cloud

dimensioning approach for parallel scientific workflows: a case study in the comparative
genomics domain. J Grid Comput 1-19

Crawl D, Wang J, Altintas I (2011) Provenance for MapReduce-based data-intensive work-
flows. In: Proceedings of the 6th workshop on workflows in support of large-scale science,
WORKS ’11. ACM, New York, pp 21-30

Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Pro-
ceedings of the 6th conference on symposium on opearting systems design & implementation,
OSDI’'04, vol 6. USENIX Association, Berkeley, pp 10-10

Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB,
Good J, Laity AC, Jacob JC, Katz DS (2005) Pegasus: a framework for mapping complex
scientific workflows onto distributed systems. Sci Program 13(3):219-237

. Deng K, Song J, Ren K, Iosup A (2013) Exploring portfolio scheduling forlong-term execution

of scientific workloads in IaaS clouds. In: Proceedings of SC13: international conference for
high performance computing, networking, storage and analysis, SC ’13. ACM, New York,
pp 55:1-55:12

. de Oliveira D, Ogasawara E, Baido F, Mattoso M: Scicumulus: a lightweight cloud middleware

to explore many task computing paradigm in scientific workflows. In: 3rd international
conference on cloud computing (2010), pp 378-385

de Oliveira D, Ocafia KA, Ogasawara E, Dias J, Gongalves J, Baiao F, Mattoso M (2013)
Performance evaluation of parallel strategies in public clouds: a study with phylogenomic
workflows. Future Gener Comput Syst 29(7):1816-1825

. de Oliveira D, Viana V, Ogasawara E, Ocaifia K, Mattoso M (2013) Dimensioning the virtual

cluster for parallel scientific workflows in clouds. In: Proceedings of the 4th ACM workshop
on scientific cloud computing, science cloud *13. ACM, New York, pp 5-12

Emeakaroha V, Maurer M, Stern P, Labaj P, Brandic I, Kreil D (2013) Managing and optimizing
bioinformatics workflows for data analysis in clouds. J Grid Comput 11(3):407-428

Endo PT, de Almeida Palhares AV, Pereira NN, Goncalves GE, Sadok D, Kelner J, Melander
B, Mangs J (2011) Resource allocation for distributed cloud: concepts and research challenges.
IEEE Network 25(4):42-46

. Engen V, Papay J, Phillips SC, Boniface M (2012) Predicting application performance for

multi-vendor clouds using dwarf benchmarks. In: Proceedings of the 13th international
conference on web information systems engineering, WISE’12. Springer, Berlin/Heidelberg,
pp 659-665. doi:10.1007/978-3-642-35063-4_50, http://dx.doi.org/10.1007/978-3-642-
35063-4_50

http://dx.doi.org/10.1007/978-3-642-35063-4_50
http://dx.doi.org/10.1007/978-3-642-35063-4_50
http://dx.doi.org/10.1007/978-3-642-35063-4_50

56

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

R. Coutinho et al.

Fadika Z, Dede E, Hartog J, Govindaraju M (2012) Marla: mapreduce for heterogeneous
clusters. In: Proceedings of the 2012 12th IEEE/ACM international symposium on cluster,
cloud and grid computing (Ccgrid 2012), CCGRID ’12. IEEE Computer Society, Washington,
DC, pp 49-56. doi:10.1109/CCGrid.2012.135, http://dx.doi.org/10.1109/CCGrid.2012.135
Feng H, Misra V, Rubenstein D (2007) Pbs: a unified priority-based scheduler. In:
Proceedings of the 2007 ACM SIGMETRICS international conference on measurement
and modeling of computer systems, SIGMETRICS ’07. ACM, New York, pp 203-214.
doi:10.1145/1254882.1254906, http://doi.acm.org/10.1145/1254882.1254906

Foster I, Kesselman C (2003) The grid 2: blueprint for a new computing infrastructure. The
Elsevier series in grid computing, 2nd edn. Morgan Kaufmann, San Francisco

Freire J, Koop D, Santos E, Silva CT (2008) Provenance for computational tasks: a survey.
Comput Sci Eng 10(3):11-21

Habib I (2006) Getting started with condor. Linux J 2006(149):2—. http://dl.acm.org/citation.
cfm?id=1152899.1152901

Heilig L, Lalla-Ruiz E, Vo3 S (2016) A cloud brokerage approach for solving the resource
management problem in multi-cloud environments. Comput Ind Eng 95:16-26

Hey T, Tansley S, Tolle K (eds) (2009): The fourth paradigm: data-intensive scientific
discovery. Microsoft Research, Redmond

ILOG SA (2008) Cplex 11 user’s manual

Jackson KR, Ramakrishnan L, Runge KJ, Thomas RC (2010) Seeking supernovae in the
clouds: a performance study. In: Proceedings of the 19th ACM international symposium on
high performance distributed computing, HPDC *10. ACM, New York, pp 421-429

Jamshidi P, Ahmad A, Pahl C (2013) Cloud migration research: a systematic review. IEEE
Trans Cloud Comput 1(2):142—-157. doi:10.1109/TCC.2013.10

Joshi SB (2012) Apache hadoop performance-tuning methodologies and best practices. In:
Proceedings of the 3rd ACM/SPEC international conference on performance engineering,
ICPE ’12. ACM, New York, pp 241-242. doi:10.1145/2188286.2188323, http://doi.acm.org/
10.1145/2188286.2188323

Juve G, Deelman E (2010) Scientific workflows and clouds. Crossroads 16(3):14-18.
doi:10.1145/1734160.1734166, http://doi.acm.org/10.1145/1734160.1734166

Kitchenham B, Brereton P, Turner M, Niazi M, Linkman S, Pretorius R, Budgen D (2009) The
impact of limited search procedures for systematic literature reviews #x2014; a participant-
observer case study. In: 2009 3rd international symposium on empirical software engineering
and measurement, pp 336-345. doi:10.1109/ESEM.2009.5314238

Lama P, Zhou X (2012) AROMA: automated resource allocation and configuration of
MapReduce environment in the cloud. In: Proceedings of the 9th international conference
on autonomic computing, ICAC *12. ACM, New York, pp 63-72

Lord E, Leclercq M, Boc A, Diallo AB, Makarenkov V (2012) Armadillo 1.1: an original
workflow platform for designing and conducting phylogenetic analysis and simulations. PLoS
ONE 7(1):€29903. doi:10.1371/journal.pone.0029903, http://dx.plos.org/10.1371/journal.
pone.0029903

Ludischer B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones MB, Lee EA, Tao J, Zhao Y
(2006) Scientific workflow management and the Kepler system. Concurr Comput: Pract Exp
18(10):1039-1065. doi:10.1002/cpe.994, http://dx.doi.org/10.1002/cpe.994

Maheshwari K, Jung ES, Meng J, Morozov V, Vishwanath V, Kettimuthu R (2016) Workflow
performance improvement using model-based scheduling over multiple clusters and clouds.
Future Gener Comput Syst 54:206-218

Malawski M, Juve G, Deelman E, Nabrzyski J (2015) Algorithms for cost- and deadline-
constrained provisioning for scientific workflow ensembles in IaaS clouds. Future Gener
Comput Syst 48:1-18. Special Section: Business and Industry Specific Cloud

Manfroi LF, Ferro M, Yokoyama AM, Mury AR, Schulze B (2013) A walking dwarf on the
clouds. In: 2013 IEEE/ACM 6th international conference on utility and cloud computing
(UCC), pp 399-404. doi:10.1109/UCC.2013.80

http://dx.doi.org/10.1109/CCGrid.2012.135
http://dx.doi.org/10.1109/CCGrid.2012.135
http://dx.doi.org/10.1145/1254882.1254906
http://doi.acm.org/10.1145/1254882.1254906
http://dl.acm.org/citation.cfm?id=1152899.1152901
http://dl.acm.org/citation.cfm?id=1152899.1152901
http://dx.doi.org/10.1109/TCC.2013.10
http://dx.doi.org/10.1145/2188286.2188323
http://doi.acm.org/10.1145/2188286.2188323
http://doi.acm.org/10.1145/2188286.2188323
http://dx.doi.org/10.1145/1734160.1734166
http://doi.acm.org/10.1145/1734160.1734166
http://dx.doi.org/10.1109/ESEM.2009.5314238
http://dx.doi.org/10.1371/journal.pone.0029903
http://dx.plos.org/10.1371/journal.pone.0029903
http://dx.plos.org/10.1371/journal.pone.0029903
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1109/UCC.2013.80

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Mirror Mirror on the Wall, How Do I Dimension My Cloud After All? 57

Matsunaga A, Tsugawa M, Fortes J (2008) Cloudblast: combining mapreduce and virtualiza-
tion on distributed resources for bioinformatics applications. In: IEEE fourth international
conference on eScience, eScience *08, pp 222-229. doi:10.1109/eScience.2008.62

Mattoso M, Werner C, Travassos GH, Braganholo V, Ogasawara E, Oliveira DD, Cruz SM,
Martinho W, Murta L (2010) Towards supporting the life cycle of large scale scientific
experiments. Int J Bus Process Integr Manag 5(1):79+

Moustafa A, Bhattacharya D, Allen AE (2010) iTree: a high-throughput phylogenomic
pipeline. IEEE, Cairo, pp 103-107. doi:10.1109/CIBEC.2010.5716071, http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5716071

Nguyen P, Halem M (2011) A MapReduce workflow system for architecting scientific data
intensive applications. In: Proceedings of the 2nd international workshop on software
engineering for cloud computing, SECLOUD ’11. ACM, New York, pp 57-63

Niemenmaa M, Kallio A, Schumacher A, Klemela P, Korpelainen E, Heljanko K
(2012) Hadoop-BAM: directly manipulating next generation sequencing data in the cloud.
Bioinformatics 28(6):876-877. doi:10.1093/bioinformatics/bts054, http://bioinformatics.
oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts054

Ocafia K, de Oliveira D, Ogasawara ES, Ddvila AMR, Lima AAB, Mattoso M (2011) SciPhy:
a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In:
de Souza ON, Telles GP, Palakal MJ (eds) BSB. Lecture notes in computer science, vol 6832.
Springer, pp 66-70

Paranjape K, Hebert S, Masson B (2012) Heterogeneous computing in the cloud: crunching big
data and democratizing HPC access for the life sciences. Technical report, Intel Corporation
Phillips SC, Engen V, Papay J (2011) Snow white clouds and the seven dwarfs. In: 2011
IEEE third international conference on cloud computing technology and science (CloudCom),
pp 738-745 doi:10.1109/CloudCom.2011.114

Prodan R, Wieczorek M, Fard H (2011) Double auction-based scheduling of scientific
applications in distributed grid and cloud environments. J Grid Comput 9(4):531-548

Rodero I, Viswanathan H, Lee EK, Gamell M, Pompili D, Parashar M (2012) Energy-efficient
thermal-aware autonomic management of virtualized HPC cloud infrastructure. J Grid Comput
10(3):447-473

Severin J, Beal K, Vilella AJ, Fitzgerald S, Schuster M, Gordon L, Ureta-Vidal A, Flicek
P, Herrero J (2010) eHive: an artificial intelligence workflow system for genomic analy-
sis. BMC Bioinform 11(1):240. doi:10.1186/1471-2105-11-240, http://bmcbioinformatics.
biomedcentral.com/articles/10.1186/1471-2105-11-240

Shanahan JG, Dai L (2015) Large scale distributed data science using apache spark. In:
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining, KDD *15. ACM, New York, pp 2323-2324 doi:10.1145/2783258.2789993, http://
doi.acm.org/10.1145/2783258.2789993

Shen Z, Subbiah S, Gu X, Wilkes J (2011) Cloudscale: elastic resource scaling for multi-tenant
cloud systems. In: Proceedings of the 2nd ACM symposium on cloud computing, SOCC ’11.
ACM, New York, pp 5:1-5:14

Singh A, Chen C, Liu W, Mitchell W, Schmidt B: A hybrid computational grid archi-
tecture for comparative genomics. IEEE Trans Inf Technol Biomed 12(2):218-225
(2008). doi:10.1109/TITB.2007.908462, http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.
htm?arnumber=4358919

Szabo C, Sheng Q, Kroeger T, Zhang Y, Yu J (2014) Science in the cloud: allocation and
execution of data-intensive scientific workflows. J Grid Comput 12(2):245-264

Taylor 1J, Deelman E, Gannon DB (2007) Workflows for e-science: scientific workflows for
grids. Springer, London

Tian W (2009) adaptive dimensioning of cloud data centers. In: Proceedings of the 8th
international conference on dependable, autonomic and secure computing, DASC ’09. IEEE
Computer Society, Washington, pp 5-10

http://dx.doi.org/10.1109/eScience.2008.62
http://dx.doi.org/10.1109/CIBEC.2010.5716071
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5716071
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5716071
http://dx.doi.org/10.1093/bioinformatics/bts054
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts054
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts054
http://dx.doi.org/10.1109/CloudCom.2011.114
http://dx.doi.org/10.1186/1471-2105-11-240
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-240
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-240
http://dx.doi.org/10.1145/2783258.2789993
http://doi.acm.org/10.1145/2783258.2789993
http://doi.acm.org/10.1145/2783258.2789993
http://dx.doi.org/10.1109/TITB.2007.908462
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4358919
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4358919

58

58.

59.

60.

61.

62.

63.

64.

R. Coutinho et al.

Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards
a cloud definition. SIGCOMM Comput Commun Rev 39(1):50-55

Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ (2010) Cloud computing
for comparative genomics. BMC Bioinform 11(1):259. doi:10.1186/1471-2105-11-259, http://
bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-259

Wang J, Crawl D, Altintas I (2009) Kepler + Hadoop: a general architecture facilitating data-
intensive applications in scientific workflow systems. In: Proceedings of the 4th workshop on
workflows in support of large-scale science, WORKS *09. ACM, New York, pp 12:1-12:8
Wolstencroft K, Haines R, Fellows D, Williams AR, Withers D, Owen S, Soiland-Reyes S,
Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, de la Hidalga
AN, Vargas MPB, Sufi S, Goble CA (2013) The Taverna workflow suite: designing and
executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res
41(Webserver-Issue):557-561. doi:10.1093/nar/gkt328, http://dx.doi.org/10.1093/nar/gkt328
Wozniak JM, Armstrong TG, Maheshwari K, Lusk EL, Katz DS, Wilde M, Foster IT (2013)
Turbine: a distributed memory dataflow engine for high performance many-task applications.
Fundamenta Informaticae Journal 128(3):337-366

Xiao Z, Song W, Chen Q (2013) dynamic resource allocation using virtual machines for cloud
computing environment. IEEE Trans Parallel Distrib Syst 24(6):1107-1117

Xu L, Zeng Z, Ye X (2012) Multi-objective optimization based virtual resource allocation
strategy for cloud computing. In: Proceedings of the 11th international conference on computer
and information science, ICIS ’12. IEEE Computer Society, Washington, DC, pp 56-61

http://dx.doi.org/10.1186/1471-2105-11-259
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-259
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-259
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkt328

Chapter 3

A Taxonomy of Adaptive Resource Management
Mechanisms in Virtual Machines: Recent
Progress and Challenges

José Simao and Luis Veiga

3.1 Introduction

Cloud computing infrastructures make extensive use of virtualization technologies,
either at the system or programming language level, providing a flexible allocation
of hardware resources and applying the necessary resource scheduling to run multi-
tenant data centers [19, 96, 108]. Both system-level VMs (Sys-VM) and high-level
language VMs (HLL-VM) are designed to promote isolation [86]. All these features
are essential to consolidate applications into a smaller amount of physical servers,
saving operational costs and reducing the carbon footprint of data centers [13, 30,
94].

Dynamic allocation of resources use different strategies, either aiming to max-
imize fairness in the distribution of resources or deliberately favor a given guest
based on past resource consumption and prediction on future resource demand.
Among all resources, CPU [35, 40, 110] and memory [3, 60, 100] are the two for
which a larger body of work can be found. Nevertheless, other resources, such as
the access to I/O operations, have also been analyzed [36, 51, 62].

Most HLL-VMs have only one guest at each time — the application. As a
consequence, in most cases, some resources are monitored not to be partitioned but
for the runtime to adapt its algorithms to the available environment. For example, a
memory outage could force some of the already compiled methods to be unloaded,
freeing memory to maintain more data resident. Several systems have been proposed
to control system resources usage in HLL-VMs, most of them targeting the Java

J. Simao (0)

INESC-ID Lisboa, Instituto Superior de Engenharia de Lisboa (ISEL/IPL), Lisbon, Portugal
e-mail: jsimao@ gsd.inesc-id.pt

L. Veiga

INESC-ID Lisboa, Universidade de Lisboa — Instituto Superior Técnico, Lisbon, Portugal
e-mail: luis.veiga@inesc-id.pt

© Springer International Publishing AG 2017 59
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_3

mailto:jsimao@gsd.inesc-id.pt
mailto:luis.veiga@inesc-id.pt

60 J. Simdo and L. Veiga

runtime (e.g., [14, 17, 25, 83]). They use different approaches: from making
modifications to a standard VM, or even proposing a new implementation from
scratch, to modifications in the byte codes and hybrid solutions.

In each work, different compromises are made, putting more emphasis either
on the portability of the solution (i.e., not requiring changes to the VM) or on the
portability of the guests (i.e., not requiring changes to the application source code).
In order to do so, VMs, or middlewares augmenting their services, can be framed
into the well-known adaptation loop [68], where systems monitor themselves and
their context, analyze the incoming values and detect significant changes, decide
how to react, and act to execute such decisions. In this chapter, we group these
steps in three distinct phases, similarly to the adaptability loop of other works in the
context of autonomic systems [7, 57]: (i) monitoring, (ii) decision, and (iii) actua-
tion. Monitoring determines which components of the system (e.g., hardware, VM,
application) are observed. Control and decision take these observations and use them
in some decision strategy to decide what has to be changed. Enforcement deals with
applying the decision to a given component/mechanism of the VM.

However, existing surveys of virtualization technologies (e.g., [9, 53]) tend to
focus on a wide variety of approaches which sometimes results only in an extensive
catalog. One of the first published surveys of research in virtual machines was pre-
sented in 1974 [34]. Goldberg’s work was focused on the principles, performance,
and practical issues regarding the design and development of system-level virtual
machines that, at the time, were developed by IBM, the Massachusetts Institute of
Technology (MIT), and few others. Arnold et al. [9] focus only on HLL-VMs and
particularly on the techniques that are used to control the optimizations employed by
the just-in-time (JIT) compiler, taking advantage of runtime profiling information.

This chapter surveys several techniques used by virtual machines, and systems
that depend on them, to make an adaptive resource management, extending previous
preliminary work [73, 76]. Here we fully describe the adaptation loop of virtual
machines discussing their principles, algorithms, mechanisms, and techniques.
We then detail a way to qualitatively classify each of those according to their
responsiveness, i.e., how fast it can react to change their comprehensiveness, i.e.,
the scope of the mechanisms involved; and their intricateness, i.e., the complexity
of the modifications to the code base or to the underlying systems. These metrics are
used to classify the mechanisms and scheduling policies. The goal is not to find the
best system, as this depends on the scenario where the system is going to be used,
but instead it aims to identity the tradeoffs underpinning each system.

Section 3.2 presents the architecture of high-level and system-level VMs,
depicting the building blocks that are used in research concerning resource usage.
Section 3.3 presents several adaptation techniques found in the literature and frames
them into the adaptation loop. In Sect. 3.4, the classification framework is presented.
For each of the resource management components of VMs, and for each of the
three steps of the adaptation loop, we propose the use of a quantitative classification
regarding the impact of the mechanisms used by each system. We then use this
framework to classify 18 state-of-the-art systems in Sect. 3.5, aiming to compare
and better understand the benefits and limitations of each one.

3 Recent Progress and Challenges in Virtual Machines 61
3.2 From Virtual Machines Fundamentals to Recent Trends

Virtualization technologies have been used since the primordials of multiuser
systems. The idea of having better isolation among different users in a multiuser
system was first explored by IBM [5]. In these systems, each user was assigned a
virtual machine which executed in the context of a so called control program (CP).

In the last two decades, this idea was extended and further explored to support the
execution of commodity operating systems in each virtual machine, without losing
performance. Resource isolation was further enforced so that badly behaving virtual
machines cannot disrupt the service of other instances [12]. This is due not only to
the software but also to new hardware support that enhances the performance of
VMs running on a multi-tenant server [29].

System-level virtual machines execute under the control of a virtual machine
monitor (VMM) to control the access of the guest operating system running in each
virtual machine to the physical resources, virtualizing processors, memory, and I/O.
Recently, operating systems extended the process-level isolation mechanisms with
further virtualization of the file system, name spaces, and drivers (e.g., network)
[55, 107]. Furthermore, the integration of resource consumption controls made it
possible to run workloads on a new kind of execution environment, called container,
under the same OS.

High-level language VMs, which are highly influenced by the Smalltalk virtual
machine [28], also provide a machine abstraction to their guest, which is an end-user
application. The just-in-time (JIT) compiler is responsible for this translation and is,
in itself, a source of adaptation driven by the dynamics in the flow of execution
(e.g., hot methods are compiled using more sophisticated optimizations) [9].
Memory management has a high impact on the use of memory and CPU. After
more than three decades of research work focusing on tunning garbage collection
algorithms [50], recent research work is made toward the selection of application-
specific algorithms and parameters, in particular, heap size and the moment of
triggering memory collection [43, 59, 89].

Figures 3.1, 3.2, 3.3, and 3.4 depicts four types of deployments. The first is a
traditional configuration where an operating system (OS) regulates the access of
native applications (i.e., the ones that use the services of the OS) to the hardware.
The second, Fig. 3.2, represents a configuration where a hypervisor, known as virtual

Fig. 3.1 Non virtualized
system Native Native
Application, Application,

Operating System

Hardware (CPUs, memory, I/O
devices)

62 J. Simdo and L. Veiga

Fig. 3.2 System-level VM
App | | App App | | App

Guest OS; || GuestOS,

Virtual Machine Monitor

(VMM)
HW
Fig. 3.3 Container type VM
App Container
Shared kernel
Host OS
HW
Fig. 3.4 High-level language
VM e C,
Native
High Level Application
Language
Virtual Machine
Host OS
HW

machine monitor, takes control of the hardware, making it possible to host several
system-level virtual machine on top of the same physical resources. Each virtual
machine runs a possibly different operating systems instance. Figure 3.3 shows the
position of containers. These execution environments share the kernel with the host
OS and allow applications to run with an extra level of isolation from the remaining
user-level processes. Finally, Fig. 3.4 depicts the position of high-level language
VMs. They are at the level of native applications but support the hosting of managed
components which rely (almost exclusively) on the services provided by these VMs.
This chapter focus on deployments Figs. 3.2 and 3.4.

The next three sections will briefly describe how fundamental resources, CPU,
memory, and I/O are virtualized by the two types of VMs. The systems presented in
Sect. 3.5 are based on the building blocks presented here, using them to implement
different adaptive resource management strategies. We conclude with a section
about recent trends on the mechanism available on these two types of VMs.

3 Recent Progress and Challenges in Virtual Machines 63
3.2.1 Computation as a Resource

The virtualization of the CPU concerns two distinct aspects: (i) the translation
of instructions and (ii) the scheduling of virtual CPUs to a physical CPU. In
this chapter, we focus on the scheduling problem. Although an efficient binary
translation is of utmost importance, and several techniques are used [86], this is done
in a way that is dependent on the execution requirement of a given tenant. In Sys-
VMs, the VMM must decide the mapping between the real CPUs and each running
VM [12, 21]. In the case of HLL-VMs, they rely on the underlying OS to schedule
their threads of execution. In spite of this portability aspect, the specification of
HLL-VMs is supported by a memory model [58] making it possible to reason about
the program behavior.

The VMM scheduler, where each guest VM is assigned to one or more virtual
CPUs (VCPU), has different requirements from the schedulers used in operating
systems [92]. Typically, the OS uses a priority-based approach which is different
from the family of schedulers used by the VMM. The VM monitor scheduling is
ruled by a proportional share assigned to each VM of the system, based on its share
(or weight) [21, 90].

Cherkasova et al. [21] further classify schedulers as (i) work conservative or
nonwork conservative and (ii) preemptive or non-preemptive. Work conservative
schedulers take the share as a minimum allocation of CPU to the VM. If there
are available CPUs, VCPUs will be assigned to them, regardless the VM’s share. In
nonwork conservative, even if there are available CPUs, VCPUs will not be assigned
above a given previously defined value (known as cap or cpu limit). A preemptive
scheduler can interrupt running VCPUs if a ready to run VCPU has a higher priority.

In Sect. 3.5, we present different systems that dynamically change the scheduler’s
parameters to give guest VMs the capacity that best fits their needs.

3.2.2 Memory as a Resource

The design of memory management system is inherently complex, regardless of the
target environment. Virtual machines (VMs) are no exception, and they add an extra
level to the system stack.

As pointed out by Smith et al. [86], the VMM extra level of indirection
generalizes the virtual memory mechanisms of operating systems. To maintain
isolation, the guest OS continues to see a real address (i.e., machine address) but
this address can in fact change during the activation of the VM. So, the VMM must
establish a virtual — real — physical mapping for each guest OS and VM.

When an OS kernel, running on an active VM, uses a real address to perform
an operation (e.g., I/0), the VMM must intercept this address and change it to
the correspondent physical one. On the other hand, user level applications use
a virtual address to accomplish their operations. To avoid a twofold conversion,

64 J. Simdo and L. Veiga

the VMM keeps shadow pages for each process running on each VM, mapping
virtual — physical addresses. Access to the page table pointer is virtualized by
the VMM, trapping read or write attempts and returning the corresponding table
pointer of the running VM. The translation lookaside buffer (TLB) continues to
play its accelerating role because it will still keep in cache the virtual — physical
addresses.

To effectively manage the allocation of physical memory, the VMM must
reassign pages between VMs. The decision about which specific pages are to be
relinquished is actually made by the guest OS running on the VM that is selected by
the VMM to give away memory. This is done by interacting with a kernel driver at
the OS, known as the balloon driver [12, 100].

The balloon driver is controlled by memory management policies which will
be introduced in Sect.3.3. When the balloon is instructed to inflate, it will make
the guest OS swap memory to secondary storage. When the balloon is instructed
to deflate, the guest OS can use more physical pages, reducing the need to swap
memory. Another issue related to memory management in the VMM is the sharing
of machine pages between different VMs. If these pages have code or read-only
data, they can be shared avoiding redundant copies.

The goal of memory’s virtualization in high-language VMs is to free the
application from explicit dealing with memory deallocation, giving the perception
of an unlimited address space. This avoids keeping track of references to data
structures (i.e., objects), promoting easier extensibility of functionalities because
the bookkeeping code that must be written in non-virtualized environment is no
longer needed [86, 106].

Different strategies have been researched and used during the last decades.
Simple mark and sweep, compacting, or copying collectors all identify live objects
starting from a root set (i.e., the initial set of references from which live objects can
be found, containing thread stacks and globals). All these approaches strive for a
balance between the time the program needs to stop and the frequency the collecting
process needs to execute. This is mostly influenced by the heap dimension, and, in
practice, some kind of nursery space is used to avoid searching all the heap.

As parallel hardware becomes ubiquitous and GC pause time reduction becomes
essential, the stop-the-world approach has been questioned, resulting in the design
of concurrent and incremental collectors [23, 95]. However, recent studies show
that the base approach has no fundamental scalability problem [31] and that the
GC impact can be diminished with parallel techniques, which still need to stop the
program, but that explore the root set in parallel.

Researchers have analyzed garbage collection performance and found it to be
application dependent [88] and even input dependent [59, 93]. Based on these
observations, several adaptation strategies have been proposed [9], ranging from
parameters adjustments (e.g., the current size of the managed heap [38, 83]) to
changing the algorithm itself before the first execution [85] or at runtime [88].

3 Recent Progress and Challenges in Virtual Machines 65
3.2.3 Input/Output as a Resource

In both types of VMs, virtualization of input/output deals with the emulation,
accounting, and constraining of using available physical devices. In spite of these
similar goals, virtualization occurs with different impacts. In a VMM, the access
to device drivers can be para-virtualized or fully virtualized. In the first scenario,
a cooperative guest OS is expected to call a virtual API in the VMM [12]. In the
second scenario (a fully virtualized environment), the VMM can either intercept the
I/O operation, at the device driver or system call level [86]. The typical option is to
virtualize at the device driver level, installing virtual device drivers at each guest,
which, from the guest operating system standpoint, are regular drivers.

The main challenge in I/O virtualization for fully virtualized systems, such as
the ESX [100] or the KVM [54] hypervisors, is to avoid the extra context switches
between the guest and the host to handle interrupts generated by I/O devices [2,
36]. The interrupts are, by nature, asynchronous and sent to the CPU to signal the
completion of I/O operations. So, the overhead comes from the extra CPU cycles
necessary to exit the guest, run the host interrupt handler, and inject the virtual
interrupt in the guest.

The performance of I/O-intensive applications in a virtualized environment is
also affected by the CPU scheduling and memory sharing mechanisms [20, 21,
62, 67]. The CPU scheduling strategy of each physical core to the virtual cores
has impact in the I/O performance of the applications running on top of virtual
machines. A detailed analysis of the scheduler’s impact on VM’s performance is
available in the literature [21, 62]. The main observations were related to the domain
driver’s preemption during the dispatch of multiple network events and the order of
VMs in the run queue.

High-level language VMs rely on the operating system API to accomplish
input/output operations as disk and network read and writes. Depending on the
address space isolation supported by the VM, accounting and regulation have
different levels of granularity. In a classic JVM implementation, accountability
can be done globally at the VM or on a per-thread basis [91]. In HLL-VMs
supporting the abstraction of different address spaces (e.g., isolates in multitask
VM [25], application domains in the Common Language Runtime) accounting is
made independently for each of these spaces.

In summary, although the interaction with I/O devices has a major role in
the design of virtual machines, the subsystems responsible for this task do not
have to make regular scheduling or allocation decisions. So, this chapter will not
focus on these works but on adaptive techniques related to the virtualization of
CPU and memory (which indirectly contribute to the performance of I/O-intensive
applications).

66 J. Simdo and L. Veiga
3.2.4 Research Trends

The ACM library [1] shows that articles with the terms “VM” and “virtual machine”
continues to increase. Extrapolating the total number of publications up to 2016 to
the end of the decade, the number will more than double the results of the previous
decade, the 2000s. Because of their strategic role in cloud deployments, they will
certainly continue to be analyzed and enhanced.

Regarding Sys-VMs, major research efforts continue in memory virtualization
techniques. For example, Amit et al. propose VSwapper [6], which substitutes
the classic balloon driver in the common case of uncooperative guests. Although
this situation is known for its poor performance, VSwapper uses a combination
of intricate techniques to overcome the problem, monitoring host disk blocks and
establishing a relation to guest memory pages in order to detect page writes and
reads that hinder performance.

When looking to HLL-VMs, research in resource management is currently
driven by the need to incorporate further mechanisms to regulate memory usage
when running manage runtimes in clusters. Although this has been a topic of
research for more than a decade now [26], new challenges were introduced by cloud
deployments, namely, the execution on top of Sys-VMs and big-data applications.

Manage runtimes are the basis of modern processing and storage framework
widely used by cloud-enabled applications. However, because many times they
execute on top of Sys-VMs, there is the need to externally instruct the HLL-VM
to relinquish some memory so that the VMM can deliver it to other tenants [45, 69].

Considering a single node running instance, some improvements for big-data
workloads are also being explored to avoid the problems introduced by object
churn and very large heap sizes [33], including in NUMA-based architectures
[32]. But because typically the workloads run on top of multiple physical nodes,
researchers are looking for ways to coordinate resource management, in particular
GC operations [56, 74].

3.3 Adaptation Techniques

In a software system, adaptation is regulated by monitoring, analyzing, deciding,
and acting [68]. Monitoring is fed by sensors, and actions are accomplished by
actuators, forming a process known as the adaptation loop, as depicted in Fig. 3.5.
Virtual machines, regardless of their type, are no exception. The two intermediate
phases, analysis and decision, are in many cases seen as one [57]. An example is
the observe, decide, and act loop proposed by IBM for autonomic systems [7]. This
chapter follows the same approach and resumes the adaptation loop to three major
phases: monitor, analysis/decision, action.

3 Recent Progress and Challenges in Virtual Machines 67

Analyze the collected data to
determine when a change is
needed

Collect data from sensors
(e.g. hardware, VMM, OS,
VM, App)

Determine what needs to
be changed

Use actuators
(e.g. change parameter,
change algoritm)

Fig. 3.5 Adaptation loop

In a broad sense, virtual machines have an important property of autonomic
systems which is self-optimization [7]. An example is the adaptive JIT compilation
techniques of HLL-VMs [9] or GC algorithms that use feedback-directed online
techniques to avoid page faults [37]. Furthermore, virtual machines export adapt-
ability mechanisms that are used by outside decision systems to reconfigure VM’s
parameters or algorithms.

There is a broad range of strategies regarding the analysis and decision processes.
Many solutions that augment system VMs use control theory elements, such as
the proportional-integral-derivative controller, and additive-increase/multiplicative-
decrease (AIMD) rules, to regulate one or more VM parameters. Typically, when
the analysis and decision are done in the critical execution path (e.g., scheduling,
JIT, GC), the choice must be done as fast as possible, and so, a simpler logic is used.

In our previous work, we have addressed adaptation with strategies based on
economic models and awareness of the workloads. Regarding system VMs, we
have addressed adaptation of VM allocation [72] and resizing mechanisms [79, 81].
Regarding high-level language VMs (Java VM), we have studied the economics of
enforcing resource (CPU and memory) throttling [78], taking into account applica-
tion performance [80], and the tradeoffs between resource savings and performance
degradation/improvement, when aggressively transferring resources among appli-
cations [77]. At the middleware level, federating several VMs, adaptation concerns
memory management in object caching/replication aggressiveness [97], driven by
declarative policies [98], and adapting the number of VMs/nodes dynamically allo-
cated to multi-threaded Java applications, running on top of multi-tenant clustered
runtimes [75].

Next we will present and discuss the state of the art regarding the three major
steps of the adaptation loop for each type of VM and their internal resource
management mechanisms.

68 J. Simdo and L. Veiga
3.3.1 System Virtual Machine

The VMM has built-in parameters to regulate how resources are shared by their
different guests. These parameters regulate the allocation of resources to each
VM and can be adapted at runtime to improve the behavior of applications given
a specific workload. The adaptation process can be internal, driven by profiling
made exclusively inside of the VMM, or external, which depends on application’s
events such as the number of pending requests. In this section, the two major
VMM subsystems, CPU scheduling and memory manager, will be framed into the
adaptation processes — monitoring, decision, and acting.

3.3.1.1 CPU Management

CPU management relates to activities that can be done exclusively inside the
hypervisor or both inside and outside. An example of an exclusively inside activity
is the CPU scheduling algorithm. To enforce the weight assigned to each VM, the
hypervisor has to monitor the time of CPU assigned to each VCPUs of a VM,
decide which VCPU will run next, and assign it to a CPU [21, 70]. An example
of an inside and outside management strategy is the one employed by systems
that monitor events outside the hypervisor (e.g., operating systems load queue,
application level events) but then use its internal actuators to adjust parameters. For
example, monitoring the waiting time inside the spin-lock synchronization primitive
(in the kernel of the guest operating system) may be necessary to inform the
hypervisor’s scheduler about the best co-scheduling [64] decisions of VCPUs [103].

Decision strategies can be simple, like the proportional share-based that enforces
predefined shares defined by high-level policies in a multi-tenant environment.
More complex decisions, made outside the hypervisor, include (i) control theory
using a PID controller [66, 110], (ii) linear optimization [65], and (iii) signal
processing and statistical learning algorithms [35].

The actions taken by the CPU scheduler inside the hypervisor include (i) number
of VCPUs [70], (ii) co-scheduling [99, 103, 104], (iii)) VCPU migration [99], and
(iv) number of threads and sleep time [110]. Systems where decisions are made
outside the hypervisor use the available actuators, namely, (i) VCPU share and
(ii)) VCPU cap [35, 42, 65].

3.3.1.2 Memory Management

In this step of the control loop, the VMM needs to determine how pages (or parts
of it) are being used by each VM. To do so, it must collect information regarding
(i) page utilization [61, 100, 102] and (ii) page (and sub-page) contents equality or
similarity [39, 100]. Some systems also propose to monitor application performance,
either by instrumentation or external monitoring, in order to collect information
closer to the application’s semantics [45, 69].

3 Recent Progress and Challenges in Virtual Machines 69

The VMM supports overcommit, that is, the total memory configured to the
overall VMs can be higher than the one that is physically available. When pages of
memory need to be transferred between VMs (and their guest OS), different types
of decisions are made based on (i) shares [100], (ii) feedback control [42], (iii) LRU
reference histogram [102], and (iv) linear programming [45].

To change the system state regarding its memory use, there are three main
approaches: (i) page sharing, (ii) page transfer between VMs, and (iii) compress
page contents. While page sharing and transfer relies on intrinsic mechanisms of
the VMM, as presented in Sect.3.2.2, page compression is an extension to these
base mechanisms.

3.3.2 High-Level Language Virtual Machine

In this section, the three major language VM subsystems, JIT compiler, GC, and
resource manager, will be framed into the adaptation processes. HLL-VMs monitor
events inside their runtime services or in the underlying platform. As always, there is
a trade-off between deciding fast but poorly or deciding well (or even optimally) but
spending too much resource and time in the process of doing so. Most systems base
their decision on a heuristic, that is, some kind of adjustment function or criterion
that although it cannot be fully formally reasoned about, it still gives good results
when properly used. Nevertheless, some do have a mathematical model guiding
their behavior [93]. Next we will analyze the most common strategies.

3.3.2.1 Just in Time Compilation

The JIT is mostly self-contained in the sense that the monitoring process (also
known as profiling in this context) collects data only inside the VM. Modern
JIT compilers are consumers of a significant amount of data collected during the
compilation and execution of code.! Hot method information is acquired using
(i) sampling and (ii) instrumentation. In the first case, the execution stacks are
periodically observed to determine hot methods. In the second case, method code
is instrumented so that its execution will fill the appropriate runtime profiling
structures. Sampling is known to be more efficient [9] despite its partial view of
events.

To determine which methods should be compiled or further optimized, there are
two distinct groups of techniques: (i) counter-based and (ii) model-based. Counter-
based systems look at different counters (e.g., method entry, loop execution) to

The adaptive optimization system (AOS) in Jikes RVM [4] produces a log with approximately
700 kB of information regarding call graphs, edge counters and compilation advice when running
and JIT compiling ‘bloat’, one of DaCapo’s benchmarks [15].

70 J. Simdo and L. Veiga

determine if a method should be further optimized. The threshold values are
typically found by experimenting with different programs [9]. In a model-driven
system, optimization decisions are made based on a mathematical model which can
be reasoned about. Examples include a cost-benefit model where the recompilation
cost is weighted against further execution with the current optimization level [4, 52].

Adaptability techniques in the JIT compiler are used to produce native optimized
code while minimizing impact in application’s execution time overhead. Because
native takes more memory than intermediate representations, some early VMs
discarded native code compilations when memory became scarce. With the growth
of hardware capacity, this technique is less used. Thus, the actions that can complete
the adaptation loop are (i) partial or total method recompilation, (ii) inlining, or (iii)
deoptimization.

3.3.2.2 Garbage Collection

Although the way garbage collection is made usually does not change during pro-
gram’s execution, managed runtimes incorporate some form of memory adaptation
strategy [9]. In the literature, several sensors are used to guide the decision process,
both from the managed runtime and operating system, including: (i) memory
structure dimensions (e.g., heap in use) [84, 85], (ii) GC statistics (e.g., GC load,
GC frequency) [88], (iii) relevant events in the operating systems (e.g., page faults,
allocation stalls) [37, 44], and (iv) working set size [109].

Improvements to overall system performance are made by reducing time spent in
GC operations. Heap-related structures are adapted both before and during program
execution. Adjusting before program execution is made after a previous analysis of
several executions, varying relevant parameters. While there are some mathematical
models of objects’ lifetimes, they are essentially used to explain the GC behavior
and not to drive a decision process [11]. The techniques used in the decision phase
range from heuristics to more formal processes: (i) simple heuristics, (ii) machine
learning, (iii) PID controller, and (iv) microeconomic theories such as the elasticity
of demand curves.

Actions regarding GC adaptability range from simply triggering the GC in a
specific situation to the hot-swap of the algorithm itself (e.g., to avoid memory
exhaustion [88]), as described next: (i) GC parameters [85], (ii) heap size [84], and
(iii) GC algorithm [88].

3.3.2.3 Resource Management

Monitoring resources, that is, collecting usage or consumption information about
different kinds of resources at runtime (e.g., state of threads, loaded classes) can
be done through (i) a service exposed by the runtime [10, 25] and (ii) byte code
instrumentation [49]. In the former, it is possible to collect more information, both

3 Recent Progress and Challenges in Virtual Machines 71

from a quantitative and qualitative perspective. A well-known example is the Java
Management Extensions (JMX) [63]. Because HLL-VMs do not necessarily expose
this kind of service, instrumentation allows some accounting in a portable way.
Accounted resources usually include CPU usage, allocated memory, and relevant
system objects such as threads or files.

This subsystem has to decide whether a given action (e.g., consumption) over
a resource can be done or not. This is accomplished with a policy, which can be
classified as (i) internal or (ii) external. In an internal policy, the reasoning is hard-
coded in the runtime, possibly only giving the chance to vary a parameter (e.g.,
number of allowed opened files). An external policy is defined outside the scope of
the runtime, and thus, it can change for each execution or even during execution.

This subsystem is particularly important in VMs that support several independent
processes running in a single instance of the runtime. Research and commercial sys-
tems apply resource management actions to (i) limit resource usage and (ii) perform
resource reservation. Limiting resource usage aims to avoid denial of service or to
ensure that the (possibly paid) resource quota is not overused. The last scenario is
less explored in the literature [25]. Resource reservation ensures that when multiple
processes are running in the same runtime, it is possible to ensure a minimum
amount of resources to a given process.

3.3.3 Summary of Techniques

In this section, we summarize several techniques identified in the literature.
Figure 3.6 presents the techniques used in the adaptation loop of Sys-VMs. They
are grouped by the two major adaptation targets, CPU and memory, and then into
the three major phases of the adaptation loop. The CPU management sub-tree is
the one that has more elements (i.e., more adaptation techniques). This reflects the
emphasis given by researchers to this component of Sys-VMs. Regarding memory,
early work of Waldspurger [100] and Barham et al. in [12] laid solid techniques
for virtualizing and managing this resource. Recent work shows that to improve
performance of workloads regarding their use of memory, it is crucial to have more
application-level information [45, 102].

Figure 3.7 presents the techniques used in the adaptation loop of systems
using HLL-VMs. They are grouped into the three major adaptation targets: (i) JIT
compiler, (ii) garbage collection, and (iii) resource management. Each adaptation
target is then divided into the three phases of the adaptation loop. The garbage
collection sub-tree has a higher number of elements when compared with any of
the other two. This reflects different research paths but also a higher dependency
of the garbage collection process on the workloads and on the context of execution
(i.e., shared environment, limited memory, etc.).

The techniques used in the monitoring and action phase are domain-specific. For
example, there are sensors related to the utilization of memory pages or actuators

72 J. Simdo and L. Veiga

CPU consumed by VCPU

Virtual time clock

Monitoring OS sync primitives

OS CPU usage counters

Application performance

Share-based

Counter threshold
Analysis and Decision Linear optimization

Control-based

CPU management

Signal correlations
Number of VCPUs
CPUs share

Action
Number of processes/threads

Co-scheduling

Page utilization

Monitoring / Page contents

Application performance

Share-based

Counter threshold
Memory management Analysis and decision
Linear optimization
; Control-based
Page sharing

Action /| Page/Memory transfer

Page compression

Fig. 3.6 Techniques used by System VMs in the monitoring, decision and action phases

that change a parameter in the garbage collection algorithm. On the contrary, the
strategies used in the decision phase can be found in other adaptability works and,
in general, in autonomic computing systems [7, 57].

Maggio et al. [57] have focused attention on the characterization of decision
techniques. They divide them into three broad categories: heuristics, control-based,
and machine learning. In fact, we can also see these categories when we look to
the techniques identified in this section. Figures 3.6 and 3.7 show that the decision
strategies are either heuristic (e.g., microeconomics, share-based), control-based
(e.g., PID controller), based on signal processing techniques (e.g., correlation of
different windows of samples), and machine learning (e.g., reinforcement learning).
Regarding strategies that use linear programming, they are used only to make a
general model of the scheduling variables. In practice, these approaches use integer
linear programming which is known to be NP-hard. Thus, they use some kind of
greedy approach to solve it.

Based on the survey of these different techniques, the next section will present a
classification framework that aims to compare complete adaptive systems.

3 Recent Progress and Challenges in Virtual Machines 73

Sampling

Monitoring

Instrumentation
Counter lookup

Model based

JIT compiler Analysis and decision

Partial or total recompilation

Action
Deoptimization

Memory structures dimensions

GC statistics

Monitoring
Events of the OS

Working set size
Heuristics

Garbage collection Machine learning

Control Theory
; Microeconomic theories

GC algorithm type

Analysis and decision

Heap size

Action

Memory structures

Monitoring
Events of the OS

Offline with execution

Resource management Analysis and decision

Inline with execution

Limit usage

Action A
Reservation

Fig. 3.7 Techniques used by HLL-VMs in the monitoring, decision and action phases

3.4 The RCI Taxonomy

To understand and compare different adaptation processes, we now introduce a
framework for classification of VM adaptation techniques. The classification is
based on the different techniques described earlier and depicted in Figs. 3.6 and 3.7.
The analysis and classification of the techniques and the way they are used in each
of the adaptation loops revolve around three fundamental criteria: Responsiveness,
Comprehensiveness, and Intricateness. We call it RCI taxonomy. Our goal is to put
each system in perspective and compare them regarding three criteria. The final RCI
values of a given system depend on the techniques the system uses for monitoring,
decision, and acting.

These aspects were chosen, not only because they encompass many of the
relevant goals and challenges in VM adaptability research but also because they
seem to embody a fundamental underlying tension: fo achieve improvements in
two of these aspects the system must do so at the expense of the other. System
design is always a trade-off between different choices. A well-known example is the

74 J. Simdo and L. Veiga

[RCI classification framework |

Rinin __ R
M | XR l—
Imax ‘
‘ P
‘ S
Sq R I 3
Adaptation D 4 | o
Toop | | C(M,A) N ¢
g
I =
|
Rinin !
A Imax
Step 1 Step 2 Step 3

Fig. 3.8 A step-by-step classification process

CAP theorem [18], showing the tension existing in the general design of distributed
systems. In the particular case of peer-to-peer systems, high availability, scalability,
and support for dynamic populations are other kind of tensions [16].

The framework starts by taking the input system and decomposing it into the
adaptation techniques used in the monitoring, decision, and acting phase. This is
represented in step 1 of Fig.3.8. Then, for each technique, a value for R and I is
determined (step 2). The metric C is determined in step 3 by taking into account
the order of magnitude of the number of sensors and actuators. Also in step 3, the
previous values are aggregated and normalized, determining the final RCI tuple for
the system.

Decomposing the system into the previously mentioned parts (step 1) is simply
done by analyzing the reported techniques, both in their nature and cardinality. To
proceed with the classification process, the framework must determine

() which quantitative value is assigned to each technique in the monitoring,
decision or acting phase and
(i) how these values are aggregated to reach a final RCI tuple.

These two steps are detailed in the following sections. First, Sect.3.4.1 dis-
cusses a quantitative criteria, where design options, representing groups/classes of
techniques, are assigned a single value. Next, Sect. 3.4.2 maps the set of specific
techniques presented in Sect. 3.3 to these classes, so that each technique is assigned
aunique value of R and I. This completes step 2 of the classification process. Finally,
Sect. 3.4.3 explains the rationale of step 3, showing how the previous values are
aggregated with the C metric to determine a system’s RCI.

3 Recent Progress and Challenges in Virtual Machines 75

(max(R),max(C),max(l))

Time i
(Responsiveness)

Code
(Intricateness)

Number of sensors/actuators
(comprehensiveness)

(0,0,0)

Fig. 3.9 Systems design interval

3.4.1 Quantitative Criteria of the RCI Taxonomy

We think the three metrics are able to capture a design interval as presented in
Fig.3.9. They are a proxy for time, space, and complexity-related characteristics.
Our conjecture is that we will see systems that are away from the minimum and
the maximum of the cube, that is, neither too simple (e.g., near the base of the
coordinates) nor excelling in the three metrics (e.g., near or coincident with the
maximum point in the design space). The following list points the exact meaning of
the three criteria, regarding each of the adaptation phases. Next, we will detail how
they are mapped to a numeric scale, in each phase, which will be used to determine
the RCI of systems.

* Responsiveness. It captures time-related characteristics of the techniques.
Regarding the monitoring phase, it depends on the latency of reading a value.
Higher values are assigned to sensors immediately available on the VM code
base, where higher values represent external sensors (operating system or
application specific). For the decision phase, responsiveness is lower in those
techniques that take longer to reach a given adaptation target. Regarding the
action phase, high values indicate that the effect is (almost) immediate, while a
low value represents actuators that will take some time to produce effects.

e Comprehensiveness. It captures quantity-related characteristics of the tech-
niques. Regarding the monitoring and deciding phases, it gets higher as the
quantity of the monitored sensors increases. Regarding the acting phase, the
comprehensiveness value grows with the quantity of actuators that the system
can engage.

76 J. Simdo and L. Veiga

* Intricateness. It captures the inherent complexity of the techniques. Regarding
the monitoring and acting phase, higher values are reserved for sensors/actuators
that had to be added to the base code of the virtual machine, operating system,
or application layer. Low values represent sensors/actuators that are already
available and can be easily used. In the deciding phase, intricateness represents
the inherent complexity of the deciding strategy. For example, an if-then-else rule
has low intricateness but advanced control theory has higher values.

Figure 3.10 represents each of these criteria (R, C, I) for the three adaptation
phases (M, D, A). For each criteria, in each adaptation phase, the figure shows
several options there are used during the classification of a given technique, used
in step 2 of the classification process. It does so by showing the mapping between
a design option (e.g., use a sensor that is an extension inside the VM) and a
quantitative value. These values establish an order among different options.

It is important so stress that these design options do not represent a specific
technique but a class of techniques. For example, “direct reading” in the criterion
I of the phase M is to be selected when the sensor is available in the original code

3 = inside VM reading

Responsiveness / 2 = kernel level reading

1 = application level reading

Monitor
1 = direct reading

Intricateness |/ 2 = extension in same layer

\ 3 = extension in other layer

5 = rules / heuristics

4 = linear optimization
Responsiveness 3 = signal processing

2 = control-based

RCI framework Decision 1 = model-free machine learning

1 = rules / heuristics

2 = linear optimization

Intricateness

3 = signal processing

4 = control-based, model-free ML

3 = VM parameter
Responsiveness / 2 = VM algorithm
\ 1 = OS parameter / algorithm

1 = direct acting

Intricateness /| 2 = extension in same layer

\ 3 = extension in other layer

Fig. 3.10 Quantitative values for the design options of the RCI framework

3 Recent Progress and Challenges in Virtual Machines 77

base or in another level of the system stack, without the necessity of building further
extensions. This indirection makes the classification system generic because the
number of techniques, sensors, and actuators can grow in the future while being
accommodated by the taxonomy in one of the existing classes. Even so, we think
these classes are expressive and distinctive enough to characterize different levels
of responsiveness, comprehensiveness, and intricateness.

The mapping between classes and specific techniques will be presented next, in
Sect. 3.4.2. Note also that the scale of the values is not important (they typically
represent different orders of magnitude) as long as the values are positive and
monotonically increasing or decreasing, in accordance with the corresponding
criteria.

Across all the adaptation phases, comprehensiveness is directly represented by
the number of sensors or actuators, as explained previously. This is represented by
n, which is a positive quantity (between 1 and 3) corresponding to the number of
sensors or actuators that are used. This means that the comprehensiveness increases
as this number grows. The other two criteria have more distinctive characterizations
in each of the adaptation phases, which we elaborate next:

* Monitoring. The responsiveness of the monitoring phase depends on the cost of
reading. The cost of reading relates to the time spent in reading a single value,
that is, how fast can a single value be collected. This depends on the layer where
the sensor is in relation to where the decision is made. For example, some systems
use application-level monitors which require inter-process communication to
read them (e.g., number of completed SQL transactions [45]). Others depend
only on values collected inside the virtual machine monitor or the HLL-VM
context. A middle-ground approach is that of systems that depend on sensors
from other layers, such as the OS, but, reading them has a low cost (e.g., the
/proc virtual file system).

The intricateness of the monitoring phase is a measurement of how complex is
the code for reading sensors. Value 1 is assigned to systems that use preexisting
sensors of the virtual machine or in the execution environment, which have a
direct access. Value 2 is for extensions made inside the virtual machine, and
value 3 is assigned when extensions were made in the underlying system and/or
hardware (e.g., operating system, in the case of HLL-VMs).

* Deciding. The responsiveness and intricateness of the deciding phase is in a large
part inspired by the study of Maggio et al. [57]. They discuss how feedback
control mechanisms compare to each other in the context of a benchmark
suite composed of multi-threaded programs, instrumented with the Application
Heartbeat framework [46]. Taking into account the analyzed techniques, our
classification framework is based on five decision types (i) rules/heuristics,
(ii) linear optimization, (iii) control-based solutions, (iv) signal processing
techniques, and (v) model-free machine learning solutions.

We have classified these five types of decision strategies as decreasingly
responsive, because they take an increasing amount of time to reach a certain
target point. They are increasingly intricate with the exception of control-based

J. Simdo and L. Veiga

solutions which we consider more intricate than signal processing. This is so
because of the panoply of parameters that usually have to be tuned. A model-
free solution has also the highest intricateness value because the tuning of
assigning credits to each possible action and the balance between exploitation
and exploration (i.e., balancing between making the best decision given current
information or explore more system states) [57].

Acting. In this phase, responsiveness reflects the capacity of the actuator
to produce an observable and measurable consequence. Any throttle to the
processing capacity will have almost immediate effect and so a value of 1 is
assigned to this type of actuator. Regarding memory, tweaking the set of pages
assigned to a VM will have a quicker impact than simply changing its memory
share. Changing heap parameters is, in comparison with the other techniques, the
least responsive one, and so it gets a value of 3. Intricateness has, in this phase, a
similar characterization to the one made in the monitoring phase.

In the following section, we map the previous analyzed techniques to this tree of

design options.

3.4.2 Classification of Techniques

Based on the quantitative values of the taxonomy described in the previous section,
we now focus on mapping of the techniques described in Sect. 3.3 to a value, so
that a final RCI of each system can be determined and different systems can be

compared.

Tables 3.1, 3.2, and 3.3 refer to system-level virtual machines and map a specific
sensor, actuator, or decision technique to a particular value. For each line, the
first column identifies a technique (as presented in Figs.3.6 and 3.7) while the
second and third columns contain a design class and the corresponding value, for

Table 3.1 System VMs: sensors monitored

Sensor R option Value | I option Value
Page utilization Inside VM 3 Direct reading 1
Page contents Inside VM 3 Extension same layer |2
Page faults Kernel 2 Direct reading 1
Memory demand Kernel 2 Direct reading 1
Application’s performance Outside 1 Direct reading 1
Virtual time clock Inside VM 3 Direct reading 1
CPU consumed by each VCPU | Inside VM 3 Direct reading 1
Xen CPU/Mem consumed Kernel reading | 2 Direct reading 1
OS sync primitives Kernel 2 Extension other layer |3
OS CPU usage counter Kernel 2 Direct reading 1

3 Recent Progress and Challenges in Virtual Machines 79

Table 3.2 System VMs: decision techniques

Control technique R option Value | I option Value
Share based Rule/heuristic 5 Rule/heuristic 1
Counter threshold Rule/heuristic 5 Rule/heuristic 1
Integer linear programming Linear optimization | 4 Linear optimization | 2
PID controller Control-based 2 Control-based 4
Resource usage samples correlation | Signal processing | 3 Signal processing | 3
LRU histogram Rule/heuristic 5 Rule/heuristic 1
Table 3.3 System VMs: actuators used in the action phase
Actuator R option Value | I option Value
Page sharing VM parameter |3 Extension in same | 2
Page compression VM algorithm |2 Extension in same |2
Page/memory transfer VM parameter |3 Direct acting 1
Co-scheduling VM parameter |3 Extension in same |2
Number of VCPUs assigned to CPU | VM parameter |3 Direct acting 1
Change shares or caps VM parameter |3 Direct acting 1
Number of processes/threads VM parameter |3 Direct acting 1
Table 3.4 HLL VMs: sensors monitored
Sensor R option Value I option Value
Memory structures dimensions Inside 3 Direct 1
Events of the operative system Kernel 2 Direct 1
Working set size Kernel 2 Extension other layer 3
GC load Inside 3 Direct 1
Frequency of GC Inside 3 Direct 1
Memory usage patterns App 3 Extension same layer 2
Table 3.5 HLL VMs: decision techniques
Control technique R option Value I option Value
If-then-rule Rule/heuristic 5 Rule/heuristic 1
Generic condition Rule/heuristic 5 Rule/heuristic 1
Reinforcement learning Model-free ML 1 Model-free ML 4
PID controller Control-based 2 Control-based 4
Elasticity (micro-economy) Rule/heuristic 5 Rule/heuristic 1

responsiveness (second column) and intricateness (third column). Tables 3.4, 3.5,
and 3.6 are the ones corresponding to the high-level language virtual machines and
follow the same logic.

Looking at the techniques used in the monitor phase, Tables 3.1 and 3.4 show us
that only two techniques have the minimum responsiveness. This is so because most

80 J. Simdo and L. Veiga

Table 3.6 HLL VMs: actuators used in the action phase

Actuator R option Value I option Value
Heap size VM parameter 3 Direct 1
Run GC VM parameter 3 Direct 1
Change GC algorithm VM algorithm 2 Extension same layer 2
Limit usage VM algorithm 2 Extension same layer 2
Reservation VM algorithm 2 Extension same layer 2

of the sensors are near the VM execution space (either in a subsystem of the VM
or in the operating system). Low intricateness also is dominant as most sensors are
already available.

Regarding the decision phase, analyzed in Tables 3.2 and 3.5, a majority of
techniques have high responsiveness values. As a consequence, they are less
intricate. In HLL-VMs, techniques are usually either very simple or have maximum
complexity.

Finally, regarding the action phase, we note that all actuators are either already
available in the VM code base or are extensions to the VM code base. Contrary to
sensors, no new actuators are proposed for other layers of the execution stack. This
leads to not having, in practice, actuators with the maximum intricateness.

3.4.3 Aggregation of Quantities

In this section, we give the details about the implementation of the final stage of step
2 and how step 3 operates, as depicted in Fig. 3.8.

Regarding the final stage of step 2, because a given system may use more than
one sensor, in the monitoring phase, and more than one actuator, in the acting phase,
the framework must determine a single R and I value for these two phases (i.e., Ry,
R4, Iy, 14). Regarding responsiveness, we consider the technique with the lowest
responsiveness, as presented in Equation 3.1. This was so because the monitor or
the action phase will be as responsive as the least responsive technique the system
uses. Regarding the intricateness metric, we use the technique with the highest value
as a representative of the phase’s intricateness. Finally, note that this is not an issue
for the decision phase because specific systems only use one strategy.

R, = minimum of techniques’ responsiveness, where m € {M,A} @3.1)

For a given system, S,, the three metrics of the framework, responsiveness,
comprehensiveness, and intricateness are represented by R(Sy), C(Sy), and 1(Sy),
respectively. Each of these metrics depends on the specific values of the techniques
used by the system. So, to determine R(S,,), the framework adds the responsiveness
of each phase of the adaptation loop (Monitor, Decision, Action), as presented in

3 Recent Progress and Challenges in Virtual Machines 81

Table 3.7 Example of the aggregations made in step 2 for system S,

System Monitor R I Decision R 1 Action R I
A\ T, 2 3 T, 2 3 T, 1 2
T, 3 2 Ty 2 1

T, 1 2
1 3 2 3 1 2

Table 3.8 Example of the arithmetic operations in step 2 for system S,

System R C I
S« 1+2+1 #sensors+#actuators 3+3+2

Equation 3.2. A similar operation is done to determine the intricateness metric.

RS =Y Rx(Sw) (3.2)

7 € {M.D.A}

To determine comprehensiveness, C(S,), the framework takes into account the
number of sensors used in the monitoring phase, the number of actuators used in the
acting phase, and adds them to reach a single value. This is the operation identified
as C(M,A) in step 3 of Fig. 3.8.

As an example, consider system Sy, which uses several hypothetical techniques
for each phase of the adaptation loop. Step 1 of the framework determines that the
techniques must be identified (e.g., T,). Then, for each technique, a quantitative
value is assigned regarding its responsiveness and intricateness for the three phases
of the adaptation loop.

The last line of Table 3.7 shows the result of the aggregation operations used to
determine, for each of the three phases, the R and I values. The aggregate function
minimum is used for responsiveness, while the aggregate function maximum is used
for intricateness.

Table 3.8 completes the example, showing the arithmetic operations necessary to
determine the overall R, C, and I values of the hypothetical system S,. The values
from the last line of Table 3.7 are the ones used to determine R and I in Table 3.8,
following the Equation 3.2.

3.4.4 Critical Analysis of the Taxonomy

The RCI taxonomy aims to show trade-offs in the design of adaptive systems in the
context of virtual machines. Its critical point is the design options tree, presented in
Fig.3.10, and the corresponding quantitative values. It can be the case that either the
design options do not represent the entire design space or that the quantitative values

82 J. Simdo and L. Veiga

are not correctly assigned. We tried to minimize this by designing the taxonomy
after examining several systems to better understand the scope of the design space.
However, we are still to collect the opinions of other researchers in the area on using
the taxonomy, and possibly improving it based on their feedback.

In the next section, relevant works are analyzed regarding monitoring and
adaptability in virtual machines, both at system as well as managed language level.
The RCI taxonomy is used to compare different systems and better understand
how virtual machine researchers have explored the tension between responsiveness,
comprehensiveness, and intricateness.

3.5 VM Systems and Their Classification

In this section, we start by surveying several state of the art systems, regarding
system-level VMs, Sect.3.5.1, and high-level language VMs, Sect.3.5.2. In each
case, we frame the analyzed systems into the classification framework presented in
Sect. 3.4, describing each of the techniques used, resulting in the classification and
comparison of complete systems.

3.5.1 System Virtual Machine

The following are succinct descriptions of system-level VMs and systems that
extend them. We start by presenting a well-known open-source hypervisor. A list
of systems that extend this or other similar hypervisors follows. Most of them are
centered either on CPU or memory. At the end of the section, Table 3.9 summarizes
the techniques used in each system. This process was identified as step 1 in Fig. 3.8.
This is the base for determining each system’s RCIL.

3.5.1.1 Friendly Virtual Machines (FVM)

This VMM aims to neither overused or underused resources. The responsibility
for adjusting the demand of the underlying resources is delegated to each guest,
resulting in a distributed adaptation system [110]. The decision phase is regulated by
feedback control rules such as additive-increase/multiplicative-decrease (AIMD),
typically used in network congestion avoidance [22]. A VM runs inside a hosted
virtual machine, the user-mode Linux. The FVM’s daemon installed at each guest
controls the number of processes and threads that are effectively running at each
VM. When only a single thread of execution exists, FVM will adapt the rate of
execution forcing the VM to periodically sleep.

3 Recent Progress and Challenges in Virtual Machines 83

Table 3.9 Sys-VM Systems

Dominant Modified
System resource | Monitor Decision Action VMM/VM
FVM CPU VTC PID Controller Number of Yes
AIMD threads, periodic
sleep

Auto control | CPU, /O | CPU, I/O usage, | Model predictive, | Cap, disk share No
Average response | Quadratic solver

time
Press CPU CPU, Mem, I/0O | Pearson CPU cap No
usage correlation
HPC CPU VCPU utilization | Rules with AISD | Number of No
rate, System VCPUs
Parallel level
ASMan CPU Spin locks Thresholding Co-scheduling Yes
utilization and rules
waiting time
Ginko Mem Average time per | Linear Balloon No
URL request, programming
#SQL
transactions,
response time
Overbooking | CPU, Mem| CPU, Mem, PID controller CPU cap, balloon | No
Average time per
URL request
VMMB Mem Page faults, swap | LRU histogram | Balloon, VMM | Yes
operations swapping
Difference Mem (sub-)Page Not recently used | Page sharing, Yes
engine contents patching,
compression

3.5.1.2 ASMan

The Adaptive Scheduling Manager (ASMan) [103] is an extension to Xen’s
scheduler. It adds the capacity to co-schedule virtual CPUs (VCPU) of VMs where
there are threads holding a blocking synchronization mechanism, such as spin locks.
In non-virtualized systems, threads holding spin locks are not preempted. In a
virtualized system, the VCPU continues to be held by the thread but, because the
hypervisor sees the VCPU as being idle, the VCPU is taken from execution and
placed on the waiting queue. Using the concept of VCPU-related degree (VCRD),
the ASMan system determines the degree of relationship between the VCPUs in a
VM. The system dynamically determines this metric by monitoring, in each guest
OS, the time spent in spin locks. The VM is then classified with a low or high VCRD
if it is below or above a certain threshold. When the VCRD is high, the VCPUs of
that VM are co-scheduled.

84 J. Simdo and L. Veiga

3.5.1.3 HPC Computing

Shao et al. [70] adapt the VCPU mapping of Xen [12] for high-performance com-
puting applications, based on runtime information collected by a monitor that must
be running inside each guest’s operating system. They adjust the number of VCPUs
to meet the real needs of each guest. Decisions are made based on two metrics:
the average VCPU utilization rate and the parallel level. The parallel level mainly
depends on the length of each VCPU’s run queue. The adaptation process uses an
additive increase and subtractive decrease (AISD) strategy. Shao et al. focus their
work on benchmarks used to represent the common operations of high-performance
computing applications. It acts on number of VCPUs assigned to each VM.

3.5.1.4 Auto Control

The Auto Control system [65] uses a control theory model to regulate resource
allocation, based on multiple inputs and driving multiple outputs. Inputs include
CPU and I/O usage, together with application specific metrics. It acts on the
allocation of caps for CPU and disk I/O. For each application, there is an
application controller which collects the application’s performance metrics (e.g.,
application throughput or average response time) and, based on the application’s
performance target, determines the new requested allocation. The model is adjusted
automatically, and so it can adapt to different operating points and workloads.

3.5.1.5 PRESS

PRedictive Elastic ReSource Scaling for cloud systems (PRESS) [35] tries to
allocate just enough resources to avoid service level violations while minimizing
resource waste. To handle both cyclic and noncyclic workloads, PRESS tracks
resource usage and predicts how resource demands will evolve in the near future.
The decision phase (which includes the analysis of observed values) uses signal
processing techniques (i.e., fast Fourier Transform and the Pearson correlation).
PRESS tries to look for a similar pattern (i.e., a signature) in the resource usage
history. If this fails, PRESS uses a discrete-time Markov chain. The prediction
scheme is used to regulate the CPU cap of the target VM.

3.5.1.6 Overbooking and Consolidation

Heo et al. [42] focus on monitoring memory usage (including page faults) and
application performance. They show that allocating memory in such an overcom-
mitted environment, without taking also into account the CPU, results in significant
service level violations. The system uses a PID controller to dynamically change the
allocating of memory (using the ballon driver) and the CPU cap.

3 Recent Progress and Challenges in Virtual Machines 85

3.5.1.7 Difference Engine

Differently from other system, Gupta et al. [39] share page content at the sub-
page level, using a technique named page patching, which is made by observing
the difference relative to a reference page. Based on a not recently used policy,
difference engine also uses memory compression for pages that are not significantly
similar to other pages in memory. Both techniques extends the more traditional
mechanisms of copy-on-write full page sharing, already present at the Xen VMM.

3.5.1.8 VMMB

In [61], Min et al. present VMMB, a virtual machine memory balancer for
unmodified operating systems. VMMB monitors the memory demand (i.e., nested
page faults and to guest swapping) and reallocates memory based on the QoS
requirement of each VM. It uses the LRU histogram as input for their decision
algorithm that determines the memory allocation size of each VM while globally
minimizing the page miss ratio. Similar to other works, they use balloon driver
to enforce each VM’s new memory size. When this is not enough, a VMM-level
swapping is used to select a set of victim pages and immediately allocate memory
to a selected VM.

3.5.1.9 Overall System Analysis

Table 3.9 summarizes the systems analyzed in this section. After the system name,
the second column identifies the dominant resource, that is, the resource over which
the system is monitoring but also acting. From the third to the fourth column, we
present the techniques used in each of the adaptation phases. The last column allows
us to quickly determine if the system proposes extensions to the code base of the
VM or not.

Figure 3.11 depicts the overall RCI of each system that uses or augments a
system-level VM. It presents a visual, quantitative, and comparative analysis, which
completes Table 3.9. Overall, systems tend to favor responsiveness design options
(as this metric prevails in every system).

When looking for memory-dominant systems (difference engine, VMMB, Ober-
booking, Ginko) we see that Overbooking is less responsive because it tries to
embrace a large number of sensors and actuators. In the CPU-dominated systems,
HPC is the one classified as the most responsiveness but uses simpler techniques
(low intricateness) and a minimum number of sensors and actuators. ASMan is more
intricate, basically because it needs extensions for the monitoring and action phase,
but it had to give up on some responsiveness.

86 J. Simdo and L. Veiga

FVM

1
Difference /
ngine /’

E
VMMB ‘ N

Overbooking

Fig. 3.11 RCI of Sys-VMs

3.5.2 High-Level Language Virtual Machines

This section will present and discuss different systems that monitor resource usage,
resulting in either imposing limitations or changing the policies of the JIT, GC,
or resource manager subsystems. Adaptation in high-language virtual machines is
made by changing their building block parameters (e.g., JIT level of optimization,
GC heap size) or the actual algorithm used to perform certain operations. This
section starts by presenting classic work on Java Virtual Machines (JVMs) whose
goal was to incorporate resource usage constraints on regular VMs. It then surveys
more recent systems where the focus was to diminish the impact of GC in program
execution. At the end of the section, Table 3.10 summarizes the techniques used in
each system. As in the case of system-level VMs, this process is the implementation
of step 1 in Fig. 3.8, which is the base for determining each system RCI.

3.5.2.1 KaffeOS

Built on top of Kaffe virtual machine [10], KaffeOS [10] provides the ability to
run Java applications isolated from each other and also to limit their resource
consumption. KaffeOS, adds a process model to Java that allows a JVM to run
multiple untrusted programs safely. The runtime system is able to account for and
control all of the CPU and memory resources consumed on behalf of any process.
Consumption of individual processes can be separately accounted for, because the
allocation and garbage collection activities of different processes are separated. To

3 Recent Progress and Challenges in Virtual Machines 87

Table 3.10 HLL-VM systems

Dominant
System | resource | Monitor Decision Action Modifications
JRES Mix CPU, heap, I/0 Rules Limitation VM
(CPU, heap,
1/0)
Isla vista | Mem Allocation stalls in Rules Heap rezise VM
oS
Resource-| Mem Page faults, resident | 3 types of Whole heap VM
driven set size rules collection
Control | Mem GC overhead PID Heap resize Yes
controller
PAMM | Mem Heap size, page Threshold Run GC Program
faults
CRAMM | Mem WSS via virtual Fixed rule Heap resize VM/OS
memory manager,
heap utilization
Elasticity | Mem Number of GCs, Elasticity Heap resize VM
curve heap size threshold
Switch Mem Heap size, GC load, | Threshold GC algorithm VM
GC frequency rule
Learning | Mem Available memory Reinforcement| Run GC VM
(current and learning
variation between
observations)

account for memory, KaffeOS uses a hierarchical structure where each process is
assigned a hard and a soft limit. Hard limits relate to reserved memory. Soft limits
acts as guard limit not assuring that the process can effectively use that memory.
Children tasks can have, globally, a soft limit bigger than their parent, but only
some of them will be able to reach that limit.

3.5.2.2 JRES

The work of Czajkowski et al. [24] uses native code, library rewriting, and byte code
transformations to account and control resource usage. JRES was the first work to
specify an interface to account for heap memory, CPU time, and network consumed
by individual threads or groups of threads. The proposed interface allows for the
registration of callbacks, used when resource consumption exceeds some limits and
when new threads are created.

88 J. Simdo and L. Veiga

3.5.2.3 Multitask Virtual Machine (MVM)

The MVM [25] extends the Sun Hotspot JVM to support isolates and resource
management. Isolates are similar to processes in KaffeOS. The distinguishing differ-
ence of MVM is in its generic Resource Management (RM) API, which uses three
abstractions: resource attributes, resource domain, and dispenser. Each resource
is characterized by a set of attributes (e.g., memory granularity of consumption,
reservable, disposable). In [25] the MVM is able to manage the number of open
sockets, the amount of data sent over the network, the CPU usage, and heap memory
size. When the code running on an isolate wants to consume a resource, it will use a
library (e.g., send data to the network) or runtime service (e.g., memory allocation).
In these places, the resource domain to which the isolate is bound will be retrieved.
Then, a call to the dispenser of the resource is made, which will interrogate all
registered user-defined policies to know if the operation can continue. A dispenser
controls the quantity of a resource available to resource domains.

3.5.2.4 Isla Vista

Grzegorczyk et al. [37] takes into account a phenomenon known as allocation
stalls, which happens during memory allocation when the system has only a few
free pages. If this is so, one or more resident pages must be evicted to disk before
any new page can be assigned to the requesting process. Isla vista implements an
algorithm inspired by the exponential backoff model for TCP congestion control
to avoid the stall, where transmission rate relates to heap size, and packet loss
relates to page faults. Doing so, the heap size increases linearly when there are no
allocation stalls. Otherwise, the heap shrinks and the growth factor for successive
heap growth decisions is reduced. This is an heuristic to balance between inevitable
paging operations and time spent in GC operations.

3.5.2.5 GC Switch

Soman et al. [88] adds to the memory management system the capacity of changing
the GC algorithm during program execution. The system monitors application
behavior (i.e., GC load versus the time used by application’s threads) and resource
availability, in order to decide when to dynamically switch the GC strategy. Their
decision in based on heuristics so that when the GC load is high, they switch
from a Semi-Space (which performs better when more memory is available) to a
Generational Mark-Sweep collector (which performs better when memory is more
constrained).

3 Recent Progress and Challenges in Virtual Machines 89

3.5.2.6 Paging-Aware GC

Hertz et al. [44] developed a GC triggering system that takes into account the
overall state of the system where the VM is running and not its single process.
Two approaches were considered. VMs use a whiteboard area to know if a GC is
taking place in the system. If so, they defer their collection to avoid clustering the
environment with simultaneous collection. The other is called selfish, and the VM
only takes in consideration the heap size and page faults. Based on simple heuristics
like the difference in sizes of the resident set and the evolution of page faults, the
GC is triggered.

CRAMM [109], on the other hand, dynamically builds the working set size
(WSS) as the application progresses, monitoring minor and major page faults. It
then acts on the heap size to improve application performance. The system extends
the virtual memory manager of the operating system so that the WSS is dynamically
built as the application progresses, monitoring minor and major page faults. After
each heap collection, the system requests a WSS estimate. It then considers this
value to resize the heap. After each GC run, the histogram is also reset since the
new heap size will produce a new reference histogram pattern.

3.5.2.7 GC Economics

In [83], Singer et al. relates the heap size and number of garbage collections with
the price and demand law of microeconomics — with bigger heaps, there will be less
collections. Their decision strategy is an heuristic based on the concepts of memory
elasticity to find a tradeoff between heap size and execution time, driven by a user-
supplied elasticity target. Actions are made over the heap size, to shrink or keep.

3.5.2.8 Control Theory

Heap sizing was also researched as a control theory problem [105]. In Whites et
al.’s work, a PID controller is used where the control variable is the heap resize
ratio, and the measurement variable is the GC overhead. To determine the new
heap size, the controller, after each collection cycle, measures the error between
the current GC overhead and the target GC overhead, specified by the user. The goal
is to achieve and maintain the user-defined target GC overhead. The controller’s
parameters, such as the gain and the oscillatory period, were manually fine-tuned
for a set of benchmarks. They have only tested their system under a full-heap
collector.

90 J. Simdo and L. Veiga

3.5.2.9 Machine Learning for Memory Management

Machine learning techniques have been used to dynamically learn which is the best
moment to garbage collect [8] and to choose, a-priori, the best GC configuration
(algorithm, serial, parallel) [82, 84] given an profile run of the application. In the
first case, a reinforcement learning algorithm is used. A binary action is to be taken
in each step leading to the decision to run the GC or not. The reinforcement learning
algorithm accumulates penalties based on its decisions, and, as time passes, it learns
which are the best situations to run the GC. In the second group of papers, an offline
machine learning algorithm, based on decision trees, is used to generate a classifier
that, given a profile run of a new program (i.e., not used to build the model), can
predict a GC algorithm that minimizes the execution time.

3.5.2.10 Overall Systems Analysis

Table 3.10 summarizes the systems analyzed in this section. The majority of them
are focused on the management of the heap size and use simple heuristics to
guide this process. Exceptions are the ones using a PID controller [105] and a
machine learning algorithm. However, these two systems either have to be fine-
tuned manually or impose limitations on the type of garbage collector. Only one
work takes into account the collocation of VMs and the need to transfer memory
between them [44]. Even so, it is focused on the individual performance of each
instance and not the distribution of memory based on the progress of each workload.

Figure 3.12 depicts the overall RCI of each system that augments a high-
level language VM, complementing the analysis of Table 3.10. As in the case

Isla Vista

Control Resource-driven

CRAMM

Learning col-- C

Elasticity Curve

Switch

Fig. 3.12 RCI of HLL-VMs

3 Recent Progress and Challenges in Virtual Machines 91

of system-level VMs, systems have design options that favor responsiveness. The
system taking into account the elasticity curve of microeconomics has the highest
level of responsiveness perhaps because of its low overall intricateness of sensors,
decision process, and actuators. We also see that the extra intricateness of the
decision phase in “Control” and “Learning” had a cost. In the first case, it was
the overall responsiveness, while in the second, the system had to be designed
with a smaller number of sensors, reducing comprehensiveness. Further research
is needed to determine if other unexplored techniques in these two fields can bring
more advantage.

3.6 Summary and Open Research Issues

In this chapter, we reviewed the main approaches for adaptation and monitoring
in virtual machines, their tradeoffs, and their main mechanisms for resource
management. We framed them into the adaptation loop model (monitoring, decision,
and actuation). Furthermore, we proposed a novel taxonomy and classification
framework that, when applied to a group of systems, can help visually in determin-
ing their similarities and differences. Framed by this, we presented a comprehensive
survey and analysis of relevant techniques and systems in the context of virtual
machine monitoring and adaptability.

This taxonomy was inspired by two conjectures that arise from the analysis of
existing relevant work in monitoring and adaptability of virtual machines. We pre-
sented the RCI conjecture on monitoring and adaptability in systems, identifying the
fundamental tension among responsiveness, comprehensiveness, and intricateness,
and how a given adaptation technique aiming at achieving improvements on two of
these aspects can only do so at the cost of the remaining one.

In last years, the widespread use of management systems for containerized
applications, like Docker [48] and Kubernetes [47], resurrected the interest of
container-based operating system (COS) [87]. Sys-VMs allow for each guest to have
a complete stack of the operating system and applications running in isolation from
other guests. In contrast to this, containers lose some of the CPU and I/O isolation
and share the same kernel OS, promising close to bare metal performance [71].
A container-based approach can give high-performance computing applications an
easy and light way to transport jobs and a comprehensive resource scheduling
environment [101].

An approach that is also becoming popular is the use of containers inside
Sys-VMs. Doing so, data center providers can reuse their current virtualization
infrastructure while going toward the need of more users. Also from a desktop
environment point of view, having containers inside Sys-VMs allows the for non-
Linux users to enjoy this technology and benefit from an extra degree of isolation
when running their sensitive workloads [27, 101].

With managed runtimes dominating the landscape of systems to process big data,
research will continue to reduce the impact of platforms in workload’s performance,

92 J. Simdo and L. Veiga

especially regarding automatic memory management and the interface between
HLL-VMs and the underlying execution stack. Regarding memory management,
the generational principle is well suited for most general applications, but in big-
data deployments, either related to storage or stream processing, this assumption
is not always beneficial, and new segmenting options have to be considered [33].
Regarding the deployments of managed runtimes, further efforts are necessary to
explore how to reduce the cost of interfacing with operating services (especially
I/O) as this is also a cause of performance bottleneck. A research opportunity is
hybrid runtimes that run in kernel mode and take direct advantage of the available
hardware [41].

Acknowledgements This work was supported by national funds through Fundagdo para a Ciéncia
e a Tecnologia with reference PTDC/EEI-SCR/6945/2014, and by the ERDF through COMPETE
2020 Programme, within project POCI-01-0145-FEDER-016883, the Engineering School of the
Polytechnic Institute of Lisbon (ISEL/IPL).

References

1. ACM Digital Library. http://dl.acm.org/. Visited Nov 2016

2. Adams K, Agesen O (2006) A comparison of software and hardware techniques for x86
virtualization. In: Proceedings of the 12th international conference on architectural support
for programming languages and operating systems, ASPLOS XII. ACM, New York, pp 2-13

3. Agmon Ben-Yehuda O, Posener E, Ben-Yehuda M, Schuster A, Mu’alem A (2014) Ginseng:
market-driven memory allocation. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS
international conference on virtual execution environments, VEE’14. ACM, New York,
pp 41-52

4. Alpern B, Augart S, Blackburn SM, Butrico M, Cocchi A, Cheng P, Dolby J, Fink S, Grove
D, Hind M, McKinley KS, Mergen M, Moss JEB, Ngo T, Sarkar V (2005) The Jikes research
virtual machine project: building an open-source research community. IBM Syst J 44:399—
417. doi:http://dx.doi.org/10.1147/sj.442.0399

5. Amdahl GM, Blaauw GA, Brooks FP (1964) Architecture of the IBM system/360. IBM J Res
Dev 8:87-101. doi:http://dx.doi.org/10.1147/rd.82.0087

6. Amit N, Tsafrir D, Schuster A (2014) Vswapper: a memory swapper for virtualized
environments. In: Proceedings of the 19th international conference on architectural support
for programming languages and operating systems, ASPLOS’14. ACM, New York, pp 349—
366. doi:10.1145/2541940.2541969

7. An architectural blueprint for autonomic computing. Technical report, IBM (2005)

8. Andreasson E, Hoffmann F, Lindholm O (2002) To collect or not to collect? Machine learning
for memory management. In: Proceedings of the 2nd java virtual machine research and
technology symposium. USENIX Association, Berkeley, pp 27-39

9. Arnold M, Fink SJ, Grove D, Hind M, Sweeney PF (2005) A survey of adaptive optimization
in virtual machines. Proc IEEE 93(2):449-466. Special issue on program generation,
optimization, ans adaptation

10. Back G, Hsieh WC (2005) The KaffeOS java runtime system. ACM Trans Prog Lang Syst
27:583-630. doi:http://doi.acm.org/10.1145/1075382.1075383

11. Baker HG (1994) Thermodynamics and garbage collection. SIGPLAN Not 29:58-63.
doi:http://doi.acm.org/10.1145/181761.181770

12. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I,
Warfield A (2003) Xen and the art of virtualization. SIGOPS Oper Syst Rev 37:164-177.
doi:http://doi.acm.org/10.1145/1165389.945462

http://dl.acm.org/
http://dx.doi.org/http://dx.doi.org/10.1147/sj.442.0399
http://dx.doi.org/http://dx.doi.org/10.1147/rd.82.0087
http://dx.doi.org/10.1145/2541940.2541969
http://dx.doi.org/http://doi.acm.org/10.1145/1075382.1075383
http://dx.doi.org/http://doi.acm.org/10.1145/181761.181770
http://dx.doi.org/http://doi.acm.org/10.1145/1165389.945462

3 Recent Progress and Challenges in Virtual Machines 93

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Beloglazov A, Buyya R (2010) Energy efficient resource management in virtualized cloud
data centers. In: 10th IEEE/ACM international conference on cluster, cloud and grid
computing (CCGrid), 2010, Melbourne, pp 826-831

Binder W, Hulaas J, Moret P, Villazén A (2009) Platform-independent profiling in a virtual
execution environment. Softw Pract Exper 39:47-79. doi:10.1002/spe.v39:1. http://portal.
acm.org/citation.cfm?id=1464245.1464249

Blackburn SM, Garner R, Hoffmann C, Khang AM, McKinley KS, Bentzur R, Diwan
A, Feinberg D, Frampton D, Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Moss
JEB, Moss B, Phansalkar A, Stefanovi¢ D, VanDrunen T, von Dincklage D, Wieder-
mann B (2006) The DaCapo benchmarks: java benchmarking development and analysis.
In: OOPSLA’06: Proceedings of the 21st annual ACM SIGPLAN conference on object-
oriented programming systems, languages, and applications. ACM, New York, pp 169-190.
doi:http://doi.acm.org/10.1145/1167473.1167488

Blake C, Rodrigues R (2003) High availability, scalable storage, dynamic peer networks: pick
two. In: Jones MB (ed) HotOS, Lihue. USENIX, pp 1-6

Bobroff N, Westerink P, Fong L (2014) Active control of memory for java virtual machines
and applications. In: 11th international conference on autonomic computing (ICAC 14).
USENIX Association, Philadelphia, pp 97-103. https://www.usenix.org/conference/icac14/
technical-sessions/presentation/bobroff

. Brewer EA (2010) A certain freedom: thoughts on the CAP theorem. In: Richa AW, Guerraoui

R (eds) PODC. ACM, p 335

. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging

it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener
Comput Syst 25(6):599-616

Cheng L, Wang CL (2012) vbalance: using interrupt load balance to improve i/o performance
for SMP virtual machines. In: Proceedings of the third ACM symposium on cloud computing,
SoCC’12. ACM, New York, pp 2:1-2:14

Cherkasova L, Gupta D, Vahdat A (2007) Comparison of the three
cpu schedulers in XEN. SIGMETRICS Perform Eval Rev 35:42-51.
doi:http://doi.acm.org/10.1145/1330555.1330556

Chiu DM, Jain R (1989) Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Comput Netw ISDN Syst 17(1):1-14

Click C, Tene G, Wolf M (2005) The pauseless gc algorithm. In: Proceedings of the 1st
ACM/USENIX international conference on virtual execution environments, VEE’05. ACM,
New York, pp 46-56. doi:http://doi.acm.org/10.1145/1064979.1064988

Czajkowski G, von Eicken T (1998) Jres: a resource accounting interface for java.
In: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA’98. ACM, New York, pp 21-35.
doi:http://doi.acm.org/10.1145/286936.286944

Czajkowski G, Hahn S, Skinner G, Soper P, Bryce C (2005) A resource management interface
for the java platform. Softw Pract Exper 35:123-157. doi:10.1002/spe.v35:2. http://portal.
acm.org/citation.cfm?id=1055953.1055955

Czajkowski G, Wegiel M, Daynes L, Palacz K, Jordan M, Skinner G, Bryce C (2005)
Resource management for clusters of virtual machines. In: Proceedings of the fifth IEEE
international symposium on cluster computing and the grid — volume 01, CCGRID’05.
IEEE Computer Society, Washington, DC, pp 382-389. http://portal.acm.org/citation.cfm?
id=1169222.1169492

Dantas B, Fleitas C, Francisco AP, Simao J, Vaz C (2016) Beyond NGS data sharing and
toward open science. doi:10.5281/zenodo.190489

Deutsch LP, Schiffman AM (1984) Efficient implementation of the smalltalk-
80 system. In: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on
principles of programming languages, POPL'84. ACM, New York, pp 297-302.
doi:http://doi.acm.org/10.1145/800017.800542

Enabling intel virtualization technology features and benefits. http://www.intel.com/
content/dam/www/public/us/en/documents/white- papers/virtualization-enabling-intel-
virtualization-technology-features-and-benefits- paper.pdf. Visited Nov 2016

http://dx.doi.org/10.1002/spe.v39:1
http://portal.acm.org/citation.cfm?id=1464245.1464249
http://portal.acm.org/citation.cfm?id=1464245.1464249
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488
https://www.usenix.org/conference/icac14/technical-sessions/presentation/bobroff
https://www.usenix.org/conference/icac14/technical-sessions/presentation/bobroff
http://dx.doi.org/http://doi.acm.org/10.1145/1330555.1330556
http://dx.doi.org/http://doi.acm.org/10.1145/1064979.1064988
http://dx.doi.org/http://doi.acm.org/10.1145/286936.286944
http://dx.doi.org/10.1002/spe.v35:2
http://portal.acm.org/citation.cfm?id=1055953.1055955
http://portal.acm.org/citation.cfm?id=1055953.1055955
http://portal.acm.org/citation.cfm?id=1169222.1169492
http://portal.acm.org/citation.cfm?id=1169222.1169492
http://dx.doi.org/10.5281/zenodo.190489
http://dx.doi.org/http://doi.acm.org/10.1145/800017.800542
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf

94

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

J. Simdo and L. Veiga

. Farahnakian F, Pahikkala T, Liljeberg P, Plosila J, Hieu NT, Tenhunen H (2016) Energy-aware
VM consolidation in cloud data centers using utilization prediction model. IEEE Trans Cloud
Comput 99:1-1. doi:10.1109/TCC.2016.2617374

Gidra L, Thomas G, Sopena J, Shapiro M (2013) A study of the scalability of stop-the-world
garbage collectors on multicores. In: Proceedings of the eighteenth international conference
on architectural support for programming languages and operating systems, ASPLOS’13.
ACM, New York, pp 229-240

Gidra L, Thomas G, Sopena J, Shapiro M, Nguyen N (2015) Numagic: a garbage collector for
big data on big NUMA machines. In: Proceedings of the twentieth international conference on
architectural support for programming languages and operating systems, ASPLOS’15. ACM,
New York, pp 661-673. doi:10.1145/2694344.2694361

Gog I, Giceva J, Schwarzkopf M, Vaswani K, Vytiniotis D, Ramalingan G, Murray D,
Hand S, Isard M (2015) Broom: sweeping out garbage collection from big data systems. In:
Proceedings of the 15th USENIX conference on hot topics in operating systems, HOTOS’15.
USENIX Association, Berkeley, pp 2-2. http://dl.acm.org/citation.cfm?id=2831090.2831092
Goldberg RP (1974) Survey of virtual machine research. Computer 7(9):34-45

Gong Z, Gu X, Wilkes J (2010) Press: predictive elastic resource scaling for cloud systems.
In: International conference on network and service management (CNSM), 2010, Niagara
Falls, pp 9-16

Gordon A, Amit N, Har’El N, Ben-Yehuda M, Landau A, Schuster A, Tsafrir D (2012) ELI:
bare-metal performance for I/O virtualization. In: Proceedings of the seventeenth international
conference on architectural support for programming languages and operating systems,
ASPLOS XVII. ACM, New York, pp 411422

Grzegorczyk C, Soman S, Krintz C, Wolski R (2007) Isla vista heap sizing: using
feedback to avoid paging. In: Proceedings of the international symposium on code gener-
ation and optimization, CGO’07. IEEE Computer Society, Washington, DC, pp 325-340.
doi:http://dx.doi.org/10.1109/CG0O.2007.20

Guan X, Srisa-an W, Jia C (2009) Investigating the effects of using differ-
ent nursery sizing policies on performance. In: Proceedings of the 2009 interna-
tional symposium on memory management, ISMM’09. ACM, New York, pp 59-68.
doi:http://doi.acm.org/10.1145/1542431.1542441

Gupta D, Lee S, Vrable M, Savage S, Snoeren AC, Varghese G, Voelker GM, Vahdat A (2008)
Difference engine: harnessing memory redundancy in virtual machines. In: Proceedings of
the 8th USENIX conference on operating systems design and implementation, OSDI’08.
USENIX Association, Berkeley, pp 309-322. http://dl.acm.org/citation.cfm?id=1855741.
1855763

Hagimont D, Mayap Kamga C, Broto L, Tchana A, Palma N (2013) DVFS aware CPU credit
enforcement in a virtualized system. In: Middleware 2013. Lecture notes in computer science,
vol 8275. Springer, Berlin/Heidelberg, pp 123-142

Hale KC, Dinda PA (2016) Enabling hybrid parallel runtimes through kernel and vir-
tualization support. In: Proceedings of the 12th ACM SIGPLAN/SIGOPS international
conference on virtual execution environments, VEE’16. ACM, New York, pp 161-175.
doi:10.1145/2892242.2892255

Heo J, Zhu X, Padala P, Wang Z (2009) Memory overbooking and dynamic control of
XEN virtual machines in consolidated environments. In: Proceedings of the 11th IFIP/IEEE
international conference on symposium on integrated network management, IM’09. IEEE
Press, Piscataway, pp 630-637. http://dl.acm.org/citation.cfm?id=1688933.1689025

Hertz M, Bard J, Kane S, Keudel E, Bai T, Kelsey K, Ding C (2009) Waste not, want not:
resource-based garbage collection in a shared environment. Technical report TR-2006-908,
University of Rochester

Hertz M, Kane S, Keudel E, Bai T, Ding C, Gu X, Bard JE (2011) Waste not, want
not resource-based garbage collection in a shared environment. In: Proceedings of the
international symposium on Memory management, ISMM’11. ACM, New York, pp 65-76.
doi:http://doi.acm.org/10.1145/1993478.1993487

http://dx.doi.org/10.1109/TCC.2016.2617374
http://dx.doi.org/10.1145/2694344.2694361
http://dl.acm.org/citation.cfm?id=2831090.2831092
http://dx.doi.org/http://dx.doi.org/10.1109/CGO.2007.20
http://dx.doi.org/http://doi.acm.org/10.1145/1542431.1542441
http://dl.acm.org/citation.cfm?id=1855741.1855763
http://dl.acm.org/citation.cfm?id=1855741.1855763
http://dx.doi.org/10.1145/2892242.2892255
http://dl.acm.org/citation.cfm?id=1688933.1689025
http://dx.doi.org/http://doi.acm.org/10.1145/1993478.1993487

3 Recent Progress and Challenges in Virtual Machines 95

45.

46.

47.

48

50.

51.

52.

53.

54.

55

57.

58.

59.

60.

61.

62.

63.
. Ousterhout JK (1982) Scheduling techniques for concurrent systems. In: ICDCS, Miami.

64

Hinesa M, Gordon A, Silva M, Silva DD, Ryu KD, Ben-Yehuda M (2011) Applications know
best: performance-driven memory overcommit with ginkgo. In: CloudCom’11: 3rd IEEE
international conference on cloud computing technology and science, Athens, pp 130-137
Hoffmann H, Eastep J, Santambrogio MD, Miller JE, Agarwal A (2010) Application
heartbeats: a generic interface for specifying program performance and goals in autonomous
computing environments. In: Proceedings of the 7th international conference on autonomic
computing, ICAC’ 10, Washington, DC, pp 79-88

http://kubernetes.io. Visited Nov 2016

. https://www.docker.com/. Visited Nov 2016
49.

Hulaas J, Binder W (2008) Program transformations for light-weight cpu accounting
and control in the java virtual machine. High. Order Symbol. Comput. 21:119-146.
doi:10.1007/s10990-008-9026-4

Jones R, Hosking A, Moss E (2011) The garbage collection handbook: the art of automatic
memory management, 1st edn. Chapman & Hall/CRC, Boca Raton

Kesavan M, Gavrilovska A, Schwan K (2010) On disk i/o scheduling in virtual machines. In:
Proceedings of the 2nd conference on I/O virtualization, WIOV’10. USENIX Association,
Berkeley, pp 6-6. http://portal.acm.org/citation.cfm?id=1863181.1863187

Kulkarni S, Cavazos J (2012) Mitigating the compiler optimization phase-ordering problem
using machine learning. In: Proceedings of the ACM international conference on object
oriented programming systems languages and applications, OOPSLA’12. ACM, New York,
pp 147-162

Liu H, Jin H, Liao X, Deng W, He B, Xu CZ (2015) Hotplug or ballooning: a comparative
study on dynamic memory management techniques for virtual machines. IEEE Trans Parallel
Distrib Syst 26(5):1350-1363. doi:10.1109/TPDS.2014.2320915

Lublin U, Kamay Y, Laor D, Liguori A (2007) KVM: the Linux virtual machine monitor. In:
Ottawa Linux Symposium, Ottawa

. Lxc. https://linuxcontainers.org/. Visited Nov 2016
56.

Maas M, Asanovi¢, K., Harris T, Kubiatowicz J (2016) Taurus: a holistic language runtime
system for coordinating distributed managed-language applications. In: Proceedings of the
twenty-first international conference on architectural support for programming languages and
operating systems, ASPLOS’16, Atlanta, pp 457471

Maggio M, Hoffmann H, Papadopoulos AV, Panerati J, Santambrogio MD, Agar-
wal A, Leva A (2012) Comparison of decision-making strategies for self-optimization
in autonomic computing systems. ACM Trans Auton Adapt Syst 7(4):36:1-36:32.
doi:10.1145/2382570.2382572

Manson J, Pugh W, Adve SV (2005) The java memory model. SIGPLAN Not. 40:378-391.
doi:http://doi.acm.org/10.1145/1047659.1040336

Mao F, Zhang EZ, Shen X (2009) Influence of program inputs on the selection of
garbage collectors. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on virtual execution environments, VEE’09, pp 91-100. ACM, New York.
doi:http://doi.acm.org/10.1145/1508293.1508307

Mian R, Martin P, Zulkernine F, Vazquez-Poletti JL (2012) Estimating resource costs of data-
intensive workloads in public clouds. In: Proceedings of the 10th international workshop on
middleware for grids, clouds and e-science, MGC’12. ACM, New York, pp 3:1-3:6

Min C, Kim I, Kim T, Eom YI (2012) VMMB: virtual machine memory balancing for
unmodified operating systems. J Grid Comput 10(1):69-84. doi:10.1007/s10723-012-9209-4
Ongaro D, Cox AL, Rixner S (2008) Scheduling I/O in virtual machine mon-
itors. In: Proceedings of the fourth ACM SIGPLAN/SIGOPS international con-
ference on Virtual execution environments, VEE’08. ACM, New York, pp 1-10.
doi:http://doi.acm.org/10.1145/1346256.1346258

Oracle (2016) Java management extensions (JMX) technology, visited 28-11-2016

IEEE Computer Society, pp 22-30

http://kubernetes.io
https://www.docker.com/
http://dx.doi.org/10.1007/s10990-008-9026-4
http://portal.acm.org/citation.cfm?id=1863181.1863187
http://dx.doi.org/10.1109/TPDS.2014.2320915
https://linuxcontainers.org/
http://dx.doi.org/10.1145/2382570.2382572
http://dx.doi.org/http://doi.acm.org/10.1145/1047659.1040336
http://dx.doi.org/http://doi.acm.org/10.1145/1508293.1508307
http://dx.doi.org/10.1007/s10723-012-9209-4
http://dx.doi.org/http://doi.acm.org/10.1145/1346256.1346258

96

65

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

J. Simdo and L. Veiga

. Padala P, Hou KY, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A (2009)
Automated control of multiple virtualized resources. In: Proceedings of the 4th ACM
European conference on Computer systems, EuroSys’09. ACM, New York, pp 13-26.
doi:http://doi.acm.org/10.1145/1519065.1519068

Park SM, Humphrey M (2009) Self-tuning virtual machines for predictable escience. In:
Proceedings of the 2009 9th IEEE/ACM international symposium on cluster comput-
ing and the grid, CCGRID’09. IEEE Computer Society, Washington, DC, pp 356-363.
doi:http://dx.doi.org/10.1109/CCGRID.2009.84

Ram KK, Santos JR, Turner Y (2010) Redesigning Xen’s memory sharing mechanism for safe
and efficient I/O virtualization. In: Proceedings of the 2nd conference on I/O virtualization,
WIOV’10. USENIX Association, Berkeley

Salehie M, Tahvildari L (2009) Self-adaptive software: landscape and
research challenges. ACM Trans Auton Adapt Syst 4:14:1-14:42.
doi:http://doi.acm.org/10.1145/1516533.1516538

Salomie TI, Alonso G, Roscoe T, Elphinstone K (2013) Application level ballooning for effi-
cient server consolidation. In: Proceedings of the 8th ACM European conference on computer
systems, EuroSys’13. ACM, New York, pp 337-350. doi:10.1145/2465351.2465384

Shao Z, Jin H, Li Y (2009) Virtual machine resource management for high performance
computing applications. In: International symposium on parallel and distributed processing
with applications, pp 137-144. doi:http://doi.ieeecomputersociety.org/10.1109/ISPA.2009.52
Sharma P, Chaufournier L, Shenoy P, Tay YC (2016) Containers and virtual machines at
scale: a comparative study. In: Proceedings of the 17th international Middleware conference,
Middleware’16. ACM, New York, pp 1:1-1:13. doi:10.1145/2988336.2988337

Silva JN, Veiga L, Ferreira P (2011) AZHA — Automatic and adaptive host allocation in utility
computing for bag-of-tasks. J Internet Services Appl 2(2):171-185

Simdo J, Veiga L (2012) A classification of middleware to support virtual machines
adaptability in IAAS. In: Proceedings of the 11th international workshop on adaptive and
reflective middleware, ARM’12. ACM, New York, pp 5:1-5:6

Simdo J, Lemos J, Veiga L (2011) A2.VM a cooperative java VM with support for
resource-awareness and cluster-wide thread scheduling. In: 19th international conference on
cooperative information systems (COOPIS 2011), Crete. LNCS. Springer

Simao J, Rameshan N, Veiga L (2013) Resource-aware scaling of multi-threaded java
applications in multi-tenancy scenarios. In: IEEE 5th international conference on cloud
computing technology and science (CloudCom), 2013, Bristol, vol 1, pp 445-451. IEEE
Simao J, Singer J, Veiga L (2013) A comparative look at adaptive memory management in
virtual machines. In: IEEE CloudCom 2013, Bristol. IEEE

Simao J, Veiga L (2012) Qoe-JVM: an adaptive and resource-aware java runtime for cloud
computing. In: OTM confederated international conferences “On the Move to Meaningful
Internet Systems”. Springer, Berlin/Heidelberg, pp 566-583

Simao J, Veiga L (2012) VM economics for java cloud computing: an adaptive and resource-
aware java runtime with quality-of-execution. In: Proceedings of the 2012 12th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGrid 2012), Ottawa. IEEE
Computer Society, pp 723-728

Simdo J, Veiga L (2013) Flexible SLAs in the cloud with a partial utility-driven scheduling
architecture. In: IEEE 5th international conference on cloud computing technology and
science, CloudCom 2013, Bristol, 2-5 Dec 2013, vol 1, pp 274-281. IEEE Computer Society.
doi:10.1109/CloudCom.2013.43

Simdo J, Veiga L (2013) A progress and profile-driven cloud-vm for resource-efficiency and
fairness in e-science environments. In: Proceedings of the 28th annual ACM symposium on
applied computing, Coimbra. ACM, pp 357-362

Simao J, Veiga L (2014) Partial utility-driven scheduling for flexible SLA and pricing
arbitration in cloud. IEEE Trans Cloud Comput 99:467-480. https://www.computer.org/csdl/
trans/cc/2016/04/06963452-abs.html

http://dx.doi.org/http://doi.acm.org/10.1145/1519065.1519068
http://dx.doi.org/http://dx.doi.org/10.1109/CCGRID.2009.84
http://dx.doi.org/http://doi.acm.org/10.1145/1516533.1516538
http://dx.doi.org/10.1145/2465351.2465384
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISPA.2009.52
http://dx.doi.org/10.1145/2988336.2988337
http://dx.doi.org/10.1109/CloudCom.2013.43
https://www.computer.org/csdl/trans/cc/2016/04/06963452-abs.html
https://www.computer.org/csdl/trans/cc/2016/04/06963452-abs.html

3 Recent Progress and Challenges in Virtual Machines 97

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.
100.

Singer J, Brown G, Watson I, Cavazos J (2007) Intelligent selection of application-specific
garbage collectors. In: Proceedings of the 6th international symposium on memory manage-
ment, ISMM’07. ACM, New York, pp 91-102. doi:10.1145/1296907.1296920

Singer J, Jones R (2011) Economic utility theory for memory management optimization. In:
Rogers I (ed) Proceedings of the workshop on implementation, compilation, optimization of
object-oriented languages and programming systems. ACM, p 4. http://www.cs.kent.ac.uk/
pubs/2011/3156. Position paper

Singer J, Jones RE, Brown G, Lujan M (2010) The economics of garbage collection.
SIGPLAN Not 45:103-112. doi:http://doi.acm.org/10.1145/1837855.1806669

Singer J, Kovoor G, Brown G, Lujan M (2011) Garbage collection auto-tuning for java
mapreduce on multi-cores. In: Proceedings of the international symposium on memory
management, ISMM’11. ACM, New York, pp 109-118

Smith J, Nair R (2005) Virtual machines: versatile platforms for systems and processes.
Morgan Kaufmann, San Francisco

Soltesz S, Potzl H, Fiuczynski ME, Bavier A, Peterson L (2007) Container-based operating
system virtualization: a scalable, high-performance alternative to hypervisors. In: Proceedings
of the 2Nd ACM SIGOPS/EuroSys European conference on computer systems 2007,
EuroSys’07. ACM, New York, pp 275-287. doi:10.1145/1272996.1273025

Soman S, Krintz C (2007) Application-specific garbage collection. J Syst Softw 80:1037—
1056. doi:http://dx.doi.org/10.1016/].jss.2006.12.566

Soman S, Krintz C, Bacon DF (2004) Dynamic selection of application-specific garbage
collectors. In: Proceedings of the 4th international symposium on Memory management,
ISMM’04. ACM, New York, pp 49-60. doi:http://doi.acm.org/10.1145/1029873.1029880
Stoica I, Abdel-Wahab H, Jeffay K (1996) On the duality between resource reservation
and proportional share resource allocation. Technical report, Old Dominion University,
Norfolk

Suri N, Bradshaw JM, Breedy MR, Groth PT, Hill GA, Saavedra R (2001) State capture and
resource control for java: the design and implementation of the aroma virtual machine. In:
Proceedings of the symposium on JavaTM virtual machine research and technology sympo-
sium, JVM’01. USENIX Association, Berkeley, pp 11-11. http://portal.acm.org/citation.cfm?
id=1267847.1267858

Tanenbaum AS (2007) Modern operating systems, 3rd edn. Prentice Hall Press, Upper Saddle
River

Tay YC, Zong X, He X (2013) An equation-based heap sizing rule. Perform Eval 70(11):
948-964

Tchana A, Palma ND, Safieddine I, Hagimont D, Diot B, Vuillerme N (2015) Software
consolidation as an efficient energy and cost saving solution for a SaaS/PaaS cloud model.
Springer, Berlin/Heidelberg, pp 305-316

Tene G, Iyengar B, Wolf M (2011) C4: the continuously concurrent compacting collector.
SIGPLAN Not 46(11):79-88

Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: toward
a cloud definition. SIGCOMM Comput Commun Rev 39(1):50-55

Veiga L, Ferreira P (2002) Incremental replication for mobility support in obiwan. In: 22nd
international conference on distributed computing systems, 2002 proceedings, Vienna. IEEE,
pp 249-256

Veiga L, Ferreira P (2004) Poliper: policies for mobile and pervasive environments. In:
Kon F, Costa FM, Wang N, Cerqueira R (eds) Proceedings of the 3rd workshop on
adaptive and reflective middleware, ARM 2003, Toronto, 19 Oct 2004. ACM, pp 238-243.
doi:10.1145/1028613.1028623

VMware (2009) VMware vSpher 4: the CPU scheduler in VMware ESX 4

Waldspurger CA (2002) Memory resource management in VMware ESX server. SIGOPS
Oper Syst Rev 36:181-194. doi:http://doi.acm.org/10.1145/844128.844146

http://dx.doi.org/10.1145/1296907.1296920
http://www.cs.kent.ac.uk/pubs/2011/3156
http://www.cs.kent.ac.uk/pubs/2011/3156
http://dx.doi.org/http://doi.acm.org/10.1145/1837855.1806669
http://dx.doi.org/10.1145/1272996.1273025
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2006.12.566
http://dx.doi.org/http://doi.acm.org/10.1145/1029873.1029880
http://portal.acm.org/citation.cfm?id=1267847.1267858
http://portal.acm.org/citation.cfm?id=1267847.1267858
http://dx.doi.org/10.1145/1028613.1028623
http://dx.doi.org/http://doi.acm.org/10.1145/844128.844146

98

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

J. Simdo and L. Veiga

Weidner O, Atkinson M, Barker A, Filgueira Vicente R (2016) Rethinking high performance
computing platforms: challenges, opportunities and recommendations. In: Proceedings of the
ACM international workshop on data-intensive distributed computing, DIDC’16. ACM, New
York, pp 19-26. doi:10.1145/2912152.2912155

Weiming Z, Zhenlin W (2009) Dynamic memory balancing for virtual machines. In: Pro-
ceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on virtual execution
environments, VEE’09, Washington, DC, pp 21-30

Weng C, Liu Q, Yu L, Li M (2011) Dynamic adaptive scheduling for virtual machines. In:
Proceedings of the 20th international symposium on high performance distributed computing,
HPDC’11. ACM, New York, pp 239-250

Weng C, Wang Z, Li M, Lu X (2009) The hybrid scheduling framework for virtual
machine systems. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on virtual execution environments, VEE’09. ACM, New York, pp 111-120.
doi:http://doi.acm.org/10.1145/1508293.1508309

White DR, Singer J, Aitken JM, Jones RE (2013) Control theory for principled heap sizing.
In: Proceedings of the 2013 international symposium on memory management, ISMM’13.
ACM, New York, pp 27-38

Wilson PR (1992) Uniprocessor garbage collection techniques. In: Proceedings of the
international workshop on memory management, IWMM’92. Springer, London, pp 1-42.
http://portal.acm.org/citation.cfm?id=645648.664824

Windows server containers. https://msdn.microsoft.com/en-us/virtualization/
windowscontainers/about/index. Visited Nov 2016

Xu F, Liu F, Jin H, Vasilakos A (2014) Managing performance overhead of virtual machines
in cloud computing: a survey, state of the art, and future directions. Proc IEEE 102(1):11-31
Yang T, Berger ED, Kaplan SF, Moss JEB (2006) Cramm: virtual memory support for
garbage-collected applications. In: Proceedings of the 7th symposium on operating systems
design and implementation, OSDI’06. USENIX Association, Berkeley, pp 103-116

Zhang Y, Bestavros A, Guirguis M, Matta I, West R (2005) Friendly virtual machines:
leveraging a feedback-control model for application adaptation. In: Proceedings of the 1st
ACM/USENIX international conference on virtual execution environments, VEE’05. ACM,
New York, pp 2-12. doi:http://doi.acm.org/10.1145/1064979.1064983

http://dx.doi.org/10.1145/2912152.2912155
http://dx.doi.org/http://doi.acm.org/10.1145/1508293.1508309
http://portal.acm.org/citation.cfm?id=645648.664824
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/index
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/index
http://dx.doi.org/http://doi.acm.org/10.1145/1064979.1064983

Part 11
Science Cloud

Chapter 4
Exploring Cloud Elasticity in Scientific
Applications

Guilherme Galante and Rodrigo da Rosa Righi

4.1 Introduction

Scientific computing is the key to solving “grand challenge” applications in many
domains and has provided advances and new knowledge in diverse fields of science.
It can be seen as a combination of engineering, natural science, computer science,
and mathematics, making scientific computing a demanding field for all partic-
ipating parties: engineers contribute with challenging applications and technical
knowledge; physicists and other natural scientists build the models; mathematicians
provide numerical methods and algorithms for the simulation of complex processes;
and computer scientists contribute with the construction of infrastructures, data
structures, and algorithms.

Running large and accurate simulations requires a huge number of computing
resources, often demanding the use of supercomputers, computer clusters, or grids.
Scientific computing has historically been dependent on the advances of high
performance computing (HPC) and parallel processing. In general, supercomputers,
clusters, and grids have a fixed number of resources that must be maintained in
terms of infrastructure configuration, scheduling (where tools such as PBS,! OAR,2

Uhttp://www.pbsworks.com
Zhttps://oar.imag.fr

G. Galante (P<)
Computer Science Department, Western Parana State University (Unioeste), Cascavel-PR, Brazil
e-mail: guilherme.galante @unioeste.br

R.R. Righi

Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (Unisinos), Sdo
Leopoldo-RS, Brazil

e-mail: rrrighi @unisinos.br

© Springer International Publishing AG 2017 101

N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_4

http://www.pbsworks.com
https://oar.imag.fr
mailto:guilherme.galante@unioeste.br
mailto:rrrighi@unisinos.br

102 G. Galante and R.R. Righi

OGS?® are usually employed for resource reservation and job scheduling), and
energy consumption. In addition, tuning the number of processes to execute a HPC
application can be a hard procedure: (i) a short or a large value for this parameter
will not explore the distributed system in an efficient way and (ii) a fixed value
cannot fit irregular applications, where the workload varies along the execution or
sometimes is not predictable in advance.

In addition to these computing infrastructures, cloud computing has proved
itself as a new way to acquire computing resources on demand [38]. According to
Simmbhan et al. [33], the use of a cloud computing environment can be attractive
to the scientific community in many ways, benefiting not only users that own
small applications but also those who run their experiments in supercomputing
centers. In fact, several authors in the technical literature share this opinion and
present advantages and benefits of using cloud computing to execute scientific
experiments [30, 37]. Cloud computing offers to end users a variety of resources
ranging from hardware to application levels, by charging them on a pay-as-you-go
basis, allowing immediate access to required resources without the need to purchase
additional infrastructure. In addition, an important characteristic, not available on
traditional architectures (e.g., clusters and grids) emerged on cloud computing:
elasticity. Elasticity can be defined as the ability of a system to dynamically add or
remove computational resources used by an application or user to match the current
demand as closely as possible [15].

Cloud elasticity abstracts the infrastructure configuration and technical details
about resource scheduling from users, who pay for resources, and energy con-
sequently, in accordance with the application’s demands. The use of elasticity in
scientific applications is a subject that is starting to receive attention from research
groups [11]. This interest is related to the benefits it can provide that include
improvements in applications performance, cost reduction, and better resource
utilization. Improvements in the performance of applications can be achieved
through dynamic allocation of additional processing, memory, network, and storage
resources. Examples of using elasticity in scientific applications include: (i) the
dynamic storage space allocation when data exceeds the capacity allocated for the
hosted environment in the cloud [27]; (ii) applications that use the MapReduce
paradigm, where it is possible to increase the number of working nodes during the
Map and consequently to scale down the resources during the Reduce phase [18];
and (iii) workflows execution, in which we can dynamically adjust the pool of nodes
required to resolve a given workflow step [22].

Considering the importance of elasticity to the concept of cloud computing,
as well as the possibilities of using it in scientific computing, we present in this
chapter the state of the art and an analysis of the current elasticity solutions,
aiming at pointing out some research opportunities in the area. In addition to

3http://gridscheduler.sourceforge.net

http://gridscheduler.sourceforge.net

4 Exploring Cloud Elasticity in Scientific Applications 103

fundamental concepts and research opportunities, we present two different elasticity
approaches, both developed by our research group, to support the construction of
elastic scientific applications in IaaS and PaaS cloud models.

4.2 Basic Concepts and State of the Art

Elasticity is defined as the ability of a system to dynamically add or remove
computational resources used by an application or user to match the current demand
as closely as possible [15]. Resources can include everything from single virtual
processors (VCPU) to a complete virtual cluster. The concept could also be extended
to applications. An elastic application is able to adapt itself to handle changes in
resources or to request or release resources according to demands.

In this context, several elasticity solutions have been developed by public
providers and by academy. In this section, we present a classification of existing
solutions and establish the state of the art of elasticity in computational clouds. In
addition, we present some initiatives of using elasticity in scientific applications.

4.2.1 Taxonomy and Classification

Aiming at providing a classification of the existing approaches to cloud elasticity,
we present a taxonomy that enables to differentiate aspects of the proposed elasticity
solutions. The taxonomy is summarized in Fig. 4.1.

To be able to take advantage of elasticity, it is necessary that both architecture and
application support this feature in some form. Thus, at the first level, the solutions
are separated into two groups: (1) elastic architectures and (2) elasticity support
mechanisms.

Elasticity

T
1 1

1. Infrastructure 2. Support Mechanisms
1.1 Resources 1.2 Supported 2.1 Control 2.2 Placement
Provisioning Elasticity Manual External
Rigid Horizontal
gl] : Programmable :|:Inter nal
Configurable Vertical
Automatic

Reactive
Proactive

Fig. 4.1 Elasticity mechanism classification

104 G. Galante and R.R. Righi

The elasticity provided by cloud infrastructures is inherent to the use of virtual-
ization techniques and to the availability of a large amount of physical resources.
However, the manner it is provided to the user varies for each cloud platform
according to how resources are offered and which elasticity type is supported.
Resources can be provided in two different modes: fixed or configurable. In fixed
mode, virtual machines (VMs) are offered with a predefined configuration of CPU,
memory, and 1/O (e.g., instance types by Amazon* and server sizes in GoGrid’
and Rackspace®). The problem in providing resources in such way occurs when
users cannot map their specific demands into one of the configurations offered by
the provider. In configurable mode users can customize VM resources according to
their needs. Although this model is the more appropriate to the cloud concept, the
configurable mode is available in few cloud providers, such as ProfitBricks’ and
CloudSigma.®

Depending on how the cloud implements the provisioning of resources, we can
classify its elasticity as horizontal or vertical [36]. In the horizontal approach,
the number of instances (VMs) is increased or decreased. On the other hand,
the vertical approach adjusts the VM attributes, such as CPU, memory, disk
bandwidth, or storage. In some cases, requirements extend beyond the capacity
of its hosting node, so that it needs to be migrated to another node that has the
required capacity. Migration can also be used to reduce power consumption, by
consolidating VMs into fewer nodes and enabling some nodes to be switched
off [16]. Horizontal elasticity is the method supported by the clouds that provide
fixed allocation, considering the impossibility of changing the VM configurations.
In turn, vertical elasticity may be supported to allow the fine grain elasticity in
configurable providers.

Different classes of scientific applications have different workload patterns and
characteristics, and, therefore, their elasticity requirements may vary accordingly.
Ideally, highest levels of economic elasticity may be achieved by enabling cloud
consumers to customize any combination of resource capacity and as much as their
application workloads require [19]. Ben-Yehuda et al. [4] propose the Resource-as-
a-Service (RaaS) model, where compute, memory, and I/O resources could be rented
and charged for in dynamic amounts and not in fixed bundles. Clients rent VMs with
some minimal amount of resources, and other resources needed are continuously
rented in a fine-grained fashion. The resources available for rent include processing,
memory, and I/O resources, as well as emerging resources such as accelerators,
FPGAs and GPUs. Processing capacity is sold on a hardware-thread basis, or as
number of cycles per unit of time; memory is sold by frames; and I/O is sold on the
basis of I/O devices with bandwidth and latency guarantees.

“https://aws.amazon.com/ec2/instance-types/
Shttps://wiki.gogrid.com/index.php/Cloud_Servers
Shttps://www.rackspace.com/cloud/servers
https://www.profitbricks.com/
8http://www.cloudsigma.com/

https://aws.amazon.com/ec2/instance-types/
https://wiki.gogrid.com/index.php/Cloud_Servers
https://www.rackspace.com/cloud/servers
https://www.profitbricks.com/
http://www.cloudsigma.com/

4 Exploring Cloud Elasticity in Scientific Applications 105

Scientific applications have almost always been designed to use a fixed number
of resources and cannot explore elasticity without appropriate support [31]. The
simple addition of instances and the use of load balancers have no effect for these
applications since they are not able to detect and use these resources. In addition, the
fact of either a premature death of a process or a consolidation of a VM that hosts
one or more processes from a tightly coupled parallel code can imply performance
penalties or termination of the application.

Thus, to take full advantage of the elasticity provided by the cloud, needs
more than an elastic infrastructure. We also need support mechanisms to enable
applications to adapt the resources or be adjusted according to changes in available
environment. Elasticity mechanisms differ from each other in the techniques and
means they use for performing these tasks and can be classified according to the
control and placement.

The control is the form of interaction necessary for the execution of elasticity
actions. Manual control means that the user is responsible for monitoring the virtual
environment and applications and performs all relevant elasticity actions using an
interface for cloud-user interaction. In the programmable control, the elasticity
actions are performed through API (application programming interface) calls. Most
cloud providers offer an API for allocation and deallocation of elastic resources.
Generally, the APIs are available for web-friendly languages such as, Java, PHP,
and Ruby. In automatic control, all the actions are taken by an elasticity controller
based in a set of rules, user settings, workload patterns, and service level agreements
(SLA). The elasticity controller uses information about the workload, CPU and
memory usage, network traffic, etc., to take decisions when and how to scale
the resources. These information are collected by a monitoring system or by the
application itself.

According to the technique used by the controller to trigger elasticity actions,
we can subclassify the automatic control in reactive or proactive [16, 36]. Reactive
approaches (Fig.4.2a) typically use rules-condition-action statements and prede-

® Workload

Workload Elasicity
astici ™
Oldseassassenssansasfiunen Elasti
Controller _ N —| el

Controller

f‘"" Add
nstance Instance
Y
\
\\
N\ Ay
\ \
D :‘ D *
VM1 vmz

VM1 m2

(@ e (b)

Fig. 4.2 Thresholds- and if-condition-then-based reactive elasticity (a) and prediction-based
proactive elasticity (b)

106 G. Galante and R.R. Righi

fined thresholds for elasticity management. Most commercial cloud providers offer
purely reactive approaches using threshold-based rules, in which the scaling deci-
sions are triggered based on some performance metrics and predefined thresholds.
Proactive mechanisms (Fig. 4.2b) are typically time series based, where a sequence
of events at defined intervals is analyzed to find patterns that can be used to forecast
future values. The general strategy is to use a workload predictor and then use a
performance model to determine the amount of resources required to service the
predicted demand. A variety of performance models have been proposed and are
presented in the work of Lorido-Botran et al. [24].

The placement of an elasticity mechanism is, from application point of view,
external or internal. External mechanisms are those implemented as a separate
service and generally uses a monitoring system to collect information about the
environment in which the application is running. Such information includes the
number of requests received, CPU and memory usage, number of connected
clients, and response time. In turn, internal mechanisms are implemented within the
application and, in addition to environmental information, can also trigger actions
based on internal events.

4.2.2 Elasticity in Scientific Applications

Elasticity is an important feature that can be explored by scientific applications.
Traditionally, these applications are executed on parallel architectures, such as
cluster or grid architectures. Overall, both have a fixed number of resources
that must be maintained in terms of infrastructure configuration, scheduling, and
energy consumption. In addition, tuning the number of processes to execute a
parallel application can be a difficult procedure: (i) a small or a large amount of
processing resources will not efficiently explore the distributed system, causing
under- or over-provisioning of resources, and (ii) a fixed value cannot fit irregular
applications, since workloads that may vary during execution or occasionally is
not predictable in advance. Conversely, cloud elasticity abstracts the infrastruc-
ture configuration and technical details about resource scheduling from users,
who pay for resources, and consequently energy, in accordance with application
demands.

Applications make use of virtualization and high availability of resources offered
by clouds to dynamically acquire new resources according to demands [11]. This
feature is specially interesting for dynamic applications whose resource require-
ments cannot be determined exactly in advance, either due to changes in runtime
requirements or due to interesting changes in application structure. The use of these
attributes could lead to applications with new and interesting usage modes and
dynamic execution on clouds and therefore new application capabilities [20].

Some scientific applications could natively take advantage from elasticity on
clouds or be easily adapted to it. Particularly, these applications are characterized
by having data locality, loosely coupling, high throughput, or fault tolerance, fitting

4 Exploring Cloud Elasticity in Scientific Applications 107

better the current cloud model. Examples are those applications developed using
the MapReduce paradigm [34]. This application model can scale incrementally in
the number of computing nodes, allowing users not only to launch many servers
at the beginning but also to increase the number of servers in the middle of
computation [9, 18]. New servers can automatically figure out the current job
progress and poll the queues for work to process. Some cloud providers support
MapReduce (e.g., Amazon Elastic MapReduce’) enabling running this type of
application directly on the public cloud without worrying about installing and
configuring a MapReduce cluster.

Workflows are other examples of approaches that can benefit from elasticity [28].
They can use the cloud capability to increase or reduce the pool of resources
according to the needs of the workflow at any given time of processing [5]. Cloud
providers have recognized the importance of workflow applications to science and
provide their own native solutions, such as the Amazon Simple Workflow Service
(SWF).'0 Platforms and frameworks for elastic execution of workflows were also
proposed in academy [10, 22, 23, 41].

Other scientific applications (e.g., MPI, multithreaded) rely on IaaS cloud
services and solely use static execution modes, in which an instance of VM is
perceived as a cluster node [20]. For those applications, moving them to the cloud
is usually not sufficient to take advantage of elasticity and must be adapted to be
suitable for the cloud. For example, tightly coupled applications will need to be
re-engineered to realize the full benefits of elasticity. Thus, to efficiently support
elastic execution across cloud infrastructures, tools and frameworks are required.
Trying to address this issue, a couple of academic researchers have developed
solutions to enable the development of elastic scientific applications in different
models.

ElasticMPI offers elasticity for MPI applications by stopping and relaunching
the application with a newer resource configuration [31]. The system assumes that
the user knows in advance the expected conclusion time for each phase of the
program. The monitoring system can detect that the current configuration cannot
fulfill the given deadline and adds more virtual instances. Vectors and data structures
are redistributed, and the execution continues from the last iteration. Applications
that do not have an iterative loop cannot be adapted by the framework, since it
uses the iteration index as execution restarting point. Furthermore, the approach of
ElasticMPI imposes changes in the application source code by inserting monitoring
directives. And if programming with MPI, the SpotMPI toolkit can be used to
facilitate the execution of real MPI applications on volatile auction-based cloud
platforms (spot instances) [35]. The toolkit provides optimal checkpointing intervals
and restarting of applications after out-of-bid situations through calculations of the
density of out-of-bid failures from price history.

“https://aws.amazon.com/emr/
https://aws.amazon.com/swf/

https://aws.amazon.com/emr/
https://aws.amazon.com/swf/

108 G. Galante and R.R. Righi

Rajan et al. [29] presented Work Queue, a framework for the development of
elastic master-slave applications. Applications developed using Work Queue allow
adding slave replicas at runtime. The slaves are implemented as executable files that
can be instantiated by the user on different machines. When executed, the slaves
communicate with the master that on demand coordinates the task execution and
the data exchange.

Ali-Eldin et al. [1] describe an autonomous elasticity controller for bursty work-
loads. The proposed controller changes the number of virtual machines allocated to
a service based on both monitored load changes and predictions of future load. The
cloud infrastructure is modeled as a closed loop control system, and queuing models
are used to design a feedback elasticity controller. This model is used to construct
a hybrid reactive-adaptive controller that quickly reacts to sudden load changes,
prevents premature release of resources, and takes into account the heterogeneity of
the workload, avoiding oscillations and decreasing total resource usage.

Wottrich et al. [40] propose OpenMR, an execution model based on OpenMP
and MapReduce that enables the usage of highly parallel, distributed machine
clusters while automatically providing fault tolerance and workload balancing.
Since OpenMR is built upon MapReduce, the elasticity solutions developed for
MapReduce are also available to OpenMR.

Galante and Bona [12] also propose a solution to provide elasticity for OpenMP.
In this solution, the OpenMP directives are extended to support the automatic
adjustment of the number of VCPUs according to the amount of threads in
execution. These elasticity-aware directives can automatically control elasticity,
hiding the complexity of writing and executing elasticity strategies from the user. In
addition, some routines were added to user-level library, targeting to provide a more
precise control over the elastic execution. The solution also includes support for
elastic memory allocation, taking advantage of the ballooning technique available
in most modern hypervisors.

Molté et al. [26] developed an architecture for dynamic memory allocation
for scientific applications. The authors focused on dynamic memory management
to automatically fit at runtime the underlying computing infrastructure to the
application, thus adapting the memory size of the VM to the memory consumption
pattern of the application. The architecture uses the VM memory usage information
to decide when to scale up or scale down.

A more generic platform is proposed by Caballer et al. [6]. The CodeCloud
platform supports the execution of scientific applications in different programming
models (such as master-slave, MPI, MapReduce, and workflows) on cloud infras-
tructures. The elasticity is automatically reactive and is enabled by a set of rules
that define the elasticity modes of the infrastructure during the execution of the
application.

Table 4.1 summarizes the characteristics of the frameworks and platforms
developed to provide elasticity to scientific applications.

4 Exploring Cloud Elasticity in Scientific Applications

Table 4.1 Elasticity mechanisms and features

Proposed by
Chohan et al. [9]

Tordache et al. [18]

Yuetal. [41]

Byun et al. [5]

Raveendran et al. [31]

Taifi et al.[35]

Rajan et al. [29]

Ali-Eldin et al. [1]

Molté et al. [26]

Wottrich et al. [40]

Galante and Bona [12]

Caballer et al. [6]

App. type
MapReduce

MapReduce

Workflows

Workflows

MPI

MPI

Master-slave

Bursty

Many

OpenMP/MapReduce

OpenMP

Master-slave/MPI/
MapReduce/Workflow

109

Supported elasticity
Manual

horizontal

Manual

horizontal

Manual

horizontal

Manual

horizontal
Programmable
horizontal
Programmable
horizontal (spot instances)
Manual

horizontal
Automatic-reactive-proactive
horizontal
Automatic-reactive
vertical (memory)
Manual

horizontal
Programmable
vertical
Automatic-reactive
horizontal and vertical

4.3 Developing Elastic Scientific Applications

This section presents two approaches to offer cloud elasticity for scientific applica-
tions, both developed in the research group of the authors.

4.3.1 Programming Level Elasticity

In this section, we describe an approach to explore cloud elasticity, in which
the control is performed at programming level, i.e., the elasticity controller is
embedded in the application source code, allowing the allocation and deallocation
of resources by the application itself without needing external mechanisms or user

interaction [13].

110 G. Galante and R.R. Righi

workload - e
e elasticity
= controller
-~ Application
6 Application L
N -
o “. -“'
\)lflllbl ~... ----- Information collection
- : EIaSt"clllty [information scope
=) controller
(@ (b)

L]

Fig. 4.3 Monitoring system approach (a) versus embedded elasticity control (b)

‘;-'-J'-“__-\

/s A

A Y

add_vcpus(2) >)

v, 'S

v I

Nt ==

S cloud

“Application infrastructure

—9

R ————
1

VM

-
+0g

Fig. 4.4 Dynamic resource allocation using elasticity primitives

As shown in Fig.4.3, moving the elasticity controller to the application code
allows access to all internal information, while monitoring-based mechanisms
collect only information about workloads and state of the virtual machines. Thus,
the control logic can also consider internal events, configuration parameters, input
data, and more. For example, you can add new VCPUs when new threads are created
or allocate more memory to a new allocated data structure.

In the proposed approach, the collection of information and the elasticity actions
are part of the application source code; thus, an appropriate mechanism should
be offered to enable such tasks. In this chapter, we propose the use of elasticity
primitives, corresponding to a set of basic functions that allow communication
with the underlying cloud infrastructure for the request or release of resources and
collection of information from the virtual environment.

Figure 4.4 illustrates the operation of the primitives for dynamic resource
allocation. When the primitive is executed, a request is sent to the cloud asking

4 Exploring Cloud Elasticity in Scientific Applications 111

for new features. If resources are available, these are allocated to the virtual
environment. In this example, the addition of two VCPUs is requested, which are
allocated to the virtual machine where the application is running.

The primitive set must provide horizontal and vertical elasticity, enabling the
allocation of complete virtual machines and the reconfiguration of virtual machines
by the addition of components such as VCPUs, memory, and storage. We must
also consider primitives to collect information from the virtual environment and
cloud infrastructure. Such information is essential for the development of elasticity
controllers, since it helps to determine the need for new resources and if there is
availability for allocation.

The possibility of considering the resources allocation as a part of the program
logic creates a new paradigm for the design and development of applications. In
this paradigm, the resources are a variable element of the program and can be
instantiated and modified on the fly. This feature allows programmers to develop
and to integrate the elasticity control considering particular characteristics of appli-
cations such as programming model, internal events, input data, and configuration
parameters.

As a consequence, novel features (not provided for in general purpose elastic
mechanisms) can be aggregated to scientific applications. We can develop dynamic
and flexible applications that adapt their own execution environment according
to its logical structure and demands to achieve performance gains, improve the
use of resources, reduce the cost of implementation, or even take advantage of
idle or low-cost resources. We can also modify legacy applications, libraries, and
parallel programming frameworks (originally designed to support a fixed number
of resources during the execution) for supporting the elasticity provided by cloud
environments. An example is the elastic OpenMP [12] presented in Sect. 4.2.2.

To offer support for the development of scientific applications using program-
ming level elasticity control, we developed the Cloudine framework. The framework
focuses on parallel and distributed applications that runs directly over the VM
operating system of IaaS clouds. Cloudine supports C/C++ languages and provides
a set of primitives for dynamic allocation of VCPUs, memory, and virtual machines.

4.3.1.1 Architecture

The framework architecture comprises two main components: runtime environment
and elasticity API, as illustrated in Fig. 4.5. The runtime environment manages the
provisioning of resources using cloud infrastructure, and the API provides a set of
primitives to enable applications, to interact with the underlying layers.

The Runtime environment is the component that manages the dynamic provision-
ing of resources and performs all interaction between the elastic applications (via
API) and cloud infrastructure. All elasticity actions are processed by the runtime
environment and sent to the underlying cloud.

The elasticity API provides the set of primitives that enable the construction of
elastic applications for the Cloudine platform. To date, the API supports C/C++

112 G. Galante and R.R. Righi

Application VM

1. The application uses
the API to request
elasticity actions

Aplication Code

2. The APl communicates
with Runtime Environment Elasicity AF
Cloudine

Sarver 3. The Runtime Environment

is responsible for sending
4 requests to the cloud

Virtual Machines

Fig. 4.5 Cloudine architecture

languages and offers 12 primitives, providing dynamic allocation of VCPUs,
memory, and virtual machines. VCPU and memory information are also provided.
All primitives are implemented in the dynamic shared library l1ibclne. so.
Table 4.2 shows the functions implemented so far and its description.

Cloudine can be used in two ways in the construction of elastic applications. In
the first, we use directly the elasticity API in the implementation of the application,
leaving to the programmer the job of creating the control logic. The second way is
to use the API to include elasticity features to frameworks already consolidated,
enabling the construction of elastic applications transparently through modified
middleware.

Some clouds may not support all types of primitives. For example, Amazon EC2
does not support the dynamic allocation of memory or VCPUs, only supporting
the allocation and deallocation of complete instances. Thus, the set of primitives
which can be effectively used for an application depends on the underlying cloud
characteristics. Examples of using Cloudine in scientific applications could be found
in previous works [12—14].

4.3.2 Middleware Level Elasticity

This section describes the AutoElastic model, which analyzes alternatives for the
following problem statements [32]:

1. Which mechanisms are needed to provide cloud elasticity transparently at both
user and application levels?

2. Considering resource monitoring and VM management procedures, how can we
model the elasticity as a viable capability on HPC applications?

4 Exploring Cloud Elasticity in Scientific Applications 113

Table 4.2 Cloudine API functions

Function Description

int clne add vcpu(int N) Add N VCPUs to the current VM

int clne rem vcpu(int N) Remove N VCPUs from the current VM
int clne_add_node (int N) Add N nodes to the virtual environment

(cluster). This function also creates (or
updates) a file in the VM containing the IP
addresses of the cluster machines

int clne rem node (int N) Remove the actual node from the virtual
environment (cluster)

int clne add memory(long int N) | Add N megabytes of memory to the current

VM

int clne rem memory (long int N) | Remove N megabytes of memory from the
current VM

int clne get freemem() Returns the free memory amount of the VM
host machine

int clne get maxmem() Returns the total memory amount of the VM
host machine

int clne_get_mem() Returns the total memory amount of the current
VM

int clne get freecpu() Returns the free CPU amount of the VM host
machine

int clne get maxcpu() Returns the total CPU amount of the VM host
machine

int clne_get_vcpus () Returns the VCPU amount of the current VM

Our idea is to provide reactive elasticity in a transparent and effortless way to
the user, who does not need to write rules and actions for resource reconfiguration.
In addition, users must not need to change their parallel application, not inserting
elasticity calls from a particular library nor modifying the application to add/remove
resources by themselves. Considering the second aforementioned question, AutoE-
lastic should be aware of the overhead to instantiate a VM, taking this knowledge
to offer this feature without prohibitive costs. Figure 4.6a illustrates the traditional
approaches of providing cloud elasticity to HPC applications, while Fig.4.6b
highlights AutoElastic’s idea. AutoElastic allows users to compile and submit an
HPC nonelastic aware application to the cloud. So, the middleware at PaaS level
transforms a nonelastic application in an elastic one and manages resource (and
also application processes, consequently) reorganization through automatic VM
allocation and consolidation procedures.

The first AutoElastic ideas were published in a previous work [32], in which our
idea was to present a deep analysis of the state of the art in the cloud elasticity
area, presenting the gaps in the HPC landscape. The mentioned article considered
only a pair of thresholds (one upper threshold and one lower threshold), besides not
explaining the interaction between the application processes and the AutoElastic
Manager. Here we present a novel prediction function (see Equations 4.1 and 4.2),

114 G. Galante and R.R. Righi

Actions

Application

Rules

Application

AutoElastic Manager

if metric > x A1: Allocate #include<> #include<>

then A1 VM int main() - int main()
if metric <y A2: Deallocate [|{.... Actions
then A2 VM }

& Y

|

J Application
! Application | Resource AutoElastic
[l " Management Middleware
Cloud Front-End

Cloud Cloud
(a) ° (b)

Monitoring

Resources |41

Resource
Management

[l

Cloud Front-End

Fig. 4.6 General ideas on using elasticity: (a) standard approach adopted by Amazon AWS and
Windows Azure, in which the user must pre-configure a set of elasticity rules and actions; (b)
AutoElastic idea, contemplating a Manager that coordinates the elasticity actions and configura-
tions on behalf of the user

a graphical demonstration about how an application talks with the Manager and
extensive details about the application used in the tests. Moreover, we also present
novel types of graphs, exploring the impact of the thresholds in the application
performance, the relationship between CPU load and allocated CPU cores, and
energy consumption profiles.

4.3.2.1 Architecture

AutoFlastic is a cloud elasticity model that operates at the PaaS level of a cloud
platform, acting as a middleware that enables the transformation of a nonelastic
parallel application in an elastic one. The model works with both automatic and
reactive elasticity in their horizontal (managing VM replicas) and vertical modes
(resizing computational infrastructure), providing allocation and consolidation of
compute nodes and virtual machines. As PaaS model, AutoElastic proposes a
middleware to compile an iterative-based master-slave application, besides an
elasticity Manager. Figure 4.7a depicts user interaction with the cloud, who needs
to concentrate their efforts only on the application coding. The Manager hides the
details from the user on writing elasticity rules and actions. Figure 4.7b illustrates
the relationships among processes, virtual machines, and computational nodes. In
our scope, an AutoFElastic cloud can be defined as follows:

* AutoElastic cloud: a cloud modeled with m homogeneous and distributed
computational resources, where at least one of them (Node0) is always active.

4 Exploring Cloud Elasticity in Scientific Applications 115

SSH Connection and

Application CER] XY Cloud-supported
P Application Program
| e | Interface (API)

Virtual VM

N VMo | VMe-1 | VM (m-1) | VMn-1
Machines | Master AutoElastic
l Area Manager
for
Computational " A Data
Resources 1 8 . Share | Cloud
Node m-1 Front-End @ Master process
Interconnection Network @ Slave process
AutoElastic Cloud

Fig. 4.7 AutoElastic architecture, highlighting the distribution of nodes, VMs, and processes.
Each VM encompasses a single application process, and each node runs ¢ processing VMs, where
¢ denotes the number of processing cores in the node

This node is in charge of running a VM with the master process and other ¢ VMs
with slave processes, where ¢ means the number of processing units (cores or
CPUys) inside a particular node. The elasticity grain for each scaling up or down
action refers to a single node and, consequently, its VMs and processes. Lastly,
at any time, the number of VMs running slave processes is equal to n = ¢ X m.

Here, we are presenting the AutoElastic Manager as an application outside the
cloud, but it could be mapped to the first node, for example. This flexibility is
achieved by using the API of the cloud software packages. Taking into account that
HPC applications are commonly CPU intensive [2], we opted for creating a single
process per VM and ¢ VMs per compute node to explore its fully potential. This
approach is based on the work of Lee et al. [21], where they seek to explore a better
efficiency in parallel applications.

The user can enter an SLA with the minimum and maximum number of allowed
VMs. If this file is not provided, it is assumed that this maximum is twice the
number of VMs observed at the application launch. The fact that the Manager, and
not the application itself, increases or decreases the number of resources provides
the benefit of asynchronous elasticity. Here, asynchronous elasticity means that
process execution and elasticity actions occur concomitantly, not penalizing the
application because of resource overhead (node and VM) reconfiguration (allocation
and deallocation). However, this asynchronism leads to the following question:
How can we notify the application about resource reconfiguration? To accomplish
this, AutoElastic communicates among the VMs and the Manager using a shared
memory area. Other options of communication should also be possible, including
using NFS, message-oriented middleware (such as JIMS or AMQP), or tuple spaces
(JavaSpaces, for instance). The use of a shared area for data interaction among VM
instances is a common approach in private clouds [7, 25, 39]. AutoElastic uses this
idea to trigger actions as presented in Table 4.3.

Based on Action 1, the current processes may start working with the new set
of resources (a single node with ¢ VMs, each one with a new process). Figure 4.8

116 G. Galante and R.R. Righi

Table 4.3 Actions provided through the shared data area

Action | Direction Description

Action 1 | AutoElastic Manager — Master process | There is a new compute node with ¢
virtual machines, each one with a new
application process, which has an IP and a
unique identification

Action 2 | AutoElastic Manager — Master process | Request permission to consolidate a
compute node and its VMs

Action 3 | Master process — AutoElastic Manager | Giving permission to consolidate the
previously requested node

illustrates the functioning of the AutoElastic Manager when creating a new slave,
so launching Action 1 afterward. Action 2 is relevant for the following reasons:
(i) not stopping a process executing while either communication or computation
procedures take place and (ii) ensuring that application will not be aborted with
the sudden interruption of one or more processes. In particular, the second reason is
important for MPI applications that run over TCP/IP networks, since they commonly
crash with a premature termination of any process. Action 3 is normally taken by
a master process, which ensures that the application has a consistent global state
where processes may be disconnected properly. Afterward, the remaining processes
do not exchange any message to the given node. We are working with a shared area
because it makes easier the notification of all processes about resource addition or
dropping and then performing communication channel reconfigurations in a simple
way.

AutoFElastic offers cloud elasticity using the replication technique. In the activity
of enlarging the infrastructure, the Manager allocates a new compute node and
launches new virtual machines on it using an application template. The bootstrap
of a VM is ended with the execution of a slave process which will do requests
to the master. The instantiation of VMs is controlled by the Manager, and only
after they are running, the Manager notifies the other processes through Action 1.
The consolidation procedure increases the efficiency on resource utilization (not
partially using the available cores) and also provides a better management of energy
consumption. Particularly, Baliga et al. [3] claim that the number of VMs in a node
is not an influential factor for energy consumption, but the fact of a node is turned
on or not.

As presented in the works of Chiu and Agrawal [8] and Imai et al. [17], data
monitoring is given periodically. Hence, AutoElastic Manager obtains the CPU
metric, applies time series based on past values, and compares the final metric
with the maximum and minimum thresholds. More precisely, we are employing
moving average in accordance with Equations 4.2 and 4.1. LP(i) returns a CPU
load prediction when considering the execution of the n slave VMs in the Manager
intervention number i. To accomplish this, MM(i,j) informs the CPU load of
a virtual machine j in the observation i. Equation 4.2 uses moving average by
considering the last z observations of the CPU load Load(k, j) over the VM j, where

4 Exploring Cloud Elasticity in Scientific Applications 117

Master Verifies the occurrence of a "Scale
Process Out Action". The Master accepts a
(compiled with connection from the new slave,
the AutoElastic reorganizing the communication
middleware) topology

Scaling out Writes "Scale

operation: Verification Out Action" in

VM of the VM the shared

AutoElastic allocation status partition
Manager |

New VM, with Overhead Time
a new Slave related to VM Requests
Process bootstrapping connection

with the

master
Verification of elasticity Periodical After bootstrapping a E’ Procedure
actions in the shared O observation O VM, a new process is
data area at each point automatically executed C) Information

external loop iteration

Fig. 4.8 Functioning of the master, the new slave and the AutoElastic Manager to enable the
asynchronous elasticity

i —z < k < i. Finally, Action 1 is triggered if LP is greater than the maximum
threshold, while Action 2 is thrown when LP is lower than the minimum threshold:

n—1
1
LP(i) = —. Y MM(i.}) 4.1
n i=0
where
{_._ . Load(k,j
M. j) = Simizer Loadd)) 42)
Z
fori > z.

4.3.2.2 Model of Parallel Application

AutoFlastic exploits data parallelism on iterative-based message passing parallel
applications. Figure 4.9 shows an iterative application supported by AutoElastic
where each iteration is composed by three steps: (a) the process master distributes

118 G. Galante and R.R. Righi

Consistent Global State of
the Distributed System

! .
Iteration 1 ! Iteration 2 Iteration 3 Iteration 4

1. Verify 2. Connect | | 3- Distribute | | 4. Receive 5. Disconnection

Elasticity || with Slaves the load data from of slaves
among the slaves
slaves

Fig. 4.9 Iterative application supported by AutoElastic. Process reorganization takes place before
starting each new iteration

the load among the active slave processes; (b) slave processes compute the load
received by the master process; and (c) the slave processes send the computed
results to the master process. The elasticity occurs always in between each iteration
where the computation has a consistent global state, allowing changes in the
number of processes. In particular, the current version of the model still has the
restriction to operate with applications in the master-slave programming style.
Although trivial, this style is used in several areas, such as genetic algorithms, Monte
Carlo techniques, geometric transformations in computer graphics, cryptography
algorithms, and applications that follow the embarrassingly parallel computing
model [31]. However, the Action 1 allows existing processes to know the identifiers
of the new ones allowing an all-to-all communication channel reorganization
eventually. Another characteristic is that AutoElastic deals with applications that
do not use specific deadlines for concluding the subparts.

As AutoElastic project decision, elasticity feature must be offered to program-
mers without changing their application. Thus, we modeled the communication
framework by analyzing the traditional interfaces from MPI 1.x and MPI 2.x.
The first creates processes statically, where a program begins and ends with the
same number of processes. On the other hand, MPI 2.0 has support for elasticity,
since it offers the possibility of creating processes dynamically, with transparent
connections to the existing ones. AutoElastic follows the MPMD (multiple program
multiple data) approach from MPI 2.x, where the master has an executable and the
slaves another.

Based on the MPI 2.0, AutoElastic works with the following directives: (i)
publication of connection ports, (ii) finding the server based on a particular

4 Exploring Cloud Elasticity in Scientific Applications 119

port, (iii) accepting a connection, (iv) requesting a connection, and (v) making a
disconnection. Different from the approach in which the master process launches
the slaves using a spawn-like directive, the proposed model operates according
to another approach of MPI 2.0 for dynamic process management: connection-
oriented communication using point to point, as sockets do. The launching of a
VM automatically occurs in the execution of a slave process, which requests a
connection with the master afterward. Here, we emphasize that an application with
AutoElastic does not need to follow the MPI 2.0 interface but the semantic of each
aforementioned directive.

Figure 4.10a presents a pseudo-code of the master process. The master performs
a series of tasks, sequentially capturing a task and dividing it before sending for
processing on slaves. Concerning the code, the method in the line 4 of Fig.4.10a
checks the distributed environment and publishes a set of ports (disjoint set of
numbers, names, or a combination of them) to receive a connection from each slave
process. Data communication happens in an asynchronous model, where sending
data to the slaves is non-blocking and receiving data from them is blocking. The
occurrence of an external loop is convenient for elasticity, since the beginning of
each iteration is a possible point for resource and process reconfiguration, including
communication channel reorganizations. Still, the beginning of a new loop implies
in a consistent global state for the distributed system.

The transformation of a nonelastic into an elastic application can be offered in
different ways:

(i) Implementation of an object-oriented program using polymorphism to override
the method to manage the elasticity

(a) (b) (©

1. size = initial_mapping(ports);
2. for (j=0; j< total_tasks; j++){
3. publish_ports(ports, size);
4. for (i=0; i< size; i++){
5) tfonnectlon_accept(slaves[l], 1. int changes = 0;
portsi]); . X
2. if (Action == 1){

6. 1. master = lookup(master_address, .

. . . o 3. changes += add_VMs();
7. calculate_load(size, work([j], intervals); naming); 4}

8. for (i=0; i< size; i++){ 2. port = create_port(IP_address, VM_id); ! . L

9. task = create_task(work(j], 3. while (true){ g Miﬁalfn(fs“-o—nd_r:) 2)§/Ms()'

intervalsli]); 4. connection_request(master, port); 7' aIIowgcon;oIidaF)t?rJn()‘ //,to

10. send_assync(slavesi], task); 5. recv_sync(master, task); N Iy ’
enable Action3

1. 6. result = compute(task); 8

12, for (i=0; i< size; i++){ 7. send_assync(master, result); i L L

13. recv_sync(slavesli], results]i]); 8. disconnect(master); 190' if (::;(:'rggr;;; (;'o'?t(;t(lzgrt_s_)' it

14.) 9. : - ’

} 11.}

15. store_results(slavelj], results); 12. size += changes;

16. for (i=0; i< size; i++){

17. disconnect(slavesi]);
18. }

19. unpublish_ports(ports);
20.}

Fig. 4.10 Application model in pseudo-language: (a) Master process; (b) slave process; (¢) and
elasticity code to be inserted in the Master process at PaaS level by using either method overriding,
source-to-source translation, or wrapper technique

120 G. Galante and R.R. Righi

(i) Using a source-to-source translator to insert code between lines 4 and 5 of the
master code

(iii) Development of a wrapper for procedural languages in order to change the
function in line 4 of Fig.4.10a. Regardless of the technique, the elasticity
code is simple and shown in Fig.4.10c. A region of additional code checks
the shared directory if there is a new action for AutoElastic. For example, this
part of code can be inserted as an extension of the function publish_ports()
following the technique number (iii) above.

Although the initial focus of AutoElastic is on master-slave, the use of the socket-
like MPI 2.0 ideas eases the inclusion of processes and the reestablishment of
connections to compose a new totally arbitrary topology. At implementation level,
it is possible to optimize connections and disconnections if the process persists
in the list of active processes. This behavior is especially pertinent over TCP/IP
connections, since this suite uses an onerous three-way handshake protocol for
connection establishment.

4.4 Elasticity Analysis and Research Opportunities

Section 4.3 presented two proposals to explore elasticity for HPC scientific appli-
cations. Table 4.4 shows a comparison analysis between the two approaches,
highlighting advantages and disadvantages. A relevant question here to choose one
of the elasticity approach is: what is the abstraction level required by the user to
enable cloud elasticity in his/her application? If the user wants to use this cloud
capacity in an effortless and transparent way, AutoElastic model seems the most
appropriate. On the other hand, if the user aims at obtaining total control of the
execution, including metric values, parameters, and places to insert elasticity calls,
Cloudine is the best approach to support such requirements.

Cloud elasticity is a desirable facility both in commercial and academic areas.
In the first, elasticity represents the possibility of small enterprises to grow their
business without an initial large investment. Thus, if the enterprise success is lower
than expected, the enterprise does not have to pay for acquiring physical resources
beforehand. On the other hand, if the core business receives a large number of
requests, here elasticity has a crucial role to expand the processing infrastructure
to support such new demand patterns. In addition, cloud elasticity is known as a
pertinent facility to reduce a metric in the business area: time to market. In the
academic area, as discussed earlier in Sects. 4.2 and 4.3, we observe that elasticity is
gaining more and more attention on big data and high-throughput computing areas,
which address many CPU- or I/O-bound activities.

Today, we observe improvements in virtualization techniques, as well as in
network setup, to enable HPC-driven cloud environments. Dedicated clusters remain
as the main option to run HPC applications; however, on the other hand, public
and private cloud providers are also more and more focusing on offering facilities

4 Exploring Cloud Elasticity in Scientific Applications

121

Table 4.4 Comparing elasticity approaches for scientific applications

Objective

Target
machine

Target
application

Differential
approach

Impact in
the infras-
tructure

Advantages

Limitations

Solution
complexity

Autoelastic

To reduce the time of a parallel
application

Cloud computing, particularly
composed of homogeneous
computational nodes

Iterative master-slave MPI applications

Presents the concept of asynchronous
elasticity, where processes are not
blocked when scaling in or scaling out
actions take place

Horizontal elasticity, with the addition
or drop of a single node with ¢ virtual
machines. Here, ¢ denotes the number
of processing cores (each VM executes
a new slave process)

The user does not need to insert
elasticity directives in his/her
application. He/she only launches the
application to the cloud, so the elasticity
Manager on the fly manages the right
number of resources and processes to
execute the application.

The elasticity grain always refers to a
single compute node. This strategy can
incur a lack of reactiveness on resource
allocation and deallocation procedures,
so penalizing the application time and
the use of resources.

AutoElastic acts at the PaaS level of a
cloud; thus, the users only need to
compile the application with the
AutoFElastic middleware. In particular,
AutoElastic has a wrapper that
transforms a nonelastic application into
an elastic one.

Cloudine

To provide elasticity support in such a
way the users can tune application
parameters

Cloud computing

Parallel applications written in any of
the five parallel programming models
(master-slave, Bag-of-tasks,
Divide-and-Conquer, Pipeline, and
Bulk-Synchronous Parallel
Programming level elasticity, which is
offered through a set of elasticity
programming directives

The effectiveness of the solution
depends on the target cloud provider,
if it supports horizontal or vertical
elasticity or not. In addition, the
effectiveness also depends on the
monitoring API offered by the cloud
provider.

Unprecedented functionalities can be
integrated in the application code. In
this way, it is possible to develop
dynamic and flexible applications that
adapt their own executing
environment in accordance with the
incoming demands

The effort at the programmer
viewpoint, since he/she is in charge of
considering elasticity issues at both
application design and
implementation times

Both the application design and
implementation (or adaptation) must
consider the control of the elasticity in
the application source code. In this
way, the user must implement
dynamic process creation by
himself/herself using an appropriate
set of elasticity directives

122 G. Galante and R.R. Righi

and flexible configurations to reduce the performance gap between the two parallel
machines (cluster and cloud resources). Sections 4.2 and 4.3 discussed about how
to employ cloud elasticity over HPC-like scientific applications. Below, we are
compiling some issues that could be further explored to disseminate the use of
elasticity, as well as to understand its capacities and limitations.

Cloudine represents an initiative of a programming library, which can be used to
write elastic applications. However, we observe that there is a gap in providing
a de facto standard interface for such role as either web services are for web-
based transactional applications or MPI (message passing interface) is for high
performance computing. An idea could be to explore elasticity directives, for
example, in the next version of MPI so approaching such an interface to the
cloud panorama.

In scientific application plethora, today we observe the use of cloud elasticity
to execute workflow-based, Bag-of-Tasks, and Master-Slave HPC applications.
Nevertheless, the challenge is to visualize performance gains that could be
explored with resource reorganization over other parallel programming models,
including Divide-and-Conquer and Bulk-Synchronous parallel.

The use of lower and upper thresholds is a problem to enable reactive elasticity,
mainly for two reasons: (i) a good pair of thresholds for a particular set of
application and infrastructure could present collateral effects like VM thrashing
when at least one element of the aforesaid set is changed. ProActive elasticity
could be a solution; however this technique normally comprises large warm-up
periods to train the prediction algorithms, and it is often associated as a time-
consuming operation. Thus, hybrid approaches could be explored to extract the
better of the two approaches: simplicity and intuitivity from the reactive elasticity
and predictability and thresholdless character from proactive elasticity.

Today, services offered at SaaS (software-as-a-service) level such as Google
Docs and Google Mail are very diffused worldwide, so abstracting infrastruc-
ture, localization, and technical details from users properly. Thus, we expect
the development of elasticity policies on public cloud providers to adapt the
mentioned services in accordance with the demands, since we observe that often
performance and response time are put away in particular parts of the day.
Definition of metrics to evaluate how effective an elasticity system is. At least,
we envision three metrics: time, resource consumption, and cost [32]. Time refers
to the execution time to conclude an HPC application, so being a pertinent metric
mainly when comparing elastic and inelastic systems. Resource consumption
refers to a sum when considering each VM deployment and its time as active.
For example, consider the situation: 20s with 2VMs, 120s with 4VMs, 100s
with 6VMs, and 80s with 4VMs; here we have resource consumption = 20.2 +
(120.4 + 80.4) + 100.6 = 1440. The cost, in turn, is used to analyze how viable
is the execution, with or without elasticity. Based on the standard notion of cost
in the parallel computing area, which considers time x processors, here we can
use time and the previously computed resource consumption metric.

4 Exploring Cloud Elasticity in Scientific Applications 123

4.5 Conclusion

Demand for HPC continues to grow, driven in large part by ever-increasing demands
for more accurate and faster simulations to meet new regulatory requirements, to
increase safety, or to reduce financial risks. In this context, this chapter presented the
possibility to explore cloud elasticity in this scope. In our understanding, elasticity
is pertinent to provide resource configuration adaptivity mainly for irregular and
dynamic applications, where unpredictable workloads and nondeterministic inter-
process communication take place. In addition, non-dedicated and heterogeneous
execution environments can also extract the advantages of such facility to on-the-fly
adapt the resources in accordance with the application demands and infrastructure
modifications. The benefits of cloud elasticity are clear to the HPC community;
what remains unsolved concerns which is the best alternative to provide it for
HPC applications. This chapter detailed two alternatives: one at programming level
and another at middleware level. They represent a good start to rethink adaptivity
and resource allocation, but the authors agree that the use of standard elasticity
mechanisms and interfaces is crucial to disseminate the use of this promising facility
in the HPC landscape.

Acknowledgements This work was partially supported by the following Brazilian Agencies:
FAPERGS, CAPES, and CNPq (grants 457501/2014-6 and 305531/2015-8).

References

1. Ali-Eldin A, Kihl M, Tordsson J, Elmroth E (2012) Efficient provisioning of bursty scientific
workloads on the cloud using adaptive elasticity control. In: Proceedings of the 3rd workshop
on scientific cloud computing date, ScienceCloud’12. ACM, New York, pp 31-40

2. Azmandian F, Moffie M, Dy JG, Aslam JA, Kaeli DR (2011) Workload characterization at the
virtualization layer. In: Proceedings of the 19th international symposium on modeling, analysis
simulation of computer and telecommunication systems, MASCOTS’11. IEEE Computer
Society, Washington, DC, pp 63-72

3. Baliga J, Ayre RWA, Hintony K, Tucker RS (2011) Green cloud computing: balancing energy
in processing, storage, and transport. Proc IEEE 99(1):149-167

4. Ben-Yehuda AO, Ben-Yehuda M, Schuster A, Tsafrir D (2012) The resource-as-a-service
(RAAS) cloud. In: Proceedings of the 4th USENIX conference on hot topics in cloud
computing, HotCloud’12. USENIX, pp 1-5

5. Byun E, Kee Y, Kim J, Maeng S (2011) Cost optimized provisioning of elastic resources for
application workflows. Future Gen Comput Syst 27(8):1011-1026

6. Caballer M, de Alfonso C, Molté G, Romero E, Blanquer I, Garcia A (2014) Codecloud: a
platform to enable execution of programming models on the clouds. J Syst Softw 93(0):187-
198

7. Cai B, Xu F, Ye F, Zhou W (2012) Research and application of migrating legacy systems to
the private cloud platform with cloudstack. In: Proceedings of the international conference on
automation and logistics, ICAL’12. IEEE, pp 400-404

124 G. Galante and R.R. Righi

8. Chiu D, Agrawal G (2010) Evaluating caching and storage options on the Amazon web services
cloud. In: Proceedings of the 11th international conference on grid computing, GRID’10.
IEEE, pp 17-24

9. Chohan N, Castillo C, Spreitzer M, Steinder M, Tantawi A, Krintz C (2010) See spot run: using
spot instances for mapreduce workflows. In: Proceedings of the 2nd USENIX conference on
hot topics in cloud computing, HotCloud’10. USENIX, pp 1-7

10. de Oliveira D, Viana V, Ogasawara E, Ocana K, Mattoso M (2013) Dimensioning the virtual
cluster for parallel scientific workflows in clouds. In: Proceedings of the 4th ACM workshop
on scientific cloud computing, ScienceCloud’13. ACM, New York, pp 5-12

11. Galante G, Bona LCE (2012) A survey on cloud computing elasticity. In: Proceedings of
the international workshop on clouds and eScience applications management, CloudAM’12.
IEEE, pp 263-270

12. Galante G, Bona LCE (2014) Supporting elasticity in openmp applications. In: Proceedings of
the 22nd Euromicro conference on parallel, distributed and network-based processing, PDP’ 14.
Euromicro, pp 188-195

13. Galante G, Bona LCE (2015) A programming-level approach for elasticizing parallel scientific
applications. J Syst Softw 110(C):239-252

14. Galante G, Bona LCE, Claudio Schepke (2014) Improving olam with cloud elasticity. In:
Murgante B, Misra S, Rocha AMAC, Torre C, Rocha JG, Falcao MI, Taniar D, Apduhan
BO, Gervasi O (eds) Computational science and its applications — ICCSA 2014: 14th
international conference, Guimaraes, June 30-July 3, 2014, Proceedings, Part VI. Springer,
pp 4660

15. Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: what it is, and what
it is not. In: Proceedings of 10th international conference on autonomic computing, ICAC’13.
USENIX, San Jose, pp 23-27

16. Hummaida AR, Paton NW, Sakellariou R (2016) Adaptation in cloud resource configuration:
a survey. J Cloud Comput 5(1):57:1-57:16

17. Imai S, Chestna T, Varela CA (2012) Elastic scalable cloud computing using application-level
migration. In: Proceedings of the 5th international conference on utility and cloud computing,
UCC’12. IEEE, pp 91-98

18. Tordache A, Morin C, Parlavantzas N, Feller E, Riteau P (2013) Resilin: elastic mapreduce
over multiple clouds. In: Proceedings of 12th international symposium on cluster, cloud and
grid computing, CCGRID’13. IEEE, pp 261-268

19. Islam S, Lee K, Fekete A, Liu A (2012) How a consumer can measure elasticity for cloud
platforms. In: Proceedings of the 3rd international conference on performance engineering,
ICPE’12. ACM, pp 85-96

20. Jha S, Katz DS, Luckow A, Merzky A, Stamou K (2011) Understanding scientific applications
for cloud environments. In: Buyya R, Broberg J, Goscinski AM (eds) Cloud computing:
principles and paradigms, chapter 13. John Wiley & Sons, pp 345-371

21. Lee Y, Avizienis R, Bishara A, Xia R, Lockhart D, Batten C, Asanovic K (2011) Exploring
the tradeoffs between programmability and efficiency in data-parallel accelerators. In:
Proceedings of the 38th annual international symposium on computer architecture, ISCA’11,
pp 129-140

22. Leslie LM, Sato C, Lee YC, Jiang Q, Zomaya AY (2015) DEWE: a framework for distributed
elastic scientific workflow execution. In: Proceedings of the 13th Australasian symposium on
parallel and distributed computing, AusPDC’15. ACS, Sydney, pp 3-10

23.Lin C, Lu S (2011) SCPOR: an elastic workflow scheduling algorithm for services computing.
In: Proceedings of the 5th IEEE international conference on service-oriented computing and
applications, SOCA’11. IEEE Computer Society, Washington, DC, pp 1-8

24. Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for
elastic applications in cloud environments. J Grid Comput 12(4):559-592

25. Milojicic D, Llorente IM, Montero RS (2011) Opennebula: a cloud management tool. IEEE
Internet Comput 15(2):11-14

26.

217.

28.

29.

30.

3

—

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Exploring Cloud Elasticity in Scientific Applications 125

Molté G, Caballer M, Romero E, de Alfonso C (2013) Elastic memory management
of virtualized infrastructures for applications with dynamic memory requirements. In:
International conference on computational science, ICCS’13; Procedia Comput Sci 18:159—
168

Nicolae B, Riteau P, Keahey K (2014) Bursting the cloud data bubble: towards transparent
storage elasticity in IaaS clouds. In: Proceedings of the 28th international parallel and
distributed processing symposium, IPDPS’14. IEEE, pp 135-144

Pandey S, Karunamoorthy D, Buyya R (2011) Workflow engine for clouds. In: Buyya R,
Broberg J, Goscinski A.M. (eds) Cloud computing: principles and paradigms, chapter 12. John
Wiley & Sons, pp 321-344

Rajan D, Canino A, Izaguirre JA, Thain D (2011) Converting a high performance application
to an elastic cloud application. In: Proceedings of the 3rd international conference on cloud
computing technology and science, CLOUDCOM’11. IEEE, pp 383-390

Ramakrishnan L, Jackson KR, Canon S, Cholia S, Shalf J (2010) Defining future platform
requirements for e-science clouds. In: Proceedings of the 1st symposium on cloud computing,
SoCC’10. ACM, New York, pp 101-106

. Raveendran A, Bicer T, Agrawal G (2011) A framework for elastic execution of existing

MPI programs. In: Proceedings of the international symposium on parallel and distributed
processing workshops and PhD forum, IPDPSW’11. IEEE, pp 940-947

Righi RdR, Rodrigues VF, da Costa CA, Galante G, de Bona LCE, Ferreto T (2016)
Autoelastic: automatic resource elasticity for high performance applications in the cloud. IEEE
Trans Cloud Comput 4(1):6-19

Simmhan Y, van Ingen C, Subramanian G, Li J (2010) Bridging the gap between desktop and
the cloud for escience applications. In: Proceedings of the 3rd international conference on
cloud computing, CLOUD’ 10. IEEE, pp 474-481

Srirama SN, Jakovits P, Vainikko E (2012) Adapting scientific computing problems to clouds
using MapReduce. Future Gen Comput Syst 28(1):184-192

Taifi M, ShiJY, Khreishah A (2011) SpotMPI: a framework for auction-based HPC computing
using Amazon spot instances. In: Proceedings of the 11th international conference on
algorithms and architectures for parallel processing, ICA3PP’11. Springer, pp 109-120
Vaquero LM, Rodero-Merino L, Buyya R (2011) Dynamically scaling applications in the
cloud. ACM Comput Commun Rev 41:45-52

Vecchiola C, Pandey S, Buyya R (2009) High-performance cloud computing: a view of
scientific applications. In: Proceedings of the 10th international symposium on pervasive
systems, algorithms, and networks, ISPAN’09. IEEE, pp 4-16

Villamizar M, Castro H, Mendez D (2012) E-clouds: a saas marketplace for scientific
computing. In: Proceedings of the 5th international conference on utility and cloud computing,
UCC’12. IEEE, pp 13-20

Wen X, Gu G, Li Q, Gao Y, Zhang X (2012) Comparison of open-source cloud management
platforms: openstack and opennebula. In: Proceedings of the 9th international conference on
fuzzy systems and knowledge discovery, FSKD’12, pp 2457-2461

Wottrich R, Azevedo R, Araujo G (2014) Cloud-based OpenMP parallelization using a
mapreduce runtime. In: 26th IEEE international symposium on computer architecture and
high performance computing, SBAC-PAD’ 14. IEEE, pp 334-341

Yu L, Thain D (2012) Resource management for elastic cloud workflows. In: Proceedings
of the 2012 12th IEEE/ACM international symposium on cluster, cloud and grid computing,
CCGRID’12. IEEE, pp 775-780

Chapter 5
Clouds and Reproducibility: A Way
to Go to Scientific Experiments?

Ary H. M. de Oliveira, Daniel de Oliveira, and Marta Mattoso

5.1 Introduction

Computational scientific experiments use computing techniques integrated to
methodologies and scientific programs to support the development of science.
Experiments in different domains of knowledge are often dependent of data-oriented
computational methods [30, 33]. e-Science [56] emerged as a data-oriented science
that is based on computational scientific experiments. The goal is to make science
evolution more efficient and productive [24]. Among the challenges of e-Science
development, there is the processing and analysis of large scientific datasets that
currently produce a range of several terabytes to petabytes of data [5, 34, 35, 55].
As computers become more powerful, the complexity of analyzing scientific data
also grows at the same pace due to the volume, complexity, and variety of data that
is generated [16, 30, 57]. Scientific development involves a massive production of
data and must be accompanied by approaches that allow for the reproducibility of
experiments, making it possible to verify and validate the results produced by these
simulations.

For a scientific experiment to be considered “scientific” it must be reproducible
[19]. To reach the same conclusions as a previous experiment, scientists have to
analyze and compare data products (we use the term data product or dataset to

A.H.M. de Oliveira (<)
Federal University of Tocantins, Palmas, Brazil
e-mail: aryhenrique @mail.uft.edu.br

D. de Oliveira
Fluminense Federal University, Niter6i, Brazil
e-mail: danielcmo @ic.uff.br

M. Mattoso
Federal University of Rio de Janeiro (COPPE/UFRIJ), Rio de Janeiro, Brazil
e-mail: marta@cos.uftj.br

© Springer International Publishing AG 2017 127
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_5

mailto:aryhenrique@mail.uft.edu.br
mailto:danielcmo@ic.uff.br
mailto:marta@cos.ufrj.br

128 A.H.M. de Oliveira et al.

refer to data in any form, such as files, tables, and virtual collections) and metadata
related to the experiment execution. Metadata allows for scientists to check if the
experiment followed the same procedure of previous executions [32]. It is defined as
the basic principle of the scientific method, which assists in the comparison process
and methods and validation of results [23]. This is the evidence used to test and
sustain the adopted methods and obtained results. Reproducibility is a way to certify
that the results are correct and the method is convincing and reproducible [23].
The science progress depends on the effective dissemination and reproducibility
of existing research [47]. Nevertheless, it is necessary to access the material used in
the production of the results to analyze and evaluate it [6]. Science advances faster
when it is possible to build on existing results and when new ideas can be easily
measured against the state of the art [38].

The reproducibility of a scientific experiment with rigor, transparency, and
verification is a decisive factor when assessing quality [41]. The American Physical
Society (APS)' emphasizes the importance of reproducibility. According to APS,
science is the systematic use of knowledge gathering about the universe and the
organization and condensation of that knowledge in laws and theories testable.
They complement that a way to maintain the credibility and success of science is to
anchor it in the scientist’s disposition to expose ideas and results of their studies to
independent tests and replication of these tests by other scientists. Reproducibility
is a way to allow the published knowledge to become available to the general public
[15]. A scientific contribution is considered valuable if, among other things, other
researchers are able to reproduce its results with success [52].

However, it is far from trivial to achieve reproducibility in computer-based sci-
entific experiments. Many of these experiments are composed by several activities
that invoke computing and data-intensive programs. Several experiments execute for
weeks or months in parallel even in high-performance computing (HPC) environ-
ments such as clusters, grids, and clouds. In order to be reproduced by third-party
scientists or teams, several existing approaches [7, 10, 40, 58] collect provenance
data [11] related to executions of these experiments to foster reproducibility.
Provenance, or lineage, of a scientific experiment is related to metadata associated
to the data products generated by a specific experiment execution. Simmbhan et al.
[50] define provenance as the “information that helps determine the derivation
history of a data product, starting from its original sources.” The main goal of
provenance is to give credibility and confidence to the results and methods [23].
Although provenance plays a very important role, it is not sufficient to reproduce
scientific experiments. A scientific experiment may have several software and
hardware dependencies that must be preserved in the moment of reproduction. One
problem that arises is how to reproduce these dependencies since software may be
discontinued, computer architectures may be not supported anymore, etc.

Thttp://www.aps.org/policy/statements/99_6.cfm

http://www.aps.org/policy/statements/99_6.cfm

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 129

Clouds can play a fundamental role in e-Science reproducibility [22]. Clouds
are strongly based on the concept of virtualization in which virtual machines (VM)
are a key issue. The entire environment used to execute the experiment (programs,
data, etc.) can be packed in an image (e.g., an ISO), and VMs can be deployed
based on this image. This fosters the ability to encapsulate the entire context of the
experiment in a VM, which may virtually reproduce the same environment used to
execute the experiment. However, just having the technology infrastructure is not
enough, there are issues on how to pack the experiments, what to register, how to
help on reproducing it with different parameters, etc.

Despite the vast literature on reproducibility of experiments, the terms used in
the papers are quite diverse and do not help in mapping the field. In addition,
there lacks a reference architecture to compare the state-of-the-art solutions. Also,
the potential of cloud computing seems underutilized in reproducing experiments.
Given this context, this chapter discusses how clouds can foster reproducibility
and has three main contributions: a taxonomy on reproducibility of experiments,
a reference architecture for reproducibility support using clouds, and an evaluation
of current approaches for cloud-based reproducibility. The taxonomy organizes the
concepts and terminology of reproducibility independent of the scientific domain
area. The goal is to provide a common definition and classification for e-Science
research reproducibility. This taxonomy can be used to guide researchers among
the innumerous possibilities. The second contribution presents the basic functional
requirements to guide the construction and analysis of a reproducible infrastructure
in clouds. The proposed reference architecture helps on the characterization of
tools for the reproducibility of experiments. Then, as a third contribution, current
available tools are evaluated based on a set of properties and functionalities
presented on this taxonomy and reference architecture.

This chapter is organized in five sections besides this introduction. Section 5.2
presents the proposed taxonomy with an organization of concepts and terminology
related to reproducibility. Section 5.3 discusses about how clouds can foster
reproducibility following the classes of the taxonomy. Section 5.4 proposes a
reference architecture that makes an experiment reproducible. Section 5.5 presents a
survey on reproducibility approaches that are based on clouds, and, finally, Sect. 5.6
concludes this chapter.

5.2 A Taxonomy on Reproducibility of Experiments

The amount of published papers and proposed approaches evidences that repro-
ducible science has emerged as an important concept in the last years according to
Freire et al. [20]. Several technologies, platforms, applications, infrastructure, and
standards have been already proposed. However, the concepts involved need clear
definitions and classifications. Considering the huge interest on reproducible science
and the difficulty in finding organized definitions of concepts associated to this field,
we present in this chapter a taxonomy for reproducibility approaches in e-Science.

130 A.H.M. de Oliveira et al.

Repeatable [Confirmable][Primary][Intermediary][Final Result] Metadata and

Provenance
Auditable

Reproducible

Fig. 5.1 The proposed taxonomy for reproducible science

Taxonomies are a particular classification structure where the concepts are arranged
in a hierarchical way. The proposed taxonomy provides an understanding of the
domain and aims at helping the scientist to compare different approaches for
reproducible science, particularly when using clouds.

We believe that this taxonomy will be useful to the scientific community to
compare different proposed approaches. By analyzing this taxonomy, scientists
may consider which features meet their needs, and depending on the scientific
experiment, these needs may vary. The taxonomy considers a broad view of
reproducible science and aims at exploring its major aspects. Using the taxonomy as
a common vocabulary may help scientists to find common characteristics of existing
approaches and aid into choosing the most adequate one. This section describes
several sub-taxonomies that compose a general taxonomy. For the sake of simplicity,
the proposed taxonomy, presented in Fig.5.1, classifies the characteristics of
reproducible science in terms of authors, reproduction type, access/use license and
copyrights, content presentation form, evaluation methods, and research objects.
The term “research objects” is used to define an abstraction for communication,
sharing, and reuse of scientific experiment results [4]. The research objects are
composed of different artifacts used or generated by a scientific experiment [4],
like papers (manuscripts), notes, datasets, documentation, hardware and software
infrastructure, and configuration parameters. Following, we discuss each sub-
taxonomy in detail.

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 131

Agent. A reproducible science is influenced by the action of four actors as dis-
cussed by Koop et al. [37]: (1) the author that designs and implements experiments
to generate the results used in the scientific paper; (2) publishers that receive and
publish papers so that readers in general may have access to the contents; (3)
reviewers that evaluate the content and other materials, check results, and validate
the methodology; and (4) readers that access the paper to get access to its contents
to analyze the results, rerun the experiment, and reuse research elements.

Methodology. The methodology to be followed to reproduce an experiment’s find-
ings depends on the extent of reproducibility level desired. A report generated after
the reproducibility workshop in computer science and mathematics organized by
ICERM (Institute for Computational and Experimental Research in Mathematics?®)
suggested a classification of levels for reproducible science based on the access
to documents and materials used for the scientific experiment. This workshop
report presents five levels of reproducible science [53]: reviewable, replicable,
confirmable, auditable, and reproducible. These five levels have also been described
in [18] as (1) a review allows for results to be achieved independently through
a complete description of the algorithms and methodology without the need of
using software provided by the author; (2) a repetition defines that research results
can be reproduced only in the infrastructure that they were originally obtained;
(3) a confirmation allows for accessing objects used in the experiment execution;
however, it does not support the experiment re-execution; (4) the auditable level has
records of materials used in the experiment; however, they aim to be presented to a
reviewer when requested; and (5) reproduction requires a robust methodology which
allows for reproducing the results in an operational environment different from the
one it was originally obtained.

Licensing. The license to access or use the results of a reproducible science
can be defined in three different ways: public, private, or mixed [9]. When the
scientific result is defined as public, the paper and research objects are widely
accessible to the general public, that is, anyone can get the objects used in the
experiment and reproduce the results and methodology. When the scientific result
is defined as private, the scientific paper and the research objects have controlled
access to a specific audience, through an access control and distribution of research
subjects. The mixed license has access restrictions and concession policies for
each research object, which can be public or private according to the adopted
license. Reproducibility involves reproducing research objects such as configuration
parameters, final results, and a set of elements used for the derivation of these
results.

Presentation. A scientific paper is the way for presenting research objects used
to produce a result. Currently, a paper can be written using a traditional form or
by creating an executable paper. Traditional papers present static content, allowing

Zhttp://icerm.brown.edu/home/index.php

http://icerm.brown.edu/home/index.php

132 A.H.M. de Oliveira et al.

for the inclusion of URLSs for access to research objects related to a published
result. Executable papers have dynamic content, allowing for readers to inform
values and parameters to test the methodology and check the published result. They
may contain code fragments or mechanisms that set actions for the experiment re-
execution. The main goal of the executable paper is to improve the understanding
and reproducibility of electronic publications allowing for readers and reviewers to
interact, explore, and validate the experiments [32].

Evaluation. To verify the computational results of an experiment, it is necessary to
recreate the conditions in which the experiment was performed right from the begin-
ning [49]. Reproducible science supporting solutions aim at providing mechanisms
that allow for reproducing an experiment and its conclusions based on measures
and metrics established for the evaluation of results [2]. A reproducible experiment
should provide mechanisms for validation and verification of the methodology
and experimental results. Verification evaluates whether the results generated by
the experiment are in agreement with the methodologies or observations of the
phenomenon being studied. Validation evaluates whether the methodology proposed
by the research properly resolves what it was designed to solve. Validation can be
obtained by analyzing workflow execution trails from workflow systems using log
records or provenance [12, 42].

Data. Many e-Science experiments are supported by data-oriented techniques and
tools. The input data used by a simulation program is processed to produce results
(output data). Tools like worfklow systems are used in e-Science to orchestrate the
processing of data in a coherent flow of activities [3, 56]. This introduces the concept
of intermediate data, when one activity produces a portion of data that should be
available to start the execution of the next activity in the flow. Thus, reproducible
experiment data may be classified as primary, intermediate, final results, metadata,
and data provenance. Primary data is used as input data of the experiments. In
general, data is obtained from measurements or environment monitoring, in which
an instrument or sensor is deployed. Intermediate data, also called derivatives, is
produced during the execution and is the result of the application of algorithms
and analysis techniques for deriving information from input data. It is subject to
an arrangement or structure for the production of the final results. The final results
represent the final product of an experiment execution (following a methodology).
Metadata and provenance data are, respectively, additional information about the
three classes of data. Metadata are data descriptors that give meaning to the
data. One of the broader definitions, Greenberg [26] defines metadata as data
that describes the objects’ structure and the features associated with this object.
Provenance is defined as the origin or an object derivation history from its original
source [12]. These information can be used to evaluate quality, reliability, or trust of
an object [43]. Provenance describes steps in which the data were derived, adding
significant value to the data [50].

Infrastructure. Freire et al. [19] present two formal concepts to define computa-
tional infrastructure reproducibility: (1) an experiment made by a laboratory L in a

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 133

time ¢ is considered reproducible if it can be replicated in a different laboratory L'
in a posterior time ¢, and (2) a computational experiment developed in a time 7 in
a hardware/operational system s using data d is reproducible if it can be executed
in a time ¢ in a system s’ with data d’, which are similar or identical to d. This
definition highlights the need to preserve the operational environment in which the
experiment was deployed. Hence, the infrastructure refers to all the computation
resources used during the process of planning, designing, building, and executing
a reproducible experiment. The infrastructure is further categorized in four classes:
documentation, settings, hardware, and software, detailed as follows.

Documentation. The documentation is an indispensable element to assist other
scientists to understand the research. An algorithm configuration, the parameter
lists, and their values used for the experiment must be clearly indicated. An available
URL containing the software that implements the algorithm with information about
the used datasets helps to obtain the necessary elements to redeploy the research
objects used in the experiment. The documentation consists of registering the digital
material used. The goal is to assist other scientists to deploy the research objects that
are required to reproduce the experiment. Documentation also serves as a guide to
understand the reasoning of the researchers while designing each element and the
research as a whole. The concept of notes from Guo and Seltzer [29] emphasizes
the importance to include notes in the data products used and generated in the
experiment execution to allow accurate retrieval of files referenced in the notes.
Documentation is formed, in general, by the instruction manual, research author
notes, and other supporting materials.

Settings. Settings refer to the data settings and operational information responsible
for creating and configuring the operational computational environment. The goal
is to deploy and run the software under the same hardware used for executing the
original experiment. Settings are formed by environment variables, which should be
set in the operational system where the research objects will be deployed and the
software will run.

Hardware. All equipments used for computations of scientific experiments must
be registered as part of the infrastructure. The hardware is represented by machines,
computer networks, and storage, that is, the computer environment. A machine is
represented by two types of resources: processor and main memory. The computer
network provides information about the logical and physical organization, such as
the IP address and latency. The storage is the mechanism for data persistence in a
secondary memory structure. The architecture organizes the previous elements to
reflect the experiment performance and storage, taking into account characteristics
such as the use of physical computers or virtual environment.

Software. Elements that perform the instructions and algorithms of an experiment
are represented by registering the corresponding software. They are classified into
six groups: basic, application, libraries, source code, script, and workflow. Basic
software are formed by operational systems, virtualization software (hypervisors),

134 A.H.M. de Oliveira et al.

and compilers, responsible for generating an executable from a source code provided
by the scientist. Application software is a program (executable file) used to perform
a specific activity. Libraries are formed by subprograms set with code and auxiliary
data that provide some services to basic software and applications. Libraries are
invoked during compilation and execution. The source codes are files written in a
programming language ready to be compiled and used for activity execution. Since
the reproduction of a certain result through its source code can be affected by the
compiler used in the code compilation process, it is necessary to inform which
compiler was used to generate the experiment results and which were the parameters
applied. A script is a file with instructions set in code used by the operational system
for control programs. A workflow is an abstraction that allows for the composition
of programs, thus creating a coherent flow of activities [56]. It is executed by an
engine called scientific workflow management system (SWfMS) to automate the
activities involved in the workflow.

5.3 How Clouds Can Foster Reproducibility in Science?

Cloud computing has emerged as a computing model where web-based services
allow for different kinds of users to obtain a large variety of resources, such as
software and hardware. Cloud computing has demonstrated applicability to a wide
range of problems in several domains, including scientific ones such as astronomy
and bioinformatics. In fact, several scientists have adopted this computing model
and moved their experiments (programs and data) from local environments such as
clusters and grids to the cloud [13, 34]. One intuitive advantage provided by clouds
is that scientists are not required to assemble expensive computational infrastructure
to execute their experiments or even configure many pieces of software each time
the experiment is executed. An average scientist is able to run experiments just by
allocating the necessary resources in a cloud.

In addition to offering an adequate infrastructure for executing experiments,
clouds can also foster the reproducibility of experiments, even if these experiments
were not originally executed in clouds. As highlighted in the taxonomy presented in
Sect. 5.2, clouds are natural providers of important requirements for reproducibility.
The first requirement is the need of an infrastructure that is able to encapsulate
characteristics of computational environments used in the execution of experiments.
This requirement is natively addressed by clouds, since clouds are based on the
concept of virtualization. Clouds allow for scientists to create virtual machines that
act like a real computer with a specific operating system. All software executed
on these virtual machines are separated from the underlying hardware resources. It
allows, for example, that a computer that is running Linux 64 bits hosts a virtual
machine that runs Microsoft Windows 32 bits. In addition, full virtualization can be
applied, which allows for simulating the hardware and software originally used to
execute the scientific experiment to run unmodified.

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 135

Another requirement is to gather and store intermediate and final results of the
experiments for achieving reproducibility. Several experiments can produce many
terabytes of data that should be preserved for long-term analysis. Cloud-based
storage such as Amazon S3° can address this requirement. Online storage is an
integral part of life now, and this is not different in the scientific domain. Besides
specialized services such as S3, other general purpose cloud storage services can be
used to store scientific data, including Google Drive,* Dropbox,’ and OneDrive.’

Storing metadata and provenance data is also an issue in reproducibility.
Provenance data is commonly stored in a structured way. For example, provenance
data can be stored in a relational database, in a graph database, using JSON files,
etc. The database as a service cloud paradigm delivers databases similar to what is
found in relational database management systems (RDBMSs) and NoSQL DBMS.
Provenance and metadata can be managed in this type of service since it offers
flexibility in the data model, scalability, security, and reliability.

Another requirement is how to manage application’s source codes that have to be
recompiled to reproduce an experiment. Version control services such as GitHub’
and BitBucket® already provide this service in the cloud. In addition, providers such
as Amazon AWS already have services such as Amazon AWS CodeCommit,” which
is a version control service that is associated with Amazon S3 to store versions of
documents, source code, and binary files. The advantage of using version control
services in comparison with storage services (such as Amazon S3) is that version
control services are designed for team software development, i.e., it to merge source
code from two or more users.

All these features make clouds a suitable environment to foster reproducibility
in scientific experiments. However, just having the technology infrastructure is not
enough, there are issues on how to pack the experiments, what to register, how to
help on reproducing with different parameters, etc. This way, approaches for repro-
ducibility have to be developed on top of clouds to benefit from these characteristics.
The following section presents a reference architecture for reproducibility. The goal
of this architecture is to help in comparing current solutions on reproducibility as
well as to highlight open issues and directions that can be followed when developing
a new approach.

3https://aws.amazon.com/s3

“https://apps.google.com/products/drive/

Shttps://www.dropbox.com/

Shttps://onedrive.live.com/

https://github.com/

8https://bitbucket.org/
“http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

https://aws.amazon.com/s3
https://apps.google.com/products/drive/
https://www.dropbox.com/
https://onedrive.live.com/
https://github.com/
https://bitbucket.org/
http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

136 A.H.M. de Oliveira et al.
5.4 Reproducible Research Architecture

In the previous sections, we discussed several features, factors, and requirements of
a reproducible science. In this section we present our design of an architecture to
represent a generic reproducible science support solution. Different authors point
out important reproducible features, while others discuss new insights, identifying
new opportunities and challenges. Each paper presents its own solution, making it
difficult to have a generic view of a reproducible experiment and compare solutions
to analyze open issues. Our proposed reference architecture aims to fill this gap. It
shows how these several features have been combined into a reference architecture
for the reproducibility of experiments. Figure 5.2 presents the architecture with its
components and how they can benefit from clouds.

The architecture is divided into four main tiers: (1) interface, which performs
the interaction of the service internal elements with external entities; (2) controller,
which controls the elements provided by the interface; (3) research object manager,
which manages all research objects involved in the experiment; and (4) storage
engine, which manages devices and storage mechanisms for files and data search.
Following we describe each module of each tier in the architecture.

Reproducible Experiment Content Viewer (Interface Tier). It is a commu-
nication interface with external entities. It provides the mechanism for visually
presenting elements and allows for external infrastructure, such as conference

I Reproducible Research Services Package

B Research Object
e E Reference Builder
'G -
; =
g g 3
= H Research Object
;3 = p- Retrieval Engine Research Object Manager
S E = I' L :
£ s =
T [2 >
o [e
= = = Research Object
': = E Identifier Engine
= Z
S E s 2
é‘ - & 5 Version Controller
=l - B
§ had gH =
= E Reproducibility

£ Validator and

o Verifier e

— — DatiLiai Metadata and
Interface Controller R Provenance
Storage Engine

Reproducible Research Infrastructure Hosting

Fig. 5.2 Reference architecture for reproducible science

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 137

management systems to create links with the objects and the experiment. By using
this interface, components are accessible for interaction with users, platforms, and
external infrastructures. This interface can be implemented by a cloud app. A cloud
app is an evolution of a web app. Similarly to web apps, they are used to access
online services over the Internet, but they are not dependent on web browsers to
work.

Access and Security Manager (Interface Tier). It controls user access and
external entities to research objects. This control considers the types of actors that
interact with the experiment, which by default are composed of authors, reviewers,
journals, and readers. It interacts with the reproducible experiment content viewer
module to register stakeholders in accessing research objects. It communicates with
the research object retrieval engine module to identify and filter which research
objects must be presented. The filter uses the guidelines established in the licenses
and copyrights manager to select the research objects that can be displayed.

Executable Paper Editor (Interface Tier). It allows for including references to
research objects in the manuscript, creating a link to an object in a paper. Many
of the existing approaches are based on libraries and mechanisms for annotation
in HTML documents and in the text body in LaTeX to reference research objects.
These references can be included in a paper in the traditional way, i.e., using links to
static content, or an executable paper, thus creating elements that allow for inclusion,
execution, and updates dynamically.

Experiment Reproduction Engine (Interface Tier). It provides a means for
the re-execution and reproduction of an experiment by executing code fragments
inserted in the manuscripts in digital format The experiment reproduction engine
makes reproducible science more dynamic, since users can monitor the use and
execution of each research object embedded in the experiment. It interacts with the
reproducibility verifier and the validator modules. This engine allows for users to
access experiment validation and verification forms using search parameters and
input data already reported by the experiment author. The engine also allows for
testing of new values to evaluate the experiment robustness.

Reproducibility Validator and Verifier (Controller Tier). This module con-
templates the verification and validation activities to evaluate the experiment
reproduction. Verification evaluates whether the produced results are correct,
checking if they are equivalent or whether the differences between the produced
data are values within an acceptable statistical margin. The validation mechanism
evaluates if the methodology for obtaining the results was reproduced.

Research Object Reference Builder (Controller Tier). It links the textual ele-
ments of a scientific paper to research objects stored in files or databases. It receives
a link request to an object through the executable paper editor and then requests the
registration of this link to the experiment data manager. This association produces
records that are stored in the provenance database. Some studies link the manuscript
to research objects through annotation mechanisms in LaTeX documents to do the

138 A.H.M. de Oliveira et al.

element association at runtime. Other studies present dynamic mechanisms for the
re-execution of codes within the executable papers.

Research Objects Retrieval Engine (Controller Tier). It retrieves the elements
that have to be exhibited by the reproducible experiment content viewer, based on
the actors’ requests and the selection rules. To display contents it is necessary to
identify the license type related to each research object, as well as restrictions and
rules associated with them. This engine aims at checking what distribution type
of the research object is permitted (visualization, distribution, use, etc.) and also
identifies what license type applies to each type of actor.

Licenses and Copyrights Manager (Controller Tier). This module identifies the
license restrictions and copyrights related to the research objects. It can be invoked
by the research object retrieval engine or the research object reference builder
to present, respectively, a research object according to the license guidelines and
copyright. It also records the correct authorship and license to an object when it is
added to a reproducible experiment.

Software and Library Manager (Research Object Manager Tier). There are
six software groups: basic, application, libraries, source code, script, and workflow.
Each class has characteristics that are different from the others, and some are
dependent on other software classes. All these classes need information about the
hardware environment in which they were deployed, that is, which operational base
was used to host it. Therefore, the first feature to be controlled by the software
and library manager is the infrastructure information of the software deployment.
In addition, it must identify the software and library dependencies, environment
variables, and configuration parameters required for the software to run properly.

Hardware Environment Monitor (Research Object Manager Tier). This mon-
itor identifies the architecture behind a reproducible experiment. Such information
is generally related to the computer system and the storage infrastructure. E-
Science experiments perform analyses on platforms that range from workstations
to specialized high-performance computing infrastructures, such as clusters, grids,
and clouds. Some experiments are based on physical computer system architectures,
while other approaches use hardware virtualization, where the resource usage
is managed by a hypervisor. The hardware environment monitor must collect
information regarding processing (CPU), memory, hardware architecture (32, 64
bits), as well as data about network and connectivity. Furthermore, it should monitor
issues related to data storage such as storage capacity, since scientific experiments
can produce large amounts of data.

Notes and Documentation Manager (Research Object Manager Tier). It allows
for the insertion of notes in research objects, thus allowing the scientist to associate
reasoning and an interpretation regarding the use or production of a research
object. In addition, it also allows for the inclusion of documents describing each
infrastructure element and how they should be deployed and used. The notes and

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 139

documents can be stored in files through the file system, and the links with research
objects are registered in the database component.

Research Data Manager (Storage Tier). Stores the data used and produced dur-
ing the experiment execution. There are four data types in the scientific environment,
and each of these data should be stored at the most appropriate form based on its
data structure requirements. As defined in the taxonomy, reproducible experiment
data may be classified as primary, intermediate, final results, metadata, and data
provenance. Research data is stored in databases or file systems, as well as in
the provenance and metadata databases. The choice of the storage mechanism is
oriented by the data characteristics to be stored, considering factors such as data
size and the purpose of its use. It receives data of all the elements of the research
object: manager, builder, retrieval engine, and identifier engine. The research data
manager can be deployed in the cloud and benefit from cloud storage and DbaaS
solutions.

Reference Builder (Storage Tier). For each research object type, there should
be an association of a unique identification through interaction with the module
research object identifier engine and should also be associated to a use license and
authorship information, using the support of licenses and copyrights manager mod-
ule. Identification can be based on established standards such as the digital object
identifier (DOI) system [46]. The DOI represents the digital content identification
on the network identifying abstract and digital and physical entities, managed by
the federation of register agencies under policies and infrastructure provided by the
DOI International Foundation [46]. This control helps in the correct identification
of materials used to produce a result.

Reproducible Experiment Hosting Infrastructure (Storage Tier). The repro-
ducible experiment with its research objects should be shared to the public
through an accessible repository on the Internet, allowing for authors to centralize
information about their research, interacting more efficiently with users interested
in the published contents.

5.5 Survey on Approaches for Reproducible Science

There are several approaches to support experiment reproducibility. Depending
on the level of reproducibility support, they may benefit from scientific work-
flows, provenance data gathering, and executable scientific papers. Many of these
approaches are designed to use virtual machines, thus being suitable for their
deployment in cloud computing environments, which is the focus of this chapter.
Simmhan, Antoniu, and Goble [51] mention that clouds can play an important role
in data-driven science and in special for reproducibility. In a talk on reproducibility
of experiments in life sciences, Goble [25] explores issues involved in the devel-

140 A.H.M. de Oliveira et al.

opment of technical and social infrastructures for reproducibility. In this talk, she
also mentions that developing approaches for reproducibility is hard, high cost, and
unrewarded blue-collared labor, and not every experiment is reproducible in the
long term. Many experiments become less reproducible over time, even if using
cloud environments.

In this section we survey some existing approaches to help in making an
experiment reproducible. We group these approaches based on their reproducibility
support level. The first group encompasses executable papers, which are mostly
focused on reviewable experiments that might be also replicable, confirmed, and
audited, but not necessarily fully reproducible. Executable papers are defined as a
single published digital object that has both manuscript and all the code required to
reproduce the results [32]. The main objective of an executable paper is to increase
understanding and reproduction of electronic publications, allowing for readers and
reviewers to interact, explore, and validate the experiments. The main approach
examples are collage [44], SHARE [48], and paper-mache [6]. These last two are
detailed in the following subsections.

The second group focuses on supporting reproducing the results in an opera-
tional environment different from the one it was originally obtained. They obtain
environment information at a low level of execution, collecting data at the operating
system level, e.g., the file system and program calls from the operating system. They
provide for information and resources to enable the reproduction of experiments.
CDE (code, data, and environment) [27], ReproZip [8], SciCumulus [45], and PASS
(provenance aware storage systems) [39] are examples that gather data at the OS
level.

The third group, similar to the second, also aims at reproducing experiments,
but go one step further and use virtualization concepts to deploy an environment in
the cloud that is equivalent to the environment where the experiment was originally
executed. Systems from these three groups are detailed as following.

5.5.1 SHARE: Sharing Hosted Autonomous Research
Environments

SHARE is a web application that enables the creation and sharing of executable
scientific papers. The main motivations for developing SHARE were:

* Reduce installation or configuration difficulty to perform the computations on
the input data;

* Minimize problems in obtaining software versions for implementation of all
functions;

* Optimize process of downloading, installation, and configuration of each soft-
ware used in scientific research, and

* Register and control properly the software license distribution adopted in the
research.

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 141

SHARE claims that it is important that readers access the environment used
to develop a research and all research objects (software, data, infrastructure, and
operating environment) properly installed and configured. The approach proposes
to link a digital product with a VM that is created, configured, and stored within
the infrastructure where SHARE was deployed. SHARE supports three types of
users [48]: authors, publishers, and readers. The authors create SHARE VMs with
all elements used in the experiment within. Then, it associates the VM elements
to a paper. A scientific paper is submitted to publishers and readers through a web
browser. Each reproducible element is associated with a link that grants access to a
VM.

SHARE gives the user the ability to interactively explore the equations, tables,
and graphs of a paper. The VM is executed as the paper information is requested
by the user. The SHARE VM infrastructure enables the experiments design that
use high-performance computing strategies. In addition, SHARE stores incoming
sessions of VMs through the log files.

5.5.2 Paper Maché

Paper maché is a management system that allows for exploring scientific papers in
an interactive way, reproducing, and validating the results to test hypotheses [6]. It
allows for creating a paper and submitting it to the reviewers, so they can explore
and assess the content of experiments before publication. Once published, it allows
for exploring, discussing, and commenting the authors’ paper. Paper Maché has
three main elements in its architecture:

* Executable paper with textual content, images, audio, and movies;

e Comments containing the review and discussion on material published and
shared; and

e The VM with the source code, executables, data, libraries, and encapsulated
dependencies.

Using paper maché, the paper content is created in traditional text editors, in
formats *.doc or *.tex. The VM associated with the scientific paper is created
according to hypervisor adopted by paper maché. Therefore, the author must create
a script to link the paper content published with the encapsulated components in the
VM. This association allows for recovering and reproducing executable elements.

In paper maché, the environment is encapsulated within the VM. The hypervisor
used by the approach should ensure the VM retrieve, redeploy, and reproduce. This
allows for reproducing and testing new values in the paper executable components
and verifying that the expected results were produced. Paper maché also allows for
deploying experiments on VMs in cloud providers. Paper maché authors’ emphasize
that cloud computing can provide the ability to test and interact with a range of
supercomputer experiments, which is not possible with the current version.

142 A.H.M. de Oliveira et al.
5.5.3 CDE: Code, Data, and Environment

The CDE development (code, data, and environment) was motivated by scientific
code distribution technical barriers that hindered scientific applications sharing.
The CDE is an automatic deployment mechanism of source code, data, and
computational environments used for execution of a program on x86-Linux in other
machines x86-Linux. The CDE eliminates the need to install software from a source
environment to a destination [28]. The CDE monitor system calls on files, code,
data, and environment variables while running a program using the debugging tool
called ptrace.'":"!

The ptrace is a monitoring mechanism that creates a process called tracer.
The tracer process monitors and controls the execution of another process called
tracee. The tracer process monitors and analyzes the system call trail in the tracee
execution capturing information about the process, registers, and memory uses of
the tracee process. Monitoring is based on the PID number (OS process identifier)
of tracee through the ptrace command. Hence, CDE encapsulates the ptrace tool in
its implementation to allow the package creation with all elements raised during the
execution of an application or command on a Linux operating system.

Figure 5.3 shows CDE architecture. In this context, a call is made to execute an
application in Python'? called analise.py. It is passed seql.fasta as a parameter. The
application call must be made through the command cde preceding the execution
command. In this step, CDE is invoked to capture and encapsulate the elements
used in the execution. It store the elements and dependencies identified by ptrace in
a directory. Each element is copied to the CDE package directory (CDE package)
like a unit to be shared.

To reproduce a research, users just need to acquire the CDE package of the
experiment and run command cde — exec to unpack the experiment directory with

Command: Command:
cde python analysis.py seql.fasta | cde-exec python analysis.py seqgl.fasta
r | r s U -
\ ‘ ‘—il = - =
Source Data Environment Source Data Environment
code code
ecde-package/ \ﬁ’—)
ede-root/ _‘
uszx/ .
1ib/ . J
| analysis.so CDE Package
CDE Package Directory s’ |
CDE Package ’ CDE P.a.ékige
Source Experimental Environment | | Target Experimental Environment

F N,

Fig. 5.3 Operation scheme CDE approach [28]

Ohttp://linux.die.net/man/2/ptrace
Mhttp://www.linuxjournal.com/article/6100
2https://www.python.org/

http://linux.die.net/man/2/ptrace
http://www.linuxjournal.com/article/6100
https://www.python.org/

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 143

all elements used in original execution. The scientist can browse the experiment
and reproduce it according to the original script [27]. The CDE is a good solution
for experiment encapsulation allowing computer environment’s portability and thus
enabling scientific applications reproduction.

5.5.4 Reprozip

The Reprozip is a tool that packages necessary elements to reproduce the scientific
research results oriented by provenance data [8]. The main objective is to share the
experiment with reviewers and readers so that they can unpack it and reproduce
it without the need to install additional software. The Reprozip combines CDE
approach and virtual machines to generate computer system snapshots. It encap-
sulates only the elements used in the experiment execution. ReproZip is built on top
of the VisTrails workflow system [37] to make workflows portable and reproducible
in third-party infrastructure.

The Reprozip performs two main stages, the packaging of the computing
environment and the subsequent unpack on a target computer. The packaging
consisting of three steps: (1) capturing provenance data, (2) provenance analysis,
and (3) packages generation. In the first step, the Reprozip uses system trap to
get provenance. It orchestrates and captures the system call track execution of the
execution process. The provenance is stored in a database managed by MongoDB. "
In the analysis step, the Reprozip creates an experiment provenance tree. Each node
of the tree represents an operating system process, and the edges between nodes
represent the link of the parent process with child processes. This link allows to
identify the resource dependencies with executable programs, input and output files.
Finally, it creates a package with workflow, software, and input and output files used
in the result derivation.

The Reprozip’s deployment for reproduction consists of unpacking process that
extracts the experiment package in a given directory and makes the configuration of
programs, datasets, configuration parameters, and environment variable workflow
[8]. The result of this process is the original environment recovery ready for
experiment reproduction.

5.5.5 PASS: Provenance Aware Storage Systems

PASS [39] provenance aware storage systems is an approach for provenance
processing and gathering in a VM with the Xen hypervisor. A PASS experiment
is deployed and run on a set of guest virtual machines running under an operating
system host. The PASS provenance mechanism is implemented on host system. It

Bhttp://www.mongodb.org/

http://www.mongodb.org/

144 A.H.M. de Oliveira et al.

intercepts system calls made by guest virtual machines to the host [39], monitoring
changes in the virtual machine file systems and storing this information in a
provenance database.

The PASS environment consists of multiple virtual machines called domain
(Dom). One of the virtual machines, called Dom0, has the controller function. It is
responsible for virtual machine reporting and booting. The other virtual machines,
called visitors, are named like DomU. Applications that make up the experiment are
deployed on guest systems called DomU.

The system calls made from the guest virtual machine are intercepted by
the interceptor module. It extracts information from the kernel data structures
and moves on to the observer module. The observer module translates calls to
provenance records, creating dependency relationships between files and processes.
Then, the analyzer module eliminates duplicate records. The distributor module
stores the object provenance in a log file within the file system, called Lasagna. The
last component, called Waldo, gets the provenance records and stores in provenance
base for future reference and information retrieval.

PASS is used for provenance query on low-level details and execution trails
obtained during the execution. It is a good solution for applications requiring low-
level details for validation and reproduction.

5.5.6 SciCumulus Workflow System

Workflow systems assist scientists to orchestrate a set of activities in a coherent
flow. Most of the workflow system capture provenance data (metadata), but fail to
store all produced data and programs used in the experiment. Provenance data alone
is insufficient to allow for experiment reproduction. One advantage of SciCumulus
(or simply SCC) [14] is that it is designed to execute in the cloud, i.e., all programs
and data are deployed in the cloud to run the workflow. SCC orchestrates scientific
workflow activity execution in a distributed set of virtual machines. Each virtual
machine is associated with an image that contains all programs and data and can be
deployed for reproduction in the future. The SCC offers a computing infrastructure
to support parallel workflows with provenance capture in the cloud environment.
Although SCC is not designed to be a scientific reproduction approach, it allows
for encapsulating the computing infrastructure storage in a virtual machine in the
cloud. This allows the computing environment sharing for other scientists interested
in experiment results.

5.5.7 Reproducible Research in the Cloud

Several authors [1, 13, 33, 36] discuss the benefits of migrating experiments from
workstations, clusters, and computational grid to the cloud. Cloud-computing
features and resources may allow for fostering reproduction and motivating the

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 145

approach development based on this paradigm. WSSE [17], Chef [36], and AMOS
[54] are the most representative proposed approaches.

5.5.7.1 WSSE: Whole System Snapshot Exchange

The whole system snapshot exchange (WSSE) approach is a concept designed
to treat reproductive problems related to computing infrastructure and storage
of research objects. The WSSE proposes to generate digital data and source
code snapshots to be produced and distributed within a cloud-computing provider
[17]. The WSSE proposal is to use the cloud-based implementation of scientific
experiment advantages with reproduction support through the definition of three
layers: data, systems, and services.

In the data layer, the cloud can store and share large datasets with resources
needed to process computations on this data. Generally, the size of datasets of
scientific data may vary from gigabytes to several terabytes or more. In many cases
it is not possible to copy these large file data from one computer to another easily
and efficiently [17]. To avoid this problem, it is proposed to exchange data only
within the cloud-computing environment.

In system layer, the computers used in the result production are copied in their
entirety, including the operating system, software, and database, for VM to be
exchanged with other researchers [17]. This process allows the researchers to get
exact replicas of the computer used for the result production. The service layer
allows computations deployed in the cloud that can be accessed by external appli-
cations generating reproduction solution-oriented services. The data and systems
associated with scientific experiments can be stored in the cloud VM preserving the
environment used in the original experiment execution.

5.5.7.2 Chef

Klinginsmith et al. [36] propose an approach called Chef to deploy virtual clusters
for reproducibility in clouds. In the approach, the computational resources are
divided into two layers: (1) infrastructure and (2) software. The first layer manages
the IaaS (Infrastructure as a Service), communicating with the cloud provider’s
API to instantiate VMs, configure the network, and allocate storage space. The
second layer manages the software on the VM. Both layers are managed by
Chef configuration management tool. Chef is used to automate the virtual cluster
configuration and the necessary software installation to experiment reproduction in
the similar environment.

Chef was implemented in AMIs (Amazon machine image) on Amazon EC2
(elastic cloud compute) and EMIs (eucalyptus machine image) on FutureGrid
Eucalyptus Clouds.'* It is necessary to instantiate, configure, and register the VM

Yhttps://www.eucalyptus.com/eucalyptus-cloud/iaas

https://www.eucalyptus.com/eucalyptus-cloud/iaas

146 A.H.M. de Oliveira et al.

manually and also install a Chef client to assist VM setup process. The result is the
possibility of virtual cluster replication on different cloud providers using a software
layer in common [36].

According to Chef designers, cloud computing can be used to reproduce
experiments and applications of e-Science researchers in a simple way. This is
due to the cloud providing the necessary infrastructure for the data storage and
management, as well as computing power to transform data in scientific knowledge.

5.5.7.3 Reproducibility with AMOS

Strijkers et al. [54] presents an e-Science tool that can be used to pack codes,
software, and scientific experiment parameters to design electronic papers. The
authors proposed to preserve the dependencies in an executable paper to enable
the experiment reproduction. The AMOS use scientific workflow as a way to define
the experiment execution and cloud-computing IaaS as a platform to encapsulate
the code dependencies and software in VMs.

The AMOS system proposed by Strijkers et al. uses a VM containing a set
of tools previously installed to implement a mechanism which initializes and
configures VMs on demand [54]. The goal is that VMs templates can be recreated or
cloned for experiment reproduction. Thus researchers can create various templates
and store them in an executable paper database. Data and application execution
management process VMs are instrumented by a workflow agent (WFA) or a
workflow system.

AMOS’ developers argue that code and data encapsulation in VMs preserves the
experimental environment, however, emphasize that this compatibility is dependent
on the virtualization software. They highlighted that still there is no effective
solution based on metadata and source data to increase the executable papers
capacity; therefore, the key would be the infrastructure virtualization.

5.5.7.4 PDIFF: Using Provenance and Data Differencing for Workflow
Reproducibility

Missier et al. [42] propose PDIFF, an algorithm that uses a comparison of workflow
provenance traces collected from workflows executed in virtual machines to check
if an experiment has been reproduced. PDIFF runs on top of e-Science Central [31]
that is a workflow system that can be deployed on clouds. e-Science central stores all
provenance data in a VM with a non-relational graph database, called Neo4j (www.
neo4j.org). The provenance database used by e-Science Central contains both traces
and the provenance for other items of e-Science Central. PDIFF then transverses
the graph in Neo4] and checks if there is a divergence between two workflow
executions by comparing their associated provenance traces. By using PDIFF along
with e-Science Central, scientists may have the perception that the challenges in
reproducibility of results can be easily overcome.

www.neo4j.org
www.neo4j.org

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 147

5.5.8 Final Considerations

The taxonomy presented in Sect. 5.2 provides several important classes to describe
the terms involved with reproducible science. In this subsection, we classify each
of the surveyed approaches following the proposed taxonomy classes. Table 5.1
presents the main characteristics of each approach. In general, the surveyed
approaches focus on a reduced set of features from each group of reproducibility
levels to address a specific aspect. For example, some approaches focus on
validation and verification methods for the evaluation; agent support, reproduction
methodology, etc. It is worth noticing that all approaches surveyed in this section
support the computing and storage infrastructure architectural features. All of them
provide some support for the hardware infrastructure aspects as computing and
storage.

5.6 Conclusions

As discussed in this chapter, computing has become fundamental for science
development in various scientific application domains. It helps science to become
reproducible accelerating the productivity of scientists and new discoveries. How-
ever, reproducible science is an important, yet open, problem, despite current efforts
found in the literature.

Clouds can play an important role to achieve reproducibility in science. However,
just having the technology infrastructure is not enough, there are issues on how to
pack the experiments, what to register, how to help on reproducing with different
parameters, etc.

Therefore, an important step toward reproducible science is to define terminology
standards and a framework to guide the construction of new solutions. Taxonomies
are already used in several domains to classify information considering some
preestablished aspects. This can be applied in several knowledge areas to assist
in the classification of concepts in a domain. This chapter presents a compilation
of concepts related to reproducibility in e-Science, which were used to guide
the comparison of existing systems for reproducible research using clouds. This
compilation evolved into designing a taxonomy, proposed in Sect. 5.2, which drove
the design of a reference architecture that was used to evaluate the state-of-the-art
approaches in supporting reproducible science.

The reference architecture, proposed in this chapter, represents a generic rep-
resentation that can be adopted to guide the construction of new reproducibility
approaches benefiting from clouds. The architecture is divided into tiers that can be
deployed in the cloud. The architecture reflects functions of particular classes from
the taxonomy. Therefore, the architecture helps in identifying a list of functions and
points out possible interactions and interfaces between modules.

148

Table 5.1 Comparison of surveyed approaches

Approach
SHARE

Paper

Mache

CDE

ReproZip

PASS

SciCumulus

WSSE

Chef

AMOS

PDIFF

Agent

Author,
reader,
reviewer

Author,
reader,
reviewer

Author,
reader
Author,
pub-
lisher,
reader,
reviewer

Author,
reader

Author,
reader

Author,
reader

Author,
reader

Author,
reader

Author,
reader

Data

Primary, final,
intermediary,
metadata

Primary, final,
intermediary

Primary, final,
intermediary
Primary, final,
intermediary,
metadata,
provenance

Primary, final,
intermediary,
metadata
Primary, final,
intermediary,
metadata,
provenance

Primary, final,
intermediary

Primary, final,
intermediary

Primary, final,
intermediary,
metadata,
provenance

Primary, final,
intermediary,
metadata,
provenance

Evaluation

Verification,
validation

Verification

Verification

Verification,
validation

Verification,
validation

Verification,
validation

Verification

Verification

Verification,
validation

Verification,
validation

Methodology
Repeatability

Reproducibility

Reproducibility

Reproducibility

Reproducibility

Reproducibility

Reproducibility

Reproducibility

Reproducibility

Reproducibility

A.H.M. de Oliveira et al.

Setting

Environment,
variable

Environment,
variable

Environment,
variable
Environment,
variable,
parameter

Environment,
variable

Environment,
variable,
parameter

Environment,
variable

Environment,
variable

Environment,
variable,
parameter

Environment,
variable,
parameter

Software

Application,
basic,
library,
script,
source code
Application,
basic,
library,
script,
source code
Application,
basic, library
Application,
basic,
library,
script,
source code,
workflow
Application,
basic, library

Application,
basic,
library,
script,
source code,
workflow
Application,
basic,
library,
script,
source code
Application,
basic,
library,
script,
source code
Application,
basic,
library,
script,
source code,
workflow
Application,
basic,
library,
script,
source code,
workflow

5 Clouds and Reproducibility: A Way to Go to Scientific Experiments? 149

Despite the current solutions that address making an experiment reproducible in
clouds, there are still several open problems. It is necessary to consider issues of
presentation and hosting of executable papers, references, edition and construction
of research objects, authorship management, licensing, rights of copying and dis-
tribution of research objects, version control, unique identification, documentation
and annotation management, as well as obtaining the necessary infrastructure for
the reproduction.

Therefore, this chapter is an important step to organize the involved concepts
in a taxonomy and discuss how clouds can foster reproducibility based on an
architectural framework to guide the construction of new cloud-based solutions.

Acknowledgements This work was partially funded by Brazilian agencies CAPES, FAPERJ, and
CNPq.

References

—

. Armbrust M, Armando F, Rean G et al (2010) A view of cloud computing. Commun ACM
53(4):50-58
2. Baggerly KA, Berry DA (2012) Reproducible research, Amstatnews: The Membership
Magazine of the American Statistical Association
3. Barga R, Gannon D (2006) Scientific versus business workflows. In: Workflows for e-Science:
scientific workflows for grids. Springer, pp 09-16
4. Belhajjame K, Roure DD (2012) Goble CA research object management: opportunities and
challenges. In: Proceedings of the 2012 ACM conference on computer supported cooperative
work — CSCW’2012. ACM, New York
5. Berriman GB, Groom SL (2013) (2011) How will astronomy archieves survive the data
tsunami? ACM Queue 9:1-8
6. Brammer GR, Crosby RW, Matthews SJ et al (2011) Paper Maché: creating dynamic
reproducible science. Proc Comput Sci 4:658-667
7. Cao B, Plale B, Subramanian G, Robertson Ed, Simmhan YL (2009) Provenance information
model of Karma version 3. SERVICES I 2009:348-351
8. Chirigati F, Shasha D, Freire J (2013) Packing experiments for sharing and publication. In:
Proceedings of the 2013 ACM SIGMOD international conference on management of data —
SIGMOD 13, pp 977-980
9. Cooper MH (2010) Charting a course for software licensing and distribution. SIGUCCS
2010:153-156
10. da Cruz SMS, Barros PM, Bisch PM, Machado Campos ML, Mattoso M (2008) Provenance
services for distributed workflows. CCGRID 2008:526-533
11. Davidson SB, Freire J (2008) Provenance and scientific workfows: challenges and opportuni-
ties. In: Proceedings of the 2008 ACM SIGMOD international conference on management of
data — SIGMOD ’08. pp 1345-1350
12. Deelman E, Berriman B, Chervenak A et al (2010) Metadata and provenance management.
In: Shoshani A, Rotem D (eds) Scientific data management: challenges, technology and
deployment. Chapman & Hall/CRC, BocaRaton
13. Deelman E, Singh G, Livny M, et al (2008) The cost of doing science on the cloud: the montage
example. In: Proceedings of the 2008 ACM/IEEE conference on supercomputing, SC 08,
pp 1-12

150

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

A.H.M. de Oliveira et al.

de Oliveira D, Ocafia KACS, Baido FA, Mattoso M (2012) A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds. J Grid Comput 10(3):
521-552

Donoho DL (2010) An invitation to reproducible computational research. Biostatistics 3:376—
388

Donoho D, Maleki A, Rahman NI et al (2009) Reproducible research in computational
harmonic analysis. Comput Sci Eng 11:8-18

Dudley JT, Butte AJ (2010) In silico research in the era of cloud computing. Nat Biotechnol
28:1181-185

Firtina C, Alkan C (2016) On genomic repeats and reproducibility. Bioinformatics
32(15):2243-2247

Freire J, Bonnet P, Shasha D (2012) Computational reproducibility: state-of-the-art, challenges,
and database research opportunities. In: Proceedings of the 2012 ACM SIGMOD international
conference on management of data — SIGMOD’12. ACM, New York, pp 593-596

Freire J, Fuhr N, Rauber A (2016) Reproducibility of data-oriented experiments in e-Science
(Dagstuhl Seminar 16041). Dagstuhl Rep 6(1):108-159

Gavish M, Donoho D (2011) A universal identifier for computational results. In: International
conference on computational science, vol 4, pp 637-647

Gillam L, Antonopoulos N (2010) Cloud computing: principles, systems and applications.
Springer, London

Goble C (2012) The reality of reproducibility in computational science: reproduce? repeat?
rerun? and does it matter. Keynotes and panels. In: 8th IEEE international conference on e-
Science, vol 327, pp 415-416

Gray J (2009) Jim Gray on eScience: a transformed scientific method. In: Hey T, Tansley
S, Tolle K (ed) The fourth paradigm data-intensive scientific discovery. Microsoft Research,
Redmond

Goble CA (2013) Results may vary: reproducibility, open science and all that Jazz.
LISC@ISWC 2013:1

Greenberg J (2002) Metadata and the world wide web. Encycl Libr Inf Sci 72:244-261

Guo P (2012) CDE: a tool for creating portable experimental software packages. Comput Sci
Eng 14:32-35

Guo PJ, Engler D (2011) CDE: using system call interposition to automatically create portable
software packages. In: Proceedings of the 2011 USENIX conference on USENIX annual
technical conference, USENIXATC’11, pp 21-21

Guo PJ, Seltzer M (2012) BURRITO: wrapping your lab notebook in computational infras-
tructure. In: Proceedings of 4th USENIX workshop on the theory and practice of provenance
(TaPP’12)

Hanson B, Sugden A, Alberts B (2011) Making data maximally available. Science 331:649

. Hiden H, Woodman S, Watson P, Cala J (2013) Developing cloud applications using the e-

science central platform. R Soc Lond Philos Trans A Math Phys Eng Sci

Hinsen K (2011) A data and code model for reproducible research and executable. Proc
Comput Sci 4:579-588

Howe B (2012) Virtual appliances, cloud computing, and reproducible research. Comput Sci
Eng 14:36-41

Juve G et al (2013) Comparing futuregrid, Amazon EC2, and open science grid for scientific
workflows. Comput Sci Eng 15:20-29

Karpathiotakis M, Branco M, Alagiannis I, Ailamaki (2014) A adaptive query processing on
RAW data. Proc VLDB Endow 7:1119-1130

Klinginsmith J, Mahoui M, Wu YM (2011) Towards reproducible escience in the cloud. In:
IEEE third international conference on cloud computing technology and science (CloudCom).
pp 582-586

Koop D, Santos E, Mates P et al. (2011) Provenance-based infrastructure to support the life
cycle of executable papers. Procedia Computer Science 4:648—-657

38.

39.

40.

41

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.
58.

Clouds and Reproducibility: A Way to Go to Scientific Experiments? 151

Krishnamurthi S, Vitek J (2015) The real software crisis: repeatability as a core value.
Communications da ACM 58:34-36

Macko P, Chiarini M, Seltzer M (2011) Collecting provenance via the Xen hypervisor. In:
Proceedings of 3rd USENIX workshop on the theory and practice of provenance (TaPP *11),
pp 1-15

Marinho A, Murta L, Werner C, Braganholo V, da Cruz SMS, Ogasawara ES, Mattoso M
(2012) ProvManager: a provenance management system for scientific workflows. Concurr
Comput Pract Exp 24(13):1513-1530

. Mcnutt M (2014) Journals unite for reproducibility. Science 346:679
42.

Missier P, Woodman S et al (2013) Provenance and data differencing for workflow repro-
ducibility analysis. Concurr Comput Pract Exp 28:995-1015

Moreau L, Groth P (2013) Provenance: an introduction to PROV. Synthesis lectures on the
semantic web: theory and technology. Morgan & Claypool, San Rafael

Nowakowski P, Ciepiela E, Harezlak D et al (2011) The collage authoring environment. In:
Executable paper grand challenge international conference on computational science, ICCS
2011, vol 4, pp 608-617

Oliveira D, Ogasawara E, Baido F, Mattoso M (2010) SciCumulus: a lightweigh cloud
middleware to explore many task computing paradigm in scientific workflows. In: IEEE 3rd
international conference on cloud computing

Paskin N (2010) Digital Object Identifier (DOI) system. In: Bates MJ, Maack MN (eds)
Encyclopedia of library and information sciences, 3rd edn, chap. 157. Taylor & Francis,
pp 1586-1592

Peng R (2009) Reproducible research and biostatistic. Biostatistics 3:405-408

Pieter Van Gorp SM (2011) SHARE: a web portal for creating and sharing executable research
papers. Int Conf Comput Sci 4:1-9

Schwab M, Karrenbach M, Claerbout J (2000) Making scientific computations reproducible.
Comput Sci Eng 2:61-67

Simmhan YL, Plale B, Gannon D (2005) A survey of data provenance in e-Science. SIGMOD
Rec 34:31-36

Simmbhan Y, Ramakrishnan L, Antoniu G, Goble CA (2016) Cloud computing for data-driven
science and engineering. Concur Comput Pract Exp 28(4):947-949

Stodden V (2009) The legal framework for reproducible scientific research: licensing and
copyright. Comput Sci Eng 11:35-40

Stodden V, Bailey DH, Borwein J et al (2013) Setting the default to reproducible: repro-
ducibility in computational and experimental mathematics. Technical report, ICERM workshop
reproducibility in computational and experimental mathematics

Strijkers R, Cushin R, Vasyunin D (2011) Toward executable scientific publications. Proc
Comput Sci 4:707-715

Szalay AS, Blakeley JA (2009) Gray’s laws: database-centric computing in science. In: Hey T,
Tansley S, Tolle KM (ed) The fourth paradigm. Microsoft research, Redmond, pp 5-11

Taylor I, Deelman E, Gannon DB et al (2006) Workfows for e-Science: scientific workfows for
grids. Springer, New York/Secaucus

Vitek J, Kalibera T (2012) R3: repeatability, reproducibility and rigor. SIGPLAN 47:30-36
Yogesh L. Simmbhan, Beth Plale, Gannon D (2008) Karma2: provenance management for data-
driven workflows. Int J Web Serv Res 5(2):1-22

Chapter 6

Big Data Analytics in Healthcare:

A Cloud-Based Framework for Generating
Insights

Ashiq Anjum, Sanna Aizad, Bilal Arshad, Moeez Subhani,
Dominic Davies-Tagg, Tariq Abdullah, and Nikolaos Antonopoulos

6.1 Introduction

With exabytes of data being generated from genome sequencing, a whole new
science behind genomics big data has emerged. Adding to that, the recent advances
in storage and processing technologies have enabled the generation, storage,
retrieval, and processing of exabytes of genomics and healthcare data in electronic
form. As technology improves, the cost of sequencing a human genome is going
down considerably, and, in turn has increased the number of genomes being
sequenced. Handling huge amounts of genomics data along with a vast variety of
clinical data using existing frameworks and techniques has become a challenge.

There is a wide interest in genomics data because it can allow meaningful insights
to be generated. These insights could range from a variety of things including
genomics research as well as more practical uses such as personalized medicine
for a particular genome. Genomics is producing data sizes of 2-40 EB/year [43]
which is stored in local databases or in cloud storage. Cloud computing is used
for storage, distribution, and processing of this data so that applications can run on
remote machines that already have access to data ([43]).

A data platform that integrates genomics/healthcare data while enabling quick
and efficient analysis would allow extraction of practical insights in a short frame
of time. Developing such a platform poses a number of challenges on its own.

A. Anjum (P<)) » S. Aizad * B. Arshad * M. Subhani ¢ D. Davies-Tagg T. Abdullah

N. Antonopoulos

College of Engineering and Technology, University of Derby, Kedleston Road, DE22 1GB,
Derby, UK

e-mail: A.Anjum@derby.ac.uk; S.Aizad@derby.ac.uk; B.Arshad @derby.ac.uk;
M.Subhani @derby.ac.uk; D.Davies-Tagg @derby.ac.uk; T.Abdullah @derby.ac.uk;
N.Antonopoulos @derby.ac.uk

© Springer International Publishing AG 2017 153
N. Antonopoulos, L. Gillam (eds.), Cloud Computing, Computer Communications
and Networks, DOI 10.1007/978-3-319-54645-2_6

mailto:A.Anjum@derby.ac.uk
mailto:S.Aizad@derby.ac.uk
mailto:B.Arshad@derby.ac.uk
mailto:M.Subhani@derby.ac.uk
mailto:D.Davies-Tagg@derby.ac.uk
mailto:T.Abdullah@derby.ac.uk
mailto:N.Antonopoulos@derby.ac.uk

154 A. Anjum et al.

These challenges relate to integrating genomics and clinical data sources, ensuring
consistency of the integrated data, and developing a big data platform that stores and
manages the integrated data. An overview of these challenges and a brief description
of the proposed framework are provided in the remainder of this section.

With respect to integration of big data, it is imperative to maintain the consistency
of data between the data sources and the data warehouse. Since the data is in the
magnitude of exabytes, the issue converges to big data analytics. Infrastructures such
as that provided over cloud are required to ensure that the consistency is maintained
between the data sources and the warehouse. In a clinical information management
environment, data consists of heterogeneous data sources with multitude of data
types at distributed locations. Clinicians and scientists generate data which is
individually captured at disparate locations and brought together to a warehouse
for reporting, decision support, and data analysis. This data needs to be correctly
integrated in order to ensure the consistency and coherence of the system at
large. Any inconsistency may result in breaking the data warehouse, which in turn
would affect the reports being generated (examples include quarterly comparisons
and trends to daily data analysis) and biostatistical analysis among other things.
Therefore, there is a need for structured migration and integration of data between
the sources and the data warehouse to ensure that the integrity of the warehouse
can be maintained. In such an environment, coherence and consistency of data
is imperative in order to protect the integrity of the warehouse. Since the data
from heterogeneous sources is in exabytes, it is essential to provide a scalable
environment for clinical analytics. A possible solution is the provision of a scalable
environment for clinical data integration and system integrity based on graphs.
The infrastructure provided for such an environment needs to take the frequent
use of data into account. Large-scale graph processing systems such as Giraph [7]
and GraphLab [25] provide support for data consistency by providing configurable
consistency models.

The infrastructure of the system should be such that it should allow frequently
used data to be quickly retrieved when required, whereas the data which is not
in much use should be allowed to reside in the system. Technologies such as
Hadoop make storing a large scale of data trivial, but Hadoop by itself is often
not an ideal platform for working with data and performing the levels of complex
analysis and interactive querying often afforded to data warehouses [10, 42]. Thus,
in order to store huge amounts of data in a cost-effective and time-efficient manner
and deliver a high standard of analytics performance, Hadoop’s scalability may be
used to accommodate storing data. On the other hand, there is a need to maintain
existing scale-up data warehouses and analytics environments to provide the fast
and efficient analysis people expect. But using both technologies can only work if
we move data between environments when required.

Generating insights from the integrated data is only possible after developing
suitable infrastructure for storing and retrieving the data. Analyzing this data is
a user-driven and iterative nontrivial task. In a lot of cases, the data needs to be
revisited several times in order to get the required insights. Different challenges and
their solutions are discussed.

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 155

This chapter proposes a cloud-based framework for integrating genomics/health-
care data in a big data platform which would enable users to generate meaningful
insights in their domain. The platform provides a solution to the challenges
discussed above. The rest of the chapter is organized as follows: Section 6.2
introduces genomics and clinical data sets. Section 6.3 explains the integration
of these data sets. An approach for maintaining data consistency during and after
the integration is explained in Sect. 6.4. The infrastructure for storing the data is
explained in Sect. 6.5, whereas Sect. 6.6 explains the data analytics approaches for
generating insights from the data, and Sect. 6.7 concludes the chapter.

6.2 Genomics and Clinical Data

The cloud-based data analytics platform focuses on integrating the genomics and
clinical data sets and on generating insights from the integrated data. It is important
to understand these data sets before introducing the cloud-based data analytics
platform.

6.2.1 Genomics Data

The genetic makeup of an organism is responsible for coding its different char-
acteristics. A complete set of genetic information is contained in the genome,
which consist of genes. The genes are a sequence of four different molecules
known as nucleotide bases: adenine (A), guanine (G), thymine (T), and cytosine
(C). Different combinations and frequency of these nucleotides generate a huge
variety of genes within a genome. Understanding the constitution of these genes
was a mystery until development of sequencing methods. The 1970s and 1980s
saw manual DNA sequencing methods such as Maxam-Gilbert sequencing [28]
and Sanger sequencing [39]. Automated sequencing methods such as shotgun
sequencing were introduced in the 1990s. Over the next decade, scientists were
able to sequence unicellular and multicellular organisms using these methods. It
wasn’t until 2001 that the human genome was completely sequenced. By 2005,
next-generation sequence (NGS) technologies [30] were introduced.

Before sequencing, other techniques such as genome-wide association studies
between thousands of individuals were used because genome sequencing was an
unthinkable thing to do. However, as technologies advanced, the sequencing market
has become very competitive in recent years. Many platforms, such as Illumina [1],
454 Life Sciences [2], and Complete Genomics [3], to name a few, are available
commercially for research and clinical use.

Sequencing is now the first step for research investigating the genome at the basic
level. Genome sequencing technology takes a sample of the genetic material in a test

156 A. Anjum et al.

Fig. 6.1 Cost per raw megabase of DNA sequence and genome over the years. Published
by National Human Genome Research Institute (NHGRI) (National Human Genome Research
Institute [31])

tube and converts it to a string of As, Gs, Ts, and Cs representing the genome and
stores it as a text file. A human genome consists of three billion bases. The size of a
text file containing these is, on average, 6 x 10° bits.

As the cost of sequencing is decreasing (Fig. 6.1.), more and more genomics data
is becoming readily available sparking several initiatives such as 1000 Genomes
Project (1000 Genomes Project Consortium [4]) and the 100,000 Genome Project
[11]. One of the aims of initiatives like these is to discover medical insights
especially for more serious diseases such as cancer.

6.2.2 Clinical Data

Clinical data sets are generated during the course of ongoing patient care or as part
of a clinical trial program. Major sources include electronic health records, claims
data, disease registries, health surveys, clinical trials data, and administrative data.
These are a vital source for health and medical research.

6.3 Data Integration

Data integration is the first challenge while developing a cloud-based data analytics
platform. The data sources in clinical research domain are diversified, such as health
records, clinical trials, disease records, etc. On the other hand, the genomics data sets
are generally very data intensive such as genome sequences, variants, annotations
and gene expressions data sets, etc. Due to the massive size of genomics data sets,
the problem of integration enters into the domain of big data problems. Integrating

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 157

these data intensive genomics sources with a set of diversified clinical sources is a
considerable challenge that chiefly implies building storage capable of containing
heterogeneous data types.

The clinical data ranges from patients’ health records, diagnostic test results
including laboratory reports and imaging scans, disease history, to hospital adminis-
tration, and finance data. These data sets are captured in different repositories, such
as health records maintained by each hospital or clinical trials conducted by state
or different pharma or nonprofit organizations. The clinical data sets within these
repositories are comprised of a large variety of parameters within a single study, and
then there are further variations among parameters across different studies, as per the
requirement of underlined research. Integrating this large variety of parameters of
various data types across multiple studies is a challenging problem in itself because
the integrated clinical data should have an intuitional output.

The next challenge is to integrate these parameters with genomics data sets.
Traditionally, the information about genomics is not captured in the clinical data
sets. Therefore, the genomics data is only available from separate genomics sources,
mainly the repositories such as NCBI, Ensembl, or 1000 Genomes Project [4].
These data types are, therefore, different from those of clinical data sets. Hence,
in order to integrate them with clinical data sets, the challenge is to make the data
types compatible with each other so that they can be consolidated within a single
warehouse.

Combining data sets from different clinical sources with genomics data can help
understanding a clinical problem at a deeper level by empowering it with genomics
background information. This big data integration may help to delve into genetic
background of clinical problems, which will ultimately aid various users of these
data sets. The major benefit, that can be foreseen from clinical and genomics data
integration, will be to design personalized treatments for patients. Pharmacoge-
nomics industry can also gain the advantage to provide more personalized solutions
to healthcare, such as designing drugs with improved efficacy. Researchers from
both clinical and genomics domains can also use the integrated data to discover
the insights of complicated biological problems, such as finding new biomarkers.
Hence, it can be estimated that data integration could help every academic or
industrial institution related to these dimensions of medical science.

There exist some clinical data integration solutions, such as those provided by
SAS [40], Edifecs [13], Lumeris [26], etc., but they are only focused on data
management and administration purposes and are not targeted for clinical research.
These solutions target combining various clinical data sets from different sources
and providing them from a single platform. However, there are no solutions for
clinical and genomics data integration available hitherto. Due to the absence of any
data model that can accommodate both clinical and genomics data sets, there is a
need to design and construct such a data model which provides a single platform
access to both domains.

In the last decade, increasing trend has been observed in this direction of
research. Researchers have studied and proposed various integration models for

158 A. Anjum et al.

integrating multi-omics data. The two most common approaches that can be found
in literature are multistage analysis and meta-dimensional analysis.

Multistage analysis is a stepwise or hierarchical analysis method. It helps
to reduce search space by stage-wise analysis [35]. It essentially analyzes and
integrates only two data types at a time while analyzing across the data space.
Triangle method is the most common method under this approach which has been
widely used for association studies. This method is more commonly used for
SNP (single nucleotide polymorphism) associations with expression data and genes
themselves [21, 35]. Some clinical phenotypes can be a result of interaction between
different genes and multiple clinical parameters. Due to step-wise analysis, this
approach cannot capture those phenotypes which are determined by factors acting
from various sources. It is a robust and rather simple approach; however, it is not
recommended when multiple different sources are required to be integrated [16, 35].

Meta-dimensional studies involve simultaneous analysis of all the data sources to
produce complex models [35]. There are various methods under this approach, each
of which is based on a different data model. The approach can be selected according
to the underlining research goals. Either the multiple data sets are integrated prior
to building a common model on them, or an individual model is built on each data
set before integrating them as illustrated in Fig. 6.2. Bayesian networks and neural
networks have been more commonly observed in the integration-based research [8,
14]. Meta-dimensional approach facilitates the capability to search across various
data types among multiple data sets. This vast search capability aids to detect
those phenotypic traits which are caused by mutual interaction of multiple factors
from different clinical and genomics sources. Although this integration using meta-

Gene Expression data Clinical trials-data

Combining raw Building a data
data model on each
source data

Creating an

Integrating the individual
integration model | 9 9

models to create a single
model

Fig. 6.2 An illustration of meta-dimensional approach

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 159

dimensional approach leads to rather complex and less robust models, it helps to
search across a wider spectrum of data types [16, 35].

Due to the huge size of genomics data sets, and large variability of clinical
parameters, it is not viable to integrate all parameters. Only those parameters should
be integrated which may provide deeper intuition after integration. Most researchers
have identified gene expression data and SNP data sets to be most relevant to
integrate with the clinical data. Since determining the gene expression of SNPs can
help to find out ultimate effects of a gene on a phenotype, therefore, these parameters
have been widely seen to be integrated with clinical data in research [21, 24, 32, 35].
For future prospects, the research can be further extended to incorporate additional
genomics parameters for integration, such as annotations data.

A promising solution to integrate the clinical and genomics data will be to
design a relational data model based on meta-dimensional approach and implement
it within a data warehouse. Since meta-dimensional approach provides a wider
search spectrum, therefore, this approach seems more promising to be implemented
for clinical and genomics data integration where a wide variety of parameters
and large data sets are required to be integrated. Out of various meta-dimensional
approaches, graph-based models seem more promising such as Bayesian networks
[14, 18]. A probabilistic schema can be designed to implement on this data
model. Some previous work shows that star-based schema can be designed for
biomedical data [38, 46]. These schema designs can be adopted and modified to
meet the requirements of the data sets and data warehouse under consideration. The
performance and scalability of the integration model will be a critical factor to be
controlled in this case. If the model is not capable of scaling to larger data sets, or it
fails to provide same performance with larger data sets, then such a model will not
be sustainable for a futuristic model.

6.4 Data Consistency

Ensuring consistency of integrated data is a crucial part of the big data analytics
platform. Data coming from heterogeneous sources requires to be effectively
integrated to ensure the coherence of the source data and the warehouse [38]. A
change in one of the data sources not only affects the data in that data source but also
affects the interrelationships between the multiple data sources. As the structure of
the data warehouse is defined based on the structure of the individual data sources
and based on the interrelationships between the sources, a single change has the
potential to significantly impact the warehouse. More importantly, the data in the
warehouse may not be consistent with the data in the data sources when a change
occurs in the data source. This in turn means that the inconsistent changes might
result in breaking the data warehouse. Evolution of clinical data results is one
such example of inconsistent source change that needs to be reflected in the data
warehouse. Since the data from these sources is of the magnitude of petabytes, the

160 A. Anjum et al.

challenge of data consistency emerges as a part of the big data domain. Furthermore
in context of big data applications, it is imperative to maintain data consistency
across the entire spectrum of application to ensure correct results and traceability of
individual elements in the system.

One of the prime issues in an evolving data warehouse environment is the
dynamic nature of sources. The evolving nature of sources can lead to breaking the
data warehouse which is a major issue in maintaining data consistency. Inconsistent
changes can lead to generation of inaccurate reports such as those based on
personalized patient analysis further leading to incorrect diagnosis. In order to
prevent the system from breaking due to inconsistent changes, this endeavor aims
to explain a possible solution to ensure consistency between the heterogeneous data
sources and the clinical data warehouse. As explained in the previous section, once
the data has been integrated, consistency mechanisms need to ensure that the sources
and data warehouse are consistent and reflects the evolving data from clinical data
sources.

In order to prevent the breaking of data warehouse from the evolving changes in
the data sources, a possible solution is the use of graphs to ensure the coherence and
consistency of data between the sources and the warehouse. Graphs can scale well
to represent millions of entities in a clinical domain [36] thus allowing to ensure
the scalability of the system. This is of particular interest in the domain of clinical
data since integrating data from disparate sources will be of a much higher mag-
nitude compared to the data coming from sources. Graphs are governed by graph
models that allow a flexible and uniform representation of data originating from
heterogeneous sources. This study aims to investigate suitable graph data models
for accurate representation of data both at the source and data warehouse level.
Furthermore, graph models provide the ability to predict functional relationships
between heterogeneous data sources in order to ensure the correctness of source
data with respect to the data warehouse. Thus, the need for a scalable environment
for clinical analytics arises to ensure the integrity of a data warehouse without
compromising the integrity of the clinical data warehouse. Existing state-of-the-art
graph analytical systems do not fully encompass the needs for such a system.

In conjunction with source data, another key component in a data warehouse
environment is metadata [17]. Metadata describes the context in which the data
was collected and hence means to query the sources. Since the data comes from
distributed sources, a lot of research deals with capturing metadata at the source
level. Any change occurring at the source needs to be reflected in the metadata
repository by updating it, leading to generation of new metadata. Both the updated
and prior metadata are essential to aid in the replication and integration of sources.
For the purpose of our research work, we will be looking at the metadata repository
known as Semantics Manager [5] by Akana. Semantics Manager enables enterprises
to define, understand, use, and exchange data by managing standards and metadata
as organizational assets.

Several approaches have been investigated for clinical data integration that help
to ensure data consistency such as integration engines [19, 45] or ontology-based

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 161

data integration [20]. Integration engines provide a useful way of solving the
basic communication problems between systems, but they do nothing to address
true integration of information particularly in the context of data consistency
[19, 45]. This approach works well and has been effective, but when the number
of possible interactions between systems increases, the limitations of scalability
become apparent. The use of graph-based integration of data being generated from
multiple data sources is a viable option to address this issue [36].

Graphs [34, 36] are particularly useful for the description and analysis of
interactions and relationships in a clinical domain. Graphs provide useful features
such as analytical flexibility, in particular to evaluate relationships, integration
of data, and comparison of results, to name a few. Graphs are currently being
used to analyze social networks, knowledge bases, biological networks and protein
synthesis, etc. [36]. A graph consists of a set of nodes and a set of edges that connect
the nodes. The nodes are the entities of interest, and the edges represent relationships
between the entities. Edges can be assigned weights, directions, and types. This is
particularly useful in a clinical domain, the directions in edges help to represent
causality between nodes, while the edges themselves can be annotated to represent
the relationship between entities.

In order to ensure that the changes have been integrated consistently, source
graphs need to be correctly replicated. This leads to the need to investigate and
implement models that allow quick generation, integration, and replication of graphs
so that the source data can be quickly and effectively integrated. Furthermore, in
order to replicate and integrate graphs, powerful graph models such as the property
graph model [6], Bayesian networks [33], or Markov models [33] are required.
These graph models allow efficient inference of clinical data [33] essential to
determine relationships between disparate clinical data sources. Graph models can
be divided into two classes: undirected and directed graph models. Markov models
[33] are an example of undirected graph model, while property graph model is an
example of directed graph model. Bayesian networks can accommodate a variety
of knowledge sources and data types; they are computationally expensive and
difficult to explore previously unknown network. Bayesian networks do not have
feedback loops due to the acyclic nature of Bayesian network graphs. In contrast
to Bayesian networks, property graph model [6] represents data as a directed
multigraph consisting of finite (and mutable) set of nodes and edges. Both vertices
and edges can have assigned properties (attributes) which can be understood as
simple name-value pairs, shown in Fig. 6.3. A dedicated property can serve as a
unique identifier for vertices and edges. In addition to this, a type property can
be used to represent the semantic type of the respective vertex or edge. Properties
of vertices and edges are not necessarily determined by the assigned type and can
therefore vary between vertices or edges of the same type. Vertices can be connected
via different edges as long as they have different types or identifiers. The Property
graph model [6] not only offers schema flexibility but also permits managing and
processing data and metadata jointly. Graphs are generated by the graph engine
based on the graph models.

162 A. Anjum et al.

Fig. 6.3 Property graph

model (Property Graph
Model [6])

records records
organize
have have

The property graph model provides the following key characteristics that differ
from the classical relational data model:

» Relationships as first-class citizens — With the property graph model, relation-
ships between entities are promoted as first-class citizens of the model with
unique identity, semantic type, and possibly additional attributes.

* Increased schema flexibility — In a property graph model, edges are specified at
the instance and not at the class level, i.e., they relate two specific vertices, and
vertices of the same semantic types can be related via different edges.

* No strict separation between data and metadata — Vertices and edges in a graph
can have assigned semantic types to indicate their intended meaning. These types
can be naturally represented as a tree (taxonomy) or graph themselves. This
allows their retrieval and processing as either type definitions, i.e., metadata or
(possibly in combination with other vertices) as data.

In order to process large graphs such as those generated in clinical domain,
there is a need for systems that can scale well over hundreds and thousands of
nodes and edges at a single point in time. To ensure that this requirement can be
achieved, several large-scale graph processing systems have been designed such as
Apache Giraph [7], GraphLab [25], and Pregel [27]. Apache Giraph is an iterative
graph processing framework, built on top of Apache Hadoop [9]. The input to a
Giraph computation is a graph composed of vertices and directed edges. GraphLab
is a graph-based, high-performance, distributed framework written in C++4-. The
GraphLab framework is a parallel programming abstraction targeted for sparse
iterative graph algorithms. It provides a high-level programming interface, allowing
a rapid deployment of distributed machine learning algorithms. Pregel is Google’s
scalable and fault tolerant API that is sufficiently flexible to express arbitrary graph

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 163

T . Source data s ingested by the Q
graph engine Graph Engine nalytics
=ESNEy Y- g =]
‘ :':'33!'4 Lo I '

i
o B ’
i
I ‘.i'.'. ‘ ﬁ : Source data is ransformed for Sk Users can query the
1 zgﬁ B storage inthe data warehousg rap data warehouse to
1 3 E 1 Visualisation Lo
— HY Sdv visualise graphs
. Y . T,
F -~
{ GIRAPH ! ! Y
o | =
H [| 1 i
Ldl '] i 1
i
— = e Extract, Transform ' ‘_ ;
:pmczuing {e-g. Giraph, 1 Load (ETL) 1 - :
-] ! 1
: Graphlabetc) 1 Metadats 1 :
]]
1 Rules
. e | soe rahsin e |
: i —]] warehouse 1
|] '
i " !
| . S i '
—] H !
1 ™ &] ETL] 1
1 Metadata ! I
Do ; ,
] ¢ 1
= ! Graph Model (eg. 1 { Metadsta | - il
1 Property Graph Model | Rules ! Query Data —
\ or Bayesian Networks), ry \ Warehouse |
“““““ = Database N o
Schema by 5
S M Data Warehouse ‘%
L] —————
Clinical Data Sources Source Metadata gets collected Metadata Repository

in the Metadata Repository

Fig. 6.4 Proposed solution architecture to maintain data consistency in a big data environment

algorithms. Giraph is a suitable choice for applications where scalability is essential
[7]; in contrast to that, GraphLab is effective in applications where processing time
is critical [25]. In order for the system to scale well, these systems can be deployed
over cloud to ensure the scalability of the system at large.

A proposed solution (Fig. 6.4) is a graph-based system that ensures coherent
integration of data from heterogeneous clinical data sources for consistency and
scalable analytics. In order to ensure consistency in the disparate clinical data
sources and data warehouse, graphs can be used based on the property graph model.
In order to accommodate the overarching requirement of the amount of data, large-
scale graph processing engines such as Giraph [7] can be used since it is based
on the property graph model. The proposed system can be designed based on
the gather-apply-scatter (GAS) programming paradigm [25]. This will allow an
incremental graph problem to be reduced to a subproblem that operates on a portion,
or subgraph, of the entire evolving graph. This subgraph abstraction will aim for
the solution to substantially outperform the traditional static processing techniques.
There are multiple heterogeneous clinical data sources with varying data (clinical
trials data, genomics data, EHR data, etc.). The proposed solution shall incorporate
a metadata repository that ingests the metadata from the disparate clinical data
sources in order to ensure the correctness of the data once it resides in the clinical
data warehouse. The wrapper ingests the clinical source data and passes it on to the
graph processing engine that will generate a graph and then allows it to push into
the clinical data warehouse. If the source data changes/evolves, e.g., over the course
of the clinical trial, metadata repository detects the change and automatically alerts
the data warehouse to update the graph in it, the changes are then made to the subset

164 A. Anjum et al.

of the graph where the source has evolved so the overhead of generating new graph
every time a changes occurs is omitted, reducing the computational workload on the
graph engine.

Data coming from heterogeneous sources requires to be effectively integrated
to ensure the coherence of the source data and the warehouse. Compared to
traditional approaches for data integration, graphs promise significant benefits. First,
a graph- like representation provides a natural and intuitive format for the underlying
data, which leads to simpler application designs. Second, graphs are a promising
basis for data integration as they allow a flexible and uniform representation of
data, metadata, instance objects, and relationships. Graphs are well suited for data
integration since they can model highly interconnected entities where other NoSQL
alternatives and relational databases fall short. Graphs can scale well over millions
of nodes hence are suitable for integration of data for clinical data. Metadata works
as a governance framework in such an environment.

6.5 Data Infrastructure

Data integrated from diverse genomics and clinical sources requires a cloud-based
platform for storage and retrieval. We explain the infrastructure for data storage,
retrieval, and data movement on an on-demand basis.

When planning a multi-storage data warehouse environment, the data needs to
be understood and evaluated to determine whether a specific data set needs storing
within a high-performance legacy warehouse or on a commodity Hadoop cluster. A
method to accomplish this is through assigning data with a “Data Temperature.”

“Hot” represents the in-demand and mission critical data in direct need for quick
decision making, through to “Frozen” data which is accessed very infrequently and
often is represented as archived. In between these two extremes are “Warm” data
which is commonly used but does not have a huge amount of urgency, and “Cold”
data which is infrequently accessed [44].

The assigned temperature of data is used to determine its storage location.
The frequently accessed “Hot” data is stored within fast storage such as high-
performance main-memory systems (scale-up), and the infrequently accessed
“Cold” is stored on the large amount of cheap commodity storage such as Hadoop
(scale-out) [22].

To make informed decisions about the data and where it should be moved, it is
vital to identify what data is hot, and what is cold. Factors that are commonly used to
establish data temperature are the frequency of access and age, so the more frequent
the access and the more recent the data then the hotter the data ranked. These factors
can be used separately or collectively (Fig. 6.5).

In evaluating the data, certain workloads and data tasks may be identified that
would be more suitable for batch-type work upon cold Hadoop storage. Usage and
age are common factors for data temperature, but it is also important to consider

6 Big Data Analytics in Healthcare: A Cloud-Based Framework for. . . 165

Fig. 6.5 Data temperatures A
with age of data

Volume of
Data

Cold Data

Frozen Data

Warm Data
Hot
Data

A}

Age of Data

data that could have a priority based upon a specific task or alternatively based
around a specific group of user requirements for the data, so it is important to
consider business operations and other influencing factors when establishing a data
temperature. Another example of this could be a set of data that remains unused for
long periods of time but becomes incredibly important at a single point of the year,
the age and usage values would not be able to account for this but incorporating
business logic or machine-learned knowledge would.

Read and write operations are expensive, and are best avoided [23], but with
“Hot” storage being in short supply and high demand, it is inevitable that data
will be moving in and out (read and write) of this storage layer frequently. When
planning to implement a multi-temperature storage environment, it is vital to plan
how frequently and at what scale data will move. If it was based purely on the
temperature, then you could potentially have data moving in and out of the hotter
storage tiers constantly through the day which would be a considerable drain on
resources and consid